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—— Abstract

We study two basic graph parameters, the chromatic number and the orthogonal rank, in the

context of classical and quantum exact communication complexity. In particular, we consider
two types of communication problems that we call promise equality and list problems. For both
of these, it was already known that the one-round classical and one-round quantum complexities
are characterized by the chromatic number and orthogonal rank of a certain graph, respectively.

In a promise equality problem, Alice and Bob must decide if their inputs are equal or not. We
prove that classical protocols for such problems can always be reduced to one-round protocols
with no extra communication. In contrast, we give an explicit instance of a promise problem
that exhibits an exponential gap between the one- and two-round exact quantum communication
complexities. Whereas the chromatic number thus captures the complete complexity of promise
equality problems, the hierarchy of “quantum chromatic numbers” (starting with the orthogonal
rank) giving the quantum communication complexity for every fixed number of communication
rounds thus turns out to enjoy a much richer structure.

In a list problem, Bob gets a subset of some finite universe, Alice gets an element from Bob’s
subset, and their goal is for Bob to learn which element Alice was given. The best general lower
bound (due to Orlitsky) and upper bound (due to Naor, Orlitsky, and Shor) on the classical
communication complexity of such problems differ only by a constant factor. We exhibit an
example showing that, somewhat surprisingly, the four-round protocol used in the bound of Naor
et al. can in fact be optimal. Finally, we pose a conjecture on the orthogonality rank of a certain
graph whose truth would imply an intriguing impossibility of round elimination in quantum
protocols for list problems, something that works trivially in the classical case.
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1 Introduction

The chromatic number x(G) of a graph G is the minimum number of colors needed to color
the vertices in such a way that adjacent vertices get different colors. This important graph
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parameter appears frequently in computer science and mathematics; it is well-known to
be NP-hard to compute and has recently found a number of meaningful generalizations
in the context of non-local games and entanglement-assisted zero-error information theory.
One of those generalizations is the orthogonal rank of a graph, denoted £(G) and defined as
follows. An orthogonal representation of a graph is an assignment of complex unit vectors
to the vertices such that adjacent vertices receive orthogonal vectors. The orthogonal rank
is the minimum dimension of such a representation. Similar to the chromatic number,
the orthogonal rank is NP-hard to compute, which follows from a result of Peeters [29,
Theorem 3.1]. In this paper, we study both of these graph parameters in the context of
communication complexity.

Classical communication complexity. Since its introduction by Yao [34] communication
complexity has become a standard model in computational complexity that enjoys a wide
variety of connections to other areas in theoretical computer science [22]. Here two parties,
Alice and Bob, receive inputs x, y from sets X', ) (resp.) and need to compute the value f(x,y)
of a two-variable function f known to them in advance. Usually each party has insufficient
information to solve the problem alone, meaning they have to exchange information about
each others’ inputs. The idea that communication is expensive motivates the study of
the communication complexity of f, which counts the minimal number of bits that the
parties must exchange on worst-case inputs. Throughout this paper, we consider only exact
(deterministic) communication protocols, and we will omit the word ezact from now on. Of
particular importance to this paper is the distinction between one-round protocols, where all
communication flows from Alice to Bob, and multi-round protocols, where they take turns in
sending messages from one party to the other.

Quantum communication complexity. In yet another celebrated paper, Yao [35] introduced
quantum communication complexity, where to compute the value f(z,y) the parties are allowed
to transmit qubits back and forth. The study of this model has also become a well-established
discipline in theoretical computer science and quantum information theory. The most basic
question that arises when considering the classical and quantum models is whether they are
actually substantially different. An upper bound on the possible difference between these
models was proved by Kremer [21, Theorem 4].!

» Theorem 1.1 (Kremer). Any quantum protocol that uses £ qubits of communication can be
turned into a 2°W -bit one-round classical protocol for the same problem.

The first large gap between exact classical and quantum communication complexity was
demonstrated by Buhrman, Cleve, and Wigderson [7], who gave a problem admitting a one-
round quantum protocol that is exponentially more efficient than any (one- or multi-round)
classical protocol.

The chromatic number and orthogonal rank naturally show up in two types of communi-
cation problems that we call promise equality and list problems, discussed next.

1.1 Promise equality

In a promise equality problem, Alice and Bob are either given equal inputs or a pair of distinct
inputs from a subset D of (3) (D is known to them in advance). Their goal is to decide
whether they have equal or different inputs.

1 The result stated here is actually a slight generalization of Kremer’s result (which focuses on boolean
functions) that can be proved in the same way; for completeness we give a proof in Appendix A.
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Classical complexity of promise problems. It was shown by de Wolf [11, Theorem 8.5.1]
that if G = (X, D) is the graph with vertex set X and edge set D, then the one-round classical
communication of the problem equals [log x(G)]. Analogously, for each positive integer r one
can define a “level-r” chromatic number of the graph corresponding to the communication
complexity of protocols that proceed in r rounds or less. For general communication problems,
using more rounds can decrease the total communication, as is the case for the general
Pointer Jumping Problem for example, where for every positive integer m there is an instance
for which any m-round protocol requires exponentially more communication than the best
(m + 1)-round protocol [22]. However, we show that this is not true for promise equality
problems (Lemma 2.1 below), meaning that for such problems the chromatic number not
only gives rise to the one-round complexity, but their overall communication complexity.

Quantum complexity of promise problems. The one-round quantum communication com-
plexity of promise equality problems is characterized by the orthogonal rank. It is not difficult
to see that a one-round quantum protocol of a promise equality problem is equivalent to an
orthogonal representation of the associated graph G = (X, D); the vectors correspond to the
states that Alice would send to Bob and orthogonality is required for Bob’s measurement to
tell whether they got equal inputs or not. Viewing the orthogonal rank as the “one-round
quantum chromatic number” of the graph G naturally leads one to define a hierarchy of such
numbers where the level-r quantum chromatic number corresponds to the communication
complexity of r-round quantum protocols. One might expect that, as in the classical case,
this hierarchy is redundant in that the levels all carry the same number. However, one of our
main results shows that in the quantum setting, this is not the case.

» Theorem 1.2. There exist absolute constants ¢,C € (0,00) and an infinite family of
promise equality problems (X, Dy )nen such that:

The one-round quantum communication complezity of (X, Dy) is at least cn.

