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Abstract
We study how generic is the property of nonlocality among the set of quantum correlations for
bipartite dichotomic measurements. To do so, we consider the characterization of these quantum
correlations as those of the form γ = (〈ui, vj〉)ni,j=1, where the vectors ui and vj are in the unit
sphere of a real Hilbert space. The important parameters in this description are the number of
vectors n and the dimension of the Hilbert space m. Thus, it is natural to study the probability
of a quantum correlation being nonlocal as a function of α = m

n , where the previous vectors are
independent and uniformly distributed in the unit sphere of Rm. In this situation, our main
result shows the existence of two completely different regimes: There exists an α0 > 0 such that
if α ≤ α0, then γ is nonlocal with probability tending to 1 as n → ∞. On the other hand, if
α ≥ 2 then γ is local with probability tending to 1 as n→∞.
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1 Introduction

Local measurements performed by two spatially separated observers on entangled bipartite
quantum states can lead to correlations which cannot be explained by Local Hidden Variable
Models (LHVM) [7]. This phenomenon, known as quantum nonlocality, is one of the most
relevant features of quantum mechanics. In fact, though initially discovered in the context of
foundations of quantum mechanics, during the last decade quantum nonlocality has become
a crucial resource in many applications; some of them are quantum cryptography ([1], [2],
[17]), communication complexity ([8]) and random number generators ([15], [18]).
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Both from the fundamental and the resource point of view, we are interested in quantifying
quantum nonlocality. That is, somehow measuring “how much” nonlocality is available in
a given situation. The most used tool to quantify nonlocality is the violation of a Bell
inequality, and by now there is an abundance of results quantifying the maximum possible
violation in a large variety of contexts.

Another important point of view when quantifying a given resource is not only to look
at the extremal cases (that is, the maximal violations) but at the “typical” cases. That is,
we would like to know not only how much quantum nonlocality we have in certain extremal
situations, but also how likely it is to find quantum nonlocality in a random situation.

This second problem is, so far, much less understood than the first. One of the first steps
in this direction is [3]. In there, the authors prove that for almost every randomly chosen
(in a precisely defined way) XOR game, its quantum value will be strictly bigger than its
local value. Put in another way, the result says that almost every such game will serve as a
witness that certain quantum correlation is not local.

In this work we study the “dual problem”: if we consider a random quantum correlation,
how likely is it that it is nonlocal? We state next the definitions needed for a precise
formulation of our question.

We will work in the context where two spatially separated observers, Alice and Bob,
perform dichotomic (two-outcome) measurements on a bipartite quantum state ρ, each on
their part of the system, and consider the correlations between their answers.

According to the postulates of quantum mechanics, a two-outcome measurement for
Alice (resp. Bob) is given by {A+, A−} (resp. {B+, B−}), where A± (resp. B±) are
projectors acting on a Hilbert space and summing to the identity. We define the observable
corresponding to Alice’s (Bob’s) measurement as A = A+ −A− (B = B+ −B−). The joint
correlation of Alice’s and Bob’s measurement results, denoted by a and b respectively, is
〈ab〉 = tr(A⊗Bρ). Motivated by this, we say that γ = (γi,j)ni,j=1 is a quantum correlation
matrix and denote by γ ∈ Q, if there exist a density matrix ρ acting on a tensor product
of Hilbert spaces H1 ⊗ H2 and two families of contractive self-adjoint operators {Ai}ni=1,
{Bi}ni=1 acting on H1 and H2 respectively such that

γi,j = tr(Ai ⊗Bjρ) for every i, j = 1, · · · , n. (1)

That is, γ is a matrix whose entries are the correlations obtained in an Alice-Bob scenario
where each of the observers can choose among n different possible dichotomic measurements.
On the other hand, we say that γ = (γi,j)ni,j=1 is a local correlation matrix if it belongs to
the convex hull of deterministic correlations. That is,

L = conv
{

(αiβj)ni,j=1, αi = ±1, βj = ±1, i, j = 1, · · · , n
}
. (2)

