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Abstract
In the first week of January 2014 Schloss Dagstuhl hosted a Perspectives Workshop on “Con-
necting Performance Analysis and Visualization to Advance Extreme Scale Computing”. The
workshop brought together two previously separate communities – from Visualization and Per-
formance Analysis for High Performance Computing – to discuss a long term joint research
agenda. The goal was to identify and address the challenges in using visual representations to
understand and optimize the performance of extreme-scale applications running on today’s most
powerful computing systems like climate modeling, combustion, material science or astro-physics
simulations.

Perspectives Workshop January 6–10, 2014 – http://www.dagstuhl.de/14022
1998 ACM Subject Classification B.8 Performance and Reliability, B.2.2 Performance Analysis

and Design Aids, I.3.3 Picture/Image Generation, I.3.6 Methodology and Techniques, I.3.8
Applications

Keywords and phrases Performance Analysis, Performance Tools, Information Visualization,
Visual Analytics

Digital Object Identifier 10.4230/DagMan.5.1.1

1 Executive Summary

The need for predictive scientific simulation has driven the creation of increasingly powerful
supercomputers over the last two decades. No longer the simple, single-processor machines
of the 1970’s and 1980’s, modern supercomputers comprise millions of cores connected
through deep on-node memory hierarchies and complex network topologies. In contrast to
the direction that mainstream application development has taken, where rapid development
is prioritized and hardware details are often an afterthought, simulation science thrives only
through high performance. Increasingly, more knowledge of esoteric hardware details is
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2 Connecting Performance Analysis and Visualization

required to exploit the performance of modern machines. The algorithms implemented by
large simulations are already dauntingly complex, and the set of skills required to integrate
domain science, numerical algorithms, and computer science is easily beyond the capability
of any single scientist.

Performance analysis is a subfield of computer science that, for many years, has focused on
the development of tools and techniques to quantify the performance of large-scale simulations
on parallel machines. There are now a number of widely used tools and APIs to collect a wide
range of performance data at the largest scales. This includes counts of micro-architectural
events such as cache misses or floating point and integer operations, as well as timings
of specific regions of code. The success of these tools has created a new challenge: the
resulting data is too large and too complex to be analyzed in a straightforward manner.
Existing tools use only rudimentary visualization and analysis techniques. They rely on
users to infer connections between measurements and observed behavior. The raw data is
abstract and unintuitive, and it is often poorly understood as much of the hardware details
are undocumented by vendors. Automatic analysis approaches must be developed to allow
application developers to intuitively understand the multiple, interdependent effects their
algorithmic choices have on the final performance.

The natural first step towards automatic analysis is to visualize collected data. This
provides insight into general trends. Visualization helps both application developers and
performance experts form new hypotheses on causes of and solutions of performance prob-
lems. The HPC community has traditionally been associated with researchers in scientific
visualization, but performance data is not necessarily a good fit for this model. The data is
non-spatial, highly abstract, and often categorical. While some early attempts at including
visualizations in performance tools have been proposed, these are rudimentary at best and
have not found widespread adoption. The information visualization (info-vis) community is
growing rapidly, focused on developing techniques to visualize and analyze complex, non-
spatial data. There is a large body of work on general visualization design principles, color
spaces, and user interfaces as well as a wide array of common techniques to tackle a broad
range of applications. Unfortunately, there has so far been little overlap between the info-vis
and performance analysis communities.

This Dagstuhl Perspectives Workshop, for the first time, gathered leading experts from
both the fields of visualization and performance analysis for joint discussions on existing
solutions, open problems, and the potential opportunities for future collaborations. The
week started with a number of keynote sessions from authorities from each field to introduce
the necessary background and to form a common baseline for later discussions. It became
apparent that there is a significant overlap in the common tasks and challenges in performance
analysis and the abstract problem definitions and concepts common in visualization research.
The workshop continued with short talks focusing on various more specific aspects existing
challenges and potential solutions, interspersed with increasingly longer group discussions.
Theses extensive, inclusive, and in-depth exchanges ultimately shaped the second half of
the workshop. This was only possible through Dagstuhl’s unique collaborative discussion
environment.

Ultimately, the workshop has spawned a number of collaborations and research projects
between previously disparate fields, with potential for significant impact in both areas.
Participants developed three high-level recommendations: First, joint funding for the various
open research questions; second, support to build and foster a new community at the
intersection of visualization and performance analysis; and third, the need to integrate
performance visualization into the workflow of parallel application developers from design to
optimization and production.
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In this Dagstuhl Manifesto we summarize the discussions and results of the Dagstuhl
Perspectives Workshop. At the end, the workshop led to four major results:

The attendees summarized the state-of-the-art and its gaps for both performance analysis
and information visualization. At the same time, this information functioned as education
for the attendees of the other field and provided an introduction into the respective fields
(Section 2).
The group outlined the common challenges in bringing the two fields together (Section 3).
One of the major obstacles identified during this activity was the need for a common
understanding of the data being collected and visualized, which then lead to the definition
of a general data model and a discussion on how existing tools can be mapped to it
(Section 4).
Finally, the workshop produced a set of next steps and recommendations to closer align
the two fields. This has the potential to significantly further the performance visualization
for large scale systems (Section 5).

Overall, these results and the manifesto based on them will result in closer collaboration
between the fields of performance analysis and visualization, creating a vibrant new field of
performance visualization.

14022



4 Connecting Performance Analysis and Visualization
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2 Background

The characterization, modeling, analysis, and tuning of software performance has been a
central topic in High Performance Computing (HPC) since its early beginnings. The overall
goal is to make HPC software run faster on particular hardware, either through better
scheduling, on-node resource utilization, or more efficient distributed communication. The
first step in optimizing is typically to collect some data about the program’s behavior at
runtime. Collecting and displaying this data to diagnose particular types of performance
problems is the forte of current tools. The difficulty, and a long-standing open problem in
performance analysis, is that for large parallel programs, there is simply too much performance
data. Even a simple, single-threaded sequential program run on one processors can generate
instruction traces comprising millions of execution events.