There is a two-round quantum protocol for (X,,D,) using at most C'logn qubits.

During our analysis of the particular promise problem used for Theorem 1.2 we answer
an open question of Gruska, Qiu, and Zheng [18]. To explain this, we briefly elaborate on
what goes into our result. The problem we consider is simple: Let n be a positive integer
multiple of 8. Alice and Bob are given n-bit strings « and y, respectively, that are either
equal or differ in exactly n/4 coordinates and they must distinguish between the two cases.
We denote this problem by EQ- (nT/L 4). Similar promise equality problems were studied before.
Buhrman, Cleve, and Wigderson [7] showed the first exponential gap between classical and
quantum communication with the problem EQ- (n72), where Alice and Bob get n-bit strings
that are either equal or differ in exactly half of the entries (for n a multiple of 4). They
used a distributed version of the Deutsch—Jozsa algorithm to give a one-round O(logn)-qubit
quantum protocol for this problem, while a celebrated graph-theoretic result of Frankl and
Rodl [14] implies that the classical communication complexity is at least Q(n). Similar
results were shown (based on similar techniques) in the above-mentioned paper [18] for the
analogous problem EQ- (a"n) when o > 1/2, and the authors pose as an open problem to
determine the quantum communication complexity of EQ- (a"n) when o < 1/2.

We show that the one-round quantum communication complexity of EQ- (;} 4) is at
least ©2(n) and we give a two-round protocol for it that uses at most O(logn) qubits. For
the proof of the first bound we use the famous Lovasz theta number, which lower bounds
the orthogonal rank and therefore the one-round quantum communication complexity. We
prove a lower bound on the theta number using the theory of association schemes and known
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properties of the roots of the Krawtchouk polynomials. Our two-round protocol is based on
a distributed version of Grover’s algorithm. With a little extra technical work our results can
be extended to any of the problems EQ- (a"n) with constant o < 1/2. In light of Kremer’s
Theorem and the obvious fact that the one-round classical communication complexity is at
least its quantum counterpart, we thus settle the question of [18].

1.2 The list problem

In the list problem, inputs are picked from a subset D C X x ) and the parties’ goal is for
Bob to learn Alice’s input. The reason for the name “list problem” is that Bob’s input y
may just as well be given to him as the list (subset) of all of Alice’s possible inputs
satisfying (x,y) € D. A list problem can thus equivalently be given by a family £ C 2% of
lists, where Bob gets a list L € £, Alice gets an element z € L, and Bob must learn . We
refer to this communication problem as £-LIST.

Classical complexity of list problems. Witsenhausen [33] observed that the one-round
classical communication complexity of the list problem is characterized by the chromatic
number of the graph with vertex set X and whose edge set consists of the pairs of distinct
elements appearing together in some list L € £. Denoting this graph by G, the one-round
communication complexity equals [log x(Gz)]. The multi-round communication complexity
of the list problem was also studied before. Orlitsky [28, Corollary 3 and Lemma 3] proved
the following lower bound in terms of the chromatic number of G, and the cardinality of
the largest list, denoted w(L) = max{|L|: L € L} (not to be confused with the cardinality
of the largest clique w(G.) in the graph G, which can be larger).

» Theorem 1.3 (Orlitsky). For every family £ C 2%, the classical communication complexity
of L-LIST is at least max{loglog x(G.),logw(L)}.

The basic idea behind the above result is that Alice must send sufficient information for
Bob to be able to distinguish among w(£) elements, and that any multi-round protocol can be

simulated by a one-round protocol with at most an exponential difference in communication.

In the same work, Orlitsky [28, Theorem 4] gave a two-round classical protocol based on
perfect hashing functions that nearly achieves the above lower bound.

» Theorem 1.4 (Orlitsky). For every family £ C 2%, the two-round classical communication
complexity of L-LIST is at most loglog x(Gr) + 3logw(L) + 4.

It thus follows from Witsenhausen’s observation and Theorem 1.4 that list problems have
exponentially more efficient two-round protocols than one-round protocols. But Theorem 1.3
shows that—in stark contrast with the Pointer Jumping Problem—using more than two
rounds cannot decrease the total amount of communication by more than a factor of 4,
since obviously loglog x(G.) + 3logw(L) < 4max{loglog x(G),logw(L)}. The natural
question that thus arises is if the lower bound of Theorem 1.3 can be attained by using more
than two rounds of communication. Towards answering this question, Naor, Orlitsky, and
Shor [27, Corollary 1] slightly improved on Theorem 1.4 and showed that the four-round
communication complexity gets to within a factor of about 3 of the lower bound.

» Theorem 1.5 (Naor—Orlitsky—Shor). For every family £ C 2%, the four-round classical
communication complexity of L-LIST is at most loglog x(G )+ 2logw(L) + 3loglogw (L) + 7.

As our contribution to this line of work we show that, surprisingly, for some list problems
the four-round protocol of Naor, Orlitsky, and Shor is in fact asymptotically optimal, thus
answering the above question in the negative.

209

TQC’15



210

Round Elimination in Exact Communication Complexity

» Theorem 1.6. For any ¢ > 0 there exists a set X and a family L C 2% such that the
classical communication complexity of L-LIST is at least loglog x(Gr) + (2 — &) logw(L).
Moreover, there exists such an (X, L) pair for which w(L) =log x(Gpr).

In particular, our result gives a family of list problems with communication complexity
at least (3 — ¢) max{loglog x(G),logw(L)} for any € > 0.

Quantum complexity of list problems and quantum round elimination. The one-round
quantum communication complexity of list problems is given by [log (G )], which follows
from the same considerations as for the promise equality problems (see Lemma 3.4). Based
on a conjecture we make about the orthogonal rank of a certain family of graphs, we believe
that in the context of quantum communication complexity, list problems may have the
interesting property of resisting a quantum analogue of round elimination.

In classical communication complexity, round elimination reduces the number of rounds
of a given protocol by having the parties send some extra information instead. Consider
the following basic example, where we start with a two-round (logn + 1)-bit protocol in
which Bob starts by sending Alice a single bit and Alice replies with an log n-bit string.
This protocol can easily be turned into a one-round 2logn-bit protocol by having Alice
directly send Bob two log n-bit strings, one corresponding to the case where Bob sends a 0
in the two-round protocol and another for if he sends a 1. Then Bob can just pick the string
corresponding to the bit he would have sent based on his input and solve the problem.

