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Preface

The 20th International Conference on Types for Proofs and Programs (TYPES’14) was held
in Paris, France from May 12 to May 16, 2014, consisting of the main conference and one
satellite event1.

The conference was attended by about a hundred scientists. The responsible persons
for local organisation were Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau, and the
program committee for the selection of the conference presentations consisted of:

Andreas Abel, Chalmers University of Technology and Gothenburg University, Sweden
Andrej Bauer, Fakulteta za matematiko in fiziko, Ljubljana, Slovenia
Małgorzata Biernacka, University of Wroclaw, Poland
Lars Birkedal, Aarhus University, Denmark
Paul Blain Levy, University of Birmingham, UK
Herman Geuvers, Radboud University and Eindhoven University of Technology, Nether-
lands
Hugo Herbelin, INRIA Paris-Rocquencourt, France (co-chair)
Pierre Letouzey, University Paris-Diderot, France (co-chair)
Ralph Matthes, IRIT, CNRS and University of Toulouse, France
Conor McBride, University of Strathclyde, UK
Luís Pinto, University of Minho, Braga, Portugal
Claudio Sacerdoti, University of Bologna, Italy
Aleksy Schubert, University of Warsaw, Poland
Matthieu Sozeau, INRIA Paris-Rocquencourt, France (co-chair)
Thomas Streicher, TU Darmstadt, Germany

The TYPES meetings were first organised in the late 1980’s and were supported by a
series of EU programmes from 1989 to 2008. Previous meetings were held in Antibes (1990),
Edinburgh (1991), Båstad (1992), Nijmegen (1993), Båstad (1994), Turin (1995), Aussois
(1996), Kloster Irsee (1998), Lökeberg (1999), Durham (2000), Berg en Dal (2002), Turin
(2003), Jouy-en-Josas (2004), Nottingham (2006), Cividale del Friuli (2007), Turin (2008),
Aussois (2009), Warsaw (2010), Bergen (2011) and Toulouse (2013).

Three invited talks and 39 contributed talks were given at the meeting, and we got 17
submissions to these open post-proceedings, out of which 14 papers were accepted. All papers
obtained at least two reviews, and up to six reviews, counting a second round of review.

As editors of this post-proceedings volume, we would like to thank the authors of the
paper submissions, whether accepted or not. And we gratefully acknowledge all 31 anonymous
external referees for their valuable work. The overall very high quality of the resulting papers
is in part due to their careful reading and commenting on the obtained material.

The TYPES’14 conference received financial and/or logistic support from the Institut
Henri Poincaré (IHP), INRIA Paris-Rocquencourt, and Université Paris Diderot. The
EasyChair platform was used for reviewing and it was a very agreeable experience as editors
of these post-proceedings to work with Marc Herbstritt and Schloss Dagstuhl.

Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau
July 2015

1 PCC: Proof, Computation, Complexity.
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Terminal Semantics for Codata Types in
Intensional Martin-Löf Type Theory∗

Benedikt Ahrens and Régis Spadotti

Institut de Recherche en Informatique de Toulouse
Université Paul Sabatier, Toulouse, France

Abstract
We study the notions of relative comonad and comodule over a relative comonad. We use these
notions to give categorical semantics for the coinductive type families of streams and of infinite
triangular matrices and their respective cosubstitution operations in intensional Martin-Löf type
theory. Our results are mechanized in the proof assistant Coq.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases relative comonad, Martin-Löf type theory, coinductive type, computer
theorem proving

Digital Object Identifier 10.4230/LIPIcs.TYPES.2014.1

1 Introduction

In this work, we study the notions of relative comonad and comodule over a relative comonad.
We then use these notions for a case study in categorical semantics of coinductive data
types in intensional Martin-Löf type theory (IMLTT): we characterize two coinductive type
families and their respective cosubstitution operations in IMLTT via a universal property.
The first codata type we consider is the homogeneous type family of streams, parametrized
by a base type. The second one is the heterogeneous codata type family of infinite triangular
matrices parametrized by the type of diagonal entries. In the rest of the introduction, we
explain some of the vocabulary occurring in these first sentences: in Section 1.1 we briefly
introduce (intensional) Martin-Löf type theory. In Section 1.2 we discuss inductive types
and their semantics, before passing to coinductive types in Section 1.3. We describe the
difference between homogeneous and heterogeneous (co)data types in Section 1.4 and explain
substitution for leaf-labeled trees and cosubstitution for node-labeled trees in Section 1.5.
Sections 1.6 to 1.8 of the introduction concern more “administrative” aspects.

1.1 Intensional Martin-Löf type theory
Martin-Löf type theory (MLTT) [17] is a dependent type theory developed in the 1970’s,
which provides a foundation of mathematics. It is based on the Curry-Howard isomorphism,
that is, it treats logic as a fragment of the general type theory. There are two notions
of “sameness” in Martin-Löf type theory, an external (judgmental) one, and an internal
(propositional) one. The latter is given by the Martin-Löf identity type, which is an inductively
defined binary relation on any given type. Its only constructor relates any term to itself,
that is, the relation defined by the Martin-Löf identity type is the least reflexive relation on

∗ The work of Benedikt Ahrens was partially supported by the CIMI (Centre International de Math-
ématiques et d’Informatique) Excellence program ANR-11-LABX-0040-CIMI within the program
ANR-11-IDEX-0002-02 during a postdoctoral fellowship.

© Benedikt Ahrens and Régis Spadotti;
licensed under Creative Commons License CC-BY
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2 Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory

a given type. Judgmentally equal terms are always propositionally equal, but the converse
is not always true. Indeed, one distinguishes two variants of type theory: in extensional
type theory, propositional equalities (i.e. terms of identity type) are reflected, via a reflection
rule, into the judgmental equality of the type theory. Here, judgmental and propositional
equality thus coincide. Intensional Martin-Löf type theory lacks the reflection principle for
the sake of decidability of type checking. This variant forms the basis of the computer proof
assistants Coq, Matita and Agda.

1.2 Wellfounded trees and their semantics
A tree is a special kind of graph (with labeled edges and unlabeled vertices), consisting of a
root (edge), to which a number of subtrees are attached. The subtrees are themselves trees.
The root of a tree and the roots of any subtrees are more generally called nodes. We gather
trees of a fixed shape into a set or type, depending on the foundations we work in. The
possible shapes of trees are given by two pieces of data:
1. the set/type of potential nodes and
2. the number of subtrees attached to each node.
Such a pair is called a signature, and we are interested in the set/type of trees which are
formed according to a given signature.

A tree is called wellfounded if all of its subtrees have finite length. In this section we
consider the set/type of wellfounded trees of a given signature. Such a set/type is called
inductively generated by the signature. Intuitively, this set/type is the least one stable under
forming trees starting from leaves and attaching already constructed trees as subtrees to
nodes. One might also consider potentially infinite, i.e., non-wellfounded trees; these are
called coinductive and are the main object of this work. We discuss them in Section 1.3.

Many objects in mathematics and logic can be represented as (wellfounded) trees. For
instance, a natural number can be considered as such a tree: let {S,Z} be the set of possible
nodes, such that node S always has one subtree and node Z does not have any subtrees, i.e.
Z is a leaf. The natural number 2 is represented by the tree S −→ S −→ Z. This example
demonstrates the fundamental aspect of those tree-like objects: they can be used to model
basic mathematical and logical objects.

By “semantics of inductive types” we mean a mathematical description of the set/type of
trees of a given signature. More precisely, the goal is to give a category-theoretic explanation
to the above description as “the least set/type stable under forming trees”. However, the
question of how to give such a characterization depends on the formal system we work in.

In a set-theoretic setting, inductive sets are characterized as initial algebras for some
endofunctor on the category of sets [16].

In a type-theoretic setting as given by Martin-Löf type theory [17], two approaches to
the semantics of inductive types have been studied: one approach consists in showing that
inductive types exist in a model of the type theory (see, e.g., [19]). Another approach is to
prove that adding certain type-theoretic rules to the type theory – rules which postulate the
existence of inductive types in the type theory – implies (or is equivalent to) the existence of
a universal object within type theory (see, e.g., [12, 9]). This latter approach is the one we
adopt in the present work: we add axioms to intensional Martin-Löf type theory, postulating
the existence of coinductive types.

The reflection rule equips extensional type theory with extensional features similar to
those of set theory. As a consequence, the characterization given by Dybjer [12] of an
inductive type in extensional MLTT works as in set theory: an inductive type constitutes
the initial algebra for some endofunctor on the category of types.
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In intensional Martin-Löf type theory the characterization of inductive types as initial
algebras of some endofunctor fails for a lack of function extensionality [12], but it can be
recovered [9] in an extension of intensional MLTT called Homotopy Type Theory (HoTT)
[23]. In this extension, function extensionality is provable from the Univalence Axiom. For a
suitable definition of uniqueness – contractibility in HoTT jargon – one can prove a logical
equivalence between type-theoretic rules specifying an inductive type on the one hand and
the existence of an initial algebra within the theory on the other hand. The mentioned work
[9] thus shows that the characterization of inductive types as initial algebras carries over from
extensional to intensional type theory if one adds an extensionality principle for functions
and adapts the notion of uniqueness.

1.3 Non-wellfounded trees: simply dualizing?

Coinductive sets/types describe sets/types of potentially infinite trees, that is, trees that may
have an infinite chain of subtrees – still formed according to some signature. An example of
such a coinductive set/type is given by the conatural numbers, which are specified by the
same signature as the natural numbers. They consist of the elements of the natural numbers
and an additional, infinite, tree S −→ S −→ S −→ . . ..

In a traditional set-theoretic setting, the theory of coinductive sets is completely dual to
that of inductive sets: coinductive sets are characterized as terminal coalgebras of suitable
endofunctors [16].

In intensional Martin-Löf type theory, this duality between inductive and coinductive
objects breaks. This is rooted in the unsuitability of the Martin-Löf identity type to express
sameness for inhabitants of coinductive types: while identity terms are inductively generated
and hence necessarily finite, a proof of sameness between coinductive terms – which represent
infinite objects – constitutes a potentially infinite object itself. The type of such proofs hence
cannot be exhaustively given by the (inductive) identity type.

Instead of comparing two coinductive terms in IMLTT modulo identity, one defines a
binary coinductive relation called bisimilarity on a given coinductive type, with respect to
which one compares its inhabitants [11]. Expressed categorically, bisimilarity in IMLTT
is given as a weakly terminal relation on the coinductive type that is compatible with the
coalgebra structure. Consequently, we consider two maps into a coinductive type to be the
same if they are pointwise bisimilar – an analogue to the aforementioned principle of function
extensionality available in HoTT.

With these conventions, we give, in the present work, a characterization of some coinduc-
tive data types as terminal object in some category defined in IMLTT. More precisely, we
consider an example of homogeneous codata type, streams, and an example of heterogeneous
codata type, triangular matrices. For each of these examples we prove, from type-theoretic
rules specifying the respective codata type added to the basic rules of IMLTT, the existence
of a terminal object in some category within IMLTT. The objects of the considered categories
are not plain coalgebras for some endofunctor, but rather coalgebras with extra structure.
This extra structure accounts for a cosubstitution operation with which the considered
codata types are endowed in a canonical way. The cosubstitution operation is explained in
Section 1.5.

In the present work, we do not study existence of coinductive types. In variants of IMLTT,
coinductive types have been derived from inductive types: for IMLTT with Uniqueness of
Identity Proofs [7], and for IMLTT augmented by the Univalence Axiom [4].

TYPES’14



4 Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory

1.4 Homogeneous and heterogeneous trees
Instead of considering types of trees of a given signature, we consider, more generally, families
T (X) of types of trees, families parametrized by a type X. We call a tree t : T (X) over X
homogeneous if all of its subtrees are also trees over X, i.e. if all the subtrees are elements of
T (X). A signature accordingly is called homogeneous if it only admits homogeneous trees.
On the other hand, a tree t is called heterogeneous, if its subtrees ti (i : I for some indexing
type I) are trees over type Fi(X) for maps of types Fi : Type→ Type. Obviously, when the
functors Fi are identity functors, we get back homogeneous trees; heterogeneous trees are
thus more general than homogeneous trees.

In the present work, we study examples of both homogeneous and heterogeneous trees:
a stream is a homogeneous tree with one subtree over the same type of nodes, whereas an
infinite triangular matrix is a heterogeneous tree (over a type, say, A) with one subtree over
type E ×A for a fixed, but arbitrary type E. This is explained in more detail below.

The examples we consider are trees with just one subtree. A generalization to trees
(no matter whether homogeneous or heterogeneous) with a family of subtrees indexed by
some fixed type I as above is straightforward – we refrain from striving for this additional
generality in order to keep the exposition as simple and clear as possible, and also in view of
a lack of practical examples where this generality would be useful.

1.5 Cosubstitution: a comonadic operation on parametrized codata
We first consider the case of leaf-labeled trees. Let T (X) be a type family of trees (of a
given shape) with leaves from X, i.e., t : T (X) is a tree (of a given shape) with leaves in
X. Let furthermore f : X → T (Y ) be a map. We obtain a tree t′ : T (Y ) by replacing any
leaf of t by its image under the map f . This replacement operation is called (simultaneous)
substitution – “simultaneous” because all the leaves are substituted at once. A well-studied
example is that of the lambda calculus, the terms of which can be formalized as leaf-labeled
trees over a type of free variables, that is, over a context [8]. More precisely, let LC(X) be
the type of lambda terms in context X. A map f : X → LC(Y ) is called a substitution rule,
indicating how to substitute any free variable x : X occurring in a term t : LC(X). The
substitution operation (parametrized by contexts X and Y ) takes as input a lambda term
t : LC(X) and a rule f : X → LC(Y ) and returns the substituted term t′ : LC(Y ). The
categorical characterization of this substitution operation has been studied extensively; our
list of pointers [8, 13, 20, 22, 14, 6, 3] is necessarily incomplete. One such characterization is
via monads; substitution can be seen as part of a monadic structure on the functor given by
the parametrized data type [8, 14, 6, 3].

Node-labeled trees can be equipped with a cosubstitution operation. Is this cosubstitution
operation part of a comonad structure? In a set-theoretic setting, the fact that cosubstitution
for coinductive sets is comonadic is established by Uustalu and Vene [24].

If we consider infinite (i.e., coinductive) node-labeled trees in IMLTT, however, the
algebraic laws of cosubstitution for such trees have to be considered modulo bisimilarity
rather than identity. For this we develop the notion of relative comonad and comodule over a
relative comonad. Indeed, we show that our exemplary codata type families of streams and
triangular matrices constitute relative comonads, and the maps which return the substream
resp. submatrix of a given stream resp. matrix constitute comodule morphisms over those
relative comonads.

Our goal is to characterize those codata types and their respective cosubstitution operation
as a universal object in some category. Traditionally, codata types are characterized as
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terminal coalgebras of some endofunctor. However, this characterization does not account
for the cosubstitution operation. In order to integrate cosubstitution into the categorical
semantics of the coinductive types under consideration, we thus define a more complicated
category of “models” of the signature specifying those types – coalgebras with extra structure
accounting for a comonadic operation. The terminal such model is given by the codata
type together with its cosubstitution operation. Our terminal semantics thus characterizes
not only the codata types themselves but also the bisimilarity relation and – via the use of
(relative) comonads – a canonical cosubstitution operation on them.

1.6 Computer-checked proofs
All our results have been implemented in the proof assistant Coq [10]. The Coq source files
and HTML documentation are available online [5]. Here, we hence omit the proofs and focus
on definitions and statements.

1.7 Type theory vs. set theory
The category-theoretic concepts studied in this work are agnostic to the foundational system
being worked in. While we present them in a type-theoretic style, the definitions and
lemmas can trivially be transferred to a set-theoretic setting. Throughout this article, we
use type-theoretic notation, writing t : T to indicate that t is of type T . For instance, we
write f : C(A,B) to indicate that f is a morphism from object A to object B in category C.
Whenever an operation takes several arguments, we write some of them as indices; these
indices might be omitted when they can be deduced from the type of the later arguments. We
assume basic knowledge of category theory; any instances used are defined in the following.

1.8 Organisation of the paper
In Section 2 we introduce some concepts and notations used later on. In Section 3 we present
the coinductive type families Stream of streams and Tri of infinite triangular matrices and
some operations on those codata types, in particular, the respective cosubstitution operations.
In Section 4 we present relative comonads and define the category of comonads relative to a
fixed functor. We give some examples of relative comonads using the codata types presented
in Section 3, and relate relative comonads to traditional comonads. In Section 5 we define
comodules over relative comonads and give some constructions of comodules. Again, examples
of comodules are taken from Section 3. In Section 6 we define categories of models for the
(signatures of the) codata types presented in Section 3, based on the category-theoretic
notions developed in the preceding sections. We then prove that the codata types constitute
the terminal models in the respective categories. We present an example of a map defined as
a terminal morphism in the category of models for streams, exploiting terminality of Stream.
In Section 7 we give an overview of the formalization of this work in the proof assistant Coq.

2 Preliminaries

We present a few particular category-theoretic objects used later on, and fix some notation.

I Definition 1 (Setoids in IMLTT). A setoid in intensional Martin-Löf type theory is a
pair (A,∼A) of a type A together with an equivalence relation ∼A on A. Given a setoid
S = (A,∼A), we often abuse notation by writing s : S instead of s : A for a term s of A.
Given two setoids (A,∼A) and (B,∼B), the cartesian product A × B of their underlying

TYPES’14



6 Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory

types is equipped with an equivalence relation given component-wise, thus yielding a product
on setoids.

I Definition 2 (Category in IMLTT, [2, 15]). A category C in intensional Martin-Löf type
theory is given by

a type of objects, also denoted by C;
for any two objects a, b : C, a setoid C(a, b) of morphisms from a to b;
an identity morphism ida : C(a, a) for any a : C;
a dependent composition operation ( ◦ )a,b,c : C(b, c)× C(a, b)→ C(a, c);
a proof that composition is compatible with the equivalence relations of the setoids of
morphisms;
proofs of unitality and associativity of composition stated in terms of the equivalence
relations on the morphisms.

We write f : a→ b for f : C(a, b), when the category C can be deduced from the context.

Functors and natural transformations are defined in terms of the setoidal equivalence
relations on morphisms. We omit the definitions, which can be found in our Coq files [5].

I Definition 3 (Some categories in IMLTT). We denote by Type the category (in the sense of
Definition 2) of types (of a fixed universe) and total functions between them in Martin-Löf
type theory. The setoidal equivalence relation on Type(A,B) is given by pointwise equality
as given by the Martin-Löf identity type, f ∼ g =def ∀x : A, fx = gx.

We denote by Setoid the category (in the sense of Definition 2) an object of which is a
setoid. A morphism between setoids is a type-theoretic function between the underlying
types that is compatible in the obvious sense with the equivalence relations of the source
and target setoids. The equivalence relation on setoid morphisms is given by pointwise
equivalence: two parallel morphisms of setoids f, g : A→ B are equivalent if for any a : A
we have fa ∼B ga. The category Setoid thus is cartesian closed.

I Definition 4 (A functor from types to setoids). The functor eq : Type→ Setoid is defined
as the left adjoint to the forgetful functor U : Setoid→ Type. Explicitly, the functor eq sends
any type X to the setoid (X,=X) given by the type X itself, equipped with the propositional
equality relation =X specified via Martin-Löf’s identity type on X.

I Remark 5 (Notation for product). We denote the category-theoretic binary product of
objects A and B of a category C by A×B. We write pr1(A,B) : C(A×B,A) and pr2(A,B) :
C(A×B,B) for the projections, occasionally omitting the argument (A,B). Given f : C(A,B)
and g : C(A,C), we write 〈f, g〉 : C(A,B × C) for the induced map into the product such that
pr1 ◦ 〈f, g〉 = f and pr2 ◦ 〈f, g〉 = g.

Both of the categories of Definition 3 have finite products, i.e., binary products and a
terminal object.

I Definition 6 (Product-preserving functor). A functor F : C → D between categories with
finite products preserves finite products if it preserves the terminal object and, for any
two objects A and B of C, the morphism φFA,B is an isomorphism, where

φFA,B :=
〈
F (pr1), F (pr2)

〉
: F (A×B)→ FA× FB .

I Example 7. The functor eq : Type→ Setoid of Definition 4 preserves finite products.
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A A A A . . .

head tail

Figure 1 A stream decomposes into its head and tail.

3 Codata types in intensional Martin-Löf type theory

In this section, two coinductive type families in intensional Martin-Löf type theory (IMLTT)
[17] are presented. For a, b : A, the identity type between a and b is denoted by a = b.

We present the type-theoretic rules specifying these codata types and bisimilarity on
them. Categorically, bisimilarity on a given codata type is given by the largest binary relation
on that type that is compatible (in a sense to be specified later) with the observations on
that codata; it is the appropriate notion of sameness on inhabitants of these types [11]. Here,
an observation is the result of destructing, i.e. taking apart, an element of the codata type.
For instance, an infinite list a.k.a. a stream (defined in detail in Example 8) over a base type
A allows to observe the first element – the head – of that list (which is a term of type A)
and, corecursively, the tail of that list, which is again an infinite list over A.

A coinductive type together with its associated bisimilarity relation forms a setoid as in
Definition 3. We thus denote bisimilar elements t and t′ by t ∼ t′.

A map into a codata type is defined using its introduction rule. Intuitively, the introduction
rule takes as arguments the observations one can make on the image of the map thus defined.
For instance, a map into streams is defined by specifying head and tail on the output of that
map: this intuition can be obtained by considering the combination of introduction and
computation rules from Figure 2. We thus use a kind of “copattern matching” [1] to define
maps into streams (and analogously for other codata types): the definition f := corec h t is
written as the pair of clauses

head ◦ f := h and tail ◦ f := t .

The first example is the type of streams of elements of a given base type A:

I Example 8 (The coinductive type family of streams). Let A be a type. A stream over A is,
intuitively, an infinite list of elements of A. Given such a stream t, we can extract an element
of A, called head(t) and the rest of the stream, called tail(t), which is again a stream over A;
see Figure 1 for a schematic illustration of the two operations.

Formally, the type – setoid, actually – StreamA of streams over A is coinductively defined
via the destructors head and tail given in Figure 2. A map f : T → StreamA from an
arbitrary type T into the type of streams is specified by giving, for each possible input t : T ,
an element a : A – the head of the image stream – and another t′ : T – an element which
is mapped to tail f(t). This intuition is made formal by the introduction and computation
rules of Figure 2.

The second part of Figure 2 introduces bisimilarity as a binary relation on streams (over
a fixed type A) that is compatible with the observations in the sense that bisimilar streams
have equal heads and bisimilar tails (cf. the elimination rules). We call a bisimulation on
streams (over a given type) any binary relation that is compatible with the observations on
streams. If two streams are related by any bisimulation, then they are also bisimilar; this is
what the introduction rule declares. In that sense, bisimilarity is the largest bisimulation.

TYPES’14
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Rules for Stream

Formation

A : Type
StreamA : Type

Elimination

t : StreamA
headA t : A

t : StreamA
tailA t : StreamA

Introduction

T : Type hd : T → A tl : T → T

corecA hd tl : T → StreamA

Computation

hd : T → A tl : T → T t : T
headA(corecA hd tl t) = hd(t)

hd : T → A tl : T → T t : T
tailA(corecA hd tl t) = corecA hd tl (tl t)

Bisimilarity on Stream

Formation

A : Type s, t : StreamA
bisimA s t : Type

Elimination

s, t : StreamA p : bisimA s t

headA s = headA t

s, t : StreamA p : bisimA s t

bisimA(tailA s)(tailA t)

Introduction

` R : StreamA→ StreamA→ Type
x, y : StreamA ` R x y → head x = head y
x, y : StreamA ` R x y → R (tail x)(tail y)
x, y : StreamA ` R x y → bisim x y

Figure 2 Rules for streams and bisimilarity on them.
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rest

Figure 3 An infinite triangular matrix over type A and its destructors top and rest.

We define a cosubstition operation on streams via the following clauses:

cosubstA,B : (StreamA→ B)→ StreamA→ StreamB
head ◦ cosubst f := f and

tail ◦ cosubst f := cosubst f ◦ tail .

According to our convention above, by this, we actually mean

cosubstA,B(f) := corec f tail .

We call this operation “cosubstitution” since its type is dual to the simultaneous substitution
operation of the lambda calculus [8]. Cosubstitution is compatible with bisimilarity on
streams, and thus is (the carrier of) a family

cosubstA,B : Setoid(StreamA, eqB)→ Setoid(StreamA,StreamB) .

Streams are node-labeled trees where every node has exactly one subtree. We also consider a
type of trees where every node has an arbitrary, but fixed, number of subtrees, parametrized
by a type B.

I Example 9 (Node-labeled trees). We denote by TreeB(A) the codata type given by one
destructor head and a family of destructors (tailb)b:B with type analogous to that defining
tail of Example 8. We thus obtain Stream by considering, for B, the singleton type.

We also consider the heterogeneous codata type family of infinite triangular matrices:

I Example 10. Infinite triangular matrices are studied in detail by Matthes and Picard [18].
We give a brief summary, but urge the reader to consult the given reference for an in-depth
explanation. The codata type family Tri of infinite triangular matrices is parametrized by a
fixed type E for entries not on the diagonal, and indexed by another, variable, type A for
entries on the diagonal. Schematically, such a matrix looks like in Figure 3.

The codata type is specified via two destructors top and rest, whose types are given in
Figure 4.

Given a matrix over type A, its rest – obtained by removing the first element on the
diagonal, i.e. the top element – can be considered as a trapezium as indicated by the green
line in Figure 3, or alternatively, as a triangular matrix over type E ×A, by bundling the
entries of the diagonal with those above as indicated by the orange frames, shown in Figure 5.
The latter representation is reflected in the type of the destructor rest.

This change of parameter (from A to E × A) in the type of rest is the reason why the
family Tri is called heterogeneous.

TYPES’14



10 Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory

Rules for Tri

Formation

A : Type
TriA : Type

Elimination

t : TriA
topA t : A

t : TriA
restA t : Tri(E ×A)

Introduction

T : Type→ Type hd : ∀A, TA→ A tl : ∀A, TA→ T (E ×A)
corecT hd tl : ∀A, TA→ TriA

Computation

hd : ∀A, TA→ A tl : ∀A, TA→ T (E ×A) t : TA
topT (corecA hd tl t) = hd(t)

hd : ∀A, TA→ A tl : ∀A, TA→ T (E ×A) t : TA
restT (corecA hd tl t) = corecA hd tl (tl t)

Bisimilarity for Tri

Formation

A : Type s, t : TriA
bisimA s t : Type

Elimination

s, t : TriA p : bisimA s t
topA s = topA t

s, t : TriA p : bisimA s t

bisimA(restA s)(restA t)

Introduction

A : Type ` R : TriA→ TriA→ Type
A : Type, x, y : TriA ` R x y → top x = top y
A : Type, x, y : TriA ` R x y → R (tail x)(tail y)
A : Type, x, y : TriA ` R x y → bisim x y

Figure 4 Rules for triangular matrices and bisimilarity on them.
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Figure 5 The rest of a matrix over A is a matrix over E × A (illustration taken from [18]).
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redec (lift f)

Figure 6 Definition of redecoration (illustration taken from [18]).
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E × B

id

f

Figure 7 Definition of lifting (illustration taken from [18]).

A cosubstitution operation, “redecoration”, redecA,B : (TriA → B) → TriA → TriB is
defined through the clauses

top ◦ redec f := f and rest ◦ redec f := redec (lift f) ◦ rest . (1)

An illustration of the redecoration operation is given in Figure 6 (taken from [18]).
Here, the need for the family of auxiliary functions

liftA,B : (TriA→ B)→ Tri(E ×A)→ E ×B

arises from the heterogeneity of the destructor rest. These functions are suitably defined to
account for the change of the type of the argument of redec when redecorating rest t : Tri(E×A)
rather than t : TriA, namely

lift(f) := 〈pr1(E,A) ◦ topE×A, f ◦ cutA〉 .

An illustration of this operation is given in Figure 7 (taken from [18]).
The auxiliary function cutA : Tri(E ×A)→ TriA cuts the upper row of elements in E of

a trapezium (equivalently, of a matrix over E ×A). It is defined corecursively via

top ◦ cut := pr2 ◦ top and rest ◦ cut := cut ◦ rest .
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12 Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory

All the operations are suitably compatible with the bisimilarity relations, so that they can
be equipped with the types

redecA,B : Setoid(TriA, eqB)→ Setoid(TriA,TriB)
liftA,B : Setoid(TriA, eqB)→ Setoid

(
Tri(E ×A), eq(E ×B)

)
cutA : Setoid(Tri(E ×A),TriA) .

I Remark 11. We do not specify any computation rules for bisimilarity, i.e., we think of
bisimilarity as a proof-irrelevant notion. The lack of such a computation rule amounts to
asserting that bisimilarity is a weakly terminal bisimulation on the respective codata.

4 Relative comonads and their morphisms

In this section we define comonads relative to a functor and morphisms between those, and
present some examples.

Relative monads were defined by Altenkirch, Chapman, and Uustalu [6] as a notion of
monad-like structure whose underlying functor is not necessarily an endofunctor. An example
of relative monad given in that work is the lambda calculus over finite contexts.

The dual notion is that of a relative comonad, more precisely, a comonad relative to
some functor F : C → D. Indeed, since the functor underlying a relative comonad is not
necessarily endo, one requires an auxiliary functor, which “mediates” between source and
target category. An application of this auxiliary functor is inserted where necessary to make
the comonad-like operations and axioms welltyped.

I Definition 12. Let F : C → D be a functor. A relative comonad T over F is given by
a map T : C0 → D0 on the objects of the categories involved and
operations

counit : ∀A : C0,D(TA,FA)
cobind : ∀A,B : C0,D(TA,FB)→ D(TA, TB)

such that the following equations hold:

∀A,B : C0,∀f : D(TA,FB), counitB ◦ cobind(f) = f (2)
∀A : C0, cobind(counitA) = idTA (3)
∀A,B,C : C0,∀f : D(TA,FB),∀g : D(TB,FC),

cobind(g) ◦ cobind(f) = cobind(g ◦ cobind(f)) , (4)

in diagrammatic form:

TA
cobind(f)

//

f
%%

TB

counitB

��

FB

TA cobind(counitA)

��
id ,, TA

TA
cobind(f)

//

cobind(g◦cobind(f)) &&

TB

cobind(g)
��

TC.

Definition 12 does not mention an action of T on morphisms. Indeed, just like with
relative monads, this action is definable rather than part of the definition:

I Definition 13. Let T be a comonad relative to F : C → D. For f : C(A,B) we define

T (f) := cobind(Ff ◦ counitA) : D(TA, TB) .

The functor properties are easily checked.
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I Remark 14. It follows from the comonadic axioms that counit and cobind are natural
transformations with respect to the functoriality defined in Definition 13:

counit : T .−→ F : C → D
cobind : D(T_, F_) .−→ D(T_, T_) : Cop × C → Setoid .

Comonads relative to the identity functor are exactly (traditional) comonads.
We obtain a comonad relative to F : C → D from a comonad on the category C by

composing M with F :

I Example 15 (Relative comonads from comonads). Let F : C → D be a fully faithful
functor and (M, counit, cobind) be a (traditional) comonad (in Kleisli form) on C. We define
a comonad FM relative to F by setting:

FM(A) := F (MA)
counitFMA := F (counitMA ) : D(FMA,FA)

cobindFMA,B(f) := F
(
cobindMA,B(F−1f)

)
.

The other way round does not require any conditions on the functor F :

I Example 16 (Relative comonads from comonads II). Let F : C → D be a functor and
(M, counit, cobind) be a (traditional) comonad (in Kleisli form) on D. We define a comonad
MF relative to F by setting:

MF (A) := M(FA)
counitMF

A := counitMFA : D(MFA,FA)
cobindMF

A,B(f) := cobindMFA,FB(f) : D(MFA,MFB) for f : D(MFA,FB) .

The next examples concern the codata type families presented in Section 3.

I Example 17 (Streams). The codata type family Stream : Type → Setoid of Example 8
is equipped with a structure of a comonad relative to the functor eq : Type→ Setoid with
counitA := headA and cobindA,B := cosubstA,B .

I Remark 18. Instead of considering Stream as a relative comonad from Type to Setoid,
it could be considered as a traditional comonad on the category Setoid, propagating the
equivalence relation on the base type, say A, to StreamA. The relative point of view can then
be recovered as an instance of Example 16.

I Example 19 (Trees). Fix a type B. Analogously to Example 17, the map A 7→ TreeB(A)
of Example 9 is equipped with a structure of a comonad relative to eq : Type→ Setoid.

I Example 20 (Infinite triangular matrices). The codata type family Tri : Type→ Setoid of
Example 10 is equipped with a structure of a comonad relative to the functor eq : Type→
Setoid with counitA := topA and cobindA,B := redecA,B .

I Remark 21. A weak constructive comonad as defined by Matthes and Picard [18] to
characterize the codata type Tri and redecoration on it, is precisely a comonad relative to the
functor eq : Type→ Setoid.

I Remark 22 (Comonads into cartesian closed categories). With the notations of Definition 12,
suppose that the category D is cartesian closed, i.e. that D has internal hom-objects. This is
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the case, e.g., for the category Setoid of setoids. The cobind operation of a relative comonad
into D might then be defined to be a family of arrows in D,

cobindA,B : D(TA,FB)→ D(TA, TB) . (5)

The comonads Stream (cf. Example 17) and Tri (cf. Example 19) are comonads with such
a cobind operation. In these two cases, this “enriched” definition of the cobind operation
given in Equation (5) encodes a higher-order compatibility of cosubstitution with bisimilarity,
namely that cosubstitution with two extensionally bisimilar functions yields extensionally
bisimilar functions.

The notion of relative comonad captures many properties of Stream resp. Tri and cosub-
stitution on them, in particular the interplay of cosubstitution with the destructors head resp.
top via the first two axioms. In order to capture the interplay of cosubstitution with the
destructor tail (for streams) resp. rest (for infinite triangular matrices), we develop the notion
of comodule over a relative comonad and, more importantly, their morphisms, in Section 5.

Morphisms of relative comonads are families of morphisms that are compatible with the
comonadic structure:

I Definition 23. Let T and S be comonads relative to a functor F : C → D. A morphism
of relative comonads τ : T → S is given by a family of morphisms

τA : TA→ SA

such that the following diagrams commute for any A,B : C0 and f : SA→ FB:

TA
τA //

counitT
A ""

SA

counitS
A

��

FA

TA

τA

��

cobindT (f◦τA)
// TB

τB

��

SA
cobindS(f)

// SB.

Relative comonads over a fixed functor F and their morphisms form a category RComon(F )
with the identity and composition operations given pointwise.

I Remark 24. A morphism τ : T → S of relative comonads over a functor F : C → D is
natural with respect to the functorial action of Definition 13.

I Example 25 (Example 15 continued). Let M and M ′ be two comonads on C, and let
τ : M →M ′ be a comonad morphism. The family of morphisms

FτA := F (τA) : FMA→ FM ′A

constitutes a morphism of relative comonads Fτ : FM → FM ′.

I Remark 26. The definitions given in Examples 15 and 25 yield a functor from comonads
on C to comonads relative to F : C → D. If F is a right adjoint with left adjoint L, L a F ,
then postcomposing a comonad T relative to F with the functor L yields a monad on C.
Again, this map extends to morphisms. The two functors between categories of monads thus
defined are again adjoints. Writing down the details is lengthy but easy.

An example of comonad morphism is given by the diagonal map which extracts the
diagonal of an infinite triangular matrix (over type A), yielding a stream over A:



B. Ahrens and R. Spadotti 15

I Example 27. We define a morphism of relative comonads diag : Tri→ Stream as follows:
given a matrix t : TriA, its diagonal is a stream diagA t : StreamA. The map diagA is defined
via the clauses

head ◦ diagA := top and tail ◦ diagA := diagA ◦ cut ◦ rest .

Instead of proving the comonad morphism axioms for this map, we will, in Example 45,
specify the same map via a universal property. There, the compatibility of this map with
cosubstitution on source and target will follow for free.

I Remark 28 (Non-examples). The family of destructors tailA : StreamA→ StreamA does
not satisfy the axioms for a morphism of relative comonads Stream→ Stream.

Similarly, while the map A 7→ Tri(E × A) inherits the structure of a relative comonad
(see Definition 29), the family restA : TriA → Tri(E × A) does not constitute a comonad
morphism of type Tri→ Tri(E ×_).

Let C be a category with products and E : C0 be an object of C. The following definition
shows how a relative comonad T with domain category C gives rise to a relative comonad
with underlying object map A 7→ T (E ×A). We shall not make use of this definition in what
follows: indeed, in Section 6 we consider the map A 7→ T (E × A) as a comodule over T ,
rather than a comonad. The below definition may thus be skipped by the reader.

I Definition 29. Let T be a comonad relative to a product-preserving functor F : C → D
between categories with finite products, and let E : C0 be a fixed object of C. The map
A 7→ T (E × A) inherits the structure of a comonad relative to F from T : the counit is
defined as

counitA := counitTA ◦ T (pr2(E,A))

and the cobind operation as

cobindA,B : D
(
T (E ×A), FB

)
→ D

(
T (E ×A), T (E ×B)

)
f 7→ cobindT (lift′ f)

with lift′ defined as

lift′ : D
(
T (E ×A), FB

)
→ D

(
T (E ×A), F (E ×B)

)
,

f 7→ φFE,B
−1 ◦ 〈counitTE ◦ T (pr1), f〉 .

5 Comodules over relative comonads

In this section we develop the notion of comodule over a relative comonad, dualizing the
notion of module over a relative monad [3]. Our motivation for developing this notion is the
characterization of the destructors tail and rest as morphisms of comodules.

I Definition 30. Let T be a comonad relative to F : C → D, and let E be a category. A
comodule over T towards E consists of

a map M : C0 → E0 on the objects of the categories involved and
an operation

mcobind : ∀A,B : C0,D(TA,FB)→ E(MA,MB)
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such that the following equations hold:

∀A : C0,mcobind(counitA) = idMA (6)
∀A,B,C : C0,∀f : D(TA,FB),∀g : D(TB,FC),

mcobind(g) ◦mcobind(f) = mcobind(g ◦ cobind(f)) , (7)

in diagrammatic form:

MA mcobind(counitA)

��
id ,, MA

MA
mcobind(f)

//

mcobind(g◦cobind(f)) &&

MB

mcobind(g)
��

MC.

Similarly to relative comonads, comodules over these are functorial:

I Definition 31 (Functoriality for comodules). Let M : RComod(T, E) be a comodule over T
towards some category E . For f : C(A,B) we define

M(f) := mcobind(Ff ◦ counitA) .

Every relative comonad constitutes a comodule over itself, the tautological comodule:

I Definition 32 (Tautological comodule). Given a comonad T relative to F : C → D, the map
A 7→ TA yields a comodule over T with target category D, the tautological comodule of
T , also called T . The comodule operation is given by mcobindT (f) := cobindT (f).

A more interesting example of comodule is given by the functor that maps a type A to the
setoid Tri(E ×A) for some fixed type E:

I Example 33. The map A 7→ Tri(E ×A) is equipped with a comodule structure over the
relative comonad Tri by defining the comodule operation mcobind as (cf. Example 10)

mcobindA,B(f) := redecE×A,E×B(lift f) for f : Setoid(TriA, eqB) .

In Section 6 we generalize Example 33 – precomposition with a product – to more general
relative comonads over suitable categories. However, this requires an axiomatization of the
lift operation, more precisely of an important building block of it, the cut operation.

A morphism of comodules is given by a family of morphisms that is compatible with the
comodule operation:

I Definition 34 (Morphism of comodules). Let M and N : C → E be comodules over the
comonad T relative to F : C → D. A morphism of comodules from M to N is given by a
family of morphisms αA : E(MA,NA) such that for any A,B : C0 and f : D(TA,FB) one
has

αB ◦mcobindM (f) = mcobindN (f) ◦ αA ,

in diagrammatic form

MA
mcobindM (f)

//

αA

��

MB

αB

��

NA
mcobindN (f)

// NB.
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Composition and identity of comodule morphisms happens pointwise. We thus obtain a
category RComod(T, E) of comodules over a fixed comonad T , towards a fixed category E .

The motivating examples for us to consider comodules and their morphisms are the
following:

I Example 35. The family of destructors tailA : StreamA→ StreamA, indexed by a type A,
is the carrier of a morphism of tautological comodules (over the relative comonad Stream),

tail : Stream→ Stream .

I Example 36. The family of destructors restA : TriA → Tri(E × A), indexed by a type
A, of Example 10 is a morphism of comodules over the comonad Tri from the tautological
comodule Tri to the comodule Tri(E ×_) as defined in Example 33,

rest : Tri→ Tri(E ×_) .

I Remark 37. The family of morphisms constituting a comodule morphism is actually
natural with respect to the functoriality defined in Definition 31.

Given a morphism of comonads, we can “transport” comodules over the source comonad
to comodules over the target comonad:

I Definition 38 (Pushforward comodule). Let τ : T → S be a morphism of comonads
relative to a functor F : C → D, and let furthermore M be a comodule over T towards a
category E . We define the pushforward comodule τ∗M to be the comodule over S given
by τ∗M(A) := MA and, for f : D(SA,FB),

mcobindτ∗M (f) := mcobindM (f ◦ τA) : E(MA,MB) .

Pushforward is functorial: if M and N are comodules over T with codomain category E , and
α : M → N is a morphism of comodules, then we define τ∗α : τ∗M → τ∗N as the family of
morphisms (τ∗α)A := αA. It is easy to check that this is a morphism of comodules (over S)
between τ∗M and τ∗N . Pushforward thus yields a functor

τ∗ : RComod(T, E)→ RComod(S, E) .

As presented in Definition 32, every relative comonad induces a comodule over itself.
This extends to morphisms of relative comonads in the following sense:

I Definition 39. Let τ : T → S be a morphism of comonads relative to F : C → D. Then
τ gives rise to a morphism of comodules over S from the pushforward of the tautological
comodule of T along τ to the tautological comodule over S,

〈τ〉 : τ∗T → S , 〈τ〉A := τA .

We conclude the section with some constructions of comodules:

I Lemma 40. Let T be a comonad relative to F : C → D, and let M : C → E be a comodule
over T . Let G : E → X be a functor. Then (G ◦M,G ◦ mcobindM ) is a comodule over T .
This extends to morphisms of comodules: for N another comodule over T with target category
E, and α : M → N a morphism of comodules, G ◦ α, c 7→ G(αc) is a morphism of comodules
from G ◦M to G ◦N . This yields a functor RComod(T, E)→ RComod(T,X ).

In particular, given any object e : E0, the constant functor C → E mapping to e is a
comodule for any comonad relative to F : C → D.
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I Lemma 41. Let T be a comonad relative to F : C → D, and let M,N : C → E be comodules
over T . Suppose that E has coproducts, denoted e + e′. Then M + N, c 7→ Mc + Nc is a
comodule over T , with cosubstitution given by mcobindM + mcobindN . This construction
extends to a coproduct on RComod(T, E).

6 Terminality for streams and infinite triangular matrices

In this section, we define a notion of “model” for the signatures of streams and triangular
matrices, respectively. We then show that the codata types Stream and Tri constitute the
terminal object in the respective category of models.

This terminal semantics result is hardly surprising; however, it is still interesting as
it characterizes not only the codata types themselves, but also the respective bisimilarity
relations and comonadic operations on them, via a universal property.

6.1 Models for Stream
We first consider the homogeneous codata type of streams.

I Definition 42 (Category of models for Stream). A model for Stream is given by a pair
(S, t) consisting of

a comonad S relative to eq : Type→ Setoid and
a morphism t of tautological comodules over S,

t : S → S .

A morphism of models (S, t)→ (S′, t′) is given by a comonad morphism τ : S → S′ such
that 〈τ〉 ◦ τ∗t = t′ ◦ 〈τ〉, in diagrammatic form,

S
τ∗t //

〈τ〉
��

S

〈τ〉
��

S′
t′
// S′.

Note that the above diagram is a diagram in the category RComod(S′,Setoid).
This defines a category of models of the signature of streams, with composition and

identity inherited from those of comonad morphisms.

In the introduction we mentioned a more traditional notion of “model” for a signature of
a coinductive data type, namely that of a coalgebra of some endofunctor. The relationship
between models as in Definition 42 and coalgebras is as follows:

I Remark 43 (Coalgebras for streams: forgetting cosubstitution). Define the functor

F : [Type,Setoid]→ [Type,Setoid] , F (G)(A) := eq(A)×G(A) .

Then we have a forgetful functor from models for streams (in the sense of Definition 42)
to coalgebras of F which, intuitively, forgets the cosubstitution structure. Indeed, given a
model (S, t), the comonad S is, in particular, a functor S : Type→ Setoid which constitutes
the carrier of a coalgebra of F : the coalgebra structure map S → F (S) := eq× S, as a map
into a product, is assembled from the counit of S as the first component, and the comodule
morphism t : S → S, which is a natural transformation t : S → S as the second component.
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The reason why we consider the richer notion of model (as compared to coalgebras) is
that we want the objects of our category – and thus in particular the terminal object – to be
equipped with a well-behaved “cosubstitution” operation. It is this cosubstitution operation
which is modeled by the comonad and comodule structure, and which is forgotten by the
forgetful functor defined above.

The category of models for Stream has a terminal object:

I Theorem 44. The pair (Stream, tail), where Stream is considered as a relative comonad
and tail as a morphism of comodules, is the terminal object in the category of models of
Definition 42.

More precisely, Theorem 44 says that the rules given in Figure 2 allow to prove that the
category of models defined in Definition 42 has a terminal object. The proof of Theorem 44
being essentially the same as that of Theorem 56, we omit the former. However, a mechanized
proof can be found in our Coq library, see Section 7.

The property of being terminal can be used to specify a map into streams, by equipping
some comonad S relative to eq : Type→ Setoid with the structure of a model for streams,
that is, with a comodule morphism S → S. We do so for the comonad Tri:

I Example 45. We equip the relative comonad Tri with the structure of a model for Stream
by defining a morphism of tautological comodules over Tri, given by the composition

tdiag := cut ◦ rest : Tri→ Tri .

By terminality we obtain a morphism of models

(Tri, tdiag)→ (Stream, tail)

which has, as underlying morphism of relative comonads, the one defined in Example 27.
Compatibility of this map with cosubstitution in Tri and Stream, respectively, is for free.

I Remark 46. Fix a type B. A result analogous to Theorem 44 holds for trees TreeB of
Example 19. We refrain from giving a precise statement of this result.

6.2 Models for Tri
In analogy to the definition of models for the signature of streams, one would like to define a
model for the signature of Tri as a pair (T, r) of a comonad T relative to eq : Type→ Setoid
and a morphism of comodules r : T → T (E ×_). It turns out that in this way, one does not
obtain the right auxiliary function cut for what is supposed to be the terminal such model,
the pair (Tri, rest), where cut is used to define the comodule Tri(E × _). As a remedy, we
define a model to come equipped with a specified operation analogous to cut, and some laws
governing the behavior of that operation:

I Definition 47. Let C and D be categories with binary products and F : C → D a product-
preserving functor. Let E : C0 be a fixed object of C. We define a comonad relative to F

with cut relative to E to be a comonad T relative to F together with a cut operation

cut : ∀ A : C0, T (E ×A)→ TA

satisfying the axioms
∀ A : C0, counitA ◦ cutA = counitA ◦ T (pr2(E,A));
∀ A B : C0,∀ f : D(TA,FB), cobind(f) ◦ cutA = cutB ◦ cobind(lift f),
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that is,

T (E ×A)
T (pr2(E,A))

//

cutA

// TA
counitA // FA and T (E ×A)

cobind(lift f)
//

cutA

��

T (E ×B)

cutB

��

TA
cobind(f)

// TB

where, for f : D(TA,FB), we define lift(f) : D
(
T (E ×A), F (E ×B)

)
as

lift(f) := φFE,B
−1 ◦ (counitE × f) ◦ 〈T (pr1), cut〉 .

Morphisms of comonads with cut are morphisms of comonads that are compatible with the
respective cut operations:

I Definition 48. Let (T, cutT ) and (S, cutS) be two comonads relative to a functor F with
cut relative to E as in Definition 47. A morphism of comonads with cut is a comonad
morphism τ between the underlying comonads as in Definition 23 that commutes suitably
with the respective cut operations, i.e. for any A : C0, cutSA ◦ τE×A = τA ◦ cutTA:

T (E ×A)
cutT

A //

τE×A

��

TA

τA

��

S(E ×A)
cutS

A

// SA.

Comonads with cut relative to a fixed functor F : C → D and E : C0 form a category
RComonwCut(F,E). There is a forgetful functor from RComonwCut(F,E) to RComon(F ).
Conversely, any comonad T relative to a suitable functor can be equipped with a cut operation,
using functoriality of T .

I Remark 49 (Canonical cut operation). Any comonad T relative to a product-preserving
functor F : C → D can be equipped with a cut operation relative to E : C0 satisfying the
properties of Definition 47 by setting ccutA := cutA := T

(
pr2(E,A)

)
. (The extra “c” of ccut

stands for “canonical”.) It follows from the axioms of comonad morphisms that a comonad
morphism τ : T → S satisfies the equation of Definition 48 for the operations ccutT and
ccutS thus defined. The morphism τ hence constitutes a morphism of comonads with cut
from (T, ccutT ) to (S, ccutS). We thus obtain a functor

ccutF,E : RComon(F )→ RComonwCut(F,E)

from relative comonads over F to relative comonads over F with cut relative to a fixed object
E : C0 given on objects by T 7→ (T, ccutT ).

The functor ccutF,E , followed by the forgetful functor, yields the identity. We can thus
view relative comonads with cut as a generalization of relative comonads.

Our prime example of relative comonad comes with a cut operation that is not the
canonical one:

I Example 50. The relative comonad Tri from Example 20, together with the cut operation
defined in Example 10, is a comonad with cut as in Definition 47.
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Given a comodule M over a relative comonad T with cut, we define a comodule over T
obtained by precomposition of M with “product with a fixed object E”:

I Definition 51. Suppose F : C → D is a product-preserving functor, and T is a comonad
relative to F with a cut operation relative to E : C0 as in Definition 47. Given a comodule
M over T , precomposition with “product with E” gives a comodule

M(E ×_) : A 7→M(E ×A)

over T . The comodule operation is induced by that of M by

mcobindM(E×_)
A,B : D(TA,FB)→ E

(
M(E ×A),M(E ×B)

)
,

f 7→ mcobindME×A,E×B(lift(f)) ,

where the lift operation is the one defined in Definition 47.
Furthermore, given two comodules M and N over T with target category E , and a

comodule morphism α : M → N , the assignment α(E × _)A := αE×A defines a comodule
morphism α(E ×_) : M(E ×_)→ N(E ×_).
We thus obtain an endofunctor on the category of comodules over T towards E ,

M 7→M(E ×_) : RComod(T, E)→ RComod(T, E) .

I Remark 52 (Pushforward commutes with product in context). The constructions of Defini-
tions 51 and 38 commute: we have an isomorphism of comodules

τ∗(M(E ×_)) ∼= (τ∗M)(E ×_)

given pointwise by identity morphisms.

It directly follows from the definition that the cut operation of any comonad T with cut
constitutes a comodule morphism cut : T (E ×_)→ T . We can thus restate the definition of
a morphism of comonads with cut as in Definition 48 by asking the following diagram of
comodule morphisms (in the category RComod(S,D)) to commute (where in the upper left
corner we silently add an isomorphism as in Remark 52):

τ∗T (E ×_)
τ∗(cutT )

//

〈τ〉(E×_)
��

τ∗T

〈τ〉
��

S(E ×_)
cutS

// S .

The construction of Definition 51 yields a categorical characterization of the rest destructor
– more precisely, of its behavior with respect to cosubstitution as in Equation 1 – via the
notion of comodule morphism:

I Example 53. Definition 51 is an axiomatization of Example 36: the relative comonad
Tri is a relative comonad with cut, and the family of destructors restA : TriA→ Tri(E ×A)
constitutes a morphism of comodules

rest : Tri→ Tri(E ×_)

from the tautological comodule Tri to the composed comodule Tri(E ×_) (obtained by pre-
composing the tautological comodule Tri with “product with E” as defined in Definition 51).
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The axiomatization of the cut operation now allows us to define models for the signature
of infinite triangular matrices:

I Definition 54 (Models for infinite triangular matrices). Let E : Type be a fixed type. Let
T = TE be the category of models for infinite triangular matrices where an object is a
pair (T, restT ) consisting of

a comonad T over the functor eq : Type→ Setoid with cut relative to E and
a morphism restT of comodules over T of type T → T (E ×_)

such that for any set A, restTA ◦ cutTA = cutTE×A ◦ restTE×A.
The last equation can be stated as an equality of comodule morphisms, diagrammatically

T (E ×_)

cutT

��

restT (E×_)
// T (E × E ×_)

cutT (E×_)
��

T
restT

// T (E ×_).

A morphism between two such objects (T, restT ) and (S, restS) is given by a morphism
of relative comonads with cut τ : T → S such that the following diagram of comodule
morphisms in the category RComod(S, E) commutes,

τ∗T
τ∗(restT )

//

〈τ〉
��

τ∗T (E ×_)

〈τ〉(E×_)
��

S
restS

// S(E ×_) .

(8)

Here we silently insert an isomorphism as in Remark 52 in the upper right corner.

Analogously to the signature for streams, there is a forgetful functor from models for
triangular matrices to coalgebras of a specific higher-order endofunctor:

I Remark 55 (Coalgebras for Tri). Let E : Type be a type. Define the functor

F : [Type,Setoid]→ [Type,Setoid] , F (G)(A) := eq(A)×G(E ×A) .

There is a forgetful functor from models for infinite triangular matrices to coalgebras of F
which, intuitively, forgets the comonadic cobind operation and the cut operation. Indeed,
given a model (T, restT ), the comonad T is, in particular, a functor T : Type → Setoid
which constitutes the carrier of a coalgebra of F . The coalgebra structure map on T , being
a map T → eq × T (E × _) into a product, is assembled from the counit of T (to give the
first component) and the comodule morphism restT : T → T (E × _) (to give the second
component). Note that both the counit and restT are natural transformations.

I Theorem 56. The pair (Tri, rest) consisting of the relative comonad with cut Tri of
Example 50 together with the morphism of comodules rest of Example 36, constitutes the
terminal model of triangular matrices.

Proof. For a given model (T, restT ), the (terminal) morphism © =©T : T → Tri is defined
via the corecursive equations

top ◦© := counitT and (9)
rest ◦© :=©◦ restT . (10)
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CoInductive Tri A : Type :=
constr : A -> Tri (E x A) -> Tri A.

CoInductive bisim : forall {A}, Tri A -> Tri A -> Prop :=
bisim_constr : forall {A} {t t’ : Tri A},

top t = top t’ /\ bisim (rest t) (rest t’) -> bisim t t’.

Figure 8 Definition of Tri and bisimilarity using Coq’s CoInductive vernacular.

Using the introduction axiom for bisimilarity we show that the map© commutes with cobind
and cut operations of the source and target models. We omit these calculations, which can
be consulted in the Coq source files.

Note that there is actually no choice in this definition: Equation (9) is forced upon us
since we want © to constitute a morphism of comonads – the equation directly corresponds
to one of the axioms. Equation (10) is forced upon us by the diagram of Equation (8), which
a morphism of models has to make commute.

The same argument is used to show, again by use of the introduction rule for bisimilarity,
that any two morphisms of models τ, ρ : (T, restT ) → (Tri, rest) are equal in the sense of
being pointwise bisimilar, thus concluding the proof. J

7 Formalization in Coq

All our definitions and theorems are mechanized in the proof assistant Coq [10]. In the
formalization, we axiomatize the considered coinductive type families as given by the rules
of Figures 2 and 4. In order to ensure consistency, we
1. use Coq module types to encapsulate the axioms, implemented via the Axiom vernacular,

and
2. instantiate each module type by defining streams and triangular matrices as coinductive

types using the CoInductive vernacular, as shown in Figure 8 for the example of Tri.
This shows that the axioms we add to Coq are weaker than the general mechanism of defining
coinductive types in Coq via the CoInductive vernacular. Our results are hence axiom-free
with respect to the theory implemented in the Coq proof assistant.

The Coq source files are available from the project web site [5]. The correspondences
between formalized statements and the statements in this article are given in Table 1.

Prior to version 8.5 of Coq, a duplication of the definition of setoids was necessary in order
to avoid a universe inconsistency: indeed, the type of setoids is both the target type of a
field in the record of categories as well as the type of objects of the category of setoids, which
leads to a complicated graph of universe constraints. In order to work around a universe
inconsistency, the type of setoids to be used as objects of the category of setoids hence had
to be (re)defined later to obtain a sufficiently large universe level.

Version 8.5 of Coq introduces a new, optional, universe polymorphism [21]. In our code
repository [5], we provide a version of our code for Coq 8.4pl6 and two versions for Coq 8.5
(beta2 at the time of writing); one where universe polymorphism is not employed, and where
hence the aforementioned duplication of code is necessary, and one where polymorphism is
used to get rid of that duplication. However, in that latter version, getting our files accepted
by Coq then required giving up on canonical structures, which do not seem to play well (yet)
with universe polymorphism.
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Table 1 Correspondence of informal and formal definitions.

Informal Reference Formal
Category Category
Functor Functor
Relative comonad Def. 12 RelativeComonad
Streams as comonad Ex. 17 Stream
Triangular matrices as comonad Ex. 20 Tri
Comodule over comonad Def. 30 Comodule
Tautological comodule (of T ) Def. 32 tcomod, notation <T>
tail is comodule morphism Ex. 35 Tail
rest is comodule morphism Ex. 36 Rest
Pushforward comodule Def. 38 pushforward
Induced comodule morphism Def. 39 induced_morphism
Models for streams Def. 42 Stream
Stream is terminal Thm. 44 StreamTerminal.Terminality
Relative comonad with cut Def. 47 RelativeComonadWithCut
Precomposition with product Def. 51 precomposition_with_product
Models for triangular matrices Def. 54 TriMat
Tri is terminal Thm. 56 TriMatTerminal.Terminality

8 Conclusion and future work

We have given a categorical semantics for some homogeneous (streams and trees) and
heterogeneous (infinite triangular matrices) codata type families, using the notion of relative
comonad and comodule over such comonads.

It remains to investigate more general forms of trees, in particular more general forms of
heterogeneity than the one we have considered here. This requires a semantic analysis of the
conditions that a functor (on the category of types) responsible for heterogeneity needs to
satisfy in order to allow the lifting of a (co)substitution rule.
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The calculus of constructions can be extended with an infinite hierarchy of universes and cumu-
lative subtyping. Subtyping is usually left implicit in the typing rules. We present an alternative
version of the calculus of constructions where subtyping is explicit. We avoid problems related
to coercions and dependent types by using the Tarski style of universes and by adding equations
to reflect equality.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases type theory, calculus of constructions, universes, cumulativity, subtyping

Digital Object Identifier 10.4230/LIPIcs.TYPES.2014.27

1 Introduction

The predicative calculus of inductive constructions (PCIC), the theory behind the Coq proof
system [20], contains an infinite hierarchy of predicative universes Type0 : Type1 : Type2 : . . .
and an impredicative universe Prop : Type1 for propositions, together with a cumulativity
relation:

Prop ⊆ Type0 ⊆ Type1 ⊆ Type2 ⊆ . . . .

Cumulativity gives rise to an asymmetric subtyping relation ≤ which is used in the subsump-
tion rule:

Γ `M : A A ≤ B
Γ `M : B .

Subtyping in Coq is implicit and is handled by the kernel. Type uniqueness does not hold,
as a term can have many non-equivalent types, but a notion of minimal type can be defined.
While subject reduction does hold, the minimal type of a term is not preserved during
reduction.

The goal of this paper is to investigate whether it is possible to make subtyping explicit,
by inserting explicit coercions such as

↑0: Type0 → Type1

and rely on a kernel that uses only the classic conversion rule:

Γ `M : A A ≡ B
Γ `M : B .

In this setting, a well-typed term would have a unique type up to equivalence and the type
would be preserved during reduction.
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Coercions and dependent types

In the presence of dependent types, coercions can interfere with type checking because
↑0 (A) 6≡ A. As a result, terms that were well-typed in a system with implicit subtyping
become ill-typed after introducing explicit coercions.

I Example 1.1. In the context

Γ = (a : Type0, b : Type0, f : a→ b, g : Π c :Type1. c) ,

the term f (g a) is well-typed and has type b:

Γ ` f (g a) : b .

In a system with explicit subtyping, before inserting coercions, this term is not well-typed
because a has type Type0 while g has type Π c :Type1. c and Type0 6≡ Type1. With an explicit
coercion ↑0: Type0 → Type1, the term g (↑0 (a)) has type ↑0 (a) but f (g (↑0 (a))) is not
well-typed because f has type a→ b and ↑0 (a) 6≡ a.

The easiest way to circumvent this problem is to add a new equation

↑0 (A) ≡ A.

In other words, we erase the coercions to check if two terms are equivalent. While this
solution is straightforward, it unfortunately means that we use ill-typed terms. In a system
where equivalence is defined by reduction rules, this solution amounts to adding a new
reduction rule ↑0 (A) −→ A, which would completely break subject reduction. A calculus of
constructions with explicit subtyping should therefore avoid these rules. The solution to this
problem is to use universes à la Tarski.

Russell vs. Tarski

There are two ways of presenting universes: the Russell style and the Tarski style. The first
is implicit and is used in the calculus of constructions and in pure type systems [1]. The
second is explicit and is mainly used in Martin-Löf’s intuitionistic type theory [15]. While
the Tarski style is usually regarded as the more fundamental of the two, the Russell style is
often used as a practical informal version of the other.

In the Tarski style, we make the distinction between terms and types. Every sort
Typei has a corresponding universe symbol Ui and a decoding function Ti. If A is a term
of type Ui, it is not itself a type but a code that represents a type, and Ti (A) is its
corresponding type. Types do not have a type and there is a separate judgment for well-
formed types. For example, πi x : A.B is the term of type Ui that represent the product type
Ti (πi x : A.B) ≡ Πx :Ti (A) . Ti (B). In this setting, the context Γ of example 1.1 becomes

Γ = (a : U0, b : U0, f : T0 (a)→ T0 (b) , g : Π a :U1. T1 (a))

and with the coercion ↑0: U0 → U1, the term g ↑0 (a) has type T1 (↑0 (a)):

Γ ` g (↑0 (a)) : T1 (↑0 (a)) .

By introducing the following equation at the level of types:

T1 (↑0 (a)) ≡ T0 (a) ,
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we get

Γ ` g (↑0 (a)) : T0 (a)

and therefore

Γ ` f (g (↑0 (a))) : T0 (b) .

Notice that the equation is well-formed because both members are types, not terms, so they
only need to both be well-formed.

Using Tarski-style universes allows for a finer and cleaner distinction between terms and
types. Aside from solving the problem above, it is better suited for studying the metatheory,
e.g. for building models, justifying proof irrelevance and extraction, etc. where the implicit
cumulativity would be a pain. It is often considered as the “fundamental” formalization of
universes that should be taken as reference, while the Russell style is more convenient to use
in practice, e.g. in proof assistants like Coq and Agda.

However, are the two styles equivalent? This question comes up frequently, for example
in recent work homotopy type theory [17]. While the question has already been partially
answered for intuitionistic type theory, it has never been studied for the calculus of construc-
tions before. The answer turns out to be no, the two styles are not always equivalent. Luo [14]
already showed that there is some discrepancy between them. Example 1.1 confirms this idea
and suggests that explicit subtyping in the Russell style is not possible. More importantly,
depending on the system, the Russell style can sometimes be strictly more expressive than
the Tarski style because the equality of types is not reflected at the level of terms.

This discrepancy can be adressed in one of 3 ways:
either discard the Tarski style and justify taking the Russell style as reference,
or keep things as they are and argue that the difference is acceptable,
or find a formulation where the two styles are equivalent.

In this paper, we go for the last option by presenting a Tarski version of the cumulative
calculus of constructions that is equivalent to the Russell version. The key is to add enough
equations to reflect the equality of types at the level of terms.

Reflecting equalities

Within the Tarski style, there are two main ways of introducing universes known as universes
as full reflections and universes as uniform constructions [16]. The first method requires
reflecting equalities, meaning that codes corresponding to equivalent types are equivalent:
if Ti (A) ≡ Ti (B) then A ≡ B. In order to achieve that, additional equations must be
introduced such as

↑0 (π0 x : A.B) ≡ π1 x : (↑0 (A)) . ↑0 (B) . (1)

The second method drops that principle. Instead, ↑0 is used as a constructor to inject types
from U0 into U1. In practice, the usefulness of reflection has not been shown until now and
uniform constructions have been preferred [13, 14, 16].

While reflecting equality can be hard to achieve, we argue here that, on the contrary, it is
essential to be equivalent to the Russell style. First, we note that a term can have multiple
translations with the following example.

I Example 1.2. With Russell-style universes, in the context Γ = (a : Type0, b : Type0) , the
term M = Πx :a. b has type Type1:

Γ `⊂ Πx :a. b : Type1.

TYPES’14
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With Tarski-style universes, this term can be translated in two different ways as M1 =
↑0 (π0 x : a.b) and M2 = π1 x : ↑0 (a) . ↑0 (b):

Γ `↑ ↑0 (π0 x : a.b) : U1, Γ `↑ π1 x : ↑0 (a) . ↑0 (b) : U1.

When M1 and M2 are used as types, this is not a problem because T1 (M1) ≡ T1 (M2) ≡
Πx :T0 (a) . T0 (b). The problem appears when proving higher-order statements about such
terms: if p is an abstract predicate of type Type1 → Type1 then T1 (pM1) 6≡ T1 (pM2). As a
result, we lose some of the expressivity of the Russell-style universes with implicit subtyping.

I Example 1.3 (Necessity of reflecting equalities). In the context

Γ = p : Type1 → Type1,

q : Type1 → Type1,

f : Π c :Type0. p c→ q c,

g : Π a :Type1. Π b :Type1. p (Πx :a. b)
a : Type0,

b : Type0,

the term f (Πx :a. b) (g a b) has type q (Πx :a. b):

Γ ` f (Πx :a. b) (g a b) : q (Πx :a. b)

but the corresponding Tarski-style term

f (π0 x : a.b) (g ↑0 (a) ↑0 (b))

is ill-typed because T1 (p (π1 x : ↑0 (a) . ↑0 (b))) 6≡ T1 (p (↑0 (π0 x : a.b))). The type corre-
sponding to q (Πx :a. b) is not provable in the Tarski style without further equations!

Reflecting equality with Equation 1 solves this problem by ensuring that any type has a
single term representation up to equivalence. While the equations needed for the predicative
universes Typei have been known for some time [13, 16], the equations for the impredicative
universe Prop are less obvious and have not been studied before.

Related work

Geuvers and Wiedijk [6] presented a dependently typed system with explicit conversions. In
that system, every conversion is annotated inside the term and there is no implicit conversion
rule. Terms have a unique type instead of a unique type up to equivalence. To solve the issue
of dependent types mentioned above, they rely on an erasure equation similar to ↑0 (A) ≡ A.
They also present a variant of the system which does not go through ill-typed terms, but
that uses typed heterogeneous equality judgments instead.

In Martin-Löf’s intuitionistic type theory, Palmgren [16] and Luo [13] formalized systems
with a cumulative hierarchy of predicative universes Ui and an impredicative universe Prop.
They both use the Tarski style of universes, which distinguishes between a term A of type
Ui and the type Ti (A) that it represents, and which allows them to introduce well-typed
equations such as Equation 1. However, they only show how to reflect equality for the
predicative universes. As a result, these systems lose some of the expressivity of Russell-style
universes with implicit subtyping and are therefore incomplete. Similarly, Herbelin and
Spiwack [9] presented a variant of the calculus of constructions with one Type universe and
explicit coercions from Prop to Type but they do not reflect equality.
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Cousineau and Dowek [5] showed how to embed functional pure type systems in the λΠ-
calculus modulo, a logical framework that can be seen as a subset of Martin-Löf’s framework
where equations are expressed as rewrite rules. When the rewrite system is confluent and
strongly normalizing, the λΠ-calculus modulo becomes a decidable version of Martin-Löf’s
framework. Burel and Boespflug [4] used this embedding to formalize and translate Coq
proofs to Dedukti [18], a type-checker based on the λΠ-calculus modulo rewriting, but they
handle neither the universe hierarchy nor cumulativity.

Contribution

We present a formulation of the cumulative calculus of constructions where subtyping is
explicit. By using Tarski-style universes, we are able to solve the problems related to coercions
and dependent types. We show that reflecting equality is necessary for the Tarski style to
be equivalent to the Russell style, thus settling an old question for good. Our system fully
reflects equality: by introducing additional equations between terms, we ensure that every
well-typed term in the original system has a unique representation up to equivalence in the
new system.

To our knowledge, this is the first time such work has been done for the cumulative
calculus of constructions, which includes both a cumulative hierarchy of predicative universes
and an impredicative universe. We also show how to orient the equations into rewrite rules
so that equivalence can be defined as a congruence of reduction steps. In summary, this
paper answers the question:

What is the system that corresponds to the question mark in Figure 1?

PTS

STLC System F
impredicative
polymorphism

LF

dependent types

CC

LF∞

infinite hierarchy

CC∞

(Russell)
ITT

cumulativity

CC∞⊂

(Tarski)
ITT

annotations erasure

? PCIC

inducti
ve types

STLC simply typed λ-calculus
LF dependently typed λ-calculus
CC calculus of constructions
ITT intuitionistic type theory

Figure 1 Type theory zoo.
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Outline

In Section 2, we present a subset of the original PCIC that we call the cumulative calculus of
constructions (CC∞⊂ ). It will serve as the reference to which systems with explicit subtyping
will be compared. In Section 3, we present our system with explicit subtyping called the
explicit cumulative calculus of constructions (CC∞↑ ). We show exactly which equations are
needed to reflect equality. In Section 4, we show that it is complete with respect to CC∞⊂ by
defining a translation and proving that it preserves typing. Finally, in Section 5, we show
how to transform the equations into rewrite rules so that the system can be implemented in
practice.

2 The cumulative calculus of constructions

We consider a subset of PCIC that does not contain inductive types so that we can focus
entirely on universes and cumulativity. This system was introduced by Luo [11] under the
name CC∞⊂ , although with a slightly different presentation. We will also refer to it as the
cumulative calculus of constructions. It is an extension of the calculus of constructions
(CC) with universes and subtyping. It is related to the extended calculus of constructions
(ECC) [12] but it does not contain sum types. It is also related to the generalized calculus
of constructions [7, 8] but that one is not fully cumulative as it lacks the Prop ⊆ Type0
inclusion1.

Our presentation differs slightly from Luo’s original presentation. The main differences
are that Prop : Type1 instead of Prop : Type0 and that all the rules (Typei,Typej ,Typemax(i,j))
are allowed, as done in Coq. The reason for having Prop in Type1 instead of Type0 is mainly
historical and not of importance for the purposes of this paper. All of Luo’s results still hold
for our presentation.

Syntax

The syntax is defined as usual for type theories based on pure type systems. For further
background, we refer the reader to [1, 20].

I Definition 2.1 (Syntax).

variables x, y, α, β ∈ V
sorts s ∈ S = {Prop} ∪ {Typei | i ∈ N}
terms M,N,A,B ∈ T ::= x | s | Πx :A.B | λx :A.M |M N

contexts Γ,∆ ∈ C ::= . | Γ, x : A

Typing

Since the pure type system at the core of CC∞⊂ is functional and complete, we can define its
axiom relation (s1 : s2) ∈ A as a function A(s1) and its product rule relation (s1, s2, s3) ∈ R
as a function R(s1, s2). The cumulativity relation ⊆ can be defined as the reflexive transitive
closure of Prop ⊆ Type0 and Typei ⊆ Typei+1. In order to give a uniform presentation, we
define the following operations on sorts.

1 The Prop ⊆ Type0 barrier is often the main difficulty in the metatheory of systems with cumulativity.
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I Definition 2.2 (Sort operations). The unary operations A and N and the binary operation
R are defined as follows.

A(Prop) = Type1
A(Typei) = Typei+1
N (Prop) = Type0
N (Typei) = Typei+1

R(Prop,Prop) = Prop
R(Typei,Prop) = Prop
R(Prop,Typej) = Typej
R(Typei,Typej) = Typemax(i,j)

The cumulativity relation ⊆ is the reflexive transitive closure of N .

To simplify the presentation, we also decouple the context well-formedness judgment from
the typing judgment to break the mutual dependency between the two. This formulation
is equivalent to the original one but is better suited for proofs by induction. For more
information on this common technique, we refer the reader to [21].

I Definition 2.3 (Typing). A term M has type A in the context Γ when the judgment
Γ `⊂ M : A can be derived from the following rules.

(x : A) ∈ Γ
Γ `⊂ x : A

variable

Γ `⊂ s : A(s)
sort

Γ `⊂ A : s
Γ `⊂ A : N (s)

cumulativity

Γ `⊂ A : s1 x 6∈ Γ Γ, x : A `⊂ B : s2

Γ `⊂ Πx :A.B : R(s1, s2)
product

Γ `⊂ A : s x 6∈ Γ Γ, x : A `⊂ M : B
Γ `⊂ λx :A.M : Πx :A.B

abstraction

Γ `⊂ M : Πx :A.B Γ `⊂ N : A
Γ `⊂ M N : {N/x}B

application

Γ `⊂ M : A Γ `⊂ B : s A ≡ B
Γ `⊂ M : B

conversion

A context Γ is well-formed when the judgment WF⊂ (Γ) can be derived from the following
rules.

WF⊂ (.)
empty

WF⊂ (Γ) x 6∈ Γ Γ `⊂ A : s
WF⊂ (Γ, x : A)

declaration

We write Γ ` M : A and WF (Γ) instead of Γ `⊂ M : A and WF⊂ (Γ) when there is no
ambiguity.

TYPES’14
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I Remark. The system CC∞⊂ is not equivalent to a non-functional traditional PTS [1]. Indeed,
even if the PTS had Prop : Typei for all i ∈ N as axioms, the term λ a :Prop. (λ a :Type0. a) a
would not be well-typed, while it has type Prop→ Type0 with cumulativity in CC∞⊂ .

Unlike in Coq, cumulativity in CC∞⊂ is not presented as a subtyping rule. This makes it very
slightly weaker because product covariance does not hold: if M : Πx :A.Typei then it does
not follow that M : Πx :A.Typei. Luo [11] covers this difference in great detail. Since our
main focus is the difficulties that arise from universe cumulativity, this is not an issue for us.
The notion of subtyping is still useful however. We will define it and use it to caracterize
minimal typing.

Minimal typing

The system CC∞⊂ does not satisfy the uniqueness of types because a term can have multiple
non-equivalent types. However, it does have a notion of minimal type.

I Definition 2.4 (Subtyping). A term A is a subtype of B when the relation A ≤ B can be
derived from the following rules where ≡ is the usual β-equivalence relation.

A ≡ B
A ≤ B

reflexivity
A ≤ B B ≤ C

A ≤ C
transitivity

s1 ⊆ s2

s1 ≤ s2
cumulativity

B ≤ C
Πx :A.B ≤ Πx :A.C

covariance

I Definition 2.5. A term M has minimal type A in the context Γ when Γ ` M : A and for
all B, Γ ` M : B implies A ≤ B. We write Γ `m M : A.

I Theorem 2.6 (Existence of minimal types). If Γ `⊂ M : B then there is an A such that
Γ `m M : A.

Proof. The details can be found in Luo’s paper, pages 16–17, [11]. J

This notion will be useful when we define our translation. However, note that while minimal
types always exist, they are not preserved by substitution and β-reduction, as shown in the
following example.

I Example 2.7. In the context Γ = (a : Type0, x : Type1), the term x has minimal type
Type1:

a : Type0, x : Type1 `m x : Type1

but the term {a/x}x = a has minimal type Type0 6≡ {a/x}Type1:

a : Type0 `m a : Type0.

3 Explicit subtyping

In this section, we define the explicit cumulative calculus of constructions (CC∞↑ ) where
subtyping is explicit. The syntax is extended to include coercions and to make the distinction
between terms and types. We introduce additional equations in the equivalence relation ≡
and give the typing rules based on the rules of CC∞⊂ .
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Syntax

For each sort s, we introduce the universe symbol Us. A term A of type Us is a code that
represents a type in that universe. The decoding function Ts (A) gives the corresponding
type. We extend the syntax with the codes us and πs1,s2 x : A.B that represent the type
Us in the universe UA(s) and the product type in the universe UR(s1,s2) respectively. The
universe hierarchy being cumulative, each universe contains codes for all the types of the
previous universe using the coercion2 ↑s (A).

I Definition 3.1 (Syntax).

terms M,N,A,B ∈ T ::= x | λx :A.M |M N

| us | ↑s (A) | πs1,s2 x : A.B
| Us | Ts (A) | Πx :A.B

contexts Γ,∆ ∈ C ::= . | Γ, x : A

We write Ui, Ti (A), ui, ↑i (A), and πi,j x : A.B instead of UTypei
, TTypei

(A), uTypei
,

↑Typei
(A), and πTypei,Typej

x : A.B respectively. When s1 ⊆ s2 and s2 = N i(s1), we
write ↑s2

s1
(A) for the term

↑N i−1(s)

(
· · · ↑N (s) (↑s (A))

)
.

For example, ↑31 (A) = ↑2 (↑1 (A)) and ↑1Prop (A) = ↑0
(
↑Prop (A)

)
.

I Remark. It is possible to completely split the syntax into distinct categories for types (Us,
Ts (A), Πx :A.B) and terms. This is one of the advantages of using the Tarski style and it
could help simplify the theoretical studies of the calculus of constructions, where the lack of
syntactic stratification between terms and types is cumbersome. However, it is not necessary
for our purposes so we will not do that here.

Equivalence

Because we are using Tarski-style universes, we need to consider additional equations besides
β-equivalence. For now, we just state the equations that are needed and assume a congruence
relation ≡ that satisfies those equations. We do not worry about the algorithmic aspect.
Later in Section 5, we show how to define ≡ as the usual congruence induced by a set of
reduction rules.

In addition to β-equivalence:

(λx :A.M) N ≡ {N/x}M,

we need equations to describe the behaviour of the decoding function Ts (A). These are the
same as in intuitionistic type theory:

TA(s) (us) ≡ Us
TN (s) (↑s (A)) ≡ Ts (A)

TR(s1,s2) (πs1,s2 x : A.B) ≡ Πx :Ts1 (A) . Ts2 (B) .

Finally, we also need equations that reflect equality to ensure that each term of a given type
has a unique representation.

2 One can also view ↑s (A) as the code representing Ts (A) in the universe UN (s).
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Table 1 Different typing derivations for same terms.

CC∞⊂ typing derivation CC∞↑ term representation

A : Typei x : A ` B : Typei

Πx :A.B : Typei

Πx :A.B : Typei+1

↑i (πi,i x : A.B)

A : Typei

A : Typei+1

x : A ` B : Typei

x : A ` B : Typei+1

Πx :A.B : Typei+1

πi+1,i+1 x : ↑i (A) . ↑i (B)

A : Typei x : A ` B : Prop
Πx :A.B : Prop πi,Prop x : A.B

A : Typei

A : Typei+1 x : A ` B : Prop
Πx :A.B : Prop

πi+1,Prop x : ↑i (A) .B

A : Typei

x : A ` B : Prop
x : A ` B : Type0

Πx :A.B : Typei

πi,0 x : A. ↑Prop (B)

A : Typei x : A ` B : Prop
Πx :A.B : Prop
Πx :A.B : Type0

...
Πx :A.B : Typei

↑i
Prop (πi,Prop x : A.B)

Which equations are needed to reflect equality? The answer lies in the multiplicity of
typing derivations in CC∞⊂ . For example, the product Πx :A.B of minimal type Type0 can
be typed at the level Type1 in two different ways, each giving a different term in CC∞↑ :

A : Type0 x : A ` B : Type0

Πx :A.B : Type0

Πx :A.B : Type1

↑1 (π0,0 x : A.B)

A : Type0

A : Type1

x : A ` B : Type0

x : A ` B : Type1

Πx :A.B : Type1

π1,1 x : ↑0 (A) . ↑0 (B)

The equivalence relation must therefore take this multiplicity into account. Table 1 lists the
different typing derivations that can occur for product types. A careful analysis yields the
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following equations:

πN (s),Prop x : ↑s (A) .B ≡ πs,Prop x : A.B
πProp,N (s) x : A. ↑s (B) ≡ ↑s (πProp,s x : A.B)

π0,j x : ↑Prop (A) .B ≡ πProp,j x : A.B
πi,0 x : A. ↑Prop (B) ≡ ↑iProp (πi,Prop x : A.B)

πi+1,j+1 x : ↑i (A) .B ≡ πi,j+1 x : A.B when i ≤ j
πi+1,j+1 x : ↑i (A) .B ≡ ↑i (πi,j+1 x : A.B) when i > j

πi+1,j+1 x : A. ↑j (B) ≡ πi+1,j x : A.B when i ≥ j
πi+1,j+1 x : A. ↑j (B) ≡ ↑j (πi+1,j x : A.B) when i < j.

It turns out we can express these concisely using the ↑s2
s1

(A) notation:

πN (s1),s2 x : ↑s1
(A) .B ≡ ↑R(N (s1),s2)

R(s1,s2) (πs1,s2 x : A.B)

πs1,N (s2) x : A. ↑s2
(B) ≡ ↑R(s1,N (s2))

R(s1,s2) (πs1,s2 x : A.B) .

I Definition 3.2 (Equivalence). The equivalence relation ≡ is the smallest congruence relation
that satisfies the following equations:

(λx :A.M) N ≡ {N/x}M
TA(s) (us) ≡ Us

TN (s) (↑s (A)) ≡ Ts (A)
TR(s1,s2) (πs1,s2 x : A.B) ≡ Πx :Ts1 (A) . Ts2 (B)

πN (s1),s2 x : ↑s1
(A) .B ≡ ↑R(N (s1),s2)

R(s1,s2) (πs1,s2 x : A.B)

πs1,N (s2) x : A. ↑s2
(B) ≡ ↑R(s1,N (s2))

R(s1,s2) (πs1,s2 x : A.B) .

Typing

To make the distinction between types and terms, we introduce an additional judgment
Γ `↑ type (A) to capture the property that a type is well-formed. The derivation rules mirror
the rules of CC∞⊂ .

I Definition 3.3 (Typing). A term M has type A in the context Γ when the judgment
Γ `↑ M : A can be derived from the following rules, and a term A is a type in the context Γ
when the judgment Γ `↑ type (A) can be derived from the following rules:

(x : A) ∈ Γ
Γ `↑ x : A

variable

Γ `↑ type (Us)
sort-type

Γ `↑ A : Us
Γ `↑ type (Ts (A))

decode-type

Γ `↑ type (A) x 6∈ Γ Γ, x : A `↑ type (B)
Γ `↑ type (Πx :A.B)

product-type

Γ `↑ us : UA(s)
sort

Γ `↑ A : Us
Γ `↑ ↑s (A) : UN (s)

cumulativity

Γ `↑ A : Us1 x 6∈ Γ Γ, x : Ts1 (A) `↑ B : Us2

Γ `↑ πs1,s2 x : A.B : UR(s1,s2)
product
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Γ `↑ type (A) x 6∈ Γ Γ, x : A `↑ M : B
Γ `↑ λx :A.M : Πx :A.B

abstraction

Γ `↑ M : Πx :A.B Γ `↑ N : A
Γ `↑ M N : {N/x}B

application

Γ `↑ M : A Γ `↑ type (B) A ≡ B
Γ `↑ M : B

conversion

A context Γ is well-formed when the judgment WF↑ (Γ) can be derived from the following
rules:

WF↑ (.)
empty

WF↑ (Γ) x 6∈ Γ Γ `↑ type (A)
WF↑ (Γ, x : A)

declaration

We write Γ ` M : A, Γ ` type (A), and WF (Γ) instead of Γ `↑ M : A, Γ `↑ type (A), and
WF↑ (Γ) when there is no ambiguity.

I Remark. The equations of Definition 3.2 are well-formed because the left and right side of
each equation are either both types or both terms of the same type. In particular, the last
two are well-typed because R(s1, s2) ⊆ R(N (s1), s2) and R(s1, s2) ⊆ R(s1,N (s2)) for all
s1, s2 ∈ S.

I Theorem 3.4 (Type uniqueness). If Γ `↑ M : A and Γ `↑ M : B then A ≡ B.

Proof. By induction over the derivations of Γ `↑ M : A and Γ `↑ M : B. We can eliminate
conversion rules until we hit a non-conversion rule, in which case we remove the rule from
both derivations at the same time. J

Erasure

Systems with Tarski-style universes are related to systems with Russell-style universes in a
precise sense: we can define an erasure function |M | such that the erasure of a well-typed
term in the Tarski style is well-typed in the Russell style. In our setting, this function shows
that CC∞↑ is sound with respect to CC∞⊂ .

I Definition 3.5 (Erasure). The term erasure |M |, the type erasure ‖A‖, and the context
erasure ‖Γ‖ are defined as follows.

|x| = x

|us| = s

|↑s (A)| = |A|
|πs1,s2 x : A.B| = Πx : |A| . |B|
|λx :A.M | = λx :‖A‖ . |M |
|M N | = |M | |N |

‖Us‖ = s

‖Ts (A)‖ = |A|
‖Πx :A.B‖ = Πx :‖A‖ . ‖B‖

‖.‖ = .

‖Γ, x : A‖ = ‖Γ‖ , x : ‖A‖
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I Lemma 3.6. For all B, x, N , |{N/x}B| = {|N | /x} |B|.

Proof. By induction on B. J

I Theorem 3.7 (Soundness). If Γ `↑ M : A then ‖Γ‖ `⊂ |M | : ‖A‖. If Γ `↑ type (A) then
‖Γ‖ `⊂ ‖A‖ : s for some sort s. If WF↑ (Γ) then WF⊂ (‖Γ‖).

Proof. By induction on the derivations in CC∞↑ , using Lemma 3.6 for the application rule. J

4 Completeness

In this section, we show that the new system is complete with respect to the original system,
meaning that it can express all well-typed terms. We define a function that translates any
well-typed term of CC∞⊂ into a term of CC∞↑ and we prove that this translation preserves
typing.

Translation

When translating a term, we want to choose the representation that has the minimal type.
However, we sometimes need to lift some subterms, such as the argument of applications, in
order to get a well-typed term. We therefore define two translations: [M ]Γ which translates
M according to its minimal type and [M ]Γ`A which translates M as a term of type A.
Finally, since we distinguish between terms and types, we also define JAKΓ, the translation of
A as a type.

I Definition 4.1 (Translation). Let Γ be a well-formed context, A and B be well-formed
types in Γ, and M be a well-typed term in Γ such that Γ `m M : A and Γ `⊂ M : B.
The term translation [M ]Γ, the cast translation [M ]Γ`B, and the type translation JAKΓ are
mutually defined as follows.

Term translation

[s]Γ = us
[x]Γ = x

[Πx :A′. B′]Γ = πs1,s2 x : [A′]Γ . [B′]Γ,x:A′

where Γ `m A′ : s1
and Γ, x : A′ `m B′ : s2

[λx :A′.M ′]Γ = λx :JA′KΓ . [M ′]Γ,x:A′

[M ′N ′]Γ = [M ′]Γ [N ′]Γ`A′
where Γ `m M ′ : Πx :A′. B′

Cast translation

[M ]Γ`B = [M ]Γ
when A ≡ B

[M ]Γ`B = ↑s2
s1

([M ]Γ)
when A ≡ s1 ⊆ s2 ≡ B

Type translation

JAKΓ = Ts ([A]Γ)
where Γ `m A : s
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The context translation JΓK where WF⊂ (Γ) is defined as follows.

Context translation

J.K = .

JΓ, x : AK = JΓK , x : JAKΓ

We will write [M ], [M ]`C , and JAK instead of [M ]Γ, [M ]Γ`C , and JAKΓ when unambiguous.

Substitution preservation

A key property for proving the preservation of typing by the translation is that it preserves
substitution. If Γ, x : A `⊂ M : B and Γ `⊂ N : A then the translation of the substitution is
the same as the substitution of the translation. However, the naive statement {[N ] /x} [M ] ≡
[{N/x}M ] is not true. First, x has type A while N has some minimal type C ≤ A so we
need to use the cast translation [N ]`A. Second, the minimal typing is not preserved by
substitution, as we showed in Example 2.7. Therefore we also need to fix the type of {N/x}M
using the cast translation [{N/x}M ]`{N/x}B .

I Lemma 4.2 (Translation distributivity). The translation satisfies the following properties:
For all s ∈ S, JsK ≡ Us.
If Γ `⊂ A : s1 and Γ, x : A `⊂ B : s2 then JΠx :A.BK ≡ Πx :JAK . JBK .
If Γ `⊂ A : s1 and Γ, x : A `⊂ B : s2 then

[Πx :A.B]`R(s1,s2) ≡ πs1,s2 x : [A]`s1
. [B]`s2

.

If Γ `⊂ A : s1 and Γ, x : A `⊂ M : B then

[λx :A.M ]`Π y:A.B ≡ λx :JAK . [M ]`B .

If Γ `⊂ M : Πx :A.B and Γ `⊂ N : A then

[M N ]`{N/x}B ≡ [M ]`Π x:A.B [N ]`A .

Proof. Follows from the definition of the equivalence relation ≡ and of the translations JAK
and [M ]Γ`A. Note that this proposition would not be true if ≡ did not reflect equality. J

I Lemma 4.3 (Substitution preservation). If Γ, x : A,Γ′ `m M : B and Γ `⊂ N : A then

{[N ]Γ`A /x} [M ]Γ,x:A,Γ′ ≡ [{N/x}M ]Γ,{N/x}Γ′`{N/x}B .

If Γ, x : A,Γ′ `⊆ M : B and Γ `⊂ N : A then

{[N ]Γ`A /x} [M ]Γ,x:A,Γ′`B ≡ [{N/x}M ]Γ,{N/x}Γ′`{N/x}B .

If Γ, x : A,Γ′ `⊂ M : s and Γ `⊂ N : A then

{[N ]Γ`A /x} JBKΓ,x:A,Γ′ ≡ J{N/x}BKΓ,{N/x}Γ′ .

Proof. The second and third statements derive from the first. We prove the first by induction
on M , using Lemma 4.2.

Case x. Then we must have A ≡ B ≡ {N/x}B. Therefore
{[N ]`A /x} [x] ≡ [N ]`A

≡ [N ]`{N/x}B
≡ [{N/x}x]`{N/x}B .
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Case y 6= x. Then
{[N ]`A /x} [y] ≡ y

≡ [{N/x}y]`{N/x}B .

Case s. Then
{[N ]`A /x} [s] ≡ s

≡ [{N/x}s]`{N/x}B .

Case Π y :C.D. Then B ≡ s3 where Γ, x : A,Γ′ `m C : s1 and Γ, x : A,Γ′, y : C `m D : s2
and s3 = R(s1, s2). Therefore
{[N ]`A /x} [Π y :C.D] ≡ πs1,s2 x : {[N ]`A /x} [C] .{[N ]`A /x} [D]

≡ πs1,s2 x : [{N/x}C]`s1
. [{N/x}D]`s2

≡ [{N/x} (Π y :C.D)]`s3

Case λ y :C.M ′. Then B ≡ Πx :C.D where Γ, x : A,Γ′ `m C : s1 and Γ, x : A,Γ′, y :
C `m M ′ : D. Therefore
{[N ]`A /x} [λ y :C.M ′] ≡ λ y :{[N ]`A /x} JCK . {[N ]`A /x} [M ′]

≡ λ y :J{N/x}CK . [{N/x}M ′]`{N/x}D
≡ [{N/x} (λ y :C.M ′)]`{N/x}(Π y:C.D)

Case M ′N ′. Then B ≡ {N ′/y}D where Γ, x : A,Γ′ `m M ′ : Π y :C.D and Γ, x : A,Γ′ `m
N ′ : C. Therefore
{[N ]`A /x} [M N ] ≡ {[N ]`A /x} [M ′] {[N ]`A /x} [N ′]`C

≡ [{N/x}M ′]`{N/x}(Π y:C.D) [{N/x}N ′]`{N/x}C
≡ [{N/x}M ′N ′]`{N/x}{N ′/y}D

J

Equivalence preservation

Having proved substitution preservation, we prove that the translation preserves equivalence:
if two well-typed terms are equivalent in CC∞⊂ then their translations are equivalent in CC∞↑ .

I Lemma 4.4 (Equivalence preservation). If Γ `⊂ M : B and Γ `⊂ N : B and M ≡ N then
[M ]Γ`B ≡ [N ]Γ`B. If Γ `⊂ A : s and Γ `⊂ B : s and A ≡ B then JAK ≡ JBK.

Proof. By induction on the derivation of M ≡ N . The second statement derives from the
first. We show the base case (λx :C.M ′)N ′ ≡ {N ′/x}M ′. Then B ≡ {N ′/y}D where
Γ `⊂ λx :C.M ′ : Πx :C.D and Γ `⊂ N ′ : C. Therefore

[(λx :C.M ′)N ′]`{N ′/x}D ≡
(
λx : [C]`s1

. [M ′]`D
)

[N ′]`C
using Proposition 4.2

≡ {[N ′]`C /x} [M ′]`D
by β-equivalence

≡ [{N ′/x}M ′]`{N ′/x}D
using Lemma 4.3

J
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Typing preservation

With substitution preservation and equivalence preservation at hand, we can finally prove
the main theorem, namely that the translation preserves typing.

I Lemma 4.5. The translation satisfies the following properties:
For all s ∈ S, Γ `↑ us : JA(s)K .
If Γ `↑ [A]`s : JsK then

Γ `↑ [A]`N (s) : JN (s)K .

If Γ `↑ [A]`s1
: Js1K and Γ, x : JAK `↑ [B]`s2

: Js2K then

Γ `↑ [Πx :A.B]`R(s1,s2) : JR(s1, s2)K .

If Γ `↑ type (JAK) and Γ, x : JAK `↑ [M ]`B : JBK then

Γ `↑ [λx :A.M ]`Π x:A.B : JΠx :A.BK .

If Γ `↑ [M ]`Π x:A.B : Πx :JAK . JBK and Γ `↑ [N ]`A : JAK then

Γ `↑ [M N ]`{N/x}B : J{N/x}BK .

If Γ `↑ [M ]`A : JAK and Γ `↑ type (B) and JAK ≡ JBK then JΓK `↑ [M ]`B : JBK .

Proof. Using Lemmas 4.2, 4.3, and 4.4. J

I Theorem 4.6 (Typing preservation). If Γ `⊂ M : A then JΓK `↑ [M ]Γ`A : JAKΓ. If
Γ `⊂ A : s then JΓK `↑ type (JAK).

Proof. By induction on the derivation of Γ `⊂ M : A, using Lemma 4.5. The second
statement derives from the first.

Case variable. Then (x : JAK) ∈ JΓK so JΓK `↑ x : JAK.
Case sort. By Lemma 4.5, JΓK `↑ us : JA(s)K .
Case cumulativity. By induction hypothesis, JΓK `↑ [A]`s : JsK. By Lemma 4.5, JΓK `↑
[A]`N (s) : JN (s)K .
Case product. By induction hypothesis, JΓK `↑ [A]`s1

: Js1K and JΓK , x : JAK `↑ [B]`s2
:

Js2K. By Lemma 4.5,

JΓK `↑ [Πx :A.B]`R(s1,s2) : JR(s1, s2)K .

Case abstraction. By induction hypothesis, JΓK `↑ type (JAK) and JΓK , x : JAK `↑ [M ]`B :
JBK. By Lemma 4.5,

Γ `↑ [λx :A.M ]`Π x:A.B : JΠx :A.BK .

Case application. By induction hypothesis, JΓK `↑ [M ]`Π x:A.B : Πx : JAK . JBK and
JΓK `↑ [N ]`A : JAK. By Lemma 4.5,

JΓK `↑ [M N ]`{N/x}B : J{N/x}BK .

Case conversion. By induction hypothesis, JΓK `↑ [M ]`A : JAK and JΓK `↑ type (JBK).
By Lemma 4.5, JΓK `↑ [M ]`B : JBK .

J

I Corollary 4.7. If WF⊂ (Γ) then WF↑ (JΓK).

Proof. By induction on Γ. J
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5 Operational semantics

We presented CC∞↑ assuming the equivalence relation≡ satisfies the equations of Definition 3.2.
In practice, such equivalence relations are defined as the congruence closure of a set of
reduction rules. In the case of CC∞⊂ , it is the closure of β-reduction −→β , which enjoys
confluence, subject reduction, and strong normalization. We now do the same for CC∞↑ .

Rewrite rules

The equations for the decoding function Ts (A) are easily oriented into rewrite rules:

TA(s) (us) −→ Us
TN (s) (↑s (A)) −→ Ts (A)

TR(s1,s2) (πs1,s2 x : A.B) −→ Πx :Ts1 (A) . Ts2 (B) .

With these rules, we can view Ts (A) as a recursively defined function that decodes terms of
type Us into types by traversing their structure.

Orienting the equations for ↑s is more delicate. In Martin-Löf’s intuitionistic type theory,
a single equation is needed to reflect equality:

↑i (πi,i x : A.B) ≡ πi+1,i+1 x : ↑i (A) . ↑i (B) .

In that case, it seems natural to orient the equation from left to right and see ↑i as a function
that recursively transforms codes in Ui into equivalent codes in Ui+1:

↑i (πi,i x : A.B) −→ πi+1,i+1 x : ↑i (A) . ↑i (B) .

While elegant, that solution does not behave well with the impredicative universe Prop.
The equation

πi+1,Prop x : ↑i (A) .B ≡ πi,Prop x : A.B

requires the rewrite rule

πi+1,Prop x : ↑i (A) .B −→ πi,Prop x : A.B

which would break confluence with the previous rule because of the critical pair

πi+1,Prop x : ↑i (πi,i y : A.B) .C.

Fortunately, we can still orient the equations in the other direction and obtain a well-
behaved system. Again, we can express this concisely using the ↑s2

s1
(A) notation.

