
6th Conference on Algebra and
Coalgebra in Computer Science

CALCO’15, June 24–26, 2015, Nijmegen, The Netherlands

Edited by

Lawrence S. Moss
Paweł Sobociński

LIPIcs – Vo l . 35 – CALCO’15 www.dagstuh l .de/ l ip i c s

Editors
Lawrence S. Moss Paweł Sobociński
Department of Mathematics Department of Electronics and Computer Science
Indiana University University of Southampton
Bloomington, IN 47405 USA Southampton, United Kingdom SO17 1BJ
lsm@cs.indiana.edu ps@ecs.soton.ac.uk

ACM Classification 1998
F. Theory of Computation, F.3 Logics and Meanings of Programs, F.3.2 Semantics of Programming
Languages

ISBN 978-3-939897-84-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-84-2.

Publication date
October, 2015

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CALCO.2015.i

ISBN 978-3-939897-84-2 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-84-2
http://www.dagstuhl.de/dagpub/978-3-939897-???-?
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.i
http://www.dagstuhl.de/dagpub/978-3-939897-84-2
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

CALCO’15

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Lawrence S. Moss and Paweł Sobociński . vii

Regular Papers

Syntactic Monoids in a Category
Jiří Adámek, Stefan Milius, and Henning Urbat . 1

Extensions of Functors From Set to V-cat
Adriana Balan, Alexander Kurz, and Jiří Velebil . 17

Towards Trace Metrics via Functor Lifting
Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König 35

A Fibrational Approach to Automata Theory
Liang-Ting Chen and Henning Urbat . 50

Canonical Coalgebraic Linear Time Logics
Corina Cîrstea . 66

An Intensionally Fully-abstract Sheaf Model for π

Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller . 86

Partial Higher-dimensional Automata
Uli Fahrenberg and Axel Legay . 101

A Recipe for State-and-Effect Triangles
Bart Jacobs . 116

Towards Concept Analysis in Categories: Limit Inferior as Algebra, Limit Superior as
Coalgebra

Toshiki Kataoka and Dusko Pavlovic . 130

Codensity Liftings of Monads
Shin-ya Katsumata and Tetsuya Sato . 156

A First-order Logic for String Diagrams
Aleks Kissinger and David Quick . 171

Presenting Morphisms of Distributive Laws
Bartek Klin and Beata Nachyła . 190

Approximation of Nested Fixpoints – A Coalgebraic View of Parametric Dataypes
Alexander Kurz, Alberto Pardo, Daniela Petrişan, Paula Severi,
and Fer-Jan de Vries . 205

Final Coalgebras from Corecursive Algebras
Paul Blain Levy . 221

Uniform Interpolation for Coalgebraic Fixpoint Logic
Johannes Marti, Fatemeh Seifan, and Yde Venema . 238

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Contents

Generic Trace Semantics and Graded Monads
Stefan Milius, Dirk Pattinson, and Lutz Schröder . 253

Open System Categorical Quantum Semantics in Natural Language Processing
Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke, and Mehrnoosh Sadrzadeh 270

Modules Over Monads and Their Algebras
Maciej Piróg, Nicolas Wu, and Jeremy Gibbons . 290

Revisiting the Institutional Approach to Herbrand’s Theorem
Ionuţ Ţuţu and José Luiz Fiadeiro . 304

Coalgebraic Infinite Traces and Kleisli Simulations
Natsuki Urabe and Ichiro Hasuo . 320

Finitary Corecursion for the Infinitary Lambda Calculus
Stefan Milius and Thorsten Wißmann . 336

Preface

This volume contains the Proceedings of the 6th Conference on Algebra and Coalgebra
in Computer Science, CALCO’15, held in Nijmegen, the Netherlands, 24–26 June 2015.
Previous CALCO conferences have been held in Swansea (Wales, 2005), Bergen (Norway,
2007), Udine (Italy, 2009), Winchester (UK, 2011) and Warsaw (Poland, 2013). CALCO
is a high-level, bi-annual conference formed by joining the forces and reputations of CMCS
(the International Workshop on Coalgebraic Methods in Computer Science), and WADT
(the Workshop on Algebraic Development Techniques). CALCO received 47 submissions. Of
these, 21 papers were accepted.

The invited speakers at CALCO were Chris Heunen, Matteo Mio, Daniela Petrisan, and
Andy Pitts. We thank them for their stimulating talks. In addition, CALCO has a tradition
of Early Ideas talks, allowing presentation of work in progress and original research proposals.
CALCO’15 had 11 Early Ideas talks.

We are grateful to the programme committee of CALCO for their hard work:

Andrej Bauer
Filippo Bonchi
Corina Cîrstea
Andrea Corradini
Ross Duncan
Martín Escardó
Dan Ghica
Helle Hansen
Ichiro Hasuo
Bart Jacobs
Bartek Klin
Barbara König
Dexter Kozen
Alexander Kurz

Paul-André Melliés
Stefan Milus
Lawrence S. Moss (co-chair)
Dusko Pavlovic
Daniela Petrisan
Damien Pous
John Power
Jan Rutten
Lutz Schröder
Monika Seisenberger
Alexandra Silva
Paweł Sobociński (co-chair)
Ana Sokolova
Andrzej Tarlecki

We also are pleased to thank the local organizers for their work in bringing such a wonderful
conference to fruition: Alexandra Silva, Bart Jacobs, Nicole Messink, and Sam Staton.

Larry Moss and Paweł Sobociński
October 2015

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

List of Authors

Jiří Adámek
Institut für Theoretische Informatik
Technische Universität Braunschweig
Germany
j.adamek@tu-bs.de

Adriana Balan
University Politehnica of Bucharest
Romania
adriana.balan@mathem.pub.ro

Paolo Baldan
Dipartimento di Matematica
Universitá di Padova
Italy baldan@math.unipd.it

Filippo Bonchi
CNRS, ENS Lyon, Université de Lyon
France
filippo.bonchi@ens-lyon.fr

Liang-Ting Chen
Institut für Theoretische Informatik
Technische Universität Braunschweig
Germany
l.chen@iti.cs.tu-bs.de

Corina Cîrstea
ECS, University of Southampton
United Kingdom
cc2@ecs.soton.ac.uk

Bob Coecke
University of Oxford
United Kingdom
coecke@cs.ox.ac.uk

Clovis Eberhart
Université Savoie Mont-Blanc
France
ceberhar@ens-cachan.fr

Uli Fahrenberg
IRISA/INRIA, Rennes
France
ulrich.fahrenberg@irisa.fr France

Jeremy Gibbons
University of Oxford
United Kingdom
Jeremy.Gibbons@cs.ox.ac.uk

Ichiro Hasuo
Department of Computer Science
University of Tokyo
Japan
ichiro@is.s.u-tokyo.ac.jp

Tom Hirschowitz
CNRS, Université Savoie Mont-Blanc
France
tom.hirschowitz@univ-savoie.fr

Bart Jacobs
ICIS, Radboud University Nijmegen
The Netherlands
bart@cs.ru.nl

Dimitri Kartsaklis
Queen Mary University of London
United Kingdom
d.kartsaklis@qmul.ac.uk

Toshiki Kataoka
University of Tokyo
Japan
toshikik@is.s.u-tokyo.ac.jp

Shin-Ya Katsumata
Kyoto University
Japan
sinya@kurims.kyoto-u.ac.jp

Henning Kerstan
Universität Duisburg-Essen
Germany
henning.kerstan@uni-due.de

Aleks Kissinger
Oxford University
United Kingdom
aleks.kissinger@cs.ox.ac.uk

Bartek Klin
University of Warsaw
Poland
klin@mimuw.edu.pl

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

x Authors

Barbara König
Universität Duisburg-Essen
Germany
barbara koenig@uni-due.de

Alexander Kurz
University of Leicester
United Kingdom
kurz@mcs.le.ac.uk

Axel Legay
IRISA/INRIA, Rennes
France
Axel.Legay@inria.fr

Paul Blain Levy
University of Birmingham
United Kingdom
p.b.levy@cs.bham.ac.uk

Stefan Milius
FAU Erlangen
Germany
mail@stefan-milius.eu

Beata Nachyła
Institute of Computer Science
Polish Academy of Science
Poland
beatanachyla@gmail.com

Alberto Pardo
Universidad de la República
Uruguay
pardo@fing.edu.uy

Dirk Pattinson
Australian National University
Australia
dirk.pattinson@anu.edu.au

Dusko Pavlovic
University of Hawaii
United States of America
dusko@hawaii.edu

Daniela Petrisan
Radboud University
The Netherlands
daniela.petrisan@gmail.com

Robin Piedeleu
University of Oxford
United Kingdom
robin.piedeleu@cs.ox.ac.uk

Maciej Piróg
University of Oxford
United Kingdom
maciej.adam.pirog@gmail.com

David Quick
Oxford University
United Kingdom
david.quick@cs.ox.ac.uk

Mehrnoosh Sadrzadeh
Queen Mary University of London
United Kingdom
mehrnoosh.sadrzadeh@qmul.ac.uk

Lutz Schröder
Department of Computer Science
FAU Erlangen-Nürnberg
Germany
lutz.schroeder@fau.de

Fatemeh Seifan
ILLC, University of Amsterdam
The Netherlands
fateme.sayfan@gmail.com

Thomas Seiller
PPS, Université Paris VII
France
seiller@ihes.fr

Paula Severi
University of Leicester
United Kingdom
ps330@leicester.ac.uk

Ionuţ Ţuţu
Royal Holloway University of London
United Kingdom
ittutu@gmail.com

Natsuki Urabe
University of Tokyo
Japan
urabenatsuki@is.s.u-tokyo.ac.jp

Authors xi

Henning Urbat
Institut für Theoretische Informatik
Technische Universität Braunschweig
Germany
urbat@iti.cs.tu-bs.de

Jiří Velebil
Czech Technical University
Czech Republic
velebil@math.feld.cvut.cz

Fer-Jan de Vries
University of Leicester
United Kingdom
fdv1@mcs.le.ac.uk

Thorsten Wißmann
Universität Erlangen-Nürnberg
Germany
thorsten.wissmann@fau.de

Nicolas Wu
University of Bristol
United Kingdom
nicolas.wu@bristol.ac.uk

CALCO’15

Syntactic Monoids in a Category
Jiří Adámek1, Stefan Milius∗,2, and Henning Urbat1

1 Institut für Theoretische Informatik
Technische Universität Braunschweig, Germany

2 Lehrstuhl für Theoretische Informatik
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Abstract
The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed
category D. This allows for a uniform treatment of several notions of syntactic algebras known
in the literature, including the syntactic monoids of Rabin and Scott (D “ sets), the syntactic
semirings of Polák (D “ semilattices), and the syntactic associative algebras of Reutenauer (D
= vector spaces). Assuming that D is a commutative variety of algebras, we prove that the
syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo
the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the
minimal automaton for L in D. Furthermore, in the case where the variety D is locally finite, we
characterize the regular languages as precisely the languages with finite syntactic D-monoids.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Syntactic monoid, transition monoid, algebraic automata theory, duality,
coalgebra, algebra, symmetric monoidal closed category, commutative variety

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.1

1 Introduction

One of the successes of the theory of coalgebras is that ideas from automata theory can be
developed at a level of abstraction where they apply uniformly to many different types of
systems. In fact, classical deterministic automata are a standard example of coalgebras for
an endofunctor. And that automata theory can be studied with coalgebraic methods rests
on the observation that formal languages form the final coalgebra.

The present paper contributes to a new category-theoretic view of algebraic automata
theory. In this theory one starts with an elegant machine-independent notion of language
recognition: a language L Ď X˚ is recognized by a monoid morphism e : X˚ Ñ M if it is
the preimage under e of some subset of M . Regular languages are then characterized as
precisely the languages recognized by finite monoids. A key concept, introduced by Rabin and
Scott [19] (and earlier in unpublished work of Myhill), is the syntactic monoid of a language
L. It serves as a canonical algebraic recognizer of L, namely the smallest X-generated monoid
recognizing L. Two standard ways to construct the syntactic monoid are:
1. as a quotient of the free monoid X˚ modulo the syntactic congruence of L, which is a

two-sided version of the well-known Myhill-Nerode equivalence, and
2. as the transition monoid of the minimal automaton for L.

∗ Stefan Milius acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) under project
MI 717/5-1.

© Jiří Adámek, Stefan Milius, Henning Urbat;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Paweł Sobociński; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Syntactic Monoids in a Category

In addition to syntactic monoids there are several related notions of syntactic algebras for
(weighted) languages in the literature, most prominently the syntactic idempotent semirings
of Polák [18] and the syntactic associative algebras of Reutenauer [20], both of which admit
constructions similar to (1) and (2). A crucial observation is that monoids, idempotent
semirings and associative algebras are precisely the monoid objects in the categories of sets,
semilattices and vector spaces, respectively. Moreover, these three categories are symmetric
monoidal closed w.r.t. their usual tensor product.

The main goal of our paper is thus to develop a theory of algebraic recognition in a general
symmetric monoidal closed category D “ pD,b, Iq. Following Goguen [12], a language in D

is a morphism L : Xf Ñ Y where X is a fixed object of inputs, Y is a fixed object of outputs,
and Xf denotes the free D-monoid on X. And a D-automaton is given by the picture below:
it consists of an object of states Q, a morphism i representing the initial state, an output
morphism f , and a transition morphism δ which may be presented in its curried form λδ.

X bQ
δ��

I
i // Q

f
//

λδ��

Y

rX,Qs

(1)

This means that an automaton is at the same time an algebra I`XbQ ri,δs
ÝÝÑ Q for the functor

FQ “ I `X bQ, and a coalgebra Q xf,λδy
ÝÝÝÝÑ Y ˆ rX,Qs for the functor TQ “ Y ˆ rX,Qs. It

turns out that much of the classical (co-)algebraic theory of automata in the category of sets
extends to this level of generality. Thus Goguen [12] demonstrated that the initial algebra
for F coincides with the free D-monoid Xf, and that every language is accepted by a unique
minimal D-automaton. We will add to this picture the observation that the final coalgebra
for T is carried by the object of languages rXf, Y s, see Proposition 2.21.

In Section 3 we introduce the central concept of our paper, the syntactic D-monoid
of a language L : Xf Ñ Y , which by definition is the smallest X-generated D-monoid
recognizing L. Assuming that D is a commutative variety of algebras, we will show that
the above constructions (1) and (2) for the classical syntactic monoid adapt to our general
setting: the syntactic D-monoid is (1) the quotient of Xf modulo the syntactic congruence
of L (Theorem 3.14), and (2) the transition D-monoid of the minimal D-automaton for L
(Theorem 4.6). As special instances we recover the syntactic monoids of Rabin and Scott
(D “ sets), the syntactic semirings of Polák (D “ semilattices) and the syntactic associative
algebras of Reutenauer (D “ vector spaces). Furthermore, our categorical setting yields new
types of syntactic algebras “for free”. For example, we will identify monoids with zero as the
algebraic structures representing partial automata (the case D “ pointed sets), which leads
to the syntactic monoid with zero for a given language. Similarly, by taking as D the variety
of algebras with an involutive unary operation we obtain syntactic involution monoids.

Most of the results of our paper apply to arbitrary languages. In Section 5 we will
investigate D-regular languages, that is, languages accepted by D-automata with a finitely
presentable object of states. Under suitable assumptions on D, we will prove that a language
is D-regular iff its syntactic D-monoid is carried by a finitely presentable object (Theorem 5.4).
We will also derive a dual characterization of the syntactic D-monoid which is new even
in the “classical” case D “ sets: if D is a locally finite variety, and if moreover some other
locally finite variety C is dual to D on the level of finite objects, the syntactic D-monoid of
L dualizes to the local variety of languages in C generated by the reversed language of L.

Due to space limitations most proofs are omitted or sketched. See [1] for an extended
version of this paper.

J. Adámek, S. Milius, and H. Urbat 3

Related work. Our paper gives a uniform treatment of various notions of syntactic algebras
known in the literature [18, 19, 20]. Another categorical approach to (classical) syntactic
monoids appears in the work of Ballester-Bolinches, Cosme-Llopez and Rutten [5]. These
authors consider automata in the category of sets specified by equations or dually by
coequations, which leads to a construction of the automaton underlying the syntactic monoid
of a language. The fact that it forms the transition monoid of a minimal automaton is also
interpreted in that setting. In the present paper we take a more general and conceptual
approach by studying algebraic recognition in a symmetric monoidal closed category D. One
important source of inspiration for our categorical setting was the work of Goguen [12].

In the recent papers [2, 4] we presented a categorical view of varieties of languages,
another central topic of algebraic automata theory. Building on the duality-based approach
of Gehrke, Grigorieff and Pin [11], we generalized Eilenberg’s variety theorem and its local
version to the level of an abstract (pre-)duality between algebraic categories. The idea to
replace monoids by monoid objects in a commutative variety D originates in this work.

When revising this paper we were made aware of the ongoing work of Bojanczyk [8].
He considers, in lieu of commutative varieties, categories of Eilenberg-Moore algebras for
an arbitrary monad on sorted sets, and defines syntactic congruences in this more general
setting. Our Theorem 3.14 is a special case of [8, Theorem 3.1].

2 Preliminaries

Throughout this paper we work with deterministic automata in a commutative variety D of
algebras. Recall that a variety of algebras is an equational class of algebras over a finitary
signature. It is called commutative (or entropic) if, for any two objects A and B of D, the set
DpA,Bq of all homomorphisms from A to B carries a subobject rA,Bs� B|A| of the product
of |A| copies of B. Commutative varieties are precisely the categories of Eilenberg-Moore
algebras for a commutative finitary monad on the category of sets, see [13, 15]. We fix an
object X (of inputs) and an object Y (of outputs) in D.

I Example 2.1.
1. Set is a commutative variety with rA,Bs “ BA.
2. A pointed set pA,Kq is a set A together with a chosen point K P A. The category SetK

of pointed sets and point-preserving functions is a commutative variety. The point of
rpA,KAq, pB,KBqs is the constant function with value KB .

3. An involution algebra is a set with an involutive unary operation x ÞÑ rx, i.e. rrx “ x. We
call rx the complement of x. Morphisms are functions f with fprxq “Ćfpxq. The variety
Inv of involution algebras is commutative. Indeed, the set rA,Bs of all homomorphisms
is an involution algebra with pointwise complementation: rf sends x to Ćfpxq.

4. All other examples we treat in our paper are varieties of modules over a semiring. Given
a semiring S (with 0 and 1) we denote by ModpSq the category of all S-modules and
module homomorphisms (i.e. S-linear maps). Three interesting special cases of ModpSq
are:
a. S “ t0, 1u, the boolean semiring with 1` 1 “ 1: the category JSL0 of join-semilattices

with 0, and homomorphisms preserving joins and 0;
b. S “ Z: the category Ab of abelian groups and group homomorphisms;
c. S “ K (a field): the category VecpKq of vector spaces over K and linear maps.

I Notation 2.2. We denote by Ψ : Set Ñ D the left adjoint to the forgetful functor
|´| : DÑ Set. Thus ΨX0 is the free object of D on the set X0.

CALCO’15

4 Syntactic Monoids in a Category

I Example 2.3.

1. We have ΨX0 “ X0 for D “ Set and ΨX0 “ X0 ` tKu for D “ SetK.
2. For D “ Inv the free involution algebra on X0 is ΨX0 “ X0 ` ĂX0 where ĂX0 is a copy of

X0 (whose elements are denoted rx for x P X0). The involution swaps the copies of X0,
and the universal arrow X0 Ñ X0 ` ĂX0 is the left coproduct injection.

3. For D “ ModpSq the free module ΨX0 is the submodule of SX0 on all functions X0 Ñ S

with finite support. Equivalently, ΨX0 consists of formal linear combinations
řn
i“1 sixi

with si P S and xi P X0. In particular, ΨX0 “ PfX0 (finite subsets of X0) for D “ JSL0,
and ΨX0 is the vector space with basis X0 for D “ VecpKq.

I Definition 2.4. Given objects A, B and C of D, a bimorphism from A, B to C is a
function f : |A| ˆ |B| Ñ |C| such that the maps fpa,´q : |B| Ñ |C| and fp´, bq : |A| Ñ |C|

carry morphisms of D for every a P |A| and b P |B|. A tensor product of A and B is a
universal bimorphism t : |A| ˆ |B| Ñ |A b B|, which means that for every bimorphism
f : |A| ˆ |B| Ñ |C| there is a unique morphism f 1 : AbB Ñ C in D with f 1 ¨ t “ f .

I Theorem 2.5 (Banaschweski and Nelson [6]). Every commutative variety D has tensor
products, making D “ pD,b, Iq with I “ Ψ1 a symmetric monoidal closed category. That is,
we have the following bijective correspondence of morphisms, natural in A,B,C P D:

f : AbB Ñ C

λf : AÑ rB,Cs

I Remark 2.6. Recall that a monoid pM,m, iq in a monoidal category pD,b, Iq (with tensor
product b : DˆDÑ D and tensor unit I P D) is an objectM equipped with a multiplication
m : M bM Ñ M and unit i : I Ñ M satisfying the usual associative and unit laws. Due
to b and I “ Ψ1 representing bimorphisms, this categorical definition is equivalent to the
following algebraic one in our setting: a D-monoid is a triple pM, ‚, iq where M is an object
of D and p|M |, ‚, iq is a monoid in Set with ‚ : |M | ˆ |M | Ñ |M | a bimorphism of D. A
morphism h : pM, ‚, iq Ñ pM 1, ‚1, i1q of D-monoids is a morphism h : M Ñ M 1 of D such
that |h| : |M | Ñ |M 1| is a monoid morphism in Set. We denote by MonpDq the category of
D-monoids and their homomorphisms. In the following we will freely work with D-monoids
in both categorical and algebraic disguise.

I Example 2.7.
1. In Set the tensor product is the cartesian product, I “ t˚u, and Set-monoids are ordinary

monoids.
2. In SetK we have I “ tK, ˚u, and the tensor product of pointed sets pA,KAq and pB,KAq

is AbB “ pAztKAuq ˆ pBztKBuq ` tKu. SetK-monoids are precisely monoids with zero.
Indeed, given a SetK-monoid structure on pA,Kq we have x ‚ K “ K “ K ‚ x for all
x because ‚ is a bimorphism, i.e. K is a zero element. Morphisms of MonpSetKq are
zero-preserving monoid morphisms.

3. An Inv-monoid (also called an involution monoid) is a monoid equipped with an involution
x ÞÑ rx such that x‚ry “ rx‚y “ Ćx ‚ y. For example, for any set A the power set PA naturally
carries the structure of an involution monoid: the involution takes complements, rS “ AzS,
and the monoid multiplication is the symmetric difference S ‘ T “ pSzT q Y pT zSq.

4. JSL0-monoids are precisely idempotent semirings (with 0 and 1). Indeed, a JSL0-monoid
on a semilattice (i.e. a commutative idempotent monoid) pD,`, 0q is given by a unit 1
and a monoid multiplication that, being a bimorphism, distributes over ` and 0.

J. Adámek, S. Milius, and H. Urbat 5

5. More generally, a ModpSq-monoid is precisely an associative algebra over S: it consists
of an S-module together with a unit 1 and a monoid multiplication that distributes over
` and 0 and moreover preserves scalar multiplication in both components.

I Notation 2.8. We denote by Xbn (n ă ω) the n-fold tensor power of X, recursively
defined by Xb0 “ I and Xbpn`1q “ X bXbn.

I Proposition 2.9 (see Mac Lane [14]). The forgetful functor MonpDq Ñ D has a left
adjoint assigning to every object X the free D-monoid Xf “

š

năωX
bn. The monoid

structure pXf,mX , iXq is given by the coproduct injection iX : I “ Xb0 Ñ Xf and mX :
XfbXf Ñ Xf, where XfbXf “

š

n,kăωX
bnbXbk and mX has as its pn, kq-component

the pn` kq-th coproduct injection. The universal arrow ηX : X Ñ Xf is the first coproduct
injection.

I Proposition 2.10. The free D-monoid on X “ ΨX0 is Xf “ ΨX˚0 . Its monoid multiplic-
ation extends the concatenation of words in X˚0 , and its unit is the empty word ε.

I Example 2.11.
1. In Set we have Xf “ X˚. In SetK with X “ ΨX0 “ X0 ` tKu we get Xf “ X˚0 ` tKu.

The product x ‚ y is concatenation for x, y P X˚0 , and otherwise K.
2. In Inv with X “ ΨX0 “ X0`ĂX0 we have Xf “ X˚0 `

ĂX˚0 . The multiplication restricted
to X˚0 is concatenation, and is otherwise determined by ru ‚ v “ Ăuv “ u ‚ rv for u, v P X˚0 .

3. In JSL0 with X “ ΨX0 “ PfX0 we have Xf “ PfX˚0 , the semiring of all finite languages
over X0. Its addition is union and its multiplication is the concatentation of languages.

4. More generally, in ModpSq with X “ ΨX0 we get Xf “ ΨX˚0 “ SrX0s, the module
of all finite S-weighted languages over the alphabet X0. Hence the elements of SrX0s

are functions c : X˚0 Ñ S with finite support, which may be expressed as polynomials
řn
i“1 cpwiqwi with wi P X˚0 and cpwiq P S. The S-algebraic structure of SrX0s is given by

the usual addition, scalar multiplication and product of polynomials.

I Definition 2.12 (Goguen [12]). A D-automaton pQ, δ, i, fq consists of an object Q (of
states) and morphisms δ : X b Q Ñ Q, i : I Ñ Q and f : Q Ñ Y ; see Diagram (1). An
automata homomorphism h : pQ, δ, i, fq Ñ pQ1, δ1, i1, f 1q is a morphism h : QÑ Q1 preserving
transitions as well as initial states and outputs, i.e. making the following diagrams commute:

X bQ
Xbh ��

δ // Q
h��

X bQ1
δ1
// Q1

I

i1 %%
JJJJJJ

i // Q
h
��

f
// Y

Q1
f 1

99ssssss

The above definition makes sense in any monoidal category D. In our setting, since
I “ Ψ1, the morphism i chooses an initial state in |Q|. Moreover, if X “ ΨX0 for some
set X0 (of inputs), the morphism δ amounts to a choice of endomorphisms δa : QÑ Q for
a P X0, representing transitions. This follows from the bijections

ΨX0 bQÑ Q in D

ΨX0 Ñ rQ,Qs in D

X0 Ñ DpQ,Qq in Set

I Example 2.13.
1. The classical deterministic automata are the case D “ Set and Y “ t0, 1u. Here

f : Q Ñ t0, 1u defines the set F “ f´1r1s Ď Q of final states. For general Y we get
deterministic Moore automata with outputs in Y .

CALCO’15

6 Syntactic Monoids in a Category

2. The setting D “ SetK with X “ X0 ` tKu and Y “ tK, 1u gives partial deterministic
automata. Indeed, the state object pQ,Kq has transitions δa : pQ,Kq Ñ pQ,Kq for
a P X0 preserving K, that is, K is a sink state. Equivalently, we may consider δa as
a partial transition map on the state set QztKu. The morphism f : pQ,Kq Ñ tK, 1u
again determines a set of final states F “ f´1r1s (in particular, K is non-final). And the
morphism i : tK, ˚u Ñ pQ,Kq determines a partial initial state: either ip˚q lies in QztKu,
or no initial state is defined.

3. In D “ Inv let us choose X “ X0 ` ĂX0 and Y “ t0, 1u with r0 “ 1. An Inv-automaton
is a deterministic automaton with complementary states x ÞÑ rx such that (i) for every
transition p a

ÝÑ q there is a complementary transition rp
a
ÝÑ rq and (ii) a state q is final iff rq

is non-final.
4. For D “ JSL0 with X “ PfX0 and Y “ t0, 1u (the two-chain) an automaton consists

of a semilattice Q of states, transitions δa : Q Ñ Q for a P X0 preserving finite joins
(including 0), an initial state i P Q and a homomorphism f : QÑ t0, 1u which defines a
prime upset F “ f´1r1s Ď Q of final states. The latter means that a finite join of states
is final iff one of the states is. In particular, 0 is non-final.

5. More generally, automata in D “ ModpSq with X “ ΨX0 and Y “ S are S-weighted
automata. Such an automaton consists of an S-module Q of states, linear transitions
δa : QÑ Q for a P X0, an initial state i P Q and a linear output map f : QÑ S.

I Remark 2.14.
1. An algebra for an endofunctor F of D is a pair pQ,αq of an object Q and a morphism

α : FQ Ñ Q. A homomorphism h : pQ,αq Ñ pQ1, α1q of F -algebras is a morphism
h : QÑ Q1 with h ¨ α “ α1 ¨ Fh. Throughout this paper we work with the endofunctor
FQ “ I ` X b Q; its algebras are denoted as triples pQ, δ, iq with δ : X b Q Ñ Q

and i : I Ñ Q. Hence D-automata are precisely F -algebras equipped with an output
morphism f : Q Ñ Y . Moreover, automata homomorphisms are precisely F -algebra
homomorphisms preserving outputs.

2. Analogously, a coalgebra for an endofunctor T of D is a pair pQ, γq of an object Q
and a morphism γ : Q Ñ TQ. Throughout this paper we work with the endofunctor
TQ “ Y ˆrX,Qs; its coalgebras are denoted as triples pQ, τ, fq with τ : QÑ rX,Qs and f :
QÑ Y . Hence D-automata are precisely pointed T -coalgebras, i.e. T -coalgebras equipped
with a morphism i : I Ñ Q. Indeed, given a pointed coalgebra I i

ÝÑ Q
xf,τy
ÝÝÝÑ Y ˆ rX,Qs,

the morphism Q
τ
ÝÑ rX,Qs is the curried form of a morphism Q bX

–
ÝÑ X b Q

δ
ÝÑ Q.

Automata homomorphisms are T -coalgebra homomorphisms preserving initial states.

I Definition 2.15. Given a D-monoid pM,m, iq and a morphism e : X Ñ M of D, the
F -algebra associated to M and e has carrier M and structure

ri, δs “ pI `X bM
I`ebM
ÝÝÝÝÝÑ I `M bM

ri,ms
ÝÝÝÑMq.

In particular, the F -algebra associated to the free monoid Xf (and its universal arrow ηX) is

riX , δX s “ pI `X bX
f I`ηXbX

f

ÝÝÝÝÝÝÝÑ I `Xf bXf riX ,mX s
ÝÝÝÝÝÑ Xfq.

I Example 2.16. In Set every monoid M together with an “input” map e : X Ñ M

determines an F -algebra with initial state i and transitions δa “ ´ ‚ epaq for all a P X. The
F -algebra associated to X˚ is the usual automaton of words: its initial state is ε and the
transitions are given by w a

ÝÑ wa for a P X.

J. Adámek, S. Milius, and H. Urbat 7

I Proposition 2.17 (Goguen [12]). For any symmetric monoidal closed category D with
countable coproducts, Xf is the initial algebra for F .

I Remark 2.18. Given any F -algebra pQ, δ, iq the unique F -algebra homomorphism eQ :
Xf Ñ Q is constructed as follows: extend the morphism λδ : X Ñ rQ,Qs to a D-monoid
morphism pλδq` : Xf Ñ rQ,Qs. Then

eQ “ pX
f – Xf b I

pλδq`bi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Qq, (2)

where ev is the ‘evaluation morphism’, i.e. the counit of the adjunction ´bQ % rQ,´s.

I Notation 2.19. δf : Xf bQÑ Q denotes the uncurried form of pλδq` : Xf Ñ rQ,Qs.

I Remark 2.20. Recall from Rutten [21] that the final coalgebra for the functor TQ “

t0, 1u ˆQX on Set is the coalgebra PX˚ – rX˚, t0, 1us of all languages over X. Given any
coalgebra Q, the unique coalgebra homomorphism from Q to PΣ˚ assigns to every state q
the language accepted by q (as an initial state). These observations generalize to our present
setting. The object rXf, Y s of D carries the following T -coalgebra structure: its transition
morphism τrXf,Y s : rXf, Y s Ñ rX, rXf, Y ss is the two-fold curryfication of

rXf, Y sbX bXf rXf,Y sbηXbX
f

ÝÝÝÝÝÝÝÝÝÝÝÑ rXf, Y sbXfbXf rXf,Y sbmX
ÝÝÝÝÝÝÝÝÑ rXf, Y sbXf ev

ÝÑ Y,

and its output morphism frXf,Y s : rXf, Y s Ñ Y is

frXf,Y s “ prX
f, Y s – rXf, Y s b I

rXf,Y sbiX
ÝÝÝÝÝÝÝÝÑ rXf, Y s bXf ev

ÝÑ Y q.

I Proposition 2.21. rXf, Y s is the final coalgebra for T .

Proof sketch. Given any coalgebra pQ, τ, fq, let δ : X bQÑ Q be the uncurried version of
τ : QÑ rX,Qs, see Remark 2.14. Then the unique coalgebra homomorphism into rXf, Y s is
λh : QÑ rXf, Y s, where h “ pQbXf – Xf bQ

δf
ÝÝÑ Q

f
ÝÑ Y q. J

I Definition 2.22 (Goguen [12]). A language in D is a morphism L : Xf Ñ Y .

Note that if X “ ΨX0 (and hence Xf “ ΨX˚0) for some set X0, one can identify a
language L : Xf “ ΨX˚0 Ñ Y in D with its adjoint transpose rL : X˚0 Ñ |Y |, via the
adjunction Ψ % |´| : D Ñ Set. In the case where |Y | is a two-element set, rL is the
characteristic function of a “classical” language L0 Ď X˚0 .

I Example 2.23.
1. In D “ Set (with Xf “ X˚ and Y “ t0, 1u) one represents L0 Ď X˚ by its characteristic

function L : X˚ Ñ t0, 1u.
2. In D “ SetK (with X “ X0 ` tKu, Xf “ X˚0 ` tKu and Y “ tK, 1u) one represents

L0 Ď X˚0 by its extended characteristic function L : X˚0 ` tKu Ñ tK, 1u where LpKq “ K.
3. In D “ Inv (with X “ X0`ĂX0, Xf “ X˚0 `

ĂX˚0 and Y “ t0, 1u) one represents L0 Ď X˚0
by L : X˚0 ` ĂX˚0 Ñ t0, 1u where Lpwq “ 1 iff w P L0 and Lp rwq “ 1 iff w R L0 for all
words w P X˚0 .

4. In D “ JSL0 (with X “ PfX0, Xf “ PfX˚0 and Y “ t0, 1u) one represents L0 Ď X˚0
by L : PfX˚0 Ñ t0, 1u where LpUq “ 1 iff U X L0 ‰ ∅.

5. In D “ ModpSq (with X “ ΨX0, Xf “ SrX0s and Y “ S) an S-weighted language
L0 : X˚0 Ñ S is represented by its free extension to a module homomorphism

L : SrX˚0 s Ñ S, L

˜

n
ÿ

i“1
cpwiqwi

¸

“

n
ÿ

i“1
cpwiqL0pwiq.

CALCO’15

8 Syntactic Monoids in a Category

I Definition 2.24 (Goguen [12]). The language accepted by a D-automaton pQ, δ, i, fq is
LQ “ pX

f
eQ
ÝÝÑ Q

f
ÝÑ Y q, where eQ is the F -algebra homomorphism of Remark 2.18.

I Example 2.25.
1. In D “ Set with Y “ t0, 1u, the homomorphism eQ : X˚ Ñ Q assigns to every word w the

state it computes in Q, i.e. the state the automaton reaches on input w. Thus LQpwq “ 1
iff Q terminates in a final state on input w, which is precisely the standard definition of
the accepted language of an automaton. For general Y , the function LQ : X˚ Ñ Y is
the behavior of the Moore automaton Q, i.e. LQpwq is the output of the last state in the
computation of w.

2. For D “ SetK with X “ X0 ` tKu and Y “ tK, 1u, we have eQ : X˚0 ` tKu Ñ pQ,Kq

sending K to K, and sending a word in X˚0 to the state it computes (if any), and to
K otherwise. Hence LQ : X˚0 ` tKu Ñ tK, 1u defines (via the preimage of 1) the usual
language accepted by a partial automaton.

3. In D “ Inv with X “ X0 ` ĂX0 and Y “ t0, 1u, the map LQ : X˚0 ` ĂX˚0 Ñ t0, 1u sends
w P X˚0 to 1 iff w computes a final state, and it sends rw P ĂX˚0 to 1 iff w computes a
non-final state.

4. In D “ JSL0 with X “ PfX0 and Y “ t0, 1u, the map LQ : PX˚0 Ñ t0, 1u assigns to
U P PfX˚0 the value 1 iff the computation of at least one word in U ends in a final state.

5. In D “ ModpSq with X “ ΨX0 and Y “ S, the map LQ : SrX˚0 s Ñ S assigns to
řn
i“1 cpwiqwi the value

řn
i“1 cpwiqyi, where yi is the output of the state Q reaches on

input wi. Taking Q “ Sn for some natural number n yields a classical n-state weighted
automaton, and in this case one can show that the restriction of LQ to X˚0 is is the usual
language of a weighted automaton.

I Remark 2.26. By Remark 2.14 every D-automaton pQ, δ, i, fq is an F -algebra as well
as a T -coalgebra. Our above definition of LQ was purely algebraic. The corresponding
coalgebraic definition uses the unique coalgebra homomorphism cQ : QÑ rXf, Y s into the
final T -coalgebra and precomposes with i : I Ñ Q to get a morphism cQ ¨ i : I Ñ rXf, Y s

(choosing a language, i.e. an element of rXf, Y s). Unsurprisingly, the results are equal:

I Proposition 2.27. The language LQ : Xf Ñ Y of an automaton pQ, δ, i, fq is the uncurried
form of the morphism cQ ¨ i : I Ñ rXf, Y s.

3 Algebraic Recognition and Syntactic D-Monoids

In classical algebraic automata theory one considers recognition of languages by (ordinary)
monoids in lieu of automata. One key concept is the syntactic monoid which is characterized
as the smallest monoid recognizing a given language. There are also related concepts of
canonical algebraic recognizers in the literature, e.g. the syntactic idempotent semiring
and the syntactic associative algebra. In this section we will give a uniform account of
algebraic language recognition in our categorical setting. Our main result is the definition
and construction of a minimal algebraic recognizer, the syntactic D-monoid of a language.

I Definition 3.1. A D-monoid morphism e : Xf ÑM recognizes the language L : Xf Ñ Y

if there exists a morphism f : M Ñ Y of D with L “ f ¨ e.

I Example 3.2. We use the notation of Example 2.23.
1. D “ Set with Xf “ X˚ and Y “ t0, 1u: given a monoid M , a function f : M Ñ t0, 1u

defines a subset F “ f´1r1s Ď M . Hence a monoid morphism e : X˚ Ñ M recognizes

J. Adámek, S. Milius, and H. Urbat 9

L via f (i.e. L “ f ¨ e) iff L0 “ e´1rF s. This is the classical notion of recognition of a
language L0 Ď X˚ by a monoid, see e.g. Pin [17].

2. D “ SetK with X “ X0 ` tKu, Xf “ X˚0 ` tKu and Y “ tK, 1u: given a monoid with
zero M , a SetK-morphism f : M Ñ tK, 1u defines a subset F “ f´1r1s of Mzt0u. A
zero-preserving monoid morphism e : X˚0 ` tKu ÑM recognizes L via f iff L0 “ e´1rF s.

3. D “ Inv with X “ X0 ` ĂX0, Xf “ X˚0 `
ĂX˚0 and Y “ t0, 1u: for an involution monoid

M to give a morphism f : M Ñ t0, 1u means to give a subset F “ f´1r1s ĎM satisfying
m P F iff rm R F . Then L is recognized by e : X˚0 ` ĂX˚0 ÑM via f iff L0 “ X˚0 X e

´1rF s.
4. D “ JSL0 with X “ PfX0, Xf “ PfX˚0 and Y “ t0, 1u: for an idempotent semiring M

a morphism f : M Ñ Y defines a prime upset F “ f´1r1s, see Example 2.13. Hence L
is recognized by a semiring homomorphism e : PfX˚0 ÑM via f iff L0 “ X˚0 X e

´1rF s.
Here we identify X˚0 with the set of all singleton languages twu, w P X˚0 . This is the
concept of language recognition introduced by Polák [18] (except that he puts F “ f´1r0s,
so 0 and 1 must be swapped, as well as F and MzF).

5. D “ ModpSq with X “ ΨX0, Xf “ SrX0s and Y “ S: given an associative algebra M ,
the language L is recognized by e : SrX0s ÑM via f : M Ñ S iff L “ f ¨ e. For the case
where the semiring S is a ring, this notion of recognition is due to Reutenauer [20].

I Remark 3.3.
1. Since D and MonpDq are varieties, we have the usual factorization system of regular

epimorphisms (“ surjective homomorphisms) and monomorphisms (“ injective homo-
morphisms). Quotients and subobjects are understood w.r.t. this system.