A quantum analogue of the above example would turn a two-round (logn + 1)-qubit
protocol into a one-round 2 log n-qubit protocol. We conjecture that the following family of
list problems is a counterexample to the existence of such an analogue. For an even positive
integer n and d € [n], let £, C 2{%1" be the family of all lists L C {0,1}" of maximal
cardinality such that all strings in L have Hamming distance exactly d. The example we
consider is given by the family K = L,, /5 U--- U L,,. Similar to the classical example above,
we give a simple two-round protocol for K-LIST.

» Theorem 1.7. For K C 210" a5 above, there exists a two-round protocol for K-LIST
where Bob sends Alice a single qubit and Alice replies with a (1 + logn)-qubit message.

It is easy to see that the graph G = ({0,1}", E) associated with K has edge set E given
by all pairs of strings with Hamming distance in {n/2,...,n}.

» Conjecture 1.8. The graph Gx as above satisfies &(Gx) > n@(1).

By the relation between the one-round quantum communication complexity of list prob-
lems and the orthogonal rank of their associated graphs, it follows that the validity of the
above conjecture would imply that the exact one-round quantum communication complexity
of the above problem is super-logarithmic in n, in marked contrast with the classical example
of round elimination.

1.3 Connections to other work

Our work strengthens a link between communication complexity and graph theory established
by de Wolf [11]. Orthogonal representations appear in the context of zero-error information
theory. Indeed they were introduced by Lovasz [26] to settle a famous problem of Shannon
concerning the (classical) capacity of the 5-cycle and they serve as proxies for entanglement-
assisted schemes [8, 9, 24, 5, 6, 10]. They also appear in the context of non-local games [8,
16, 31]. Nevertheless the orthogonal rank is poorly understood. To the best of our knowledge,
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our result is the first time a lower bound on the dimension was used. The use of the Lovasz
theta number in the context of communication complexity problems also appears to be new
and we hope that it may find further applications there in the future. Finally, quantum
variants of the chromatic number that appeared in for example non-local games [8, 31]
and zero-error information theory [6, 10] can be interpreted as quantum communication
complexities of promise equality problems in various different communication models, which
puts those parameters in a more unified framework.

Outline of the paper. In Section 2 we study the promise equality problem and in particular
we prove Theorem 1.2. In Section 3 we discuss the list problem and prove Theorem 1.6 and
Theorem 1.7.

2 Promise Equality

Recall that in a promise equality problem, Alice and Bob each receive an input from a set X
with the promise that their inputs either are equal or come from a subset D of (g) (known
to the players beforehand). The goal is to distinguish between the two cases. To any promise
equality problem, we associate the graph G = (X, D).

2.1 General properties of promise equality

Recall that the one-round classical communication complexity of the problem equals [log x(G)].

We begin by proving that the chromatic number of the associated graph actually gives the
overall communication complexity.

» Lemma 2.1. For any promise equality problem, the classical communication complexity is
attained with a single round of communication.

Proof. We show how to transform a k-round communication protocol into a one-round
protocol that uses the same amount of bits. To summarize, the idea is that Alice mimics all
the rounds of communication assuming that her input is equal to Bob’s one, and sends them
in one-round. He then checks whether the message received is consistent with his input. If
this is not the case, then he knows that the two strings are different, otherwise he completes
the protocol.

More formally, fix an optimal protocol P that requires k rounds, where k > 2. Suppose
that Alice has input x and Bob has y. We assume that the first round of communication is
from Alice to Bob, but the same reasoning applies in the other case. For i odd, let a; be the
message that Alice would send to Bob on the i-th round of communication if she followed
protocol P and used the knowledge of the messages exchanged in the previous rounds and of
her input x. Similarly, for i even, let b; be the message that Bob would send to Alice on the
i-th round of communication if he had y = = as input, followed the protocol P and used the
knowledge derived by the previous rounds. Using the protocol P, Alice can mimic Bob’s
rounds of communication under the assumption that Bob’s input is equal to z. Alice uses

her input x to produce the string a162a3 ... ai6i+1 ...ay and sends it to Bob in one round.

From his input y, Bob constructs the messages b; that he would have produced during the
protocol P, with the knowledge of Alice’s messages ay and his messages b, for all £ < 4. If
there exists an index 4 such that b; # b;, then z must be different from y. Otherwise, Bob
uses the transcript a132a3 ... ailA)Hl ...ag to finish the protocol and either outputs x = y
or & # y. We have constructed a one-round communication protocol P whose worst-case
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transcript length is at most as long as the one of the original protocol P. Since P is an
optimal protocol so must be P. |

As already mentioned, de Wolf [11, Theorem 8.5.2] showed that one-round quantum
protocols are related to orthogonal representations. We include a proof here for completeness.

» Theorem 2.2 (de Wolf). Consider a promise equality problem defined by the sets X and
D, then its one-round quantum communication complexity is equal to [log&(G)], where
G = (X,D).

The proof of the above result uses the following standard lemma (see for example [6]).

» Lemma 2.3 (Orthogonality Lemma). Let py,...,p; € C*? be a collection of Hermitian
positive semidefinite matrices. Then the following are equivalent:
1. We have p;p; =0 for every i # j € [(].

2. There exists a measurement consisting of positive semidefinite matrices P, ..., P*, P+ ¢
C¥d such that Tr(P'p;) = ;5 Tr(p;) and Tr(PLp;) =0 for every i, j € [{).
In particular, a collection of pure states |¢1), ..., |¢¢) € C? can be perfectly distinguished

with a quantum measurement if and only if they are pairwise orthogonal.

Proof of Theorem 2.2. Let P be an optimal one-round protocol for the considered promise
equality problem. Without loss of generality, Alice sends pure state |¢,) € C? on input x € X.
For any pair (z,y) € D, |¢,) and |¢,) have to be perfectly distinguishable and therefore, in
view of Lemma 2.3, they must be orthogonal. Hence, the map ¢ : X — C? where ¢(z) = |¢,)
is a d-dimensional orthonormal representation of G = (X, D) and £(G) < d.