I Definition 5.1. The equivalence relation ≡ in CC∞↑ is defined as the congruence induced
by the following set of rewrite rules:

(λx :A.M) N −→β {N/x}M
TA(s) (us) −→τ Us

TN (s) (↑s (A)) −→τ Ts (A)
TR(s1,s2) (πs1,s2 x : A.B) −→τ Πx :Ts1 (A) . Ts2 (B)

πN (s1),s2 x : ↑s1
(A) .B −→σ ↑R(N (s1),s2)

R(s1,s2) (πs1,s2 x : A.B)

πs1,N (s2) x : A. ↑s2
(B) −→σ ↑R(s1,N (s2))

R(s1,s2) (πs1,s2 x : A.B) .

In this formulation, the coercions ↑s propagate upwards towards the root of the term. This
behavior matches the idea that, when computing minimal types, the cumulativity rule should
be delayed as much as possible.
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Properties

We show that the rewrite system −→βτσ enjoys the usual properties of confluence, subject-
reduction, and strong normalization. The last one follows from the strong normalization of
CC∞⊂ .

I Theorem 5.2 (Normalization of −→τσ). The rewrite system −→τσ is terminating.

Proof. The relation −→τ strictly decreases the total height of Ts symbols and the rela-
tion −→σ strictly decreases the total depth of ↑s symbols (while leaving the height of Ts
unchanged), therefore −→τσ is terminating. J

I Theorem 5.3 (Confluence). The rewrite system −→βτσ is locally confluent.

Proof. The rewrite rules of −→τσ are left-linear and the critical pairs are convergent,
therefore −→τσ is locally confluent. By Proposition 5.2, it is terminating and hence confluent.
Therefore its union with −→β is confluent [23]. J

I Theorem 5.4 (Subject reduction). If Γ `↑ M : A and M −→βτσ M
′ then Γ `↑ M ′ : A.

Proof. By induction on M . J

I Theorem 5.5 (Strong normalization). The rewrite system −→βτσ is strongly normalizing
for well-typed terms.

Proof. By Theorem 5.2, −→τσ is terminating, so any infinite sequence of reductions must
have an infinite number of −→β steps. If M −→τσ M

′ then |M | = |M ′|. If M −→β M
′ then

|M | −→β |M ′|. An infinite reduction sequence in CC∞↑ would therefore lead to an infinite
reduction sequence in CC∞⊂ . Moreover, according to Theorem 3.7 and Proposition 5.4, the
sequence would be well-typed. Since CC∞⊂ is strongly normalizing [11], this is impossible. J

6 Conclusion

We presented a formulation of the cumulative calculus of constructions with explicit subtyping.
We used the Tarski style of universes to solve the issues related to dependent types and
coercions. We showed that, by reflecting equality, we were able to preserve the expressiveness
of Russell-style universes.

A thorough and definitive study of the two styles remains to be done. Are the two
styles always equivalent? Can we always define an equivalence relation that reflects equality?
Can it always be oriented into well-behaved rewrite rules? Finally, how does this solution
interact with product covariance or other extensions of the theory, such as inductive types
or universe polymorphism? Our guess is that inductive types should not pose a problem.
Product covariance could be handled either by pre-expanding the terms to η-long form or
by using a more general form of coercions ↑BA where A ≤ B. The interaction with universe
polymorphism is still unclear.

Our results connect work done in pure type systems to work done in Martin-Löf’s
intuitionistic type theory. While the two theories have a clearly related core (namely the
λ-calculus with dependent types), it is less obvious if they can still be unified or if they
have definitively diverged. Pure type systems allow for a wide variety of specifications while
intuitionistic type theory has a clear and intuitive interpretation for cumulativity. We feel
that this problem deserves to be studied as the two theories form the basis for many logical
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frameworks and proof assistants. The work of Herbelin and Siles [19], and van Doorn et al
[22] already showed some progress in this direction.

A requirement for the aforementioned program is the development of a notion of cumula-
tivity in pure type systems. We can imagine extending PTS specifications with a cumulativity
relation as done by Barras, Grégoire, and Lasson for example [2, 3, 10]. However, it is unclear
if such an extension is meaningful on its own, or if it only makes sense in CC∞⊂ (which is both
a functional and complete PTS). In particular, the equations of CC∞↑ rely on the fact that
lifting inside a product cannot decrease the type of the product: R(s1, s2) ⊆ R(N (s1), s2)
and R(s1, s2) ⊆ R(s1,N (s2)). Whether this condition is essential or whether it can be
avoided is unclear. The possibility of using universes à la Tarski remains to be studied.

Finally, while our system allowed us to get rid of the implicit subsumption rule, it did so
at the expense of some complexity in the conversion rule. Whether this trade-off is beneficial
in practical applications remains to be discussed. How does the Tarski style simplify the
theoretical studies of the calculus of constructions? Can the current implementation of the
calculus of constructions like Coq or Matita benefit from it? Nevertheless, this presentation is
better suited for logical frameworks such as Dedukti, which usually do not support subtyping
as a built-in. Our work opens the way for exporting Coq proofs to such frameworks.

Acknowledgments. We thank Gilles Dowek and Raphaël Cauderlier for the discussions
leading to the ideas behind this paper and their feedback throughout its lengthy writing
process, as well as the anonymous reviewers for their various suggestions on how to improve
it.
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Abstract
We present a shallow embedding of the Object Calculus of Abadi and Cardelli in the λΠ-calculus
modulo, an extension of the λΠ-calculus with rewriting. This embedding may be used as an
example of translation of subtyping. We prove this embedding correct with respect to the opera-
tional semantics and the type system of the Object Calculus. We implemented a translation tool
from the Object Calculus to Dedukti, a type-checker for the λΠ-calculus modulo.
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1 Introduction

Motivation. The λΠ-calculus modulo [16] (λΠm) is a type system with dependent types
in which the conversion congruence can be extended by a user-supplied rewrite system. It
can be used as a logical framework to encode all the functional Pure Type Systems [16].
Moreover, translation tools from real-world proof assistants like Coq [15, 4] and the HOL
family [3] to Dedukti [6], a type-checker for λΠm, allow for the verification of proofs done in
these complex systems using a small, easy to trust, checker.

In this paper we present an encoding of an object calculus in λΠm, more precisely the
simply-typed ς-calculus [2]. A major feature of object oriented type systems is subtyping, and
it will be the focus of this article. The simply-typed ς-calculus is the simplest object calculus
featuring subtyping. We chose it as our source language to understand the special case
of structural object subtyping to be compared with other forms of subtyping like universe
cumulativity in Coq or predicate subtyping in PVS.

We also believe that objects may be useful for proof assistants like they already are for
programming; we would like to be able to develop proofs using object oriented concepts
and mechanisms such as inheritance, method redefinition and late binding. FoCaLiZe [24] is
a logical system featuring class-based object mechanisms which are translated in λΠm [9].
In order to generalize this encoding of objects in λΠm to more primitive object-based
mechanisms, we would need complex objects where methods would be typed with dependent
types. This work is a first step in that direction starting from a very simple type-system for
objects.

Related work. Many encodings [31, 7] of objects have been developed, studied, and com-
pared in the 90s. In order to express complex but common object mechanisms such as self
reference and inheritance, the target language is usually chosen to be very rich like System
Fω<: (a type system featuring polymorphism, existential types, type operators and subtyping).
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Because of the complexity of System Fω<: and the limitations of these encodings, they are
of limited practicality to study object oriented languages or to implement object oriented
mechanisms in proof systems; the only implementation to our knowledge is the Yarrow proof
assistant [32].

However, following the example of the λ-calculus, small calculi taking objects as core
notions have been designed and their type systems have been proved safe. For example:

The λ-calculus of objects [18] is an extension of the simply-typed λ-calculus with object
construction, method call, and method update. In this system, objects are extended with
their types using extensible records.
The Object Calculi of Abadi and Cardelli [2] are a collection of calculi based on objects.
They differ from the λ-calculus of objects in two important ways: they are not based on
the λ-calculus so they have fewer constructs and objects and their types are fixed records.
Hence they are somewhat simpler but they still are very expressive.
Featherweight Java [25] is a core calculus for the popular class-based Java programming
language. It is a small class-based object oriented calculus designed to study extensions
of class-based languages such as Java.

These three calculi can easily encode the λ-calculus, allow possibly non-terminating
recursion and have some form of subtyping: respectively row polymorphism, structural
subtyping, and class-based subtyping.

The type systems of these three calculi have been formalized in proof assistants; those
formalizations can be seen as deep embeddings of the calculi in type theory. For example,
Featherweight Java has been formalized in Coq [26] and Isabelle/HOL [19] using extens-
ible records and subject reduction for Object Calculi has been proved in Coq [11] and
Isabelle/HOL [23]. For the untyped Object Calculus, confluence has also been formally
proved in Isabelle/HOL [22].

Encodings of objects based on rewrite techniques have also been studied; for example,
in the ρ-calculus [13], a full encoding of the untyped Object Calculus and λ-calculus of
objects [12] and a partial encoding of the simply-typed Object Calculus [13] have been
designed. In the Maude specification environment [14], objects are also encoded using a
rewrite system thanks to the reflection mechanism of Maude.

Contribution. In contrast with these deep encodings, our contribution is a shallow embed-
ding in the sense of [8, 5, 17]; the elements of the source language, the simply-typed ς-calculus:
terms, values, and types are respectively translated to terms, values, and types in λΠm such
that operational semantics, typing derivations, and binding operation are preserved by this
translation.

The next section of this article describes λΠm, our target language, Section 3 describes
the simply-typed ς-calculus, our source language. Section 4 is the main section of this article;
it defines a strongly-normalizing encoding of the simply-typed ς-calculus in λΠm. This
encoding is not fully shallow because it does not preserve the operational semantics. In
Section 5, we add two rewrite rules to this encoding to reflect the operational semantics;
doing so we lose strong-normalization.

2 The λΠ-calculus modulo

2.1 The λΠ-calculus
The λΠ-calculus [20], also known as LF and λP, is an extension of the simply typed λ-calculus
with dependent types. λΠ terms and types have the following syntax:
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s ∈ {Type, Kind}

(Empty)
∅ `d

Γ `d Γ `d τ : s x 6∈ Γ
(Decl)

Γ, x : τ `d
Γ `d (Sort)

Γ `d Type : Kind

Γ `d x : τ ∈ Γ
(Var)

Γ `d x : τ
Γ `d τ1 : Type Γ, x : τ1 `d τ2 : s

(Prod)
Γ `d Πx : τ1.τ2 : s

Γ `d τ1 : Type Γ, x : τ1 `d τ2 : s Γ, x : τ1 `d t : τ2 (Abs)
Γ `d λx : τ1.t : Πx : τ1.τ2

Γ `d t0 : Πx : τ1.τ2 Γ `d t1 : τ1 (App)
Γ `d t0t1 : τ2{t1/x}

Γ `d t : τ1 Γ `d τ1 : s Γ `d τ2 : s τ1 ≡β τ2
(Conv)

Γ `d t : τ2

Figure 1 inference rules for the λΠ-calculus.

t, u, v, . . . , τ ::= x | t u | λx : τ.t | Πx : τ1.τ2 | Type | Kind

There is no syntactic distinction between terms and types but we use latin letters starting
at t to denote terms and the greek letter τ to denote types. We use the letter s to denote a
sort, either Type or Kind. The term Πx : τ1.τ2 where the variable x may appear free in τ2 is
called a dependent product and represents the type of functions taking an argument x of
type τ1 and returning a value of type τ2 that may depend on x. If x does not appear free in
τ2, the term Πx : τ1.τ2 will be abbreviated as τ1 → τ2. If τ1 is clear from context, the term
Πx : τ1.τ2 will be abbreviated as Πx.τ2.

A list of variable typing declarations is called a (λΠ) context:

Γ ::= ∅ | Γ, x : τ

where ∅ denotes the empty context. We implicitly use α-conversion to avoid variable capture.
In particular, contexts contain distinct variables.

Some contexts are called well-formed. When the context Γ is well-formed, we write
Γ `d. Some terms are called well-typed. When the term t is well-typed of type τ in
context Γ, we write Γ `d t : τ . These two notions are mutually defined in Figure 1 where
t0{t1/x} denotes the capture-avoiding substitution of the variable x by the term t1 in term
t0 and ≡β is the congruence induced by β-reduction (the smallest congruence such that
(λx : τ1.t0)t1 ≡β t0{t1/x}).

The λΠ-calculus is the type-system on which logical frameworks such as Automath [28]
and Twelf [30] are based.

2.2 The λΠ-calculus modulo
The λΠ-calculus modulo (λΠm) is an extension of the λΠ-calculus which extends the
conversion rule; terms are considered convertible not only when they are β-equivalent but
also when they are congruent for a given rewrite system.

The terms are the same as in the λΠ-calculus but contexts may also contain rewrite rules
which also need to be well-typed.

TYPES’14
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Rewrite rules are composed of three parts: a rule context which is a λΠ context used to
type free variables, a left-hand side and a right-hand side which are both terms. In order
to make the rewrite system decidable1, we need to add the following restrictions on rewrite
rules:

the left-hand side is a first-order pattern (a term built only from variables and applications)
free variables of the right-hand side also appear free in the left-hand side
free variables of the left-hand side are declared in the rule context.

So the new syntax for contexts is as follows:

Γ ::= ∅ | Γ, x : τ | Γ, (Λt ↪→ u)

where Λ stands for λΠ contexts. The rule context Λ will often be omitted when clear from
context.

For any context Γ, a reduction relation on terms −→βΓ is defined by:
for any terms t1, t2 and any variable x, (λx.t1)t2 −→βΓ t1{t2/x}
for any rule (Λl ↪→ r) ∈ Γ and any substitution θ of the variables of Λ, θl −→βΓ θr.

We denote by ≡βΓ the smallest congruence containing −→βΓ.
To check if contexts are well-formed, we add a rule for the new case of rewrite rule. A

rewrite rule is well-formed in a context Γ if the left-hand side and the right-hand side have
the same type in Γ,Λ (Γ augmented with the rule context):

Γ `d Γ,Λ `d t : τ Γ,Λ `d u : τ
(RewriteRule)

Γ, (Λt ↪→ u) `d

The set of rewrite rules in a context Γ defines a rewrite system; the conversion rule for
λΠm is the same as the one for the λΠ-calculus except that the β-equivalence is replaced by
the congruence ≡βΓ.

Γ `d t : τ1 Γ `d τ1 : s Γ `d τ2 : s τ1 ≡βΓ τ2
(Conv)

Γ `d t : τ2

Other typing rules are unchanged. In particular, if the typing judgment Γ `d t : T is
derivable in the λΠ-calculus, then it is also derivable in λΠm with the exact same derivation
and an empty rewrite system.

An example of well-formed λΠm-context2 is shown in Figure 2. This example is composed
of the definitions of the addition in Peano arithmetic and the concatenation of lists depending
on their length. Here and in rest of the paper, we omit in such definitions the types of variables
introduced by Π and λ when it is not ambiguous. The definition of the addition is needed to
convert the types of the left-hand side to the type of the right-hand side of each rewrite rule
defining the concatenation; for instance, let us check that the rule append 0 n empty l ↪→ l

is well-formed in the context Γ := Nat : Type, 0 : Nat, . . . , append : Πn1.Πn2.List n1 →
List n2 → List (plus n1 n2):

1 That is, to decide whether a given term matches a rewrite rule.
2 Examples and other contexts in λΠm are preceded in this article by a vertical bar in order to distinguish

them from examples in the ς-calculus.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A : Type.
Nat : Type. List : Nat→ Type.
0 : Nat. empty : List 0.
S : Nat→ Nat. cons : Πn : Nat.A→ List n→ List (S n).

plus : Nat→ Nat→ Nat. append : Πn1.Πn2.

List n1 → List n2 → List (plus n1n2).

plus 0 n ↪→ n. append 0 n empty l ↪→ l.

plus n 0 ↪→ n. append n 0 l empty ↪→ l.

plus (S n1) n2 ↪→ S (plus n1 n2). append (S n1) n2 (cons n1 a l1) l2 ↪→
plus n1 (S n2) ↪→ S (plus n1 n2). cons (plus n1 n2) a (append n1 n2 l1 l2)

Figure 2 Example of λΠm-context: Peano natural numbers and concatenation of dependent lists.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

equal : Nat→ Nat→ Type.
refl : Πn : Nat.equal n n.

equal_S : Πn1.Πn2.equal n1 n2 → equal (S n1) (S n2).
equal_S n n (refl n) ↪→ refl (S n).

plus_comm : Πn1.Πn2.equal (plus n1 n2) (plus n2 n1).
plus_comm 0 n2 ↪→ refl n2.

plus_comm (S n1) n2 ↪→ equal_S (plus n1 n2) (plus n2 n1) (plus_comm n1 n2).

Figure 3 A proof of the commutativity of addition in λΠm.

The implicit rule context is Λ := (n : Nat, l : List n).
The constants 0, empty, and append have respectively the types Nat, List 0, and
Πn1.Πn2.List n1 → List n2 → List (plus n1 n2) in Γ.
By successive applications of the (App) rule, we can type the left-hand side
append 0 n empty l with type List (plus 0 n) in Γ,Λ.
The rule plus 0 n ↪→ n is in Γ so List (plus 0 n) ≡β(Γ,∆) List n, therefore we can also
type the left-hand side with the type List n in context Γ,Λ using the (Conv) rule.
The left-hand side append 0 n empty l and the right-hand side l have the same type
List n in context Γ,Λ hence the rule Λ(append 0 n empty l) ↪→ l is well-formed in
context Γ.

Thanks to dependent types, we can state and prove theorems in λΠm. To state a theorem,
we declare a symbol whose type is the theorem statement and to prove the theorem we add
one or more rewrite rules defining this symbol as a (total and terminating) function. A λΠm
proof of the addition commutativity is given in Figure 3. This proof is composed of two
rewrite rules that mimic a proof by induction on the first argument of plus. In the following,
we call such a proof scheme a λΠm induction proof.

The interesting properties about a λΠm-context and its associated rewrite system are
confluence, strong normalization and well-formedness. None of them is decidable but when
the rewrite system is both confluent and strongly normalizing, convertibility check can be
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52 Objects and Subtyping in the λΠ-Calculus Modulo

decided by comparing normal forms so well-formedness becomes decidable and is indeed
implemented in the Dedukti [6] type checker.

However, the correctness of Dedukti relies on confluence only; strong normalization is
only used to ensure termination.

3 The simply-typed ς-calculus

In this section, we describe the source language of our encoding, that is the simply-typed
ς-calculus defined by Abadi and Cardelli [2, 1] (also called Obj1<:). This calculus is an
object-based (classes are not primitive constructs) calculus with functional semantics (values
are immutable). Its type system features structural subtyping (as opposed to class subtyping).
Contrary to simply-typed λ-calculus, well-typed ς-terms do not always terminate.

3.1 Syntax
The syntax of the simply-typed ς-calculus is divided between types and terms.

Types are (possibly empty) records of types:

A,B, . . . ::= [li : Ai]i∈1...n

Labels are distinct and their order does not matter as long as each li remains associated to
the same Ai. Terms are records of methods introduced by a self binder ς. Methods can be
selected and updated.

a, b, . . . ::= x variable
| [li = ς(xi : A)ai]i∈1...n object
| a.l method selection
| a.l⇐ ς(x : A)b method update

Again, labels in objects are distinct and their order does not matter. When the variable
introduced by the ς binder is unused, we may omit the binder and write l = b and a.l⇐ b

instead of, respectively, l = ς(x : A)b and a.l⇐ ς(x : A)b where x does not appear free in b.
Typing contexts are lists of typing declarations:

∆ ::= ∅ | ∆, x : A

in which each variable may appear at most once. When x appears in ∆, we denote by ∆(x)
the associated type.

3.2 Typing
The following rules, where A stands for [li : Ai]i∈1...n, define a type system for the simply-
typed ς-calculus3:

3 Abadi and Cardelli also consider a ground type that they call K or Top to ease comparison with the
simply-typed λ-calculus. It can be replaced by the empty object type [ ] so we omit it here to simplify
the calculus.
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∆ `ς Ai ∀i ∈ 1 . . . n li distinct (type)
∆ `ς A

(empty)
∅ `ς

∆ `ς A x 6∈ ∆
(decl)

∆, x : A `ς
∆ `ς x ∈ ∆

(var)
∆ `ς x : ∆(x)

∆, xi : A `ς ai : Ai ∀i ∈ 1 . . . n
(obj)

∆ `ς [li = ς(xi : A)ai]i∈1...n : A
∆ `ς a : A j ∈ 1 . . . n

(select)
∆ `ς a.lj : Aj

∆ `ς a : A ∆, x : A `ς b : Aj j ∈ 1 . . . n
(update)

∆ `ς a.lj ⇐ ς(x : A)b : A

3.2.1 Subtyping
This type system is extended by a subtyping relation <: defined as follows:

∆ `ς Ai ∀i ∈ 1 . . . n+m
(subtype)

∆ `ς [li : Ai]i∈1...n+m <: [li : Ai]i∈1...n

∆ `ς A (refl)
∆ `ς A <: A

∆ `ς A <: B ∆ `ς B <: C
(trans)

∆ `ς A <: C

Since the order of labels is irrelevant, the (subtype) rule actually states that A is a subtype
of B whenever every label of B is also in A, with the same type. This subtyping relation can
be used to change the type of terms with the following subsumption rule:

∆ `ς a : A ∆ `ς A <: B
(subsume)

∆ `ς a : B

3.2.2 Minimum types
Abadi and Cardelli have proved that the simply-typed ς-calculus enjoys minimum typing [2]:
for each well-typed term a in a context ∆, we can compute a type mintype∆ (a) such that:

∆ `ς a : mintype∆ (a)
for all A such that ∆ `ς a : A, we have ∆ `ς mintype∆ (a) <: A.

The meta-level function mintype4 is defined as follows:
mintype∆ (x) := ∆(x) mintype∆ ([ ]) := [ ]
mintype∆ ([li = ς(xi : A)ai]i∈1...n+1) := A mintype∆ (a.l ⇐ ς(x : A)b) := A

mintype∆ (a.lj) := Bj when mintype∆ (a) is [li : Bi]i∈1...n

3.3 Operational Semantics
The values of the simply-typed ς-calculus are plain objects. Selection and update are reduced
by the following operational semantics rules where A stands for [li : Ai]i∈1...n and a stands
for [li = ς(xi : A)ai]i∈1...n:

4 Bold face is here used to distinguish the meta-level.
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a.lj � aj{a/xj}
a.lj ⇐ ς(x : A′)u � [lj = ς(x : A)u, li = ς(xi : A)ai]i∈1...n,i6=j

where aj{a/x} denotes the substitution of the variable x by the term a in term aj .
The type A′ used in the binder for updating the object a does not need to be equal to A

but may be any supertype of it.
Subject reduction has been proved by Abadi and Cardelli [1]. However, reduction does

not preserve minimum typing since mintype∆ (a.lj ⇐ ς(x : A′)u) is (by definition) A′ but
this term reduces to a value of type A.

3.4 Example
The expressivity of the ς-calculus can be illustrated by the following example from Abadi
and Cardelli [2] assuming that we have a type Num for numbers and that the simply-typed
λ-calculus has been encoded:

RomCell := [ get : Num ]
PromCell := [ get : Num, set : Num → RomCell ]
PrivateCell := [ get : Num, contents : Num, set : Num → RomCell ]
myCell : PromCell := [ get = ς(x : PrivateCell)x.contents,

contents = ς(x : PrivateCell)0,
set = ς(x : PrivateCell)λ(n : Num)x.contents ⇐ n ]

RomCell is the type of read-only memory cells; the only action that we can perform on a
RomCell is to read it (get method).

A PromCell is a memory cell which can be written once (set method), we can either read
it now or write it and get a RomCell.

PrivateCell is a type used for implementation; it extends PromCell with a contents field
which should not be seen from the outside.

The object myCell implemented as an object of type PrivateCell can be given the type
PromCell thanks to subsumption.

4 Encoding of the simply-typed ς-calculus in the λΠ-calculus modulo

This section describes an encoding of the simply-typed ς-calculus given by a λΠm-context
and a translation of ς-types, terms, and contexts. We want it to be shallow in the sense
discussed in the introduction. However, the encoding described in the current section will
only preserve typing and binding, since preserving reduction of a non terminating system
cannot, of course, be achieved using a strongly-normalizing rewrite system. The associated
rewrite system will be confluent and strongly normalizing, making type-checking of encoded
terms decidable. In the next section, we will add a few rewrite rules in order to preserve
reduction at the price of losing normalization.

This encoding is implemented as a translation tool [10] producing Dedukti terms from
ς-terms and types.

4.1 Encoding of types
We assume given an infinite λΠ-type label with a decidable equality.

Unit, product, Σ-types, and Leibnitz equality can all be encoded in λΠm (they are special
cases of inductive types, which are translated to λΠm by Coqine [4]) so we consider that
they are available with the usual notations (respectively unit, A×B, Σx : A.B, and =A).
To avoid confusion with Leibnitz equality, we write ≡ for the equality at meta-level.
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4.1.1 Domains
Domains are lists of labels:∣∣∣∣∣∣

domain : Type.
nil : domain.
cons : label→ domain→ domain.

We use the notation [l1; . . . ; ln] for (cons l1 (. . . (cons ln nil) . . .)).
We avoid assuming that our domains are duplicate-free and we instead consider proofs of

membership of labels. The computational content of such a membership proof is relevant: it
is a position in the list where the label appears. We simply call membership proofs positions:∣∣∣∣∣∣

• ∈ • : label→ domain→ Type.
at-head : Πl.Πd.l ∈ cons l d.
in-tail : Πl1.Πl2.Πd.l1 ∈ d→ l1 ∈ cons l2 d.

Most functions in the encoding are defined by induction on positions.
We use the notation d1 ⊂ d2 as an abbreviation for Πl.l ∈ d1 → l ∈ d2.

4.1.2 Object types
Types are encoded as sorted association lists. Sorting is done at translation time so we don’t
need an ordering on labels in the target language.

Formally, we declare the following type and terms:∣∣∣∣∣∣
type : Type.
typenil : type.
typecons : label→ type→ type→ type.

The λΠ-term type should not be confused with the λΠ-term Type; the former is the λΠ
equivalent of ς-types and the latter is sort of all the λΠ-types.

A translation function J•K from ς-types to λΠ-terms of type type is given by

J[li : Ai]i∈1...n,l1<...<lnK := typecons l1 JA1K (. . . (typecons ln JAnK typenil) . . .)

For example, the types RomCell, PromCell, and PrivateCell defined in Section 3.4 are
translated as follows:

JRomCellK ≡ typecons get JNumK typenil
JPromCellK ≡ typecons get JNumK (

typecons set JNum → RomCellK
typenil)

JPrivateCellK ≡ typecons contents JNumK (
typecons get JNumK (

typecons set JNum → RomCellK
typenil))

4.1.3 Design choices
This encoding of ς-types as association lists is a bit under-specified: the type type does not
impose unicity of label nor sorting. We know two ways to impose these two restrictions:
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We can add an extra argument to the typecons constructor, witnessing that the added
label minors the elements in the tail of the list:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

type : Type.
minors : label→ type→ Type.
typenil : type.
typecons : Πl : label.ΠA : type.ΠB : type.minors l B → type.
minors-nil : Πl : label.minors l typenil.
minors-cons : Πl.Πl′.ΠA.ΠB.minors l′ B →

l < l′ → minors l (typecons l′ A B).

But this increases a lot the size of the translated types.
It is also possible to quotient the association lists by a rule exchanging the order of entries
and a rule removing duplicates:∣∣∣∣ typecons l1 A1 (typecons l2 A2 B) ↪→ typecons l2 A2 (typecons l1 A1 B).

typecons l A1 (typecons l A2 B) ↪→ typecons l A1 B.

In order to preserve normalization, we have to guard the first rule by a condition like
l2 < l1. Unfortunately, the resulting rewrite system becomes hard to keep confluent with
definitions of functions on type. Moreover this requires an ordering on labels and the use
of conditional rewriting which is not yet implemented in Dedukti.

The benefit from excluding unsorted association lists does not seem worth the drawbacks
of these solutions hence we prefer to live with the existence of λΠ-terms of type type not
coming from the encoding.

4.1.4 Domain and association
Since types are translated as association lists, we define the usual functions assoc and dom
for respectively looking up an association and listing the domain:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dom : type→ domain.
dom typenil ↪→ nil.
dom (typecons l A B) ↪→ cons l (dom B).

assoc : ΠA : type.Πl : label.l ∈ dom A→ type.
assoc (typecons l A B) l (at-head l (dom B)) ↪→ A.

assoc (typecons l2 A B) l1 (in-tail l1 l2 (dom B) p) ↪→ assoc B l1 p.

We abbreviate assoc A l p as A.pl or A.l making the position p implicit.

4.1.5 Subtyping relations
The subtyping relation is defined by:

• ≤ • : type→ type→ Type.
A ≤ typenil ↪→ unit.
A ≤ typecons l B C ↪→ Σp : l ∈ dom A.(A.pl =type B)× (A ≤ C).

where =type is the Leibnitz equality defined on type.
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4.1.6 Properties of the subtyping relation
This subsection lists a few useful properties of the ≤ relation. These properties are provable
directly in λΠm, as opposed to the correctness of the translation of subtyping which will be
addressed in Section 4.3.2. These proofs can be found at [10].

I Lemma 1 (subtype-weakening). The ≤ relation enjoys weakening; it means that in λΠm,
we can define a total function subtype-weakening of type
ΠA.ΠB.Πl.ΠC.A ≤ B → (typecons l A C) ≤ B.

Proof. Straightforward by induction on B (as explained previously, the function subtype-
weakening is defined by two rewrite rules, one for B ≡ typenil and another for B ≡
typecons ...). J

I Lemma 2 (subtype-refl). The ≤ relation is reflexive; in λΠm, we can define a total function
subtype-refl of type ΠA.A ≤ A.

Proof. By induction on A using the previous lemma. J

I Lemma 3 (subtype-dom). The dom function is compatible with ≤; in λΠm, we can define
a total function subtype-dom of type ΠA.ΠB.A ≤ B → dom B ⊂ dom A.

Proof. By induction on B.
base case is trivial (there is no rewrite rule for this case because it is an empty case)
if B is typecons l′ B1 B2, we have some position p′ : l′ ∈ dom A and A ≤ B2. For any l
and any position p : l ∈ cons l (dom B2), either p is at head in which case l ≡ l′ and p′
proves the goal, or p is in tail and we conclude using the induction hypothesis. J

I Lemma 4 (subtype-assoc). The assoc function is compatible with ≤; in λΠm, we can define
a total function subtype-assoc of type ΠA.ΠB.Πst : A ≤ B.Πl.Πp : l ∈ dom B.B.pl =type

A.subtype-dom A B st l p l.

Proof. By induction on B.
base case is trivial
if B is typecons l′ B1 B2, we have some position p′ : l′ ∈ dom A such that A.p′ l′ =type B1
and A ≤ B2. For any l and any position p : l′ ∈ cons l (dom B2),

either p is at head in which case l ≡ l′ and B.pl ≡ B1. A.subtype-dom A B st l pl
′ ≡

A.p′ l′ ≡ B1
or p is in tail in which case we conclude again using the induction hypothesis. J

I Lemma 5 (subtype-trans). The subtyping relation is transitive; in λΠm, we can define a
total function subtype-trans of type ΠA.ΠB.ΠC.A ≤ B → B ≤ C → A ≤ C.

Proof. By induction on C, using subtype-dom and subtype-assoc. J

4.2 Encoding of terms
As we did for types, we define translation functions from terms and contexts of the simply-
typed ς-calculus to terms and contexts of λΠm.

These functions preserve typing in the sense that we can define, in λΠm, a function Expr
such that whenever the judgment ∆ `ς a : A is valid in the simply-typed ς-calculus, the
judgment J∆K `d JaK∆,A : Expr JAK is valid in λΠm.

We define a λΠm-context reflecting the syntax and the semantics of the ς-calculus. We
start with concrete objects, we then define coercions reflecting the use of the subsumption
rule. From these declarations, we define the λΠm version of selection and update, and finally
we give the translation function for terms.
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4.2.1 Objects
Expr A represents the λΠm-type of well-typed objects of type A and Meth A B represents
the λΠm-type of methods of A returning an object of type B.

We can declare Expr and Meth:∣∣∣∣ Expr : type→ Type.
Meth : type→ type→ Type.

Unfortunately, we cannot define Expr directly by some nil and cons constructors, as we
did for types, because a sublist of a well-typed object is not well-typed.

We call a sublist of a well-typed object of type A, defined on some set of labels d, a
preobject of type (A, d).

Formally, we define a λΠm-type Preobj A d by the following declarations:∣∣∣∣∣∣∣∣
Preobj : type→ domain→ Type.
prenil : ΠA.Preobj A nil.
precons : ΠA.Πd.Πl.Πp : l ∈ dom A.

Meth A A.pl→ Preobj A d→ Preobj A (cons l d).

With preobjects at hand, we can define objects of type A:∣∣ Obj A ↪→ Preobj A (dom A).

and expressions of type B are objects of a type A, subtype of B:∣∣ Expr B ↪→ ΣA : type.(Obj A)× (A ≤ B).

Since the subtyping relation is reflexive, we can inject objects into expressions:∣∣∣∣ expr-of-obj : ΠA.Obj A→ Expr A.
expr-of-obj a ↪→ (A, a, subtype-refl A).

We would like to define Meth A B as Expr A→ Expr B to end this set of definitions but
then the negative occurrence of Expr would be a source of non-termination.

We solve this problem by adding axioms stating that Meth A B is equivalent to Expr A→
Expr B:∣∣∣∣ Eval-meth : ΠA.ΠB.Meth A B → Expr A→ Expr B.

Make-meth : ΠA.ΠB.(Expr A→ Expr B)→ Meth A B.

The key point here is that Eval-meth and Make-meth will freeze reduction. For example
the translation of a looping ς-term like [l = ς(x : [l : []])x.l].l will be a term whose normalization
will freeze at an occurrence of the pattern Eval-meth A B (Make-meth A B f) a which will
not be matched by any rewrite rule.

To get a reduction-preserving encoding, we just have to add some rewrite rules; either
the rule Eval-meth A B (Make-meth A B f) a ↪→ f a or the following one Meth A B ↪→
Expr A→ Expr B (and Eval-meth and Make-meth both reduce to identity).

4.2.2 Coercions
Implicit subtyping cannot be expressed in λΠm because each λΠ-term has at most one type
modulo β and rewriting. Hence we cannot simply rewrite any type A to any of its subtypes
or supertypes; rewriting is oriented but conversion is symmetric.
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Since we cannot use implicit subtyping, we have to define some explicit coercion operation
to be used instead of the subsumption typing rule.

These coercions are actually very easy to define thanks to our definition of Expr and
Lemma 5; if a is an object of type A subtype of B seen as an expression of type B, seeing
a as an expression of type C supertype of B only requires a proof of A ≤ C which may be
obtained by transitivity of ≤:∣∣∣∣ coerce : ΠB : type.ΠC : type.B ≤ C → Expr B → Expr C.

coerce B C stBC (A, a, stAB) ↪→ (A, a, subtype-trans stAB stBC).

We use the notation a ↑BA for the term coerce A B st a of type Expr B, leaving the
subtyping proof implicit.

4.2.3 Operational semantics
The select and update functions explore the object until they find the corresponding
method and either return it or rebuild another object.

Their definitions follow the definitions of Expr and Obj; they work recursively on the
Preobj structure using auxiliary functions called preselect and preupdate. These functions
operate on a preobject of type (A, d) and are defined by induction on a position p : l ∈ d
which can be converted to a position of type l ∈ dom A thanks to the following lemma:

I Lemma 6 (preobj-subset). Preobjects are defined on subsets of the domain: in λΠm, we
can define a total function preobj-subset of type ΠA.Πd.Preobj A d→ d ⊂ dom A.

Proof. Straightforward by induction on d. J

The definition of update is straightforward:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

preupdate : ΠA.Πd.Πl.Πp : l ∈ d.Πpo : Preobj A d.

Meth A A.preobj-subset A d po l pl→ Preobj A d.

obj-update : ΠA.Πl.Πp : l ∈ dom A.Obj A→ Meth A A.pl→ Obj A.
update : ΠA.Πl.Πp : l ∈ dom A.Expr A→ Meth A A.pl→ Expr A.

preupdate A (cons l d) l (at-head l d) (precons A d l p′ m′ po) m
↪→ precons A d l p′ m po.

preupdate A (cons l′ d) l (in-tail l l′ d p) (precons A d l′ p′ m′ po) m
↪→ precons A d l′ p′ m′ (preupdate A d l p po m).

obj-update A l p a m ↪→ preupdate A (dom A) l p a m.

The obj-update function can be used to update a method of an object of type A; if we
want to update an expression of type B where A ≤ B, we only have at hand a method of
type Meth B A.l (for some l) where obj-update needs a Meth A A.l. This can be solved by
a substitution of the self variable by its coercion self ↑BA in the method body, which is easy
to write as (Make-meth A A.l ((λ(self : Expr A) (Eval-meth B A.l m (self ↑BA))))). Hence
we can define update as follows:∣∣∣∣∣∣∣∣∣∣

update B l p (A, a, st) m
↪→ (A,

obj-update A l (subtype-dom A B st p ) a
(Make-meth A A.l (λ(self : Expr A) (Eval-meth B A.l m (self ↑BA)))),

st).
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Selection is a bit more subtle because we need both the selected method, which is found by
inductively destructing the object, and the full object which should be substituted for the self
variable. The preselect function doesn’t return an object but the method associated with
the label. The select function duplicates its argument a, one copy is passed to preselect
and the other is used with the returned method to build a blocked redex using the Eval-meth
axiom.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

preselect : ΠA.Πd.Πl.Πp : l ∈ d.Preobj A d→ Meth A (A.pl).
obj-select : ΠA.Πl.Πp : l ∈ dom A.Obj A→ Meth A (A.pl).
select : ΠA.Πl.Πp : l ∈ dom A.Expr A→ Expr A.pl.

preselect A (cons l d) l (at-head l d) (precons A d l p′ m po)
↪→ m.

preselect A (cons l′ d) l (in-tail l l′ d p) (precons A d l′ p′ m′ po)
↪→ preselect A d l p po.

obj-select A l p a ↪→ preselect A (dom A) l p a.

select B l p (A, a, st) ↪→ Eval-meth A A.p l

(obj-select A l p a) (A, a, st).

4.2.4 Translation function for expressions
We now have all we need to define a translation function from simply-typed ς-terms to λΠm.

The same ς-term a may have to be translated to different λΠ-terms of different types
because λΠm lacks subtyping and subsumption. Hence we have to parameterize our trans-
lation function by the targeted type A of a in the ς-calculus. Fortunately, it is enough to
define the translation function for the minimum type of a, written JaK∆. We can then define
the general translation function for type A as JaK∆,A := JaK∆ ↑JAK

Jmintype∆(a)K where the proof
of Jmintype∆ (a)K ≤ JAK is computed by a meta-level5 function decide-subtype (omitted
here).

The J•K∆ function, the J•K∆,A function and the translation function for methods are
mutually defined by:

JaK∆,A := JaK∆ ↑JAK
Jmintype∆(a)K

J[li = ς(x : A)ai]i∈1...n,l1<...<lnK∆
:= expr-of-obj (

precons JAK [l2; . . . ; ln] l1 p1 Jς(x : A)a1K∆,A.p1 l1
(

. . . (precons JAK [ ] ln pn Jς(x : A)anK∆,A.pn ln
prenil JAK)))

Ja.lK∆ := select Jmintype∆ (a)K l p JaK∆
Ja.l⇐ ς(x : A)bK∆ := update JAK l p JaK∆,A Jς(x : A)bK∆,A.pl

Jς(x : A)bK∆,B
:= Make-meth JAK JBK (λx : Expr JAK.JbK(∆,x:A),B)

5 The function decide-subtype is easy to define at the meta-level but could also be defined in λΠm.
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The positions pi and p in this encoding can be computed for any well-typed ς-term : pi
is the ith position (p1 is at-head l1 [l2; . . . ; ln], p2 is in-tail l2 l1 (at-head l2 [l3; . . . ; ln]),
pn is in-tail ln l1 (. . . (in-tail ln ln−1 (at-head ln [ ]) ) . . .), and p is the pi such that l
is li).

The translation of the binding operation of our source language (the ς binder) is done by
a binding operation in the target language (the λ binder). This technique is generally known
as Higher-Order Abstract Syntax (HOAS) [29].

We can now compute the translation of our example term myCell. We translate a term
a by an object of type Jmintype∆ (a)K seen as an expression of the required type. In this
case, mintype∆ (myCell) is PrivateCell and the required type is PromCell.

JmyCellK∆,PromCell

≡ JmyCellK∆ ↑JPromCellK
Jmintype∆(myCell)K

≡ JmyCellK∆ ↑JPromCellK
JPrivateCellK

≡ (JPrivateCellK,
precons JPrivateCellK [get; set] contents p1

Jς(x : PrivateCell)0K∆,Num(
precons JPrivateCellK [set] get p2

Jς(x : PrivateCell)x.contentsK∆,Num(
precons JPrivateCellK [ ] set p3

Jς(x : PrivateCell)λ(n : Num)x.contents ⇐ nK∆,Num→RomCell(
prenil JPrivateCellK))),

decide-subtype JPrivateCellK JPromCellK)

Jς(x : PrivateCell)0K∆,Num
≡ Make-meth JPrivateCellK JNumK

(λx : Expr JPrivateCellK.J0K(∆,x:PrivateCell),Num)

Jς(x : PrivateCell)x.contentsK∆,Num
≡ Make-meth JPrivateCellK JNumK

(λx : Expr JPrivateCellK.select JNumK contents p1 x)

Jς(x : PrivateCell)λ(n : Num)x.contents ⇐ nK∆,Num→RomCell
≡ Make-meth JPrivateCellK JNum → RomCellK

(λx : Expr JPrivateCellK.Jλ(n : Num)x.contents ⇐ nK∆,Num→RomCell)

As expected, the translation of the looping ς-term [l = ς(x : [l : [ ]])x.l].l normalizes to an
instance of the pattern Eval-meth A B (Make-meth A B f) a:

J[l : [ ]]K∅ ≡ typecons l typenil typenil
Jx.lKx:[l:[ ]] ≡ select J[l : [ ]]Kx:[l:[ ]] l p1 x

Jς(x : [l : [ ]])x.lK∅,[] ≡ Make-meth J[l : [ ]]K∅ [ ] (λx : Expr J[l : [ ]]K∅.Jx.lKx:[l:[ ]])
J[l = ς(x : [l : [ ]])x.l]K∅ ≡ (J[l : [ ]]K∅,

precons J[l : [ ]]K∅ [ ] l p1 Jς(x : [l : [ ]])x.lK∅,[]
(prenil J[l : [ ]]K∅),

subtype-refl J[l : [ ]]K∅)
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J[l = ς(x : [l : [ ]])x.l].lK∅ ≡ select J[l : [ ]]K∆ l p1 J[l = ς(x : [l : [ ]])x.l]K∅
↪→ Eval-meth J[l : [ ]]K∅ [ ] l

(obj-select J[l : [ ]]K∅ l p1
(precons . . .))

J[l = ς(x : [l : [ ]])x.l]K∅
↪→ Eval-meth J[l : [ ]]K∅ [ ] l

(preselect J[l : [ ]]K∅ [l] l p1
(precons . . .))

J[l = ς(x : [l : [ ]])x.l]K∅
↪→ Eval-meth J[l : [ ]]K∅ [ ] l

(Make-meth J[l : [ ]]K∅ [ ]
(λx : Expr J[l : [ ]]K∅.Jx.lKx:[l:[ ]]))

J[l = ς(x : [l : [ ]])x.l]K∅

4.3 Properties of the encoding
Let Γ0 be the λΠm-context composed of the declarations and rewrite rules presented
previously in this section. We investigate properties of the rewrite system R0 associated
with Γ0 and of translated ς-terms in contexts of the form Γ0,Λ where Λ is a λΠ-context (a
λΠm-context without rewrite rule) so the rewrite system associated with Γ0,Λ is R0.

The proofs in this section are done at the meta-level and are pen-and-paper proofs.

4.3.1 Normalization and confluence
The rewrite system R0 is strongly normalizing because recursive calls are performed on strict
subterms and variables of left-hand sides are never applied in the right-hand side. It is also
confluent because it is left-linear and normalizing [27].

In order to be extra-confident in these properties, we implemented the definitions of Γ0
in the Calculus of Inductive Constructions, which is known to be strongly normalizing and
confluent [15], and type-checked this implementation with Coq.

Our code is available at http://sigmaid.gforge.inria.fr. However this translation
to Coq uses axioms (Meth, Make-meth, and Eval-meth) which are a priori not provable in
Coq.

4.3.2 Preservation of the subtyping relation by the translation
In this subsection we prove that our translation of types preserves subtyping: given two
ς-types A and B, we have A <: B if and only if JAK ≤ JBK. The proof requires some
intermediate results we detail below.

I Lemma 7. If l ∈ dom J[li : Ai]i∈1...nK then l ≡ lj for some j ∈ 1 . . . n.

Proof. Trivial by induction on the position of type l ∈ dom J[li : Ai]i∈1...nK. J

I Lemma 8. If j ∈ 1 . . . n, then lj ∈ dom J[li : Ai]i∈1...nK.

Proof. Without loss of generality, we assume that l1 > . . . > ln. dom J[li : Ai]i∈1...nK is
[ln; . . . ; l1]. We prove that lj ∈ [ln; . . . ; l1] by induction on n:

case n ≡ 0: the hypothesis j ∈ 1 . . . n is a contradiction.

http://sigmaid.gforge.inria.fr
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case n ≡ p+1: if j ≡ p+1 then at-head j [lp; . . . ; l1] proves lj ∈ [lp+1; . . . l1] else j ∈ 1 . . . p
so by induction hypothesis, lj ∈ [lp; . . . l1] thus lj ∈ [lp+1; . . . ; l1] by in-tail. J

I Lemma 9. If j ∈ 1 . . . n, then J[li : Ai]i∈1...nK.poslj ≡ JAjK where pos is the proof of the
previous lemma.

Proof. This is trivial by following the same steps as in the previous lemma. J

I Theorem 10. For every type A and B, if ∆ `ς A <: B then JAK ≤ JBK.

Proof. We proceed by induction on the derivation of ∆ `ς A <: B, there are three cases:
case (subtype)
A is some [li : Ai]i∈1...n+m with B ≡ [li : Ai]i∈1...n. Without loss of generality, we may
assume ln < ln−1 < . . . < l2 < l1. We proceed by induction on n:

case n ≡ 0: JBK ≡ typenil hence JAK ≤ JBK.
case n ≡ p+ 1: JBK ≡ typecons lp+1 JAp+1K J[li : Ai]i∈1...pK.

JAK ≤ JBK
≡ JAK ≤ typecons lp+1 JAp+1K J[li : Ai]i∈1...pK
≡ Σpos : lp+1 ∈ dom JAK.(

JAK.poslp+1 =type JAp+1K
)
× (JAK ≤ J[li : Ai]i∈1...pK)

pos and the equality proof are given by Lemma 8 and Lemma 9. The proof of
JAK ≤ J[li : Ai]i∈1...pK is given by the induction hypothesis.

case (refl)
This is trivial by Lemma 2.
case (trans)
This is trivial by Lemma 5. J

I Theorem 11. The translation function on types is injective: if JAK =type JBK then A ≡ B.

Proof. A type and its encoding have the same size hence A and B have the same size. The
proof is by induction on this common size; both cases are trivial. J

I Theorem 12. For every type A and B, well-formed in context ∆, if JAK ≤ JBK then
∆ `ς A <: B.

Proof. By induction on the size n of B := [li : Bi]l1>...>ln .
case n ≡ 0: B ≡ [ ] hence ∆ `ς A <: B.
case n ≡ p+ 1: JBK ≡ typecons lp+1 JBp+1K J[li : Bi]l1>...>lpK. Our hypothesis simplifies
to:

JAK ≤ JBK
≡ JAK ≤ typecons lp+1 JBp+1K J[li : Bi]l1>...>lpK
≡ Σpos : lp+1 ∈ dom JAK.(

JAK.poslp+1 =type JBp+1K
)
×

(
JAK ≤ J[li : Bi]l1>...>lpK

)
By induction hypothesis, A is of the form [li : Bi; l′j : Aj ]i∈1...p,j∈1...m+1. From the lemmata
and the injectivity theorem, we get lp+1 ≡ l′j and Aj ≡ Bp+1 for some j ∈ 1 . . .m+ 1. By
renaming the l’s, we can choose j ≡ m + 1 and we get A ≡ [li : Bi; l′j : Aj ]i∈1...p,j∈1...m so
∆ `ς A <: B by rule (subtype). J
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4.3.3 Type preservation
We want to prove the following type preservation theorem:

I Theorem 13. If, in the simply typed ς-calculus, the judgment ∆ `ς a : A is valid, then the
encoded judgment J∆K `d JaK∆,A : Expr JAK, is valid in λΠm.

For this, we first need to define J∆K:

J∅K := Γ0
J∆, x : AK := J∆K, x : Expr JAK

Since the translation function J•K∆,A is recursively defined together with J•K∆ and the
translation function for methods, we need lemmata to relate these three functions:

I Lemma 14. If, in the simply typed ς-calculus, the judgment ∆ `ς a : A is valid, and, in
λΠm, the judgment J∆K `d JaK∆ : Expr Jmintype∆ (a)K is valid, then so is the judgment
J∆K `d JaK∆,A : Expr JAK.

Proof. From ∆ `ς a : A we get, by minimality, ∆ `ς mintype∆ (a) <: A hence
Jmintype∆ (a)K ≤ JAK by Theorem 10. Therefore JaK∆,A ≡ JaK∆ ↑JAK

Jmintype∆(a)K has type
Expr JAK. J

I Lemma 15. If, in λΠm, the judgment J∆K, x : Expr JAK `d JbK(∆,x:A),B : Expr JBK is
valid, then so is the judgment J∆K `d Jς(x : A)bK∆,B : Meth JAK JBK.

Proof. x doesn’t occur free in JBK because it is a closed term. Hence we can type the λ-
abstraction with an arrow type: J∆K `d (λx : Expr JAK.JbK(∆,x:A),B) : Expr JAK→ Expr JBK.

Therefore Jς(x : A)bK∆,B ≡ Make-meth JAK JBK (λx : Expr JAK.JbK(∆,x:A),B) has type
Meth JAK JBK. J

I Theorem 16. If, in the simply typed ς-calculus, the judgment ∆ `ς a : A is valid, then the
judgment J∆K `d JaK∆ : Expr Jmintype∆ (a)K is valid in λΠm.

Proof. By minimality, ∆ `ς a : mintype∆ (a). We proceed by induction on this typing
derivation; we have one case for each typing rule in the simply-typed ς-calculus:

case (var): a is a variable x appearing in ∆ and mintype∆ (a) ≡mintype∆ (x) ≡ ∆(x).
By definition of J∆K, x ∈ J∆K and J∆K(x) ≡ Expr J∆(x)K ≡ Expr Jmintype∆ (a)K.
case (obj): a is [li = ς(xi : A) ai]l1<...<ln with mintype∆ (a) ≡ A ≡ [li : Ai]l1<...<ln .
JaK∆ ≡ J[li = ς(xi : A) ai]l1<...<lnK∆

≡ expr-of-obj (
precons JAK [l2; . . . ; ln] l1 p1 Jς(x : A)a1K∆,A.p1 l1

(
. . . (precons JAK [ ] ln pn Jς(x : A)anK∆,A.pn ln

prenil JAK)))
The term expr-of-obj has type Obj JAK → Expr JAK so we just need to check that
precons JAK [l2; . . . ; ln] l1 p1 Jς(x : A)a1K∆,A.p1 l1

(. . . (precons JAK [ ] ln pn Jς(x :
A)anK∆,A.pn ln

prenil JAK)) has type Obj JAK.

To compute Obj JAK, we first compute dom JAK:
dom JAK ≡ dom J[li : Ai]l1<...<lnK

≡ dom (typecons l1 JA1K (. . . (typecons ln JAnK typenil) . . .))
≡ [l1; . . . ; ln]

hence Obj JAK ≡ Preobj JAK (dom JAK) ≡ Preobj JAK [l1; . . . ; ln].
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We show by induction that each built preobject is well-typed with the expected type.
For all i ∈ 1 . . . n,
J∆K `d precons JAK [li+1; . . . ; ln] li pi Jς(x : A)aiK∆,A.pi

li (
. . . (precons JAK [ ] ln pn Jς(x : A)anK∆,A.pn ln

prenil JAK))
: Preobj JAK [li; . . . ; ln]

This is trivial by decreasing recursion on i.

Finally J∆K `d J[li = ς(xi : A) ai]l1<...<lnK∆ : Expr JAK.
case (select): a is of the form a′.lj with j ∈ 1 . . . n and ∆ `ς a′ : A′ where A′ := [li :
Ai]i∈1...n. Without loss of generality, we can assume that A′ is the minimal type of a′6:
mintype∆ (a′) ≡ [li : Ai]i∈1...n so mintype∆ (a) ≡ Aj .
Lemma 8 gives us a position p : lj ∈ dom Jmintype∆ (a′)K hence by Lemma 9,
Jmintype∆ (a′)K.plj ≡ JAjK ≡ Jmintype∆ (a)K.
Moreover, ∆ `ς Ja′K∆ : Expr Jmintype∆ (a′)K by induction hypothesis thus JaK∆ ≡
select Jmintype∆ (a′)K lj p Ja′K∆ has type Expr Jmintype∆ (a)K.
case (update): a is of the form a′.lj ⇐ ς(x : A)b with j ∈ 1 . . . n, ∆ `ς a′ : A, and
∆, x : A `ς b : Aj where A ≡ [li : Ai]i∈1...n.
By induction hypothesis and Lemma 14, J∆K `d Ja′K∆,A : Expr A. By Lemma 15,
J∆K `d Jς(x : A)bK∆,Aj

: Meth JAK JAjK.
Like in the previous case, Lemma 8 gives us a position p : lj ∈ dom JAK and by Lemma 9,
JAK.plj ≡ JAjK.
Hence JaK∆ ≡ update JAK lj p Ja′K∆,A Jς(x : A)bK∆,Aj

has type JAK ≡ Jmintype∆ (a)K.
case (subsume): The only possible instantiation of the subsumption rule which derives a
minimum typing is the trivial case

∆ `ς a : mintype∆ (a) ∆ `ς mintype∆ (a) <: mintype∆ (a)
(subsume)

∆ `ς a : mintype∆ (a)

In this case, our goal is exactly the induction hypothesis
J∆K `d JaK∆ : Expr Jmintype∆ (a)K.

J

From this and Lemma 14, we have proved Theorem 13.

4.3.4 Semantics preservation and consistency
Semantics preservation is not ensured because our rewrite system is strongly normalizing
and the simply-typed ς-calculus is not.

However, we may want the following weaker result:

I Statement 1. If ∆ `ς a : A and a � a′ then JaK∆,A =Expr JAK Ja′K∆,A is inhabited in
context J∆K.

In the case where a is a selection a ≡ a′′.l, JaK∆,A reduces to an instance of the pattern
Eval-meth B C (Make-meth B C f) b such that Ja′K∆,A ≡ f b.

Hence we would need

reduce-meth : ΠB.ΠC.Πf.Πb.Eval-meth B C (Make-meth B C f) b =Expr B f b

6 This comes from the proof of minimality in [1] (Propositions 4.1.1-1 to 4.1.1-4); a minimal typing
judgment can be derived by allowing subsumption only before the (update) and (obj) rules.
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as an additional axiom. Unfortunately, it would be inconsistent with our encoding so
Statement 1 is hopeless. The following inconsistency result has been proved in Coq [10]:

I Theorem 17. For any label l, the type(
ΠB.ΠC.Πf.Πb.Eval-meth B C (Make-meth B C f) b =Expr C f b

)
→ ([ ] =type [l : [ ]])

is inhabited.

Proof. From an expression, we can extract the type of the underlying object:∣∣∣∣ underlying-type : ΠB.Expr B → type.
underlying-type B (A, a, st) ↪→ A.

Let A0 be the type [l : [ ]] and a0 an inhabitant of Expr A0 (for instance a0 : Expr A0 :=
[l = [ ]]). t0 := a0 ↑[ ]

A0
is an inhabitant of Expr [ ] which we can distinguish from the

empty expression [ ] because they have different underlying types.
We define a function swap : Expr [ ]→ Expr [ ] returning an expression different from its
argument:∣∣∣∣∣∣∣∣∣∣

swap-aux : type→ Expr [ ].
swap-aux typenil ↪→ t0.

swap-aux (typecons l′ B C) ↪→ [ ].
swap : Expr [ ]→ Expr [ ].
swap b ↪→ swap-aux (underlying-type b).

We remark that Expr A0 is isomorphic to Expr A0 → Expr [ ]:
We can define a function elim-A0 : Expr A0 → Expr A0 → Expr [ ] by

elim-A0 [l = ς(x)f(x)] := f

and a function intro-A0 : (Expr A0 → Expr [ ])→ Expr A0 by

intro-A0 f := [l = ς(x)f(x)]

let E0 : Expr A0 → Expr [ ] be the function defined by E0 a := swap(elim-A0 a). Then
b0 : Expr [ ] := E0 (intro-A0 E0) is such that we can prove, using the reduce-meth
axiom, b0 =Expr [ ] swap b0, hence
underlying-type (swap b0) = underlying-type (swap (swap b0)) but swap b0 is either
[ ] or t0 and we get ([ ] =type [l : [ ]]) in both cases. This last step is actually an adaption
of the proof of Cantor’s theorem. J

Consistency is hard to define in λΠm because we have not even defined anything looking
like the false proposition. Consistency is to be defined relatively to a given logic. However,
we probably never want ([ ] =type [l : [ ]]) to be inhabited.

5 Shallow, non-terminating encoding

In this section, we trade strong-normalization for a shallow encoding.
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5.1 Modified rewrite system
In order to get a shallow encoding, we have to add the following rewrite rules:∣∣∣∣∣∣

Meth A B ↪→ Expr A→ Expr B.
Eval-meth A B m ↪→ m.

Make-meth A B f ↪→ f.

From this, the reduce-meth axiom can trivially be proved so we need to change our
encoding a bit to forbid the proof of Theorem 17. We do this by disabling the extraction
of underlying type and the distinction between objects and expressions. Instead of defining
Expr B as ΣA : type.(Obj A) × (A ≤ B), we rewrite Expr A to Obj A and change the
definitions of the functions that destructed expressions: update, select, and coerce:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Expr A ↪→ Obj A.
expr-of-obj a ↪→ a.

update • • • (precons • • • • • •) •
↪→ obj-update • • • (precons • • • • • •) • .

update B l p (coerce A B st a) m
↪→ coerce A B st

(
update A l (subtype-dom A B st l p) a

(λ(self).m (self ↑BA))
)
.

select • • • (precons • • • • • •)
↪→ obj-select • • • (precons • • • • • •).

select B l p (coerce A B st a)
↪→ select A l (subtype-dom A B st l p) a.

coerce B C stBC (coerce A B stAB a)
↪→ coerce A C (subtype-trans stAB stBC) a

The coerce function is not total anymore because it does not reduce on values but only
when applied to another coercion. It is a constructor of Expr with some computational
behaviour; we call such constructors smart constructors. The bullets in the previous rules
defining update and select represent the most general pattern that make these rules well-
typed. The idea here is simply that update and select are defined by pattern matching on
the object, which is either a value or a coercion. We don’t need rules for the prenil case
because there is no label to select or update in that case.

We call Γ1 this new λΠm-context and R1 the new rewrite system. We believe that R1 is
confluent because the non-orthogonal part reflects the simply-typed ς-calculus known to be
confluent [2], but have not formally checked it. However, R1 is not expected to be (strongly
or even weakly) normalizing. Hence Dedukti will type-check encoded object programs only if
they are well-typed but may not answer on non-terminating terms7.

5.2 Semantics preservation
Proofs of the theorems of Section 4 are unchanged because they did not rely on the definitions
of update, select, and coerce. The new encoding has the additional property of semantics
preservation:

7 Actually it will terminate because
conversion check, which triggers reduction, only occurs in types;
non-termination only occurs at the object level;
there is no dependent type involving objects coming from our encoding.
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I Theorem 18. If ∆ `ς a : A and a� a′ then JaK∆,A ↪→+ Ja′K∆,A.

To prove this theorem, we first need two lemmata: stability of the encoding by substitution
and unicity of subtyping proofs.

I Lemma 19. The translation function is stable by substitution:
JaK(∆1,x:B),A{JbK(∆1,∆2),B/x} ≡ Ja{b/x}K(∆1,∆2),A.

Proof. This comes from the fact that binding operation is preserved by the encoding. This
can be proved by induction on a. J

I Lemma 20. Unicity of subtype proofs: if st1 and st2 both have type JAK ≤ JBK then
st1 =JAK≤JBK st2.

This lemma justifies our use of implicit subtype proofs in the notation • ↑J•KJ•K.

Proof. Unicity of subtype proofs comes from the fact that JAK is duplicate-free. We don’t
use, however, the fact that JBK is duplicate-free and prove this theorem for any β8 of type
type: if st1 and st2 both have type JAK ≤ β then st1 =JAK≤β st2.

We proceed by induction on β.
base case: β ≡ typenil
JAK ≤ β ≡ JAK ≤ typenil ≡ unit. The type unit has only one inhabitant so st1 =JAK≤β
st2.
inductive case: β ≡ typecons l β1 β2

A is some [li : Ai]l1<...<ln .
By definition of ≤,

JAK ≤ typecons l β1 β2 ≡ Σp : l ∈ [l1; . . . ; ln].(JAK.pl =type β1)× (JAK ≤ β2)

But there is only one p : l ∈ [l1; . . . ; ln] because the lis are different. Let us call it p0.
JAK ≤ typecons l β1 β2 is isomorphic to (JAK.p0 l =type β1)× (JAK ≤ β2).
The left type JAK.p0 l =type β1 has at most one inhabitant thanks to Hedberg Theorem [21]
because equality on type is decidable; the right type JAK ≤ β2 has only one element by
induction hypothesis so st1 =JAK≤β st2. J

We can now prove Theorem 18:

Proof. The simply-typed ς-calculus enjoys subject-reduction [2] so ∆ `ς a′ : A. From the
type-preservation theorem, JaK∆,A and Ja′K∆,A have type Expr JAK in context J∆K.

We proceed by induction on the operational semantics definition; there are two cases:
case (select): a� a′ is an instance of a′′.lj � aj{a′′/xj}
with a′′ := [li = ς(xi : A′′)ai]i∈1...n and A′′ := [li : Ai]i=1...n.
So a ≡ a′′.lj and a′ ≡ aj{a′′/xj}.
We look at the minimum types of a and a′:

mintype∆ (a′′) ≡ A′′ ≡ [li : Ai]i∈1...n so mintype∆ (a) ≡mintype∆ (a′′.lj) ≡ Aj
We call A′ the minimum type of a′, by minimality we know that ∆ `ς A′ <: Aj .

8 We use the greek letter β here to distinguish the ς-term B and the λΠ-term β which abstracts JBK.
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Ja′′K∆ is of the form (. . . (precons JA′′K [lj+1; . . . ; ln] lj Jς(xj : A′′)ajK∆,Aj
. . . ) ), we

abbreviate it as α.

JaK∆ ≡ select JA′′K lj p α
↪→ obj-select JA′′K lj p α α
↪→ preselect JA′′K [l1; . . . ; ln] lj p α α
↪→∗ Jς(xj : A′′)ajK∆,Aj

α

≡
(
λxj : Expr JA′′K.JajK(∆,xj :A′′),Aj

)
α

−→β JajK(∆,xj :A′′),Aj
{Ja′′K∆/x}

Hence, by Lemma 19, we get exactly JaK∆ ↪→+ Ja′K∆,Aj
.

Finally,

JaK∆,A ≡ JaK ↑JAK
Jmintype∆(a)K

↪→+ Ja′K∆,Aj
↑JAK

JAjK

≡
(
Ja′K∆ ↑

JAjK
Jmintype∆(a′)K

)
↑JAK

JAjK

↪→ Ja′K∆ ↑JAK
Jmintype∆(a′)K

≡ Ja′K∆,A

case (update): this case is very similar to the previous one, only simpler because we don’t
need to use the substitution lemma. J

6 Conclusion

We defined an embedding of the simply-typed ς-calculus to λΠm and implemented it in
Dedukti as a compiler named sigmaid (SIGMA-calculus In Dedukti) [10]. This implementation
has been tested on the following original examples from Abadi and Cardelli:

encoding of the simply-typed λ-calculus,
encoding of booleans,
memory cells.

Despite non-termination of the ς-calculus, we managed to translate it in a very shallow
fashion by means of two encodings: a normalizing one and a semantics-preserving one.

This embedding is a starting point for other shallow embeddings of typed object oriented
calculi with subtyping:

Beside common extensions for object type systems (polymorphism, variance annotations,
type operators), we are especially interested in extending this work to object type
systems with dependent types in order to study dependently-typed objects combining
computational methods and logical methods which depend upon them and prove their
specifications. These logical methods would be proofs taking benefits of the mechanisms
of object oriented programming.
We would also like to encode class-based calculi like Featherweight Java [25] in λΠm in
order to compare the encoded versions of structural subtyping and class-based subtyping.

Acknowledgment. We would like to thank our colleague Ali Assaf for the fruitful discussions
which led to this implementation of subtyping in λΠm. We also thank Alan Schmitt and
anonymous referees for their comments that helped us to improve this article.
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Abstract
We present the first typeful implementation of Normalization by Evaluation for the simply typed
λ-calculus with sums and control operators:

we guarantee type preservation and η-long (modulo commuting conversions), β-normal forms
using only Generalized Algebraic Data Types in a general-purpose programming language,
here OCaml; and
we account for finite sums and control operators with Continuation-Passing Style.

Our presentation takes the form of a typed functional pearl. First, we implement the standard
NbE algorithm for the implicational fragment in a typeful way that is correct by construction.
We then derive its continuation-passing counterpart, in call-by-value and call-by-name, that maps
a λ-term with sums and call/cc into a CPS term in normal form, which we express in a typed,
dedicated syntax. Beyond showcasing the expressive power of GADTs, we emphasize that type
inference gives a smooth way to re-derive the encodings of the syntax and typing of normal forms
in Continuation-Passing Style.

1998 ACM Subject Classification D.1.1 Applicative (Functional) Programming, F.3.2 Semantics
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1 Introduction

A normalization function need not be reduction-based and rely on reiterated one-step reduction,
according to some strategy, until a normal form is obtained, if any. It can be reduction-
free, and, as pioneered by Berger and Schwichtenberg [15], one can obtain it by composing
an evaluation function (towards a non-standard domain of values) together with a left-
inverse reification function (towards normal forms). The concept of this ‘normalization by
evaluation’ (the term is due to Schwichtenberg [14]) arose in a variety of contexts: intuitionistic
logic [1, 21, 48], proof theory [15], program extraction [12], category theory [22, 53], models
of computation [40], program transformation [28], partial evaluation [24, 33], etc. [27]. It has
been vigorously studied since [8, 11, 43, 56].

A recent example of the power of normalization by evaluation (NbE for short) lies in the
new reduction engine developed by Boespflug et al. [16, 17] for the Coq proof assistant.1 It

1 The command Compute in Coq triggers a call to Coq’s reduction engine.
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improves the efficiency of proofs by reflection by an order of magnitude [4], and in Gonthier’s
words [38], proofs by reflection are what made it possible to prove the four-color theorem.

In this article, we propose a formalization of NbE for the simply-typed λ-calculus with
sums and control operators in the general-purpose language OCaml, in such a way that the
type system guarantees two key properties:

NbE produces normal forms: the resulting term is in η-long, β-normal form;
NbE is type-preserving: the type of the resulting term is the same as the type of the
source term.

These are guaranteed by OCaml’s subject reduction, provided that we stay in its purely
functional, terminating fragment (which is a meta-argument).

To address sums and control operators, we use Continuation-Passing Style (CPS for short)
in a novel way: we show that CPS-transforming the standard, typed NbE algorithm not only
leaves room for these constructs, but also lets us derive a syntax of CPS normal forms and its
typing rules. The resulting NbE program maps typed λ-terms to typed CPS normal forms.

Throughout, we use Generalized Algebraic Data Types (GADTs for short), a general-
ization of ML algebraic data types that allows a fine control on the return type of their
constructors [19, 54]. We use them not only to represent the types and the well-typed
terms of the simply-typed λ-calculus, but more interestingly to relate them to the types of
values and of normal forms. The use of GADTs inherently limits us to simply typed objects
languages, but our main motivation is to give a clean presentation of NbE for non-trivial
aspects of such languages.

Faithful formalizations of NbE in direct style already exist in languages with depen-
dent types like Coq or Agda [6, 13, 36, 42]. These complex languages already rely on an
implementation of normalization for type-checking, which is precisely what we embark on
implementing. Instead, we chose a general-purpose programming language featuring only
weak-head evaluation and type inference. Our programming language of discourse is OCaml,
which now provides support for GADTs [37], but we could have adopted any other functional
programming language with this feature, e.g., Haskell, as partly done by Danvy, Rhiger, and
Rose with type classes [32]. (We write “partly” because the “long” aspect of the resulting
η-long, β-normal forms needed a meta-argument.) Alternatively, we could have used any
other functional language by encoding GADTs [55] or by using some indirect representation
of terms as functions (“finally tagless”, phantom types, etc.) [18, 47]. Using GADTs, we can
keep representing syntax as algebraic data types, as customary. This conservative design
enables a methodology where the code is left essentially unchanged and only the types are
refined.

Outline. The remainder of this article is an incremental, literate programming exposition
of our implementation in the form of a typed functional pearl.2 We first recall and motivate
our starting points: the representation of types, terms, and values in OCaml, the standard
NbE algorithm for the implicational fragment in direct style, and GADTs (Section 2). We
annotate the standard NbE program to obtain a typeful implementation in direct style, that
we put to use for the partial evaluation of printf directives (Section 3). We CPS-transform
this typeful implementation, obtaining another typeful implementation that yields typed
normal forms in CPS (Section 4). This continuation-passing typeful implementation is ready
to be extended with sums and control operators.

2 We will however allow ourselves to pedagogically reorder some code snippets. The full code is currently
available at cs.mcgill.ca/~puech/typeful.ml.
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2 Background

2.1 Deep and shallow embeddings
Since NbE manipulates types, terms and values of the λ-calculus, we need to represent all of
them in our programming language of discourse, OCaml. When embedding a language into
another, one has essentially two options: a deep embedding or a shallow embedding.

In a deep embedding, to each construct of the language corresponds a constructor of a
data type; we have access to the structure of terms, and we can define functions over
them by structural recursion. The types and terms of the λ-calculus can be encoded this
way in OCaml: one data type representing simple types (featuring an uninstantiated base
type)

type tp =
| Base (* Uninstantiated base type *)
| Arr of tp * tp

and another one for terms. For concision, we use a weak (or parametric) Higher-Order
Abstract Syntax representation of binders [20] (HOAS for short), where variables belong
to an abstract type, and are introduced by OCaml functions:3

type tm =
| Var of x
| Lam of (x → tm)
| App of tm * tm

and x (* The variable namespace, uninstantiated for now *)

In a shallow embedding, we directly use OCaml constructs to represent constructs in
the object language: we lose structural recursion, but we enjoy the property that two
βη-equivalent values in OCaml are observationally equal. The values of the λ-calculus
can be encoded this way: functions are represented as a universal function space, and we
reuse OCaml variables and applications syntax nodes.

type base (* Base type, uninstantiated for now *)
type vl =
| VFun of (vl → vl)
| VBase of base

I Example 1. The term λfx. f x is represented as Lam (fun f → Lam (fun x → App (Var
f, Var x))) in the deep encoding of terms, and as VFun (fun (VFun f) → VFun (fun x →
f x)) in the shallow encoding of values.

2.2 Normalization by Evaluation
NbE normalizes deeply embedded terms by going through a shallow embedding: an evaluation
function maps a deep term to its shallow counterpart, which is then reified back into a deep
term. Since βη-equivalent terms are indistinguishable at the shallow level, reification has to

3 First-order presentations like de Bruijn indices are also common, and have been showed to be isomorphic
to weak HOAS [7]. This way, we avoid Kripke-like parametrization of the target language, and we
separate concerns better.
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pick the same representative for two βη-equivalent terms (in practice, the η-long β-normal
form, which implies that the result is in normal form).

First, the evaluation function maps application nodes App in the deep encoding into
shallow, OCaml applications:

let rec eval : tm → vl = function
| Var x → x
| Lam f → VFun (fun x → eval (f x))
| App (m, n) → match eval m with

| VFun f → f (eval n)
| VBase b → failwith "Unidentified␣Functional␣Object"

In the second case, variables are substituted with their value; to this end, we must instantiate
their namespace with the type of values, allowing the constructor Var to quote values into
terms:4

and x = vl

The expressible values vl are shallow values, i.e., weak-head normal forms. The second
step consists in reifying them back into an algebraic language of deep terms, or normal forms
nf, that can be inspected by pattern matching:

and nf =
| NLam of (y → nf)
| NAt of at

and at =
| AApp of at * nf
| AVar of y

and y

To proscribe the representation of β-redexes, we follow the tradition and stratify the syn-
tax into normal forms nf (λ-abstractions) and atoms at (applications). Type y is the
uninstantiated domain of target variables.

We then define the reification function reify, taking a value and its type to a normal
form, together with its symmetric counterpart, reflect. They can be seen as performing a
two-level η-expansion at the given type [30]. This η-expansion stops when encountering a
value of the uninstantiated base type, which means that values of base type actually stand
for atoms:

and base = Atom of at

In other words, atoms are the intersection of the set of shallow values and deep terms,
reflecting the fact that values contain both functions and atoms.

All of this leads us to the usual definition of reification and reflection:

let rec reify : tp → vl → nf = fun a v → match a, v with
| Arr (a, b), VFun f → NLam (fun x → reify b (f (reflect a (AVar x))))
| Base, VBase v → let (Atom r) = v in NAt r
| a, v → failwith "type␣mismatch"

4 One could object that this instantiation of the domain of variables takes us away from weak HOAS.
However, it is only necessary for the source language of eval, and a commodity to avoid more verbose
solutions like de Bruijn indices or explicit parametricity in type x [51].
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and reflect : tp → at → vl = fun a r → match a with
| Arr (a, b) → VFun (fun x → reflect b (AApp (r, reify a x)))
| Base → VBase (Atom r)

Finally, NbE maps a term together with its type to a normal form, by composing evaluation
and reification:

let nbe : tp → tm → nf = fun a m → reify a (eval m)

Notice that exceptions might be triggered at runtime if the given term and type do not
match. In Section 3, we solve this problem by statically enforcing this match, thanks to
GADTs.

2.3 GADTs in OCaml
The recent introduction of Generalized Algebraic Data Types [19, 54] in OCaml [37] makes it
syntactically possible to constrain type parameters for the return type of the constructors of
a data type, which enables, e.g., to write tagless interpreters. Let us illustrate GADTs with
the problem of formatting strings à la printf in a type-safe way, following Kiselyov [46] and
OCaml’s recent Printf module; it will serve as a running example in this article.

What is the type of the printf function in the C programming language? A priori it
is dependent: the number of arguments depends on the structure of the first argument,
the formatting directive. The first author proposed a solution based on polymorphism [25],
encoding the formatting directive algebraically as a sequence of literal strings and typed
placeholders (written "%d", "%s", etc. in C) and encoding it with CPS. GADTs provide
language support for this encoding. Let us introduce the type of formatting directives,
respectively indexed by α, the final type returned by printf, and β, the expected type of
printf when applied only to the directive

type (α, β) directive =

These two types coincide when the directive consists only of a literal: no extra argument
is then required. We thus explicitly mention the annotation after the argument in the
constructor type:

| Lit : string → (α, α) directive

When the directive is a placeholder, we add an argument to the expected type of printf
(these constructors take no arguments):

| String : (α, string → α) directive
| Int : (α, int → α) directive

Finally, the sequence of two directives threads the initial and final types, much like function
composition (and indeed the first author’s encoding for sequence was function composition
in CPS):

| Seq : (β, γ) directive * (α, β) directive → (α, γ) directive

After spreading some syntactic sugar, let us try out this definition with an example
directive ("%d␣*␣%s␣=␣%d␣in␣%s" in C):

let (^^) a b = Seq (a, b) and (!) x = Lit x and d = Int and s = String
let ex_directive : (α, int → string → int → string → α) directive =

d ^^ !"␣*␣" ^^ s ^^ !"␣=␣" ^^ d ^^ !"␣in␣" ^^ s
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The type reflects the structure of the formatting directive: an integer is expected, and then a
string, and then an integer, and then a string, and then the result is whatever it needs to be.

Now, all printf needs to do is to map a directive into a usual OCaml primitive function.
We first define it in CPS, and then we apply it to the initial continuation print_string,
which will emit the formatted string eventually:

let rec kprintf : type a b. (a, b) directive → (string → a) → b =
function
| Lit s → fun k → k s
| Int → fun k x → k (string_of_int x)
| String → fun k x → k (string_of_string x)
| Seq (f,g) → fun k → kprintf f (fun v → kprintf g (fun w → k (v^w)))

let printf dir = kprintf dir print_string

Function string_of_string here is the identity. Compared to the previous solutions [5, 25],
which used one polymorphic function per abstract-syntax constructor of the formatting
directive, the dispatch among the constructors is grouped, thanks to the GADTs.

Our test directive yields a type-safe printing command:

(* prints "6 * 9 = 42 in base 13" *)
let () = printf ex_directive 6 "9" 42 "base␣13"

3 Typeful Normalization by Evaluation in Direct Style

Thanks to GADTs, we can decorate the algebraic data types of terms and normal forms
with their types, such that only well-typed ones can be represented. This way, the NbE
algorithm of Section 2.2 can ensure statically that: i) no exception is triggered at runtime;
ii) well-typed terms are mapped to well-typed normal forms; and iii) η-long normal forms
are produced (in addition to being β-normal, which is new [32]). We then illustrate this
normalizer with a partial evaluator that is guaranteed to preserve the type of the programs
it specializes.

3.1 Evaluation
It is a standard use of GADTs to index terms – deep or shallow – by the OCaml type of their
interpretation. First, values can be indexed as follows (we will come back to the definition of
type base later on):

type α vl =
| VFun : (α vl → β vl) → (α → β) vl
| VBase : base → base vl

Note that this type definition does not respect the positivity condition, in the sense of, e.g.,
Coq, because there is a negative occurrence of vl. It is, however, stratified in the sense of
Abella [35], i.e., its type parameter gets syntactically smaller. Thus, it forms a valid inductive
definition. Ditto for terms (the same remark as in Section 2.2 applies to type α x):

and α x = α vl
type α tm =

| Lam : (α x → β tm) → (α → β) tm
| App : (α → β) tm * α tm → β tm
| Var : α x → α tm
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The evaluation function now has type α tm → α vl, ensuring type preservation:

let rec eval : type a. a tm → a vl = function
| Var x → x
| Lam f → VFun (fun x → eval (f x))
| App (m, n) → let VFun f = eval m in f (eval n)

Because the match between types and terms is ensured statically, there is no need for any
exception as in Section 2.2. Otherwise, the code remains the same.

I Remark. Evaluation could also have been tagless, and thus more efficient [17], i.e., we
could have defined directly type α vl = α. We did not do so to be consistent with Section 4.
Also, the finally tagless approach [18] can alternatively implement typeful NbE without
GADTs [47], but it requires significant changes compared to the previous, untyped version:
there, evaluation and reification are not recursive functions but define the syntax of terms
and types.

3.2 Reification
In the same way, we can index atoms and normal forms with the type of their interpretations:

and α nf =
| NLam : (α y → β nf) → (α → β) nf
| NAt : base at → base nf

and α at =
| AApp : (α → β) at * α nf → β at
| AVar : α y → α at

and α y

The variable domain α y is left uninstantiated. In addition to being β-normal, the restriction
of the NAt coercion to a base type guarantees that terms of this data type are also η-long [3].

We then need to statically relate our deep types tp with these annotations. To this end,
we can index them by the OCaml type of their denotation:

type α tp =
| Base : base tp
| Arr : α tp * β tp → (α → β) tp

The reification function now has type α tp → α vl → α nf: given a deep type tp whose
corresponding shallow type is α, and a value of type α vl, reify yields a normal form of
type α nf:

let rec reify : type a. a tp → a vl → a nf = fun a v → match a, v with
| Arr (a, b), VFun f → NLam (fun x → reify b (f (reflect a (AVar x))))
| Base, VBase v → let (Atom r) = v in NAt r

and reflect : type a. a tp → a at → a vl = fun a r → match a with
| Arr (a, b) → VFun (fun x → reflect b (AApp (r, reify a x)))
| Base → VBase (Atom r)

As in Section 3.1, because the match between types and terms is ensured statically, there is
no need for any exception as in Section 2.2. Otherwise, the code is the same.

Let us now address the definition of base. As before, its values should contain atoms: at
base type, terms are interpreted by atoms [36]. But one question remains: what is the type
of atoms in the interpretation of the base type? Let us call this type X and let us rely on
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the implementation as a guideline. In the base case of reflect, the type of r is refined to
base at, and the expected type is base. Since Atom makes a base from an X at, we must
have X = base. Similarly in the base case of reify, the type of v is base, so r has type
X at, NAt r has type X nf. Since the awaited type is base nf, we must have X = base. The
definition of type base is thus:

and base = Atom of base at

This type has no (normalizing) closed inhabitants: they are only constructed and decon-
structed during reification and reflection. Its definition is faithful to previous formalizations,
where the interpretation of the base type is the set of atomic terms at base type.

Finally, composing evaluation and reification, we obtain a typeful NbE function that is
guaranteed to map well-typed terms to well-typed normal forms of the same type:

let nbe : type a. a tp → a tm → a nf = fun a m → reify a (eval m)

This function can be read as a cut elimination for intuitionistic logic, apart from termination
which is not ensured by OCaml, but is a meta-argument: all three functions eval, reify and
reflect are defined by structural induction over their first argument.

3.3 Application: printf, revisited
This section presents an application combining ideas from above: the offline specialization
of printf with respect to a formatting directive, using NbE as a partial-evaluation engine.
Given the same formatting directive as in Section 2.3, the program

fun x y z t → printf ex_directive x y z t

is specialized into the normal form

fun x y z t → string_of_int x ^ "␣*␣" ^ y ^ "␣=␣" ^ string_of_int z ^ "␣in␣" ^ t

in which ex_directive has been inlined and part of its processing has been carried out. This
specialization is guaranteed to preserve types.

In Section 2.3, kprintf was mapping directives to the standard domain of OCaml primitive
types. The idea here is to replace the primitive functions (concatenation (^), string_of_int,
string_of_string) by a non-standard, syntactic model. By reifying the evaluated program,
we obtain a residual term in normal form.

First, we enlarge our representation of atoms (the type α at) with these primitive functions
and uninterpreted objects of the types involved (to allow values of different types, we index
the type base with a type variable, without consequence on its definition):

and α at = (* ... *)
| APrim : α → α base at
| AConcat : string base at * string base at → string base at
| AStringOfInt : int base at → string base at

Since we strictly extended the definition of atoms and reify and reflect do not match on
them, we can reuse these two functions from Section 3.2 as they are.

The primitive functions can now be interpreted as their residual expressions, atoms,
instead of as their standard meanings:

type int_ = int base at
type string_ = string base at
let string_of_string i = APrim i
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let string_of_int x = AStringOfInt x
let (^) s t = AConcat (s, t)

The non-standard printf is the result of pasting the code from Section 2.3 at this point,
replacing types int and string by int_ and string_, respectively.

I Example 2. Let us take this non-standard printf function, apply it to our example
formatting directive and reify the result at the type of the function:

let residual =
let box f = VFun (fun (VBase (Atom r)) → f r) in
reify (Arr (Base, Arr (Base, Arr (Base, (Arr (Base, Base))))))

(box (fun x → box (fun y → box (fun z → box (fun t →
reflect Base (printf ex_directive x y z t))))))

We obtain the specialized program building the final string: residual is the normal form
mentioned above (this can ben witnessed by pretty-printing it, or converting it to a de Bruijn
representation [7]).

I Remark. NbE is type-directed, which leads to a completely offline partial evaluator: there
is no need to explicitly check at each step of the program whether its result is statically
known or not. It differs in that sense from the online partial evaluator proposed by Carette
et al. [18]. Note that we could nonetheless perform online simplifications in our non-standard
primitive functions [26].

4 Typeful Normalization by Evaluation in CPS

In Section 3.1, we defined an evaluation function for our object language. It is concise, but
leaves no choice of evaluation order or definable control structures: they are inherited from
the programming language of discourse, OCaml. In particular, it does not scale seamlessly
for disjoint sums and not at all for call/cc:

sums: There is no simple notion of unique normal form for the λ-calculus with sums because
of commuting conversions [43]. NbE with sums was nevertheless developed with delimited
control operators [24, 34, 43] and constrained representations of unique normal forms
were developed as well [2, 9]. Here, we bypass delimited control operators by writing
the evaluation function in CPS, and we accept that normal forms are defined modulo
commuting conversions (our notion of η-expansion is thus limited by them).

call/cc: Now that the evaluation function is written in CPS, it is simple to handle call/cc,
and the resulting normalization function can immediately be used for programs extracted
from classical proofs [29, 50].5

In this section, we show how to define typeful CPS evaluation and reification for the simply-
typed λ-calculus with Boolean conditionals and call/cc. Our continuation-passing evaluation
function maps source terms to continuation-passing values that await a continuation, and
allows us to choose the evaluation order and to extend our source language. As in Section 3.2,
we can then reify these continuation-passing values to a dedicated syntax of normal forms in
CPS.

We present the formalization in call by value first (Sections 4.1 to 4.3), and then just
sketch the call-by-name variant (Section 4.4).

5 Another choice could have been shift and reset, as Ilik did in Coq [44].
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4.1 Typing CPS values
When evaluating in CPS a term of type A, it is well-known [49] that its denotation is typed
by the CPS-transformed type dAe, defined by:

dAe = (bAc → o) → o bpc = p

bA → Bc = bAc → dBe bboolc = bool

where p is an (uninstantiated) base type, o is the type of answers, and bool is the type of
Booleans. The call-by-value transformation can be reflected in the GADT that encodes
CPS-values:

type α vl =
| VFun : (α vl → β md) → (α → β) vl
| VBase : base → base vl
| VBool : bool → bool vl

and α md = (α vl → o) → o

The type o of answers is left unspecified for the moment. Note that the codomain of a
function of type (α → β) vl expects a continuation (i.e., has type β md). For instance, the
CPS-transformed applicator is written as follows:

let app : type a b. ((a → b) → a → b) vl =
VFun (fun (VFun f) k → k (VFun (fun x k → f x (fun v → k v))))

4.2 Evaluation
Let us now extend the syntax of terms with an if statement and with call/cc:

type α tm = (* ... *)
| If : bool tm * α tm * α tm → α tm
| CC : ((α → β) → α) tm → α tm

Their typing is standard; call/cc has the type of Peirce’s law [39]. Values of type bool are
encoded as, e.g., Var (VBool true) (remember that α x = α vl).

Now, function eval directly maps an α tm to an α md. Its code can be obtained by
CPS-transforming eval in Section 3.1 with the extra cases:

let rec eval : type a. a tm → a md = function
| Var x → fun c → c x
| Lam f → fun c → c (VFun (fun x k → eval (f x) k))
| App (m, n) → fun c → eval m (fun (VFun f) → eval n (fun n → f n c))
| If (b, m, n) → fun c → eval b (fun (VBool b) →

if b then eval m c else eval n c)
| CC m → fun c → eval m (fun (VFun f) → f (VFun (fun x k → c x)) c)

The if case is of no surprise, and could as well have been defined in direct style. The call/cc
case captures the continuation c into a function, as customary in Scheme.

4.3 Reification
Now that the domain of reify, i.e., the values α vl, is in the image of the CPS transformation,
we can CPS-transform the reification function of Section 3.2 as well. The types of reify
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and reflect will thus be respectively α tp → α vl → (α nf → o) → o and α tp → α

at → (α vl → o) → o. Consequently, the constructor NLam now takes a CPS-transformed
function of type α y → β k → o, where α k = α v → o and α v = α nf.

Because of the latter function space, this data type is not a proper weak HOAS. But
we can leave types α k and α v abstract – call these respectively continuation and value
variables (α y is the domain of source variables):

type α k and α v and α y

We treat the answer type o algebraically, i.e., we instantiate it by all the operations involving
continuation and value variables. There are two of them: applying an α k to a normal
form in reify – call it SRet, and binding a value to an application in reflect – call it SBind
(previous applications just become value nodes AVal). We are left with the type declarations:

and o =
| SRet : α k * α nf → o
| SBind : (α → β) at * α nf * (β v → o) → o

and α nf =
| NLam : (α y → β k → o) → (α → β) nf
| NAt : base at → base nf

and α at =
| AVar of α y
| AVal of α v

This typed syntax is in weak HOAS since the domains of variables are abstract. It has in fact
been used since the late 1990’s [10] to characterize normal forms in CPS: terms of type o are
traditionally called serious terms after Reynolds [52], and represent computations. Note that
they do not carry a type like α nf and α at since they form the type of answers; instead,
its constructors act as existentials, linking together types of normal forms, variables and
atoms, and hiding them away. Normal forms are traditionally called trivial terms, again after
Reynolds [52].

Before displaying the code, let us extend the development to Booleans. First, we add the
extra case to the type α tp:

type α tp = (* ... *)
| Bool : bool tp

Then, we add Booleans and conditional expressions to normal forms and serious terms,
respectively:

and o = (* ... *)
| SIf : bool at * o * o → o

and α nf = (* ... *)
| NBool : bool → bool nf

At last, the full definition of reify and reflect with Booleans reads:

let rec reify : type a. a tp → a vl → (a nf → o) → o =
fun a v → match a, v with

| Arr (a, b), VFun f → fun c → c (NLam (fun x k →
reflect a (AVar x) (fun x → f x (fun v →

reify b v (fun v → SRet (k, v))))))
| Base, VBase (Atom r) → fun c → c (NAt r)
| Bool, VBool b → fun c → c (NBool b)
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and reflect : type a. a tp → a at → (a vl → o) → o =
fun a x → match a, x with

| Arr (a, b), f → fun c → c (VFun (fun x k →
reify a x (fun x → SBind (f, x, fun v →

reflect b (AVal v) (fun v → k v)))))
| Base, r → fun c → c (VBase (Atom r))
| Bool, b → fun c → SIf (b, c (VBool true), c (VBool false))

Similarly to the direct-style version, these two functions can be seen as performing a two-level
η-expansion, this time with the expansion rules of CPS with sums [31]. This fact dictates the
treatment of conditionals in the last line: they are serious terms, and duplicate the context c
in their two branches.

We can now compose evaluation and reification to obtain normalization. A CPS value is
reified as a program in normal form: a serious term abstracted by its initial continuation.
NbE in CPS thus returns such an abstraction:

type α c = Init of (α k → o)
let nbe : type a. a tp → a tm → a c = fun a m →

Init (fun k → eval m (fun m → reify a m (fun v → SRet (k, v))))

As an epilogue, we strip out the resulting syntax of its type annotations to obtain the
familiar syntax of call-by-value CPS normal forms:

P ::= λk. S Programs
S ::= k T | RS (λv. S) | if(R,S, S) Serious terms
T ::= λyk. S | true | false | R Trivial terms
R ::= y | v Atoms

As in the direct-style case, it is syntactically impossible to form a redex in this syntax, thanks
to the stratification of trivial terms and atoms.

4.4 In call by name
In call by name, the domains of functions are also computations (i.e., expecting a continuation),
as presented in Section 4.1. This transformation is reflected:

in the type of values in that functions now expect a continuation:

type α vl = (* ... *)
| VFun : (α md → β md) → (α → β) vl

in the variables of the source language that now range over thunks instead of values:

and α x = α md

and in the variables of the target language: they are now serious terms, and are associated
with a continuation binding their values; for the same reason, the argument to a “bind”
is now a thunk:

and o =
| SRet : α k * α nf → o
| SBind : (α → β) at * (α k → o) * (β v → o) → o
| SIf : bool at * o * o → o
| SVar : α y * (α v → o) → o

and α nf =
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| NLam : (α y → β k → o) → (α → β) nf
| NBool : bool → bool nf
| NAt : base at → base nf

and α at =
| AVal : α v → α at

Evaluation and reification functions are modified mutatis mutandis:

let rec eval : type a. a tm → a md = function
| Var x → fun c → x c
| Lam f → fun c → c (VFun (fun x k → eval (f x) k))
| App (m, n) → fun c → eval m (fun (VFun f) → f (eval n) c)
| Bool b → fun c → c (VBool b)
| If (b, m, n) → fun c → eval b

(function VBool true → eval m c | VBool false → eval n c)
| CC m → fun c → eval m (fun (VFun f) →

f (fun k → k (VFun (fun x k → x c))) c)

let rec reify : type a. a tp → a vl → (a nf → o) → o =
fun a v → match a, v with
| Arr (a, b), VFun f → fun c → c (NLam (fun y k →

f (fun k → SVar (y, fun v → reflect a (AVal v) k))
(fun v → reify b v (fun v → SRet (k, v)))))

| Bool, VBool b → fun c → c (NBool b)
| Base, VBase (Atom r) → fun c → c (NAt r)

and reflect : type a. a tp → a at → (a vl → o) → o =
fun a x → match a, x with
| Arr (a, b), f → fun c → c (VFun (fun x k →

SBind (f, (fun k → x (fun v → reify a v (fun v → SRet (k, v)))),
(fun v → reflect b (AVal v) k))))

| Bool, b → fun c → SIf (b, c (VBool true), c (VBool false))
| Base, r → fun c → c (VBase (Atom r))

As before, these two functions can be seen as performing a two-level η-expansion, this time
with the expansion rules of call-by-name CPS [41].

We can finally compose evaluation and reification to obtain normalization. As in the
call-by-value case, NbE in call-by-name CPS returns a program, i.e., a serious term abstracted
by the initial continuation:

let nbe : type a. a tp → a tm → (a nf → o) → o =
fun a m k → eval m (fun m → reify a m k)

As an epilogue, we strip out the resulting syntax of its type annotations to obtain the
familiar syntax of call-by-name CPS normal forms:

P ::= λk. S Programs
S ::= k T | R (λk. S) (λv. S) | if(R,S, S) | y (λv.S) Serious terms
T ::= λyk. S | true | false | R Trivial terms
R ::= v Atoms

Again, it is syntactically impossible to form a redex in this syntax.
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5 Summary and Future Work

We have presented the first typeful implementation of NbE for the simply-typed λ-calculus
in the minimalistic setting of a general-purpose programming language with GADTs. To
the best of our knowledge, our implementation is the first one to ensure by typing that
its output is not only in β-normal form, but also in η-long form. We have illustrated how
NbE achieves partial evaluation by specializing a typeful version of printf with respect to
any given formatting directive. By CPS-transforming our typeful implementation, we have
obtained systematically the syntax and typing rules of normal forms in CPS. Finally, we
have presented the first typeful implementation of NbE for the simply-typed λ-calculus with
sums and control operators in the same minimalistic setting. This normalization function
can be used for programs extracted from classical proofs, and the resulting normal form can
then be mapped back to direct style [23, 29].

Future work includes developing a version of NbE that is parameterized by an arbitrary
monad (i.e., not just the identity monad or a continuation monad). In this version, the
non-standard evaluation function is monadic. Monadic reification with effect preservation
seems like a tall order, but given a monad, reification towards a (well-typed but non-monadic)
normal form seems in sight: it could be achieved using the type transformation associated
to this given monad; a monadic version of the direct-style transformation would then be
necessary to map this non-monadic normal form to a monadic normal form. Such a monadic
version of NbE would make it possible to normalize programs whose effects can be described
with monads, e.g., probabilistic or stateful computations.

Acknowledgments. This work was carried out while the two last authors were visiting
the first, in the fall of 2013. We are grateful to our anonymous reviewers for their helpful
comments.
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Abstract
This paper presents a construction which transforms categorical models of additive-free pro-
positional linear logic, closely based on de Paiva’s dialectica categories and Oliva’s functional
interpretations of classical linear logic. The construction is defined using dependent type the-
ory, which proves to be a useful tool for reasoning about dialectica categories. Abstractly, we
have a closure operator on the class of models: it preserves soundness and completeness and has
a monad-like structure. When applied to categories of games we obtain ‘games with bidding’,
which are hybrids of dialectica and game models, and we prove completeness theorems for two
specific such models.
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1 Introduction

This paper presents a construction which transforms categorical models of additive-free
propositional linear logic, closely based on de Paiva’s dialectica categories and Oliva’s
functional interpretations of classical linear logic.

The dialectica categories [9] are a family of models of intuitionistic logic, and classical
and intuitionistic linear logic, based on Gödel’s dialectica interpretation. Dialectica models
of classical linear logic are described in [9], based on earlier models of intuitionistic logic
and intuitionistic linear logic in [7]. Historically they were the first models of linear logic
to not equate multiplicative and additive units, and they have been generalised in several
ways, for example [13] defines dialectica categories starting only from a partially ordered
fibration. The construction in this paper is closely related to [8] and [11]; the similarities
and differences between that construction and the original dialectica categories is discussed
in those papers. While most of the literature on dialectica categories aims to construct large
classes of structured categories and then characterise those which are sound models of some
logic, the aim of this paper is rather different: to construct a small number of concrete models
which can be interpreted as game models and are amenable to a proof-theoretic analysis of
the valid formulas, and in particular are as close as possible to being complete models of
linear logic.

Based on de Paiva’s models, [28] gave a syntactic dialectica and Diller-Nahm interpretation
to first order affine logic, and [24] to classical linear logic. The semantics of the Diller-Nahm
variant is explored in detail in chapter 4 of [9], and will be used in this paper. A completeness
theorem is given in [25] for the dialectica interpretation, based on Gödel’s original completeness
theorem for Heyting arithmetic [1], which has not been exploited so far in the semantic
literature. This relies on a small but crucial modification to de Paiva’s interpretation of the
linear exponentials. The Diller-Nahm interpretation of linear logic appears in [24] and [26],
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although no completeness proof for the Diller-Nahm interpretation of linear logic appears in
the literature, to the author’s knowledge.

