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Abstract
We study the robustness of the bucket brigade quantum random access memory model introduced
by Giovannetti, Lloyd, and Maccone [Phys. Rev. Lett. 100, 160501 (2008)]. Due to a result of
Regev and Schiff [ICALP’08 pp. 773], we show that for a class of error models the error rate per
gate in the bucket brigade quantum memory has to be of order o(2−n/2) (where N = 2n is the size
of the memory) whenever the memory is used as an oracle for the quantum searching problem. We
conjecture that this is the case for any realistic error model that will be encountered in practice,
and that for algorithms with super-polynomially many oracle queries the error rate must be
super-polynomially small, which further motivates the need for quantum error correction. We
introduce a circuit model for the quantum bucket brigade architecture and argue that quantum
error correction for the circuit causes the quantum bucket brigade architecture to lose its primary
advantage of a small number of “active” gates, since all components have to be actively error
corrected.
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1 Introduction

A random access memory (RAM) is a device that stores information in an array of memory
cells in the form of bits. In contrast to other types of information storage devices, the access
latency to any memory cell is constant and does not depend on the location of the information
in the RAM. Information stored in the RAM is retrieved by inputting the address of the
desired memory cell in a routing circuit. Any address in a RAM with N = 2n memory cells
can by addressed via a unique n bit input query string. The corresponding output register
contains the contents of the addressed memory location.
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The typical physical implementation of the addressing mechanism uses the fanout ar-
chitecture [17, 26], in which the routing scheme corresponds to a binary tree. Each node
consists of a pair of transistors which routes the electronic signal down one of the two paths
to the subsequent level. In the fanout architecture, a given level has all nodes sharing the
same routing direction (left or right), set by the corresponding address bit. An n bit query
string determines a unique path in the binary tree, corresponding to the desired memory
location. In the process, O(2n) transistors are activated.

Alternative routing schemes with O(poly(n)) activated transistors have been proposed,
corresponding to exponentially lower energy consumption. One such example is the “bucket
brigade” scheme [13, 12]. However, most of the classical implementations follow the simpler
fanout architecture, as the power consumption of RAM is negligible in comparison with the
power consumption of other components in the architecture.

The classical RAM addressing scheme can be generalized to a quantum RAM (which we
simply call qRAM from here on) scheme, where the input is a quantum state, the routing
components are inherently quantum, and the information stored can be either classical, i.e.
|0〉 or |1〉 but not a superposition of both, or quantum, i.e. any arbitrary superposition of |0〉
and |1〉. In the present paper we consider qRAM that stores only classical information. Such
memory allows querying superposition of addresses∑

j

αj |j〉|0〉
qRAM−→

∑
j

αj |j〉|mj〉, (1)

where
∑

j αj |j〉 is a superposition of queried addresses and |mj〉 represents the content of
the j-th memory location. A memory that stores classical information but allows queries
in superposition is required for quantum algorithms such as Grover’s search on a classical
database [23], collision finding [6], element distinctness [1], dihedral hidden subgroup problem
[20] and various practical applications mentioned in [3]. In fact, such a quantum memory
plays the role of the oracle and is ideal in implementing any oracle-based quantum algorithm,
in which the oracle is used to query classical data in superposition.

A conceptually simple physical implementation of a qRAM corresponds to a direct
generalization of the fanout architecture used in classical RAMs. However, the number of
faulty components that can be tolerated by the quantum architecture is of prime importance
due to the difficulty in maintaining quantum coherence. This motivates searching for schemes
with fewer faulty components. A fundamental assumption of the qRAM architecture is that
“active” gates1 are the only ones with significant errors.

In this paper we investigate the bucket brigade qRAM proposal introduced in [13, 12].
Assuming one requires a constant error probability for the oracle query, then with the bucket
brigade error model it suffices to have an error rate that is on the order of O(1/n2). In
the bucket brigade model, one assumes that each computational path only contains O(n)

1 The concept of “active” gates introduced in [13, 12] is somewhat unnatural when extended to quantum
gates. At the physical level, a gate is considered active if it physically acts on its input. Since the
qRAM may be in a superposition of querying many (or all) possible bit values in the memory, every
gate may be in a superposition of being active or not. Implicitly, there is a physical process that is
checking whether each gate is active, and then acting in that case, and such a process will not be perfect
in practice. Translated into the circuit model, such gates may be modelled as controlled-gates, i.e. gates
that act on its input provided that the control qubit is set to |1〉. Therefore, such a gate is considered
“active” if its control is set to |1〉 and “non-active” otherwise.
In practice, even non-active gates will be prone to errors. The implicit assumption is that these errors
are much smaller than the errors in active gates, and the focus of the bucket brigade models is to reduce
the impact of the higher order errors found in the active part of a gate.

TQC’15



228 On the Robustness of Bucket Brigade Quantum RAM

components that are faulty, and that a total of O(n2) faulty operations are performed. One
can argue that it is optimistic to assume that the so-called “non-active” components will
be completely error-free. And, one could counter-argue that the error rates will be much
lower, and thus ignored for problem instances of appropriate size. For the purposes of this
article, we set aside these concerns and accept the premise of there only being O(n) faulty
components.

In contrast to such a qRAM, if one just used a regular fanout circuit for the lookup, with
no error correction, one would need to maintain quantum coherence over an exponential
number of components [12]. In order to achieve a constant error rate for the query in this
case, one would need to implement a fault-tolerant version of the look-up circuit, which would
normally incur an overhead that is polynomial in n. One advantage of bucket brigade qRAM
is thus to bypass the poly-log overhead of fault tolerant quantum error correction needed
to achieve a constant error rate for a look-up. Such an error rate would be sufficient if the
qRAM is used in an algorithm making a constant number of queries, for example, for certain
state generation algorithms [22, 14]. In general, for an algorithm with inverse polynomially
many queries, it would suffice to reduce the query error rate to be inverse polynomial in n,
e.g. [21, 11].