2. By an X-generated D-monoid we mean a quotient e : Xf � M in MonpDq. For two
such quotients ei : Xf �Mi, i “ 1, 2, we say, as usual, that e1 is smaller or equal to e2
(notation: e1 ď e2) if e1 factorizes through e2. Note that if X “ ΨX0, the free D-monoid
Xf “ ΨX˚0 on X is also the free D-monoid on the set X0 (w.r.t. the forgetful functor
MonpDq Ñ Set), see Proposition 2.10. In this case, to give a quotient e : Xf � M is
equivalent to giving a set of generators for the D-monoid M indexed by X0 – which is
why M may also be called an X0-generated D-monoid.

3. Let e : Xf �M be an X-generated D-monoid with unit i : I ÑM and multiplication
m : M bM Ñ M . Recall that ηX : X Ñ Xf denotes the universal morphism of the
free D-monoid on X and consider the F -algebra associated to M and X ηX

ÝÝÑ Xf e
ÝÑM

(see Definition 2.15). Thus, together with a given f : M Ñ Y an X-generated D-monoid
induces an automaton pM, δ, i, fq called the derived automaton.

I Lemma 3.4. The language recognized by an X-generated D-monoid e : Xf � M via
f : M Ñ Y is the language accepted by its derived automaton.

We are now ready to give an abstract account of syntactic algebras in our setting. In
classical algebraic automata theory the syntactic monoid of a language is characterized as
the smallest monoid recognizing that language. We will use this property as our definition of
the syntactic D-monoid.

I Definition 3.5. The syntactic D-monoid of language L : Xf Ñ Y , denoted by SynpLq, is
the smallest X-generated monoid recognizing L.

In more detail, the syntactic D-monoid is an X-generated D-monoid eL : Xf � SynpLq
together with a morphism fL : SynpLq Ñ Y of D such that (i) eL recognizes L via fL, and
(ii) for every X-generated D-monoid e : Xf � M recognizing L via f : M Ñ Y we have

CALCO’15

10 Syntactic Monoids in a Category

eL ď e, that is, the left-hand triangle below commutes for some D-monoid morphism h:

Xf e // //

eL
((((QQQQQ M

h����

f
// Y

SynpLq fL

77nnnnnn

Note that the right-hand triangle also commutes since e is epimorphic and f ¨ e “ L “ fL ¨ eL.
The universal property determines SynpLq, eL and fL uniquely up to isomorphism. A
construction of SynpLq is given below (Construction 3.13). We first consider a special case:

I Example 3.6. In D “ Set with Y “ t0, 1u, the syntactic monoid of a language L Ď X˚

can be constructed as the quotient of X˚ modulo the syntactic congruence, see e.g. [17]:

SynpLq “ X˚{„, where u „ v iff for all x, y P X˚: xuy P L ðñ xvy P L.

We aim to generalize this construction to our categorical setting. First note the following

I Lemma 3.7. Let D be any symmetric monoidal closed category with countable coproducts.
Then the forgetful functor MonpDq Ñ D preserves reflexive coequalizers.

I Notation 3.8. Let pM,m, iq be a D-monoid and x : I Ñ M . We write x ‚ ´ and ´ ‚ x
for the following morphisms, respectively:

M – I bM
xbM
ÝÝÝÑM bM

m
ÝÑM and M –M b I

Mbx
ÝÝÝÑM bM

m
ÝÑM.

Recall that in our setting, where D is a commutative variety, we have I “ Ψ1 and so the
morphism x is the adjoint transpose of an element of M (see Remark 2.6). In the following
we shall often write x ‚ y, identifying x, y : I ÑM with their corresponding elements of M .

I Definition 3.9. The syntactic congruence of a language L : Xf Ñ Y is the following
relation on the underlying set of Xf:

E “ tpu, vq P Xf ˆXf | @x, y P Xf : Lpx ‚ u ‚ yq “ Lpx ‚ v ‚ yqu

The projection maps are denoted by l, r : E Ñ Xf.

I Lemma 3.10. The set E carries a canonical D-algebraic structure making it a D-object.

Proof sketch. Just observe that E “
Ş

Ex,y where for fixed x, y P Xf the object Ex,y is

the kernel of the D-morphism Xf
x‚´
//Xf

´‚y
//Xf L //Y . J

That the name syntactic congruence makes sense follows from Lemma 3.11 below. First recall
that a D-monoid congruence on a given D-monoid M is an equivalence relation in MonpDq,
that is, a jointly monic pair c1, c2 : C Ñ M of D-monoid morphisms (equivalently a D-
submonoid xc1, c2y : C �M ˆM) which is reflexive, symmetric and transitive. Congruences
on M are ordered as subobjects of M ˆM , i.e. via inclusion.

I Lemma 3.11. E is a D-monoid congruence on Xf.

We can give an alternative, more conceptual, description of E:

I Lemma 3.12. Let l0, r0 : K Ñ Xf be the kernel pair of L : Xf Ñ Y in D. Then
l, r : E Ñ Xf is the largest D-monoid congruence contained in K.

J. Adámek, S. Milius, and H. Urbat 11

I Construction 3.13. Let L : Xf Ñ Y be a language and l, r : E Ñ Xf its syntactic
congruence. We construct the D-monoid SynpLq as the coequalizer of l and r in MonpDq:

E
l //

r
// Xf

eL // // SynpLq.

We need to show that SynpLq has the universal property of Definition 3.5, which first
requires to define the morphism fL : SynpLq Ñ Y with L “ fL ¨ eL. To this end consider the
diagram below, where l0, r0 is the kernel pair of L and m witnesses that E is contained in
K, i.e. l “ l0 ¨m and r “ r0 ¨m (see Lemma 3.12).

K
l0 //

r0
// Xf

eL ## ##GGGGGGGGG
L // Y

E

m

OO

l

>>|||||||| r

>>||||||||
SynpLq

fL

OO�
�
�

By Lemma 3.7 the morphism eL is also a coequalizer of l and r in D. Since L ¨ l “ L ¨ r by
the above diagram, this yields a unique fL : SynpLq Ñ Y with L “ fL ¨ eL. In other words,
SynpLq recognizes L via fL.

I Theorem 3.14. SynpLq together with eL and fL forms the syntactic D-monoid of L.

Proof sketch. This follows from the correspondence between kernel pairs and regular quo-
tients: since l, r : E Ñ Xf is the largest congruence contained in the kernel pair of L by
Lemma 3.12, the coequalizer eL of l, r is the smallest quotient of Xf recognizing L. J

I Remark 3.15. Our proof of Theorem 3.14 is quite conceptual and works in a general
symmetric monoidal closed category D with enough structure. On this level of generality
one would use Lemma 3.12 to define the syntactic congruence E as the largest D-monoid
congruence contained in the kernel of L : Xf Ñ Y . However, it is unclear whether such
a congruence exists in this generality and so its existence might have to be taken as an
assumption. Hence we restricted ourselves to the setting of a commutative variety D.

I Example 3.16. Using the notation of Example 2.23 we obtain the following concrete
syntactic algebras:
1. In SetK with X “ X0`tKu and Y “ tK, 1u the syntactic monoid with zero of a language

L0 Ď X˚0 is pX˚0 ` tKuq{„ where, for all u, v P X˚0 ` tKu,

u „ v iff for all x, y P X˚0 : xuy P L0 ô xvy P L0.

The zero element is the congruence class of K.
2. In Inv with X “ X0 ` ĂX0 and Y “ t0, 1u the syntactic involution monoid of a language

L0 Ď X˚0 is the quotient of X0` ĂX˚0 modulo the congruence „ defined for words u, v P X˚0
as follows:
(i) u „ v iff ru „ rv iff for all x, y P X˚0 : xuy P L0 ðñ xvy P L0;
(ii) u „ rv iff ru „ v iff for all x, y P X˚0 : xuy P L0 ðñ xvy R L0.

3. In ModpSq with X “ ΨX0 and Y “ S the syntactic associative S-algebra of a weighted
language L0 : X˚0 Ñ S is the quotient of SrX0s modulo the congruence defined for
U, V P SrX0s as follows:

U „ V iff for all x, y P X˚0 : LpxUyq “ LpxV yq (3)

Indeed, since L : SrX0s Ñ S is linear, (3) implies LpPUQq “ LpPV Qq for all P,Q P SrX0s,
which is the syntactic congruence of Definition 3.9.

CALCO’15

12 Syntactic Monoids in a Category

4. In particular, for D “ JSL0 with X “ PfX0 and Y “ t0, 1u, we get the syntactic
(idempotent) semiring of a language L0 Ď X˚0 introduced by Polák [18]: it is the quotient
PfX˚0 {„ where for U, V P PfX˚0 we have

U „ V iff for all x, y P X˚0 : pxUyq X L0 ‰ ∅ ðñ xV y X L0 ‰ ∅.

5. For D “ VecpKq with X “ ΨX0 and Y “ K, the syntactic K-algebra of a K-weighted
language L0 : X˚0 Ñ K is the quotient KrX0s{I of the K-algebra of finite weighted
languages modulo the ideal

I “ tV P KrX0s | for all x, y P X˚0 : LpxV yq “ 0u.

Indeed, the congruence this ideal I generates (U „ V iff U ´ V P I) is precisely (3).
Syntactic K-algebras were studied by Reutenauer [20].

6. Analogously, for D “ Ab with X “ ΨX0 and Y “ Z, the syntactic ring of a Z-weighted
language L0 : X˚0 Ñ Z is the quotient ZrX0s{I, where I is the ideal of all V P ZrX0s

with LpxV yq “ 0 for all x, y P X˚0 .

4 Transition D-Monoids

Here we present another construction of the syntactic D-monoid of a language: it is the
transition D-monoid of the minimal D-automaton for this language. Recall that for any object
Q of a closed monoidal category D, the object rQ,Qs forms a D-monoid w.r.t. composition.

I Definition 4.1. The transition D-monoid TpQq of an F -algebra pQ, δ, iq is the image of
the D-monoid morphism pλδq` : Xf Ñ rQ,Qs extending λδ : X Ñ rQ,Qs:

Xf

eTpQq
##GGGG
pλδq`

// rQ,Qs

TpQq
99mTpQq

99sss

I Example 4.2.
1. In Set the transition monoid of an F -algebra Q (i.e. an automaton without final states) is

the monoid of all extended transition maps δw “ δan
¨ ¨ ¨ ¨ ¨ δa1 : QÑ Q for w “ a1 ¨ ¨ ¨ an P

X˚, with unit idQ “ δε and composition as multiplication.
2. In SetK with X “ X0`tKu (the setting for partial automata) this is completely analogous,

except that we add the constant endomap of Q with value K.
3. In Inv with X “ X0`ĂX0 we get the involution monoid of all δw and Ăδw. Again the unit is

δε, and the multiplication is determined by composition plus the equations xry “ Ăxy “ rxy.
4. In JSL0 with X “ PfX0 the transition semiring consists of all finite joins of extended

transitions, i.e. all semilattice homomorphisms of the form δw1_¨ ¨ ¨_δwn
for tw1, . . . , wnu P

PfX˚0 . The transition semiring was introduced by Polák [18].
5. In ModpSq with X “ ΨX0 the associative transition algebra consists of all linear maps

of the form
řn
i“1 siδwi

with si P S and wi P X˚0 .

Recall from Definition 2.12 that a D-automaton is an F -algebra Q together with an output
morphism f : QÑ Y . Hence we can speak of the transition D-monoid of a D-automaton.

I Proposition 4.3. The language accepted by a D-automaton pQ, δ, f, iq is recognized by the
D-monoid morphism eTpQq : Xf � TpQq.

J. Adámek, S. Milius, and H. Urbat 13

Proof sketch. The desired morphism fTpQq : TpQq Ñ Y with LQ “ fTpQq ¨ eTpQq is

fTpQq “ pTpQq
mTpQq
ÝÝÝÝÑ rQ,Qs – rQ,Qs b I

rQ,Qsbi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Q

f
ÝÑ Y q. J

I Definition 4.4. A D-automaton pQ, δ, i, fq is called minimal iff it is
(a) reachable: the unique F -algebra homomorphism Xf Ñ Q is surjective;
(b) simple: the unique T -coalgebra homomorphism QÑ rXf, Y s is injective.

I Theorem 4.5 (Goguen [12]). Every language L : Xf Ñ Y is accepted by a minimal D-
automaton MinpLq, unique up to isomorphism. Given any reachable automaton Q accepting
L, there is a unique surjective automata homomorphism from Q into MinpLq.

This leads to the announced construction of syntacticD-monoids via transitionD-monoids.
The case D “ Set is a standard result of algebraic automata theory (see e.g. Pin [17]), and
the case D “ JSL0 is due to Polák [18].

I Theorem 4.6. The syntactic D-monoid of a language L : Xf Ñ Y is isomorphic to the
transition D-monoid of its minimal D-automaton:

SynpLq – TpMinpLqq.

Proof sketch. Using reachability and simplicity of MinpLq, one proves that the quotients
eL : Xf � SynpLq and eTpMinpLqq : Xf � TpMinpLqq have the same kernel pair, namely the
syntactic congruence of L. This implies the statement of the theorem. J

5 D-Regular Languages

Our results so far apply to arbitrary languages in D. In the present section we focus on
regular languages, which in D “ Set are the languages accepted by finite automata, or
equivalently the languages recognized by finite monoids. For arbitrary D the role of finite
sets is taken over by finitely presentable objects. Recall that an object D of D is finitely
presentable if the hom-functor DpD,´q : DÑ Set preserves filtered colimits. Equivalently,
D is an algebra presentable with finitely many generators and relations.

I Definition 5.1. A language L : Xf Ñ Y is called D-regular if it is accepted by some
D-automaton with a finitely presentable object of states.

To work with this definition, we need the following

I Assumptions 5.2. We assume that the full subcategory Df of finitely presentable objects
of D is closed under subobjects, strong quotients and finite products.

I Example 5.3.
1. Recall that a variety is locally finite if all finitely presentable algebras (equivalently all

finitely generated free algebras) are finite. Every locally finite variety satisfies the above
assumptions. This includes our examples Set, SetK, Inv and JSL0.

2. A semiring S is called Noetherian if all submodules of finitely generated S-modules are
finitely generated. In this case, as shown in [10], the category ModpSq satisfies our
assumptions. Every field is Noetherian, as is every finitely generated commutative ring,
so VecpKq and Ab “ ModpZq are special instances.

CALCO’15

14 Syntactic Monoids in a Category

I Theorem 5.4. For any language L : Xf Ñ Y the following statements are equivalent:
(a) L is D-regular.
(b) The minimal D-automaton MinpLq has finitely presentable carrier.
(c) L is recognized by some D-monoid with finitely presentable carrier.
(d) The syntactic D-monoid SynpLq has finitely presentable carrier.

Proof sketch. This follows immediately from the universal properties of SynpLq and MinpLq
and the assumed closure properties of Df . J

Just as the collection of all languages is internalized by the final coalgebra rXf, Y s, see
Proposition 2.21, we can internalize the regular languages by means of the rational coalgebra.

I Definition 5.5. The rational coalgebra %T for T is the colimit (taken in the category of
T -coalgebras and homomorphisms) of all T -coalgebras with finitely presentable carrier.

I Proposition 5.6. There is a one-to-one correspondence between D-regular languages and
elements I Ñ %T of the rational coalgebra.

We conclude this section with an interesting dual perspective on syntactic monoids, based
on our previous work [2, 4]. For lack of space we restrict to the case D “ Set. This category
is predual to the category BA of boolean algebras in the sense that the full subcategories
of finite sets and finite boolean algebras are dually equivalent. Indeed, this is a restriction
of the well-known Stone duality: the dual equivalence functor assigns to a finite boolean
algebra B the set AtpBq of its atoms, and to a boolean homomorphism h : AÑ B the map
Atphq : AtpBq Ñ AtpAq sending b P AtpBq to the unique atom a P AtpAq with ha ě b.

How do the concepts we investigated in Set – languages, automata and monoids – dualize
to BA? Observe that RegpXq, the boolean algebra of regular languages over the alphabet
X, can be viewed as a deterministic automaton: its final states are the regular languages
containing the empty word, and the transitions are given by L a

ÝÑ a´1L for a P X, where
a´1L “ tw P X˚ : aw P Lu is the left derivative of L w.r.t. the letter a. (Similarly, the right
derivative of L w.r.t. a is La´1 “ tw P X˚ : wa P Lu.) This makes RegpXq a coalgebra for
the endofunctor T “ t0, 1uˆIdX on BA. Since the two-chain t0, 1u is dual to the singleton set
1, finite coalgebras for T dualize to finite algebras for the functor F “ 1`Xˆ Id – 1`

š

X Id
on Set. Based on this, we proved in [2] that further (i) finite T -subcoalgebras of RegpXq
dualize to finite quotient algebras of the initial F -algebra X˚, and (ii) finite local varieties
of languages (i.e. finite T -subcoalgebras of RegpXq closed under right derivatives) dualize
to those F -algebras associated to X-generated monoids, see Definition 2.15. For a regular
language L Ď X˚ the F -algebras associated to the minimal automaton MinpLq and the
syntactic monoid SynpLq are finite. Their dual T -coalgebras are characterized as follows:

I Theorem 5.7. Let L Ď X˚ be a regular language, and Lrev its reversed language.
(a) MinpLq is dual to the smallest subcoalgebra of RegpXq containing Lrev.
(b) SynpLq is dual to the smallest local variety of languages containing Lrev.

Part (a) of this theorem adds to the recently developed dual view of minimal automata,
see [7] and also [16, 3]. All the above considerations generalize from BA{Set to arbitrary
pairs C{D of predual locally finite varieties of algebras. Examples include the self-predual
varieties C “ D “ JSL0 and C “ D “ VecpKq for a finite field K.

6 Conclusions and Future Work

We proposed the first steps of a categorical theory of algebraic language recognition. Despite
our assumption that D is a commutative variety, the bulk of our definitions, constructions

J. Adámek, S. Milius, and H. Urbat 15

and proofs works in any symmetric monoidal closed category with enough structure. However,
the construction of the syntactic monoid via the syntactic congruence, and the proof that
it coincides with a transition monoid, required the concrete algebraic setting. It remains
an open problem to develop a genuinely abstract framework for our theory. In particular,
such a generalized setting should provide the means for incorporating ordered algebras, e.g.
the syntactic ordered monoids of Pin [17]. We expect this can be achieved by working with
(order-)enriched categories, where the coequalizer in our construction of the syntactic monoid
is replaced by a coinserter. A more general theory of recognition might also open the door to
treating algebraic recognizers for additional types of behaviors, including Wilke algebras [22]
(representing ω-languages) and forest algebras [9] (representing tree and forest languages).

One of the leading themes of algebraic automata theory is the classification of languages
in terms of their syntactic algebras. For instance, by Schützenberger’s theorem a language
is star-free iff its syntactic monoid is aperiodic. We hope that our conceptual view of
syntactic monoids (notably their dual characterization in Theorem 5.7) can contribute to a
duality-based approach to such results, leading to generalizations and new proof techniques.

References
1 Jiří Adámek, Stefan Milius, , and Henning Urbat. Syntactic monoids in a category. Exten-

ded version. http://arxiv.org/abs/1504.02694, 2015.
2 Jiří Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. Generalized Eilenberg

Theorem I: Local Varieties of Languages. In Anca Muscholl, editor, Proc. Foundations of
Software Science and Computation Structures (FoSSaCS), volume 8412 of Lecture Notes
Comput. Sci., pages 366–380. Springer, 2014.

3 Jiří Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. On continuous
nondeterminism and state minimality. In Bart Jacobs, Alexandra Silva, and Sam Staton,
editors, Proc. Mathematical Foundations of Programming Science (MFPS XXX), volume
308 of Electron. Notes Theor. Comput. Sci., pages 3–23. Elsevier, 2014.

4 Jiří Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. Varieties of Languages
in a Category. Accepted for LICS 2015. http://arxiv.org/abs/1501.05180, 2015.

5 A. Ballester-Bolinches, E. Cosme-Llopez, and J.J.M.M. Rutten. The dual equivalence of
equations and coequations for automata. Technical report, CWI, 2014.

6 Bernhard Banaschweski and Evelyn Nelson. Tensor products and bimorphisms.
Canad. Math. Bull., 19:385–402, 1976.

7 Nick Bezhanishvili, Clemens Kupke, and Prakash Panangaden. Minimization via duality.
In Luke Ong and Ruy de Queiroz, editors, Logic, Language, Information and Computa-
tion, volume 7456 of Lecture Notes in Computer Science, pages 191–205. Springer Berlin
Heidelberg, 2012.

8 Mikołaj Bojánczyk. Recognisable languages over monads. Preprint: http://arxiv.org/
abs/1502.04898, 2015.

9 Mikołaj Bojánczyk and Igor Walukiewicz. Forest algebras. In Automata and Logic: History
and Perspectives, pages 107–132, 2006.

10 Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axiomat-
izations of coalgebraic language equivalence. ACM Trans. Comput. Log., 14(1:7), 2013.

11 Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. Duality and equational theory of regular
languages. In Proc. ICALP 2008, Part II, volume 5126 of Lecture Notes Comput. Sci.,
pages 246–257. Springer, 2008.

12 Joseph A. Goguen. Discrete-time machines in closed monoidal categories. I. J. Comput.
Syst. Sci., 10(1):1–43, 1975.

CALCO’15

http://arxiv.org/abs/1504.02694
http://arxiv.org/abs/1501.05180
http://arxiv.org/abs/1502.04898
http://arxiv.org/abs/1502.04898

16 Syntactic Monoids in a Category

13 Anders Kock. Monads on symmetric monoidal closed categories. Arch. Math., 21:1–10,
1970.

14 Saunders Mac Lane. Categories for the working mathematician. Springer, 2nd edition,
1998.

15 Fred Linton. Autonomous equational categories. J. Math. Mech., 15:637–642, 166.
16 Robert S. R. Myers, Jiří Adámek, Stefan Milius, and Henning Urbat. Canonical non-

deterministic automata. In Marcello M. Bonsangue, editor, Proc. Coalgebraic Methods in
Computer Science (CMCS’14), volume 8446 of Lecture Notes Comput. Sci., pages 189–210.
Springer, 2014.

17 Jean-Éric Pin. Mathematical foundations of automata theory. available at http://www.
liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf, January 2015.

18 Libor Polák. Syntactic semiring of a language. In Jiří Sgall, Aleš Pultr, and Petr Kolman,
editors, Proc. International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 2136 of Lecture Notes Comput. Sci., pages 611–620. Springer, 2001.

19 Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems. IBM
J. Res. Dev., 3(2):114–125, April 1959.

20 Christophe Reutenauer. Séries formelles et algèbres syntactiques. J. Algebra, 66:448–483,
1980.

21 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci.,
249(1):3–80, 2000.

22 Thomas Wilke. An Eilenberg Theorem for Infinity-Languages. In Proc. ICALP 91, pages
588–599. Springer, 1991.

http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf

Extensions of Functors From Set to V -cat∗

Adriana Balan1, Alexander Kurz2, and Jiří Velebil2

1 Department of Mathematical Methods and Models,
University Politehnica of Bucharest, Romania
adriana.balan@mathem.pub.ro

2 Department of Computer Science,
University of Leicester, United Kingdom
kurz@mcs.le.ac.uk

3 Department of Mathematics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic
velebil@math.feld.cvut.cz

Abstract
We show that for a commutative quantale V every functor Set −→ V -cat has an enriched left-
Kan extension. As a consequence, coalgebras over Set are subsumed by coalgebras over V -cat.
Moreover, one can build functors on V -cat by equipping Set-functors with a metric.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases enriched category, quantale, final coalgebra

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.17

1 Introduction

Coalgebras for a functor T : Set −→ Set capture a wide variety of dynamic systems [18].
Moreover, the category Coalg(T) of coalgebras has a rich structure, which dualizes to some
extent the theory of universal algebra. For example, an important role is played by final (or
cofree) coalgebras, which give rise to a notion of behavioural equivalence and coinduction.
One says that two elements of two coalgebras are behaviourally equivalent (or bisimilar),
if they are identified by the morphisms into the final coalgebra. The coinduction principle
states that on the final coalgebra two bisimilar elements are equal.

Rutten [17] and Worrell [20, 21] investigate how to account for richer notions of behaviour.
For example, we might want to say that one behaviour is smaller than (or, is simulated
by) another behaviour. Or we might want to measure distances between behaviours by real
numbers. As proposed by Rutten [17], the right framework to develop a theory of metric
coalgebras that parallels the theory of coalgebras over Set is given by coalgebras over V -cat,
in the sense we are going to explain now.

It was Lawvere [14] who discovered that metric spaces are categories enriched over the
category

(([0,∞],≥R),+, 0).

That an enriched category X with homs X (x, y) ∈ [0,∞] has identities means 0 = X (x, x)
and composition becomes the triangle inequality X (x, y) + X (y, z) ≥R X (x, z). Thus,
enriched categories are nothing but generalized metric spaces, generalized in the sense that
distances need not be symmetric and that X (x, y) = X (y, x) = 0 is not equality but merely

∗ J. Velebil acknowledges the support by grant No. P202/11/1632 of the Czech Science Foundation.

© Adriana Balan, Alexander Kurz, and Jiří Velebil;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Paweł Sobociński; pp. 17–34

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18 Extensions of Functors From Set to V -cat

an equivalence relation. This interpretation of enriched categories is meaningful not only for
V = (([0,∞],≥R),+, 0), but for any commutative quantale V . A category enriched over V

is then called a V -category.
For a detailed discussion of examples showing the relevance of this approach to the

denotational semantics of programmming languages we refer to Worrell [21, Chapter 4].
In this paper, we contribute a theorem about the category V -cat of categories enriched

over a commutative quantale V . The theorem states that any functor H : Set −→ V -cat has
an enriched left Kan extension along the ‘discrete’ functor DV : Set −→ V -cat. Moreover,
the proof of the theorem shows how to compute the Kan extension H] on a V -category
X by applying H to the ‘V -nerve’ of X and then taking an appropriate colimit in V -cat.
For example, the extension of DV P : Set −→ V -cat, where P : Set −→ Set is the powerset
functor, yields the familiar Pompeiu-Hausdorff metric, if the quantale is assumed to be
constructively completely distributive.

Apart from allowing us to construct functors on V -cat, the theorem also allows us to
establish that for any commutative quantale V (satisfying some mild properties) the setting
of coalgebras enriched over V -cat is indeed richer than the setting of Set-coalgebras in the
following sense. For any functor T : Set −→ Set we can define its V -cat-ification TV to be the
left Kan extension of DV T along DV . Then there is a functor D̃V : Coalg(T) −→ Coalg(TV)
which is right adjoint and therefore preserves behaviours. In other words, in the world of
V -categories all functors T : Set −→ Set are still available via their V -cat-ifications. On the
other hand, it happens often for an endofunctor T on Set to carry an interesting V -metric,
which in turn determines a lifting T of T to V -cat. In such case the discrete V -cat-functor
has as ordinary right adjoint the forgetful functor Ṽ V : Coalg(T) −→ Coalg(T), which
consequently preserves behaviors.

2 Preliminaries

In this section we gather all the necessary technicalities and notation from category theory
enriched in a complete and cocomplete symmetric monoidal category that we shall use later.
For the standard notions of enriched categories, enriched functors and enriched natural
transformations we refer to Kelly’s book [12].

We shall mainly use two prominent enrichments: that in a quantale V and that in the
category V -cat of small V -categories and V -functors for a quantale V . We spell out in more
details how the relevant notions look like, and carefully write all the enrichment-prefixes.
In particular, the underlying category of an enriched category will be denoted by the same
symbol, followed by the subscript “o” as usual.

2.1 Categories and functors enriched in a quantale

Suppose V = (Vo,⊗, e, [−,−]) is a quantale. More in detail: Vo is a complete lattice, equipped
with the commutative and associative monotone binary operation ⊗, called the tensor . We
require the element e to be a unit of tensor. Furthermore, we require every monotone map
−⊗ r : Vo −→ Vo to have a right adjoint [r,−] : Vo −→ Vo. We call [−,−] the internal hom
of Vo.

Quantales are the “simplest” complete and cocomplete symmetric monoidal closed cat-
egories. Therefore, one can define V -categories, V -functors, and V -natural transformations.
Before we say what these are, let us mention several examples of quantales.

A. Balan, A. Kurz, and J. Velebil 19

I Examples 2.1.
1. The two-element chain 2 = {0, 1} with the usual order, and tensor r ⊗ s = r ∧ s.
2. The real half line ([0,∞],≥R), with (extended) addition as tensor product.
3. The unit interval ([0, 1],≥R) with tensor product r ⊗ s = max(r, s).
4. The poset of all monotone functions f : [0,∞] −→ [0, 1] such that the equality f(x) =∨

y<x f(y) holds, with the pointwise order. It becomes a quantale with the tensor product

f ⊗ g(z) =
∨

x+y≤z
f(x) · g(y)

having as unit the function mapping all nonzero elements to 1, and 0 to itself [10].
5. The three-element chain 3 = {0, 1, 2} with usual order, and the (unique!) commutative

tensor product with unit 1, which necessarily satisfies 2⊗ 2 = 2 (which can be seen by
tensoring both sides of 1 ≤ 2 with 2). J

A (small) V -category X consists of a (small) set of objects, together with an object X (x′, x)
in Vo for each pair x′, x of objects, subject to the following axioms

e ≤X (x, x), X (x′, x)⊗X (x′′, x′) ≤X (x′′, x)

for all objects x′′, x′ and x in X . A V -category X is called discrete if X (x′, x) = e for
x′ = x, and ⊥ otherwise.

A V -functor f : X −→ Y is given by the object-assignment x 7→ fx, such that

X (x′, x) ≤ Y (fx′, fx)

holds for all x′, x.
A V -natural transformation f −→ g is given whenever

e ≤ Y (fx, gx)

holds for all x. Thus, there is at most one V -natural transformation between f and g.

I Example 2.2. The two-element chain 2 is a quantale. A small 2-category1 X is precisely
a preorder , where x′ ≤ x iff X (x′, x) = 1, while a 2-functor f : X −→ Y is a monotone
map. A 2-natural transformation f → g expresses that fx ≤ gx holds for every x. Thus
2-cat is the category Preord of preorders and monotone maps.

A good intution is that V -categories are (rather general) metric spaces and V -functors
are nonexpanding maps. This intuition goes back to Lawvere [14]. We show next some
examples that explain this intuition. For more details, see also [16].

I Examples 2.3.
1. Let V be the real half line ([0,∞],≥R,+, 0) as in Example 2.1.2. It is easy to see that a

small V -category can be identified with a set X and a mapping dX : X ×X −→ [0,∞]
such that 〈X, dX〉 is a generalized metric space. The slight generalization of the usual
notion lies in the fact that the distance function d is not necessarily symmetric and
dX(x′, x) = 0 does not necessarily entail x′ = x.
A V -functor f : (X, dX) −→ (Y, dY) is then a exactly a nonexpanding mapping, i.e., one
satisfying the inequality dY (fx′, fx) ≤ dX(x′, x) for every x, x′ ∈ X.
The existence of a V -natural transformation f −→ g means that

∨
x dY (fx, gx) = 0, i.e.,

the distance dY (fx, gx) is 0, for every x ∈ X.

1 To not be confounded with the notion of a 2-category, that is, a Cat-enriched category.

CALCO’15

20 Extensions of Functors From Set to V -cat

2. For the unit interval V = ([0, 1],≥R,max, 0) from Example 2.1.3, a V -category is a
generalized ultrametric space 〈X, dX : X × X −→ [0, 1]〉 [16, 20]. Again, the slight
generalization of the usual notion lies in the fact that the distance function d is not
necessarily symmetric and dX(x′, x) = 0 does not necessarily entail x = x′. Similarly,
V -functors are precisely the nonexpanding maps, and the existence of a V -natural
transformation f −→ g : 〈X, dX〉 −→ 〈Y, dY 〉 means, again, that

∨
x dY (fx, gx) = 0, i.e.,

the distance dY (fx, gx) is 0, for every x ∈ X.
3. Using the quantale V from Example 2.1.4 leads to probabilistic metric spaces: for a

V -category X , and for every pair x, x′ of objects of X , the hom-object is a function
X (x′, x) : [0,∞] −→ [0, 1] with the intuitive meaning X (x′, x)(r) = s holds iff s is the
probability that the distance from x′ to x is smaller than r. See [6, 10].

4. Finally, for the three-element quantale from Example 2.1.5, V -enriched categories arose in
the model of concurrency proposed by Gaifman and Pratt [8] under the name of prossets.
Explicitly, the objects of a V -category can be seen as events subject to a schedule,
endowed with a preorder ≤ and a binary relation ≺, where x ≤ y iff X (x, y) ≥ 1 (with
the interpretation that “y cannot begin before x begins, and cannot complete before x
completes”), and x ≺ y iff X (x, y) = 2 (which is intended to mean “y cannot begin until
x has completed”).

2.2 Categories, functors and natural transformations, enriched in V -cat
Suppose that V = (Vo,⊗, e, [−,−]) is a quantale. We denote by V -cato the ordinary category
of all small V -categories and all V -functors between them.

We recall (see for example [21]) that the ordinary category V -cato has a monoidal closed
structure. The tensor product X ⊗ Y is inherited from V . Namely, X ⊗ Y has as objects
the corresponding pairs of objects and we put

(X ⊗ Y)((x′, y′), (x, y)) = X (x′, x)⊗ Y (y′, y)

The unit for the tensor product is the V -category 1, with one object 0 and V -hom 1(0, 0) = e.
The V -functor −⊗ Y : V -cato −→ V -cato has a right adjoint [Y ,−]. Explicitly, [Y ,Z]

is the following V -category:
1. Objects of [Y ,Z] are V -functors from Y to Z .
2. The “distance” [Y ,Z](f, g) is

∧
y Z (fy, gy).

It follows from [13] that the symmetric monoidal closed category (V -cato,⊗,1, [−,−]) is
complete and cocomplete, with generator consisting of V -categories of the form 2r, r ∈ Vo.
Here, every 2r has two objects 0 and 1, with V -homs

2r(0, 0) = 2r(1, 1) = e , 2r(0, 1) = r , 2r(1, 0) = ⊥ (1)

Thus we can define V -cat-enriched categories, V -cat-functors and V -cat-natural trans-
formations.

A (small) V -cat-category X consists of a (small) set of objects X, Y , Z, . . . , a small
V -category X(X,Y) for every pair X, Y of objects, and V -functors

uX : 1 −→ X(X,X), cX,Y,Z : X(Y, Z)⊗ X(X,Y) −→ X(X,Z)

that represent the identity and composition and satisfy the usual axioms [12]:

X(Z,W)⊗ X(Y,Z)⊗ X(X,Y)
1⊗cX,Y,Z

//

cY,Z,W⊗1
��

X(Z,W)⊗ X(X,Z)
cX,Z,W
��

X(Y,W)⊗ X(X,Y)
cX,Y,W

// X(X,W)

A. Balan, A. Kurz, and J. Velebil 21

1⊗ X(X,Y) uY ⊗1
//

∼= **

X(Y, Y)⊗ X(X,Y)
cX,Y,Y
��

X(X,Y)⊗ X(X,X)
cX,X,Y

��

X(X,Y)⊗ 1
1⊗uXoo

∼=tt

X(X,Y) X(X,Y)

Objects of X(X,Y) will be sometimes denoted by f : X −→ Y and their “distance” by
X(X,Y)(f, g) in V . The action of cX,Y,Z at objects (f ′, f) in X(Y, Z)⊗ X(X,Y) is denoted
simply by f ′ · f , and for their distances the inequality below (expressing that cX,Y,Z is a
V -functor) holds:

(X(Y,Z)⊗ X(X,Y)) ((f ′, g′), (f, g)) ≤ X(X,Z)(f ′ · f, g′ · g)

A V -cat-functor F : X −→ Y is given by:
1. The assignment X 7→ FX on objects.
2. For each pair of objects X,X ′ in X, a V -functor FX′,X : X(X ′, X) −→ Y(FX ′, FX),

whose action on objects f : X ′ −→ X is denoted by Ff : FX ′ −→ FX. For the distances
we have the inequality

X(X ′, X)(f ′, f) ≤ Y(FX ′, FX)(Ff ′, Ff)

Of course, the diagrams of V -functors below, expressing the preservation of unit and
composition, should commute:

X(X,X)
FX,X

// Y(FX,FX)

1
uX

bb

uFX

::
X(Y,Z)⊗ X(X,Y)

FY,Z⊗FX,Y
//

cX,Y,Z
��

Y(FY, FZ)⊗ Y(FX,FY)
cX,Y,Z
��

X(X,Z)
FX,Z

// Y(FX,FZ)

Given F,G : X −→ Y, a V -cat-natural transformation τ : F −→ G is given by a collection
of V -cat-functors τX : 1 −→ Y(FX,GX), such that the diagram

1⊗ X(X ′, X)
τX⊗FX′,X

// Y(FX,GX)⊗ Y(FX ′, FX)
cFX′,FX,GX

++

X(X ′, X)

∼= 55

∼=))

Y(FX ′, GX)

X(X ′, X)⊗ 1
GX′,X⊗τX′

// Y(FX ′, GX)⊗ Y(FX ′, GX ′)
cFX′,GX′,GX

33

of V -functors commutes. We shall abuse the notation and denote by τX : FX −→ GX the
image in Y(FX,GX) of 0 in 1 under τX : 1 −→ Y(FX,GX). The above diagram (when
read at the object-assignments of the ambient V -functors) then translates as the equality

Gf · τX′ = τX · Ff

of objects of the V -category Y(FX ′, GX), for every object f : X ′ −→ X. On hom-objects,
the above diagram says nothing2 (recall that Vo is a poset, hence there are no parallel pairs
of morphisms in Vo).

Since V -categories are “generalized metric spaces” (as seen in Examples 2.3), V -cat-
categories are “locally” metric spaces and V -cat-functors are “locally” nonexpanding.

The last bit of notation standard from enriched category theory concerns colimits. We
introduce it for V -cat-categories.

2 This is well-known for Preord-natural transformations: one only needs to verify ordinary naturality.

CALCO’15

22 Extensions of Functors From Set to V -cat

I Definition 2.4. A colimit of a diagram D : D −→ X weighted by a V -cat-functor ϕ :
Dop −→ V -cat consists of an object ϕ ∗D of X, together with an isomorphism

X(ϕ ∗D,X) ∼= [Dop,V -cat](ϕ,X(D−, X))

which is V -cat-natural in X.

In case D is the one-object V -cat-category, we can identify the V -cat-functor D with an
object P of X and ϕ with a V -category C . We write then C • P instead of ϕ ∗D.

I Example 2.5. Let Set denote in the sequel the free V -cat-category on the ordinary category
of sets and functions Seto. This means that Set(X ′, X) = Seto(X ′, X) • 1, hence the homs of
Set are copowers of the one-element “metric” space, indexed by set-theoretical maps from
X ′ to X (that is, Set(X ′, X) is a discrete V -category). Observe that ordinary functors
Seto −→ Seto automatically induce V -cat-enriched functors Set −→ Set, and similarly for
natural transformations between such ordinary functors.

3 Extensions from Set to V -cat

From now on, we fix a quantale V . We consider V -cat enriched over itself as usual, using its
internal hom described in Section 2.2, and Set as free V -cat-category (Example 2.5).
Denote by DV : Set −→ V -cat the corresponding V -cat-enriched embedding. Explicitly, DV

maps a set X to the discrete V -category having X as set of objects.
Notice that there is an ordinary adjunction DV

o a V V : V -cato −→ Seto where the (ordinary)
functor V V maps a V -category X to its set of objects of X .

I Definition 3.1. Let T : Set −→ Set, T : V -cat −→ V -cat be V -cat-functors.
We say that a V -cat-natural isomorphism

V -cat T // V -cat

Set
T

//

DV

OO

↖α

Set
DV

OO

of V -cat-functors exhibits T as an extension of T . If additionally the above isomorphism
α is the unit of a left Kan extension, i.e., if T = LanDV (DV T) holds, then we say that α
exhibits T as the V -cat-ification of T , and we shall denote it by TV .
We say that a natural isomorphism

V -cato
T o // V -cato

Seto
To

//
��

V V ↖β

Seto
��
V V

of ordinary functors exhibits T as a lifting of T .

I Examples 3.2.
1. The identity V -cat-functor Id : V -cat −→ V -cat is always an extension and a lifting of

the identity (V -cat-)functor on Set.
In case the quantale has an element r satisfying e ≤ r and r⊗r ≤ r (consequently, r⊗r =
r), then the identity on Set has another lifting, namely Idr : V -cat −→ V -cat, mapping
a V -category X to the V -category with same objects, and V -homs (IdrX)(x′, x) =
X (x′, x)⊗ r “shrinked” by r, and acting as identity on V -functors.