On the other hand, let ¢ be a d-dimensional orthonormal representation of the graph
G = (X, D) and consider the one-round quantum protocol that transmits ¢(x) € C% on input
x € X. This uses log d-qubits of communication. From Lemma 2.3 we know that Bob can use
his input y to perform a quantum measurement that allows him to learn whether his input
is equal or not to Alice’s one. Thus, the one-round quantum communication complexity of
this equality problem is at most [log&(G)]. <

2.2 Proof of Theorem 1.2

The rest of this section will be devoted to the proof of Theorem 1.2, which shows that there is
a family of promise equality problems where allowing two rounds of quantum communication
is exponentially more efficient than a single round. The problem that exhibits this separation
is EQ- (n’; 4), where Alice and Bob each receive a n-bit string that are either equal or differ in
exactly n/4 positions (with n multiple of 8). We denote by H(n,n/4) the graph associated
with this problem. For any n,d € N, let H(n,d) be the graph which has all the n-bit strings
as vertex set, such that two vertices are adjacent if their Hamming distance is d. We split
the proof in two parts: in Section 2.2.1 we bound the one-round quantum communication
complexity and in Section 2.2.2 we give the two-round protocol.

2.2.1 One-round quantum communication complexity of EQ-(H74>
The main result of this section is the following theorem.

» Theorem 2.4. The one-round quantum communication complexity of EQ—(n7/’4) is at
least Q(n).
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To prove Theorem 2.4, we use Theorem 2.2 and thus set out to bound the orthogonal
rank of the graph H(n,n/4). We prove the desired bound in three steps: first, we show that
the Lovasz theta number is a lower bound for the orthogonal rank; second, we use structural
properties of H(n,n/4) together with known properties of the theta number to reformulate
this bound in terms of the eigenvalues of the adjacency matrix of this graph; third, we bound
the eigenvalues to get the desired result.

We remark that in the following proofs we consider a more general situation than just
the graph H(n,n/4). Indeed, the statement of Theorem 2.4 holds for any problem EQ- (a"n)
where « € (0,1/2) and where both n and « - n are even.

Step 1: The Lovasz theta number. This parameter was introduced by Lovész [26] to
upper bound the Shannon capacity of a graph. Among its many equivalent definitions, we
will use the following primal and dual formulations:

9(G) =max > X st X=0, Tr(X)=1, X;=0 VijeE(G),
i,JEV(G) (1)

J(G)=mint st. X=0, X;=t—1 VieV(G), X;j=-1 Vije E(G),

where X > 0 means that X is a symmetric positive semidefinite matrix. The graph G, called
the complement of a graph G, has the same vertex set as the original graph and a pair of
vertices is adjacent if and only if it is non adjacent in G.

Lovész [26] proved that ¢ lower bounds the minimum dimension of an orthonormal
representation where the vectors are real valued. Note that this is slightly different from
our setting where we allow the vectors to have complex entries. However, we show that
the Lovasz theta number is also a lower bound for £(G). The proof is an adaptation to the
complex case of a known proof [23].

» Lemma 2.5. For any graph G, we have {(G) > 9(G).

Proof. Let n = |V(G)| and label the vertices of the graph G by {1,2,...,n}. Suppose
that the orthogonal rank of G is equal to d and that uy,...,u, € C% are the unit vectors
forming an orthogonal representation of G. For every vertex of the graph ¢ € [n], define a
matrix U; = uiui and Uy := I4. Let Z be a (n+ 1) X (n + 1) matrix where the ¢, j-th entry
Zij = (U;,U;) = Tr(UJTUZ-) for every 4,7 € {0} U [n]. Notice that Z is positive semidefinite
since it is the Gram matrix of a set of complex vectors. Moreover, Z is real valued and we get
that Zoo = d, Zy; = (I, uzub =1and Z; = (ulu:r,ulub = (ujuz)2 =1for all i € V(G) and
that Z;; = (ujuj)(u;ul) > 0 for all ¢,j € V(G) with equality if ij € E(G). By taking the
Schur complement? in Z with respect to the entry Zyg, we obtain a new symmetric positive

semidefinite matrix X with X;; =1—1/d for all t € V(G) and X;; = —1/d for all ij € E(G).

Rescaling X by d, we get a feasible solution for the minimization program in (1) of ¥(G)

with value d. We conclude that d = £(G) > 9(G). <

Step 2: Eigenvalue bound on the theta number. In the second step we show the following
useful bound on the theta number of the graph H(n,d) in terms of the eigenvalues of its

2 Let X be a symmetric matrix of the form X = ((g bj )7 where b € R" ! and o > 0. X is positive

semidefinite if and only if A — bbT /v is positive semidefinite. The matrix A — bbT /o is called the Schur
complement in X with respect to the entry o.
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adjacency matrix. For the remainder of this step, by the eigenvalues of a graph we mean the
eigenvalues of its adjacency matrix.

» Lemma 2.6. For every positive integer n and d € [n], we have ¥(H(n,d)) > 1 — (Z) /A s
where Ay 18 the smallest eigenvalue of H(n,d).

The proof of the above lemma uses the fact that for graphs with certain structural
properties, the Lovasz theta number is characterized by their eigenvalues. Let us recall the
following standard definitions. Let G = (V, E) be a graph. A permutation 7 : V — V is
edge preserving if for every edge {u,v} € E, we have {m(u),7(v)} € E. The graph G is
vertex-transitive if for every pair of vertices u,v € V there is an edge-preserving permutation
m: V — V such that m(u) = v. Moreover, G is edge-transitive if for every pair of edges
{ug,v1},{ug,v2} € E, there is an edge-preserving permutation = : V' — V such that
7(u1) = ug and m(v1) = va. Lovédsz [26] showed that if a graph is both vertex- and edge-
transitive, then the theta number is given by a simple formula involving its eigenvalues.

» Lemma 2.7 (Lovéasz). For a positive integer n let G be an n-vertex graph with eigenvalues

A1 > 2> Ny If G is both vertex- and edge-transitive, then 9(G) =1 — A1/ \,.

Proof of Lemma 2.6. We start by showing that H(n,d) is vertex-transitive. Given any pair
of vertices u,v € {0,1}" of H(n,d), consider the automorphism of the graph H(n,d) that
maps * — = P u @ v where @ is the bit-wise addition. This map preserves the Hamming
distance, and therefore the adjacencies, between the vertices and sends u +— v. Hence H(n,d)
is vertex-transitive.

