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Abstract
The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed
category D. This allows for a uniform treatment of several notions of syntactic algebras known
in the literature, including the syntactic monoids of Rabin and Scott (D “ sets), the syntactic
semirings of Polák (D “ semilattices), and the syntactic associative algebras of Reutenauer (D
= vector spaces). Assuming that D is a commutative variety of algebras, we prove that the
syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo
the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the
minimal automaton for L in D. Furthermore, in the case where the variety D is locally finite, we
characterize the regular languages as precisely the languages with finite syntactic D-monoids.
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1 Introduction

One of the successes of the theory of coalgebras is that ideas from automata theory can be
developed at a level of abstraction where they apply uniformly to many different types of
systems. In fact, classical deterministic automata are a standard example of coalgebras for
an endofunctor. And that automata theory can be studied with coalgebraic methods rests
on the observation that formal languages form the final coalgebra.

The present paper contributes to a new category-theoretic view of algebraic automata
theory. In this theory one starts with an elegant machine-independent notion of language
recognition: a language L Ď X˚ is recognized by a monoid morphism e : X˚ Ñ M if it is
the preimage under e of some subset of M . Regular languages are then characterized as
precisely the languages recognized by finite monoids. A key concept, introduced by Rabin and
Scott [19] (and earlier in unpublished work of Myhill), is the syntactic monoid of a language
L. It serves as a canonical algebraic recognizer of L, namely the smallest X-generated monoid
recognizing L. Two standard ways to construct the syntactic monoid are:
1. as a quotient of the free monoid X˚ modulo the syntactic congruence of L, which is a

two-sided version of the well-known Myhill-Nerode equivalence, and
2. as the transition monoid of the minimal automaton for L.

∗ Stefan Milius acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) under project
MI 717/5-1.

© Jiří Adámek, Stefan Milius, Henning Urbat;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Paweł Sobociński; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Syntactic Monoids in a Category

In addition to syntactic monoids there are several related notions of syntactic algebras for
(weighted) languages in the literature, most prominently the syntactic idempotent semirings
of Polák [18] and the syntactic associative algebras of Reutenauer [20], both of which admit
constructions similar to (1) and (2). A crucial observation is that monoids, idempotent
semirings and associative algebras are precisely the monoid objects in the categories of sets,
semilattices and vector spaces, respectively. Moreover, these three categories are symmetric
monoidal closed w.r.t. their usual tensor product.

The main goal of our paper is thus to develop a theory of algebraic recognition in a general
symmetric monoidal closed category D “ pD,b, Iq. Following Goguen [12], a language in D

is a morphism L : Xf Ñ Y where X is a fixed object of inputs, Y is a fixed object of outputs,
and Xf denotes the free D-monoid on X. And a D-automaton is given by the picture below:
it consists of an object of states Q, a morphism i representing the initial state, an output
morphism f , and a transition morphism δ which may be presented in its curried form λδ.

X bQ
δ��

I
i // Q

f
//

λδ��

Y

rX,Qs

(1)

This means that an automaton is at the same time an algebra I`XbQ ri,δs
ÝÝÑ Q for the functor

FQ “ I `X bQ, and a coalgebra Q xf,λδy
ÝÝÝÝÑ Y ˆ rX,Qs for the functor TQ “ Y ˆ rX,Qs. It

turns out that much of the classical (co-)algebraic theory of automata in the category of sets
extends to this level of generality. Thus Goguen [12] demonstrated that the initial algebra
for F coincides with the free D-monoid Xf, and that every language is accepted by a unique
minimal D-automaton. We will add to this picture the observation that the final coalgebra
for T is carried by the object of languages rXf, Y s, see Proposition 2.21.

In Section 3 we introduce the central concept of our paper, the syntactic D-monoid
of a language L : Xf Ñ Y , which by definition is the smallest X-generated D-monoid
recognizing L. Assuming that D is a commutative variety of algebras, we will show that
the above constructions (1) and (2) for the classical syntactic monoid adapt to our general
setting: the syntactic D-monoid is (1) the quotient of Xf modulo the syntactic congruence
of L (Theorem 3.14), and (2) the transition D-monoid of the minimal D-automaton for L
(Theorem 4.6). As special instances we recover the syntactic monoids of Rabin and Scott
(D “ sets), the syntactic semirings of Polák (D “ semilattices) and the syntactic associative
algebras of Reutenauer (D “ vector spaces). Furthermore, our categorical setting yields new
types of syntactic algebras “for free”. For example, we will identify monoids with zero as the
algebraic structures representing partial automata (the case D “ pointed sets), which leads
to the syntactic monoid with zero for a given language. Similarly, by taking as D the variety
of algebras with an involutive unary operation we obtain syntactic involution monoids.

Most of the results of our paper apply to arbitrary languages. In Section 5 we will
investigate D-regular languages, that is, languages accepted by D-automata with a finitely
presentable object of states. Under suitable assumptions on D, we will prove that a language
is D-regular iff its syntactic D-monoid is carried by a finitely presentable object (Theorem 5.4).
We will also derive a dual characterization of the syntactic D-monoid which is new even
in the “classical” case D “ sets: if D is a locally finite variety, and if moreover some other
locally finite variety C is dual to D on the level of finite objects, the syntactic D-monoid of
L dualizes to the local variety of languages in C generated by the reversed language of L.

Due to space limitations most proofs are omitted or sketched. See [1] for an extended
version of this paper.
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Related work. Our paper gives a uniform treatment of various notions of syntactic algebras
known in the literature [18, 19, 20]. Another categorical approach to (classical) syntactic
monoids appears in the work of Ballester-Bolinches, Cosme-Llopez and Rutten [5]. These
authors consider automata in the category of sets specified by equations or dually by
coequations, which leads to a construction of the automaton underlying the syntactic monoid
of a language. The fact that it forms the transition monoid of a minimal automaton is also
interpreted in that setting. In the present paper we take a more general and conceptual
approach by studying algebraic recognition in a symmetric monoidal closed category D. One
important source of inspiration for our categorical setting was the work of Goguen [12].

In the recent papers [2, 4] we presented a categorical view of varieties of languages,
another central topic of algebraic automata theory. Building on the duality-based approach
of Gehrke, Grigorieff and Pin [11], we generalized Eilenberg’s variety theorem and its local
version to the level of an abstract (pre-)duality between algebraic categories. The idea to
replace monoids by monoid objects in a commutative variety D originates in this work.

When revising this paper we were made aware of the ongoing work of Bojanczyk [8].
He considers, in lieu of commutative varieties, categories of Eilenberg-Moore algebras for
an arbitrary monad on sorted sets, and defines syntactic congruences in this more general
setting. Our Theorem 3.14 is a special case of [8, Theorem 3.1].