The dialectica interpretation, intuitively, is a proof translation which takes a formula ϕ
to a quantifier-free formula |ϕ|xy in which the variables x and y appear free. The variable x
represents ‘witnesses’, or evidence that a theorem is true, and y represents ‘counter-witnesses’,
or evidence that a theorem is false. The validity of a theorem is then reduced to the existence
of a witness which defeats every counter-witness, that is, ∃x∀y. |ϕ|xy . However even if ϕ is a
first-order formula the variables x and y may have higher types. The original purpose was to
prove the relative consistency of Heyting arithmetic to the quantifier-free language called
system T, however the dialectica interpretation is now mainly used to give a computational
interpretation to theorems of classical analysis, see [17].

The semantic equivalent to the dialectica interpretation, at least from the point of view
of this paper, is to replace the formula |ϕ|xy with a double-indexed family of objects in some
model R. We can imagine that we are composing the syntactic proof translation with a
semantic interpretation of formulas. The fact that the dialectica interpretations of linear
negation and multiplicative conjunction are given recursively by∣∣ϕ⊥∣∣y

x
=
(
|ϕ|xy

)⊥
|ϕ⊗ ψ|x,uf,g = |ϕ|xfu ⊗ |ψ|

u
gx

(in particular, that the same connectives occur on the right hand side) tells us that R must
have a sound interpretation of these connectives. This leads us to the construction in [8],
which builds a dialectica category from a posetal model of multiplicative linear logic, or
lineale [10]. The dialectica interpretation eliminates additives (in the sense that additives do
not appear on the right hand side of the corresponding formulas), and it is also possible to
eliminate exponentials in a sound way by defining

|!ϕ|xf = |ϕ|xfx

However the completeness theorem of [25] relies on changing this definition to

|!ϕ|xf = ! |ϕ|xfx

To interpret this semantically R must also have a sound interpretation of the exponential,
which leads to our construction of dialectica categories beginning from an arbitrary model of
multiplicative-exponential linear logic (MELL). Thus this work can be seen as the result of
a ‘dialogue’ between syntax and semantics.

Overall, we have a construction D which takes a model of MELL to a model of LL.
The first of two aims of this paper is to explore the abstract properties of D. We prove in
section 6 that D is functorial, and that it has a monad-like structure on a particular category
of models of MLL, although one of the monad laws fails and even the weaker result fails
to extend to MELL. This is closely related to the main theorem in [12]. (We could also
explore the 2-categorical properties of D, but that is left for later work.) We also prove that
D preserves soundness (section 3) and completeness (section 5) for MELL, so we can justify
calling it a ‘closure operator’ on models.

The second aim of this paper is to construct specific dialectica categories (rather than
axiomatically-defined families) which have logical completeness properties. This requires that
the underlying model also has completeness properties, which in practice means constructing
a dialectica category from a category of games. In section 4 we informally describe such a
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dialectica category as a category of ‘games with bidding’, greatly extending the comments in
[6] on viewing dialectica categories as game models. In particular in section 5 we consider
‘Hyland-Ong games with bidding’ based on [15], and ‘asynchronous games with bidding’
based on [20], and prove that these models are complete respectively for MLL and MELL.

The model of asynchronous games with bidding, in particular, is an extremely interesting
model because the starting model has the strongest possible completeness theorem, namely
it is fully complete for MELL. An analysis of the formulas containing additives which are
valid in this model will be carried out in a follow-up paper, but an overview of the argument
is given in section 7.

There are two main technical ideas in this paper which contribute to our two aims. The
first is that we replace the posets of [8] and [16] with categories, and use dependent type
theory in defining and reasoning about our models. If our metatheory has choice this formally
gains nothing, however in practice dependent type theory proves to be a powerful tool.
Dialectica categories were used with dependent types in [5], but in a semantic rather than a
syntactic way. Our use of syntactic dependent types will be justified in particular in sections
5 and 6, which would be hard to formalise otherwise. It also suggests the implementation of
this construction (and the formalisation of the proofs in this paper) in a dependently typed
programming language. This would require libraries for 2-category theory and monoidal
category theory, and would be an interesting way to embed linear reasoning into a proof
assistant. This was carried out in Coq in [3], for the special case in which the underlying
model is the built-in type of propositions.

The second idea is that we work with the linear-nonlinear semantics of MELL and
LL given in [4]. Although the relationship between linear categories and linear-nonlinear
adjunctions is well understood, a direct formulation of dialectica categories as linear-nonlinear
adjunctions is still quite informative: it allows the relationship between the linear and
intuitionistic dialectica categories to be clearly seen, and allows us to factor the exponential
into four parts. This also suggests turning back around to syntax and studying a syntactic
dialectica interpretation of linear-nonlinear logic.

Note that in this paper we are only considering classical linear logic. The differences
between dialectica models of classical and intuitionistic linear logic are subtle: firstly for
intuitionistic linear logic the sets of witnesses and counterexamples must both be nonempty,
whereas for classical linear logic one may be empty; and secondly for intuitionistic linear logic
we consider the bids in games with bidding to be sequential rather than simultaneous. Since
the two logics coincide in the absence of additives, the difference will not often affect us.

2 The dialectica transformations of a category

In this section we will define the two dialectica transformations of a category, and relate them
to the existing literature on dialectica categories. The game-semantic intuition corresponding
to these definitions will be given in section 4.

Let R be an arbitrary category. We will define a category Dl(R) called the linear dialectica
transformation of R. The objects of Dl(R) are double-indexed families GXY where X and Y
are arbitrary sets not both empty, and each Gxy is an object of R. Throughout this paper we
will specify such objects using the notation

GXY :
(
x

y

)
7→ · · ·

where the right hand side is an expression in terms of x and y. Since X and Y will often
be (dependent) pairs we will drop the parentheses, as is done in the proof theory literature.

TYPES’14
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Sometimes we will decorate witness and counter-witness variables with their individual types
for clarity, as in

GX×UY×V :
(
x : X,u : U
y : Y, v : V

)
7→ · · ·

A morphism from GXY to HUV is an element of a dependent type in the category of sets:

homDl(R)
(
GXY ,HUV

)
=

∑
f :X→U
g:V→Y

∏
x:X
v:V

homR

(
Gxgv,Hfxv

)
Hence a morphism is a triple (f, g, α) where f : X → U , g : V → Y and α is a double-indexed
family of R-morphisms

αx,v : Gxgv → Hfxv
The proof-theoretic reading of this is that a morphism consists of a witness, together with
a mapping that takes each counter-witness to a proof that the counter-witness is invalid.
This is simply the type-theoretic interpretation of the usual dialectica interpretation of linear
implication, with quantifiers replaced by dependent types.

For simplicity, in this paper we only explicitly use the set-theoretic interpretation of
dependent type theory, however it should be straightforward to generalise to any model of
dependent type theory. This would require R to be enriched over a locally cartesian closed
category C, and that we have a suitable fibration of objects of R over C to replace set-indexed
families, similar to [13] (this idea was suggested in [14]).

In Dl(R) the identity morphism on GXY is given by the identity functions on X and Y
together with identity morphisms in R. The composition of a morphism GXY ( HUV given
by (f, g, α) and another HUV ( IPQ given by (f ′, g′, β) is given by f ′ ◦ f : X → P and
g ◦ g′ : Q→ Y , together with the composition

(β ◦ α)x,q = βfx,v ◦ αx,g′q : homR

(
Gxg(g′q), I

f ′(fx)
q

)
I Lemma 1. Let R be any category, then Dl(R) is a category with finite products and
coproducts.

Proof. By proposition 3.7 of [16]. J

Using the axiom of choice (at least in the case C = Set), this definition is equivalent to
MN (C) in [8] where N is the posetal reflection of R (assuming a Grothendieck universe, since
R will be large in general). To be clear, this definition is not intended to be exactly equivalent
to the original dialectica categories in [9], which is more elegant and far more general but is
hard to use for concrete calculations. In particular using type theory gives us explicit names
for all of our morphisms, and this will make our life easier especially in sections 5 and 6.
Moreover we can avoid using the axiom of choice in our metatheory, and so the contents of
this paper could be directly implemented in a dependently typed programming language.

Next we will construct the Diller-Nahm translation Di(S) of an arbitrary category S
with finite products. This construction is most closely related to that in [13], although we
consider it in far less generality than in that paper. The objects of Di(S), as before, are
double-indexed families GXY where X and Y are sets not both empty and each Gxy is an
element of S. The hom-sets are defined by

homDi(S)
(
GXY ,HUV

)
=

∑
f :X→U

g:X×V→Y ∗

∏
x:X
v:V

homS

 ∏
y∈g(x,v)

Gxy ,Hfxv
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Here Y ∗ is the set of finite multisets with elements in Y . This definition is the type-theoretic
interpretation of the Diller-Nahm interpretation of intuitionistic implication

∃fX→U , gX×V→Y
∗
∀xX , vV .

(
∀y ∈ g(x, v). |ϕ|xy

)
→ |ψ|fxv

However we carefully distinguish ‘internal’ and ‘external’ quantifiers: the internal ∀ is
interpreted as the categorical product in the underlying model, and the external ∃∀ is
interpreted as dependent types in C.

In Di(S) the structure is very similar. If we have a morphism given by f : X → U and
g : X × V → Y ∗ and another given by f ′ : U → P and g′ : U ×Q→ V ∗ the composition is
given by f ′ ◦ f : X → P and

λxX , qV .g′(fx, q) >>= λvV .g(x, v) : X ×Q→ Y ∗

together with composition in S. Here >>= is the bind operator of the finite multiset monad,
where l >>= f applies f to each element of l, each giving a multiset, and collects the results
with a union.

I Lemma 2. Let S be any category with finite products, then Di(S) is a category with finite
products.

Proof. By section 3 of [13]. J

3 The dialectica transformation of a linear-nonlinear adjunction

We begin with a general definition of a model of MELL and a model of LL. A model of
multiplicative linear logic (MLL) is given by a ∗-autonomous category R [2], that is, a
symmetric monoidal closed category (R,⊗,(, 1) with a functor ⊥ : R → R and natural
isomorphisms ⊥◦⊥ ∼= idR and

homR(X ⊗ Y, Z⊥) ∼= homR(X, (Y ⊗ Z)⊥)

For the interpretation of exponentials we use the linear-nonlinear semantics of [4], which
is surveyed in detail in [22]. A categorical model of MELL is given by a ∗-autonomous
category R together with another category S with finite products and an adjunction

S ⊥ R

L

M

or, more briefly,

L aM : R→ S

Here L (called linearisation) and M (called multiplication) are lax symmetric monoidal
functors, that is, there are natural transformations

M(X)×M(Y )→M(X ⊗ Y ) > →M(1)
L(X)⊗ L(Y )→ L(X × Y ) 1→ L(>)
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and the unit and counit of the adjunction must also respect the monoidal and cartesian
monoidal structures (ie. the adjunction must be a symmetric monoidal adjunction). Such a
setup is called a linear-nonlinear adjunction. Given this adjunction, the denotation of the
exponential ! is the composition L ◦M , which is a comonad on R (and conversely, if we
have a model in which ! is given explicitly we can recover S, M and L from the co-Kleisli
adjunction). The entire model, which contains a pair of categories and functors and various
natural transformations, will be denoted R. For a model of LL we simply require that R
also has finite products.

Given such a model of MELL, the dialectica transformation of this model will be a new
pair of categories and a linear-nonlinear adjunction

Di(S) ⊥ Dl(R)

Ddn(L)

Df (M)

The categories Dl(R) and Di(S) are precisely the categories defined in the previous section.
The transformations of the functors M and L will be given below. The transformed model
as a whole will be denoted D(R).

The interpretations of each connective in Dl(R) is given in Figure 1.

I Lemma 3. Let R be any ∗-autonomous category, then Dl(R) is a ∗-autonomous category.

Proof. By propositions 3.6 of [16]. J

Now we give the dialectica transformations Df (M) and Ddn(L) of the multiplication and
linearisation functors. The operation Df is a straightforward lifting operation. The subscript
f stands for functor since this construction will be used in section 6 to give the action of D
on maps (or functors) of models. Suppose the multiplication functor is M : R → S. The
functor Df (M) : Dl(R)→ Di(S) acts on objects GXY of Dl(R) by

(Df (M)(G))XY :
(
x

y

)
7→M(Gxy )

For the action of Df (M) on morphisms, suppose we have a morphism of Dl(R) from GXY to
HUV given by (f, g, α) where f : X → U , g : V → Y and αx,v : homR

(
Gxgv,Hfxv

)
. We need to

find an element of

∑
f ′:X→U

g′:X×V→Y ∗

∏
x:X
v:V

homS

 ∏
y∈g′(x,v)

M(Gxy ),M(Hf
′x
v )


We take f ′ = f and g′(x, v) to be the multiset containing only gv. Then∏

y∈g′(x,v)

M(Gxy ) = M(Gxgv)

and so M(αx,v) is a morphism of the correct type.
Suppose the linearisation functor is L : S → R. The functor Ddn(L) : Di(S) → Dl(R)

acts on objects GXY by

(Ddn(L)(G))XX→Y ∗ :
(
x

f

)
7→
⊗
y∈fx

L(Gxy )
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Multiplicatives

1{∗}{∗} :
(
∗
∗

)
7→ 1

⊥{∗}{∗} :
(
∗
∗

)
7→ ⊥

(GXY )⊥ = (G⊥)YX :
(
y

x

)
7→ (Gxy )⊥

GXY ⊗HUV = (G ⊗H)X×U(U→Y )×(X→V ) :
(
x, u

f, g

)
7→ Gxfu ⊗Hugx

GXY `HUV = (G `H)(V→X)×(Y→U)
Y×V :

(
f, g

y, v

)
7→ Gfvy `Hgyv

Additives

>{∗}∅

0∅{∗}

GXY &HUV = (G &H)X×UY+V :
(
x, u

z

)
7→

{
Gxz if z ∈ Y
Huz if z ∈ V

GXY ⊕HUV = (G ⊕H)X+U
Y×V :

(
z

y, v

)
7→

{
Gzy if z ∈ X
Hzv if z ∈ U

Exponentials

!GXY = (!G)XX→Y ∗ :
(
x

f

)
7→
⊗
y∈fx

!Gxy

?GXY = (?G)Y→X
∗

Y :
(
g

y

)
7→

¸
x∈gy

?Gxy

Figure 1 Interpretation of constants and connectives in Dl(R).
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Here
⊗

y∈fx is the fold of the monoidal product of R over the finite multiset fx, where the
fold over the empty multiset is the unit 1 ∈ R. The subscript dn stands for Diller-Nahm,
since this definition contains the essence of the Diller-Nahm functional interpretation. The
intuitive justification for this definition is that the exponential Ddn(L) ◦Df (M) should be
an interpretation of

!∀y ∈ fx. |ϕ|xy
which is the Diller-Nahm interpretation of the exponentials in [24]. Since we are working
over set theory we ‘know’ the (finite) size of fx, so we can replace the ∀ with a folded &.
(This is a subtle point: we are simply defining a family of formulas, whereas when using
free variables a formula must have a fixed structure.) Then we use the fact that ! is strong
monoidal (the ‘transmutation principle’ of linear logic, see section 7.1 of [22]) to obtain⊗

y∈fx

! |ϕ|xy

When this is factored as⊗
y∈fx

L
(
M |ϕ|xy

)
the M becomes absorbed into the definition of Df (M), and we are left with Ddn(L). (We
could write it instead as L&, but using ⊗L gives the exponential in Figure 1 directly. Taking
the exponential to be ⊗! is preferable to !& because we need not assume that L has products.)

Now suppose we have a morphism of Di(S) from GXY to HUV given by (f, g, α) where
f : X → U , g : X × V → Y ∗ and

αx,v : homS

 ∏
y∈g(x,v)

Gxy ,Hfxv


We need to find an element of

homDl(R)
(
(Ddn(L)(G))XX→Y ∗ , (Ddn(L)(H))UU→V ∗

)
The witnesses are f : X → U and g′ : (U → V ∗)→ (X → Y ∗) given by

g′ = λhU→V
∗
, xX .h(fx) >>= λvV .g(x, v)

Given x ∈ X and h : U → V ∗ we need to find an element of

homR

(
(Ddn(L)(G))xg′h, (Ddn(L)(H))fxh

)
= homR

 ⊗
y∈g′hx

L(Gxy ),
⊗

v∈h(fx)

L(Hfxv )


We have⊗

v∈h(fx)

L(αx,v) : homR

 ⊗
v∈h(fx)

L

 ∏
y∈g(x,v)

Gxy

 ,
⊗

v∈h(fx)

L(Hfxv )


Here we can use that L is a symmetric monoidal functor to get an element of

homR

 ⊗
v∈h(fx)

⊗
y∈g(x,v)

L(Gxy ),
⊗

v∈h(fx)

L(Hfxv )


Finally the left hand side can be written as a single monoidal product over y ∈ g′hx by
definition of the monadic bind.
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I Lemma 4. Ddn(L) a Df (M) : Dl(R)→ Di(S) is a linear-nonlinear adjunction.

Proof. By proposition 14 of [22] it suffices to prove that Ddn(L) a Df (M) is an adjunction
and Ddn(L) is strong symmetric monoidal.

The equation for the adjunction is

homDl(R)
(
Ddn(L)(GXY ),HUV

) ∼= homDi(S)
(
GXY ,Df (M)(HUV )

)
We evaluate

homDl(R)
(
Ddn(L)(GXY ),HUV

)
=

∑
f :X→U

g:V→(X→Y ∗)

∏
x:X
v:V

homR

( ⊗
y∈gvx

L(Gxy ),Hfxv

)

and

homDi(S)
(
GXY ,Df (M)(HUV )

)
=

∑
f :X→U

g:X×V→Y ∗

∏
x:X
v:V

homS

 ∏
y∈g(x,v)

Gxy ,M(Hfxv )


These are isomorphic using L aM and the fact that L is strong monoidal.

To prove that Ddn(L) is strong monoidal we must show that

Ddn(L)(GXY )⊗Ddn(L)(HUV ) ∼= Ddn(L)(GXY &HUV )

We evaluate

(Ddn(L)(G)⊗Ddn(L)(H))X×U(X×U→Y ∗)×(X×U→V ∗) :
(
x, u

f, g

)
7→

⊗
y∈f(x,u)

L(Gxy )⊗
⊗

v∈g(x,u)

L(Huv )

and

Ddn(L)(G &H)X×UX×U→(Y+V )∗ :
(
x, u

h

)
7→

⊗
z∈h(x,u)

{
L(Gxz ) if z ∈ Y
L(Huz ) if z ∈ V

These are isomorphic due to the natural isomorphism Y ∗ × V ∗ ∼= (Y + V )∗ (note that this
isomorphism does not hold if we replace finite multisets with finite ordered lists, ie. free
commutative monoids by free noncommutative monoids). Finally, the symmetry of Ddn(L)
also inherits easily from that of L. J

We can therefore derive the interpretation of ! as the composition Ddn(L)◦Df (M). Given
an object Gxy , its exponential is

(!G)XX→Y ∗ :
(
x

f

)
7→
⊗
y∈fx

!Gxy

where the exponential in the underlying model is ! = L ◦M .
It is worth noting that, as in chapter 4 of [9], the functor Ddn(L) factors into three parts

Ddn(L) = B ◦A ◦Df (L) where A and B (called T and S in [9]) are endofunctors on Dl(R)
given respectively by

(A(G))XY ∗ :
(
x

s

)
7→
⊗
y∈s
Gxy
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and

(B(G))XX→Y :
(
x

f

)
7→ Gxfx

We can interpret A and B game-semantically as giving two different advantages to Abelard.
A allows Abelard to play several moves, and B allows Abelard to observe Eloise’s move.
Both of these are expressed by monads on the category of sets, respectively the finite multiset
monad and the reader monad (X →). The exponential of Dl(R) therefore factors into four
parts as

B ◦A ◦Df (L) ◦Df (M)

The functors A and B have much structure in their own right: they are both comonads
on Dl(R) with a distributivity law between them making B ◦ A into another comonad.
However B ◦A is a linear exponential comonad (which is a direct categorical semantics of
the exponential, see [16]), whereas A and B individually are not. The entire reason we also
compose with Df (L) ◦Df (M) = Df (L ◦M), which after all requires more structure in the
underlying model, is to obtain the completeness theorem in section 5.

The lemmas in this section add up to a soundness theorem.

I Theorem 5. If R is a sound model of MELL then D(R) is a sound model of LL.

4 Games with bidding

In section 5 we will investigate applying the transformation D to models which are complete
(that is truth implies provability, which is a weaker property than full completeness which is
more often considered). In practice this means letting R be a game model. In this section
we give some general remarks about D(R) when R is a game model.

In general, a game model is a category R whose objects are games, and whose morphisms
are (relative) winning strategies. Thus logically formulas are denoted by games and proofs
by winning strategies. The denotation of linear negation is interchange of players (at least
for classical linear logic), and the denotation of ⊗ is some form of concurrent play, making R
into a *-autonomous category. For models which have additives the product G &H is usually
denoted by a game in which Abelard chooses which of the two games will be played, and
for G ⊕ H Eloise makes the choice. The exponential is often similar to an infinite tensor
product. The point of making these informal observations is that they are preserved under
the transformation D.

We begin by considering the two-element boolean algebra B as a degenerate game model
containing only two games: one which Eloise wins immediately, and one which Abelard wins
immediately. Thus we can see D(B), which is called G(C) in the terminology of [9] (where C
is the category of sets or another suitable model of dependent type theory), as a model of
games with bidding in which the games contain only the bidding round, and after the bidding
round one player is declared to have won. The possibility of viewing dialectica categories as
categories of games has been discussed in several places, and in particular in the final section
of [6], and this section greatly extends that idea.

One issue with viewing dialectica categories as games is the strange ‘causality’ in a game
such as GXY ( HUV , in which u depends on x but not v, and y depends on v but not x. One
way to view the strange dynamics of this game is as a generalisation of history-freeness in
which the moves are chosen in the order (x, u, v, y), where Abelard’s strategy to choose x, v is
history-free and Eloise’s strategy may depend on the most recent move but not the remainder
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of the history. Alternatively we can imagine the bidding round to be played by two teams of
two players (like in bridge) with a particular message-passing protocol

X

U

Y

V

Partners sit opposite each other, withX and Y representing Abelard and U and V representing
Eloise, and the arrows representing the direction of message-passing. Unfortunately both of
these intuitions (history-freeness and message-passing) break down when we consider higher
order bids (that is, bids which are functions depending on other functions). There is a general
but less satisfactory intuition in these cases: the players submit (higher order) computer
programs, which are finite representations of their strategy, to play on their behalf.

Now we consider informally a ‘general non-degenerate game model’. The conclusion is
that the construction D, which can be applied to any model, preserves the property of ‘being
a game model’. For a concrete game model these informal remarks could be made precise: the
simplest example is the category of Blass games of [6]; in section 5 we consider the category
of Hyland-Ong games [15] and the category of asynchronous games of [20].

An object GXY of Dl(R) consists of sets of bids X and Y for Eloise and Abelard, together
with a game Gxy in the underlying model for each pair of bids. Thus a winning strategy
for Eloise consists of a bid x ∈ X, together with a winning strategy σy for Gxy for every
bid y of Abelard. Thus GXY can be seen as a game with bidding: first Eloise and Abelard
simultaneously bid, and then the pair of chosen bids determines precisely which subsequent
game will be played. (Very informally this is somewhat like the game of bridge: there is an
initial bidding round which determines exactly which variant of whist will be played.)

The negation of Dl(R) is to interchange players in the bidding round and then apply
the negation of R. Thus when R is a game model the negation of Dl(R) overall is simply
interchange of players in the compound game. The other connectives which behave very
cleanly are the additives: they are similar to the additives in a general game model except
that the choice of which game to play occurs simultaneously with the other bids. Thus for
example in the game GXY &HUV Abelard chooses a game and a bid for that game, but since
Eloise bids simultaneously she must choose a bid for both games. Thus a winning strategy
for Eloise in GXY &HUV consists of a pair of bids (x, u) together with winning strategies for
both Gxy and Huv .

The denotation of the tensor product GXY ⊗HUV is more complicated. Eloise simply bids a
pair (x, u). Simultaneously Abelard must bid a pair of functions f : U → Y and g : X → V ,
and then the games Gxfu and Hugx are played in parallel in the sense specified by R. Similarly
the exponential !GXY is played as follows. Firstly Eloise chooses a bid x ∈ X. Then Abelard
observes this and chooses a finite multiset y1, . . . , yn ∈ Y . For each yi there is an exponential
!Gxyi

, which will be similar to the parallel composition of infinitely many copies of Gxyi
. Then

each of the !Gxyi
is played in parallel, but typically a different sense of parallel than is used

for exponentials. Since the notion of winning strategy for Eloise in these games will depend
on exactly what notion of parallelism is used in R, it is difficult to say more in general.
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As explained above, in some cases it is possible to consider this as a game played by
two pairs of partners with a message-passing protocol, but in general it is necessary to
consider functions which can depend on other functions in a higher-order way. Thus from a
game-semantic perspective it will be more satisfying to replace the category of sets with a
different locally cartesian closed category in which functions contain only a finite amount of
information, such as a coherence space model of type theory [23]. Particularly interesting
would be to link to recent work in progress of Abramsky, Jagadeesan and others on game
semantics of dependent type theory. (These models are closely related to recent work on
linear dependent types [29].) This would lead to a two-layered game model in which the
bidding round has finer structure and the bids themselves specify strategies for sub-games.
The difficulty would be to find a suitable sense in which R is enriched and fibered over the
model of dependent types.

5 Relative completeness for additive-free fragments

I Definition 6 (Complete model). Let R be a model of LL. A mapping from atoms to
objects of R is called a valuation in R. Given a valuation v, we can extend it inductively to
an interpretation of formulas in R, denoted JϕKv or simply JϕK.
R is called a complete model of LL if for all formulas ϕ,ψ, if homR(JϕKv, JψKv) is

nonempty for all valuations v then the sequent ϕ ` ψ is derivable in LL. Completeness for
MELL and other fragments is defined similarly.

A characterisation theorem for a functional interpretation is a result saying that the
equivalence between ϕ and its functional interpretation ∃x∀y. |ϕ|xy is derivable in some system,
usually a base language like HAω extended with characterisation principles, which are axioms
validated by the functional interpretation such as the axiom of choice, Markov’s principle
and independence of premise. In order to obtain the statement of the following lemma we
take the logical formula

ϕ↔ ∃x∀y. |ϕ|xy

and split the bi-implication into its defining conjunction, then in each part we prenex the
quantifiers and interpret them as dependent types. (Special care would need to be paid to
these manipulations if the category of sets was replaced by a different model, as suggested in
the previous section.)

The characterisation theorem for classical linear logic in [25] uses not ∃x∀y but a Henkin
quantifier,

Æx
y , and so this ‘rearrangement’ is unsound. The result we see is that this lemma

fails to extend from MELL to LL. (Given that this simultaneity is at the heart of the
functional interpretations of classical linear logic, it is remarkable that this method works at
all.) See section 7 for a discussion of how to extend the completeness theorem to include
additives by correctly interpreting the simultaneous quantifier.

I Lemma 7. Let R be a model of MELL and let v be a valuation in R. Let ϕ be a formula of
MELL with interpretation |ϕ|XY in D(R), where the interpretation of an atomic proposition
is

|p|{∗}{∗} :
(
∗
∗

)
7→ v(p)

Then the types∑
x:X

∏
y:Y

homR(JϕK, |ϕ|xy)
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and∑
y:Y

∏
x:X

homR(|ϕ|xy , JϕK)

are inhabited.

Proof. These are proved simultaneously by induction on ϕ. In the base case we have ϕ = p

is an atom, and the point ∗ and identity morphism witnesses both (1) and (2).
In the negation case for (1) the inductive hypothesis for (2) gives y ∈ Y together

with morphisms πx : homR(|ϕ|xy , JϕK). Then π⊥x : homR(Jϕ⊥K,
∣∣ϕ⊥∣∣y

x
). The case for (2) is

symmetric.
For (1) of ⊗ the inductive hypothesis gives x and u together with morphisms πy :

homR(JϕK, |ϕ|xy) and σv : homR(JψK, |ψ|uv ). Then for each f : U → Y and g : X → V we have

πfu ⊗ σgx : homR

(
Jϕ⊗ ψK, |ϕ⊗ ψ|x,uf,g

)
For (2) of ⊗ the inductive hypothesis gives y and v together with morphisms πx :

homR(|ϕ|xy , JϕK) and σu : homR(|ψ|uv , JψK). Define f : U → Y by fu = y and g : X → V by
gx = v. Then for each (x, u) we have

πx ⊗ σu : homR

(
|ϕ⊗ ψ|x,uf,g , Jϕ⊗ ψK

)
For (1) of !, by the inductive hypothesis we have x together with morphisms in πy :

homR(JϕK, |ϕ|xy). Let f : X → Y ∗. We have

⊗
y∈fx

!πy : homR

⊗
y∈fx

!JϕK,
⊗
y∈fx

! |ϕ|xy


Since R is a model of MELL we have an inhabitant of

homR

!JϕK,
⊗
y∈fx

!JϕK


and we are done.

For (2) of !, by the inductive hypothesis we have y together with morphisms πx :
homR(|ϕ|xy , JϕK). Take f to be the constant function returning the singleton multiset
containing y. Then we have

!πx : homR(
⊗
y∈fx

! |ϕ|xy , !JϕK)

and we are done. J

(This lemma would be much less interesting if we used the dialectica rather than the
Diller-Nahm exponential, because in that case X and Y would always have size 0 or 1. The
Diller-Nahm interpretation of MELL, on the other hand, allows interesting sets such as
N = {∗}∗ and R = N→ N.)

I Theorem 8 (Relative completeness). Let R be a model of MELL and let ϕ be a formula
of MELL which is true in D(R). Then ϕ is true in R.
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Proof. Let v be a valuation in R, and let ϕ be a formula of MELL with interpretation |ϕ|XY
in D(R) using the same interpretation of atomic propositions defined in the lemma. Since ϕ
is true in D(R) we have a winning bid x : X together with winning strategies

πy : homR(1, |ϕ|xy)

From (2) of the lemma we have y : Y together with winning strategies

σx : homR(|ϕ|xy , JϕK)

Therefore

σx ◦ πy : homR(1, JϕK)

Since this holds for every valuation, ϕ is true in R. J

Let HO be the category of Hyland-Ong games and history-free, uniformly winning
strategies [15], with the the identity functor considered as an exponential. Then D(HO) is
the model of ‘Hyland-Ong games with bidding’. (As a linear-nonlinear adjunction, the model
of Hyland-Ong games has R = S = HO, and L = M is the identity functor.)

I Corollary 9. D(HO) is a sound model of LL and a complete model of MLL.

Notice that because the posetal reflection of HO is a lineale in the sense of [8] (including
having a trivial exponential), the category D(HO) is an example of the construction in that
paper (modulo size issues). However examples of this kind have not been considered before,
and in particular the completeness result is new.

Let AG be the category Z of asynchronous games and (equivalence classes of) innocent
winning strategies [20]. This is a sound model of LL which is proven in [21] to be complete
for MELL. That paper also provides a small variation which is complete for LL, although
using that model will not be necessary for our purposes.

I Corollary 10. D(AG), the category of asynchronous games with bidding, is a sound model
of LL and a complete model of MELL.

A large part of the motivation for this paper is to introduce the category D(AG) and
prove its soundness. It is an interesting model which will be studied in detail by the author
in a follow-up paper: in particular there is a way to analyse the formulas containing additives
which are valid in the model. See section 7 for a summary of the argument.

6 D is a functor

Given a model R of MELL, presented as a linear-nonlinear adjunction, we have defined a
model D(R) of LL. Since a collection of models forms a category we can ask whether D is
a functor. The answer is ‘yes’ for the strongest notion of a morphism of models: a pair of
functors which commute with all of our structure. Results of this kind are standard, and
appear as early as [27].

Since models are pairs of structured categories, they moreover form a 2-category, with
1-cells given by pairs of monoidal functors satisfying suitable conditions, and 2-cells given by
pairs of natural transformations. We will leave the consideration of 2-categorical issues for
later work, but it should be noted that most of the diagrams in this section commute only
up to natural isomorphism.
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This section does not contain all cases of the proofs (which would take another paper),
but highlight the most interesting cases. Most of the proofs amount to showing that certain
(sometimes quite formidable) dependent types are inhabited, and thus are natural candidates
for formalisation in a dependently typed programming language, with suitable libraries for
monoidal category theory and 2-category theory. The author intends to carry this out in the
future.

I Definition 11 (Morphism of linear-nonlinear adjunctions). Let L a M : R → S and
L′ aM ′ : R′ → S′ be linear-nonlinear adjunctions. A morphism (F,G) from the former to
the latter consists of functors

S ⊥ R

S′ ⊥ R′

L

M

L′

M ′

G F

such that
1. F is a monoidal functor
2. F and G are cartesian monoidal functors
3. The following diagram commutes:

R S R

R′ S′ R′

M L

F G F

M ′ L′

4. The following diagram commutes:

homR(Lx, y) homR′(F (Lx), Fy) homR′(L′(Gx), Fy)

homS(x,My) homS′(Gx,G(My)) homS′(Gx,M ′(Fy))

F

G

Φ Ψ

(where Φ, Ψ are the isomorphisms associated to the adjunctions L aM and L′ aM ′).

The category of linear-nonlinear adjunctions and morphisms will be called LL -Mod.
The (larger) category of linear-nonlinear adjunctions in which R and R′ do not necessarily

TYPES’14



104 Dialectica Categories and Games with Bidding

have products (and F is not necessarily cartesian monoidal) will be called MELL -Mod.
There is a forgetful functor U : LL -Mod→MELL -Mod.

This definition is based on the ‘maps of adjunctions’ in [18]. The equivalent definitions for
the intuitionistic variants are given in [19]. If we weaken this to having natural transformations
M ′ ◦ F =⇒ G ◦M and L′ ◦G =⇒ F ◦ L we obtain the linear-nonlinear equivalent of the
‘map of models’ of [16].

I Lemma 12. D is a functor MELL -Mod→ LL -Mod.

Proof. We need to prove that

Di(S) ⊥ Dl(R)

Di(S′) ⊥ Dl(R′)

Ddn(L)

Df (M)

Ddn(L′)

Df (M ′)

Df (G) Df (F )

is a morphism of LL -Mod, given that (F,G) is a morphism of MELL -Mod.
We will prove the conditions for exponentials, namely that we have commuting squares

Dl(R) Di(S) Dl(R)

Dl(R′) Di(S′) Dl(R′)

Df (M) Ddn(L)

Df (F ) Df (G) Df (F )

Df (M ′) Ddn(L′)

For the left hand square let GXY ∈ Dl(R). We have

((Df (M ′) ◦Df (F ))(G))XY :
(
x

y

)
7→ (M ′ ◦ F )(Gxy )

((Df (G) ◦Df (M))(G))XY :
(
x

y

)
7→ (G ◦M)(Gxy )

These are equivalent using the identity functions on X and Y and the natural isomorphism
M ′ ◦ F ∼= G ◦M . For the right hand square let GXY ∈ Di(S). Then we have

((Ddn(L′) ◦Df (G))(G))XX→Y ∗ :
(
x

f

)
7→
⊗
y∈fx

(L′ ◦G)(Gxy )

((Df (F ) ◦Ddn(L))(G))XX→Y ∗ :
(
x

f

)
7→ F

⊗
y∈fx

L(Gxy )
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S ⊥ R

Di(S) ⊥ Dl(R)

D2
i (S) ⊥ D2

l (R)

L

M

ηS ηR

Ddn(L)

Df (M)

µR

D2
dn(L)

D2
f (M)

Figure 2 Unit and multiplication of D.

Using the identity functions on X and X → Y ∗ together with the natural isomorphism
L′ ◦G ∼= F ◦ L and the fact that F is monoidal we have natural transformations

⊗
y∈fx

(L′ ◦G)(Gxy ) ∼=
⊗
y∈fx

(F ◦ L)(Gxy ) ∼= F

⊗
y∈fx

L(Gxy )


J

We have defined D as a functor MELL -Mod → LL -Mod. By composing with the
forgetful functor in the opposite direction we obtain an endofunctor on MELL -Mod. Next
we will investigate a monad-like structure on D. The starting point is the observation that
there is a family of functors µR : D2

l (R) → Dl(R), motivated by logical considerations in
the next section, which appears to be the multiplication of a monad. We investigate this
structure and show that, on the contrary, D is not a monad. The functors µR behave badly
with respect to exponentials, and the corresponding functors µS : D2

i (S)→ Di(S) cannot
be defined in a reasonable way. The resulting setup is illustrated in Figure 2. Even when
restricting to just MLL, the functors µR are only lax monoidal, and the second monad law
fails to hold, even in a lax way.

The main theorem of [12], which gives a sense in which the dialectica interpretation is a
pseudo-monad, is extremely closely related. There are two main differences, other than the
fact that our dialectica categories are far less general. The first is that Hofstra’s multiplication
operator, from a game-semantic point of view, treats the two players asymmetrically, and so
appears to be incompatible with classical linear logic. The second is that, by using linear-
nonlinear semantics, we insist on soundness for linear logic with exponentials. Nevertheless
the second monad law does not appear to rely on either of these facts, which implies that
the constructions are more different than they appear.

I Lemma 13. The functor

ηR : R→ Dl(R)
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which takes an object x ∈ R to the game with one play and outcome x,

(ηR(x)){∗}{∗} :
(
∗
∗

)
7→ x

extends to a natural transformation I→ D.

Next we explicitly find D2(R) as a model of MELL. An object GXY of D2
l (R) consists of

sets X and Y together with a family of objects Gxy of Dl(R). Each such Gxy itself has the
form (Gxy )U

x
y

V x
y
, where Uxy and V xy are families of sets dependent on x and y, and we have a

family of objects (Gxy )uv of R. This defines the objects of both categories D2
l (R) and D2

i (S).
Consider objects GXY and HWZ of D2

l (R) given by (Gxy )U
x
y

V x
y

and (Hwz )P
w
z

Qw
z
, and consider a

morphism from G to H. This consists of functions f : X → W and g : Z → Y together
with morphisms from Gxgz to Hfxz in Dl(R). Each such morphism itself consists of functions
α : Uxgz → P fxz and β : Qfxz → V xgz together with morphisms in R. Thus we have

homD2
l
(R)(G,H) =

∑
f :X→W
g:Z→Y

∏
x:X
z:Z

∑
α:Ux

gz→P
fx
z

β:Qfx
z →V

x
gz

∏
u:Ux

gz

q:Qfx
z

homR

(
(Gxgz)uβq, (Hfxz )αuq

)

By thinking of D2
l (R) as a game model the definition of µR becomes obvious. We begin

with a game model R of MLL, and prepend a bidding round to obtain Dl(R), then prepend
an earlier bidding round to obtain D2

l (R). A strategy for a game in this model consists of
a bid in the first bidding round, together with a bid in the second bidding round for each
possible bid of the opponent, and finally a strategy for each resulting game. This can be
converted into a game with a single bidding round by bidding dependent types. Formally,
given GXY in D2

l (R) given by (Gxy )U
x
v

V x
y
, we define the object µR(G) of Dl(R) by

(µR(G))
∑

x:X

∏
y:Y

Ux
y∑

y:Y

∏
x:X

V x
y

:
(
x, f

y, g

)
7→ (Gxy )fygx

The functors µR are lax monoidal but not strong monoidal, and they do not commute with
exponentials, even in a lax way. The linear-nonlinear semantics gives us a better perspective
on this problem. We can think of objects of Di(S) as games with bidding, but in which in
the bidding round Abelard has the advantages granted by the exponential, namely he can
observe Eloise’s move and then choose several possible moves. In particular, the sequentiality
of the bidding prevents us from extending our intuition about µR to D2

i (S). A compound
game in D2

i (S) has two bidding rounds which are each played sequentially, and so bids are
made in the order ∃∀∃∀. We cannot reduce this to a single round of dependent bidding,
because there is no way to specify that Abelard’s first bid cannot depend on Eloise’s second
bid.

Restricting to MLL, the first monad law holds up to natural isomorphism.

I Theorem 14. There are natural isomorphisms

Dl(R) D2
l (R)

D2
l (R) Dl(R)

ηDl(R)

µRDf (ηR)

µR
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The second monad law

D3
l (R) D2

l (R)

D2
l (R) Dl(R)

µDl(R)

µRDf (µR)

µR

fails, even in a lax way (that is, this diagram does not contain a 2-cell).

7 Towards the additives

In this section we briefly look at the question of how the completeness result in section 5
should be extended to full LL. The intuition is that we are trying to simulate the behaviour
of the simultaneous quantifier in [25], in order to find a better analogue to the characterisation
theorem ϕ˛ Æx

y |ϕ|
x
y . This is ongoing work by the author, and this section only outlines

the method.
We extend the language of MELL as follows. For a double-indexed family of formulas

|ϕ|XY we freely add a formula called
(⊕x:X

&y:Y
)
|ϕ|xy . These new formulas are called simultaneous

additives (they could also be called ‘Henkin additives’, because simultaneous quantifiers
are a special case of Henkin quantifiers). The definition is fully recursive, so the individual
formulas |ϕ|xy may themselves be simultaneous additives.

The intuition for simultaneous additives is exactly that for Henkin quantifiers in dialogue
semantics. In dialogue semantics, for a folded additive disjunction ⊕x:X Eloise (the verifier)
chooses x, and for a folded additive conjunction &y:Y Abelard (the falsifier) chooses y. For
the simultaneous additive

(⊕x:X
&y:Y

)
these choices are made simultaneously by the players.

There is a single introduction rule for simultaneous additives that captures this intuition.
Suppose we have double-indexed families of formulas |ϕi|Xi

Yu
for 1 ≤ i ≤ m and |ψj |Uj

Vj
for

1 ≤ j ≤ n. For all functions

fj :
∏
i′

Xi′ ×
∏
j′ 6=j

Vj′ → Uj

gi :
∏
i′ 6=i

Xi′ ×
∏
j′

Vj′ → Yi

for 1 ≤ i ≤ m and 1 ≤ j ≤ n we have a proof rule

Γ,
(
|ϕi|xi

gi(~x−i,~v)

)m
i=1
` ∆,

(
|ψj |fj(~x,~v−j)

vj

)n
j=1

for all ~x ∈
∏
iXi, ~v ∈

∏
j Vj

Γ,
((⊕xi:Xi

&yi:Yi

)
|ϕi|xi

yi

)m
i=1
` ∆,

((⊕uj :Uj

&vj :Vj

)
|ψj |uj

vj

)n
j=1

There is a hypothesis for all tuples ~x,~v, hence this rule is generally infinitary. (The proof rule
in [25] on which this is based uses free variables for ~x and ~v instead; it might be necessary to
impose a restriction that the subproofs are ‘uniform’ in the parameters in some way.) The
extended language will be called DLL.
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We extend the valuation of formulas in a model D(R) to include simultaneous additives.

If each |ϕ|xy is a formula in the language of DLL with interpretation
∣∣∣|ϕ|xy∣∣∣Ux

y

V x
y

then the

interpretation of
(⊕x:X

&y:Y
)
|ϕ|xy is given precisely by the µ operator:

∣∣∣∣(⊕x : X
&y : Y

)
|ϕ|xy

∣∣∣∣
∑

x:X

∏
y:Y

Ux
y∑

y:Y

∏
x:X

V x
y

:
(
x, f

y, g

)
7→
∣∣∣|ϕ|xy∣∣∣fy

gx

It is an open question what should be the semantics of simultaneous additives in an arbitrary
category. If it exists, it must have properties of both a limit and a colimit, since it includes
products and coproducts as special cases.

I Theorem 15. Let R be any category, then Dl(R) validates the simultaneous additive
introduction rule.

If we try to prove the equivalence of ϕ and
(⊕x:X

&y:Y
)
|ϕ|xy , where ϕ is a formula of LL, we find

that we need some additional principles beyond DLL, corresponding to the characterising
principles of a functional interpretation. Two of these are(

⊕x : X,u : U
&f : Y U , g : V X

)
|ϕ⊗ ψ|x,uf,g (

(
⊕x : X
&y : Y

)
|ϕ|xy ⊗

(
⊕u : U
&v : V

)
|ψ|uv

and(
⊕z : X + U

&y : Y, v : V

)
|ϕ⊕ ψ|zy,v (

(
⊕x : X
&y : Y

)
|ϕ|xy ⊕

(
⊕u : U
&v : V

)
|ψ|uv

The first is a propositional analogue of the parallel choice principle in [26], which itself is a
generalisation of the independence of premise principle. Write DLL# for DLL extended with
these axioms and others for the exponential. Then, by directly simulating the characterisation
theorem for a functional interpretation it should be possible to prove that if R is sound and
complete for MELL then D(R) is sound and complete for DLL#. In particular, D(AG)
should be a sound and complete model of DLL#.

We continue by a purely syntactic argument. We prove that DLL has full cut elimination,
and is a conservative extension of LL by identifying the usual additives with suitable
simultaneous additives. Now if we take a formula ϕ in the language of LL which is validated
by D(AG), we know that ϕ is derivable in DLL#, with a proof potentially involving both
cuts and the characterising principles. In particular, since ϕ does not contain simultaneous
additives, any simultaneous additives introduced in the proof by a characterising principle
must be removed by a cut. By analysing the ways in which cut elimination can fail in the
presence of characterising principles, it should be possible to identity axioms in the language
of LL which are sound and complete for D(AG). A simple example is the formula ⊥⊗>,
which is valid in every dialectica category but is not provable in MELL.

References
1 Jeremy Avigad and Solomon Feferman. Gödel’s functional (“Dialectica”) interpretation. In

S. Buss, editor, Handbook of proof theory, volume 137 of Studies in logic and the foundations
of mathematics, pages 337–405. North Holland, Amsterdam, 1998.

2 Michael Barr. *-autonomous categories and linear logic. Mathematical structures in com-
puter science, 1(2):159–178, 1991.



Jules Hedges 109

3 Andrej Bauer. The Dialectica interpretation in Coq. Available electronically at
http://math.andrej.com/2011/01/03/the-dialectica-interpertation-in-coq/,
2011.

4 P. N. Benton. A mixed linear and non-linear logic: proofs, terms and models (preliminary
report). Technical report, University of Cambridge, 1994.

5 Bodil Biering. Cartesian closed Dialectica categories. Annals of pure and applied logic,
156(2-3):290–307, 2008.

6 Andreas Blass. A game semantics for linear logic. Annals of pure and applied logic, 1991.
7 Valeria de Paiva. The dialectica categories. In Proc. of categories in computer science,

1989.
8 Valeria de Paiva. Categorical multirelations, linear logic and petri nets. Technical report,

University of Cambridge, 1991.
9 Valeria de Paiva. The dialectica categories. Technical report, University of Cambridge,

1991.
10 Valeria de Paiva. Lineales: algebras and categories in the semantics of linear logic. In

D. Barker-Plummer, D. Beaver, Johan van Benthem, and P. Scotto di Luzio, editors, Words,
Proofs and Diagrams. CSLI, 2002.

11 Valeria de Paiva. Dialectica and Chu construtions: Cousins? Theory and applications of
categories, 17(7):127–152, 2007.

12 Pieter Hofstra. The dialectica monad and its cousins. In Models, Logics, and Higher-
dimensional Categories: A Tribute to the Work of Mihaly Makkai, volume 53 of CRM
Proceedings and Lecture Notes, pages 107–139. American Mathematical Society, 2011.

13 Martin Hyland. Proof theory in the abstract. Annals of pure and applied logic, 114(1-3):43–
78, 2002.

14 Martin Hyland. Slides of an invited lecture ‘Fibrations in Logic’ at
Category Theory 2007, Coimbra, Portrugal. Available electronically at
https://www.dpmms.cam.ac.uk/ martin/Research/Slides/ct2007.pdf, 2007.

15 Martin Hyland and Luke Ong. Fair games and full completeness for multiplicative linear
logic without the MIX rule. Unpublished manuscript, 1993.

16 Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear logic.
Theoretical computer science, 294(1-2):183–231, 2003.

17 Ulrich Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics.
Springer, 2008.

18 Saunders Mac Lane. Categories for the working mathematician. Springer, 1978.
19 Maria Emilia Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating cat-

egorical semantics for intuitionistic linear logic. Applied categorical structures, 13(1):1–36,
2005.

20 Paul-André Melliès. Asynchronous games 3: An innocent model of linear logic. Proceedings
of the 10th Conference on Category Theory and Computer Science, 2004.

21 Paul-André Melliès. Asynchronous games 4: A fully complete model of propositional linear
logic. Proceedings of the 20th Conference on Logic in Computer Science, 2005.

22 Paul-André Melliès. Categorical semantics of linear logic. In Interactive models of compu-
tation and program behaviour. Société Mathématique de France, 2009.

23 Alexandre Miquel. A model for impredicative type systems with universes, intersection
types and subtyping. In In Proceedings of the 15th Annual IEEE Symposium on Logic in
Computer Science (LICS’00), 2000.

24 Paulo Oliva. Computational interpretations of classical linear logic. Proceedings of
WoLLIC’07, 4576:285–296, 2007.

25 Paulo Oliva. An analysis of Gödel’s dialectica interpretation via linear logic. Dialectica,
62:269–290, 2008.

TYPES’14



110 Dialectica Categories and Games with Bidding

26 Paulo Oliva. Functional interpretations of linear and intuitionistic logic. Information and
Computation, 208(5):565–577, 2010.

27 Philip J. Scott. The “Dialectica” interpretation and categories. Mathematical logic quarterly,
24(31-36):553–575, 1978.

28 Masaru Shirahata. The dialectica interpretation of first-order classical affine logic. Theory
and applications of categories, 2006.

29 Matthijs Vákár. Syntax and semantics of linear dependent types. Technical report, Uni-
versity of Oxford, 2014.



The General Universal Property of the
Propositional Truncation∗

Nicolai Kraus

University of Nottingham
Nottingham, UK
nicolai.kraus@nottingham.ac.uk

Abstract
In a type-theoretic fibration category in the sense of Shulman (representing a dependent type
theory with at least 1, Σ, Π, and identity types), we define the type of coherently constant
functions A ω−→ B. This involves an infinite tower of coherence conditions, and we therefore need
the category to have Reedy limits of diagrams over ωop. Our main result is that, if the category
further has propositional truncations and satisfies function extensionality, the type of coherently
constant function is equivalent to the type ‖A‖ → B.

If B is an n-type for a given finite n, the tower of coherence conditions becomes finite and
the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried
out in (standard syntactical) homotopy type theory and generalises the universal property of
the truncation. This provides a way to define functions ‖A‖ → B if B is not known to be
propositional, and it streamlines the common approach of finding a propositional type Q with
A→ Q and Q→ B.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases coherence conditions, propositional truncation, Reedy limits, universal
property, well-behaved constancy

Digital Object Identifier 10.4230/LIPIcs.TYPES.2014.111

1 Introduction

In homotopy type theory (HoTT), we can truncate (propositionally or (-1)-truncate, to be
precise) a type A to get a type ‖A‖ witnessing that A is inhabited without revealing an
inhabitant [27, Chapter 3.7]. This operation roughly corresponds to the bracket types [4] of
extensional Martin-Löf Type Theory, and to the squash types [7] of NuPRL.

The type ‖A‖ is always propositional, meaning that any two of its inhabitants are
equal, and its universal property states that functions ‖A‖ → B correspond to functions
A → B, provided that B is propositional. In particular, we always have a canonical map
|−|

A
: A→ ‖A‖. This definition is natural and elegant, essentially making the truncation

operation a reflector of the subcategory of propositions. Unfortunately, it can be rather
tricky to define a function ‖A‖ → B if B is not known to be propositional.

One possible way to understand the propositional truncation is to think of elements of
‖A‖ as anonymous inhabitants of A, with the function |−|

A
hiding the information which

concrete element of A one actually has. With this in mind, let us have a closer look at
the mentioned universal property of the propositional truncation, or equivalently, at its
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elimination principles. If we want to find an inhabitant of ‖A‖ → B and B is propositional,
then a function f : A→ B is enough. A possible interpretation of this fact is that f cannot
take different values for different inputs, because B is propositional, justifying that f does
(in a certain sense) not have to “look at” its argument, such that an anonymous argument is
enough. Note that, we only think of internal properties here. When it comes to computation,
the term f can certainly behave differently if applied on different terms of type A.

This thought suggests that, in order to construct and inhabitant of ‖A‖ → B if B is not
necessarily propositional, we need to put a condition on the function f to make sure that it
does not distinguish between different inputs. In other words, we expect that f is required to
satisfy some form of constancy. The obvious first try would be to ask for an inhabitant of

constf :≡ Πa1a2:Af(a1) = f(a2), (1)

where we write = for the identity type as it has become standard in HoTT. The assumption (1)
suffices to derive a function ‖A‖ → B if we in addition know that B is a set (also called
h-set, or said to have unique identity proofs). As a central concept of HoTT is that the
identity type is not always propositional, it is not surprising that (1) generally only solves
the problem if this additional requirement on B is fulfilled. If we have a proof that two
elements of a type are equal, it will very often matter in which way they are equal. Thus, the
naive statement that f maps any two points to equal values is usually too weak to construct
a map out of the propositional truncation. This problem has been studied before [14, 13].

Given a function f : A→ B and a proof c : constf of weak constancy, we can ask whether
the paths (identity proofs) that c gives are well-behaved in the sense that they fit together.
Essentially, if we use c to construct two inhabitants of f(a1) = f(a2), then those inhabitants
should be equal. If we know this, we can weaken the condition that B is a set to the condition
that B is a groupoid (i.e. 1-truncated), and still construct a function ‖A‖ → B. This, and
the (simpler) case that B is a set as described above, are presented as Propositions 2 and 3
in Section 2. In principle, we could go on and prove the corresponding statement for the
case that B is 2, 3, . . . -truncated, each step requiring one additional coherence assumption.
Unfortunately, handling long sequences of coherence conditions in the direct syntactic way
becomes rather unpleasant very quickly.

A setting in which we can deal nicely with such towers of conditions was given by
Shulman [24], who makes precise the idea that type-theoretic contexts (or “nested Σ-types”)
correspond to diagrams over inverse categories of a certain shape. Although we do not
require the main result (the construction of univalent models and several applications) of [24],
we make use of the framework and technical results. Working in a type-theoretic fibration
category in the sense of Shulman, we can further consider the case that this category has
Reedy ωop-limits, that is, limits of infinite sequences A1 � A2 � A3 � . . ., where every map
is a fibration (projection). We can think of those limits as “infinite contexts” or “Σ-types
with infinitely many Σ-components”. If these Reedy limits exist, we can formulate the type
of coherently constant functions from A to B, for which we write A ω−→ B. We show that
such a coherently constant function allows us to define a function ‖A‖ → B, even if B is
not known to be n-truncated for any finite n. Even stronger, the type A ω−→ B is homotopy
equivalent to the type ‖A‖ → B, in the same way as A→ B is equivalent to ‖A‖ → B under
the very strict assumption that B is propositional.

The syntactical version of HoTT as presented in the standard reference [27, Appendix
A.2] does not have (or is at least not expected to have) Reedy ωop-limits. However, if we
consider an n-truncated type B for some finite fixed number n, then all but finitely many
of the coherence conditions captured by A ω−→ B become trivial, and that type can be
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simplified to a finitely nested Σ-type for which we will write A [n+1]−−−→ B. It can be formulated
in the syntax of HoTT where we can then prove that, for any A and any n-truncated B,
the type A [n+1]−−−→ B is equivalent to ‖A‖ → B. We thereby generalise the usual universal
property of the propositional truncation [27, Lemma 7.3.3], because if B is not only n-
truncated, but propositional, then A [n+1]−−−→ B can be reduced to A→ B simply by removing
contractible Σ-components. From the point of view of the standard syntactical version
of HoTT, an application of our construction is therefore be the construction of functions
‖A‖ → B for the case that B is not propositional. The usual approach for this problem is
to construct a propositional type Q such that A → Q and Q → B (see [27, Chapter 3.9]).
Our construction can be seen as a uniform construction of such a Q, since the equivalence
(A [n+1]−−−→ B) ' (‖A‖ → B) is proved by constructing a suitable “contractible extension” of
A

[n+1]−−−→ B; the general strategy is to “expand and contract” type-theoretic expressions, as
we strive to explain with the help of the examples in Section 2.

Nevertheless, we want to stress that we consider the correspondence between A ω−→ B

and ‖A‖ → B in a type-theoretic fibration category with Reedy ωop-limits our main result,
and the finite special cases described in the previous paragraph essentially fall out as a
corollary. In fact, we think that Reedy ωop-limits are a somewhat reasonable assumption.
Recently, it has been discussed regularly how these or similar concepts can be introduced into
syntactical type theory (for example, see the blog posts by Shulman [23] and Oliveri [20] with
the comments sections, and the discussion on the HoTT mailinglist [26] titled “Infinitary
type theory”). Motivations are the question whether HoTT can serve as its own meta-theory,
whether we can write an interpreter for HoTT in HoTT, and related questions problems such
as the definition of semi-simplicial types [9]. Moreover, a concept that is somewhat similar
has been suggested earlier as “very dependent types” [10], even though this suggestion was
made in the setting of NuPRL [7].

As one anonymous reviewer has pointed out, our main result (Theorem 27) can be
seen as a type-theoretic, constructive version of Proposition 6.2.3.4 in Lurie’s Higher Topos
Theory [18]. This seems to suggest once more that many connections between type theory
and homotopy and topos theory are unexplored until now. The current author has yet to
understand the results by Lurie and the precise relationship.

Contents. We first discuss the cases that the codomain B is a set or a groupoid, as
described in the introduction, in Section 2. This provides some intuition for our general
strategy of proving a correspondence between coherently constant functions and maps out
of propositional truncations. In particular, we describe how the method of “adding and
removing contractible Σ-components” for proving equivalences can be applied. In Section 3,
we briefly review the notion of a type-theoretic fibration category, of an inverse category,
and, most importantly, constructions related to Reedy fibrant diagrams, as described by
Shulman [24]. Some simple observations about the restriction of diagrams to subsets of the
index categories are recorded in Section 4. We proceed by defining the equality diagram over
a given type for a given inverse category in Section 5. The special case where the inverse
category is ∆op

+ (the category of nonempty finite sets and strictly increasing functions) gives
rise to the equality semi-simplicial type, which is discussed in Section 6. We show that the
projection of a full n-dimensional tetrahedron to any of its horns is a homotopy equivalence.
Then, in Section 7, we construct a fibrant diagram that represents the exponential of a fibrant
and a non-fibrant diagram, with the limit taken at each level. We extend the category ∆op

+
in Section 8, which allows us to make precise how contractible Σ-components can be “added
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and removed” in general. Our main result, namely that the types A ω−→ B and ‖A‖ → B

are homotopy equivalent, is shown in Section 9. The finite special cases which can be done
without the assumption of Reedy ωop-limits are proved in Section 10, while Section 11 is
reserved for concluding remarks.

Notation. We use type-theoretic notation and we assume familiarity with HoTT, in partic-
ular with the book [27] and its terminology. If A is a type and B depends on A, it is standard
to write Πa:AB(a) or ΠAB for the type of dependent functions. For the dependent pair
type, we write Σ (a : A) . B(a). The reason for this apparent mismatch is that we sometimes
have to consider nested Σ-types, and it would seem unreasonable to write all Σ-components
apart from the very last one as subscripts. It is sometimes useful to give the last component
of a (nested) Σ-type a name, in which case we allow ourselves to write expressions like
Σ (a : A) .Σ (b : B(a)) . (c : C(a, b)).

Regarding notation, one potentially dangerous issue is that there are many different
notions of equality-like concepts, such as the identity type of type theory, internal equivalence
of types, judgmental equality of type-theoretic expressions, isomorphism of objects in a
category, isomorphism or equivalence of categories, and strict equality of morphisms. For this
article, we use the convention that internal concepts are written using “two-line” symbols,
coinciding with the notation of [27]: we write a = b for the identity type Id(a, b), and A ' B
for the type of equivalences between A and B. Other concepts are denoted (if at all) using
“three-line” symbols: we write a ≡ b if a and b denote two judgmentally equal expressions,
and we use ≡ for other cases of strict equality in the meta-theory. By writing x ∼= y, we
express that x and y are isomorphic objects of a category. Equality of morphisms (of a
category) is sometimes expressed with ≡, but usually by saying that some diagram commutes,
and if we say that some diagram commutes, we always mean that it commutes strictly, not
only up to homotopy. Other notions of equality are written out.

If C is some category and x ∈ C an object, we write (as it is standard) x/C for the
co-slice category of arrows x→ y. We do many constructions involving subcategories, but
we want to stress that we always and exclusively work with full subcategories (apart from
the subcategory of fibrations in Definition 4). Thus, we write C − x for the full subcategory
of C that we get by removing the object x. Further, if D is a full subcategory of C (we write
D ⊂ C) which does not contain x, we write D + x for the full subcategory of C that has all
the objects of D and the object x.

Not exactly notation, but in a similar direction, are the following two remarks: First,
when we refer to the distributivity law of Π and Σ, we mean the equivalence

Πa:AΣ (b : B(a)) . C(a, b) ' Σ (f : Πa:AB(a)) .Πa:AC(a, f(a)) (2)

which is sometimes referred to as the type-theoretic axiom of choice or AC∞ (see [27]). Second,
if we talk about a singleton, we mean a type expression of the form Σ (a : A) . a = x or
Σ (a : A) . x = a for a fixed x. The term singleton therefore refers to a syntactical shape in
which some types can be represented, and it is well-known that those types are contractible.

2 A First Few Special Cases

In this section, we want to discuss some simple examples and aim to build up intuition for
the general case. For now, we work entirely in standard (syntactical) homotopy type theory
as specified in [27, Appendix A.2], together with function extensionality (see [27, Appendix
A.3.1]) and propositional truncation. To clarify the latter, we assume that, for any type A,
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there is a propositional type ‖A‖ with a function |−|A : A→ ‖A‖. Composition with |−|A is
moreover assumed to induce an equivalence (‖A‖ → B) ' (A→ B). Due to the “equivalence
reasoning style” nature of our proofs, we can avoid the necessity of any “unpleasant manual
computation”. Thus, we would not benefit from the judgmental computation rule that is
usually imposed on the propositional truncation (other than not having to assume function
extensionality explicitly [14]). We think it is worth mentioning that we actually do not
require much of the power of homotopy type theory: we only use 1, Σ, Π, identity types,
propositional truncations, and assume function extensionality. This will in later sections
turn out to be a key feature which enables us to perform the construction in the infinite case
(assuming the existence of certain Reedy limits).

Assume we want to construct an inhabitant of ‖A‖ → B and B is an n-type, for a fixed
given n. The case n ≡ −2 is trivial. For n ≡ −1, the universal property (or the elimination
principle) can be applied directly. In this section, we explain the cases n ≡ 0 and n ≡ 1. The
following auxiliary statement will be useful:

I Lemma 1. Let C1, C2, . . . , Cm be types dependent on A, possibly with Cj depending on Ci
for i < j. Consider a nested Σ-type, built out of Σ-components of the form ΠACk. Then,
functions from ‖A‖ into that type correspond directly to elements of that type. That is, the
types

‖A‖ →
(
Σ (f1 : Πa:AC1(a)) .
Σ (f2 : Πa:AC2(a, f1(a))) .
Σ . . .

(Πa:ACm(a, f1(a), f2(a), . . . , fm−1(a)))
)

(3)

and

Σ (f1 : Πa:AC1(a)) .
Σ (f2 : Πa:AC2(a, f1(a))) .
Σ . . .

(Πa:ACm(a, f1(a), f2(a), . . . , fm−1(a))) (4)

are equivalent.

Proof. This holds by the usual distributivity law (2) of Π (or →) and Σ, together with the
equivalence ‖A‖ ×A ' A. J

2.1 Constant Functions into Sets
We consider the case n ≡ 0 first; that is, we assume that B is a set. Recall the definition of
const given in (1).

I Proposition 2 (case n ≡ 0). Let B be a set and A any type. Then, we have the equivalence

(‖A‖ → B) ' Σ (f : A→ B) . constf . (5)

Note that, if B is not only a set but even a propositional type, the condition constf is not
only automatically satisfied, but it is actually contractible as a type. By the usual equivalence
lemmata, the type on the right-hand side of (5) then simplifies to (A→ B), which exactly is
the universal property. Thus, we view (5) as a first generalisation.
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Proof of Proposition 2. Assume a0 : A is some point in A. In the following, we construct a
chain of equivalences. The variable names for certain Σ-components might seem somewhat
odd: for example, we introduce a point f1 : B. The reason for this choice will become clear
later. For now, we simply emphasise that f1 is “on the same level” as f : A→ B in the sense
that they both give points, rather than for example paths (like, for example, an inhabitant
of constf ).

B

(S1) ' Σ (f1 : B) .
(
A→ Σ (b : B) . b = f1

)
(S2) ' Σ (f1 : B) .Σ (f : A→ B) .Πa:Af(a) = f1

(S3) ' Σ (f1 : B) .Σ (f : A→ B) . (Πa:Af(a) = f1)× (constf )× (f(a0) = f1)
(S4) ' Σ (f : A→ B) . (constf )× Σ (f1 : B) . (f(a0) = f1)× (Πa:Af(a) = f1)
(S5) ' Σ (f : A→ B) . (constf )× (Σ (f1 : B) . f(a0) = f1)
(S6) ' Σ (f : A→ B) . constf

(6)

Let us explain the validity of the single steps. In the first step, we add a family of singletons.
In the second step, we apply the distributivity law (2). In the third step, we add two
Σ-components, and B being a set ensures that both of them are propositional. But it is very
easy to derive both of them from Πa:Af(a) = f1, showing that both of them are contractible.
In the fourth step, we simply reorder some Σ-components, and in the fifth step, we use that
Πa:Af(a) = f1 is contractible by an argument analogous to that of the third step. Finally,
we can remove two Σ-components which form a contractible singleton.

If we carefully trace the equivalences, we see that the function part

e : B → Σ (f : A→ B) . constf (7)

is given by

e(b) ≡
(
λa.b , λa1a2.reflb

)
, (8)

not depending on the assumed a0 : A. But as e is an equivalence assuming A, it is also an
equivalence assuming ‖A‖.

As ‖A‖ →
(
B ' (Σ (f : A→ B) . constf )

)
implies that the two types (‖A‖ → B) and(

‖A‖ → (Σ (f : A→ B) . constf )
)
are equivalent, the statement follows from Lemma 1. J

The core strategy of the steps (S1) to (S6) is to add and remove contractible Σ-components,
and to reorder and regroup them. This principle of expanding and contracting a type
expression can be generalised and, as we will see, even works for the infinite case when B
is not known to be of any finite truncation level. Generally speaking, we use two ways of
showing that components of Σ-types are contractible. The first is to group two of them
together such that they form a singleton, as we did in (S1) and (S6). The second is to use
the fact that B is truncated, as we did in (S3). We consider the first to be the key technique,
and in the general (infinite) case of an untruncated B, the second can not be applied at
all. We thus view the second method as a tool to deal with single Σ-components that lack
a “partner” only because the case that we consider is finite, and which is unneeded in the
infinite case.

2.2 Constant Functions into Groupoids
The next special case is n ≡ 1. Assume that B is a 1-type (sometimes called a groupoid).
Let us first clarify which kind of constancy we expect for a map f : A→ B to be necessary.
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Not only do we require c : constf , we also want this constancy proof (which is in general not
propositional any more) to be coherent: given a1 and a2 : A, we expect that c only allows us
to construct essentially one proof of f(a1) = f(a2). The reason is that we want the data
(which includes f and c) together to be just as powerful as a map ‖A‖ → B, and from such
a map, we only get trivial loops in B.

We claim that the required coherence condition is

cohf,c :≡ Πa1a2a3:Ac(a1, a2) · c(a2, a3) = c(a1, a3). (9)

A first sanity check is to see whether from d : cohf,c we can now prove that c(a, a) is equal to
refla, something that should definitely be the case if we do not want to be able to construct
possibly different parallel paths in B. To give a positive answer, we only need to see what
d(a, a, a) tells us.

I Proposition 3 (case n ≡ 1). Let B be a groupoid (1-type) and A be any type. Then, we
have

(‖A‖ → B) '
(
Σ (f : A→ B) .Σ (c : constf ) . cohf,c

)
. (10)

Note that Proposition 3 generalises Proposition 2: if B is a set (as in Proposition 2), it
is also a groupoid and the type cohf,c becomes contractible, as it talks about equality of
equalities.

Proof. Although not conceptually harder, it is already significantly more tedious to write
down the chain of equivalences. We therefore choose a slightly different representation.
Assume a0 : A as before. We then have:

B

(S1) '
Σ (f1 : B) .
Σ (f : A→ B) .Σ (c1 : Πa:Af(a) = f1) .
Σ (c : constf ) .Σ

(
d1 : Πa1a2:Ac(a1, a2) · c1(a2) = c1(a1)

)
.

Σ (c2 : f(a0) = f1) .Σ (d3 : c(a0, a0) · c1(a0) = c2) .
Σ (d : cohf,c0) .

(d2 : Πa:Ac(a0, a) · c1(a) = c2)
(S2) '

Σ (f : A→ B) .Σ (c : constf ) .Σ (d : cohf,c) .
Σ (f1 : B) .Σ (c2 : f(a0) = f1) .
Σ (c1 : Πa:Af(a) = f1) .Σ (d2 : Πa:Ac(a0, a) · c1(a) = c2) .
Σ
(
d1 : Πa1a2:Ac(a1, a2) · c1(a2) = c1(a1)

)
.

(d3 : c(a0, a0) · c1(a0) = c2)
(S3) '

Σ (f : A→ B) .Σ (c : constf ) . (d : cohf,c)

(11)

In the first step (S1), we expand the single type B to a nested Σ-type with in total nine
Σ-components. We write them in six lines, and each line apart from the first is a contractible
part of this nested Σ-type, implying that the whole type is equivalent to B. In the lines
two and three, we can apply the distributivity law, i.e. the equivalence (2), to give them
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the shape of singletons, while the fourth line is already a singleton. As B is 1-truncated,
the lines five and six represent propositional types, but those types are easily seen to be
inhabited using the other Σ-components.

In the second step, we simply re-order some Σ-components. Then, in step (S3), we remove
the Σ-components in the lines two to five which is justified as, again, each line represents a
contractible part of the nested Σ-type.

We trace the canonical equivalences to see that the function-part of the constructed
equivalence is

e : B → Σ (f : A→ B) .Σ (c : constf ) . (d : cohf,c) (12)
e(b) ≡ (λa.b , λa1a2.reflb , λa1a2a3.reflreflb

). (13)

In particular, e is independent from the assumed a0 : A. As before, this means that e
is an equivalence assuming ‖A‖, and, with the help of Lemma 1, we derive the claimed
equivalence. J

2.3 Outline of the General Idea
At this point, it seems plausible that what we have done for the special cases of n ≡ 0
and n ≡ 1 can be done for any (fixed) n < ∞. Nevertheless, we have seen that the
case of groupoids is already significantly more involved than the case of sets. To prove a
generalisation, we have to be able to state what it means for a function to be “coherently
constant” on n levels, rather than just the first one or two.

Let us try to specify what “coherently constant” should mean in general. If we have a
function f : A→ B, we get a point in B for any a : A. A constancy proof c : constf gives
us, for any pair of points in A, a path between the corresponding points in B. Given three
points, c gives us three paths which form a “triangle”, and an inhabitant of cohf,c does
nothing else than providing a filler for such a triangle. It does not take much imagination to
assume that, on the next level, the appropriate coherence condition should state that the
“boundary” of a tetrahedron, consisting of four filled triangles, can be filled.

To gain some intuition, let us look at the following diagram:

A

A×A

A×A×A

B

Σ (b1, b2 : B) . b1 = b2

Σ (b1, b2, b3 : B) .
Σ (p12 : b1 = b2) .
Σ (p23 : b2 = b3) .
Σ (p13 : b1 = b3) .
p12 · p23 = p13

t[0]

t[1] : constt[0]

coht[0],t[1]

Figure 1 Constancy as a natural transformation.
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All vertical arrows are given by projections. Consider the category D with objects the
finite ordinals [0], [1] and [2] (with 1, 2, and 3 objects, respectively), and arrows the strictly
monotonous maps. Then, the left-hand side and the right-hand side can both be seen as a
diagram over Dop. The data that we need for a “coherently constant function” from A into B,
if B is a groupoid, can now be viewed as a natural transformation t from the left to the right
diagram (the dashed horizontal arrows). On the lowest level, such a natural transformation
consists of a function t[0] : A → B, which we called f before. On the next level, we have
t[1] : A2 → Σ (b1, b2 : B) . b1 = b2, but in such a way that the diagram commutes (strictly,
not up to homotopy), enforcing

fst(t[1](a1, a2)) ≡ (t[0](a1), t[0](a2)) (14)

and thereby making t[1] the condition that t[0] is weakly constant. Finally, t[2] yields the
coherence condition coh.

In the most general case, where we do not put any restriction on B, we certainly cannot
expect that a finite number of coherence conditions can suffice. Instead of the diagram over
Dop, as pictured on the right-hand side of Figure 1, we will need a diagram over the the
category of all non-zero finite ordinals. This is what we call the equality semi-simplicial type
over B, written EB. In the language of model categories, this is a fibrant replacement of
the constant diagram. It would be reasonable to expect that our EB extends the diagram
shown in Figure 1, but this will only be true up to (levelwise) equivalence of types. Defining
EB as a strict extension of that diagram is tempting, but it seems to be combinatorically
nontrivial to continue in the same style, as it would basically need Street’s orientals [25].
Our construction will be much simpler to write down and easier to work with, with the only
potential disadvantage being that, compared to the diagram Figure 1, the lower levels will
look rather bloated. The other diagram in Figure 1, i.e. the left-hand side, is easy to extend,
and we call it the trivial diagram over A. In the terminology of simplicial sets, it is the
[0]-coskeleton of the constant diagram. Our main result is essentially an internalised version,
stated as an equivalence of types, of the following slogan:

Functions ‖A‖ → B correspond to natural transformations from the trivial
diagram over A to the semi-simplicial equality type over B.

Our type of natural transformations is basically a Reedy limit of an exponential of diagrams.
We will perform the expanding and contracting principle that we have exemplified in the
proofs of Propositions 2 and 3 by modifying the index category of the diagram of which we
take the limit, step by step, taking care that every single step preservers the Reedy limit in
question up to homotopy equivalence. As we will see, these steps correspond indeed to the
steps that we took in the proofs of Propositions 2 and 3.

3 Fibration Categories, Inverse Diagrams, and Reedy Limits

In his work on Univalence for Inverse Diagrams and Homotopy Canonicity, Shulman has
proved several deep results [24]. Among other things, he shows that diagrams over inverse
categories can be used to build new models of univalent type theory, and uses this to prove a
partial solution to Voevodsky’s homotopy-canonicity conjecture. We do not require those
main results; in fact, we do not even assume that there is a universe, and consequently we
also do not use univalence! At the same time, what we want to do can be explained nicely
in terms of diagrams over inverse diagrams, and we therefore choose to work in the same
setting. Luckily, it is possible to do this with only a very short introduction to type-theoretic
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fibration categories, inverse diagrams and Reedy limits, and this is what the current section
servers for.

Type-theoretic fibration categories. A type-theoretic fibration category (as defined in [24,
Definition 2.1] is a category with some structure that allows to model dependent type theory
with identity types. Let us recall the definition, where we use a lemma by Shulman to give
an equivalent (more “type-theoretic”) formulation:

I Definition 4 (Type-theoretic fibration category, [24, Definition 2.1 combined with Lemma 2.4]).
A type-theoretic fibration category is a category C which has the following structure.
(i) A terminal object 1.
(ii) A (not necessarily full) subcategory F ⊂ C containing all the objects, all the isomorph-

isms, and all the morphisms with codomain 1. A morphism in F is called a fibration,
and written as A � B. Any morphism i is called an acyclic cofibration and written
i : X ∼� Y if it has the left lifting property with respect to all fibrations, meaning that
every commutative square

X

Y

A

B

i ∼ f

has a (not necessarily unique) filler h : Y → A that makes both triangles commute.
(iii) All pullbacks of fibrations exist and are fibrations.
(iv) For every fibration g : A� B, the pullback functor g? : C/B → C/A has a partial right

adjoint Πg, defined at all fibrations over A, whose values are fibrations over B.
(v) For any fibration A� B, the diagonal A→ A×B A factors as A ∼� PBA� A×B A,

with the first map being an acyclic cofibration and the second being a fibration.
(vi) For any A� B, there exists a factorisation as in (5) such that in any diagram of the

shape
X Y Z

A PBA B
∼

we have the following: if both squares are pullback squares (which implies that Y → Z

and X → Z are fibrations), then X → Y is an acyclic cofibration.

I Remark. From the above definition, it follows that every morphism factors as an acyclic
cofibration followed by a fibration. Shulman’s proof [24, Lemma 2.4], a translation of the
proof by Gambino and Garner [8] into category theory, relies on the fact that every morphism
A→ 1 is a fibration (“all objects are fibrant”) by definition.

The example of a type-theoretic fibration category that we mainly have in mind is [24,
Example 2.9], the category of contexts of a dependent type theory with a unit type, Σ- and
Π-types, and identity types. The unit, Σ- and Π-types are required to satisfy judgmental
η-rules. Because of these η-rules, we do not need to talk about contexts; we can view every
object of the category as a nested Σ-type with some finite number of components. Of
course, the terminal object is the unit type. The subset of fibrations is the closure of the
projections under isomorphisms. One nice property is that the η-rules also imply that we can
assume that all fibrations are a projection of the form

(
Σ (x : X) . Y (x)

)
� X. Pullbacks

correspond to substitutions, and the partial functor Πg comes from dependent function
types. For any fibration f : A � B, the factorisation in item (5) can be obtained using
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the intensional identity type: if B is the unit type, then the factorisation can be written
as A ∼�

(
Σ ((x, y) : A×A) . x = y

)
� A × A, and similar otherwise (see [8]). The acyclic

cofibration is given by reflexivity.
Note that the type theory specified in the standard reference on HoTT [27, Appendix

A.2] does not have judgmental η-rules for Σ and 1. This does not constitute a problem when
we want to apply our results to homotopy type theory. First, it appears to be an arbitrary
choice of [27] to not include these judgmental η-rules in the theory. There does not seem
to be any fundamental difficulty with them, and the implementations Agda and Coq do
indeed support them. Second, as Shulman states, these judgmental η-rules are convenient
but not really necessary [24, Example 2.9]. This is certainly true for our constructions
that we can do with finitely nested Σ-types, although it is likely that the assumption of
ωop-limits (infinitely nested Σ-types) would have to be phrased more carefully in the absence
of judgmental η-conversions (see our proof of Theorem 27).

Given a type-theoretic fibration category C with an object A, we can think of A as a
context. Type theoretically, we can work in the theory over the fixed context A. Categorically,
this means we work in the slice over A. The slice category C/A is not necessarily a type-
theoretic fibration category as not all morphisms B → A are fibrations, but we can simply
restrict ourselves to those that are. Shulman denotes this full subcategory of C/A by (C/A)f .
The observation that the (restricted) slice of a type-theoretic fibration category is again a
type-theoretic fibration category allows us that, when we want to do an “internally expressible”
construction for any general given fibration, we can without loss of generality assume that
the codomain of the fibration is the unit type. This corresponds to the fact that an “internal”
construction in type theory still works if we add additional assumptions to the context (which
are then simply ignored by the construction).

It is not exactly true that a type-theoretic fibration category has an intensional dependent
type theory as its internal language due to the well-known issue that substitution in type
theory is strictly functorial. Fortunately, coherence theorems (see e.g. [3, 17]) can be applied
to solve this problem, and we do not worry about it but simply refer to Shulman’s explanation
[24, Chapter 4]. The crux is that, disregarding these coherence issues, the syntactic category
of the dependent type theory with 1, Σ, Π, and identity types is essentially the initial type-
theoretic fibration category. A consequence we will exploit heavily is that, when reasoning
about type-theoretic fibration categories, we can use type-theoretic constructions freely
as long as they can be performed using 1, Π, Σ, and identity types. For example, the
same notion of function extensionality and type equivalence A ' B can be defined. This
means, of course, that we have to be very careful with the terminology. We call a morphism
that is an equivalence in the type-theoretic sense a homotopy equivalence, written A ∼→ B,
while an isomorphism is really an isomorphism in the usual categorical sense. Note that any
isomorphism is not only a fibration by definition, but it is automatically an acyclic cofibration,
and acyclic cofibrations are further automatically homotopy equivalences. Further, it is
natural to introduce the following terminology:

I Definition 5 (Acyclic fibration). We say that a morphism is an acyclic fibration if it is a
fibration and a homotopy equivalence.

An important property to record is that acyclic fibrations are stable under pullback [24,
Corollary 3.12]. In diagrams, we write A ∼� B for acyclic fibrations.

Inverse categories and Reedy fibrant diagrams. For objects x and y of a category, write
y ≺ x if y receives a nonidentity morphism from x (and y � x if y ≺ x or y ≡ x). A category
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I is called an inverse category (also sometimes called one-way category) if the relation ≺ is
well-founded. In this case, the ordinal rank of an object x in I is defined by

ρ(x) :≡ sup
y≺x

(ρ(y) + 1). (15)

As described by Shulman [24, Section 11], diagrams on I can be constructed by well-founded
induction in the following way. If x is an object, write x � I for the full subcategory of
the co-slice category x/I which excludes only the identity morphism idx. Consider the
full subcategory { y | y ≺ x } ⊂ I. There is the forgetful functor U : x � I → { y | y ≺ x },
mapping any x f−→ y to its codomain y. If further A is a diagram in a type-theoretic fibration
category C that is defined on this full subcategory, if the limit

MA
x :≡ limx�I(A ◦ U). (16)

exists, it it called the corresponding matching object. To extend the diagram A to the full
subcategory { y | y � x } ⊂ I, it is then sufficient to give an object Ax and a morphism
Ax → MA

x . The diagram A : I → C is Reedy fibrant if all matching objects MA
x exist and

all the maps Ax → MA
x are fibrations. We use the fact that fibrations can be regarded as

“one-type projections” in the following way:

I Definition 6 (Decomposition in matching object and fibre). If A : I→ C is a Reedy fibrant
diagram, we write (as said above) MA

x for its matching objects, and FA(x,m) for the fibre
over m; that is, we have

Ax ∼= Σ
(
m : MA

x

)
. FA(x,m). (17)

There is the more general notion of a Reedy fibration (a natural transformation between
two diagrams over I with certain properties), so that a diagram is Reedy fibrant if and only
if the unique transformation to the terminal diagram is a Reedy fibration. Further, C is
said to have Reedy I-limits if any Reedy fibrant A : I → C has a limit which behaves in
the way one would expect; in particular, if a natural transformation between two Reedy
fibrant diagrams is levelwise a homotopy equivalence, then the map between the limits is a
homotopy equivalence. We omit the exact definitions as our constructions do not require
them and refer to [24, Chapter 11] for the details instead. For us, it is sufficient to record
that a consequence of the definition of having Reedy ωop-limits is the following:

I Lemma 7. Let a type-theoretic fibration category C that has Reedy ωop-limits be given.
Suppose that

F :≡ F0
∼� F1

∼� F2
∼� . . . (18)

is a diagram F : ωop → C, where all maps are acyclic fibrations. For each i, the canonical
map lim(F )→ Fi is a homotopy equivalence.

Proof. Consider the diagram that is constantly Fi apart from a finite part,

G := F0
∼� F1

∼� . . . ∼� Fi−1
∼� Fi

∼� Fi
∼� Fi . . . . (19)

There is a canonical natural transformation F → G, induced by the arrows in F , which
is a Reedy fibration and levelwise an acyclic fibration. It follows directly from the precise
definition of Reedy limits [24, Definition 11.4] that the induced map between the limits
lim(F )→ Fi is a fibration and a homotopy equivalence. J
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For later, we further record the following two simple lemmata:

I Lemma 8. If A : I→ C is Reedy fibrant, then so is A ◦ U : x/I→ C.

Proof. This is due to the fact that for a (nonidentity) morphism k : x→ y in I the categories
k� (x�I) and y�I are isomorphic. This argument is already used by Shulman ([24, Lemma
11.8]). J

I Lemma 9. If I is a poset (a partially ordered set), x an object, A : I→ C a diagram, and
the limit limx�I(A ◦U) exists, then lim{ y | y≺x }A exists as well and both are isomorphic. J

An inverse category I is admissible for C if C has all Reedy (x � I)-limits. If I is finite,
then any type-theoretic fibration category has Reedy I-limits by [24, Lemma 11.8]. From the
same lemma, it follows that for all constructions that we are going to do, it will be sufficient
if C has Reedy ωop-limits. Further, in all our cases of interest, all co-slices of I are finite,
and C is automatically admissible.

Because of the above, let us fix the following:

I Convention 10. For the rest of this article, let C be a type-theoretic fibration category
with Reedy ωop-limits, which further satisfies function extensionality. We refer to the objects
of C (which are by definition always fibrant) as types. Let us further introduce the term tame
category. We say that an inverse category is a tame category if all co-slices x/I are finite
(which implies that ρ(x) is finite for all objects x) and, for all n, the set of objects at “level”
n, that is { x ∈ I | ρ(x) ≡ n }, is finite. The important property is that a tame category I is
admissible for C, and that C has Reedy I-limits. Thus, tame categories make it possible to
perform constructions without worrying whether required limits exist, and we will not be
interested in any non-tame inverse categories.

4 Subdiagrams

Let I be a tame category. We are interested in full subcategories of I, and we mean
“subcategory” in the strict sense that the set of objects is a subset of the set of objects of I.
We say that a full subcategory J of I is downwards closed if, for any pair x, y of objects in I

with y ≺ x, if x is in J , then so is y. The full downwards closed subcategories of I always
form a poset Sub(I), with an arrow J → J ′ if J ′ is a subcategory of J .

It is easy to see that the poset Sub(I) has all limits and colimits. For example, given
downwards closed full subcategories J and J ′, their product is given by taking the union of
their sets of objects. We therefore write J ∪ J ′. Dually, coproducts are given by intersection
and we can write J ∩ J ′. An object x of I generates a subcategory { y | y � x }, for which
we write x.

If A : I→ C is a Reedy fibrant diagram and C has Reedy I-limits, we can consider the
functor

lim−A : Sub(I)→ C (20)

which maps any downwards closed full subcategory J ⊆ I to limJA, the Reedy limit of A
restricted to J .

I Lemma 11. Let I be a tame category and J,K two downwards closed subcategories of I.
Then, the functor lim−A maps the pullback square
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J ∪K

J

K

J ∩K

in Sub(I) to a pullback square in C.

Proof. For an object X, a cone X → A|J∪K corresponds to a pair of two cones, X → A|J
and X → A|K , which coincide on J ∩K. J

I Lemma 12. Under the same assumptions as before, the functor lim−A maps all morphisms
to fibrations. In other word, if K is a downwards closed subcategory of the inverse category
J , then

limJA� limKA (21)

is a fibration.

Proof. We only need to consider the case that J has exactly one object that K does not
have, say J ≡ K + x, because the composition of fibrations is a fibration (this is true even
for “infinite compositions”, with the same short proof as Lemma 7). Further, we may assume
that all objects of J are predecessors of x, i.e. we have x ≡ J ; otherwise, we could view
J → K as a pullback of x→ x− x and apply Lemma 11.

The cone limKA→ A|K gives rise to a cone limKA→ (A ◦ U)|x�K (the morphism into
x

f−→ y is given by the morphism into y), and we thereby get a morphism m : limKA→MA
x .

If we pull the fibration Ax �MA
x back along the morphism m, we get a fibration P � limKA,

and it is easy to see that P ∼= limJA. J

I Remark. The above proof gives us a description of the fibration limK+xA � limKA in
type-theoretic notation. It can be written as

Σ (k : limKA) . FA(x,m(k))� limKA. (22)

This remains true even if not all objects in J are predecessors of x.

5 Equality Diagrams

Given any tame category I and a fixed type B in C, the diagram I→ C that is constantly
B is, in general, not Reedy fibrant. Fortunately, the axioms of a type-theoretic fibration
category allow us to define a fibrant replacement (see, for example, Hoveys textbook [12]).
We call the resulting diagram, which we construct explicitly, the equality diagram of B over
I. We define by simultaneous induction:
(i) a diagram EB : I→ C, the equality diagram
(ii) a cone η : B → EB (i.e. a natural transformation from the functor that is constantly B

to EB)
(iii) a diagram MEB : I→ C (the diagram of matching objects)
(iv) an auxiliary cone η̃ : B →MEB .
(v) a natural transformation ι : EB →MEB

such that ι ◦ η equals η̃.
Assume that i is an object in I such that the five components are defined for all

predecessors of i. This is in particular the case if i has no predecessors. We define the
matching object MEBi :≡ limi�IEB as discussed in Section 3. The universal property of this
limit yields
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for every non-identity morphism f : i→ j, an arrow f : MEBi → EBj , which lets us define
MEB(f) to be ιj ◦ f ; and
an arrow η̃i : B →MEBi such that, for every non-identity f : i→ j as in the first point,
we have that f ◦ η̃i equals ηj .

We further define EB on objects by

EBi :≡ Σ
(
m : MEBi

)
.Σ (x : B) . η̃i(x) = m. (23)

This allows us to choose the canonical projection map for ιi, and we can define EB on
non-identity morphisms by

EB(f) :≡ f ◦ ιi. (24)

Finally, we set

ηi(x) :≡ (η̃i(x), x, reflη̃i(x)). (25)

By construction, η, η̃, and ι satisfy the required naturality conditions.

I Lemma 13. For all i : I, the morphism ηi : B → EBi is a homotopy equivalence.

Proof. This is due to the fact that

EBi ≡ Σ
(
m : MEBi

)
.Σ (x : B) . η̃i(x) = m

' Σ (x : B) .Σ
(
m : MEBi

)
. η̃i(x) = m

' B,

(26)

where the last step uses that the last two Σ-components have the form of a singleton. J

The proceeding lemma tells us that EB is levelwise homotopy equivalent to the constant
diagram. The crux is that, unlike the constant diagram, EB is Reedy fibrant by construction,
i.e. a fibrant replacement in the usual terminology of model category theory.

I Lemma 14. For all morphisms f in the category I, the fibration EB(f) is a homotopy
equivalence.

Proof. If f : i→ j is a morphism in I, we have EB(f) ◦ ηi ≡ ηj due to the naturality of η.
The claim than follows by Lemma 13 as homotopy equivalences satisfy “2-out-of-3”. J

6 The Equality Semi-simplicial Type

Let ∆+ be the category of non-zero finite ordinals and strictly increasing maps between them.
We write [k] for the objects, [k] ≡ { 0, 1, . . . , k }, and [k] +→ [m] for the hom-sets. We can now
turn to our main case of interest, which is the tame category I ≡ ∆op

+ . In this case, we call
EB the equality semi-simplicial type of the (given) type B. We could write down the first
few values of MEB[n] and EB[n] explicitly. However, these type expressions would look rather
bloated. More revealing might be the homotopically equivalent presentation in Figure 2.

We think of EB[0] as the type of points, EB[1] as the type of lines (between two points), and
of EB[2] as the type of triangles (with its faces). The “boundary” of a triangle, as represented
by M[2], consists of three points with three lines, and so on. In general, we think of EB[n]
as (the type of) n-dimensional tetrahedra, while MEB[n] are their “complete boundaries”. In
principle, we could have defined EB in a way such that Figure 2 are judgmental equalities
rather than only equivalences: the stated types could be completed to form a Reedy fibrant
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MEB[0] ≡ 1

EB[0] ' B

MEB[1] ' B ×B

EB[1] ' Σ
(
b1, b2 : B

)
. b1 = b2

MEB[2] ' Σ
(
b1, b2, b3 : B

)
. (b1 = b2)× (b2 = b3)× (b1 = b3)

EB[2] ' Σ
(
b1, b2, b3 : B

)
.Σ
(
p : b1 = b2

)
.Σ
(
q : b2 = b3

)
.Σ
(
r : b1 = b3

)
. p � q = r.

Figure 2 The “nicer” formulation of the equality semi-simplicial type. The equivalences can be
shown easily using the contractibility of singletons.

diagram. However, we do not think that this is possible using a definition that is as uniform
and short as the one above. Already for EB[3], it seems unclear what the best formulation
would be if we wanted to follow the presentation of Figure 2. In general, such a construction
would most likely make use of Street’s orientals [25].

For any [n], the co-slice category [n]/∆op
+ is a poset. This is a consequence of the fact that

all morphisms in ∆+ are monic. We have the forgetful functor U : [n]/∆op
+ → ∆op

+ . Further,
[n]/∆op

+ is isomorphic to the poset P+([n]) of nonempty subsets of the set [n] ≡ {0, 1, . . . , n},
where we have an arrow between two subsets if the first is a superset of the second. The
downwards closed full subcategories of [n]/∆op

+ correspond to downwards closed subsets of
P+([n]). If S is such a downwards closed subset, we write limS(EB ◦U), omitting the implied
functor S → [n]/∆op

+ .
Any set s ⊆ [n] generates such a downwards closed set for which we write s :≡ P+(s).

For k ∈ s, we write s−k for the set that we get if we remove exactly two sets from s, namely
s itself and the set s − k (i.e. s without the element k). We call lim[n]−k

(EB ◦ U) the k-th
n-horn.

IMain Lemma 15. For any n ≥ 1 and k ∈ [n], call the fibration from the full n-dimensional
tetrahedron to the k-th n-horn

lim[n](EB ◦ U) � lim[n]−k
(EB ◦ U) (27)

a horn-filler fibration. All horn-filler fibrations are homotopy equivalences.

I Remark and Corollary 16 (Types are Kan complexes). As both Steve Awodey and an
anonymous reviewer of have pointed out to me, Main Lemma 15 can be seen as a simplicial
variant of Lumsdaine’s [16] and van den Berg-Garner’s [28] result that types are weak ω-
groupoids. Both of these (independent) articles use Batanin’s [5] definition, slightly modified
by Leinster [15], of a weak ω-groupoid.

Let us make the construction of a simplicial weak ω-groupoid, i.e. of a Kan complex,
concrete. We can do this for the assumed type-theoretic fibration category C as long as it is
locally small (i.e. all hom-sets are sets). As before, we can without loss of generality assume
that the type we want to consider lives in the empty context, i.e. is given by an object B.
We can define a semi-simplicial set

S : ∆op
+ → Set (28)

S[n] :≡ C(1, EB[n]). (29)

For a morphism f of ∆op
+ , the functor S is given by simply composing with EB(f).
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Shulman’s acyclic fibration lemma [24, Lemma 3.11], applied on the result of our Main
Lemma 15, gives us sections of all horn-filler fibrations. Therefore, S satisfies the Kan
condition. By a result Rourke and Sanderson [21] (see also McClure [19] for a combinatorical
proof), such a semi-simplicial set can be given the structure of a Kan simplicial set, an
incarnation of a weak ω-groupoid.

To get the result that types in HoTT are Kan complexes, we simply take C to be the
syntactic category of HoTT, where we have to assume strict η for Π, Σ and 1. This allows
us to say very concretely that the terms of the types that we can write down form a Kan
complex.

Proof of Main Lemma 15. Fix [n]. We show more generally that, for any s ⊆ [n] with
cardinality |s| ≥ 2 and k ∈ s, the fibration

lims(EB ◦ U)� lims−k
(EB ◦ U) (30)

is an equivalence. Note that lims(EB ◦ U) is isomorphic to EB[|s|−1].
The proof is performed by induction on the cardinality of s. If s has only one element

apart from k, then s−k is the one-object category {{k}} and we have

lim{{k}}(EB ◦ U) ∼= EB[0]. (31)

The statement then follows from Lemma 14.
Let us explain the induction step. The inclusions {{k}} ⊆ s−k ⊂ s give rise to a triangle

lims(EB ◦ U) lims−k
(EB ◦ U)

lim{{k}}(EB ◦ U)

of fibrations. The top horizontal fibration is the one of which we want to prove that it
is an equivalence. Using “2-out-of-3” and the fact that the left (diagonal) fibration is an
equivalence by Lemma 14, it is sufficient to show that the right vertical fibration is an
equivalence. To do this, we decompose it into 2|s|−1 − 1 fibrations, each of which can be
viewed as the pullback of a smaller horn-filler fibration:

Consider the set P+(s− k) of those nonempty subsets of s that do not contain k. The
number of those is 2|s|−1 − 1. We label those sets as α1, α2, . . . , α2|s|−1−1, where the order is
arbitrary with the only condition that their cardinality is nondecreasing, i.e. i < j implies
|αi| < |αj |.

We further define 2|s|−1 subsets of P+(s), named S0, S1, . . . , S2|s|−1 . Define S0 to be
{{k}}. Then, define Si to be Si−1 with two additional elements, namely αi and αi ∪ {k}. In
this process, every element of P+(s) is clearly added exactly once. In particular, S2|s|−1 ≡ s
and S2|s|−1−1 ≡ s−k. Further, all Si are downwards closed, which is easily seen to be the
case by induction on i: it is the case for i ≡ 0, and in general, Si contains all proper subsets
of αi ∪ {k} due to the single ordering condition that we have put on the sequence (αj).