To show that H(n,d) is edge-transitive, fix any two edges uv and st and let p = u @ v,
q = s @ t. Noting that the n-bit strings p and g have the same Hamming weight d, let 7
be a permutation of the indices such that 7(p) = ¢q. We define v to be an automorphism
that sends a vertex z to w(x ® u) ® s. The map v preserves the edges of H(n,d) and, since
the permutation m maps the all-zero string to itself and p to ¢, we have that v(u) = s and
v(v) =t. Hence, H(n,d) is edge-transitive.

Finally, since the largest eigenvalue of a vertex-transitive graph is equal to its degree, we
clearly have A1 (H (n,d)) = (’}). The result now follows from Lemma 2.7. <

Step 3: Bound on the smallest eigenvalue of H(n,d). Finally, we prove an upper bound
on the magnitude of the smallest eigenvalue of H(n,d).

» Lemma 2.8. Let d and n be even positive integers such that d < n/2. Then, the smallest
eigenvalue Ay of the graph H(n,d) is a negative number such that

The proof of the lemma uses the following facts from coding theory that can be found in
the survey [12]. The eigenvalues of H(n,d) play a fundamental role in the theory of Hamming
association schemes, where they are expressed in terms of a set of orthogonal polynomials
known as the (binary) Krawtchouk polynomials. For a positive integer n and d =0,1,...,n,
the Krawtchouk polynomial K7 € R[z] is a degree-d polynomial that is uniquely defined by

K} (z) = zd:(—l)j (j) (Z_j) r=0,1,...n.

J=0
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When n and d are even, then K} is symmetric about the point = n/2. Moreover, these
polynomials satisfy the important orthogonality relation

n

3 (Z) K (2)K7 (z) = 6q.a (Z) on. 2)

z=0

The set of distinct eigenvalues of H(n, d) turns out to be {K7(0), K7(1),...,K}(n)}. Crucial
to our proof of Lemma 2.8 then, is the following result of Levenshtein [25, Theorem 6.1]
characterizing the smallest roots of the Krawtchouk polynomials.

» Theorem 2.9 (Levenshtein). Let n be a positive integer and d € [n]. Then, K7 has exactly d
distinct roots and its smallest root is given by

d—2
n/2—max(Zzizi+1\/(i+1)(n—i)), (3)
i=0
where the mazimum is over all vectors z = (zo,...,2z4—1) on the real Euclidean unit sphere.

This implies the following general bound on the location of the smallest root of K. The
bound is stated for instance in [20], but since we were unable to find a published proof we
include one here for completeness.

» Corollary 2.10. Let n and d be positive integers such that d < n/2. Then, the smallest

root of K7 lies in the interval [n/2 — \/(n — d)d,n/2].

Proof. It is clear that (3) is trivially upper bounded by n/2. We focus on the lower bound.
To this end, let z = (z0,...,24—1) be a real unit vector achieving the maximum in (3).

For i € {0,1,...,d — 1} define the numbers a; = z;v/n —i and b; = z;41v/i + 1. By the
Cauchy-Schwarz inequality,

IS8
N

( 2 ziziv1V/ (1 + 1)(n — Z))z = ( 2 az’bi>
- d—2 d—2
< (2a)(2¥)
1=0 7=0
d—2 d—1
S(Ea(En)
d—1 d—1
(S
d—1 d—1
B
i=0 j=0
d—1 d—1
= (n — z?z) ( zjzj), (4)
i=0 =0

where in the last equality we used the fact that z is a unit vector. Observe that the sum
Zj;ol 224 lies in the interval [0,d — 1]. Hence, since d < n/2, (4) is at most max{(n — t)t :
tel0,d-1]}=(n—-(d-1))(d—-1) < (n—d)d. <
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Proof of Lemma 2.8. Since the trace of a matrix equals the sum of its eigenvalues and the
trace of an adjacency matrix is zero, it follows that Ay < 0.

Recall that the eigenvalues of H(n,d) belong to the set {KJ(z) : = = 0,1,...,n}.
Moreover, since by our assumption n and d are even, the polynomial K} is symmetric
about the point /2. Also observe that K7 (0) > 0 and hence the first time this polynomial
assumes a negative value is somewhere beyond its smallest root, i.e. the smallest x for which
K7 (x) <0 lies in between the smallest root and n/2. It therefore follows from Corollary 2.10
and from the fact that K is symmetric about the point n/2 that A = K (z*) for some
integer 2* € [n/2 — /(n — d)d,n/2].

Clearly (2) implies that

5 (Juser ()

Hence,

(o) maene < ()

and we can conclude that

2n(n AL
as]® = [KJ (7)) < 5(1) < de) . <
(m*) (n/2—\/(n—d)d)

Putting everything together. To conclude this section, we combine the main lemmas of
the above three steps to prove Theorem 2.4.

Proof of Theorem 2.4. Combining Lemmas 2.5, 2.6, and 2.8 gives

SN n (@) Gajom Jmara)
aHm@»szm@»21<Q/mmzl+¢ Poynas (5)
We take the logarithm and use Stirling’s approximation: log (7) = (H(k/n) + o(1))n, where
H(e) = —elog(e) — (1 —€)log(1 — €) is the binary entropy function and the o(1) term goes to
zero as n — oo (see for example [32, p. 64]). Then, for a = d/n, logarithm of (5) is at least

%log (Cil) (n/22n'n(nd)d)> = g (H(a) +H (1/2 -/ (1= a)a) -1+ o(l)) .

A simple check gives that H(«) + H(1/2 — /(1 —a)a) —1 > 0 for any a € (0,1/2). In
particular, log£(H (n,n/4)) > Q(n). <
2.2.2 Two-round quantum communication

Using a distributed version of Grover’s search algorithm, we find a quantum communication
protocol that solves EQ- (7:/’ 4) with a logarithmic number of qubits.

» Theorem 2.11. The two-round quantum communication complexity of EQ—(n7/’4) is at
most 2[logn] + 1 qubits.
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Proof. Let x and y be the inputs of Alice and Bob, respectively, and z = x & y be their
bit-wise addition. The promise ensures that either |z| =0 if z = y or |z] = n/4 in the case
where x # y.