In this article, we firstly shed doubt on the usefulness of a qRAM that provides queries
with constant probability of error, when used with algorithms that make super-polynomially
many oracle queries. As an aside, we note that if the imperfect query operation is assumed
to be unitary, and if one can apply the inverse of this imperfect query, then one can apply
simple amplification methods to achieve queries with arbitrarily small error δ using a number
of repetitions that is proportional to log(1/δ). It was shown that this logarithmic overhead
is not necessary for quantum searching [16] and other problems [9]. However, there is no
reason to expect the errors in a realistic qRAM to behave this way, and in this article we
consider incoherent errors.

We first show that a very simple model of incoherent physical errors induces an overall
query error similar to the one described by Regev and Schiff [25]. Consequently, a qRAM
that produces queries with constant error will not permit the quadratic speed-up in Grover’s
search algorithm or any other quantum search algorithm one might design. We show that
one cannot escape achieving an error rate that is super-polynomially small. We conjecture
that this error model nullifies the asymptotic speed-ups of other quantum query algorithms
as well, and leave as open questions the extension of this result to other important query
problems.

This negative result implies the need for some means of error reduction for the qRAM,
with a look-up error rate exponential in n. For consistency we assume a physical error rate
that is inverse polynomial in n, the logarithm of the size of the database. We thus explore a
natural approach, using quantum error correcting codes, to provide this error reduction, and
argue that the apparent advantage of qRAM disappears in this case; in principle, one can
make the error rate arbitrarily small, however the advantage of a small number of activated
gates in the bucket brigade architecture appears to be lost when active error correction has to
be performed on each gate. The main motivation for the quantum bucket brigade approach
over a straightforward binary-tree approach is that the equivalent of the active gates are the
only gates prone to error, and thus an inverse polynomial in n error rate suffices in order to
achieve an overall constant error per qRAM look-up.

The remainder of this paper is organized as follows. In Sec. 2 we describe the bucket
brigade qRAM architecture and prove that for the Regev and Schiff model [25] the error
rate per gate must scale as inverse polynomial in the size of the database. In Sec. 3 we
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|•⟩

|0⟩
|1⟩

Ground state

Figure 1 Representation of the energy levels
of a qutrit used at the nodes of the routing binary
tree. The states |0〉 and |1〉 form a metastable
subspace since the energy difference between the
states is required to be much smaller than the
difference between the ground state |•〉 and |0〉.

|•⟩ Qutrit in wait state

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|1⟩

|0⟩

Figure 2 (Color online) Bucket brigade
scheme for a qRAM with 8 memory locations.
The address register is |010〉, corresponding to
the memory location m010. The path 0→ 1→ 0
is established by sequentially introducing the
address qubits |010〉 into the root of the tree.

develop and analyze a simple error model that provides intuition for the overall behaviour of
the memory with realistic noisy environments. In Sec. 4, in order to discuss approaches for
introducing quantum error correction inside the qRAM architecture, we introduce a circuit
model for the bucket brigade architecture. We then argue in Sec. 5 that a fault-tolerant
bucket brigade qRAM loses the advantage of small number of active components. Finally, in
Sec. 6 we conclude and present some open problems and directions for future research.

2 Quantum RAM Architectures

In [13, 12], Giovanetti et al. proposed a quantum bucket brigade addressing scheme requiring
only O(n) activations per memory call. The nodes of the routing binary tree are three level
quantum systems (qutrits), with an energy spectrum schematically depicted in Fig. 1.

The 2n qutrits at the nodes of the binary tree are initially prepared in the ground state
|•〉, named the “wait” state, and the memory address is specified by the n-qubit state
|a0a1 . . . an−1〉. At time t0, the address qubit |a0〉 is input at the root of the tree and it
interacts with the qutrit at node 0 changing its state from |•〉 to |a0〉. The states {|0〉, |1〉} of
the node qutrit are coupled to two spatial directions (paths), right and left respectively. The
role of the coupling is to route the following incoming address photon along the correct path
of the binary routing tree. At time t1, the subsequent address qubit |a1〉 is input at the root
of the tree. The address qubit |a1〉 interacts with the qutrit at node 0 and is physically routed
down the left or right path of the tree depending upon the state |a0〉 of node 0. Consequently
it changes the state of the corresponding node at level 1 to |a1〉. The process continues
until all the remaining address qubits are sent through the tree, with the k-th address qubit
changing the state of the node at the k-th level from |•〉 to |ak〉. After O(n2) time steps2, a
routing path is assigned from the root of the tree to the desired memory location, with only
n nodes in the path (one node per level) having a state different from |•〉. A bucket brigade
routing scheme for an 23-address qRAM is schematically depicted in Fig. 2. The proposed
physical implementation of bucket brigade in [12] uses atoms in a cavity as routing nodes
and polarization photon states as addressing qubits.

2 The k-th address qubit interacts with the first k − 1 routing nodes, followed by a single interaction
with the corresponding node at the k-th level. Considering each interaction takes a single time step,
the k-th address qubit changes the state of the corresponding node at the k-th level after k time steps.
Considering there are a total of n address qubits, the overall time required is O(n2).
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In [12], the authors claim that the bucket brigade scheme is coherent as long as the error
per gate, ε scales as O(1/n2). For this error scaling, as n increases, the overall error rate of
the qRAM oracle asymptotically approaches a constant. Yet constant overall error rates are
not favourable for some important quantum algorithms. For example, Regev and Schiff [25]
showed that the quadratic speed-up in Grover’s searching algorithm vanishes when using
oracles with a constant error rate. Namely, in order to regain the quadratic speed-up, the
error rate per oracle call should scale no worse than O(2−n/2) (therefore the error rate not
only needs to be non-constant it must vanish at a fast enough rate with increasing n).