It is easy to see that

Si ≡ Si−1 ∪ αi ∪ {k} (32)

αi ∪ {k}−k ≡ Si−1 ∩ αi ∪ {k}. (33)

By Lemma 11, we thus have a pullback square
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limSi
(EB ◦ U) lim

αi∪{k}
(EB ◦ U)

limSi−1(EB ◦ U) lim
αi∪{k}−k

(EB ◦ U)

For i ≤ 2|s|−1 − 2, the right vertical morphism is a homotopy equivalence by the induction
hypothesis. As acyclic fibrations are stable under pullback, the left vertical morphism is one
as well. As the composition of equivalences is an equivalence, we conclude that

lims−k
(EB ◦ U)� lim{{k}}(EB ◦ U) (34)

is indeed an equivalence. J

I Remark. Recall that a simplicial object X : ∆op → D satisfies the Segal condition (see [22])
if the “fibration”

X[n] → X[1] ×X[0] X[1] ×X[0] . . .×X[0] X[1]︸ ︷︷ ︸
n factors

(35)

is an equivalence. In our situation, it looks as if it was easy to check the Segal condition;
more precisely, a shorter argument than the one in the proof could show that all the
fibrations of the form (35)) are homotopy equivalences. Our construction with the sequence
α1, α2, . . . , α2|s|−1−1 seems to contain a “manual” proof of the fact that checking this form
of the Segal condition would be sufficient.

7 Fibrant Diagrams of Natural Transformations

Let us first formalise what we mean by the “type of natural transformations between two
diagrams”. If I is a tame category and D,E : I → C are Reedy fibrant diagrams, the
exponential ED : I → C in the functor category CI exists and is Reedy fibrant [24, Theorem
11.11] and thus has a limit in C. What we are interested in is the more general case that D
might not be fibrant, but we also do not need any exponential.1 On a more abstract level,
what we want to do can be described as follows. For any downwards closed subcategory of I,
we consider the exponential of D and E restricted to this subcategory, and take its limit. We
basically construct approximations to the “type of natural transformations” from D to E
which, in fact, corresponds to the limit of these approximations, should it exist. Fortunately,
it is easy to do everything “by hand” on a very basic level.

We write LIM for the underlying partially ordered set of I that we get if we make any two
parallel arrows equal (we “truncated” all hom-sets). This makes sense even if I is not inverse,
but if it is, then so is LIM. There is a canonical functor |−|

I
: I → LIM. As the objects of I

are the same as those of LIM, we omit this functor when applied to an object, i.e. for i ∈ I we
write i ∈ LIM instead of |i|I ∈ LIM.

1 The author expects that the exponential ED exists and is fibrant even if only E is fibrant (note that D
is automatically at least pointwise fibrant, as all objects in C are fibrant by definition). This would lead
to an alternative representation of the same construction, but the author has decided to use the less
abstract one presented here as it seems to give a more direct argument.
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I Definition 17 (Diagram of Natural Transformations). Given an inverse category I, a diagram
D : I → C and a fibrant diagram E : I → C with

Ei ≡ Σ
(
m : ME

i

)
. FE(i,m) (36)

as introduced in Definition 6, we define a fibrant diagram N : LIM → C together with a
natural transformation

v :
(
(N ◦ |−|

I
)×D

)
→ E (37)

simultaneously, where (N ◦ |−|
I
)×D is the functor I → C that is given by taking the product

pointwise.
Assume i is an object in I. Assume further that we have defined both N and v for all

predecessors of i (i.e. N is defined on { x ∈ LIM | x ≺ i } and v is defined on { x ∈ I | x ≺ i }).
v then gives rise to a map

v : lim{ x∈LIM | x≺i }N ×Di →ME
i . (38)

Using the very simple Lemma 9, we have lim{ x∈LIM | x≺i }N ∼= limi�LIM(N ◦ U) ∼= MN
i .

We define Ni ≡ Σ
(
m : MN

i

)
. FN(i,m) by choosing the fibre over m to be

FN(i,m) :≡ Πd:DiF
E(i, v(m, d)). (39)

This definition also gives a canonical morphism vi : Ni ×Di → Ei which extends v.

Let us apply this construction to define the type of constant functions between types
A and B in the way that we already suggested in Figure 1 on page 118. First, we define
the [0]-coskeleton of the diagram that is constantly A, which we also have referred to as the
trivial diagram over A, as the functor TA : ∆op

+ → C as follows. For objects, it is simply given
by

TA[k] :≡ A×A× . . .×A︸ ︷︷ ︸
(k+1) factors

. (40)

If we view an element of TA[i] as a function [i] → A, for a map f : [i] +→ [j] we get
TA(f) : TA[j] → TA[i] by composition with f . We then define the functor NA,B : L∆op

+ M→ C

via the above construction as the “fibrant diagram of natural transformations” from TA to
EB. Note that L∆op

+ M is isomorphic to ωop. Using the homotopy equivalent formulation of EB
stated in (2) and the definitions of const and coh of Section 2, we get

NA,B([0]) ' (A→ B) (41)

as well as

NA,B([1]) ' Σ (f : A→ B) . constf (42)

and

NA,B([2]) ' Σ (f : A→ B) .Σ (c : constf ) . cohf,c. (43)

We want to stress the intuition that we think of functions with an infinite tower of coherence
condition by introducing the following notation:

I Definition 18 (A ω−→ B). Given types A and B, we write A ω−→ B synonymously for
limL∆op

+ MNA,B .
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We usually omit the indices of NA,B and just write N , provided that A,B are clear from the
context. This allows us write N[n] instead of NA,B([n]).

Analogously to Definition 18, let us write the following:

I Definition 19 (A [n]−→ B). Given types A and B and a (usually finite) number n, we write
A

[n]−→ B synonymously for N[n]. To enable a uniform presentation, we define A [−1]−−→ B to
be the unit type.

We are now able to make the main goal, as outlined in Section 2.3, precise: we will
construct a function (‖A‖ → B)→ (A ω−→ B) and prove that it is a homotopy equivalence.
For now, let us record that we can get a function B → (A ω−→ B). In the following definition,
we use the cones η : B → EB and η̃ : B →MEB from Section 5.

I Definition 20 (Canonical function s : B → (A ω−→ B)). Define a cone γ : B → N
which maps b : B to the function that is “judgmentally constantly b”, in the following way.
First, notice that the matching object MN[n] is simply N[n−1] (due to the fact that L∆op

+ M
is a total order). Assume we have already defined the component γ[n−1] : B → N[n−1]
such that v(γ[n−1](b), x) ≡ η̃[n](b), with v as in (38), for all x : TA[n]. We can then
define γ[n](b) by giving an element of FN ([n], γ[n−1](b)), but that expression evaluates to
Πx:TA[n]Σ (x : B) . η̃[n](x) = η̃[n](b). Thus, we can take γ[n](b) to be

γ[n](b) :≡
(
γ[n−1](b), λz.(b, reflη̃[n−1](b))

)
. (44)

It is straightforward to check that the condition v(γ[n], x) ≡ η̃[n+1](b) is preserved. Define
the function s : B → (A ω−→ B) to be limL∆op

+ Mγ, the arrow that is induced by the universal
property of the limit.

8 Extending Semi-Simplicial Types

In this section, we first define the category ∆̂+. We can then view ∆̂op
+ as an extension of

∆op
+ , as ∆op

+ can be embedded into ∆̂op
+ , and this embedding has a retraction R with the

property that the co-slice c/∆̂op
+ is always isomorphic to Rc/∆op

+ . With the help of this
category, we can describe precisely how we want to apply our “expanding and contracting”
strategy. The definition of ∆̂+ is motivated by the proofs of Propositions 2 and 3, and this
will become clear when we show how exactly we use ∆̂+, see especially Figure 4.

I Definition 21 (∆̂+). Let ∆̂+ be the following category. For every object [k] of ∆+ (i.e.
every natural number k), and every number i ∈ [k + 1], we have an object ci[k]. Given objects

ci[k] and c
j
[m], we define ∆̂+

(
ci[k], c

j
[m]

)
to a subset of the set of maps ∆+([k], [m]). It is given

by

∆̂+

(
ci[k], c

j
[m]

)
:≡
{
f : [k] +→ [m]

∣∣ α(k,m, i, j)
}

(45)

where the condition α is defined as

α(k,m, i, j) :≡


f(x) ≡ x for all x < i, and f(x) > x for all x ≥ i if i < j

f(x) ≡ x for all x < i if i ≡ j
⊥ if i > j.

(46)
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c0[0] c1[0]

c0[1] c1[1] c2[1]

c0[2] c1[2] c2[2] c3[2]

c0[3] c1[3] c2[3] c3[3] c4[3]

. . . . . . . . . . . . . . .

Figure 3 The category ∆̂op
+ .

What will be useful for us is the opposite category ∆̂op
+ . A part of it, namely the subcategory{

ci[k] ∈ ∆̂op
+

∣∣∣ k ≤ 3
}
, can be pictured as shown in Figure 3. We only draw the “generating”

arrows cj[m+1] → ci[m].
The idea is that the full subcategory of objects c0[m] is exactly ∆+, and that every object

ci[m] in ∆̂+ receives exactly one arrow for every [k] +→ [m]. We make this precise as follows:

I Lemma 22. The canonical embedding ∆op
+ ↪→ ∆̂op

+ , defined by [m] 7→ c0[m], has a retraction

R : ∆̂op
+ → ∆op

+ (47)

R(cj[m]) :≡ [m] (48)

and, for all objects cj[m] in ∆̂op
+ , the functor that R induces on the co-slice categories

cj[m]/∆̂
op
+ → [m]/∆op

+ (49)

is an isomorphism of categories.

Proof. It is clear that ∆op
+ ↪→ ∆̂op

+
R−→ ∆op

+ is the identity on ∆op
+ . For any cj[m], fix an object

[k] in ∆op
+ and take a morphism f : [k] +→ [m]. There is exactly one i such that the condition

α(k,m, i, j) in (46) is fulfilled. This proves the second claim. J

Let us extend the functor TA : ∆op
+ → C (see Section 7) to the whole category ∆̂op

+ .
Assume that a type A is given. We want to define a diagram T̂A that extends TA. This
corresponds to the point where, in Section 2, we had assumed that a point a0 : A was given,
in other words, we had added (a0 : A) to the context. We do the same here. Recall that we
write (C/A)f for the type-theoretic fibration category with fixed context A, as explained in
Section 3. The diagram that we define is a functor

T̂A : ∆̂op
+ → (C/A)f . (50)

In order to be closer to the type-theoretic notation and to hopefully increase readability, we
write objects of (C/A)f simply as B(a0) if they are of the form Σ (a : A) . B(a)� A. This
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uses that we can do the whole construction fibrewise, i.e. that we can indeed assume a fixed
but arbitrary a0 : A “in the context”. Of course, objects in (C/A)f of the form A×B � A

are simply denoted by B.
Using this notation, we define T̂A on objects by

T̂A(cj[m]) :≡ A×A× . . .×A︸ ︷︷ ︸
(m+1−j) factors

, (51)

for which we simply write Am+1−j . Given cj[m]
f−→ ci[k] in ∆̂op

+ , we thus need to define a map
T̂A(f) : Am+1−j → Ak+1−i. As in the definition of TA, the map f : [k] +→ [m] gives rise to a
function f : Am+1 → Ak+1 by “composition”. We define T̂A(f) as the composite

Am+1−j

Aj ×Am+1−j

Ai ×Ak+1−i

Ak+1−i

~a 7→ (a0, a0, . . . , a0︸ ︷︷ ︸
j times a0

,~a)

f

snd

We have a diagram EB ◦R : ∆̂op
+ → C, which we can (pointwise) pull back along A� 1,

which gives us a diagram that we call ÊB : ∆̂op
+ → (C/A)f . This diagram is Reedy fibrant.

With the construction of Section 7, we can define N̂ : L∆̂op
+ M → (C/A)f to be the “fibrant

diagram of natural transformations” from T̂A to ÊB.
We can picture N̂ on the subcategory

{
cj[m] ∈ L∆̂

op
+ M
∣∣∣ m ≤ 2

}
as shown in Figure 4. For

readability, we use the homotopy equivalent representation of the values of EB as shown in
Figure 2. Further, we only write down the values of F ÊB (i.e. the fibres) instead of the full
expression ÊB(cj[m]) ≡ Σ

(
t : M ÊB(cj[m])

)
. F ÊB(cj[m], t). For example, constf � (f : A → B)

stands for the projection Σ (f : A→ B) . constf � (A→ B). The reader is invited to make
a comparison with Proposition 3. Recall that, in the proof of Proposition 3, we have started
with the Σ-component f1. In the “expanding” part, we have added the pair of f and c1,
which (together) form a contractible type, as well as the pair of c and d1, and c2 and d3. We
have also used that the types of d and d2 are, in the presence of the other Σ-components,
contractible. Then, in the “retracting” part, we have used that the types of d3 and d1 are
contractible, and that c1 and d2, as well as f1 and c2, form pairs of two other contractible
types.

To compare N̂ with N , first note that N : ∆op
+ → C can be pulled back along A � 1

pointwise and yields a diagram ∆op
+ → (C/A)f . This diagram is identical (pointwise iso-

morphic) to the diagram that we get if we first pull back the diagrams TA and EB, and then
take the “fibrant diagram of natural transformations”. Further, as “limits commute with
limits”, the limit of this diagram is, in (C/A)f , isomorphic to the pullback of A ω−→ B along
A � 1. It is thus irrelevant at which point in the construction we “add (a0 : A) to the
context”, i.e. at which point we switch from C to the slice over A. This allows us to compare
constructions in (C/A)f and C, by implicitly pulling back the latter. As it is easy to see, N̂
extends N in this sense (i.e. N̂ (c0[m]) is the pullback of N[m] along A� 1).
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f : A→ B f1 : B

c : constf c1 : Πa:Af(a) = f1 c2 : f(a0) = f1

d : cohf,c0

d1 : Πa1a2:Ac(a1, a2) · c1(a2) = c1(a1)
d2 : Πa:Ac(a0, a) · c1(a) = c2

d3 : c(a0, a0) · c1(a0) = c2

Figure 4 The diagram N̂ in readable (homotopy equivalent) representation; only the three lowest
levels (the images of cj

[m] with m ≤ 2) are drawn. Note that we use that same identifiers as in the
proofs of Propositions 2 and 3.

Recall that we have defined a cone γ : B → N and an arrow s : B → (A ω−→ B)
in Definition 20. Exploiting that γ[n](b) was defined in a way that makes it completely
independent of the “argument” x : TA[n], and using Lemma 22, we can extend γ to a cone
γ : B → N̂ , essentially by putting γcj

[m]
:≡ γ[m]. This gives a morphism

s : B → lim
L∆̂op

+ M
N̂ (52)

which extends s, in the sense that (the pullback of) s is the composition

B
s−→ lim

L∆̂op
+ M
N̂ pr−→ limL∆op

+ MN , (53)

with pr coming from the embedding L∆op
+ M ↪→ L∆̂op

+ M and the fact that the restriction of N̂ to
{c0[m]} is N (pulled back along A� 1; note that the codomain of pr is implicitly pulled back
as well). Further, observing that N̂ (c1[0]) is canonically equivalent to B (as used in Figure 4),
the composition

B
s−→ lim

L∆̂op
+ M
N̂ pr′−→ N̂ (c1[0])

∼−→ B (54)

is the identity on B.

9 The Main Theorem

The preparations of the previous sections allow us prove our main result. We proceed
analogously to our arguments for the special cases in Section 2: Lemma 23 and Corollary 24
show that certain fibrations are homotopy equivalences, i.e. that certain types are contractible.
This is then used in Main Lemma 25 to perform the “expanding and contracting” argument,
which shows that, if we assume a point in A, the function s from Definition 20 is a homotopy
equivalence. Admittedly, especially Lemma 23 requires extensive calculations.
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Q

(
lim

cj

[m]�L∆̂
op
+ M−cj−1

[m−1]
N̂ ◦ U

)
× T̂A(cj[m])

Σ
(
k : M ÊB(cj[m])

)
. F ÊB(cj[m], k)

M ÊB(cj[m])

lim
cj

[m]�∆̂op
+ −c

j−1
[m−1]
ÊB ◦ U

Σ
(
t : M ÊB(cj−1

[m−1])
)
. F ÊB(cj−1

[m−1], t)

M ÊB(cj−1
[m−1])

w

proj

Figure 5 Derivation of a homotopy equivalence

We need to keep the extremely simple statement of Lemma 9 in mind: the limit of N̂ ◦U
restricted to z � L∆̂op

+ M is isomorphic to the limit of N̂ restricted to
{
y ∈ L∆̂op

+ M
∣∣∣ y ≺ z }.

We prefer the slightly more concise first notation.
For the following statement, note that N̂ (cj[m]) is the same as lim

cj

[m]/L∆̂+M
N̂ ◦ U .

I Lemma 23. The fibration

N̂ (cj[m])� lim{
x∈L∆̂op

+ M
∣∣ x≺cj

[m],x 6≡c
j−1
[m−1]

}N̂ (55)

is a homotopy equivalence for any [m] and j.

Proof. There is a single morphism in ∆̂op
+

(
cj[m], c

j−1
[m−1]

)
. For the category cj[m] � ∆̂op

+ where

this morphism is removed, we write cj[m] � ∆̂op
+ − c

j−1
[m−1]. The fibration (55) can then be

written as

N̂ (cj[m])� lim
cj

[m]�L∆̂+M−cj−1
[m−1]
N̂ ◦ U. (56)

By construction of N̂ , we have a natural transformation v : (N̂ ◦ |−|∆̂op
+

)× T̂A→ ÊB, which
gives rise to a morphism

w :
(
lim

cj

[m]�L∆̂
op
+ M−cj−1

[m−1]
N̂ ◦ U

)
× T̂A(cj[m]) → lim

cj

[m]�∆̂op
+ −c

j−1
[m−1]
ÊB ◦ U. (57)

Consider the diagram shown in Figure 5, in which Q is defined to be the pullback.
The right part (everything without the leftmost column) of that diagram comes from

applying the functor lim−(ÊB ◦U) to the diagram in Sub(cj[m]/∆̂
op
+ ) that is shown in Figure 6.

In Figure 5, the fibration labelled proj comes of course from(
cj[m] � ∆̂op

+ − c
j−1
[m−1]

)
⊃
(
cj−1
[m−1] � ∆̂op

+

)
, (58)
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cj[m]/∆̂
op
+

cj[m] � ∆̂op
+

cj[m] � ∆̂op
+ − c

j−1
[m−1]

cj−1
[m−1]/∆̂

op
+

cj−1
[m−1] � ∆̂op

+

Figure 6 A small diagram in Sub(cj
[m]/∆̂op

+ ). This uses the principle that, in an inverse category
I with a morphism k : x→ y, the categories k � (x � I) and y � I are isomorphic.

as shown in Figure 6. We give it a name solely to make referencing it easier. Our goal is to
derive a representation of Q. As the right square is a pullback square by Lemma 11, we have

M ÊB(cj[m]) ∼= Σ
(
t : lim

cj

[m]�∆̂op
+ −c

j−1
[m−1]
ÊB
)
. F ÊB(cj−1

[m−1], proj(t)). (59)

Using this, can write the top expression of the middle column as

Σ
(
k : M ÊB(cj[m])

)
. F ÊB(cj[m], k)

' Σ
(
t : lim

cj

[m]�∆̂op
+ −c

j−1
[m−1]
ÊB
)
.Σ
(
n : F ÊB(cj−1

[m−1], proj(t))
)
. F ÊB(cj[m], (t, n)).

(60)

The pullback Q is thus

Σ
(
p : lim

cj

[m]�L∆̂
op
+ M−cj−1

[m−1]
N̂ ◦ U

)
.Σ
(
a : T̂A(cj[m])

)
.

Σ
(
n : F ÊB(cj−1

[m−1], proj(w(p, a)))
)
.

F ÊB(cj[m], (w(p, a), n)).

(61)

The composition of the two vertical fibrations in the middle column is a homotopy equivalence
by Main Lemma 15 and Lemma 22. As acyclic fibrations are stable under pullback, the
fibration

Q �
(
lim

cj

[m]�L∆̂
op
+ M−cj−1

[m−1]
N̂
)
× T̂A(cj[m]) (62)

is a homotopy equivalence as well. Function extensionality implies that a family of contractible
types is contractible (i.e. that acyclic fibrations are preserved by Π), and we get that the
first projection

Σ
(
p : lim{

x∈L∆̂op
+ M
∣∣ x≺cj

[m],x 6≡c
j−1
[m−1]

}N̂ ).
Π
a:T̂A(cj

[m])
Σ
(
n : F ÊB(cj−1

[m−1], proj(w(p, a)))
)
. F ÊB(cj[m], (w(p, a), n))

lim{
x∈L∆̂op

+ M
∣∣ x≺cj

[m],x 6≡c
j−1
[m−1]

}N̂
(63)
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is also a homotopy equivalence. The lemma is therefore shown if we can prove that the
domain of the above fibration (63), a rather lengthy expression, is homotopy equivalent to
N̂ (cj[m]). Our first step is to apply the distributivity law (2) to transform this expression to

Σ
(
p : lim{

x∈L∆̂op
+ M
∣∣ x≺cj

[m],x 6≡c
j−1
[m−1]

}N̂ ).
Σ
(
n : Π

a:T̂A(cj

[m])
F ÊB(cj−1

[m−1], proj(w(p, a)))
)
.

Π
a:T̂A(cj

[m])
F ÊB(cj[m], (w(p, a), n(a))).

(64)

When we look at the following square, in which w is the map (57), w′ is induced by the
natural transformation v in the same way as w, and proj, proj′ come from the restriction to
subcategories,(

lim
cj

[m]�L∆̂
op
+ M−cj−1

[m−1]
N̂ ◦ U

)
× T̂A(cj[m])

(
lim

cj−1
[m−1]�L∆̂

op
+ M
N̂ ◦ U

)
× T̂A(cj−1

[m−1])

lim
cj

[m]�∆̂op
+ −c

j−1
[m−1]
ÊB ◦ U

lim
cj−1

[m−1]�∆̂op
+
ÊB ◦ U

proj′ proj

w

w′

(65)

we can see that it commutes due to the naturality of the natural transformation v. In
particular, note that T̂A maps the single morphism cj[m] → cj−1

[m−1] to the identity on Am+1−j .
This is exactly what is needed to see that the second line of (64) corresponds to the “missing
Σ-component” N̂ (cj−1

[m−1]) in the limit of the first line. Hence, the first and the second line can

be “merged” and are equivalent to lim
cj

[m]�L∆̂
op
+ M
N̂ ◦U , in other words, M N̂ (cj[m]). Comparing

the third line of (64) with the definition of the “fibrant diagram of natural transformations”
(see (39)), we see that (64) is indeed equivalent to N̂ (cj[m]), as required. J

By pullback (Lemma 11 and preservation of homotopy equivalences along pullbacks), we
immediately get:

I Corollary 24. Let D be a downwards closed subcategory of ∆̂op
+ which does not contain the

objects cj[m] and c
j−1
[m−1], but all other predecessors of cj[m]. The full subcategory of ∆̂op

+ which
has all the objects of D and the objects cj−1

[m−1], c
j
[m] (for which we write D + cj−1

[m−1] + cj[m]) is
also downwards closed and the fibration

limD+cj−1
[m−1]+c

j

[m]
N̂ � limDN̂ (66)

is a homotopy equivalence. J

Corollary 24 is the crucial statement that summarises all of our efforts so far. We can
use it to “add and remove” contractible Σ-components in the same way as we did it in the
motivating examples (Section 2). More precisely, we exploit that we can group together
components of ∆̂op

+ in two different ways. Our main lemma is the following:

I Main Lemma 25. Given types A,B, recall that we have defined s : B → (A ω−→ B) in
Definition 20. Assume further that we are given a point a0 : A (i.e. we regard s as a morphism
in (C/A)f instead of C). Then, the function s is a homotopy equivalence.
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c0[0] c1[0]

c0[1] c1[1] c2[1]

c0[2] c1[2] c2[2] c3[2]

c0[3] c1[3] c2[3] c3[3] c4[3]

c0[4] c1[4] c2[4] c3[4] c4[4] c5[4]

(a) The sequence D0 ⊂ D1 ⊂ D2 ⊂ . . . starts
with {c1

[0]}

c0[0] c1[0]

c0[1] c1[1] c2[1]

c0[2] c1[2] c2[2] c3[2]

c0[3] c1[3] c2[3] c3[3] c4[3]

c0[4] c1[4] c2[4] c3[4] c4[4] c5[4]

(b) The sequence D′
0 ⊂ D′

1 ⊂ D′
2 ⊂ . . . starts with

{c0
[n]}

Figure 7 Two infinite sequences of downwards closed full subcategories of L∆̂op
+ M, constructed in

the proof of Main Lemma 25: the first starts with D0 :≡ {c1
[0]}. In each step, exactly two objects

are added, paired as shown in the left drawing. The second sequence starts with D′
0 :≡ {c0

[n]} (the
leftmost column), i.e. D′

0 is isomorphic to ωop. The pairings are shown in the right drawing. The
reader who has read through the proof of Main Lemma 25 is invited to combine the current figure
with Figure 4 in order to reconstruct the proof of Proposition 3.

Proof. Using the point a0, we define N̂ and s : B → lim
L∆̂op

+ M
N̂ as before in (52), and

consider the following:

B lim
L∆̂op

+ M
N̂ N̂ (c1[0]) B

A ω−→ B

s pr′ ∼

s pr

(67)

The commutativity of the triangle on the left is given by (53). Our first goal is to show that
the fibration pr′ is a homotopy equivalence.

Consider the set S :≡
{

(m, j) ∈ N2
∣∣ j is even and j ≤ m+ 1

}
. A pair (m, j) is in S if

and only if cj[m] is an object in an “odd column” of ∆̂op
+ in Figure 3 on page 131 (where

we consider the leftmost column the “first”). Define a total order on S by letting (k, i) be
smaller than (m, j) if either k + i < m+ j or (k + i ≡ m+ j and i < j). We represent this
total order by an isomorphism f : N+ → S (where N+ are the positive natural numbers)
which has the property that f(n) is always smaller than f(n+ 1). Write f1(n) and f2(n) for
the first respectively the second projection of f(n).

Let us define a sequence D0 ⊂ D1 ⊂ D2 ⊂ D3 ⊂ . . . of full subcategories of L∆̂op
+ M by

D0 :≡ {c1[0]} (68)

Dn :≡ Dn−1 + c
f2(n)
[f1(n)] + c

f2(n)+1
[f1(n)+1]. (69)

This construction illustrated in Figure 7a. It is easy to see that every object cj[m] is added
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exactly once, i.e. it is either c1[0] or it is of the form c
f2(n)
[f1(n)] or of the form c

f2(n)+1
[f1(n)+1] for exactly

one n. We have chosen the total order on S in such a way that every Dn is a downwards
closed full subcategory of L∆̂op

+ M. Applying Corollary 24, we get a sequence

limD0N̂ ∼� limD1N̂ ∼� limD2N̂ ∼� limD3N̂ ∼� . . . (70)

of acyclic fibrations. Lemma 7 then shows that the canonical map

lim∆̂op
+
N̂ ∼� limD0N̂ (71)

is an acyclic fibration. As limD0N̂ is simply N̂ (c1[0]), this proves that pr′ is indeed a homotopy
equivalence.

Next, we want to show the same about pr. We proceed very similarly. This time, we define
S′ :≡

{
(m, j) ∈ N2

∣∣ j is odd and j ≤ m+ 1
}
. A pair (m, j) is consequently in S′ if and

only if cj[m] is an object in an “even” column of Figure 4. As before, we define an isomorphism
f ′ : N+ → S′, and define a sequence D′0 ⊂ D′1 ⊂ D′2 ⊂ D′3 ⊂ . . . of full subcategories of
L∆̂op

+ M by

D′0 :≡ {c0[m]} (i.e. the full subcategory corresponding to L∆op
+ M) (72)

D′n :≡ D′n−1 + c
f2(n)
[f1(n)] + c

f2(n)+1
[f1(n)+1]. (73)

We illustrate the construction of this sequence in Figure 7b, which the reader is encourage to
compare with Figure 7a. Again, every object cj[m] is added exactly once, and every Dn is
downwards closed. Corollary 24 and Lemma 7 then tell us that lim

L∆̂op
+ M
N̂ � lim{c0

[m]}
N̂ is

an acyclic fibration. Hence, pr is indeed a homotopy equivalence, as claimed.
We take another look at the diagram (67). The composition of the three horizontal arrows

is the identity by (54). But homotopy equivalences satisfy “2-out-of-3”, and we can conclude
that s is an equivalence. Using “2-out-of-3” again, we see that s is an equivalence as well. J

It is straightforward to define what it mean for a type-theoretic fibration category to have
propositional truncations by imitating the characterisation given in Section 2. We now show:

I Lemma 26. If C has propositional truncations, then ‖A‖ implies that the canonical function
s : B → (A ω−→ B), viewed as a morphism in C, is a homotopy equivalence. More precisely,
we can construct a function

‖A‖ → isequiv(s) (74)

in C.

Proof. We have shown in Main Lemma 25 that s is a homotopy equivalence in (C/A)f , i.e.
if we pull back its domain and codomain along A� 1. In C, this means that

λ(a, b).(a, s(b)) : A×B → A× (A ω−→ B) (75)

is an equivalence, but this implies

A→ isequiv(s). (76)

The claim then follows from the ordinary universal property of the propositional truncation.
J
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This allows us to prove our main result:

I Theorem 27 (General universal property of the propositional truncation). Let C be a type-
theoretic fibration category that satisfies function extensionality, has propositional truncations,
and Reedy ωop-limits. Let A and B be two types, i.e. objects in C. Using the canonical
function s : B → (A ω−→ B) as defined in Definition 20, we can construct a function

(‖A‖ → B) → (A ω−→ B), (77)

and this function is a homotopy equivalence.

Proof. From Lemma 26 we can conclude, just as in the special cases in Section 2, that

(‖A‖ → B) →
(
‖A‖ → (A ω−→ B)

)
(78)

f 7→ λx.s(f(x)) (79)

is a homotopy equivalence.
This is not yet what we aim for. We need a statement corresponding to the infinite case

of Lemma 1, i.e. we need to prove that ‖A‖ → (A ω−→ B) is equivalent to A ω−→ B. To do this,
we consider the diagram P : L∆op

+ M→ C, defined on objects by

P[k] :≡ ‖A‖ → N[k], (80)

and on morphisms by

P(g) :≡ λ(h : ‖A‖ → N[k]).λx.N (g)(h(x)). (81)

Paolo Capriotti has pointed out that P is Reedy fibrant, and this is a crucial observation.
As P is defined over a poset, it is enough to show that (81) is a fibration for every g.
Our argument is the following: The maps in both directions which are used to prove
the distributivity law (2) are strict inverses, i.e. their compositions (in both orders) are
judgmentally equal to the identities. This means that every Pi is isomorphic to a Σ-type,
where we “distribute” ‖A‖ over the Σ-components. From this representation, it is clear that
P(g) is always a fibration, as fibrations are closed under composition with isomorphisms.

Because of Lemma 1 (and the fact that the equivalence there can be defined uniformly),
there is a natural transformation κ : P → N which is levelwise a homotopy equivalence. By
the definition of C having Reedy ωop-limits, the resulting arrow between the two limits, that
is

limL∆op
+ M(κ) :

(
‖A‖ → (A ω−→ B)

)
→ (A ω−→ B), (82)

is a homotopy equivalence as well. To conclude, we simply compose (79) and (82). J

10 Finite Cases

If B is an n-type for some finite fixed number n, the higher coherence conditions should
intuitively become trivial. This is obvious for the representation of N and EB given in
Figures 2 and 4, although admittedly not for our actual definition of EB in Section 5 (and
the corresponding definition of N and N̂ ) where it requires a little more thought. This is our
main goal for this section. For the presentation, we assume that the type theory in question
has a universe U , although this assumption is not strictly necessary. After this, it will be
easy to see that the universal properties of the propositional truncation with an n-type as
codomain, for any externally fixed number n, can be formulated and proved in standard
syntactical homotopy type theory.

We start by reversing the statement that “singletons are contractible”:
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I Lemma 28. Assume A is a type, B : A → U a family, and C : (Σ (a : A) . B(a)) → U a
second family. The following are logically equivalent:
(i) For any a : A, there is a point ba : B(a) and a homotopy equivalence

C(a, b) ' (b = ba). (83)

(ii) The canonical projection

fst :
(
Σ (a : A) .Σ (b : B(a)) . C(a, b)

)
→ A (84)

is a homotopy equivalence.

Proof. The direction (1)⇒(2) is an obvious consequence from the contractibility of singletons.
For the other direction, recall that, for any type X and families Y, Z : X → U , a map

f : Πx:X (Y (x)→ Z(x)) (85)

is a fibrewise (homotopy) equivalence if each f(x) : Y (x)→ Z(x) is a homotopy equivalence [27,
Chapter 4.7]. Given (85), there is a canonical way to define a map on the total spaces

total(f) : Σ (x : X) . Y (x) → Σ (x : X) . Z(x). (86)

Then, total(f) is a homotopy equivalence if an only if f is a fibrewise homotopy equivalence [27,
Thm. 4.7.7]. Using this result, we derive a very short proof of (2)⇒(1):

We fix a : A and assume (2) which implies that Σ (b : B(a)) . C(a, b) is contractible. This
gives us the required ba and allows us to define a map

g : Πb:B(a) (C(a, b)→ ba = b) . (87)

Clearly, total(g) is a homotopy equivalence as it is a map between contractible types. Hence,
g is a fibrewise homotopy equivalence. J

We are now ready to show that, in the case of n-types, the higher “fillers for complete
boundaries” become homotopically simpler and simpler, and finally trivial.

I Lemma 29. Let n ≥ −2 be a number and B be a type in C. Consider the equality
semi-simplicial type EB : ∆op

+ → C of B. For an object [k] of ∆op
+ , we can consider the

fibration EB[k] � MEB[k] . We know that, by definition, the fibre over m : MEB[k] is simply
Σ (x : B) . η̃[k](x) = m.

If B is an n-type, then, for any object [k] of ∆op
+ , all these fibres are (n− k)-truncated

(or contractible, if this difference is below −2).

I Remark. The other direction of Lemma 29 should also hold, as MEB[k] should be equivalent
to Σ (b : B) .Ωk(B, b). We do neither prove nor require this direction here.

Proof of Lemma 29. The statement clearly holds for [k] ≡ [0], as the matching object MEB[k]
will in this case be the unit type. We assume that the statement holds for [k] and show it for
[k + 1]. Recall our notation from Section 6 (see right before Main Lemma 15): If s is some
set, we write s for the poset generated by s. If i is an element of s, then s−i is the poset s
without the set s and without the set s− i.

Consider the following diagram in the poset Sub([k + 1]):
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[k + 1]− [k + 1]

[k + 1]−0

[k]

[k]− [k]

If we apply the functor lim−(EB ◦ U) on this square, we get

MEB[k+1]

lim[k+1]−0
(EB ◦ U)

EB[k]

MEB[k]

where the bottom left type is the 0-th [k]-horn as in Main Lemma 15. By the induction
hypothesis, the right vertical fibration is an (n − k)-truncated type. By Lemma 11, the
square is a pullback. This means that the left vertical fibration is (n− k)-truncated as well,
as fibres on the left side are homotopy equivalent to fibres on the right side.

Consider the composition of fibrations

EB[k+1] �MEB[k+1] � lim[k+1]−0
(EB ◦ U). (88)

Intuitively, the horn is a “tetrahedron with missing filler and one missing face”, the matching
object is the same plus one component which represents this face, and EB[k] has, in addition
to the face, also a filler of the whole boundary. The filler is really the statement that the
“new” face equals the canonical one, and we can now make this intuition precise by applying
Lemma 28. Let us check the conditions:

Certainly, we can write the sequence in the form

Σ (x : X) .Σ (x : Y (x)) . Z(x, y)� Σ (x : X) . Y (x)� X (89)

(this is given by Lemma 12).
The composition is a homotopy equivalence by Main Lemma 15.

Thus, we can assume that Z(x, y) is equivalent to y =Y (x) yx for some yx, and thereby of a
truncation level that is by one lower than Y (x). But the latter is (n− k) as we have seen
above.2 J

As a corollary, we get the case for [k] ≡ [n + 2]:

I Corollary 30. Let B be an n-type. Then, the fibration

EB[n+2] �MEB[n+2] (90)

is a homotopy equivalence. J

We are now in the position to formulate our result for n-types with finite n. Recall from
Definition 19 that we write A [n]−→ B for Nn.

2 On low levels, we can consider the situation in terms of the presentation in Figure 2. Here, yx will be
the “missing face” that one gets by gluing together the other faces.
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I Theorem 31 (Finite general universal property of the propositional truncation). Let n be a
fixed number, −2 ≤ n <∞. In Martin-Löf type theory with propositional truncations and
function extensionality we can, for any type A and any n-type B, derive a canonical function

(
‖A‖ → B

)
→
(
A

[n+1]−−−→ B
)

(91)

that is a homotopy equivalence.

Proof. Looking at Corollary 30 and at the definition of N , as given in Section 7, we see
immediately that each N[k+1] � N[k] with k ≥ n+ 1 is a homotopy equivalence. Thus, using
Lemma 7, the Reedy limit limL∆op

+ MN is equivalent to N[n+1], and these are A ω−→ B and

A
[n+1]−−−→ B by definition. Similarly, the limit lim

L∆̂op
+ M
N̂ (which we used in the proof of Main

Lemma 25) is homotopy equivalent to the limit over L∆̂op
+ M restricted to

{
ci[k]

∣∣∣ k ≤ n+ 1
}
.

It is easy to see that the whole proof can be carried out using only finite parts of the infinite
diagrams. But then, of course, all we need are finitely many nested Σ-types instead of Reedy
ωop-limits, and these automatically exist. Further, the only point where we crucially used
the judgmental η-rule for Σ is the proof of Theorem 27. In the finite case, however, this is
not necessary, as Lemma 1 is sufficient (similarly, the judgmental η-rule for Π-types is not
necessary). Therefore, the whole proof can be carried out in the standard version of MLTT
with propositional truncations. J

11 Concluding Remarks

For any type B, we have constructed the equality semi-simplicial type EB : ∆op
+ → C, and we

have shown that natural transformations from the trivial diagram TA (the [0]-coskeleton of
the diagram constantly A) to EB correspond to maps ‖A‖ → B. The construction required
us to assume that C has Reedy ωop-limits. There are several points that we would like to
discuss briefly here, all of which naturally raise further open questions.

First, there are many connections to constructions and results in homotopy theory and
the theory of higher topoi, model categories, and quasi-categories. As we have discussed,
for any type B and any inverse category I that is admissible for C, the constructed equality
diagram EB : I → C is a Reedy fibrant replacement of the diagram that is constantly B.
Similarly, the diagram TA is a [0]-coskeleton. One anonymous reviewer has pointed out that
Theorem 27 is a type-theoretic version of a result on (∞, 1)-topoi by Lurie [18, Proposition
6.2.3.4]. There are certainly deep connections that have yet to be explored.

Second, we have presented the assumptions of Reedy ωop-limits as a necessary requirement.
However, we are not aware of a model in which the necessary limits are absent. Even though
it seems very unlikely, it is in principle possible that these Reedy limits exist in any type-
theoretic fibration category automatically. Assume A and B are some given types. We do
not know whether it is possible to define the expression NA,B(n) for a variable n in HoTT,
i.e. to give a function fA,B : N→ U (where U is a universe) such that the type fA,B(n) is
equivalent to NA,B(n) for all numerals n.

If this can be done, it should be possible to actually construct what is intuitively an
“infinite Σ-type”, by asking for all finite approximations with proofs that they fit together,
and we could reasonably hope that Theorem 27 can be proved in HoTT without any further
assumptions. This has been made precise for the more general case of M -types by Ahrens,
Capriotti and Spadotti [1]. However, we do not expect that such a function fA,B can be
defined. This is at least as hard as defining the equality semi-simplicial type over B as a
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function EB : N → U ; this would correspond to the special case where A is the unit type.
Defining EB in this way, however, seems to be as difficult as the famous open problem of
defining semi-simplicial types internally as a function SS : N→ U1 (where U1 is a universe
that is larger than U). The two problems are identical apart from the fact that the fibres
over the matching objects differ. For EB, the fibre over a point m of the matching object
is Σ (x : B) . η̃i(x) = m as can be seen from (23) on page 125, while for SS, the fibres are
constantly the universe U . The author does not expect that this makes a real difference in
difficulty. It seems likely that a function EB would enable us to talk about coherent equalities
so that we could define the function SS, implying that defining EB is at least not easier.

Going back a step, while we can prove Theorem 31 internally if n is instantiated with
any numeral, we conjecture that it is impossible to prove it for a variable n. What we think
is certainly possible is to write a program in any standard programming language that takes
a number n as input and prints out the formalised statement of Theorem 31 (in the syntax
of a proof assistant such as Coq or Agda) together with a proof. Even in Agda itself, we
would be able to define a function which generates the Agda source code of Theorem 31, for
any natural number n. This would provide a solution if we were able to interpret syntax of
HoTT in HoTT, which is another famous open problem [23].

Third, instead of asking whether HoTT allows us to define Reedy fibrant diagrams such as
EB or SS, we may choose to work in a theory in which we know that it is possible. Candidates
are Voevodsky’s HTS (homotopy type system) [29], or the two-level system outlined by
Altenkirch, Capriotti and the current author [2]. We believe that the results of the current
article can be formalised in such settings.

Fourth, is seems obvious to ask whether statements analogous to Theorems 27 and 31
can be derived for higher truncation operators, written ‖−‖n [27, Chapter 7.3]. A partial
result, namely a characterisation of maps ‖A‖k → B if B is (k + 1)-truncated, have been
obtained by Capriotti, Vezzosi and the current author [6].

More general results are currently unknown, but we want to conclude with a conjecture.
Assume a type A and an object [k] of ∆+ are given. We define the (fibrant) [k]-skeleton of
the diagram that is constantly A, written coskel[k],A, by giving the fibres over the matching
objects:

coskel[k],A
[i] :≡

EA[i] if [i] � [k]

M
coskel[k],A

[i] else.
(92)

Note that, with this definition, the diagram TA that we have defined earlier is not exactly
coskel[0],A for the same reason as for which EA[0] is not exactly A, but of course, coskel[0],A

and TA are homotopy equivalent. In principle, we could have done the whole proof with
coskel[0],A instead of TA. Merely for convenience, we have taken advantage of the fact that
TA is already Reedy fibrant.

For a number n ≥ −1, we conjecture that natural transformations from coskel[n+1],A to
EB correspond to functions ‖A‖n → B. Even more generally, given a higher inductive type
H, it may be possible to determine a representation of H as a diagram Rep(H) : ∆op

+ → C

such that natural transformations from Rep(H) to EB corresponds to functions H → B.
This is very simple for non-recursive higher “inductive” types that do not refer to refl or
applications of J in their constructors: for example, the circle S1 can be represented with
Rep(S1)[0] ≡ Rep(S1)[1] ≡ 1 and Rep(S1)[n+2] ≡ 0, while the suspension of A can be realised
as Rep(ΣA)[0] ≡ 2, Rep(ΣA)[1] ≡ A, and Rep(ΣA)[n+2] ≡ 0. If this turns out to work for
a larger class of higher inductive types, it may be understood as a type-theoretic version
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of the homotopy hypothesis which has so far suffered from the difficulty of formulating the
coherences of categorical laws [11].
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Abstract
The technique of classical realizability is an extension of the method of forcing; it permits to
extend the Curry-Howard correspondence between proofs and programs, to Zermelo-Fraenkel set
theory and to build new models of ZF, called realizability models. The structure of these models
is, in general, much more complicated than that of the particular case of forcing models. We show
here that the class of constructible sets of any realizability model is an elementary extension of
the constructibles of the ground model (a trivial fact in the case of forcing, since these classes are
identical). By Shoenfield absoluteness theorem, it follows that every true Σ1

3 formula is realized
by a closed λc-term.
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1 Introduction

In [6, 7, 9], we have introduced the technique of classical realizability, which permits to extend
the Curry-Howard correspondence between proofs and programs [5], to Zermelo-Fraenkel set
theory. The models of ZF we obtain in this way are called realizability models; this technique
is an extension of the method of forcing, in which the ordered sets (sets of conditions)
are replaced with more complex first order structures called realizability algebras. These
structures are refinements of the well known combinatory algebras [3], with the call/cc
instruction of [4].

We show here that every realizability model N of ZF contains a transitive submodel,
which has the same ordinals as N , and which is an elementary extension of the ground model.
It follows that the constructible universe of a realizability model is an elementary extension
of the constructible universe of the ground model (a trivial fact in the particular case of
forcing, since these classes are identical).

We obtain this result by showing the existence of an ultrafilter on the characteristic
Boolean algebra 2ג of the realizability model, which is defined in [7, 9].

From this result, it follows that the Shoenfield absoluteness theorem applies to realizability
models and therefore that: Any Σ1

3 formula which is true in the ground model is realized by
a closed λc-term.

Another application is given in [8]: the bar-recursion operator was defined and studied
in [1, 2, 10] where it is shown that it realizes the axiom of dependent choice.

In [8] it is shown, by means of the results of the present paper, that every closed formula
of analysis (i.e. Σ1

n or Π1
n) which is true in the ground model, is realized by a closed λc-term

containing this operator; and that the same is true for the axiom: R is well-ordered.
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2 Background and notations

We use here the basic notions and notations of the theory of classical realizability, which was
developed in [6, 7, 9].1 We consider a modelM of ZF + V = L, which we call the ground
model 2 and, inM, a realizability algebra A = (Λ,Π,Λ ?Π,QP,⊥⊥). Λ is the set of terms,
Π is the set of stacks, Λ ? Π is the set of processes, QP ⊂ Λ is the set of proof-like terms,
and ⊥⊥ is a distinguished subset of Λ ? Π. They satisfy the axioms of realizability algebra,
which are given in [6] or [9]. In the modelM, we use the language of ZF with the binary
relation symbols /∈,⊂ and function symbols, which we shall define when needed, by means of
formulas of ZF. We can now build (see [6]) the realizability model N , which has the same set
of individuals asM, the truth value set of which is P(Π), endowed with a suitable Boolean
algebra structure (not the usual one for the powerset). The language of this model has three
binary relation symbols ε/ , /∈,⊂, and the same function symbols as the modelM, with the
same interpretation.

The formulas are built as usual, from atomic formulas, with the only logical symbols
⊥,→,∀.

ε is called the strong membership relation; ∈ is called the weak or extensional membership
relation.

The formula ∀z(x ε/ z → y ε/ z) is written x = y; it is the strong or Leibniz equality. The
formula x ⊂ y ∧ y ⊂ x is written x ' y; it is the weak or extensional equality.

Notations. We shall write:
¬F for F → ⊥; F1, . . . , Fn → F for F1 → (. . .→ (Fn → F ) . . .);
∃xF for ¬∀x¬F ; ∃x{F1, . . . , Fn} for ¬∀x(F1, . . . , Fn → ⊥).

We shall often use the notation ~x for a finite sequence x1, . . . , xn; for instance, we shall write
F [~x] for F [x1, . . . , xn].

By means of the completeness theorem, we obtain from N an ordinary model N ′, with
truth values in {0, 1}. The set of individuals of N ′ generally strictly contains N .

The elements of N ′ are called individuals of N ′ or even individuals of N . The individuals
are generally denoted by a, b, c, . . . , a0, a1, . . .

In [6] or [7], we define a theory ZFε, written in this language. The axioms for ε are
essentially the same as the axioms for ∈ in ZF (sometimes in an unusual form), without
extensionality. For instance, the infinity axiom is the following scheme:

∀~z∀a∃b
{
a ε b , (∀x ε b)(∃y F [x, y, ~z]→ (∃y ε b)F [x, y, ~z])

}
for every formula F [x, y, z1, . . . , zn].

The axioms for ∈,⊂ are a kind of coinductive definition from ε:

∀x∀y(x ∈ y ↔ (∃z ε y)x ' z) ; ∀x∀y(x ⊂ y ↔ (∀z ε x)z ∈ y).

We show that ZFε is a conservative extension of ZF, and that the model N satisfies the
axioms of ZFε, which means that each one of these axioms is realized by a proof-like term.

1 The papers [6, 7, 9, 8] are available at http://www.pps.univ-paris-diderot.fr/~krivine/.
2 In fact, it suffices that M satisfy the choice principle CP, which is written as follows, in the language of

ZF with a new binary relation symbol /: “ / is a well ordering relation on M”. It is well known that,
in every countable model of ZFC, we can define such a binary symbol, so as to get a model of ZF + CP.
Thus, ZF + CP is a conservative extension of ZFC.
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Given a term ξ ∈ Λ and a closed formula F [a1, . . . , an] in the language of ZFε, with
parameters a1, . . . , an in N (or, which is the same, inM), we shall write: ξ ||−F [a1, . . . , an]
in order to say that the term ξ realizes F [a1, . . . , an]. The truth value of this formula is a
subset of Π, denoted by ‖F [a1, . . . , an]‖. We write ||−F in order to say that F is realized
by some proof-like term.

Thus, the model N ′ satisfies ZFε; therefore, in N ′, we can define a model of ZF,
denoted N ′

∈, in which equality is interpreted by extensional equivalence.
The general properties of the realizability models are described in [9]; we shall use the

definitions and notations of this paper.
In what follows, unless otherwise stated, each formula of ZFε must be interpreted in N

(its truth value is a subset of Π) or, if one prefers, in N ′ (then its truth value is 0 or 1). If
the formula must be interpreted inM, (in that case, it does not contains the symbol 6ε) it
will be explicitly stated.

3 Function symbols

Notations. The formula ∀z(z ε/ y → z ε/ x) is denoted by x ⊆ y (strong inclusion); the
formula x ⊆ y ∧ y ⊆ x is denoted by x ∼= y (strong extensional equivalence). We
recall that ⊂ and ' are the symbols of inclusion and of extensional equivalence of ZF:
x ⊂ y ≡ ∀z(z /∈ y → z ε/ x); x ' y ≡ (x ⊂ y ∧ y ⊂ x).

Function symbols associated with axioms of ZFε

In this section, we define a function symbol for each of the following axioms of ZFε: compre-
hension, pairing, union, power set and collection.

Comprehension

For each formula F [y, ~z] of ZFε, (where ~z is a finite sequence of variables z1, . . . , zn) we
define, inM, a symbol of function of arity n+ 1, denoted provisionally by ComprF (x, ~z),
(Compr is an abbreviation for Comprehension) by setting:

ComprF (a,~c) = {(b, ξ .π) ; (b, π) ∈ a, ξ ||−F [b,~c]}.

It was shown in [9] (and it is easily checked) that we have:

‖b ε/ComprF (a,~c)‖ = ‖F [b,~c]→ b ε/ a‖ .

Thus, we have:
I ||− ∀x∀y∀~z(y ε/ComprF (x, ~z)→ (F [y, ~z]→ y ε/ x));
I ||− ∀x∀y∀~z((F [y, ~z]→ y ε/ x)→ y ε/ComprF (x, ~z)).

Therefore, instead of ComprF (x, ~z), we shall use for this function symbol, the more intuitive
notation {y ε x ; F [y, ~z]}, in which y is a bound variable.

Pairing

We define the following binary function symbol:

pair(x, y) = {z ε {x, y}×Π ; (z = x) ∨ (z = y)}.

It is easily checked that we have the desired property:

||− ∀x∀y∀z(z εpair(x, y)↔ z = x ∨ z = y) .



J.-L. Krivine 149

I Remark. We could also define a symbol pair(x, y), with this property, directly inM, as
follows:

pair(x, y) = {(x, 1 .π) ; π ∈ Π} ∪ {(y, 0 .π) ; π ∈ Π}.

In the sequel, when working in N , we shall use the (natural) abbreviations: {x, y} for
pair(x, y); (x, y) for pair(pair(x, x), pair(x, y)).

Union and power set

We define below two unary function symbols
⋃
x and P(x), such that:

||− ∀x∀z(z ε
⋃
x↔ (∃y ε x) z ε y).

||− ∀x(∀y εP(x))(∀z ε y)(z ε x); ||− ∀x∀y(∃y′ εP(x))∀z(z ε y′ ↔ z ε x ∧ z ε y).

I Theorem 1. Let V,Q be the unary function symbols defined inM as follows:

V(a) = Cl(a)×Π and Q(a) = P(Cl(a)×Π)×Π

where Cl(a) is the transitive closure of a. Then, we have:
(i) I ||− ∀x∀y∀z(z ε y, z ε/V(x)→ y ε/ x).
(ii) I ||− ∀x∀~z ({y ε x ; F [y, ~z]} εQ(x)) for every formula F [x, ~z] of ZFε.

Proof.
(i) Let a, b, c be individuals in M, ξ, η ∈ Λ and π ∈ Π such that: ξ ||− c ε b, η ||− c ε/V(a)

and π ∈ ‖b ε/ a‖; we have therefore (b, π) ∈ a. We must show ξ ? η .π ∈ ⊥⊥. We show
that ‖c ε/ b‖ ⊂ ‖c ε/V(a)‖: indeed, if ρ ∈ ‖c ε/ b‖, then we have (c, ρ) ∈ b. But we have
(b, π) ∈ a and thus c ∈ Cl(a) and it follows that ‖c ε/V(a)‖ = Π. Therefore, η ||− c ε/ b; by
hypothesis on ξ, we have ξ ? η .π ∈ ⊥⊥.

(ii) Let a,~c be individuals inM; we must show I ||−AεQ(a), where A = {y ε a ; F [y,~c]}.
We have A = {(b, ξ .π) ; (b, π) ∈ a, ξ ||−F [b,~c]} and therefore A ⊂ Cl(a)×Π. But we
have: ‖Aε/Q(a)‖ = {π ∈ Π ; (A, π) ∈ Q(a)} = Π and therefore I ||−AεQ(a). J

We can now define the function symbols
⋃

and P by setting:⋃
x = {z εV(x) ; (∃y ε x) z ε y} ; P(x) = {y εQ(x) ; y ⊆ x}.

Collection

We shall use in the following, function symbols associated with a strong form of the collection
scheme. In order to define these function symbols, it is convenient to decompose them, which
is done in Theorems 2, 3 and 4.

I Theorem 2. For each formula F (x, ~z) of ZFε, we have:

||− ∀~z (∃xF (x, ~z)→ (∃x εφF (~z))F (x, ~z)) ; ||− ∀~z(∀x εφF (~z))F (x, ~z)

where φF is a function symbol defined inM.

Proof. We show λx(x) I ||− ∀x(x εΦF (~z) → F (x, ~z)) → ∀xF (x, ~z) where the function
symbol ΦF is defined as follows: By means of the collection scheme inM, we define a function
symbol Ψ(~z) such that: ‖∀xF (x, ~z)‖ =

⋃
x∈Ψ(~z) ‖F (x, ~z)‖ and we set ΦF (~z) = Ψ(~z)×Π.

Let ξ ||− ∀x(x εΦF (~z) → F (x, ~z)) and π ∈ ‖∀xF (x, ~z)‖. Then π ∈ ‖F (x, ~z)‖ for some
x ∈ Ψ(~z), and therefore I ||−x εΦF (~z) and ξ ? I .π ∈ ⊥⊥.

Therefore, by replacing F with ¬F , we have ||− ∃xF (x, ~z) → (∃x εΦ¬F (~z))F (x, ~z).
Thus, we only need to set φF (~z) = {x εΦ¬F (~z) ; F (x, ~z)}. J
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I Theorem 3. For every formula F (y, ~z) of ZFε, we have:

||− ∀~z (∃x∀y(F (y, ~z)→ y ε x)→ ∀y(F (y, ~z)↔ y ε γF (~z)))

where γF is a function symbol defined inM.

Proof. By Theorem 2, we have:

||− ∀~z (∃x∀y(F (y, ~z)→ y ε x)→ (∃x εφ(~z))∀y(F (y, ~z)→ y ε x))

where φ is a function symbol. Therefore we have, by definition of
⋃
φ(~z):

||− ∀~z
(
∃x∀y(F (y, ~z)→ y ε x)→ ∀y(F (y, ~z)→ y ε

⋃
φ(~z))

)
.

Now, we only need to set γF (~z) = {y ε
⋃
φ(~z) ; F (y, ~z)} (comprehension scheme). J

When the hypothesis ∃x∀y(F (y, ~z)→ y ε x) is satisfied, we say that the formula F (y, ~z)
defines a set. For the function symbol γF (~z), we shall use the more intuitive notation
{y ; F (y, ~z)}, where y is a bound variable.

I Theorem 4. Let f(x, ~z) be a (n+ 1)-ary function symbol (defined inM). Then, we have:

||− ∀a∀y∀~z (y ε φf (a, ~z)↔ (∃x ε a)(y = f(x, ~z)))

where φf is a (n+ 1)-ary function symbol.

Proof. We define, inM, the symbol φf as follows: Let a0, y0, ~z0 be fixed individuals inM; we
set φf (a0, ~z0) = {(f(x, ~z0), π) ; (x, π) ∈ a0}. Then, we have immediately ‖y0 ε/ φf (a0, ~z0)‖ =
‖∀x(y0 = f(x, ~z0) ↪→ x ε/ a0)‖. Therefore: ||− ∀x(y0 = f(x, ~z0) ↪→ x ε/ a0) ↔ y0 ε/ φf (a0, ~z0)
which gives the desired result. J

I Remark. The connective ↪→ is defined in [7, 9]. It is equivalent to → but simpler to realize.
Its hypothesis must be a strong equality. For the function symbol φf (a, ~z), we shall use the
more intuitive notation {f(x, ~z) ; x ε a}, where x is a bound variable. We call it image of a
by the function f(x).

Miscellaneous symbols
In the following, we shall use some function symbols, the definition and properties of which
are given in [9]. We simply recall their definition below.

The unary function symbol ,ג defined inM by xג = x×Π. For any individual E ofM, the
restricted quantifier ∀xגE is defined in [7] or [9] by: ‖∀xגEF [x]‖ =

⋃
x∈E ‖F [x]‖ and we

have ||− ∀xגEF [x]↔ ∀x(x ε Eג → F [x]). In the realizability model N , the formula x ε Eג
may be intuitively understood as “x is of type E”. For instance, 2ג may be considered as
the type of booleans and Nג as the type of integers.
The function symbols ∧, ∨, ¬, with domains {0, 1}×{0, 1} and {0, 1}, and values in {0, 1},
are defined in M by means of the usual truth tables. These functions define, in N , a
structure of Boolean algebra on .2ג We call it the characteristic Boolean algebra of the
realizability model N .
A binary function symbol with domain {0, 1}×M, denoted by (α, x) 7→ αx, by setting:

0x = ∅ ; 1x = x .

In the model N , the domain of this function is N×2ג .
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A binary function symbol t with domainM×M, by setting x t y = x ∪ y.
Remark: The extension of this function to the model N is not the union ∪, which explains
the use of another symbol.

I Lemma 5 (Linearity). Let f be a binary function symbol, defined in M. Then, we
have:
(i) I ||− ∀α2ג∀x∀y(αf(x, y) = αf(αx, y)).
(ii) Moreover, if f(∅, ∅) = ∅, then:

I ||− ∀α2ג∀α′2ג∀x∀y∀x′∀y′ (α∧α′ = 0 ↪→ f(αx t α′x′, αy t α′y′) = αf(x, y) t α′f(x′, y′)).

Proof. It suffices to check:
for (i) the two cases α = 0, 1;
for (ii) the three cases (α, α′) = (0, 0), (0, 1), (1, 0);

which is is trivial. J

Symbols for characteristic functions
Let R(x1, . . . , xn) be an n-ary relation defined inM. Its characteristic function, with values
in {0, 1}, will be denoted by 〈R(x1, . . . , xn)〉. Therefore, we have:

M |= ∀~x(R(~x)↔ 〈R(~x)〉 = 1).

In the realizability model N , the function symbol 〈R(~x)〉 takes its values in .2ג
The Theorem 8 below shows that, if a binary relation y ≺ x is well founded inM, then

the relation 〈y ≺ x〉 = 1 is well founded in N .

4 Well founded relations

In this section, we study properties of well founded relations in N . All the results obtained
here are, of course, trivial in ZF. The difficulties come from the fact that the relation ε of
strong membership does not satisfy extensionality.

Given a binary relation ≺, an individual a is said minimal for ≺ if we have ∀x¬(x ≺ a).
The binary relation ≺ is called well founded if we have:

∀X (∀x(∀y(y ≺ x→ y ε/X)→ x ε/X)→ ∀x(x ε/X)) .

The intuitive meaning is that each non empty individual X has an ε-element minimal for ≺.
Theorem 6 shows that this also true for non empty classes.

I Theorem 6. If the relation x ≺ y is well founded then, for every formula F [x, ~z] of ZFε,
we have:

∀~z (∀x(∀y(y ≺ x→ F [y, ~z])→ F [x, ~z])→ ∀xF [x, ~z]) .

Proof. By contradiction; we consider, in N , an individual a and a formula G[x] such
that:
(1) G[a] ; ∀x (G[x]→ ∃y{G[y], y ≺ x}).
We apply the axiom scheme of infinity of ZFε:
(2) ∃b {a ε b, (∀x ε b) (∃y H(x, y)→ (∃y ε b)H(x, y))} by setting H(x, y) ≡ G[x]∧G[y]∧y ≺ x.

Let X = {x ε b ; G(x)}.
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By (1) and (2), we get a εX.
We obtain a contradiction with the hypothesis, by showing (∀x εX)(∃y εX)(y ≺ x):

suppose x ε b and G[x]; by (2), we have:

∃y{G[x], G[y], y ≺ x} → (∃y ε b){G[x], G[y], y ≺ x} .

By G[x] and (1), we have ∃y{G[x], G[y], y ≺ x}. Therefore, we have (∃y ε b){G[y], y ≺ x},
hence the result. J

Therefore, in order to show ∀xF [x], it suffices to show ∀x (∀y(y ≺ x→ F [y])→ F [x]).
Then, we say that we have shown ∀xF [x] by induction on x, following the well founded
relation ≺.

I Theorem 7. The binary relation x ∈ y is well founded.

Proof. We must show ∀x(∀y(y ∈ x→ y ε/X)→ x ε/X)→ ∀x(x ε/X). We apply Theorem 6
to the well founded relation x ε y and the formula F [x] ≡ x /∈ X. This gives: ∀x(∀y(y ε x→
y /∈ X) → x /∈ X) → ∀x(x /∈ X). Now, we have immediately ||−x /∈ X → x ε/X. Thus,
it remains to show: ||− ∀x(∀y(y ∈ x → y ε/X) → x ε/X) → ∀x(∀y(y ε x → y /∈ X) →
x /∈ X). But we have x /∈ X ≡ ∀x′(x′ ' x → x′ ε/X). Therefore, we need to show:
||− ∀x(∀y(y ∈ x → y ε/X) → x ε/X),∀y(y ε x → y /∈ X), x′ ' x → x′ ε/X. It is enough to
show: ||− ∀y(y ε x → y /∈ X), x′ ' x → ∀y(y ∈ x′ → y ε/X). Now, from x′ ' x, y ∈ x′, we
deduce y ∈ x. Thus, there is some y′ ' y such that y′ ε x. Then, from ∀y(y ε x → y /∈ X),
we deduce y′ /∈ X, and therefore y ε/X. J

For instance, in the following, we shall use the fact that, if there is an ordinal ρ such
that F [ρ], then there exists a least such ordinal, for any formula F [ρ] written in the language
of ZFε. This follows from Theorem 7.

Preservation of well-foundedness
I Theorem 8. Let ≺ be a well founded binary relation defined in the ground model M.
Then, the relation 〈y ≺ x〉 = 1 is well founded in N . In fact, we have:

Y ||− ∀X (∀x(∀y(〈y ≺ x〉 = 1 ↪→ y ε/X)→ x ε/X)→ ∀x(x ε/X))

where Y = (λxλf(f)(x)xf)λxλf(f)(x)xf (Turing fixpoint combinator).

Proof. Let ξ ∈ Λ be such that ξ ||− ∀x(∀y(〈y ≺ x〉 = 1 ↪→ y ε/X0)→ x ε/X0), X0 being any
individual inM. We set F [x] ≡ (∀π ∈ ‖x ε/X0‖)(Y?ξ .π ∈ ⊥⊥), and we have to show ∀xF [x].
Since ≺ is a well founded relation, it suffices to show ∀x (∀y(y ≺ x→ F [y])→ F [x]), or
equivalently ¬F [x0] → (∃y ≺ x0)¬F [y], for any individual x0. By the hypothesis ¬F [x0],
there exists π0 ∈ ‖x0 ε/X0‖ such that Y ? ξ .π0 /∈ ⊥⊥ and therefore, we have ξ ? Yξ .π0 /∈ ⊥⊥.
By hypothesis on ξ, we deduce Yξ ||/−∀y(〈y ≺ x0〉 = 1 ↪→ y ε/X0). Thus, there exists
y0 ≺ x0 such that Yξ ||/− y0 ε/X0. Therefore, we have (∃π ∈ ‖y0 ε/X0‖)(Y ? ξ .π /∈ ⊥⊥), that is
¬F [y0]. J

Definition of a rank function
Definition. A function with domain D is an individual φ such that: (∀z ε φ)(∃x εD)∃y(z =
(x, y)); (∀x εD)∃y((x, y) ε φ); ∀x∀y∀y′((x, y) ε φ, (x, y′) ε φ→ y = y′).

Let φ be a function with domain D and F [y, ~z] a formula of ZFε. Then, the formula:
∃y{(x, y) ε φ, F [y, ~z]} is denoted by F [φ(x), ~z].
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I Remark. Beware, despite the same notation φ(x), it is not a function symbol.

By means of Theorem 3, we define the binary function symbol Im by setting:

Im(φ,D) = {y ; (∃x εD) (x, y) ε φ} .

When φ is a function with domain D, we shall use, for Im(φ,D), the more intuitive
notation {φ(x) ; x εD}, which we call image of the function φ.

Let D′ ⊆ D, that is ∀x(x ε/D → x ε/D′); a restriction of φ to D′ is, by definition, a
function φ′ with domain D′ such that φ′ ⊆ φ. For instance, {z ε φ ; (∃x εD′)∃y(z = (x, y))}
is a restriction of φ to D′. If φ′

0, φ
′
1 are both restrictions of φ to D′, then φ′

0
∼= φ′

1.

Definition. A binary relation ≺ is called ranked, if we have ∀x∃y∀z(z ≺ x → z ε y), in
other words: the minorants of any individual form a set. By Theorem 3, if the relation
≺ is ranked and defined by a formula P [x, y, ~u] of ZFε with parameters ~u in N , we have:
N |= ∀x∀y(x ≺ y ↔ x ε f(y, ~u)), for some symbol of function f , defined inM.

In what follows, we suppose that ≺ is a ranked transitive binary relation.
A function φ with domain {x ; x ≺ a} will be called a-inductive for ≺, if we have:

φ(x) ' {φ(y) ; y ≺ x} for every x ≺ a. In other words: (∀x ≺ a)(∀y ≺ x)φ(y) ∈ φ(x);
(∀x ≺ a)(∀z ε φ(x))(∃y ≺ x) z ' φ(y).

If φ is a-inductive for ≺, we set O(φ, a) = {φ(x) ; x ≺ a} (image of φ).

I Lemma 9. Let φ, φ′ be two functions, a-inductive for ≺. Then:
(i) φ(x) ' φ′(x) for every x ≺ a.
(ii) O(φ, a) ' O(φ′, a).
(iii) (∀x ≺ a)On(φ(x)); O(φ, a) is an ordinal, called ordinal of φ.

Proof.
(i) By induction on φ(x), following ∈: if u εφ(x), then u ' φ(y) with y ≺ x. Since

φ(y) ∈ φ(x), we have φ(y) ' φ′(y) by the induction hypothesis; therefore φ(y) ∈ φ′(x)
and φ(x) ⊂ φ′(x). Conversely, if u εφ′(x), then u ' φ′(y) with y ≺ x. Thus, we have
φ(y) ∈ φ(x), and therefore φ(y) ' φ′(y) by the induction hypothesis; therefore u ∈ φ(x)
and φ′(x) ⊂ φ(x).

(ii) Immediate, by (i).
(iii) We show On(φ(x)) by induction on φ(x), for the well founded relation ∈: If u εφ(x),

we have u ' φ(y) with y ≺ x; therefore, we have On(u) by the induction hypothesis. If
v ε u, then v ε φ(y), therefore v ' φ(z) with z ≺ y; therefore v ∈ φ(x). It follows that
φ(x) is a transitive set of ordinals, thus an ordinal. Then, O(φ, a) is also a transitive set
of ordinals, and therefore an ordinal. J

I Lemma 10. If φ is a-inductive for ≺, and if b ≺ a, then every restriction ψ of φ to the
domain {x ; x ≺ b} is a b-inductive function for ≺.

Proof. Indeed, we have, ψ(x) = φ(x) ' {φ(y) ; y ≺ x} ' {ψ(y) ; y ≺ x}. J

By means of Theorem 2, we define a unary function symbol Φ, such that:
∀x(∀f εΦ(x))(f is a x-inductive function);

∀x∀f
(
f is a x-inductive function→ ∃f(f εΦ(x))

)
.
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In other words, Φ(x) is a set of x-inductive functions, which is non void if there exists at
least one such function. Finally, we define the unary function symbol Rk, using Theorem 4,
by setting:

Rk(x) =
⋃
{O(f, x) ; f εΦ(x)}

(the symbol
⋃

is defined after Theorem 1). Therefore, Rk(x) is the union of the ordinals of
the x-inductive functions in the set Φ(x). Since all these ordinals are extensionally equivalent,
by Lemma 9(ii), their union Rk(x) is also an equivalent ordinal.
I Remark. If there exists no x-inductive function, then Rk(x) is void. The function symbols
O,Φ,Rk have additional arguments, which are the parameters ~u of the formula P [x, y, ~u]
which defines the relation y ≺ x.

We suppose now that ≺ is a ranked transitive relation, which is well founded. It is
therefore a strict ordering.

I Lemma 11. Every restriction of Rk to the domain {x ; x ≺ a} is an a-inductive function
for ≺.

Proof. By induction on a, following ≺.
Let f be a restriction of Rk to the domain {x ; x ≺ a} and let x ≺ a. We must show

that f(x) ' {f(y) ; y ≺ x}, in other words, that we have:

Rk(x) ' {Rk(y) ; y ≺ x} .

Let ψ be any restriction of Rk to the domain {y ; y ≺ x}. By the induction hypothesis,
ψ is a x-inductive function for ≺. We now show that Rk(x) ' {Rk(y) ; y ≺ x}:
(i) If u εRk(x), then u εO(φ, x) for some function φ which is x-inductive for ≺, provided

that there exists such a function. Now, there exists effectively one, otherwise Rk(x)
would be void. Therefore, by definition of O(φ, x), we have u = φ(y) with y ≺ x.
But Rk(y) ' φ(y), since φ, ψ are both x-inductive functions for ≺, and ψ(y) = Rk(y)
(Lemma 9(i)). Therefore, we have u ' Rk(y), with y ≺ x.

(ii) Conversely, if y ≺ x, then Rk(y) = ψ(y). Let φ εΦ(x); then φ, ψ are x-inductive for ≺;
therefore φ(y) ' ψ(y) (Lemma 9(i)). Now φ(y) εO(φ, x), and therefore φ(y) εRk(x) by
definition of Rk(x). It follows that Rk(y) = ψ(y) ∈ Rk(x). J

I Theorem 12. We have Rk(x) ' {Rk(y) ; y ≺ x} for every x.

Proof. By induction on x, following ≺; let ψ be any restriction of Rk to the domain
{y ; y ≺ x}. By Lemma 11, ψ is a x-inductive function for ≺. Then, we finish the proof, by
repeating paragraphs (i) and (ii) of the proof of Lemma 11. J

Rk is called the rank function of the ranked, well founded and transitive relation ≺. Rk(x)
is, for every x, a representative of the ordinal of any x-inductive function for ≺.

The values of the rank function Rk form an initial segment of On, which we shall call the
image of Rk. It is therefore, either an ordinal, or the whole of On.

I Lemma 13. Let ≺0,≺1 be two ranked transitive well founded relations, and f a function
such that ∀x∀y(x ≺0 y → f(x) ≺1 f(y)). If Rk0,Rk1 are their rank functions, then we have
∀x (Rk0(x) ≤ Rk1(f(x))), and the image of Rk0 is an initial segment of the image of Rk1.

Proof. We show immediately ∀x (Rk0(x) ≤ Rk1(f(x))) by induction following ≺0. Hence
the result, since the image of a rank function is an initial segment of On. J
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5 An ultrafilter on 2ג

In all of the following, we write y < x for y ∈ Cl(x) inM, where Cl(x) denotes the transitive
closure of x. It is a strict well founded ordering (many other such orderings would do the
job, for instance the relation rank(y) < rank(x)). The binary function symbol 〈y < x〉 is
therefore defined in N , with values in .2ג By Theorem 8, the binary relation 〈y < x〉 = 1 is
well founded in N .

I Theorem 14. ||−There exists an ultrafilter D on ,2ג which is defined as follows: D =
{α ε 2ג ; the relation 〈y < x〉 ≥ α is well founded }.

The formula α εD, which we shall also write D[α], is therefore:

D[α] ≡ ∀X (∀x(∀y(〈y < x〉 ≥ α ↪→ y ε/X)→ x ε/X)→ ∀x(x ε/X)) .

I Remark. By Lemma 5, the formula 〈y < x〉 ≥ α may be written 〈αy < αx〉 = α. We have:
D[1] ≡ ∀X (∀x(∀y(〈y < x〉 = 1 ↪→ y ε/X)→ x ε/X)→ ∀x(x ε/X)).
D[0] ≡ ∀X((∅ ε/X → ∅ ε/X)→ ∅ ε/X).

Proof. We have immediately: λxx I ||−¬D[0]; Y ||−D[1]; I ||− ∀α2ג∀β2ג (α ≤ β ↪→ (D[α]→ D[β]))
(more precisely: ‖D[1]‖ ⊂ ‖D[0]‖).

Therefore, in order to prove Theorem 14, it suffices to show:
||− ∀α2ג∀β2ג (α∧β = 0 ↪→ (D[α∨β]→ D[α] ∨ D[β])); see Theorem 15;
||− ∀α2ג∀β2ג (α∧β = 0 ↪→ (D[α],D[β]→ ⊥)); or even only:
||− ∀α2ג(D[α],D[¬α]→ ⊥); see Theorem 22. J

Notation. For α ε ,2ג we shall write x <α y for 〈x < y〉 ≥ α.

I Theorem 15.
(i) ||− ∀α2ג∀β2ג (α∧β = 0 ↪→ (D[α∨β]→ D[α] ∨ D[β])).
(ii) ||− ∀α2ג∀β2ג (D[α∨β]→ D[α] ∨ D[β]).

Proof.
(i) Let α, β ε 2ג be such that α∧β = 0,¬D[α],¬D[β]. We have to show ¬D[α∨β]. By

hypothesis on α and β, there exists individuals a0, A (resp. b0, B) such that a0 εA (resp.
b0 εB) and A (resp. B) has no minimal ε-element for <α (resp. for <β). We set:

c0 = αa0 t βb0 and C = {αx t βy ; x εA, y εB} .

Therefore, we have c0 εC; it suffices to show that C has no minimal ε-element for <α∨β .
Let c εC, c = αa t βb, with a εA, b εB. By hypothesis on A,B, there exists a′ εA and
b′ εB such that a′ <α a, b′ <β b. If we set c′ = αa′ t βb′, we have c′ εC, as needed. We
also have: 〈c′ = a′〉 ≥ α, 〈a′ < a〉 ≥ α, 〈c = a〉 ≥ α; it follows that 〈c′ < c〉 ≥ α. In the
same way, we have 〈c′ < c〉 ≥ β and therefore, finally, 〈c′ < c〉 ≥ α∨β.

(ii) We set β′ = β∧(¬α); we have α∧β′ = 0 and α∨β′ = α∨β. Therefore, we have: D[α∨β]→
D[α] ∨ D[β′]. Now, we have β′ ≤ β and therefore D[β′]→ D[β]. J

I Lemma 16.
(i) I ||− ∀x∀y(〈x < y〉 6= 1→ x ε/ y).
(ii) IfM |= u ∈ v, then I ||−u ε .vג
(iii) I ||− ∀x∀y∀α2ג (〈x < y〉 ≥ α ↪→ αx ε .(Cl({y})ג
(iv) ||− ∀x∀y (〈x < y〉 = 1↔ x ε .(Cl(y)ג
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Proof.
(i) Let a, b be two individuals. Let ξ ||− 〈a < b〉 6= 1, π ∈ ‖a ε/ b‖; then (a, π) ∈ b and

therefore 〈a < b〉 = 1 and ξ ||−⊥; thus ξ ? π ∈ ⊥⊥.
(ii) Indeed, we have ‖u ε/ ‖vג = {π ∈ Π ; (u, π) ∈ v×Π} = Π.
(iii) Let α ∈ {0, 1} and a, b ∈ M such that 〈a < b〉 ≥ α. If α = 0, we must show

I ||− ∅ ε Cl({y})ג which follows from (ii). If α = 1, then 〈a < b〉 = 1, that is a ∈ Cl(b),
therefore a ∈ Cl({b}). From (ii), it follows that I ||− a ε .Cl({b})ג

(iv) Indeed, if a, b are individuals ofM, we have trivially: ‖〈a < b〉 6= 1‖ = ‖a ε/ .‖Cl(b)ג J

I Lemma 17. The well founded relation 〈x < y〉 = 1 is ranked, and its rank function R has
for image the whole of On.
Proof. Lemma 16(iv) shows that this relation is ranked. Let ρ be an ordinal and r an
individual ' ρ. We show, by induction on ρ, that R(r) ≥ ρ. Indeed, for every ρ′ ∈ ρ, there
exists r′ ε r such that r′ ' ρ′. We have R(r′) ≥ ρ′ by induction hypothesis, and 〈r′ < r〉 = 1
from Lemma 16(i). Therefore, we have ρ′ ∈ R(r) by definition of R, and finally R(r) ≥ ρ.
This shows that the image of R is not bounded in On. Since it is an initial segment, it is the
whole of On. J

I Theorem 18. Let F (x, y) be a formula of ZFε, with parameters. Then, we have:

I ||− ∀x∀y
(
ΠFג$∀ (x, f(x,$))→ F (x, y)

)
for some function symbol f , defined dansM, with domainM×Π.
Proof. Since the ground model M satisfies V = L (or only the choice principle), we can
define, inM, a function symbol f such that:

∀x∀y(∀$ ∈ Π) ($ ∈ ‖F (x, y)‖ → $ ∈ ‖F (x, f(x,$))‖) .

Let a, b be individuals, ξ ||− ΠFג$∀ (a, f(a,$)) and π ∈ ‖F (a, b)‖. Thus, we have π ∈
‖F (a, f(a, π))‖, and therefore ξ ? π ∈ ⊥⊥. J

Definitions. Let a be any individual of N and κ an ordinal (therefore, κ is not an individual
of N , but an equivalence class for '). A function or application from κ into a is, by definition,
a binary relation R(ρ, x) such that: ∀x∀x′(∀ρ, ρ′ ∈ κ) (R(ρ, x), R(ρ′, x′), ρ ' ρ′ → x = x′));
(∀ρ ∈ κ)(∃x ε a)R(ρ, x). It is an injection if we have ∀x(∀ρ, ρ′ ∈ κ) (R(ρ, x), R(ρ′, x)→ ρ ' ρ′).
A surjection from a onto κ is a function f of domain a such that: (∀ρ ∈ κ)(∃x ε a) f(x) ' ρ.
I Theorem 19. For any individual a, there exists an ordinal κ, such that there is no
surjection from a onto κ.
Proof. Let f be a surjection from a onto an ordinal ρ. We define a strict ordering relation ≺f
by setting x ≺f y ⇔ x ε a ∧ y ε a ∧ f(x) < f(y). It is clear that this relation is well founded,
that f is an a-inductive function, and that O(f, a) ' ρ. We may consider this relation as
a subset of a×a. By means of the axioms of union, power set and collection given above
(Theorems 1 to 4), we define an ordinal κ0, which is the union of the O(f, a) for all the
functions f which are a-inductive for some well founded strict ordering relation on a. In fact,
we consider the set:

B(a) = {X εP(a×a) ; X is a well founded strict ordering relation on a} .

Then, we set κ0 =
⋃
{O(f, a) ; X εB(a), f εΦ(X, a)}. In this definition, we use the

function symbol Φ, defined after Lemma 10, which associates with each well founded strict
ordering relation X on a, a non void set of a-inductive functions for this relation.

Then, there exists no surjection from a onto κ0 + 1. J
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Notations. We denote by ∆ the first ordinal of N such that there is no surjection from Πג
onto ∆: for every function φ, there exists δ ∈ ∆ such that ∀xגΠ(φ(x) 6' δ). For each α ε ,2ג
we denote by Nα the class defined by the formula x = αx.

I Lemma 20. Let α0, α1 ε ,2ג α0∧α1 = 0 and R0 (resp. R1) be a functional relation of
domain Nα0 (resp. Nα1) with values in On. Then, either R0, or R1, is not surjective onto ∆.

Proof. By contradiction: we suppose that R0 and R1 are both surjective onto ∆. We apply
Theorem 18 to the formula F (x0, x1) ≡ ¬(R0(α0x0) ' R1(α1x1)), and we get:

∀x0
(
∃x1(R0(α0x0) ' R1(α1x1))→ Π(R0(α0x0)ג$∃ ' R1(α1f(x0, $)))

)
where f is a suitable function symbol (therefore defined inM). Replacing x0 with α0x0, we
obtain:

∀x0
(
∃x1(R0(α0x0) ' R1(α1x1))→ Π(R0(α0x0)ג$∃ ' R1(α1f(α0x0, $)))

)
.

But, by Lemma 5(i), we have α1f(α0x,$) = α1f(α1α0x,$) = α1f(∅, $). It follows
that:

∀x0
(
∃x1(R0(α0x0) ' R1(α1x1))→ Π(R0(α0x0)ג$∃ ' R1(α1f(∅, $)))

)
.

By hypothesis, we have (∀ρ ∈ ∆)∃x0∃x1(ρ ' R0(α0x0) ' R1(α1x1)).
It follows that: (∀ρ ∈ ∆)∃x0∃$גΠ (ρ ' R0(α0x0) ' R1(α1f(∅, $))); therefore, we have:

(∀ρ ∈ Πג$∃(∆ (ρ ' R1(α1f(∅, $))).
Therefore, the function $ 7→ R1(α1f(∅, $)) is a surjection from Πג onto ∆. But this is a

contradiction with the definition de ∆.
Remark. We should write f(α0, α1, x0, $) instead of f(x0, $), since the function symbol f
depends on the four variables α0, α1, x0, $. In fact, it depends also on the parameters which
appear in R0, R1. The proof does not change. J

I Corollary 21. Let α0, α1 ε ,2ג α0∧α1 = 0, and ≺0,≺1 be two well founded ranked strict
ordering relations with respective domains Nα0 ,Nα1 . Let Rk0, Rk1 be their rank functions.
Then, either the image of Rk0, or that of Rk1 is an ordinal < ∆.

Proof. In order to be able to define the rank functions Rk0, Rk1, we consider the relations
≺′

0,≺′
1, with domain the whole of N , defined by x ≺′

i y ≡ (x = αix) ∧ (y = αiy) ∧ (x ≺i y)
for i = 0, 1. These strict ordering relations are well founded and ranked. Their rank functions
Rk′

0, Rk′
1 take the value 0 outside Nα0 ,Nα1 respectively: indeed, all the individuals outside

Nαi
are minimal for ≺′

i.
By Lemma 20, one of them, Rk′

0 for instance, is not surjective onto ∆. Since the image
of any rank function is an initial segment of On, the image of Rk0 is an ordinal < ∆. J

I Theorem 22.
(i) ||− ∀α2ג

0 ∀α2ג
1 (α0∧α1 = 0 ↪→ (D[α0],D[α1]→ ⊥)).

(ii) ||− ∀α2ג
0 ∀α2ג

1 (D[α0],D[α1]→ D[α0∧α1]).

Proof.
(i) In N , let α0, α1 ε 2ג be such that α0∧α1 = 0 and the relations 〈x < y〉 ≥ α0, 〈x < y〉 ≥ α1

be well founded. Therefore, we have α0, α1 6= 0 (and thus, α0, α1 6= 1). Therefore, the
relations x ≺i y ≡ (x = αix) ∧ (y = αiy) ∧ (〈x < y〉 = αi) for i = 0, 1, are well founded
strict orderings. From Lemma 16(iii), it follows that these relations are ranked. Now, by
Lemma 5, we have: ||− ∀x∀y∀α2ג(〈x < y〉 = 1→ 〈αx < αy〉 = α). But, by Lemma 17,
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the rank function of the well founded relation 〈x < y〉 = 1 has for image the whole of
On. Therefore, by Lemma 13, the same is true for the rank functions of the well founded
strict order relations x ≺0 y and x ≺1 y. But this contradicts Corollary 21.

(ii) We have α0 ≤ (α0∧α1)∨(¬α1). Therefore, by D[α0] and Theorem 15, we have D[α0∧α1]
or D[¬α1]. But D[¬α1] is impossible, by D[α1] and (i). J

I Corollary 23. D[α] is equivalent with each one of the following propositions:
(i) There exists a well founded ranked strict ordering relation ≺ with domain Nα, the rank

function of which has an image ≥ ∆.
(ii) There exists a function with domain Nα which is surjective onto ∆.

Proof.
D[α] ⇒ (i): By definition of D[α], the binary relation (x = αx) ∧ (y = αy) ∧ (〈x < y〉 = α)

is well founded. By Lemma 16(iii), this relation is ranked. We have seen, in the proof of
Theorem 22, that the image of its rank function is the whole of On.

(i) ⇒ (ii): obvious.
(ii) ⇒ D[α]: Since D is an ultrafilter, to show ¬D[¬α]. But, (ii) and D[¬α] contradict

Lemma 20. J

I Theorem 24. If 2ג is non trivial, there exists no set, which is totally ordered by ε, the
ordinal of which is ≥ ∆.

Proof. Let α ε ,2ג α 6= 0, 1 and X be a set which is totally ordered by ε , and equipotent
with ∆. Then, we show that the application x 7→ αx is an injection from X into Nα:
Indeed, by Lemma 16(i), we have x ε y → 〈x < y〉 = 1 and, by Lemma 5, we have:
〈x < y〉 = 1→ 〈αx < αy〉 = α. Therefore, if x, y εX and x 6= y, we have, for instance x ε y,
therefore 〈αx < αy〉 = α and therefore αx 6= αy since α 6= 0.

Thus, there exists a function with domain Nα which is surjective onto ∆. The same
reasoning, applied to ¬α gives the same result for ¬α. But this contradicts Lemma 20. J

I Remark. Theorem 24 shows that it is impossible to define Von Neumann ordinals in N ,
with ε instead of ∈, unless 2ג is trivial, i.e. the realizability model is, in fact, a forcing model.

6 The model MD

For each formula F [x1, . . . , xn] of ZF, we have defined, in the ground model M, an n-
ary function symbol with values in {0, 1}, denoted by 〈F [x1, . . . , xn]〉, by setting, for any
individuals a1, . . . , an ofM: 〈F [a1, . . . , an]〉 = 1 ⇔ M |= F [a1, . . . , an]. In N , the function
symbol 〈F [x1, . . . , xn]〉 takes its values in the Boolean algebra .2ג

We define, in N , two binary relations ∈D and =D, by setting:

(x ∈D y) ≡ D[〈x ∈ y〉]; (x =D y) ≡ D[〈x = y〉] .

The class N , equipped with these relations, will be denotedMD.
For each formula F [~x, y] of ZF, with n+ 1 free variables x1, . . . , xn, y, we can define, by

means of the choice principle inM, an n-ary function symbol fF , such that:

M |= ∀~x (F [~x, fF (~x)]→ ∀y F [~x, y]) ;

fF is called the Skolem function of the formula F [~x, y].
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I Lemma 25.
(i) I ||− ∀~x∀y (〈∀y F [~x, y]〉 ≤ 〈F [~x, y]〉)
(ii) I ||− ∀~x∀y (〈∀y F [~x, y]〉 = 〈F [~x, fF (~x)]〉).

Proof. Trivial. J

For each formula F [~x] of ZF, we define, by recurrence on F , a formula of ZFε, which has
the same free variables, and that we denoteMD |= F [~x] (read: MD satisfies F [~x]).

F is atomic: (MD |= x1 ∈ x2) is x1 ∈D x2; (MD |= x1 = x2) is x1 =D x2; (MD |= ⊥)
is ⊥.
F ≡ F0 → F1: then (MD |= F ) is the formula (MD |= F0)→ (MD |= F1).
F [~x] ≡ ∀y G[~x, y]: then (MD |= F [~x]) is the formula ∀y(MD |= G[~x, y]).

I Lemma 26. For each formula F [~x] of ZF, we have ||− ∀~x
(

(MD |= F [~x])↔ D〈F [~x]〉
)
.

Proof. By recurrence on the length of F . If F is atomic, we have: I ||− ∀~x
(

(MD |= F [~x])→

D〈F [~x]〉
)
and I ||− ∀~x

(
D〈F [~x]〉 → (MD |= F [~x])

)
because (MD |= F [~x]) is identical with

D〈F [~x]〉.
If F ≡ F0 → F1, the formula (MD |= F ) ↔ D〈F 〉 is: ((MD |= F0) → (MD |= F1)) ↔

D〈F0 → F1〉. Since D is an ultrafilter, this formula is equivalent with: ((MD |= F0) →
(MD |= F1))↔ (D〈F0〉 → D〈F1〉), which is a logical consequence of: (MD |= F0)↔ D〈F0〉
and (MD |= F1)↔ D〈F1〉. Hence the result, by the recurrence hypothesis.

If F [~x] ≡ ∀y G[~x, y], let fG(~x) be the Skolem function of G. Then, we have (MD |=
∀y G[~x, y]) ≡ ∀y(MD |= G[~x, y]), and therefore: I ||− (MD |= ∀y G[~x, y]) → (MD |=
G[~x, fG(~x)]). Therefore, by the recurrence hypothesis, we have: ||− (MD |= ∀y G[~x, y])→
D〈G[~x, fG(~x)]〉. Applying Lemma 25(ii), we obtain ||− (MD |= ∀y G[~x, y])→ D〈∀y G[~x, y]〉.
Conversely, by Lemma 25(i), we have ||− ∀y (D〈∀y G[~x, y]〉 → D〈G[~x, y]〉). Therefore, apply-
ing the recurrence hypothesis, we obtain: ||−D〈∀y G[~x, y]〉 → ∀y(MD |= G[~x, y]), and thus,
by definition of (MD |= ∀y G[~x, y]): ||−D〈∀y G[~x, y]〉 → (MD |= ∀y G[~x, y]). J

I Theorem 27. MD is an elementary extension of the ground modelM.

I Remark. Theorem 27 is, in fact, true for any ultrafilter on ,2ג with the same proof.

Proof. Let F [~a] be a closed formula of ZF, with parameters a1, . . . , an inM. IfM |= F [~a],
we have 〈F [~a]〉 = 1 (by definition), and therefore, of course, ||−D〈F [~a]〉. Therefore, by
Lemma 26, we have ||− (MD |= F [~a]). IfM 6|= F [~a], thenM |= ¬F [~a]; therefore, we have
||− (MD |= ¬F [~a]). J

I Theorem 28. Let @ be a well founded binary relation, defined in the ground modelM.
Then the relation D〈x @ y〉 is well founded in the realizability model N .

I Remark. Theorem 28 is an improvement on Theorem 8.

Notations. We shall write x @D y for 〈x @ y〉 εD. Recall that x < y means x ∈ Cl(y);
and that x <α y means 〈x < y〉 ≥ α, for α ε .2ג

We define, in the modelM, a binary relation @@ on the class {0, 1}×M by setting, for
any α, α′ ∈ {0, 1} and a, a′ inM:

(α′, a′) @@ (α, a)⇔ (α′ < α) ∨ (α = α′ = 0 ∧ a′ < a) ∨ (α = α′ = 1 ∧ a′ @ a) .
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The relation @@ is the ordered direct sum of the relations @, <. It is easily shown that it
is well founded inM.

The binary function symbol associated with this relation, of domain {0, 1}×M and values
in {0, 1}, is given by:

〈(α′, a′) @@ (α, a)〉 = (¬α′∧α)∨(¬α′∧¬α∧〈a′ < a〉)∨(α′∧α∧〈a′ @ a〉) .

This definition gives, in N , a binary function symbol with arguments in N×2ג , and
values in .2ג By Theorem 8, the binary relation 〈(α′, a′) @@ (α, a)〉 = 1 is well founded in N .

Proof. By contradiction: we assume that the binary relation @D is not well founded. Thus,
there exists a0, A0 such that a0 εA0 and A0 has no minimal ε-element for @D. We define,
in N , the class X of ordered pairs (α, x), such that: There exists X such that x εX and X
has no minimal ε-element, neither for @D nor for <¬α. Therefore, the formula X (α, x) is:

α ε 2ג ∧ ∃X
{
x εX, (∀u εX){(∃v εX)(v @D u), (∃w εX)(w <¬α u)}

}
.

If (α, x) is in X , then we have D(α): indeed, the set X is non void and has no minimal
ε-element for <¬α. Therefore, we have ¬D(¬α), and thus D(α), since D is an ultrafilter.

We obtain the desired contradiction by showing that the class X is non void and has no
minimal element for the binary relation 〈(α′, x′) @@ (α, x)〉 = 1.

The ordered pair (1, a0) is in X : indeed, we have x <0 x for every x, and therefore A0
has no minimal ε-element for <0.

Now let (α, a) be in X ; we search for (α′, a′) in X such that 〈(α′, a′) @@ (α, a)〉 = 1.
By hypothesis on (α, a), there exists A such that a εA and A has no minimal ε-element,

neither for @D nor for <¬α. Thus, there exists a0, a1 εA such that we have D〈a0 @ a〉
and a1 <¬α a. We set α′ = (α∧〈a0 @ a〉) and therefore, we have D(α′). We set β = ¬α′∧α;
therefore α′,¬α, β form a partition of 1 in the Boolean algebra .2ג We have ¬D(β); therefore,
by definition of D, the relation <β is not well founded. Thus, there exists b, B such that
b εB and B has no minimal ε-element for <β . Then, we set: a′ = α′a0 t (¬α)a1 t βb and
A′ = {α′x t (¬α)y t βz ;x, y εA, z εB}.

Therefore, we have a′ εA′, as needed; moreover: ¬α′∧¬α∧〈a′ < a〉 = ¬α, since ¬α′ ≥ ¬α

and 〈a′ < a〉 ≥ ¬α∧〈a1 < a〉 = ¬α; α′∧α∧〈a′ @ a〉 = α′∧〈a′ @ a〉 = α′∧〈a0 @ a〉 = α′. By
definition of 〈(α′, a′) @@ (α, a)〉, it follows that 〈(α′, a′) @@ (α, a)〉 = β∨¬α∨α′ = 1.

It remains to show that A′ has no minimal ε-element for @D and for <¬α′ . Therefore, let
u εA′, thus u = α′xt (¬α)y tβz with x, y εA and z εB. By hypothesis on A,B, there exists
x′, y′ εA, x′ @D x, y′ <¬α y and z′ εB, z′ <β z. Then, if we set u′ = α′x′ t (¬α)y′ t βz′, we
have u′ εA′. Moreover, we have 〈u′ @ u〉 ≥ α′∧〈x′ @ x〉, and therefore D〈u′ @ u〉, that is
u′ @D u. Finally, 〈u′ < u〉 ≥ (¬α∧〈y′ < y〉)∨(β∧〈z′ < z〉) = ¬α∨β = ¬α′; therefore, we have
u′ <¬α′ u. J

I Theorem 29. MD is well founded, and therefore has the same ordinals as N ′
∈.

Proof. We apply Theorem 28 to the binary relation ∈ which is well founded in M. We
deduce that the relation D〈x ∈ y〉, that is x ∈D y, is well founded in N . J

The relation ∈D is well founded and extensional, which means that we have, in N :

∀x∀y (∀z(z ∈D x↔ z ∈D y)→ ∀z(x ∈D z → y ∈D z)) .
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It follows that we can define a collapsing, by means of a function symbol Φ, which is an
isomorphism of (MD,∈D) on a transitive class in the model N∈ of ZF, which contains the
ordinals. This means that we have:

∀x∀y(y ∈D x→ Φ(y) ∈ Φ(x)) ; ∀x(∀z ∈ Φ(x))(∃y ∈D x) z ' Φ(y) .

The definition of Φ is analogous with that of the rank function already defined for a
transitive well founded relation. The details will be given in a later version of this paper. Il
follows that:

I Theorem 30. The realizability model N∈ contains a transitive class, which contains the
ordinals and is an elementary extension of the ground modelM.

I Corollary 31. The class LM of constructible sets inM is an elementary submodel of LN .
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Abstract
We build a Kleene realizability semantics for the two-level Minimalist Foundation MF, ideated
by Maietti and Sambin in 2005 and completed by Maietti in 2009. Thanks to this semantics we
prove that both levels of MF are consistent with the formal Church Thesis CT.

Since MF consists of two levels, an intensional one, called mTT, and an extensional one,
called emTT, linked by an interpretation, it is enough to build a realizability semantics for the
intensional level mTT to get one for the extensional one emTT, too. Moreover, both levels
consists of type theories based on versions of Martin-Löf’s type theory.

Our realizability semantics formTT is a modification of the realizability semantics by Beeson
in 1985 for extensional first order Martin-Löf’s type theory with one universe. So it is formalized in
Feferman’s classical arithmetic theory of inductive definitions, called‘ID1. It is called extensional
Kleene realizability semantics since it validates extensional equality of type-theoretic functions
extFun, as in Beeson’s one.

The main modification we perform on Beeson’s semantics is to interpret propositions, which
are defined primitively in MF, in a proof-irrelevant way. As a consequence, we gain the validity
of CT. Recalling that extFun+ CT+ AC are inconsistent over arithmetics with finite types, we
conclude that our semantics does not validate the Axiom of Choice AC on generic types. On the
contrary, Beeson’s semantics does validate AC, being this a theorem of Martin-Löf’s theory, but
it does not validate CT. The semantics we present here seems to be the best approximation of
Kleene realizability for the extensional level emTT. Indeed Beeson’s semantics is not an option
for emTT since AC on generic sets added to it entails the excluded middle.
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1 Introduction

A foundation for mathematics should be called constructive only if the mathematics arising
from it could be considered genuinely computable. One way to show this is to produce a
realizability model of the foundation where arbitrary sets are interpreted as data types and
functions between them are interpreted as programs. A key example is Kleene’s realizability
model for first-order Intuitionist Arithmetics validating the formal Church Thesis.