2 Preliminaries

Throughout this paper we work with deterministic automata in a commutative variety D of
algebras. Recall that a variety of algebras is an equational class of algebras over a finitary
signature. It is called commutative (or entropic) if, for any two objects A and B of D, the set
DpA,Bq of all homomorphisms from A to B carries a subobject rA,Bs� B|A| of the product
of |A| copies of B. Commutative varieties are precisely the categories of Eilenberg-Moore
algebras for a commutative finitary monad on the category of sets, see [13, 15]. We fix an
object X (of inputs) and an object Y (of outputs) in D.

I Example 2.1.
1. Set is a commutative variety with rA,Bs “ BA.
2. A pointed set pA,Kq is a set A together with a chosen point K P A. The category SetK

of pointed sets and point-preserving functions is a commutative variety. The point of
rpA,KAq, pB,KBqs is the constant function with value KB .

3. An involution algebra is a set with an involutive unary operation x ÞÑ rx, i.e. rrx “ x. We
call rx the complement of x. Morphisms are functions f with fprxq “Ćfpxq. The variety
Inv of involution algebras is commutative. Indeed, the set rA,Bs of all homomorphisms
is an involution algebra with pointwise complementation: rf sends x to Ćfpxq.

4. All other examples we treat in our paper are varieties of modules over a semiring. Given
a semiring S (with 0 and 1) we denote by ModpSq the category of all S-modules and
module homomorphisms (i.e. S-linear maps). Three interesting special cases of ModpSq
are:
a. S “ t0, 1u, the boolean semiring with 1` 1 “ 1: the category JSL0 of join-semilattices

with 0, and homomorphisms preserving joins and 0;
b. S “ Z: the category Ab of abelian groups and group homomorphisms;
c. S “ K (a field): the category VecpKq of vector spaces over K and linear maps.

I Notation 2.2. We denote by Ψ : Set Ñ D the left adjoint to the forgetful functor
|´| : DÑ Set. Thus ΨX0 is the free object of D on the set X0.

CALCO’15



4 Syntactic Monoids in a Category

I Example 2.3.

1. We have ΨX0 “ X0 for D “ Set and ΨX0 “ X0 ` tKu for D “ SetK.
2. For D “ Inv the free involution algebra on X0 is ΨX0 “ X0 ` ĂX0 where ĂX0 is a copy of

X0 (whose elements are denoted rx for x P X0). The involution swaps the copies of X0,
and the universal arrow X0 Ñ X0 ` ĂX0 is the left coproduct injection.

3. For D “ ModpSq the free module ΨX0 is the submodule of SX0 on all functions X0 Ñ S

with finite support. Equivalently, ΨX0 consists of formal linear combinations
řn
i“1 sixi

with si P S and xi P X0. In particular, ΨX0 “ PfX0 (finite subsets of X0) for D “ JSL0,
and ΨX0 is the vector space with basis X0 for D “ VecpKq.

I Definition 2.4. Given objects A, B and C of D, a bimorphism from A, B to C is a
function f : |A| ˆ |B| Ñ |C| such that the maps fpa,´q : |B| Ñ |C| and fp´, bq : |A| Ñ |C|

carry morphisms of D for every a P |A| and b P |B|. A tensor product of A and B is a
universal bimorphism t : |A| ˆ |B| Ñ |A b B|, which means that for every bimorphism
f : |A| ˆ |B| Ñ |C| there is a unique morphism f 1 : AbB Ñ C in D with f 1 ¨ t “ f .

I Theorem 2.5 (Banaschweski and Nelson [6]). Every commutative variety D has tensor
products, making D “ pD,b, Iq with I “ Ψ1 a symmetric monoidal closed category. That is,
we have the following bijective correspondence of morphisms, natural in A,B,C P D:

f : AbB Ñ C

λf : AÑ rB,Cs

I Remark 2.6. Recall that a monoid pM,m, iq in a monoidal category pD,b, Iq (with tensor
product b : DˆDÑ D and tensor unit I P D) is an objectM equipped with a multiplication
m : M bM Ñ M and unit i : I Ñ M satisfying the usual associative and unit laws. Due
to b and I “ Ψ1 representing bimorphisms, this categorical definition is equivalent to the
following algebraic one in our setting: a D-monoid is a triple pM, ‚, iq where M is an object
of D and p|M |, ‚, iq is a monoid in Set with ‚ : |M | ˆ |M | Ñ |M | a bimorphism of D. A
morphism h : pM, ‚, iq Ñ pM 1, ‚1, i1q of D-monoids is a morphism h : M Ñ M 1 of D such
that |h| : |M | Ñ |M 1| is a monoid morphism in Set. We denote by MonpDq the category of
D-monoids and their homomorphisms. In the following we will freely work with D-monoids
in both categorical and algebraic disguise.

I Example 2.7.
1. In Set the tensor product is the cartesian product, I “ t˚u, and Set-monoids are ordinary

monoids.
2. In SetK we have I “ tK, ˚u, and the tensor product of pointed sets pA,KAq and pB,KAq

is AbB “ pAztKAuq ˆ pBztKBuq ` tKu. SetK-monoids are precisely monoids with zero.
Indeed, given a SetK-monoid structure on pA,Kq we have x ‚ K “ K “ K ‚ x for all
x because ‚ is a bimorphism, i.e. K is a zero element. Morphisms of MonpSetKq are
zero-preserving monoid morphisms.

3. An Inv-monoid (also called an involution monoid) is a monoid equipped with an involution
x ÞÑ rx such that x‚ry “ rx‚y “ Ćx ‚ y. For example, for any set A the power set PA naturally
carries the structure of an involution monoid: the involution takes complements, rS “ AzS,
and the monoid multiplication is the symmetric difference S ‘ T “ pSzT q Y pT zSq.

4. JSL0-monoids are precisely idempotent semirings (with 0 and 1). Indeed, a JSL0-monoid
on a semilattice (i.e. a commutative idempotent monoid) pD,`, 0q is given by a unit 1
and a monoid multiplication that, being a bimorphism, distributes over ` and 0.



J. Adámek, S. Milius, and H. Urbat 5

5. More generally, a ModpSq-monoid is precisely an associative algebra over S: it consists
of an S-module together with a unit 1 and a monoid multiplication that distributes over
` and 0 and moreover preserves scalar multiplication in both components.

I Notation 2.8. We denote by Xbn (n ă ω) the n-fold tensor power of X, recursively
defined by Xb0 “ I and Xbpn`1q “ X bXbn.

I Proposition 2.9 (see Mac Lane [14]). The forgetful functor MonpDq Ñ D has a left
adjoint assigning to every object X the free D-monoid Xf “

š

năωX
bn. The monoid

structure pXf,mX , iXq is given by the coproduct injection iX : I “ Xb0 Ñ Xf and mX :
XfbXf Ñ Xf, where XfbXf “

š

n,kăωX
bnbXbk and mX has as its pn, kq-component

the pn` kq-th coproduct injection. The universal arrow ηX : X Ñ Xf is the first coproduct
injection.