In the next few sections, we construct a simple model of bucket brigade qRAM with
errors and show in Appendix A that Regev and Schiff error model [25] resembles the model
we construct. Based on this resemblance and assuming O(n2) faulty operations per memory
call, we conjecture that in order to implement the qRAM for quantum searching, the overall
error rate per memory call has to be in O(2−n/2). In fact, for this to hold, the error rate
per gate ε should decrease faster than 1/f(n), where f(n) ∈ ω(2n/2). Thus ε has to be in
o(2−n/2) and hence much smaller than O(1/n2), since the overall error rate per memory call
must scale as

1−
(

1− 1
f(n)

)O(n2)
∈ Ω

(
n2

f(n)

)
, (2)

and in order to satisfy

1−
(

1− 1
f(n)

)O(n2)
∈ O(2−n/2), (3)

it is required that

f(n) ∈ Ω
(
n22n/2

)
=⇒ 1

f(n) ∈ O
(

1
n22n/2

)
=⇒ ε ∈ o(2−n/2). (4)

Recently Hong et al. [15] proposed a bucket brigade qRAM scheme in which the number
of time steps required per memory call is reduced from O(n2) to O(n). While this reduction
decreases the overall error rate, the error rate per gate ε must still be in o(2−n/2).

The need for super-polynomially small (in n) error rate per gate for real world applications
motivates a more thorough analysis of the bucket brigade qRAM scheme and the need for
quantum error correction, these topics being the subject of the following sections.

3 Errors Analysis

In this section we introduce a simple toy error model for the physical implementation proposed
in [12], in which the qutrits are implemented by trapped atoms in cavities. The address
qubits are implemented by photons that propagate along the network of cavities, and excite
the corresponding qutrit to either of the states |0〉 or |1〉, depending on their polarization. In
this way, the incoming address photons create a “path” through the binary tree of cavities,
leading to the desired memory location. The readout is performed by injecting a “bus” qubit
(photon) at the root of the tree that interacts with the desired memory location, copies its
value (the states stored by the memory are |0〉 or |1〉, and not any superposition), and finally
is sent back along the routing tree exiting through the root with the corresponding memory
location content. For more details about the physical model an interested reader is referred
to [12].



S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and P. V. Srinivasan 231

3.1 Toy Error Model
In the following we assume that the only source of errors in the above model is due to random
flips between the states |0〉 and |1〉 of the qutrit. We assume a typical symmetric bit-flip error,
in which at each time step the state |j〉 can either flip to |j ⊕ 1〉 with probability ε or remain
unchanged with probability 1− ε. The motivation for considering this error model is that,
since the states {|0〉, |1〉} are close together in the energy spectrum, significantly less energy
is required to cause a flip between them, hence such flips are more likely to occur. In reality,
there may be other sources of errors such as coupling errors, decaying of excited qutrit states
to the ground state, loss of photons during the routing process and so on. However, our toy
model illustrates the effects of an error that would naturally occur in a realistic physical
realization of a qRAM. There is no reason to expect these other sources of errors would help
matters (otherwise, one could seek to deliberately introduce or simulate such errors).

It is not hard to observe that any error in the routing process can propagate through the
tree resulting in various possibilities. Considering all possible errors in such a model, the
possible paths that the bus photon could take in the final step termed as right path, wrong
path and no-path, respectively. For convenience, we further assume the operations used to
un-compute the path information encoded in the qRAM are error-free.

1) Right path. This scenario occurs when no flips (errors) arise during the routing process.
In this ideal scenario, the bus reaches the correct location in the qRAM as specified by the
input address. Fig. 2 depicts an example of a right path given an input address |010〉.

To compute the probability prp of such an event, we require that no bit flip occurs at
each of the j levels. Taking the intersection of such events for all n− 1 levels of the binary
tree gives the probability of the right path

prp =
n−1∏
j=0

(1− ε)n−j = (1− ε)

n−1∑
j=0

(n−j)

= (1− ε)n(n+1)/2. (5)

2) Wrong path. This error refers to the cases wherein the the bus reaches any other location
in the qRAM other than the location corresponding to the input address. A wrong path
error occurs at level i if the state |j〉 of the active routing qutrit at level i flips to |j ⊕ 1〉
and no other errors occur subsequently (at later time steps). The scenario where another
error occurs at a later time step in the levels preceding to the j-th level leads to a no-path
error which we discuss later. The following two figures illustrate two possible wrong paths for
the input address |010〉. In Fig. 3, the error is assumed to occur in the third time step, due
to which the bus accesses the wrong location corresponding to |011〉. In Fig. 4, the error
is assumed to occur in the second time step, with the bus wrongly accessing the location
corresponding to |000〉.

In order to calculate the probability of a wrong path occurring, we consider the probability
of any path occurring, regardless of whether it is the right or wrong path, we denote this
probability by ppath. Suppose the state |ψj〉 is being routed down the qRAM circuit to the
j-th level. If any of the (j − 2) first routing nodes have flipped then the state will be routed
down an unexpected branch and will not excite the j-th level of the tree, resulting in a
no-path. The probability of success at this given time step is therefore (1− ε)j−1, where ε is
the probability of a node flipping, recall we must include the level-0 root node here. This
can only for levels 2 and above. The overall probability of success is therefore the product
of each of the individual probabilities of success at each time step (including the time step
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|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|1⟩

|1⟩

Figure 3 (Color online) Example of a wrong
path produced by an error at the third time step,
given the address |010〉.

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|0⟩

|0⟩

Figure 4 (Color online) Example of a wrong
path produced by an error at the second time
step, given the address |010〉.