In a large parallel program, where data is collected from multiple threads on each node
and potentially hundreds of thousands of nodes, the data becomes extremely unwieldy.
Locating and identifying a performance culprit in such data is often like finding a needle in a
hay stack, and it is typically not known in advance which data might help in the diagnosis,
or which processes/threads it might be from. Visualization has therefore been used for the
initial, high-level analysis of performance data for purely practical reasons: we delegate the
task of finding the problem to the user.

During the workshop it became apparent that HPC performance analysts and InfoVis
experts are both dealing with visualizing and analyzing complex data, and that there is great
potential for collaboration between the two fields. InfoVis experts have developed many
techniques to extract meaning from very high dimensional unstructured data, and to search it
for correlations. Performance analysts have a strong focus on very large, relatively structured
data sets that need to be studied in light of irregularities or known deficiencies. Much of this
data, particularly with respect to networking and performance counters, is high dimensional
and unstructured.

This section summarizes the state-of-the-art analysis and visualization in the performance
analysis field and provides background for the common data model we propose later in
Section 4.

2.1 Profiling Tools
The most basic performance measurement tools are profilers, which record, for some execution
of a program, the parts of the source or binary code in which a program spent its time.
A profile is essentially a histogram, binned by region in the code, of elapsed time spent
executing. The key difference among profilers is how they bin locations in the source code.

1. Flat profilers. So-called flat profilers consider source code entirely statically, and bin
source code by function names, source file and line number, or raw instruction addresses
in a binary. While this is a simple way to consider source code, it ignores the calling
context of the code. For example, a flat profiler will accumulate time into a single bin for
the MPI_Send() function regardless of whether it was called directly by the application
or from a library. Simple call graph profilers like IBM’s Xprofiler include static call
information in their display, but they are still flat profilers because they do not include
any dynamic calling context information.

2. Call-tree profilers add information to a flat profile by binning code by calling context,
i.e., by the contents of the runtime stack it was called from. The unique bins in such a
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6 Connecting Performance Analysis and Visualization

profile comprise a calling context tree or call tree, typically rooted at the main function
or one of its ancestors. Binning based on dynamic runtime information can differentiate
different uses of the same call, especially for library functions. It can also differentiate
uses of different functions through the same callsite, e.g., in the case where a function is
called indirectly through a pointer. Open|SpeedShop, Scalasca, TAU, and HPCToolkit
all support this mode of profiling.

3. Function profilers such as mpiP intercept and time only certain function calls. mpiP in
particular is a profiler tailored to the MPI interface, and because it only accesses certain
functions, it can bin MPI operations according to their parameter values in addition to
calling context. It is, however, unaware of time spent out side the MPI interface. Darshan
is another example of an interface profiler that targets POSIX I/O commands.

In addition to the way they account for source locations, profilers differ in the metrics
they can display, i.e. the metrics accumulated in each bin of the histogram. For example,
HPCToolkit and Open|SpeedShop can both be configured to accumulate floating point
instruction executions, cache misses, or other events instead of simply CPU cycles or time.
In practice, profilers incorporate many aspects of the above traits. For example, mpiP
incorporates calling context in addition to function parameters, and a call tree profiler can
be used to generate a flat profiler with post-processing.

Handling Parallelism. When profiling a parallel program each process or thread typically
generates its own copy of the profiling histogram. The task of aggregating profile data in
large parallel programs is currently either handled by writing a single file per monitored
task, or by aggregating this data. Parallel statistical techniques such as clustering have been
proposed, but none of these techniques is used consistently in production tools to isolate
problems, at least not for simple profiling. More often, data is averaged or summed across
all processes, losing load imbalance information and any other heterogeneity in the profiled
data.

Visualizing Profiles. The profilers above display their results in many different ways.
HPCToolkit, Open|SpeedShop, Scalasca and TAU offer GUI tree widget views that show
source locations and the percentage of total time spent in each. These views allow users
to collapse and expand nodes of the calling context tree. Flat profilers typically provide a
simple table, possibly grouped into categories for organization, e.g., by library or by source
file. mpiP and Open|SpeedShop provide simple human-readable text output, and Darshan
provides a web interface for visualizing its results. Some profilers provide mechanisms for
zooming in on data based on some relevance criteria, for example, HPCToolkit allows a user
to zoom in on the “hot path” in the profile by iteratively expanding a child with a large
percentage of total time up to some threshold. IBM’s XProfiler and TAU’s callgraph view
adjusts the size of call graph nodes based on the time spent in them, but aside from this,
none of the current crop of tools provides visual metaphors to emphasize particular nodes in
the tree or graph beyond simple coloring.

2.2 Tracing Tools: Performance Timelines
Tracing tools record a sequence of parallel events per process. These events might include
entering a particular function, exiting a function, sending a message, receiving a message,
etc. Each event is recorded, typically with a timestamp, and possibly also with a set of
metric counts for the time of the event. Unlike a profile, where individual event records are
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discarded to conserve space and to build up an aggregate histogram, traces store the entire
event trace. They can thus grow much larger than profiles, but can reveal phenomena that
profiles cannot.

Traces are useful when program behavior depends on temporal information. In these
cases, determining the root cause of a problem from a profile may not be possible. Conditions
depend on the order of events as they execute at runtime, and the performance of many
distributed communication operations depends on the order in which messages are passed
among parallel processes. In thread-parallel programs, shared memory data exchange and
locking is used for communication and synchronization, but the idea is the same.