I Proposition 2.10. The free D-monoid on X “ ΨX0 is Xf “ ΨX˚0 . Its monoid multiplic-
ation extends the concatenation of words in X˚0 , and its unit is the empty word ε.

I Example 2.11.
1. In Set we have Xf “ X˚. In SetK with X “ ΨX0 “ X0 ` tKu we get Xf “ X˚0 ` tKu.

The product x ‚ y is concatenation for x, y P X˚0 , and otherwise K.
2. In Inv with X “ ΨX0 “ X0`ĂX0 we have Xf “ X˚0 `

ĂX˚0 . The multiplication restricted
to X˚0 is concatenation, and is otherwise determined by ru ‚ v “ Ăuv “ u ‚ rv for u, v P X˚0 .

3. In JSL0 with X “ ΨX0 “ PfX0 we have Xf “ PfX˚0 , the semiring of all finite languages
over X0. Its addition is union and its multiplication is the concatentation of languages.

4. More generally, in ModpSq with X “ ΨX0 we get Xf “ ΨX˚0 “ SrX0s, the module
of all finite S-weighted languages over the alphabet X0. Hence the elements of SrX0s

are functions c : X˚0 Ñ S with finite support, which may be expressed as polynomials
řn
i“1 cpwiqwi with wi P X˚0 and cpwiq P S. The S-algebraic structure of SrX0s is given by

the usual addition, scalar multiplication and product of polynomials.

I Definition 2.12 (Goguen [12]). A D-automaton pQ, δ, i, fq consists of an object Q (of
states) and morphisms δ : X b Q Ñ Q, i : I Ñ Q and f : Q Ñ Y ; see Diagram (1). An
automata homomorphism h : pQ, δ, i, fq Ñ pQ1, δ1, i1, f 1q is a morphism h : QÑ Q1 preserving
transitions as well as initial states and outputs, i.e. making the following diagrams commute:

X bQ
Xbh ��

δ // Q
h��

X bQ1
δ1
// Q1

I

i1 %%
JJJJJJ

i // Q
h
��

f
// Y

Q1
f 1

99ssssss

The above definition makes sense in any monoidal category D. In our setting, since
I “ Ψ1, the morphism i chooses an initial state in |Q|. Moreover, if X “ ΨX0 for some
set X0 (of inputs), the morphism δ amounts to a choice of endomorphisms δa : QÑ Q for
a P X0, representing transitions. This follows from the bijections

ΨX0 bQÑ Q in D

ΨX0 Ñ rQ,Qs in D

X0 Ñ DpQ,Qq in Set

I Example 2.13.
1. The classical deterministic automata are the case D “ Set and Y “ t0, 1u. Here

f : Q Ñ t0, 1u defines the set F “ f´1r1s Ď Q of final states. For general Y we get
deterministic Moore automata with outputs in Y .

CALCO’15



6 Syntactic Monoids in a Category

2. The setting D “ SetK with X “ X0 ` tKu and Y “ tK, 1u gives partial deterministic
automata. Indeed, the state object pQ,Kq has transitions δa : pQ,Kq Ñ pQ,Kq for
a P X0 preserving K, that is, K is a sink state. Equivalently, we may consider δa as
a partial transition map on the state set QztKu. The morphism f : pQ,Kq Ñ tK, 1u
again determines a set of final states F “ f´1r1s (in particular, K is non-final). And the
morphism i : tK, ˚u Ñ pQ,Kq determines a partial initial state: either ip˚q lies in QztKu,
or no initial state is defined.

3. In D “ Inv let us choose X “ X0 ` ĂX0 and Y “ t0, 1u with r0 “ 1. An Inv-automaton
is a deterministic automaton with complementary states x ÞÑ rx such that (i) for every
transition p a

ÝÑ q there is a complementary transition rp
a
ÝÑ rq and (ii) a state q is final iff rq

is non-final.
4. For D “ JSL0 with X “ PfX0 and Y “ t0, 1u (the two-chain) an automaton consists

of a semilattice Q of states, transitions δa : Q Ñ Q for a P X0 preserving finite joins
(including 0), an initial state i P Q and a homomorphism f : QÑ t0, 1u which defines a
prime upset F “ f´1r1s Ď Q of final states. The latter means that a finite join of states
is final iff one of the states is. In particular, 0 is non-final.

5. More generally, automata in D “ ModpSq with X “ ΨX0 and Y “ S are S-weighted
automata. Such an automaton consists of an S-module Q of states, linear transitions
δa : QÑ Q for a P X0, an initial state i P Q and a linear output map f : QÑ S.

I Remark 2.14.
1. An algebra for an endofunctor F of D is a pair pQ,αq of an object Q and a morphism

α : FQ Ñ Q. A homomorphism h : pQ,αq Ñ pQ1, α1q of F -algebras is a morphism
h : QÑ Q1 with h ¨ α “ α1 ¨ Fh. Throughout this paper we work with the endofunctor
FQ “ I ` X b Q; its algebras are denoted as triples pQ, δ, iq with δ : X b Q Ñ Q

and i : I Ñ Q. Hence D-automata are precisely F -algebras equipped with an output
morphism f : Q Ñ Y . Moreover, automata homomorphisms are precisely F -algebra
homomorphisms preserving outputs.

2. Analogously, a coalgebra for an endofunctor T of D is a pair pQ, γq of an object Q
and a morphism γ : Q Ñ TQ. Throughout this paper we work with the endofunctor
TQ “ Y ˆrX,Qs; its coalgebras are denoted as triples pQ, τ, fq with τ : QÑ rX,Qs and f :
QÑ Y . Hence D-automata are precisely pointed T -coalgebras, i.e. T -coalgebras equipped
with a morphism i : I Ñ Q. Indeed, given a pointed coalgebra I i

ÝÑ Q
xf,τy
ÝÝÝÑ Y ˆ rX,Qs,

the morphism Q
τ
ÝÑ rX,Qs is the curried form of a morphism Q bX

–
ÝÑ X b Q

δ
ÝÑ Q.

Automata homomorphisms are T -coalgebra homomorphisms preserving initial states.

I Definition 2.15. Given a D-monoid pM,m, iq and a morphism e : X Ñ M of D, the
F -algebra associated to M and e has carrier M and structure

ri, δs “ pI `X bM
I`ebM
ÝÝÝÝÝÑ I `M bM

ri,ms
ÝÝÝÑMq.

In particular, the F -algebra associated to the free monoid Xf (and its universal arrow ηX) is

riX , δX s “ pI `X bX
f I`ηXbX

f

ÝÝÝÝÝÝÝÑ I `Xf bXf riX ,mX s
ÝÝÝÝÝÑ Xfq.