If a bit string z € {0,1}" is known to contain exactly n/4 entries that are 1, Grover’s
algorithm [17] is able to find one of these entries without error [2], needing only a single
query to the string z. For any string we define the query unitary U, = > 1", (—1)% i)

1

and we define |s) = —= """, |i) to be the uniform superposition of all basis states. Then

G = 2|s)(s| — I is a unitary operation known as the Grover diffusion operator.

The quantum communication protocol can be viewed as combining Grover’s algorithm
with a special case of the simulation theorem given by Buhrman, Cleve and Wigderson [7,
Theorem 2.1]. We want to perform the algorithm on the effective string z = = @ y, using the
fact that performing a single query U, is the same as performing the operations U, and U,
in sequence, i.e., U, = U, U, = U,U,.

At the start of the protocol, Bob first creates the state Uy|s) and sends this state over to
Alice using [logn] qubits. Alice first applies U, to the incoming state and then applies the

Grover operator G. The final state of Grover’s algorithm is —A=3>7, . _ [i) if [z = n/4.

n/4
That is, in the case that x # y Grover’s algorithm has produced a superposition over all
indices ¢ such that z; # y;. Alice measures the state, obtaining some index #* such that

xi+ # Yy« if & #y. Then she sends ¢* and the value x;+ over to Bob using [logn] + 1 qubits.

He outputs ‘equal’ if and only if z;« = y;+«. The total communication cost of the protocol is
then 2[logn| + 1 qubits. <

This protocol can be extended to efficiently solve the equivalent problem for other distances
than n/4 in constant rounds, by using a more general exact version of the Grover search
algorithm. The construction is described in Appendix B.

3  The list problem

In this section, we consider the £-LIST problem: Bob gets a list L € £ from a family £ C 2%
of lists, Alice gets an element x € L, and Bob must learn x.

3.1 Classical communication complexity of the list problem

Here we prove Theorem 1.6. The list problem that gives the result is simple: For positive
integers k, N such that 2 < k < N, we consider the list problem £ = (UZ])’ where the family
of lists consists of all k-element subsets of [IV]. Note that for this problem, Theorem 1.5 gives

a four-round protocol using at most loglog N + 2log k + O(loglog k) bits of communication.

» Theorem 3.1. The classical communication complexity of ([JZ])—LIST is at least
loglog N 4 2log(k — 1) — loglog(k — 1) — O(1).

To see that this implies Theorem 1.6 note that for £ as above, we clearly have w(L£) = k
and that G, is the complete graph on N vertices, giving x(Gz) = N. Hence, the bound in
the above theorem can be written as loglog x(Gz) + (2 — o(1)) logw(L), where the term o(1)
goes to zero as k — co. Choosing k = log N then gives the second part of the theorem.

To prove Theorem 3.1, we use a bound on the size of cover-free families due to Dyachkov
and Rykov [13]; see [30, 15] for simplified proofs (in English).

217

TQC’15



218

Round Elimination in Exact Communication Complexity

» Definition 3.2. Let r be a positive integer and S be a finite set. A family F C 25 of at
least r 4+ 1 subsets is r-cover-free if every subfamily of r + 1 distinct sets Fy, Fy,..., F. € F
satisfies Fy € Fy U---UF,.

» Theorem 3.3 (Dyachkov—Rykov). There exists an absolute constant ¢ > 0 such that the
following holds. Let N and r be positive integers such that N >r+1 and r > 2. Let S be a
finite set. Let F C 25 be an r-cover free family consisting of N sets. Then,

cr?log N

S| >
51> logr

Proof of Theorem 3.1. For a positive integer C, suppose that the communication complexity
of ([],Z])—LIST is C. Fix such a protocol and for every input pair (z,L) in the ([IZ])-LIST
problem, define the transcript T 1, € {0,1} U {0,1}2U--- U {0,1}¢ as the concatenation of
the parties’ messages in the order they are sent during their conversation on input (z, L).
Let T be the set of said transcripts.

For each transcript T € T, denote by T the sequence of Alice’s messages in T, to be
understood as a sequence of strings indexed by her rounds in the conversation. Let F =
{F,}sex € 27 be the family where each F, is the collection of transcripts T' € T that
is consistent with 2 being Alice’s input and that agrees on T4. We claim that F is a
(k — 1)-cover free family. To see this, take any k sets of F, say Fy,,...,Fy,_,, and let L be
the corresponding k-element list {xo,...,zr_1}. Consider the transcript T, r of the input
pair (zo,L). Clearly, Ty, 1 € Fy,. We show that T, 1 ¢ F,, for each i € {1,...,k — 1},
which gives the claim as this implies that F,, € F, U---UFy, ,. Suppose that T, 1 € Fy,
holds for some i € {1,...,k — 1}. This means that Alice sends identical message sequences
on inputs xg and z; and therefore that Bob is not able to distinguish between these two cases
for the input pair (zg, L), contradicting our assumption that we started with a functional
protocol.

We also claim that F consists of at least N sets. Indeed, for every pair z,y € [N], there
isalist L € ([IZ]) containing both x and y. Since we must have T;}L #* T;"L for Bob to be
able to distinguish x and y on input L, the inputs z and y induce distinct transcript sets.

It thus follows from Theorem 3.3 that the total number of distinct transcripts is at least

c(k —1)%log N
>\ 7)) e
71 = log(k — 1)

Hence, since 7 C {0,1} U{0,1}2U--- U {0,1}“, we have

20+ 1 _ i o c(k —1)%log N
2-1 log(k —1) ~’

for some absolute constant ¢ > 0. Taking logarithms now gives the claim. |

3.2 Quantum communication complexity of the list problem

Analogous to Witsenhausen’s result, the one-round quantum communication complexity of a
list problem is characterized in terms of the orthogonality dimension of its associated graph.

» Lemma 3.4. For every family £ C 2%, the one-round quantum communication complexity
of L-LIST equals [log&(Gr)].
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Proof. Consider an optimal one-round protocol. Without loss of generality, we can assume
that Alice sends to Bob a pure state |¢,) € C? on input x € X. Then, given a list L € L,
Bob has a measurement that allows him to distinguish the states {|¢.) : € L}. Tt thus
follows from Lemma 2.3 that these states must be orthogonal. In particular, since for every
list L € L, each pair of distinct elements z,y € L forms an edge in G, the vectors |@,),
x € X, form a d-dimensional orthogonal representation. Hence, (G.) < d.