Tracing tools are most typically used with MPI parallel applications. JumpShot, Vam-
pirTrace, Scalasca, Score-P, and TAU all provide the ability to measure the time an application
enters and exits MPI calls, as well as the endpoints of parallel communication operations
like sends and receives. Many also provide instrumenting compilers that allow the entries
into and exits from local computation routines.

Handling Parallelism. Tracing tools, like profilers, record a series of events on every parallel
task. Depending on the granularity of measurement, traces can grow very large very quickly,
as their space complexity is proportional to the product of execution time and event frequency.
Aggregating large amounts of trace data is difficult, though some tools like ScalaTrace have
been developed to analyze trace data for similarity for purposes of compression (but not for
analysis). Most trace tools simply dump per-process, compressed trace records, which makes
their scalability lower than that of profilers for common usage.

Visualizing Trace Data. Trace data is typically visualized as a long timeline, or Gantt
chart, with time on the horizontal axis and tasks (processes or threads) on the vertical axis.
Colors are used to denote different communication and computation routines, and messages
are shown as lines drawn between processes. Users can zoom into sub-regions of the full
trace to expand complex behavior on short time scales. JumpShot and VNG both provide
this type of visualization for trace data. ScalaTrace does not provide a visualizer. The
HPCTraceViewer tool combines call tree profiling with tracing by displaying a fully dynamic
call tree event view. This is a two-dimensional view of the 3D space of tasks vs. time vs.
call trees, and the user can select a call tree level in advance and view the traditional 2-D
trace view. Each element in this trace view is a sampled call path – there are no metrics
recorded on the callpath elements in HPCTraceViewer’s view.

2.3 Traditional Plots
In addition to profiles and traces, standard two- or multi-variate plot-based visualizations
have been employed by performance tools. Bar charts, pie charts, and standard histograms
are used by TAU, Vampir, ParaProf, and Cube to visualize binned data in arbitrary metric
domains. Scalasca can use BoxPlots to show variation and distribution of timing and other
metric values.

Often, a plot is the best way to display a relationship between a small number of values,
but the user must know in advance what to plot, and exploring all possibilities is typically
tedious. Visualization and analysis techniques are typically necessary to guide the user
towards the right set of metrics to plot. PerfExplorer allows curves to be fit to scatter plots,
and it can automate the generation of large numbers of plots for high-dimensional data, but
the user must still scroll through a large array of bad curve fits to find the interesting ones.
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8 Connecting Performance Analysis and Visualization

2.4 Projected Views
Recently, many performance tools have begun to explore the idea of mapping, or projecting
performance data onto spatial, logical, or other domains to show correlations and topological
relationships.

The Cube tool allows a user to visualize metrics associated with each process in a large,
parallel Blue Gene, Cray or K computer job to be displayed in the logical topology the tasks
comprise at runtime. Blue Gene machines, as well as other supercomputers, employ cartesian
torus or mesh shaped networks, and this view allows us to visualize processes in a projection
that clearly displays their communication locality.

The PAVE project at the Lawrence Livermore National Laboratory (LLNL) has projected
performance data into the simulated application domain, then used traditional scientific
visualization techniques to display the resulting data. This revealed that for some fluid
dynamics codes, there are correlations between performance metrics and particular domain
data. Scalasca has been used to show a similar visualization of climate simulation data
projected onto a visualization of the globe, and the TAU tool provides a similar projection tool
that allows data to be projected onto an arbitrary 3D geometric shape to show correlations.
These techniques allow users to understand data-dependent performance problems, and to
identify what part of the source code cause data-dependent delays in the overall computation.

The Boxfish tool at LLNL was developed to generalize the idea of projecting performance
data onto domain-specific views. For example, given a rendering of a 2-D, 3-D, or 5-D torus
network, Boxfish can display per-process data projected onto the nodes and links of the
network. It can also project the same data onto a custom 2-D network visualization, and
display the same data with less clutter. Or, it can project this data onto a representation of
the simulated physical domain, such as a material patch view for Adaptive Mesh Refinement
(AMR) applications. Boxfish is structured so that the elements of the view to be colored or
labeled are exposed for any performance data to be projected, which allows a user to explore
correlations and relationships between performance measured in one domain with elements
in some other domain, assuming a suitable view plugin has been developed for the domain.

2.5 Information Visualization for Performance Analysis
Most of the visualization techniques discussed above have been driven directly by specific
needs of performance analysis. This has made these tools intuitive to use and well integrated
into the HPC workflow. Unfortunately, these visualizations rarely consider aspects such
as appropriate color selection, screen space usage, more abstract visual metaphors, or the
advantage of interactive linked-view interfaces. This often results in cluttered displays,
misleading visualizations, unscalable representations, and static plots not suited for an
interactive exploration driven by the end user.

On the contrary, the field of information visualization has a long history of research
in all these aspects. For example, there exist a number of taxonomies to classify different
visualization tasks [3, 11, 8], extensive research on the use of color in visualization [1, 2, 9],
and accepted practices on the design of visualization systems [4]. Unfortunately, due to
the large amount of domain knowledge necessary to collect and interpret performance data
only comparatively little research in the information visualization community has focused on
performance data. Nevertheless, these include a number of interesting new concepts such as
novel layouts for networks [10, 7] or the memory topology [5] and a different perspective on
how to depict time [15]. However, these tools have found only very limited adoption as they
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either do not directly or completely address the users needs, are limited in scale, or have
simply proven to unintuitive for most HPC researchers. As a result a recent survey in related
work on performance visualization [6] finds a large body of research that appears split into a
set of widely used tools with often limited visualization capabilities and a set of advanced
techniques, graphical layouts, and systems that is predominantly academic in nature.