I Example 2.16. In Set every monoid M together with an “input” map e : X Ñ M

determines an F -algebra with initial state i and transitions δa “ ´ ‚ epaq for all a P X. The
F -algebra associated to X˚ is the usual automaton of words: its initial state is ε and the
transitions are given by w a

ÝÑ wa for a P X.
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I Proposition 2.17 (Goguen [12]). For any symmetric monoidal closed category D with
countable coproducts, Xf is the initial algebra for F .

I Remark 2.18. Given any F -algebra pQ, δ, iq the unique F -algebra homomorphism eQ :
Xf Ñ Q is constructed as follows: extend the morphism λδ : X Ñ rQ,Qs to a D-monoid
morphism pλδq` : Xf Ñ rQ,Qs. Then

eQ “ pX
f – Xf b I

pλδq`bi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Qq, (2)

where ev is the ‘evaluation morphism’, i.e. the counit of the adjunction ´bQ % rQ,´s.

I Notation 2.19. δf : Xf bQÑ Q denotes the uncurried form of pλδq` : Xf Ñ rQ,Qs.

I Remark 2.20. Recall from Rutten [21] that the final coalgebra for the functor TQ “

t0, 1u ˆQX on Set is the coalgebra PX˚ – rX˚, t0, 1us of all languages over X. Given any
coalgebra Q, the unique coalgebra homomorphism from Q to PΣ˚ assigns to every state q
the language accepted by q (as an initial state). These observations generalize to our present
setting. The object rXf, Y s of D carries the following T -coalgebra structure: its transition
morphism τrXf,Y s : rXf, Y s Ñ rX, rXf, Y ss is the two-fold curryfication of

rXf, Y sbX bXf rXf,Y sbηXbX
f

ÝÝÝÝÝÝÝÝÝÝÝÑ rXf, Y sbXfbXf rXf,Y sbmX
ÝÝÝÝÝÝÝÝÑ rXf, Y sbXf ev

ÝÑ Y,

and its output morphism frXf,Y s : rXf, Y s Ñ Y is

frXf,Y s “ prX
f, Y s – rXf, Y s b I

rXf,Y sbiX
ÝÝÝÝÝÝÝÝÑ rXf, Y s bXf ev

ÝÑ Y q.

I Proposition 2.21. rXf, Y s is the final coalgebra for T .

Proof sketch. Given any coalgebra pQ, τ, fq, let δ : X bQÑ Q be the uncurried version of
τ : QÑ rX,Qs, see Remark 2.14. Then the unique coalgebra homomorphism into rXf, Y s is
λh : QÑ rXf, Y s, where h “ pQbXf – Xf bQ

δf
ÝÝÑ Q

f
ÝÑ Y q. J

I Definition 2.22 (Goguen [12]). A language in D is a morphism L : Xf Ñ Y .

Note that if X “ ΨX0 (and hence Xf “ ΨX˚0 ) for some set X0, one can identify a
language L : Xf “ ΨX˚0 Ñ Y in D with its adjoint transpose rL : X˚0 Ñ |Y |, via the
adjunction Ψ % |´| : D Ñ Set. In the case where |Y | is a two-element set, rL is the
characteristic function of a “classical” language L0 Ď X˚0 .

I Example 2.23.
1. In D “ Set (with Xf “ X˚ and Y “ t0, 1u) one represents L0 Ď X˚ by its characteristic

function L : X˚ Ñ t0, 1u.
2. In D “ SetK (with X “ X0 ` tKu, Xf “ X˚0 ` tKu and Y “ tK, 1u) one represents

L0 Ď X˚0 by its extended characteristic function L : X˚0 ` tKu Ñ tK, 1u where LpKq “ K.
3. In D “ Inv (with X “ X0`ĂX0, Xf “ X˚0 `

ĂX˚0 and Y “ t0, 1u) one represents L0 Ď X˚0
by L : X˚0 ` ĂX˚0 Ñ t0, 1u where Lpwq “ 1 iff w P L0 and Lp rwq “ 1 iff w R L0 for all
words w P X˚0 .

4. In D “ JSL0 (with X “ PfX0, Xf “ PfX˚0 and Y “ t0, 1u) one represents L0 Ď X˚0
by L : PfX˚0 Ñ t0, 1u where LpUq “ 1 iff U X L0 ‰ ∅.

5. In D “ ModpSq (with X “ ΨX0, Xf “ SrX0s and Y “ S) an S-weighted language
L0 : X˚0 Ñ S is represented by its free extension to a module homomorphism

L : SrX˚0 s Ñ S, L

˜

n
ÿ

i“1
cpwiqwi

¸

“

n
ÿ

i“1
cpwiqL0pwiq.

CALCO’15



8 Syntactic Monoids in a Category

I Definition 2.24 (Goguen [12]). The language accepted by a D-automaton pQ, δ, i, fq is
LQ “ pX

f
eQ
ÝÝÑ Q

f
ÝÑ Y q, where eQ is the F -algebra homomorphism of Remark 2.18.

I Example 2.25.
1. In D “ Set with Y “ t0, 1u, the homomorphism eQ : X˚ Ñ Q assigns to every word w the

state it computes in Q, i.e. the state the automaton reaches on input w. Thus LQpwq “ 1
iff Q terminates in a final state on input w, which is precisely the standard definition of
the accepted language of an automaton. For general Y , the function LQ : X˚ Ñ Y is
the behavior of the Moore automaton Q, i.e. LQpwq is the output of the last state in the
computation of w.

2. For D “ SetK with X “ X0 ` tKu and Y “ tK, 1u, we have eQ : X˚0 ` tKu Ñ pQ,Kq

sending K to K, and sending a word in X˚0 to the state it computes (if any), and to
K otherwise. Hence LQ : X˚0 ` tKu Ñ tK, 1u defines (via the preimage of 1) the usual
language accepted by a partial automaton.

3. In D “ Inv with X “ X0 ` ĂX0 and Y “ t0, 1u, the map LQ : X˚0 ` ĂX˚0 Ñ t0, 1u sends
w P X˚0 to 1 iff w computes a final state, and it sends rw P ĂX˚0 to 1 iff w computes a
non-final state.

4. In D “ JSL0 with X “ PfX0 and Y “ t0, 1u, the map LQ : PX˚0 Ñ t0, 1u assigns to
U P PfX˚0 the value 1 iff the computation of at least one word in U ends in a final state.

5. In D “ ModpSq with X “ ΨX0 and Y “ S, the map LQ : SrX˚0 s Ñ S assigns to
řn
i“1 cpwiqwi the value

řn
i“1 cpwiqyi, where yi is the output of the state Q reaches on

input wi. Taking Q “ Sn for some natural number n yields a classical n-state weighted
automaton, and in this case one can show that the restriction of LQ to X˚0 is is the usual
language of a weighted automaton.