A. Balan, A. Kurz, and J. Velebil 23

2. Extensions and liftings need not be unique. We have seen above an example for liftings,
now we give one for extensions. Suppose V = 2 (thus V -cat is Preord). We shall then
denote simply by D : Set −→ Preord the discrete functor, omitting the superscript 2. It
has as (2-enriched!) left adjoint the functor C : Preord −→ Set assigning to any preorder
X the set of its connected components. The composite π = DC : Preord −→ Preord is an
extension of Id : Set −→ Set. The latter follows from the fact that πD ∼= DCD ∼= D holds
by virtue of the counit of C a D. Hence both Id and π are extensions of Id : Set −→ Set.

We shall later show (Examples 3.7) that Id : V -cat −→ V -cat is, in fact, a V -cat-ification
of the identity functor on Set, for an arbitrary quantale V .

3. A V -cat-ification TV exists for every accessible functor T : Set −→ Set for rather trivial
reasons. More in detail, if T is λ-accessible for a regular cardinal, then T = LanJλ(TJλ),
where Jλ : Setλ −→ Set is the inclusion of the full subcategory Setλ spanned by λ-small
sets. Consequently,

TV = LanDV Jλ(DV TJλ)

exhibits TV as LanDV (DV T) by [12, Theorem 4.47]. In particular, the V -cat-ification
(TΣ)V exists for every polynomial functor

TΣX =
∐
n

Set(n,X) • Σn

where Σ : |Setλ| −→ Set is a λ-ary signature. We shall give an explicit formula for the
V -cat-ification (TΣ)V later. J

We plan to show that for each endofunctor T on Set, its V -cat-ification exists. We shall
obtain this from the more general result below, which also will provide examples of liftings.

I Theorem 3.3. Every functor H : Set −→ V -cat has a V -cat-enriched left Kan extension
H] : V -cat −→ V -cat along DV : Set −→ V -cat.

Proof. We first introduce a V -cat-functor N : Nop −→ V -cat. Its domain N is the free
V -cat-category built upon the following ordinary category N: the objects are all r in Vo,
together with an extra symbol Ω, with arrows δr0 : r −→ Ω and δr1 : r −→ Ω, for all r in Vo.

We define N to be the V -cat-functor sending Ω to 1, and r to 2r. Recall that 1 is the
unit one-object V -category with 1(0, 0) = e, and 2r is the V -category on two objects 0 and 1,
with the only non-trivial “distance” 2r(0, 1) = r, as introduced in Equation (1). The action
of N on arrows is defined as follows: Nδr0 : 1 −→ 2r sends 0 to 0, while Nδr1 : 1 −→ 2r sends
0 to 1.

Then, for every V -category X , we consider the following V -cat-functor DX : N −→ Set.
Since N is a free V -cat-category, it suffices to define an ordinary functor N −→ Seto. We
put DX Ω to be the set of objects of X . Every r is sent to the set DX r of pairs (x′, x) of
objects such that r ≤ X (x′, x) holds. The mapping DX δr0 sends (x′, x) to x′ and DX δr1
sends (x′, x) to x.

We prove the following facts:
1. The colimit N ∗ (DV DX) in V -cat is isomorphic to X .
2. If we define H]X as the colimit N ∗ (HDX), then the assignment X 7→ H]X can be

extended to a V -cat-functor that is a left Kan extension of H along DV .

Let us proceed:

CALCO’15

24 Extensions of Functors From Set to V -cat

1. The colimit N ∗ (DV DX) exists in V -cat, since the V -cat-category N is small.
To ease the notation, we put DV DX Ω = XΩ, DV DX r = Xr, DV DX δr0 = ∂r0 , and
DDX δr1 = ∂r1 .
Let us analyze the defining isomorphism

V -cat(N ∗ (DV DX),Y) ∼= [Nop,V -cat](N,V -cat(DV DX−,Y))

of V -categories, natural in Y .
The V -category [Nop,V -cat](N,V -cat(DV DX−,Y)) ofN -weighted “cocones” forDV DX

is described as follows:
a. The objects are V -cat-natural transformations τ : N −→ V -cat(DV DX−,Y). Each

such τ consists of V -functors
i. τΩ : NΩ −→ V -cat(XΩ,Y). Since NΩ = 1, τΩ picks up a V -functor fΩ : XΩ −→

Y . No other restrictions are imposed since 1(0, 0) = e.
ii. τr : Nr −→ V -cat(Xr,Y). This V -functor picks up two V -functors fr0 : Xr −→ Y

and fr1 : Xr −→ Y . Since Xr is discrete, both f0 and f1 are defined by their
object-assignments only. There is, however, the constraint below, because Nr = 2r:

r ≤
∧

r≤X (x′,x)

Y (fr0 (x′, x), fr1 (x′, x))

In addition to the above, there are various commutativity conditions since τ is natural.
Explicitly, for δr0 : r −→ Ω, we have the commutative square

NΩ τΩ //

Nδr0
��

V -cat(XΩ,Y)
V-cat(∂r0 ,Y)
��

Nr
τr

// V -cat(Xr,Y)

that, on the level of objects, is the requirement fΩ · ∂r0 = fr0 . Analogously, the
requirement fΩ · ∂r1 = fr1 holds.
We conclude that to give τ reduces to a V -functor fΩ : XΩ −→ Y (and, recall, this
V -functor is given just by the object-assignment x 7→ fΩx, since XΩ is discrete) such
that r ≤ Y (fΩx

′, fΩx) holds for every object (x′, x) in Xr and every r.
This means precisely that X (x′, x) ≤ Y (fΩx

′, fΩx) holds.
b. Given τ and τ ′, then

[Nop,V -cat](N,V -cat(DV DX−,Y))(τ, τ ′) =
∧
x

Y (fΩx, f
′
Ωx)

where fΩ corresponds to τ and f ′Ω corresponds to τ ′.
From the above, it follows that the V -functor qX : XΩ −→X that sends each object x
to itself is the couniversal such “cocone”. More precisely, r ≤X (qX x′, qX x) holds for
every (x′, x) in Xr and every r.
Furthermore, given any V -functor fΩ : XΩ −→ Y with the above properties, then there
is a unique V -functor f]Ω : X −→ Y such that f]ΩqX = fΩ holds.
The “2-dimensional aspect” of the colimit says that∧

x

Y (f]Ωx, f
′]
Ωx) =

∧
x

Y (fΩx, f
′
Ωx)

Hence we have proved that X is isomorphic to N ∗ (DV DX).

A. Balan, A. Kurz, and J. Velebil 25

2. Suppose H : Set −→ V -cat is given.
a. We first define a V -cat-functor H] : V -cat −→ V -cat.

To make the notation less heavy, for every small V -category X and every r ∈ Vo, we
denote by Xr the set of pairs (x′, x) such that r ≤ X (x′, x) and by XΩ the set of
objects of X . Analogously, for a V -functor f : X −→ Y , we denote by fr : Xr −→ Yr
and fΩ : XΩ −→ YΩ the maps corresponding to (x′, x) 7→ (fx′, fx) and the object
assignment of f , respectively. Let also denote dr0 = DX δr0 and dr1 = DX δr1.
For every small V -category X , we put H]X to be the colimit N ∗ (HDX).
Unravelling the definition of the weighted colimit, the 1-dimensional aspect says that to
give a V -functor f] : H]X −→ Y is the same as to give a V -functor f : HXΩ −→ Y

such that
r ≤

∧
C∈HXr

Y (fHdr0(C), fHdr1(C)) (2)

holds for all r.3 In particular, there is a “quotient” V -functor cX : HXΩ −→ H]X

such that
r ≤

∧
C∈HXr

H]X (cX Hdr0(C), cX Hdr1(C)) (3)

holds for all r, with the property that any V -functor HXΩ −→ Y satisfying (2)
uniquely factorizes through cX .
The 2-dimensional aspect of the colimit says that given any f, g : HXΩ −→ Y , the
relation ∧

B∈HXΩ

Y (f(B), g(B)) =
∧

A∈H]X

Y (f](A), g](A)) (4)

holds.
For a V -functor f : X −→ Y we recall that the diagram

Xr

dr1 //

dr0

//

fr

��

XΩ

fΩ

��

Yr
dr1 //

dr0

// YΩ

commutes serially. Hence f induces a V -cat-natural transformation Df : DX −→ DY .
Therefore we can define H]f : H]X −→ H]Y as the unique mediating V -functor

N ∗ (HDf) : N ∗ (HDX) −→ N ∗ (HDY)

In particular, we have the commutative diagram below:

HXΩ
cX //

HfΩ

��

H]X

H]f
��

HYΩ
cY // H]Y

Also, from the 2-dimensional aspect of the colimit (see Eq. (4)), we have that for any
f, g : X −→ Y , the equality below holds:∧

B∈HXΩ

H]Y (cY HfΩ(B), cY HgΩ(B)) =
∧

A∈H]X

H]Y (H]f(A), H]g(A)) (5)

3 By slight abuse of language, we shall use here and subsequently notation like C ∈ HXr to mean that C
runs through all objects in the V -category HXr.

CALCO’15

26 Extensions of Functors From Set to V -cat

It remains to prove that the inequality

V -cat(X ,Y)(f, g) ≤ V -cat(H]X , H]Y)(H]f,H]g)

is satisfied. To that end, suppose that r ≤ V -cat(X ,Y)(f, g) holds. This is equivalent
to the fact that there is a mapping t : XΩ −→ Yr such that the triangles

XΩ
t //

fΩ !!

Yr

dr0
��

XΩ
t //

gΩ
!!

Yr

dr1
��

YΩ YΩ

(6)

commute. In fact, t(x) = (f(x), g(x)). To prove that r ≤ V -cat(H]X , H]Y)(H]f,H]g)
holds, we need to prove the inequality

r ≤
∧

A∈H]X

H]Y (H]f(A), H]g(A))

This follows from:

r ≤
∧

C∈HYr

H]Y (cY Hdr0(C), cY Hdr1(C)) by (3)

≤
∧

B∈HXΩ

H]Y (cY Hdr0Ht(B), cY Hdr1Ht(B))

=
∧

B∈HXΩ

H]Y (cY HfΩ(B), cY HgΩ(B)) by (6)

=
∧

A∈H]X

H]Y (H]f(A), H]g(A)) by (5)

We proved that X 7→ H]X can be extended to a V -cat-functor H] : V -cat −→ V -cat.
b. We prove now that H] ∼= LanDV H holds.

Due to the definition of H], there is a V -cat-natural isomorphism α : H −→ H]DV .
We prove that α is the unit of a left Kan extension.
Suppose that K : V -cat −→ V -cat is any V -cat-functor. To give a V -cat-natural
transformation τ : H] −→ K is to give a collection τX : H]X −→ KX of V -functors
such that the square

H]X
τX //

H]f
��

KX

Kf

��

H]Y
τY

// KY

commutes for every V -functor f : X −→ Y .
The composite

H
α // H]DV τDV

// KDV

yields a natural transformation τ [: H] −→ KDV .
Conversely, for every natural transformation σ : H −→ KDV , we define σ] : H] −→ K

at a V -category X by considering first the composite

HDX
σDX // KDV DX

KcX // KX

which yields σ]X : H]X −→ KX by the passage to colimit (where cX : DV DX −→
X is the colimiting cocone).
The processes τ 7→ τ [and σ 7→ σ] are inverses to each other. J

A. Balan, A. Kurz, and J. Velebil 27

I Remark 3.4. The proof of the above theorem also provides a recipe on how to compute
the left Kan extension of a V -cat-functor H : Set −→ V -cat along DV . Recall the notation
such as XΩ and Xr from item 2.a of the proof. For a V -category X , H]X is the V -
category having the same objects as HXΩ (that is, the underlying set of objects of the
V -category obtained by applying H to the set of objects of X). The couniversal cocone
cX : HXΩ −→ H]X is the identity on objects. The V -homs are, for any two objects A′, A,
given by H]X (A′, A) =∨
{HXΩ(A′, A0)⊗ r1 ⊗HXΩ(A′1, A1)⊗ r2 ⊗ . . .⊗HXΩ(A′n−1, An−1)⊗ rn ⊗HXΩ(An, A)}

where the join is computed over all (possibly empty) paths (A0, A
′
1, A1, . . . , A

′
n, An) and

all (possibly empty) tuples of elements (r1, . . . , rn) such that there are Ci ∈ HXri with
Hdri0 (Ci) = Ai−1, Hdri1 (Ci) = A′i, for all i = 1, n:

C1 ∈ HXr1

Hd
r1
0

��

Hd
r1
1

��

C2 ∈ HXr2

Hd
r2
0

��

Hd
r2
1

��

· · ·

···

��

···

��

Cn ∈ HXrn

Hdrn0

��

Hdrn1

��

A′ , A0 A′1 , A1 A′2 , A2 A′n−1 , An−1 An , A

I Corollary 3.5. Every T : Set −→ Set has a V -cat-ification.

Proof. Apply Theorem 3.3 to the composite H = DV T : Set −→ V -cat. J

In particular, we obtain from the above that Id : V -cat −→ V -cat is the V -cat-ification of
Id : Set −→ Set. Thus by [12, Theorem 5.1],

I Proposition 3.6. The V -cat-functor DV : Set −→ V -cat is dense.

Corollary 3.5, together with the proof of Theorem 3.3 (see the above remark), give us a
recipe of how to compute various V -cat-ifications.

I Examples 3.7 (The V -cat-ification of polynomial functors).
1. Let T : Set −→ Set, TX = S be a constant functor. Then TV is again constant, where

TV X = DV S for any V -category X .
2. Let T : Set −→ Set be the functor TX = Xn, for n a natural number. Then TV maps a

V -category X to its n-th power X n, where an easy computation shows

X n((x′0, . . . , x′n−1), (x0, . . . , xn−1)) = X (x′0, x0) ∧ · · · ∧X (x′n−1, xn−1).

3. If n is an arbitrary cardinal number, the V -cat-ification TV of T : Set −→ Set, TX = Xn

also exists and TV X ((x′i), (xi)) =
∧
i X (x′i, xi). That is, TV X = X n.

4. The V -cat-ification of a finitary polynomial functor X 7→
∐
nX

n • Σn is the “strongly
polynomial” V -cat-functor X 7→

∐
n X n ⊗DV Σn, where n ranges through finite sets.

I Example 3.8 (The V -cat-ification of the powerset). Let P : Set −→ Set be the powerset
functor. By Theorem 3.3 and Corollary 3.5, its V -cat-ification PV is defined as follows. Let
X be any small V -category. Then the objects of PV X are subsets of the set of objects of
X , while the V -“distances” in PV X are computed as follows:

PV X (A′, A) =
∨
s

{s | there is B in PXs s.t. Pds0(B) = A′ and Pds1(B) = A}

=
∨
s

{s | ∀x′ ∈ A′ ∃x ∈ A. s ≤X (x′, x) and ∀x ∈ A ∃x′ ∈ A′. s ≤X (x′, x) }

CALCO’15

28 Extensions of Functors From Set to V -cat

If the quantale V is constructively completely distributive [7, 19], as it is the case with
V = [0, 1] and V = [0,∞], then the above is equivalent to the following:

sup{ sup
x′∈A′

inf
x∈A

X (x′, x) , sup
x∈A

inf
x′∈A′

X (x′, x)} (7)

where we switched notation to the dual order (that is, the natural “less-or-equal” order in
case of reals). So we write inf for

∨
and sup for

∧
, in order to emphasise the interpretation

of V -cat as metric spaces.
Recall that this metric is known as the Pompeiu-Hausdorff metric ([9, §28], [15, §21]).
We should mention also the connection with the work of [1]. Finally, observe that in

case V = 2 (ie V -cat = Preord), the above specializes to the locally monotone functor
P2 : Preord −→ Preord which sends a preorder (X,≤) to the Egli-Milner preorder

A′ v A iff ∀x′ ∈ A′ ∃x ∈ A. x′ ≤ x and ∀x′ ∈ A ∃x ∈ A′. x′ ≤ x

on the powerset PX.

I Remark 3.9. The V -cat-functorDV : Set −→ V -cat preserves conical colimits. This follows
from the DV

o being an ordinary left adjoint. However, the V -cat-functor DV : Set −→ V -cat
is not a left V -cat-adjoint, as its ordinary right adjoint functor V V cannot be extended to a
V -cat-functor.

I Proposition 3.10. The assignment (−)V : [Set, Set] −→ [V -cat,V -cat], T 7→ TV of the
V -cat-ification preserves all colimits preserved by DV : Set −→ V -cat. In particular, T 7→ TV

preserves conical colimits.

Proof. Any natural transformation τ : T −→ S induces a V -cat-natural transformation

(τV)X = N ∗ (DV τDX) : N ∗ (DV TDX) −→ N ∗ (DV SDX)

Since any colimit is cocontinuous in its weight and since

N ∗ (DV TDX) ∼= (DV TDX) ∗N

holds, the assignment T 7→ TV preserves all colimits that are preserved byDV : Set −→ V -cat.
The last statement follows from Remark 3.9. J

I Corollary 3.11. Suppose that the coequalizer

TΓ
λ //

ρ
// TΣ

γ
// T

is the equational presentation of a λ-accessible functor T : Set −→ Set. Then the V -cat-
ification TV can be obtained as the coequalizer

(TΓ)V

λV //

ρV

// (TΣ)V
γV // TV

in [V -cat,V -cat].

Proof. A coequalizer is a conical colimit. Now use Proposition 3.10. J

I Remark 3.12 (The V -cat-ification of finitary functors). Corollary 3.11 allows us to say that
the V -cat-ification TV of a finitary functor T is given by imposing the “same” operations
and equations in V -cat.

A. Balan, A. Kurz, and J. Velebil 29

Intuitively, the endofunctors on V -cat that arise as left Kan extensions along the discrete
functor DV are the V -cat-endofunctors definable in “discrete arities”. This statement will be
made formal in future work, here we restrict ourselves to a basic example.

I Example 3.13. Consider a set A and the associate stream functor T : Set −→ Set,
TX = X × A. If A carries the additional structure of a V -category (that, is, there is a
V -category A with underlying set of objects A), then To can be written as the composite
V V H, where H : Set −→ V -cat is the V -cat-functor HX = DV X ⊗A . Now it is immediate
to see that the latter extends to the stream functor H] on V -cat over the “generalized metric
space” A , mapping a V -category X to the tensor product of V -categories H]X = X ⊗A .

The above example is typical. It happens quite often for endofunctors on Set to carry an
interesting V -metric where TX is a V -category rather than a mere set, for every X, and
this structure is compatible with substitution. The following generalizes the notion of an
order on a functor [11] from V = 2.

I Definition 3.14. Let T : Set −→ Set be a functor. We say that T carries a V -metric if
there is a V -cat-functor H : Set −→ V -cat such that T coincides with the composite

Seto
Ho // V -cato

V V
// Seto .

Let T and H be as in the above definition. How are T and H], the left Kan extension of H
alongDV as provided by Theorem 3.3, related? AsDV is fully faithful, the unitH −→ H]DV

of the left Kan extension is a V -cat-natural isomorphism. Hence To = V V Ho
∼= V V H]DV ;

using now the counit of the ordinary adjunction DV
o a V V , we obtain an ordinary natural

transformation
β : ToV V −→ V V H]

o : V -cato −→ Seto.

I Proposition 3.15. The natural transformation β is component-wise bijective.

Consequently, H] is a lifting of T to V -cat.

I Example 3.16 (The Kantorovich lifting). Let T : Set −→ Set be a functor and let ♥ :
TV −→ V be a map (a V -valued predicate lifting), where by slight abuse we identify the
quantale with its underlying set of elements. We ask for ♥ to be V -monotone, in the following
sense: for every set X and maps h, k : X −→ V , the inequality∧

x∈X
[h(x), k(x)] ≤

∧
A∈TX

[♥(T (h)(A)),♥(T (k)(A))]

should hold.4 Using the V -valued predicate lifting ♥, we can endow T with a V -metric
as follows: for each set X, put HX to be the V -category with set of objects TX, and
V -distances

(HX)(A′, A) =
∧

h:X−→V

[♥(T (h)(A′)),♥(T (h)(A))]

where A′, A are elements of TX. For a function f : X −→ Y , we let Hf act as Tf on objects.
It is easy to see that the above defines indeed a V -metric for T , that is, a V -cat-functor
H : Set −→ V -cat (the V -cat-enrichment being a consequence of Set being free as a V -cat-
category) with V V Ho = T . The corresponding lifting H] specializes to the Kantorovich

4 This generalizes the notion of a monotone predicate lifting from the two-elements quantale to arbitrary
V , see [3, Section 7].

CALCO’15

30 Extensions of Functors From Set to V -cat

lifting as defined in [4] in case V = [0,∞]. Explicitly, a V -category X gets mapped to the
small V -category H]X with set of objects TXΩ and V -homs

H]X (A′, A) =
∧

h:X−→V

[♥(T (hΩ)(A′)),♥(T (hΩ)(A))]

for every A′, A in TXΩ, where this time h ranges over V -functors.

4 Relating behaviours across different base categories

In the previous section, we have shown that every V -cat-functor H : Set −→ V -cat has a left
Kan extension along DV , denoted H]. Now, each such functor induces a set-endofunctor
simply by forgetting the V -cat-structure

Seto
Ho // V -cat V V

// Seto

In the special case when H is DV T , the above composite gives back T , and H] is TV , the
V -cat-ification of T .

We plan to see how the corresponding behaviors are related. In particular, we show that
if TV is the V -cat-ification of T : Set −→ Set, then TV -behaviour and T -behaviour coincide
under some conditions imposed on the base quantale V . This requires comparing behaviours
across different base categories.

I Remark 4.1. For each quantale V , the inclusion (quantale morphism) d : 2 −→ V given
by 0 7→ 0, 1 7→ e has a right adjoint (as it preserves suprema), denoted v : V −→ 2 which
maps an element r of V to 1 if e ≤ r, and to 0 otherwise.5

This induces as usual the change-of-base adjunction (even a 2-adjunction, see [5])

2
d

**
⊥ V
v

ii 7→ Preord
d∗

,,
⊥ V -cat
v∗

ll

Explicitly, the functor d∗ maps a preordered set X to the V -category d∗X with same set of
objects, and V -homs given by d∗X(x′, x) = e if x′ ≤ x, and ⊥ otherwise. Its right adjoint
transforms a V -category X into the preorder v∗X with same objects again, and order
x′ ≤ x iff e ≤ X (x′, x) holds. Hence d∗X is the free V -category on the preorder X, while
v∗X is the underlying ordinary category (which happens to be a preorder, due to simple
nature of quantales) of the V -category X .

Note that d∗ is both a V -cat-functor and a Preord-functor, while its right adjoint v∗ (in
fact, the whole adjunction d∗ a v∗) is only Preord-enriched.

In case V is nontrivial, and e and > coincide (the quantale is integral), the embedding
d : 2 −→ V has also a left adjoint c : V −→ 2, given by c(r) = 0 iff r = ⊥, otherwise c(r) = 1.
Notice that c is only a colax morphism of quantales, in the sense that c(e) ≤ 1 (in fact, here
we have equality!) and c(r ⊗ s) ≤ c(r) ∧ c(s), for all r, s in V .

We shall in the sequel assume that c is actually a morphism of quantales. The reader can
check that this boils down to the requirement that r ⊗ s = ⊥ in V implies r = ⊥ or s = ⊥.
That is, the quantale has no zero divisors. All our examples satisfy this assumption.

5 Notice that v is only a lax morphism of quantales, being right adjoint.

A. Balan, A. Kurz, and J. Velebil 31

If this is the case, d∗ also has a left adjoint c∗ mapping a V -category X to the preorder
c∗X with same objects, such that x′ ≤ x iff X (x′, x) 6= ⊥, and the adjunction c∗ a d∗ is
V -cat-enriched:

2
d

44⊥ V
c

uu 7→ Preord
d∗

22⊥ V -cat
c∗

rr

From the above remark we obtain the following:

I Proposition 4.2. Let V be an arbitrary quantale and let
T̂ : Preord −→ Preord be a locally monotone functor (that
is, Preord-enriched) and T : V-cat −→ V-cat be a lifting
of T̂ to V-cat (meaning that T is V-cat-functor such that
v∗T ∼= T̂ v∗ holds). Then the locally monotone adjunction
d∗ a v∗ lifts to a locally monotone adjunction d̃∗ a ṽ∗
between the associated Preord-categories of coalgebras.

Coalg(T̂)

��

d̃∗
,,

⊥ll

ṽ∗

Coalg(T)

��

Preord
d∗

++
⊥kk

v∗

V -cat

I Proposition 4.3. Assume now that V is a non-trivial
integral quantale without zero divisors. Let again T̂ :
Preord −→ Preord be a locally monotone functor, but this
time consider T : V-cat −→ V-cat be an extension of T̂

to V-cat (meaning that T is a V-cat-functor, such that
T d∗ ∼= T̂ d∗ holds). Then the V-cat-adjunction c∗ a d∗
lifts to a V-cat-adjunction c̃∗ a d̃∗ between the associated
V-cat-categories of coalgebras.

Coalg(T̂)

��

d̃∗

22⊥
rr

c̃∗

Coalg(T)

��

Preord
d∗

33⊥
ss

c∗

V -cat

We come back now to the discrete functor DV : Set −→ V -cat. It is easy to see that it
decomposes as d∗D : Set → Preord → V -cat. Additionally, recall the following (see also
Example 3.2.2):

1. There are locally monotone functors D : Set −→ Preord, C : Preord −→ Set, where
D maps a set to its discrete preorder and C maps a preorder to its set of connected
components.

2. There is a chain Co a Do a V : Preord −→ Set of ordinary adjunctions where V is the
underlying-set forgetful functor.

3. The locally monotone adjunction C a D is V -cat-enriched.

I Lemma 4.4 ([2]). Let T : Set −→ Set and T̂ :
Preord −→ Preord an extension of T (a locally monotone
functor such that DT ∼= T̂ D). Then the locally monotone
adjunction C a D lifts to a locally monotone adjunction
C̃ a D̃ between the associated categories of coalgebras:

Coalg(T)

��

D̃

22⊥
rr

C̃

Coalg(T̂)

��

Set
D

33⊥
ss

C

Preord

Consequently, D̃ will preserve limits, in particular, the final coalgebra (if it exists).

CALCO’15

32 Extensions of Functors From Set to V -cat

I Lemma 4.5 ([2]). Let T : Set −→ Set and T̂ :
Preord −→ Preord a lifting of T (an ordinary functor
such that T V ∼= V T̂). Then the ordinary adjunction
Do a V lifts to an ordinary adjunction D̃o a Ṽ between
the associated categories of coalgebras.

Coalg(T̂)

��

D̃o
,,

⊥ll

Ṽ

Coalg(TV)

��

Set
Do

++
⊥kk

V

Preord

Consequently, Ṽ will preserve limits; in particular, the underlying set of the final T̂ -coalgebra
(if it exists) will be the final T -coalgebra.

I Remark 4.6. We have shown in the previous section that DV = d∗D is V -cat-dense.
Using that D is fully faithful, it follows from [12, Theorem 5.13] that also d∗ is V -cat-dense
and that d∗ = LanD(DV) holds.

Let T : Set −→ Set and denote by T2 is 2-cat-ification, that is, its Preord-ification [3].
Then the V -cat-ification TV of T can be computed in two stages, as follows:

TV = LanDV (DV T)
= Lan(d∗D)(d∗DT) = Land∗(LanD(d∗DT)) by [12, Theorem 4.47]
∼= Land∗(LanD(d∗T2D)) (because DT ∼= T2D)
∼= Land∗(d∗T2) by [12, Theorem 5.29]

where the last isomorphism holds because the composite d∗T2 preserves all colimits
Preord(D−, X) ∗D, for X in Preord. To see this, notice first that T2 does so by construction,
while for d∗ it follows from being LanD(DV) = LanD(d∗D), again using [12, Theorem 5.29].

The above simply says that
The V -cat-ification of an endofunctor T of Set can be obtained as taking first the

Preord-ification T2 : Preord −→ Preord, 6 then computing the left Kan extension along

d∗ : Preord −→ V -cat of the composite Preord T2 // Preord d∗ // V -cat .

Putting things together we now obtain

I Theorem 4.7. Let V be a non-trivial integral quantale without zero divisors, and
T : Set −→ Set an arbitrary endofunctor, with V -cat-ification TV : V -cat −→ V -cat.
Then the V -cat-adjunctions C a D : Set −→ Preord, c∗ a d∗ : Preord −→ V -cat lift to
V -cat-adjunctions between the associated V -cat-categories of coalgebras:

Coalg(T)

��

D̃

22⊥
rr

C̃

Coalg(T2)

��

d̃∗

22
⊥

rr
c̃∗

Coalg(TV)

��

Set
D

22⊥
ss

C

Preord
d∗

22⊥
rr

c∗

V -cat

Since the V -cat-ification TV of an endofunctor T on Set is supposed to be “T in the world of
V -categories”, the theorem above confirms the expectation that final TV -coalgebras have a

6 Which has been considered in [3]; note in particular that T2 is also a lifting of T to Preord.

A. Balan, A. Kurz, and J. Velebil 33

discrete metric. In fact, we can say that the final T -coalgebra is the final TV -coalgebra, if we
consider Coalg(T) as a full (enriched-reflective) subcategory of Coalg(TV).
The next theorem deals with a more general situation where the final metric-coalgebra is the
final set-coalgebra with an additional metric. This includes in particular the case where T is
H] for some H : Set −→ V -cat with V V Ho = To.

I Theorem 4.8. Let V be a quantale, T : Set −→ Set be an arbitrary endofunctor, T̂ :
Preord −→ Preord a lifting of T to Preord, and T : V -cat −→ V -cat be a lifting of T̂ to V -cat.
Then the ordinary adjunction Do a V : Set −→ Preord, respectively the Preord-adjunction
d∗ a v∗ : Preord −→ V -cat lift to adjunctions between the associated V -cat-categories of
coalgebras:

Coalg(T)

��

ll

Ṽ

⊥̃

Do
,,
Coalg(T̂)

��

ll

ṽ∗

⊥̃

d∗
,,
Coalg(T)

��

Set kk
V

⊥

Do
,,
Preord ll

v∗

⊥

d∗
++
V -cat

I Example 4.9. Recall from Example 3.13 the stream functor T : Set −→ Set, TX = X ×A,
and its lifting H] : V -cat −→ V -cat, H]X = X ⊗A . Assume that the quantale is integral.
Then the final coalgebra is the V -category A ⊗∞ having streams over A as objects, with
V -distances

A ⊗∞((an)n, (bn)n) =
∧
n

{A (a0, b0)⊗A (a1, b1)⊗ . . .⊗A (an, bn)}

If V is the real half-line from Example 2.1.2, and A is the two-elements metric space
{0, 1} with V -distances A (0, 1) = A (1, 0) = 1, A (0, 0) = A (1, 1) = 0, we obtain that the
V -distance between two streams is n iff they are different on at most n positions.

5 Conclusions

We showed that every functor H : Set −→ V -cat has a left-Kan extension H], and that the
final H]-coalgebra is the final V V Ho-coalgebra equipped with a V -metric. In the case where
H takes only discrete values, the final coalgebra is discrete as well.

Acknowledgements. We thank the anonymous referees for valuable comments that im-
proved the presentation of our results.

References
1 A. Akhvlediani, M. M. Clementino and W. Tholen, On the categorical meaning of the

Hausdorff and Gromov distances I, Topology and its Applic. 157(8) (2010), pp. 1275–1295
2 A. Balan and A. Kurz, Finitary functors: from Set to Preord and Poset. In: A. Corradini

et al. (eds.), CALCO 2011, LNCS 6859, Springer, Heidelberg (2011), pp. 85–99
3 A. Balan, A. Kurz and J. Velebil, Positive fragments of coalgebraic logics, accepted for

publication in Logic. Meth. Comput. Sci. (2015), available at http://arxiv.org/pdf/1402.
5922v1.pdf

4 P. Baldan, F. Bonchi, H. Kerstan and B. König, Behavioral metrics via functor lifting. In:
V. Raman and S. P. Suresh (eds.), FSTTCS2014 , LIPIcs 29 (2014), pp. 403–415

CALCO’15

http://arxiv.org/pdf/1402.5922v1.pdf
http://arxiv.org/pdf/1402.5922v1.pdf

34 Extensions of Functors From Set to V -cat

5 S. Eilenberg, and G. M. Kelly, Closed categories. In: S. Eilenberg et al. (eds.), Proceedings
of the Conference on Categorical Algebra, Springer, Berlin Heidelberg (1966), pp. 421–562

6 B. Flagg and R. Kopperman, Continuity spaces: reconciling domains and metric spaces,
Theoret. Comput. Sci. 177(1) (1997), pp. 111–138

7 P. Freyd and A. Scedrov. Categories, Allegories, North Holland (1990)
8 H. Gaifman, V. Pratt, Partial order models of concurrency and the computation of func-

tions. In: Proceedings of the Symposium on Logic in Computer Science (LICS’87), Ithaca,
NY (1987), pp. 72–85

9 F. Hausdorff, Mengenlehre. 3rd edition, de Gruyter (1935)
10 D. Hofmann and C. D. Reis, Probabilistic metric spaces as enriched categories, Fuzzy Sets

and Systems 210 (2013), pp. 1–21
11 J. Hughes and B. Jacobs, Simulations in coalgebra, Theor. Comput. Sci. 327(1–2):71–108

(2004)
12 G. M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Notes

Series 64, Cambridge Univ. Press (1982) also available as Repr. Theory Appl. Categ. 10
(2005)

13 G. M. Kelly and S. Lack, V -cat is locally presentable or bounded if V is so, Theory Appl.
Categ. 8(23) (2001), pp. 555–575

14 F. W. Lawvere, Metric spaces, generalized logic, and closed categories, Rendiconti del
Seminario Matematico e Fisico di Milano XLIII (1973), pp. 135–166, also available as
Repr. Theory Appl. Categ. 1 (2002), pp. 1–37

15 D. Pompeiu, Sur la continuité des fonctions des variables complexes, Ann. Fac. Sci.
Toulouse 2(7) (1905), 265–315, available at http://www.numdam.org/item?id=AFST_1905_
2_7_3_265_0

16 J. J. M. M. Rutten, Elements of generalized ultrametric domain theory, Theoret. Comput.
Sci. 170 (1996), pp. 349–381

17 J. J. M. M. Rutten. Relators and metric bisimulations (extended abstract). In: B. Jacobs
et al. (eds.), CMCS’98, Electr. Notes Theor. Comput. Sci. 11 (1998), pp. 1–7

18 J. J. M. M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249
(2000), pp. 3–80

19 R. Wood, Ordered sets via adjunctions. In: M.-C. Pedicchio and W. Tholen (eds.), Cat-
egorical Foundations. Cambridge Univ. Press (2004), 5–47

20 J. Worrell, Coinduction for recursive data types: partial order, metric spaces and Ω-
categories. In: H. Reichel (ed.), CMCS’2000, Electr. Notes Theor. Comput. Sci. 33 (2000),
pp. 337–356

21 J. Worrell, On coalgebras and final semantics. PhD thesis, University of Oxford (2000),
available at http://www.cs.ox.ac.uk/people/james.worrell/thesis.ps

http://www.numdam.org/item?id=AFST_1905_2_7_3_265_0
http://www.numdam.org/item?id=AFST_1905_2_7_3_265_0
http://www.cs.ox.ac.uk/people/james.worrell/thesis.ps

Towards Trace Metrics via Functor Lifting∗

Paolo Baldan1, Filippo Bonchi2, Henning Kerstan3, and
Barbara König3

1 Dipartimento di Matematica, Università di Padova, Italy
baldan@math.unipd.it

2 CNRS, ENS Lyon, Université de Lyon, France
filippo.bonchi@ens-lyon.fr

3 Universität Duisburg-Essen, Germany
{henning.kerstan,barbara_koenig}@uni-due.de

Abstract
We investigate the possibility of deriving metric trace semantics in a coalgebraic framework. First,
we generalize a technique for systematically lifting functors from the category Set of sets to the
category PMet of pseudometric spaces, by identifying conditions under which also natural trans-
formations, monads and distributive laws can be lifted. By exploiting some recent work on an
abstract determinization, these results enable the derivation of trace metrics starting from coalge-
bras in Set. More precisely, for a coalgebra in Set we determinize it, thus obtaining a coalgebra
in the Eilenberg-Moore category of a monad. When the monad can be lifted to PMet, we can
equip the final coalgebra with a behavioral distance. The trace distance between two states of
the original coalgebra is the distance between their images in the determinized coalgebra through
the unit of the monad. We show how our framework applies to nondeterministic automata and
probabilistic automata.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, D.2.4 Software/Program Verification

Keywords and phrases trace metric, monad lifting, pseudometric, coalgebra

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.35

1 Introduction

When considering the behavior of state-based system models embodying quantitative in-
formation, such as probabilities, time or cost, the interest normally shifts from behavioral
equivalences to behavioral distances. In fact, in a quantitative setting, it is often quite
unnatural to ask that two systems exhibit exactly the same behavior, while it can be more
reasonable to require that the distance between their behaviors is sufficiently small (see,
e.g., [10, 7, 23, 1, 5, 6, 8]).

Coalgebras [18] are a well-established abstract framework where a canonical notion of
behavioral equivalence can be uniformly derived. The behavior of a system is represented
as a coalgebra, namely a map of the form X → HX, where X is a state space and H is a
functor that describes the type of computation performed. For instance nondeterministic
automata can be seen as coalgebras X → 2× P(X)A: for any state we specify whether it is
final or not, and the set of successors for any given input in A. Under suitable conditions

∗ Partially supported by the University of Padova project ANCORE and the DFG project BEMEGA.
The second author acknowledges the support by project ANR 12IS0 2001 PACE.

© Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Paweł Sobociński; pp. 35–49

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36 Towards Trace Metrics via Functor Lifting

a final coalgebra exists which can be seen as minimized version of the system, so that two
states are deemed equivalent when they correspond to the same state in the final coalgebra.

In a recent paper [2] we faced the problem of devising a framework where, given a
coalgebra for an endofunctor H on Set, one can systematically derive pseudometrics which
measure the behavioral distance of states. A first crucial step is the lifting of H to a functor
H on PMet, the category of pseudometric spaces. In particular, we presented two different
approaches which can be viewed as generalizations of the Kantorovich and Wasserstein
pseudometrics for probability measures. One can prove that the final coalgebra in Set can
be endowed with a metric, arising as a solution of a fixpoint equation, turning it into the
final coalgebra for the lifting H. Since any coalgebra X → HX can be seen as a coalgebra in
PMet by endowing X with the discrete metric, the unique mapping into the final coalgebra
provides a behavioral distance on X.

The canonical notion of equivalence for coalgebras, in a sense, fully captures the behavior
of the system as expressed by the functor H. As such, it naturally corresponds to bisimulation
equivalences already defined for various concrete formalisms. Sometimes one is interested in
coarser equivalences, ignoring some aspects of a computation, a notable example being trace
equivalence where the computational effect which is ignored is branching.

In this paper, relying on recent work on an abstract determinization construction for
coalgebras in [20, 13, 14], we extend the above framework in order to systematically derive
trace metrics. The mentioned work starts from the observation that the distinction between
the behavior to be observed and the computational effects that are intended to be hidden
from the observer, is sometimes formally captured by splitting the functor H characterizing
system computations in two components, a functor F for the observable behavior and a
monad T describing the computational effects, e.g., lifting 1 +−, the powerset functor P or
the distribution functor D provides partial, nondeterministic or probabilistic computations,
respectively. For instance, the functor for nondeterministic automata 2×P(X)A can be seen
as the composition of the functor FX = 2×XA, describing the transitions, with the powerset
monad T = P, capturing nondeterminism. Trace semantics can be derived by viewing
a coalgebra X → 2 × P(X)A as a coalgebra P(X) → 2 × P(X)A, via a determinization
construction. Similarly probabilistic automata can be seen as coalgebras of the form X →
[0, 1]×D(X)A, yielding coalgebras D(X)→ [0, 1]×D(X)A via determinization.

On this basis, [14] develops a framework for deriving behavioral equivalences which only
considers the visible behavior, ignoring the computational effects. The core idea consists
in “incorporating” the effect of the monad also in the set of states X, which thus becomes
TX, by means of a construction that can be seen as an abstract form of determinization.
For functors of the shape FT , this can be done by lifting F to a functor F̂ in EM(T), the
Eilenberg-Moore category of T , using a distributive law between F and T . In fact, the final
F -coalgebra lifts to the final F̂ -coalgebra in EM(T). The technique works, at the price of
some complications, also for functors of the shape TF [14].