2.6 Future Direction for Performance Visualization
One immediate result of even the first day of the Dagstuhl workshop was the realization
that the combination of advanced visualization techniques with state of the art performance
analysis technology has the potential for significant impact in virtually all areas of HPC.
However, it also became clear that each area individually will have difficulty addressing the
open challenges adequately. Instead, we need an exchange of knowledge in both direction
with the visualization community becoming more familiar with HPC problems, techniques,
and existing tools and the performance analysis community adapting more advanced visual
encodings, integrated interfaces, and interactive tools. The data model described in Section 4
is a first step in this direction by describing, for the first time, a holistic view of performance
data starting from the collection of raw measurements and ending and interactive visualization
tools. As discussed in Section 4.6 many of the existing tools are well described by this model
and recent developments designed to project data from one domain into the other can be see as
an initial attempt at a complete realization of this model. Nevertheless, during the workshop
it became apparent that to allow the techniques used in scientific and information visualization
to be applied to performance tools, there will need to be more common nomenclature and
more standardization in the way performance data is stored and exchanged.

3 Challenges

One of the central challenges of parallel performance analysis is the extreme volume and
variety of measurements that can be gathered from parallel performance tools. Performance
analysts have struggled with devising ways to gather and analyze this data for many years.
Information and Scientific Visualization techniques have the potential to offer performance
analysts an entirely new set of tools to analyze this data, but it was determined at the
workshop that several obstacles impede collaboration between the performance analysis and
visualization communities.

Domain Knowledge. First, there are knowledge and terminology gaps. Performance tools
are often designed for experts. Understanding the measurements they generate can require
a full-stack understanding of a supercomputer, making them opaque to most visualization
experts. For example, identifying code regions may require knowledge of compilers and
language implementation, as this determines how symbols are represented at runtime. Further,
understanding many measurements, e.g., network performance measurements, likely requires
knowledge of the network on a particular supercomputer machine. Finally, understanding
the types of analyses likely to reveal performance problems typically requires knowledge of
how particular instructions and code executes on specific hardware.

Measurement Complexity. In addition to complex data formats, complexities of perform-
ance measurement have made it difficult to easily relate data from one tool to that of
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10 Connecting Performance Analysis and Visualization

another. As mentioned, tools like profilers typically aggregate data in very specific ways,
e.g., by building a histogram according to a code representation with a specific granularity.
Other tools, such as AutomaDeD, may aggregate data on the fly at runtime, e.g., to build a
stochastic model of control flow or to only record timing for specific functions (e.g., MPI
calls). There are no readily available tools to relate aggregate data to exhaustive data, or to
project (lossy or otherwise) data in one domain to another.

Data Formats. Because of the complexity of performance measurement, data collected
by existing performance measurement tools are often stored in a manner closely tied to a
particular performance tool’s implementation. This is done for efficiency, either because the
format was the easiest structure to use for collecting measurements, or simply because the
designers of the measurement tool only envisioned their data being consumed by a single,
bespoke performance visualization tool. The profusion of performance tool formats and the
lack of documentation on them for non-experts makes exchanging data with visualization
researchers hard, as accessing the data may require implementing a new parser or translator
to even begin working with the data.

Evaluation. Once the collaboration between performance tool developers and information
visualization experts is successful, and new data analysis or visualization functionality is
being added to performance tools, the challenge remains how to evaluate the effectiveness of
the new approach. Given the extreme diversity of parallel machine, application architecture
and application domains, it will be very difficult to assess the usefulness of a new approach.
If a new approach was successful highlighting a performance problem in one or two cases
this does not automatically mean it is useful in general. On the other hand, if various
experiments with a new approach have not produced any interesting performance result
it does not necessarily follow that the approach is not useful: the experiments might just
have picked the wrong application examples or parameters which (by luck) just work fine.
Therefore, developing general purpose metrics and benchmarks for evaluating new approaches
for parallel performance methods and tools will be difficult.

4 The Foundation: A Common Data Model

One of the most significant results of this Dagstuhl workshop has been the joint realization
that virtually all existing performance data collection and analysis routines can be defined in
and described by a rather simple, yet general data model. Both performance analysts and
visualization experts agreed that formally specifying a data model with which to describe
performance results would allow for better communication and data exchange between the
two communities. Making data more accessible, both in terms of a common format and in
terms of the common structure needed to explain the format to others, will lower significant
barriers to collaboration. In addition to the obvious benefit of giving InfoVis researchers
access to performance data, it will facilitate exchange of data among performance researchers.
This has the potential to allow measurements from different tools to be combined in ways
not possible before, enabling new types of performance analysis.

We expect that a common data model will also go a long way towards solving the first
problem of domain knowledge as phrased in a common language, performance data will
become easier to understand for visualization experts. The resulting collaborations will serve
to educate both communities about how best to visualize, analyze, and understand this data.
The key, as this workshop has demonstrated, is lowering the barriers to entry that obstruct
the speedy exchange of information.
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4.1 The Anatomy of Performance Data
At a high level, parallel performance data can be said to describe the state of a dynamic
system, usually a parallel supercomputer or some part of it. Typically, this data is recorded
at runtime during the execution of some parallel application, as this is how most performance
tools store their data. However, performance data may also include data recorded by tools
or system logging daemons that run continuously, and that persist beyond the lifetime of
a single parallel run. Further, it may include data that describes properties of the system
or application – that is, metadata. Structurally, there is no particular distinction between
recorded data and metadata. Semantically, metadata typically describes some static aspect of
the system, like the dimensions of a network, or system configuration information particular
to a single application execution, and recorded data represents dynamic measurements.