I Remark 2.26. By Remark 2.14 every D-automaton pQ, δ, i, fq is an F -algebra as well
as a T -coalgebra. Our above definition of LQ was purely algebraic. The corresponding
coalgebraic definition uses the unique coalgebra homomorphism cQ : QÑ rXf, Y s into the
final T -coalgebra and precomposes with i : I Ñ Q to get a morphism cQ ¨ i : I Ñ rXf, Y s

(choosing a language, i.e. an element of rXf, Y s). Unsurprisingly, the results are equal:

I Proposition 2.27. The language LQ : Xf Ñ Y of an automaton pQ, δ, i, fq is the uncurried
form of the morphism cQ ¨ i : I Ñ rXf, Y s.

3 Algebraic Recognition and Syntactic D-Monoids

In classical algebraic automata theory one considers recognition of languages by (ordinary)
monoids in lieu of automata. One key concept is the syntactic monoid which is characterized
as the smallest monoid recognizing a given language. There are also related concepts of
canonical algebraic recognizers in the literature, e.g. the syntactic idempotent semiring
and the syntactic associative algebra. In this section we will give a uniform account of
algebraic language recognition in our categorical setting. Our main result is the definition
and construction of a minimal algebraic recognizer, the syntactic D-monoid of a language.

I Definition 3.1. A D-monoid morphism e : Xf ÑM recognizes the language L : Xf Ñ Y

if there exists a morphism f : M Ñ Y of D with L “ f ¨ e.

I Example 3.2. We use the notation of Example 2.23.
1. D “ Set with Xf “ X˚ and Y “ t0, 1u: given a monoid M , a function f : M Ñ t0, 1u

defines a subset F “ f´1r1s Ď M . Hence a monoid morphism e : X˚ Ñ M recognizes
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L via f (i.e. L “ f ¨ e) iff L0 “ e´1rF s. This is the classical notion of recognition of a
language L0 Ď X˚ by a monoid, see e.g. Pin [17].

2. D “ SetK with X “ X0 ` tKu, Xf “ X˚0 ` tKu and Y “ tK, 1u: given a monoid with
zero M , a SetK-morphism f : M Ñ tK, 1u defines a subset F “ f´1r1s of Mzt0u. A
zero-preserving monoid morphism e : X˚0 ` tKu ÑM recognizes L via f iff L0 “ e´1rF s.

3. D “ Inv with X “ X0 ` ĂX0, Xf “ X˚0 `
ĂX˚0 and Y “ t0, 1u: for an involution monoid

M to give a morphism f : M Ñ t0, 1u means to give a subset F “ f´1r1s ĎM satisfying
m P F iff rm R F . Then L is recognized by e : X˚0 ` ĂX˚0 ÑM via f iff L0 “ X˚0 X e

´1rF s.
4. D “ JSL0 with X “ PfX0, Xf “ PfX˚0 and Y “ t0, 1u: for an idempotent semiring M

a morphism f : M Ñ Y defines a prime upset F “ f´1r1s, see Example 2.13. Hence L
is recognized by a semiring homomorphism e : PfX˚0 ÑM via f iff L0 “ X˚0 X e

´1rF s.
Here we identify X˚0 with the set of all singleton languages twu, w P X˚0 . This is the
concept of language recognition introduced by Polák [18] (except that he puts F “ f´1r0s,
so 0 and 1 must be swapped, as well as F and MzF ).

5. D “ ModpSq with X “ ΨX0, Xf “ SrX0s and Y “ S: given an associative algebra M ,
the language L is recognized by e : SrX0s ÑM via f : M Ñ S iff L “ f ¨ e. For the case
where the semiring S is a ring, this notion of recognition is due to Reutenauer [20].

I Remark 3.3.
1. Since D and MonpDq are varieties, we have the usual factorization system of regular

epimorphisms (“ surjective homomorphisms) and monomorphisms (“ injective homo-
morphisms). Quotients and subobjects are understood w.r.t. this system.

2. By an X-generated D-monoid we mean a quotient e : Xf � M in MonpDq. For two
such quotients ei : Xf �Mi, i “ 1, 2, we say, as usual, that e1 is smaller or equal to e2
(notation: e1 ď e2) if e1 factorizes through e2. Note that if X “ ΨX0, the free D-monoid
Xf “ ΨX˚0 on X is also the free D-monoid on the set X0 (w.r.t. the forgetful functor
MonpDq Ñ Set), see Proposition 2.10. In this case, to give a quotient e : Xf � M is
equivalent to giving a set of generators for the D-monoid M indexed by X0 – which is
why M may also be called an X0-generated D-monoid.

3. Let e : Xf �M be an X-generated D-monoid with unit i : I ÑM and multiplication
m : M bM Ñ M . Recall that ηX : X Ñ Xf denotes the universal morphism of the
free D-monoid on X and consider the F -algebra associated to M and X ηX

ÝÝÑ Xf e
ÝÑM

(see Definition 2.15). Thus, together with a given f : M Ñ Y an X-generated D-monoid
induces an automaton pM, δ, i, fq called the derived automaton.

I Lemma 3.4. The language recognized by an X-generated D-monoid e : Xf � M via
f : M Ñ Y is the language accepted by its derived automaton.

We are now ready to give an abstract account of syntactic algebras in our setting. In
classical algebraic automata theory the syntactic monoid of a language is characterized as
the smallest monoid recognizing that language. We will use this property as our definition of
the syntactic D-monoid.

I Definition 3.5. The syntactic D-monoid of language L : Xf Ñ Y , denoted by SynpLq, is
the smallest X-generated monoid recognizing L.

In more detail, the syntactic D-monoid is an X-generated D-monoid eL : Xf � SynpLq
together with a morphism fL : SynpLq Ñ Y of D such that (i) eL recognizes L via fL, and
(ii) for every X-generated D-monoid e : Xf � M recognizing L via f : M Ñ Y we have

CALCO’15



10 Syntactic Monoids in a Category

eL ď e, that is, the left-hand triangle below commutes for some D-monoid morphism h:

Xf e // //

eL
(( ((QQQQQ M

h����

f
// Y

SynpLq fL

77nnnnnn

Note that the right-hand triangle also commutes since e is epimorphic and f ¨ e “ L “ fL ¨ eL.
The universal property determines SynpLq, eL and fL uniquely up to isomorphism. A
construction of SynpLq is given below (Construction 3.13). We first consider a special case:

I Example 3.6. In D “ Set with Y “ t0, 1u, the syntactic monoid of a language L Ď X˚

can be constructed as the quotient of X˚ modulo the syntactic congruence, see e.g. [17]:

SynpLq “ X˚{„, where u „ v iff for all x, y P X˚: xuy P L ðñ xvy P L.

We aim to generalize this construction to our categorical setting. First note the following

I Lemma 3.7. Let D be any symmetric monoidal closed category with countable coproducts.
Then the forgetful functor MonpDq Ñ D preserves reflexive coequalizers.