Here, we exploit the results in [14] for systematically deriving metric trace semantics for
Set-based coalgebras. The situation is summarized in the diagram at the end of Subsection 5.1.
As a first step, building on our technique for lifting functors from the category Set of sets
to the category PMet of pseudometric spaces, we identify conditions under which also
natural transformations, monads and distributive laws can be lifted. In this way we obtain
an adjunction between PMet and EM(T), where T is the lifted monad. Via the lifted
distributive law we can transfer a functor F : PMet → PMet to an endofunctor F̂ on
EM(T). By using the trivial discrete distance, coalgebras of the form TX → FTX can
now live in EM(T) and can be equipped with a trace distance via a map into the final

P. Baldan, F. Bonchi, H. Kerstan, and B. König 37

coalgebra. This final coalgebra is again obtained by lifting the final F -coalgebra, i.e. a
coalgebra equipped with a behavioral distance, to EM(T).

The trace distance between two states of the original coalgebra can then be defined as
the distance between their images in the determinized coalgebra through the unit of the
monad. We illustrate our framework by thoroughly discussing two running examples, namely
nondeterministic automata and probabilistic automata. We show that it allows us to recover
known or meaningful trace distances such as the standard ultrametric on word languages for
nondeterministic automata or the total variation distance on distributions for probabilistic
automata.

The paper is structured as follows. In Section 2 we will introduce our notation and quickly
recall the basics of our lifting framework from [2]. Then, in Section 3, we tackle the question
of compositionality, i.e. we investigate whether based on liftings of two functors we can
obtain a lifting of the composed functor. The lifting of natural transformations and monads
is treated in Section 4. Equipped with these tools, we show as main result in Section 5
how to obtain trace pseudometrics in the Eilenberg-Moore category of a lifted monad. We
conclude our paper with a discussion on related and future work (Section 6). Proofs can be
found in the extended version [arXiv:1505.08105].

2 Preliminaries

In this section we recap some basic notions and fix the corresponding notation. We also
briefly recall the results in [2] which will be exploited in the paper.

We assume that the reader is familiar with the basic notions of category theory, especially
with the definitions of functor, product, coproduct and weak pullbacks.

For a function f : X → Y and sets A ⊆ X, B ⊆ Y we write f [A] := {f(a) | a ∈ A} for the
image of A and f−1[B] = {x ∈ X | f(x) ∈ B} for the preimage of B. Finally, if Y ⊆ [0,∞]
and f, g : X → Y are functions we write f ≤ g if f(x) ≤ g(x) for all x ∈ X.

A probability distribution on a given set X is a function P : X → [0, 1] satisfying∑
x∈X P (x) = 1. For any set B ⊆ X we define P (B) =

∑
x∈B P (x). The support of

P is the set supp(P) := {x ∈ X | P (x) > 0}.
Given a natural number n ∈ N and a family (Xi)ni=1 of sets Xi we denote the projections

of the (cartesian) product of the Xi by πi :
∏n
i=1 Xi → Xi. For a source (fi : X → Xi)ni=1 we

denote the unique mediating arrow to the product by 〈f1, . . . , fn〉 : X →
∏n
i=1 Xi. Similarly,

given a family of arrows (fi : Xi → Yi)ni=1, we write f1 × · · · × fn = 〈f1 ◦ π1, . . . , fn ◦
πn〉 :

∏n
i=1 Xi →

∏n
i=1 Yi.

For > ∈ (0,∞] and a set X we call any function d : X2 → [0,>] a (>-)distance on X
(for our examples we will use > = 1 or > = ∞). Whenever d satisfies, for all x, y, z ∈ X,
d(x, x) = 0 (reflexivity), d(x, y) = d(y, x) (symmetry) and d(x, y) ≤ d(x, z) + d(z, y) (triangle
inequality) we call it a pseudometric and if it additionally satisfies d(x, y) = 0 =⇒ x = y we
call it ametric. Given such a function d on a setX, we say that (X, d) is a pseudometric/metric
space. By de : [0,>]2 → [0,>] we denote the ordinary Euclidean distance on [0,>], i.e.,
de(x, y) = |x− y| for x, y ∈ [0,>] \ {∞}, and – where appropriate – de(x,∞) =∞ if x 6=∞
and de(∞,∞) = 0. Addition is defined in the usual way, in particular x +∞ = ∞ for
x ∈ [0,∞]. We call a function f : X → Y between pseudometric spaces (X, dX) and (Y, dY)
nonexpansive and write f : (X, dX) 1→ (Y, dY) if dY ◦ (f × f) ≤ dX . If equality holds we call
f an isometry.

By choosing a fixed maximal element > in our definition of distances, we ensure that
the set of pseudometrics over a fixed set with pointwise order is a complete lattice (since

CALCO’15

http://arxiv.org/abs/1505.08105

38 Towards Trace Metrics via Functor Lifting

[0,>] is) and we obtain a complete and cocomplete category of pseudometric spaces and
nonexpansive functions, which we denote by PMet. Given a functor F on Set, we aim at
constructing a functor F on PMet which is a lifting of F in the following sense.

I Definition 2.1 (Lifting). Let U : PMet→ Set be the forgetful functor which maps every
pseudometric space to its underlying set. A functor F : PMet→ PMet is called a lifting of
a functor F : Set→ Set if it satisfies UF = FU .

Similarly to predicate lifting of coalgebraic modal logic [19], lifting to PMet can be
conveniently defined once a suitable (evaluation) function from F [0,>] to [0,>] is fixed.

I Definition 2.2 (Evaluation Function & Evaluation Functor). Let F be an endofunctor on
Set. An evaluation function for F is a function evF : F [0,>]→ [0,>]. Given such a function,
we define the evaluation functor to be the endofunctor F̃ on Set/[0,>], the slice category1
over [0,>], via F̃ (g) = evF ◦ Fg for all g ∈ Set/[0,>]. On arrows F̃ is defined as F .

A first lifting technique leads to what we called the Kantorovich pseudometric, which
is the smallest possible pseudometric dF on FX such that, for all nonexpansive functions
f : (X, d) 1→ ([0,>], de), also F̃ f : (FX, dF) 1→ ([0,>], de) is again nonexpansive.

I Definition 2.3 (Kantorovich Pseudometric & Kantorovich Lifting). Let F : Set→ Set be a
functor with an evaluation function evF . For every pseudometric space (X, d) the Kantorovich
pseudometric on FX is the function d ↑F : FX × FX → [0,>], where for all t1, t2 ∈ FX:

d ↑F (t1, t2) := sup
{
de

(
F̃ f(t1), F̃ f(t2)

)
| f : (X, d) 1→ ([0,>], de)

}
.

The Kantorovich lifting of the functor F is the functor F : PMet → PMet defined as
F (X, d) = (FX, d ↑F) and Ff = Ff .

This definition is sound, i.e., d ↑F is guaranteed to be a pseudometric so that we indeed
obtain a lifting of the functor. A dual way for obtaining a pseudometric on FX relies on
ideas from probability and transportation theory. It is based on the notion of couplings,
which can be understood as a generalization of joint probability measures.

I Definition 2.4 (Coupling). Let F : Set→ Set be a functor and n ∈ N. Given a set X and
ti ∈ FX for 1 ≤ i ≤ n we call an element t ∈ F (Xn) such that Fπi(t) = ti a coupling of the
ti (with respect to F). We write ΓF (t1, t2, . . . , tn) for the set of all these couplings.

Based on these couplings we are now able to define an alternative distance on FX.

I Definition 2.5 (Wasserstein Distance & Wasserstein Lifting). Let F : Set→ Set be a functor
with evaluation function evF . For every pseudometric space (X, d) the Wasserstein distance
on FX is the function d ↓F : FX × FX → [0,>] given by, for all t1, t2 ∈ FX,

d ↓F (t1, t2) := inf
{
F̃ d(t) | t ∈ ΓF (t1, t2)

}
.

If d ↓F is a pseudometric for all pseudometric spaces (X, d), we define the Wasserstein lifting
of F to be the functor F : PMet→ PMet, F (X, d) = (FX, d ↓F), Ff = Ff .

1 The slice category Set/[0,>] has as objects all functions g : X → [0,>] where X is an arbitrary set.
Given g as before and h : Y → [0,>], an arrow from g to h is a function f : X → Y satisfying h ◦ f = g.

P. Baldan, F. Bonchi, H. Kerstan, and B. König 39

The names Kantorovich and Wasserstein used for the liftings derive from transportation
theory [25]. Indeed we obtain a transport problem if we instantiate F with the distribution
functor D (see also Theorem 2.9 below). In order to measure the distance between two
probability distributions s, t : X → [0, 1] it is useful to think of the following analogy: assume
that X is a collection of cities (with distance function d between them) and s, t represent
supply and demand (in units of mass). The distance between s, t can be measured in two
ways: the first is to set up an optimal transportation plan with minimal costs (also called
coupling) to transport goods from cities with excess supply to cities with excess demand. The
cost of transport is determined by the product of mass and distance. In this way we obtain
the Wasserstein distance. A different view is to imagine a logistics firm that is commissioned
to handle the transport. It sets prices for each city and buys and sells for this price at every
location. However, it has to ensure that the price function (here, f) is nonexpansive, i.e., the
difference of prices between two cities is smaller than the distance of the cities, otherwise it
will not be worthwhile to outsource this task. This firm will attempt to maximize its profit,
which can be considered as the Kantorovich distance of s, t. The Kantorovich-Rubinstein
duality informs us that these two views lead to the exactly same result.

In Theorem 2.5 we are not guaranteed, in general, that d ↓F is a pseudometric. This is
the case if we require F to preserve weak-pullbacks and impose the following restrictions on
the evaluation function.

I Definition 2.6 (Well-Behaved). Let F be a functor with an evaluation function evF . We
call evF well-behaved if it satisfies the following conditions:
W1. F̃ is monotone, i.e., for f, g : X → [0,>] with f ≤ g, we have F̃ f ≤ F̃ g.
W2. For each t ∈ F ([0,>]2) it holds that de(evF (t1), evF (t2)) ≤ F̃ de(t) for ti := Fπi(t).
W3. ev−1

F [{0}] = Fi[F{0}] where i : {0} ↪→ [0,>] is the inclusion map.

While condition W1 is quite natural, for W2 and W3 some explanations are in order.
Condition W2 ensures that F̃ id[0,>] = evF : F [0,>]→ [0,>] is nonexpansive once de is lifted
to F [0,>] (recall that for the Kantorovich lifting we require F̃ f to be nonexpansive for any
nonexpansive f). Condition W3 requires that exactly the elements of F{0} are mapped to 0
via evF . This is necessary for reflexivity of the Wasserstein pseudometric. Indeed, with this
definition at hand we were able to prove the desired result.

I Proposition 2.7 ([2]). If F preserves weak pullbacks and evF is well-behaved, then d ↓F is
a pseudometric for any pseudometric space (X, d).

From now on, whenever we use the Wasserstein lifting d ↓F , we implicitly assume to be in
the hypotheses of Theorem 2.7. It can be shown that, in general, d ↑F ≤ d ↓F . Whenever
equality holds we say that the functor and the evaluation function satisfy the Kantorovich-
Rubinstein duality. This is helpful in many situations (e.g., in [24] it allowed to reuse an
efficient linear programming algorithm to compute behavioral distance) but it is usually
difficult to obtain.

We now recall two examples which will play an important role in this paper. First, we
consider the following finitary variant of the powerset functor.

I Example 2.8 (Finite Powerset). The finite powerset functor Pfin assigns to each set X the
set PfinX = {S ⊆ X | |S| <∞} and to each function f : X → Y the function Pfinf : PfinX →
PfinY , Pfinf(S) := f [S]. This functor preserves weak pullbacks and the evaluation function
max: Pfin([0,∞]) → [0,∞] with max ∅ = 0 is well-behaved. The Kantorovich-Rubinstein
duality holds and the resulting distance is the Hausdorff pseudometric which, for any

CALCO’15

40 Towards Trace Metrics via Functor Lifting

pseudometric space (X, d) and any X1, X2 ∈ PfinX, is defined as

dH(X1, X2) = max
{

max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)
}
.

Our second example is the following finite variant of the distribution functor.

I Example 2.9 (Finitely Supported Distributions). The probability distribution functor D
assigns to each set X the set DX = {P : X → [0, 1] | |supp(P)| <∞, P (X) = 1} and to
each function f : X → Y the function Df : DX → DY , Df(P)(y) =

∑
x∈f−1[{y}] P (x) =

P (f−1[{y}]). It preserves weak pullbacks and the evaluation function evD : D[0, 1]→ [0, 1],
evD(P) =

∑
r∈[0,1] r · P (r) is well-behaved. For any pseudometric space (X, d) we obtain the

Wasserstein pseudometric which, for any P1, P2 ∈ DX, is defined as

d ↓D(P1, P2) = min

 ∑
x1,x2∈X

d(x1, x2) · P (x1, x2)

∣∣∣∣∣∣ P ∈ ΓD(P1, P2)

 .

The Kantorovich-Rubinstein duality [25] holds from classical results in transportation theory.

While these two functors can be nicely lifted using the theory developed so far, there are
other functors that require a more general treatment. For instance, consider the endofunctor
F = B×_ (left product with B) for some fixed B. Notice that for t1, t2 ∈ FX = B×X with
ti = (bi, xi) a coupling exists iff b1 = b2. As a consequence, when b1 6= b2, irrespectively of
the evaluation function we choose and of the distance between x1 and x2 in (X, d), the lifted
Wasserstein pseudometric will always result in d ↓F (t1, t2) = >. This can be counterintuitive,
e.g., taking B = [0, 1], X 6= ∅ and t1 = (0, x) and t2 = (ε, x) for a small ε > 0 and an x ∈ X.
The reason is that we think of B = [0, 1] as endowed with a non-discrete pseudometric, like
e.g. the Euclidean metric de, plugged into the product after the lifting. This intuition can be
indeed formalized by considering the lifting of the product seen as a functor from Set× Set
into Set. More generally, it can be seen that the definitions and results introduced so far
for endofunctors on Set straightforwardly extend to multifunctors on Set, namely functors
F : Setn → Set on the product category Setn for a natural number n ∈ N. For ease of
presentation we will not spell out the details here (they can be found in [2]), but just provide
an important example of a bifunctor (i.e. n = 2).

I Example 2.10 (Product Bifunctor). The weak pullback preserving product bifunctor
F : Set2 → Set maps two setsX1, X2 to F (X1, X2) = X1×X2 and two functions fi : Xi → Yi
to the function F (f1, f2) = f1×f2. In this paper we will use the well-behaved evaluation func-
tions evF : [0, 1]2 → [0, 1] presented in the table below. Therein we also list the pseudometric
(d1, d2)F : (X1 ×X2)2 → [0,>] we obtain for pseudometric spaces (X1, d1), (X2, d2).

Parameters evF (r1, r2) (d1, d2)F ((x1, x2), (y1, y2))
c1, c2 ∈ (0, 1] max {c1r1, c2r2} max {c1d1(x1, y1), c2d2(x2, y2)}

c1, c2 ∈ (0, 1], c1 + c2 ≤ 1 c1x1 + c2x2 c1d1(x1, y1) + c2d2(x2, y2)

For c1 = c2 = 1, the first evaluation map yields exactly the categorical product in PMet. In
both cases the Kantorovich-Rubinstein duality holds and the supremum [infimum] of the
Kantorovich [Wasserstein] pseudometric is always a maximum [minimum].

3 Compositionality for the Wasserstein Lifting

Our first step is to study compositionality of functor liftings, i.e., we identify some sufficient
conditions ensuring F G = FG. This technical result will be often very useful since it allows

P. Baldan, F. Bonchi, H. Kerstan, and B. König 41

us to reason modularly and, consequently, to simplify the proofs needed in the treatment of
our examples. We will explicitly only consider the Wasserstein approach which is the one
employed in all the examples of this paper.

Given evaluation functions evF and evG, we can easily construct an evaluation function
for the composition FG by defining evFG := F̃ evG = evF ◦ FevG. Our first observation is
that, whenever F and G preserve weak pullbacks, well-behavedness is inherited.

I Proposition 3.1 (Well-Behavedness of Composed Evaluation Function). Let F , G be endo-
functors on Set with evaluation functions evF , evG. If both functors preserve weak pullbacks
and both evaluation functions are well-behaved then also evFG = evF ◦ FevG is well-behaved.

In the light of this result and the fact that FG certainly preserves weak pullbacks if
F and G do, we can safely use the Wasserstein lifting for FG. A sufficient criterion for
compositionality is the existence of optimal couplings for G.

I Proposition 3.2 (Compositionality). Let F,G be weak pullback preserving endofunctors on
Set with well-behaved evaluation functions evF , evG and let (X, d) be a pseudometric space.
Then d ↓FG ≥ (d ↓G) ↓F . Moreover, if for all t1, t2 ∈ GX there is an optimal G-coupling, i.e.
γ(t1, t2) ∈ ΓG(t1, t2) such that d ↓G(t1, t2) = G̃d(γ(t1, t2)), then d ↓FG = (d ↓G) ↓F .

This criterion will turn out to be very useful for our later results. Nevertheless it provides
just a sufficient condition for compositionality as the next example shows.

I Example 3.3. We consider the finite powerset functor Pfin of Theorem 2.8 and the
distribution functor D of Theorem 2.9 with their evaluation functions. Let (X, d) be a
pseudometric space.
1. We have d ↓DD =

(
d ↓D

) ↓D, by Theorem 3.2, because optimal couplings always exist.
2. We have d ↓PfinPfin =

(
d ↓Pfin

) ↓Pfin although Pfin-couplings do not always exist.

Note that when we lift the functor Pfin we do not have couplings in the case when we
determine the distance between an empty set ∅ and a non-empty set Y ⊆ X, since there
exists no subset of X ×X that projects to both.

Compositionality can be defined analogously for multifunctors. Again, we will not spell
this out completely but we will use it to obtain the machine bifunctor. Before we can do
that, we first need to define another endofunctor.

I Example 3.4 (Input Functor). Let A be a fixed finite set of inputs. The input functor
F = _A : Set → Set maps a set X to the exponential XA and a function f : X → Y to
fA : XA → Y A, fA(g) = f ◦ g. This functor preserves weak pullbacks. The two evaluation
functions listed below are well-behaved and yield the given Wasserstein pseudometric on XA

for any pseudometric space (X, d).

evF (s) d ↓F (s1, s2)
maxa∈A s(a) maxa∈A d

(
s1(a), s2(a)

)∑
a∈A

s(a)
∑

a∈A
d
(
s1(a), s2(a)

)
By composing this functor with the product bifunctor we obtain the machine bifunctor

which we will use to obtain trace semantics.

I Example 3.5 (Machine Bifunctor). Let A be a finite set of inputs, I = _A the input
functor of Theorem 3.4, Id the identity endofunctor on Set and P be the product bifunctor
of Theorem 2.10. The machine bifunctor is the composition M := P ◦ (Id × I) i.e. the
bifunctor M : Set2 → Set with M(B,X) := B ×XA. Since for Id and I there are unique

CALCO’15

42 Towards Trace Metrics via Functor Lifting

(thus optimal) couplings we have compositionality. Depending on the choices of evaluation
function for P and I (for Id we always take id[0,1]) we obtain the following well-behaved
evaluation functions evM : [0, 1]× [0, 1]A → [0, 1].

Parameters evP (r1, r2) evI(s) evM (o, s)

c1, c2 ∈ (0, 1] max {c1r1, c2r2} maxa∈A s(a) max
{

c1o, c2 maxa∈A s(a)
}

c1, c2 ∈ (0, 1], c1 + c2 ≤ 1 c1x1 + c2x2 |A|−1∑
a∈A

s(a) c1o + c2|A|−1∑
a∈A

s(a).

Let (B, dB), (X, d) be pseudometric spaces. For any t1, t2 ∈ M(B,X) with ti = (bi, si) ∈
B ×XA there is a unique and therefore necessarily optimal coupling t := (b1, b2, 〈s1, s2〉).
Depending on the evaluation function, we obtain for the first case (dB , d) ↓M (t1, t2) =
max {c1dB(b1, b2), c2 ·maxa∈A d(s1(a), s2(a))} and for the second case (dB , d) ↓M (t1, t2) =
c1dB(b1, b2) + c2|A|−1∑

a∈A d(s1(a), s2(a)).

Usually we will fix the first argument (the set of outputs) of the machine bifunctor and
consider the obtained machine endofunctor MB := M(B,_). However, for the same reasons
as explained above for the product bifunctor, we need to consider it as bifunctor. One notable
exception is the case where B = 2, endowed with the discrete metric. Then we have the
following result.

I Example 3.6. Consider the machine endofunctorM2 := M(2,_) = 2×_A with evaluation
function evM2 : 2× [0, 1]A, (o, s) 7→ c · evI(s) where c ∈ (0, 1] and evI is one of the evaluation
functions for the input functor from Theorem 3.4. If d2 is the discrete metric on 2 and
c = c2 (where c2 is the parameter for the evaluation function of the machine bifunctor as
in Theorem 3.5) then the pseudometric obtained via the bifunctor lifting coincides with
the one obtained by endofunctor lifting i.e. for all pseudometric spaces (X, d) we have
(d2, d) ↓M = d ↓M2 . Moreover, although couplings for M2 do not always exist we have
d ↓PfinM2 =

(
d ↓M2

) ↓Pfin .

4 Lifting of Natural Transformations and Monads

Recall that a monad on an arbitrary category C is a triple (T, η, µ) where T : C → C is
an endofunctor and η : Id⇒ T , µ : T 2 ⇒ T are natural transformations called unit (η) and
multiplication (µ) such that the two diagrams below commute.

T T 2 T T 3 T 2

T T 2 T

ηT Tη

µ

µT

Tµ µ
µ

If we have a monad on Set, we can of course use our framework to lift the endofunctor T to a
functor T on pseudometric spaces. A natural question that arises is, whether we also obtain
a monad on pseudometric spaces, i.e., if the components of the unit and the multiplication
are nonexpansive with respect to the lifted pseudometrics. In order to answer this question,
we first take a closer look at sufficient conditions for lifting natural transformations.

I Proposition 4.1 (Lifting of a Natural Transformation). Let F , G be endofunctors on Set
with evaluation functions evF , evG and λ : F ⇒ G be a natural transformation. Then the
following holds for all pseudometric spaces (X, d). For the Kantorovich lifting:

P. Baldan, F. Bonchi, H. Kerstan, and B. König 43

1. If evG ◦ λ[0,>] ≤ evF then d ↑G ◦ (λX × λX) ≤ d ↑F , i.e. λX is nonexpansive.
2. If evG ◦ λ[0,>] = evF then d ↑G ◦ (λX × λX) = d ↑F , i.e. λX is an isometry.
while for the Wasserstein lifting:
3. If evG ◦ λ[0,>] ≤ evF then d ↓G ◦ (λX × λX) ≤ d ↓F , i.e. λX is nonexpansive.
4. If evG ◦ λ[0,>] = evF and the Kantorovich Rubinstein duality holds for F , i.e. d ↑F = d ↓F ,

then d ↓G ◦ (λX × λX) = d ↓F , i.e. λX is an isometry.

In the rest of the paper we will call a natural transformation λ nonexpansive [an isometry] if
(and only if) each of its components are nonexpansive [isometries] and write λ for the resulting
natural transformation from F to G. Instead of checking nonexpansiveness separately for
each component of a natural transformation, we can just check the above (in-)equalities
involving the two evaluation functions.

By applying these conditions on the unit and multiplication of a given monad, we can
now provide sufficient criteria for a monad lifting.

I Corollary 4.2 (Lifting of a Monad). Let (T, η, µ) be a Set-monad and evT an evaluation
function for T . Then the following holds.
1. If evT ◦ η[0,>] ≤ id[0,>] then η is nonexpansive for both liftings. Hence we obtain the unit

η : Id⇒ T in PMet.
2. If evT ◦ η[0,>] = id[0,>] then η is an isometry for both liftings.
3. Let dT ∈ {d ↑T , d ↓T }. If evT ◦ µ[0,>] ≤ evT ◦ TevT and compositionality holds for TT ,

i.e. (dT)T = dTT , then µ is nonexpansive, i.e. dT ◦ (µX × µX) ≤ (dT)T . This yields the
multiplication µ : T T ⇒ T in PMet.

We conclude this section with two examples of liftable monads.

I Example 4.3 (Finite Powerset Monad). The finite powerset functor Pfin of Theorem 2.8 can
be seen as a monad, with unit η consisting of the functions ηX : X → PfinX, ηX(x) = {x}
and multiplication given by µX : PfinPfinX → PfinX, µX(S) = ∪S. We show that our
conditions for the Wasserstein lifting are satisfied. Given r ∈ [0,∞] we have evT ◦ η[0,∞](r) =
max {r} = r and for S ∈ Pfin(Pfin[0,>]) we have evT ◦ µ[0,1](S) = max∪S = max∪S∈SS
and evT ◦ TevT (S) = max (evT [S]) = max {maxS | S ∈ S} and thus both values coincide.
Moreover, we recall from Theorem 3.3.2 that we have compositionality for PfinPfin. Therefore,
by Theorem 4.2 η is an isometry and µ nonexpansive.

I Example 4.4 (Distribution Monad). The probability distribution functor D of Theorem 2.9
can be seen as a monad: the unit η consists of the functions ηX : X → DX, ηX(x) = δXx
where δXx is the Dirac distribution and the multiplication is given by µX : DDX → DX,
µX(P) = λx.

∑
q∈DX P (q) · q(x). We consider its Wasserstein lifting. Since [0, 1] = D2 we

can see that evD = µ2. Using this fact and the monad laws we have evD ◦ η[0,1] = µ2 ◦ ηD2 =
idDX = id[0,1] and also evD ◦ µ[0,1] = µ2 ◦ µD2 = µ2 ◦Dµ2 = evD ◦DevD. Moreover, since we
always have optimal couplings, we have compositionality for DD by Theorem 3.2. Thus by
Theorem 4.2 η is an isometry and µ nonexpansive.

5 Trace Metrics in Eilenberg-Moore

As mentioned in the introduction, trace semantics can be characterized by means of coalgebras
either over Kleisli [17, 11] or over Eilenberg-Moore [20, 14] categories. We focus on the latter
approach. We first recall the basic notions of Eilenberg-Moore algebras and distributive laws,
and discuss how the results in the paper can be used to “lift” the associated determinization
construction. This is then applied to derive trace metrics for nondeterministic automata and
probabilistic automata, by relying on suitable liftings of the machine functor.

CALCO’15

44 Towards Trace Metrics via Functor Lifting

5.1 Generalized Powerset Construction
An Eilenberg-Moore algebra for a monad (T, η, µ) is a C-arrow a : TA→ A making the left
and middle diagram below commute. Given two such algebras a : TA→ A and b : TB → B,
a morphism from a to b is a C arrow f : A→ B making the right diagram below commute.

A TA T 2A TA TA TB

A TA A A B

ηA

a

µA

aTc

a

Tf

ba

f

Eilenberg-Moore algebras and their morphisms form a category denoted by EM(T). A
functor F̂ : EM(T) → EM(T) is called a lifting of F : C → C to EM(T) if UT F̂ = FUT ,
with UT : EM(T)→ C the forgetful functor. A natural transformation λ : TF ⇒ FT is an
EM-law (also called distributive law) if it satisfies:

F F T 2F TFT FT 2

TF FT TF FT

ηF Fη

λ

Tλ λT

µF

λ

Fµ

Liftings and EM-laws are related by the following folklore result (see e.g. [13]).

I Proposition 5.1. There is a bijective correspondence between EM-laws and liftings to
EM-categories.

EM-laws and liftings are crucial to characterize trace semantics via coalgebras. Given
a coalgebra c : X → FTX, for a functor F and a monad (T, η, µ) such that there is a
distributive law λ : TF ⇒ FT , one can build an F -coalgebra as

c] :=
(
TX TFTX FTTX FTX

)Tc λTX FµX

If there exists a final F -coalgebra ω : Ω → FΩ, one can define a semantic map for the
FT -coalgebra c into Ω. First let [[−]] : TX → Ω be the unique coalgebra morphism from c].
Then take the map [[−]] ◦ η : X → Ω.

X TX Ω

FTX TΩ

η [[−]]

c ω

F [[−]]

c]

One can readily check that c] is an algebra map from the T -algebra µX to F̂ µX , namely it is
an F̂ -coalgebra or, equivalently, a λ-bialgebra [21, 15]. Similarly for ω, Ω carries a T -algebra
structure obtained by finality and hence the final F -coalgebra ω can be lifted in order to
obtain the final F̂ -coalgebra (see [13, Prop. 4]).

This result holds for arbitrary categories and, in particular, we can reuse it for our
setting: we only need an EM-law on PMet. Note that Theorem 4.1 not only provides
sufficient conditions for monad liftings but also can be exploited to lift EM-laws. Indeed the
additional commutativity requirements for EM-laws trivially hold when all components are
nonexpansive.

P. Baldan, F. Bonchi, H. Kerstan, and B. König 45

I Corollary 5.2 (Lifting of an EM-law). Let F,G be weak pullback preserving endofunctors
on Set with well-behaved evaluation functions evF , evG and λ : FG⇒ GF be an EM-law.
If the evaluation functions satisfy evG ◦ GevF ◦ λ[0,>] ≤ evF ◦ FevG and compositionality
holds for FG, then λ is nonexpansive and hence λ : F G⇒ GF is also an EM-law.

We will now consider EM-laws for nondeterministic and probabilistic automata. In
the first case, T is the powerset monad Pfin and F is the machine functor M2 = 2 × _A,
while in the second case T is the distribution monad D and F is the machine functor
M[0,1] = [0, 1] × _A. Note however that while in the first case Theorem 5.2 is directly
applicable, this is not true in the second case, since we need to deal with multifunctors.

I Example 5.3 (EM-law for Nondeterministic Automata). Let (Pfin, η, µ) be the finite powerset
monad from Theorem 4.3. The EM-law λ : Pfin(2×_A)⇒ 2× Pfin(_)A is defined, for any
set X, as

λX(S) =
(
o, λa ∈ A. {s′(a) | (o′, s′) ∈ S}

)
, where o =

{
1 ∃s′ ∈ XA.(1, s′) ∈ S
0 else

.

This is exactly the one exploited for the standard powerset construction from automata
theory [20]. Indeed, for a nondeterministic automaton c : X → 2×Pfin(X)A, the map [[−]]◦ηX
assigns to each state its accepted language. Theorem 5.2 ensures that it is nonexpansive (see
the extended version [arXiv:1505.08105] for a detailed proof).

I Example 5.4 (EM-law for Probabilistic Automata). Let (D, η, µ) be the distribution monad
from Theorem 4.4 and M be the machine bifunctor from Theorem 3.5. There is a known [20]
EM-law λ : D([0, 1]×_A)⇒ [0, 1]×DA given by the assignment

λX(P) =

 ∑
r∈[0,1]

r · P (r,XA), λa ∈ A.λx ∈ X.
∑

s∈XA, s(a)=x

P ([0, 1], s)

Also this EM-law is nonexpansive, as shown in the extended version [arXiv:1505.08105].

Any FT -coalgebra c : X → FTX can always be regarded as an F T -coalgebra by equipping
X with the discrete metric assigning > to non equal states (in this way, c is trivially
nonexpansive). The consequence of the nonexpansiveness of the EM-law λ is the following:
the “generalized determinization” procedure for nondeterministic and probabilistic automata
can now be lifted to pass from F T -coalgebras to F̂ -coalgebras in EM(T) by using the upper
adjunction in the diagram below (analogously to [13, 14]).

PMet EM(T)

Set EM(T)

U V

LT

UT

LT

UT

F

F

F̂

F̂

Since we can also lift the final F -coalgebra to EM(T), we can use it to define trace distance.
This procedure is detailed in the next section.

CALCO’15

http://arxiv.org/abs/1505.08105
http://arxiv.org/abs/1505.08105

46 Towards Trace Metrics via Functor Lifting

5.2 Final Coalgebra for the Lifted Machine Functor
If we fix the first component of the machine bifunctor M on Set we obtain an endofunctor
MB : Set→ Set, MB(X) = B×_A. It is known [16] that the final coalgebra for this functor
is κ : BA∗ → B×(BA∗)A with κ(t) = (t(ε), λa ∈ A.λw ∈ A∗.t(aw)). We employ an analogous
construction with our lifted machine bifunctor M on PMet, i.e. we fix a pseudometric space
(B, dB) of outputs and consider coalgebras of the functor M (B,dB) := M((B, dB),_). To
obtain the final coalgebra for this functor in PMet, we use the following result from [2].

I Proposition 5.5 ([2, Thm. 6.1]). Let F : PMet → PMet be a lifting of a functor
F : Set → Set which has a final coalgebra κ : Ω → FΩ. For every ordinal i we construct
a pseudometric di : Ω × Ω → [0,>] as follows: d0 := 0 is the zero pseudometric, di+1 :=
dFi ◦ (κ × κ) for all ordinals i and dj = supi<j di for all limit ordinals j. This sequence
converges for some ordinal θ, i.e., dθ = dFθ ◦ (κ× κ). Moreover κ : (Ω, dθ) 1→ (FΩ, dFθ) is the
final F -coalgebra.

It is hence enough to do fixed-point iteration for the functor F on the determinized state
set TX in order to obtain trace distance. The lifted monad is ignored at this stage, but its
lifting is of course necessary to establish the Eilenberg-Moore category and its adjunction.

We now consider our two examples, where in both cases F is the machine functor MB

(for two different choices of B):

I Example 5.6 (Final Coalgebra Pseudometric). Let M be the machine bifunctor.
1. We start with nondeterministic automata where the output set is B = 2 and we use the

discrete metric d2 as distance on 2 as in Theorem 3.6. As maximal distance we take
> = 1 and as evaluation function we use evM (o, s) = c ·maxa∈A s(a) for 0 < c < 1.
For any pseudometric d on 2A∗ – the carrier of the final M2-coalgebra – we know
that for elements (o1, s1), (o2, s2) ∈ 2 × (2A∗)A we have the Wasserstein pseudomet-
ric d ↓F

(
(o1, s1), (o2, s2)

)
= max

{
d2(o1, o2), c ·maxa∈A d

(
s1(a), s2(a)

)}
. Thus the fixed-

point equation from Theorem 5.5 is, for L1, L2 ∈ 2A∗ ,

d(L1, L2) = max
{
d2
(
L1(ε), L2(ε)

)
, c ·max

a∈A
d
(
λw.L1(aw), λw.L2(aw)

)}
Now because d2 is the discrete metric with d2(0, 1) = 1 we see that d2A∗ as defined below
is indeed the least fixed-point of this equation and thus (2A∗

, d2A∗) is the carrier of the
final M2-coalgebra.

d2A∗ : 2A
∗
× 2A

∗
→ [0, 1], d2A∗ (L1, L2) = cinf{n∈N|∃w∈An.L1(w)6=L2(w)} .

A determinized coalgebra has as carrier set sets of states P(X). Each of these sets
is mapped to the language that it accepts and the distance between two languages
L1, L2 : A∗ → 2 can be determined by looking for a word w of minimal length which is
contained in one and not in the other. Then, the distance is computed as c|w|. This
corresponds to the standard ultrametric on words.

2. Next we consider probabilistic automata where B = [0, 1] equipped with the standard
Euclidean metric de.
Furthermore the remaining parameters are set as follows: let > = 1 and the evaluation
function is evM (o, s) = c1o+ c2|A|−1∑

a∈A s(a) for c1, c2 ∈ (0, 1) such that c1 + c2 ≤ 1
as in Theorem 3.5. This time, the machine functor must be lifted as a bifunctor in order
to obtain the appropriate distance (cf. the discussion before Theorem 2.10).

P. Baldan, F. Bonchi, H. Kerstan, and B. König 47

For any pseudometric d on [0, 1]A∗ we know that for (r1, s1), (r2, s2) ∈ [0, 1]×([0, 1]A∗)A we
have d ↓F ((r1, s1), (r2, s2)) = c1|r1− r2|+ c2

|A| ·
∑
a∈A d(s1(a), s2(a)). Thus the fixed-point

equation from Theorem 5.5 is, for p1, p2 ∈ [0, 1]A∗ :

d(p1, p2) = c1|p1(ε)− p2(ε)|+ c2

|A|
·
∑
a∈A

d
(
λw.p1(aw), λw.p2(aw)

)
It is again easy to see that d[0,1]A∗ : [0, 1]A∗ × [0, 1]A∗ → [0, 1] as presented below is the
least fixed-point of this equation and therefore ([0, 1]A∗

, d[0,1]A∗) the carrier of the final
M ([0,1],de)-coalgebra.

d[0,1]A∗ (p1, p2) = c1 ·
∑
w∈A∗

(
c2

|A|

)|w|
|p1(w)− p2(w)| .

Here, a determinized coalgebra has as carrier distributions on states D(X). Each such
distribution is mapped to a function p : A∗ → [0, 1] assigning numerical values to words.
Then the distance, which can be thought of as a form of total variation distance with
discount, is computed by the above formula.
If instead of working in the interval [0, 1] we use [0,∞] with > = ∞, we can drop the
conditions c1, c2 < 1 and c1 + c2 ≤ 1. In this case we may set c2 := |A| and c1 := 1/2
and then the above distance is equal to the total variation distance, i.e.,

d[0,∞]A∗ (p1, p2) = 1
2 ·

∑
w∈A∗

|p1(w)− p2(w)| .

6 Conclusion, Related and Future Work

In the last years, an impressive amount of papers has studied behavioral distances for both
probabilistic and nondeterministic systems (see, e.g., [10, 7, 23, 1, 5, 6, 8]). The necessity of
a general understanding of such metrics is not a mere intellectual whim but it is perceived
also by researchers exploiting distances for differential privacy and quantitative information
flow (see for instance [4]). As far as we know, the first use of coalgebras for this purpose
dates back to [23], where the authors consider systems and distance for a fixed endofunctor
on PMet. In [2], we introduced the Kantorovich and Wasserstein approaches as a general
way to define “canonical liftings” to PMet and behavioral distances by finality. These are
usually branching-time, while many properties of interest for applications (see again [4])
are usually expressed by means of distances on set of traces. In this paper, we have shown
that the work developed in [2] can be fruitfully combined with [14] to obtain various trace
distances.

Among the several trace distances introduced in literature, it is worth to mention [1, 5, 6, 8].
Similar to the trace distance we obtain in Theorem 5.6 for probabilistic automata is the
one introduced in [1] for Semi-Markov chains with residence time. In [5, 6], both branching-
time and linear-time distances are introduced for metric transition systems, namely Kripke
structures where states are associated with elements of a fixed (pseudo-)metric space M ,
that would correspond to coalgebras of the form X → M × P(X). In [2], we have shown
an example capturing branching-time distance for metric transition systems, but for linear
distances we require a distributive law of the form P(M ×_)⇒M × P(_), for which we
would need at least M carrying an algebra for the monad P. We also plan to investigate
trace metrics in a Kleisli setting [11], where it might be easier to incorporate such examples.

CALCO’15

48 Towards Trace Metrics via Functor Lifting

There are two other direct consequences of our work that we did not explain in the
main text, but that are important properties of the distances that we obtain (and, indeed,
are mentioned in [4] amongst the desiderata for “good” metrics). First, the behavioral
branching-distance for F T provides an upper bound to the linear-distance F , analogously to
the well-known fact that bisimilarity implies trace equivalence. To see this, it is enough to
observe that there is a functor from the category of F T -coalgebras to the one of F -coalgebras
mapping c : X → F TX into c] : TX → F TX.

Second, since the final map [[−]] is a morphism in EM(T), the behavioral distance for F
is nonexpansive w.r.t. the operators of the monad T . Nonexpansiveness with respect to some
operators is a desirable property which has been studied, for instance in [7], as a generalization
of the notion of being a congruence for behavioral equivalence. Several researchers are now
studying syntactic rule formats ensuring this and other sorts of compositionality (see e.g. [9]
and the references therein) and we believe that our Theorem 5.2 may provide some helpful
insights.

In this perspective, however, our results are still unsatisfactory if compared to what
happens in the case of behavioral equivalences. From a fibrational point of view, one has
a canonical lifting to Rel (the category of relations and relation preserving morphisms)
such that compositionality holds on the nose and distributive laws always lift [12, Exercise
4.4.6]. The forgetful functor U : PMet→ Set is also a fibration [2], but Kantorovich and
Wasserstein liftings are not always so well-behaved. Fibrations might be useful also to
guarantee soundness of up-to techniques [3] for behavioral distances that, hopefully, will lead
to more efficient proofs and algorithms.

Another interesting future work would be to show that Kantorovich and Wasserstein
liftings arise from some universal properties, i.e., that they are the smallest and largest metric
in some continuum of metrics with certain properties. Here we would like to draw inspiration
from [22] which characterizes the Giry monad via a universal property on monad morphisms.