Conversely, let f : V(G.) — C% be an orthogonal representation of G .. Then, for every
list L € L, the vectors {f(x) : © € L} are pairwise orthogonal. If Bob gets a list L € £ and
Alice gets an element x € L, it follows from Lemma 2.3 that there is a quantum measurement
allowing Bob to uniquely identify = when Alice sends f(z) using log d-qubits. Hence, the
one-round quantum communication complexity is at most [log&(G)]. <

For multi-round protocols, a quantum analogue of Theorem 1.3 also holds.

» Lemma 3.5. For every family £ C 2%, the quantum communication complexity of L-LIST
is at least max{Q(loglog x(Gr)),logw(L)}.

Proof. Kremer’s Theorem (Theorem 1.1) shows that there is at most an exponential difference

between the (multi-round) quantum and one-round classical communication complexity.

Hence, by Witsenhausen’s result, the former is at least Q(loglog x(Gr)). Moreover, on the
worst input Bob has to be able to distinguish among w(£) different elements. Hence, logw(L)
bits of information must be communicated and Holevo’s Theorem [19] says that to retrieve
logw(L) bits of information logw(L) qubits are necessary. <

3.3 Proof of Theorem 1.7

Recall that we are considering the following family of lists. For an even positive integer n
and d € [n], let £4 C 2101} be the family of all lists L C {0,1}" of maximal cardinality
such that all strings in L have Hamming distance exactly d. We denote by K the union
LyjpU---ULy,.

Proof of Theorem 1.7. Let ¢ = [logn] and U be an (¢ + 1)-qubit unitary matrix satisfying
U [0)[0)* = |0) [0)**

UJ1)]0)® f'l ;\z

Moreover, for any 2¢-bit string z, we define the conditional query unitary U, which acts on
the computational basis states as U.|0)|i) = |0)|¢) and U,|1}|i) = (—=1)%1)]i). For a small
technicality, if n is not a power of 2, i.e. £ > logn, we will map any n-bit string to a 2¢-bit
string obtained by padding zeros to the original string. We can now explain the protocol.

Suppose that Bob receives a list L € L4 and Alice a string « € L. From L, Bob computes

the distance d and he sends to Alice a single qubit v|0) + /1 — ¥2[1) where 4* =1 — 34 > 0.

Alice pads ¢ zero qubits to the one she received and then applies in sequence the unitaries U
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and U,, obtaining the state

62 := UnU (110}[0)%° + VI =72[1)[0)")

v, (Hoymet + /L2y |1>z'>>
G
=100/ + L5 Y -1

which she sends to Bob, using [logn] + 1 qubits. Notice that if z,y € {0,1}" differ in exactly
d positions, then the states |¢,) and |¢,) are orthogonal to each other. Hence, by Lemma 2.3,
using the list L Bob can perform a measurement that allows him to learn Alice’s input z.
This protocol requires a total communication of [logn] + 2 qubits. |
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A Kremer’s Theorem

Here we prove Kremer’s Theorem (Theorem 1.1), which we restate for convenience. The
original proof by Kremer [21] applied to boolean functions; we give a slight generalization of
the statement so that it applies to functions with arbitrary range. It is important to notice
that the statements in this section hold for general communication protocols, not only exact
ones.

» Theorem A.1. Let £ be a positive integer, X, Y, R be finite sets and D C X x Y. Let
f:D — R be a function and suppose that f admits an £-qubit quantum protocol. Then, there
exists a one-round 29 -bit classical protocol for f.

The proof uses the following lemma of Yao [35] and Kremer [21]. To reduce the amount
of notation needed in the proof we assume that the parties use the following general protocol.
At any point during the protocol, both Alice and Bob have a private quantum register. If it is
Alice’s turn to communicate, say £-qubits, she appends a fresh £-qubit register to her existing
register, applies a unitary to both registers and sends the ¢-qubit register over to Bob, who
then absorbs the f-qubit register into his private register. If it’s his turn to communicate,
Bob operates similarly. This assumption will allow us to deal more easily with protocols in
which different numbers of qubits are sent in each round.

» Lemma A.2 (Yao—Kremer). Let £ be a positive integer, X, Y, R be finite sets and D C X xY'.
Suppose that there exists an r-round quantum protocol for a function f: D — R, where {;
qubits are communicated in round i € [r]. Then, the final state of the protocol on input
(z,y) € D can be written as

S ou(@)ful®)|Au(2)) Ba(v)),

where the sum is over all u € {0,1}% x --- x {0,1}*", the ay(z), Bu(y) are complex numbers
and the |Au(x)), |Bu(y)) are complex unit vectors.

Proof. By induction on r. The base case r = 1 is trivial, since then Alice sends Bob
an {-qubit state. For some i € {2,3,...,r}, suppose that after i — 1 rounds the state is given
by

Y av(@)Bu ()| Av(@))|By ().

where the sum is over all v € {0,1}% x - -+ x {0,1}%-1. Assume that the i-th round is Alice’s
turn (the case of Bob’s turn is handled similarly). She appends a fresh £;-qubit register to
her current register, causing the state to become

D av(@)Be(y)|Av(@))[01 - 0r,) | By (y))-

Next, she applies a unitary over both of her registers, turning the state into

doav@b) | DS awlAvw(@)lw) | [Bu(y)),

we{0,1}4

where 7y is a complex number (which might depend on ) and for some unit vectors |Ay w(x)).
Now define

avw(t) = av(@)rw,  Bvw(y)=Fuly) and  |Byw(y)) = [w)[By(y)),
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so that after the ith round, after Alice has sent the £;-qubit register to Bob, the state equals

Z v,w(Z) By, w(Y) |Av,W($)> |Bv,w (¥))-

After r rounds the state thus looks like as claimed in the lemma. <

Proof of Theorem 1.1. Assume that the protocol proceeds in r rounds and that ¢; qubits
are communicated during round ¢ € [r]. By Lemma A.2 the final state of the protocol can be
written as

Y au(@)Bu(y)Au(@))|Bu(y)),

To produce his output, Bob performs a measurement { M, ..., M} on his register. For
each pair u,v € {0,1}*1 x --- x {0,1}%" and j € [k] we define the complex numbers
auy(r) = au(®)ay(@)(Au(r)Av(z))

biv(@) = Bu(y)Be(y)(Bu(y)|M;|By(y)).