I Notation 3.8. Let pM,m, iq be a D-monoid and x : I Ñ M . We write x ‚ ´ and ´ ‚ x
for the following morphisms, respectively:

M – I bM
xbM
ÝÝÝÑM bM

m
ÝÑM and M –M b I

Mbx
ÝÝÝÑM bM

m
ÝÑM.

Recall that in our setting, where D is a commutative variety, we have I “ Ψ1 and so the
morphism x is the adjoint transpose of an element of M (see Remark 2.6). In the following
we shall often write x ‚ y, identifying x, y : I ÑM with their corresponding elements of M .

I Definition 3.9. The syntactic congruence of a language L : Xf Ñ Y is the following
relation on the underlying set of Xf:

E “ tpu, vq P Xf ˆXf | @x, y P Xf : Lpx ‚ u ‚ yq “ Lpx ‚ v ‚ yqu

The projection maps are denoted by l, r : E Ñ Xf.

I Lemma 3.10. The set E carries a canonical D-algebraic structure making it a D-object.

Proof sketch. Just observe that E “
Ş

Ex,y where for fixed x, y P Xf the object Ex,y is

the kernel of the D-morphism Xf
x‚´
//Xf

´‚y
//Xf L //Y . J

That the name syntactic congruence makes sense follows from Lemma 3.11 below. First recall
that a D-monoid congruence on a given D-monoid M is an equivalence relation in MonpDq,
that is, a jointly monic pair c1, c2 : C Ñ M of D-monoid morphisms (equivalently a D-
submonoid xc1, c2y : C �M ˆM) which is reflexive, symmetric and transitive. Congruences
on M are ordered as subobjects of M ˆM , i.e. via inclusion.

I Lemma 3.11. E is a D-monoid congruence on Xf.

We can give an alternative, more conceptual, description of E:

I Lemma 3.12. Let l0, r0 : K Ñ Xf be the kernel pair of L : Xf Ñ Y in D. Then
l, r : E Ñ Xf is the largest D-monoid congruence contained in K.
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I Construction 3.13. Let L : Xf Ñ Y be a language and l, r : E Ñ Xf its syntactic
congruence. We construct the D-monoid SynpLq as the coequalizer of l and r in MonpDq:

E
l //

r
// Xf

eL // // SynpLq.

We need to show that SynpLq has the universal property of Definition 3.5, which first
requires to define the morphism fL : SynpLq Ñ Y with L “ fL ¨ eL. To this end consider the
diagram below, where l0, r0 is the kernel pair of L and m witnesses that E is contained in
K, i.e. l “ l0 ¨m and r “ r0 ¨m (see Lemma 3.12).

K
l0 //

r0
// Xf

eL ## ##GGGGGGGGG
L // Y

E

m

OO

l

>>|||||||| r

>>||||||||
SynpLq

fL

OO�
�
�

By Lemma 3.7 the morphism eL is also a coequalizer of l and r in D. Since L ¨ l “ L ¨ r by
the above diagram, this yields a unique fL : SynpLq Ñ Y with L “ fL ¨ eL. In other words,
SynpLq recognizes L via fL.

I Theorem 3.14. SynpLq together with eL and fL forms the syntactic D-monoid of L.

Proof sketch. This follows from the correspondence between kernel pairs and regular quo-
tients: since l, r : E Ñ Xf is the largest congruence contained in the kernel pair of L by
Lemma 3.12, the coequalizer eL of l, r is the smallest quotient of Xf recognizing L. J

I Remark 3.15. Our proof of Theorem 3.14 is quite conceptual and works in a general
symmetric monoidal closed category D with enough structure. On this level of generality
one would use Lemma 3.12 to define the syntactic congruence E as the largest D-monoid
congruence contained in the kernel of L : Xf Ñ Y . However, it is unclear whether such
a congruence exists in this generality and so its existence might have to be taken as an
assumption. Hence we restricted ourselves to the setting of a commutative variety D.

I Example 3.16. Using the notation of Example 2.23 we obtain the following concrete
syntactic algebras:
1. In SetK with X “ X0`tKu and Y “ tK, 1u the syntactic monoid with zero of a language

L0 Ď X˚0 is pX˚0 ` tKuq{„ where, for all u, v P X˚0 ` tKu,

u „ v iff for all x, y P X˚0 : xuy P L0 ô xvy P L0.

The zero element is the congruence class of K.
2. In Inv with X “ X0 ` ĂX0 and Y “ t0, 1u the syntactic involution monoid of a language

L0 Ď X˚0 is the quotient of X0` ĂX˚0 modulo the congruence „ defined for words u, v P X˚0
as follows:
(i) u „ v iff ru „ rv iff for all x, y P X˚0 : xuy P L0 ðñ xvy P L0;
(ii) u „ rv iff ru „ v iff for all x, y P X˚0 : xuy P L0 ðñ xvy R L0.

3. In ModpSq with X “ ΨX0 and Y “ S the syntactic associative S-algebra of a weighted
language L0 : X˚0 Ñ S is the quotient of SrX0s modulo the congruence defined for
U, V P SrX0s as follows:

U „ V iff for all x, y P X˚0 : LpxUyq “ LpxV yq (3)

Indeed, since L : SrX0s Ñ S is linear, (3) implies LpPUQq “ LpPV Qq for all P,Q P SrX0s,
which is the syntactic congruence of Definition 3.9.
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12 Syntactic Monoids in a Category

4. In particular, for D “ JSL0 with X “ PfX0 and Y “ t0, 1u, we get the syntactic
(idempotent) semiring of a language L0 Ď X˚0 introduced by Polák [18]: it is the quotient
PfX˚0 {„ where for U, V P PfX˚0 we have

U „ V iff for all x, y P X˚0 : pxUyq X L0 ‰ ∅ ðñ xV y X L0 ‰ ∅.

5. For D “ VecpKq with X “ ΨX0 and Y “ K, the syntactic K-algebra of a K-weighted
language L0 : X˚0 Ñ K is the quotient KrX0s{I of the K-algebra of finite weighted
languages modulo the ideal

I “ tV P KrX0s | for all x, y P X˚0 : LpxV yq “ 0u.

Indeed, the congruence this ideal I generates (U „ V iff U ´ V P I) is precisely (3).
Syntactic K-algebras were studied by Reutenauer [20].

6. Analogously, for D “ Ab with X “ ΨX0 and Y “ Z, the syntactic ring of a Z-weighted
language L0 : X˚0 Ñ Z is the quotient ZrX0s{I, where I is the ideal of all V P ZrX0s

with LpxV yq “ 0 for all x, y P X˚0 .

4 Transition D-Monoids

Here we present another construction of the syntactic D-monoid of a language: it is the
transition D-monoid of the minimal D-automaton for this language. Recall that for any object
Q of a closed monoidal category D, the object rQ,Qs forms a D-monoid w.r.t. composition.