Finally, we would like to have an abstract understanding of the Kantorovich-Rubinstein
duality. Preliminary attempts suggest that this is very difficult: indeed the proof for the
probabilistic case relies on specific properties of distributions.

References
1 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On the total variation

distance of semi-markov chains. In Foundations of Software Science and Computation
Structures (FOSSACS 2015), volume 9034 of Lecture Notes in Computer Science. Springer,
2015.

2 Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Behavioral Met-
rics via Functor Lifting. In Venkatesh Raman and S. P. Suresh, editors, 34th Interna-
tional Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2014), volume 29 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 403–415. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.

3 Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. Coinduction up to in a
fibrational setting. In Proc. of CSL-LICS’14, 2014.

4 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Gener-
alized bisimulation metrics. In CONCUR 2014 – Concurrency Theory, Lecture Notes in
Computer Science, pages 32–46, 2014.

5 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching metrics for
quantitative transition systems. In Proc. of ICALP’04, volume 3142 of Lecture Notes in
Computer Science, pages 97–109. Springer, 2004.

P. Baldan, F. Bonchi, H. Kerstan, and B. König 49

6 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching system metrics.
IEEE Transactions on Software Engineering, 25(2), 2009.

7 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labelled Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

8 Uli Fahrenberg, Axel Legay, and Claus Thrane. The quantitative linear-time–branching-
time spectrum. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2011), volume 13 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 103–114. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2011.

9 Daniel Gebler and Simone Tini. Compositionality of approximate bisimulation for proba-
bilistic systems. In Proc. of EXPRESS/SOS’13, pages 32–46, 2013.

10 Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reasoning for prob-
abilistic concurrent systems. In Proc. IFIP TC2 Working Conference on Programming
Concepts and Methods, pages 443–458. North-Holland, 1990.

11 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Computer Science, 3 (4:11):1–36, November 2007.

12 Bart Jacobs. Introduction to coalgebra. Towards mathematics of states and observations,
2012. Draft.

13 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. In
Dirk Pattinson and Lutz Schröder, editors, Coalgebraic Methods in Computer Science, vol-
ume 7399 of Lecture Notes in Computer Science, pages 109–129. Springer Berlin Heidelberg,
2012.

14 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization.
Journal of Computer and System Sciences, 81(5):859–879, 2015. 11th International Work-
shop on Coalgebraic Methods in Computer Science, CMCS 2012 (Selected Papers).

15 Bartek Klin. Bialgebras for structural operational semantics: An introduction. Theoretical
Computer Science, 412(38):5043–5069, 2011.

16 E.G. Manes and M.A. Arbib. Algebraic approaches to program semantics. Texts and
Monographs in Computer Science, 1986.

17 John Power and Daniele Turi. A coalgebraic foundation for linear time semantics. Electronic
Notes in Theoretical Computer Science, 29:259–274, 1999.

18 J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80, 2000.

19 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical
Computer Science, 390(2–3):230–247, 2008.

20 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Gener-
alizing determinization from automata to coalgebras. Logical Methods in Computer Science,
9(1), 2013.

21 Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In
Proc. of LICS’97, pages 280–291, 1997.

22 Franck van Breugel. The metric monad for probabilistic nondeterminism, April 2005.
23 Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic tran-

sition systems. Theoretical Computer Science, 331:115–142, 2005.
24 Franck van Breugel and James Worrell. Approximating and computing behavioural dis-

tances in probabilistic transition systems. Theoretical Computer Science, 360(1):373–385,
2006.

25 Cédric Villani. Optimal Transport – Old and New, volume 338 of A Series of Comprehensive
Studies in Mathematics. Springer, 2009.

CALCO’15

A Fibrational Approach to Automata Theory
Liang-Ting Chen and Henning Urbat

Institut für Theoretische Informatik
Technische Universität Braunschweig, Germany
{l.chen,h.urbat}@iti.cs.tu-bs.de

Abstract
For predual categories C andD we establish isomorphisms between opfibrations representing local
varieties of languages in C, local pseudovarieties of D-monoids, and finitely generated profinite
D-monoids. The global sections of these opfibrations are shown to correspond to varieties of
languages in C, pseudovarieties of D-monoids, and profinite equational theories of D-monoids,
respectively. As an application, a new proof of Eilenberg’s variety theorem along with several
related results is obtained, covering uniformly varieties of languages and their coalgebraic modi-
fications, Straubing’s C-varieties, and fully invariant local varieties.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Eilenberg’s variety theorem, duality, coalgebra, Grothendieck fibration

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.50

1 Introduction

In algebraic automata theory, regular languages are studied in connection with associated
algebraic structures, using Eilenberg’s celebrated variety theorem [7]. This theorem establishes
a one-to-one correspondence between varieties of languages and pseudovarieties of monoids. A
variety of languages associates to each finite alphabet Σ a set VΣ of regular languages over Σ
which is closed under (a) the boolean operations (union, intersection and complement), (b) left
derivatives a−1L = {w ∈ Σ∗ | aw ∈ L } and right derivatives La−1 = {w ∈ Σ∗ | wa ∈ L }, for
a ∈ Σ, and (c) preimages of free monoid morphisms, i.e. for every free monoid homomorphism
f : Σ∗ → ∆∗ and every L ∈ V∆, the preimage f−1[L] lies in VΣ.

Not every interesting class of languages falls within this scope, though. For this reason
several authors weakened the closure properties in the definition of a variety of languages,
and proved Eilenberg-type theorems for these modified varieties. For example, Pin’s positive
varieties [14], omitting closure under complement, correspond to pseudovarieties of ordered
monoids. Polák’s disjunctive varieties [16], further dropping closure under intersection,
correspond to pseudovarieties of idempotent semirings. Reutenauer’s xor varieties [18], closed
under symmetric difference in lieu of the boolean operations, correspond to pseudovarieties
of associative algebras over the field Z2. Straubing [20] introduced C-varieties of languages,
where one restricts to closure under preimages of a chosen class C of free monoid morphisms
in lieu of all free monoid morphisms. They are in bijection with C-pseudovarieties of monoid
morphisms, these being classes of monoid morphisms with suitable closure properties.

The above notions of a variety of languages treat the alphabet as a variable. A closely
related line of work concerns “local” versions of Eilenberg’s variety theorem where a fixed
alphabet Σ is considered. Using the well-known duality between boolean algebras and Stone
spaces, Pippenger [15] demonstrated that the boolean algebra Reg(Σ) of all regular languages
over Σ dualises to the underlying Stone space of the free profinite monoid on Σ. Later,
Gehrke, Grigorieff, and Pin [8] considered local varieties of languages over Σ, i.e. boolean

© Liang-Ting Chen and Henning Urbat;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Paweł Sobociński; pp. 50–65

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

L.-T. Chen and H. Urbat 51

subalgebras of Reg(Σ) closed under left and right derivatives, and characterised them as sets
of regular languages over Σ definable by profinite equations.

In the recent work of Adámek, Milius, Myers, and Urbat [1, 2] a categorical approach
to Eilenberg-type theorems was presented, covering many of the aforementioned results
uniformly. The leading idea is to take two varieties of (possibly ordered) algebras C and D

whose full subcategories on finite algebras are dually equivalent. Local varieties of languages
are then modelled as coalgebras in C, and monoids as monoid objects in D. The main
result of [1], the General Local Variety Theorem, states that local varieties of languages
over Σ in C (= sets of regular languages over Σ closed under C-algebraic operations and
left and right derivatives) correspond to local pseudovarieties of Σ-generated D-monoids
(= sets of Σ-generated finite D-monoids closed under quotients and subdirect products).
The General Variety Theorem of [2] establishes a correspondence between (non-local)
varieties of languages in C and pseudovarieties of D-monoids. Then the classical Eilenberg
theorem is recovered by taking C = boolean algebras and D = sets, and other choices of C
and D give its modifications due to Pin, Polák and Reutenauer along with new concrete
Eilenberg-type correspondences.

The present paper investigates from a categorical perspective various important concepts
of algebraic automata theory whose precise connection was left open in [1, 2], notably
(a) the connection between local pseudovarieties of D-monoids and profinite D-monoids;
(b) the connection between the local and non-local versions of the General Variety Theorem.

Our strategy is to organise all local varieties of languages into a category LAN whose
objects are pairs (Σ, V) of a finite alphabet Σ and a local variety of languages over Σ in
C. With a suitable choice of morphisms in LAN (see Definition 3.7) the projection functor
p : LAN→ Free(MonD) into the category of finitely generated free D-monoids, mapping
(Σ, V) to the free D-monoid over Σ, is an opfibration. Similarly one can form the category
LPV of local pseudovarieties of D-monoids and the category PFMon of finitely generated
profinite D-monoids, which again yield opfibrations over Free(MonD) as shown below:

LAN

p
''

∼= // LPV

q

��

∼= // PFMon

q′ww

Free(MonD).

Next we make two crucial observations. Firstly, we observe that the global sections,
i.e. right inverse functors, of the above opfibrations p and q′ correspond by definition to
varieties of languages in C and profinite equational theories of D-monoids, respectively.
Secondly, we prove that the three opfibrations are isomorphic. The isomorphism LAN ∼=
LPV is essentially the General Local Variety Theorem of [1], and the isomorphism LPV ∼=
PFMon is based on a limit construction. It follows that the global sections of p and q′ are
in bijection, from which we derive our main result:

There is a bijective correspondence between (i) varieties of languages in C, (ii) pseudo-
varieties of D-monoids, and (iii) profinite equational theories of D-monoids.

The bijection (ii)↔(iii) amounts to a categorical presentation of the well-known Reiterman-
Banaschewski theorem [17, 5]. And (i)↔(ii) gives an independent proof of the General
Variety Theorem of [2] based on its local version; see also Remark 5.6. Furthermore, the
flexibility of our fibrational setting leads to a number of additional new results without extra
effort. For example, by replacing the category Free(MonD) with an arbitrary subcategory

CALCO’15

52 A Fibrational Approach to Automata Theory

C ↪→ Free(MonD) we obtain a generalised version of Straubing’s variety theorem for C-
varieties of languages, as well as a new local variety theorem for fully invariant local varieties
of languages, i.e. local varieties closed under preimages of endomorphisms of free monoids.

Beyond these concrete results, we believe that the main contribution of the present paper
is a further illumination of the intrinsic duality deeply hidden in algebraic language theory,
most notably of the subtle interweavings of local and non-local structures, and the role of
profinite theories.

2 Preliminaries

In this section we review the categorical approach to algebraic automata theory developed
in [1, 2]. The idea is to interpret local varieties of languages inside a variety of algebras C,
and to relate them to finite monoids in another variety of (possibly ordered) algebras D

which is predual to C. The latter means that the full subcategories Cf and Df on finite
algebras are dually equivalent. Note that by an ordered algebra we mean an algebra (over
a finitary signature Γ) with a poset structure on its underlying set making all operations
monotone. Morphisms of ordered algebras are order-preserving Γ-homomorphisms. A variety
of ordered algebras is a class of ordered algebras specified by inequalities t1 ≤ t2 between
Γ-terms.

I Assumptions 2.1. In the following C and D are predual varieties of algebras, where
D-algebras may be ordered, subject to the following conditions:
1. C and D are locally finite, i.e. every free algebra on a finite set is finite;
2. epimorphisms in D are surjective;
3. D is entropic1, i.e. given an m-ary operation σ and an n-ary operation τ in the signature

of D and variables xij (i = 1, . . . ,m, j = 1, . . . , n), the following equation holds in D:

σ(τ(x11, . . . , x1n), . . . , τ(xm1, . . . , xmn)) = τ(σ(x11, . . . , xm1), . . . , σ(x1n, . . . , xmn)).

I Notation 2.2. We write Φ: Set→ C and Ψ: Set→ D for the left adjoints to the forgetful
functors |−| : C→ Set and |−| : D→ Set, respectively. By 1C = Φ1 and 1D = Ψ1 denote
the free algebras over the singleton set.

I Example 2.3. The following pairs of varieties C/D satisfy our assumptions. The details of
the first three examples can be found in [11].
1. BA/Set: The Stone Representation Theorem exhibits a dual equivalence between the

categories of finite boolean algebras and finite sets. It assigns to any finite boolean algebra
B the set BA(B,2) of all homomorphisms into the two-chain 2. The dual of h : A→ B

is given by precomposition with h, i.e. f ∈ BA(B,2) is mapped to f ◦ h ∈ BA(A,2).
2. DLat/Pos: Similarly, the Birkhoff Representation Theorem exhibits a dual equivalence

between the categories of finite distributive lattices with 0 and 1 and finite posets. It
assigns to a finite distributive lattice L the poset DLat(L,2), ordered pointwise, where
2 is the two-chain. On morphisms the dual equivalence again acts by precomposition.

3. SLat/SLat: The category of finite semilattices with 0 is self-dual: the dual equivalence
maps a finite semilattice S to the semilattice SLatf (S,2) whose join is taken pointwise.

1 In the unordered case, entropic varieties are precisely the categories of Eilenberg-Moore algebras for a
commutative finitary monad on Set, see [12]

L.-T. Chen and H. Urbat 53

4. Z2-Vec/Z2-Vec: The category of finite-dimensional vector spaces over any field F is
self-dual, by mapping a vector space V to its dual space F -Vec(V, F). By restricting F
to the binary field Z2, the category is also locally finite.

I Remark 2.4. Given a small finitely complete and cocomplete category A we denote
by Y : A → IndA and Yop : A → ProA the ind- and pro-completion of A, i.e. the free
completion under filtered colimits and cofiltered limits, respectively. There is an adjunction
F a U : ProA→ IndA such that Yop = F ◦ Y and Y = U ◦ Yop.

A

Yop

""

Y

||

IndA
F

++

U

kk ⊥ ProA

Applying this to A = Cf with Ind(Cf) = C and Pro(Cf) = Ind(Cop
f)op ∼= Ind(Df)op = Dop, we

see that the equivalence Cf ∼= D
op
f extends to an adjunction between C and Dop. We denote

both the equivalence Cf ∼= D
op
f and the induced adjunction between C and Dop by

S a P : Dop
f

∼=−→ Cf and S a P : Dop → C.

2.1 Local varieties of languages in C

The coalgebraic treatment of automata roots in the observation that a deterministic auto-
maton without an initial state is a coalgebra γ = 〈γ1st, γ2nd〉 : Q→ 2×QΣ for the set functor
T 0

Σ = 2 × (−)Σ. Here Σ is the finite input alphabet, 2 := {yes, no}, γ1st : Q → 2 is the
characteristic function of the final states, and γ2nd : Q→ QΣ is the transition map. In the
following we consider automata in the category C, which requires to replace the set 2 by
a suitable “output” object in C. Observe that the dual adjunction S a P : Dop → C has
dualising objects OC := P1D and OD := S1C, that is, for all M ∈ D and Q ∈ C we have

|PM | ∼= C(1C, PM) ∼= D(M,OD) and |SQ| ∼= D(1D, SQ) ∼= C(Q,OC).

Taking M = 1D we see that the set |OC| is isomorphic to |OD|. Note that in each of the
categories C/D in Example 2.3 the objects OC and OD have a two-element carrier. Motivated
by this observation, we replace the set 2 by the object OC to define automata in C.

I Definition 2.5. A Σ-automaton in C is a coalgebra γ = 〈γ1st, γ2nd〉 : Q→ OC ×QΣ for
the endofunctor TΣ := OC×(−)Σ on C, where (−)Σ is the Σ-fold product. A subautomaton
of (Q, γ) is a subcoalgebra of (Q, γ), represented by an injective coalgebra homomorphism
into Q. An automaton is called finite if the object Q of states is finite, and locally finite if
it is a filtered colimit of finite Σ-automata. The rational fixpoint ρTΣ is the filtered colimit
of all finite Σ-automata. The categories of Σ-automata, finite Σ-automata and locally finite
Σ-automata in C are denoted by AutΣ, AutfΣ and Autlf Σ, respectively. Their morphisms
are coalgebra homomorphisms.

In [13, 3] it is shown that the rational fixpoint ρTΣ is the terminal locally finite coalgebra
(i.e. the terminal object of Autlf Σ), with the structure map ρTΣ

ζ−→ TΣ(ρTΣ) an isomorphism.
The rational fixpoint of the set functor T 0

Σ = 2× (−)Σ is the automaton of regular languages:
the states of ρT 0

Σ form the set Reg(Σ) of regular languages over Σ, the final states are those
languages containing the empty word ε, and the transitions are given by left derivatives, that
is, L a−→ a−1L = {w ∈ Σ∗ | aw ∈ L } for L ∈ Reg(Σ) and a ∈ Σ.

CALCO’15

54 A Fibrational Approach to Automata Theory

I Remark 2.6. To simplify the presentation, we assume in the following that |OC| = |OD| = 2.
The main reason is that in this case the rational fixpoint ρTΣ is a lifting of the above automaton
of regular languages to C, see the next proposition. Without this assumption one needs to
replace regular languages by regular behaviors, i.e. functions Σ∗ → |OC| realised by finite
Moore automata with output set |OC|. See also the discussion in [2, Section V].

I Proposition 2.7 (see [1]). The rational fixpoint ρTΣ is carried by the set Reg(Σ). Its
coalgebra structure ρTΣ

ζ−→ OC × (ρTΣ)Σ is given by the C-morphisms

ζ1st(L) =
{

yes if ε ∈ L;
no otherwise,

and ζ2nd(L)(a) = a−1L.

In the light of this proposition we also write Reg(Σ) for the rational fixpoint ρTΣ.

I Example 2.8. For C = BA, the rational fixpoint of TΣ is the boolean algebra Reg(Σ)
(w.r.t. ∪, ∩, (−){, ∅ and Σ∗), endowed with the automata structure given by the boolean
homomorphisms ζ1st and ζ2nd. Similarly, for the other categories C of Example 2.3 the
algebraic structure of ρTΣ = Reg(Σ) is (i) ∪, ∩, ∅, and Σ∗ for C = DLat; (ii) ∪ and ∅ for
C = SLat; (iii) symmetric difference L⊕ L′ = (L \ L′) ∪ (L′ \ L) and ∅ for C = Z2-Vec.

I Definition 2.9. A local variety of languages over Σ in C is a subautomaton V of
ρTΣ closed under right derivatives, i.e. L ∈ |V | implies La−1 = {w ∈ Σ∗ | wa ∈ L } ∈ |V |
for all a ∈ Σ. The

⋂
-semilattices of all (finite) local varieties of languages over Σ in C are

denoted by LANf
Σ and LANΣ, respectively.

Observe that a local variety of languages is closed under (i) the C-algebraic operations of
ρTΣ, being a subalgebra of ρTΣ in C, and (ii) left derivatives, being a subcoalgebra of ρTΣ.
For C = DLat (C = BA) a local variety of languages is precisely a (boolean) quotienting
algebra of languages in the sense of Gehrke et al. [8]: a set of regular languages over Σ closed
under finite union, finite intersection (and complement) as well as left and right derivatives.

2.2 D-monoids
Every entropic variety D of (ordered) algebras can be equipped with a symmetric monoidal
closed structure (D,⊗,1D), see e.g. [4] and [6, Theorem 3.10.1]. The unit 1D is the free
one-generated algebra and ⊗ is the usual tensor product of algebras, giving rise to a natural
bijection between morphisms and bimorphisms in D:

Hom(A⊗B,C) ∼= Bihom(A×B,C).

Recall that a bimorphism f : A×B → C in D is a set-theoretic function from A×B to C
such that f(a,−) : B → C and f(−, b) : A→ C are D-morphisms for any a ∈ A and b ∈ B.

Since the tensor product represents bimorphisms, the monoid objects of the monoidal
category (D,⊗,1D) correspond to the following algebraic concept:

I Definition 2.10. A D-monoid (M, •, e) is an object M of D equipped with a monoid
structure (|M |, •, e) in Set whose multiplication • : M ×M →M is a D-bimorphism. By a
morphism f : (M, •, e)→ (M ′, •′, e′) of D-monoids is meant a morphism f : M →M ′ of D
that is also a monoid morphism between the underlying monoids in Set. By MonfD and
MonD we denote the categories of (finite) D-monoids and all D-monoid morphisms.

L.-T. Chen and H. Urbat 55

I Example 2.11. For the categories D = Set, Pos, SLat and Z2-Vec of Example 2.3, the
D-monoids are precisely ordinary monoids, ordered monoids, idempotent semirings (with 0
and 1) and associative algebras over the field Z2, respectively.

I Remark 2.12.
1. In D we choose the factorisation system (epi, strong mono). Recall that epimorphisms in

D are precisely the surjective morphisms by Assumption 2.1.2. Strong monomorphisms
are precisely the injective morphisms if D is a variety of algebras, and embeddings
(i.e. injective order-reflecting morphisms) if D is a variety of ordered algebras. Hence

every D-morphism f : A → B factorises as A
Im(f)

// // f [A] // i // B where Im(f) is the
restriction of f to the image f [A] and i is injective (and order-reflecting). Further, the
factorisation system has the fill-in property: given a surjective morphism e, an injective
(and order-reflecting) morphism m and two morphisms u, v with ue = mv, there is a
unique morphism d such that u = md and v = de.

2. The factorisation system of D lifts to MonD. Hence submonoids are represented by
injective (order-reflecting) D-monoid morphisms, and quotient monoids by surjective
D-monoid morphisms.

Since MonD is a variety of (ordered) algebras, the forgetful functor MonD→ Set has a
left adjoint constructing free D-monoids. Here is a concrete construction:

I Proposition 2.13 (see [1]). The free D-monoid on a set Σ is carried by the D-object ΨΣ∗.
The monoid multiplication • extends the concatenation of words in Σ∗, and the unit is ε.

A finite Σ-generated D-monoid is a finite quotient eM : ΨΣ∗ � M of the free D-
monoid on Σ. Given another finite Σ-generated D-monoid eN : ΨΣ∗ � N we write M ≤ N if
there is a D-monoid morphism f : N →M satisfying eM = feN . With respect to this order
all (isomorphism classes of) finite Σ-generated D-monoids form a poset Quof (ΨΣ∗). Observe
that Quof (ΨΣ∗) is a join-semilattice: the join of M and N is the subdirect product, viz.
the image of the morphism 〈eM , eN 〉 : ΨΣ∗ →M ×N given by

M ∨N := { (eM (x), eN (x)) ∈M ×N | x ∈ ΨΣ∗ }.

IDefinition 2.14. A local pseudovariety ofD-monoids over Σ is an ideal of Quof (ΨΣ∗),
i.e. a set of finite Σ-generated D-monoids closed under quotients and subdirect products. By
LPVΣ we denote the

⋂
-semilattice of local pseudovarieties of D-monoids over Σ.

I Theorem 2.15 (General Local Variety Theorem [1]). For each finite alphabet Σ,

LANf
Σ
∼= Quof (ΨΣ∗) and LANΣ ∼= LPVΣ.

I Remark 2.16. 1. The first isomorphism takes a finite local variety OC
γ1st

←−− V γ2nd

−−−→ V Σ

in C and applies the equivalence functor S : Cf
∼=−→ D

op
f to its coalgebra structure. This

yields an algebra 1D
∼= S(OC) Sγ1st

−−−→ SV
Sγ2nd

←−−−− S(V Σ) ∼=
∐

Σ SV for the functor
FΣ = 1D +

∐
Σ(−) on D. Since the free D-monoid ΨΣ∗ also carries the initial algebra

for FΣ, there is a unique FΣ-algebra homomorphism eSV : ΨΣ∗ → SV into the algebra
constructed above. One then shows that eSV is surjective and there is a unique D-monoid
structure on SV making eSV a D-monoid morphism. We call eSV : ΨΣ∗ � SV the
(finite Σ-generated) D-monoid corresponding to V .

CALCO’15

56 A Fibrational Approach to Automata Theory

2. The second isomorphism follows from the observation that (a) LPVΣ is by definition the
ideal completion of Quof (ΨΣ∗), and (b) LANΣ is isomorphic to the ideal completion of
LANf

Σ. Indeed every finite local variety of languages is a compact element of LANΣ,
and every local variety is the directed union of its finite local subvarieties. Hence the
isomorphism LANΣ ∼= LPVΣ maps a local variety of languages V ↪→ ρTΣ to the local
pseudovariety of all finite Σ-generated D-monoids that correspond to some finite local
subvariety of V . The inverse isomorphism maps a local pseudovariety P of D-monoids
over Σ to the directed union of all finite local varieties of languages in C that correspond
to some element of P .

2.3 Preimages under D-monoid morphisms
Recall from Remark 2.6 that we assume |OC| = |OD| = 2. Hence a language L ⊆ ∆∗
may be identified with a morphism L : Ψ∆∗ → OD of D, viz. the adjoint transpose of the
characteristic function ∆∗ → |OD|. Given this identification, the preimage of L under a
D-monoid morphism f : ΨΣ∗ → Ψ∆∗ is the composite Lf : ΨΣ∗ → Ψ∆∗ → OD. By the
adjunction S a P : Dop → C, the morphism Pf is essentially the preimage function, because

|Pf | ∼= D(f,OD) : D(Ψ∆∗, OD)→ D(ΨΣ∗, OD).

In [2] it was shown that |Pf | restricts to a C-morphism f−1 : Reg(∆)→ Reg(Σ), taking any
language L : Ψ∆∗ → OD in Reg(∆) to its f -preimage. This observation makes the following
definition evident:

I Definition 2.17. Let f : ΨΣ∗ → Ψ∆∗ be a D-monoid morphism and V and W local
varieties of languages over Σ and ∆, respectively. Then V is said to be closed under
f-preimages of languages in W if Diagram 1 below commutes for some C-morphism h.

W
��

��

h // V
��

��

Reg(∆)
f−1
// Reg(Σ)

Diagram 1

ΨΣ∗ f
//

eM

����

Ψ∆∗

eN

����

M
g

// N

Diagram 2

Here is a dual characterisation of preimage closure:

I Lemma 2.18 (see [2]). In Definition 2.17 let V and W be finite, and let eM : ΨΣ∗ �M

and eN : Ψ∆∗ � N be the finite D-monoids corresponding to V and W , respectively. Then
Diagram 1 commutes iff Diagram 2 with g = Sh commutes.

3 Fibrations for Languages and Monoids

We are ready to present our fibrational setting for (local) varieties of languages in C and
(local) pseudovarieties of D-monoids. For general information on fibred categories the reader
is referred to [10]. Let us briefly recall some basic vocabulary:

I Definition 3.1. Let p : E→ B be a functor.
1. An object X ∈ E is above I ∈ B if pX = I, and similarly a morphism f in E is above a

morphism u in B if pf = u. A morphism f above idI is called vertical (over I).

L.-T. Chen and H. Urbat 57

2. The fibre over I ∈ B is the subcategory EI = p−1(I) of E whose objects are the objects
above I and whose morphisms are the vertical morphisms over I.

3. A morphism f : X → Y of E is opcartesian over u : I → J in B if pf = u and for
every morphism g : X → Z in E above wu for w : J → pZ, there is a unique morphism
h : Y → Z above w with g = hf .

4. p : E→ B is an opfibration over B if for every X ∈ E and u : pX → J in B there is an
opcartesian morphism f : X → Y above u, called an opcartesian lifting of u.

5. Two opfibrations p : E→ B and p′ : E′ → B are isomorphic if there is an isomorphism
i : E ∼= E′ preserving indices, that is, p′i = p.

6. A global section of an opfibration p : E→ B is a functor s : B→ E with es = id.
7. A poset opfibration is an opfibration such that for each I ∈ B the fibre EI is a poset.
8. A B-indexed poset is a functor H : B→ Pos.

All opfibrations we consider below are poset opfibrations. They are effectively inter-
changeable with indexed posets via the Grothendieck construction:
1. Given a poset opfibration p : E → B one defines an indexed poset Hp : B → Pos as

follows. Note first that every B-morphism I
u−→ J with an object X above I has a unique

opcartesian lifting X f−→ u∗X because EJ is a poset. Then Hp is defined by

I 7→ EI and
(
I
u−→ J

)
7→
(
EI

u∗−→ EJ

)
where u∗ maps X to u∗X.

2. Conversely, given an indexed poset H : B→ Pos, define the Grothendieck completion
of H to be the category

∫
H with

objects (I, x) where I ∈ B and x ∈ HI;
morphisms (I, x) u−→ (J, y) where I u−→ J is a morphism in B with Hu(x) ≤HJ y.

Then the projection functor pH :
∫
H → B mapping (I, x) to I and (I, x) u−→ (J, y) to

I
u−→ J is an opfibration.

The Grothendieck construction gives rise to an equivalence between suitable 2-categories of
indexed posets and opfibrations. We only need the following weaker statement:

I Theorem 3.2 (Grothendieck). Every poset opfibration p : E→ B is isomorphic to pHp
: E→

B, and every indexed poset H : B → Pos is naturally isomorphic to HpH : B → Pos.
Furthermore, if H,H′ : B→ Pos are two naturally isomorphic indexed posets then pH, pH′
are isomorphic opfibrations.

3.1 Local pseudovarieties of D-monoids as an opfibration
In this section we organise the local pseudovarieties of D-monoids into an opfibration
LPV → Free(MonD), or equivalently into an indexed poset Free(MonD) → Pos. The
base category Free(MonD) is the category of finitely generated free D-monoids: its objects
are finite sets Σ, and its morphisms Σ f−→ ∆ are all D-monoid morphisms ΨΣ∗ f−→ Ψ∆∗
between the free D-monoids on Σ and ∆, respectively. Hence Free(MonD) is dual to the
Lawvere theory of the variety MonD.

I Definition 3.3. The indexed poset (−)] : Free(MonD)→ Pos is defined as follows:
1. To each finite set Σ it assigns the poset Σ] = LPVΣ of all local pseudovarieties of

D-monoids over Σ, ordered by reverse inclusion ⊇.

CALCO’15

58 A Fibrational Approach to Automata Theory

2. To each D-monoid morphism f : ΨΣ∗ → Ψ∆∗ it assigns the monotone map f] : LPVΣ →
LPV∆, where for P ∈ LPVΣ the local pseudovariety f](P) ∈ LPV∆ consists of all finite
∆-generated D-monoids N with eNf = geM for some M ∈ P and some morphism g; see
Diagram 2.

I Lemma 3.4. (−)] is a well-defined functor.

The Grothendieck construction applied to the indexed poset (−)] : Free(MonD)→ Pos
yields the following equivalent opfibration:

I Definition 3.5. The category LPV of local pseudovarieties of D-monoids has

objects (Σ, P) where P is a local pseudovariety of D-monoids over Σ;
morphisms (Σ, P) f−→ (∆, Q) where f : ΨΣ∗ → Ψ∆∗ is a D-monoid morphism such

that for every N ∈ Q there exists M ∈ P and g : M → N subject to Diagram 2.

The projection LPV q−→ Free(MonD) mapping (Σ, P) to Σ and (Σ, P) f−→ (∆, Q) to f is
called the opfibration of local pseudovarieties of D-monoids.

3.2 Local varieties of languages in C as an opfibration
In complete analogy to Definition 3.3 and 3.5 we can define an indexed poset and its
corresponding opfibration representing local varieties of languages in C.

I Definition 3.6. The indexed poset (−)∗ : Free(MonD)→ Pos is defined as follows:
1. To each finite set Σ it assigns the poset Σ∗ = LANΣ of all local varieties of languages

over Σ in C, ordered by reverse inclusion ⊇.
2. To each D-monoid morphism f : ΨΣ∗ → Ψ∆∗ it assigns the monotone map f∗ : LANΣ →

LAN∆, where for V ∈ LANΣ the local variety f∗(V) ∈ LAN∆ is the directed union of
all local varieties W satisfying Diagram 1 for some h. In other words, f∗(V) is the largest
local variety of languages over ∆ such that V is closed under f -preimages of languages
in f∗(V).

The Grothendieck construction gives the following opfibration:

I Definition 3.7. The category LAN of local varieties of languages in C has

objects (Σ, V) where V is a local variety of languages over Σ in C;
morphisms (Σ, V) f−→ (∆,W) where f : ΨΣ∗ → Ψ∆∗ is a D-monoid morphism such

that V is closed under f -preimages of languages in W .

The projection LAN p−→ Free(MonD) mapping (Σ, V) to Σ and (Σ, V) f−→ (∆,W) to f is
called the opfibration of local varieties of languages in C.

The General Local Variety Theorem (see Theorem 2.15) implies that the two indexed
posets (−)], (−)∗ : Free(MonD)→ Pos of Definition 3.3 and 3.6 are naturally isomorphic.
Indeed, recall from Remark 2.16 that the isomorphism LPVΣ ∼= LANΣ sends a local
pseudovariety P ∈ LPVΣ to the directed union of all finite local varieties of languages over
Σ in C corresponding to the finite Σ-generated D-monoids in P . From this and Lemma 2.18
we conclude that the diagram below commutes for all D-monoid morphisms f : ΨΣ∗ → Ψ∆∗.

LPVΣ

f]

��

∼= // LANΣ

f∗

��

LPV∆ ∼=
// LAN∆

L.-T. Chen and H. Urbat 59

Hence, by Theorem 3.2, we get an isomorphism between the corresponding opfibrations:

I Theorem 3.8. The opfibrations p : LAN→ Free(MonD) and q : LPV→ Free(MonD)
are isomorphic.

I Definition 3.9. By a variety of languages in C is meant a global section of p, i.e. a
functor V : Free(MonD)→ LAN with pV = id.

In more concrete terms, a variety of languages in C is given by a collection of local varieties
VΣ ∈ LANΣ (where Σ ranges over all finite alphabets) such that for every f : ΨΣ∗ → Ψ∆∗
the local variety VΣ is closed under f -preimages of languages in V∆. For C = BA the above
definition corresponds to Eilenberg’s original concept, see Introduction. Similarly, varieties
of languages in DLat, SLat and Z2-Vec are precisely the positive varieties of Pin [14], the
disjunctive varieties of Polák [16] and the xor varieties of Reutenauer [18], respectively.

Theorem 3.8 implies that every global section of p : LAN→ Free(MonD) corresponds
uniquely to a global section of q : LPV → Free(MonD). In the next section we will see
that also the global sections of q admit a concrete interpretation.

4 Profinite D-Monoids

A profinite D-monoid is a cofiltered limit of finite D-monoids, and the profinite com-
pletion M̂ of a D-monoid M is the cofiltered limit of the diagram of all its finite quotients.
Since limits in MonD are formed on the level of Set, every profinite D-monoid is equipped
with a profinite topology, i.e. it can be viewed as a Stone space if D is a variety of algebras,
resp. an ordered Stone space if D is a variety of ordered algebras.2 By ProMonfD denote the
category of profinite D-monoids with continuous (order-preserving) D-monoid morphisms.

I Theorem 4.1. 1. ProMonfD is the pro-completion of the category MonfD of finite
D-monoids, cf. Remark 2.4.

2. The profinite completionM 7→ M̂ gives a left adjoint to the forgetful functor ProMonfD→
MonD.

The first item follows from [11, Proposition VI.2.4 and Remark VI.2.5]. The argument given
there for varieties of algebras also applies to ordered algebras. The second item follows from
a standard argument for ordinary monoids, see e.g. [19, Theorem 3.2.7].

I Example 4.2. For our predual categories C/D of Example 2.3 we obtain the following
descriptions of the categories ProDf , MonD and ProMonfD, cf. [11, Theorem VI.2.9].

C D ProDf MonD ProMonfD

BA Set Stone Mon Stone(Mon)
DLat Pos OStone OMon (to be characterised)
SLat SLat Stone(SLat) ISRing Stone(ISRing)
Z2-Vec Z2-Vec Stone(Z2-Vec) Z2-Alg Stone(Z2-Alg)

Stone and OStone are the categories of (ordered) Stone spaces and continuous (order-
preserving) maps. The categories in the fourth column are the categories of monoids,
ordered monoids, idempotent semirings and Z2-algebras, respectively; see Example 2.11. By

2 An (ordered) Stone space is a compact space such that for every x 6= y (resp. x 6≤ y) there exists a
clopen (upper) set containing x but not y.

CALCO’15

60 A Fibrational Approach to Automata Theory

Stone(A) for a variety of algebras A we mean the category of A-algebras in Stone. For
example, Stone(Mon) is the category of monoids equipped with a Stone topology (making
the monoid multiplication continuous) and continuous monoid morphisms.

4.1 Local pseudovarieties of D-monoids vs. profinite D-monoids
In this section we show how to identify local pseudovarieties of D-monoids over Σ with
Σ-generated profinite D-monoids. In the following quotients of profinite D-monoids are
meant to be represented by surjective continuous D-monoid morphisms. A Σ-generated
profinite D-monoid is a quotient of Ψ̂Σ∗, the profinite completion of the free D-monoid
ΨΣ∗. Note that, by Theorem 4.1, Ψ̂Σ∗ is the free profinite D-monoid on the free D-monoid
ΨΣ∗ w.r.t. the forgetful functor ProMonfD → MonD, and hence also the free profinite
D-monoid on the set Σ w.r.t. the composite forgetful functor ProMonfD→MonD→ Set.
The following standard facts will be useful.

I Lemma 4.3 (see e.g. [19, Chapter 3]). Let F : J→ KHaus be a cofiltered diagram in the
category of compact Hausdorff spaces and continuous functions.
1. If every Fi

Ff−−→ Fj for i f−→ j is surjective, then the limit projections LimF
πi−→ Fi are

also surjective.
2. If ϕ : ∆X ⇒ F is a cone over F such that every projection ϕi : X → Fi is surjective, then

the mediating morphism X → LimF is also surjective.

I Remark 4.4. 1. To each local pseudovariety P ∈ LPVΣ we associate a Σ-generated
profinite D-monoid as follows. Note first that P defines a cofiltered diagram in ProMonD
via the projection (e : ΨΣ∗ �M) 7→M . Since the connecting morphisms are surjective,
the above lemma implies that every limit projection LimP →M for M ∈ P is surjective.
Moreover, given P ⊆ P ′ in LPVΣ, there is a surjective mediating morphism h : LimP ′ →
LimP . In particular, taking P ′ to be the local pseudovariety of all finite quotients of
ΨΣ∗ with LimP ′ = Ψ̂Σ∗ we get a surjective morphism Ψ̂Σ∗ � LimP , i.e. a Σ-generated
profinite D-monoid.

2. Conversely, to each Σ-generated profinite D-monoid eΣ : ΨΣ∗ � FΣ we associate a local
pseudovariety VFΣ ∈ LPVΣ as follows: VFΣ consists of all finite Σ-generated D-monoids
of the form ΨΣ∗ η

// Ψ̂Σ∗ eΣ // // FΣ eM // // M , where η is the universal arrow of the
adjunction between ProMonfD and MonD (see Theorem 4.1) and M is any finite
quotient of FΣ. Observe that such a composite eMeΣη is always surjective: since Ψ̂Σ∗ is
the limit of all finite quotients of ΨΣ∗, and M is finite (hence a finitely copresentable
object of ProMonD), the morphism eMeΣ factorises through some limit projection πN ,
where N is a finite quotient of ΨΣ∗:

ΨΣ∗ η
//

##

Ψ̂Σ∗

πN

����

eΣ // // FΣ

eM

����

N
f
// // M

It is not difficult to see that the two constructions of Remark 4.4 are mutually inverse.
More precisely:

L.-T. Chen and H. Urbat 61

I Theorem 4.5. Let Σ be a finite set.
1. Every Σ-generated profinite D-monoid FΣ corresponds uniquely to a local pseudovariety

VFΣ of D-monoids over Σ. That is,

Quo(Ψ̂Σ∗) ∼= LPVΣ,

where Quo(Ψ̂Σ∗) denotes the poset of Σ-generated profinite D-monoids.
2. Let f : ΨΣ∗ → Ψ∆∗ be a D-monoid morphism, FΣ a Σ-generated profinite D-monoid

and F∆ a ∆-generated profinite D-monoid. Then the right-hand diagram below commutes
for some h iff for every N ∈ VF∆ there is some M ∈ VFΣ and a morphism hN making
the left-hand diagram commute:

ΨΣ∗ f
//

����

Ψ∆∗

����

M
hN

// N

Ψ̂Σ∗ f̂
//

����

Ψ̂∆∗

����

FΣ
h
// F∆

From the opfibration q : LPV → Free(MonD) we thus get the following isomorphic
opfibration:

I Definition 4.6. The category PFMon has

objects (Σ, FΣ) where FΣ is a Σ-generated profinite D-monoid;
morphisms (Σ, FΣ) f−→ (∆, F∆) where f : ΨΣ∗ → Ψ∆∗ is a D-monoid morphism

making the following diagram commute for some h:

Ψ̂Σ∗ f̂
//

����

Ψ̂∆∗

����

FΣ
h
// F∆

(1)

The projection PFMon q′−→ Free(MonD) sending (Σ, FΣ) to Σ and (Σ, FΣ) f−→ (∆, F∆)
to f is called the opfibration of finitely generated profinite D-monoids.