4.2 Notional Example
Before we delve into the details of the model, we will start with a notional example to
illustrate the kinds of data we are dealing with. Suppose we have a performance tool that
records, for each function in some application, the time spent in the function during each
time step, the number of floating point operations executed by the function, and the number
of cache misses incurred by the function’s execution. We might represent this as a simple
table:

FunctionName Time FP CM
hydro 395 452 64
checkpoint 12342 0 7249
solve 19234 2097

Each row in this table is a record written by some process. If we wanted to also record
the 3-D torus network coordinates of the node where the measurement was taken, along with
its rank in the MPI process, we would add columns to the table to get data that looks like
this:

FunctionName x y z rank Time FP CM
hydro 0 1 2 0 395 452 64
checkpoint 0 1 2 0 12342 0 7249
solve 0 1 2 0 19234 2097

We can now see above that each record was taken on rank 0, which is located on node
(0, 1, 2) on the network. If we wanted to measure this data over multiple time steps we would
further disambiguate them with a time step column, e.g.:

FunctionName Time x y z rank Time FP CM
hydro 0 0 1 2 0 395 452 64
checkpoint 0 0 1 2 0 12342 0 7249
solve 0 0 1 2 0 19234 2097
hydro 1 0 1 2 0 395 452 64
checkpoint 1 0 1 2 0 12342 7248
solve 1 0 1 2 0 19224 2107 224
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Figure 1 A generic data model that captures the relationships between metrics being collected
by a performance tool, the spaces on which theses metrics are defined and the visualization and
analysis tools to explore the data. Performance tools typically implement a measurement that
collects metrics such as FLOP counts on some domain defined by either a single or a cross product
of spaces. Visualization tools are tailored to (cross-products of) spaces, i.e., the MPI rank space for
communication graphs, and can analyze data defined on the corresponding domain. To expand the
type of data applicable to any one analysis technique the model contains mappings between spaces.

This is a very general representation of the data. Each record represents a single fact
recorded about the system. We might read the first record as the fact that “the hydro
function took 395 nanoseconds, executed 452 FLOPS, and incurred 64 cache misses, on rank
0, on node (0, 1, 2)”. Each record is simply a tuple of related attribute values. An attribute
is simply the name by which we refer to a column header, along with an associated type for
it values. Here all of the attribute have integer-types values, except FunctionName, which
uses a string. A type can be a primitive type, such as an integer or real number, or it can be
a structured data type as might be commonly used in programming languages. We do not
restrict the types of attribute values, but in practice they are likely limited by the data store
used. For each measurement, not every attribute must have a value. Tools are free to store
as little or as much data as is available when they take their measurements.

4.3 A Generalized Data Model for Performance Tools
Following this notional example, we develop a generalization and formalization of our data
model. Figure 1 provides a high-level sketch of the concepts explained below.

4.3.1 Spaces

At the core of the abstraction are a set of spaces. Each space is represented by a finite set
of tuples and has a crossproduct of types associated with it, such that each type describes
one element of the tuple. For example, the MPI rank space used above, uses a single integer
to describe a location with respect to the communication graph and the triple of x,y, z
coordinates describes the physical coordinates in a torus network. The number of spaces is
not limited. Time and code (represented by calling context trees [16]) are treated the same
as any other space.

4.3.2 Metrics

Metrics are units for individual data points. Examples are floating point operations and MPI
message counts. Metrics are typically represented by infinite sets, as not to restrict what can
be measured, but may in individual cases be a finite set of possible outcomes.
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4.3.3 Measurements

Measurements capture the data acquisition in performance tools. They are represented as
mappings of a crossproduct of spaces – the domain the performance data is collected in
– to a metric, the set of possible values for this measurement. To make reasoning about
measurements easier, we define a measurement as a unique mapping or function, i.e., for each
element of the measurement domain the measurement only maps to at most one element in
the metric set. If this is not the case for an experiment, e.g., in tracing tools that provide
multiple data points for each element of a space over time, the domain needs to be modified
to allow for this uniqueness, in the example by adding a space representing real or virtual
time to the crossproduct that forms the domain.

4.3.4 Comparison to Traditional Database Models

Thus far our data model is extremely general, and is closely related to many data models
already in the literature. In particular, our model is very similar to the time-honored
relational model, used in many database management systems. In the relational model, data
is grouped into tuples, much like our records. A relation is a set of tuples with particular,
common attributes – a table in database terms.

One key difference between our model and the relational model is that we do not restrict
all records to have the same set of columns. Our model is designed to consume data from
many different performance tools, each of which may have its own set of attributes, and
each of which may even provide records with missing data. In this regard, we do not have
relations in the same sense that a relational database does.

Recent NoSQL data stores such as Google’s BigTable and Apache Cassandra are more
flexible than a relational database with respect to columns. These stores represent their data
as a large, multi-dimensional, sorted, distributed map. Our data most resembles this model
because of the freedom to create new columns/attributes on demand and because of the lack
of a rigid schema.

As will be described in more detail in the subsequent sections, a key aspect of our model
is projections between data spaces, as well as the concept of measurement functions. While
a traditional relational database is designed to do efficient queries on data with a known
schema, our model may create new data by projecting existing values into new spaces,
effectively creating new columns in the model. Adding attributes based on analysis is key
to our model of visualizing performance data, and the fact that our model includes both
structured computation in addition to data storage and retrieval differentiates it from the
relational model, as well as recent NoSQL data stores.

4.4 Projections
In performance data analysis, and particularly in performance visualization, it is very useful
to be able to project data from one domain to another. As mentioned in Section 2.4, several
recent tools have begun to adopt projections and similar operations to visualize correlations
between different types of performance data.

4.4.1 Projections in the Notional Example

Let us revisit our notional example and consider the following data, this time in terms of
links rather than nodes on the network:
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Figure 2 Three different types of projections between spaces.

FunctionName sx sy sz dx dy dz bytes
hydro 0 1 2 0 2 2 100
checkpoint 0 1 2 0 2 2 100
solve 0 1 2 0 0 2 50

Each of these records now represents bytes sent, e.g., to a neighbor in the torus network by
a particular node in a particular function. A network link is identified by a source (sx, sy, sz)
triple and a destination (dx, dy, dz) triple.