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩ |•⟩

Input: |010⟩

|1⟩

|1⟩

|•⟩

Figure 5 (Color online) Example of a no-path
given the address |010〉.

to send the bus qubit down the tree to recover the information stored in the RAM). This
probability is given by:

ppath = pwp + prp =
n∏

j=2
(1− ε)j−1 = (1− ε)

n∑
j=2

(j−1)

= (1− ε)n(n−1)/2. (6)

As we computed before the probability of a right path prp in Eq. (5), the probability of a
wrong path is then

pwp = ppath − prp = (1− ε)n(n−1)/2 − (1− ε)n(n+1)/2. (7)

3) No-path. This error refers to the scenario where the bus never reaches any location
of the qRAM. Such an error arises when a bit flip error occurs in levels 0 to n − 3. The
smallest such tree where this error can occur is therefore a three-level tree (corresponding to
a qRAM with 23 memory cells), as shown in Fig. 5. The difference between a wrong path and
a no-path is that, in the latter, the bus photon does not reach the memory address, hence
does not read any information, whereas in the former scenario the bus reaches the wrong
address in the qRAM and after the un-computing stage, the bus contains the information of
some particular address in the qRAM.

We present an example of a no-path error in Fig. 5, for an input address 010. At the first
time instant, the first address photon (i.e. |0〉) activates the switch (qutrit) in the first layer
of the tree. At the second time instant, the address photon |1〉 interacts with the switch in
the first layer, now in state |0〉, to decide the direction in which it has to be routed. Assuming
no error during the second time step, the second address photon is correctly routed to the
left path. Assume now that at the third time instant, a flip error occurs on the root qutrit,



S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and P. V. Srinivasan 233

which flips its state from |0〉 to |1〉. The third address photon would then be incorrectly
routed to the path on the right. As it can be seen from Fig. 5, at the third time instant there
are two activated switches in the second level. The readout bus photon can no longer reach
any of the memory locations, and will be lost in the second level of routing tree.

The probability of a no-path event is simply

pnp = 1− pwp − prp = 1− (1− ε)n(n−1)/2. (8)

If the qRAM is used to implement a quantum oracle O, then O will be faulty, with an
error model described by

ρ
O→ prpÔρÔ

† + pwpEwp(ρ) + pnpEnp(ρ), (9)

with Ô denoting a perfect oracle. Here Ewp(·) and Enp(·) are error channels that corresponds
to the wrong path and no-path errors, respectively.

Our error model Eq. (9) is less optimistic than the one of Regev and Schiff [25] of the form
ρ

O→ (1− p)ÔρÔ† + pρ. The main difference is that the latter does not mix the amplitudes
of the initial starting superposition state in Grover’s search algorithm, whereas our model
decoheres the system much faster due to the non-trivial errors Ewp and Enp. Although we
do not have a proof that the quantum query complexity of our model cannot be less than
the one considered in [25] (i.e. linear in N), we argue (based on a formal proof for a similar
decoherence model, see Appendix A) that this is indeed the case.

3.2 Asymptotic Behaviour
In Figs. 6, 7 and 8 we analyze the probabilities of the three types of errors discussed
in the previous subsection. The parameters of interest are the error probability per gate,
denoted by ε, the overall fidelity of the addressing circuit (i.e. the probability of a right-path),
denoted by prp, and the number of levels in the qRAM addressing binary tree denoted by n
(corresponding to 2n memory locations).

For a fixed ε, we see that the no-path behaviour becomes the dominating term in the
error model, asymptotically with n, as depicted in Fig. 6.

For a fixed n, again the no-path term dominates when the error per gate ε becomes large,
see Fig. 7.

Finally, for a fixed desired overall fidelity prp, the maximum allowed error probability per
gate ε to achieve the overall fidelity prp decays exponentially as a function of n, as plotted in
Fig. 8.

From Fig. 8 it can be seen that, the error rate per gate of O(1/n2) (blue line in Fig. 8)
as considered in Giovannetti et al. [12] is more optimistic than our error rate ε(n) (red line
in Fig. 8)

For larger output fidelity prp, ε(n) will always be bounded above by 1/n2, with the gap
between the two increasing as prp approaches towards 1. Asymptotically in n, the two graphs
converge towards zero.

Simply, the difference between our error ε(n) and the one in [12] can best be understood
by investigating the series expansion

prp = (1− ε)n2
= 1 + 2 log(1− ε) 1

n(n+ 1) +O( 1
n4 ). (10)

In [12] the authors considered only the first order 1/n2 as a desirable error rate per gate.
However, when the output fidelity prp approaches 1, this approximation is no longer accurate,
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Figure 6 (Color online) Comparison of errors
for fixed ε as a function of n.

Figure 7 (Color online) Comparison of errors
for fixed n as a function of ε.

Figure 8 (Color online) Required ε (in di-
mensionless units of 10−2) as a function of n, for
a fixed circuit fidelity. GLM denotes the model
proposed in [12].

and higher order terms are important. As mentioned at the end of Sec. 2, inverse polynomial
error rates are not good enough in implementing Grover’s search with a qRAM-based oracle.
In fact, overall error rates of at most O(2−n/2) are essential.

The dominant no-path error term poses a fundamental implementation problem, due
to lack of oracle information, similar (see Appendix A) to the noise model investigated by
Regev and Schiff [25]. If in the future, qRAM designs could be constructed without the
presence of such a no-path term (i.e. with only wrong-path noise), one can attempt error
correction to efficiently reduce the error rate. We demonstrate in Appendix B a possible
error correction scheme for a simplified wrong-path term governed by bit-flip channels, then
show however that the scheme is not applicable to our errormodel or to the Regev and Schiff
error model [25].

4 Circuit Model

In Fig. 9 we present a circuit description for an N = 23 qubit bucket brigade qRAM, in
which the memory contains only states in the computational basis {|0〉, |1〉}. Our circuit is
immediately extendable to N = 2n and closely simulates the physical model proposed in [12].