Local correlation matrices are precisely those whose entries are the correlations obtained
in an Alice-Bob scenario when the measurement procedure can be explained by means of a
LHVM. It is well known ([16]) that L and Q are convex sets satisfying

L  Q  KGL,

where 1.67696... ≤ KG ≤ 1.78221... is the so called Grothendieck’s constant. Indeed, the
first strict inclusion exactly means that there exist quantum correlations which cannot be
explained by means of a LHVM (what we have called quantum nonlocality above) while the
second inclusion is a consequence of Grothendieck’s inequality (see Theorem 5 below) and a
result proved by Tsirelson ([16]) which states that γ = (γi,j)ni,j=1 is a quantum correlation
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matrix if and only if there exist a real Hilbert space H and unit vectors u1, · · · , un, v1, · · · , vn
in H such that

γi,j = 〈ui, vj〉 for every i, j = 1, · · · , n. (3)

We want to choose now a probability distribution on the set of quantum correlations. It
is not obvious how to do so. One may try to use expression (1) as a guide, and choose a
probability distribution on the set of states ρ and on the set of families of self-adjoint and
contractive operators A1, · · · , An, B1, · · · , Bn. But it is not obvious how to choose a natural
candidate for this second probability distribution.

Instead of that, we look at the equivalent reformulation (3) of a quantum correlation.
In this (more mathematical, less physical) expression, there is indeed a natural probability
distribution: we can consider the vectors u1, · · · , un, v1, · · · , vn independently uniformly
distributed on the unit sphere of Rm. It is well known that this is exactly the same as
considering independent normalized m-dimensional gaussian vectors. Due to the Central
Limit Theorem, this last fact makes it likely that different physically realistic models yield
probability distributions related to this one.

Our results will depend on the relation between the dimension m and the number of
questions n. It is simple to see that if one fixes any finite m, the probability that a quantum
correlation matrix γ sampled according to the previous procedure is nonlocal tends to one as
n tends to infinity. It is also simple to see that if n is fixed and m tends to infinity, then the
probability that γ is not local converges to 0. See [12] for details.

Remarkably, our main result says that in the “constant ratio regime”, where the ratio
α = m

n remains constant as n grows, both extreme cases are possible: γ will be almost surely
local for α big enough, whereas γ will be almost surely non local for α small enough.

Specifically, the main result of our work can be condensed as:

I Theorem 1. Let n and m be two natural numbers and α = m
n . Let us consider 2n random

vectors u1, · · · , un, v1, · · · , vn independent and uniformly distributed on the unit sphere of Rm
and let us denote by γ = (〈ui, vj〉)ni,j=1 the corresponding quantum correlation matrix.
(a) If α ≤ α0 ≈ 0.004 then γ is nonlocal with probability tending to one as n tends to

infinity.
(b) If α ≥ 2, then γ is local with probability tending to one as n tends to infinity.

This result shows clearly the need of studying the problem as a function of the parameter
α = m

n . One possible way to think of this problem is the following: say that we want
to sample our vectors on a space of large dimension m. In that case, how many vectors
u1, · · · , un, v1, · · · , vn will we need to sample in order to have nonlocality with high prob-
ability? Our results show that n = m

2 will be too few vectors, whereas n = m
α0

will be
enough.

Curiously enough, we will see below that if one considers normalized vectors whose entries
are independent Bernoulli variables, the probability of obtaining a nonlocal correlation matrix
is zero, since all of them will be local. This means that, in contrast to many other contexts in
random matrix theory, considering gaussian and Bernouilli random variables in our problem
leads to completely different conclusions.

The probability distribution we consider on the random correlations arises from a mostly
mathematical point of view. Despite that, in Section 5 we show a physical model which
yields that same probability distribution.

The paper is organized as follows: In Section 2 we introduce some basic results that
will illustrate the technics used along the whole paper. The main theorem is divided in
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two parts, as each of them requires quite different techniques. The precise statement and a
sketch of the proof of part a) of the theorem, based on results from random matrix theory, is
given in Section 3, while Section 4 states precisely part b) and sketches its proof. Here, the
main tools are tensor norms in Banach space theory. In Section 5 we will discuss a physical
interpretation of the probability distribution we consider on the set of quantum correlations.
The conclusions of our work and future lines of research appear in Section 6.