I Corollary 4.7. The opfibrations q : LPV→ Free(MonD) and q′ : PFMon→ Free(MonD)
are isomorphic.

4.2 Pseudovarieties of D-monoids vs. profinite equational theories
By a pseudovariety of D-monoids is meant a class of finite D-monoids closed under
submonoids, quotients and finite products. In this section we relate pseudovarieties of
D-monoids to profinite equational theories of D-monoids.

I Definition 4.8. A profinite equational theory of D-monoids is a global section
T : Free(MonD)→ PFMon of the opfibration q′ : PFMon→ Free(MonD).

More explicitly, a profinite equational theory associates to each finite set Σ a Σ-generated
profinite monoid eΣ : Ψ̂Σ∗ � FΣ such that, for all f : ΨΣ∗ → Ψ∆∗, diagram (1) commutes
for some h.

CALCO’15

62 A Fibrational Approach to Automata Theory

I Remark 4.9.
1. To each profinite equational theory T with T Σ = (Σ, FΣ) we associate a pseudovariety

V of D-monoids as follows: V consists of all finite D-monoids M such that for all D-
monoid morphisms f : Ψ̂Σ∗ →M there exists a (necessarily unique) D-monoid morphism
f : FΣ→M with feΣ = f .

Ψ̂Σ∗

f
""

eΣ // // FΣ

f

��

M

2. Conversely, to each pseudovariety V of D-monoids we associate a profinite equational
theory T with T Σ = (Σ, FΣ) as follows: given Σ, form the local pseudovariety PΣ of all
Σ-generated finite D-monoids e : ΨΣ∗ �M with M ∈ V. Then FΣ is the Σ-generated
profinite D-monoid defined by PΣ, see Remark 4.4 and Theorem 4.5.

Again, these constructions are mutually inverse:

I Theorem 4.10. The maps T 7→ V and V 7→ T define a bijective correspondence between
profinite equational theories and pseudovarieties of D-monoids.

I Remark 4.11. This theorem can be viewed as a categorical presentation of the well-known
Reiterman-Banaschewski correspondence [17, 5]. The difference lies in the definition of a
profinite theory: Reiterman and Banaschewski work with profinite equations (i.e. pairs of
elements of free profinite monoids) while we work with quotients of free profinite monoids.

5 Eilenberg-type Correspondences

Putting the results of our paper together we will now derive a number of Eilenberg-type
theorems. Each of these theorems is an immediate consequence of the isomorphisms we
established between our opfibrations p, q and q′ (see the diagram in the Introduction) and
the characterisation of their global sections. First, by Theorem 4.5 we get another version of
the General Local Variety Theorem, i.e. Theorem 2.15.

I Theorem 5.1 (General Local Variety Theorem II). There is a one-to-one correspondence
between local varieties of languages over Σ in C and Σ-generated profinite D-monoids:

LANΣ ∼= Quo(Ψ̂Σ∗).

By Theorem 3.8, Corollary 4.7, and Theorem 4.10, we recover the main result of [2]:

I Theorem 5.2 (General Variety Theorem). There is a one-to-one correspondence between
varieties of languages in C and pseudovarieties of D-monoids.

An interesting generalisation of this theorem emerges by restricting Free(MonD) to a
subcategory. Recall that the pullback in Cat of an opfibration p : E→ B along any functor
F : B′ → B is again an opfibration, see e.g. [10, Lemma 1.5.1].

I Definition 5.3. For a subcategory C ↪→ Free(MonD), a C-variety of languages in
C is a global section of the opfibration pC : LANC → C obtained as the pullback of the

L.-T. Chen and H. Urbat 63

opfibration p along the inclusion. Similarly, a profinite equational C-theory of D-
monoids is a global section of the opfibration q′C : PFMonC → C obtained as the pullback
of q′ : PFMon→ Free(MonD) along the inclusion.

LANC
� � //

pC

��

LAN

p

��

C �
�

// Free(MonD)

PFMonC
� � //

q′C
��

PFMon

q′

��

C �
�

// Free(MonD)

More explicitly, a profinite equational C-theory associates to each Σ ∈ C a Σ-generated
profinite monoid eΣ : Ψ̂Σ∗ � FΣ such that, for all f : ΨΣ∗ → Ψ∆∗ in C, diagram (1)
commutes for some h. Similarly, a C-variety of languages determines a family (VΣ)Σ∈C,
where VΣ is a local variety of languages over Σ in C and, for each f : ΨΣ∗ → Ψ∆∗ in C,
the local variety VΣ is closed under f -preimages of languages in V∆. For the case where
C = BA, D = Set and the subcategory C contains all objects of Free(Mon), this definition
coincides with the concept of a C-variety of languages introduced by Straubing [20]. He also
proved a special case of Theorem 5.4 below. Observe that since the opfibrations p and q′ are
isomorphic, so are their pullbacks pC and q′C. Therefore:

I Theorem 5.4 (General Variety Theorem for C-varieties of languages). There is a one-to-one
correspondence between C-varieties of languages in C and profinite equational C-theories of
D-monoids.

As an application of this theorem, let us choose C to be the full subcategory of
Free(MonD) on a single object Σ. Then a C-variety of languages in C is precisely a
local variety of languages over Σ in C closed under preimages of D-monoid endomorphisms
f : ΨΣ∗ → ΨΣ∗. We call such a local variety fully invariant. A profinite equational
C-theory consists of a single Σ-generated profinite D-monoid e : Ψ̂Σ∗ � FΣ such that, for
all D-monoid endomorphisms f : ΨΣ∗ → ΨΣ∗, ef̂ factors through e.

Ψ̂Σ∗ f̂
//

e
����

Ψ̂Σ∗

e
����

FΣ // FΣ

Again, such a Σ-generated profinite D-monoid is called fully invariant. Hence full invariance
means precisely that (in-)equalities are stable under translations, i.e. for every x, y ∈ Ψ̂Σ∗
and f : ΨΣ∗ → ΨΣ∗ we have that e(x) = e(y) implies e(f̂x) = e(f̂y) if D-algebras are
unordered; in the case that D-algebras are ordered, e(x) ≤ e(y) implies e(f̂x) ≤ e(f̂y).
Therefore Theorem 5.4 gives the following:

I Theorem 5.5 (Local Variety Theorem for Fully Invariant Varieties). There is a one-to-
one correspondence between fully invariant local varieties over Σ in C and fully invariant
Σ-generated profinite D-monoids.

I Remark 5.6. One may compare the approaches in the present paper and [2] as follows.
In [2] the authors form a functor ρT : Setop

f → C assigning to each Σ the rational fixpoint
ρTΣ = Reg(Σ), see Proposition 2.7, and define a variety of languages in C to be subfunctor
V of ρT such that each V Σ is a local variety of languages and closed under preimages of D-
monoid morphisms. The General Variety Theorem is then derived in a purely order-theoretic
way: one proves that the complete lattice of all varieties of languages is algebraic, establishes

CALCO’15

64 A Fibrational Approach to Automata Theory

an Eilenberg-type correspondence for its compact elements, and proceeds by ideal completion.
In comparison to our present fibrational setting, neither the General Local Variety Theorem
nor profinite algebras and the Reiterman-Banaschweski correspondence are used in [2]. Also
the generalisation to C-varieties is not immediate in the functorial setting of [2].

6 Conclusions and Future Work

In this paper we studied varieties of languages, pseudovarieties of monoids and profinite
equational theories from an abstract fibrational viewpoint. This led us to conceptually new
proofs and generalisations for a number of Eilenberg-type results.

Our notion of profinite equational theory is introduced on a rather abstract level, and
it would be helpful to characterise theories syntactically and compare them with classical
developments [17, 5]. If D-algebras are non-ordered, every Σ-generated profinite D-monoid
e : Ψ̂Σ∗ � M is the coequaliser of its kernel pair π1, π2 : E ⇒ Ψ̂Σ∗, where E is the kernel
congruence E = { (u, v) ∈ Ψ̂Σ∗ × Ψ̂Σ∗ | e(u) = e(v) }. Hence a profinite equational theory
corresponds to a family of profinite equations, i.e. pairs of elements of a free profinite monoid.
From this observation it should be possible to obtain syntactic counterparts of our results,
e.g. a generalisation of the main result of Gehrke et al. [8] that local varieties of languages in
BA and DLat are definable by profinite identities.

In addition, it would be useful to develop a notion of morphism between profinite
equational theories, and correspondingly between varieties of languages, hence lifting our
generalised Eilenberg-Reiterman correspondences from an isomorphism of posets to an
equivalence of categories. Such a result may further justify the importance of a categorical
treatment of algebraic automata theory.

References
1 J. Adámek, S. Milius, R. S. Myers, and H. Urbat. Generalized Eilenberg Theorem I: Local

Varieties of Languages. In A. Muscholl (ed.) Found. Softw. Sci. Comput. Struct. LNCS,
vol. 8412, pp. 366–380. Springer Berlin Heidelberg, 2014. arXiv:1501.02834 [cs.FL]

2 J. Adámek, R. S. Myers, S. Milius, and H. Urbat. Varieties of Languages in a Category.
Accepted for LICS 2015. arXiv:1501.05180 [cs.FL]

3 J. Adámek, S. Milius and J. Velebil. Iterative Algebras at Work. Math. Structures Comput.
Sci., 16 (6), pp. 1085–1131, 2006.

4 B. Banaschewski and E. Nelson. Tensor products and bimorphisms. Canad. Math. Bull.
19, pp. 385–402, 1976.

5 B. Banaschewski. The Birkhoff Theorem for varieties of finite algebras. Algebr. universalis,
17(1):360–368, 1983.

6 F. Borçeux. Handbook of Categorical Algebra: Volume 2, Categories and Structures. Cam-
bridge University Press, 1994.

7 S. Eilenberg. Automata, Languages, and Machines Vol. B, Academic Press, New York,
1976.

8 M. Gehrke, S. Grigorieff, and J.-É. Pin. Duality and equational theory of regular languages.
In Autom. Lang. Program. LNCS, vol. 5126, pp. 246–257. Springer Berlin Heidelberg, 2008.

9 C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.
Inf. Comput., 145(2):107–152, 1998.

10 B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.
11 P. T. Johnstone. Stone spaces. Cambridge University Press, 1982.
12 A. Kock. Monads on symmetric monoidal closed categories Arch. Math. 21:1–10, 1970

http://arxiv.org/abs/1501.02834
http://arxiv.org/abs/1501.05180

L.-T. Chen and H. Urbat 65

13 S. Milius. A sound and complete calculus for finite stream circuits. 25th Annu. IEEE Symp.
Log. Comput. Sci., pp. 421–430, 2010.

14 J.-É. Pin. A variety theorem without complementation. Russ. Math. (Iz. VUZ), 39:80–90,
1995.

15 N. Pippenger. Regular languages and stone duality. Theory Comput. Syst., 30(2):121–134,
1997.

16 L. Polák. Syntactic semiring of a language. In J. Sgall, A. Pultr, and P. Kolman (eds.)Math.
Found. Comput. Sci. LNCS, vol. 2136, pp. 611–620. Springer Berlin Heidelberg, 2001.

17 J. Reiterman. The Birkhoff theorem for finite algebras. Algebr. Universalis, 14(1):1–10,
1982.

18 C. Reutenauer. Séries formelles et algèbres syntactiques. J. Algebr., 66(2):448–483, 1980.
19 J. Rhodes and B. Steinberg. The q-theory of Finite Semigroups. Springer US, 2009.
20 H. Straubing. On logical descriptions of regular languages. In S. Rajsbaum (ed.) LATIN

2002 Theor. Informatics. LNCS, vol. 2286, pp. 528–538. Springer Berlin Heidelberg, 2002.

CALCO’15

Canonical Coalgebraic Linear Time Logics
Corina Cîrstea

University of Southampton, UK
cc2@ecs.soton.ac.uk

Abstract
We extend earlier work on linear time fixpoint logics for coalgebras with branching, by showing
how propositional operators arising from the choice of branching monad can be canonically added
to these logics. We then consider two semantics for the uniform modal fragments of such logics:
the previously-proposed, step-wise semantics and a new semantics akin to those of path-based
logics. We prove that the two semantics are equivalent, and show that the canonical choice made
for resolving branching in these logics is crucial for this property. We also state conditions under
which similar, non-canonical logics enjoy the same property – this applies both to the choice of a
branching modality and to the choice of linear time modalities. Our logics allow reasoning about
linear time behaviour in systems with non-deterministic, probabilistic or weighted branching. In
all these cases, the logics enhanced with propositional operators gain in expressiveness. Another
contribution of our work is a reformulation of fixpoint semantics, which applies to any coalgebraic
modal logic whose semantics arises from a one-step semantics.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Modal Logic

Keywords and phrases coalgebra, linear time logic, fixpoint logic

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.66

1 Introduction

Several recent works focus on the study of trace semantics for coalgebras with branching,
and of associated trace logics. The majority of these works concerns finite traces, for which
a coalgebraic account exists that uses using finality in either the Kleisli [7] or the Eilenberg-
Moore category [10] of the monad defining the branching type. Logics for finite traces were
studied in [11], with the approach involving a dual adjunction between the category of
Eilenberg-Moore algebras of the branching monad and itself.

A canonical, modular approach to defining maximal (including infinite) traces for coalgeb-
ras with branching was proposed in [1], and linear time coalgebraic fixpoint logics that match
this notion of linear time behaviour were studied in [2]. The logics in loc. cit. are interpreted
over coalgebras of type TF , with T : Set → Set a branching monad and F : Set → Set a
(typically polynomial) endofunctor. They use modalities arising from the endofunctor F to
formalise properties of linear time behaviours, and a hidden modality arising canonically
from the branching monad T to abstract away branching at each step. The semantics of these
logics is quantitative, and uses T1, with 1 a one-element set, as the domain of truth values.

x2 // ∗

x0
a // x1

b <<

c ""
x3 // ∗

Figure 1

The logics have no propositional operators, and attempting
to incorporate them in the usual way at the level of linear
time formulas fails, as such operators do not always interact as
expected with the branching modality. For example, taking T to
be the powerset monad and F = 1+A× Id, the associated (two-
valued) linear time logics use the standard diamond modality

implicitly in their semantics to abstract away branching at each step, and unary modalities
© Corina Cîrstea;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Paweł Sobociński; pp. 66–85

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.66
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Cîrstea 67

[a] (with the formula [a]ϕ stating that an a-transition is observed next, and subsequently ϕ
holds) together with a nullary modality ∗ (expressing successful termination) to formalise
properties of F -behaviours. The intention is that a linear time formula (containing modalities
∗ and [a] with a ∈ A) should hold in a state of a PF -coalgebra if there exists a maximal trace
from that state satisfying the given formula. Unfortunately, the step-wise semantics makes
the addition of a conjunction operator to the logic tricky: the obvious semantics (stipulating
that ϕ∧ψ holds in a state if both ϕ and ψ hold in that state) wrongly results in the pointed
P(1 +A× Id)-coalgebra in Figure 1 satisfying the linear time formula [a][b] ∗∧[a][c]∗, as there
is no maximal trace starting in x0 and satisfying both [a][b]∗ and [a][c]∗. The underlying
problem is that, by abstracting away branching in a step-wise manner, information about
which traces from a given state (x1 in this case) satisfy a given formula (e.g. [b]∗ or [c]∗)
is lost. In [2], this issue is dealt with by incorporating restricted versions of propositional
operators into (additional) modalities, thereby enhancing the logic for F -behaviours.

Here we take a different approach, by showing how to incorporate propositional operators
that arise canonically from the branching monad T into these logics. Our approach resembles
that of [11] and involves lifting the logics to the Eilenberg-Moore category of T. This
guarantees a smooth interaction between propositional operators and the branching modality,
thereby avoiding the previously-mentioned problem. For concrete Ts, the resulting proposi-
tional operators add expressiveness to the logics: arbitrary disjunctions for non-deterministic
branching, sub-convex combinations for probabilistic branching and linear combinations for
weighted branching.

To justify the canonical choice for the branching modality employed by our logics, we
provide an alternative, equivalent path-based semantics for their uniform modal fragments.
Roughly speaking, these fragments only contain formulas whose modal depth is uniformly n
for some n ∈ ω; however, for formulas without variables, the uniformity condition is slightly
less restrictive (see Section 5 for details). The definition of the path-based semantics involves
the use of a canonical distributive law of T over F to flatten finite-step TF -behaviours into
T-branches of finite-step F -behaviours. For example, if T = P, the alternative semantics
exactly captures the idea that a linear time formula holds in a state of a PF -coalgebra if there
exists a maximal trace from that state satisfying the given formula. The equivalence result
crucially depends on the choice of branching modality. Its proof assumes canonical choices
also for the linear time modalities, but a generalisation to logics where these modalities are
not canonical is subsequently stated. In particular, this generalisation applies to modalities
incorporating restricted versions of propositional operators, as used in [2].

Our technical approach relies on rephrasing the logics of [2] in the, by now standard,
dual adjunction framework (originating with [16, 15] and later generalised by several other
authors). In addition, we show how fixpoint logics can be accounted for in this framework,
by exploiting the existence of a coalgebraic structure on their modal fragments.

Our results hold for coalgebras of arbitrary compositions of polynomial endofunctors with
(possibly several occurrences of) a single branching monad on the category Set. However, for
simplicity of presentation, this paper restricts to TF -coalgebras.

A key assumption of the paper is that the branching monad T is commutative and
partially additive (see Section 2). If, in addition to being partially additive, T is also assumed
to be finitary, then one can show (see Remark 2.4) that T is isomorphic to a weighted
monad, that is TX ' SX with (S,+, 0, •, 1) a partial commutative semiring. Our examples
of branching monads include finitary ones (modelling weighted branching that arises from
partial commutative semirings) as well as infinitary ones (in particular, the full powerset
monad and the sub-probability distribution monad). While the latter (infinitary) examples
have a similar flavour to weighted branching, they do not strictly fall in this category.

CALCO’15

68 Canonical Coalgebraic Linear Time Logics

Our contributions are:
1. We rephrase the logics of [2] in the dual adjunction framework (Section 3).
2. We extend these logics with propositional operators arising canonically from the monad

T, by moving to the Eilenberg-Moore category of T (Section 4). The enhanced logics gain
in expressiveness (see Example 4.4).

3. We show how fixpoint semantics fits into the dual adjunction framework (Sections 3 and
4). Our approach applies to any coalgebraic modal logic defined in this framework.

4. We show that the uniform modal fragments of the logics in [2] and of their canon-
ical extensions with propositional operators admit an equivalent, path-based semantics
(Theorems 5.13 and 5.24).

5. We show that this equivalence result depends crucially on the canonical choice for the
branching modality. We also state conditions under which other choices for this modality,
as used e.g. in [6, 12], enjoy the same property (Theorem 5.16). As an example, this
allows the standard box modality to be used in linear time logics for coalgebras with
non-deterministic, non-empty branching (see Example 5.15).

6. We generalise the equivalence result to other choices of linear time modalities, as used
e.g. in [2] (Theorem 5.17).

Given the last two points, this paper is not only about canonical linear time logics, but
also about equally well-behaved non-canonical ones.

Related Work. Several quantitative logics for probabilistic systems have been studied in the
literature. Among these, the closer in spirit to our logics are perhaps those of [8], which have
a linear time flavour with a semantics for modal operators that involves weighted averages.
However, unlike the logics considered here, the logics of [8] employ conjunction and disjunction
operators with several possible fuzzy interpretations (e.g. minimum or multiplication for
conjunctions), none of which is canonical.

Following [2], a similar approach to defining finite trace logics has been taken in [12]. The
logics in loc. cit. are parametric in the choice of both branching and linear time modalities,
but contain neither propositional operators nor fixpoints. Moreover, the consequences of
the generality resulting from parametricity are not sufficiently explored. As we show later
(Example 5.14), the equivalence of the step-wise semantics with a more standard path-based
semantics does not hold in general.

2 Preliminaries

2.1 Partially Additive Monads
We use commutative monads (T, η, µ) on Set (where η : Id⇒ T and µ : T ◦ T⇒ T are the
unit and multiplication of T) to capture branching in coalgebraic types. We write stX,Y :
X × TY → T(X × Y) and dstX,Y : TX × TY → T(X × Y) for the strength and respectively
double strength maps of such a monad. The swapped strength map st′X,Y : TX×Y → T(X×Y)
is defined using the twist map twX,Y : X × Y → Y ×X (taking (x, y) ∈ X × Y to (y, x)) by

TX × Y
twTX,Y

// Y × TX
stY,X

// T(Y ×X)
TtwY,X

// T(X × Y)

I Example 2.1. As examples of commutative monads, we consider:
1. The powerset monad P : Set→ Set, modelling nondeterministic computations: P(X) =
{U | U ⊆ X}, with unit given by singletons, multiplication given by unions, strength
given by stX,Y (x, V) = {x} × V and double strength given by dstX,Y (U, V) = U × V .

C. Cîrstea 69

2. The semiring monad TS : Set → Set, with (S,+, 0, •, 1) a commutative semiring,
modelling weighted computations: TS(X) = {ϕ : X → S | supp(ϕ) is finite}, where
supp(ϕ) = {x ∈ X | ϕ(x) 6= 0} is the support of ϕ. Its unit and multiplication are

given by ηX(x)(y) =
{

1 if y = x

0 otherwise
and µX(Φ) =

∑
ϕ∈supp(Φ)

∑
x∈supp(ϕ)

Φ(ϕ) • ϕ(x), while

its strength and double strength are given by stX,Y (x, ψ)(z, y) =
{
ψ(y) if z = x

0 otherwise
and dstX,Y (ϕ,ψ)(z, y) = ϕ(z) • ψ(y). As an example we consider the tropical semiring
W = (N∞,min,∞,+, 0), with the weights being thought of as costs.

3. The sub-probability distribution monad S : Set→ Set, modelling probabilistic computa-
tions: S(X) = {ϕ : X → [0, 1] |

∑
x∈supp(ϕ)

ϕ(x) ≤ 1}1. Its unit, multiplication, strength

and double strength are defined similarly to those of the semiring monad.

It was shown in [13, 4] that any commutative monad T : Set→ Set induces a commutative
monoid structure on the set T1, with 1 = {∗} a one-element set. The monoid multiplication
• : T1× T1→ T1 is given by the composition

T1× T1
dst1,1

// T(1× 1) Tπ2 // T1

whereas the unit is given by η1(∗) ∈ T1.
In addition to being commutative, all the monads in Example 2.1 are partially additive

[1]. Commutative, partially additive monads T : Set→ Set were shown in loc. cit. to induce
a partial commutative semiring structure on the set T1. The resulting partial semirings serve
as the domains of truth values for the logics in [2]. To interpret fixpoint formulas, these
logics make use of a partial order on the set T1, canonically induced by the partial addition
operation on T1.

In order to recall the definition of partially additive monads, we note that any monad
T : Set→ Set with T∅ = 1 is such that, for any X, TX has a zero element 0 ∈ TX, obtained
as (T!X)(∗). This yields a zero map 0 : Y → TX for any X,Y , given by

Y
!Y // T∅ T !X // TX

with the maps !Y : Y → T∅ and !X : ∅ → X arising by finality and initiality, respectively.
Partial additivity is then defined using the following map:

T (X + Y)
〈µX◦Tp1,µY ◦Tp2〉

// TX × TY (1)

where p1 = [ηX , 0] : X + Y → TX and p2 = [0, ηY] : X + Y → TY .

I Definition 2.2 ([1]). A monad T : Set→ Set is called partially additive if T∅ = 1 and the
map in (1) is a monomorphism.

If the map in (1) is an isomorphism, then T is called additive. Additive monads were
studied in [13, 4].

1 This definition allows for sub-probability distributions with countable support.

CALCO’15

70 Canonical Coalgebraic Linear Time Logics

A (partially) additive monad T induces a (partial) addition operation + on the set TX,
given by T[1X , 1X] ◦ qX,X :

TX T(X +X)
〈µX◦Tp1,µY ◦Tp2〉

//T[1X ,1X]
oo TX × TX

qX,X
oo

+

kk

where qX,X : TX×TX → T(X+X) is the (partial) left inverse of the map 〈µX ◦Tp1, µY ◦Tp2〉.
That is, a+ b is defined if and only if (a, b) ∈ Im(〈µX ◦ Tp1, µY ◦ Tp2〉). Hence, when T is
additive, + is a total operation.

The next result relates commutative, partially additive monads to partial commutative
semirings. The latter are given by a set S carrying a partial commutative monoid structure
(S,+, 0) as well as a commutative monoid structure (S, •, 1), with • distributing over +.
Specifically, for all s, t, u ∈ S, s • 0 = 0, and whenever t + u is defined, so is s • t + s • u
and moreover s • (t+ u) = s • t+ s • u. A similar result in [4] relates additive monads and
commutative semirings.

I Proposition 2.3 ([1]). Let T be a commutative, (partially) additive monad. Then
(T1, 0,+, •, η1(∗)) is a (partial) commutative semiring.

I Remark 2.4. If, in addition to being partially additive, T is also finitary, then one can
show that T is isomorphic to the partial semiring monad TS : Set → Set induced by the
partial commutative semiring S = (T1, 0,+, •, η1(∗)). This monad is defined similarly to
the semiring monad TS of Example 2.1, except that this time only those finitely-supported
ϕ : X → S for which the sum

∑
x∈supp(ϕ)

ϕ(x) is defined are considered in TSX. That this yields

a monad follows as for the sub-probability distribution monad. The previous observation
then follows from T∅ = 1 ' (T1)∅, together with the existence of (natural) isomorphisms
TX ' T(

∐
x∈X 1) ' TSX for X finite and non-empty, with the latter isomorphism being

a consequence of the definition of + on T1 for T partially additive – TSX is the subset of∏
x∈X(T1) ' (T1)X reached by a map T(

∐
x∈X 1) →

∏
x∈X(T1) defined similarly to the

map in (1). While not all the monads in Example 2.1 are finitary (P and S are not), their
finitary versions can be phrased as partial semiring monads.

For a partially additive monad T, the partial monoid (T1,+, 0) can be used to define a
preorder relation on T1:

x v y if and only if there exists z ∈ S such that x+ z = y

It is shown in [1] that v has 0 ∈ S as bottom element and is preserved by • in each argument.

I Example 2.5. For the partially additive monads in Example 2.1, one obtains the commut-
ative semirings ({⊥,>},∨,⊥,∧,>) when T = P, W = (N∞,min,∞,+, 0) when T = TW
and the partial commutative semiring ([0, 1],+, 0, ∗, 1) when T = S (with a + b defined if
and only if a+ b ≤ 1). The preorders associated to these (partial) semirings are all partial
orders: ≤ on {⊥,>} for T = P, ≥ on N∞ for T = TW , and ≤ on [0, 1] for T = S.

From this point onwards, T denotes a commutative, partially additive monad with
associated partial commutative semiring (T1, 0,+, •, η1(∗)) and associated preorder v. We
further assume that the unit of • is a top element for v, and that v is both an ω-chain
complete and an ωop-chain complete partial order, that is, any increasing (decreasing) chain
has a least upper bound (greatest lower bound). These assumptions hold for all the preorders
in Example 2.5.

C. Cîrstea 71

2.2 Coalgebraic Linear Time Logics
We now recall briefly a variant of the logics proposed in [2]. The difference w.r.t. loc. cit. is
the lack of the propositional constant >. The presence of > in the syntax of the logics would
allow one to also express properties of partial traces. The logics below allow the formulation
of properties of completed, i.e. maximal traces only, as defined in [1].

The syntax of the logics is given by

ϕ ::= x | [λ](ϕ1, . . . , ϕar(λ)) | µx.ϕ | νx.ϕ, x ∈ V, λ ∈ Λ

with V a set of variables and Λ a set of modal operators with associated generalised predicate
liftings JλK : (T1)_ × . . .× (T1)_ ⇒ (T1)F_. Then, for a TF -coalgebra (X, γ) and a valuation
V : V → (T1)X (interpreting the variables in V as generalised predicates over X), a formula
ϕ is itself interpreted as a generalised predicate JϕKVγ ∈ (T1)X , defined inductively on the
structure of ϕ by

JxKVγ = V (x),
J[λ](ϕ1, . . . , ϕar(λ))KVγ = γ∗(extFX(JλKX(Jϕ1KVγ , . . . , Jϕar(λ)KVγ))), where the generalised
predicate lifting ext : (T1)_ ⇒ (T1)T_, called extension lifting in [2], takes a generalised
predicate p : X → T1 to the generalised predicate µ1 ◦ Tp : TX → T1 (with µ : T2 ⇒ T
the monad multiplication), and where γ∗ : (T1)TFX → (T1)X is given by pre-composition
with γ : X → TFX.
Jµx.ϕKV \{x}γ (Jνx.ϕKV \{x}γ) is the least (respectively greatest) fixpoint of the operator on
(T1)X defined by p 7−→ JϕKV [p/x]

γ , where the valuation V [p/x] : V → (T1)X is given by
V [p/x](x) = p and V [p/x](y) = V (y) for y ∈ V \ {x}.

The use of the extension lifting in the definition of the semantics allows the branching present
in the coalgebra γ to be abstracted away in a step-wise manner. For the operator in the last
clause to be order-preserving, monotonicity of both ext and the generalised predicate liftings
JλK, with λ ∈ Λ, is required. The fact that ext is monotone follows by an argument similar
to that of [1, Proposition 5.3], with the proof making use of the definition of the order v on
T1 in terms of the partial addition operation on T1. Monotonicity in each argument of the
generalised predicate liftings JλK, with λ ∈ Λ, was shown in [2] under the assumptions that F
is a polynomial functor and that the JλKs are canonically derived from a presentation of F as a
coproduct of finite products of identity functors. (Given such a presentation, each coproduct
component Idn yields a modality of arity n. The existence of least, respectively greatest
fixpoints as required by the last clause then follows by [5, Theorem 8.22]. We note that this
result only requires an order-preserving operator on a complete partial order. If, in addition,
T1 is a complete lattice (which is the case in all our examples), then the Knaster-Tarski
fixpoint theorem (see e.g. [5, Theorem 2.35]) also applies, and provides a characterisation of
least (greatest) fixpoints as least pre-fixpoints (respectively greatest post-fixpoints).

I Example 2.6. For F = 1 + A× Id ' 1 +
∐
a∈A Id, the modal operators arising from the

structure of F are a nullary modality ∗ together with unary modalities [a] with a ∈ A.
The associated predicate liftings, canonically derived from the structure of F , are given
by J∗KX ∈ (T1)FX , J∗KX(ι1(∗)) = 1 and J∗KX(ιa(x)) = 0 for x ∈ X, and respectively

JaKX : (T1)X → (T1)FX , JaKX(p)(ι1(∗)) = 0 and JaKX(p)(ιa′(x)) =
{
p(x), if a′ = a

0, otherwise
, for

p ∈ (T1)X and x ∈ X. Similarly, for F = A× Id× Id '
∐
a∈A(Id× Id), the induced modal

operators are binary modalities [a] with a ∈ A, with associated predicate liftings given

by JaKX(p1, p2)(ιa′(x, y)) =
{
p1(x) • p2(y), if a′ = a

0, otherwise
, for p1, p2 ∈ (T1)X and x, y ∈ X.

CALCO’15

72 Canonical Coalgebraic Linear Time Logics

(Similar use of the monoid multiplication • is made for any generalised predicate lifting of
arity ≥ 2 derived canonically from a polynomial endofunctor F .) Irrespective of the choice of
F , when T = P, a formula ϕ of the resulting logic holds in a state of a TF -coalgebra if that
state admits a maximal trace (element of the final F -coalgebra) satisfying ϕ. Also, when
T = S (T = TW), JϕKγ : X → T1 measures the likelihood (respectively minimal cost) with
which a maximal trace satisfying ϕ is exhibited by states of a TF -coalgebra (X, γ).

3 Coalgebraic Linear Time Logics via Dual Adjunctions

This section rephrases the generalised predicate lifting approach to defining the semantics of
coalgebraic linear time logics in terms of dual adjunctions.

For an endofunctor F : Set→ Set, the dual adjunction approach to defining a logic for

F -coalgebras involves a contravariant adjunction A
S
**

⊥ Setop

P

gg , a functor L : A → A and

a natural transformation δ : LP ⇒ PF . These yield a logic for F -coalgebras with syntax
given by the initial L-algebra (L, α) and with semantics J_Kγ : L → PX, for an F -coalgebra
(X, γ), defined as the unique L-algebra homomorphism from α to Pγ ◦ δX :

L(L)

α

��

LJ_Kγ
// LPX

δX
��

PFX
Pγ
��

L
J_Kγ

// PX

To match the syntax and semantics of the logics in [2], we consider the dual adjunction

Set
S
**

⊥ Setop

P

hh with S = P = (T1)_ . Following previous work on the modular construction

of coalgebraic logics [3] (see also [12] for a similar approach to defining forgetful logics), we
take a modular approach to defining a natural transformation δ : LP ⇒ PTF that captures
the above use of the extension lifting ext and of the generalised predicate liftings JλK derived
from the structure of F . The ingredients required for this are:

an endofunctor L : Set→ Set specifying the syntax of a logic for F -coalgebras, together
with a natural transformation δ : LP ⇒ PF , providing a one-step semantics for this logic,
a natural transformation σ : IdP ⇒ PT, providing a one-step semantics for a logic for
T-coalgebras.

The use of the identity functor to define a syntax for T reflects the fact that, in the logics of [2],
the branching modality is hidden from the syntax. Then, to capture the use of the extension
predicate lifting ext in the definition of the semantics, the components of σ : P ⇒ PT must
be given by

X
p
// T1 � σ // TX Tp

// T21 µ1 // T1 (2)

Following [2], other choices for a modality that abstracts away branching have been considered:
both [6] and [12] propose using an arbitrary T-algebra structure τ : T21→ T1 instead of µ1
in the definition of σ. While most of the results in this paper concern the canonical choice of
σ, we also explore the more general σs arising from a choice of τ as above. For this, we need
the following lemma, where we write Alg(T) for the category of Eilenberg-Moore algebras of
the monad T.

C. Cîrstea 73

I Lemma 3.1. For any (T1, τ) in Alg(T), with induced σ : P ⇒ PT, we have σT◦σ = Pµ◦σ.

Proof. σTX ◦ σX maps a predicate p : X → P1 to the predicate τ ◦ Tτ ◦ T2p, whereas
PµX ◦ σX maps p to τ ◦ Tp ◦ µX . The conclusion now follows from the commutativity of

T2X

µX

��

T2p
// T 31
µT1
��

Tτ // T21
τ

��

TX Tp
// T21 τ // T1

where the left and right squares follow by naturality of µ and from τ ∈ Alg(T), respectively. J

We now return to the endofunctor F and discuss the canonical choice for the corresponding
L and δ : LP ⇒ PF . As in [2], we assume that F is a polynomial endofunctor, and hence
naturally isomorphic to a coproduct of finite (including empty) products of identity functors.
Presenting F in this way canonically determines a set of modal operators (as already sketched
in Example 2.6).

I Definition 3.2. Let L ::= F =
∐
λ∈ΛX

ar(λ), with Λ a set of modal operators with specified
arities. Also, let δ : LP ⇒ PF be given by

(PX)ar(λ)

ιλ
��

•X◦(Pπ1×...×Pπar(λ))
// P (Xar(λ)) eλ // P (

∐
λ∈ΛX

ar(λ))

∐
λ∈Λ(PX)ar(λ)

δX

11

where in the above •Y : (PY)n → PY is given by the transpose of the map

((T1)Y × . . .× (T1)Y)× Y // T1 , (p1, . . . , pn, y) 7→ p1(y) • . . . • pn(y)

with • : T1× T1→ T1 the multiplication operation on T1 (extended to an n-ary operation),
and with eλ : P (Xar(λ))→ P (

∐
λ∈ΛX

ar(λ)) being given by

Xar(λ) p
// T1 � eλ // ∐

λ∈ΛX
ar(λ) [0,...,p,...,0]

// T1

The particular choice of L and δ in Definition 3.2 corresponds to a syntax with modal
operators λ ∈ Λ, with associated generalised predicate liftings given by eλ ◦ •X ◦ (Pπ1 ×
. . .× Pπar(λ)). That is, for λ ∈ Λ, the associated predicate lifting takes (p1, . . . , par(λ)) with
pi : X → T1 to the generalised predicate taking x ∈ X to eλ(p1(x) • . . . • par(λ)(x)) ∈ T1.
In particular, the generalised predicate liftings described in Example 2.6 are of this form.
Moreover, as explained in Section 2.2, these generalised predicate liftings are monotone.

Having fixed δ : LP ⇒ PF and σ : P ⇒ PT, a logic L for TF -coalgebras arises from the
one-step semantics specified by the natural transformation σF ◦ δ:

LP
δ +3 PF

σF +3 PTF

That is, for a TF -coalgebra (X, γ), the map J_Kγ : L → PX arises as the unique L-algebra
homomorphism from the initial L-algebra (L, α) to (PX,Pγ◦σFX ◦δX). More generally, for a
valuation V : V → PX, J_KVγ : LV → PX is defined as the unique L-algebra homomorphism
from the free L-algebra (LV , αV) over V to (PX,Pγ ◦ σFX ◦ δX) which extends V :

L(LV)

αV

��

L(J_KVγ)
// LPX

σFX◦δX
��

PTFX
Pγ
��

LV
J_KVγ

// PX

CALCO’15

74 Canonical Coalgebraic Linear Time Logics

Extending the logic L with fixpoint formulas can now be done as before. We write Lµ for
the resulting logic, and conclude the section by providing an alternative definition of the
semantics of fixpoint formulas. This exploits the existence of a coalgebraic structure on the
modal fragment of the logic, and will later smoothly generalise to the case where the logics
carry Alg(T)-structure. To this end, we let ϕ ∈ L{x}+V and consider the V +L(_)-coalgebra
(L{x}+V , βϕ), with βϕ : L{x}+V → V + LL{x}+V the unique L-algebra homomorphism
satisfying βϕ(v) = v for v ∈ V and βϕ(x) = ϕ. (Note that the set V + LL{x}+V inherits
L-algebra structure from (L{x}+V , α{x}+V), as L{x}+V ' {x}+ V + LL{x}+V .)

I Lemma 3.3. Let (X, γ) be a TF -coalgebra, let V : V → PX be a valuation, and let ϕ ∈
L{x}+V . Consider the operator O : [L{x}+V , PX]→ [L{x}+V , PX] defined by f 7→ [V, Pγ] ◦
(id + (σFX ◦ δX)) ◦ (id + Lf) ◦ βϕ:

V + LL{x}+V
id+Lf

// V + LPX

id+(σFX◦δX)
��

V + PTFX
[V,Pγ]
��

L{x}+V

βϕ

OO

f
// PX

Then Jµx.ϕKVγ (Jνx.ϕKVγ) is given by f0(x), with f0 : L{x}+V → PX the least (resp. greatest)
fixpoint of O.

Each application of the operator O above computes a new approximation of the semantics of
formulas in L{x}+V , obtained by replacing occurrences of the variable x by ϕ, and using the
previous approximation for the semantics of ϕ. We note that, by definition, O(f) extends
V : V → PX, and therefore so does f0.
I Remark 3.4. In practice, one only needs the set of subformulas of ϕ[ϕ/x], not the entire
L{x}+V , to define Jµx.ϕKVγ and Jνx.ϕKVγ . This set inherits a V + L(_)-coalgebra structure
from βϕ.
I Remark 3.5. Transporting the previous diagram via the dual adjunction to the category of
spaces, we obtain an operator on [X,SL{x}+V]:

SV × TFSL{x}+V

id+(σ[
LL{x}+V

◦Tδ[
L{x}+V

)
��

SV × TFXid×TFf[
oo

SV × SLL{x}+V

(βϕ)[
��

SL{x}+V X
f[

oo

[V [,γ]

OO

where δ[: FS ⇒ SL and σ[: TS ⇒ S are the mates of δ and σ, respectively (see e.g. [12] for
a definition). Since taking least/greatest fixpoints in both [L{x}+V , PX] and [X,SL{x}+V]
amounts to taking least/greatest fixpoints of operators on generalised relations on X×L{x}+V
(see [1, 2] for a treatment of generalised relations induced by T), the semantics of Lµ can
alternatively be defined in the category of spaces.

4 Enhanced Coalgebraic Linear Time Logics

LV and Lµ only contain modal operators, not also propositional ones. We now show how to
canonically add propositional operators to LV and Lµ, by lifting these logics to Alg(T).