4.4.2 Formalization of Projections

A projection, in the sense of the data model, maps one or more spaces (the origin domain)
to one or more spaces (the target domain). This allows measurements represented in the
target domain to be used in analysis operations on the origin domain. In general, we can
distinguish three types of projections, which are also illustrated in Figure 2:

1:1 Projections: Each element of the origin domain is mapped to exactly one element of
the target domain. An example of such a 1:1 projection is the mapping between node
coordinates in a network to node IDs, since both domains describe the same physical
entity, but using different names or numbering schemes. 1:1 projections allow a direct
translation of measurements in one domain to another.
1:N Projections: Each element of the origin domain is mapped to one or more elements
of the target domain. An example for a such a 1:N projection is the mapping from node
IDs in a system to process or MPI rank, since multiple ranks can be on each node. When
mapping measurements using a 1:N projection, a measurement from an element in the
target domain must be distributed or spread over all elements in the origin domain that
map to it. The semantics of this operation depends on the semantics of the domains.
For example, the same measured value could be attributed to each element in the origin
domain in full, or the value could be split up based on a distribution function.
N:1 Projections: Each element of the origin domain is mapped to at most one, not
necessarily unique, element of the target domain. An example for a such a N:1 projection
is the mapping of MPI ranks to nodes in a system, since multiple ranks can be on each
node. When mapping measurements using a N:1 projection, measurements from all
elements in target domain that map to a single element in the origin domain have to be
combined using an aggregation operation. This can be as simple as a sum or average, but
can also be a more complex operation such as clustering or statistical outlier detection.

Projections can further be combined into new projections, allowing a translation over multiple
domains from an origin to a target domain. This could also lead to situations in which
multiple translations between two domains using different compositions, i.e., a different route
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Figure 3 A simple context of a two-dimensional colored scatterplot with two spaces, core-id and
thread-id, and a single metric FLOP count.

through the set of available domains, are possible. Note, though, that not all combined
mappings between the same domains carry the same semantics. For example, a 1:1 projection
between two domains may also be representable by a combination of a N:1 and a 1:N mapping,
but the latter would include a loss of information by first aggregating measured values before
spreading them out again. Choosing the right combination of projections based on the
intended analysis is therefore crucial.

4.5 Contexts and Visual Representations
The previous sections describe three fundamental aspects that can be used to describe
performance data: the space in which samples are taken which allows to identify and
attribute samples to different software or hardware entities; the metrics which are collected
to describe the behavior of the system; and the potential projections that allow comparing
and correlating information related to different portions of the system. While having a
generic and thus portable description of performance data solves only part of the overarching
problem. In particular, given a specific problem or analysis task one still must decide what
portion of the data to consider and in what context. We consider a context to be a (collection
of) space(s) together with a means to analyze or visualize values defined on these spaces.
A context may be as simple as a plot of, for example, FLOP count per MPI process or as
complex as a network visualization.

In particular, the more complex contexts such as a visualization showing the physical
network have a native domain – in this case the node ids – and may require additional
meta-information such as whether the network forms a mesh, a torus, a dragonfly etc..
Combined with the data model described above this now allows to describe a virtually
arbitrary analysis task as a simple combination of what metrics are of interest, on which
spaces are the corresponding samples defined an in what context should these be analyzed.
Figure 3 shows a diagram of a simple analysis such as a colored scatterplot expressed in this
way. In the example, the FLOP count is recorded on the space of core-id and thread-id and
the colored scatterplot context shows the data and potential relationships.

However, the true power of the new data model emerges when one considers projections.
For example, Figure 4 shows a schematic of some context depending on MPI rank showing
the number of packets per network switch. One way to analyze the packets in the context
of the MPI ranks is to first project the samples from the space of the network switch to
node ids and subsequently to MPI ranks. Assuming each node has its own switch the first
projection is 1:1 but requires additional meta-information indicating which switch belongs to
which node. The second projection from nodes to MPI requires the node mapping that was
active for the corresponding run and is likely 1:N. Therefore, the user must decide how to
process the packet counts further. For example, one could assign the packets evenly to all
MPI ranks on a node or proportional to other say FLOP counts.
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Figure 4 A more complex context example of a communication graph operating on MPI ranks
that shows network packets collected on a per network switch bases. The count is first projected
to node ids according to the hardware configuration and subsequently to MPI ranks via the node
mapping file stored at runtime.

In the language of this data model, open challenges in performance analysis can now be
classified as one of three areas: first, how to collect data, i.e., how to define measurements
and collect samples in an efficient and scalable manner; second, how to attribute and connect
data from different spaces, i.e., how to project samples collected on one space, e.g., AMR
patch id, into another, e.g., core id; and third how to analyze or visualize data, i.e., by
developing new useful contexts. Furthermore, the data model now decouples these tasks to
the extent possible. For example, developing a new context like a new visual metaphor for
a complex network topology becomes a well defined and independent task with a clearly
defined native domain on which is operates. Any samples that can be projected into this
native domain (potentially another independent research challenge) can use this context and
thus tools and techniques can easily be combined. Finally, the data model is well suited
to support the complex interconnected analysis likely to be required to understand future
systems. Through the projections many tools, data sources, and contexts can be combined
and connected, for example, to form the linked viewed interfaces an advanced visual analytics
solution.

4.6 Examples of Existing Tools
The model introduced above can be used to reason about any kind of performance data. In
the following we describe how it can be mapped to a selection of existing tools and how it
can be used to describe their data. These tools cover the three major types of performance
measurement approaches (sampling, profiling, and tracing) showing the generality of the
base model.