The circuit description of the bucket brigade addressing scheme accounts for the temporal
aspects of the bucket brigade scheme. Namely, since the address qubits are introduced into
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|m100⟩

|a2⟩

|0⟩

|1⟩

|a0⟩
|a1⟩

|m000⟩
|m001⟩
|m010⟩
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Figure 9 (Color online) Circuit for bucket brigade qRAM. Nodes to the left of the memory cell
are routing nodes. The dashed squares represents the memory locations. The first layer of nodes
immediately to the right of the memory are the coupling nodes. Finally, the nodes on the right
are the read out nodes. A possible input is e.g. |a0a1a2〉 = |010〉, for which the circuit reads the
memory location m010. The path leading to the location m010 is represented in blue colour, and
the active routing and readout nodes are highlighted. One could more closely mimic the physical
flow of information in the bucket brigade qRAM by adding an additional qubit at each node in the
binary tree we see in the diagram. Then, for each k = 0, . . . , n− 1, we add an initial controlled-NOT
gate to copy ak to the root node, followed by a series of O(2k) controlled-SWAPs that will bring
the value of ak to the unique node in level k defined by the bits a0, a1, . . . , ak−1. While this adds
exponentially many gates, it does not change the overall gate complexity, and these additional gates
only add O(k) to the depth of the circuit. This also illustrates that the exponential depth implicit
in the circuit we describe in the diagram can easily be reduced to polynomial depth by mimicking
the ideas presented in the qRAM proposal. We leave the circuit diagram in this simpler form, since
it does not affect our arguments in Sections 3 and 5.

the binary tree architecture sequentially, the circuit description should respect this ordering.
The input to the circuit are the address qubits |a0a1 . . . an〉. The circuit resembles a binary
tree composed of 2n − 1 routing nodes, 2n memory cells and 2n readout nodes that perform
the inverse operations of the routing circuit, used to decouple the qRAM from the address
qubits. Additionally, a bus qubit is introduced that interacts with the memory nodes to
extract the information stored in the appropriate memory location. It is worth noting that
this bus qubit as described may not be physically realistic since it may interact with all the
bits in the qRAM. We leave it as such, for simplicity. In practice, if such a non-local qubit is
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not feasible, one may either work with a phase shift oracle (as described in Ch. 8 of [19]), or
one may use a binary-tree circuit to bring the result of the qRAM look-up to a specific qubit
that will be accessed by the quantum algorithm that performs the look-up.

The address qubit |a0〉 is used to activate the appropriate branch at the first level of the
routing. The address qubit is coupled via a CNOT to an ancillary state prepared in the
state |0〉. This qubit then serves as one of the input qubits along with an additional qubit
prepared in the |1〉 state for the routing node (a CNOT gate with the first qubit as control).
Depending on the state of the address qubit, the resulting two-qubit output of the routing
node will have a single excited qubit in the |1〉 state, which we shall call the activated qubit.
The activated branch of the tree governs the routing of the subsequent interactions with
the address qubits, playing the role of the routing atom in the case of the bucket brigade
outlined in [12].

The two qubits at the exit of the level-0 routing node serve as inputs to the second
register of the two level-1 routing nodes. These qubits control which of the routing nodes
are activated at the next level of the qRAM binary tree architecture. Namely, the qubit
that is excited in the |1〉 state allows for the coupling between the address qubit and an
introduced |0〉 state ancilla via a Toffoli gate. Therefore the input to the active routing
node is either |01〉 or |11〉 depending on the state of the address qubit |a1〉. Effectively,
the routing operation given by a CNOT gate activates a branch of the tree. For the node
that is non-active, the state at the output of the previous level is |0〉, meaning the Toffoli
is not activated and the resulting input and output state to the routing node remains |00〉.
Therefore, after two routing node levels, the output of the routing qubits is composed of
22 qubits, with only a single branch being excited depending on the state of the first two
address qubits |a0a1〉. Therefore, this corresponds to an isometry:

|00〉a0a1 → |0001〉, |01〉a0a1 → |0010〉, |10〉a0a1 → |0100〉, |11〉a0a1 → |1000〉, (11)

where the excited output qubits in the |1〉 state represent an active physical path for the
subsequent qRAM operations. This procedure is repeated for n levels, where at the k-th level
there are 2k Toffoli gates and routing nodes. The 2k Toffoli gates are required to route of the
address qubit |ak〉 through the previous k levels and the routing node establish the output
states in order to route the subsequent address qubits. Since such a circuit performs the
appropriate unitary mapping of the address qubits for all computational basis state inputs,
by linearity it will extend to all superpositions of input address qubits. An example of the
routing procedure for a three-qubit input address state |010〉 is presented in Fig. 9, where
the blue highlighted nodes correspond to the activated nodes.

After the completion of the n routing node levels, memory readout is performed. The
reading is performed by introducing a bus qubit prepared in the |0〉 state which is the target
of 2n Toffoli gates. Each of the 2n qubits at the output of the qRAM routing nodes pair with
one of the memory cells to serve as control qubits for the Toffoli gates. Since only a single
output qubit from the routing scheme is activated, only a single Toffoli gate couples with
a memory location to the bus qubit. The bus qubit is represented by the bottom qubit in
Fig. 9 while the 23 memory qubits are represented between the qRAM routing architecture
and the bus qubit.

Having completed the coupling of the address qubit, the state of the qRAM routing qubits
must be decoupled from the address and bus qubits. Each of the gates from the routing
circuit are performed in reverse order, which corresponds to performing the inverse unitary
coupling transformation between the address qubits and the routing qubits. The resulting
state couples the address qubits with the corresponding memory qubit and has decouples
the routing qubits to their input ancillary states.
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5 Error Correction

The results from Sec. 3 motivate the need for quantum error correction to be implemented
at each node in order to protect against errors that may cause detrimental faults in path
information.