2 Preliminary results

In this section we state some of the known, or essentially known, previous results which we
will need along the paper.

The following proposition can be easily deduced from [9, Lemma 2.2].

I Proposition 2. Let Gn be the gaussian measure on Rn and let L ⊂ Rn be a k-dimensional
subspace. For a vector g = (g1, · · · , gn) ∈ Rn, let ḡ = g

‖g‖ and let PL(ḡ) denote the orthogonal
projection of ḡ onto L. Then, for any 0 < ρ < 1 we have

Gn

(
(g1, · · · , gn) ∈ Rn : ‖PL(ḡ)‖ ≥ 1

1− ρ

√
k

n

)
≤ e−

ρ2k
4 ,

and

Gn

(
(g1, · · · , gn) ∈ Rn : ‖PL(ḡ)‖ ≤ (1− ρ)

√
k

n

)
≤ e−

ρ2k
4 .

I Remark. As we already mentioned in the Introduction, it is completely equivalent to
sample a unit vector u ∈ Sn−1 according to the uniform measure on the sphere µn to
sample normalized gaussian vectors g = 1

‖(g1,··· ,gn)‖ (g1, · · · , gn). That is, both probability
distributions are exactly the same (see [6, Section 3.3] for a more complete explanation). In
particular, Proposition 2 implies an analoguous statement for unitary vectors and Theorem 1
can be equivalently stated as in Theorem 6 and Theorem 9.

We say that a real random n×n matrix M is bi-orthogonally invariant if the distribution
on Mn(R) of M is equal to that of O1MO2 for any orthogonal matrices O1 and O2. It is
well known and easy to check that gaussian matrices are bi-orthogonally invariant.

The following result is well known, but we have not found a reference for it. It is not
difficult to write a proof following the ideas of [13, Lemma 4.3.10].

I Proposition 3. Let A ∈ Mn(R) be an n × n random matrix in some probability space
(Ξ,P). If A is bi-orthogonally invariant then there exist random matrices U and V in (Ξ,P)
such that
(i) U, V follow the Haar distribution in the orthogonal group O(n).
(ii) U and V are independent.
(iii) U and V are the matrices whose columns are respectively the left and right singular

vectors associated to the ordered singular values of A.

I Remark. We will use later the following easy consequence of Proposition 3: For every
n ∈ N there exists a probability space Ξ with three n× n random matrices A,U, V defined
on it such that A is a gaussian matrix, U, V are independent and Haar distributed in O(n),
and for almost every ξ ∈ Ξ, U(ξ) and V (ξ) are the right and left singular values of A(ξ)
arranged in decreasing order of the singular values.

We will need the Marcenko-Pastur law, describing the distribution of the singular values
of random matrices:
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I Theorem 4 (Marcenko-Pastur law, [14]). Let A be an n × n random matrix whose entries
aij are independent real random variables with mean 0 and variance 1. Let C ∈ [0, 2].
With probability 1 − o(1), the number of singular values λ of A that satisfy λ ≥ C

√
n is

(f(C)− o(1))n where

f(C) = 1
2π

∫ 4

x=C2

√
4
x
− 1dx.

Here, we say that h = h(n) is o(1) if and only if limn→∞ h(n) = 0.

Finally, we state the version of Grothendieck’s inequality most useful for our purposes
(see [10, Page 172]).

I Theorem 5 (Grothendieck’s inequality). There exists a universal constant KG, such that
for every natural number n and for every real matrix (ai,j)ni,j=1 we have

sup
{∣∣∣ n∑

i,j=1
ai,j〈xi, yj〉

∣∣∣ : xi, yj ∈ BH
}
≤ KG sup

{∣∣∣ n∑
i,j=1

ai,jsitj

∣∣∣ : si, tj = ±1
}
,

where the first supremum runs over elements x1, · · · , xn, y1, · · · , yn in the unit ball of a real
Hilbert space H.