4.6.1 Open|SpeedShop (Sampling)

Open|SpeedShop is a performance tool set, which includes both tracing and sampling
experiments within a single tool and workflow [13]. For the following, we concentrate on the
sampling experiments (the tracing parts are equivalent to the Vampir tool covered below).

Sampling, or statistical sampling, is a technique to approximate the time spent by an
application in various code segments. The execution of an application is repeatedly interrupted
using a timer interrupt and during every interruption the tool records the program counter
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Figure 5 Open|SpeedShop described in the generic data model.
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Figure 6 mpiP described in the generic data model.

the application was executing at that time 1 and attributes the time since the last interrupt
to that program counter location. If this is repeated often enough and with a fine enough
granularity between interrupts, one can achieve a fairly accurate overview of which code
pieces (identified by their program counter location) are executed for how long. As such,
sampling tools provide an easy and low-overhead way to gain an overview of an application’s
performance.

This kind of performance tool essentially provides a histogram of times attributed to each
program counter location, or, in other words, an association of number of sample counts
(represented by the time associated with them) to PC locations. This can be represented by
a single space, covering the PC locations, and a metric space representing number of samples
(see Figure 5). The data is then displayed as a big table or in the form of a bar chart. In
both cases, the tool directly shows the histogram.

4.6.2 mpiP (Profiling)

mpiP is a profiling tool for MPI communication [17]. It tracks all calls to the MPI library,
records the time spent in the MPI library and aggregates the information. At the end of the
execution, mpiP then produces a report that shows the time spent inside the MPI library
and in each type of MPI call or (when used together with stack trace information) each call
path for all MPI call sites in the code. Additionally, mpiP keeps track of how much data is
communicated and maps this data to the same entities as the timing data. Combined, this
provides users with a basic, yet powerful overview of the communication characteristics of
their application and can help to identify MPI routines that contribute to execution delays.

Describing mpiP’s data in the generic data model discussed above requires a more complex
set of spaces. In its finest granularity data can be shown per MPI process (represented by the
its rank in MPI_COMM_WORLD) and per MPI call. As shown in Figure 6, we represent
both as a separate space and their crossproduct defines the domain for mpiP measurements.

1 More advanced sampling techniques also record the call stack and/or sample on other events than time,
e.g., cache misses or remote memory access – with loss of generality, we limit our discussion here to
pure program counter sampling to keep the description simpler.
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Figure 7 Score-P/Vampir described in the generic data model.

The latter has two metrics, one for time spent in MPI and one for communication volume,
both defined on the entire domain. The visualization in the current tool is simple and consists
only of text output of the raw data covering both dimensions of the underlying domain.

Additionally, mpiP reports the spent in each call site aggregated across all MPI processes.
This can be represented in our general mode with a 1:N projection from the space representing
call sites to the complete domain combined with an aggregation function, in this case a
simple addition. This creates “implicit” measurements from the “call” domain to the same
metrics. This information is again printed in textual form, but this time has just a single
dimension. Going even further, mpiP also reports the total time spent (across all processes
and across all call sites), which can again be represented with a 1:N mapping from a new
domain, represented by a single identifier representing the application run, to the entire
measurement domain. This allows us to extract the total time spent in MPI (and the total
data volume) which is then simply printed as a scalar.

4.6.3 Score-P/Vampir (Tracing)

The tracer component of Score-P [14] is an MPI tracer that, like mpiP, intercepts and
records every call to the MPI library and stores the collected data. Unlike mpiP, though,
every invocation is stored separately without aggregation. This enables user to collect and
subsequently analyze a complete trace of all communication events. Additionally, Score-P
optionally uses compiler-based instrumentation to track invocations of functions and records
this information in the same way as invocations to the MPI library. Both traces (computation
functions and MPI invocations) are then combined and can be visualized using the Vampir
tool set using a Gantt chart like display [12].

In order to represent the data in our model, we start with the model used by mpiP, but
add additional spaces. Namely, Score-P also records a time stamp for each measurement
as well as a full call path. These four spaces are combined into two different domains: The
MPI Call × MPI Rank × Time domain describing which MPI rank communicated when
and using what MPI call; and the Call Path × MPI Rank × Time domain, which describes
in which function the communication occurred. Conceptually, all measurements taken are
recorded with respect to both domains independently though for efficiency reasons they are
likely stored more compactly. Both domains are then combined in a Gantt chart which
typically uses the first domain as primary axes, showing MPI ranks on the y-axis and time
on the x-axis and the second domain to color entries by various metrics or function types.

Note, that as with mpiP, Score-P/Vampir can aggregate data by any of the three
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dimensions, which again can be presented with corresponding 1:N projections. We omit these
in the figure to keep the diagram legible, though. In particular, aggregating from the time
space allows tracing data to be reduced to profiling data, equivalent to the data reported
by mpiP. This is one example of how this model can help to map data between tools and
their corresponding visualization approaches. Further, the “function” space used here and
the PC space introduced earlier during the discussion of Open|SpeedShop, are related – each
PC is associated with one function. We can therefore also provide a projection between
those two spaces, making it possible with our model to bride the gap between sampling and
tracing/profiling tools.

4.7 Discussion
One of the immediate impacts already apparent during the workshop itself has been to
provide a common framework for both communities to discuss ideas and solutions. In
particular, the ability to describe existing tools on both sides in terms of the data model
and the relevant projections has greatly facilitated communications. Even though the model
will likely be refined by both communities in coming years this represents a significant
and lasting impact. Furthermore, we believe that the model can serve as a blueprint for
general, interoperable, and cross-community tools. The three main ingredients of the model,
measuring data, visualizing/analyzing data, and projecting data directly correspond to a set
of well defined and to a large extent independent tasks. Assuming appropriate interfaces,
techniques and implementations in any of these three areas can be combined in a variety of
ways. For example, many projections between non-trivial spaces, e.g., MPI rank vs. network
port, require detailed machine-specific knowledge and sophisticated low-level tools to extract
it. As a result this functionality will be challenging for visualization researchers to implement.
At the same time mappings are crucial to expand the type of data that can be display
beyond the native domain of a visualization and to provide linked views. For example,
understanding how a feature in the communication graph is expressed in or caused by the
underlying network hardware could be tremendously helpful. However, this functionality
requires the projection from MPI ranks to ports. Going forward we anticipate targeted tools
to be developed for individual tasks, described with respect to the model, which allows them
to be used more readily to assemble more powerful solutions.