Then, the probability that Bob gets measurement outcome j equals

pi(@,y) =Y auv(@)b, ().

The classical one-round protocol works in the following way. Let ¢ be the total communi-
cation of the protocol and define a, v(z) as an approximation of ay v(x) using 2¢ + 4 bits for
the real part and 2¢ + 4 bits for the imaginary part, so that |Gy v (%) — auy(7)] < 272673
Alice’s message consists of all 22¢ numbers Gy, v(7), making the total communication cost
O(#2%%) bits. Bob calculates his approximation of the probability of getting outcome j as

pj(@,y) = Z &u7v(x)bﬂ,v(y).

We can bound the difference between this approximation and the acceptance probability
of the original quantum protocol by

155, 9) = 2 9)] = | (G (@) = Gu (@) Vau (v)]
< Z’duw(x) - au’v(x)‘ |b{1,v(y)’

< 9—20—3920 1
- -8
Therefore, given a quantum protocol with sufficiently high success probability, in this
paper in particular probability 1, Bob can (deterministically) choose the unique outcome
j for which p,(x,y) is strictly greater than %, and this outcome j is equal to the function

value f(x,y), by correctness of the original quantum protocol. <

B  Multi-round quantum protocols for EQ- (a"n) with a < 1/2
Using distributed versions of Grover’s search algorithm, we find multi-round quantum
communication protocols that solve the EQ- (a”n) problem for a < 1/2 with a logarithmic
number of qubits. For a = 1/4, this statement is proven in Theorem 2.11.
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When d = « - n where a € (1/4,1/2), we can pad zeros to the inputs such that the
new strings are either equal or differ in exactly 1/4-th of the positions and run the above
two-rounds protocol on the new strings. This is the simple key idea behind the following
theorem.

» Theorem B.1. Ford = a-n with o € (1/4,1/2), the two-round quantum communication
complezity of EQ-() is at most 2[logn] + 2[log(4c)] + 1 qubits.

an

Proof. Let x and y be Alice’s and Bob’s inputs. They know that = and y are either equal or
they differ in exactly d = « - n positions where d > n/4. Suppose that Alice and Bob pad
their respective inputs with & consecutive zeros with k = 4d — n. The new bit strings & and
9 have length n’ = n + k = 4d and they are either equal or differ in exactly o’ -n' =n'/4
positions.

Alice and Bob can now run the distributed Grover’s search protocol described in the
proof of Theorem 2.11 on the new inputs &,¢ € {0, 1}",. The total communication cost is
2[logn'] +1 = 2[log(4a - n)] + 1 < 2[logn| + 2[log(4a)] 4+ 1 qubits. <

For d = a - n where a € (0,1/4), we need to introduce some technicalities to ensure an
exact version of Grover’s search algorithm.

» Theorem B.2. Ford = a-n with o € (0,1/4), the quantum communication complexity
of EQ-(2) is at most O(logn) qubits. The quantum communication protocol uses O(ﬁ)
rounds.

Proof. If a n-bit string z is known to contain exactly d entries that are 1, Grover’s algorithm
can be modified such that it finds an index for one of them with certainty [3, Theorem 16]
[4, 1]. The number of queries £ that the exact version of Grover’s algorithm needs in this
case is given by

1
4arcsin\/% 2

The exact version of Grover’s algorithm is the same as the original algorithm, except for
an adapted final step, which uses a parametrized diffusion operator G(¢) and partial query
V.(¢), where ¢ and ¢ are angles that depend on the Hamming distance d. As these angles
do not have a nice closed formula, we refer the reader to [3, Equation (12)] for the relation
that ¢ and ¢ must satisfy. Here

gy iz =0
e?lj) ifz;=1

Va(@)li) ={

and
G(¢) = F,Vo(9)F!,

where F, is the n x n discrete quantum Fourier transform.?

Take z,y € {0,1}" to be the input strings of Alice and Bob and let z = 2 & y. As in
the proof of the n/4 case of Theorem 2.11, we turn this search algorithm into a quantum
communication protocol by writing a single query U, = U,U, = U,U,. We can use the

3 Note that if n is a power of 2, it is also possible to use the n x n Hadamard transform.
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commutativity of U, and U, to save rounds: The exact Grover’s algorithm is performed by
executing the operations

G(9)V.(p)GU. ...GU,

£—1 times

on starting state |s) = ﬁ >, li). Since we can write two alternations as GU,GU, =
GU,U,GU,U,, alternating whether Alice or Bob executes the query first that round, only
£ — 1 rounds are needed for the ¢ — 1 ordinary Grover iterations. Alice starts the protocol if
¢ is even, and Bob sends the first message if ¢ is odd.

For the final step, the players need to simulate a query V,(¢) by local operations that
depend only on z or y. At this point in the protocol it is Alice’s turn to communicate. She
currently holds the state

W) = GU, ...GU. |s) .
N————

£—1 times

Now Alice adds an auxiliary qubit that starts in |0) state. Define the unitary operation
Q. by its action on the computational basis states as

Qa|)|b) = 15)[b & ;)
and the (diagonal) unitary matrix R, (y) as

Ry(p)lj)[b) = e =¥ j) b) .

Now Alice first applies @, on the state [1)|0), sends this state to Bob who performs
R,(¢), sending the state back to Alice who again performs Q,. It is easy to check that
Qs Ry(¢)Qx|1)|0) = (Vo(¢) ® I)|1)]0), therefore Alice now discards the auxiliary qubit and
applies G(¢) to finish the simulation of the exact version of Grover’s algorithm.

The final state of the exact Grover’s algorithm is % D s, =1 1) if [2[ = d. If Alice
has this state in her possession, she performs a measurement in the computational basis,
obtaining an index #* such that x;« # y;» if x # y. Then she sends i* and the value x;« over
to Bob, who outputs ‘equal’ if and only if ;+ = y;~. This final message consists of [logn]+ 1
qubits. By the correctness of the exact Grover’s algorithm, this protocol correctly outputs
‘not equal’ if the Hamming distance between x and y is the fixed value d. Therefore we
turned a ¢-query execution of the exact version of Grover’s algorithm into a protocol that
uses (¢ + 2)[logn] + 2 qubits of communication in ¢ + 2 rounds. <
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