5.1 Imposing a quantum error correcting code
In choosing a quantum error correcting code (QECC) to protect the path information
that is stored in each node, it is essential to choose an encoding that can be implemented
fault-tolerantly, to allow for the generalization to large computational systems. Moreover,
the QECC should be chosen such that it can naturally be incorporated from the quantum
computer that is accessing the qRAM. In order to analyze the desired error correction
properties of a bucket brigade qRAM architecture we consider the circuit presented in Fig. 9.
The key gate components at each site are the CNOT and Toffoli gates.

The most natural construction of a QECC that can implement such operations with
minimal overhead would be the 15-qubit Reed-Muller code. The reason for choosing such a
code would be that decomposing the gate operations in the routing circuit as a sequence
of CNOT and Toffoli gates has the advantage that each of these gates can be implemented
in a transversal manner. Transversality is defined as the ability to implement a logical
gate by applying physical gates that have support at at most a single location per encoded
codeblock: it is the most natural way to guarantee fault-tolerance. However, if the quantum
computing device leads more naturally to another form of quantum error correction encoding,
methods such as state distillation or other schemes for universal fault-tolerance can be
used [8, 24, 4, 18, 2].

The focus of many fault-tolerant implementations are through the CSS code construc-
tion [28, 10, 29]. A CSS quantum code is constructed using two classical error correcting
codes, each individually used to address X and Z type errors. Given that any quantum error
can be decomposed in terms of a linear combination of Pauli operators, developing an error
correcting code that can address both types of errors will be sufficient for the construction of
a QECC.

Let CX be a classical error correcting code of length n that has the associated parity
check matrix HX , where each 0 in the parity check matrix of the classical code is replaced
by the two-dimensional identity matrix I and each 1 in the classical parity check matrix is
replaced by the Pauli X operator. Similarly, let CZ be a second classical error correcting
code of length n with an associated parity check matrix HZ , where each 1 in the classical
parity check matrix has been now replaced by the Pauli Z operator. If C⊥X ⊆ CZ then by
combining the stabilizers generated from the parity check matrices of both codes, HX and
HZ , the resulting stabilizer code forms a QECC. The number of physical qubits in the code
is n, the number of logical qubits is given by kX + kZ − n, where ki is the number of logical
states in the given classical code i and the distance of the code is at least the minimum of
the distance of the two classical codes. One of the many appealing features of the CSS code
construction is the transversality of the CNOT gate, a feature of the X and Z stabilizers
being independent. A particular example of a CSS code is the 15-qubit Reed-Muller code
mentioned above.

5.2 Number of activations in a CSS code
In the implementation of Giovanetti et al. [12], one of the primary advantages is the number
of gate activations that are needed per level of the bucket brigade scheme. More simply, a

TQC’15



238 On the Robustness of Bucket Brigade Quantum RAM

CNOT (Toffoli) gate in their scheme is “activated” only when the control qubit(s) is (are)
in the state |1〉. Since only one register is in such a state at a given level, the total number
of activations can thus be kept low. In a physical implementation, this is relevant as an
activated path may represent the presence of a physical excitation without which no physical
process occurs, therefore one can think of these non-activated gates as in fact being the
identity operation. However, such an advantage vanishes when imposing a CSS code in order
to protect from errors due to the symmetry in the number of |0〉 and |1〉 states the logical
states encoding the path information.

In the CSS code construction, two classical codes were taken to form a QECC. Therefore,
given some codeword of the classical code c ∈ CZ , the equivalent quantum state written out
in computation basis |c〉 must be stabilized by the Z generators of the code, by definition of
being a codeword of the classical code CZ . However, in order to be a logical state of the CSS
code, it must also be stabilized by the elements of the group generated by the X stabilizers.
Therefore, the codestate will be the superposition of the application of all X stabilizers
upon |c〉,

|c+ C⊥Z 〉 =
∑

x∈C⊥
Z

|c+ x〉 = 1
2n−kX

∏
i

(I⊗n + SX,i)|c〉, (12)

where {SX,i} are the generators of the X stabilizer group, equivalently given by the rows of
the parity check matrix HX .

Consider the form of Eq. (12), given the state |c〉 written in the computational basis,
the action of the operator (I⊗n + SX,1) will be the equally weighted superposition of the
state |c〉 and SX,1|c〉, which will differ at the location where SX,1 has a Pauli X in its
description. Therefore, at these locations half of the states in the superposition will have a
physical |0〉 state and half will have a physical |1〉 state. Then acting upon the state with
the operator (I⊗n + SX,2) will have the same effect on all the states in the superposition,
with now an even number of physical |0〉 and |1〉 states occurring at location with Pauli X
in SX,2. Repeating this for all X generators, any location with a X operator in one of the
stabilizers will necessarily have half of the states in the superposition in each of the physical
basis states. In order for the code to protect against any arbitrary single qubit error, each
physical qubit must be protected by at least one X stabilizer operator with support the given
location, otherwise it would be vulnerable to a single Z error at this location. As such, all
relevant CSS codesstate will have an equal number of each of the physical basis states when
writing out the expansion of the state in the computational basis.

In a physical implementation, such as that of Giovanetti et al. [12], a qubit in the state |1〉
represents an activated physical process, and as such the advantage of the bucket brigade
scheme is that the number of such processes are kept low. However, due to the symmetry
in the number of activations that must exist in both the logical ground and excited states,
this advantage no longer exists when considering CSS codes. More generally, non-symmetric
codes, that is codes where the logical |0〉 state and logical |1〉 have a differing number of
physical states in the excited state |1〉, are not desirable for the purposes of error correction
as they will be more susceptible to Z errors. The three-qubit repetition code is an extreme
example of such a property.