5 Recommendations

By all accounts, the workshop has been a great success and has already led to a number of new
collaborations, joint proposals, and a very successful workshop at the 2014 Supercomputing
conference with 18 strong submissions. The second installation of the workshop is scheduled
for Supercomputing 2015 and we expect a similar response. Nevertheless, much remains
to be done to establish a subfield of performance visualization at the intersection of HPC
performance analysis and information visualization. In particular, we have two specific
recommendations to advance this new area of research and a number of suggestions to ensure
a broader impact of the resulting work.
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5.1 Recommendation I: Dedicated Funding for Joint Research
While all the participants of the workshop agreed that combining forces has significant
potential for future impact, this only came after intense personal discussions to overcome
“language” and “cultural” differences between the two communities. At this point the greatest
concern is that the core competencies of both areas are too far apart to organically grow closer.
In particular, finding funding for the required long term collaborative teams necessary to
make progress will likely be difficult in the current climate. At this moment few solicitations
in performance analysis will consider visualization research within scope nor will program
managers or reviewers fully appreciate the resources required to design new visual metaphors
or interactive tools or the potential impact of these efforts. Similarly, solicitations in the
area of information visualization typically do not consider research in the specific application
area to be within scope nor does the corresponding community have sufficient insight into
HPC problems to recognize the need for new techniques to collect and organize performance
data. Nevertheless, it is our opinion that ultimately progress will crucially depend on close
collaborations between experts of both fields over long periods of time as the initial start-up
cost of such an effort will likely be substantial. As a result we recommend the creation of
a dedicated funding stream contributed from both communities specifically designed for
collaboration in the area of performance visualization to foster and encourage the foundational
research necessary to establish this subarea.

This should include not only the wide range of topics associated with the core topic
of turning the massive amounts of performance data into insightful visual representations,
but also include support areas such as more structured data acquisition, interoperable data
stores, visualization toolkits specialized to performance data, or (semi-) automatic analysis
algorithm to enable novel visualizations. Further, underlying to all these efforts should a
goal of scalability, in terms of number processing cores used by application, data volume
collected and stored, as well as throughput of analysis steps.

As an additional remark, this workshop has shown that both communities are highly
international covering multiple countries and even continents. This is already evident from
the list of attendees and their widely varying geographic background. However, current
funding opportunities are often highly localized and intercontinental funding is an absolute
rarity, which hinders collaborations. Approaches to overcome this deficit would be extremely
valuable in supporting this new field and would likely lead to a series of new and highly
fruitful collaborations.

5.2 Recommendation II: Building a Community
Another important aspect of establishing performance visualization as viable subfield is the
creation of a research community. Maybe the most significant outcome of the Dagstuhl
workshop has been the personal connections between researchers of both communities.
Unfortunately, only a small fraction of interested researchers could attend and organizing
similar events in the future has the potential for significant impact by simply making
researchers on either side aware of the needs and abilities of the other. Further, support for
dedicated publication outlets, like the workshop at Supercomputing 2014 and 2015 by the
Dagstuhl organizers, would make this area of research more attractive, especially to junior
researchers.

Closely connected to the remarks on funding above, but going beyond the monetary
aspect, this area more than many others would benefit substantially from international project
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support. HPC systems, especially at the high end, are often unique resources available only at
a small number of location. Remote access by researchers in other countries is often a difficult
and in some cases (e.g., Japan) even prohibited by law. Overcoming these restrictions and
providing an avenue for international teams to exchange machine access, system knowledge
and leverage software infrastructure could greatly improve the pace of research.

Finally, at this moment one of the greatest obstacle for new research is the difficulty
in provide or getting access to meaningful data to drive the develop of new techniques.
Therefore, establishing an infrastructure by which the new community could share data,
problem descriptions, benchmarks, etc., would allow a much larger number of researchers to
participate in the process.

5.3 Recommendations for Broader Impact
Improving the performance of large scale codes can have a significant positive impact on HPC
centers and their users and performance visualization can contribute substantially towards
this goal. At the same time, performance visualization (both of individual applications and
complete systems and facilities) can help raise awareness for this problem in the first place.
Performance analysis is often seen as a second class citizen, as an activity to be done after
the development of the code is (near) complete. This limits the impact performance analysis
can have and results in inefficient executions and wasted performance or throughput – we
get less science done than we could/should for the huge investments made in HPC centers.

By providing user friendly and intuitive representations, application developers are more
likely to overcome the initial startup barrier and learning curve conventional tools often have
and facilities can get an easier overview on how well their systems are used by which codes
and have a chance to react. Such raised awareness for the need of performance analysis and
optimization coupled with a new generation of tools that helps address existing performance
bottlenecks, will go a long way in improving the efficiency of our large scale compute resources
and will ultimately be critical to the underlying computational missions.

6 Workshop Participants

The following section lists all participants of the Dagstuhl workshop “Connecting Performance
Analysis and Visualization to Advance Extreme Scale Computing”, which was held January
6–10, 2014, all of which contributed to this report either by writing or through the extensive
discussions during the workshop. We have grouped them by one of four self-assigned categories
and for each include two keywords describing key projects or other relevant keywords.
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