I Definition 4.1. The transition D-monoid TpQq of an F -algebra pQ, δ, iq is the image of
the D-monoid morphism pλδq` : Xf Ñ rQ,Qs extending λδ : X Ñ rQ,Qs:

Xf

eTpQq
## ##GGGG
pλδq`

// rQ,Qs

TpQq
99mTpQq

99sss

I Example 4.2.
1. In Set the transition monoid of an F -algebra Q (i.e. an automaton without final states) is

the monoid of all extended transition maps δw “ δan
¨ ¨ ¨ ¨ ¨ δa1 : QÑ Q for w “ a1 ¨ ¨ ¨ an P

X˚, with unit idQ “ δε and composition as multiplication.
2. In SetK with X “ X0`tKu (the setting for partial automata) this is completely analogous,

except that we add the constant endomap of Q with value K.
3. In Inv with X “ X0`ĂX0 we get the involution monoid of all δw and Ăδw. Again the unit is

δε, and the multiplication is determined by composition plus the equations xry “ Ăxy “ rxy.
4. In JSL0 with X “ PfX0 the transition semiring consists of all finite joins of extended

transitions, i.e. all semilattice homomorphisms of the form δw1_¨ ¨ ¨_δwn
for tw1, . . . , wnu P

PfX˚0 . The transition semiring was introduced by Polák [18].
5. In ModpSq with X “ ΨX0 the associative transition algebra consists of all linear maps

of the form
řn
i“1 siδwi

with si P S and wi P X˚0 .

Recall from Definition 2.12 that a D-automaton is an F -algebra Q together with an output
morphism f : QÑ Y . Hence we can speak of the transition D-monoid of a D-automaton.

I Proposition 4.3. The language accepted by a D-automaton pQ, δ, f, iq is recognized by the
D-monoid morphism eTpQq : Xf � TpQq.
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Proof sketch. The desired morphism fTpQq : TpQq Ñ Y with LQ “ fTpQq ¨ eTpQq is

fTpQq “ pTpQq
mTpQq
ÝÝÝÝÑ rQ,Qs – rQ,Qs b I

rQ,Qsbi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Q

f
ÝÑ Y q. J

I Definition 4.4. A D-automaton pQ, δ, i, fq is called minimal iff it is
(a) reachable: the unique F -algebra homomorphism Xf Ñ Q is surjective;
(b) simple: the unique T -coalgebra homomorphism QÑ rXf, Y s is injective.

I Theorem 4.5 (Goguen [12]). Every language L : Xf Ñ Y is accepted by a minimal D-
automaton MinpLq, unique up to isomorphism. Given any reachable automaton Q accepting
L, there is a unique surjective automata homomorphism from Q into MinpLq.

This leads to the announced construction of syntacticD-monoids via transitionD-monoids.
The case D “ Set is a standard result of algebraic automata theory (see e.g. Pin [17]), and
the case D “ JSL0 is due to Polák [18].

I Theorem 4.6. The syntactic D-monoid of a language L : Xf Ñ Y is isomorphic to the
transition D-monoid of its minimal D-automaton:

SynpLq – TpMinpLqq.

Proof sketch. Using reachability and simplicity of MinpLq, one proves that the quotients
eL : Xf � SynpLq and eTpMinpLqq : Xf � TpMinpLqq have the same kernel pair, namely the
syntactic congruence of L. This implies the statement of the theorem. J

5 D-Regular Languages

Our results so far apply to arbitrary languages in D. In the present section we focus on
regular languages, which in D “ Set are the languages accepted by finite automata, or
equivalently the languages recognized by finite monoids. For arbitrary D the role of finite
sets is taken over by finitely presentable objects. Recall that an object D of D is finitely
presentable if the hom-functor DpD,´q : DÑ Set preserves filtered colimits. Equivalently,
D is an algebra presentable with finitely many generators and relations.

I Definition 5.1. A language L : Xf Ñ Y is called D-regular if it is accepted by some
D-automaton with a finitely presentable object of states.

To work with this definition, we need the following

I Assumptions 5.2. We assume that the full subcategory Df of finitely presentable objects
of D is closed under subobjects, strong quotients and finite products.

I Example 5.3.
1. Recall that a variety is locally finite if all finitely presentable algebras (equivalently all

finitely generated free algebras) are finite. Every locally finite variety satisfies the above
assumptions. This includes our examples Set, SetK, Inv and JSL0.

2. A semiring S is called Noetherian if all submodules of finitely generated S-modules are
finitely generated. In this case, as shown in [10], the category ModpSq satisfies our
assumptions. Every field is Noetherian, as is every finitely generated commutative ring,
so VecpKq and Ab “ ModpZq are special instances.

CALCO’15



14 Syntactic Monoids in a Category

I Theorem 5.4. For any language L : Xf Ñ Y the following statements are equivalent:
(a) L is D-regular.
(b) The minimal D-automaton MinpLq has finitely presentable carrier.
(c) L is recognized by some D-monoid with finitely presentable carrier.
(d) The syntactic D-monoid SynpLq has finitely presentable carrier.

Proof sketch. This follows immediately from the universal properties of SynpLq and MinpLq
and the assumed closure properties of Df . J

Just as the collection of all languages is internalized by the final coalgebra rXf, Y s, see
Proposition 2.21, we can internalize the regular languages by means of the rational coalgebra.

I Definition 5.5. The rational coalgebra %T for T is the colimit (taken in the category of
T -coalgebras and homomorphisms) of all T -coalgebras with finitely presentable carrier.

I Proposition 5.6. There is a one-to-one correspondence between D-regular languages and
elements I Ñ %T of the rational coalgebra.

We conclude this section with an interesting dual perspective on syntactic monoids, based
on our previous work [2, 4]. For lack of space we restrict to the case D “ Set. This category
is predual to the category BA of boolean algebras in the sense that the full subcategories
of finite sets and finite boolean algebras are dually equivalent. Indeed, this is a restriction
of the well-known Stone duality: the dual equivalence functor assigns to a finite boolean
algebra B the set AtpBq of its atoms, and to a boolean homomorphism h : AÑ B the map
Atphq : AtpBq Ñ AtpAq sending b P AtpBq to the unique atom a P AtpAq with ha ě b.