Here we will show how to build a realizability model for the Minimalist Foundation, for
short MF, ideated by Maietti and Sambin in [13] and then completed by Maietti in [9],
where it is explicit how to extract programs from its proofs. In particular we show that MF
is consistent with the Church Thesis, for short CT. This result is part of a project to know
to what extent MF enjoys the same properties as Heyting arithmetics.
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The Minimalist Foundation is intended to constitute a common core among the most
relevant constructive and classical foundations. One of its novelties is that it consists of
two levels: an intensional level, called mTT, which should make evident the constructive
contents of mathematical proofs in terms of programs, and an extensional level, called
emTT, formulated in a language close as much as possible to that of ordinary mathematics.
Both intensional and extensional levels of MF consist of type systems based on versions
of Martin-Löf’s type theory with the addition of a primitive notion of propositions: the
intensional one is based on [17] and the extensional one on [16]. Actually mTT can be
considered a predicative version of Coquand’s Calculus of Constructions [4].

To build a realizability model for the two-level Minimalist Foundation, it is enough to
build it for its intensional level mTT. Indeed an interpretation for the extensional level
emTT can be then obtained from an interpretation of mTT by composing this with the
interpretation of emTT in a suitable setoid model of mTT as in [9] and analyzed in [11].
Moreover, since the interpretation of CT from the extensional level to the intensional one is
equivalent to CT itself according to [9], a model showing consistency of mTT with CT can
be turned into a model showing consistency of emTT with CT.

Here, we build a realizability model for mTT+ CT by suitably modifying Beeson’s
realizability semantics [2] for the extensional version of first order Martin-Löf’s type theory
with one universe [16]. So, as Beeson’s semantics our model is based on Kleene realizability
semantics of intuitionistic arithmetics and it is formalized in Feferman’s classical arithmetic
theory of inductive definitions, called ‘ID1 ([5]). The theory ‘ID1 is formulated in the language
of second-order arithmetics and it consists of PA (Peano Arithmetic) plus the existence of
some (not necessary the least) fix point for positive parameter-free arithmetical operators.

We call our Kleene realizability semantics extensional since it validates extensional
equality of type-theoretic functions extFun, as Beeson’s one.

The main modification we perform to Beeson’s semantics is to interpret propositions,
which are defined primitively in MF, in a proof-irrelevant way. More in detail we interpret
mTT-sets as Beeson interpreted Martin-Löf’s sets, propositions are interpreted as trivial
quotients of Kleene realizability interpretation of intuitionistic connectives, and the universe
of mTT-small propositions is interpreted as a suitable quotient of some fix point including
all the codes of small propositions by using the technique Beeson adopted to interpret
Martin-Löf’s universe.

As a consequence in our model we gain the validity of CT but we loose the validity of the
full Axiom of Choice AC. Instead in Beeson’s semantics, AC is valid, being this a theorem
of Martin-Löf’s theory, but CT is not. All these results follow from the well known fact that
extFun+ CT+ AC over arithmetics with finite types are inconsistent. Therefore in the
presence of extFun as in our emTT, either one validates CT as we do here, or AC as in
Beeson’s semantics. Recalling that the addition of AC on generic sets in emTT entails the
excluded middle, Beeson’s semantics is not an option for emTT. Therefore the semantics we
present here appears to be the best approximation of Kleene realizability for the extensional
level emTT.

Actually a consistency proof for emTT with CT could also be obtained by interpreting
this theory in the internal theory of Hyland’s effective topos [7]. But here we have obtained
a proof in a predicative theory, whilst classical, as ‘ID1. As a future work we intend to
generalize the notion of tripos-to-topos construction in [8] in order to extract the categorical
structure behind our realizability interpretation to the final goal of building a predicative
effective topos.
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2 The Minimalist Foundation

In [9] a two-level formal system, called Minimalist Foundation, for shortMF, is completed
following the design advocated in [13]. The two levels of MF are both given by a type
theory à la Martin-Löf: the intensional level, called mTT, is an intensional type theory
including aspects of Martin-Löf’s one in [17] (and extending the set-theoretic version in
[13] with collections), and its extensional level, called emTT, is an extensional type theory
including aspects of extensional Martin-Löf’s one in [16]. Then a quotient model of setoids
à la Bishop [3, 6, 1, 19] over the intensional level is used in [9] to interpret the extensional
level in the intensional one. A categorical study of this quotient model has been carried on
in [11, 10, 12] and related to the construction of Hyland’s effective topos [7, 8].

MF was ideated in [13] to be constructive and minimalist, that is compatible with (or
interpretable in) most relevant constructive and classical foundations for mathematics in the
literature. According to these desiderata, MF has the following peculiar features (for a more
extensive description see also [14]):

MF has two types of entities: sets and collections. This is a consequence of the fact that
a minimalist foundation compatible with most of constructive theories in the literature,
among which, for example, Martin-Löf’s one in [17], should be certainly predicative
and based on intuitionistic predicate logic, including at least the axioms of Heyting
arithmetic. For instance it could be a many-sorted logic, such as Heyting arithmetic of
finite types [20], where sorts, that we call types, include the basic sets we need to represent
our mathematical entities. But in order to represent topology in an intuitionistic and
predicative way, then MF needs to be equipped with two kinds of entities: sets and
collections. Indeed, the power of a non-empty set, namely the discrete topology over a
non-empty set, fails to be a set in a predicative foundation, and it is only a collection.
MF has two types of propositions. This is a consequence of the previous characteristic.
Indeed the presence of sets and collections, where the latter include the representation
of power-collections of subsets, yields to distinguish two types of propositions to remain
predicative: those closed under quantifications on sets, called small propositions in [9],
from those closed under any kind of quantification, called propositions in [9]. This
distinction is crucial in the definition of “subset of a set” we adopt in MF: a subset of a
set A is indeed an equivalence class of small propositional functions from A.
MF has two types of functions. As in Coquand’s Calculus of Constructions [4], or
Feferman’s predicative theories [5], in MF we distinguish the notion of functional relation
from that of type-theoretic function. In particular in MF only type-theoretic functions
between two sets form a set, while functional relations between two sets form generally a
collection.
This restriction is crucial to make MF compatible with classical predicative theories
as Feferman’s predicative theories [5]. Indeed it is well-known that the addition of the
principle of excluded middle can turn a predicative theory where functional relations
between sets form a set, as Aczel’s CZF or Martin-Löf’s type theory, into an impredicative
one where power-collections become sets.

2.1 The intensional level of the Minimalist Foundation

Here we describe the intensional level of the Minimalist Foundation in [9], which is represented
by a dependent type theory called mTT. This type theory is written in the style of Martin-
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Löf’s type theory [17] by means of the following four kinds of judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the type judgement (expressing that something is a specific type), the type equality
judgement (expressing when two types are equal), the term judgement (expressing that
something is a term of a certain type) and the term equality judgement (expressing the
definitional equality between terms of the same type), respectively, all under a context Γ.

The word type is used as a meta-variable to indicate four kinds of entities: collections,
sets, propositions and small propositions, namely

type ∈ {col, set, prop, props } .

Therefore, in mTT types are actually formed by using the following judgements:

A set [Γ] D col [Γ] φ prop [Γ] ψ props [Γ]

saying that A is a set, that D is a collection, that φ is a proposition and that ψ is a small
proposition.

Here, contrary to [9] where capital latin letters are used as meta-variables for all types,
we use greek letters ψ, φ as meta-variables for propositions, we mostly use capital latin letters
A,B as meta-variables for sets and capital latin letters C,D as meta-variables for collections.

As in the intensional version of Martin-Löf’s type theory, in mTT there are two kinds of
equality concerning terms: one is the definitional equality of terms of the same type given by
the judgement

a = b ∈ A [Γ]

which is decidable, and the other is the propositional equality written

Id(A, a, b) prop [Γ]

which is not necessarily decidable.
We now proceed by briefly describing the various kinds of types in mTT, starting from

small propositions and propositions and then passing to sets and finally collections.
Small propositions in mTT include all the logical constructors of intuitionistic predicate

logic with equality and quantifications restricted to sets:

φ props ≡ ⊥ | φ∧ψ | φ∨ψ | φ→ ψ | (∀x ∈ A) φ(x) | (∃x ∈ A) φ(x) | Id(A, a, b)

provided that A is a set.
Then, propositions in mTT include all the logical constructors of intuitionistic predicate

logic with equality and quantifications on all kinds of types, i.e. sets and collections. Of
course, small propositions are also propositions.

φ prop ≡ φ props | φ∧ψ | φ∨ψ | φ→ ψ | (∀x ∈ D) φ(x) | (∃x ∈ D) φ(x) | Id(D, d, b) .

In order to close sets under comprehension, for example to include the set of positive
natural numbers {x ∈ N | x ≥ 1}, and to define operations on such sets, we need to think
of propositions as types of their proofs: small propositions are seen as sets of their proofs
while generic propositions are seen as collections of their proofs. That is, we add to mTT
the following rules

props-into-set)
φ props
φ set

prop-into-col) φ prop

φ col
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Before explaining the difference between the notion of set and collection we describe their
constructors in mTT.

Sets in mTT are characterized as inductively generated types and they include the
following:

A set ≡ φ props | N0 | N1 | N | List(A) | (Σx ∈ A)B(x) | A+B | (Πx ∈ A)B(x)

where the notation N0 stands for the empty set, N1 for the singleton set, N for the set of
natural numbers, List(A) for the set of Lists on the set A, (Σx ∈ A)B(x) for the indexed
sum of the family of sets B(x) set [x ∈ A] indexed on the set A, A + B for the disjoint
sum of the set A with the set B, (Πx ∈ A)B(x) for the product type of the family of sets
B(x) set [x ∈ A] indexed on the set A.

It is worth noting that the set N of the natural numbers is not present in a primitive
way in mTT in [9] since its rules can be derived by putting N ≡ List(N1). Here we add
it to the syntax of mTT because it plays a prominent role in realizability and we want to
interpret it directly in ‘ID1 to avoid complications due to list encodings.

Finally, collections in mTT include the following types:

D col ≡ A set | φ prop | props | A→ props | (Σx ∈ D)E(x)

and all sets are collections thanks to the following rule:

set-into-col) A set

A col

where props stands for the collection of (codes for) small propositions and A→ props for the
collection of propositional functions of the set A, while (Σx ∈ D)E(x) stands for the indexed
sum of the family of collections E(x) col [x ∈ D] indexed on the collection D.

Note that the collection of small propositions props is defined here with codes à la Tarski
as in [17], contrary to the version in [9], to make the interpretation easier to understand. Its
rules are the following.
Elements of the collection of small propositions are generated as follows:

Pr1) ⊥̂ ∈ props Pr5)
A set a ∈ A b ∈ A

Îd(A, a, b) ∈ props

Pr2)
p ∈ props q ∈ props

p∨̂q ∈ props
Pr6)

p(x) props [x ∈ B] B setÿ�(∃x ∈ B)p(x) ∈ props

Pr3)
p ∈ props q ∈ props

p“→q ∈ props
Pr7)

p(x) ∈ props [x ∈ B] B setÿ�(∀x ∈ B)p(x) ∈ props

Pr4)
p ∈ props q ∈ props

p∧̂q ∈ props

Elements of the collection of small propositions can be decoded as small propositions via
an operator as follows

τ -Pr) p ∈ props

τ(p) props

and this operator satisfies the following definitional equalities:
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eq-Pr1) τ(⊥̂) = ⊥ props eq-Pr5)
A set a ∈ A b ∈ A

τ(Îd(A, a, b)) = Id(A, a, b) props

eq-Pr2)
p ∈ props q ∈ props

τ(p∨̂q) = τ(p) ∨ τ(q) props
eq-Pr6)

p(x) props [x ∈ B] B set

τ(ÿ�(∃x ∈ B)p(x)) = (∃x ∈ B)τ(p(x)) props

eq-Pr3)
p ∈ props q ∈ props

τ(p“→q) = τ(p)→ τ(q) props
eq-Pr7)

p(x) ∈ props [x ∈ B] B set

τ(ÿ�(∀x ∈ B)p(x)) = (∀x ∈ B)τ(p(x)) props

eq-Pr4)
p ∈ props q ∈ props

τ(p∧̂q) = τ(p) ∧ τ(q) props

In the realizability interpretation of mTT we need to define a subset of natural numbers
including codes of mTT-sets in order to define the subset of codes of small propositions
closed under quantification on sets. The existence of such a subset of set codes says that the
realizability interpretation is actually interpreting an extension of mTT with a collection of
sets. In order to simplify the definition of the realizability interpretation, we interpret an
extension of mTT, which we call mTTs, with the addition of the collection Set of set codes
whose related rules are the following. We don’t give any elimination and conversion rule as
those of universes à la Tarski in [17] since it would not be validated in the model (because
we do not have least fix-points in ‘ID1).

Collection of sets

F-Se) Set col
Elements of the collection of sets are generated as follows:

See) N̂0 ∈ Set Ses) N̂1 ∈ Set Sen) “N ∈ Set

Sel)
a ∈ Set‘List(a) ∈ Set

Seu)
a ∈ Set b ∈ Set

a+̂b ∈ Set

SeΣ)
a(x) Set [x ∈ B] B setÿ�(Σx ∈ B)a(x) ∈ Set

SeΠ)
a(x) Set [x ∈ B] B setÿ�(Πx ∈ B)a(x) ∈ Set

sp-i-s) p ∈ props

p ∈ Set

mTT can be viewed as a predicative version of the Calculus of Constructions [4], for
short CoC. The main difference with respect to CoC is that mTT distinguishes between
sets and collections in a way similar to the distinction between sets and classes in axiomatic
set theory. However, all types of mTT, i.e. small propositions, propositions, sets and
collections, are predicative entities in the sense that their elements can be generated in an
inductive way by a finite number of rules. According to the notion of set in Bishop [3] and
Martin-Löf [15], all mTT-types are actually sets, and in fact mTT-types can be interpreted
as sets in the intensional version of Martin-Löf’s type theory in [17]. The mTT-distinction
between sets and collections, and the corresponding distinction between small propositions
and propositions, is motivated by the need of distinguishing between predicative entities
whose notion of element is a closed concept, and these are called sets, and those entities whose
notion of element is an open concept, and these are called collections. The motivating idea is
that a set is inductively generated by a finite number of rules whose associated inductive
principle does not vary when the theory mTT is extended with new entities (sets, collections
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or propositions). On the contrary a collection is inductively generated by a finite number of
rules which may vary when the theory is extended with new entities. Typical examples of
collections are universes (of sets or propositions): if we extend the theory mTT with a new
small proposition, then we need to add a new rule inserting this new small proposition in
the collection of small propositions.

We recall from [13] that the distinction between propositions and sets is crucial to avoid
the validity of choice principles.

Finally, it is worth noting that in mTT we restrict substitution term equality rules to
explicit substitution term equality rules of the form

sub)

c(x1, . . . , xn) ∈ C(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1) ]

a1 = b1 ∈ A1 . . . an = bn ∈ An(a1, . . . , an−1)
c(a1, . . . , an) = c(b1, . . . , bn) ∈ C(a1, . . . , an)

in place of usual term equality rules preserving term constructions typical of Martin-Löf’s
type theory in [17]. This restriction, and in particular the absence of the so called ξ-rule of
lambda-terms

ξ
c = c′ ∈ C [x ∈ B]

λxB .c = λxB .c′ ∈ (Πx ∈ B)C

seems to be crucial to prove consistency of mTT with AC+CT, as advocated in [13],
by means of a realizability semantics à la Kleene, but this is still an open problem (the
realizability semantics given here does not help to solve this since it can not validate AC
on all types). It is worth to recall from [9] that our restriction of term equality does not
affect the possibility of adopting mTT as the intensional level of a two-level constructive
foundation as intended in [13]. Indeed the term equality rules of mTT suffice to interpret an
extensional level including extensional equality of functions, as that represented by emTT,
by means of the quotient model described in [9] and studied abstractly in [11, 10, 12].

2.2 The extensional level of the Minimalist Foundation
Here we briefly describe the extensional level emTT of the Minimalist Foundation. This is
an extensional dependent type theory extending extensional Martin-Löf’s type theory in [16]
with primitive (proof-irrelevant) propositions, power-collections and quotients.

The rules of emTT are formulated by using the same kinds of judgements used for mTT.
The main peculiar characteristics of emTT in comparison to mTT are the following.

1. A primary difference between emTT and mTT is the usual difference between the so
called intensional version of Martin-Löf’s type theory [17] and its extensional one in [16]
and this is the fact that the definitional equality of terms

a = b ∈ A [Γ]

is no longer decidable in emTT as it is in the intensional mTT. This is in turn due to
the fact that the propositional equality of emTT as that of [16], called Eq(A, a, b), is
extensional in the sense that the provability of Eq(A, a, b) [Γ] in emTT is equivalent to
the derivation of the judgement a = b ∈ A [Γ]. Instead, in mTT only the derivation of
the definitional equality judgement a = b ∈ A [Γ] implies internally the provability of the
intensional propositional equality Id(A, a, b) [Γ] under a generic context.
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2. Another peculiar feature of emTT employs the distinction between propositions and sets:
this is the addition of proof-irrelevance for propositions captured by the following rules

prop-mono) φ prop [Γ] p ∈ φ [Γ] q ∈ φ [Γ]
p = q ∈ φ [Γ]

prop-true) φ prop p ∈ φ
true ∈ φ

saying that a proof of a proposition is unique and equal to a canonical proof term
called true. Of course, these rules can not be added to an extensional theory identifying
propositions with sets as Martin-Löf’s one in [16], because they would trivialize all
constructors. Moreover, these rules are not present in the intensional level mTT because
proof-irrelevance is a typical extensional condition. Indeed, emTT-propositions can be
thought of as quotients of intensional propositions under the trivial equivalence relation
between proofs.

3. Other key differences between the type theories mTT and emTT are the addition in
emTT of quotient sets

A/ρ set [Γ]

provided that ρ is a small equivalence relation ρ props [x ∈ A, y ∈ A] on the set A, and
the addition of the power-collection of the singleton and of the power-collection of a
generic set A

P(1) A→ P(1)

4. A further difference between the type theories mTT and emTT concerns the equality
rules between terms. Indeed in emTT equality rules between terms are the usual ones
typical of an extensional type theory in [16] preserving all term constructors. In particular,
equality of lambda-functions is extensional, namely it is possible to prove

(∀x ∈ A)Eq(B(x), f(x) , g(x)) → Eq( (Πx ∈ A)B(x) , λx.f(x) , λx.g(x) )

This proposition is not necessarily provable at the intensional levelmTT when substituting
the extensional propositional equality Eq(A, a, b) with the intensional one Id(A, a, b).

We end by recalling from [9] that a model for mTT can be turned into a model for
emTT by using the interpretation of emTT into mTT described in [9]. Therefore in the
following we are going to define a realizability interpretation just for mTT, to get one also
for emTT.

2.3 Untyped syntax of mTTs

Usually in type theory the syntax is introduced in fieri; for example terms are introduced
typically after deriving some conditions or constraints which are required to define them.
However for semantical purposes it looks more convenient to present the syntax a priori in a
partial way by eliminating parts of usual restrictions.

Therefore, since we want to define a realizability interpretation for mTTs, we introduce
here the syntax of all mTTs-type and term constructors in a partial way and we refer the
reader to look at [9] for all the mTT-rules. Then we will define a partial interpretation for
terms of our extended syntax and check that this interpretation is well defined in case the
constraints for introducing them are validated by the model.

I Definition 1. Let [x] be a context, i. e. [x] = [x1, ..., xn] is a possibly empty list of distinct
variables. Terms, small propositions, sets, propositions and collections in context are defined
according to the following conditions. If
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1. t [x] , t′ [x] , t′′ [x] , s [x, y] , s′ [x, y] , r [x, y, z] , q [x, y, z, u] are terms in context;
2. φ [x] , φ′ [x] , ψ [x, y] are small propositions in context;
3. A [x] , A′ [x] , B [x, y] are sets in context;
4. η [x] , η′ [x] , ρ [x, y] are propositions in context;
5. D [x] , E [x, y] are collections in context,
then
1. xi [x] is a term in context;

the empty set eliminator emp0(t) [x] is a term in context;
the singleton constant ? [x] and the singleton eliminator ElN1(t, t′) [x] are terms in context;
the zero constant 0 [x], the successor constructor succ(t) [x] and the eliminator of natural
numbers ElN (t, t′, (y, z)r) [x] are terms in context1;
the lambda abstraction of dependent product λy.s [x] and its application Ap(t, t′) [x] are
terms in context;
the pairing of strong indexed sum 〈t, t′〉 [x] and its eliminator ElΣ(t, (y, z)r) [x] are terms
in context;
the first injection of binary disjoint sum inl(t) [x], its second injection inr(t) [x] and its
eliminator El+(t, (y)s, (y)s′) [x] are terms in context;
the empty list constant ε [x], the list constructor cons(t, t′) [x] and the list eliminator
ElList(t, t′, (y, z, u)q) [x] are terms in context;
the false eliminator r0(t) [x] is a term in context;
the pairing of conjunction 〈t,∧ t′〉 [x], and its first and second projections π∧1 (t) [x] and
π∧2 (t) [x] are terms in context;
the first injection of disjunction inl∨(t) [x], the second injection of disjunction inr∨(t) [x]
and its eliminator El∨(t, (y)s, (y)s′) [x] are terms in context;
the lambda abstraction of implication λ→y.s [x] and its application Ap→(t, t′) [x] are terms
in context;
the pairing of existential quantification 〈t,∃ t′〉 [x] and its eliminator El∃(t, (y, z)r) [x] are
terms in context;
the lambda abstraction of universal quantification λ∀y.s [x] and its application Ap∀(t, t′) [x]
are terms in context;
the Propositional Identity constructor id(t) [x] and its eliminator ElId(t, t′, t′′, (y)s) [x] 2
are terms in context;
the empty set code ”N0[x], the singleton code ”N1[x], the natural numbers set code “N [x], the
dependent product code (◊�Πy ∈ A)s[x], the dependent sum code (◊�Σy ∈ A)s[x], the disjoint
sum code t“+t′[x], the list code ‘List(t)[x], the falsum code “⊥, the conjunction code t∧̂t′,
the disjunction code t∨̂t′, the implication code t→̂t′, the existential quantification code
(◊�∃y ∈ A)s [x], the universal quantification code (◊�∀y ∈ A)s [x] and the propositional identity
code “Id(A, t, t′) [x] are terms in context;

2. ⊥ [x] and τ(t) [x] are small propositions in context;
φ ∧ φ′ [x], φ ∨ φ′ [x] and φ→ φ′ [x] are small propositions in context;
(∃y ∈ A)ψ [x], (∀y ∈ A)ψ [x] and Id(A, t, t′) [x] are small propositions in context;

1 The rules for these constructors derive from those of List(N1) in mTT by identifying 0 with ε, succ(t)
with cons(t, ?) and ElN (t, t′, (y, z)r) with ElList(N1)(t, t′, (y, y′, z)r).

2 In the rules for Id(A, a, b) of mTT the eliminator ElId(p, (x)c) is substituted by an eliminator
ElId(a, b, p, (x)c) with explicit reference to a ∈ A and b ∈ A. The rules remain the same.
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3. φ [x] is a set in context;
N0 [x] , N1 [x] and N [x] are sets in context;
(Πy ∈ A)B [x], (Σy ∈ A)B [x], A+A′ [x] and List(A) [x] are sets in context;

4. φ [x] is a proposition in context;
η ∧ η′ [x], η ∨ η′ [x] and η → η′ [x] are propositions in context;
(∃y ∈ D) ρ [x] and (∀y ∈ D) ρ [x] and Id(D, t, t′) [x] are propositions in context;

5. η [x] and A [x] are collections in context;
Set [x] is a collection in context;
props [x] and A→ props [x] are collections in context;
(Σy ∈ D)E [x] is a collection in context.

For sets in context A [x] we define an abbreviation Â [x] as follows:
1. “⊥, ”N0, ”N1 and “N were already defined;
2. ¤�((Πy ∈ A)B) = (◊�Πy ∈ A) “B, ¤�((Σy ∈ A)B) = (◊�Σy ∈ A) “B,
3. ◊�A+A′ = Â“+Â′, ◊�List(A) = ‘List(Â),
4. ÷φ ∧ φ′ = φ̂ ∧̂“φ′, ÷φ ∨ φ′ = φ̂ ∨̂“φ′, ◊�φ→ φ′ = φ̂ →̂“φ′,
5. ¤�((∃y ∈ A)ψ) = (◊�∃y ∈ A) ψ̂, ¤�((∀y ∈ A)ψ) = (◊�∀y ∈ A) ψ̂, Ÿ�Id(A, t, s) = “Id (A, t, s),
6. ‘τ(t) = t.

It is clear that the previous definition is overabundant with respect to the common use
in type theory. We introduced some terms which we will never find in any standard type
theory, as for example the term 0∧̂ElN1(λx.x, λ→y.y) which is obtained by gluing together
terms which usually have types which are not compatible. For example 0 is usually typed as
a natural number, while ∧̂ connects codes for small propositions.

3 The realizability interpretation for mTTs

3.1 The system ’ID1

The preliminary step in the presentation of the Kleene realizability interpretation consists
in presenting the theory of Inductive Definitions ‘ID1 in which we will interpret mTTs.
The system ‘ID1 is a predicative fragment of second-order arithmetic, more precisely it is
the predicative fragment of second-order arithmetic extending Peano arithmetics with some
(not necessarily least) fix points for each positive arithmetical operator. Its number terms
are number variables (we assume that these variables are equal to those of mTTs ), the
constant 0 and the terms built by applying the unary successor functional symbol succ and
the binary sum and product functional symbols + and ∗ to number terms. Set terms are
only set variables X,Y, Z.... The arithmetical formulas are obtained starting from t = s and
tεX with t, s number terms and X a set variable, by applying the connectives ∧,∨,¬,→ and
the number quantifiers ∀x, ∃x. Moreover let us give the following two definitions.

I Definition 2. An occurrence of a set variable X in an arithmetical formula ϕ is positive
or negative according to the following conditions:
1. it is positive if ϕ is tεX for some number term t,
2. it is positive (negative) if ϕ is ψ ∧ψ′, ψ′ ∧ψ, ψ ∨ψ′, ψ′ ∨ψ, ψ′ → ψ, ∃xψ or ∀xψ and it

is a positive (negative) occurrence of X in ψ or ϕ is ψ → ψ′ or ¬ψ and the occurrence of
X is a negative (positive) occurrence of X in ψ.
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I Definition 3. An arithmetical formula ϕ with exactly one free number variable x and one
free set variable X which occurs only positively is called an admissible formula.
In order to define the system ‘ID1 we add to the language of arithmetic a unary predicate
symbol Pϕ for every admissible formula ϕ . The atomic formulas of ‘ID1 are
1. t = s with t and s number terms,
2. tεX with t a number term and X a set variable,
3. Pϕ(t) with t a number term and ϕ an admissible formula.
All formulas of ‘ID1 are obtained by atomic formulas by applying connectives, number
quantifiers and set quantifiers.

The axioms of ‘ID1 are the axioms of Peano Arithmetic plus the following three axiom
schemata:
1. Comprehension schema: for all formulas ϕ(x) of ‘ID1 without set quantifiers

∃X∀x(xεX ↔ ϕ(x))

2. Induction schema: for all formulas ϕ(x) of ‘ID1

(ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(succ(x))))→ ∀xϕ(x)

3. Fix point schema: for all admissible formulas ϕ

ϕ[Pϕ/X]↔ Pϕ(x)

where ϕ[Pϕ/X] is the result of substituting in ϕ every atomic formula tεX with Pϕ(t).

The system ‘ID1 allows us to define predicates as fix points, by using axiom schema 3, if
they are presented in a appropriate way (i. e. using admissible formulas).

A definable class C of ‘ID1 is a formal writing {x|ϕ(x)} where ϕ(x) is a formula of ‘ID1.
In this case we write xεC as a shorthand for ϕ(x).

Notation of computable operators in ’ID1

As it is well known, it is certainly possible to express a Gödelian coding of recursive
functions in ‘ID1 using Kleene’s predicate since it is already possible to do this in PA. In
particular we can consider a definitional extension of ‘ID1 (which we still call ‘ID1) in
which there are first-order terms with Kleene’s brackets {t}(s) and there is a predicate
{t}(s) ↓ stating that the term with Kleene’s brackets is well defined (s is in the domain of
the recursive function coded by t). We will write {t}(s1, ..., sn) as a shorthand defined by
induction: it is {t}(s1) if n = 1 while if n > 1 and if we have already defined {t}(s1, ..., sn),
then {t}(s1, ..., sn+1) = {{t}(s1, ..., sn)}(sn+1). We denote by succ a numeral for which
{succ}(x) = succ(x) in ‘ID1.

As we well know, the s-m-n lemma (see e. g. [18]) gives the structure of a partial combinat-
orial algebra to natural numbers endowed with Kleene application and this structure can be
expressed in ‘ID1. In particular we can find numerals p,p1,p2 representing a fixed primitive
recursive bijective pairing function with primitive recursive first and second projections.
We will write p1(x), p2(x) and 〈x, y〉 as abbreviations for {p1}(x), {p2}(x) and {p}(x, y)
respectively. It is also possible to define a numeral ite3 representing the definition by cases

3 if then else



M.E. Maietti and S. Maschio 173

({ite}(n,m, l) ' 4m if n = 0, {ite}(n,m, l) ' l if n 6= 0). We can also encode recursively
finite list of natural numbers with natural numbers in such a way that the empty list is coded
by 0 and the concatenation is a recursive function which can be coded by a numeral cnc.
We have moreover numerals rec and listrec representing natural numbers recursion and
lists recursion. These numbers in particular satisfy the following requirements:
1. {rec}(n,m, 0) ' n;
2. {rec}(n,m, k + 1) ' {m}(k, {rec}(n,m, k));
3. {listrec}(n,m, 0) ' n;
4. {listrec}(n,m, cnc(k, l)) ' {m}(k, l, {listrec}(n,m, k)).
For this representation of lists, the component functions (−)j , turn out to be recursive.

Moreover we can always define λ-terms Λx.t in ‘ID1 for terms t built with numerals,
variables and Kleene application, in such a way that {Λx.t}(n) ' t[n/x] and it holds that
{Λx1...Λxn.t}(n) ' Λx2...Λxn.t[n/x1]; moreover if all variables of t are among x1, ..., xk, then
there is a numeral n for which ‘ID1 ` Λx1...Λxk.t = n.

3.2 The definition of interpretation

The realizability interpretation for mTTs we are going to describe is a modification of
Beeson’s realizability semantics [2] for the extensional version of first order Martin-Löf’s type
theory with one universe [16]. So it will be given in ‘ID1 as Beeson’s one. Here we describe
the key points of such an interpretation on which we follow Beeson’s semantics:

all types of mTTs are interpreted as quotients of definable classes of ‘ID1, intended
as classes of “their realizers”. In particular we use Beeson’s technique of interpreting
Martin-Löf’s universe to interpret the collection of (codes for) small propositions of
mTTs. In order to do this it is crucial to have fix points and hence this is why we work
in the theory ‘ID1;
terms are interpreted as (codes) of recursive functions;
equality between terms in context is interpreted as extensional equality of recursive
functions;
the interpretation of substitution will be proven to be equivalent to the substitution in
interpretation;
we interpret λ-abstraction by using s-m-n lemma of computability, but then, in order
to validate the condition of the previous point, we impose equality of type-theoretic
functions to be extensional. Therefore the principle of Extensional Equality of Functions
will turn out to be valid in our model.

Instead we do not follow Beeson’s semantics in the interpretation of propositions:
in order to validate formal Church Thesis we interpret propositions as trivial5 quotients
of original Kleene realizability. As a consequence Martin-Löf’s isomorphism of propositions-
as-sets together with the validity of the Axiom of Choice is not validated in our
realizability semantics contrary to Beeson’s one.

4 a ' b means that a ↓ if and only if b ↓ and in this case a = b in ÎD1.
5 A quotient is trivial if it is determined by a trivial relation i. e. a relation for which all pairs of elements
are equivalent.
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We can summarize the interpretation of terms and types with the following table:

Terms (codes) of recursive functions
Collections Quotients of definable classes (C,')
Propositions quotients of definable classes on trivial '

The interpretation of terms
Before giving the interpretation of mTTs-terms, we need to present explicitly a convention
about how to encode mTTs-sets with numerals. We will code sets as {p}(a, 〈b1, ..., bn〉),
where a is a number coding a particular constructor and 〈b1, ..., bn〉 is a lists of codes for
ingredients needed by the constructor itself. The following table makes evident the choices
for a:

N0, N1, N Π Σ + List ⊥ ∧ ∨ → ∃ ∀ Id

1 2 3 4 5 6 7 8 9 10 11 12

Notice that codes for small propositions must have a > 5.
We can now proceed to the definition of the interpretation of mTTs-terms.

I Definition 4. Terms in context t[x1, ..., xn] are interpreted as

I(t[x1, ..., xn]) = Λx1...Λxn.I(t)

where I(t) are terms of the extended language of ‘ID1 defined as follows
1. If x is a variable, then I(x) = x;
2. I(emp0(t)) = I(r0) = 0;
3. I(?) = 0 and I(ElN1(t, t′)) = I(t′);
4. I(0) = 0 and I(succ(t)) = {succ}(I(t)),
I(ElN (t, t′, (y, z)r)) = {rec}(I(t′),Λy.Λz.I(r), I(t));

5. I(λy.s) = I(λ→y.s) = I(λ∀y.s) = Λy.I(s),
I(Ap(t, t′)) = I(Ap→(t, t′)) = I(Ap∀(t, t′)) = {I(t)}(I(t′));

6. I(〈t, t′〉) = I(〈t,∧ t′〉) = I(〈t,∃ t′〉) = {p}(I(t), I(t′)),
I(ElΣ(t, (y, z)r)) = I(El∃(t, (y, z)r)) = {Λy.Λz.I(r)}({p1}(I(t)), {p2}(I(t))),
I(π∧1 (t)) = {p1}(I(t)),
I(π∧2 (t)) = {p2}(I(t));

7. I(inl(t)) = I(inl∨(t)) = {p}(0, I(t)),
I(inr(t)) = I(inr∨(t)) = {p}(1, I(t)),
I(El+(t, (y)s, (y)s′)) = I(El∨(t, (y)s, (y)s′)) =
{ite}(p1(I(t)), {Λy.I(s)}({p2}(I(t))), {Λy.I(s′)}({p2}(I(t))));

8. I(ε) = 0 and I(cons(t, t′)) = {cnc}(I(t), I(t′)),
I(ElList(t, t′, (y, z, u)q)) = {listrec}(I(t′),Λy.Λz.Λu.I(q), I(t));

9. I(id(t)) = 0,
I(ElId(t, t′, t′′, (y)s)) = {Λy.I(s)}(I(t));

10. I(”N0) = {p}(1, 0), I(”N1) = {p}(1, 1) and I(“N) = {p}(1, 2),
I((◊�Πy ∈ A)s) = {p}(2, ({p}(I(Â), (Λy.I(s))))),
I((◊�Σy ∈ A)s) = {p}(3, ({p}(I(Â), (Λy.I(s))))),
I(t“+t′) = {p}(4, ({p}(I(t), I(t′))),
I(‘List(t)) = {p}(5, I(t)),
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I(“⊥) = {p}(6, 0),
I(t∧̂t′) = {p}(7, ({p}(I(t), I(t′))),
I(t∨̂t′) = {p}(8, ({p}(I(t), I(t′))),
I(t→̂t′) = {p}(9, ({p}(I(t), I(t′))),
I((◊�∃y ∈ A)s) = {p}(10, ({p}(I(Â), (Λy.I(s))))),
I((◊�∀y ∈ A)s) = {p}(11, ({p}(I(Â), (Λy.I(s))))),
I(“Id(A, t, t′)) = {p}(12, ({p}(I(Â), ({p}(I(t), I(t′)))))),

For the sake of example let us consider the interpretation of the term in context t[x, y, z]
defined as “Id(Id(N, x, x), y, z)[x, y, z]:

I(t)[x, y, z]) = Λx.Λy.Λz.I(“Id(Id(N, x, x), y, z))
= Λx.Λy.Λz.{p}(12, {p}(I(⁄�Id(N, x, x)), {p}(y, z)))
= Λx.Λy.Λz.{p}(12, {p}(I(“Id(N, x, x)), {p}(y, z)))
= Λx.Λy.Λz.{p}(12, {p}({p}(12, {p}(I(“N), {p}(x, x))), {p}(y, z)))
= Λx.Λy.Λz.{p}(12, {p}({p}(12, {p}({p}(1, 2), {p}(x, x))), {p}(y, z))).

We say that an interpretation of a term in context t[x] is well defined if I(t[x]) ↓ is
provable in ‘ID1. Notice that the interpretations of terms in non-empty contexts are always
well defined.

Notice moreover that in ‘ID1
1. I(ElN1(?, t′)) ' I(t′);
2. I(ElN (0, t, (y, z)s)) ' I(t);
3. I(ElN (succ(t′), t, (y, z)s)) ' I(s)[I(t′)/y, I(ElN (t′, t, (y, z)s))/z]
4. I(Ap(λy.s, t)) ' I(s)[I(t)/y];
5. I(Ap→(λ→y.s, t)) ' I(s)[I(t)/y];
6. I(Ap∀(λ∀y.s, t)) ' I(s)[I(t)/y];
7. I(ElΣ(〈t, t′〉, (y, z)r)) ' I(r)[I(t)/y, I(t′)/z];
8. I(El∃(〈t,∃ t′〉, (y, z)r)) ' I(r)[I(t)/y, I(t′)/z];
9. I(π∧1 (〈t,∧ t′〉)) ' I(t);
10. I(π∧2 (〈t,∧ t′〉)) ' I(t′);
11. I(El+(inl(t), (y)s, (y)s′)) ' I(s)[I(t)/y];
12. I(El+(inr(t), (y)s, (y)s′)) ' I(s′)[I(t)/y];
13. I(El∨(inl∨(t), (y)s, (y)s′)) ' I(s)[I(t)/y];
14. I(El∨(inr∨(t), (y)s, (y)s′)) ' I(s′)[I(t)/y];
15. I(ElId(t, t, id(t), (y)s)) ' I(s)[I(t)/y];
16. I(ElList(ε, t′, (y, z, u)q)) ' I(t′);
17. I(ElList(cons(t, t′′), t′, (y, z, u)q)) ' I(q)[I(t)/y, I(t′′)/z, I(ElList(t, t′, (y, z, u)q))/u].

The interpretation of sets
Here we define the interpretation of sets in mTTs with the exception of those obtained using
τ(p) for some term p. Every such a set is interpreted as a definable quotient of a definable
class of ‘ID1 (and actually of HA). This means that every set A is interpreted as a pair

I(A) = (J (A) , ∼I(A) )

where J (A) is a definable class of ‘ID1 and ∼I(A) is a definable equivalence relation on the
class J (A).
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Since sets in mTT include small propositions, here we also define a realizability rela-
tion between natural numbers and propositions. Indeed it is more convenient to define
the realizability interpretation of propositions by adopting an extension of usual Kleene’s
interpretation of intuitionistic connectives.

Note that we use the notation I(A)[s/y] to mean the definable class in which we substitute
y with s in the membership and in the equivalence relation of I(A).

I Definition 5. We define in ‘ID1 a realizability relation n  φ between natural numbers
and small propositions, by induction on the definition of small propositions φ, simultaneously
together with the definition of the following formulas nεJ (A) and n ∼I(A) m for sets A, by
induction on the definition of sets (with the exception of those obtained using τ(p) for some
term p), as follows:

(⊥) n  ⊥ is ⊥;
(∧) n  φ ∧ φ′ is (p1(n)  φ) ∧ (p2(n)  φ′);
(∨) n  φ ∨ φ′ is (p1(n) = 0 ∧ p2(n)  φ) ∨ (p1(n) 6= 0 ∧ p2(n)  φ′);
(→) n  φ→ φ′ is ∀t ((t  φ) → ({n}(t)  φ′));
(∃) n  (∃x ∈ A)ψ is p1(n) εJ (A) ∧ (p2(n)  ψ)[p1(n)/x];
(∀) n  (∀x ∈ A)ψ is ∀x (x εJ (A) → ({n}(x)  ψ));
(Id) n  Id(A, t, s) is I(t) ∼I(A) I(s);
(N0) n εJ (N0) is ⊥ and

n ∼I(N0) m is ⊥;
(N1) n εJ (N1) is n = 0 and

n ∼I(N1) m is n = 0 ∧ n = m;
(N) n εJ (N) is n = n and

n ∼I(N) m is n = m;
(Π) n εJ ((Πx ∈ A)B) is

∀x (x εJ (A)→ {n}(x) ∈ J (B)) ∧ ∀x∀y (x ∼I(A) y → {n}(x) ∼I(B) {n}(y))6 and
n ∼I((Πx∈A)B) m is
n εJ ((Πx ∈ A)B) ∧mεJ ((Πx ∈ A)B) ∧ ∀x (x εJ (A)→ {n}(x) ∼I(B) {m}(x));

(Σ) n εJ ((Σx ∈ A)B) is p1(n) εJ (A) ∧ ∀x (x ∼I(A) p1(n)→ p2(n) εJ (B)) and
n ∼I((Σx∈A)B) m is the conjunction of n εJ ((Σx ∈ A)B) ∧mεJ ((Σx ∈ A)B) and
p1(n) ∼I(A) p1(m) ∧ ∀x (x ∼I(A) p1(n)→ p2(n) ∼I(B) p2(m));

(+) n εJ (A+A′) is (p1(n) = 0 ∧ p2(n) εJ (A)) ∨ (p1(n) = 1 ∧ p2(n) εJ (A′)) and
n ∼I(A+A′) m is the conjunction of n εJ (A+A′) ∧mεJ (A+A′) ∧ p1(n) = p1(m)
and
(p1(n) = 0 ∧ p2(n) ∼I(A) p2(m)) ∨ (p1(n) = 1 ∧ p2(n) ∼I(A′) p2(m));

(List) n εJ (List(A)) is ∀j (j < lh(n) → (n)j εJ (A)) and
n ∼I(List(A)) m is the conjunction of n εJ (List(A)) ∧ mεJ (List(A)) and
lh(n) = lh(m) ∧ ∀j (j < lh(n) → (n)j ∼I(A) (m)j);

(ψ) n εJ (ψ) is n  ψ and
n ∼I(ψ) m is n εJ (ψ) ∧ mεJ (ψ) (i. e. proof-irrelevance).

I Remark. We can notice some preliminary properties of this realizability interpretation:
1. for every set A we have that ∼I(A) is really a definable equivalence relation on the

definable class J (A), in fact

6 Note that the variable x may be in I(B) here and in the following definition for Π and Σ sets, as it
comes from the definition of the untyped syntax.
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n εJ (A) `‘ID1
n ∼I(A) n

n ∼I(A) m `‘ID1
m ∼I(A) n

n ∼I(A) m ∧ m ∼I(A) l `‘ID1
n ∼I(A) l

2. for every set A we have that

n ∼I(A) m `‘ID1
n εJ (A) ∧mεJ (A)

3. if numerical sets are defined according to the following conditions
a. N0, N1 and N are numerical sets;
b. if A and B are numerical sets, then (Σx ∈ A)B, A+B and List(A) (if they are well

defined) are numerical sets,
then the equality of the interpretation of numerical sets is numerical, which means that

n ∼I(A) m `‘ID1
n = m

4. for all small propositions ψ, the equivalence relation ∼I(ψ) is trivial (i. e. all pairs of
elements of I(ψ) are equivalent). This means that uniqueness of propositional proofs,
called proof-irrelevance, is imposed.

The encoding of all mTTs-sets
In the previous sections we have seen the interpretation of mTTs-sets which include small
propositions. It remains to define the interpretation of proper collections, including that of
sets, small propositions and small propositional functions on a set.

The interpretation of the collection of small propositions Set in ‘ID1 is the most difficult
point and to define it we mimick the technique adopted by Beeson [2] to interpret Martin-Löf’s
universe via a fix point of some arithmetical operator with positive parameters. Hence, it is
to define the interpretation of Set, and in turn of the collection of small propositions props
and of small propositional functions A→ props on a set A, that we need to employ the full
power of ‘ID1 with fix points.

The idea is to define a ‘ID1-formula which defines codes of sets with their interpretation
as a fix point. It appears necessary to define a formula called Set(n) expressing that n is a
code of an mTTs-set together with its realizability interpretation in ‘ID1. As in Beeson’s
semantics, to define the formula Set(n) of set codes with their arithmetical interpretation
in ‘ID1 we need to encode membership and equality of sets: t ε n and t ≡n s. In turn in
order to define them, we need to represent the notion of a family of sets used to interpret an
mTTs-dependent set. A family of sets coded by m on a set coded by n could be described
by the formula

Set(n) ∧ ∀t (t ε n → Set({m}(t)))∧

∀t∀s (t ≡n s → (∀j (j ε {m}(t) ↔ j ε {m}(s)) ∧ ∀j∀k (j ≡{m}(t) k ↔ j ≡{m}(s) k))).

But in this formula not all occurrences of t ε n and t ≡n s are positive. However it is
classically equivalent to the conjunction of the formula Set(n) ∧ ∀t (¬t ε n ∨ Set({m}(t)))
and the formula ∀t∀s (¬t ≡n s ∨ (P1 ∧ P2)) where P1 is

∀j ((¬j ε {m}(t) ∨ j ε {m}(s)) ∧ (¬j ε {m}(s) ∨ j ε {m}(t)))
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and P2 is

∀j∀k ((¬j ≡{m}(t) k ∨ j ≡{m}(s) k) ∧ (¬j ≡{m}(s) k ∨ j ≡{m}(t) k))

simply substituting all the instances of the schema a → b with the classically equivalent
¬a ∨ b. Now the trick consists in defining some predicates t 6 ε n and t 6≡n s mimicking
the negations of t ε n and t ≡n s as fix point predicates, too, in order to get a a positive
arithmetical operator. Note that the use of a classical arithmetic theory with fix points
seems unavoidable to be able to interpret the collection of sets via a positive arithmetical
operator. From now on we write

Fam(m,n) ≡ Set(n) ∧ ∀t (t 6 ε n ∨ Set({m}(t))) ∧ ∀t∀s (t 6≡n s ∨ (P ′1 ∧ P ′2))

where P ′1 and P ′2 are obtained from P1 and P2 by substituting negated instances of membership
and of equality predicates with their mentioned primitive negated versions

P ′1 ≡ ∀j ((j 6 ε {m}(t) ∨ j ε {m}(s)) ∧ (j 6 ε {m}(s) ∨ j ε {m}(t)))

P ′2 ≡ ∀j∀k ((j 6≡{m}(t) k ∨ j ≡{m}(s) k) ∧ (j 6≡{m}(s) k ∨ j ≡{m}(t) k)).

In order to define the positive clauses for the codes of sets we must introduce some
notations. In this way we transform the clauses for realizability for sets automatically in the
clauses needed to define the fix points Set(n), tεn, t 6 ε n, t ≡n s and t 6≡n s.

First of all, we define a function [ ] which assigns a value to a set according to the table
in Section 3.2 as follows.
1. If σ is one of the symbols A, A′, B, φ, φ′, ψ, t, s, then [σ] is a, a′, {b}(x), c, c′, {d}(x),

e, f respectively;
2. If σ is N0, N1, N , (Πx ∈ A)B, (Σx ∈ A)B, A + A′, List(A) then [σ] is 〈1, 0〉, 〈1, 1〉,
〈1, 2〉, 〈2, 〈a, b〉〉, 〈3, 〈a, b〉〉, 〈4, 〈a, a′〉〉, 〈5, a〉 respectively;

3. If σ is ⊥, φ ∧ φ′, φ ∨ φ′, φ → φ′, (∃x ∈ A)ψ, (∀x ∈ A)ψ, Id(A, t, s) then [σ] is 〈6, 0〉,
〈7, 〈c, c′〉〉, 〈8, 〈c, c′〉〉, 〈9, 〈c, c′〉〉, 〈10, 〈a, d〉〉, 〈11, 〈a, d〉〉, 〈12, 〈a, 〈e, f〉〉〉 respectively.

We denote by [ ]−1 the inverse function of [ ]. Now, all clauses in the realizability interpretation
of sets are defined using formulas which are obtained starting from arithmetical formulas
or primitive formulas with ε or ∼, by using connectives, first order quantifiers or explicit
instances of substitution in x. For such formulas ϕ we define ϕ+ as follows:
1. If ϕ is arithmetical, then ϕ+ is defined as ϕ itself. If ϕ is a primitive formulas with ε or ∼

we will transform εJ (σ) and ∼I(σ) in ε [σ] and ≡[σ] respectively, in order to obtain ϕ+;
2. (ϕ[α/x])+ is ϕ+[α/x];
3. (ϕ ∧ ϕ′)+ is ϕ+ ∧ ϕ′+;
4. (ϕ ∨ ϕ′)+ is ϕ+ ∨ ϕ′+;
5. (ϕ→ ϕ′)+ is ϕ+ ∨ ϕ′+;
6. (∀uϕ)+ is ∀uϕ+ for every variable u;
7. (∃uϕ)+ is ∃uϕ+ for every variable u;
where ϕ is defined by the following clauses:
1. If ϕ is an arithmetical formula ϕ is ¬ϕ;
2. If ϕ is a relation between two terms through ε, 6 ε, ≡ or 6≡, then ϕ is obtained by

transforming them in 6 ε, ε, 6≡ or ≡ respectively;
3. ϕ ∧ ϕ′ is ϕ ∨ ϕ′;
4. ϕ ∨ ϕ′ is ϕ ∧ ϕ′;
5. ∀uϕ is ∃uϕ for every variable u;
6. ∃uϕ is ∀uϕ for every variable u;
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We can now define the positive clauses we needed. For τ equal to 〈1, 0〉, 〈1, 1〉, 〈1, 2〉,
〈2, 〈a, b〉〉, 〈3, 〈a, b〉〉, 〈4, 〈a, a′〉〉, 〈5, a〉, 〈6, 0〉, 〈7, 〈c, c′〉〉, 〈8, 〈c, c′〉〉, 〈9, 〈c, c′〉〉, 〈10, 〈a, d〉〉,
〈11, 〈a, d〉〉, 〈12, 〈a, 〈e, f〉〉〉 we have the following clauses7:
1. Set(τ) if Cond(τ);
2. n ε τ if Cond(τ) ∧ (n εJ ([τ ]−1))+;
3. n 6 ε τ if Cond(τ) ∧ (n εJ ([τ ]−1))+;
4. n ≡τ m if Cond(τ) ∧ (n ∼I([τ ]−1) m)+;
5. n 6≡τ m if Cond(τ) ∧ (n ∼I([τ ]−1) m)+;
where Cond(τ) is
1. > if τ has first component 1 or 6;
2. Fam(b, a) if τ has first component 2 or 3;
3. Set(a) ∧ Set(a′) if τ has first component 4;
4. Set(a) if τ has first component 5;
5. Set(c) ∧ Set(c′) ∧ π1(c) > 5 ∧ π1(c′) > 5 if τ has first component 7, 8 or 9;
6. Fam(d, a) ∧ ∀x (x 6 ε a ∨ π1({d}(x)) > 5) if τ has first component 10, 11;
7. Set(a) ∧ e ε a ∧ f ε a if τ has first component 12.

By sake of example we present here the clauses for codes of Π-sets.

Set(〈2, 〈a, b〉〉) if Fam(b, a);
n ε 〈2, 〈a, b〉〉 if

Fam(b, a) ∧ ∀x (x 6 ε a ∨ {n}(x) ε {b}(x)) ∧ ∀x∀y (x 6≡a y ∨ {n}(x) ≡{b}(x) {n}(y));

n 6 ε 〈2, 〈a, b〉〉 if

Fam(b, a) ∧ (∃x (x ε a ∧ {n}(x) 6 ε {b}(x)) ∨ ∃x∃y (x ≡a y ∧ {n}(x) 6≡{b}(x) {n}(y)));

n ≡〈2,〈a,b〉〉 m if

Fam(b, a) ∧ n ε 〈2, 〈a, b〉〉 ∧ mε 〈2, 〈a, b〉〉 ∧ ∀x (x 6 ε a ∨ {n}(x) ≡{b}(x) {m}(x));

n 6≡〈2,〈a,b〉〉 m if

Fam(b, a) ∧ (n 6 ε 〈2, 〈a, b〉〉 ∨ m 6 ε 〈2, 〈a, b〉〉 ∨ ∃x (x ε a ∧ {n}(x) 6≡{b}(x) {m}(x))

The formulas Set(n), tεn, t 6 ε n, t ≡n s and t 6≡n s are components of a predicate Pθ(n)
defined in ‘ID1 as a fix point of an operator θ(n,X) defined by glueing together the clauses
expressing the code of each mTTs-set-constructor with its interpretation in ‘ID1.

The interpretation of collections
Here we extend the realizability relation, membership and equality in definition 5 in order to
interpret collections, propositions and the decoding operators.

I Definition 6. n  φ between natural numbers and mTTs-propositions and formulas
nεJ (D) and n ∼I(D) m for collections D are defined by including all clauses in definition 5
plus the following:

7 By nεJ ([τ ]−1) and n ∼I([τ ]−1) m we mean the right-hand side of the respective clause in the realizability
interpretation of sets, taking into account that for small propositions membership coincides with the
realizability relation.
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1. n  τ(p) and n εJ (τ(p)) are both given by n ε I(p):
n ∼I(τ(p)) m is n εJ (τ(p)) ∧mεJ (τ(p)) .

2. The realizability relation n  η for propositions is completely analogous to the realizability
relation for small propositions and the interpretation of propositions is given by the class
of realizers equipped with the trivial equivalence relation.

3. Σ-collections are interpreted exactly in the same way as Σ-sets.
4. nεJ (Set) is Set(n) ∧ ∀t (t ε n↔ ¬t 6 ε n) ∧ ∀t∀s (t ≡n s↔ ¬t 6≡n s). This is because 6 ε

and 6≡, which are defined by fix point, don’t behave necessarily as negations of ε and ≡
and hence we need to add ∀t (t ε n↔ ¬t 6 ε n) and ∀t∀s (t ≡n s↔ ¬t 6≡n s).
The interpretation of n ∼I(Set) m is

n εJ (Set) ∧ mεJ (Set) ∧ ∀t (t ε n↔ t εm) ∧ ∀t∀s (t ≡n s↔ t ≡m s) .

5. n εJ (props) is n εJ (Set) ∧ π1(n) > 5 ∧ ∀t∀s (t ε n ∧ s ε n↔ t ≡n s) (recall that small
propositions are encoded with π1(n) > 5 and enjoy the proof-irrelevance).
The interpretation of n ∼I(props) m is n εJ (props) ∧ mεJ (props) ∧ ∀t (t ε n↔ t εm);

6. n εJ (A→ props) is ∀t∀s (t ∼I(A) s → {n}(t) ∼I(props) {n}(s))
and n ∼I(A→props) m is
n εJ (A→ props) ∧ mεJ (A→ props) ∧ ∀t (t εJ (A) → {n}(t) ∼I .(props) {m}(t))

I Remark. Notice that the properties of sets and small propositions stated after definition 5
hold also for collections and propositions respectively.

The interpretation of judgements

We now need to say how judgements are interpreted in our realizability model. First of all,
if A = (A, 'A) and B = (B, 'B) are definable classes of ‘ID1 equipped with a definable
equivalence relation, then we denote with A .= B the formula ∀t∀s (t 'A s ↔ t 'B s).

The judgements of mTTs are interpreted as follows:
1. If type ∈ {set, col, props, prop}, the interpretation of A type is I(A) .= I(A).
2. If type ∈ {set, col, props, prop}, the interpretation of A = B type is I(A) .= I(B).
3. The judgement t ∈ A is interpreted as I(t).
4. The judgement t = s ∈ A is interpreted as I(t) ∼I(A) I(s).
5. If type ∈ {set, col, props, prop}, the interpretation of A type [x1 ∈ A1, ..., xn ∈ An] is

∀x1∀y1...∀xn∀yn (x1 ∼I(A1) y1 ∧ ...∧ xn ∼I(An) yn → I(A) .= I(A) [y1/x1, ..., yn/xn]) 8 .

6. If type ∈ {set, col, props, prop}, the interpretation of A = B type [x1 ∈ A1, ..., xn ∈ An] is

∀x1...∀xn (x1 εJ (A1) ∧ ... ∧ xn εJ (An) → I(A) .= I(B)) .

7. The judgement t ∈ A[x1 ∈ A1, ..., xn ∈ An] is interpreted as

∀x1∀y1...∀xn∀yn (x1 ∼I(A1) y1 ∧ ...∧ xn ∼I(An) yn → I(t) ∼I(A) I(t) [y1/x1, .., yn/xn]) .

8. The judgement t = s ∈ A[x1 ∈ A1, ...., xn ∈ An] is interpreted as

∀x1...∀xn (x1 εJ (A1) ∧ ... ∧ xn εJ (An) → I(t) ∼I(A) I(s)) .
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3.3 The validity theorem
A judgement J in the language of mTTs is validated by the realizability model (R � J) if‘ID1 ` I(J), where I(J) is the interpretation of J according to the previous section. We say
that a proposition φ is validated by the model (R � φ), if its interpretation can be proven to
be inhabited, which means that‘ID1 ` ∃r(rεJ (φ)) which is equivalent to ‘ID1 ` ∃r(r  φ).

In order to prove how substitution is interpreted in a easy way, it is convenient to modify
the presentation of mTTs-rules, into an equivalent system (still denoted by mTTs), where
we supply the information that the members in a type equality judgement are types, and
members of term equality judgements are typed terms as follows with the warning of avoiding
repetitions of same judgements: for type ∈ {set, col, props, prop}

any rule J1...Jn
A = B type [Γ] is changed to J1...Jn, A type [Γ] , B type [Γ]

A = B type [Γ]

any rule J1...Jn
b ∈ B [Γ] is changed to J1...Jn, B type [Γ]

b ∈ B [Γ]

any rule J1...Jn
a = b ∈ A [Γ] is changed to J1...Jn, a ∈ A type [Γ] , b ∈ A type [Γ]

a = b ∈ A type [Γ]

the substitution rule subT) and sub) in [9] are changed to

subTm)

C(x1, . . . , xn) type [ x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1) ]
a1 ∈ A1, . . . , an ∈ An(a1, . . . , an−1) b1 ∈ A1, . . . , bn ∈ An(b1, . . . , bn−1)
a1 = b1 ∈ A1 . . . an = bn ∈ An(a1, . . . , an−1)

C(a1, . . . , an) = C(b1, . . . , bn) type

subm)

c(x1, . . . , xn) ∈ C(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1) ]
C(x1, . . . , xn) type [ x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1) ]
a1 ∈ A1, . . . , an ∈ An(a1, . . . , an−1) b1 ∈ A1, . . . , bn ∈ An(b1, . . . , bn−1)
a1 = b1 ∈ A1 . . . an = bn ∈ An(a1, . . . , an−1)

c(a1, . . . , an) = c(b1, . . . , bn) ∈ C(a1, . . . , an)

the formation rules F-Σ), F-∃) and F-∀) are changed to

F-Σ)

B col

C(x) col [x ∈ B]
Σx∈BC(x) col F-∃)

B col

C(x) prop [x ∈ B]
∃x∈BC(x) prop F-∀)

B col

C(x) prop [x ∈ B]
∀x∈BC(x) prop

the elimination rules E-Π) and E-∀) are changed to

E-Πm)

C(x) set [x ∈ B] C(b) set
b ∈ B f ∈ Πx∈BC(x)

Ap(f, b) ∈ C(b) E-∀m)

C(x) prop [x ∈ B] C(b) prop
b ∈ B f ∈ ∀x∈BC(x)

Ap∀(f, b) ∈ C(b)

Note that each mTTs-type is a collection and therefore in deriving a typed term b ∈ B
under a context the addition of the information that the type B is a collection in the premise
is certainly valid.

I Theorem 7 (Validity theorem). For every judgement J in the language of mTTs, if J can
be proven in mTTs (mTTs ` J), then J is validated by the model (R � J).
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Proof. In order to prove the validity theorem it is necessary to prove by induction on the
height of the proof tree in mTTs these three facts at the same time:
1. For every judgement J in the language of mTTs, if mTTs ` J then R � J .
2. (Substitution) If mTTs ` C type [x1 ∈ A1, ..., xn ∈ An] for type ∈ {set, col, props, prop}

for all

mTTs ` a1 ∈ A1[y1 ∈ B1, ..., ym ∈ Bm], ...,

mTTs ` an ∈ An[a1/x1, ..., an−1/xn−1][y1 ∈ B1, ..., ym ∈ Bm],
if R � a1 ∈ A1[y1 ∈ B1, ..., ym ∈ Bm],...,

R � an ∈ An[a1/x1, ..., an−1/xn−1][y1 ∈ B1, ..., ym ∈ Bm],

then‘ID1 ` ∀y1...∀ym (y1 εJ (B1) ∧ ... ∧ ym εJ (Bm) →

I(C) [I(a1)/x1, ..., I(an)/xn] .= I(C [a1/x1, ..., an/xn]))
and if mTTs ` c ∈ C[x1 ∈ A1, ..., xn ∈ An] for all

mTTs ` a1 ∈ A1[y1 ∈ B1, ..., ym ∈ Bm], ...,

mTTs ` an ∈ An[a1/x1, ..., an−1/xn−1][y1 ∈ B1, ..., ym ∈ Bm],
if R � a1 ∈ A1[y1 ∈ B1, ..., ym ∈ Bm],...,

R � an ∈ An[a1/x1, ..., an−1/xn−1][y1 ∈ B1, ..., ym ∈ Bm],

then‘ID1 ` ∀y1...∀ym (y1 εJ (B1) ∧ ... ∧ ym εJ (Bm) →

I(c) [I(a1)/x1, ..., I(an)/xn] ∼I(C [a1/x1,...,an/xn]) I(c [a1/x1, ..., an/xn])).
3. (Coding) If mTTs ` B set [x1 ∈ A1, ..., xn ∈ An], then‘ID1 ` ∀x1...∀xn (x1 εJ (A1) ∧ ... ∧ xn εJ (An) → Set(I(B̂))∧

∀t (t εJ (B)↔ t ε I(B̂)) ∧ ∀t (¬t εJ (B)↔ t 6 ε I(B̂))∧
∀t∀s (t ∼I(B) s↔ t ≡I(B̂) s) ∧ ∀t∀s (¬t ∼I(B) s↔ t 6≡I(B̂) s)).

Let us show only some cases, as the techniques will be similar in the other cases. In particular
we will consider validity and substitution for the rule of introduction and validity for the
rule of conversion for Π-sets. The technique is similar in the other cases.
1. Suppose that we derived in mTTs the judgement λy.c ∈ (Πy ∈ B)C [x ∈ A] by

introduction rule, after having derived c ∈ C [x ∈ A, y ∈ B] and (Πy ∈ B)C set [x ∈ A].
By inductive hypothesis on validity we can suppose that R � c ∈ C [x ∈ A, y ∈ B]. This
means that in ‘ID1

∀x∀x′∀y∀y′ (x ∼I(A) x
′ ∧ y ∼I(B) y

′ → I(c) ∼I(C) I(c) [x′/x, y′/y] )

which is equivalent to

∀x∀x′(x ∼I(A) x
′ → ∀y∀y′(y ∼I(B) y

′ → {Λx.Λy.I(c)}(x, y) ∼I(C) {Λx.Λy.I(c)}(x′, y′))

Using this fact together with the fact that, by inductive hypothesis on validity (as the
judgement B set [x ∈ A] is derived with a shorter derivation), in ‘ID1 we have that
∀x∀x′ (x ∼I(A) x

′ → I(B) .= I(B)[x′/x]), we obtain that‘ID1 ` ∀x∀x′ (x ∼I(A) x
′ → I(λy.c) ∼I((Πy∈B)C) I(λy.c) [x′/x]).
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2. We want to prove the substitution property for a judgement λy.c ∈ (Πy ∈ B)C [x ∈ A]
derived in mTT by introduction after having derived c ∈ C [x ∈ A, y ∈ B] and
(Πy ∈ B)C set [x ∈ A] with respect to a term a for which mTT ` a ∈ A and R � a ∈ A.
First of all notice that by the structure of derivations in mTT, B set [x ∈ A] and (so also)
B[a/x] set can be derived in mTT. From this it follows that mTT ` a ∈ A[y ∈ B[a/x]]
and mTT ` y ∈ B[a/x] [y ∈ B[a/x]]. These judgements are also validated by R by
definition of the interpretation and because R � a ∈ A. By inductive hypothesis on
substitution applied to c ∈ C [x ∈ A, y ∈ B] with respect to a ∈ A[y ∈ B[a/x]] and
y ∈ B[a/x] [y ∈ B[a/x]] we obtain that in ‘ID1 it holds that
∀y (yεJ (B[a/x])→ I(c)[I(a)/x] ∼I(C[a/x]) I(c[a/x])) and this entails that‘ID1 ` ∀y (y εJ (B[a/x])→ {I(λy.c)[I(a)/x]}(y) ∼I(C[a/x]) {I(λy.c[a/x])}(y)).

In order to conclude it is easy to prove, by using suitable inductive hypotheses that‘ID1 ` I(λy.c)[I(a)/x] ε I((Πy ∈ B)C[a/x]) ∧ I(λy.c[a/x]) ε I((Πy ∈ B)C[a/x]).

3. If the judgement Ap(λy.b, a) = b[a/x] ∈ B[a/x] is derived in mTTs by conversion after
having derived b ∈ B [x ∈ A], a ∈ A, b[a/x] ∈ B[a/x] and Ap(λy.b, a) ∈ B[a/x], in order
to show that it is validated by R, we can suppose by inductive hypothesis on validity
that R � b ∈ B [x ∈ A] and R � a ∈ A.
By inductive hypothesis on substitution applied to b ∈ B [x ∈ A] with respect to a ∈ A
we obtain that ‘ID1 ` I(b) [I(a)/x] ∼I(B [a/x]) I(b [a/x]). But by the definition of the
interpretation of Ap(λy.b, a) from this we obtain that‘ID1 ` I(Ap(λy.b, a)) ∼I(B [a/x]) I(b [a/x])

which exactly means that R � Ap(λy.b, a) = b [a/x] ∈ B [a/x].

For rules about props, the definitions of I(props) and I(τ(p)) were given in such a way
that validity and substitution can be checked easily, sometimes (e. g. in the case of quantifiersÿ�(∃x ∈ A) p and ÿ�(∀x ∈ A) p) using the inductive hypothesis (coding), which guarantees that if
you start from A which is proven to be a set in mTTs and you perform the coding in the
syntax Â, then Â is a well defined code for a set and it is exactly the internal version of
I(A). J

Consequences of the validity theorem
We discuss here about the validity in our realizability model for mTT of some principles,
namely Extensionality Equality of Functions, Axiom of Choice and formal Church Thesis.

1. Extensionality Equality of Functions can be formulated as a proposition in mTT
as follows:

(extFun) (∀f ∈ (Πx ∈ A)B) (∀g ∈ (Πx ∈ A)B)
((∀x ∈ A) Id(B,Ap(f, x),Ap(g, x))→ Id((Πx ∈ A)B, f, g))

Since the judgements f = g ∈ (Πx ∈ A)B and Ap(f, x) = Ap(g, x) ∈ B [x ∈ A] have the
same interpretation, extFun can be realized by the term Λf.Λg.Λr.0, i. e. our model
realises extFun.
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2. The Axiom of Choice ACA,B is represented in mTT by the following proposition:

(ACA,B) (∀x ∈ A) (∃y ∈ B) ρ(x, y)→ (∃f ∈ (Πx ∈ A)B) (∀x ∈ A) ρ(x,Ap(f, x))

Unfortunately if ρ(x, y) is a proposition for which R � ρ(x, y) prop [x ∈ A, y ∈ B], a
realizer r for (∀x ∈ A) (∃y ∈ B) ρ(x, y) cannot be turned into a recursive function from
J (A) to J (B) respecting equivalence relations ∼I(A) and ∼I(B), as the interpretation
of propositions is proof-irrelevant and we can have different elements a and a′ of J (A)
which are equivalent in I(A) for which π1({r}(a)) and π1({r}(a′)) are not equivalent in
I(B). This problem can be avoided if A is a numerical set and in particular in the case
of the set N . In this case the natural number Λr.〈Λn.π1({r}(n)),Λn.π2({r}(n))〉 is a
realizer for the axiom of choice ACN,B . So R  ACN,B for every B.
Moreover also the axiom of unique choice AC! given by

(AC!) (∀x ∈ A) (∃!y ∈ B) ρ(x, y)→ (∃f ∈ (Πx ∈ A)B) (∀x ∈ A) ρ(x,Ap(f, x))

is validated by the model R.9 In fact if ρ is a proposition for which we have that
R � ρ(x, y) prop [x ∈ A, y ∈ B], then in particular‘ID1 ` ∀x∀x′∀y∀t (x ∼I(A) x

′ ∧ y εJ (B) ∧ t  ρ(x, y)→ t  ρ(x′, y)).

This implies that we can easily choose a realizer for the axiom of unique choice.

3. If ϕ is a formula of first-order arithmetic HA, then we can define a proposition ϕ in mTT,
according to the following conditions:

⊥ is ⊥ ϕ ∧ ϕ′ is ϕ ∧ ϕ′ ϕ→ ϕ′ is ϕ→ ϕ′ ∃xϕ is (∃x ∈ N)ϕ
t = s is Id(N, t, s) ϕ ∨ ϕ′ is ϕ ∨ ϕ′ ∀xϕ is (∀x ∈ N)ϕ

where t and s are the translations of terms of HA in mTT (in particular primitive
recursive functions of HA are translated via ElN , succ and 0 are translated in the obvious
corresponding ones and variables are interpreted as themselves10). The language of HA
can also be naturally interpreted in ‘ID1 by using the fact that each primitive recursive
function can be encoded by a numeral. If t is a term of HA we will still write t for its
translation in ‘ID1. The following lemma is an immediate consequence of the definition
of our realizability interpretation where k denotes Kleene realizability in HA (see [20]):

I Lemma 8. If t is a term of HA and ϕ is a formula of HA, then
(a) ‘ID1 ` I(t) = t,
(b) ‘ID1 ` n k ϕ↔ n  ϕ.

The formal Church Thesis CT can be expressed in mTT as the following proposition

(CT) (∀x ∈ N) (∃y ∈ N) ρ(x, y)→ (∃e ∈ N) (∀x ∈ N) (∃u ∈ N) (T (e, x, u) ∧ ρ(x, U(u))

where T and U are the Kleene predicate and the primitive recursive function representing
Kleene application in HA. Note that the validity of CT can be obtained by glueing

9 (∃!x ∈ A)P (x) is defined as (∃x ∈ A)P (x) ∧ (∀x ∈ A)(∀x′ ∈ A)(P (x) ∧ P (x′)→ Id(A, x, x′)).
10Here we suppose that variables of HA coincides with variables of the untyped syntax of mTTs.
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ACN,N together with the following restricted form of Church Thesis for type-theoretic
functions:

(CTλ) (∀f ∈ (Πx ∈ N)N) (∃e ∈ N) (∀x ∈ N) (∃u ∈ N) (T (e, x, u)∧Id(N,Ap(f, x), U(u))) .

We know by general results on Kleene realizability that there exists a numeral r for
which HA ` ∃uT (f, x, u)→ ({r}(f, x)  ∃uT (f, x, u)). Using this remark, the fact that
{f}(x) ↓ is equivalent to ∃uT (f, x, u) in ‘ID1, the proof irrelevance and lemma 8 we can
show that CTλ can be realized by

Λf.〈f,Λx.〈{p1}({r}(f, x), 〈{p2}({r}(f, x), 0〉〉〉.

In fact every function fromN toN is interpreted in the model as a code for a total recursive
function and we can send this code to itself in order to realize Church Thesis. Proof
irrelevance allows to ignore the problem that different codes can give rise to extensionally
equal functions, which is crucial to prove validity of CT.
We can conclude this section by stating the following consistency results:
I Theorem 9. mTT is consistent with CT.
I Corollary 10. emTT is consistent with CT.

Proof. According to the interpretation of emTT in mTT in [9], the interpretation of
CT turns now to be equivalent to CT itself. Therefore a model showing consistency of
mTT with CT can be extended to a model of emTT with CT. J

4 Conclusions

As explained in the introduction, the semantics built here seems to be the best approximation
of Kleene realizability for the extensional level emTT of the Minimalist Foundation, since
emTT validates Extensionality Equality of Functions and it is constructively incompatible
with the Axiom of Choice on generic sets (see [9]), which is instead valid in Beeson’s model.
In our semantics instances of the axiom of choice are still valid only on numerical sets, which
include the interpretation of basic intensional types as the set of natural numbers.

On the contrary, for the intensional level mTT of the Minimalist Foundation we hope to
build a more intensional realizability semantics à la Kleene where we validate not only CT
but also the Axiom of Choice AC on generic types. Recalling from [9] that our mTT can
be naturally interpreted in Martin-Löf’s type theory with one universe, such an intensional
Kleene realizability for mTT could be obtained by modelling intensional Martin-Löf’s type
theory with one universe (with explicit substitutions in place of the usual substitution term
equality rules) together with CT. However, as far as we know, the consistency of intensional
Martin-Löf’s type theory with CT is still an open problem.
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Abstract
In this paper we look at streamless sets, recently investigated by Coquand and Spiwack [4]. A
set is streamless if every stream over that set contain a duplicate. It is an open question in
constructive mathematics whether the Cartesian product of two streamless sets is streamless.

We look at some settings in which the Cartesian product of two streamless sets is indeed
streamless; in particular, we show that this holds in Martin-Löf intentional type theory when at
least one of the sets have decidable equality. We go on to show that the addition of functional
extensionality give streamless sets decidable equality, and then investigate these results in a few
other constructive systems.
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1 Introduction

One of the interesting aspects of working in constructive mathematics is that notions often
become more nuanced than they do in classical mathematics. This holds for the notion of
finiteness, for instance; there are a multitude of possible definitions of a set being finite which
would be equivalent classically, but are different constructively.

In this paper, we will look at a particular definition of finite sets in a constructive context,
given in terms of streamless sets. This is essentially a constructive version of the classical
statement that a set is finite if there are no injections from N into it. It is formulated
positively: a set A is streamless when

∀f : N→ A,∃i, j : N, i < j ∧ f(i) = f(j).

It is not known who first looked at finiteness in a constructive setting, but it was recently
investigated by Coquand and Spiwack [4], who look at four different definitions of a set being
finite. These four are, in decreasing order of strength:

Enumerated: there is a list containing all the elements in the set;
Bounded: there is an n : N such that every list with more than n elements has duplicates;
Noetherian: no matter how one adds elements from the set to a list, one eventually gets
duplication in the list; and
Streamless: every stream over the set contains duplicates.

They show that these notions form a strict hierarchy, except in the streamless and noetherian
cases (where strictness is left open): they show that any noetherian set is streamless, and
conjecture that the converse does not hold.

It is relatively easy to see that not all bounded sets are enumerated: with enumerated sets
we actually have all of its elements, while with bounded sets we only know a bound on the
size of the set. In fact, emptiness is in general undecidable for bounded sets, but decidable
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for enumerated sets. Coquand and Spiwack [4] cite an example offered by F. Richman of a
way to generate subsets of natural numbers with the property that one cannot a priori know
the size of the subset, but if one gets any element in the set then one knows the size of the
set. These sets are noetherian but not bounded.

Marc Bezem and other authors have a model of Martin-Löf Type Theory [6] in which
there is a streamless set which is not provably noetherian, thus showing that the noetherian
property is strictly stronger than streamlessness (personal communication, September 2014).
This model is rather complicated and has yet to be published. The authors construct a set
parameterized by a undecidable predicate on N. Equality on this set is decidable, which is
important for the proof that it is streamless. They assume Markov’s principle, and use that
as the “engine” which finds duplicates in the streams. They are also able to show that this
set cannot be noetherian. In this way they show – since Markov’s principle is consistent with
Type Theory – that it is not possible to prove that streamlessness implies noetheriannes.

In addition to giving the hierarchy, Coquand and Spiwack [4] also prove several closure
properties of the different notions of finiteness. They show that all four are closed under sum;
that is, for any of the notions of finiteness, the sum of two finite sets is itself finite by the
same notion. The situation is more complicated for Cartesian products. The two strongest
notions, enumerated and bounded, are shown to be closed under products, and noetherian
sets are closed under products, as long as one of the sets has decidable equality. The use of
decidable equality in one of the sets in the proof in [4] was first pointed out in [2]. Whether
streamless sets are closed under Cartesian products was left as an open problem.

Our main result will be the following: in Martin-Löf intentional type theory (ITT) [5]
streamlessness is closed under Cartesian products, granted that one of the sets has decidable
equality or is bounded.

An important feature of ITT is strong Σ-elimination. Consequently, from a proof of
∀x∃y.φ(x, y) we are able to get, for any x, an actual y which can be used in the construction
of new functions/streams. This plays an important role in the proof of our main result. In
other systems, like HA which we will look at in Section 6, we need to assert a axiom of choice
to get the same.

In Coq we have the choice of formalizing statements either in Set, which enjoy strong
Σ-elimination, or Prop which does not. The proof we provide here will, on the face of it, only
hold when streamlessness is formalized in Set; but we will see that, as long as both sets have
decidable equality, the two formalizations actually correspond.

Decidable equality plays an important role in our proof, and we conjecture that stream-
lessness is not closed under products when both sets have undecidable equality. We show
that, in ITT with functional extensionality, streamless sets have decidable equality, meaning
that a potential counter-model must reject functional extensionality.

The main motivation behind this work is curiosity as to the strength of streamless sets,
but there is also potential for practical applications. One such example is outlined in Coquand
and Spiwack [4], namely automaton reachability testing. They give the regular depth-first
graph algorithm for finding reachable states, and then proceed to show that if one assumes
that the set of states in the automaton is finite in the sense of streamless, then this algorithm
terminates. It is not uncommon to take the Cartesian product of two automata to create
one which has as its language the intersection of the two original languages. Given that
streamlessness is closed under product, one can show that the reachability algorithm also
terminates on this new automaton.

In Section 2, we introduce streamless sets and some machinery which lets us find any
number of duplicate elements. In Section 3, we prove the main theorem: that streamless sets
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with decidable equality are closed under Cartesian products in ITT. In Section 4, we see that
adding functional extensionality gives streamless sets decidable equality. Section 5 relates
our findings to Coq and its Set vs Prop distinction; it also briefly touches upon Homotopy
Type Theory with Univalence. In Section 6, we relate our finding to Heyting arithmetic
in the systems (E-) HAω. Section 7 provides a brief overview of related works; Section 8
highlights some remaining questions; and we conclude in Section 9.

1.1 Notation
We work in Martin-Löf intensional type theory (ITT) [5], where both propositions and sets
are modeled as types.

We assume a inductive type N for the natural numbers, and we have the usual type
constructors: If A is a type and B is a type family over A then both Πx:AB(x) and
Σx:AB(x) are types, the dependent function type and the dependent pair type with the usual
computation rules. We use π1 : (Σx:AB(x)) → A and π2 : Πp:Σx:AB(x)B(π1(p)) as the two
projections of dependent pairs. In the special cases where B(x) does not depend on x, we
abbreviate Πx:AB(x) as A → B and Σx:AB(x) as A × B, the latter being the Cartesian
product of A and B. If A and B are types, then A + B is their disjoint union with the
constructors inl : A→ A+B and inr : B → A+B.

We will use the notation Dec =A to stand for the type Πx:AΠy:A(IA(x, y) + ¬IA(x, y)),
where IA(x, y) is the inductive identity type. We will use =A as an infix version of IA, or
just = if the type A is clear from context. With A having decidable equality we mean that
we have an inhabitant of Dec =A.

A stream over a set A is any function of type N→ A. Given a stream g : N→ A we also
have “cut” streams g|n : N→ A for every n : N defined by

g|n(x) := g(x+ n).

When we say that we have duplicates in a stream g : N → A, we mean that we have two
indices i < j such that g(i) =A g(j).

Given a stream g over A×B, we can project out two streams g1 : N→ A and g2 : N→ B

being gi = πi ◦ g. As usual, two elements in A×B are equal if both their first and second
projection are equal. We also say that two elements in A×B are A-equal (resp. B-equal) if
their first (resp. second) projections are equal.

2 Introduction to streamless sets

A set A is streamless if all streams over it contains duplicates; that is, for all streams
g : N → A, we have indices i < j with g(i) =A g(j). Formally, it means that we have a
inhabitant of the type

Streamless(A) := Πf :N→AΣp:N×N(π1(p) < π2(p)× f(π1(p)) =A f(π2(p))).

In what follows we will mostly be interested in the pair p : N×N, and not the proof that
it has the desired features. To avoid having to project out the number and clutter up the
construction more than needed, we will assume that if we have a streamless set A, we have a
witness

MA : (N→ A)→ N× N,

which, given a stream g over A, gives out two indices i < j such that g(i) = g(j).

TYPES’14
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. . .

. . .

〈1, 3〉 〈6, 7〉 . . .

Figure 1 g2, the stream of duplicates in g.

First, we show that if we have a stream over a streamless set B, we can find not only
duplicates, but for any n we can find elements occurring at least n times. This is clear
classically; we just have to look at the first |B| × n elements in the stream. Constructively it
is less clear, as we do not know the actual size of the set – only that it is streamless. As
seen in the introduction, one cannot, in general, deduce the size of a set from the fact that
it is streamless. The first part of this construction, for n = 2, is also used to prove that
streamless is closed under sum in [4].

Given a stream g over streamless B, we make a new stream g2 over B × N × N, such
that for every 〈b, i, j〉 we have i < j and g(i) = g(j) = b, and for all g2(n) = 〈b, i1, j1〉 and
g2(n+ 1) = 〈c, i2, j2〉 we have j1 < i2. We get this by letting g2 begin with 〈g(j), i, j〉 where
〈i, j〉 = MB(g), and then continue likewise on the stream g|j+1.

Formally, g2 is defined as follows, where _ indicates a value which we do not use (and
thus prefer not to name).

I Definition 1 (g2 : N→ B × N× N).

g2(0) =〈g(j), i, j〉 where 〈i, j〉 = MB(g),
g2(n+ 1) =〈g(j + p), i+ p, j + p〉 where 〈_,_, p〉 = g2(n)

and 〈i, j〉 = MB(g|p+1)

Figure 1 contains a visual representation of g2, the top being g and the bottom g2. The two
blue boxes make up the first duplicate pair found by MB(g). The vertical red line indicates
that this is where we “cut” the stream, and by using MB again on this new stream we get a
new duplicate pair, the purple diamonds. This process continues, defining a new stream of
representatives of duplicates in g.

The first projection of g2 is itself a B-stream, and we can then use the same process on
this stream. This provides duplicate duplicates, giving us elements which occur four times
in g.

We can iterate this process and, for every n : N and stream g : N→ B, we get a stream
gn : N→ B × (List N) such that every element in the new stream gives a 〈b, l〉 such that b
occurs at least n times in g, at the n different indices given in l.

To formally define gn it is easiest to first define a slightly stronger function fn : N →
B × (List N) × N. The last natural number is used when defining fm+1(n + 1), it tells it
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. . .

〈1, 3〉 〈6, 7〉 〈9, 11〉 〈12, 15〉 〈16, 17〉 〈21, 23〉 〈25, 29〉 〈31, 32〉 〈35, 39〉 . . .

0 1 2 3 4 5 6 7 8 . . .

. . .

[1, 3, 9, 11] [16, 17, 25, 29] [31, 32, 35, 39] . . .

2 6 8 . . .

Figure 2 Calculating f3 from f2.

where in (fm)1 the nth duplicate was found, enabling us to cut (fm)1 at the right place.

f2(n) =〈b, [i1, i2], i2〉 where 〈b, i1, i2〉 = g2(n)
fm+1(0) =〈(fm)1(i), (fm)2(i) + +(fm)2(j), j〉 where 〈i, j〉 = MB((fm)1),

fm+1(n+ 1) =〈(fm)1(i), (fm)2(i) + +(fm)2(j), j〉 where 〈_,_, p〉 = fm+1(n)
and 〈i, j〉 = MB((fm)1|p)

This process is illustrated in Figure 2, where we show how to calculate f3 from f2.
Having fn we define gn by simply dropping the third number:

I Definition 2 (gn : N→ B × List N).

gn(x) =〈e, l〉 where 〈e, l,_〉 = fn(x)

The attentive reader notices that this does not actually produce linearly many indices, but
exponentially many. g3 is actually a stream of items occurring 4 times, and g4 is a stream of
objects occurring 8 times. We will not make use of this property, and we will, for the sake of
simplicity, assume that gn contains elements that occur n times.

Observe that we use strong ∃ elimination for this construction. Not only do we know that
there are indices, but we know what they are; we are also free to use them in the construction
of a new stream, to which we can apply MB once more. As mentioned above, [4] uses a
stream which is the first projection of g2 in the proof that streamless is closed under sum.
We do not know of a proof that streamlessness is closed under sum which does not assume
strong ∃ elimination.

3 Products of streamless sets

This section applies the machinery developed in the previous section to the product of
streamless sets.
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We will first see that the Cartesian product of a bounded set with a streamless set is
streamless. It is worth noting that this is independent of whether any of the sets has decidable
equality or not.

I Lemma 3. In ITT we have: If at least one of A and B is bounded and the other is
streamless then A×B is streamless.

Proof. We assume that A is bounded by n. (If it were B then the construction below would
be “mirrored”.) Given the stream g : N→ A×B we look at g2 : N→ B, its second projection.
By looking at (g2)n+1(0) we get a pair 〈b, [i0, . . . , in]〉 such that b occurs at all the indices
i0, . . . , in in g2. Note that g1(i0), . . . , g1(in) are n+ 1 elements of A, so since A is bounded by
n, there must be at least two indices ik < il such that g1(ik) = g1(il). As g2(ik) = b = g2(il),
we get g(ik) = g(il). J

We now show that Markov’s principle and decidable equality of one of the sets imply that
streamlessness is closed under product. This result is a warm up for the later, more general
result shown in Theorem 6. The proofs have interesting similarities, especially in how we can
use the streamlessness of a set to “emulate” Markov’s principle.

First a reminder of Markov’s principle.

I Definition 4 (Markov’s principle). For decidable predicates P on N we have ¬¬Σx:NP (x)→
Σx:NP (x) .

Markov’s principle has a quite computational flavour, which unsurprisingly makes it easier
to prove a set streamless. All we need to do to find the duplicate indices is to show that it
cannot be the case that they do not exist.

I Lemma 5. In ITT with MP we have: If at least one of A and B has decidable equality
and A and B are both streamless then A×B is streamless.

Proof. We assume a stream g : N→ A×B. We also assume, without loss of generality, that
A is the set with decidable equality. (If it were B then the construction below would be
“mirrored”.)

We define the following predicate on N:

P (n) := For 〈_, [i0, . . . , in−1]〉 = (g2)n(0) we have duplicates in [g1(i0), . . . , g1(in−1)].

Remember that g2 gets the B-stream, and (g2)n finds n indices with equal elements. Note
that if A has decidable equality, P (n) is decidable.

We now proceed to show that (1) ¬¬∃nP (n) and that (2) from ∃nP (n) we can get 〈i, j〉,
with i < j and g(i) = g(j).

Proof of (1). We assume ¬∃nP (n) and proceed to produce a contradiction. ¬∃nP (n)
implies ∀n¬P (n), which says that for any n we have that for 〈b, [i0, . . . , in−1]〉 = (g2)n(0)
the list [g1(i0), . . . , g1(in−1)] has no duplicates. Notice that the list [g1(i0), . . . , g1(in−1)] has
n elements, all from A.

We now make a duplicate-free stream f : N→ A; that is, for every n : N, we have for all
j < n that f(n) 6= f(j), contradicting that A is streamless. Defining f(n) we first find n+ 1
indices with the same b element, 〈_, [i0, . . . , in]〉 = (g2)n+1(0). We now let

f(n) = ([g1(i0), . . . , g1(in)] \ [f(0), . . . f(n− 1)])(0).

That is, f(n) is the first element in the list resulting from removing any element from
[g1(i0), . . . , g1(in)] that the stream already contains. As [g1(i0), . . . , g1(in)]) contains n+ 1
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different elements from A, we know that the resulting list is non-empty. Since this stream
only outputs elements which have not been output up until that point, it will never introduce
a duplicate pair. Thus we have contradicted that A is streamless, enabling us to conclude
¬¬∃nP (n). J

Proof of (2). From ∃nP (n) we have that there is an n such that for 〈b, [i0, . . . , in−1]〉 =
(g2)n(0) the list [g1(i0), . . . , g1(in−1)] has duplicates. Let those indices be ik < il. Since every
element in g(i0), . . . , g(in−1) has b as its second coordinate, we get that g(ik) = g(il). J

Having proved ¬¬∃nP (n), we apply Markov’s principle and get ∃nP (n). By (2) above, this
gives us the indices 〈i, j〉 with i < j and g(i) = g(j). J

We will now proceed to get rid of Markov’s principle. Several parts of the previous proof
will be recognisable, but we use the streamlessness of the two underlying sets to do the work
that Markov’s principle did in the previous proof.

I Theorem 6. In ITT we have: If at least one of A and B has decidable equality and A and
B are both streamless, then A×B is streamless.

Proof. We assume that A is the set with decidable equality, and we want to construct

MA×B : (N→ A×B)→ N× N,

which, given any A×B-stream g, finds a pair of indices i < j such that g(i) = g(j).
Given an A×B-stream g, we inductively define an A-stream f by letting f(n) first look

at f(m) for all m < n, and see if two equal elements are outputted. This can be done since
A has decidable equality. If there is a duplicate element, f(n) outputs it. If there are no
duplicates outputted so far, we let f(n) look at all the A-elements corresponding to the n
B-elements given by (g2)n(0). Remember, (g2)n(0) = 〈b, l〉 where l = [i0, . . . , in−1] is a list
of n indices. Looking up these indices in g1 gives us a list la : List A of n A-elements.

By using the decidability of A, we can check whether there are duplicate elements in
la. In the case of no duplicates, we know that there must be at least one of the n elements
which does not already occur in f so far (as we have only produced n− 1 elements so far).
We can check which one this is, as we have already defined f up to n− 1. We then let f(n)
be one of those elements which has not occurred in f so far. More precisely,

f(n) = ([g1(i0), . . . , g1(in−1)] \ [f(0), . . . f(n− 1)])(0).

If, on the other hand, there is some duplicate element in the list, we let f(m) be that
element for all m ≥ n. Notice that if this is the case, this is the first time a duplicate is
introduced in f . This completes the construction of f : N→ A, and we will now use f to
find duplicates in g : N→ A×B.

From the construction of f , we have the following property:

I Lemma 7. For the smallest i such that f(i) = f(i + 1) we have duplicates in the list
[g(l0) . . . , g(li−1)], where 〈b, [l0 . . . , li−1]〉 = (g2)i(0).

As A is streamless and f is a A-stream, we can use MA to find indices k < d of duplicates
in f . Since A had decidable equality, we can do a bounded search downward from k to
find the first index i such that f(i) = f(i + 1). By Lemma 7, we have duplicates in
[g(l0) . . . , g(li−1)] where 〈b, [l0 . . . , li−1]〉 = (g2)i(0). Thus, we have two indices lk < lm in
l such that g1(lk) = g1(lm). By construction all the indices in [l0 . . . , li−1] are B-equal, so
g2(lk) = g2(lm), giving g(lk) = g(lm). J
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Finally observe that if it were B and not A that had decidable equality, the construction
above would be “mirrored”; f would have to be a B-stream, and we would use (g1)n(0)
instead of (g2)n(0).

As an example of the construction, let us look at a particular calculation of f(4), where
no duplicates have been found so far. That means that so far f looks like

f = a0, a1, a2

with none of them being equal any other.
(g2)4(0) is 〈b, [n0, n1, n2, n3〉], giving four indices in g with the same b-element. This

means that g looks somewhat like

g = . . . , 〈b, a′0〉 . . . , 〈b, a′1〉, . . . , 〈b, a′2〉, . . . , 〈b, a′3〉, . . .

By the decidability of A, we can check whether there is a duplicate among [a′0, a′1, a′2, a′3]. If
not, then we know that there is some element in [a′0, a′1, a′2, a′3] \ [a0, a1, a2], and we let f(4)
be the first such element. If there are duplicates, e.g a′1 = a′3, we let f(n) = a′1 for all n ≥ 4.

Comparing this proof with the proof using Markov’s principle we see that we can use the
streamlessness of one of the underlying sets to search for the n which gives us A-duplicates.
The trick is to control exactly when duplicates are introduced in the f -stream, and then use
the streamlessness of A to recover this point.

We combine Lemma 3 and Theorem 6 to get the following corollary.

I Corollary 8. In ITT we have: If at least one of A and B has decidable equality or is
bounded, and A and B are both streamless, then A×B is streamless.

4 Streamlessness and decidable equality

It should be clear by now that decidable equality of the underlying set is quite important for
the ability to produce streamless sets; we will see another indication of this in this section.
We will show that in ITT, functional extensionality give streamless sets decidable equality. In
addition to showing the close relation between finiteness and decidable equality, it is relevant
to the search for a potential counter-model to the claim that streamlessness is closed under
Cartesian products even without decidable equality.

As a warm-up, we look at the situation where the set is not only streamless, but bounded.
Remember that this means that we have an n : N such that, for every A-list of more than n
elements, we can find a duplicate pair. Formally, this means that we have an inhabitant of
the type

Bounded(A) := Σn:N(Πl:listA(len(l) > n→ Σi,j:N(i < j × l[i] = l[j]))).

If we want to determine whether a1 is equal to a2 we make a list l of n+ 1 instances of
a1, and get a pair of indices i1 < j1 with duplicates in this list. We then proceed to swap
the element at l[i1] with a2, giving a new list. The original list is equal the new list if and
only if a1 = a2.

We then proceed to get two indices i2 < j2 of duplicate elements in this new list. If this
process is assumed to be a function, and thus provide equal outputs for equal inputs, we get
〈i1, j1〉 = 〈i2, j2〉 if and only if a1 = a2; and since equality on N is decidable, we are done.

Our proof turned on the facts that (1) the second projection of a witness of Bounded(A)
is a function, (2) this function can be assumed to respect equality on its input, and (3) two
lists are equal if and only if they are pointwise equal.
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We will now mirror this with streamless sets. One major difference between lists and
streams is the following: while lists are equal whenever their elements are equal, this only
holds for streams if we assume so. It is consistent to assume an inhabitant of the following
type in ITT, and if we do so for all types, we say that we have functional extensionality.

I Definition 9 (FunExt(A)).

FunExt(A) := Πf,g:N→A(Πn:N(f(n) =A g(n))→ f =N→A g) .

I Lemma 10. In ITT with functional extensionality we have: If A is streamless then it has
decidable equality.

Proof. We assume an inhabitant of FunExt(A) and two elements a, b : A, and we proceed
to determine their equality. Let the stream fa be the constant A-stream consisting of only
a, and let 〈i, j〉 be the indices returned by MA(fa). We now make the stream f ′a which is
constantly a, except at index i, where it is b:

f ′a(n) =
{
b if n =N i

a otherwise

Notice that if a =A b we have Πn:Nfa(n) =A f
′
a(n), so from functional extensionality we then

have fa = f ′a. So, by functionality of MA, we get a = b→MA(fa) = MA(f ′a), and thus

MA(fa) 6= MA(f ′a)→ a 6= b.

Concluding, if MA(f ′a) 6= 〈i, j〉 then a 6= b, and if MA(f ′a) = 〈i, j〉 then a = b (as f ′a(i) = b

and f ′a(j) = a), and since equality on N is decidable we are done. J

Lemma 10 is relevant for the search of a counter-model to the general claim that stream-
lessness is closed under product. From section 3, we know that such a counter-model must
have two streamless sets with undecidable equality. This section shows that the model
must also reject functionality extensionality for us to have a streamless set with undecidable
equality.

It also highlights some of the difficulty of defining finiteness for sets with undecidable
equality in a computational setting, and since the other notions of finiteness given in [4]
imply streamlessness, this result also covers them. All the definitions of finiteness have some
sort of equality/duplication check at their core. Given this it seems plausible that a proof
of finiteness can, in certain situations, lead to decidability. On the other hand, it is quite
unsatisfactory that, in certain settings, we are unable to define finite sets of elements with
undecidable equality.

In the next section we look at how to formalize both this and the previous results in Coq.

5 Formalization in Coq and HoTT

5.1 Coq: Prop and Set
In this section we will relate the above results to the proof assistant Coq [3], where we have
to deal with the distinction between Prop and Set. Functions, which is how we defined
streams, live in the universe Set, while there is a separate universe Prop for propositions. The
intention is, roughly, to separate between types where we care about the internal structure of
the inhabitants (Set) and where we care only about the existence of the inhabitant (Prop).
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Given a inhabitant of a type in Prop one is generally not allowed to eliminate on it
to construct elements in Set; thus we can not build the new stream g2 of duplicates using
indexes found from a witness of a type in Prop. This means that the constructions given in
this paper can not be implemented in Coq as they stand if streamless is written as follows:

Definition StreamlessEx(A:Set):= forall g:nat → A,
exists i j, i<j ∧ g(i) = g(j).

One way to remedy the situation is to define the notion of a set being streamless in the
following way, closer to the way it was encoded in ITT. The notation “{x : nat | P (x)}” is
Coq’s notation for Σx:NP (x).

Definition StreamlessSig (A:Set):= forall g:nat→ A,
{ij : nat∗nat | fst ij < snd ij ∧ g(fst ij)=g(snd ij)}.

StreamlessSig enables us to use the proof of a set being streamless in a computation;
in particular it enables us to construct the stream g2 needed to prove Corollary 8 in Coq.
The disadvantage is that it can make it harder to prove sets to be streamless in the first
place. There is reason to believe that there are fewer sets satisfying StreamlessSig than
StreamlessEx.