C. Cîrstea 75

It follows e.g. from [9, Exercise 5.4.11] that for T a strong monad and (A,α) ∈ Alg(T),

the dual adjunction Set
S
**

⊥ Setop

P

hh with S = P = A
_ lifts to Alg(T)

S̃
**

⊥ Setop

P̃

kk
, with

S̃ = (A,α)_ and P̃ = A
_ , where the T-algebra required in the definition of P̃X is the

transpose of T(AX)×X
st′
AX,X
// T(AX ×X) Teval // TA α // A . We then have S = S̃Free and

P = UP̃ , where Free : Set→ Alg(T) takes X to (TX,µX) and U : Alg(T)→ Set takes (B, β)
to B:

Alg(T)

U

��

S̃

%%

Set

Free

OO

S
-- Setop

P

mm

P̃

ee

As before, our choice of (A,α) will be either (T1, µ1) or an arbitrary (T1, τ) ∈ Alg(T).
Irrespective of this, we can lift the functor L : Set→ Set from Section 3 to L̃ : Alg(T)→ Alg(T)
by taking L̃ = FreeLU . Then, the one-step semantics δ : LUP̃ = LP ⇒ PF = UP̃F lifts to
δ̃ ::= δ] : L̃P̃ = FreeLUP̃ ⇒ P̃F .

There is no need for a similar lifting of the identity functor on Set with associated one-step
semantics σ to Alg(T), since the components of σ are already Alg(T)-homomorphisms – this
follows from an equivalent definition of σX : (T1)X → (T1)TX as the transpose of the unique
extension of eval : (T1)X × X → T1 to a 2-linear map2 (T1)X × TX → T1, as shown in
[14, Proposition 4.1]. We therefore simply write σ̃ : P̃ ⇒ P̃T for the natural transformation
whose components are given by those of σ : P ⇒ PT .

This yields new logics L̃ and L̃Free(V) carrying T-algebra structure, and associated se-
mantics J_Kγ : L̃ → P̃X and J_KV

]

γ : L̃Free(V) → P̃X, for each TF -coalgebra (X, γ) and
valuation V : V → PX (extending to a T-algebra homomorphism V] : Free(V)→ P̃X). The
syntax of these logics contains propositional operators arising from the T-algebra structure
(see Example 4.4 at the end of this section for operators induced by specific monads) and
modal operators λ ∈ Λ. To add fixpoints to these logics, we can now proceed as in Lemma 3.3.

I Definition 4.1. Let (X, γ) be a TF -coalgebra, let V : V → PX be a valuation, and let
ϕ ∈ L̃Free({x}+V). Consider the operator Õ : [L̃Free({x}+V), P̃X]→ [L̃Free({x}+V), P̃X] defined
by f̃ 7→ [V], Pγ] ◦ (id + (σ̃FX ◦ δ̃X)) ◦ (id + L̃f̃) ◦ β̃ϕ:

Free(V) + L̃L̃Free({x}+V id+L̃f̃
// Free(V) + L̃P̃X

id+(σ̃FX◦δ̃X)
��

Free(V) + P̃TFX

[V],Pγ]
��

L̃Free({x}+V)

β̃ϕ

OO

f̃
// P̃X

Then Jµx.ϕKV
]

γ (respectively Jνx.ϕKV
]

γ) is defined as f̃0(x), where f̃0 : L̃Free({x}+V) → P̃X is
the least (respectively greatest) fixpoint of Õ. We write L̃µ for the resulting fixpoint logic.

2 A 2-linear map is required to preserve the T-algebra structure in the second argument, where the
assumed T-algebra structures on TX and T1 are the free ones (µX and µ1 respectively).

CALCO’15

76 Canonical Coalgebraic Linear Time Logics

Now observe that for a formula ϕ ∈ LV , one can consider the semantics of its translation
to L̃Free(V), in addition to the semantics JϕKVγ . As expected, the two agree:

I Proposition 4.2. Let !V : (LV , αV) → (U L̃Free(V), Uα̃Free(V) ◦ ηLUL̃Free(V)) be the unique
L-algebra morphism arising by freeness of (LV , αV). Then JϕKVγ = UJ!V(ϕ)KV]γ for ϕ ∈ LV .

Proof (sketch). The conclusion follows by freeness of (LV , αV) from the commutativity of

LLV L!V //

αV

��

LU L̃Free(V)

η
LUL̃Free(V)

��

LUJ_KV
]

γ
// LUP̃X

ηLUP̃X
��

LPX

δX

��

UFreeLU L̃Free(V)

Uα̃Free(V)

��

UFreeLUJ_KV
]

γ
// UFreeLUP̃X

Uδ]
X

��

UP̃FX

Uσ̃FX
��

PFX

σFX
��

UP̃TFX
UP̃γ
��

PTFX
Pγ
��

LV !V // U L̃Free(V)
UJ_KV

]

γ
// UP̃X PX

V
ηV //

V

33UFree(V) UV] // PX

J

Finally, Proposition 4.2 extends to formulas in Lµ.

I Proposition 4.3. Let V : V → PX, let f0 : L{x}+V → PX be the least (greatest) fixpoint
of the operator O in Lemma 3.3, and let f̃0 : L̃Free({x}+V) → P̃X be the least (resp. greatest)
fixpoint of the operator Õ in Definition 4.1. Then, f̃0◦!{x}+V = f0.

Proof (sketch). The conclusion follows from the fact that if f̃ is a least (greatest) fixpoint
of Õ, then Uf̃◦!{x}+V is a least (respectively greatest) fixpoint of O. This, in turn, follows
from the commutativity of the left, top and right trapezoids in the following diagram

V + LL{x}+V

[Uι1,Uι2]◦(ι+L!{x}+V)

&&

id+Lf
// V + LPX

[Uι1,Uι2]◦(ι+ηLPX)

yy id+(σFX◦δX)

��

U(Free(V) + L̃L̃Free({x}+V))
U(id+L̃f̃)

// U(Free(V) + L̃P̃X)

U(id+(σ̃FX◦δ̃X))
��

U(Free(V) + P̃TFX)

U [V],Pγ]
��

V + PTFX

[V,Pγ]

��

U L̃Free({x}+V)

Uβ̃ϕ

OO

Uf̃
// UP̃X

L{x}+V

βϕ

OO

!{x}+V
44

f
// PX

which is equivalent to the statement that for ϕ ∈ L{x}+V , the additional structure in
L̃Free({x}+V) is not needed when defining JµX.!{x}+V(ϕ)KV]γ and JνX.!{x}+V(ϕ)KV]γ . J

C. Cîrstea 77

I Example 4.4.
1. For T = P, Alg(T) is isomorphic to the category of join semi-lattices, and the enhanced

logic contains arbitrary disjunctions. With this, one can encode a "next" modality by
letting©ϕ ::=

∨
λ∈Λ[λ](ϕ, . . . , ϕ). This modality turns out to be very useful, for example,

the formula νx.© x is true in a state of a P ◦F -coalgebra if there exists a maximal trace
from that state. For F = A × Id and © as above, the formula [a](νx.© x) is true in
a state if there exists a maximal (hence infinite) trace from that state that starts with
an a. (Recall that our logics do not contain a propositional constant >, and therefore
partial traces cannot be formalised without using fixpoint operators.) For F = A× Id
and [a]ϕ ::=

∨
b∈A\{a}[b]ϕ for a ∈ A, the formula νx.µy.([a]x ∨ [a]y) is true in a state if

there exists a maximal trace from that state containing an infinite number of as. Finally,
for F = 1 +A× Id and [A]ϕ ::=

∨
a∈A[a]ϕ, the formula µx.(∗ ∨ [A]x) holds in a state if

there exists a finite maximal trace from that state.
2. For T = S, Alg(T) is isomorphic to the category of positive convex algebras, and the

enhanced logic contains sub-convex combinations of formulas. With this, one can encode
properties where preference is given to one observable linear time behaviour over another.
For F = 1 +A× Id and [A] as above, the formula µx.(1

2 ∗+ 1
4 [A]x) measures the likelihood

of termination, in such a way that the smaller the number of steps required for termination,
the higher the value associated to the formula by the semantics.

3. For T = TS with S = (S,+, 0, •, 1) a commutative semiring, Alg(T) is isomorphic to the
category of modules over S, and the enhanced logic contains finite linear combinations of
formulas. As in the previous case, the resulting logic supports weighted choices.

5 Path-based Semantics for Coalgebraic Linear Time Logics

This section provides alternative path-based semantics for what we call the uniform fragments
of the logics LV and L̃Free(V), and proves their equivalence to the already-defined step-wise
semantics. The main results (Theorems 5.13 and 5.24) assume canonical choices for both
the branching and the linear time modalities, but generalisations to non-canonical choices
(subject to additional requirements) are also discussed.

I Definition 5.1. The uniform fragment uLV of the logic LV is given by
⋃
n∈ω
LVn , with

LVn = LnV consisting of formulas of rank n, for n ∈ ω.

The uniform fragment uL̃Free(V) of L̃Free(V) is defined similarly, namely by uL̃Free(V) ::=⋃
n∈ω

L̃nFree(V).

A more concrete description of the set LVn is as the set of formulas with nesting depth
of modal operators at most n, and with each occurrence of a variable being in the scope of
exactly n modal operators.

I Example 5.2. For L : Set→ Set of the form LX =
∐
λ∈ΛX

ar(λ), and for λi ∈ Λ a modality
of arity i, with i ∈ {0, 1, 2}, [λ2]([λ1]X, [λ0]), [λ1]X ∨ [λ1]Y ∨ [λ0] and [λ1][λ1]X ∨ [λ0] are
uniform modal formulas, whereas [λ2]([λ1]X, [λ1][λ0]) and [λ1]X ∨ [λ1][λ1]Y are not (where
we assume T = P, and therefore ∨ is a propositional operator of the enhanced logic).

I Remark 5.3. When V = ∅, uLV coincides with the full logic LV . However, when V 6= ∅,
the inclusion uLV ⊆ LV is strict. All the example formulas in this paper (e.g. all the modal
formulas used to define the fixpoint formulas in Example 4.4) are uniform ones. Moreover,
most modal formulas used in practice to define fixpoint formulas appear to belong to the
uniform fragment.

CALCO’15

78 Canonical Coalgebraic Linear Time Logics

5.1 Path-based Semantics for uLV

For each polynomial endofunctor F and commutative monad T, one can define a canonical
distributive law of T over F as shown below. This can be used to give a path-based semantics
for the uniform fragment of the logic LV , by delaying the use of the natural transformation
σ when defining the interpretation of formulas in uLV for as long as possible.

I Definition 5.4. For F =
∐
λ∈ΛX

ar(λ) the canonical distributive law λ : FT⇒ TF is given
by

(TX)ar(λ)

ιλ
��

dstar(λ)
// T(Xar(λ)) Tιλ // T(

∐
λ∈ΛX

ar(λ)) = TFX

FTX =
∐
λ∈Λ(TX)ar(λ)

λX

22

where dstn : (TX)n → T(Xn) is either η1 : 1→ T1 (if n = 0), the identity map (if n = 1), or
defined in the obvious way from the double strength of the monad T (if n ≥ 2).

Given a TF -coalgebra (X, γ), unfolding the coalgebra map n ≥ 1 times yields a map
(TF)n−1γ ◦ . . .◦γ : X → (TF)nX. Alternatively, one can use the distributive law λ to flatten,
at each unfolding step, the branching arising from the presence of T in the coalgebra type:

I Definition 5.5. For a TF -coalgebra (X, γ) and n ≥ 1, let γn : X → TFnX be given by
γ1 = γ

γn+1 = µFn+1X ◦ TλFnX ◦ TFγn ◦ γ:

X
γ
// TFX TFγn // TFTFnX TλFnX// T2Fn+1X

µFn+1X// TFn+1X

In order to relate the maps (TF)n−1γ ◦ . . . ◦ γ and γn, with n ≥ 1, we note that any
distributive law λ : FT⇒ TF yields natural transformations (TF)n ⇒ TFn:

I Definition 5.6. Let λn : (TF)n ⇒ TFn for n ≥ 1 be defined inductively by:
λ1 = id
λn+1 = µFn+1 ◦ TλFn ◦ TFλn for n ≥ 1:

TF (TF)n TFλn +3 TFTFn TλFn +3 T2Fn+1 µFn+1 +3 TFn+1

We can now state the following:

I Lemma 5.7. For n ≥ 1, we have γn = λn ◦ (TF)n−1γ ◦ . . . ◦ γ.

Proof. Induction on n. The base case is trivial. The inductive step follows from the
commutativity of

X
γ
//

γ

��

TFX TFγn // TFTFnX TλFnX // T2Fn+1X
µFn+1

// TFn+1X

TFX
TF ((TF)n−1γ◦...◦γ)

// (TF)n+1X

TFλn

OO

λn+1

33

which, in turn, follows by the induction hypothesis and the definition of λn+1. J

We are finally ready to define an alternative semantics for uLV . For this, recall that
uLV =

⋃
n∈ω LVn with LVn = LnV for n ∈ ω.

C. Cîrstea 79

I Definition 5.8 (Path-based Semantics for uLV). Let ϕ ∈ LVn , let (X, γ) be a TF -coalgebra,
and let V : V → PX be a valuation. Define LϕMVγ as the image of ϕ under the composition

LnV LnV // LnPX
(δn)X

// PFnX
σFnX // PTFnX Pγn // PX

where δn : LnP ⇒ PFn performs n successive applications of δ:
δ1 = δ

δn+1 = δFn ◦ Lδn for n ≥ 1:

Ln+1P
Lδn +3 LPFn

δFn +3 PFn+1

Thus, in the path-based semantics, in order to interpret a formula of rank n, the n-step
behaviour of a state in a TF -coalgebra is flattened into branches of n-step F -behaviours
(using γn), and this results in the natural transformation σ (or equivalently, the extension
lifting ext) only being used once, rather than at each unfolding of the coalgebra map.

Next, we show that the step-wise and path-based semantics for uLV are equivalent. For
this, we need the following inductive formulation of the step-wise semantics for the uniform
fragment uLV :

I Definition 5.9. Let V : V → PX be a valuation. For n ≥ 1, let ξn : LnV → P (TF)nX be
defined by:

ξ1 = σFX ◦ δX ◦ LV :

LV LV // LPX
δX // PFX

σFX // PTFX
ξn+1 = σF (TF)nX ◦ δ(TF)nX ◦ Lξn for n ≥ 1:

Ln+1V
Lξn // LP (TF)nX

δ(TF)nX
// PF (TF)nX

σF (TF)nX
// P (TF)n+1X

I Lemma 5.10. For formulas in LVn , the step-wise semantics is obtained by post-composing
ξn with Pγ ◦ . . . ◦ P (TF)n−1γ : P (TF)nX → PX.

Proof. Immediate from LVn = LnV. J

The last ingredient required for the proof of equivalence of the two semantics is the
following key lemma, which allows us to move from alternating the use of the natural
transformations σ and δ (as is done in the step-wise semantics) to only using the natural
transformation σ once (as is done in the path-based semantics).

Since later in the paper we discuss other choices for σ, obtained by replacing (T1, µ1)
with an arbitrary T-algebra (T1, τ), most of the proof of the lemma uses τ instead of µ1.

I Lemma 5.11. Let δ : LP ⇒ PF and λ : FT ⇒ TF be as in Definitions 3.2 and 5.4,
respectively, and let σ : P ⇒ PT be the natural transformation induced by τ := µ1 : T21→ T1,
given by (2). Then the following diagram commutes:

LP

δ
��

Lσ +3 LPT δT +3 PFT

PF
σF +3 PTF

Pλ

KS (3)

Proof. The statement follows by expanding the corresponding definitions of δ and σ:
Given (pi) ∈ ιλ(PX)n (with n = ar(λ) ≥ 2), we have:

 X

pi
��

T1

 �LσX //

TX

Tpi��
T21

τ
��

T1

 � δTX //

∐
λ∈Λ(TX)ar(λ)

[0,...,•(τ◦Tpi),...,0]
��

T1

CALCO’15

80 Canonical Coalgebraic Linear Time Logics

and

 X

pi
��

T1

 � δX //

∐
λ∈ΛX

ar(λ)

[0,...,•pi,...,0]
��

T1

�σFX //

T
∐
λ∈ΛX

ar(λ)

T[0,...,•pi,...,0]
��

T21
τ
��

T1

� Pλ //

∐
λ∈Λ(TXar(λ))

+λ∈Λdstar(λ)
��∐

λ∈Λ T(Xar(λ))

[Tι1,...,Tιn]
��

T
∐
λ∈ΛX

ar(λ)

T[0,...,•pi,...,0]
��

T21
τ
��

T1

where for qi : X → T1 with i ∈ {1, . . . , n}, •(pi) : Xn → T1 takes (x1, . . . , xn) to p1(x1) •
. . . • pn(xn). Thus, the commutativity of (3) amounts to the commutativity of

TX × TX Tp1×Tp2 //

dstX,X
��

T21× T21 τ×τ
//

dstT1,T1
��

T1× T1
•
��

T(X ×X)
T(p1×p2)

// T(T1× T1) T• // T21 τ // T1

(4)

where for simplicity we assume n = 2. For τ = µ1, the latter follows easily by naturality of
dst (left rectangle) and exploiting the equivalent definition of • as Tπ1 ◦ dstT1,T1, as given in
[1] (right rectangle). The proof in the case when ar(λ) = 1 is trivial, whereas the proof in the
case when ar(λ) = 0 uses the fact that (T1, τ) is a T-algebra (and hence τ ◦ Tη1 = id). J

I Remark 5.12. The commutativity of (4) in the proof of Lemma 5.11 relies on the well-
behavedness of µ1 w.r.t. the double strength map. Replacing µ1 : T21→ T1 by an arbitrary
T-algebra structure τ : T21 → T1 will not, in general, make this diagram commute. For
T = P, an example is the �-modality τ� : T21→ T1, defined from the ♦-modality µ1 via
the swap map swap : P1 → P1: τ = swap ◦ µ1 ◦ Tswap; an easy calculation shows that
commutativity of the previously mentioned diagram fails in this case.

Using Lemma 5.11, we can now state and prove the announced equivalence result.

I Theorem 5.13. Let δ : LP ⇒ PF , λ : FT⇒ TF and σ : P ⇒ PT be as in Lemma 5.11.
Also, let (X, γ) be a TF -coalgebra and let V : V → PX be a valuation. For ϕ ∈ uLV ,
JϕKVγ = LϕMVγ .

Proof. Since uLV =
⋃
n∈ω L

nV, the claim will follow from the commutativity of:

LnV
ξn //

LnV
��

P (TF)nX
P (TF)n−1γ◦...◦γ

// PX

LnPX
(δn)X
// PFnX

σFnX
// PTFnX

P (λn)X
OO

Pγn

44

where the right triangle commutes by Lemma 5.7, and the commutativity of the left rectangle
is proved below by induction on n.

C. Cîrstea 81

The case n = 1 is trivial. The inductive step follows from the commutativity of

Ln+1V
Lξn //

Ln+1V

��

LP (TF)nX
δ(TF)nX

// PF (TF)nX
σF (TF)nX

// P (TF)n+1X

Ln+1PX

(δn+1)X
&&

L(δn)X
// LPFnX

δFnX

��

LσFnX // LPTFnX

LP (λn)X

OO

δTFnX // PFTFnX

PF (λn)X

OO

σFTFn // PTFTFnX

PTF (λn)X

OO

PFn+1X
σFn+1X

// PTFn+1X

PλFnX

OO

σTFn+1X
// PT2Fn+1X

PTλFnX

OO

where the top arrow is ξn+1, the top-left rectangle commutes by the induction hypothesis, the
top-middle rectangle commutes by naturality of δ, the bottom-left triangle is the definition of
δn+1, the bottom-middle rectangle commutes by Lemma 5.11, the top-right and bottom-right
rectangles commute by naturality of σ, and finally the long arrow from Ln+1V to P (TF)n+1X

is Pλn+1 ◦ σFn+1X ◦ (δn+1)X ◦ Ln+1V as required – the latter follows from:

PTFλn ◦ PTλFn ◦ σTFn+1 ◦ σFn+1 = (Lemma 3.1)
PTFλn ◦ PTλFn ◦ PµFn+1 ◦ σFn+1 = (Definition 5.6)

Pλn+1 ◦ σFn+1

This concludes the proof. J

The next example confirms that by using τ� instead of µ1 to resolve branching for T = P ,
Theorem 5.13 does not hold for functors F with associated linear time modalities of arity 2
or greater.

I Example 5.14. Assume that τ� is used to resolve branching, and consider the following
P(1 +A× Id× Id)-coalgebra (X, γ):

x1 // b //

��

x3 // ∗

x0 // a

??

// x2 x4 // ∗

where // is used for nondeterministic transitions (and thus x2 is a deadlock state). Under
the step-wise semantics, the formula [a](∗, ∗) does not hold in x0, as although x2 satisfies ∗
(since it has no outgoing transitions), x1 does not: according to the definition, for a state to
satisfy ∗, all transitions from that state (if any) must be terminating ones. However, the
map γ2 : X → P(1 +A× (1 +A×X)× (1 +A×X)) maps x0 to the empty set: again, this
is because x2 has no transitions and therefore the flattening performed by γ2 results in an
empty set of linear time behaviours of depth 2; as a result, under the path-based semantics,
the formula holds.

In spite of the above, a generalisation of Theorem 5.13 to the case when σ : P ⇒ PT arises
from an arbitrary T-algebra (T1, τ) can be formulated, as suggested by the next example.

I Example 5.15. The case T′ = P+ with P+ : Set→ Set cannot be directly covered by our
approach, since in this case T′∅ 6= 1. However, any T′F -coalgebra can be viewed as a TF -
coalgebra with T = P, and for TF -coalgebras arising in this way, the proof of Theorem 5.13
does generalise, as it only requires the following to commute (instead of (3)):

LP

δ
��

Lσ +3 LPT′
δT′ +3 PFT′

PF
σF +3 PT′F

Pλ

KS

CALCO’15

82 Canonical Coalgebraic Linear Time Logics

Using the same reasoning as in Lemma 5.11, the above follows from the commutativity of

T′X × T′X ιX×ιX //

dst′X,X
��

TX × TX Tp1×Tp2 //

dstX,X
��

T21× T21 τ×τ
//

dstT1,T1
��

T1× T1
•
��

T′(X ×X)
ιX×X

// T(X ×X)
T(p1×p2)

// T(T1× T1) T• // T21 τ // T1

where ι : T′ ⇒ T is the inclusion. Thus, commutativity of (4) in the proof of Lemma 5.11
can be replaced by the commutativity of the outer diagram below:

T′T1× T′T1
dst′T1,T1

��

ιT1×ιT1 // T21× T21 τ×τ
//

dstT1,T1
��

T1× T1
•
��

T′(T1× T1)
ιT1×T1

// T(T1× T1) T• // T21 τ // T1

(5)

which states that the right rectangle in (4) commutes on the sub-domain T′T1 × T′T1 of
T21× T21. An easy calculation shows that this holds for τ�.

The argument in the previous example can be captured in a more general result on the
equivalence between the path-based and the step-wise semantics for uLV .

I Theorem 5.16. Let T′ be a commutative sub-monad of the monad T, let δ : LP ⇒ PF

and λ : FT ⇒ TF be as in Definitions 3.2 and 5.4, respectively, and let σ : P ⇒ PT be
induced by a choice of τ : T21→ T1 that makes the outer diagram in (5) commute. Then for
a T′F -coalgebra (X, γ) (viewed as a TF -coalgebra), a valuation V : V → PX and a formula
ϕ ∈ uLV , JϕKVγ = LϕMVγ .

In particular, Theorem 5.16 applies when T′ = T and τ : T21→ T1 is such that the right
rectangle in (5) commutes.

Finally, we note that the proof of Theorem 5.13 only makes use of the specific (canonical)
choice of linear time modalities when it comes to applying Lemma 5.11. As a result, a
generalisation of Theorem 5.13 to an arbitrary choice of linear time modalities can also be
stated.

I Theorem 5.17. Let λ : FT ⇒ TF be as in Definition 5.4, and let L : Set → Set,
δ : LP ⇒ PF and σ : P → PT (induced by τ : T21→ T1) be such that Lemma 5.11 holds.
Then the path-based and the step-wise semantics of uLV coincide.

I Example 5.18. Modalities incorporating restricted disjunctions, as used e.g. in [2], can
easily be added. For example, when F = A × Id '

∐
a∈A Id, one can consider additional

(binary) modalities of the form [a]_ t [b]_ with a 6= b ∈ A, with the obvious one-step
interpretation:

δX([a]p t [b]q)(ιc(x)) =

p(x), if c = a

q(x), if c = b

0, otherwise

This generalises to any polynomial functor F and similar disjunction-like modalities.

5.2 Path-based Semantics for uL̃Free(V)

Giving a path-based semantics for uL̃Free(V) can be done in much the same way as for uLV ,
since the logic functor used to deal with branching is still the identity functor (now on
Alg(T)). For completeness, this section sketches the main definitions and results, all very
similar to their counterparts in Section 5.1.

C. Cîrstea 83

I Definition 5.19. Let δ̃n : L̃nP̃ ⇒ P̃Fn be given by:
δ̃1 = δ̃

δ̃n+1 = δ̃Fn ◦ L̃δ̃n for n ≥ 1.

I Definition 5.20 (Path-based Semantics for uL̃Free(V)). Let ϕ ∈ L̃Free(V)
n , let (X, γ) be a

TF -coalgebra, and let V : V → PX be a valuation. Define LϕMV
]

γ as the image of ϕ under
the composition

L̃nFree(V) L̃nV] // L̃nP̃X
(δ̃n)X

// P̃FnX
σ̃FnX // P̃TFnX P̃ γn // P̃X

I Definition 5.21. Let V : V → PX be a valuation. For n ≥ 1, let ξ̃n : L̃nFree(V) →
P̃ (TF)nX be defined by:

ξ̃1 = σ̃FX ◦ δ̃X ◦ L̃V],
ξ̃n+1 = σ̃F (TF)nX ◦ δ̃(TF)nX ◦ L̃ξ̃n for n ≥ 1.

I Lemma 5.22. For formulas in L̃Free(V)
n , the step-wise semantics is obtained by post-

composing ξ̃n with P̃ γ ◦ . . . ◦ P̃ (TF)n−1γ : P̃ (TF)nX → PX.

The next lemma allows Theorem 5.13 to be lifted to the logics L̃Free(V).

I Lemma 5.23. Let δ : LP ⇒ PF , λ : FT ⇒ TF and σ : P ⇒ PT be as in Lemma 5.11,
and let δ̃ : L̃P̃ ⇒ P̃F and σ̃ : P̃ ⇒ P̃T arise from δ and σ as before. Then the following
diagram commutes:

L̃P̃

δ̃
��

L̃σ̃ +3 L̃P̃T δ̃T +3 P̃FT

P̃F
σ̃F

+3 P̃TF

P̃λ

KS (6)

Proof. By freeness of L̃P̃ , it suffices to show that pre-composing the image under U of the
above diagram with ηLUP̃ commutes in Set:

LP

δ

��

LUP̃

ηLUP̃
��

LUσ̃=Lσ +3 LUP̃T
ηLUP̃T

��

δT

#+
UFreeLUP̃

Uδ̃
��

UFreeLUσ̃ +3 UFreeLUP̃T Uδ̃T +3 UP̃FT

PF UP̃F
Uσ̃F=σF

+3 UP̃TF

UP̃λ=Pλ

KS

This, in turn, is a direct consequence of Lemma 5.11. J

I Theorem 5.24. Let δ : LP ⇒ PF , λ : FT⇒ TF and σ : P ⇒ PT be as in Lemma 5.23.
Also, let (X, γ) be a TF -coalgebra and let V : V → PX be a valuation. For ϕ ∈ uL̃Free(V),
JϕKV

]

γ = LϕMV
]

γ .

Proof. Exactly the same as the proof of Theorem 5.13, except that Lemma 5.23 is used
instead of Lemma 5.11. J

CALCO’15

84 Canonical Coalgebraic Linear Time Logics

6 Concluding Remarks

This paper showed how to incorporate propositional operators arising canonically from the
branching monad T into the linear time logics proposed in [2]. This involved moving to the
Eilenberg-Moore category of T. The addition of arbitrary propositional operators to the
logics appears to be incompatible with their step-wise semantics, and our results provide
operators that can be safely added to the logics. The paper also provided an alternative,
equivalent path-based semantics for the uniform modal fragments of the logics in loc. cit., as
well as of their enhancements with canonical propositional operators (assuming canonical
choices for both the branching and the linear time modalities), and explored conditions under
which non-canonical choices for the modalities do not disrupt the equivalence result.

Future work will investigate extending the path-based semantics proposed here to the
full LV and L̃Free(V) in the first instance, and subsequently also to Lµ and L̃µ. We also plan
to investigate the relationship between our logics and recent work on graded monads and
associated trace logics [17].

Acknowledgements. Thanks are due to Ichiro Hasuo and Toby Wilkinson for stimulating
discussions, and to the anonymous referees for useful comments. The challenge of incor-
porating arbitrary propositional operators into the step-wise semantics was the subject of
extensive discussions with Ichiro Hasuo. The encoding of the © modality in Example 4.4
was suggested by Toby Wilkinson. The observation in Remark 2.4 was made by one of the
anonymous referees.

References
1 Corina Cîrstea. From branching to linear time, coalgebraically. In Proceedings, FICS 2013,

pages 11–27, 2013.
2 Corina Cîrstea. A coalgebraic approach to linear-time logics. In Proceedings, FOSSACS

2014, pages 426–440, 2014.
3 Corina Cîrstea and Dirk Pattinson. Modular construction of complete coalgebraic logics.

Theor. Comput. Sci., 388(1-3):83–108, 2007.
4 Dion Coumans and Bart Jacobs. Scalars, monads, and categories. In Quantum Physics

and Linguistics. A Compositional, Diagrammatic Discourse, pages 184–216. Oxford Univ.
Press, 2013.

5 B.A. Davey and H.A. Priestley. Introduction to Lattices and Order (2. ed.). Cambridge
University Press, 2002.

6 Ichiro Hasuo. Generic weakest precondition semantics from monads enriched with order.
In Proceedings, CMCS 2014, pages 10–32, 2014.

7 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Computer Science, 3(4), 2007.

8 Michael Huth and Marta Z. Kwiatkowska. Quantitative analysis and model checking. In
Proceedings, LICS 1997, pages 111–122, 1997.

9 Bart Jacobs. Introduction to coalgebra. Towards mathematics of states and observations.
Draft.

10 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. In
Proceedings, CMCS 2012, pages 109–129, 2012.

11 Christian Kissig and Alexander Kurz. Generic trace logics. CoRR, abs/1103.3239, 2011.
12 Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics. In Proceed-

ings, FOSSACS 2015, pages 151–166, 2015.
13 Anders Kock. Monads and extensive quantities, 2011. arXiv:1103.6009.

C. Cîrstea 85

14 Anders Kock. Commutative monads as a theory of distributions. Theory and Applications
of Categories, 26(4):97–131, 2012.

15 Clemens Kupke, Alexander Kurz, and Dirk Pattinson. Algebraic semantics for coalgebraic
logics. Electr. Notes Theor. Comput. Sci., 106:219–241, 2004.

16 Clemens Kupke, Alexander Kurz, and Yde Venema. Stone coalgebras. Theor. Comput.
Sci., 327(1-2):109–134, 2004.

17 Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic trace semantics and graded
monads. This volume.

CALCO’15

An Intensionally Fully-abstract Sheaf Model for π∗

Clovis Eberhart1, Tom Hirschowitz2, and Thomas Seiller3

1 Université Savoie Mont-Blanc, France
2 CNRS, Université Savoie Mont-Blanc, France
3 Université Paris 7, France

Abstract
Following previous work on CCS, we propose a compositional model for the pi-calculus in which
processes are interpreted as sheaves on certain simple sites. We define an analogue of fair testing
equivalence in the model and show that our interpretation is intensionally fully abstract for it.
That is, the interpretation preserves and reflects fair testing equivalence; and furthermore, any
strategy is fair testing equivalent to the interpretation of some process. The central part of our
work is the construction of our sites, whose heart is a combinatorial presentation of pi-calculus
traces in the spirit of string diagrams. As in previous work, the sheaf condition is analogous to
innocence in Hyland-Ong/Nickau games.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases concurrency, sheaves, causal models, games

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.86

1 Introduction

Operational semantics of programming languages standardly model the execution of programs
as paths in a certain labelled transition system (lts). Under this interpretation, different
possible interleavings of parallel actions yield different paths. Verification on ltss thus incurs
a well-known state explosion problem. Similarly, causality between various actions, visible in
the syntax, is lost in the lts, thus making, e.g., error diagnostics difficult [17].

Causal models, originally designed for Petri nets [37] and Milner’s CCS [42], intend to
remedy both problems, but have yet to be applied to full-scale programming languages. They
have recently been extended in two different directions: (1) by Crafa et al. [10] to Milner’s
π-calculus, and (2) by Melliès [32] to Girard’s linear logic. The former extension accounts for
the subtle interaction of channel creation with synchronisation in π, a significant technical
achievement, 30 years after the first causal semantics for CCS. The latter is the first causal
model for functional languages (inspired by Hyland-Ong’s and Nickau’s games models for
PCF [36, 24]). An important challenge is now the search for a causal model of full-fledged
languages with both concurrent and functional features. Winskel and collaborators are
currently working in this direction, using extensions of Melliès’s approach [39, 43, 8].

In previous work [23, 21, 22], we have proposed a causal model for CCS based on a
different approach. We here push this approach further by applying it to the π-calculus.

∗ The authors acknowledge support from French ANR projets blancs PiCoq ANR 2010 BLAN 0305 01
and Récré ANR-11-BS02-0010.

© Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Paweł Sobociński; pp. 86–100

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.86
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Eberhart, T. Hirschowitz, and T. Seiller 87

1.1 Traces and naive concurrent strategies
In standard causal models, execution traces essentially consist of partially ordered sets of
atomic ‘events’. Our approach relies on a new notion of trace, which we briefly sketch. There
is first a (straightforward) notion of configuration, which is essentially a finite hypergraph
whose nodes are thought of as agents, and whose hyperedges between nodes x1, . . . , xn are
thought of as communication channels shared by x1, . . . , xn. There is then a notion of atomic
action from one configuration to another, thought of as a ‘rule of the game’. Examples of
atomic actions are: an agent creates a new, private communication channel; an agent forks
into two new agents connected to the same channels; an agent sends some channel a over
some channel b to some other agent. We finally have a notion of trace which allows several
atomic actions to occur, in a way that only retains some minimal causality information
between them. We here mean, e.g., information such as: ‘such agent outputs on such channel
only after having created such other channel’.

The main purpose of our notion of trace is to interpret π-calculus processes as some kind
of strategies over them. Most naively, a strategy on some configuration X is a prefix-closed
set of ‘accepted’ traces from X. But what should prefix mean in our setting? Well, we may
view traces with initial configuration X and final configuration Y as morphisms Y X.
Sequential composition of traces, denoted by •, yields an analogue of prefix ordering, defined
by t ≤ t • w. This however fails to suit our needs on three counts.

We start by examining the first two problems. The first, easy one is that there is an
obvious notion of isomorphism between traces, under which strategies should be closed. The
second problem is more serious: until now, these too naive strategies are not concurrent
enough to adequately model CCS or the π-calculus.

I Example 1 (Milner’s coffee machines). Consider the CCS processes P = (a.b+ a.c) and
Q = a.(b + c). The process P has two ways of inputting on a and then, depending on
the chosen way, inputs either on b or on c. The process Q inputs on a and then has both
possibilities of inputting on b or c. Both processes, however, accept exactly the same traces
(in the standard sense), namely {ε, a, ab, ac}, where ε denotes the empty trace.

Thus, taking strategies to be prefix-closed sets of traces would prevent us from directly
modelling any reasonably fine behavioural equivalence on processes. Inspired by presheaf
models [26], we remedy both problems at once by passing from prefix-closed sets of traces to
presheaves (of finite sets) on traces. Indeed, in the simple case where traces on X form a mere
poset T(X) by prefix ordering, a prefix-closed set of traces is nothing but a contravariant
functor from T(X) to the ordinal 2, viewed as a category. The latter has two objects 0 and 1
and just one non-trivial morphism 0→ 1. The idea is that a functor S : T(X)op → 2 maps
any trace to 1 when it is accepted, and to 0 otherwise. Furthermore, if t ≤ t′, i.e., t is a prefix
of t′, then we have a morphism t → t′ which should be mapped by S to some morphism
S(t′) → S(t). If t′ is accepted then S(t′) = 1, so this has to be a morphism 1 → S(t).
Because there are no morphisms 1→ 0, this entails S(t) = 1, hence prefix-closedness of the
corresponding strategy.

Now our traces naturally form a proper category T(X), encompassing both prefix ordering
and isomorphisms between traces, so we are led to considering functors T(X)op → 2. This
retains prefix-closedness and solves our first problem: for any t ∼= t′, functoriality imposes
S(t) ∼= S(t′). Our second problem is then solved by replacing such functors with presheaves,
i.e., functors T(X)op → Set.

I Example 2. In Example 1, the two ways that P has to accept inputting on a may be

CALCO’15

88 An Intensionally Fully-abstract Sheaf Model for π

reflected by mapping the trace a to some two-element set. More precisely, P may be modelled
by the presheaf S defined on the left and pictured on the right:

S(ε) = {?},
S(a) = {x, x′},
S(ab) = {y},
S(ac) = {y′},

S empty otherwise,
S(ε ↪→ a) = {x 7→ ?, x′ 7→ ?},
S(a ↪→ ab) = {y 7→ x},
S(a ↪→ ac) = {y′ 7→ x′},

?

x x′

y y′.

a a

b c

Presheaves thus may ‘accept a trace in several ways’: the trace a is here accepted in two
ways, x and x′. The process Q is of course modelled by identifying x and x′.

As it turns out, we actually only need finitely many ways of accepting each trace. Thus, we
arrive at a first sensible notion of strategy given by presheaves of finite sets, i.e., functors
T(X)op → set, where set denotes the category with as objects all finite subsets of N, with all
maps between them. We call them (naive) strategies in the sequel.

I Notation 3. For any C, let ÛC denote the category of presheaves of finite sets over C.

1.2 Innocence as a sheaf condition
The third problem evoked above is that functors T(X)op → set allow some undesirable
behaviours. Intuitively, in π just as in CCS, agents should not have any control over the
routing of messages.

I Example 4. Consider a configuration X with three agents x, y, and z sharing a communic-
ation channel a, and a strategy S accepting (1) the trace where x outputs on a, (2) the trace
where y inputs on a, and (3) the trace where z inputs on a. Then, both synchronisations
should be accepted by S. However, one easily constructs a naive strategy in which one is
refused (see Example 19).

In order to rectify this deficiency, we enrich strategies with ‘local’ information. The idea is
that a strategy should not only accept or refuse traces on the whole configuration X, but
also traces on all possible subconfigurations of X. Furthermore, this local information should
fit together coherently.

I Example 5. Consider the configuration X of Example 4. Any strategy on X should now in
particular include independent strategies for each of the three agents x, y, and z. Coherence
means that in order for a trace to be accepted, it should be enough for it to be ‘locally
accepted’, i.e., at every stage in the trace, each agent should approve what she sees of the
next action. E.g., if the next action is a synchronisation x � y with x outputting and y

inputting on some channel a, then all that’s required for the synchronisation to be accepted
is that x accepts to output and y accepts to input. Consequently, if some other agent z also
accepts to input on a at this stage, then the synchronisation x � z is also accepted.

We call this putative coherence condition innocence by analogy with Hyland and Ong’s
notion [24]. In order to formalise it, we first extend our category of traces T(X) on X with
new objects representing traces on subconfigurations of X. We also add new morphisms,
which are about ‘locality’:

I Example 6. Consider the configuration X with two unary agents x1 and x2. There is a
trace t on X in which both agents fork. Consider now the subconfiguration Y of X consisting
solely of x1 and the trace t′ on Y in which x1 merely forks. There is a morphism t′ → t in
our new category.

C. Eberhart, T. Hirschowitz, and T. Seiller 89

This extended category, TX , yields an intermediate notion of strategy, given by functors
Top
X → set. Among the new objects, we have in particular traces on just one agent of X,

which are obtained by sequentially composing atomic actions whose final configuration again
consists of one agent. We call this particular kind of trace a view. Views are the most ‘local’
kind of objects in TX . They form a subcategory VX of TX .

I Example 7. If X merely consists of an agent x linked to n communication channels,
consider the atomic action given by x forking into two new agents, say x1 and x2. This
action, viewed as an object of TX has three subobjects which are views: (1) the ‘identity’
view, in which nothing happens, (2) πln, which represents the left-hand branch (to x1), (3)
and πrn, which represents the right-hand branch (to x2).

The inclusion VX ↪→ TX induces a simple Grothendieck topology [30] on TX , which amounts
to decreeing that any trace is covered by its views. We finally call any S : Top

X → set innocent
precisely when it is a sheaf for this Grothendieck topology. In particular, giving an innocent
presheaf on TX is equivalent (up to isomorphism) to separately giving an innocent presheaf
for each agent of X, which rules out the undesirable behaviour described in Example 4.