The exact value of KG is still unknown but it is known that 1.67696... ≤ KG ≤ 1.78221....

3 A lower bound for α0: Part (a) of Theorem 1

The precise statement for the lower bound is the following.

I Theorem 6. Let G = (gi,j)n,mi,j=1 and H = (hi,j)n,mi,j=1 be two random matrices whose
entries are independent real normalized gaussian variables satisfying α = m

n ∈ (0, 1). For
every i, j = 1, · · · , n, let gi = (gi,k)mk=1 and hj = (hj,k)mk=1 be the row vectors of G and H
respectively . Let us denote ḡi = gi

‖gi‖ and h̄j = hj
‖hj‖ . Then, if α ≤ α0 ≈ 0.004, the quantum

correlation matrix given by γ = (〈ḡi|h̄j〉)ni,j=1is not local with probability 1− o(1).

The starting point for its proof is the following result, which can be deduced from [3]
and the Remark following Proposition 3. It provides an abundance of quantum nonlocal
correlations when we consider the dot product of normalized truncations of orthonormal
vectors.

I Proposition 7. Let U = (ui,j)ni,j=1, V = (vi,j)ni,j=1 be two independent orthogonal random
matrices distributed according to the Haar measure on the orthogonal group O(n). Let
α ∈ (0, 1) and m = αn. We also denote δ = f−1(α), where f is the Marcenko-Pastur densitiy
function as in Theorem 4. Let γi,j = 〈

√
n√
m
ui,
√
n√
m
vj〉 with ui = (ui,k)mk=1 vj = (vj,k)mk=1.

Then there exists an n× n matrix A = (ai,j)ni,j=1 such that, with probability 1− o(1),

n∑
i,j=1

ai,jγi,j ≥ (δ − o(1))n 3
2 and ω(A) ≤ 1.6651 . . . n 3

2 .

The previous proposition implies that for certain range of α = m
n , the first m properly

normalized columns of two Haar distributed orthogonal matrices generate a nonlocal quantum
correlation with high probability. It also provides a gaussian matrix A that certifies this
nonlocality. Note that the vectors {ui}i (resp. {vj}j) are dependent of each other as they
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are part of an orthogonal matrix. On the contrary, the vectors that we use to generate our
correlation matrix are independent from each other.

Now, we want to approximate this columns in the appropriate norm with the corresponding
columns of gaussian matrices. This is achieved with the following result from [11]. Its proof,
quite technical, is based on an analysis of the Gram-Schmidt orthonormalization process and
a careful use of the concentration of measure phenomenon, where Proposition 2 and similar
estimates are used repeatedly.

I Theorem 8 ([11, Theorem 1.1]). Let n and m be two natural numbers such that α = m
n ∈

(0, 1). Then, there exist matrices Yn = (yi,j)ni,j=1 and Un = (uij)ni,j=1 whose 2n2 entries are
real random variables defined on the same probability space Ξ such that
(i) {yi,j ; 1 ≤ i, j ≤ n} are independent normalized random gaussian variables,
(ii) Un is an orthogonal matrix distributed according to the Haar measure,
(iii) If we set Fmi (Yn −

√
nUn) the i-th row of the matrix Yn −

√
nUn truncated to its first

m entries, we have

PΞ

(
sup

i=1,··· ,n

∥∥Fmi (Yn −
√
nUn)

∥∥ > (1 + ε)θ(α)
√
m
)
≤ KneC(ε,α)n,

where here K is a universal positive constant, C(ε, α) > 0 is a constant depending only
on ε and α and

θ(α) =
√

2− 4
3

(1− (1− α)3/2)
α

.

Finally, Grothendieck’s inequality allows us to translate this euclidean approximation
between gaussian and orthonormal vectors into a big value of the correlation γ when tested
against the witness A. Details can be seen in [12].

To finish this section we mention that if we consider normalized vectors ui and vj whose
entries are independent Bernoulli variables (rather than gaussian) then we obtain local
correlations with probability one. Indeed, if we consider such vectors ui = 1√

m
(εi1, · · · , εim),

vj = 1√
m

(δj1, · · · , δjm), we obtain that

(γi,j)ni,j=1 =
( 1
m

m∑
k=1

εikδ
j
k

)n
i,j=1

.