In general, whether one wants the statement in Prop or in Set reflects whether one wants
to work proof relevant or not; formalizing it as StreamlessSig enables us to use the proof (of
a set being streamless) in a computation.

StreamlessSig A implies StreamlessEx A, while the provability of the converse implication
is unknown. Interestingly, it is know for sets with decidable equality, since we are able to
prove the following lemma in Coq for A with decidable equiality, making the two notions of
streamless coincide in those cases.

Lemma streamlessExToStrSig(A:Set)(A_dec: DecidableEq A) :
StreamlessEx A → StreamlessSig A

Essential for the proof is the following lemma, holding for decidable predicates P on N,
and shown in the Coq library Coq.Logic.ConstructiveEpsilon1.

Lemma constructive_indefinite_ground_description_nat :
(exists x : nat, P x) → {x : nat | P x}.

With the indefinite ground description the proof is straightforward. We assume that we have
some pairing/decoding functions enabling us to encode pairs of natural numbers as single
natural numbers. We then define versions of both StreamlessEx and StreamlessSig using
single numbers, prove that the single and paired versions are equivalent, and then it is a
simple application of the indefinite ground description given above.

The conclusion is the following corollary:

I Corollary 11. In Coq we can prove that StreamlessEx (and StreamlessSig) of sets with
decidable equality is closed under Cartesian products.

A natural question is whether we can strengthen this to say that StreamlessEx is
closed under Cartesian products as long as at least one of the sets have decidable equality.
Unfortunately, this does not follow from the current construction. To see this, assume an
A × B-stream g. The construction in Proof 3 uses (g2)n to find n-indices with B-equal

1 http://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html

http://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
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elements. But for this to be definable in Coq using the technique above, B needs decidable
equality. The proof then uses the decidability of A to eliminate on whether there are
duplicates among the resulting A-elements or not. It does not seem possible to manipulate
the construction such that it is enough for only one of the sets to have decidable equality.

We are also able to reproduce Lemma 10 in Coq for StreamlessSig, the proof is simply a
direct Coq formalization of the proof given in Section 4.

Lemma strSigAndFuncExtImpliesDecA (A:Set) (Ma:StreamlessSig A)
(fext: functional_extensionality nat A): forall a b :A, {a=b}+{not(a=b)}.

Again, we are not able to simply adapt the proof to StreamlessEx, since the proof crucially
uses the indexes returned from MA in the construction of new functions.

All the Lemmas in this section have been formalized and proved in Coq2.

5.2 HoTT
Closely related to the Prop/Set distinction is the truncated and non-truncated statements
one encounters in Homotopy Type Theory (HoTT). Truncation is a type former which
“truncates” a type – removing all information contained in the inhabitants of that type except
their existence – and it is written as ||A|| for a type A. (For more information we refer the
reader to the freely available book [10].) We will not go further into HoTT here; but what is
relevant for us is that we have a HoTT version of the indefinite ground description above.
For decidable predicates P we have

||Σn:NP (n)|| → Σn:NP (n)

as stated by exercise 3.19 in [10]. One should be able to reproduce a version of Corollary 11
in this setting, getting that for the non-truncated version of streamless it is enough for one of
the sets to have decidable equality for streamlessness to be closed under Cartesian products.

With our current knowledge we need both sets to have decidable equality for the truncated
version to be closed under Cartesian products without further assumptions, and we conjecture
that this is in fact a strict requirement. If we choose to assume the HoTT-version of the
axiom of choice,

(Πx:X ||Σa:A(x)P (x, a)||)→ ||Σg:Π(x:X)A(x)Πx:XP (x, g(x))||,

we can show that truncated-streamless sets are closed under products as long as one of the
sets has decidable equality.

In HoTT we can also assume the Univalence axiom, giving that isomorphic structures can
be identified. Importantly, the univalence axiom implies functional extensionality. Lemma 10
makes it clear that – unless we want every streamless set to have decidable equality – we
must use the truncated version of streamlessness in this setting.

6 HAω

It is natural to ask how closely coupled the above results are to the particular constructive
setting we are working in, and whether we can reproduce them in a different setting. We
will now look at how the results fit in the system HAω, an extension of Heyting Arithmetic
to the language of finite types, see [9] for more information on HAω.

2 The Coq-script can be found at https://github.com/epa095/streamless-in-coq.
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HAω is proof-irrelevant and does not have strong Σ elimination; instead, we have to use
the axiom of choice to extract a function, giving the witnesses which we can then use as
terms in the logic.

The set of finite types T is built from the basic type 0 (N) and is closed under × and
→. HAω is “neutral” in the terminology of [9]; we do not assume decidability of =τ for any
other types than 0, nor do we assume that equality between functions is extensional.

Sets are not a primitive notion in HAω, so when talking about sets we mean functions of
the type A : τ → 0; such functions represent the set of elements on which it returns 1. This
means that all sets will have decidable membership and sets can only contain elements of
one and the same type. For a set A : τ → 0, we call τ the enclosing type of A. Following [9]
we will write a < b in place of < (a, b) = 1, where the latter is the characteristic function
of the less-than relation. With “a stream over A” we mean a function f0→τ where τ is the
enclosing type of A such that ∀n0(A(f(n)) = 1).

Streamlessness of Aτ in this setting is expressed as

Streamless(Aτ ) := ∀g0→τ ((∀n0A(g(n)) = 1)→ ∃i0j0(i < j ∧ g(i) = g(j))).

In order to formalize our results in HAω, we first need to define some axioms. ACσ,τ is
the following axiom schema,

ACσ,τ := ∀xσ∃yτφ(x, y)→ ∃zσ→τ∀xσφ(x, zx),

and AC is the axiom schema consisting of ACσ,τ for all types σ, τ ∈ T . EXTσ,τ is the
following axiom schema,

EXTσ,τ := ∀yσ→τzσ→τ ((∀xσ, yx = zx)→ y = z),

and if we add EXTσ,τ for all types σ, τ ∈ T we get the system E-HAω.
To reproduce the proof of Lemma 5 in HAω, we need to construct the function g2 of

duplicates, and for this we need access to, for every stream, a pair of indexes with duplicate
elements in that stream. The following instance of AC for every type τ enclosing a streamless
set is enough to mirror Lemma 5 in HAω.

AC0→τ,0 := ∀x0→τ∃y0φ(x, y)→ ∃z(0→τ)→0)∀xσφ(x, zx)

Let the φ(x, y) stand for the predicate “(∀i0A(x(i)) = 1)→ y encodes a pair of indexes
i < j such that x(i) = x(j)”. Then the antecedent of AC0→τ,0 follows immediately from A

being streamless, and the result is the function MA, needed to reconstruct the machinery in
the proof of Lemma 5.

I Corollary 12. In HAω + AC we have that streamless sets are closed under products.

Encoding sets by their characteristic functions yields decidable membership, but in general
not decidable equality. The extensionality of E-HAω, giving that streams are equal when
they are pointwise equal, enables us to mirror Lemma 10:

I Corollary 13. In E- HAω + AC we have that streamless sets have decidable equality.

Note that E- HAω + AC does not prove the law of excluded middle, as it is conservative over
HA. For further details, see [1].
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7 Related work

One of the first investigations of streamlessness known to the author is by Richman and
Stolzenberg [8]. In their terms, a streamless set is called 2-good, where 2 is the set of
two-element subsets of the natural numbers. They show that the sum of two B-good sets, of
which 2-good is an instance, is B-good, but leave it open for products. This paper does not
resolve any of their open questions, as they work in a more general setting than equality.
They also give another notion, that of a set being bar-good, and they show that the Cartesian
product of a bar-good set with a B-good set is B-good. It is not clear what the relation
between streamlessness and bar-good is, and whether there are natural axioms one can
assume to make a streamless set bar-good.

Veldman and Bezem [11] investigate the constructive content of the Ramsey theorem [7],
giving a constructive proof of a reformulation of it. For this, they use what they call
almost-full binary relations; relations R on N where, for every increasing function f : N→ N,

∃m,n : N,m < n ∧R(f(m), f(n)).

They postulate the axiom of bar-induction, and with it they prove that almost-full relations
are closed under intersection. They name this the Intuitionistic Ramsey Theorem, and show
that it is classically equivalent to Ramsey’s Theorem.

Using equality as the relation R, one gets a notion which comes quite close to streamless-
ness, apart from Veldman and Bezem’s requirement that the functions are increasing, and
the fact that streamlessness is a concept applicable for any type (not only N), possibly with
undecidable equality.

In light of this, it is natural to ask whether the proofs in this paper can be generalized to
relations other than equality. We define what it means for a reflexive and transitive relation
R on A to be a well-quasi-ordering:

WqoA(R) := ∀g : N→ A,∃i, j : N, i < j ∧R(g(i), g(j)).

Note that a set A is streamless exactly when we have WqoA(=A). We can ask if the
intersection of two such relations is itself a Wqo and whether the proof of Lemma 6 suggest
how this could be shown. Unfortunately, we do not see how. We are still able to use the
construction gn to find n elements a1, . . . an such that a1Ra2 . . . Ran, but we do not have
the property that with n elements b1, . . . bn such that none of them are R-related, and n− 1
elements b′1, . . . b′n−1 such that none of them are R-related, there must be one of the b1, . . . bn
which is not R related to any of the b′1, . . . b′n−1. We have this property when the relation R
is equality, and this is used in the proof of Lemma 6.

If we did have that Wqo relations were closed under intersection we would immediately
get that streamless sets are closed under products: define the relation R1 on A × B as
(a1, b1)R1(a2, b2) if and only if a1 =A a2, and likewise for R2, looking at the second projections.
If A and B are streamless sets, then R1 and R2 are Wqo relations and their intersection is
equality on A×B.

Vytiniotis, Coquand and Wahlstedt [12] provide an inductive formulation of almost full
relations on arbitrary types. They show – if we instantiate their proofs with the relation
being equality – that it implies streamlessness, and show that almost-full relations are closed
under intersection.

Streamlessness works in a quite general setting, with few assumptions on the underlying
set. Bezem et al. [2] impose further restrictions, and the result is a interesting hierarchy of
finiteness notions. The restrictions imposed are that equality is decidable; that the subset is
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defined by some decidable predicate; and that the set is a subset of some set that can be
enumerated. This holds for decidable subsets of natural numbers in particular. The authors
find six different formalizations and put them into a hierarchy.

8 Remaining questions

There are several questions remaining. The main one is whether one can show that stream-
lessness is closed under Cartesian products in ITT without assuming decidable equality.
Secondly, to what degree can one show similar results in systems without strong Σ elimination
– for example, for StreamlessEx in Coq or the truncated statement in HoTT? And what is
the relationship between StreamlessEx and StreamlessSig for sets with undecidable equality?

We conjecture that there exists a model showing that, in ITT, the product of two
streamless sets with undecidable equality is not necessarily streamless. From Lemma 10 we
know that such a model must reject functional extensionality, and from Lemma 3, we know
that neither of the sets can be bounded.

At this point there are, to this author’s knowledge, only two sets which are known to
be streamless but not bounded. One is the set presented in [4], originally suggested by F.
Richman, showing that not all noetherian sets are bounded. As noetherian sets are streamless,
this is also a streamless set. But this set has the interesting property that, once one looks
at any of the elements in the set, one knows the size of the set! So it is not bounded a
priori, but if one is given a stream of elements from the set, one can deduce its size and then
continue as in the proof of Lemma 3.

The second set, presented in the still unpublished article by Bezem et al. showing that
not all streamless sets are noetherian, does not have this property. On the other hand, it has
decidable equality, rendering it useless as a counter-model. There does not seem to be an
easy way to tweak the model to get rid of this decidable equality; it is essential for the proof
that the set is streamless as the authors use Markov’s Principle to find the duplicate pair,
and Markov’s Principle is only applicable for decidable predicates.

To conclude, we currently have no good candidate for a streamless set with a non-
streamless Cartesian product. Constructing a suitable streamless set, non-bounded and with
undecidable equality, appears to be quite complicated. Neither of the ways used to prove
a set streamless – that is, by gathering information about the size of the set encoded in
the elements themselves, or using Markov’s principle – is likely to work. It seems the most
promising route to a counter-model involves finding novel ways to construct streamless sets.

Lastly, we would like to encourage other to look for new notions of finiteness, especially
trying to find notions that works nicely and robustly for sets with undecidable equality.

9 Conclusion

We showed that, in Martin-Löf intensional type theory, if at least one of the streamless sets A
and B has decidable equality or is bounded, then the Cartesian product A×B is streamless.
We also saw that adding functional extensionality to ITT gives streamless sets decidable
equality; and we mirrored these results in both (E-) HAω + AC and in Coq.
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Abstract
The cubical sets model of Homotopy Type Theory introduced by Bezem, Coquand and Huber [2]
uses a particular category of presheaves. We show that this presheaf category is equivalent to
a category of sets equipped with an action of a monoid of name substitutions for which a finite
support property holds. That category is in turn isomorphic to a category of nominal sets [15]
equipped with operations for substituting constants 0 and 1 for names. This formulation of
cubical sets brings out the potentially useful connection that exists between the homotopical
notion of path and the nominal sets notion of name abstraction. The formulation in terms of
actions of monoids of name substitutions also encompasses a variant category of cubical sets with
diagonals, equivalent to presheaves on Grothendieck’s “smallest test category” [8, pp. 47–48]. We
show that this category has the pleasant property that path objects given by name abstraction
are exponentials with respect to an interval object.
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We refer the reader to Bezem, Coquand and Huber [2] for the geometric intuition behind
the terminology ‘cubical set’ and the connection with the notion of the same name in homotopy
theory. Like any presheaf category, [C,Set] gives rise to a model of extensional Martin-Löf
Type Theory, organised as a category with families (CwF) in the sense of Dybjer [5]. See
Hofmann [9, Section 4] for an account of presheaf CwFs. In order to model Homotopy Type
Theory and in particular Voevodsky’s Univalence Axiom [21], Bezem, Coquand and Huber
consider families of presheaves equipped with operations for filling open boxes – a more
uniform version of the classic Kan filling condition in combinatorial homotopy theory. The
resulting families of Kan cubical sets support an interpretation of identity types and [2]
contains a sketch of why there is a universe satisfying the Univalence Axiom with respect to
these identity types.

Motivation for a nominal approach

Presheaf models of type theory in general, and in particular the cubical sets model of
Homotopy Type Theory mentioned above, inevitably involve quantifications over Kripke
possible-worlds (which are finite sets of directions in the cubical case) that tend to obscure
the simple intuition behind these models, because of the need to write explicit weakening
functions from a world to future worlds. Furthermore, cubical sets of paths and the Kan
filling condition make use of constructions involving a choice of directions x ∈ D that are
suitably fresh, but whose properties are independent of which particular fresh direction is
chosen. This is precisely the situation for which the theory of nominal sets [6, 15] was created.
In particular it admits a rich theory of freshness that makes implicit the dependence upon
possible worlds of directions. According to the authors of the experimental implementation
of Kan cubical sets [4], “it was convenient to use the alternative presentation of cubical sets
as nominal sets”. That alternative presentation was announced in [14]. Here we take an
alternative approach based on monoids of name substitutions, leading to the equivalences
of Theorems 2.9 and 2.13 below. This facilitates the description of Π-types (Section 3.2)
and universes (Section 3.3); but more importantly, it allows path objects to be described
in terms of the well-developed nominal sets theory of name abstraction (Section 2.2). The
presentation in terms of monoids of substitutions also encompasses a variant of cubical
sets with diagonals (Section 4), equivalent to presheaves on Grothendieck’s “smallest test
category” [8, pp. 47–48] and referred to in [2]. We show that this category has the pleasant
property that path objects given by name abstraction are exponentials with respect to an
interval object (Theorem 4.2).

A note on constructivity

The model of univalence based on simplicial sets [12] uses classical set theory. One of Bezem,
Coquand and Huber’s motivations for considering cubical sets instead of simplicial sets is
that they can be made a model of univalence within constructive logics, which makes a
computational version possible. It is therefore of interest whether the results in this paper
are constructively valid. Like [15], upon some of whose results it relies, this paper is written
using naive classical set theory. In a constructive setting, equality for elements of the set D
of directions should be assumed to be decidable and D should be ‘finitely inexhaustible’, in
the sense that for each subset X ⊆ D that is in bijection with a finite ordinal, there exists
some x ∈ D with x /∈ X. Starting from that basis, it seems likely that much of the theory of
nominal sets is constructively valid. However, at the very least one has to replace the use of
smallest finite support sets in arguments by the existence of some finite support set. For if
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equality is undecidable in some set upon which name permutations act, then the existence of
some finite support for an element of the set does not necessarily mean there is a smallest
one; see [20, Section 1.2.1]. We leave for future work the questions of whether use of smallest
supports can always be avoided and whether the results of this paper are constructively valid.

2 Monoids of Substitutions

In this section we reformulate cubical sets in terms of monoids of substitutions, where the
crucial property of ‘finite support’ gives a well-behaved theory of degeneracy via freshness.

I Definition 2.1 (Substitutions). As far as this paper is concerned, a finite substitution is
a function σ : D → D ∪ 2 for which Dom σ , {x ∈ D | σ x 6= x} is finite. Let Sb denote
the monoid whose elements are finite substitutions, with the monoid operation given by
composition: σσ′ , σ̂ ◦ σ′, where σ̂ : D ∪ 2→ D ∪ 2 is the function

σ̂ b , b if b ∈ 2,
σ̂ x , σ x if x ∈ D.

(2)

(Note that Dom σσ′ is indeed finite, since it is contained in Dom σ ∪Dom σ′.) The identity
element ι ∈ Sb is given by the inclusion D ↪→ D ∪ 2. If x ∈ D and i ∈ D ∪ 2, we write

(i/x) ∈M (3)

for the finite substitution mapping x to i and otherwise acting like the identity; and if
x, x′ ∈ D, then we write

(x x′) ∈M (4)

for the finite substitution that transposes x and x′ and otherwise acts like the identity. By a
monoid of substitutions M we mean any submonoid of Sb containing (x x′) and (b/x) for all
b ∈ 2 and all x, x′ ∈ D.

The notion of finite support is most often applied to actions of permutations, for example
in the theory of nominal sets [15, Chapter 2]. However, it generalizes well to actions of more
general forms of substitution; see [7, Definition 7], for example.

I Definition 2.2 (Finitely supported M-sets). For any monoid M we write write SetM for
the category whose objects are sets Γ equipped with a (left) M-action _ ·_ : M× Γ→ Γ

ι · d = d σ′ · (σ · d) = σ′σ · d (d ∈ Γ, σ, σ′ ∈M) (5)

and whose morphisms are functions γ : Γ→ Γ′ preserving the action

γ(σ · d) = σ · (γ d) (σ ∈M, d ∈ Γ) (6)

When M is a monoid of substitutions (Definition 2.1) and Γ ∈ SetM, we say that a finite
subset X ⊆fin D supports an element d ∈ Γ if

(∀σ, σ′ ∈M) ((∀x ∈ X) σ x = σ′x) ⇒ σ · d = σ′ · d (7)

We write SetM
fs for the full subcategory of SetM consisting of those Γ such that for all d ∈ Γ

there exists a finite subset X ⊆fin D that supports d. We call SetM
fs the category of finitely

supported M-sets.
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I Example 2.3 (The interval). Let M be a monoid of substitutions. We make I , D∪ 2 into
an object of SetM via the action given by function application: σ · i , σ̂ i, for all i ∈ I. With
respect to this action, an element of x ∈ D ⊆ I is supported by {x} and the two elements of
2 ⊆ I are supported by ∅. We call I the interval in SetM

fs .

I Lemma 2.4. Let M be a monoid of substitutions and b ∈ 2 some fixed Boolean value. For
each d ∈ Γ ∈ SetM, a finite subset X ⊆fin D supports d iff

(∀x ∈ D) x /∈ X ⇒ (b/x) · d = d (8)

Proof. Taking σ = (b/x) and σ′ = ι in (7), we get that it implies (8). To prove (8) implies
(7), we proceed by induction on the size of the finite set

ds(σ, σ′) , {x ∈ D | σ x 6= σ′x} (9)

(It is finite, because it is contained in Dom σ ∪ Dom σ′.) The base case is trivial. For the
induction step, suppose

(∀x ∈ X) σ x = σ′x (10)

and that y ∈ ds(σ, σ′). We have to prove that σ · d = σ′ · d. Since σ y 6= σ′y, from (10) we
must have y /∈ X and hence (∀x ∈ X) σ(b/y) x = σ′(b/y) x. Since ds(σ(b/y), σ′(b/y)) =
ds(σ, σ′)−{y}, by induction hypothesis σ(b/y) · d = σ′(b/y) · d. But since X satisfies (8) and
y /∈ X, it follows that (b/y) ·d = d. Therefore σ ·d = σ · ((b/y) ·d) = σ(b/y) ·d = σ′(b/y) ·d =
σ′ · ((b/y) · d) = σ′ · d, as required. J

I Corollary 2.5. Suppose Γ ∈ SetM and d ∈ Γ is supported by X ⊆fin D.
1. For any morphism γ : Γ→ Γ′ in SetM, γ d ∈ Γ′ is also supported by X.
2. For any σ ∈M, σ ·d ∈ Γ is supported by the finite subset σX∩D = {σ x | x ∈ X∧σ x /∈ 2}.

Proof. Fix some b ∈ 2. For part 1, if x ∈ D satisfies x /∈ X, then

(b/x) · (γ d) = γ((b/x) · d) by (6)
= γ d by Lemma 2.4.

So by Lemma 2.4 again, X supports γ d.
For part 2, if y /∈ σX ∩ D, then (∀x ∈ X) (b/y)σ x = (̂b/y)(σ x) = σ x; so because X

supports d we have (b/y) · (σ · d) = (b/y)σ · d = σ · d. So Lemma 2.4 implies that σX ∩ D
supports σ · d. J

I Definition 2.6 (Least supports). Let M be a monoid of substitutions and Γ ∈ SetM
fs . By

Lemma 2.4, for each d ∈ Γ

supp d , {x ∈ D | (0/x) · d 6= d} (11)

is finite and is the least finite supporting set of directions for d. Note that supp d = {x ∈ D |
(1/x) · d 6= d}.

I Definition 2.7 (The monoid Cb). Let Cb ⊆ Sb be the subset consisting of finite substitu-
tions σ satisfying an injectivity condition like (1):

(∀x, x′ ∈ D) σ x = σ x′ /∈ 2 ⇒ x = x′
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Cb is a monoid of substitutions in the sense of Definition 2.1. It enjoys the following
homogeneity property with respect to the small category C from Section 1.

I Lemma 2.8 (Homogeneity). For all morphism s ∈ C(X,Y ) there is a finite substitution
σ ∈ Cb satisfying (∀x ∈ X) s x = σ x.

Proof. Given s ∈ C(X,Y ), let X1 , {x ∈ X | s x /∈ 2} and X2 , {x ∈ X | s x ∈ 2}. Thus
X = X1 ] X2 and s restricts to a bijection between X1 and Y1 , {s x | x ∈ X1}. Pick a
finite permutation π of D that agrees with s on X1 and is the identity outside the finite set
X1 ∪ Y1 (it is always possible to do so – see for example [15, Lemma 1.14]). Then

σ x ,

{
s x if x ∈ X2

π x otherwise

is a suitable element of Cb. J

I Theorem 2.9. The category [C,Set] of cubical sets is equivalent to the category SetCb
fs of

finitely supported Cb-sets.

Proof. We define a functor I∗ : [C,Set]→ SetCb
fs as follows. Each inclusion X ⊆ Y between

finite subsets of D yields a morphism X ↪→ Y in C. So given C ∈ [C,Set] we can take the
colimit of C restricted to the poset (Pfin D,⊆) of finite subsets of D: I∗C , colimX∈Pfin D C X.
Concretely, I∗C consists of equivalence classes [X,x] of pairs (X,x) ∈

∑
X∈C C X for the

equivalence relation that relates (X,x) and (X ′, x′) when there is some Y ⊇ X ∪X ′ with
C(X ↪→ Y )x = C(X ′ ↪→ Y )x′. Note that by definition of the monoid Cb, for each σ ∈ Cb
and X ∈ C the restricted function σ|X : X → σX is a morphism in C(X,σX ∩ D). Then

σ · [X,x] , [σX ∩ D, C(σ|X)x] (12)

gives a well-defined Cb-action on I∗C. Furthermore, with respect to this action an element
[X,x] ∈ I∗C is supported by X; for if σ and σ′ agree on X, then C(σ|X) = C(σ′|X) and
hence σ · [X,x] = σ′ · [X,x]. So I∗C ∈ SetCb

fs .
The assignment C ∈ [C,Set] 7→ I∗C ∈ SetCb

fs extends to a functor as follows. Given a
natural transformation ϕ : C → C ′ in [C,Set] we get a well-defined function I∗ϕ : I∗C →
I∗C ′ by defining

I∗ϕ [X,x] , [X,ϕXx] (13)

The naturality of ϕX in X ∈ C ensures not only that this definition is independent of
the choice of representative (X,x) for the element [X,x], but also that I∗ϕ preserves the
Cb-action (12).

We complete the proof of the theorem by showing that I∗ : [C,Set]→ SetCb
fs is faithful,

full and essentially surjective.

I∗ is faithful: Note that any inclusion X ↪→ Y in C is split, for example by the morphism
p ∈ C(Y,X) where

p y ,

{
y if y ∈ X
0 otherwise

(y ∈ Y )

Therefore C(X ↪→ Y ) : C X → C Y is an injective function in Set with left inverse
C p. Thus if ϕ,ϕ′ ∈ [C,Set](C,C ′) and I∗ϕ = I∗ϕ′, then for any X ∈ C and x ∈ C X
we have [X,ϕXx] = I∗ϕ [X,x] = I∗ϕ′[X,x] = [X,ϕ′Xx], so that for some Y ⊇ X,
C(X ↪→ Y )(ϕXx) = C(X ↪→ Y )(ϕ′Xx); and since C(X ↪→ Y ) is injective this gives
ϕXx = ϕ′Xx. Therefore ϕ = ϕ′.
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I∗ is full: Suppose C,C ′ ∈ [C,Set] and γ ∈ SetCb
fs (I∗C, I∗C ′). It is not hard to see that

(∀d ∈ I∗C ′) supp d ⊆ X ⇒ (∃!x ∈ C ′X) d = [X,x] (14)

Indeed if d = [Y, y] and supp d ⊆ X, then d is supported by X ∩ Y and hence the
substitution σ ∈ Cb mapping each y ∈ Y − X to 0 and otherwise acting like the
identity satisfies σ · d = d; therefore d = σ · [Y, y] = [X ∩ Y,C ′(σ|Y )y] = [X,C ′(X ∩ Y ↪→
X)C ′(σ|Y )y]. The uniqueness part of (14) follows from the injectivity of each C ′(X ↪→ Y ),
noted above. For each X ∈ C and x ∈ C X, by part 1 of Corollary 2.5 we have that
supp(γ[X,x]) ⊆ supp[X,x] and hence that supp(γ[X,x]) ⊆ X. Therefore from (14) we
have (∀x ∈ C X)(∃!x′ ∈ C ′X) γ[X,x] = [X,x′]. So for each X ∈ C there is a function
ϕX : C X → C ′X satisfying

(∀x ∈ C X) γ[X,x] = [X,ϕXx] (15)

It suffices to show that ϕX is natural in X, since then by combining (13) with (15) we
have that ϕ ∈ [C,Set](C,C ′) satisfies I∗ϕ = γ. For naturality, given s ∈ C(X,Y ) to
prove ϕY (C sx) = C ′s (ϕXx) it suffices to show [Y, ϕY (C sx)] = [Y,C ′s (ϕXx)], because
of the injectivity of the functions C(Y ↪→ Z) : C Y → C Z (see above). Now we use the
homogeneity property in Lemma 2.8: picking a substitution σ ∈ Cb that agrees with
s on X, we have [Y, ϕY (C sx)] = γ[Y,C s x] = γ[σX ∩ D, C(σ|X)x] = γ(σ · [X,x]) =
σ · (γ[X,x]) = σ · [X,ϕXx] = [σX ∩ D, C ′(σ|X)(ϕXx)] = [Y,C ′s (ϕXx)], as required.
I∗ is essentially surjective: Given Γ ∈ SetCb

fs , for each X ∈ C consider the subset of Γ
consisting of the elements supported by the finite subset X ⊆fin D:

I∗ΓX , {d ∈ Γ | supp d ⊆ X} (16)

For each s ∈ C(X,Y ) there is a well-defined function I∗Γ s : I∗ΓX → I∗ΓY satisfying

I∗Γ s d = σ · d where σ ∈ Cb is any substitution satisfying σ|X = s (17)

(There is such a σ by Lemma 2.8; I∗Γ s d is independent of the choice of σ because X
supports d; and I∗Γ s d ∈ I∗ΓY by part 2 of Corollary 2.5.) Since ι|X = idX we get
I∗Γ idx d = ι · d = d; and since (σ′σ)|X = s′ ◦ s when s = σ|X and s′ = σ′|Y , we get
I∗Γ (s′ ◦ s) d = σ′σ · d = σ′ · (σ · d) = I∗Γ s′(I∗Γ s d). So I∗Γ ∈ [C,Set]. To complete the
proof we will construct an isomorphism εΓ : I∗(I∗Γ) ∼= Γ in SetCb

fs .
First note that in (17), if s is an inclusion X ↪→ Y , then we can take σ = ι and therefore
I∗Γ (X ↪→ Y )d = ι · d = d. It follows that if (X, d) and (X ′, d′) both represent the same
equivalence class in I∗(I∗Γ), then d = I∗Γ (X ↪→ Y )d = I∗Γ (X ′ ↪→ Y )d′ = d′ (where
Y ⊇ X ∪X ′). So we get a well-defined function εΓ : I∗(I∗Γ)→ Γ satisfying

εΓ[X, d] = d (18)

This preserves the Cb-action because

εΓ(σ · [X, d]) = εΓ[σX ∩ D, I∗Γ(σ|X)d] by (12)
= I∗Γ(σ|X)d by (18)
= σ · d by (17)
= σ · (εΓ[X, d]) by (18) again.

It is an injective function, because if [X, d], [X ′, d′] ∈ I∗(I∗Γ) satisfy d = d′, then
supp d = supp d′ ⊆ X ∩X ′ (by Lemma 2.4) and as above we have I∗Γ(X ∩X ′ ↪→ X)d =
d = d′ = I∗Γ(X ∩X ′ ↪→ X ′)d′; hence [X, d] = [X ′, d′]. It is a surjective function, because
each d ∈ Γ is finitely supported by some X ⊆fin D and hence d = εΓ[X, d]. So altogether,
εΓ is an isomorphism in SetCb

fs . J
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2.1 Nominal sets with 01-substitution
In this section we deduce from Theorem 2.9 the equivalence announced in [14]. We assume
some familiarity with the theory of nominal sets; see for example [15].

Let Nom denote the category of nominal sets and equivariant functions over the set
of atoms D. If M is any monoid of substitutions (Definition 2.1), then the group PermD
of finite permutations of D is a submonoid of M, because every finite permutation is the
composition of finitely many transpositions. Thus the M-action on each Γ ∈ SetM

fs restricts
to a PermD-action. If X ⊆ D supports d ∈ Γ in the sense of Definition 2.2, then it is in
particular a support in the usual sense of nominal sets [15, Section 2.1]:

(∀π ∈ PermD) ((∀x ∈ X) π x = x) ⇒ π · d = d (19)

Hence each Γ ∈ SetM
fs is a nominal set and indeed there is a forgetful functor SetM

fs → Nom,
since morphisms in SetM

fs are in particular equivariant functions.

I Lemma 2.10 (Freshness). Suppose M is a monoid of substitutions and that d ∈ Γ ∈ SetM
fs .

Then supp d as defined in Definition 2.6 is the least finite support for d ∈ Γ qua nominal
sets, that is, the least finite subset X ⊆ D satisfying (19). Hence the relation

x # d , x /∈ supp d (x ∈ D, d ∈ Γ)

coincides with the nominal notion of freshness [15, Chapter 3].

Proof. First note that since (7) implies (19), supp d is a finite subset of D satisfying (19).
If X ⊆fin D is any other such, we will show that (8) holds and hence that supp d ⊆ X, by
Lemma 2.4. Indeed, if b ∈ 2 and x ∈ D − X, choose some y ∈ D not in the finite subset
X ∪ {x} ∪ supp d. Then

(b/x) · d = (x y)(b/y)(x y) · d since (b/x) = (x y)(b/y)(x y) ∈M
= (x y)(b/y) · d by (19) with π = (x y), since x, y /∈ X
= (x y) · d by Lemma 2.4, since y /∈ supp d
= d by (19) again

as required for (8). J

I Remark 2.11. By contrast with nominal sets in general, the freshness relation for objects
of SetM

fs can be characterised in terms of substitution of 0 or 1, as follows:

x # d ⇔ (0/x) · d = d ⇔ (1/x) · d = d (x ∈ D, d ∈ Γ ∈ SetM
fs ) (20)

This is an immediate consequence of Definition 2.6, which relies upon the characterisation of
support in Lemma 2.4.

I Definition 2.12 (Nominal 01-substitution structures). Let 01-Nom be the category whose
objects are nominal sets Γ equipped with source and target operations (x := 0)_, (x := 1)_ :
Γ→ Γ in each direction x ∈ D satisfying for all π ∈ PermD, x, x′ ∈ D, b, b′ ∈ 2 and d ∈ Γ

π · ((x := b)d) = (π x := b)(π · d) (21)
x # (x := b)d (22)
x # d⇒ (x := b)d = d (23)
x 6= x′ ⇒ (x := b)(x′ := b′)d = (x′ := b′)(x := b)d (24)
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The morphisms of 01-Nom are the equivariant functions γ ∈ Nom(Γ,Γ′) that also commute
with the source and target operations in each direction: γ((x := b)d) = (x := b)(γ d).
Composition and identities are as in Nom.

I Theorem 2.13. The category 01-Nom of nominal sets with 01-substitution structure is
isomorphic to the category SetCb

fs of finitely supported Cb-sets and hence (by Theorem 2.9)
is equivalent to the category [C,Set] of cubical sets.

Proof. We noted above that the Cb-action on Γ ∈ SetCb
fs restricts to a PermD-action,

making it a nominal set. We get source and target operations in each direction x ∈ D by
defining (x := b)d , (b/x) · d. These satisfy (21) because π(b/x) = (b/π x)π ∈ Cb; they
satisfy (22) because of part 2 of Corollary 2.5 and Lemma 2.10; they satisfy (23) because of
Lemmas 2.4 and 2.10; and they satisfy (24) because (b/x)(b′/x′) = (b′/x′)(b/x) ∈ Cb when
x 6= x′. Furthermore, since each morphism γ ∈ SetCb

fs (Γ,Γ′) commutes with the Cb-action,
it is not only an equivariant function, but also preserves the source and target operations
defined as above. So we get a functor SetCb

fs → 01-Nom which is the identity on underlying
nominal sets.

Conversely, given Γ ∈ 01-Nom, we can combine the PermD-action with the source and
target operations to get a Cb-action on Γ as follows: for each σ ∈ Cb and d ∈ Γ, consider

σ · d , π · (x1 := b1) · · · (xn := bn)d (25)

where x1, . . . , xn are the distinct element of {x ∈ Dom σ | σ x ∈ 2}, where bi = σ xi for
i = 1, . . . , n, and where π ∈ PermD is a finite permutation agreeing with σ on {x ∈ Dom σ |
σ x /∈ 2}. Note that there is such a permutation, because σ is injective on {x ∈ Dom σ | σ x /∈
2}; and (25) is independent of which π we choose, and independent of the order in which
we list the elements of {x ∈ Dom σ | σ x ∈ 2} (because of property (24)). In case n = 0,
by (x1 := b1) · · · (xn := bn)d we mean d. Thus ι · d = d; and it is not hard to see that this
definition also satisfies σ′ · (σ · d) = σ′σ · d. So we get a Cb-action on Γ and clearly each
d ∈ Γ is supported by supp d with respect to this action. Furthermore, for each morphism
γ ∈ 01-Nom(Γ,Γ′), since γ(π · (x1 := b1) · · · (xn := bn)d) = π · (x1 := b1) · · · (xn := bn)(γ d)
and supp(γ d) ⊆ supp d, we get γ(σ · d) = σ · (γ d). So we get a functor 01-Nom→ SetCb

fs ,
which once again is the identity on underlying nominal sets.

It is easy to see that these two functors are mutually inverse, so that 01-Nom ∼=
SetCb

fs . J

I Remark 2.14. The proof of the equivalence [C,Set] ' 01-Nom given in [14] is somewhat
different from the above one and was inspired by proofs of equivalences between (pre)sheaf
categories and nominal sets equipped with substitution structures studied by Staton [17]; see
in particular the proof of Proposition 9 in [18].

2.2 Path objects
One of the advantages of replacing cubical sets by the equivalent notion of nominal sets with
01-substitution (Theorem 2.13) is that the construct used in [2, Section 8.2] to model identity
types coincides across the equivalence with a central and widely used notion of nominal set
theory, namely that of name abstraction [15, Chapter 4].

Given a nominal set Γ ∈ Nom, the nominal set [D]Γ of name-abstractions of elements of
Γ has underlying set consisting of equivalence classes of pairs (x, d) ∈ D× Γ for a generalised
form of α-equivalence, namely the equivalence relation

(x, d) ≈α (x′, d′) , (∃y # (x, d, x′, d′)) (y x) · d = (y x′) · d′ (26)
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We write 〈x〉d for the ≈α-equivalence class of (x, d). The action of finite permutations
π ∈ PermD on such equivalence classes is well-defined by

π · 〈x〉d , 〈π x〉(π · d) (27)

and one can show that the least support of 〈x〉d with respect to this action is supp d− {x};
see [15, Proposition 4.5].

If Γ ∈ 01-Nom, then because of properties (21) and (22), the source and target operations
induce morphisms d0, d1 ∈ Nom([D]Γ,Γ) satisfying

db〈x〉d = (x := b)d (b ∈ 2, x ∈ D, d ∈ Γ)

Then properties (23) and (24) correspond to the commutation of the following diagrams,
where rΓ ∈ Nom(Γ, [D]Γ) and sΓ ∈ Nom([D][D]Γ, [D][D]Γ) are morphisms satisfying

rΓ d = 〈x〉d for some/any x # d (28)
sΓ〈x〉〈y〉d = 〈y〉〈x〉d (29)

Γ

Γ rΓ //

idΓ

==

idΓ !!

[D]Γ

d0

OO

d1

��
Γ

[D][D]Γ

[D]db

��

∼=
sΓ // [D][D]Γ

[D]db′

��
[D]Γ

db′ ""

[D]Γ

db
||

Γ
In fact these are diagrams in 01-Nom, because there is a well-defined nominal 01-substitution
structure on each [D]Γ satisfying

(x := b)(〈y〉d) = 〈y〉((x := b)d) if x 6= y (30)

and then d0, d1, rΓ and sΓ are morphisms in 01-Nom.
For each Γ ∈ 01-Nom, one can think of elements p ∈ [D]Γ as paths in Γ from d0p

to d1p. For each d ∈ Γ, rΓ d ∈ [D]Γ is a degenerate path from d to itself. The object
〈d0 , d1〉 : [D]Γ → Γ × Γ of the slice category 01-Nom/Γ × Γ corresponds under the
equivalence of Theorem 2.13 to the structure that Bezem, Coquand and Huber use to model
identity types, at least in the case that the cubical set corresponding to Γ satisfies a uniform
Kan filling condition [2, Section 5].

3 Modelling Type Theory with Families of M-sets

We have reformulated cubical sets in a way that emphasises actions of monoids of substitutions.
Since any monoid M can be regarded as a one-object category, SetM is in particular a
category of set-valued presheaves and so can be given the standard category-with-families
structure for such a category [9, Section 4]. However, in this case the structure is quite simple
(if one is familiar with monoid actions): as we will see, one just uses a dependently-typed
version of monoid action. We begin by recalling briefly the definition of category-with-families
in order to fix notation; see [9] for more details and [1] for a more abstract, category-theoretic
perspective.

I Definition 3.1 (Category with families [5]). A category with families (CwF) is specified by
a category C with a terminal object 1, together with the following structure:
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For each object Γ ∈ C, a collection C(Γ), whose elements are called families over Γ.
For each object Γ ∈ C and family A ∈ C(Γ), a collection C(Γ ` A) of elements of the
family A over Γ.
Operations for re-indexing families and elements along morphisms in C

A ∈ C(Γ) γ ∈ C(Γ′,Γ)
A[γ] ∈ C(Γ′)

a ∈ C(Γ ` A) γ ∈ C(Γ′,Γ)
a[γ] ∈ C(Γ′ ` A[γ])

satisfying

A[idΓ] = A (A ∈ C(Γ))
A[γ ◦ γ′] = A[γ][γ′] (A ∈ C(Γ), γ ∈ C(Γ′,Γ), γ′ ∈ C(Γ′′,Γ′))
a[idΓ] = a (a ∈ C(Γ ` A)

a[γ ◦ γ′] = a[γ][γ′] (a ∈ C(Γ ` A), γ ∈ C(Γ′,Γ), γ′ ∈ C(Γ′′,Γ′))

For each family A ∈ C(Γ), a comprehension object Γ.A ∈ C equipped with a projection
morphism p ∈ C(Γ.A,Γ), a generic element v ∈ C(Γ.A ` A[p]) and a pairing operation

γ ∈ C(Γ′,Γ) A ∈ C(Γ) a ∈ C(Γ′ ` A[γ])
〈γ , a〉 ∈ C(Γ′,Γ.A)

satisfying

p ◦ 〈γ , a〉 = γ

v[〈γ , a〉] = a

〈γ , a〉 ◦ γ′ = 〈γ ◦ γ′ , a[γ′]〉
〈p , v〉 = idΓ.A

For each object Γ ∈ C, one can make C(Γ) into a category by taking, for each A,B ∈ C(Γ),
the set of morphisms C(Γ)(A,B) to be C(Γ.A ` B[p]) with identities given by generic elements
and composition given by c ◦ b , c[〈p , b〉]. Then the mapping A ∈ C(Γ) 7→ p ∈ C(Γ.A,Γ)
extends to a full and faithful functor to the slice category

C(Γ)→ C/Γ (31)

A
b→ B 7→ Γ.A

〈p,b〉 //

p
��

Γ.B

p
��

Γ

The re-indexing operations are mapped to pullback functors between slices, since for each
A ∈ C(Γ) and γ ∈ C(Γ′,Γ)

Γ′.A[γ]
〈γ◦p,v〉 //

p
��

Γ.A

p
��

Γ′
γ

// Γ

(32)

is a pullback in C; see [9, Proposition 3.9].
The contexts, types-in-context, terms-in-context and term-substitutions of Type Theory

are interpreted in a CwF by its objects, families, elements and morphisms respectively; see
[9, Section 3.5]. Furthermore, one can translate each type-forming construct to an equivalent
structure within CwFs. For example:
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I Definition 3.2 (Σ- and Π-types in CwFs). A Cwf C has
Σ-types if there are operations

A ∈ C(Γ) B ∈ C(Γ.A)
ΣAB ∈ C(Γ)

a ∈ C(Γ ` A) B ∈ C(Γ.A) b ∈ C(Γ ` B[〈idΓ , a〉])
pair a b ∈ C(Γ ` ΣAB)

c ∈ C(Γ ` ΣAB)
fst c ∈ C(Γ ` A)

c ∈ C(Γ ` ΣAB)
snd c ∈ C(Γ ` B[〈idΓ , fst c〉])

satisfying

(ΣAB)[γ] = Σ(A[γ])(B[〈γ ◦ p , v〉])
(pair a b)[γ] = pair (a[γ]) (b[γ])

(fst c)[γ] = fst(c[γ])
(snd c)[γ] = snd(c[γ])

fst(pair a b) = a

snd(pair a b) = b

pair (fst c) (snd c) = c

Π-types if there are operations

A ∈ C(Γ) B ∈ C(Γ.A)
ΠAB ∈ C(Γ)

b ∈ C(Γ.A ` B)
lam b ∈ C(Γ ` ΠAB)

c ∈ C(Γ ` ΠAB)
a ∈ C(Γ ` A)

app c a ∈ C(Γ ` B[〈idΓ , a〉])

satisfying

(ΠAB)[γ] = Π(A[γ])(B[〈γ ◦ p , v〉])
(lam b)[γ] = lam b[〈γ ◦ p , v〉]

(app c a)[γ] = app (c[γ]) (a[γ])
app (lam b) a = b[〈idΓ , a〉]

lam(app (c[p]) v) = c

I Remark 3.3. If C is a locally cartesian closed category, it is always possible to find a CwF
with the same underlying category C for which the functors in (31) are not only full and
faithful, but also essentially surjective; see [13, 1]. In that case each category of families
C(Γ) is equivalent to the slice category C/Γ and the CwF structure is just providing an
equivalent version of the traditional use of slice categories to model families of objects in
category theory [16] – one in which pullback strictly commutes with composition and hence
correctly models properties of substitution in type theory. This applies to the categories we
consider in this paper, [C,Set], SetM and SetM

fs , since they are all toposes and hence in
particular locally cartesian closed. However, in these cases it not necessary to apply a general
construction as in [13, 1], since there are natural and useful notions of ‘family of presheaves’
and ‘family of M-sets’ equivalent to the use of slice categories. Such families are used in [2]
for the category of cubical sets; and we describe analogues for SetM and SetM

fs in the next
two sections. Note that the equivalence I∗ : [C,Set] ' SetCb

fs from Theorem 2.9 gives an
equivalence [C,Set]/C ' SetCb

fs /I∗C for each cubical set C; and therefore the category of
families over C, being equivalent to [C,Set]/C and hence to SetCb

fs /I∗C, is also equivalent
to the category of families for I∗C in the CwF described in Section 3.2 for the case M = Cb.
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3.1 CwF structure of SetM

Let M be an arbitrary monoid.

Families SetM(Γ) over an object Γ ∈ SetM consist of Γ-indexed families of sets A =
(Ad | d ∈ Γ) equipped with a ‘dependently-typed M-action’, that is, a family of functions

_ · _ ∈
∏
σ∈M

∏
a∈Ad Aσ·d (d ∈ Γ)

satisfying ι · a = a ∈ Ad(= Aι·d) and σ′ · (σ · a) = σ′σ · a ∈ Aσ′σ·d(= Aσ′·(σ·d)).
Elements SetM(Γ ` A) of a family A ∈ SetM(Γ) consist of dependently-typed functions
f ∈

∏
d∈ΓAd that preserve the M-action, in the sense that σ · (f d) = f(σ · d) ∈ Aσ·d.

Re-indexing of a family A ∈ SetM(Γ) along γ ∈ SetM(Γ′,Γ) is the family A[γ] , (Aγ d′ |
d′ ∈ Γ′) with dependently-typed M-action: σ ∈ M, a ∈ A[γ]d′ = Aγ d′ 7→ σ · a ∈
Aσ·(γ d′) = Aγ(σ·d′) = A[γ]σ·d′ . The re-indexing of an element f ∈ SetM(Γ ` A) along
γ ∈ SetM(Γ′,Γ) is the element f [γ] ∈ SetM(Γ′ ` A), where f [γ] d′ = f(γ d′).
Comprehension for the CwF SetM is created by that for Set. Thus given A ∈ SetM(Γ),
the comprehension object Γ.A ∈ SetM is given by the dependent product of sets

Γ.A ,
∑
d∈ΓAd equipped with the M-action σ · (d, a) , (σ · d, σ · a) (33)

First projection yields a morphism p ∈ SetM(Γ.A,Γ) and the generic element v ∈
SetM(Γ.A ` A[p]) is given by second projection: v(d, a) , a ∈ Ad = A[p](d,a). The
pairing operation is

γ ∈ SetM(Γ′,Γ) f ∈ SetM(Γ′ ` A[γ])
〈γ , f〉 ∈ SetM(Γ′,Γ.A)

〈γ , f〉 d′ , (γ d′, f d′) (d′ ∈ Γ′)

These operations satisfy the equations required for a CwF (Definition 3.1). In this case
the functors (31) are equivalences: any object γ : Γ′ → Γ of the slice category SetM/Γ is
isomorphic to p : Γ.A→ Γ for some family A ∈ SetM(Γ), namely Ad , {d′ ∈ Γ′ | γ d′ = d}
with dependently-typed action given by the M-action of Γ′. Since SetM is a topos (being a
presheaf category), it is in particular locally cartesian closed. One can use the equivalences
SetM(Γ) ' SetM/Γ to transfer this local cartesian closed structure to operations in the
CwF SetM for modelling Σ- and Π-types (Definition 3.2). Given families A ∈ SetM(Γ) and
B ∈ SetM(Γ.A), then ΣAB ∈ SetM(Γ) is given by the dependent product of sets

(ΣAB)d ,
∑
a∈Ad B(d,a) equipped with M-action σ · (a, b) , (σ · a, σ · b) (34)

with pair a b, fst c and snd c as for Set. However, ΠAB ∈ SetM(Γ) is more complicated:

(ΠAB)d , {f ∈
∏
σ′∈M

∏
a∈Aσ′·d

B(σ′·d,a) | (∀σ, σ′ ∈M)(∀a ∈ Aσ′·d)

σ · (f σ′ a) = f (σσ′) (σ · a) ∈ B(σσ′·d,σ·a)} (d ∈ Γ) (35)

with M-action:
σ ∈M f ∈ (ΠAB)d

σ · f ∈ (ΠAB)σ·d
σ · f , λσ′ ∈M.λa ∈ Aσ′σ·d. f (σ′σ) a

Application is given by

g ∈ SetM(Γ ` ΠAB) h ∈ SetM(Γ ` A)
app g h ∈ SetM(Γ ` B[〈id , h〉])

app g h d , g d ι (h d) (d ∈ Γ) (36)

and currying by

k ∈ SetM(Γ.A ` B)
lam k ∈ SetM(Γ ` ΠAB)

lam k d , λσ′ ∈M.λa ∈ Aσ′·dk (σ′ · d, a) (d ∈ Γ) (37)
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3.2 CwF structure of SetM
fs

Now let M be a monoid of substitutions (Definition 2.1)

I Lemma 3.4. The full subcategory SetM
fs is closed under taking finite limits in SetM.

Proof. Just note that for each element (d1, . . . , dn) of a finite limit, since the action of M
on the finite limit is componentwise, if each component di is supported by Xi, the the whole
element is supported by X1 ∪ · · · ∪Xn. J

I Lemma 3.5. Given Γ ∈ SetM, define

Γfs , {d ∈ Γ | d is supported by some finite subset X ⊆fin D}

Then Γ 7→ Γfs is the object part of a right adjoint to the inclusion functor SetM
fs ↪→ SetM.

Proof. First note that by part 2 of Corollary 2.5, Γfs is closed under the M-action on Γ
and hence gives an object in SetM

fs . For the right adjointness we just have to see that
given Γ′ ∈ SetM

fs , any morphism γ ∈ SetM(Γ′,Γ) factors (necessarily uniquely) through the
inclusion Γfs ↪→ Γ. But if d′ ∈ Γ′ is supported by X ⊆fin D, then by part 1 of Corollary 2.5,
γ d′ ∈ Γ is also supported by X. J

I Remark 3.6. Combining Lemmas 3.4 and 3.5, we have that if M is a monoid of substitutions,
then SetM

fs is a topos and there is a geometric surjection SetM → SetM
fs whose direct image

part is the right adjoint functor (_)fs : SetM → SetM
fs (see [11, Proposition 4.15(ii)], for

example).

The CwF structure on SetM given above restricts to one for SetM
fs when M is a monoid

of substitutions. For each Γ ∈ SetM
fs we define:

Families A ∈ SetM
fs (Γ) are families of M-sets A ∈ SetM(Γ) for which the comprehension

object (33) is in SetM
fs . This amounts to requiring that for each d ∈ Γ, every a ∈ Ad

possesses a finite support with respect to the dependently-typed M-action, that is, a
finite subset X ⊆fin D satisfying supp d ⊆ X and (∀σ, σ′ ∈M)((∀x ∈ X) σ x = σ′ x) ⇒
σ · a = σ′ · a. (The condition supp d ⊆ X, i.e. X supports d, is important since with it,
when (∀x ∈ X) σ x = σ′ x holds, it makes sense to compare σ · a and σ′ · a for equality,
because we have σ · a ∈ Aσ·d = Aσ′·d 3 σ′ · a.) Note that the functor from Lemma 3.5
extends to a fibre-wise version:

Γ ∈ SetM
fs , A ∈ SetM(Γ) 7→ Afs ∈ SetM

fs (Γ)
(Afs)d , {a ∈ Ad | (d, a) ∈ (Γ.A)fs} (d ∈ Γ)

(38)

Elements f ∈ SetM
fs (Γ ` A) are the same as in SetM, namely dependently-typed functions

f ∈
∏
d∈ΓAd that preserve the M-action.

Re-indexing is the same as in SetM, since if X supports (γ d′, a) in Γ.A, then it supports
(d′, a) in Γ′.A[γ].
Comprehension objects are as in (33), since by definition Γ.A is in the subcategory SetM

fs
when A ∈ SetM

fs (Γ).

I Remark 3.7. We noted above that the functors (31) give equivalences when C = SetM.
Because of the definition of families in SetM

fs (and the fact that the objects of SetM
fs are closed

under isomorphisms in SetM), it follows that (31) is also an equivalence when C = SetM
fs .
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Σ-types in SetM
fs are as in (34), since (a, b) ∈ (ΣAB)d is supported by any X ⊇ supp(d, a)

that supports b ∈ B(d,a).
Π-types in SetM

fs are obtained by applying the functor (38) to (35). Thus for each
Γ ∈ SetM

fs , A ∈ SetM
fs (Γ) and B ∈ SetM

fs (Γ.A) we define ΠfsAB ∈ SetM
fs (Γ) by

(ΠfsAB)d , ((ΠAB)fs)d (d ∈ Γ) (39)

and one can check that the application (36) and currying (37) operations preserve the finite
support property. Combining (35) with (39) in the case that Γ = 1, we recover the following
description of exponentials in SetM

fs that will be useful later.

I Lemma 3.8 (Exponentials in SetM
fs ). Given Γ,∆ ∈ SetM

fs , their exponential ∆Γ is given
by the set (Γ �M ∆)fs of finitely supported elements of

Γ �M ∆ , {f ∈ Set(M× Γ,∆) | (∀σ, σ′ ∈M)(∀d ∈ Γ) σ · f(σ′, d) = f(σσ′, σ · d)}

where the M-action on Γ �M ∆ is

σ · f , λ(σ′, d) ∈M× Γ. f(σ′σ, d)

The evaluation morphism ev ∈ SetM
fs (∆Γ × Γ,∆) is given by ev(f, d) = f(ι, d); and the

currying of γ ∈ SetM
fs (Γ′ × Γ,∆) is cur γ ∈ SetM

fs (Γ′,∆Γ), where cur γ d′ = λ(σ, d) ∈
M× Γ. γ(σ · d′, d). J

3.3 Hofmann-Streicher universes
Hofmann and Streicher [10] describe a way of lifting a Grothendieck universe in Set to a
type-theoretic universe in any presheaf category. This is used by Bezem, Coquand and
Huber [2] to construct a universe within the category [C,Set] of cubical sets. We give the
construction for the case when the presheaf category is SetM for a monoid M and then apply
the coreflection (_)fs : SetM → SetM

fs from Lemma 3.5 when M is a monoid of substitutions.
Let U be a Grothendieck universe (see [19], for example) containing D and hence also M.

We lift U to an object U of SetM whose underlying set consists of certain pairs (F, act) where
F is a function from M to U and act ∈

∏
σ∈M

∏
σ′∈M(F (σ′σ))F σ. Thus F is an M-indexed

family of sets F σ ∈ U (σ ∈M) and act maps σ, σ′ ∈M to a function act σ σ′ : F σ → F (σ′σ).
We use the following notation for act:

σ′ · a , act σ σ′ a ∈ F (σ′σ) (σ′ ∈M, a ∈ F σ) (40)

and refer to (F, act) via F . For it to be in U we require act to be a dependently typed
M-action (cf. Section 3.1), in the sense that if a ∈ F σ, then

ι · a = a ∈ F σ = F (ισ) (41)
σ′′ · (σ′ · a) = (σ′′σ′) · a ∈ F ((σ′′σ′)σ) = F (σ′′(σ′σ)) (42)

If F ∈ U and σ ∈M, then we get σ · F ∈ U by defining

(σ · F )σ′ , F (σ′σ) (43)

with dependently typed M-action on σ ·F given by the one for F . (This makes sense, since if
a ∈ (σ ·F )σ′ = F (σ′σ), then σ′′ ·a ∈ F (σ′′(σ′σ)) = (σ ·F )(σ′′σ′).) These definitions make U
into an object in SetM, since one can easily check that ι · F = F and σ′ · (σ · F ) = (σ′σ) · F .
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I Definition 3.9 (Hofmann-Streicher lifting for SetM
fs ). Let M be a monoid of substitutions

and let U ∈ SetM be the M-set derived from a Grothendieck universe U ∈ Set as above.
Let E ∈ SetM(U) be the family mapping each F ∈ U to

EF , F ι with dependently-typed M-action given by (40)

(Note that this makes sense, because if a ∈ EF = F ι, then σ · a ∈ F (σι) = F (ισ) =
(σ · F ) ι = Eσ·F .) Applying the functor (_)fs : SetM → Sub from Lemma 3.5 to the
projection morphism p : U.E → U we get a morphism p : (U.E)fs → Ufs in SetM

fs and (by
Remark 3.7) a corresponding family Efs ∈ SetM

fs (Ufs), where

(Efs)F , {a ∈ F ι | (F, a) ∈ (U.E)fs} (F ∈ Ufs) (44)

Note that if F ∈ Ufs, then F ι ∈ U and hence (Efs)F ∈ U . In general we say that a family
A ∈ SetM

fs (Γ) has fibres in U if Ad ∈ U for all d ∈ Γ. The family (44) not only has fibres in
U , but is weakly universal among such families, in the following sense.

I Theorem 3.10. Let M be a monoid of substitutions and Efs ∈ SetM
fs (Ufs) be the Hofmann-

Streicher universe in the CwF of finitely supported M-sets derived from a Grothendieck
universe U ∈ Set. Then for each Γ ∈ SetM

fs and family A ∈ SetM
fs (Γ) with fibres in U , there

is a morphism pAq ∈ SetM
fs (Γ, Ufs) with A = Efs[pAq].

Proof. For each d ∈ Γ and σ ∈M define

pAq d σ , Aσ·d ∈ U (45)

If σ′ ∈M and a ∈ pAq d σ = Aσ·d, then the dependently-typed M-action on A ∈ SetM
fs (Γ)

gives us σ′ · a ∈ Aσ′·(σ·d) = pAq d (σ′σ), satisfying (41) and (42). So for each d ∈ Γ, we get
pAq d ∈ U . Furthermore

(σ′ · (pAq d))σ = (pAq d)(σσ′) by (43)
= Aσσ′·d by (45)
= Aσ·(σ′·d)

= pAq (σ′ · d)σ by (45) again

so that pAq ∈ SetM(Γ, U). Since Γ ∈ SetM
fs , if follows from Lemma 3.5 that pAq factors

through Ufs ↪→ U to give pAq ∈ SetM
fs (Γ, Ufs). Since it follows from this that supp(pAq d) ⊆

supp d, if a ∈ Ad is supported by X ⊇ supp d, then X also supports (pAq d, a) in U.E.
Therefore by (44), for all d ∈ Γ we have

Ad = {a ∈ pAq d ι | (pAq d, a) ∈ (U.E)fs} = Efs[pAq]d

so that re-indexing the family Efs along pAq gives Efs[pAq] = A. J

4 Cubical sets with diagonals

In footnote 2 of [2] the authors say

‘In a previous attempt, we have been considering the category of finite sets with maps
I → J + 2 (i.e. the Kleisli category for the monad I + 2). This category appears on
pages 47–48 in Pursuing Stacks [8] as “in a sense, the smallest test category”.’
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Call this category S. Thus S is like the category C from Section 1, but without the injectivity
condition (1) on morphisms. In Section 2 we moved from the small category C to the
submonoid Cb of the monoid Sb of all substitutions (Definition 2.1) and replaced cubical
sets [C,Set] by the equivalent category SetCb

fs of finitely supported Cb-sets. If one starts
from S rather than C, then one gets the whole monoid of substitutions Sb and can consider
the category SetSb

fs of finitely supported Sb-sets.

I Theorem 4.1. The categories [S,Set] and SetSb
fs are equivalent.

Proof. One can check that the proof method of Theorem 2.9 still goes through when one
replaces the category C by S and the monoid Cb by Sb. Indeed the proof is easier, because
the ‘homogeneity’ property (the analogue of Lemma 2.8) needed for the fullness and essential
surjectivity of the functor I∗ : [S,Set] → SetSb

fs is trivial: for each s ∈ S(X,Y ) we get a
substitution σ ∈ Sb that agrees with s on X simply by defining

σ x ,

{
s x if x ∈ X
x otherwise.

J

One advantage of SetSb
fs over SetCb

fs stems from the following theorem. Regarding each
Γ ∈ SetSb

fs as a nominal set as in Section 2.1, we can make the nominal set [D]Γ of name
abstractions into an object of SetSb

fs via an Sb-action satisfying

x # σ ⇒ σ · 〈x〉d = 〈x〉(σ · d) (x ∈ D, σ ∈ Sb, d ∈ Γ) (46)

where we regard Sb as a nominal set, and hence make sense of the condition x # σ, via the
conjugation action of permutations: π · σ , πσπ−1. (The support of σ with respect to this
action is Dom σ ∪

⋃
x∈Domσ supp(σ x).) Thus the action of σ is well-defined by sending an

element 〈x〉d ∈ [D]Γ to 〈y〉(σ(x y) · d), where y is some (or indeed, any) direction satisfying
y # (x, σ, d); cf. [15, Theorem 9.18].

I Theorem 4.2. [D]Γ is isomorphic in the category SetSb
fs to the exponential ΓI of Γ by the

interval object I from Example 2.3.

Proof. Recall the definition of [D]Γ in terms of the equivalence relation ≈α (26). If (x, d) ≈α
(x′, d′), then picking any y # (x, d, x′, d′) we have (y x) · d = (y x′) · d′ ∈ Γ. Since for any
i ∈ I, the substitutions (i/y)(y x) and (i/x) agree on supp d, we have (i/x) · d = (i/y)(y x) · d;
similarly (i/x′) · d′ = (i/y)(y x′) · d′. Therefore (i/x) · d = (i/x′) · d′. So there is a well-defined
function ev : [D]Γ× I→ Γ satisfying

ev(〈x〉d, i) = (i/x) · d (x ∈ D, d ∈ Γ, i ∈ I) (47)

(Note that since Cb does not contain the substitution (i/x) when i ∈ D− {x}, it would not
be possible to make this definition in the category SetCb

fs .)
When x # σ, we have σ(i/x) = (σ i/x)σ ∈ Sb and hence σ · ev(〈x〉d, i) = ev(σ · 〈x〉d, σ · i).

So ev is a morphism in SetSb
fs ([D]Γ × I,Γ). We verify that it has the universal property

required for the exponential. Given γ ∈ SetSb
fs (Γ′ × I,Γ) we get a well-defined function

cur γ : Γ′ → [D]Γ

cur γ d′ , 〈x〉γ(d′, x) where x # d′ (48)

TYPES’14



218 Nominal Presentation of Cubical Sets Models of Type Theory

This satisfies σ · (cur γ d′) = cur γ (σ ·d′) and hence gives a morphism cur γ ∈ SetSb
fs (Γ′, [D]Γ).

Note that

ev(cur γ d′, i) = ev(〈x〉γ(d′, x), i) where x # d′

= (i/x) · γ(d′, x) by (47)
= γ((i/x) · d′, (i/x) · x) since γ is a morphisms in SetSb

fs

= γ(d′, i) since x # d′

so that ev ◦ (cur γ × idI) = γ. The uniqueness of cur γ with this property follows from an
η-rule for elements of [D]Γ:

(∀p ∈ [D]Γ)(∀x ∈ D) x # p ⇒ p = 〈x〉ev(p, x) (49)

which in turn follows the fact that for any 〈x〉d ∈ [D]Γ and y # (x, d) it is the case that
〈x〉d = 〈y〉((y x) · d) = 〈y〉((y/x) · d). J

Iterating the theorem, we get that the exponential ΓIn (the object of n-cubes in Γ) is
isomorphic to [D](n)Γ, where

[D](0)Γ , Γ
[D](n+1)Γ , [D]([D](n)Γ) (50)

Note that [D](n)Γ ∈ SetSb
fs is the nominal set of n-ary name abstractions 〈x1, . . . , xn〉d (with

x1, . . . , xn mutually distinct directions) equipped with the Sb-action satisfying the evident
generalisation of (46) to n-ary name abstractions.

One may think of objects of SetSb
fs as cubical sets ‘with diagonals’, because (unlike the case

for [C,Set] ' SetCb
fs ) each square 〈x, y〉d ∈ [D](2)Γ contains a diagonal path 〈z〉(z/x)(z/y)·d ∈

[D]Γ. Of course, under the isomorphism in the above theorem, diagonalization [D](2)Γ→ [D]Γ
corresponds to the morphism ΓI2 → ΓI given by precomposing with the diagonal 〈idI , idI〉 :
I→ I× I.
I Remark. Gabbay and Hofmann [7] prove the analogue of Theorem 4.2 for their category
of ‘nominal renaming sets’. This category is like 01-Nom except that it uses nominal sets
equipped with name-for-name substitutions, rather than 01-for-name substitutions. They
also have an analogue of Theorem 2.13: an equivalence between the category of nominal
renaming sets and a sheaf subcategory the presheaf category [F,Set], where F is the small
category whose objects are finite subsets of D and whose morphisms are all functions between
such subsets; see [7, Theorem 38].

5 Conclusion

We have shown how to reformulate cubical sets, originally given as presheaves, in terms of
sets whose elements are finitely supported with respect to a given action of a monoid of name
substitutions. Because of the equivalences we have established (Theorems 2.9, 2.13 and 4.1),
there is no difference in the category-theoretic properties of the two formulations. However,
the approach using monoids of name substitutions leads to a relatively simple notion of
family of cubical sets (Section 3) and allows access to the well-developed nominal sets notions
of freshness to calculate with degeneracy of cubes and name abstraction to calculate with
paths (proofs of equality); see the implementation of Kan cubical sets [4].

We saw that in the category SetSb
fs , paths are arbitrary functions from an interval object

(Theorem 4.2). Coquand [3] has noted that this property can enable simpler formulations of
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the Kan filling condition, simpler proofs of closure of Kan complete families under taking
Π-types, and more natural realizers for operations like the elimination rule for the circle. So
there may be a sub-CwF of SetSb

fs consisting of families satisfying some Kan-filling condition
which yields a technically simpler model of univalent foundations than the one in [2]. Of
course, to be computationally useful, such a model has to exist in a constructive meta-theory.
We leave this for future investigation.
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Abstract
We prove an extensionality theorem for the “type-in-type” dependent type theory with Σ-types.
We suggest that in type theory the notion of extensional equality be identified with the logical
equivalence relation defined by induction on type structure.
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1 Introduction

Our goal is to find a formulation of type theory with extensional equality in such a way that
the essential features of type theory – including canonicity, normalization, and decidability
of type checking – remain valid.

This paper is the first in a series where we will pursue this goal using a syntactic
methodology. Specifically, we will define the extensional equality type by induction on type
structure, so that, for example, the equality on Π- and Σ-types is definitionally equal to

f ≃Πx∶A.B(x) f
′

= ∏
xx′∶A

∏
x∗∶x≃Ax′

fx ≃B(x∗) f
′x′ (1)

(a, b) ≃Σx∶A.B(x) (a′, b′) = ∑
x∗∶a≃Aa′

b ≃B(x∗) b
′ (2)

The view that the notion of extensional equality in type theory should be identified with
the equivalence relation so defined has extensive presence in the literature, going back at
least to Tait [9] and Altenkirch [1].

This position is to be contrasted with another prominent view, which takes extensional
equality to mean the adjunction to Martin-Löf intensional identity type Id A(x, y) of the
propositional reflection rule

p ∶ Id A(s, t)
s = t ∶ A

This inference rule commits treason against some fundamental design principles of type
theory, resulting in the failure of normalization and related pathologies.

We therefore begin with a moment of “full disclosure”:

Extensionality Thesis. The extensional equality of type theory is the logical equivalence
relation between elements of the term model defined by induction on type structure.

Before we lay out in greater detail our program to convert this philosophical thesis into
a mathematical definition, we invite the reader to consider what the final result may be
expected to look like.
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First and foremost – we seek a canonical way to associate to every type A, and any two
terms of type A, a (possibly new) type of extensional equalities between the two terms. In
other words, given expressions A,a, a′, we wish to define, or construct, a new expression
a ≃A a

′ validating the following rule:

A ∶ ∗ a ∶ A a′ ∶ A
a ≃A a

′ ∶ ∗

(In this paper, ∗ denotes the universe of types.)
So far, we have redisplayed the formation rule for the intensional identity type with a

new symbol. The difference here is that, in general, we do not require a ≃A a′ to be a new
type constructor. We expect that the ≃A-symbol may well behave like a defined function, so
that it reduces to previously defined types, according to the top symbol of A. This is the
situation encountered in (1) and (2).

At the same time, we want to be able to iterate the ≃-operation, so that we can form the
types a ≃A a′, p ≃a≃Aa′ p

′, α ≃p≃a≃Aa′p
′ α′, etc.

What properties should such a “globular type family” satisfy?
Intuitively, the key properties of equality are:

1. Equality is preserved by every construction of the language.
2. Equality forms a (higher-dimensional) equivalence relation.
The first property, congruence, may be schematically rendered as:

Γ, x ∶ A ⊢ t(x) ∶ B Γ ⊢ a∗ ∶ a ≃A a′

Γ ⊢ “t(a∗)” ∶ t(a) ≃B t(a′)

Note that in presence of type dependency, even the statement of the above rule becomes
hardly trivial, since the type B = B(x) of t(x) might itself depend on x.

The second property states that ≃A is reflexive, symmetric, transitive on every “level”,
and that adjacent levels interact correctly. Altogether, these data may be captured neatly by
the Kan filling condition from homotopy theory, stating that the above globular structure of
equalities forms a weak ω-groupoid.

All of the needed properties above are encapsulated in five axioms isolated by Coquand
[5]. Accordingly, the type a ≃A a′ must admit the following operations:

(a ∶ A) r(a) ∶ a ≃A a

(x ∶ A ⊢ B(x) ∶ Type) transp ∶ B(a)→ (a ≃A a
′
)→ B(a′)

(b ∶ B(a)) Jcomp ∶ transp b r(a) ≃B(a) b

(a ∶ A) πa ∶ isContr(Σx∶A.a ≃A x)
(A,B(x), f, g) FE ∶ (Πx∶A) fx ≃B(x) gx → f ≃Πx∶A.B(x) g

And now we have obtained a well-defined mathematical problem:
To define an extension of type theory with a new type a ≃A a′, so that all of Coquand’s axioms
are satisfied, and the usual metatheoretic properties of type theory remain valid.

Equality from logical relations
The point of departure of all syntactic approaches to extensional equality is to define an
equivalence relation on the term model of type theory by induction, where the relation
associated to each type constructor is given inductively by the logical condition for that type.

The logical relation principle then allows one to derive that every term of type theory
preserves this relation, so that the relation is indeed a congruence.
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As a simple example, let us consider the universe of simple types.

Inductive U ∶ ∗ ∶=

∣ ⊚ ∶ U
∣ ◯→ ∶ U → U → U
∣ ⊗ ∶ U → U → U

To each element A ∶ U, we can associate the type of terms of type A, by defining a
∗-valued decoding function T ∶ U → ∗ by recursion over U:

T(⊚) = N

T(◯→AB) = TA→ TB
T(⊗AB) = TA × TB

We think of TA as giving the interpretation of object types A ∶ U on the metalevel.
In just the same way, we may define a family of relations {RA ∶ TA→ TA→ ∗} by recursion

over A ∶ U:

R⊚mn = IdN(m,n)

R◯→ABff
′

= Πx∶TAΠx′∶TA. RAxx′ → RB(fx)(f ′x′)

R⊗ABpp
′

= RA(π1p)(π1p
′
) × RB(π2p)(π2p

′
)

By induction on A, we can verify that RA is indeed an equivalence relation. Moreover,
in contrast to the IdA-relation, RA actually validates the rule of function extensionality –
pretty much just by definition!

Thus we are confronted with a possibility that the intensional character of type theory
may be quashed simply by declaring the logical equivalence relation to be the “right” notion
of equality, and the Id -type to be no good, ugly, bad.

All that remains is to extend the previous construction to dependent type theory, and
make extensional equality part of our language.

Alas, while the logical relations argument can indeed be extended to the dependent setting
– and we will treat this procedure in some detail – the additional requirement is oxymoronic
as stated.

Logical relations are an external concept – they are valued in types of the meta-level.
Their very construction requires the language to be a “closed” object, since it takes place in
a metatheory where we have an interpretation of the given system (U,T) of types.

One might imagine some kind of a reflection procedure, whereby the values of the relation
are reincarnated as elements of U again.

But what should that mean, exactly? If we ever add new types into U, we change the
domain of the relation being reflected. Is there a universe U which is “closed under” its own
logical relation?

Among our contributions here is to clarify what indeed it could all mean, how one might
go about constructing such a U, and what one can do with the result. Toward the end of
the paper, we produce a candidate universe containing the extensional equality relation for
all closed types. Verification of the logical relation principle (congruence) for this universe
will be treated in subsequent work.

Taking the long view, the promise of a syntactic foundation of extensional equality will
be fulfilled whenever the following objectives are attained.

TYPES’14
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1. Find a type theory in which the universe U of types reflects the canonical logical relation
defined by induction on type structure.

2. Prove extensionality theorem, that every term preserves this relation. Conclude that
every ground term is equal to itself (reflexivity). Obtain extensional equality as the
relation induced by the reflexive equality of a type with itself.

3. Extend the reflection mechanism to open terms.
4. Add operators to witness the Kan filling condition.
5. Treat the remaining axioms of Coquand.

Contents of the paper
Here we will deliver on the first goal in the above sequence. Starting from the simply typed
lambda calculus, we proceed in a systematic way to extend our theory until we arrive at a
universe which already contains the extensional relation inside its type hierarchy.

The paper can thus be read as a kind of “bootstrapping procedure” for the plan above.
We show from first principles, how to define, by following a set pattern, a minimal type
system containing the extensional equality type for all closed types. Further properties of
extensional equality, including extension to open terms, can be built up using this system as
a base.

An intermediate stage in our development is the treatment of logical relations for dependent
types. For this purpose, we choose to work with the inconsistent pure type system λ∗. In
our view, this is by far and away the simplest formulation of dependent type theory, and
tuning out the “universe management noise” allows us to see more clearly the computational
relationships between the types and extensional equalities. 1

After finding the candidate universe, we apply the usual method of stratification to
remove the inconsistency inherited from λ∗. We conjecture that the stratified system is
strongly normalizing.

One can also read this paper without regard to the program above, as presenting a
generalization of the extensionality theorem of Tait [9] to the dependent setting.

While logical relations for dependent types have been treated by various authors ([2],
[4], [8]), our presentation contains some novel features. Specifically, we use a generalization
of Dybjer’s indexed inductive-recursive definitions to encapsulate the data pertaining to
(heterogeneous) dependent relations associated to equalities between types. Our treatment
of universes also differs from e.g. parametricity theory in that we instantiate the relation on
the universe with the least congruence between types.

In particular, in our approach, every relation between types is necessarily an equivalence
in the sense of homotopy type theory.

2 The simply typed case

We begin by stating the extensionality theorem for the simply typed λ-calculus.
The syntax of simple types and typed terms is as follows:

T = o ∣ T→ T ∣ T ×T
Λ = x ∣ λx∶T.Λ ∣ ΛΛ ∣ (Λ,Λ) ∣ π1Λ ∣ π2Λ

1 It was also attractive to work in a system where types and terms are treated completely homogeneously,
if only as a “sanity check” that we are not making ad hoc definitions based on the “kind” of the object.
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A model of λ→ consists of a family of sets {XA ∣ A ∈ T} where

XA→B ⊆XXB

A

XA×B ⊆XA ×XB

are such that XA→B is closed under abstraction of terms of type B over variables of type A,
and XA×B is closed under pairs of definable elements of XA and XB .

The interpretation of types is given by

JAK =XA

The interpretation of terms is parametrized by an environment ρ = {ρA ∶ VA →XA},
assigning elements of the domain to the free variables of the term.

Let Env be the set of such collections of functions.
A term t ∶ A is interpreted as a map JtK ∶ Env → JAK. We write JtKρ for JtK(ρ). The

definition of JtKρ is given by induction:

Jx ∶ AKρ = ρA(x)

JstKρ = JsKρJtKρ
Jλx∶A.tKρ = (a↦ JtKρ,x∶=a)

J(s, t)Kρ = (JsKρ, JtKρ)

JπitKρ = ai, where JtKρ = (a1, a2) ∈ JA1 ×A2K

A relation R = {RA ∣ RA ⊆ JAK × JAK,A ∈ T} is said to be logical if

RA→Bff
′
⇐⇒ ∀aa′∶XA.RAaa

′
⇒ RB(fa)(f ′a′)

RA×B(a, b)(a′, b′) ⇐⇒ RAaa
′
∧RBbb

′

Here and throughout, (two-sided) double arrows represent logical implication (equivalence)
on the meta-level.

I Theorem 1 (Extensionality Theorem). Let R be logical. Suppose that t is a typed term:

x1 ∶ A1, . . . , xn ∶ An ⊢ t ∶ T

and let there be given

a1, a
′
1 ∈ JA1K, . . . , an, a′n ∈ JAnK

Then

RA1a1a
′
1, . . . ,RAnana

′
n Ô⇒ RT JtKx⃗∶=a⃗JtKx⃗∶=a⃗′

In other words, every typed λ-term induces a function which maps related elements to
related elements. As a corollary, we get that a closed term t ∈ Λ0(A) is RA-related to itself.

The proof of the above theorem proceeds by induction on the structure of derivation that
t ∶ T . For illustration, we treat the abstraction case t = λx∶A.t′. Suppose we have

x1 ∶ A1, . . . , xn ∶ An, x ∶ A ⊢ t
′ ∶ B

Abs
x1 ∶ A1, . . . , xn ∶ An ⊢ λx∶A.t

′ ∶ A→ B
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Let (a1, . . . , an), (a
′
1, . . . , a

′
n) ∈ JA1K ×⋯ × JAnK be such that RAiaia

′
i. Assume a, a′ ∈ JAK

are given, and suppose that RAaa′.
By induction hypothesis,

RBJt′Kx1...xnx∶=a1...anaJt
′Kx1...xnx∶=a′1...a

′
na

′

which can be rewritten as

RBJλx.t′Kx1...xn∶=a1...an(a)Jλx.t
′Kx1...xn∶=a′1...a

′
n
(a′)

Since a, a′ were arbitrary, and RA→B is logical, it follows that

RA→BJλx.t′Kx1...xn∶=a1...anJλx.t′Kx1...xn∶=a′1...a
′
n

The other cases are treated similarly.
We remark that the structure of the proof that RT tt recapitulates rather precisely the

structure of t itself. In particular, the theorem is completely constructive. Anticipating
upcoming development, consider a constructive reading of the theorem’s statement:

From a proof a∗1 that RA1a1a
′
1

and a proof a∗2 that RA2a2a
′
2

⋯

and a proof a∗n that RAnana
′
n

Get a proof t(a∗1, . . . , a∗n)
that RT t(a1, . . . , an)t(a

′
1, . . . , a

′
n)

This motivates us to think of the above extensionality property as an operation which,
given terms which relate elements in the context, substitutes these connections into t to get
a relation between the corresponding instances of t.

In this interpretation, the proof that a closed term t is related to itself

r(t) ∶ RT tt

has specific computational content. Furthermore, the algorithm associated to this proof has
the same structure as t itself.

Given a relation Ro on Xo, we can extend it to the full structure by defining RA→B,
RA×B to be such as to satisfy the logical conditions; the resulting family then satisfies the
theorem by construction.

3 The dependent case

To make matters simple, we work with the pure type system (PTS) formulation of dependent
type theory with “type-in-type” extended by Σ-types. This system is denoted as λ∗. It has a
universal type ∗, the type of all types. This allows us to unify into one the three classical
judgement forms of dependent type theory:

Γ ⊢ A Type
Γ ⊢ a ∶ A
Γ ⊢ B ∶ (A)Type

The judgment Γ ⊢ A Type is replaced by Γ ⊢ A ∶ ∗. Similarly, Γ ⊢ (A)B Type is replaced
by Γ, x∶A ⊢ B ∶ ∗. Thus types and terms of type ∗ are completely identified.

The syntax of λ∗ is given in Figure 1.
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A, t ∶∶= ∗ ∣ x ∣ Πx∶A.B ∣ Σx∶A.B ∣ λx∶A.t ∣ st ∣ (s, t) ∣ π1t ∣ π2t

⊢ ∗ ∶ ∗

Γ ⊢ A ∶ ∗

Γ, x ∶ A ⊢ x ∶ A

Γ ⊢M ∶ A Γ ⊢ B ∶ ∗

Γ, y ∶ B ⊢M ∶ A

Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗

Γ ⊢ Πx∶A.B ∶ ∗

Γ ⊢ Σx∶A.B ∶ ∗

Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗ Γ, x ∶ A ⊢ b ∶ B
Γ ⊢ λx∶A.b ∶ Πx∶A.B

Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗ Γ ⊢ f ∶ Πx∶A.B Γ ⊢ a ∶ A
Γ ⊢ fa ∶ B[a/x]

Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗ Γ ⊢ a ∶ A Γ ⊢ b ∶ B[a/x]

Γ ⊢ (a, b) ∶ Σx∶A.B

Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗ Γ ⊢ p ∶ Σx∶A.B
Γ ⊢ π1p ∶ A

Γ ⊢ π2p ∶ B[π1p/x]

Γ ⊢M ∶ A Γ ⊢ B ∶ ∗ A = B
Γ ⊢M ∶ B

(λx∶A.s)t Ð→ s[t/x]

π1(s, t) Ð→ s

π2(s, t) Ð→ t

Figure 1 The system λ∗.

Our choice of rules differs from the standard definition of λ∗ as a PTS in that the introduction and
elimination rules (for both Π- and Σ-types) come with information on the well-formedness of the
type arguments A, B. This however does not change the set of derivable sequents.
The proof of this essentially appears already in Barendregt [3], see Corollary 5.2.14(1,2) and Lemma
5.2.13(3). The argument there is equally applicable to Σ as to Π. (And in λ∗, it becomes even
easier.)
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Notation. The parentheses following the matrix of the Π, Σ, and λ constructors are not part
of the syntax, and merely pronounce the fact that the term may depend on the variables in
question. In general, when we write t = t(x1, . . . , xn), we do not commit to having displayed
all the free variables of t; it is never mandatory to display a free variable.

The purpose of this notation is merely to reduce clutter in anticipation of substitution
of t by an instance of (some of the) variables. Our general notation for capture-avoiding
substitution of a free variable x in t by a term a is

t[a/x]

In particular, if t = t(x1, . . . , xn), then

t[a1/x1]⋯[an/xn] = t(a1, . . . , an)

In the following development, we shall consider the open term model of the above
type theory, using the same theory as our meta-level. To simplify notation, we write JAK
simply as A. As well, if t(x1, . . . , xn) ∶ T (x1, . . . , xn), then JtKx1,...,xn∶=a1,...,an is denoted as
t(a1, . . . , an).

From now on, we work in λ∗.
The only axiom of this type system has the form ∗ ∶ ∗, asserting that the universe of

types ∗ is itself a type. Its intuitive meaning is

The collection of structures, which types are interpreted by, forms the same kind
of structure.

In particular, if types are interpreted by types-with-relation RA ∶ A→ A→ ∗, then this
interpretation must also include a relation on the universe of types

R∗ ∶ ∗→ ∗→ ∗

But how should this relation interact with objects inhabiting related types? Is there a
logical condition for the universe? What is a dependent logical relation?

To answer these questions, we engage in a series of thought experiments.
First, we stipulate that, dependent logical relation, whatever it finally turns out to be,

must at the very least be such that the congruence (extensionality) rule is always valid.
Let us then consider how the previous extensionality theorem could be extended to the

dependent case. Suppose we have terms

x∶A ⊢ B(x) ∶ ∗ (3)
x∶A ⊢ b(x) ∶ B(x) (4)

If we are now given a ∶ A, a′ ∶ A, we want to conclude that

RAaa
′
→ RBb(a)b(a

′
) (5)

However, the two terms b(a) and b(a′) have different types! Evidently, we need more structure
to formulate extensionality of dependent maps. But where should this structure come from?

Looking again at (3), let us first consider extensionality of the term B(x):
From any witness a∗ of the hypothesis of (5), it must be possible to construct a witness
B(a∗) to the relation R∗B(a)B(a′).

Thinking of B(a∗) as encoding some kind of correspondence between types, we can
imagine the relation b(a∗) between b(a) and b(a′) to be “lying over” the relation B(a∗)

between B(a) and B(a′).
This suggests the following principle:
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Every witness e ∶ R∗AB to the fact that A and B are related elements of the
universe induces a relation

∼e ∶ A→ B → ∗

between elements of corresponding types.

Notation. Put

a ≃A a
′

∶= RAaa
′ a, a′ ∶ A

A ≃ B ∶= R∗AB A,B ∶ ∗

a ∼e b ∶= ∼eab a∶A, b∶B, e ∶ A ≃ B

We call e ∶ A ≃ B a type equality between A and B, and a ∼e b a dependent equality, or
heterogeneous equality induced by e.

Notice that (A ≃ B) = (A ≃∗ B).
The considerations thus far have yielded that

x∶A ⊢ B(x) ∶ ∗ ⊢ a∗ ∶ a ≃A a
′

B(a∗) ∶ B(a) ≃ B(a′)

x∶A ⊢ b(x) ∶ B(x) ⊢ a∗ ∶ a ≃A a
′

b(a∗) ∶ b(a) ∼B(a∗) b(a
′)

Now suppose x ∉ B(x) = B. Then, for a∗ ∶ a ≃A a′, we have

B() = B(a∗) ∶ B(a) ≃ B(a′)

B() ∶ B ≃ B

So B(a∗), for x ∉ B(x), gives us a type equality of B with itself. We call such equality
the identity on B; it corresponds to the identity equivalence in homotopy type theory.

The relation ∼B()∶ B → B → ∗ induced by the identity equivalence we call the extensional
equality on type B, and we define

a ≃A a
′

∶= a ∼A() a
′

In particular, since x ∉ ∗ ∶ ∗, we have

∗() ∶ ∗ ≃ ∗

∗() ∶ ∗ ∼∗() ∗

A ≃∗ B = A ∼∗() B = A ≃ A

so that extensional equality on the universe is type equality and is the relation induced by
the identity equivalence of the universe with itself.

With these definitions, we can make sense of the “logical conditions”

RΠx∶A.B(x)ff
′
=∏
a∶A

∏
a′∶A

Πa∗ ∶ RAaa′. (fa) ∼B(a∗) (f ′a′) (6)

RΣx∶A.B(x)pp
′
= Σa∗ ∶ RA (π1p) (π1p

′
). (π2p) ∼B(a∗) (π2p

′
) (7)

However, as the considerations illustrate, we may also just dispense with the relation
(RA) = (≃A) altogether and assume as primitive only the following two objects:

A binary relation on the universe:
A ∶ ∗ B ∶ ∗

A ≃ B ∶ ∗
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For all types A,B, and for every proof e ∶ A ≃ B that they are related, a binary relation
between A and B:

e ∶ A ≃ B a ∶ A b ∶ B
a ∼e b ∶ ∗

The question of what it means for a pair (≃,∼e) to be logical will be answered in Section 5.
It will allow us to prove the generalization of extensionality theorem of the following shape:

I Theorem 2. Let (≃,∼e) be logical. For every term t typed in the context

x1 ∶ A1,⋯, xn ∶ An(x1, . . . , xn−1) ⊢ t(x1, . . . , xn) ∶ T (x1, . . . , xn)

and for any sequence of coordinate-wise related instances

a1 ∶ A1,⋯, an ∶ An(a1, . . . , an−1)

a′1 ∶ A1,⋯, a
′
n ∶ An(a

′
1, . . . , a

′
n−1)

a∗1 ∶ a1 ∼A1() a
′
1,⋯, a

∗
n ∶ an ∼An(a∗1,...,a

∗
n−1)

a′n

there is a witness t(a∗1, . . . , a∗n) to the fact that

t(a1, . . . , an) ∼T (a∗1,...,a
∗
n) t(a

′
1, . . . , a

′
n).

As it appears now, the statement is perhaps unparsable, since the conclusion already makes
reference to the result of substituting a∗1, . . . , a∗n into T (x⃗), which requires the extensionality
of the judgement Γ ⊢ T (x⃗) ∶ ∗ to be known beforehand. The proof of this latter fact will
again depend on extensionality of subterms appearing in T .

Also, the definitions of ∼ and ≃ themselves, will evidently depend on being able to perform
the “cell substitution” given by the theorem (as in the case of the equality for Π- and
Σ-types).

In order to cut through all this circularity, and to formulate all the necessary concepts
precisely, we first move to represent the type universe of λ∗ in a minimal extension of the
system relevant for this purpose. The above theorem will be stated for the result of reflecting
the meta-level into this universe. The next step is to mutually define the type of equivalences
between two elements of this universe, and the corresponding relations induced by such
equivalences. The inter-dependency between these concepts is resolved using an indexed
inductive–recursive definition of Dybjer and Setzer [6], and this allows us to state the above
theorem for the (reflected) universe. Finally, we prove the theorem by induction on the
structure of derivations.

4 λ∗ in λ∗

To motivate the inductive–recursive definition of the universe of λ∗, let us recall the repre-
sentation of simply typed lambda calculus.

Inductive U ∶ ∗ ∶=

∣ ⊚ ∶ U
∣ ◯→ ∶ U → U → U
∣ ⊗ ∶ U → U → U
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T ∶ U → ∗

T(⊚) = A0

T(◯→AB) = TA→ TB
T(⊗AB) = TA × TB

It is straightforward to define, for every simple type A ∈ T, a corresponding term A of
type U. Furthermore, for every valid λ→× judgment Γ ⊢M ∶ A, there is a term M of type
TA and a derivation of Γ ⊢M ∶ TA, where contexts are translated as

x1 ∶ A1,⋯, xn ∶ An = x1 ∶ TA1,⋯, xn ∶ TAn

Next, consider the family RA, for A ∶ U, defined on page 223. Clearly, this family gives a
logical relation on the interpretation of λ→× in (U,T). Thus we may verify the following

I Proposition 3. Suppose x1 ∶ A1, . . . , xn ∶ An ⊢λ→× M ∶ A.
Consider the context consisting of variables x1, x

′
1 ∶ TA1, . . . , xn, x

′
n ∶ TAn and

x∗1 ∶ RA1x1x
′
1, . . . , x

∗
n ∶ RAnxnx

′
n,

There is a term M∗ =M∗(x1, x
′
1, x

∗
1, . . . , xn, x

′
n, x

∗
n) such that

{x1, x
′
1, x

∗
1, . . . , xn, x

′
n, x

∗
n} ⊢M

∗
∶ RAM M ′

where M ′ =M[x′1/x1, . . . , x
′
n/xn].

(The proof proceeds exactly as before, replacing set-theoretic concepts by their type-theoretic
counterparts.)

In trying to repeat the above proposition for dependent type theory, we run into a problem
already when trying to represent the universe of types. As becomes evident, the collection of
types must be defined simultaneously with the decoding function:

Inductive U ∶ ∗ ∶=

∣ ⊚ ∶ U
∣ ◯Π ∶ ΠA ∶ U.(TA→ U)→ U
∣ ◯Σ ∶ ΠA ∶ U.(TA→ U)→ U

with T ∶ U → ∗ ∶=

T(⊚) = A0

T(◯ΠAB) = Πa ∶ TA.T [Ba]

T(◯ΣAB) = Σa ∶ TA.T [Ba]

The full theory of such inductive-recursive definitions, together with a model construction,
is treated in detail by Dybjer and Setzer [6]. Ghani et al. [7] give a modern presentation,
considerably generalizing the concept.
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Reflection of λ∗

The inductive-recursive definition of the universe U of λ∗-types is as follows:

Inductive U ∶ ∗ ∶=

∣ ◯Π ∶ ΠA ∶ U.(TA→ U)→ U
∣ ◯Σ ∶ ΠA ∶ U.(TA→ U)→ U
∣ ⊛ ∶ U

with T ∶ U → ∗ ∶=

T(◯ΠAB) = Πa ∶ TA.T [Ba]

T(◯ΣAB) = Σa ∶ TA.T [Ba]

T(⊛) = U

Let λ∗U be λ∗ augmented with the above datatype. Notice that every derivation in λ∗ is
also a derivation in λ∗U.

I Definition 4. We define a map (⋅) from the raw terms of λ∗ to the raw terms of λ∗U as
follows:

∗ = ⊛

x = x

Πx∶A.B =◯ΠA(λx∶TA.B)

Σx∶A.B =◯ΣA(λx∶TA.B)

λx∶A.t = λx∶A.t

st = st

(s, t) = (s, t)

πis = πis

I Definition 5. Let Γ = {x1 ∶ A1, . . . , xn ∶ An} be a context in λ∗. We define2

Γ ∶= {x1 ∶ TA1, . . . , xn ∶ TAn}

I Lemma 6 (Substitution Lemma). Let M,N be λ∗-terms. Then

M[N/x] =M[N/x]

Proof. This is manifest from the fact that ⋅ is defined completely compositionally. J

I Corollary 7. Let M , N be λ∗-terms. Then

M = N Ô⇒ M = N

2 Note that we cannot yet conclude that this definition yields a valid context: so far the Ai are just raw
terms, and we have not checked that

x1 ∶ TA1, . . . , xi ∶ TAi ⊢ Ai+1 ∶ U

for 0 ≤ i < n. As a matter of fact, this will follow from the theorem we are about to prove, but for now
we just treat Γ as a “raw context”.

(Indeed, the typing rules of λ∗, like all PTSs, do not include context hygiene, because it is enforced
implicitly via the hypotheses of context-extending rules.)



A. Polonsky 233

I Theorem 8 (Reflection of ∗ into U).

Γ ⊢λ∗ M ∶ A Ô⇒ Γ ⊢λ∗U M ∶ TA

Proof. The translation is done by induction on Γ ⊢M ∶ A.
Axiom. ⊢λ∗ ∗ ∶ ∗. Then Γ = Γ = ⟨⟩. Also A =M = ⊛. The conversion rule gives

⊛ ∶ U T⊛ ∶ ∗ U = T⊛
⊛ ∶ T⊛

Thus indeed ⊢U M ∶ TA.
Variable. Suppose the derivation ends with

Γ ⊢ A ∶ ∗

Γ, x ∶ A ⊢ x ∶ A
By induction hypothesis, we have

Γ ⊢ A ∶ T∗

Since ∗ = ⊛, we have Γ ⊢ A ∶ T⊛. Then Γ ⊢ A ∶ U, and Γ ⊢ TA ∶ ∗.
By the variable rule, we have

Γ, x ∶ TA ⊢ x ∶ TA

Weakening. Let the derivation end with
Γ ⊢M ∶ A Γ ⊢ B ∶ ∗

Γ, y ∶ B ⊢M ∶ A

By induction hypothesis, we have

Γ ⊢M ∶ TA

Γ ⊢ B ∶ T⊛

That is, Γ yields ⊢ B ∶ U. Then TB ∶ ∗. By weakening,

Γ, y ∶ TB ⊢M ∶ TA

Π-formation. Given
Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗

Γ ⊢ Πx∶A.B ∶ ∗

the induction hypotheses yield

Γ ⊢ A ∶ T∗ (8)
Γ, x ∶ TA ⊢ B ∶ T∗ (9)

Since A,B ∶ T∗ = T⊛ = U, we have Γ ⊢ TA ∶ ∗ as well as Γ, x ∶ TA ⊢ TB ∶ ∗.
By the Π-introduction rule, (9) yields

Γ ⊢ λx∶TA.B ∶ TA→ U

whence Π-elimination together with (8) yields

Γ ⊢◯ΠA(λx∶TA.B) ∶ U

That is,

Γ ⊢ Πx∶A.B ∶ T∗
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Σ-formation. Treated in an analogous fashion.
Π-introduction. Suppose the derivation is of the form

Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗ Γ, x ∶ A ⊢ b ∶ B
Γ ⊢ λx∶A.b ∶ Πx∶A.B

The induction hypotheses give us

Γ ⊢ A ∶ T∗

Γ, x ∶ TA ⊢ B ∶ T∗

Γ, x ∶ TA ⊢ b ∶ TB (10)

As in the previous case, we actually have

Γ ⊢ A ∶ U Γ ⊢ TA ∶ ∗

Γ, x ∶ TA ⊢ B ∶ U Γ, x ∶ TA ⊢ TB ∶ ∗

Γ ⊢ Πx∶A.B ∶ U Γ ⊢ T [Πx∶A.B] ∶ ∗

By Π-introduction on (10), we have

Γ ⊢ λx∶TA.b ∶ Πx∶TA.TB

But we also find that

Πx∶TA.TB = T [◯ΠA(λx∶TA.B)] = TΠx∶A.B (11)

and so conclude that

Γ ⊢ λx∶A.b ∶ TΠx∶A.B

Π-elimination. Suppose we are given
Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗ Γ ⊢ f ∶ Πx∶A.B Γ ⊢ a ∶ A

Γ ⊢ fa ∶ B[a/x]

The induction hypothesis yield, on the one hand, that

Γ ⊢ A ∶ U Γ ⊢ TA ∶ ∗

Γ, x ∶ TA ⊢ B ∶ U Γ, x ∶ TA ⊢ TB ∶ ∗

Γ ⊢ Πx∶A.B ∶ U Γ ⊢ T [Πx∶A.B] ∶ ∗

and on the other hand, that

Γ ⊢ f ∶ TΠx∶A.B
Γ ⊢ a ∶ TA

Since f by conversion in (11) has type Πx∶TA.TB, we may write

Γ ⊢ fa ∶ TB[a/x]

By Lemma 6, the type in the above judgment is equal to TB[a/x].
Σ-introduction. When we are at

Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗ Γ ⊢ a ∶ A Γ ⊢ b ∶ B[a/x]

Γ ⊢ (a, b) ∶ Σx∶A.B
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the induction hypotheses give as before that

Γ ⊢ TA ∶ ∗

Γ, x ∶ TA ⊢ TB ∶ ∗

and, in addition, we also have

Γ ⊢ a ∶ TA

Γ ⊢ b ∶ TB[a/x]

Recall that

Σx∶A.B =◯ΣA(λx∶TA.B)

TΣx∶A.B = Σx∶TA.TB

By Lemma 6, TB[a/x] = TB[a/x]. Hence b ∶ TB[a/x].
By Σ-introduction, we now obtain

Γ ⊢ (a, b) ∶ Σx∶TA.TB

In other words, Γ ⊢ (a, b) ∶ TΣx∶A.B.
Σ-elimination. Let there be derived

Γ ⊢ A ∶ ∗ Γ, x ∶ A ⊢ B ∶ ∗ Γ ⊢ p ∶ Σx∶A.B
Γ ⊢ π1p ∶ A

Γ ⊢ π2p ∶ B[π1p/x]

Assume we have

Γ ⊢ A ∶ U

Γ, x ∶ TA ⊢ B ∶ U

Γ ⊢ p ∶ TΣx∶A.B

We have just seen that TΣx∶A.B = Σx∶TA.TB. Thus

π1p ∶ TA

π2p ∶ [TB][π1p/x]

The subjects of these judgements can be rewritten as πip.
Also

[TB][π1p/x] = [TB][π1p/x] = T [B[π1p/x]] = T [B[π1p/x]]

Thus we have

Γ ⊢ π1p ∶ TA

Γ ⊢ π2p ∶ TB[π1p/x]

Conversion. Suppose we come across
Γ ⊢M ∶ A Γ ⊢ B ∶ ∗ A = B

Γ ⊢M ∶ B
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By induction hypothesis, we have

Γ ⊢M ∶ TA

Γ ⊢ B ∶ U

By Lemma 7, we have

A = B

But clearly that implies that

TA = TB

It is likewise clear that

Γ ⊢ TB ∶ ∗

By the conversion rule, we comprehend

Γ ⊢M ∶ TB

This completes the proof of the theorem. J

5 Extensionality of λ∗

We work in λ∗U.
In order to precisely state extensionality theorem using the reflection of types into terms

of type U, we must give answers to the following questions:
What does it mean for two types A,B ∶ U to be equal?
What does it mean for two elements to be related by a type equality?