How do the concepts we investigated in Set – languages, automata and monoids – dualize
to BA? Observe that RegpXq, the boolean algebra of regular languages over the alphabet
X, can be viewed as a deterministic automaton: its final states are the regular languages
containing the empty word, and the transitions are given by L a

ÝÑ a´1L for a P X, where
a´1L “ tw P X˚ : aw P Lu is the left derivative of L w.r.t. the letter a. (Similarly, the right
derivative of L w.r.t. a is La´1 “ tw P X˚ : wa P Lu.) This makes RegpXq a coalgebra for
the endofunctor T “ t0, 1uˆIdX on BA. Since the two-chain t0, 1u is dual to the singleton set
1, finite coalgebras for T dualize to finite algebras for the functor F “ 1`Xˆ Id – 1`

š

X Id
on Set. Based on this, we proved in [2] that further (i) finite T -subcoalgebras of RegpXq
dualize to finite quotient algebras of the initial F -algebra X˚, and (ii) finite local varieties
of languages (i.e. finite T -subcoalgebras of RegpXq closed under right derivatives) dualize
to those F -algebras associated to X-generated monoids, see Definition 2.15. For a regular
language L Ď X˚ the F -algebras associated to the minimal automaton MinpLq and the
syntactic monoid SynpLq are finite. Their dual T -coalgebras are characterized as follows:

I Theorem 5.7. Let L Ď X˚ be a regular language, and Lrev its reversed language.
(a) MinpLq is dual to the smallest subcoalgebra of RegpXq containing Lrev.
(b) SynpLq is dual to the smallest local variety of languages containing Lrev.

Part (a) of this theorem adds to the recently developed dual view of minimal automata,
see [7] and also [16, 3]. All the above considerations generalize from BA{Set to arbitrary
pairs C{D of predual locally finite varieties of algebras. Examples include the self-predual
varieties C “ D “ JSL0 and C “ D “ VecpKq for a finite field K.

6 Conclusions and Future Work

We proposed the first steps of a categorical theory of algebraic language recognition. Despite
our assumption that D is a commutative variety, the bulk of our definitions, constructions
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and proofs works in any symmetric monoidal closed category with enough structure. However,
the construction of the syntactic monoid via the syntactic congruence, and the proof that
it coincides with a transition monoid, required the concrete algebraic setting. It remains
an open problem to develop a genuinely abstract framework for our theory. In particular,
such a generalized setting should provide the means for incorporating ordered algebras, e.g.
the syntactic ordered monoids of Pin [17]. We expect this can be achieved by working with
(order-)enriched categories, where the coequalizer in our construction of the syntactic monoid
is replaced by a coinserter. A more general theory of recognition might also open the door to
treating algebraic recognizers for additional types of behaviors, including Wilke algebras [22]
(representing ω-languages) and forest algebras [9] (representing tree and forest languages).

One of the leading themes of algebraic automata theory is the classification of languages
in terms of their syntactic algebras. For instance, by Schützenberger’s theorem a language
is star-free iff its syntactic monoid is aperiodic. We hope that our conceptual view of
syntactic monoids (notably their dual characterization in Theorem 5.7) can contribute to a
duality-based approach to such results, leading to generalizations and new proof techniques.

References
1 Jiří Adámek, Stefan Milius, , and Henning Urbat. Syntactic monoids in a category. Exten-

ded version. http://arxiv.org/abs/1504.02694, 2015.
2 Jiří Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. Generalized Eilenberg

Theorem I: Local Varieties of Languages. In Anca Muscholl, editor, Proc. Foundations of
Software Science and Computation Structures (FoSSaCS), volume 8412 of Lecture Notes
Comput. Sci., pages 366–380. Springer, 2014.

3 Jiří Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. On continuous
nondeterminism and state minimality. In Bart Jacobs, Alexandra Silva, and Sam Staton,
editors, Proc. Mathematical Foundations of Programming Science (MFPS XXX), volume
308 of Electron. Notes Theor. Comput. Sci., pages 3–23. Elsevier, 2014.

4 Jiří Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. Varieties of Languages
in a Category. Accepted for LICS 2015. http://arxiv.org/abs/1501.05180, 2015.

5 A. Ballester-Bolinches, E. Cosme-Llopez, and J.J.M.M. Rutten. The dual equivalence of
equations and coequations for automata. Technical report, CWI, 2014.

6 Bernhard Banaschweski and Evelyn Nelson. Tensor products and bimorphisms.
Canad. Math. Bull., 19:385–402, 1976.

7 Nick Bezhanishvili, Clemens Kupke, and Prakash Panangaden. Minimization via duality.
In Luke Ong and Ruy de Queiroz, editors, Logic, Language, Information and Computa-
tion, volume 7456 of Lecture Notes in Computer Science, pages 191–205. Springer Berlin
Heidelberg, 2012.

8 Mikołaj Bojánczyk. Recognisable languages over monads. Preprint: http://arxiv.org/
abs/1502.04898, 2015.

9 Mikołaj Bojánczyk and Igor Walukiewicz. Forest algebras. In Automata and Logic: History
and Perspectives, pages 107–132, 2006.

10 Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axiomat-
izations of coalgebraic language equivalence. ACM Trans. Comput. Log., 14(1:7), 2013.

11 Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. Duality and equational theory of regular
languages. In Proc. ICALP 2008, Part II, volume 5126 of Lecture Notes Comput. Sci.,
pages 246–257. Springer, 2008.

12 Joseph A. Goguen. Discrete-time machines in closed monoidal categories. I. J. Comput.
Syst. Sci., 10(1):1–43, 1975.

CALCO’15

http://arxiv.org/abs/1504.02694
http://arxiv.org/abs/1501.05180
http://arxiv.org/abs/1502.04898
http://arxiv.org/abs/1502.04898


16 Syntactic Monoids in a Category

13 Anders Kock. Monads on symmetric monoidal closed categories. Arch. Math., 21:1–10,
1970.

14 Saunders Mac Lane. Categories for the working mathematician. Springer, 2nd edition,
1998.

15 Fred Linton. Autonomous equational categories. J. Math. Mech., 15:637–642, 166.
16 Robert S. R. Myers, Jiří Adámek, Stefan Milius, and Henning Urbat. Canonical non-

deterministic automata. In Marcello M. Bonsangue, editor, Proc. Coalgebraic Methods in
Computer Science (CMCS’14), volume 8446 of Lecture Notes Comput. Sci., pages 189–210.
Springer, 2014.

17 Jean-Éric Pin. Mathematical foundations of automata theory. available at http://www.
liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf, January 2015.

18 Libor Polák. Syntactic semiring of a language. In Jiří Sgall, Aleš Pultr, and Petr Kolman,
editors, Proc. International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 2136 of Lecture Notes Comput. Sci., pages 611–620. Springer, 2001.

19 Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems. IBM
J. Res. Dev., 3(2):114–125, April 1959.

20 Christophe Reutenauer. Séries formelles et algèbres syntactiques. J. Algebra, 66:448–483,
1980.

21 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci.,
249(1):3–80, 2000.

22 Thomas Wilke. An Eilenberg Theorem for Infinity-Languages. In Proc. ICALP 91, pages
588–599. Springer, 1991.

http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf

	Introduction
	Preliminaries
	Algebraic Recognition and Syntactic bold0mu mumu DDkock70, lin66DDDD-Monoids
	Transition bold0mu mumu DDkock70, lin66DDDD-Monoids
	bold0mu mumu DDpolak01DDDD-Regular Languages
	Conclusions and Future Work