However, for a fixed k, we have that (γki,j)ni,j=1 =
(
εikδ

j
k

)n
i,j=1 is a deterministic (so local) cor-

relation. Since (γi,j)ni,j=1 is written as a convex combination of these objects, we immediately
conclude that (γi,j)ni,j=1 is a local correlation.

4 An upper bound for α: Part (b) of Theorem 1

The precise statement for the upper bound is the following.

I Theorem 9. Let G = (gi,j)n,mi,j=1 and H = (hi,j)n,mi,j=1 be two random matrices whose entries
are independent real normalized gaussian variables and let α = m

n . For every i, j = 1, · · · , n,
let gi = (gi,k)mk=1 and hj = (hj,k)mk=1 be the row vectors of G and H respectively . Let us
denote ḡi = gi

‖gi‖ and h̄j = hj
‖hj‖ . Then, if α ≥ 2, the quantum correlation matrix given by

γ = (〈ḡi|h̄j〉)ni,j=1is local with probability larger than 1− 2neC(α)n. Here, C(α) ∈ (0, 1) is a
constant depending only on α.
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The proof of Theorem 9 relies on elements from Banach space theory: Given an n×nmatrix
with real entries Γ = (γi,j)ni,j=1, we can regard this matrix as a tensor Γ =

∑n
i,j=1 γi,jei⊗ej ∈

Rn ⊗Rn. It will be convenient for us to introduce two tensor norms in this space. We define

‖Γ‖`n∞⊗π`n∞ = inf
{ N∑
k=1
‖xi‖∞‖yi‖∞ : Γ =

N∑
i=1

xi ⊗ yi
}
,

where in this definition, given a vector z ∈ Rn, we denote ‖z‖∞ = maxi=1,··· ,n |zi|. This
norm is the projective tensor norm on `n∞ ⊗ `n∞ and it can be equivalently defined (see [10,
Chapter 3]) as

‖Γ‖`n∞⊗π`n∞ = inf
{ N∑
k=1

λk : λk ≥ 0,Γ =
N∑
k=1

λkηk

}
,

where here ηk denotes the matrix associated to a deterministic (so local) correlation. That
is, for every k we have that ηk = ak ⊗ bk for certain sign vectors ak, bk ∈ Rn.
I Remark. It is now clear why we are interested in this norm: For a given matrix A, we
trivially have that

‖Γ‖`n∞⊗π`n∞ ≤ 1 if and only if Γ is local (as a correlation matrix).

On the other hand, we can define another tensor norm by

‖Γ‖`n∞(`n2 ) = max
i=1,··· ,n

‖(γi,j)nj=1‖.

The following result is the starting point of our proof of Theorem 9. It is a reformulation of
the fact, well known in Banach space theory, that π1(id : `n1 → `n2 ) ≤

√
2, where π1 denotes

the 1-summing norm (see for instance [10, Ex 11.5]).

I Theorem 10. Given an n× n matrix with real entries Γ = (γi,j)ni,j=1, we have that

‖Γ‖`n∞⊗π`n∞ ≤
√

2‖Γ‖`n∞(`n2 ).

To prove now Theorem 9, we use concentration of measure results to show that, with our
hypothesis, ‖Γ‖`n∞(`n2 ) ≤ 1√

2 with exponentially high probability. Details can be seen in [12].

5 A physical interpretation of the result

As we have said before, we consider the correlations arising from randomly uniformly
distributed unit vectors as in (3). In principle, this is not a physical procedure. Nevertheless,
Tsirelson proved in a constructive way that all matrices given by (3) are quantum correlations.
In particular, the following result holds.