To answer these questions, we continue our reasoning as in Section 3.
There we arrived at the signature

≃∶ U → U → ∗, ∼e∶ TA→ TB → ∗ for all e ∶ A ≃ B

that a dependent logical relation should possess. But what should be the logical conditions
associated to type constructors?

Well, keeping in mind the interpretation of ≃ as type equality, we should at the very least
require that ≃ is a congruence with respect to type structure – in other words, that every
type constructor preserves type equality.

For example, if we are given type equalities A∗ ∶ A ≃ A′, B∗ ∶ B ≃ B′, we should be able
to construct terms

×
∗A∗B∗

∶ (A ×B) ≃ (A′
×B′

) (12)
→
∗ A∗B∗

∶ (A→ B) ≃ (A′
→ B′

) (13)

Notice that these inferences are valid regardless of what kind of semantics we have in
mind for ≃: isomorphism, weak equivalence, exact/strict equality, or even logical equivalence.
But it should be a notion of equality, not an arbitrary relation on the universe.

It is likewise clear how the relations induced by (12) and (13) should be given in terms of
those for A∗ and B∗:
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(a, b) ∼×∗A∗B∗ (a′, b′) = (a ∼A∗ a′) × (b ∼B∗ b′)

f ∼→∗A∗B∗ f ′ = ∏
x∶A

∏
x′∶A′

x ∼A∗ x′ → fx ∼B∗ f ′x′

We invite the reader to the fun exercise of generalizing the above relation laws to the
dependent case, to obtain the dependent logicality conditions for the Π- and Σ-types.

Concerning the type constructor ∗, being a nullary constructor, it must also preserve
equality. Since it has no arguments, this simply means that it is equal to itself:

∗
∗
∶ ∗ ≃ ∗

The logical condition for the universe must produce, given A,B ∶ ∗, a new type A ∼∗∗ B.
What should this type be?

The answers to these questions are displayed on the bottom of this page, where we define
the dependent logical relation

(Eq(A,B) ∶ ∗,Rel {A,B}(e ∶ Eq(A,B)) ∶ TA→ TB → ∗)

on the universe (U,T) of reflected λ∗-types.
The key difficulty introduced by type dependency is that the definitions of Eq(A,B) and

Rel {A,B}(e) cannot be disentangled from one another: they must be defined simultaneously.
This naturally suggests that their interdependency could be captured using a variant of the
inductive–recursive (IR) definitions.

Upon reflecting on this possibility, it shall become manifest that the concepts cannot be
defined uniformly in A and B either; rather, the A and B must take part in the recursive
construction of both the set Eq(A,B) as well as the map Rel A,B(e). Thus, the arguments A
and B are to be treated as indices, so that we are dealing with an indexed inductive–recursive
definition (IIRD).

We are now in the position to answer the questions posed above. The notion of equivalence
of types A and B and the notion of elements of the corresponding types being related over an
equivalence are both defined simultaneously by indexed induction–recursion. The definition
appears below.

Inductive Eq ∶ U → U → ∗ ∶=

∣ r(⊛) ∶ Eq⊛⊛
∣ ◯Π

∗
{AA′

∶ U}{B ∶ TA→ U}{B′
∶ TA′

→ U}

(A∗
∶ EqAA′

)(B∗
∶ Πa∶TAΠa′∶TA′Πa∗ ∶ Rel A∗aa′.Eq(Ba)(B′a′))

∶ Eq(◯ΠAB)(◯ΠA
′B′

)

∣ ◯Σ
∗
{AA′

∶ U}{B ∶ TA→ U}{B′
∶ TA′

→ U}

(A∗
∶ EqAA′

)(B∗
∶ Πa∶TAΠa′∶TA′Πa∗ ∶ Rel A∗aa′.Eq(Ba)(B′a′))

∶ Eq(◯ΣAB)(◯ΣA
′B′

)

with Rel ∶ Π{A}{B} ∶ U. EqAB → TA→ TB → ∗

Rel (r(⊛))AB = EqAB
Rel (◯Π∗A∗B∗

)ff ′ = Πx∶TAΠx′∶TA′Πx∗ ∶ Rel A∗xx′.

Rel (B∗xx′x∗)(fx)(f ′x′)

Rel (◯Σ∗A∗B∗
)pp′ = Σx∗ ∶ Rel A∗

(π1p)(π1p
′
).

Rel (B∗
(π1p)(π1p

′
)x∗)(π2p)(π2p

′
)
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We denote the system obtained by extending λ∗U with the above IIRD by λ∗UE .
We remark that λ∗U is a subsystem of λ∗UE in the sense that every term of λ∗U is a

term of λ∗UE , and every derivation in λ∗U is also a derivation in λ∗UE .

I Definition 9. Let (−)′ ∶ Terms(λ∗U) → Terms(λ∗U) be the operation of marking every
variable with an apostrophe.

The next operation computes the substitution into a term t of a “universal path” in
the context of t. The context of t∗ is three times larger than t: not only do we add the
apostrophized variables, but also the starred variables which witness that x and x′ are
related.

I Definition 10.

(−)
∗
∶ Terms(λ∗U)→ Terms(λ∗UE)

(x)∗ = x∗

⊛
∗
= r(⊛)

(◯ΠAB)
∗
=◯Π

∗A∗B∗

(◯ΣAB)
∗
=◯Σ

∗A∗B∗

(λx∶A.b)∗ = λx∶A λx′∶A′ λx∗ ∶ Rel A∗xx′.b∗

(fa)∗ = f∗aa′a∗

(a, b)∗ = (a∗, b∗)

(π1p)
∗
= π1p

∗

(π2p)
∗
= π2p

∗

I Theorem 11. (M[N/x])′ =M ′[N ′/x′]

I Theorem 12. (M[N/x])∗ =M∗[N/x,N ′/x′,N∗/x∗]

Proof.
Axiom. (⊛[N/x])∗ = (⊛)∗ = r(⊛) = r(⊛)[N/x,N ′/x′,N∗/x∗]

Variable.

(y[N/x])∗ =

⎧⎪⎪
⎨
⎪⎪⎩

(x[N/x])∗ = N∗ = x∗[N/x,N ′/x′,N∗/x∗] y = x

(y[N/x])∗ = y∗ = y∗[N/x,N ′/x′,N∗/x∗] y ≠ x

Product.

(◯ΠAB [N/x])∗ = (◯ΠA[N/x]B[N/x])∗

=◯Π
∗
(A[N/x])∗(B[N/x])∗

=◯Π
∗A∗

[N/x,N ′
/x′,N∗

/x∗]B∗
[N/x,N ′

/x′,N∗
/x∗]

= (◯Π
∗A∗B∗

)[N/x,N ′
/x′,N∗

/x∗]

Sum.

(◯ΣAB [N/x])∗ = (◯ΣA[N/x]B[N/x])∗

=◯Σ
∗
(A[N/x])∗(B[N/x])∗

=◯Σ
∗A∗

[N/x,N ′
/x′,N∗

/x∗]B∗
[N/x,N ′

/x′,N∗
/x∗]

= (◯Σ
∗A∗B∗

)[N/x,N ′
/x′,N∗

/x∗]
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Abstraction. We remark that the variables can always be chosen so as not to interfere.

((λy∶A.b)[N/x])∗ = (λy ∶ A[N/x].b[N/x])∗

= λy∶A[N/x] λy′∶(A[N/x])′ λy∗ ∶ Rel (A[N/x])∗yy′.(b[N/x])∗

= λy∶A[N/x] λy′∶A′
[N ′

/x′] λy∗ ∶ Rel A∗
[N/x,N ′

/x′,N∗
/x∗]yy′.

b∗[N/x,N ′
/x′,N∗

/x∗]

= λy∶A[N,N ′,N∗
/x,x′, x∗] λy′∶A′

[N,N ′,N∗
/x,x′, x∗]

λy∗ ∶ (Rel A∗yy′)[N,N ′,N∗
/x,x′, x∗].b∗[N,N ′,N∗

/x,x′, x∗]

= (λy∶A λy′∶A′ λy∗ ∶ Rel A∗yy′.b∗)[N,N ′,N∗
/x,x′, x∗]

= (λy ∶ A.b)∗[N/x,N ′
/x′,N∗

/x∗]

Application.

(st[N/x])∗ = (s[N/x]t[N/x])∗

= (s[N/x])∗(t[N/x])(t[N/x])′(t[N/x])∗

= (s∗[N,N ′,N∗
/x,x′, x∗]t[N/x]t′[N ′

/x]t∗[N,N ′,N∗
/x,x′, x∗]

= (s∗tt′t∗)[N,N ′,N∗
/x,x′, x∗]

= (st)∗[N,N ′,N∗
/x,x′, x∗]

Pairing.

((s, t)[N/x])∗ = (s[N/x], t[N/x])∗

= ((s[N/x])∗, (t[N/x])∗)

= (s∗[N/x,N ′
/x′,N∗

/x∗], t∗[N/x,N ′
/x′,N∗

/x∗])

= (s∗, t∗)[N,N ′,N∗
/x,x′, x∗]

= (s, t)∗[N,N ′,N∗
/x,x′, x∗]

Projection.

((πit)[N/x])∗ = (πit[N/x])∗

= πi(t[N/x])∗

= πi(t
∗
[N,N ′,N∗

/x,x′, x∗])

= πit
∗
[N,N ′,N∗

/x,x′, x∗]

= (πit)
∗
[N,N ′,N∗

/x,x′, x∗] J

I Corollary 13. Suppose M = N . Then M∗ = N∗.

Proof. Assume M = (λx∶A.s)t and N = s[t/x]. We have

M∗
= ((λx∶A.s)t)∗ = (λx∶A.s)∗tt′t∗

= (λx∶A λx′∶A′ λx∗ ∶ Rel A∗xx′.s∗)tt′t∗

= s∗[t/x][t′/x′][t∗/x∗]

= (s[t/x])∗ = N∗

where the last equality is by the previous proposition.
Now suppose that M = πi(t1, t2), and N = ti. Then

M∗
= πi(t

∗
1, t

∗
2) = t

∗
i = N

∗ .

J
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I Definition 14. A λ∗U-context Γ is said to be a U-context if Γ is of the form

x1 ∶ TA1, . . . , xn ∶ TAn(x1, . . . , xn−1)

and for 0 ≤ i < n, it holds that

x1 ∶ TA1, . . . , xi ∶ TAi(x1, . . . , xi−1) ⊢ Ai+1(x1, . . . , xi) ∶ U

If Γ is a U-context, and Γ ⊢ A ∶ U, we call A a U-type in Γ.

I Definition 15. Given a U-context Γ = {x1∶TA1, . . . xn∶TAn}, put

Γ∗ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x1 ∶ TA1, . . . , xn ∶ TAn,
x′1 ∶ TA′

1, . . . , x
′
n ∶ TA′

n,

x∗1 ∶ Rel A∗
1x1x

′
1, . . . , x

∗
n ∶ Rel A∗

nxnx
′
n

Let Γ′ be obtained from Γ by apostrophizing every variable, including those occurring in
their declared types. Obviously, we can have

I Theorem 16. Γ ⊢M ∶ A Ô⇒ Γ′ ⊢M ′ ∶ A′.

I Theorem 17 (Extensionality of λ∗).

Γ ⊢λ∗ M ∶ A Ô⇒ Γ∗ ⊢λ∗UE M
∗
∶ Rel A

∗
MM

′ (14)

Proof. We proceed by induction on the derivation.
We will work directly with the images M in λ∗U, confusing M with M . The distinction

is mostly irrelevant, but we need it e.g. in the conversion rule, where the type to be converted
to has to be in the image of ⋅.
Axiom. Suppose Γ ⊢ ⊛ ∶ T⊛. We have

⊛
∗
= r(⊛) ∶ Eq⊛⊛ = Rel r(⊛)⊛⊛ = Rel ⊛∗⊛⊛′

where r(⊛) ∶ Eq⊛⊛ in any context.
By conversion rule, Γ∗ ⊢ ⊛∗ ∶ Rel ⊛∗⊛⊛′.

Variable. Suppose we have a derivation tree with root
Γ ⊢ A ∶ T⊛

Γ, x ∶ TA ⊢ x ∶ TA
(Notice that the hypothesis says that A is a U-type in Γ.)
By the previous proposition, Γ′ ⊢ A′ ∶ T⊛.
By induction hypothesis, Γ∗ ⊢ A∗ ∶ Rel ⊛∗AA′.
Since Rel ⊛∗AA′ = EqAA′, we have Γ∗ ⊢ A∗ ∶ EqAA′ by conversion.
Yet Γ∗ also yields that TA ∶ ∗ and TA′ ∶ ∗, and thus we may form the context Γ∗, x ∶
TA,x′ ∶ TA′ ⊢. In this context, we may derive that

Γ∗, x ∶ TA,x′ ∶ TA′
⊢ Rel A∗xx′ ∶ ∗

using the typing rule for the Rel constructor.
By the variable rule, we have

Γ∗, x ∶ TA,x′ ∶ TA′, x∗ ∶ Rel A∗xx′ ⊢ x∗ ∶ Rel A∗xx′

The context in the above judgement is (Γ, x ∶ TA)∗. The subject is (x)∗. The type
predicate is as displayed in (14).
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Weakening. Suppose they give you
Γ ⊢M ∶ TA Γ ⊢ B ∶ T⊛

Γ, y ∶ TB ⊢M ∶ TA
The induction hypotheses give that

Γ∗ ⊢M∗
∶ Rel A∗MM ′

Γ∗ ⊢ B∗
∶ Rel ⊛∗BB′

As before, we may conclude that B,B′ ∶ U in Γ∗, that B∗ ∶ EqBB′, and that Γ∗, y ∶
TB,y′ ∶ TB′ is a valid context.
Then Rel B∗yy′ ∶ ∗, and by weakening we get

(Γ, y ∶ TB)
∗
⊢M∗

∶ Rel A∗MM ′

Formation. Consider the typing
Γ ⊢ A ∶ T⊛ Γ, x∶TA ⊢ B ∶ T⊛

Γ ⊢◯ΠA(λx∶TA.B) ∶ ⊛

By induction, Γ∗ ⊢ A∗ ∶ Rel ⊛∗AA′.
By conversion, this gives Γ∗ ⊢ A∗ ∶ EqAA′.
We also have (Γ, x∶TA)∗ ⊢ B∗ ∶ Rel ⊛∗BB′.
That gives Γ∗, x∶TA,x′ ∶ TA′, x∗ ∶ Rel A∗xx′ ⊢ B∗ ∶ EqBB′.
Using the abstraction rule, we derive

Γ∗ ⊢ λx∶TA λx′∶TA′ λx∗ ∶ Rel A∗xx′.B∗

∶ Πx∶TA Πx′∶TA Πx∗ ∶ Rel A∗xx′.EqBB′

which can be rewritten as

Γ∗ ⊢ (λx ∶ TA.B)
∗
∶ Πx∶TA Πx′∶TA Πx∗ ∶ Rel A∗xx′. EqBB′

Using the ◯Π∗-constructor, we may derive

Γ∗ ⊢◯Π∗A∗
(λx ∶ TA.B)

∗
∶ Eq(◯ΠAB)(◯ΠA

′B′
)

The subject of the above judgment is equal to

(◯ΠA(λx ∶ TA.B))
∗

while the type is convertible to Rel r(⊛)(◯ΠAB)(◯ΠA′B′). Putting these together using
the conversion rule yields

Γ∗ ⊢ (◯ΠA(λx ∶ TA.B))
∗
∶ Rel ⊛∗(◯ΠAB)(◯ΠAB)

′

being of the required form.
By replacing Π with Σ, ◯Π with ◯Σ , and ◯Π∗ with ◯Σ∗, we may derive from the same
hypotheses that

Γ∗ ⊢ (◯ΣA(λx ∶ TA.B))
∗
∶ Rel ⊛∗(◯ΣAB)(◯ΣAB)

′

Abstraction. If we have to do
Γ ⊢ A ∶ T⊛ Γ, x ∶ TA ⊢ B ∶ T⊛ Γ, x ∶ TA ⊢ b ∶ TB

Γ ⊢ λx∶TA.b ∶ T(◯ΠA(λx∶TA.B))
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the induction hypotheses yield, with conversion, that

Γ∗ ⊢ A∗
∶ EqAA′

Γ∗, x ∶ TA,x′ ∶ TA′, x∗ ∶ Rel A∗xx′ ⊢ B∗
∶ EqBB′

Γ∗, x ∶ TA,x′ ∶ TA′, x∗ ∶ Rel A∗xx′ ⊢ b∗ ∶ Rel B∗bb′

Since A,A′ are U-types in Γ∗, and Rel A∗xx′ ∶ ∗, we can apply the abstraction rule three
times in a row to see that the context

(Γ, x ∶ TA)
∗
= Γ∗, x ∶ TA,x′ ∶ TA′, x∗ ∶ Rel A∗xx′

yields typing judgment

⊢ λx∶TA λx′∶TA′ λx∗ ∶ Rel A∗xx′.b∗ ∶ Πx∶TA Πx′∶TA′ Πx∗ ∶ Rel A∗xx′.Rel B∗bb′

The subject of this judgment is equal to (λx ∶ TA.b)∗.
The type predicate may be converted as

Πx∶TA Πx′∶TA′ Πx∗ ∶ Rel A∗xx′. Rel B∗bb′

= Πx∶TA Πx′∶TA′ Πx∗ ∶ Rel A∗xx′. Rel B∗
((λx∶TA.b)x)((λx′∶TA′.b′)x′)

= Πx∶TA Πx′∶TA′ Πx∗ ∶ Rel A∗xx′.

Rel ((λx ∶ TA.B)
∗xx′x∗)((λx∶TA.b)x)((λx′∶TA′.b′)x′)

= Rel (◯Π∗A∗
(λx ∶ TA.B)

∗
)(λx∶TA.b)(λx∶TA.b)′

= Rel (◯ΠA(λx ∶ TA.B))
∗
(λx∶TA.b)(λx∶TA.b)′

which is of the form (14), as desired.
Application. If the derivation ends with

Γ ⊢ A ∶ T⊛
Γ, x∶TA ⊢ B ∶ T⊛ Γ ⊢ f ∶ T(◯ΠA(λx∶TA.B)) Γ ⊢ a ∶ TA

Γ ⊢ fa ∶ B[a/x]

We thus have that that A (A′) and B (B′) are U-types in Γ (Γ′) and Γ, x∶TA (Γ′, x′ ∶ TA′),
respectively.
The induction hypotheses give us

Γ∗ ⊢ A∗
∶ EqAA′

(Γ, x ∶ TA)
∗
⊢ B∗

∶ EqBB′

Γ∗ ⊢ f∗ ∶ Rel (◯ΠA(λx∶TA.B))
∗ff ′

Γ∗ ⊢ a∗ ∶ Rel A∗aa′

We may rewrite the type of f∗ as

Rel (◯ΠA(λx∶TA.B))
∗ff ′

= Πx∶TA Πx′∶TA′ Πx∗ ∶ Rel A∗xx′.

Rel ((λx∶TA.B)
∗xx′x∗)(fx)(f ′x′)

= Πx∶TA Πx′∶TA′ Πx∗ ∶ Rel A∗xx′.

Rel ((λx∶TA λx′∶TA′ λx∗ ∶ Rel A∗xx′. Rel B∗
)xx′x∗)(fx)(f ′x′)

= Πx∶TA Πx′∶TA′ Πx∗ ∶ Rel A∗xx′.Rel B∗
(fx)(f ′x′)
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Working in Γ∗, we now apply f∗ to a, a′, a∗ (which types are TA,TA′,Rel A∗aa′, respec-
tively), in order to obtain

f∗aa′a∗ ∶ Rel B∗
(fx)(f ′x′)[a/x, a′/x′, a∗/x∗],

where we have used the hypotheses on A∗ and B∗ in validating application typing rule.
Since the sets of primed, starred, and vanilla variables are disjoint, and every variable in
f ′ is primed, while every variable in f vanilla, we may rewrite the above as

f∗aa′a∗ ∶ Rel B∗
[a/x, a′/x′, a∗/x∗](fa)(f ′a′)

By the substitution lemma,

B∗
[a/x, a′/x′, a∗/x∗] = (B[a/x])∗

We may thus rewrite the above judgment as

Γ∗ ⊢ (fa)∗ ∶ Rel B[a/x]∗(fa)(fa)′

as required.
Pairing. Given a derivation

Γ ⊢ A ∶ T⊛
Γ, x∶TA ⊢ B ∶ T⊛ Γ ⊢ a ∶ TA Γ ⊢ b ∶ TB[a/x]

Γ ⊢ (a, b) ∶ T(◯ΣA(λx ∶ TA.B))

we have

Γ∗ ⊢ a∗ ∶ Rel A∗aa′

Γ∗ ⊢ b∗ ∶ Rel B[a/x]∗bb′

We also have

Rel (◯ΣA(λx∶TA.B))
∗
(a, b)(a′, b′)

= Rel (◯Σ∗A∗
(λx ∶ TA.B)

∗
)(a, b)(a′, b′)

= Σa∗ ∶ Rel A∗π1(a, b)π1(a
′, b′).

Rel ((λx∶TA.B)
∗π1(a, b)π1(a

′, b′)a∗)π2(a, b)π2(a
′, b′)

= Σa∗ ∶ Rel A∗aa′.Rel ((λx∶TA.B)
∗aa′a∗)bb′

= Σa∗ ∶ Rel A∗aa′.Rel (B∗
[a, a′, a∗/x,x′, x∗])bb′

= Σa∗ ∶ Rel A∗aa′.Rel B[a/x]∗bb′

Using the pairing rule, we see that (a∗, b∗) can be given the type derived above. So by
conversion, we find

Γ∗ ⊢ (a, b)∗ ∶ Rel (◯ΣA(λx∶TA.B))
∗
(a, b)(a, b)′

as required.
Projections. Given

Γ ⊢ A ∶ T⊛
Γ, x∶TA ⊢ B ∶ T⊛ Γ ⊢ p ∶ T(◯ΣA(λx∶TA.B))

Γ ⊢ π1p ∶ TA
Γ ⊢ π2p ∶ TB[π1p/x]
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we get, by induction hypothesis, that

Γ∗ ⊢ p∗ ∶ Rel (◯ΣA(λx∶TA.B))
∗pp′

By the same computation as the previous case, we see that that the type of p∗ above is
convertible to

Σa∗ ∶ Rel A∗
(π1p)(π1p

′
).Rel B∗

[π1p, π1p
′, a∗/x,x′, x∗](π2p)(π2p

′
)

But then we have

π1p
∗
∶ Rel A∗π1pπ1p

′

π2p
∗
∶ Rel B∗

[π1p, π1p
′, π1p

∗
/x,x′, x∗](π2p)(π2p

′
)

The first judgment above already has the form required. As for the second, we use the
substitution lemma to rewrite it as

(π2p)
∗
∶ Rel B[π1p/x]

∗
(π2p)(π2p)

′

and this too obeys the form of (14).
Conversion. Suppose

Γ ⊢M ∶ A Γ ⊢ B ∶ T⊛ A = B
Γ ⊢M ∶ B

Since the source derivation is assumed to come from λ∗, we may apply the induction
hypothesis and obtain

Γ ⊢M∗
∶ Rel A∗MM ′

The fact that A = B, entails, for deep typographical reasons, that A′ = B′.
Hence by conversion, we have that M ∶ B as well as M ′ ∶ B′.
But we also have that B ∶ U, so that B∗ ∶ Rel ⊛∗BB′, or equivalently B∗ ∶ EqBB′.
These facts yield that Rel B∗MM ′ ∶ ∗.
By Proposition 13, Rel A∗MM ′ = Rel B∗MM ′.
Γ∗ ⊢M∗ ∶ Rel B∗MM ′ J

6 Internalization

Let us summarize the results of the previous two sections.
1. There exists a translation

⋅ ∶ Terms(λ∗)→ Terms(λ∗U)

such that

Γ ⊢λ∗ M ∶ A Ô⇒ Γ ⊢λ∗U M ∶ TA

2. There exists a translation

(⋅)
∗

∶ Terms(λ∗U)→ Terms(λ∗UE)

such that

Γ ⊢λ∗ M ∶ A Ô⇒ Γ∗ ⊢λ∗UE M
∗
∶ Rel A

∗
MM

′
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As we see, the final transformation

M z→M
∗

does not yet give us what we seek, because it maps a term in system λ∗ to a term in a larger
system. For example, the type of M∗ is, in general, not a type of λ∗, since it may contain
references to U,T ,◯Π ∗, etc.

What we are after is an operation that can be iterated. At the very least, it should map
terms from one system to the same system. Preferably, the type of the result should also
belong to the same universe as the type of the input term.

How can we obtain a universe closed under the (Eq ,Rel )-family?
Easy: just add the codes corresponding to these types into the grammar of the universe.

Inductive U ∶ ∗ ∶=

∣ ⊛ ∶ U
∣ ◯Π ∶ ΠA ∶ U. (TA→ U)→ U
∣ ◯Σ ∶ ΠA ∶ U. (TA→ U)→ U
∣ ◯≃ ∶ U → U → U
∣ ◯∼ ∶ Π{AB} ∶ U. T [◯≃AB]→ TA→ TB → U

The decodings of the new symbols are

T(◯≃AB) = EqAB
T(◯∼ABeab) = Rel eab

Now, denoting by λ∗UE− the extension of λ∗ with the above universe, we can still define
the operation M and (M)∗, but the problem is that the type of the resulting term

Rel A
∗
MM

′
∶ ∗

belongs to the universe of λ∗UE−, and we do not have a reflection from terms of λ∗UE− into
U (since U does not have an internal universe).

Is it ever possible to define a universe where (⋅)∗ can be iterated?
Surely, one cannot know for sure until one has tried every possible avenue. With the benefit

of that knowledge, let us try to expand the realm of inductive-recursive definitions, to allow
the decoding function of the IIRD type EqAB, which is itself the decoding of a constructor of
a lower index type U being defined simultaneously with it (T(◯≃AB) = EqAB), to be valued
back in the type U! In essence, after evaluating the relation Rel {A,B}(e) ∶ TA → TB → ∗

coded by e ∶ Eq(A,B), we immediately reflect it back into U! We denote λ∗ extended with
such a universe by λ∗UE .

The two IIRD definitions of the internal universes of λ∗UE− and λ∗UE , are given in
Figures 2 and 3, and may be compared side-by-side. It shall be seen that the only difference
is in the Rel map, and in the value of T at ◯∼ .

Observe that, this time, for M ∶ TA, the result of applying the (⋅)∗-operator stays in U!
Indeed, we have

Γ ⊢λ∗ M ∶ A Ô⇒ Γ ⊢λ∗U M ∶ TA

Ô⇒ Γ∗ ⊢λ∗UE M
∗
∶ T(Rel A

∗
MM

′
)

and we have a code in U for the type of M∗. This allows us to iterate the (⋅)∗-operator as
many times as we like.
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Inductive U ∶ ∗ ∶=

∣ ⊛ ∶ U
∣ ◯Π ∶ ΠA ∶ U. (TA→ U)→ U
∣ ◯Σ ∶ ΠA ∶ U. (TA→ U)→ U
∣ ◯≃ ∶ U → U → U
∣ ◯∼ ∶ Π{AB} ∶ U. T [◯≃AB]→ TA→ TB → U

with T ∶ U → ∗ ∶=

T(⊛) = U
T(◯ΠAB) = Πa ∶ TA. T [Ba]

T(◯ΣAB) = Σa ∶ TA. T [Ba]

T(◯≃AB) = EqAB
T(◯∼ eab) = Rel eab

and Eq ∶ U → U → ∗ ∶=

∣ r(⊛) ∶ Eq⊛⊛
∣ ◯Π

∗
∶ Π{A}{A′

} ΠA∗
∶ EqAA′

Π{B}{B′
} ΠB∗

∶ (Πaa′a∗. Eq(Ba)(B′a′)). Eq(◯ΠAB)(◯ΠA
′B′

)

∣ ◯Σ
∗

∶ Π{A}{A′
} ΠA∗

∶ EqAA′

Π{B}{B′
} ΠB∗

∶ (Πaa′a∗. Eq(Ba)(B′a′)). Eq(◯ΣAB)(◯ΣA
′B′

)

∣ ◯≃
∗

∶ Π{AA′
}A∗

{BB′
}B∗. Eq(◯≃AB)(◯≃A

′B′
)

∣ ◯∼
∗

∶ ΠAA′A∗BB′B∗ee′e∗aa′a∗bb′b∗. Eq(◯∼ eab)(◯∼ e′a′b′)
with Rel {AB ∶ U} ∶ EqAB → TA→ TB → ∗ ∶=

∣ Rel (r(⊛))AB = EqAB
∣ Rel (◯Π∗A∗B∗

)ff ′ = Πx∶TAΠx′∶TA′Πx∗ ∶ Rel A∗xx′.

Rel (B∗xx′x∗)(fx)(f ′x′)

∣ Rel (◯Σ∗A∗B∗
)pp′ = Σx∗ ∶ Rel A∗

(π1p)(π1p
′
).

Rel (B∗
(π1p)(π1p

′
)x∗)(π2p)(π2p

′
)

∣ Rel (◯≃∗AA′A∗BB′B∗
)ee′ = Πaa′a∗ Πbb′b∗. Eq(◯∼ eab)(◯∼ e′a′b′)

∣ Rel (◯∼∗AA′A∗BB′B∗ee′e∗aa′a∗bb′b∗)γγ′ = Rel(e∗aa′a∗bb′b∗)γγ′

Figure 2 The universe of λ∗UE−.
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Inductive U ∶ ∗ ∶=

∣ ⊛ ∶ U
∣ ◯Π ∶ ΠA ∶ U. (TA→ U)→ U
∣ ◯Σ ∶ ΠA ∶ U. (TA→ U)→ U
∣ ◯≃ ∶ U → U → U
∣ ◯∼ ∶ Π{AB} ∶ U. T [◯≃AB]→ TA→ TB → U

with T ∶ U → ∗ ∶=

T(⊛) = U
T(◯ΠAB) = Πa ∶ TA. T [Ba]

T(◯ΣAB) = Σa ∶ TA. T [Ba]

T(◯≃AB) = EqAB
T(◯∼ eab) = T(Rel eab)

and Eq ∶ U → U → ∗ ∶=

∣ r(⊛) ∶ Eq⊛⊛
∣ ◯Π

∗
∶ Π{A}{A′

} ΠA∗
∶ EqAA′

Π{B}{B′
} ΠB∗

∶ (Πaa′a∗. Eq(Ba)(B′a′)). Eq(◯ΠAB)(◯ΠA
′B′

)

∣ ◯Σ
∗

∶ Π{A}{A′
} ΠA∗

∶ EqAA′

Π{B}{B′
} ΠB∗

∶ (Πaa′a∗. Eq(Ba)(B′a′)). Eq(◯ΣAB)(◯ΣA
′B′

)

∣ ◯≃
∗

∶ Π{AA′
}A∗

{BB′
}B∗. Eq(◯≃AB)(◯≃A

′B′
)

∣ ◯∼
∗

∶ ΠAA′A∗BB′B∗ee′e∗aa′a∗bb′b∗. Eq(◯∼ eab)(◯∼ e′a′b′)
with Rel {AB ∶ U} ∶ EqAB → TA→ TB → U ∶=

∣ Rel (r(⊛))AB = ◯≃AB

∣ Rel (◯Π∗A∗B∗
)ff ′ = ◯Πx∶A◯Π x

′
∶A′
◯Π x

∗
∶ Rel A∗xx′.

◯∼ (B∗xx′x∗)(fx)(f ′x′)

∣ Rel (◯Σ∗A∗B∗
)pp′ = ◯Σx

∗
∶ Rel A∗

(π1p)(π1p
′
).

◯∼ (B∗
(π1p)(π1p

′
)x∗)(π2p)(π2p

′
)

∣ Rel (◯≃∗AA′A∗BB′B∗
)ee′ = ◯Πaa

′a∗ ◯Π bb
′b∗. ◯≃ (◯∼ eab)(◯∼ e

′a′b′)

∣ Rel (◯∼∗AA′A∗BB′B∗ee′e∗aa′a∗bb′b∗)γγ′ = ◯∼(e
∗aa′a∗bb′b∗)γγ′

Figure 3 The universe of λ∗UE .
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I Remark. One could naturally wonder whether our use of the expanded induction-recursion
format is really necessary, whether it is consistent, and how much logical strength it consumes.
Since the logical relation encapsulates some universal properties of the base system, we expect
that closing off a universe under its logical relation would require a significant use of logical
power. At the same time, we believe that our particular definition could be justified using
sufficiently large universes (such as Palmgren’s higher-order universes, or Setzer’s Mahlo
universes), considering the rather obvious inductive structure evident in the form of our
definition.

In any case, the above issues do not really concern us here, because we are now ready to
define our candidate type system internalizing extensional equality for closed types, and this
system is almost certainly consistent. If we ultimately get where we were going, then it’s not
as important how we got there . . .

7 The wormhole

Having defined the universe containing (a reflection of) λ∗ and closed under its own logical
relation, we are now ready to . . . go there!

We define λ≃, a dependent type theory with type equality.
The system is obtained by unquoting the internal universe U of λ∗UE .
That is, rather than defining a reflection of meta-level into the object level, we expand

our meta-level by descending into the object level.
Once we are inside U we forget that ∗ ever existed,

∗ ∶= U

The syntax of our new environment, as it appears to us, is given in Figure 4. It is almost
the same as λ∗ (and we only display the new typing rules), the only differences are:
1. A new type constructor, type equality, is present.
2. The universes are stratified to remove inconsistency.

The new type A ≃ B has four introduction rules, stating that every type constructor
preserves type equality – including type equality.

It has a single elimination rule which, given an element e ∶ A ≃ B, returns a relation

∼e ∶ A→ B → ∗

For every combination of an introduction rule with the elimination rule, it has a compu-
tation rule stating that the relation induced by one of the congruence constructors is given
inductively by the logical condition associated to the corresponding type constructor.

I Theorem 18. There exists an operation (⋅)∗ ∶ Terms(λ≃)→ Terms(λ≃) such that

Γ ⊢λ≃ M ∶ A Ô⇒ Γ∗ ⊢λ≃ M∗
∶M ∼A∗ M ′

In particular, if ⊢ A ∶ ∗ is a closed type, then there exists a closed term

r(A) ∶ A ≃ A

We write a ≃A a′ ∶= a ∼r(A) a
′.

If ⊢ a ∶ A is a closed term, then there exists closed

r(a) ∶ a ≃A a

The study of system λ≃ will be continued in future work. A proof of the above theorem
may be found in a draft at http://arxiv.org/abs/1401.1148.

http://arxiv.org/abs/1401.1148
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A, t, e ∶∶= ∗n ∣ x ∣ Πx∶A.B ∣ Σx∶A.B ∣ A ≃ B ∣ a ∼e b

∣ λx∶A.t ∣ st ∣ (s, t) ∣ π1t ∣ π2t

∣ ∗
∗
n ∣ Π∗

[x,x′, x∗]∶A∗.B∗
∣ Σ∗

[x,x′, x∗]∶A∗.B∗
∣ ≃

∗A∗B∗

Γ ⊢ ∗n ∶ ∗n+1

Γ ⊢ A ∶ ∗n

Γ ⊢ A ∶ ∗n+1

Γ ⊢ A ∶ ∗n Γ ⊢ B ∶ ∗n

Γ ⊢ A ≃ B ∶ ∗n

Γ ⊢ A ∶ ∗n Γ ⊢ B ∶ ∗n Γ ⊢ e ∶ A ≃ B (≃-Elim)Γ ⊢ ∼e ∶ A→ B → ∗n

(a ∶ A)(b ∶ B) a ∼e b ∶= ∼eab

Γ ⊢ ∗∗n ∶ ∗n ≃ ∗n

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Γ ⊢ A ∶ ∗

Γ ⊢ A′ ∶ ∗

Γ ⊢ A∗ ∶ A ≃ A′

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Γ, x ∶ A ⊢ B ∶ ∗

Γ, x′ ∶ A′ ⊢ B′ ∶ ∗

Γ, x∶A,x′∶A′, x∗ ∶ x∼A∗x′ ⊢ B∗ ∶ B ≃ B′

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

Γ ⊢ Π∗[x,x′, x∗] ∶ A∗.B∗ ∶ Πx∶A.B ≃ Πx′∶A′.B′

Γ ⊢ Σ∗[x,x′, x∗] ∶ A∗.B∗ ∶ Σx∶A.B ≃ Σx′∶A′.B′

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Γ ⊢ A ∶ ∗

Γ ⊢ A′ ∶ ∗

Γ ⊢ A∗ ∶ A ≃ A′

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Γ ⊢ B ∶ ∗

Γ ⊢ B′ ∶ ∗

Γ ⊢ B∗ ∶ B ≃ B′

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

Γ ⊢ ≃∗A∗B∗ ∶ (A ≃ B) ≃ (A′ ≃ B′)

A ∼∗∗ B Ð→ A ≃ B

f ∼Π∗[x,x′,x∗]∶A∗.B∗ f ′ Ð→ Πa∶AΠa′∶A′Πa∗ ∶ a ∼A∗ a′. fx ∼B∗[a,a′,a∗/x,x′,x∗] f
′x′

p ∼Σ∗[x,x′,x∗]∶A∗.B∗ p′ Ð→ Σa∗ ∶ π1p ∼A∗ π1p
′. π2p ∼B∗[π1p,π1p′,a∗/x,x′,x∗] π2p

′

e ∼≃∗A∗B∗ e′ Ð→ Πa∶AΠa′∶A′Πa∗ ∶ a ∼A∗ a′

Πb∶BΠb′∶B′ Πb∗ ∶ b ∼B∗ b′. (a ∼e b) ≃ (a′ ∼e′ b
′
)

Figure 4 λ≃ .
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Abstract
We show that a restricted variant of constructive predicate logic with positive (covariant) quanti-
fication is of super-elementary complexity. The restriction is to limit the number of eigenvariables
used in quantifier introductions rules to a reasonably usable level. This construction suggests that
the known non-elementary decision algorithms for positive logic may actually be best possible.
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1 Introduction

Constructive logics are basis for many proof assistants [3, 4, 14, 5] as well as theorem
provers [1, 15]. Since these tools are actively used for development of verified software
[10, 12] and for formalization of mathematics [8, 9] it is instructive to study computational
complexity of decidable fragments of the logics. Especially because first-order intuitionistic
logic becomes undecidable at a fairly low level [19].

One such fragment consists of positive formulas (understood here as formulas with positive
quantification), shown decidable by Mints [13]. As defined there, a formula is positive when it
is classically equivalent to one with a quantifier prefix of the form ∀∗. If we restrict attention
to formulas built with (∀,→) only, we can equivalently say that a formula ϕ is positive if
and only if all occurrences of ∀ in ϕ are positive, where:

The position of ∀x in ∀xϕ is positive;
Positive/negative positions in ϕ are respectively positive/negative in ∀xϕ and in ψ → ϕ.
Positive/negative positions in ψ are respectively negative/positive in ψ → ϕ.

It is not immediate to see that deciding provability for positive formulas is possible. The
same positive quantifier may be introduced several times in a proof, and this requires a fresh
eigenvariable each time. The number of eigenvariables occurring in a proof is in general
unbounded, so the search space for proofs is potentially infinite. However some of the
eigenvariables may be regarded as equivalent – variables that “satisfy the same assumptions”
can be exchanged with each other. Thus the identity of an eigenvariable x is determined by
the set of assumptions made about it. With n assumptions there is 2n such sets, so we need
2n eigenvariables. The number of variables to consider grows exponentially at each level of
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nested quantification (see the discussion following Example 6), but altogether it remains
finite.

Decision algorithms for formulas of minimal positive logic that rigorously develop the idea
sketched above were given by Dowek and Jiang [6, 7], Rummelhoff [16], and Xue and Xuan [22].
It should come as no surprise that these algorithms are of non-elementary complexity (while
the analogous problem of satisfiability for ∃∗-sentences in classical first-order logic is only
NP-complete [2, Thm. 6.4.3]).

As for the lower bound, the best result known up to date is only doubly exponential
hardness [18], and our own attempt to prove non-elementary complexity failed; the proof
in [17] turned out incorrect.

While the question of an exact lower bound remains open, the contribution of the present
paper makes the non-elementary conjecture quite plausible. As noted above, raising the
quantifier nesting by one yields at most exponential increase of the number of eigenvariables.
This is a crucial argument in the known decidability proofs. We show that if this restriction
becomes a part of the problem, i.e., if we require that the number of eigenvariables occurring
in proofs is bounded by an appropriate multiply exponential function, then the problem is
non-elementary.

This does not necessarily mean that the original problem is non-elementary, as there may
be proofs that violate the multiply exponential bound on eigenvariable occurrences, but are
easy to find by some algorithm. However, this seems to be very difficult to imagine since
then the algorithm would effectively represent a method to compress multiply exponential
complicated structures.

Our hardness proof is inspired by an automata-theoretic interpretation of proof-search.
The idea is simple and, we believe, quite universal. When attempting to construct a proof of
a formula ϕ, one encounters subproblems of the form Γ ` α. We think of α as if it was a
state of an automaton and of Γ as of some kind of memory storage. Applying a proof tactic
to Γ ` α, which yields a new proof obligation Γ′ ` α′, can be seen as changing the state
from α to α′ and updating the memory Γ to Γ′. This way, proof construction can simulate a
computation of an automaton.

Our Eden automata (or “expansible tree automata”) are alternating machines operating
on data that is structured into trees of knowledge. The computation trees of Eden automata
correspond directly to proofs (equivalently, λ-terms) and the trees of knowledge represent the
structure of binders in proofs. In fact, a slightly more general definition of Eden automata
in [18] yields an exact equivalence between proofs and computations. Here, we stick to the
weaker version, as we are only interested with a lower bound for the restricted case.

A specific feature of Eden automata is their monotone (non-erasing) access to data, very
much as in the works by Leivant or even earlier by Wang [11, 21]. This is so because in a
fully-structural logic assumptions are never deleted.

Structure of the paper. Section 2 introduces some notation and states the principal
definitions related to logic and lambda-terms used as proof notation. In Section 3 we give
some insight into the intricacy of the problem. Then we introduce Eden automata and
define the translation of automata into formulas. The main technical development to encode
elementary Turing Machines as Eden automata is done in Section 4.

2 Preliminary definitions

We define exp0(n) = n and expk+1(n) = 2expk(n). A tree is a finite partial order 〈T,≤〉 with
a least element εT ∈ T (the root) and such that every non-root element w ∈ T has exactly
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one immediate predecessor (parent) v, in which case we say that w is a child of v. A labelled
tree is a function T : T→ L, where T is a tree, and L is a set of labels. We often confuse T
with its domain T. If L is a set of m-tuples we may say that the dimension of T is m. A
proper ancestor of a node w in a tree T is either a parent v of w or a proper ancestor of v.
(The root of the tree has no proper ancestors.) A node w with exactly h proper ancestors in
T is said to be at depth h, and then we may write |w| = h. The depth of T is the maximal
depth of a node in T . A tree has uniform depth k when all its leaves (maximal elements) are
at depthk.

It is sometimes convenient to refer to the level of a node w which is the depth of the
subtree Tw = {v ∈ T | w ≤ v}, rooted at w. An immediate subtree of a node w in T is any
tree Tv, where v is a child of w.

If k ∈ N then k = {0, . . . , k}. If f is any function then f [x 7→ a] stands for the function f ′
such that f ′(x) = a, and f ′(y) = f(y), for y 6= x. In particular, T [w 7→ s] is a tree obtained
from T by replacing the label at w by s.

Formulas: We consider the monadic fragment (all predicates are unary) of first-order
intuitionistic logic without function symbols and without equality. Therefore the only object
terms are object variables, written x, y, z, . . . For simplicity we only consider two logical
connectives: the implication and the universal quantifier. We use standard parentheses-
avoiding conventions, in particular we take implication to be right-associative, e.g., ϕ →
ψ → ϑ stands for ϕ→ (ψ → ϑ).

We deal with positive formulas; those are defined in parallel with negative formulas:
An atom P (x), where P is a unary predicate symbol and x is an object variable, is both
a positive and a negative formula.
If ϕ is positive and ψ is negative then (ϕ→ ψ) is a negative formula.
If ϕ is negative and ψ is positive then (ϕ→ ψ) is a positive formula.
If ϕ is positive and x is an object variable then (∀xϕ) is a positive formula.
If ϕ is negative and x is an object variable then (∀xϕ) is a negative formula.

The following lemma gives a direct characterization of positive and negative formulas.

I Lemma 1.
1. Every positive formula is of the form ∀~x1(σ1 → ∀~x2(σ2 → · · · → ∀~xn(σn → ∀~x0 a) . . . )),

where σi are negative, and a is an atomic formula.
2. Every negative formula is of the form τ1 → τ2 → · · · → τn → a, where τi are positive,

and a is an atomic formula.

The rank of a formula ϕ, written rk(ϕ), measures the nesting of occurrences of ∀~x in ϕ. By
induction we define:

rk(a) = 0, when a is an atomic formula;
rk(ψ → ϑ) = max{rk(ψ), rk(ϑ)};
rk(∀xψ) = rk(ψ), when ψ begins with ∀;
rk(∀xψ) = 1 + rk(ψ), otherwise.

Lambda-terms: In addition to object variables, used in formulas, we also have proof
variables occurring in proofs. We use capital letters, like X, Y , Z, for proof variables and
lower case letters, like x, y, z, for object variables.

An environment is a set Γ of declarations (X : ϕ), where X is a proof variable and ϕ is
a formula. We often identify Γ with the set of formulas {ϕ | (X : ϕ) ∈ Γ, for some X}. A
proof term (or simply “term”) is one of the following:
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a proof variable,
an abstraction λX :ϕ.M , where ϕ is a formula and M is a proof term,
an abstraction λxM , where M is a proof term,
an application MN , where M , N are proof terms,
an application Mx, where M is a proof term and x is an object variable.

The following type-assignment rules infer judgements of the form Γ `M : ϕ, where Γ is an
environment, M is a term, and ϕ is a formula. In rule (∀I) we require x 6∈ FV(Γ) and y in
rule (∀E) is an arbitrary object variable.

Γ, X : ϕ ` X : ϕ (Ax)

Γ, X : ϕ `M : ψ
(→I)

Γ ` λX :ϕ.M : ϕ→ ψ

Γ `M : ϕ→ ψ Γ ` N : ϕ
(→E)

Γ `MN : ψ

Γ `M : ϕ
(∀I)

Γ ` λxM : ∀xϕ

Γ `M : ∀xϕ
(∀E)

Γ `My : ϕ[x := y]

We may write λXϕM for λX :ϕ.M , and the upper index α in Mα means that term M

has type α in some (implicit) environment. Other notational conventions are as usual in
lambda-calculus, in particular application is left-associative, i.e., MNP stand for ((MN)P ).

2.1 Restricted proofs and long normal forms
A redex is a term of the form (λxM)y or of the form (λY :ϕ.M)N . A term which does not
contain any redex is said to be in normal form. It is not difficult to see that normal forms
are of the following shapes:

XN1 . . . Nk, where all Ni are normal forms or object variables;
λX :ϕ.N , where N is a normal form;
λxN , where N is a normal form.

Normal forms correspond to normal proofs in natural deduction (or to cut-free proofs in
sequent calculus). It is known, see e.g., [20, Ch.8], that every well-typed term reduces to one
in normal form of the same type. In particular we know that:

If Γ `M : ϕ then there exists a term N in normal form with Γ ` N : ϕ.

Occurrences of a free variable X in a term can be nested; this occurs when X is free in some
Ni in the context XN1 . . . Nk where k ≥ 0. The maximal nesting [(X,M) of a variable X in
a normal term M is defined formally as:

[(X,X) = 1, [(X,Y ) = 0, when X 6= Y ;
[(X,Y N1 . . . Nk) = [(X,Y ) + maxi [(X,Ni);
[(X,λY N) = [(X,N), when X 6= Y , and [(X,λX N) = 0;
[(X,λy N) = [(X,N).

I Definition 2 (n-restricted proofs). We say that a normal proof M is n-restricted when it
has the following property: in every subterm of the form λX :σ.N , where rk(σ) = k > 0,
the variable X has at most expk(n) nested occurrences in N , i.e., [(X,N) ≤ expk(n). A
judgement is n-provable when it has an n-restricted normal proof.

I Problem 3 (restricted decision problem for positive quantification). Given a positive formula
ϕ and a number n, decide if ϕ is n-provable.
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The process of proof search is easier to control if we restrict our attention to proofs in long
normal form.

I Definition 4. The notion of a term in long normal form (lnf) is defined according to its
type in a given environment.

If N is an lnf of type α then λxN is an lnf of type ∀xα.
If N is an lnf of type β then λX :α.N is an lnf of type α→ β.
If N1, . . . , Nn are lnf or object variables and XN1 . . . Nn is of an atom type then the term
XN1 . . . Nn is an lnf.

I Lemma 5. If Γ `M : σ and M is in normal form then there exists a long normal form
N such that Γ ` N : σ. In addition, if M is n-restricted then so is N .

Proof. First let us define a transformation T which will be used for applications in normal
form. In Tα(M) we assume that M is of type α in an appropriate environment; the definition
is by induction with respect to α:

T ∀x.α(M) = λxTα(Mx);
Tα→β(M) = λX :α. T β(MX);
Tα(M) = M if α is an atom type.

Suppose that M = XN1 . . . Nk, where each Ni is an lnf or an object variable. It is easy to
see that if M has type α then Tα(M) is an lnf of type α.

Transformation R takes an argument in normal form and returns its long normal form.
In Rα(M) we assume that M is of type α in some environment; the definition is by induction
with respect to M :

R∀x.α(λx.P ) = λxRα(P )
Rα→β(λX : α.P ) = λX : α.Rβ(P )
Rα(XP1 . . . Pk) = Tα(XP ′1 . . . P ′k),
where P ′i is the result of applying R to Pi if Pi is a term, and P ′i = Pi otherwise.

Observe that transformations T and R have the following property:
They do not change the number and relative position of existing occurrences of free or
bound proof variables in a term;
Whenever a new variable is added, it only occurs once in the result.

The desired term N equals Rσ(M). Details are left to the reader. The two properties above
ensure that N is n-restricted whenever so is M . J

The logic of long normal proofs. We say that a judgement Γ ` ϕ is positive when ϕ is
positive, and all formulas in Γ are negative. The type-assignment rules below preserve
positivity, and by Lemma 5 they make a complete proof system for positive judgments.

Γ, X : ϕ `M : ψ
(→I)

Γ ` λX :ϕ.M : ϕ→ ψ

Γ `Mi : τi, i = 1, . . . , n
(→E)

Γ, X : τ1 → · · · → τn → a ` XM1 . . .Mn : a

Γ `M : ϕ
(∀I)

Γ ` λxM : ∀xϕ
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3 Computational content of positive logic

As already mentioned, the main complication of deciding provability of a positive formula is
that one quantifier can be introduced several times in a proof and may bring to the derivation
several different “eigenvariables”. As a result we obtain a potential for unbounded storage.
To see how this works let us go through the following example.

I Example 6. Let 1 and 0 be unary predicate symbols, and let G, L,U,Z, be nullary atoms.1
Consider the formulas:

ϕ = (ψ → L)→ (Z→ U→ L)→ L;
ψ = ∀x.Gen0(x)→ Gen1(x)→ Zero(x)→ One(x)→ G,

with the following components, whose intended meaning will soon become clear.

Gen0(x) = (0(x)→ L)→ G;
Gen1(x) = (1(x)→ L)→ G;
Zero(x) = 0(x)→ Z;
One(x) = 1(x)→ U.

We show how the process of finding a long normal proof of the formula ϕ represents a
computation of a simple “procedure” consisting of two phases:
1. Nondeterministically generate a number of bits in a loop;
2. Check that there is at least one 0 and at least one 1 among the generated bits.

The atoms correspond to states of the procedure:
L − the entry point to the main Loop;
G − Generate a bit;
Z − test for the presence of Zero;
U − test for the presence of 1 (a “Unit”).

A long normal proof of the formula ϕ (a lambda term of type ϕ) must take the shape
λXψ→LλY Z→U→L.M , where the term M of type L should begin either with X or with Y .
Let us consider the first possibility, i.e., let M = XM1. The long normal term M1 has
type ψ, so we must have M1 = λx1λZ1U1V1W1. N1, where Z1 : Gen0(x1), U1 : Gen1(x1),
V1 : Zero(x1), W1 : One(x1), and N1 : G. This way we have replaced the proof goal L by a
new proof goal G. We interpret it as passing from state L to state G in a computation.

The term N1 can now begin with any of the variables Z1, U1, V1, W1, so let us try Z1,
i.e., take N1 = Z1(λT 0(x1)

1 .M2), with M2 of type L. The variable T1, which can occur in M2,
is a new assumption of the form 0(x1) added to the proof environment. Our computational
interpretation of this phase is that the bit zero has been just written to the memory cell
represented by the eigenvariable x1 and the control went back to state L.

Asking about M2 we note that one possibility is M2 = X(λx2λZ2U2V2W2. N2), with
Z2 : Gen0(x2), U2 : Gen1(x2), V2 : Zero(x2), W2 : One(x2), and N2 : G. This step introduces
to the proof a new eigenvariable x2 (or allocates a new memory cell x2). We may now
construct N2 = Z2(λT 0(x2)

2 .M3), and repeat the loop once more in a slightly different
way, by taking M3 = X(λx3λZ3U3V3W3. U3(λT 1(x3)

3 .M4)). Now we have three memory
locations x1, x2, x3, containing respectively the values 0, 0, 1. We could continue in this

1 Nullary atoms, used for clarity, can be easily replaced by unary ones.



A. Schubert, P. Urzyczyn, and D. Walukiewicz-Chrząszcz 257

fashion by introducing more locations and more bits, but now we can also complete the
proof construction by choosing, for example, M4 = Y (V1(T1))(W3(T3)). This step represents
entering states Z and U, to check the presence of memory locations holding zero and one.
Note that this two actions happen independently in parallel (it is a universal computation
step). As a result we obtain a complete proof of ϕ:

λXψ→LλY Z→U→L. X(λx1λZ1U1V1W1. Z1(λT 0(x1)
1 .

X(λx2λZ2U2V2W2. Z2(λT 0(x2)
2 .

X(λx3λZ3U3V3W3. Z3(λT 1(x3)
3 . Y (V1(T1))(W3(T3)))))))).

In the above proof, the subterm V1(T1) using the variable x1, can be replaced by V2(T2),
because assumptions made about x2 and x1 are exactly the same. We may say that variables
x1 and x2 are “equivalent”, and from this point of view, introducing x2 was not necessary.
Indeed, the middle line of the above term could simply be deleted without any harm.

As we mentioned before, a proof (for instance a proof of the formula in Example 6)
can involve an unbounded number of variables. In [6] it is shown rigorously how some
eigenvariables may be eliminated, because “equivalent” variables can replace each other. The
term “equivalent” is understood as “satisfying the same assumptions” and a basic instance
of such equivalence is presented in Example 6.

The number of necessary non-equivalent eigenvariables is therefore essential to determine
the complexity. A closer analysis of the algorithm in [6] reveals a super-elementary (tetration)
upper bound, in other words the problem belongs to Grzegorczyk’s class E4.

Indeed, a formula of length n has O(n) different subformulas, so if it only has one
quantifier ∀x (like the one in our example) then the number of non-equivalent eigenvariables
introduced for the quantifier is (in the worst case) exponential in n, as one has to account
for every selection from up to O(n) subformulas including free occurrences of x. And here
the quantifier depth comes into play. Consider a formula of the form ∀x (. . . ∀y ϕ(x, y) . . . ).
For every eigenvariable x′ for ∀x we now have O(n) subformulas of ϕ(x′, y) and therefore up
to exponentially many eigenvariables obtained from ∀y. Any set of such eigenvariables may
potentially be created for a given eigenvariable for ∀x, and this gives a doubly exponential
number of choices. Two eigenvariables coming from ∀x may be assumed equivalent only
when they induce the same choice, so we get a doubly exponential number of possible
non-equivalent eigenvariables for ∀x. Any additional nested quantifier increases the number
of non-equivalent variables exponentially, and this yields the super-elementary upper bound.

3.1 Eden automata
An Eden automaton (abbr. Ea) is an alternating computing device, organising its memory
into a tree of knowledge of bounded depth but potentially unbounded width. The tree initially
consists of a single root node and may grow during machine computation, not exceeding a
fixed maximum depth. The machine can access memory registers at the presently visited
node and its ancestor nodes. This access is limited to using the registers as guards: it can be
verified that a flag is up, but checking that a flag is down is simply impossible. Every flag is
initially down, but once raised, it so remains forever.

Formally, an Ea is a tuple A = 〈 k,m,R, Q, q0, I 〉, where:
k ∈ N is the depth of A (recall the notation k = {0, . . . , k});
R is the finite set of registers; the number m = |R| is the dimension of A.
Q is the finite set of states, partitioned as Q =

⋃
i∈k Qi. In addition, each Qi splits into

disjoint sets Q∀i and Q∃i and we also define Q∀ =
⋃
i∈k Q

∀
i and Q∃ =

⋃
i∈k Q

∃
i . States in

Q∀, Q∃ are respectively universal and existential.
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q0 : k→ Q assigns the initial state q0
i ∈ Qi to every i ∈ k.

I is the set of instructions.

Instructions in I available in state q ∈ Qi, may be of the following kinds:
1. “q : jmp p”, where p ∈ Qj , and |i− j| ≤ 1;
2. “q : check R(h) jmp p”, where p ∈ Qi and h ≤ i;
3. “q : set R(h) jmp p”, where p ∈ Qi and h ≤ i;
4. “q : new”, for i < k.

Instructions available in q ∈ Q∀i , for any i, must be of kind (1), with j = i. If q ∈ Qh in (2)
or (3) then we write R instead of R(h). An ID (instantaneous description) of A is a triple
〈 q, T, w 〉, where q is a state and T is a tree of depth at most k, labelled with elements of
{0, 1}R (i.e., functions from R to {0, 1}), called snakes. That is, if v is a node of T then
T (v) is a snake, and T (v)(R) ∈ {0, 1} for any register R. When T is known from the context,
we write R(v) for T (v)(R). A snake can be identified with a binary string of length m, for
example ~0 stands for a snake constantly equal to 0. Finally, the component w is a node of T
called the current apple. We require that q ∈ Q|w|. That is, the internal state always “knows”
the depth of the current apple.

The IDs are classified as existential and universal, depending on their states. The initial
ID is 〈 q0

0 , T0, ε 〉, where T0 has only one node ε, the root, labelled with ~0 (all flags are down).
An ID C ′ = 〈 p, T ′, w′ 〉 is a successor of C = 〈 q, T, w 〉, when C ′ is a result of execution

of an instruction I ∈ I at C . We now define how this may happen. Assume that q ∈ Qi,
and first consider case (1) where I = “q : jmp p”.

If p ∈ Qi then C ′ = 〈 p, T, w 〉 is the unique result of execution of I at C . (The machine
simply changes its internal state from q to p.)
If p ∈ Qi−1 then the only possible result is C ′ = 〈 p, T, w′ 〉, where w′ is the parent node
of w. (The machine moves the apple upward and enters state p.)
If p ∈ Qi+1 then there may be many results of execution of I, namely all IDs of the form
C ′ = 〈 p, T, w′ 〉, where w′ is any successor of w in T . (The apple is passed downward to
a non-deterministically chosen child w′ of w.) In case w is a leaf, there is no result (the
instruction cannot be executed).

Let now I be of the form (2), i.e., I =“q : check R(h) jmp p”, and let v ∈ T be the (possibly
improper) ancestor of w such that |v| = h. If register R at v is 1 (i.e., T (v)(R) = 1) then the
only result of execution of I at C is 〈 p, T, w 〉. Otherwise there is no result.

If is of the form (3), i.e., I = “q : set R(h) jmp p” and v is the ancestor of w with |v| = h,
then the only result of execution of I at C is C ′ = 〈 p, T ′, w 〉, where T ′ is like T , except that
in T ′ the register R at node v is set to 1. That is, T ′ = T [v 7→ T (v)[R 7→ 1]]. Observe that
it does not matter whether T (v)(R) = 1 or T (v)(R) = 0.

The last case is (4), i.e., I = “q : new” with i 6= k. The result of execution of I at C is
unique and has the form C ′ = 〈 q0

i+1, T
′, w′ 〉, where T ′ is obtained from T by adding a new

successor node w′ of w, with T ′(w′) = ~0. (The apple goes to the new node and the machine
enters the appropriate initial state.)

The semantics of Eas is defined in terms of eventually accepting IDs. We say that an
existential ID is eventually accepting when at least one of its successors is eventually accepting.
Dually, a universal ID is eventually accepting when all its successors are eventually accepting.
Finally we say that an automaton is eventually accepting when its initial ID is eventually
accepting.
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Note that a universal ID with no successors is eventually accepting. By our definition
this may only happen when no instruction is available in the appropriate universal state;
such states may therefore be called accepting states.

A computation of an Ea, an alternating machine, should be imagined in the form of a
tree of IDs. Every existential node represents a non-deterministic choice and has at most
one child. Every universal node has as many children as there are successor IDs. (In other
words, a computation represents a strategy in a game.) Such a computation is accepting if
every branch ends in a universal leaf.

Restricted computation
The idea of a tree of knowledge is that each node in the tree corresponds directly to an
eigenvariable in a proof. Therefore our restriction on proofs gives rise to a restriction for
trees: if every child of a node w has at most n children, then the number of children of w
should not exceed 2n. This motivates the following definition. We say that an ID 〈 q, T, w 〉
of an Eden automaton is n-restricted when it satisfies the following condition:

Every node w of T which is at level i > 0 has at most expi(n) children.

We are interested in n-restricted computations, where all IDs are n-restricted. More formally,
we say that an ID is eventually n-accepting if it is n-restricted, and

either it is existential and it has an eventually n-accepting successor,
or it is universal and all its successors are eventually n-accepting.

3.2 The encoding
Throughout this section we assume that the parameter n is fixed. Our goal is to encode an
Ea with a positive first-order formula in such a way that the automaton has an accepting
n-restricted computation if and only if the formula has an n-restricted normal proof. Given
an automaton A = 〈 k,m,R, Q, q0, I 〉, our formula uses unary predicate symbols q, for all
q ∈ Q, and R, for all R ∈ R. Each individual variable is of the form xi or xwi , where i ∈ k
and w is a node in some tree of knowledge. For a root node ε, we identify xε0 with x0.

Notation: If S is a set of formulas {α1, . . . , αk} then S → β abbreviates the formula
α1 → · · · → αk → β. Similarly λXS .M and λ ~X : S.M abbreviate λXα1

1 . . . Xαk

k .M .

Convention: Without loss of generality we can assume that for every i < k there is exactly
one state q ∈ Qi such that the instruction “q : new” belongs to I. Indeed, otherwise we can
modify the automaton by adding designated “transfer states” q?i to Qi and replacing each
“q : new” by “q : jmp q?i ” and “q?i : new” when necessary.

Encoding instructions
For every i ∈ k, we define a set of formulas Si. With one exception (downward moves),
formulas in Si represent instructions available in states q ∈ Qi. The definition is by backward
induction with respect to i.

Universal states: Let q ∈ Q∀i , and let “q : jmp p1”, . . . , “q : jmp pr” be all the instructions
available in q. Then the following formula belongs to Si :

p1(xi)→ · · · → pr(xi)→ q(xi).

TYPES’14



260 Restricted Positive Quantification Is Not Elementary

Existential states (downward moves): For every instruction of the form “q : jmp p”, where
q ∈ Qi−1 and p ∈ Qi, the following formula belongs to Si:

p(xi)→ q(xi−1).

In this case the instruction is executed at depth i− 1, but the formula is in Si.

Existential states (other moves): Let now q ∈ Q∃i . For each of the following instructions
available in q, there is one formula in Si:

For “q : jmp p”, where p ∈ Qj and j ∈ {i, i− 1}, the formula is p(xj)→ q(xi).
For “q : check R(h) jmp p”, the formula is p(xi)→ R(xh)→ q(xi).
For “q : set R(h) jmp p”, the formula is (R(xh)→ p(xi))→ q(xi).
For “q : new”, the formula is ∀xi+1(Si+1 → q0

i+1(xi+1))→ q(xi).

The set of formulas Si contains only one copy of Si+1 (state q0
i+1 is fixed and by our convention

so is q), whence the size of S0 is polynomial in the size of A. It is also worth pointing out
that the rank of all the above formulas is zero, with the exception of the formula for “q : new”,
the rank of the latter is k − i when q ∈ Qi (note that i < k).

The number of nested occurrences of a variable Z : ∀xi+1(Si+1 → q0
i+1(xi+1))→ q(xi)

exactly corresponds to the number of different eigenvariables induced by the quantifier ∀xi+1.
Indeed, Z occurs in contexts of the form “Z(λxi+1 . . . Z(λx′i+1 . . . Z(λx′′i+1.M) . . . ) . . . )”,
and all the individual variables xi+1, x′i+1, x′′i+1, . . .may be free inside M .

Encoding IDs
Let now S be a set of formulas and let w be a node of depth i in a tree of knowledge. For
every j ≤ i, replace all occurrences of xj in S by xvj , where v is an ancestor of w of depth j.
The result is denoted by S[w], and is formally defined by induction with respect to |w|:

S[w] =
{

S, if w = ε;
S[v][x|w| := xw|w|], if w is a child of v.

For a given tree of knowledge T , we define sets of formulas:

ΓRT = {R(xwi ) | w ∈ T ∧ |w| = i ∧ T (w)(R) = 1};
ΓST =

⋃
{Si[w] | w ∈ T ∧ |w| = i};

ΓT = ΓRT ∪ ΓST
where Si is as defined above. Note that FV(ΓT ) = {xwi | w ∈ T ∧ |w| = i}.

The following lemma reduces the halting problem for n-restricted computations of Eas
to n-restricted provability of positive formulas. In order to state it in a form permitting
a proof by induction we need to refine the definition of n-restricted proof to take care of
free assumptions. This is done with the following notion of a proof that respects a tree of
knowledge.

An environment of the form ΓT contains, for every non-leaf node w ∈ T , a declaration

Zw : ∀xi+1(Si+1[w]→ q0
i+1(xi+1))→ q(xwi ),

where i is the depth of w. Now for every child v of w there is a variable xvi+1 in FV(ΓT ).
These eigenvariables should be thought of as reducing the limit of nested occurrences of Zw
in proofs defined in ΓT . Let chTw be the number of children of w in T . We say that a proof
ΓT ` M : q(xi) respects tree T if [(Zw,M) ≤ expk−i(n) − chTw, for every i ≤ k and every
node w at depth i.
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I Lemma 7. Let A be an Eden automaton. An ID of A of the form 〈 q, T, w 〉 is eventually
n-accepting if and only if the positive judgement ΓT ` q(xw|w|) has an n-restricted long normal
proof that respects T .

In particular, the initial ID is eventually n-accepting if and only if ` ΓST0
→ q0

0(x0), where
T0 is the initial tree of knowledge, has an n-restricted long normal proof.

Proof. (⇒) Let A be an Eden automaton and let 〈 q, T, w 〉 be an eventually n-accepting ID
of A. We will show that ΓT ` q(xwi ), where i = |w|, has an n-restricted proof that respects
T . We proceed by induction with respect to the definition of eventually n-accepting IDs.

If q is a universal state and 〈 q, T, w 〉 is eventually n-accepting then all successors of
〈 q, T, w 〉 are eventually n-accepting. Every successor ID corresponds to some instruction
“q : jmp pj” for j = 1, . . . , s. By the induction hypothesis we have ΓT ` pj(xwi ) for j = 1, . . . , s.

By the definition of ΓT , the formula p1(xi) → · · · → ps(xi) → q(xi) belongs to Si
and p1(xwi ) → · · · → ps(xwi ) → q(xwi ) belongs to Si[w]. Since Si[w] ⊆ ΓT , it follows that
ΓT ` q(xwi ).

If q is an existential state and 〈 q, T, w 〉 is eventually n-accepting then there exists a
successor of 〈 q, T, w 〉 which is eventually n-accepting. This successor 〈 p, T ′, w′ 〉 is a result
of execution of an instruction I of A, applicable in state q. We check the possible forms of I.

If I is “q : jmp p”, where q ∈ Qi, p ∈ Qj , one has T ′ = T and either w = w′ or w′
is an immediate predecessor or successor ofw in T . By the induction hypothesis we have
ΓT ` p(xw

′

j ). Since ΓT contains the formula p(xw′

j )→ q(xwi ), we conclude that ΓT ` q(xwi ).
For “q : check R(j) jmp p”, where p, q ∈ Qi, let v be the ancestor of w in T such that

|v| = j. One has T ′ = T , w′ = w and the register R at v is set to 1 (since otherwise this
instruction cannot be executed). By the induction hypothesis, ΓT ` p(xwi ). Since ΓT contains
the formula p(xwi )→ R(xvj )→ q(xwi ) and the atom R(xvj ), we conclude that ΓT ` q(xwi ).

For “q : set R(j) jmp p”, where p, q ∈ Qi, let v be the ancestor of w in T such that
|v| = j. One has w′ = w and T ′ = T [v 7→ T (v)[R 7→ 1]]. By the induction hypothesis we
have ΓT ′ ` p(xwi ). Note that ΓT ′ = ΓT ∪ R(xvj ), and consequently ΓT ` R(xvj ) → p(xwi ).
Since ΓT contains the formula (R(xvj )→ p(xwi ))→ q(xwi ), we conclude that ΓT ` q(xwi ).

In all the above cases, the assumptions used in the appropriate proof steps are formulas
of rank rk equal to zero. Therefore it follows immediately from the induction hypothesis
that the obtained proofs are n-restricted and respect T . These proofs are also long normal,
as all are of the form X ~N , where ~N are long normal by induction.

Only the last case involves quantification. For “q : new”, where q ∈ Qi, p = q0
i+1, the tree

T ′ is obtained from T by adding a brand new child w′ of w labelled ~0 (empty registers). From
the induction hypothesis we know that ΓT ′ `M : q0

i+1(xw′

i+1) where M respects T ′. Note that
ΓT ′ = ΓT ∪ Si+1[w′], so we may deduce that ΓT ` λ ~XSi+1[w′].M : Si+1[w′] → q0

i+1(xw′

i+1).
The variable xw′

i+1 does not appear in ΓT , hence we also have

ΓT ` λxi+1.λ ~X : Si+1[w′][xw
′

i+1 := xi+1].M : ∀xi+1(Si+1[w′][xw
′

i+1 := xi+1]→ q0
i+1(xi+1)).

Since Si+1[w′][xw′

i+1 := xi+1] = Si+1[w] and ΓT contains the declaration

Zw : ∀xi+1(Si+1[w]→ q0
i+1(xi+1))→ qi(xwi ),

we conclude that ΓT ` Zw(λxi+1.λ ~X
Si+1[w′].M) : qi(xwi ). This is a long normal proof

introducing a single application of the proof variable Zw. It respects T because M respects
T ′ and the number of children of w in T is smaller by one than the number in T ′. Also the
obtained proof is n-restricted, because so is M and because M respects T ′, in particular the
number of nested occurrences of Zw′ in M is at most expk−i−1(n) (node w′ has no children).
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(⇐) Suppose that 〈 q, T, w 〉 is an ID of an automaton A such that ΓT ` N : q(xwi ), where
i = |w| and where N is an n-restricted long normal form that respects T . We show, by
induction with respect to N , that 〈 q, T, w 〉 is eventually n-accepting. Since q(xwi ) is an
atom, we must have N = XN1 . . . Nr, for some X and some long normal forms N1, . . . , Nr.
In addition, there must be a declaration (X :ϕ) ∈ ΓT , where ϕ = τ1 → · · · → τr → q(xwi ),
and ΓT ` Nl : τl, for each l.

Let q ∈ Qi∀ and let “q : jmp pj”, for j = 1, . . . , s, be all instructions available in state q.
By the definition of ΓT , there is only one formula ϕ that ends with the atom q(xwi ), namely
ϕ = p1(xwi ) → · · · → ps(xwi ) → q(xwi ). Therefore, r = s and for every j = 1, . . . , r, we
have ΓT ` Nj : pj(xwi ). By the induction hypothesis we know that 〈 pj , T, w 〉 are eventually
n-accepting. Since a universal ID is eventually n-accepting when all its successors are
eventually n-accepting, we get the desired conclusion.

Let q ∈ Qi∃. Since the formula ϕ ends with q(xwi ), it must correspond to some instruction
I that is available in state q. We need to show that I can be executed and that a result of
execution of I is eventually n-accepting. This will imply that also 〈 q, T, w 〉 is eventually
n-accepting.

If ϕ has the form p(xw′

j )→ q(xwi ), for some variable xw′

j , then I is “q : jmp p”. Note that
such a ϕ may occur in ΓT only when w′ is a node of T , more precisely, node w′ is either w or
it is an immediate predecessor or successor of w in T . By the induction hypothesis applied
to ΓT ` N1 : p(xw′

j ), we conclude that 〈 p, T, w′ 〉 is eventually n-accepting.
If ϕ is p(xwi )→ R(xvj )→ q(xwi ) then I is “q : check R(j) jmp p”. We need to show that

I can be executed, i.e., that T (v)(R) = 1 where v is the ancestor of w in T with |v| = j.
We know that ΓT ` N1 : p(xwi ) and ΓT ` N2 : R(xvj ). The only formula in ΓT of the form
α1 → · · · → αk → R(xvj ) is R(xvj ). By the definition of ΓT , if R(xvj ) ∈ ΓT then T (v)(R) = 1.
Hence I can be executed. Since ΓT ` N1 : p(xwi ), by the induction hypothesis, 〈 p, T, w 〉 (the
result of execution of I at 〈 p, T, w 〉) is eventually accepting.

If ϕ is (R(xvj ) → p(xwi )) → q(xwi ) then I is “q : set R(j) jmp p” and j ≤ i. The
result of execution of I at 〈 q, T, w 〉 is 〈 p, T ′, w 〉, where T ′ = T [v 7→ T (v)[R 7→ 1]]. We
know that ΓT ` N1 : R(xvj ) → p(xwi ). Since N1 is an lnf, there exists N ′1 such that
ΓT , Y : R(xvj ) ` N ′1 : p(xwi ). By the induction hypothesis, 〈 p, T ′, w 〉 is eventually accepting.
The last case is when ϕ = ∀xi+1(Si+1[w] → q0

i+1(xi+1)) → q(xwi ) is the type of Zw and
the instruction I is “q : new”. We have ΓT ` ZwN1 : q(xwi ) and we also know that
ΓT ` N1 : ∀xi+1(Si+1[w]→ q0

i+1(xi+1)). Since N1 is an lnf, it must have the form N1 =
λxi+1λ~Y :Si+1[w].N ′1, for some lnf N ′1. Substituting xw

′

i+1 for xi+1 we obtain the type
assignment

ΓT , ~Y :Si+1[w][xi+1 := xw
′

i+1] ` N ′1[xi+1 := xw
′

i+1] : q0
i+1(xw′

i+1).

Note that Si+1[w][xi+1 := xw
′

i+1] equals Si+1[w′] and ΓT , ~Y : Si+1[w′] = ΓT ′ , where T ′ is
obtained from T by adding a new child w′ of w labelled ~0. The term N ′1[xi+1 := xw

′

i+1] is
n-restricted and respects T ′ because the top occurrence of Zw was eliminated, and because
w′ has no children in T ′. Hence, by the induction hypothesis, the result 〈 q0

i+1, T
′, w′ 〉 of

execution of I is eventually n-accepting. J

4 Eden programming

We begin with a few examples demonstrating how Eden automata can be used to solve
computational tasks. They present some techniques exploited in the hardness proof to follow
and introduce the reader to the “pseudo-code” we use.



A. Schubert, P. Urzyczyn, and D. Walukiewicz-Chrząszcz 263

The access to knowledge in an Eden automaton is restricted in that it precludes the
possibility to verify that a given bit is 0. This can be partly overcome by a simple trick: use
two bits to encode one, 10 for 0 and 01 for 1. This works as long as one can ensure that the
two flags are never raised together.

I Example 8. To be more specific, if we fix 6 registers L1, R1, L2, R2, L3, R3 then any word
of length 3 can be represented by a snake where exactly one register in each pair Li, Ri is set
to 1. For example, 101 is encoded by R1 = L2 = R3 = 1 and L1 = R2 = L3 = 0.

Consider an automaton A of depth 1, with q0
0 = q0, q0

1 = q1, and with the instructions
(where q0 ∈ Q∃0 , and other states are in Q∃1):

q0 : new ;
q1 : set L1(1) jmp q2;
q1 : set R1(1) jmp q2;

q2 : set L2(1) jmp q3;
q2 : set R2(1) jmp q3;

q3 : set L3(1) jmp q4;
q3 : set R3(1) jmp q4.

The automaton A starts in the initial ID in state q0 with a root-only tree of knowledge. It
creates an additional node d, a successor of the root, and enters state q1 at node d. The
procedure from state q1 to state q4 constitutes a for loop, informally written as follows:

q1 : for i = 1 to 3 do [set Li OR set Ri]; goto q4.

The computation of our automaton has one branch, which ends in an ID where the only
child of the root represents a non-deterministically generated word of length 3. The apple is
at the child node and the machine is in state q4.

We can now compose the automaton with another one, A′, which runs after A, i.e., it
commences in state q4. Among its states, q′1, q′2, q′3, qacc are in Q∀1 and other states are in Q∃1 .
q4 : jmp q′1;
q′1 : jmp qchk

1 ;
q′1 : jmp q′2;
qchk

1 : check L1(1) jmp qacc;

q′2 : jmp qchk
2 ;

q′2 : jmp q′3;
qchk

2 : check L2(1) jmp qacc;

q′3 : jmp qchk
3 ;

q′3 : jmp q5;
qchk

3 : check L3(1) jmp qacc;

The automaton A′ is initiated in state q4 in node d, a successor of the root. At node d, one
register in each of the pairs L1, R1; L2, R2; L3, R3 is set to 1. The automaton then enters
state q′1 at node d. The procedure from state q′1 to state q5 constitutes a universal for loop,
informally written as follows:

q1 : for i = 1 to 3 do [check Li AND continue]; goto q5.

In successful circumstances, the computation has 4 branches. Three of them end in an
accepting ID in the state qacc and the fourth one ends in an ID where all L1, L2, L3 are set
to encode the sequence of bits 000. The apple is at the child node and the machine is in
state q5.

These two automata may be viewed as procedures in a single program. The first
procedure generates non-deterministically a string of three bits and the second works like a
finite automaton that checks if all the bits are equal to 0. (Note that any loop-free finite
automaton can be simulated this way.)

4.1 Procedures
Throughout this section we assume that the parameter n is fixed, and we only consider
n-restricted computations (a computation which is not n-restricted is illegal). We show how
to deal with numbers up to expk(n) using trees of knowledge of depth k.

The trees and automata we consider here have dimension 2n+ 7. We think of the snakes
as containing the following parts:
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a base segment consisting of 2n registers L0, R0, . . . , Ln−1, Rn−1;
data registers: A0, A1;
a global register Steady;
local registers: New, Old, Done, Gone.

The base segment is capable to encode a binary word of length n, using the “two for one”
trick, as demonstrated in Example 8. The data registers may contain a binary value of a
node in a similar way: for i = 0, 1, register Ai set to 1 represents the bit i.

We identify binary words of length expk(n) with numbers from 0 to expk+1(n) − 1,
and we use trees of uniform depth k to encode such words-numbers. Informally, the
idea is as follows: a word a0a1 . . . ar−1 of length r can be represented as the set of pairs
{(0, a0), (1, a1), . . . , (r − 1, ar−1)}. If a tree T encodes a number i and has value ai at the
root then T represents a pair (i, ai). A word a0a1 . . . ar−1 of length r can thus be encoded
by a tree consisting of a root node and a number of immediate subtrees representing the
pairs (i, ai). (Observe that i is then encoded by a string of length of order log r.) Once we
know how to encode binary words of length d we can interpret them as numbers from 0 to
2d − 1, and use the above method to give an encoding for words of length 2d.

More precisely, we define what it means that a tree T of uniform depth k encodes a word
w of length expk(n). To begin with k = 0, a tree T consisting of a single node d encodes
a binary word x0x1 . . . xn−1 of length n when, for each number i = 1, . . . , n − 1, we have
T (d)(Li) = 1 iff xi = 0, and T (d)(Ri) = 1 iff xi = 1. (Note that there are other registers as
well, so many trees encode the same number.) A tree T of uniform depth k encodes a word
w = x0x1 . . . xr−1 of length r = expk+1(n) when

T has exactly r immediate subtrees, each encoding a different number i ∈ {0, . . . , r − 1};
If d is the root of an immediate subtree encoding i then T (d)(Aj) = 1 iff xi = j. (We
say that i is the address of d and j is called the value of d.)

A node d in a tree is said to encode a word when the subtree rooted at d encodes that word.

I Remark 9. One can easily generalize the above definition to words over any l-element
finite alphabet Σ = {a0, a1, . . . , al−1} with trees of dimension l · n+ l + 5, and data registers
A0, . . . , Al−1 to represent symbols a0, a1, . . . , al−1.

We now show how Eden automata can manipulate binary words. The automata defined in
this section should more adequately be called “procedures” as they are used as subroutines
in our main construction. Each procedure is initiated at some specific start IDs which are
expected to satisfy certain conditions.

We say that a computation initiated in a start ID is called a successful computation of
a procedure if every branch either ends in an accepting ID, or in an end ID (an ID with a
specified end state), where the control should be passed to another subroutine. In general
there may be many occurrences of end IDs in a computation. However, the procedures we
consider in this paper have this particular property that every computation contains at most
one end ID.

For every k and every l > k, we define proceduresMk, E lk, Sk, C0
k , and C1

k , by simultaneous
induction with respect to k. For each of these procedures we first define start and end IDs
and formulate the appropriate induction hypothesis in the form of an input-output condition.

Induction hypotheses
Making a new word

For every k ≥ 0 we define a procedureMk to make new words.
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Start ID: The current apple is a leaf d of the tree of knowledge, the snake at d is empty.
Claim:
1. No computation ofMk ever uses (jumps, writes to or reads from registers at) any

proper ancestor of d.
2. A successful restricted computation ofMk has only one end ID. At the end ID the

apple is back at d, but d is now a root of a subtree of uniform depth k and d encodes
a non-deterministically chosen word w of length expk(n). All local registers are empty
in the subtree rooted at d.

Part 1 of the induction hypothesis is a separation condition which states that the procedure
Mk does not have side effects. This is necessary since the procedure has end states, and
computations continues after these are reached.

For the other subroutines we define no end IDs and no similar separation conditions; their
only purpose is to accept.

Constant

Procedures Cxk , where x ∈ {0, 1}, check that a given address is a constant.
Start ID: The apple is at node d of level k, and d encodes a binary word w of multiexpo-

nential length expk(n). Local registers below node d are empty.
Claim: Procedure C0

k (resp. C1
k) accepts iff the address of d is ~0 (resp. ~1 ).

Equality

Procedure E lk, where l > k, verifies equality of two binary words.
Start ID: A start IDs of E lk has the apple at node d, a root of a subtree of uniform

depth l. (Then d is at level l.) At level k there is exactly one descendant eO of d satisfying
T (eO)(Old) = 1 and exactly one descendant eN satisfying T (eN )(New) = 1. (There may be
other nodes at level k as well, and it may happen that eO = eN .) All local registers below
eO and eN are empty. Subtrees rooted at eO and eN encode binary words of length expk(n).

Claim: Procedure E lk, initiated in a start ID, accepts iff the addresses of eO and eN are
the same.

Successor

Binary words are identified with numbers so that the successor relation holds between strings
of the form w011 . . . 1 and w100 . . . 0. Procedure Sk verifies this relation.

Start ID: The same as start ID of Ek+1
k .

Claim: Procedure Sk, initiated in a start ID, accepts iff the address of eN is the successor
of the address of eO.

Procedures
To provide a gentle introduction we begin our presentation with the relatively simple procedure
C0
k; after that we proceed in the order of the previous subsection.

Procedure C0
k

We define our automata by mutual induction with respect to k. We begin with the relatively
simple definition of C0

k, written in informal pseudo-code. For k = 0, the definition of C0
k is a

straightforward generalization of the code of A′ in Example 8:
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for i = 1 to n do [check Li AND continue]; accept.

For k > 0, we assume that C0
k−1, C1

k−1, Sk−1 have already been defined, and we construct C0
k ,

so that it executes the following algorithm. The almost identical definition of C1
k is omitted.

1. Descend to a child; goto 2 AND goto 3;
2. Run C0

k−1 (accepting inside).
3. Check data register A0; set register Done;
4. goto 5 OR goto 12;
5. Go up to d;
6. Descend to a child;
7. goto 8 AND goto 3;
8. Set register New; go up to d;
9. Descend to a child;

10. Check register Done; set register Old; go up to d;
11. Run Sk−1 (accepting inside);
12. Run C1

k−1 (accepting inside).
First, let us make an informal account of the way the procedure operates. When C0

k is
initiated in a start ID at a node d at level k, it attempts to verify that data register A0 is set
to 1 at every address. It begins with a child with address ~0, guessing it non-deterministically.
At this point the computation splits into two branches. One branch verifies the correctness
of the guess by running C0

k−1 (and accepts if the verification is successful). Along the other
branch we first check that A0 is indeed set to 1, mark the present node as Done, and then
proceed to another child of d (step 6). The main loop in steps 3–7 should now be taken
for every address in the increasing order. Each time the body of the loop is executed, the
machine verifies that the address of the current apple is a successor of another address which
has already been processed. This is done with help of another universal split in step 7. A
separate branch of computation is activated. Within that branch, the present node e is
marked as New, then another child e′ of d is selected and marked as Old. But first we check
register Done at node e′ to make sure that e′ has been processed.2 It remains to run Sk−1
from node d to complete the verification branch (steps 8–11).

The main loop continues until we non-deterministically guess that we reached a node
with address ~1. This is verified by initiating C1

k−1, and then the procedure accepts.
Let us remark here that, although the above description of the algorithm is informal, it

is precise enough to be implemented as an actual automaton, using a number of internal
states proportional to n. Now we can show that C1

k satisfies the specification.
(⇐) Observe that in case the address of d encodes the word w = ~0 and C0

k is run from
a correct start ID then the procedure may choose to take the child of d with address ~0
in step 1 so that C0

k−1 accepts in step 2. Then all other children are chosen in step 6 in
order of increasing addresses, so that it is always possible in step 9 to choose an appropriate
predecessor address, guaranteeing termination in step 11. A more formal proof should go
by induction with respect to the number of children of d marked as Done. Note that local
registers at levels k−2 and below are empty and can be safely used by each procedure. Every
branch of computation uses its own private copy of these registers. This way alternation
helps to avoid the limitations of our non-erasable memory.

(⇒) Suppose now that C0
k accepts. Let l be the number of times the procedure enters

step 4 in the accepting computation. Let Di be the set of children of d marked as Done at

2 It may happen that e′ = e but in this case the successor test will fail.
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the i-th entry to step 4. Let ai be the maximal address encoded by an element of Di. By
induction with respect to l − i we show the following statement

For each accepting computation subtree of C0
k started at the i-th entry to step 4 and

for each address b such that ai < b < expk(n), the node d has a child that encodes the
number b and has A0 set to 1.

Indeed, for i = l, the set of addresses a such that ai < b < expk(n) is empty, so the conclusion
follows. If i < l then an accepting computation must enter the loop and mark one child of d
with Done and then come back to the step 4. We have two subcases here depending on the
relation between the elements ai and ai+1. In case ai = ai+1 we observe that no node of the
tree of knowledge could change in this turn of the loop (Done is only overwritten with the
same value) so the conclusion follows by the induction hypothesis. In case ai 6= ai+1, there
is bi ∈ Di+1 −Di. Let bi be the number encoded by bi . In steps 8–11 it is verified that
bi = a+ 1, for some a encoded by a ∈ Di, but actually b must be ai as otherwise ai = ai+1.
This also means that bi = ai+1. Node bi has A0 set to 1, as this is verified in step 3. Since
all other elements a such that ai < a < expk(n) must satisfy ai+1 < a < expk(n), we obtain
the conclusion by the induction hypothesis.

Now observe that at the first entry to step 4 only one child of d is marked as Done, and
it must encode the address ~0 (steps 1–2) with A0 set (step 3). As the further computation
accepts, we can apply the statement proven above for i = 1 and obtain that d has children
that encode addresses b such that 0 < b < expk(n) and all have A0 set to 1. This applies
also for the address 0. Since by assumption d encodes a a word of length expk(n), this must
be the number of children of d. Therefore d encodes ~0.

Let us remark here that in step 6 the apple may be passed to a child already marked as
Done, so that the main loop in steps 3–7 may be executed more times then needed and we
effectively care about this case in the inductive step of the argument above.
A diggression before we proceed to the next procedure: The above algorithm can easily be
adapted to verify if the binary string encoded by d belongs to any fixed regular language.

Procedure Mk

We can now turn to the more complicated procedure Mk. For the base case k = 0 we
generalize the automaton A of Example 8:

for i = 1 to n do [set Li OR set Ri].
In the induction step we assume that proceduresMk−1, E lk−1, Sk−1, C0

k−1, and C1
k−1, have

already been defined, and we describeMk as a pseudo-code “program” consisting of two
phases. Recall that the computation begins at the root d of the word to be constructed.

Phase 1: At first, procedureMk runsMk−1 in a loop. The number of iterations is chosen
non-deterministically, but it is bounded due to the n-restrictedness condition, as each iteration
creates a new child.

1. Create a new child and descend there;
2. RunMk−1;
3. Set register A0 OR set register A1;
4. go up; goto 1 (continue) OR goto 5 (enter Phase 2).

Note a subtlety: once a new child is created the computation must commence from a fixed
initial state (for the appropriate depth). Our construction respects this restriction: we
perform exactly the same actions for every new child.
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An immediate inductive argument (for the loop in steps 1–4) shows that
1. The computation does not use (jumps, writes to or reads from registers at) any proper

ancestor of d.
2. At the entry to step 4 the apple is back at d, and d has a non-empty set C of children

with |C| ≤ expk(n). Each element of C has either A0 or A1 set to 1 and starts a subtree
that encodes a number in {0, . . . , expk(n)− 1}.

The inequality |C| ≤ expk(n) is precisely the result of our n-restrictedness condition.

Phase 2: The second phase starts with the apple at node d and goes as follows:
5. Descend to a child; goto 6 (verify) AND goto 7 (continue);
6. Run C0

k−1 (accepting inside).
7. Set register Steady;
8. goto 9 OR goto 16;
9. Go up to d;

10. Descend to a child;
11. goto 12 (verify) AND goto 7 (continue);
12. Set register New; go up to d;
13. Descend to a child;
14. Check register Steady; set register Old; go up to d;
15. Run Sk−1 (accepting inside);
16. Run C1

k−1 (verify) AND goto 17 (continue);
17. Go up to d (end state).

The second phase works very much like the procedure C0
k. In step 5 the computation splits

into two branches. One proceeds (fingers crossed) along the main computation branch
beginning at step 7. The other branch verifies that the present address is ~0 and accepts. The
whole computation can therefore accept only if the verification in step 6 was successful. In
addition the auxiliary branch uses its own “private copy” of all resources, in particular it
can set registers which remain empty for the main computation. Similar universal splits
occur in steps 11 and 16. Note that registers Old and New remain intact outside of the
subroutine 12–15. At the completion of the above we are back at node d. Again an immediate
inductive argument (for the loop in steps 7–11) shows that:
1. The computation does not use (jumps to, writes to or reads from registers at) any proper

ancestor of d.
2. Each time the computation reaches step 8, the apple is in a child of d, and d has a

non-empty set C of children with |C| ≤ expk(n). The set of numbers encoded by nodes
in C is closed with respect to predecessor (in particular it contains zero).

Phase 2 reaches the end state only when it can verify that address ~1 of length expk(n) is
encoded by a child of d that is marked with Steady. With ~1 marked as Steady and the closure
with respect to predecessor we obtain that all addresses of length expk(n) must be encoded
by children of d. And each of them only once, because the computation is n-restricted. This
is exactly part 2 of the induction hypothesis forMk. Part 1 follows from (1) above.

I Remark 10. Observe that this procedure may be easily adapted to serve as a non-
deterministic generator of words of length expk(n) over arbitrary alphabet Σ. It is enough to
use more registers and to adjust step 3 of the automatonMk so that it chooses one of the
registers corresponding to elements of Σ instead of A0 or A1.
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Procedure Sk

Recall that we begin in a node d which has (among others) exactly one child marked as Old
(i.e., satisfying Old = 1) and exactly one marked as New.

Subtrees rooted at these nodes are assumed to encode binary words wold and wnew of
length expk(n). We want to verify that wold = w011 . . . 1 and wnew = w100 . . . 0, for some w.
For k = 0 this can be done with a simple for loop. For k > 0, we process children of Old
in order of increasing addresses. At each step we compare the data bit at the present node
with the data bit at a child of New with the same address. The compared bits should match
in phase 1 (we begin with more significant ones) until we non-deterministically discover the
point where they begin to differ (phase 2).

We now describe Sk with a little more detail, but on a higher level of abstraction than
the previous procedures. We believe that this account is still precise enough, and at the same
time easier to understand. To make it even more comprehensive, let us first explain some
of the phrases used below. For instance, “to descend to a child of Old” (step 1) means to
descend to a child e of d, check e(Old), and then go to a child of e. The phrase “Universally
verify that. . . ” is understood as “Verify that. . . AND continue”. (A similar construction was
already used in the definitions of C0

k andMk.) In step 2 this is equivalent to the statement
“Run C0

k−1 AND goto 3”. Similarly, in steps 7 and 13 the verification branch calls procedure
Sk−1, and steps 4, 9, 14 activate procedure Ek+1

k−1 .

1. Descend to a child of Old;
2. Universally verify that the present address consists of only zeros;
3. goto 4 (phase 1) OR goto 9 (end of phase 1);
4. Universally verify that the data bit at the present node is the same

as the data bit of a child of New of the same address;
5. Mark the present node as Done; go up (to the node marked as Old);
6. Descend to a child;
7. Using Sk−1, universally verify that the present address is the successor

of an address of a brother node already marked as Done;
8. goto 3;
9. Universally verify that the data bit at the present node is 0,

while the data bit of a child of New of the same address is 1;
10. Mark the present node as Gone;
11. goto 12 (phase 2) OR goto 16 (end);
12. Go back to d; descend to a child of Old;
13. Universally verify that the present address is the successor

of an address of a brother node already marked as Gone;
14. Universally verify that the data bit at the present node is 1,

while the data bit of a child of New of the same address is 0;
15. Mark the present node as Gone; goto 11;
16. Run C1

k−1 (accepting inside).

Assuming that the start ID of Sk is as expected, we can now refer to the induction hypothesis
about C0

k−1, Sk−1, and E lk−1. Indeed, all these procedures are run from their respective start
IDs. In particular, local registers below level k − 1 are available for use in the appropriate
branches of computation. It follows that a successful computation of Sk is only possible
when the successor relation indeed holds as required.
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Procedure El
k

This procedure works in a similar way as Sk except that only one phase is needed and the
distance from d to Old and New may be larger. We skip the details, but we want to remark
on one difference between E lk and Sk. It may happen that either of these procedures is run
from an ID where the same node of the tree is marked Old and New. This is not an obstacle:
procedure E lk will accept in this case while Sk will not.