In principle, for the physical error model discussed in Section 3, one can envision using
the detection of a photon lost in the routing structure as a means to correct for no-path
errors (see Fig. 5). However, detecting the exact node at which a photon was lost reveals
path information about the state being read by the qRAM (since the previous node in the
routing structure would have necessarily been activated by the address qubits) which leads
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to a loss of coherence in the system. Therefore, any photon detection has to identify the
level at which the photon was lost, while not revealing exactly where. It is hard to envisage
a practical means for experimentally realizing a photon detection with this property (for
example, by somehow symmetrizing the loss of the photon across the exponentially many
nodes at a given level). Furthermore, even if this is achieved, one still faces the problem that
the lost photon contained path information. Thus, destroying the photon with this path
information is equivalent to a dephasing error leading to a further loss of coherence.

In conclusion, if one encodes each node of the bucket brigade qRAM in an error correcting
code, then all nodes of the circuit are activated at a physical level, and essentially the qRAM
architecture becomes equivalent to a fanout architecture. Even it the latter case, designing a
good quantum error correcting code is highly non-trivial. An important issue is that the
syndrome measurement should not reveal any information whatsoever about the physical
location of the nodes affected by errors. Otherwise, path information is being revealed, which
decoheres the system.

6 Conclusions and open questions

We analyzed the robustness of the bucket brigade qRAM scheme introduced in [13, 12] under
an optimistic error model. The primary advantage of the bucket brigade scheme is the need
for a polynomial in n (rather than exponential) number of gate activations per memory
reading. Yet, we give evidence for the hypothesis that for realistic error models, whenever
the qRAM is used as a oracle for quantum searching, its error rate per gate has to scale as
o(2−n/2). Such an error rate is exponentially smaller than the error O(1/n2) proposed in
[12] (which is sufficient for algorithms with low query complexity), motivating the need for
quantum error correction.

We argued that using traditional error correcting techniques offsets the main advantage
of the bucket brigade scheme when used with algorithms that make super-polynomially
many oracle queries. Since each component of the routing architecture has to be actively
error corrected in order to protect against detrimental faults, the overall scheme requires an
exponential number of physical gate activations, even if the number of logical gate activations
remains polynomial.

An interesting open question is the existence of a realistic architecture-specific error
correction technique that could recover the polynomial number of physical gate activations
of the routing scheme while still guaranteeing fault-tolerance. For example, if one tries to
use an error correction mechanism whereby one only uses multi-qubit code states along the
active path, then one has the problem of extracting syndromes and applying corrections in a
way that does not identify which path has the non-trivial syndromes (since such information
would lead to decoherence). If in this case, for example, one attempts to extract the syndrome
without leaving a trace of which node in a given level it came from, then the problem seems
at least as challenging as implementing a reliable qRAM.

Moreover, it would be interesting to investigate whether the requirement for a super-
polynomial suppression of the error rate is a characteristic of quantum searching algorithms
or a more general feature of query complexity with faulty oracles.
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A A simple decoherence model

Let us consider the error model considered in [25],

Rp(ρ) := (1− p)ÔρÔ† + pρ, (13)

with Ô denoting the perfect oracle for quantum searching and let us define

Dq(ρ) := (1− q)ρ+ q ~Xρ ~X† (14)

as the multi-qubit bit-flip channel where ~X is a shorthand notation for a tensor product of
σX bit-flip operators acting on some fixed subset of the oracle qubits. The proof technique
presented below for Dq also applies to the case of multi-qubit dephasing channels).

The error model proposed in this paper (see Eq. (9)) is

O(ρ) := prpÔρÔ
† + pwpEwp(ρ) + pnpEnp(ρ). (15)

We show that the composition Rp ◦ Dq resembles (although it is not exactly the same) our
error model Eq. (9), for suitable chosen p and q. It follows immediately that Ω(N) lower
bound for the searching algorithm considered in [25] is also a lower bound for the composition
Rp ◦ Dq, since channel composition cannot decrease the query complexity (one can simply
incorporate Dq into an appropriate unitary for the Rp algorithm).

A simple calculation yields:

Rp ◦ Dq(ρ) = (1− p)ÔDq(ρ)Ô† + pDq(ρ)

= (1− p)(1− q)ÔρÔ† + (1− p)qÔ( ~Xρ ~X†)Ô† + p(1− q)ρ+ pq ~Xρ ~X†

= (1− p)(1− q)ÔρÔ† + (1− p)qÔ( ~Xρ ~X†)Ô† + pDq(ρ). (16)
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We now identify the coefficients in Eq. (15) and Eq. (16)


prp = (1− p)(1− q)
pwp = (1− p)q
pnp = p, (17)

and note that for any given probabilities prp, pwp, pnp satisfying prp + pwp + pnp = 1, the
system of equations Eq. (17) has the solution


p = pnp

q = pwp

pwp + prp
. (18)

We can therefore write

Rp ◦ Dq(ρ) = prpÔρÔ
† + pwpÔ( ~Xρ ~X†)Ô† + pnpDq(ρ). (19)

Comparing Eq. (15) and Eq. (19), we observe that the term Ô( ~Xρ ~X†)Ô† is very similar to
our wrong path term Ewp(ρ) (the error that corresponds to reading out an incorrect memory
location). The last term term Dq(ρ) in Eq. (19) is not of the form of our no-path error term
Enp(ρ), as the latter consists of depolarizing channels of different strengths depending on the
position of the address qubit (i.e., the qubits are affected in decreasing order of significance,
that is, the first qubit is affected the most, whilst the last one the least). However, Dq(ρ) is a
decohering term, which seems to be a “weaker” form of noise than Enp(ρ). We showed above
that even with this weaker decoherence term the quadratic speedup of any searching algorithm
is lost. Therefore we have strong reasons to believe that adding a stronger decoherence term
will not lower the quantum query complexity for the quantum searching problem. A rigorous
proof of this conjecture remains an open problem.