I Theorem 11 ([16]). Let ui = (uik)mk=1, vl = (vjl)ml=1 ∈ Rm be unit vectors. Let γ =
(〈ui, vj〉)ni,j=1. Let X1, · · · , Xm : Hr → Hr be m Hermitian operators, such that XkXl =
−XlXk if l 6= k and X2

k = 11, where Hr is an r-dimensional Hilbert space. Then, for every
1 ≤ i, j ≤ n,

Ai =
m∑
k=1

uikXk and Bj =
m∑
l=1

vjlXl

are Hermitian operators of norm one and

γi,j = 〈ψ|Ai ⊗Bj |ψ〉,

where |ψ〉 = 1√
r

∑r
s=1 |ss〉 ∈ Hr ⊗Hr.
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Thus, given a Hilbert space Hr and operators X1, · · · , Xm fulfilling the conditions
from Theorem 11, the random correlation we are considering can be obtained physically by
considering the maximally entangled state |ψ〉 ∈ Hr⊗Hr and observables {Ai}i, {Bj}j which
are independent random linear combinations of the anticommuting observables X1, · · · , Xm.

It is known that the smallest r, so that operators X1, · · · , Xm as above exist in Hr, is
r = 2[(m+1)/2] (see [16]). In this case a particular choice of these operators for even m is:

X2i−1 = X⊗ i−1· · · ⊗X ⊗ Y ⊗ 11⊗ · · · ⊗ 11 for every i = 1, · · · ,m/2;

X2i = X⊗ i−1· · · ⊗X ⊗ Z ⊗ 11⊗ · · · ⊗ 11 for every i = 1, · · · ,m/2,

where X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
are the Pauli matrices.

That is, with this particular choice of X1, · · · , Xm, we can physically generate quantum
correlations with our probability distribution by imposing the associated probability dis-
tribution on those Pauli product measurements and measuring the maximally entangled
state.

Those measurements are closely related to the measurements considered in [19], but note
that in our case we increase the dimension, where in [19] the increasing parameter is the
number of parties.

The main caveat to our model presented above is that it requires the physical dimension
of the system to be exponential in the mathematical dimension m. We expect that there
exist physical systems of much smaller dimension that give rise to quantum correlations
distributed similarly to the ones we have consider, so that our techniques will apply.

6 Conclusions and future lines of research

We initiate the study of the probability of finding nonlocality among quantum probability
distributions. The dual situation, studying the probability of finding games for which
quantumness is an advantage over local resources, was initiated in [3].

We consider the simplest case, quantum correlations arising from bipartite dichotomic
measurements. In this setting, quantum correlations can be written as the product γ =
(〈ui, vj〉)ni,j=1 of unit vectors ui, vj of an m-dimensional real Hilbert space H.

In this set we consider the probability distribution in the quantum correlations induced
by considering the unit vectors u1, . . . , un, v1, . . . , vn independently uniformly distributed in
the unit sphere of Rm. This is equivalent to consider these vectors as independent normalized
gaussian vectors.

We study the situation where both m and n grow to infinity with the ratio α = m
n

constant.
Our main result says that in this setting two extreme situations can happen: if α is small

enough (smaller than certain α0 ≈ 0.004) then almost every such quantum correlation will
be non local. But if α is big enough (greater than 2), then almost every such correlation will
be local.

The tools needed to prove the first bound are random matrix theory and concentration
of measure. For the second bound, the main tool are tensor norms in Banach space theory.

So far, we do not know what happens when α0 < α < 2. In particular, we do not know
if a sharp threshold behaviour between both regimes exists or not. Our techniques maybe
can be refined to slightly increase the bound α0, but they will never reach the relevant case
α0 = 1. From the other side, our proof of part b) suggests that a more clever argument could
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lead to replace 2 by KG, but again our present approach does not seem to allow for further
improvement. Along these lines, it is plausible that a relation between α and KG describes
interesting behaviors of our correlation matrices.

We provide a physical model which gives rise to our probability distribution, but it
requires of an exponential (in m) physical dimension. We expect that relevant physical
models of lower dimension will give rise to probability distributions close enough to ours, so
that related reasonings will apply. This line of research is also open.

Until now we have only addressed the study of bipartite dichotomic quantum correlations.
The study of the full probability distribution for two or more parties, or the study of N -partite
dichotomic quantum correlations is totally open.
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