4.2 Simulation of a Turing Machine
The techniques introduced in Section 4.1 can be used to simulate a Turing Machine. Consider
a deterministic Turing Machine T working in time expk(nO(1)) and fix an input word x of
length n. Without loss of generality3 we can assume that the machine works exactly in time√

expk(n)− 1. Let Σ = Σ0 ∪ (Σ0 ×∆) where Σ0 is the tape alphabet and ∆ is the set of
states of T . We already know (see Remark 9) how to encode words over Σ using trees of
knowledge.
We use a triple 〈 t, a, s 〉 to express that the contents of the tape cell a at time t is s. Here,
s ∈ Σ is either a tape symbol of T or a tape symbol plus an internal state (in case T at time
t is at position a). A computation of T is represented by a unique set of triples with only
one 〈 t, a, s 〉 for every t, a. Note that a, t ∈ {0, . . . ,

√
expk(n)− 1}. Consequently there are

exactly expk(n) pairs 〈 t, a 〉 and they can be identified with numbers less than expk(n). The
whole computation of machine T may therefore be seen as a word over Σ of length expk(n).
This word may now be encoded, as in Section 4.1, by a tree of knowledge of depth k and an
appropriate dimension (extra data registers are needed to account for all elements of Σ). In
this way we can represent a computation of T in the memory of an Eden automaton.

A slight adjustment of the automatonMk of Section 4.1 (in step 3) yields a procedure to
generate an arbitrary word over Σ of length expk(n).

Procedure Nk

The definition of Nk is similar to that of Mk, but now we have to only generate words
representing accepting computations of T . Therefore, Nk works in the following two phases:
1. It generates a sequence of triples.
2. It verifies that the set of triples represents a computation of T .

Phase 1 is similar to phase 1 ofMk (see Remark 10). Phase 2 is more complicated, but it
can similarly be related to phase 2 ofMk. Steps 12–15 should be replaced with a longer
verification routine. There are two subgoals of the routine:
1. To verify that the generated sequence of triples contains an encoding of the input word x.
2. To verify that the sequence obeys the transition relation of T .

For part (1) it has to be established that in every triple of the form 〈 0, a, s 〉, the value
s is the symbol at position a in the initial configuration. To this end we use n + 1 new
procedures Ca, defined for a ≤ n. Procedure Ca accepts from 〈 t, a′, s 〉 if t = 0, and s = xa,
where a = min{a′, n}, and xa is the appropriate symbol of the input (or blank for a = n).

3 Using a routine padding technique one shows that every language in Dtime(expk(nO(1)) reduces in
polynomial time to one of time complexity expk(n − 1), which is (for k ≥ 3) less than the square root of
expk(n).
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The definition of Ca is similar to that of Cxk . Observe that procedures Ca are initiated in
separated branches of computation so they can use the same registers.

We handle (2) by an iteration over triples 〈 t, a, s 〉 for t = 0, . . . ,
√

expk(n)− 1. The auto-
maton expects that subtrees encoding triples 〈 t−1, a−1, s1 〉, 〈 t−1, a, s2 〉, 〈 t−1, a+1, s3 〉,
are also present. Those can be nondeterministically guessed and their roots appropriately
marked (using four special registers for this purpose). Then we can run a subroutine Eq

(where q is a transition of T ) to confirm the guess. (The number of such subroutines is
proportional to the size of the machine T .) The definition of Eq combines the tricks used
in the construction of Sk−1 and Ekk−1. An additional complication is that it must compare
halves of words rather than the whole words (recall that we merge t and a in 〈 t, a, s 〉 into a
single word). This is not a real problem, as the end of the first half is identified by an address
of the form 011 . . . 1. The construction of Eq, again, can be accomplished by a number of
additional registers depending only on T .

Automaton AT ,x

The automaton AT ,x first runs the procedure Nk. Upon reaching the end state of Nk it
checks that there is a triple 〈 t, a, s 〉 where s = 〈a, f 〉 and f is an accepting state of T .

I Lemma 11. Let T be a deterministic Turing Machine that works in time
√

expk(n)− 1,
and let x be a word of length n. The automaton AT ,x has an n-restricted accepting compu-
tation iff the machine T accepts x.

Proof. Suppose T accepts. By construction, the automaton Nk has a computation that
reaches an end ID which properly encodes the computation of T . All that remains is to verify
that this computation contains an accepting ID. This amounts to a single non-deterministic
check.

Now suppose that AT ,x has an accepting computation tree. This computation contains
an end ID of Nk, where the computation of T is properly encoded. Now there is no other
way in which AT ,x can accept from such ID but to find an accepting state. So if AT ,x is
accepting, it must be the case that T accepts the word x. J

The above combined with Lemma 7 yields a polynomial-time reduction of any language in
Dtime(expk(nO(1)) to Problem 3. We can thus conclude with the following theorem:

I Theorem 12. The restricted decision problem for positive quantification is not elementary.

We note that the above applies to monadic formulas (those involving only unary predicates).
Indeed, the encoding in Section 3.2 did not require predicates of any higher arity.

5 Conclusion

We have demonstrated that the provability problem for intuitionistic logic with positive
quantification becomes non-elementary under an apparently small restriction on proofs
(computations). Technically, the only use of this restriction is in the definition of procedures
Mk that generate representation for long strings of bits. Therefore, if an unrestricted
implementation of Mk is possible then the original (unrestricted) problem is also not
elementary.

The restriction we propose is a bound on a particular kind of a certain non-reusable
resource. Under this restriction, the decidability of our formulas becomes immediate, as it
reduces the search space to a finite size. In fact, the argument in e.g., the work by Dowek
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and Jiang [6] or in the work by Mints [13] shows that the actual use of this resource in a
proof of a formula ϕ is essentially equivalent to that in an O(n)-restricted proof, where n is
the size of ϕ. Still, the proof itself does not have to be n-restricted. Shall we prove it has,
the general result will follow from our consideration. Although the opposite seems unlikely,
the conjecture remains an open question.
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A complete decision procedure for isomorphism of kinds that contain only dependent product,
constant Type and variables is obtained. All proofs are done using Z. Luo’s typed logical frame-
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1 Introduction

Why an axiomatization of the isomorphism relation between types in dependent type systems
(based on type rewriting, as in the case of simply-typed λ-calculus or system F , see, e.g.,
[1, 3, 15]) was never considered? Why no complete decision procedure for this relation was
developed there? Isomorphism of dependent types is used to some extent in proof assistants
based on dependent type systems, such as Coq (cf. [4]). We could find only one paper by
D. Delahaye [5] where the author tries to explore type isomorphisms in the Calculus of
Constructions along the lines used in the above-mentioned papers. On a theoretical side,
isomorphisms play also an important role in the study of Univalent Foundations [9]. There
are some studies of isomorphisms of inductive types [2, 6], but little is done on isomorphisms
even in the “core” of logical frameworks (including, e.g., dependent product).

In the paper [5] dependent product and dependent sum are considered but no complete
axiomatisation (suitable for “non-contextual” rewriting) or complete decision procedure is
obtained. As Delahaye writes:

we have developed a theory ThECCE with “ad hoc” contextual rules, which is sound for
ECCE ;
we have made contextual restrictions on ThECCE to build a decision procedure DecCoq

which is sound for ThECCE and which is an approximation of the contextual part of
ThECCE ;
we have implemented DecCoq in a tool called SearchIsos.
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It should be said that some points concerning the notion of isomorphism in ECCE used in [5]
remain not very clear. In particular, he needs η-rules to justify all axioms he considers. It is
known that with Σ-types and cumulative hierarchy, the CR-property does not hold in the
presence of η-contraction scheme (and similar scheme for surjective pairing) [11], p.50.

In this paper we are going to obtain a complete decision procedure in a “core” system that
contains only dependent product, constant Type and variables. We shall consider mostly the
logical framework proposed by Z. Luo [11]. It is sufficiently close to the Martin-Löf logical
framework or to the Calculus of Constructions, but in difference from Martin-Löf’s original
system it is typed, and in difference from the Calculus of Constructions it has the explicit
equality rules even for standard βη-conversions, and this is more convenient for the study
that concerns both isomorphism and equality. In difference from Edinburgh LF it permits
to specify other type theories. This system (without Σ-types and cumulative hierarchy) is
confluent with respect to βη-reductions.

We shall use the notation from [11]. In particular, (x : K)K ′ will denote dependent
product and [x : K]P abstraction (instead of frequently used Πx : K.K ′ and λx : K.P ). If
x : K does not occur freely in K ′, it will be written (K)K ′ (that corresponds to K → K ′ in
simply typed lambda calculus).

As to the above mentioned “core part”, an answer may be that the isomorphism relation
between dependent product kinds seems at a first glance too limited to be interesting.
Among “basic” isomorphisms, there is only one obvious isomorphism that corresponds to the
isomorphism A→ (B → C) ∼ B → (A→ C) of simply-typed λ-calculus. The corresponding
isomorphism in dependent type case is

Γ ` (x : A)(y : B)C ∼ (y : B)(x : A)C.

Here A,B,C are kinds, (x : A)D means dependent product. In difference from simply-typed
calculus we need a context Γ because A,B,C may contain free variables. The variable x
must be not free in B and y in A, and (x : A)(y : B)C, (y : B)(x : A)C must be well formed
kinds in Γ.

Notice that a priori it does not exclude the existence of isomorphisms that are not
generated by this basic isomorphism (cf. [7]).

In fact, though, there are some other aspects that make even the isomorphisms in the
“core part” of dependent type systems interesting. The role of contexts (variable declarations)
is to be taken into account. The equality of kinds is non-trivial and it has an influence on
(the defintion of) the isomorphisms: for example, the condition that x is not free in B above
may be not satisfied but B may be equal to B0 that does not contain x free.

In the “core part” itself the role of contexts is rather superficial, but it shows what is to
be expected if we consider more sophisticated type theories defined using logical frameworks.

The next aspect is more important. It is illustrated by the following example. Let
Γ ` A ∼ A′. Consider Γ′ ` (x : A)B. Let Γ ` P : (x : A)A′ be the term that represents
the isomorphism between A and A′ and Γ ` P ′ : (x : A′)A the term that represents its
inverse (in this case x is not free in A′ and x′ is not free in A). Then, in difference from the
simply-typed case where (x : A)B ∼ (x : A′)B, the isomorphism P ′ appears inside B:

Γ ` (x : A)B ∼ (x′ : A′)[(P ′x′)/x]B

([(P ′x′)/x] denotes substitution). Notice that there may be many mutually inverse isomorph-
isms between A and A′ (represented by P1, P

′
1, . . . , Pn, P

′
n, . . . and the structure of the “target”

type (x : A′)[(P ′ix)/x]B depends on their choice. (This was noticed already in [5].) Thus, if
we see the isomorphic transformation as rewriting, this rewriting is not local, and there is
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little hope that one can describe the isomorphism relation between types using rewriting
rules for types1 as in, e.g., [1, 3, 15].

2 Basic definitions

We consider Z. Luo’s typed logical framework LF [11].
Because LF is mostly used to specify type theories, types in LF are called kinds (to

distinguish them from types in the specified type theories). In LF there are five forms of
judgements (below Γ ` J will be sometimes used as a generic notation for one of these five
judgement forms):

Γ ` valid (Γ is a valid context);
Γ ` Kkind (K is a kind in the context Γ);
Γ ` k : K (k is an object of the kind K);
Γ ` k = k′ : K (k and k′ are equal objects of the kind K);
Γ ` K = K ′ (K and K ′ are equal kinds in Γ).

There are the following inference rules in LF (we use here an equivalent formulation
which is more convenient proof-theoretically, cf. [14]):

Contexts and assumptions

(1.1)
<>` valid (1.2) Γ ` Kkind x 6∈ FV (Γ)

Γ, x : K ` valid (1.3)Γ, x : K,Γ′ ` valid
Γ, x : K,Γ′ ` x : K

Γ1,Γ2 ` J Γ1,Γ3 ` valid
Γ1,Γ3,Γ2 ` J

(wkn)

(where FV (Γ2) ∩ FV (Γ3) = ∅).

General equality rules

(2.1) Γ ` Kkind
Γ ` K = K

(2.2) Γ ` K = K ′

Γ ` K ′ = K
(2.3) Γ ` K = K ′ Γ ` K ′ = K ′′

Γ ` K = K ′′

(2.4) Γ ` k : K
Γ ` k = k : K (2.5) Γ ` k = k′ : K

Γ ` k′ = k : K (2.6)Γ ` k = k′ : K Γ ` k′ = k′′ : K
Γ ` k = k′′ : K

Retyping rules

(3.1)Γ ` k : K Γ ` K = K ′

Γ ` k : K ′ (3.2)Γ ` k = k′ : K Γ ` K = K ′

Γ ` k = k′ : K ′

(3.3)Γ, x : K,Γ′ ` J Γ ` K = K ′

Γ, x : K ′,Γ′ ` J

1 Maybe, it is better to say “non-contextual” instead of “local”. But what is needed here is more than
dependency on context of the applicability of a rewriting rule. In fact all occurrences of x (indefinitely
many) must be simultaneously replaced by P ′x′. The inclusion of an explicit substitution rule as a part
of rewriting process may have its own drawbacks. The rewriting rules considered in [5] that take into
account this observation are called there “contextual”, but to us this terminology does not seem perfect.
Indeed, the “context” has to be changed simultaneously, otherwise at some point the expression will
not be well typed. There is also some confusion of the rewriting “context” in this sense, and the usual
type-theoretical contexts of variable declarations.
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The kind Type

(4.1) Γ ` valid
Γ ` Typekind (4.2) Γ ` A : Type

Γ ` El(A)kind (4.3) Γ ` A = B : Type
Γ ` El(A) = El(B)

Dependent product (kinds and terms)2

(5.1) Γ, x : K ` K ′kind
Γ ` (x : K)K ′kind (5.2)Γ, x : K1 ` K ′1 = K ′2 Γ ` K1 = K2

Γ ` (x : K1)K ′1 = (x : K2)K ′2

(5.3) Γ, x : K ` k : K ′

Γ ` [x : K]k : (x : K)K ′ (5.4) Γ, x : K1 ` k1 = k2 : K Γ ` K1 = K2

Γ ` [x : K1]k1 = [x : K2]k2 : (x : K1)K

(5.5)Γ ` f : (x : K)K ′ Γ ` k : K
Γ ` f(k) : [k/x]K ′ (5.6)Γ ` f = f ′ : (x : K)K ′ Γ ` k1 = k2 : K

Γ ` f(k1) = f ′(k2) : [k1/x]K ′

(5.7) Γ, x : K ` k′ : K ′ Γ ` k : K
Γ ` ([x : K]k′)k = [k/x]k′ : [k/x]K ′ (5.8) Γ ` f : (x : K)K ′ x 6∈ FV (Γ)

Γ ` [x : K]f(x) = f : (x : K)K ′

Substitution rules

(6.1)Γ, x : K,Γ′ ` valid Γ ` k : K
Γ, [k/x]Γ′ ` valid (6.2)Γ, x : K,Γ′ ` K ′kind Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K ′kind
(6.3)Γ, x : K,Γ′ ` k′ : K ′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K ′ (6.4) Γ, x : K,Γ′ ` K ′ = K ′′ Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]K ′ = [k/x]K ′′

(6.5)Γ, x : K,Γ′ ` k′ = k′′ : K ′ Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]k′ = [k/x]k′′ : K ′

(6.6) Γ, x : K,Γ′ ` K ′kind Γ ` k1 = k2 : K
Γ, [k1/x]Γ′ ` [k1/x]K ′ = [k2/x]K ′

(6.7) Γ, x : K,Γ′ ` k′ : K ′ Γ ` k1 = k2 : K
Γ, [k/x]Γ′ ` [k1/x]k′ = [k1/x]k′ : [k/x]K ′

In the syntax of LF (x : K)K ′ denotes dependent product, and [x : K]k denotes
abstraction, x is considered as bound in K ′ and k respectively. In case when x is not free in
K ′ we shall write (K)K ′ instead of (x : K)K ′. We shall use ≡ for syntactic identity.

One of the fundamental properties of derivations in LF is that the inferences of sub-
stitutions, wkn and context-retyping 3.3 that create problems with structural induction
on derivations can be eliminated, i.e., a judgement is derivable iff it has a substitution,
context-retyping and wkn-free derivation ( [14], Theorem 3.1, [12], Definition 3.12 and
Algorithm 3.13).

In [12] such derivations are called canonical (Definition 3.12). The following technical
lemmas are easily proved by induction on the size of canonical derivation in LF.

I Lemma 1. Let Γ,Γ′,Γ′′ ` J be any judgement derivable in LF. If the variables from Γ′ do
not occur into Γ′′ and J , then Γ,Γ′′ ` J is derivable.

2 To facilitate reading, let us notice that the syntax of raw kinds and terms is very simple:
K ::= T ype | El(P ) | (x : K)K′, P ::= x |(P Q) |[x : K]P.
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Since in LF types (kinds) of variables may depend on terms (other variables) the variables
cannot any more be freely permuted. Let us formulate some statements (without detailed
proofs) that we shall use below.

Let us consider the list of variables with kinds, u1 : Q1, . . . , uk : Qk. Let ui / uj denote
that ui occurs in the kind Qj of uj . The same applies to prefixes like (u1 : Q1) . . . (uk : Qk)Q
and [u1 : Q1] . . . [uk : Qk]Q.

Let u1 : Q1, . . . , uk : Qk be part of a valid context (respectively (u1 : Q1) . . . (uk : Qk)Q,
[u1 : Q1] . . . [uk : Qk]Q be part of derivable kind or term). In this case the relation / generates
a partial order on indexes 1, . . . , k which we shall denote by /∗.

I Lemma 2. Consider the judgements

Γ, x1 : K1, . . . , xn : Kn,Γ′ ` valid,

Γ ` (x1 : K1) . . . (xn : Kn)K0kind,

Γ ` [x1 : K1] . . . [xn : Kn]P : (x1 : K1) . . . (xn : Kn)K0

in LF. For any permutation σ that respects the order /∗,

Γ, xσ1 : Kσ1 , . . . , xσn
: Kσn

,Γ′ ` valid,

Γ ` (xσ1 : Kσ1) . . . (xσn
: Kσn

)K0kind,

Γ ` [xσ1 : Kσ1 ] . . . [xσn
: Kσn

]P : (xσ1 : Kσ1) . . . (xσn
: Kσn

)K0

are derivable in LF.

Besides standard equality rules, equality in LF is defined by the rules (5.7, 5.8). Obviously,
it is based on β and η conversions (incorporated explicitly using 5.7 and 5.8). This permits
to define conversions in a more familiar way.

I Proposition 3.
1. Let J be an LF-judgement (of any of the five forms described above) and v an occurrence

of an expression either of the form ([x : K]P )S or of the form [x : K](Px) with x not free
in P . Let J ′ be obtained by replacement of v by the occurrence of [S/x]P or P respectively.
Then J is derivable in LF iff J ′ is derivable. (We shall say that one is obtained from
another by β, respectively η conversion.)

2. Let J be of the form Γ ` Kkind or Γ ` P : K respectively and v belong to K (respectively,
to P ). Let K ′, respectively, P ′ be obtained from K (k′) as in 1. If J is derivable, the
equality Γ ` K = K ′, respectively, Γ ` P = P ′ : K is derivable.

Proof.
1. By induction on the length of a canonical derivation of J .
2. By induction on the length of a canonical derivation of J and (for one of implications) on

the length of series of conversions. J

We shall use the fact that LF is strongly normalizing and has the Church-Rosser property
with respect to β- and η-reductions, see H. Goguen’s thesis [8], and also [13]. H. Goguen
applied typed operational semantics to LF and its extension UTT to prove these results; L.
Marie-Magdeleine in [13] applied Goguen’s method to UTT with certain additional equality
rules. We do not always need SN and CR in our proofs, but since we want to concentrate
our attention on isomorphisms, the use of SN and CR permits to make some shortcuts.
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In simply-typed λ-calculus the definition of invertibility of terms may use contexts (that
include free term variables). This is relevant for the study of retractions [16]. However, type
variables and terms variables are completely separated, and to describe the isomorphisms of
types it is enough to consider closed terms [3]. Equality of types coincides with identity. One
says that the types A,B are isomorphic iff there exist terms P : A → B and P ′ : B → A

such that P ′ ◦ P =βη λx : A.x and P ◦ P ′ =βη λx : B.x.
In dependent type systems the equality of types (kinds) depends on equality of terms.

Some variables from the context may occur in kinds whose isomorphism we want to check.
This motivates the following definition.

I Definition 4. Let Γ ` Kkind and Γ ` K ′kind. We shall say that K,K ′ are isomorphic
in Γ iff there exist terms Γ ` P : (K)K ′, Γ ` P ′ : (K ′)K such that

(∗) Γ ` P ′ ◦ P = [x : K]x : (K)K, Γ ` P ◦ P ′ = [x : K ′]x : (K ′)K ′.

I Remark 5. Equal kinds may contain different free variables, and it has to be taken into
account. If we consider βη-normal forms of K and K ′, they may not contain some free
variables that are present in K and K ′. The normal forms may be well-formed in a more
narrow context Γ0. Still, the isomorphism of K and K ′ will not hold in Γ0 because Γ is
necessary to prove the equality of kinds to their normal forms. In case of βη-equality one may
try to define some sort of “minimal” context, but when the extensions of LF are more “exotic”,
this may be not possible (at the moment, we study one such extension, a generalization to
dependent type systems of axiom C [10]).

3 Isomorphism of Kinds in LF

At a first glance, the theory of isomorphisms in LF cannot be very interesting. Indeed, with
respect to the LF-equality there exists only one “basic” isomorphism, but as it turns out
even this basic isomorphism generates in LF much more intricate isomorphism relation than
in the simply-typed case.

I Example 6. Let Γ ` (x : K1)(y : K2)Kkind be derivable in LF and x /∈ FV (K2). Then
Γ ` (y : K2)(x : K1)Kkind is derivable and (x : K1)(y : K2)K ∼ (y : K2)(x : K1)K in Γ.
The terms

[z : (x : K1)(y : K2)K][y : K2][x : K1](zxy),

[z : (y : K2)(x : K1)K][x : K1][y : K2](zyx)

are mutually inverse isomorphisms between these kinds.

This example corresponds directly to the well known example of isomorphism in simply-
typed lambda calculus. In difference from simply-typed λ-calculus, there are some technical
points that have to be proved, such as the fact that the derivability of Γ ` (y : K2)(x :
K1)Kkind follows from the derivability of Γ ` (x : K1)(y : K2)Kkind . For example, the
derivability of Γ ` (x : K1)(y : K2)Kkind implies the derivability of Γ, x : K1, y : K2 `
Kkind and this implies the derivability of Γ, y : K2, x : K1 ` Kkind because x /∈ FV (K2)
(cf. Lemma 2).

I Example 7. Let in the previous example Γ ` K1 = K2. Then there exists at least
two isomorphisms between (x : K1)(y : K2)K and (y : K2)(x : K1)K in Γ. Indeed, one
isomorphism is the identity isomorphism, and another is the isomorphism considered in the
previous example.
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The following example shows the “non-locality” of syntactic rewriting relation associated
with isomorphisms in LF.

I Example 8. Let Γ ` (x : K1)Kkind be derivable in LF. Let K1 ∼ K2 in Γ, and
Γ ` P : (K1)K2, Γ ` P ′ : (K2)K1 be mutually inverse isomorphisms. Then (x : K1)K ∼
(x : K2)[(P ′x)/x]K in Γ. The isomorphism from the first to the second kind is given by the
following term:

Γ ` [z : (x : K1)K][x : K2](z(P ′x)) : ((x : K1)K)(x : K2)[(P ′x)/x]K,

and its inverse by

Γ ` [z : (x : K2)[(P ′x)/x]K][x : K1](z(Px)) : ((x : K2)[(P ′x)/x]K)(x : K1)K.

Notice that after second substitution (generated by the application of z in the second line)
P ′ and P being mutually inverse isomorphisms will cancel each other. Notice also that since
P and P ′ may be not a unique pair of isomorphisms between K1 and K2, the replacement of
K1 by K2 does not uniquely determine the “target” kind. We cannot merely replace K1 by
K2 (without introducing P ′ in K) because the correct kinding inside K may be lost.

Let Γ ` P : El(A) be provable in LF. Then P is either a variable or an application.
Formal proof can be done by induction on the length of derivation of Γ ` P : El(A).

I Lemma 9. Let Γ ` El(A)kind and Γ ` El(B)kind. Then Γ ` El(A) ∼ El(B) iff
Γ ` El(A) = El(B). The isomorphism between El(A) and El(B) is unique up to equality in
LF and is represented by the term Γ ` [x : El(A)]x : (El(A))El(B).

Proof. Consider the non-trivial “if”. Assume there exist mutually inverse isomorphisms
Γ ` P : (El(A))El(B) and Γ ` P ′ : (El(B))El(A). That is, the compositions of P and P ′
are equal to identities:

Γ ` [x : El(A)](P ′(Px)) = [x : El(A)]x : (El(A))El(A),

Γ ` [x : El(B)](P (P ′x)) = [x : El(B)]x : (El(B))El(B)

(with x fresh).
Without loss of generality we may assume that each of P , P ′ is normal. Consider, e.g., P ′.

It may have either the form [y : El(B)](zk1 . . . kn) or the form zk1 . . . kn (z being a variable).
It is easily seen that in the second case the whole cannot normalize to [x : El(A)]x. In the
first case, if it normalizes to [x : El(A)]x, n must be 1 and [(Px)/y]k1 must normalize to x.
Similar analysis of the form of P leads to the conclusion of the lemma. J

I Theorem 10. Let Γ ` Kkind in LF. Then:
1. the number of kinds (considered up to equality) that are isomorphic to K in LF in the

context Γ is finite;
2. for every kind Γ ` K ′kind such that K ∼ K ′ in Γ, the number of isomorphisms between

K and K ′ in Γ is finite;
3. there exists an algorithm that lists all these isomorphisms (and kinds).

First, let us notice that if Γ ` Kkind is derivable in LF then K has either the form
(x1 : K1) . . . (xn : Kn)El(A) or the form (x1 : K1) . . . (xn : Kn)Type. This can be easily
proved by induction on the derivation of Γ ` Kkind in LF.
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Proof of Theorem 10. The proof will proceed by induction on rank of K which is defined
as follows.

I Definition 11. If K ≡ Type or K ≡ El(A) then rank(K) = 0. If K ≡ (x : K1)K2 then
rank(K) = max(rank(K1), rank(K2)) + 1.

I Remark 12. The rank(K) is not changed by β- and η-reductions inside K and by substitu-
tion: rank(K) = rank([k/x]K).

The base case of induction is assured by Lemma 9.
To proceed, we shall use type erasure and Dezani’s theorem about invertible terms in

untyped λ-calculus3 as in [1, 3]. Of course, some modifications to take into account dependent
types will be necessary. Before we continue with the proof of the theorem, several definitions
and auxiliary statements are needed.

I Definition 13. Let Γ ` P : K in LF. By e(P ) we shall denote the λ-term obtained by
erasure of all kind-labels in P (and replacement of all expressions [x] by λx). We shall call
term variables of P all variables that occur in e(P ).

The following definition is a refined (equivalent) reformulation of definition 1.9.2 of [3].

I Definition 14. An untyped λ-term M with one free variable x is a finite hereditary
permutation (f.h.p.) iff

M ≡ x, or
there exists a permutation σ : n → n such that M ≡ λxσ1 . . . .xσn

.xP1 . . . Pn (the only
free variable of M is x, and its unique occurrence is explicitly shown) where the only free
variable of Pi is xi and Pi is a finite hereditary permutation ( for all 1 ≤ i ≤ n).
If M is a f.h.p. then the term λx.M will be called its closure. We shall also say that it is
closed finite hereditary permutation (c.f.h.p.). The notion of c.f.h.p. corresponds to f.h.p.
of [3].

I Remark 15. In “standard” cases the passage from the term P such that e(P ) is a f.h.p. to
the term whose erasure is a c.f.h.p. is done by a single abstraction:

Γ, z : K ` P : K ′

Γ ` [z : K]P : (z : K)K ′.

We do not “abstract” the “head variable” of a f.h.p. because sometimes we want to by-step
the problem of permutability of variables in LF if the head variable is not the rightmost
variable of a context.

The result similar to simply-typed λ-calculus holds.

I Proposition 16 (cf. Theorem 1.9.5 of [3]). If Γ ` P : (K)K ′ and Γ ` P ′ : (K ′)K are
mutually inverse terms in LF then e(P ) and e(P ′) are c.f.h.p.

If e(P ) is a c.f.h.p. then P has the structure

[z : (x1 : K1) . . . (xn : Kn)K0][x′σ1
: K ′σ1

] . . . [x′σn
: K ′σn

](zP1 . . . Pn).

When we consider invertible terms, we always can assume that they are normal and in such
a form.

3 Probably the “simply-typed erasure”: to replace all occurrences of El(A) by El (considered as another
constant kind) will work as well, but it seems that a fully justified application of this method may need
as much technical lemmas as the proof that we propose below.

TYPES’14



282 On Isomorphism of Dependent Products in a Typed Logical Framework

In difference from simply-typed λ-calculus, there are additional constraints on the possible
permutations in LF, because some of the types Kj may depend on variables xi, i < j, and in
this case permutation of xi and xj destroys typability. As a consequence, if e(P ) is a f.h.p.
then the original term is not necessarily well typed.

I Example 17. The term

P ≡ [z : (x : K1)(y : K2(x))K][y : K2(x)][x : K1](zxy)

is not well typed in LF, but e(P ) is a c.f.h.p.

Let us prove some lemmas concerning properties of well typed terms P such that e(P ) is
a f.h.p. (they can be easily reformulated for c.f.h.p.)

I Lemma 18. Let Γ ` P : K ′ be derivable in LF, and e(P ) be a f.h.p. with head variable
z : K, K ≡ (x1 : K1) . . . (xn : Kn)K0. Let

P ≡ [x′σ1
: K ′σ1

] . . . [x′σn
: K ′σn

](zP1 . . . Pn).

If x is a free variable that occurs in P1, . . . , Pn then it occurs in the kind of z.

Proof. There is no occurrence of x as term variable of f.h.p. because of the properties of
f.h.p. Let there be an occurrence of x into kinds of variables in Pi. Notice that since P is well
typed, P1 : K1 (in appropriate context), P2 : [P1/x1]K2,. . . , Pn : [Pn−1/xn−1](. . . [P1/x1]Kn,
zP1 . . . Pn : [Pn/xn](. . . [P1/x1]K0 = K ′0.

Consider the Böhm-tree of e(P ) [1, 3]. We order the paths (from the root to nodes, not
necessarily to leaves) lexicographically, in such a way that the path “more to the left” is
less that the paths “more to the right”. Now, we may find the smallest path such that the
variable in some Pi that corresponds to the occurrence at its end contains x in its kind.

If the length of the path is 1, the occurrence lies in the prefix of Pi, and a matching
occurrence of x into [Pi−1/xi−1](. . . [P1/x1]Ki must exist. Indeed, it cannot come from
Pj , j < i due to the choice of the path, so it comes from Ki.

Now, assume that the path is longer. Then we obtain a contradiction. Indeed, x must
occur into the “abstracted” prefix of some subterm of some Pi, i.e., it lies within an occurrence
of the form yQ1 . . . Qk, and belongs to the prefix of some of Qi. As above, we arrive at
the conclusion that a matching occurrence into kind of y must exist, but y belongs to the
abstracted prefix at the previous node of the same path. J

I Corollary 19. Let Γ ` P : K ′ be derivable in LF, e(P ) be a f.h.p. and z occur as the “head
variable” of P . Then there is no other occurrences of z into P , even in the kinds of other
variables.

Proof. Since e(P ) is a f.h.p. z could occur (except the “head”) only into kinds of variables in
P . But then by the previous lemma it must occur into its own kind and this is impossible. J

I Lemma 20. Let (as above) Γ ` P : K ′ be derivable in LF, and e(P ) be a f.h.p. The free
variable x occurs in K ′ iff it occurs in the kind of the head variable of P .

Proof. As above, P ≡ [x′σ1
: K ′σ1

] . . . [x′σn
: K ′σn

](zP1 . . . Pn), where z : (x1 : K1) . . . (xn :
Kn)K0. The variable x′i is the head variable of Pi (by properties of f.h.p.).

We proceed by induction on the depth of the Böhm-tree. If the depth is 1, K ′ =
(xσ1 : Kσ1) . . . (xσn : Kσn)K0 and the lemma is obvious (Pi are variables and P is just a
permutation).
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Let x occur in the kind K ′ ≡ (x′σ1
: K ′σ1

) . . . (x′σn
: K ′σn

)K ′0. Does it imply that it occurs
in the kind of z? As above,

P1 : K1 (in appropriate context),
P2 : [P1/x1]K2,
. . . ,
Pn : [Pn−1/xn−1](. . . [P1/x1]Kn),
zP1 . . . Pn : [Pn/xn](. . . [P1/x1]K0) = K ′0.

There are three possibilities: (i) x occurs in the kind of z (and we are done); (ii) x occurs in
one of K ′σi

; (iii) x occurs in one of the Pi and into K ′0 (via substitution).
In case (ii) x occurs in kind of the head variable of Pσi

. We may apply I.H. (for implication
in opposite direction) and deduce that x occurs also in the kind of Pσi

. We always may
choose the leftmost of such Pσj , and conclude that a matching occurrence of x must exist in
the kind of z.

In case (iii) we use Lemma 18 and arrive to the previous case.
Now, let us consider the opposite implication for P . Let x occur in the kind of z. Either

it lies in K0 (and then will occur in the kind of P as well) or it must be matched by the
kind of one of Pi. Then by I.H. it occurs also in the kind of its head variable and into the
prefix of P , and thus into K ′. J

I Corollary 21. If Γ ` P : (K)K ′ is an isomorphism in LF (all is in normal form) the same
free variables occur into K and K ′.

Proof. The term e(P ) has to be a c.f.h.p., so

P ≡ [z : (x1 : K1) . . . (xn : Kn)K0][x′σ1
: K ′σ1

] . . . [x′σn
: K ′σn

](zP1 . . . Pn).

We apply previous lemma to [x′σ1
: K ′σ1

] . . . [x′σn
: K ′σn

](zP1 . . . Pn) in context Γ, z : (x1 :
K1) . . . (xn : Kn)K0. J

Below we consider some properties of dependency of variables (relations / and /∗) that
we shall use in our study of isomorphism.

I Lemma 22. Let us consider Γ ` P : (K)K ′, Γ ` P ′ : (K ′)K such that
Γ ` P : (K)K ′, Γ ` P ′ : (K ′)K are derivable in LF,
P ≡ [z : (x1 : K1) . . . (xn : Kn)K0][x′σ1

: K ′σ1
] . . . [x′σn

: K ′σn
](zP1 . . . Pn),

P ′ ≡ [z′ : (xσ1 : Kσ1) . . . (xσn
: Kσn

)K ′0][x1 : K1] . . . [xn : Kn](z′P ′σ1
. . . P ′σn

),
and e(P ) and e(P ′) are mutually inverse c.f.h.p.

Then xi / xj iff x′i / x
′
j.

Proof. Without loss of generality, we may consider also the terms [x′σ1
: K ′σ1

] . . . [x′σn
:

K ′σn
](zP1 . . . Pn) in the context Γ, z : (xσ1 : Kσ1) . . . (xσn

: Kσn
)K ′0 and x1 : K1] . . . [xn :

Kn](z′P ′σ1
. . . P ′σn

) in the context Γ, z′ : (x′σ1
: K ′σ1

) . . . (x′σn
: K ′σn

)K ′0. Let us prove that
xi / xj ⇒ x′i / x

′
j
4.

Because e(P ) is a c.f.h.p., the head variables of Pi are x′i (1 ≤ i ≤ n). Since xi / xj , xi
occurs in Kj , the type of Pj (in appropriate context) is

[Pj−1/xj−1](. . . [P1/x1]Kj),

4 Let us emphasize that here the dependency between xi and xj , respectively x′
i and x′

j should be
considered, not between x′

σi
and x′

σj
.
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thus x′i does occur in the kind of Pj . By Lemma 20 it occurs also into the kind of x′j , and
x′i / x

′
j .

For opposite implication, we consider P ′. J

I Corollary 23. The partial order /∗ generated by / on x1, . . . , xn coincides with /∗ generated
by / on x′1, . . . , x′n.

One more lemma:

I Lemma 24. Let P ≡ [x′σ1
: K ′σ1

] . . . [x′σn
: K ′σn

](zP1 . . . Pn) as above. Then x′i, the head
variable of Pi, does not occur in Pj , j < i. Similar result holds for P ′.

Proof. The proof is based on the same idea as in Lemma 19. We consider the Böhm-tree of
e(P ) and the ordering of the paths as above. We assume that x′j does occur in (the kind of)
some variable in Pj Then there is a smallest path leading to corresponding occurrence of an
abstracted variable in the tree.

If it belongs to the prefix of Pj (the path has the length 1) then x′j must belong to Kj

in the type of z (because of minimality of the path it cannot come from substitution of Pl
with l < j into Kj), and we obtain a contradiction, because there is no occurrences of x′j
into kind of z (z lies more to the left in the context).

If the smallest path is longer, similar contradiction appears because we can show that an
occurrence of x′j must appear in the kind in the node that immediately precedes the end of
this smallest path. J

The following lemma prepares the inductive step of our main theorem.

I Lemma 25 (Decomposition). Let Γ ` P : (K)K ′, Γ ` P ′ : (K ′)K be as in previous lemma.
Let us consider the term

R ≡ [z′′ : (x′′1 : K ′′1 ) . . . (x′′n : K ′′n)K ′′0 ][x′′σ1
: K ′′σ1

] . . . [x′′σn
: K ′′σn

](z′′x′′1 . . . x′′n).

Here R represents permutation. In particular, K ′′1 ≡ K ′1,K
′′ ≡ [x′′1/x′1]K ′1, . . . ,K ′′n ≡

[x′′n−1/x
′
n−1] . . . [x′′1/x′1]K ′n, K ′′0 ≡ [x′′n−1/x

′
n−1] . . . [x′′1/x′1]K ′0

Consider also

P0 ≡ [z : (x1 : K1) . . . (xn : Kn)K0][x′1 : K ′1] . . . [x′n : K ′n](zP1 . . . Pn)

and
P ′0 ≡ [z′ : (x′1 : K ′1) . . . (x′n : K ′n)K ′0][x1 : K1] . . . [xn : Kn](z′P ′1 . . . P ′n).

Then Γ ` R : (K ′′)K ′, Γ ` P0 : (K)K ′′, Γ ` P ′0 : (K ′′)K are derivable in LF and the
following decompositions hold:

Γ ` P = R ◦ P0 : (K)K ′,
Γ ` P ′ ◦R = P ′0 : (K ′′)K.

Proof. The derivability of all these terms relies on Lemma 22 and its Corollary. Verification
of equalities uses standard reductions. For example, let us consider Γ ` P = R ◦ P0 : (K)K ′.

Composition of two terms is defined as usual: R ◦ P0 ≡ [z : K](R(P0z)). By two
β-reductions we obtain

[z : K][x′′σ1
: K ′′σ1

] . . . [x′′σn
: K ′′σn

]([x1 : K1] . . . [xn : Kn](zP1 . . . Pn)x′′1 . . . x′′n).

After that follows the series of β-reductions and renaming of bound variables (x′′ → x′) that
gives P .

Verification for another equality is similar. J
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Proof of the Theorem 10 (continuation).
Let Γ ` P : (K)K ′ be an isomorphism. Then there exists its inverse Γ ` P ′(K ′)K. In

particular, Γ ` P ′ ◦ P = [z : K]z : (K)K.
Using the Decomposition Lemma, we may write

Γ ` P ′ ◦ (R ◦ P0) = (P ′ ◦R) ◦ P0 = P ′0 ◦ P0 = [z : K]z : (K)K.

Similar fact holds for P ◦ P ′.
Via two standard β-reductions we obtain

P ′0 ◦ P0 = [z : K][x1 : K1] . . . [xn : Kn]([x′1 : K ′1] . . . [x′n : K ′n](zP1 . . . Pn)P ′1 . . . P ′n).

Before we continue with reductions, let us see what can be established about contexts and
kinding of P1, . . . , Pn and P ′1, . . . , P ′n5.

Consider now the typing of P1, . . . , Pn and P ′1, . . . , P ′n. A straightforward use of properties
of LF-derivations gives us:

Γ, z : K,x′1 : K ′1, . . . , x′n : K ′n ` P1 : K1,

Γ, z : K,x′1 : K ′1, . . . , x′n : K ′n ` P2 : [P1/x1]K2,

. . .

Γ, z : K,x′1 : K ′1, . . . , x′n : K ′n ` Pn : [Pn−1/xn−1](. . . [P1/x1]Kn),

respectively,
Γ, z′ : K ′, x1 : K1, . . . , xn : Kn ` P ′1 : K ′1,

Γ, z′ : K ′, x1 : K1, . . . , xn : Kn ` P ′2 : [P ′1/x1]K ′2,

. . .

Γ, z′ : K ′, x1 : K1, . . . , xn : Kn ` P ′n : [P ′n−1/xn−1](. . . [P ′1/x1]K ′n).

The derivability of these judgements is obtained using the known properties of LF-derivations
(see [12, 14]).

Using Corollary 19, Lemma 24, and then applying Lemma 1 (strengthening), we can
make the contexts considerably smaller:

Γ, x′1 : K ′1 ` P1 : K1,

Γ, x′1 : K ′1, x′2 : K ′2 ` P2 : [P1/x1]K2,

. . .

Γ, x′1 : K ′1, . . . , x′n : K ′n ` Pn : [Pn−1/xn−1](. . . [P1/x1]Kn),

respectively,
Γ, x1 : K1 ` P ′1 : K ′1,

Γ, x1 : K1, x2 : K2 ` P ′2 : [P ′1/x1]K ′2,

. . .

Γ, x1 : K1, . . . , xn : Kn ` P ′n : [P ′n−1/xn−1](. . . [P ′1/x1]K ′n).

5 This is important, because as the Example 8 shows x′
1 may very well occur into P2, . . . , Pn, x′

2 occur
into P3, . . . , Pn, etc.
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It is easily verified that the assumption that P0 and P ′0 are mutually inverse implies
that Pj and P ′j are mutually inverse (in the above contexts). Notice that the rank is not
changed by substitution (Remark 12), so the ranks of kinds of [x′1 : K ′1]P1, . . . , [x′n : K ′n]Pn,
[x1 : K1]P ′1, . . . , [xn : Kn]P ′n are strictly smaller than the ranks of (K)K ′ and (K ′)K.
We may apply inductive hypothesis to the pairs P1, P

′
1,. . . , Pn, P ′n6. So, the number of

the isomorphisms of the form P0, P
′
0 is finite and we may list them using isomorphisms

corresponding to kinds of smaller rank, obtained by inductive hypothesis.
To pass to the general case, we have to include permutations represented by R. Their

number is also finite. The upper bound is given by the number of permutations on {1, . . . , n}
and actual number may be less due to the constraints imposed by the relation /∗ of variable
dependency. Of course they all can be listed constructively, and so all the isomorphisms for
a given K may be listed. J

I Corollary 26. The relation of isomorphism of kinds in LF is decidable.

Proof. An algorithm (not very efficient) works as follows. Let Γ ` Kkind,Γ ` K ′kind.
Using main theorem, we create the list of all kinds that are isomorphic to K and verify
whether any of them is equal to K ′ (e.g., reducing to normal form). J

I Remark 27. When P : (K)K ′ is an isomorphism, the rank(K) permits to obtain an upper
bound to the depth of the Böhm’s tree of the f.h.p. e(P ) and this in its turn may be used to
obtain an upper bound on the number of isomorphisms in the theorem.

4 Conclusion

The “core system” that we studied, Z. Luo’s LF with variables, kind Type and dependent
product (and definitional equality) is relatively limited, but the limited character of this
system permits to obtain a complete deciding algorithm for isomorphism relation between
kinds in spite of the fact that local (or non-contextual) rewriting does not work. The limited
character of this system permits also to describe completely the structure of isomorphisms.
Whether the term P is an isomorphism turns out to be decidable as well.

The restrictions on isomorphisms imposed by type-dependencies allow more (not less)
“fine-tuning” than in the case of simply-typed λ-calculus. Isomorphisms of kinds to themselves
are called automorphisms. We have a sketch of a proof (work in progress) that every finite
group is isomorphic to the group of automorphisms of some kind in LF. The groups of
automorphisms of simple types correspond to automorphisms of finite trees. An arbitrary
finite group can not be represented in this way.

The main use of LF is to specify other type theories. To do this, LF is extended by
new constants, rules for these constants, etc. For example the Second Order Logic SOL
and Universal Type Theory UTT are defined in [11]. There are other possibilities to build
type theories using LF, e.g., on may add new equality rules, like the analog of the axiom C
from [10]. Another modification of equality (for the whole UTT) was studied in [13].

The isomorphisms in LF described above will remain isomorphisms in these type theories
but, of course, other isomorphisms may appear. The study of these isomorphisms remains
an open problem.

6 In this order, because the isomorphisms obtained by inductive hypothesis are substituted into kinds
more to the right.
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We did not yet study (and try to improve) the complexity of decision procedures for
isomorphism relation between kinds and for the property of a term P to be an isomorphism.

All this is left for study in the near future.
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Abstract
In 2001 Lee, Jones and Ben-Amram introduced the notion of size-change termination (SCT) for
first order functional programs, a sufficient condition for termination. They proved that a pro-
gram is size-change terminating if and only if it has a certain property which can be statically
verified from the recursive definition of the program. Their proof of the size-change termination
theorem used Ramsey’s Theorem for pairs, which is a purely classical result. In 2012 Vytiniotis,
Coquand and Wahlsteldt intuitionistically proved a classical variant of the size-change termina-
tion theorem by using the Almost-Full Theorem instead of Ramsey’s Theorem for pairs. In this
paper we provide an intuitionistic proof of another classical variant of the SCT theorem: our
goal is to provide a statement and a proof very similar to the original ones. This can be done by
using the H-closure Theorem, which differs from Ramsey’s Theorem for pairs only by a contra-
positive step. As a side result we obtain another proof of the characterization of the functions
computed by a tail-recursive SCT program, by relating the SCT Theorem with the Termina-
tion Theorem by Podelski and Rybalchenko. Finally, by investigating the relationship between
them, we provide a property in the “language” of size-change termination which is equivalent to
Podelski and Rybalchenko’s termination.
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1 Introduction

An important topic in theoretical computer science is determining whether a program is
terminating on a given input by studying its source code. Even if in general this problem,
known as Halting problem, is undecidable, in some special cases this can be done. In 2001
Lee, Jones and Ben-Amram introduced the notion of size-change termination. A first order
functional program P is SCT if for any infinite sequence of calls which follows the control of
P there exists a variable whose value has to decrease infinitely many times. If the domain
of the values of P is well-founded this condition guarantees the termination. In [14] the
authors prove that any first order functional program is SCT if and only if it satisfies some
combinatorial property which can be statically verified from the recursive definition of the
program. We will call this result the SCT Theorem. In order to prove this theorem the
authors use Ramsey’s Theorem for pairs [19]. This result states that given any coloring over
the edges of the complete graph with infinitely many nodes in finitely many colors, there
exists an infinite “homogeneous” set. A set of nodes of a colored graph is said “homogeneous”
when any two elements of the set are connected with the same color. It is well-known that
Ramsey’s Theorem for pairs is not an intuitionistically valid result. To be precise, we need
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the law of excluded middle for Σ0
3 formulas in order to prove the fragment of this theorem

which can be expressed as a schema of first order statements [5].
The SCT Theorem is not the only result which characterizes the termination of some

class of programs by using Ramsey’s Theorem for pairs. In 2004 Podelski and Rybalchenko
introduced the notion of transition invariant. T is a transition invariant for a transition-based
program R if T contains the transitive closure of the transition relation of R. In [18] the
authors proved their Termination Theorem: a while-if program is terminating if and only if
there exists a transition invariant which satisfies certain properties. We refer to Section 2 for
details. The proof of the Termination Theorem uses Ramsey’s Theorem for pairs, as it is the
case for the SCT Theorem.

The Termination Theorem is intuitionistically provable if we consider inductive well-
foundedness instead of well-foundedness (see Section 2). Intuitionistic proofs of this theorem
are given in [20] and [6]. In both the proofs Ramsey’s Theorem for pairs is replaced by
some intuitionistic result. In the first one it is replaced by the Almost-full Theorem [9] by
Coquand, while in the second one it is replaced by the H-closure Theorem [6]. Both of them
are classically (but not intuitionistically) equivalent to Ramsey’s Theorem for pairs. They
keep the combinatorial strength of Ramsey’s Theorem for pairs required in the proof of the
Termination Theorem but they drop the classical part.

In this paper we prove some intuitionistic version of the SCT Theorem. From the
intuitionistic proof we extract an upper bound for the number of steps needed by an SCT
program to terminate. In Section 3 we define a variant of SCT, which we call SCT∗ and which
is classically equivalent but intuitionistically more informative. SCT∗ is defined by taking a
contrapositive and, as in the case of the Termination Theorem, by using the inductive version
of well-foundedness. Thanks to it, in Section 4, we may prove the SCT Theorem without
using classical principles. We will use the H-closure Theorem instead of Ramsey’s Theorem
for pairs. This is not the first intuitionistic proof of the SCT Theorem since Vytiniotis,
Coquand and Wahlsteldt in [20] intuitionistically proved this result by using the Almost-Full
Theorem. However since we find no way to intuitionistically deduce the H-closure Theorem
from the Almost-Full Theorem, there are no apparent relationships between the proofs.

In [3] Ben-Amram proved that any tail-recursive SCT functional program is primitive
recursive. In Section 5 we give a completely different proof of this result based on the bounds
found for the Termination Theorem in [4] and [11]. We can use these bounds since the SCT
Theorem and the Termination Theorem are strictly related. Heizmann, Jones and Podelski
proved that size-change termination is a property strictly stronger than termination [13]. By
applying an argument similar to the one used in [13] we will get the bound for a tail-recursive
SCT program from the one for the Termination Theorem provided in [11]. As a corollary of
the results presented in [13], in Section 6, we find a property in the “language” of size-change
termination which is equivalent to the termination with transition invariants.

In this paper we will work in Heyting Arithmetic (HA); all the proofs are intuitionistic.

2 Transition Invariants and the H-closure Theorem

In this section we summarize the main definitions and properties of transition invariants.
Transition invariants are used by Podelski and Rybalchenko in [18] in order to characterize
terminating programs. The Termination Theorem by Podelski and Rybalchenko states
that a transition-based program R is terminating if and only if there exists a disjunctively
well-founded transition invariant for R. The proof of this result was classical since the
authors use Ramsey’s Theorem for pairs in order to prove it. However we can modify the
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definition of termination with a classically equivalent one and show that the theorem is
intuitionistically true ([20] and [6]).

2.1 Transition Invariants

In this subsection we recall the definition of transition invariant and the Termination Theorem.
For all details we refer to [18].

I Definition 1 (Transition Invariants). As in [18]:
A transition-based program R = (S, I,R) consists of:
S: a set of states,
I: a set of initial states, such that I ⊆ S,
R: a transition relation, such that R ⊆ S × S.

A computation is a maximal sequence of states s0, s1, . . . such that
s0 ∈ I,
(si+1, si) ∈ R for all i ∈ N.

The set Acc of accessible states consists of all states that appear in some computation.
The transition-based program R is terminating if and only if R ∩ (Acc×Acc) is well-
founded.
A transition invariant T is a set which contains the transitive closure of the transition
relation R restricted to the accessible states Acc. Formally,

R+ ∩ (Acc×Acc) ⊆ T.

A relation T is disjunctively well-founded if it is a finite union T = T0 ∪ · · · ∪ Tn−1 of
well-founded relations.

Being well-founded is not preserved under binary unions, therefore a disjunctively well-
founded relation can be ill-founded. We represent each state as a finite map s which provides
the values of the variables and the location of s (for an introduction to these concepts see
[13, pag 8]). Given a state s and a variable x we will write s(x) to mean the value of x in
the state s, while s(pc) is the current location of s.

The main result by Podelski and Rybalchenko is the following.

I Theorem 2 (Termination Theorem, Theorem 1 [18]). The transition-based program R is
terminating if and only if there exists a disjunctively well-founded transition invariant for R.

By unfolding definitions Theorem 2 states that a binary relation R is well-founded if and
only if there exist a natural number n and n-many well-founded relations R0, . . . , Rn−1 whose
union contains the transitive closure of R. This is non trivial since in general a disjunctively
well-founded relation can be ill-founded. The fact that a transitive binary relation which is
the union of two well-founded relations is well-founded has been remarked before Podelski
and Rybalchenko (for instance see [12, pag 31]).

Let us see as example one simple application of the Termination Theorem.
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I Example 3. Examine the following transition-based program which computes exp = xy

whenever x, y > 0 and exp = 1 at the beginning.

while(y > 0)
{
l : temp = 0; z = x;
while(z > 0)

{temp = temp + exp; z = z − 1; }
l′ : y = y − 1; exp = temp;
}

This program terminates since there exists a disjunctively well-founded transition invariant
for it:

T := {(s′, s) | s′(z) < s(z)} ∪ {(s′, s) | s′(y) < s(y)} ∪ {(s′, s) | s′(pc) = l ∧ s(pc) = l′} .

Observe that, in this case, it would not be difficult to directly prove termination by using
the lexicographic ordering.

From the Termination Theorem Cook, Podelski and Rybalchenko extracted an algorithm
which produces disjunctively well-founded transition invariants for some terminating programs
[8], as in the example above.

2.2 Overview on inductive well-foundedness
In this subsection we recall the main results about well-foundedness which we require in this
paper. All the results presented in this subsection are presented in previous work [6], we refer
to it for details. From now on we consider the inductive definition of well-foundedness as in
[1, 2], which is classically equivalent to the usual one if we assume the Axiom of Dependent
Choice.

Classically a binary relation R over a set S is well-founded if there are no infinite decreasing
R-chains. We say that x ∈ S is classically R-well-founded if there are no infinite decreasing
R-chains from x. Here we are interested in the inductive definition of well-foundedness, which
is classically, but not intuitionistically, equivalent to the classical one. Hence we say that a
binary relation R over S is inductively well-founded if and only if every element of S belongs
to any R-inductive property X:

∀x∀X((∀y((∀z(zRy =⇒ z ∈ X)) =⇒ y ∈ X)) =⇒ x ∈ X).

We say that x ∈ S is inductively R-well-founded if x ∈ X holds for any R-inductive
property X. For short, when clear from the context, we will say well-founded instead of
inductive well-founded.

An important tool for proving that a relation is well-founded are simulations [16]. A
simulation relation is a binary relation which connects two other binary relations. Intuitively
a simulation of a binary relation R ⊆ S2 into a binary relation R′ ⊆ S′2 is a way of associating,
step by step, any R-decreasing sequence to some R′-decreasing sequence.

I Definition 4. Let R be a binary relation on S and R′ be a binary relation on S′. Let U
be a binary relation on S × S′, and let ◦ denote the composition between two relations.
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U is a simulation of R in R′ if and only if R ◦ U ⊆ U ◦R′; i.e.

∀x, z ∈ S ∀y ∈ S′ ((xUy ∧ zRx) =⇒ ∃w ∈ S′ (wR′y ∧ zUw))

A simulation relation U of R in R′ is total if dom(U) = {x ∈ S | ∃y ∈ S′(xUy)} = S.
R is simulable in R′ if there exists a total simulation relation U of R in R′.

The next proposition shows that the simulation relations “preserve” inductively well-
foundedness: it is a generalization of the preservation of well-foundedness by inverse image
[17].

I Proposition 5. Let R be any binary relation on S, and let R′ be a binary relation on
S′.
1. For any x ∈ S:

x is R-well-founded ⇐⇒ ∀y(yRx =⇒ y is R-well-founded ).

2. If U is a simulation of R in R′ and if xUy and y is R′-well-founded, then x is R-well-
founded.

3. If U is a simulation of R in R′ and R′ is well-founded, then dom(U) is R-well-founded.
4. If R is simulable in R′ and R′ is well-founded, then R is well-founded.

Let R be a binary relation over a set S. We say that a function f : S → N is a weight
function if for any x, y ∈ S

xRy =⇒ f(x) < f(y).

R has height ω if and only if R has a weight function.
By using the total simulation U = {(x, f(x)) | x ∈ dom(R)} we can easily prove that if

R has height ω then it is inductively well-founded. Moreover if R is inductively well-founded
and finitely branching, then f(x) = sup {f(y) + 1 | yRx} is a weight function for R.

We also need to recall a well-known result about finite relations. Let R be a binary
relation on any finite set {xi | i ≤ k}. A R-cycle is a finite sequence 〈xi0 , . . . , xin〉 for some
n ∈ N, such that and ij ≤ k for any j ≤ n, and

xi0 = xinRxin−1R . . . Rxi1Rxi0 .

If n = 0 we ask that xi0Rxi0 and we call xi0 a loop of R.

I Proposition 6. Let R be any binary relation on a finite set S.
R is well-founded if and only if there are no R-cycles.
If R is a strict order then R is well-founded.

2.3 H-closure Theorem
The H-closure Theorem, where H stands for “homogeneous”, is the result used in [6] to
give an intuitionistic proof of the Termination Theorem. The statement of the H-closure
Theorem was obtained from Ramsey’s Theorem for pairs by taking a contrapositive and it is
intuitionistically provable. The two theorems are equivalent in RCA0 [7], the base system of
Reverse Mathematics which consists of recursive comprehension and Σ0

1-induction. We may
define H-closure as follows.

Let � denote the one-step expansion between finite sequences; i.e.

〈y0, . . . , ym−1〉 � 〈x0, . . . , xn−1〉 ⇐⇒ m = n+ 1 ∧ ∀i < n(xi = yi).
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We call an R-homogeneous sequence any finite transitive decreasing R-chain. We say that
R is homogeneous-well-founded, just H-well-founded for short, if the relation � on the set
of R-homogeneous sequences is well-founded. Being H-well-founded is weaker than being
well-founded, as we will see in a moment. Formally, the definition runs as follows.

I Definition 7 (H-well-foundedness). Let R be a binary relation on S.
H(R), the set of R-homogeneous sequences, is the set of the R-decreasing transitive finite
sequences on S:

〈x0, . . . , xn−1〉 ∈ H(R) ⇐⇒ ∀i, j < n (i < j =⇒ xjRxi).

R is H-well-founded if H(R) is �-well-founded.

From the previous definition follows that R is classically H-well-founded if and only if
there are no infinite decreasing transitive R-chains. It also follows that if R is decidable then
also H(R) is. If S is finite, then we may describe the difference between well-foundedness
and H-well-foundedness as follows: R is well-founded if and only if R has no cycles, while R
is H-well-founded if and only if R has no loops (there is no x ∈ S such that xRx). There
is a strong connection between well-foundedness and H-well-foundedness, described in the
following proposition.

I Proposition 8 (Proposition 1 [6] ). Let R be a binary relation.
1. If R is well-founded then R is H-well-founded.
2. If R is H-well-founded and R is transitive then R is well-founded.

A last example. Consider R = {(n+ 1, n) | n ∈ N}. It is straightforward to check that it
is not well-founded and it is H-well-founded since

H(R) = {〈〉} ∪ {〈n〉 | n ∈ N} ∪ {〈n, n+ 1〉 | n ∈ N} .

The H-closure theorem states that H-well-foundedness is closed under finite unions. Formally

I Theorem 9 (H-closure Theorem, Theorem 2 [6]). Let R0, . . . , Rn−1 be binary relations. If
R0, . . . , Rn−1 are H-well-founded then R0 ∪ · · · ∪Rn−1 is H-well-founded.

Classically, and if we take a contrapositive, the H-closure Theorem states: if there is some
infinite R0 ∪ · · · ∪ Rn−1-homogeneous sequence then for some i < n there is some infinite
Ri-homogeneous sequence. From this remark we may classically check that the H-closure
Theorem is but a variant of Ramsey’s Theorem for pairs [19]. However, the H-closure
Theorem is intuitionistically provable, while Ramsey’s Theorem for pairs is not [6].

In [6] from the H-closure Theorem we obtained an intuitionistic proof of the Termination
Theorem. Furthermore, by analysing this intuitionistic proof, in [4] the authors got a
characterization of the Termination Theorem via the primitive recursive functions.

I Theorem 10. Assume that the transition relation of the program R is the graph of a
primitive recursive function restricted to a primitive recursive subset. If R has a disjunctively
well-founded transition invariant whose relations are primitive recursive and have height ω
then it computes a primitive recursive function.

For short we say that a transition invariant has height ω if the relations which compose
it have height ω. In [11] there is another proof of this result based on the Dickson Lemma.
With both approaches we can characterize the level of the primitive recursive hierarchy
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reached by the transition-based program R. We denote with Fk the usual k-class of the Fast
Growing Hierarchy [15]. Define

F0(x) = x+ 1

Fk+1(x) = F
(x+1)
k (x).

Then Fk is the closure under limited recursion and substitution of the set of functions
composed of constant, projections, sum and Fh for any h ≤ k.

As shown in [11] if R is a program such that
its transition relation R is the graph of a function in F2;
there exists a transition invariant for R which is the union of k relations, all having
weight functions in F1.

Then the function computed by R is in Fk+1.

3 From SCT to SCT*

In this section after a brief summary on the original definition of SCT presented in [13], we
introduce a variant of SCT, which we call SCT∗, and which is classically equivalent to SCT.
Thanks to this definition we can intuitionistically prove the SCT Theorem. This is similar
to what we did in the previous section: in order to intuitionistically prove the Termination
Theorem we had to consider a classical equivalent of the termination property which is
intuitionistically easier to prove. We obtain SCT∗ from SCT by taking the contrapositive
and by considering the inductive well-foundedness instead of the classical one.

From now on we will deal with a language for functions on N with call-by-value semantics
considered in [14]. We use the recursive definitions and notations for maps f : Nn → N which
Heizmann, Jones and Podelski present in their paper, for details see [13, pages 2-4]. Another
useful reference is [3].

3.1 Size-change Termination
Here we recall the definition of SCT. If the reader is familiar with this definition, he may
skip this subsection.

Informally, a recursive definition of a function has the SCT property if in every infinite
sequence of function calls there is some infinite sequence of values of arguments which is
weakly decreasing, and strictly decreasing infinitely many times. In the case the domain
of the function is N, there is no such sequence of values, and SCT is a sufficient condition
for termination. In order to formally express SCT, first of all we need the definition of
size-change graph. From now on we fix a recursive definition for a program P characterized
as above. Let f be defined in P as follows:

f(x0, . . . , xn−1) := if(. . . ) then f1(. . . ) else if(. . . ) then f2(. . . ) else f3(. . . ).

Then we will denote the set {x0, . . . , xn−1} by Var(f). Given such f , a state is a pair (f,v)
where v is a finite sequence of natural numbers whose length is n. If in the definition of f
there is a call

. . . τ : g(e0, . . . , em−1)

we define a state transition (f,v) τ−→ (g,u) to be a pair of states such that u is the sequence
of values obtained by the expressions (e0, . . . , em−1) when f is evaluated with v.
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I Definition 11 (Size-change graph). Let f, g be defined in P. A size-change graph
G : f → g for P is a bipartite directed graph on (Var(f),Var(g)). The set of edges is a
subset of Var(f)× {↓,⇓} ×Var(g) such that there is at most one edge for any x ∈ Var(f),
y ∈ Var(g). We say that f is the source function of G and g is the target function of G.

We call (x, ↓, y) the decreasing edge, and we denote it with x ↓−→ y. We call (x,⇓, y) the
weakly-decreasing edge, and we denote it with x ⇓−→ y.

I Definition 12. Let f(x0, . . . , xn−1) be defined with a call τ : g(e0, . . . , em−1) (where
Var(g) = {y0, . . . , ym−1}).

The edge xi
r−→ yj safely describes the xi − yj relation in the call τ , if for any v ∈ Nn and

u ∈ Nm such that (f,v) τ−→ (g,u), then r = ↓ implies that uj < vi and r = ⇓ implies that
uj ≤ vi.
The size-change graph Gτ is safe for the call τ if every edge in Gτ is a safe description.
Set GP = {Gτ | τ is a call in P}. We say that GP is a safe description of P if for any call
τ , Gτ is safe.

Note that the absence of edges between two variables x and y in the size-change graph
Gτ which is safe for τ indicates either an unknown or an increasing relation in the call τ .

I Definition 13. A multipathM is a graph sequence G0, . . . , Gn, . . . such that the target
function of Gi is the source function of Gi+1 for any i. A thread is a connected path of
edges inM that starts at some Gt, where t ∈ N. A multipathM has infinite descent if some
thread inM contains infinitely many decreasing edges.

I Definition 14 (SCT program). Let T be the set of calls in program P . Suppose that each
size-change graph Gτ : f → g is safe for every call τ in

GP = {Gτ | τ ∈ T } .

P is size-change terminating (SCT) if, for any infinite call sequence π = τ1, . . . , τn, . . . that
follows P’s control flow, the multipath Mπ = Gτ1 , . . . , Gτn , . . . has an infinite descent.

3.2 Composing size-change graphs
As in [13], given two size-change graphs G0 : f → g and G1 : g → h we define their
composition G0;G1 : f → h. The composition of two edges x ⇓−→ y and y ⇓−→ z is one edge
x
⇓−→ z. In all other cases the composition of two edges from x to y and from y to z is the

edge x ↓−→ z. Formally, G0;G1 is the size-change graph with the following set of edges:

E = {x ↓−→ z | ∃y ∈ Var(g) ∃r ∈ {↓,⇓} ((x ↓−→ y ∈ G0 ∧ y
r−→ z ∈ G1)

∨ (x r−→ y ∈ G0 ∧ y
↓−→ z ∈ G1))}

∪{x ⇓−→ z | ∃y ∈ Var(g)(x ⇓−→ y ∈ G0 ∧ y
⇓−→ z ∈ G1) ∧ ∀y ∈ Var(g)

∀r, r′ ∈ {↓,⇓} ((x r−→ y ∈ G0 ∧ y
r′−→ z ∈ G1) =⇒ r = r′ = ⇓)}.

Observe that the composition operator “;” is associative. Given a finite call sequence
π = τ0, . . . , τn−1 we define Gπ = Gτ0 , . . . , Gτn−1 . Moreover we say that the size-change graph
G is idempotent if G;G = G.

Given a finite set of size-change graphs G, cl(G) is the smallest set which contains G and
is closed by composition. Formally cl(G) is the smallest set such that
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G ⊆ cl(G);
If G0 : f → g and G1 : g → h are in cl(G), then G0;G1 ∈ cl(G).

Once we fixed the number of variables, there are only finitely many bipartite graphs with
two labels for the edges, therefore classically cl(G) is finite. Moreover we can intuitionistically
prove that it is finite thanks to the following proposition.

I Proposition 15. Assume that S is a finite set where the equality is decidable and that op:
S×S → S is a computable map. Then the closure of any finite subset of S is intuitionistically
finite.

In fact if I ⊆ S, we can define I0 = I, Ik+1 = {op(a, b) | a, b ∈
⋃
{Ih | h ≤ k}} \⋃

{Ih | h ≤ k}. By decidability of equality, we may effectively compute A \ B for any
A, B finite subsets of S. Therefore we may intuitionistically prove by induction over
S \
⋃
{Ih | h ≤ k} that there is a k ≤ |S| such that Ik+1 = ∅. Thus k defines the closure of I.

3.3 Definition of SCT*
As seen above, P is SCT if and only if

for any infinite call sequence π that follows P, Mπ has an infinite descent.

Now we want to apply some classical step in order to obtain a statement SCT∗ classically
equivalent to SCT but intuitionistically easier to prove. From the definition of SCT, by
taking a contrapositive, we obtain

for any call sequence π which follows P,
Mπ has no infinite descents implies that π is not infinite.

This is the sentence from which we will obtain our definition. Formally a call sequence
which follows P is a function π : N −→ {τ | τ is a call in P} ∪ {∅} such that

if π(n) = ∅ for some n ∈ N, then ∀m > n(π(m) = ∅);
if π(n+ 1) = τ , then τ is a call which appears in the definition corresponding to the call
π(n).

Observe that π is infinite in this notation means that ∀n(π(n) 6= ∅). In order to keep the
notation of [14] for any natural number n we denote τn = π(n).

We introduce two binary relations, π+ on N and Rπ on N×Var. Then we translate “Mπ

has no infinite descents” with “Rπ is inductively well-founded” and “π is not infinite” with
“π+ is inductively well-founded”.

Let P be a program and let π be a call sequence which follows P. We define a binary
relation π+ on N by:

mπ+n ⇐⇒ m > n ∧ τm 6= ∅.

Observe that if π is infinite then mπ+n holds if and only if m > n, while if l is the minimum
number such that π(l) = ∅ then mπ+n holds if and only if l > m > n.

Now, we define a binary relation Rπ on N×Var. Here (m, y)Rπ(n, x) holds if and only if
y becomes strictly smaller than x when we step from τn to τm−1 along the call sequence π.

I Definition 16. Given a sequence π that follows P, Rπ is defined as:

(m, y)Rπ(n, x) ⇐⇒ mπ+n ∧ x ↓−→ y ∈ Gτn ; . . . Gτm−1 ,

where Gτ is the size-change graph associated to τ .
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From Rπ and π+ we define SCT∗.

I Definition 17 (SCT∗ program). P is SCT∗ if and only if for any call sequence π which
follows P: Rπ is (inductively) well-founded implies that π+ is (inductively) well-founded.

We highlighted the use of the inductive definition of well-foundedness instead of the
classical one, since as seen it is crucial in order to give an intuitionistic proof of the SCT
Theorem. However for short, from now on we will write well-foundedness instead of inductive
well-foundedness.

4 Proving SCT* Theorem

The goal of this section is to intuitionistically prove that the SCT Theorem by Lee et al. holds
providing we use SCT∗ instead of SCT. The SCT Theorem states that a program P is SCT
if and only if for any idempotent G ∈ cl(GP) there exists a variable x in the source of G such
that x ↓−→ x ∈ G. Recall that in the classical proof of the SCT Theorem the main ingredient
is Ramsey’s Theorem for pairs. In the classical proof the authors suppose by contradiction
that there exists an infinite call sequence π which follows P. Then they define a coloring
h : [N]2 → cl(GP) which associates to any pair of natural numbers n < m the size-change
graph which corresponds to Gτn ; . . . ;Gτm−1 . Since cl(GP) if finite and by applying Ramsey’s
Theorem for pairs they obtain an infinite homogeneous chain and therefore a contradiction.

We will prove that also in this case we can use the H-closure Theorem instead of Ramsey’s
Theorem for pairs. In order to do that we need to introduce a binary relation π+

G for any
G ∈ cl(GP) and for any call sequence π which follows P. We have that mπ+

Gn holds if and
only if the size-change graph associated to τn, . . . , τm−1 is G.

I Definition 18. Let π be a call sequence which follows P and let G ∈ cl(GP). Define
π+
G ⊆ N2 as:

mπ+
Gn ⇐⇒ mπ+n ∧Gτn ; . . . ;Gτm−1 = G.

Observe that π+
G is decidable since Gτi

is finite and π+ is decidable. Moreover, as
remarked in Subsection 3.3, if R is decidable then H(R) is.

I Lemma 19. Let π be a call sequence which follows P and let G ∈ cl(GP). Then both π+
G

and H(π+
G) are decidable.

By applying the H-closure Theorem to the relations π+
G, for G ∈ cl(GP), we can intuition-

istically prove the SCT∗ Theorem.

I Theorem 20 (SCT∗ Theorem). Every idempotent graph in cl(GP) has an edge x ↓−→ x if
and only if P is SCT∗.

Proof. “⇒”: Assume that any idempotent graph in cl(GP) has an edge x ↓−→ x. Let π be a
call sequence which follows P such that Rπ is well-founded. We want to prove that π+ is
well-founded.

I Claim. For any G in cl(GP), π+
G is H-well-founded.

Proof of the Claim. Since “G is idempotent” is a decidable statement we can consider two
cases.
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If G is not idempotent, then each L ∈ H(π+
G) has length at most 2. Otherwise assume

that 〈n,m, l〉 ∈ H(π+
G) for some n < m < l. By definition, this would imply that mπ+

Gn,
lπ+
Gm and lπ+

Gn, therefore we would have

G;G = Gτn ; . . . ;Gτm−1 ;Gτm ; . . . ;Gτl−1 = G.

This means that G is idempotent. Contradiction. Hence we have ¬∃n,m, l(〈n,m, l〉 ∈
H(π+

G)), and so ∀n,m, l(〈n,m, l〉 /∈ H(π+
G)) follows by Lemma 19. Hence π+

G is H-well-
founded.
If G is idempotent, then there exists x ↓−→ x ∈ G. Define the following binary relation

Ux = {(n, (n, x)) | n ∈ N} .

Then Ux is a simulation of π+
G in Rπ. In fact assume that

mπ+
Gn ∧ nUx(n, x),

Therefore, since x ↓−→ x ∈ G = Gτn
; . . . ;Gτm−1 , we have

mUx(m,x) ∧ (m,x)Rπ(n, x).

Since by hypothesis Rπ is well-founded, then by Proposition 5 also π+
G is well-founded.

By Proposition 8 it is H-well-founded. J

Now observe that

π+ =
⋃{

π+
G | G ∈ cl(GP)

}
,

since every Gτn ; . . . ;Gτm−1 equates some G ∈ cl(GP) by definition of cl(GP). Hence by
applying both the H-closure Theorem (Theorem 9) and finiteness of cl(GP) we obtain also
π+ is H-well-founded. Moreover it is transitive by definition, then it is well-founded by
Proposition 8 and we are done.

“⇐”: Suppose that P is SCT∗ and let Gτ be an idempotent size-change graph. By
idempotency if we define the call sequence π such that π(n) = τ for any n ∈ N, then it is
an infinite call sequence which follows P. In particular π+ is not well-founded. Since P is
SCT∗, Rπ is not well-founded. In this case, we may observe that:

(m, y)Rπ(n, x) ⇐⇒ x
↓−→ y ∈ Gτn

; . . . ;Gτm−1 = Gτ ; . . . ;Gτ = Gτ

Then (m, y)Rπ(n, x) ⇐⇒ x
↓−→ y ∈ Gτ . Define

yR̃πx ⇐⇒ x
↓−→ y ∈ Gτ ,

Observe that if R̃π is well-founded, then also Rπ is. We can prove it by using the simulation

U = {((n, x), x) | n ∈ N, x a variable in the source of Gτ} .

Hence R̃π is not well-founded. Since R̃π is not well-founded and it is finite, thanks to
Proposition 6, it has a cycle for some variable z:

z = znR̃πzn−1R̃π . . . R̃πz0 = z.

Moreover R̃π is transitive: in fact if x ↓−→ y ∈ Gτ and y ↓−→ z ∈ Gτ , then x
↓−→ z ∈ Gτ ;Gτ = Gτ .

Since R̃π is transitive, hence zR̃πz. Therefore

z
↓−→ z ∈ Gτ .

We have proved that if Gτ is idempotent, then z ↓−→ z ∈ Gτ . J
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By comparing the classical proofs of the termination theorems, the version of Ramsey’s
Theorem for pairs used in the proof of the Termination Theorem is weaker then the one used
in the proof of the SCT Theorem. In fact in order to prove the Termination Theorem it is
sufficient to have an infinite homogeneous chain (i.e. an ordered set {xi | i ∈ N} such that
each pair of consecutive elements has the same color) instead of an infinite homogeneous set.
This result which is an infinite version of Erdős–Szekeres’s Theorem [10] is called also Weak
Ramsey’s Theorem for pairs and it is strictly weaker than Ramsey’s Theorem for pairs in
two colors in RCA0 [7]. We can stress this difference also in the intuitionistic proofs. In fact
the proof of the Termination Theorem in [6] uses:

if R0, . . . , Rn−1 are well-founded then
⋃
{Ri | i < n} is H-well-founded,

where the hypothesis is stronger than in the H-closure Theorem, by Proposition 8. On the
other hand the proof of the SCT∗ Theorem above uses the whole H-closure Theorem.

Let us conclude this section with an example of an SCT∗ program.

I Example 21. Let us consider the following functional program, where ∗ denotes any value.

g(x, y, temp, exp, z) :=if (z = 0) 0
else if (z = 1) temp
else τ0 : g(∗, ∗, temp + exp, exp, z − 1)

f(x, y, temp, exp, z) :=if (y = 0) 1
else if (y = 1) exp
else τ1 : f(x, y − 1, ∗, g(x, y, 0, exp, x)), ∗)

As in Example 3, f(x, y, 0, 1, z) computes xy. The idempotent graphs in cl(G) are Gτ0 : g → g

and Gτ1 : f → f (since the source and the target of the other size-change graphs are different).
Gτ0 is composed of z ↓−→ z and exp ⇓−→ exp, while Gτ1 is composed of y ↓−→ y and x

⇓−→ x.
Hence this program is SCT∗ since it satisfies the condition of the SCT∗ Theorem.

5 Tail-recursive SCT* programs compute exactly primitive recursive
functions

In this section we compare size-change termination and transition invariant termination. As
Heizmann, Jones and Podelski did, we restrict the domain of the programs we consider in
order to match transition invariants termination and SCT∗. In fact SCT (and so SCT∗) is
defined for functional programs, while Podelski and Rybalchenko’s termination is defined
for transition-based programs. As they did from now on we consider just tail-recursive
functional programs (where all functions use the same variables), for which there exists a
direct transition-based translation into while-if programs. We refer to [13] for details. The
reader has to keep in mind that along all this section we have at the same time a functional
program, which we denote by P , and its translation as a transition-based program RP . The
only property we use of the translation RP is that RP consists of: while, if, a program
counter and the values of the variables of P. If P were recursive but not tail-recursive, RP
should include also a stack, but we explicitly assume that this is not the case. We will derive
a characterization of P from a characterization of RP .

The goal of this section is to prove, by using the result obtained in [4], that the functional
programs which are tail-recursive and are SCT∗ compute exactly the primitive recursive
functions. Ben-Amram in [3] already proved that the tail-recursive SCT programs compute
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primitive recursive functions, however we present a completely different proof which uses an
analysis of the intuitionistic proof of the Termination Theorem, in the case of a transition
invariant of height ω. In fact we intuitionistically prove that if a program P is SCT∗ then
RP has a transition invariant of height ω.

First of all we recall some definitions and results useful to compare size-change termination
and Podelski and Rybalchenko’s termination. Each state in the transition-based program
RP which corresponds to the tail-recursive functional program P is a tuple s composed of
the location s(pc) of the program instruction and a value s(x) for any variable x. We define
a relation Φ(G) on states saying that whenever G includes a decreasing edge x ↓−→ y then the
value of y in the second state is smaller than the value of x in the first state, and similarly
for any weakly-decreasing edge.

I Definition 22 (Transition relation of a size-change graph, Definition 26 [13]). Given a size-
change graph G : f → g, define the binary relation over states Φ(G) ⊆ S × S as follows:
s′Φ(G)s if and only if s(pc) = f , s′(pc) = g and∧{

s(zi) ≥ s′(zj) | (zi
⇓−→ zj) ∈ G

}
∧
∧{

s(zi) > s′(zj) | (zi
↓−→ zj) ∈ G

}
.

The transition relation ρτ associated to the transition

f(x0, . . . , xn−1) = . . . τ : g(e0, . . . , en−1), . . . ,

is defined as follows:

ρτ =
{

((f,v), (g,u)) | (f,v) τ−→ (g,u)
}
.

Observe that if Gτ is the size-change graph assigned to the call τ of program P, Gτ is
safe for τ if and only if the inclusion ρτ ⊆ Φ(Gτ ) holds.

I Lemma 23 (Lemma 29 [13]). The composition of the two size-change graphs G1 : f → g

and G2 : g → h overapproximates the composition of the relations they define, i.e.

Φ(G1) ◦ Φ(G2) ⊆ Φ(G1;G2).

The authors of [13] proved the following lemma about the connection between G and
Φ(G).

I Lemma 24 (Lemma 31 [13]). Let G be a size-change graph such that source and target of
G coincide. If G has an edge of form x

↓−→ x then the relation Φ(G) is well-founded.

They also noticed that the vice versa does not hold in the general case, however we prove
that if G is idempotent this equivalence holds.

I Lemma 25. Let G be an idempotent size-change graph. Then G has an edge of form
x
↓−→ x if and only if the relation Φ(G) is well-founded.

Proof.
“⇒”: It follows from Lemma 24.
“⇐”: Observe that “there exists a variable x in the source of G, x ↓−→ x ∈ G” is a decidable
statement, since G is finite. Therefore either G has some edge of the form x

↓−→ x, or G
has no edge of this form. In the first case we are done, in the second one we will prove a
contradiction, that Φ(G) is not well-founded. This argument intuitionistically shows the
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thesis, because from a contradiction we may derive everything. Let V be the set of the
variables in the source of G. Define the following preorder on V :

x - y ⇐⇒ x = y ∨ y
↓−→ x ∨ y

⇓−→ x.

It is reflexive by definition and it is transitive since G is idempotent: if y r−→ x ∈ G and
z
r′−→ y ∈ G then z r′′−→ x ∈ G for some r′′ ∈ {↓,⇓}.
Let us consider the quotient X of V with respect to the equivalence relation

x ∼ y ⇐⇒ x - y ∧ y - x.

In X, - is an order since it is also antisymmetric. Moreover X is finite then, by Proposition 6,
- is well-founded on X. Hence for any equivalence class [x] ∈ X we can define h([x]) to
be the height of [x] with respect to - in X: i.e. the number of elements [y] ∈ X such that
[y] - [x].

Then we can define a state s as follows: for any x ∈ V , s(x) = h([x]). We claim that
sΦ(G)s. In fact

if y ⇓−→ x ∈ G then x - y and we have two possibilities: if [x] = [y] in X then s(x) = s(y),
otherwise h([x]) < h([y]) and so s(x) < s(y);
if y ↓−→ x ∈ G then x - y. Moreover y - x is false, otherwise by case analysis from
y
↓−→ x ∈ G and x = y ∨ x ↓−→ y ∈ G ∨ x ⇓−→ y ∈ G we deduce x ↓−→ x ∈ G, contradicting

the hypothesis. Hence h([x]) < h([y]) and so s(x) < s(y).
Then sΦ(G)s and so Φ(G) is ill-founded. Contradiction. J

Thanks to the SCT∗ Theorem and the lemma above, we may observe that if P is
tail-recursive, P is SCT∗ if and only if for every G ∈ cl(GP) idempotent Φ(G) is well-founded.

Our next goal is to prove that any tail-recursive program which is SCT∗ computes a
primitive recursive function. In order to do that we modify the proof by Heizmann, Jones
and Podelski of “

⋃
{Φ(G) | G ∈ cl(GP)} is a transition invariant”. We will prove that it is a

transition invariant of height ω. In order to do this we need the following lemmas.

I Lemma 26. Every finite semigroup G has an idempotent element.

Proof. Let x ∈ G and consider the following chain

x 7→ x2 7→ (x2)2 = x4 7→ . . . 7→ xn 7→ (xn)2 7→ . . . .

Since G is finite, there exists y in the previous chain such that yk = y, for some k ≥ 2. Put
z = yk−1, then

z · z = yk−1 · yk−1 = yk · yk−2 = y · yk−2 = yk−1 = z. J

Even if the previous definitions and results can be stated for any functional program, we
highlight now that we need tail-recursive functional programs in order to have the translation
RP of P. In this case each state of RP is composed of the location of the program and the
values in N of the variables.

I Lemma 27. Let G be a size-change graph. Let k be a positive natural number. If Gk is
such that x ↓−→ x for some x then Φ(G) has height ω.
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Proof. Assume that x ↓−→ x in Gk. We distinguish the cases k = 1 and k ≥ 2.
If k = 1, let f : dom(Φ(G)) → N be such that f(s) = s(x). Since If s′Φ(G)s, then by

x
↓−→ x ∈ G we deduce s′(x) < s(x), hence f(s′) < f(s). Thus f is a weight function for

Φ(G).
Assume now that k ≥ 2, since x ↓−→ x in Gk, then there exist y0, . . . , yk−2 such that

x→ y0 → · · · → yk−2 → x

where at least one of these arrows is strictly decreasing. Then define a function f :
dom(Φ(G))→ N by

f(s) =
k−2∑
i=0

s(yi) + s(x).

Hence if s′Φ(G)s then each of the s′(yi) and s′(x) is less or equal to the ones of s. Moreover
one of these is strictly less, since at least one of the edges of G is strictly decreasing. So
f(s′) < f(s) and this means that f witnesses that Φ(G) has height ω. J

By using the results above we can modify the Theorem Idempotence and well-foundedness
[13, Theorem 32] which states that if for any G ∈ cl(GP) idempotent Φ(G) is well-founded,
then Φ(G) is well-founded for any G ∈ cl(GP).

I Theorem 28. If

∀G ∈ cl(GP)(G;G = G =⇒ Φ(G) is well-founded)

then Φ(G) has height ω for every graph in cl(GP).

Proof. Let G ∈ cl(GP) be a size-change graph. There are two possibilities. On the one
hand, if the source and target of G do not coincide, then Φ(G) ◦ Φ(G) = ∅, therefore Φ(G)
has height ω. On the other hand, assume that source and target of G coincide. Then Gn
is defined for any n ∈ N. Since the semigroup ({Gn | n > 0}, ; ) is finite, by Lemma 26 it
has an idempotent element Gk. Since Φ(Gk) is well-founded by hypothesis we obtain, by
applying Lemma 25, that x ↓−→ x ∈ Gk for some x. By Lemma 27 Φ(G) has height ω and we
are done. J

I Corollary 29 (Corollary 33 [13]). If the program P is size-change terminating for a set of
size-change graphs GP that is a safe description of P, then the relation defined by its closure
cl(GP)⋃

{Φ(G) | G ∈ cl(GP)}

is a disjunctively well-founded transition invariant for RP .

Therefore, thanks to Theorem 28, all Φ(G) have height ω: by definition, the transition
invariant has height ω. In [4] and [11] it is proved that if R has a transition invariant of
height ω then it computes a primitive recursive function.

We apply this result to the while-if program RP which translates the tail-recursive
program P . We obtain:

I Proposition 30. Each tail-recursive program which is SCT∗ is primitive recursive.
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This result was already proved by Ben-Amram in [3] using the classical definition of SCT.
He proved that in general SCT programs compute multiple recursive function. As a corollary,
by observing that if you do not use nested recursive calls a multiple recursive function is
primitive recursive, he obtained that any tail-recursive SCT program computes a primitive
recursive function.

By using our proof we can easily obtain a bound whose class is given by the number of
relations of the transition invariant. In fact the weight function provided in Lemma 27 is in
F1, since f(s) < |s| · F0(max(s)) and for any program |s| is fixed. Therefore by applying the
bound provided in [11] we have that if the transition relation of RP is the graph of a function
in Fn, there is a bound in Fk+n−1 where k is the number of the relations which compose
the transition invariant whose weight functions are in F1. Therefore by Corollary 29, we can
conclude that if the transition relation is in F2, the function is in F |cl(GP)|+1. Unfortunately
cl(GP) is exponential in GP , so this bound is huge. We have also another bound on the
number of variables. In fact in the proof of Theorem 28 we saw that for any G there exists
k > 0 such that Gk is idempotent. Let us consider the minimum such k. Then, by following
the proof of Lemma 27 there exists either a x ↓−→ x for some x or a chain

x→ y0 → · · · → yk−2 → x

for some variables, where at least one arrow is strict. Observe that all the variables in the
chain are different: there is not a path which connect some yi to itself, by minimality of k.
The weight function we built for Φ(G) is given by the sum of the values which corresponds
to these variables. This means that if we have n-many variables, the number of possible
weight functions f of this kind is

n∑
i=k

(
n

k

)
= 2n − 1.

Since if R and R′ have the same weight function, then also R ∪R′ have this weight function,
we can merge the relations in the transition invariant found in such a way their number is
less or equal to the number of the possible weight functions. Unfortunately also this bound
is exponential (in the number of variables), so it is huge too.

I Example 31. The program considered in Example 21 is tail-recursive. Observe that

Φ(Gτ0) = {s′Φ(G)s | s′(pc) = s(pc) = g ∧ s′(z) < s(z) ∧ s′(exp) ≤ s′(exp)} ;
Φ(Gτ1) = {s′Φ(G)s | s′(pc) = s(pc) = f ∧ s′(y) < s(y) ∧ s′(x) ≤ s′(x)} ;
Φ(Gτ2) = {s′Φ(G)s | s′(pc) = f ∧ s(pc) = g} .

Then Φ(Gτ0)∪Φ(Gτ1)∪Φ(Gτ2) is already a transition invariant of height ω for the transition-
based program which corresponds to it (Example 3 where l = g and l′ = f). Trivially,
also

⋃
{Φ(G) | G ∈ cl(GP)} is a transition invariant and the function computed is primitive

recursive.

Furthermore we can observe that each primitive recursive function has a tail-recursive
implementation which is SCT∗.

I Proposition 32. Each primitive recursive function has an implementation which is SCT∗.

Proof. By induction on the primitive recursive functions.

TYPES’14



304 An Intuitionistic Analysis of Size-change Termination

For the constant function, successor function and the projection function it is trivial since
we can write tail-recursive first order functional programs which have no idempotent
size-change graphs.
Assume that the primitive recursive functions g0, . . . , gn−1 and f have an implementation
which is SCT∗. By using them it is straightforward to show that the standard program
which computes their composition

h(x0, . . . , xk−1) = f(g0(x0, . . . , xk−1), . . . , gn−1(x0, . . . , xk−1))

is SCT∗. In fact each idempotent size-change graph corresponds to some call in the
definitions either of gi for some i < k or of f .
Assume that the primitive recursive functions f and g have a SCT∗ program which
computes it. Then, by using these programs we can define a standard tail-recursive SCT∗

program which computes

h(x0, . . . , xk−1, y) =
{
f(x0, . . . , xk−1) if y = 0
g(h(x0, . . . , xk−1, y − 1), y) otherwise.

As observed in the previous point each size-change graph which corresponds to some call
either in f or in g, has the desired property. There is only one new size-change graph
G ∈ cl(GP) derived from the definition of h. Since y ↓−→ y ∈ G, we are done. J

6 Transition Invariants Termination as a property of size-change
graphs

In the previous section we proved that if a tail-recursive program is SCT∗ then it has a
transition invariant of height ω. In this section we will see a statement on functional programs
strictly weaker than SCT∗ which is equivalent to the definition of termination by Podelski
and Rybalchenko, so it is equivalent to have a transition invariant of general height.

Thanks to Lemma 25, we saw that if P is tail-recursive, P is SCT∗ if and only if for
every G ∈ cl(GP) idempotent Φ(G) is well-founded. Recall that Podelski and Rybalchenko
analyse the termination of while-if programs, and in order to have a simple relationship with
while-if program we restrict the functional programs to be tail-recursive. Here we prove that
a tail-recursive program P has a disjunctively well-founded transition invariant if and only if
for any G ∈ cl(GP) idempotent Φ(G)∩R+ is well-founded, where R is the transition relation
of RP . The proof of “for any G idempotent Φ(G) ∩R+ is well-founded implies termination”
follows, with some little changes, the proof of Corollary 29 studied in [13, Corollary 33].

The first step is to intuitionistically prove another version of the Theorem Idempotence
and well-foundedness [13, Theorem 32]. In order to do that we need the following lemma.

I Lemma 33. Let R be a binary relation on I and k ∈ N and T a transitive binary relation.
If Rk ∩ T is well-founded then R ∩ T is well-founded.

Proof. Let k = 2. Induction on x with respect to R2. Assume that

∀z(z(R2 ∩ T )x =⇒ z is (R ∩ T )-well-founded ).

By two applications of point 1 of Proposition 5,

x is (R ∩ T )-well-founded ⇐⇒ ∀y(y(R ∩ T )x =⇒ y is (R ∩ T )-well-founded)
⇐⇒ ∀y(y(R ∩ T )x =⇒ (∀z(z(R ∩ T )y =⇒ z is (R ∩ T )-well-founded))).
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Observe that since z(R ∩ T )y and y(R ∩ T )x then z(R2 ∩ T )x. This implies by inductive
hypothesis that z is (R ∩ T )-well-founded. So for every x ∈ I, x is (R ∩ T )-well-founded.
The idea of the proof for k > 2 is to prove it by induction on x with respect to Rk and to
repeat the same argument providing in the case above, by using k-many steps following
point 1 of Proposition 5 in order to get z(Rk ∩T )x. By applying the inductive hypothesis
we will obtain our thesis. J

I Theorem 34. If

∀G ∈ cl(GP)(G;G = G =⇒ Φ(G) ∩R+ ∩ (Acc×Acc) well-founded )

then Φ(G) ∩R+ ∩ (Acc×Acc) is well-founded for every graph in cl(GP).

Proof. Let G ∈ cl(GP) be a size-change graph. We have two cases. On the one hand, if the
source and target ofG do not coincide, then Φ(G)◦Φ(G) = ∅, therefore Φ(G)∩R+∩(Acc×Acc)
is well-founded. On the other hand, assume that source and target of G coincide. In this case
Gn is defined for all n ∈ N. Since the semigroup ({Gn | n ∈ N}, ; ) is finite, by Lemma 26 it
has an idempotent element Gk. By Lemma 23 the inclusion Φ(G)k ⊆ Φ(Gk) holds. Then

Φ(G)k ∩R+ ∩ (Acc×Acc) ⊆ Φ(Gk) ∩R+ ∩ (Acc×Acc)

By hypothesis, since Gk is idempotent we have: Φ(Gk) ∩R+ ∩ (Acc×Acc) is well-founded.
Then Φ(G)k ∩R+ ∩ (Acc×Acc) is well-founded by Lemma 23 and therefore by Lemma 33
also Φ(G) ∩R+ ∩ (Acc×Acc) is well-founded. J

Therefore we obtain the corresponding version of Corollary 29.

I Corollary 35. Let P be a program and let GP be a set of size-change graphs that is a
safe description of P. If for every G ∈ cl(GP) idempotent, Φ(G) ∩ R+ ∩ (Acc×Acc) is
well-founded, then the relation defined by its closure cl(GP)⋃{

Φ(G) ∩R+ ∩ (Acc×Acc) | G ∈ cl(GP)
}

is a disjunctively well-founded transition invariant for RP .

Proof. Thanks to the proof of Corollary 29 in [13, Corollary 33]

R+ ⊆
⋃
{Φ(G) | G ∈ cl(GP)} .

Then

R+ ∩ (Acc×Acc) ⊆
⋃{

Φ(G) ∩R+ ∩ (Acc×Acc) | G ∈ cl(GP)
}
.

Moreover, by hypothesis and thanks to Lemma 34 the relation Φ(G) ∩R+ ∩ (Acc×Acc)
is well-founded. Hence

⋃
{Φ(G) ∩R+ ∩ (Acc×Acc) | G ∈ cl(GP)} is a disjunctively well-

founded transition invariant for RP . J

Finally we prove the equivalence, the other implication is trivial.

I Theorem 36. Given a program P the followings are equivalent:
1. for every G ∈ cl(GP) idempotent, Φ(G) ∩R+ ∩ (Acc×Acc) is well-founded;
2. there is a disjunctively well-founded transition invariant for RP .
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Proof. “⇑”: If 2 holds, then R+ ∩ (Acc×Acc) is well-founded. Then for every G ∈ cl(GP)

Φ(G) ∩R+ ∩ (Acc×Acc) ⊆ R+ ∩ (Acc×Acc),

is well-founded.
“⇓”: If 1 holds, then by Corollary 35 we obtain the thesis. J

To conclude observe that the condition (1) in the previous theorem is strictly weaker
than being SCT. To put otherwise: using a transition invariant, we may prove terminating
some programs RP which are while-if translation of non-SCT tail-recursive programs P . The
following basic example explains why.

I Example 37. Let us consider the following functional program:

f(x, y) :=if (x > y) x

else τ : f(x+ 1, y).

It is not SCT since Gτ is idempotent and has no decreasing edges. In particular Φ(G) is not
well-founded. However Φ(G)∩R+ is and therefore this program satisfies the condition (1) of
Theorem 36, therefore in particular it is terminating.

7 Conclusions

In this work we presented an intuitionistic proof of the SCT∗ Theorem. This is not the
first intuitionistic proof of the SCT Theorem. Vytiniotis, Coquand and Wahlsteldt in [20]
intuitionistically proved it by using Almost-Full relations. A binary relation R over a set
S is almost-full if the set of finite sequences x0, x1, . . . , xn on S, such that for no i < j ≤ n
xiRxj holds, is inductively well-founded. Classically, the set of almost-full relations R is the
set of relations such that the complement of the inverse of R is H-well-founded. However,
we need De Morgan’s Law to prove this equivalence. Therefore it is not evident whether the
H-closure Theorem may be intuitionistically derived from the Almost-full Theorem, or the
other way round. The proof of the SCT Theorem in [20] uses the following facts:

almost-full relations are closed under finite intersections;
if R and T are two binary relations such that T ∩R−1 = ∅ and R is almost-full, then T
is well-founded.

In our intuitionistic proof, instead, we use H-well-founded relations and:
H-well-founded relations are closed under finite unions;
if a binary relation R is H-well-founded and transitive then it is well-founded.

In [6] we showed that we may provide an intuitionistic proof of the Termination Theorem
by replacing the use of Ramsey’s Theorem for pairs with the use of the H-closure Theorem.
In this paper we did the same for the SCT Theorem. Since Ramsey’s Theorem for pairs is
used in many branches of mathematics, in future works we hope to apply this method to
other classical results based on it, in order to obtain intuitionistic proofs.

We proved that the functions which are computed by a tail-recursive SCT∗ program are
exactly the primitive recursive functions. This result fits in with the one by Ben-Amram [3]:
he proved that the SCT programs compute primitive recursive functions. More in details, for
any tail-recursive SCT program we provided some primitive recursive bound to the number
of computation steps given an input. However as discussed in Section 5 the bound obtained
in this way is large. An open question is whether we may extract from the intuitionistic
proof of the SCT∗ Theorem a bound stricter than this one.
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