B Error correction schemes

B.1 Correcting simple bit-flip errors
We show below that for a qRAM governed by a toy error model of the form

O(ρ) = (1− p)ÔρÔ† + pÔ( ~Xρ ~X†)Ô†, (20)

the query error rate can be made arbitrarily small by using quantum error correction. Here Ô
denotes the perfect oracle and ~X represents a multi-qubit bit-flip channel (a tensor product
of individual bit-flip operators acting on an arbitrary subset of qubits). While such error
models are not realistic for the architecture presented in this work, it may be that future
designs allow for simpler error propagation. Such schemes could benefit from quantum error
correction to sufficiently reduce their error rate to enable Grover search.

As Grover’s algorithm requires O(
√
N) steps, one desires a target logical error rate of

δ = O(1/
√
N). Since the faulty oracle has an error model that consists of a bit flip channel

followed by the perfect oracle call, one can use a quantum error correcting code and apply
the oracle in parallel along the qubits composing the code. The parallelism of the oracle calls
mimics majority counting and allows for error correction to be performed between logical
oracle call steps. For simplicity, we provide an example that corrects against bit flip errors
only using the repetition code, however such an analysis could be extended to correct for
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phase flips using code families such as the color codes [5], higher dimensional Shor codes [27],
or triorthogonal codes [7].

For example, consider an oracle of the form |a〉|b〉 → |a〉|b⊕ f(a)〉, where a, b ∈ {0, 1}. A
logical oracle call that uses an n-qubit repetition code behaves as follows for states in the
computational basis:

|a〉|b〉 V→ |a〉⊗n|b〉⊗n Ô⊗n

−→ |a〉⊗n|b⊕ f(a)〉⊗n, (21)

where V denotes the isometric encoding. Therefore, given a repetition code of length d,
the code corrects for all errors up to d/2− 1 physical bit flips by majority counting, using
non-destructive Z-type stabilizer measurements. Therefore, the logical error rate becomes
pL = pd/2. Choosing d large enough allows the logical error rate to satisfy pL = pd/2 < δ,
where δ is the desired target fidelity. Therefore

d >
2 log δ
log p =

2 log
(

1/
√
N
)

log p = n

log (1/p) . (22)

Each of the n address qubits that serve as input to the oracle call must be encoded into
a repetition code of length d. Hence, the total number of oracle calls for the complete
Grover search algorithm is O(nd

√
N) = O(n2

√
N) = O(

√
N(logN)2). As such, there is a

logarithmic penalty for error correction, yet the scaling is not linear as in the error model of
Regev and Schiff [25].

B.2 The failure of repetition codes for Regev and Schiff error model
The above error correction scheme is not applicable to the error model presented in [25],
described by Rp(ρ) = (1 − p)ÔρÔ† + pρ, since the failure of an oracle call can lead to an
uncorrectable error, as demonstrated below. Consider the following example of the 3-qubit
repetition code, where rather than all three oracles calls succeeding, the oracle call on the
first set of qubits fails. The computational states evolve as:

|000〉|000〉 Ô2Ô3−→ |000〉|0f(0)f(0)〉 (23)

|111〉|000〉 Ô2Ô3−→ |111〉|0f(1)f(1)〉. (24)

Consider the action of such a faulty oracle on the encoded state (|000〉 + |111〉)/
√

2, for
f(0) = 0 and f(1) = 1 . The resulting mapping is

1√
2

(|000〉+ |111〉)⊗ |000〉 Ô2Ô3−→ 1√
2

(|000〉|000〉+ |111〉|011〉). (25)

The syndrome check operators for the repetition code are the parity check operators
{Z1Z2, Z2Z3}. They are used to determine if an oracle call has failed by measuring the ancilla
qubits. However, the measurement collapses the state to either |000〉|000〉 or |111〉|011〉.
Upon applying the appropriate correction based on the measured syndromes, the resulting
state becomes either |000〉|000〉 or |111〉|111〉. Therefore, the logical oracle call has failed,
since the correct result must yield the superposition (|000〉|000〉+ |111〉|111〉)/

√
2.

As expected, the error correction properties of the repetition code are not in violation of
the results of Ref. [25], which state that a linear number of noisy black-box oracle calls are
required, even with the addition of error correction.
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B.3 The failure of repetition codes for our error model
Consider the oracle error model:

O(ρ) := prpÔρÔ
† + pwpEwp(ρ) + pnpEnp(ρ), (26)

where Ô is the perfect oracle call while Ewp(ρ) and Enp(ρ) are the wrong path and no-path
terms, respectively. We model the wrong path term as a convex combinations of bit-flip
channels followed by perfect oracle calls. An example of one of those terms is the second
term in Equation 20. We model the no-path term as taking any input state and mapping it
to a fixed state |g〉, which represents the loss of a qubit to be replaced by any fixed ancillary
state. It should be noted that in the no-path case, the readout ancilla state does not change.
Consider the action of the noisy channel on the five-qubit repetition code. Each instance of
the channel has a certain probability of failure given by the associated weights. Focusing on
one particular instance where the first address photon is lost and the second is affected by a
bit flip, the resulting mapping on the computational basis states is given by:

|00000〉|00000〉−→|g1000〉|0f(1)f(0)f(0)f(0)〉 (27)
|11111〉|00000〉−→|g0111〉|0f(0)f(1)f(1)f(1)〉. (28)

Again choosing f(0) = 0 and f(1) = 1, a superposition of input states in the computational
basis evolves as

1
2P [(|00000〉+ |11111〉)⊗ |00000〉]−→1

2 (P [|g1000〉 ⊗ |01000〉] + P [|g0111〉 ⊗ |00111〉]) ,
(29)

where P[•] denotes the projector onto its argument. The measurement of the stabilizers of
the 5-qubit code on the ancillary states results in the collapse of the state into one of two
terms depending on the syndrome measured. Note that the no-path term is the term that
destroys coherence, similarly to the error term in the Regev and Schiff model [25].
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