Sheaves on TX form a category SX , which is small thanks to our use of set instead of Set.
They furthermore map back to naive strategies, i.e., presheaves on T(X), by forgetting the
local information. (This forgetful functor has a left adjoint.) Finally, because the considered
topology is particularly simple, sheaves are equivalent to presheaves on views, i.e., SX ' ṼX
(recalling Notation 3). In summary, we have three categories of strategies: naive strategies
are presheaves on traces T̆(X), innocent strategies SX are sheaves on the extended category
of traces TX , and so-called behaviours BX are presheaves on the category of views VX . The
last two are equivalent, and we furthermore have an adjunction T̆(X) ⊥ SX .

We use both sides of the equivalence: behaviours directly lead to our compositional
interpretation J−K : Pi → S of π-calculus processes, and innocent strategies are used below
as the basis for our semantic definition of fair testing equivalence.

1.3 Main result
What should we do in order to demonstrate adequacy of our model? By definition, causal
models expose some intensional information. Hence, equality is generally much finer than
any reasonable behavioural equivalence, so we should not base our main result on it. On
the other hand, causal models are supposed to be ‘compositional’, i.e., to come equipped
with an interpretation of syntactic operations in the model. The natural thing to do is thus
to choose some behavioural equivalence from the operational side, use compositionality to
transpose it to the model, and prove that the two coincide. More precisely, the considered
equivalence induces by quotienting two ‘extensional collapses’, one syntactic and the other
semantic, and we want to prove that the translation J−K induces a bijection between both
extensional collapses. Following [1], we call this intensional full abstraction for the considered
equivalence.

We here focus on so-called testing equivalences [11, 35, 5, 38], which are defined in two
stages. First, one chooses a ‘mode of interaction’. That is, one defines what the relevant
tests are for a given process and specifies how the two should interact. Typically, tests for
P are other processes T with the same free communication channels as P , and interaction
is just parallel composition P | T . The second stage amounts to choosing when P | T is
successful. E.g., in may testing equivalence P | T is successful just when there exists a
transition (P | T) ♥=⇒ P ′ (that is, a ♥ transition, possibly surrounded by silent transitions),

CALCO’15

90 An Intensionally Fully-abstract Sheaf Model for π

where ♥ is some action fixed in advance. In must testing equivalence, success is when all
maximal (possibly infinite) transition sequences contain at least one ♥ transition. In fair
testing equivalence (see [7] for some motivation and an adaptation to π), one requires that
all silent sequences (P | T) =⇒ P ′ extend to some sequence P ′ =⇒ P ′′

♥−→ P ′′′ ending with a
♥ transition. In this paper, we focus on the latter, i.e., we prove (Theorem 25) that our
model is intensionally fully-abstract for fair testing equivalence. However, we show in the
long version [12] that our proof applies to a wide range of testing equivalences.

1.4 Contributions

Since this paper follows the same approach as previous work on CCS [23, 21, 22], we should
explain in which sense extending the approach to π is more than an easy application.

A first contribution comes from the fact that, in order to even define composition in our
category of traces (see our online draft [12] for details), we need to show that traces form
the total category of a fibration [25] over configurations. In previous work, this was done
in an ad hoc way. We here introduce a more satisfactory approach based on factorisation
systems [28, 15].

A second significant contribution is prompted by the interplay between synchronisation
and private channels in π, which is notoriously subtle to handle. And indeed, our proof
method for CCS fails miserably on π. One reason for this, we think, is that our notion of
trace for π, though simple and natural, is not ‘modular’ enough, in the sense that a trace
contains strictly more information than the collection of all ‘local’ information accessible to
agents (i.e., of all of its views, in the above sense). Thus, adapting our proof technique from
CCS would have required us to define a much more complex but more modular notion of
trace. Instead, we here take a somewhat rougher route, as sketched in Section 4.

Finally, as mentioned above, our proof now applies not only to fair testing equivalence,
but also to a whole class of testing equivalences.

1.5 Related work

Beyond the obviously closely related, already mentioned work of Winskel et al., we should
mention other causal and interleaving models for π, e.g., [34, 13, 4, 9, 10, 6, 14, 40, 19]. All
of these models are based on some lts for π. Instead, ours is rather based on reduction rules.
The subtleties usually showing up in ltss, related to mixing synchronisation and private
channels, do resurface in our proof of intensional full abstraction, but not in the definition of
our model. Indeed, it merely goes by describing the ‘rule of the game’ in π, and applying the
general framework of playgrounds [22].

Another general framework relating operational and denotational descriptions of programs
is Kleene coalgebra [3], which is mainly designed for automata theory. Playgrounds may be
viewed as adapting ideas from Kleene coalgebra to the process algebraic setting.

We should also mention Laird’s games model of (a fragment of) π [27], which accounts
for trace (a.k.a. may testing) equivalence. Standard game models view strategies as sets
of traces (with well-formedness conditions), so, as we have seen, lend themselves better to
modelling trace equivalence. In a non-deterministic, yet not concurrent setting, Harmer and
McCusker [18] resort to an explicit action for divergence, which allows them to recover a
finer behavioural equivalence. We feel that the presheaf-based approach is more general.

Furthermore, recent work by Tsukada and Ong [41] adapts and extends some ideas
of [23, 21] to nondeterministic, simply-typed λ-calculus.

C. Eberhart, T. Hirschowitz, and T. Seiller 91

Let us moreover mention less closely related work: Girard’s ludics [16], Melliès’s game
semantics in string diagrams [33], Harmer et al.’s categorical combinatorics of innocence [18],
McCusker et al.’s graphical foundation for schedules [31]. Finally, Hildebrandt’s work [20]
also uses sheaves, though for a quite different purpose.

1.6 Plan
We describe our notion of trace at length in Section 2. We then sketch the model produced
by the machinery of playgrounds, and state our main result in Section 3. We then conclude
in Section 4, with a brief sketch of the proof and some future directions.

2 Traces

In this section, we introduce our notion of trace, which is based on certain combinatorial
objects, close in spirit to string diagrams. We first define these string diagrams, and then
use them to define traces. Configurations are special, hypergraph-like string diagrams whose
vertices represent agents and whose hyperedges represent channels. A perhaps surprising
point is that actions are not just a binary relation between configurations, because we not
only want to say when there is an action from one configuration to another, but also how this
action is performed. This will be implemented by viewing actions from X to Y as cospans
Y → M ← X in a certain category ÛC, whose objects we call higher-dimensional string
diagrams for lack of a better term. The idea is that X and Y respectively are the initial and
final configurations, and that M describes how one goes from X to Y . By combining such
actions (by pushout), we get a bicategory Dv of configurations and traces.

2.1 String diagrams
The category ÛC will be a category of presheaves over a base category, C. Let us motivate the
definition of C by recalling that (directed, multi) graphs may be seen as presheaves over the
category with two objects ? and [1], and two non-identity morphisms s, t : ?→ [1]. Any such
presheaf G represents the graph with vertices in G(?) and edges in G[1], the source and target
of any e ∈ G[1] being respectively G(s)(e) and G(t)(e), or e · s and e · t for short. A way to
visualise how such presheaves represent graphs is to compute their categories of elements [30].
Recall that the category of elements

∫
G for a presheaf G over C has as objects pairs (c, x)

with c ∈ C and x ∈ G(c), and as morphisms (c, x)→ (d, y) all morphisms f : c→ d in C such
that y · f = x. This category admits a canonical functor πG to C, and G is the colimit of the
composite

∫
G

πG−−→ C y−→ Ĉ with the Yoneda embedding. E.g., the category of elements for
y[1] is the poset (?, s) s−→ ([1], id [1])

t←− (?, t), which could be pictured as , where
dots represent vertices, the triangle represents the edge, and links materialise the graph of
G(s) and G(t), the convention being that t connects to the apex of the triangle. We thus
recover some graphical intuition.

Our string diagrams will also be defined as particular presheaves over some base category
C. However, since we’ll only be interested in finite structures, we restrict ourselves to the
category ÛC of presheaves of finite sets. In the case of graphs, presheaves of finite sets are
graphs whose nodes and edges are identified by natural numbers. Such graphs are thus finite.
In our case, the base category C is infinite, so presheaves of finite sets may represent infinite
structures. However, our notion of trace will only involve finite ones.

Let us give the formal definition of C for reference. We advise to skip it on a first reading,
as we then attempt to provide some graphical intuition.

CALCO’15

92 An Intensionally Fully-abstract Sheaf Model for π

(?, s1) (?, s2) (?, s3)

([3], id [3])

ls rs

lss1 l idπ2 r lss2

lt = rtεs ρs

εts3

εts1 ε ρ

εts2

εt ρt

idτn,a,m,c,d

β

α

x′

x

y′

y

Figure 1 Categories of elements for [3], π2, and τ1,1,3,2,3, with graphical representation.

I Definition 8. Let GC be the graph with, for all n, m, with a, b ∈ n and c, d ∈ m:
vertices ?, [n], πln, πrn, πn, νn, ♥n, τn, ιn,a, on,a,b, and τn,a,m,c,d;
edges s1, ..., sn : ?→ [n], plus, ∀v ∈ {πln, πrn,♥n, τn, on,a,b}, edges s, t : [n]→ v;
edges [n] t−→ νn

s←− [n+ 1] and [n] t−→ ιn,a
s←− [n+ 1];

edges πln
l−→ πn

r←− πrn and ιn,a
ρ−→ τn,a,m,c,d

ε←− om,c,d.

Let C be the free category on GC, modulo the equations

s ◦ si = t ◦ ti l ◦ t = r ◦ t ρ ◦ t ◦ sa = ε ◦ t ◦ sc ρ ◦ s ◦ sn+1 = ε ◦ s ◦ sd.

The first equation should be understood in C(?, v) for all n ∈ N, i ∈ n, and v ∈ ∪a,b∈n{πln, πrn,
♥n, τn, ιn,a, on,a,b, νn}. (This is rather elliptic: if v has the shape ιn,a or νn, s ◦ si is really
?
si−→ [n+ 1] s−→ v.) The second equation should be understood in C(?, πn) for all n, and the

last two in C(?, τn,a,m,c,d), for all n,m, a ∈ n, and c, d ∈ m.

Our category of string diagrams is the category of finite presheaves ÛC. To explain the
design of C, let us compute a few categories of elements. Let us start with an easy one, that
of [3] ∈ C (we implicitly identify any c ∈ C with yc). An easy computation shows that it is
the poset pictured in the top left part of Figure 1. We think of it as a configuration with one
agent ([3], id [3]) connected to three channels, and draw it as in the top right part, where the
bullet represents the agent, and circles represent channels. In the presheaf, elements over
[3] represent ternary agents, while elements over ? represent channels. Configurations are
finite presheaves empty except perhaps on ? and [n]’s. Other objects will represent actions.
A morphism of configurations is a morphism between presheaves which is injective except
perhaps on channels. The intuition for a morphism X → Y between configurations is thus
that X embeds into Y , possibly identifying some channels.

I Definition 9. Configurations and morphisms between them form a category Dh.

A more difficult category of elements is that of π2. It is the poset generated by the
left-hand graph in the second row of Figure 1 (omitting base objects for conciseness). We
think of it as a binary agent (lt) forking into two agents (ls and rs), and draw it as on the
right. The graphical convention is that a black triangle stands for the presence of idπ2 , l,

C. Eberhart, T. Hirschowitz, and T. Seiller 93

♥ ♠

[p]

πl
p

[p]

[p]

πr
p

[p]

[m]

om,c,d

[m]

[n+ 1]

ιn,a

[n]

[p]

♥p

[p]

[p]

τp

[p]

[p+ 1]

νp

[p]

Figure 2 Pictures and corresponding cospans for πl
p, πr

p, om,c,d, ιn,a, ♥p, τp, and νp.

and r. Below, we represent just l as a white triangle with only a left-hand branch, and
symmetrically for r. Furthermore, in all our pictures, time flows ‘upwards’.

Another category of elements, characteristic of the π-calculus, is the one for synchronisa-
tion τn,a,m,c,d. The case (n, a,m, c, d) = (1, 1, 3, 2, 3) is the poset generated by the graph on
the bottom left of Figure 1, which we will draw as on the right. The left-hand ternary agent
x outputs its 3rd channel, here β, on its 2nd channel, here α. The right-hand unary agent
y receives the sent channel on its 1st channel, here α. Both agents have two occurrences,
one before and one after the action, respectively marked as x/x′ and y/y′. Both x and x′
are ternary here, while y is unary and y′, having gained knowledge of β, is binary. There
are actually three actions here, in the sense that there are three higher-dimensional objects.
The first is the output action ε from x to x′, graphically represented as the middle point of

(intended to evoke the point where β enters channel α). The second is the input
action ρ from y to y′, graphically represented as the middle point of (where β
exits channel α). The third action is the synchronisation itself, which ‘glues’ the other two
together, as represented by the squiggly line.

We leave the computation of other categories of elements as an exercise to the reader.
The remaining string diagrams are depicted in the top row of Figure 2, for p = 2 and
(n, a,m, c, d) = (1, 1, 3, 2, 3).

The first two are views, in the game semantical sense, of the fork action π2 explained
above. The next two, om,c,d (for ‘output’) and ιn,a (for ‘input’), respectively are views for
the sender and receiver in a synchronisation action. The τp action is a silent, dummy action
as standard in the π-calculus. The ♥n action is a special ‘tick’ action used for defining fair
testing equivalence. The last one is a channel creation action.

2.2 From string diagrams to actions
In the previous section, we have defined our category of string diagrams as ÛC, and provided
some graphical intuition on its objects. The next step is to construct a bicategory whose
objects are configurations, and whose morphisms represent traces. We start in this section
by defining in which sense higher-dimensional objects of C represent actions, and continue in
the next one by explaining how to compose actions to form traces. Actions are defined in
two stages: seeds, first, give the local forms of actions, which are then defined by embedding
seeds into bigger configurations.

To start with, until now, our string diagrams con-

tain no information about the ‘flow of time’, although
we mentioned it informally in the previous section. To
add this information, for each string diagram M representing an action, we define its initial
and final configurations, say X and Y , and view the whole action as a cospan Y s−→M

t←− X.

CALCO’15

94 An Intensionally Fully-abstract Sheaf Model for π

We have taken care, in drawing our pictures before, of placing initial configurations at the
bottom, and final configurations at the top. So, e.g., the initial and final configurations for
the synchronisation action are pictured above and they map into (the representable presheaf
over) τ1,1,3,2,3 in the obvious ways, yielding the cospan Y s−→M

t←− X.
[p] | [p]

πp

[p]

[m] c,d |a,n+1 [n+ 1]

τn,a,m,c,d

[m] c |a [n]

We leave it to the reader to define, based on the
above pictures, the expected cospans for forking and
synchronisation as on the right, plus the remaining ones
specified in the bottom row of Figure 2 (where again
p = 2 and (n, a,m, c, d) = (1, 1, 3, 2, 3)). Initial configurations are at the bottom, and we
denote by [m] a1,...,ap |c1,...,cp [n] the configuration consisting of an m-ary agent x and an
n-ary agent y, quotiented by the equations x · sak = y · sck for all k ∈ p. When both lists are
empty, by convention, m = n and the agents share all channels in order.

I Definition 10. These cospans are called seeds.

We now define actions from seeds by embedding the latter into bigger configurations.
E.g., we allow a fork action to occur in a configuration with more than one agent.

I Definition 11. The interface IX of a seed Y
s−→ M

t←− X denotes the configuration
consisting only of the channels of the initial configuration X.

Y Y ′

M M ′

IX Z

X X ′

Since channels occurring in the initial configuration remain
in the final one, we have for each seed a cone from IX to the
seed. For any morphism of positions IX → Z, pushing the
cone along IX → Z using the universal property of pushout
as on the right yields a new cospan, say Y ′ →M ′ ← X ′.

I Definition 12. Let actions be all such pushouts of seeds.

Intuitively, taking pushouts glues string diagrams together. Let us do a few examples.

I Example 13. The seed [2] | [2] [ls,rs]−−−−→ π2
lt←− [2] has as interface the presheaf I[2] = ?+ ?,

consisting of two channels, say a and b. Consider the configuration [2] + ? consisting of an
agent y connected to two channels b′ and c, plus an additional channel a′. Further consider
the map h : I[2] → [2] + ? defined by a 7→ a′ and b 7→ b′. The pushout

I[2] [2] + ?

π2 M ′

is .

x1 x2

x

y ca=a′ b=b′

The meaning of such an action is that x forks while y is passive.

I Example 14. Because we push along initial channels, the interface of a seed may not
contain all involved channels. E.g., in an input action (not part of any synchronisation), the
received channel cannot be part of the initial configuration.

2.3 From actions to traces
Having defined actions, we now define their composition to yield our bicategory Dv of
configurations and traces. Consider Cospan(ÛC), the bicategory which has as objects all
presheaves of finite sets on C, as morphisms X → Y all cospans X → U ← Y , and obvious
2-cells. Composition is given by pushout, and hence is not strictly associative.

C. Eberhart, T. Hirschowitz, and T. Seiller 95

x1 x2 y1 y2

x y

ca=a′ b=b′ a b ca

c

x y z

y′

y′′

Figure 3 Example traces.

I Notation 15. By convention, the initial configuration is the target of the morphism in
Cospan(ÛC). We denote morphisms in Cospan(ÛC) with special arrows X Y ; composition
and identities are denoted with • and id•.

I Definition 16. A trace is a finite, possibly empty composite of actions in Cospan(ÛC). Let
Dv denote the locally full subbicategory of Cospan(ÛC) with configurations as objects and
traces as morphisms.

Thus, arrows X → Y in Dh denote embeddings of X into Y (up to identification of
channels), whereas arrows Y X in Dv denote traces with X initial and Y final. Intuitively,
composition in Dv glues string diagrams on top of each other, which yields a truly concurrent
notion of trace: the only information retained in a trace about the order of occurrence of
actions is their causal dependencies.

I Example 17. Composing the action of Example 13 with a forking action by y yields the
first string diagram of Figure 3, which shows that the ordering between remote actions
is irrelevant. To illustrate how composition retains causal dependencies between actions,
consider the second string diagram. It is unfolded for readability: one should identify both
framed nodes, resp. both circled ones. In the initial configuration, there are channels a, b, and
c, and three agents x(a, b), y(b), and z(a, c) (channels known to each agent are in parentheses).
In a first action, x sends a on b, and y receives it. In a second action, z sends c on a, and
the avatar y′ of y receives it. The second action is enabled by the first, by which y gains
knowledge of a.

3 Strategies, behaviours, and semantic fair testing

3.1 Strategies and behaviours

Y ′

Y

X

w

u

u′
∼=
α

We now investigate notions of strategies. As announced in the introduction, we
define a category T(X) combining prefix ordering and isomorphism of traces:
T(X) has traces u : Y X as objects, and as morphisms u → u′ all pairs
(w,α) with w : Y ′ Y and α an isomorphism u •w → u′ in the hom-category
Dv(Y ′, X), as on the right1. Thus, u′ is an extension of u by w.

I Definition 18. Let the category of (naive) strategies on X be T̆(X).

Strategies do not yield a satisfactory model for π:

1 There is a small problem, however: morphisms should only describe how u maps to u′, not w. We
actually quotient them out to rectify this.

CALCO’15

96 An Intensionally Fully-abstract Sheaf Model for π

I Example 19. Consider the configuration X with three agents x, y, z sharing a channel a,
and the following traces on it: in ux,y, x sends a on a, and y receives it; in ux,z, x sends
a on a, and z receives it; in iz, z inputs on a. One may define a strategy S mapping ux,y
and iz to a singleton, and ux,z to ∅. Because ux,y is accepted, x accepts to send a on a; and
because iz is accepted, z accepts to input on a. The problem is that S rejecting ux,z roughly
amounts to x refusing to synchronise with z, or conversely.

T Z ′

u • w u′

Y Y ′

X

s

k

h

r

h′

We want to rule out this kind of strategy from our model, by adapting
the idea of innocence. We start by extending T(X) with objects representing
traces on sub-configurations of X. For this, we consider the following
category TX . It has as objects pairs (u, h) of a trace u : Z Y and a
morphism h : Y → X in Dh. A morphism (u, h) → (u′, h′) consists of a
trace w : T Z and a triple (s, k, r) making the diagram on the right commute1.

T Z ′

Z

Y Y ′

w

u

u′

r

s

Xh h′

[3] Y

[2]

[1] X

ι2,2

ι1,1

u

y

y′′

X.y

I Example 20. We adopt the convention of picturing the
above diagram for morphisms as the left-hand diagram
below: Now recalling the right-hand trace of Figure 3,
say u : Y X, y’s first action is an input on its unique
channel b. This yields a trace ι1,1 : [2] [1].
There is a morphism (ι1,1, y)→ (u, idX) in TX , pictured
as the right-hand diagram, which we think of as an occurrence of the trace ι1,1 in u. Thus,
morphisms in TX account both for prefix inclusion and for ‘spatial’ inclusion, i.e., inclusion
of a trace into some other trace on a larger configuration.

We now define views within TX :

I Definition 21. Let basic seeds be all seeds of any shape among ιn,a, on,a,b, νn, ♥n, τn, πln,
and πrn, for a, b ∈ n. Views are (possibly empty) composites of basic seeds in Dv. Let VX
denote the full subcategory of TX spanning pairs (u, h) where u is a view.

Intuitively, basic seeds follow exactly one agent through an action. An object of VX consists
of a view, say v : [n′] [n], plus a morphism h : [n]→ X in Dh, which by Yoneda is just an
agent of X. So an object of VX is just an agent of X and a view from it.

I Definition 22. The inclusion VX ↪→ TX induces a Grothendieck topology, for which a
family (ui

αi−→ u)i∈I of morphisms to some trace u is covering iff it contains all morphisms
from views into u. Let the category SX ↪→ T̂X of innocent strategies be the category of
sheaves of finite sets for this topology. Let the category BX of behaviours over X be ṼX .

Vop
X Top

X T(X)op

setB

jop

U(SB)
SB

As promised, SX and BX are equivalent. We obtain
the innocent strategy SB associated to a behaviour B ∈
BX , by taking its right Kan extension [29] along the in-
clusion jop : Vop

X ↪→ Top
X , as on the right. Explicitly, using standard results, we ob-

tain the end SB(u, h) =
∫

(v,x)∈VX B(v, x)TX((v,x),(u,h)), which is a kind of generalised
product. In the boolean setting (functors to 2), this end reduces to a conjunction∧
{(v,x)∈VX |∃α : (v,x)→(u,h)}B(v, x), demanding precisely that all views of u are accepted

by B. In the general case, the intuition is that a way of accepting u for SB is a compatible
family of ways of accepting the views of u for B. Existence of the right Kan extension
is proved in the general case in [22, Lemma 4.34], and follows from the general fact that
the considered limits are essentially finite. The forgetful functor U to naive strategies is
then given by restricting along T(X)op ↪→ Top

X as above right. Some local information may
be forgotten by U , which is neither injective on objects, nor full, nor faithful. E.g., if two

C. Eberhart, T. Hirschowitz, and T. Seiller 97

behaviours differ, but are both empty on the views of some agent, then both are mapped to
the empty naive strategy.

I Example 23. Recalling X and S from Example 19, let us show that for any B ∈ BX ,
the associated strategy U(SB) ∈ T̆(X) cannot be S. Indeed, assuming it is, then because S
accepts ux,y and iz, B accepts the following views: (1) iz, (2) ox, in which x sends a on a
(without any matching input), (3) iy, in which y inputs on a, and (4) all identity views on x,
y, and z. But then U(SB) accepts both ux,y and ux,z, because B accepts all views mapping
into them.

3.2 Semantic fair testing

We now define our semantic analogue of fair testing equivalence, sketch our translation from
π, and state our main result. Semantic fair testing rests on two main ingredients: a notion
of closed-world trace, and an analogue of parallel composition in game semantics.

Vop
X1

Vop
X Vop

X2

set
B1 B2

[B1,B2]

The intuitive purpose of parallel composition is to let strategies
interact. If we partition the agents of a configuration X into two
teams, we obtain two subconfigurations X1 ↪→ X ←↩ X2, each
agent of X belonging to X1 or X2 according to its team. The crucial fact is that the category
VX of views on X is isomorphic to the coproduct category VX1 + VX2 . Parallel composition
of any B1 ∈ BX1 and B2 ∈ BX2 is then simply given by copairing [B1, B2] as above.

We now describe closed-world actions and traces, which are then used as a criterion for
success of tests. Closed-world actions are those which do not involve interaction with the
environment, i.e., formally, pushouts of a seed of any shape among νn,τn,♥n,πn, and τn,a,m,c,d.
A trace is closed-world when it is a composite of closed-world actions. Let W(X) i T(X)
denote the full subcategory of T(X) consisting of closed-world traces, and let the category
of closed-world strategies be Ẇ(X). Further, denote by B 7→ B the composite functor
ṼX → T̆(X) ∆iop−−−→ Ẇ(X), where ∆iop denotes restriction along iop.

A closed-world trace is successful when it contains a ♥ action, and unsuccessful otherwise.
A state σ ∈ S(u) of a strategy S ∈ W̆(Z) over a closed-world trace u : Z ′ Z is successful
iff u is. Define ⊥⊥Z as the set of closed-world strategies S ∈ W̆(Z) such that any unsuccessful
closed-world state admits a successful extension, i.e. S ∈ ⊥⊥Z iff for all unsuccessful u ∈W(Z)
and σ ∈ S(u), there exists a successful u′ ∈ W(Z), a morphism f : u → u′, and a state
σ′ ∈ S(u′) such that σ′ · f = σ. Finally, in order to compare behaviours for semantic fair
testing equivalence, we specify what a test is for a given behaviour B ∈ BX . A test consists of
a configuration Y and a behaviour T ∈ BY . The behaviour B then should pass the test (Y, T)
iff IX = IY and [B, T] ∈ ⊥⊥Z , where IX consists of all channels of X (recall Definition 11)
and Z is the pushout X +IX Y (X and Y thus form two teams on Z). At last, we define
semantic fair testing equivalence, for any B ∈ BX and B′ ∈ BX′ :

I Definition 24. Let B ∼f B′ iff B and B′ should pass the same tests.

3.3 Intensional full abstraction

We now sketch our translation from π-calculus processes to behaviours and state our main
result. First, we consider processes to be infinite terms as generated by the grammar

P,Q ::=
∑
i∈nGi | (P |Q) G ::= ā〈b〉.P | a(b).P | νa.P | τ.P | ♥.P ,

CALCO’15

98 An Intensionally Fully-abstract Sheaf Model for π

up to renaming of bound variables as usual. Such a coinductive definition requires some
care [12]: notably, processes come equipped with their finite set Γ of free channels, which we
denote by Γ ` P . In order to translate processes to behaviours, we denote the coproduct in
BX by ⊕ (which is the pointwise coproduct of presheaves). Furthermore, let us denote by
B[n] the set of basic seeds b : [nb] [n] from [n]. For any family (Bb)b∈B[n] of behaviours,
where each Bb is a behaviour over [nb], we denote by 〈(Bb)b∈B[n]〉 the behaviour B′ over [n]
such that B′(id•[n], id [n]) = 1, and for any view b • v, B′(b • v, id [n]) = Bb(v, id [nb]). Armed
with this notation, we coinductively map processes with free channels in {1, . . . ,Γ} for some
Γ ∈ N to behaviours on [Γ] like so:
JΓ `

∑
i αi.PiK = 〈b 7→ ⊕{i|JαiK=b}JΓ · αi ` PiK〉 JΓ ` P |QK =

Æ
πlΓ 7→ JΓ ` P K
πrΓ 7→ JΓ ` QK

∏
,

where (1) Jā〈b〉K = oΓ,a,b, Ja(b)K = ιΓ,a, JνaK = νΓ, J♥K = ♥Γ, and JτK = τΓ, (2) all
unmentioned basic seeds are mapped to the everywhere empty behaviour ∅, (3) Γ · αi
denotes Γ + 1 when αi is an input or a channel creation2, and Γ otherwise. E.g., we have
JΓ ` a(b).P + a(b).QK = 〈ιΓ,a 7→ JΓ + 1 ` P K ⊕ JΓ + 1 ` QK〉. We then define fair testing
equivalence ∼Pi

f for π-calculus processes as in [7]: let ⊥Pi denote the set of processes P such
that for all P =⇒ P ′ there exists P ′ =⇒ P ′′

♥−→ P ′′′, and, given any two processes Γ ` P and
Γ ` Q, let P ∼Pi

f Q iff for all Γ ` T we have (P | T ∈ ⊥Pi) ⇔ (Q | T ∈ ⊥Pi). Finally, our
main result is:

I Theorem 25.
1. For all P,Q, (Γ ` P) ∼Pi

f (Γ ` Q) iff JΓ ` P K ∼f JΓ ` QK.
2. For all B over [Γ], there exists a process Γ ` P such that JΓ ` P K ∼f B.

4 Conclusion and future work

We have described our notion of trace and the induced model of π. We then have stated our
main theorem. In our online long version [12], the interested reader may find the proof that
our traces organise into a playground [22], and the proof of Theorem 25. For lack of space,
we cannot give any detail. Still, we sketch the latter.

The idea is to reduce semantic fair testing equivalence to fair testing equivalence in the
standard sense for some ad hoc lts S. We then single out a particular quotient M of S,
which admits a syntactic description very close to Berry and Boudol’s chemical abstract
machine [2], though with a kind of persistent explicit substitutions. Elements of M thus
roughly consist of finite multisets of molecules. Multisets are here thought of as chemical
soups, in which synchronisation is viewed as interaction between compatible molecules. In
order to simplify matters, we also work with a chemical abstract machine presentation of the
π-calculus. We then define a candidate ‘pseudo-inverse’ ζ to the translation map J−K. These
are maps between molecules for π and molecules forM, which extend straightforwardly to
chemical soups. We finally design a relation between π-calculus soups andM soups, which
modularly allows π-calculus processes to correspond to their translation, andM-molecules
to correspond to their image under ζ. We are then able to show that this relation is a weak
bisimulation which straightforwardly entails that J−K both preserves and reflects fair testing
equivalence and is surjective up to fair testing equivalence, i.e., is intensionally fully-abstract.

Regarding future work, we of course plan to extend our approach to more complex calculi,
e.g., calculi with passivation or functional calculi, and eventually consider some full-fledged

2 W.l.o.g., we choose representatives of processes so that if Γ ` a(b).P or Γ ` νb.P , then b = (Γ + 1).

C. Eberhart, T. Hirschowitz, and T. Seiller 99

functional language with concurrency primitives. Furthermore, we consider generalising our
technique for constructing playgrounds and applying them, e.g., to graph rewriting, error
diagnostics, or efficient machine representation of reversible π-calculus processes.

References
1 Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.

Inf. Comput., 163(2):409–470, 2000.
2 Gérard Berry and Gérard Boudol. The chemical abstract machine. In POPL, pages 81–94,

1990.
3 Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva. De-

riving syntax and axioms for quantitative regular behaviours. In CONCUR, volume 5710
of LNCS, pages 146–162. Springer, 2009.

4 Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in the
π-calculus. Acta Inf., 35(5):353–400, 1998.

5 Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In CONCUR, volume 962
of LNCS, pages 313–327. Springer, 1995.

6 Nadia Busi and Roberto Gorrieri. Distributed semantics for the π-calculus based on Petri
nets with inhibitor arcs. J. Log. Algebr. Program., 78(3):138–162, 2009.

7 Diletta Cacciagrano, Flavio Corradini, and Catuscia Palamidessi. Explicit fairness in testing
semantics. LMCS, 5(2), 2009.

8 Simon Castellan, Pierre Clairambault, and Glynn Winskel. The parallel intensionally fully
abstract games model of pcf. In LICS. IEEE, 2015.

9 Gian Luca Cattani and Peter Sewell. Models for name-passing processes: Interleaving and
causal. In LICS, pages 322–333. IEEE, 2000.

10 Silvia Crafa, Daniele Varacca, and Nobuko Yoshida. Event structure semantics of parallel
extrusion in the pi-calculus. In FoSSaCS, volume 7213 of LNCS, pages 225–239. Springer,
2012.

11 Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. TCS, 34:83–
133, 1984.

12 Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller. A πlayground. http://lama.
univ-smb.fr/~hirschowitz/papers/pilayground.pdf, 2015.

13 Joost Engelfriet. A multiset semantics for the pi-calculus with replication. TCS,
153(1&2):65–94, 1996.

14 Marcelo P. Fiore, Eugenio Moggi, and Davide Sangiorgi. A fully-abstract model for the
pi-calculus (extended abstract). In LICS, pages 43–54. IEEE, 1996.

15 Peter Freyd and G. M. Kelly. Categories of continuous functors, I. JPAA, 2:169–191, 1972.
16 Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules. MSCS,

11(3):301–506, 2001.
17 Gregor Gößler, Daniel Le Métayer, and Jean-Baptiste Raclet. Causality analysis in contract

violation. In Runtime Verification, volume 6418 of LNCS, pages 270–284. Springer, 2010.
18 Russell Harmer, Martin Hyland, and Paul-André Melliès. Categorical combinatorics for

innocent strategies. In LICS, pages 379–388. IEEE, 2007.
19 Matthew Hennessy. A fully abstract denotational semantics for the π-calculus. TCS, 278(1-

2):53–89, 2002.
20 Thomas T. Hildebrandt. Towards categorical models for fairness: fully abstract presheaf

semantics of SCCS with finite delay. TCS, 294(1/2):151–181, 2003.
21 Tom Hirschowitz. Full abstraction for fair testing in CCS. In CALCO, volume 8089 of

LNCS, pages 175–190. Springer, 2013.
22 Tom Hirschowitz. Full abstraction for fair testing in CCS (expanded version). LMCS, 10(4),

2014.

CALCO’15

http://lama.univ-smb.fr/~hirschowitz/papers/pilayground.pdf
http://lama.univ-smb.fr/~hirschowitz/papers/pilayground.pdf

100 An Intensionally Fully-abstract Sheaf Model for π

23 Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and interactive
equivalences for CCS. In ICE, pages 2–24, 2011.

24 J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf.
Comput., 163(2):285–408, 2000.

25 Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the
Foundations of Mathematics. North Holland, Amsterdam, 1999.

26 André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and open maps. In LICS,
pages 418–427. IEEE, 1993.

27 James Laird. Game semantics for higher-order concurrency. In FSTTCS, volume 4337 of
LNCS, pages 417–428. Springer, 2006.

28 Saunders Mac Lane. Duality for groups. Bull. AMS, 56, 1950.
29 Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate

Texts in Mathematics. Springer, 2nd edition, 1998.
30 Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduc-

tion to Topos Theory. Universitext. Springer, 1992.
31 Guy McCusker, John Power, and Cai Wingfield. A graphical foundation for schedules.

ENTCS, 286:273–289, 2012.
32 Paul-André Melliès. Asynchronous games 4: A fully complete model of propositional linear

logic. In LICS, pages 386–395. IEEE, 2005.
33 Paul-André Melliès. Game semantics in string diagrams. In LICS, pages 481–490. IEEE,

2012.
34 Ugo Montanari and Marco Pistore. Concurrent semantics for the π-calculus. ENTCS,

1:411–429, 1995.
35 V. Natarajan and Rance Cleaveland. Divergence and fair testing. In ICALP, volume 944

of LNCS, pages 648–659. Springer, 1995.
36 Hanno Nickau. Hereditarily sequential functionals. In LFCS, volume 813 of LNCS, pages

253–264. Springer, 1994.
37 M. Nielsen, G. Plotkin, and G. Winskel. Event structures and domains, part 1. TCS,

13:65–108, 1981.
38 Arend Rensink and Walter Vogler. Fair testing. Inf. Comput., 205(2):125–198, 2007.
39 Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS, pages 409–418. IEEE,

2011.
40 Ian Stark. A fully abstract domain model for the π-calculus. In LICS, pages 36–42. IEEE,

1996.
41 Takeshi Tsukada and C.-H. Luke Ong. Nondeterminism in game semantics via sheaves. In

LICS. IEEE, 2015.
42 Glynn Winskel. Event structure semantics for CCS and related languages. In Mogens

Nielsen and Erik Meineche Schmidt, editors, ICALP, volume 140 of LNCS, pages 561–576.
Springer, 1982.

43 Glynn Winskel. Strategies as profunctors. In FoSSaCS, volume 7794 of LNCS, pages
418–433. Springer, 2013.

Partial Higher-dimensional Automata
Uli Fahrenberg and Axel Legay

INRIA/IRISA, Campus de Beaulieu, 35042 Rennes CEDEX, France

Abstract
We propose a generalization of higher-dimensional automata, partial HDA. Unlike HDA, and
also extending event structures and Petri nets, partial HDA can model phenomena such as
priorities or the disabling of an event by another event. Using open maps and unfoldings, we
introduce a natural notion of (higher-dimensional) bisimilarity for partial HDA and relate it to
history-preserving bisimilarity and split bisimilarity. Higher-dimensional bisimilarity has a game
characterization and is decidable in polynomial time.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases higher-dimensional automata, bisimulation

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.101

1 Introduction

Higher-dimensional automata (HDA) is a formalism for modeling and reasoning about
behavior of concurrent systems. Like Petri nets [22], event structures [20], configuration
structures [32], asynchronous transition systems [1, 27] and other similar formalisms, it is
non-interleaving in the sense that it differentiates between concurrent and interleaving events;
using CCS notation [19], a|b 6= a.b+ b.a.

Introduced by Pratt [23] and van Glabbeek [29] in 1991 for the purpose of a geometric
interpretation to the theory of concurrency, it has since been shown by van Glabbeek [30] that
HDA provide a generalization (up to history-preserving bisimilarity) to “the main models of
concurrency proposed in the literature” [30], including the ones mentioned above. Hence
HDA are useful as a tool for comparing and relating different models, and also as a modeling
formalism by themselves.

HDA are geometric in the sense that they are similar to the simplicial complexes used in
algebraic topology, and research on HDA has drawn on tools and methods from geometry
and topology such as homotopy [10, 8, 5, 9], homology [14], and model categories [12, 11],
see also the surveys [13, 15].

Motivated by some examples of concurrent systems which cannot be modeled by HDA,
we propose here an extension of the formalism, called partial or incomplete HDA. Intuitively,
these are HDA in which some parts may be missing; transitions which do not have an end
state, squares which miss parts of their boundary, etc. We will show that these can be used
to model phenomena such as priorities and the disabling of events by other events.

We show that partial HDA admit a natural notion of bisimilarity, defined categorically
through open maps in the spirit of Joyal, Nielsen and Winskel [35, 17]. (We have included a
background section to introduce and motivate the categorical setting.) This opens up for
using coinductive techniques for (partial) HDA. We also give a game characterization of this
hd-bisimilarity and show that is decidable for finite partial HDA.

We then define unfoldings of partial HDA into higher-dimensional trees, which are given
as the equivalence classes of computation paths under a certain notion of homotopy of
computations, rather similarly to universal coverings in algebraic topology. These unfoldings

© Uli Fahrenberg and Axel Legay;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 101–115

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.101
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

102 Partial Higher-dimensional Automata

are used to express hd-bisimilarity as an equivalence relation on homotopy classes of compu-
tations and, ultimately, directly on computations. This allows us to compare hd-bisimilarity
to other common notions of equivalences for concurrent models, such as split bisimilarity [30],
ST-bisimilarity [33] and history-preserving bisimilarity [25, 31]. We show that hd-bisimilarity
is strictly weaker than history-preserving bisimilarity, but not weaker than split bisimilarity.

We start the paper by giving some categorical background for our developments in
Section 2, with the purpose of introducing just enough category theory so that the rest of
the paper, except perhaps for the last section, can be understood also by readers without a
categorical inclination. Section 3 then introduces partial HDA and shows important examples
of systems which can be modeled only as partial HDA. In Section 4 we then introduce our
notion of hd-bisimilarity through open maps in the category of partial HDA. We give an
elementary characterization of hd-bisimilarity in Theorem 9 and a characterization using
games in Theorem 12.

Section 5, introducing homotopy of computations and unfoldings of partial HDA, is
the technical core of the paper. Its central result is Corollary 16, that partial HDA are
hd-bisimilar iff their unfoldings are so. This result is used for comparing hd-bisimilarity with
other equivalences for concurrent models in Section 6, showing in Theorem 18 our main result
that hd-bisimilarity is strictly weaker than history-preserving bisimilarity but not weaker
than split bisimilarity.

For (total) HDA, the categorical setting on which our work is built was first introduced
in [4, 5]. It has the advantage of a close analogy to the simplicial and cubical sets used
in algebraic topology [26, 3, 16]. Later we have connected this work to history-preserving
bisimilarity in [6], see also [7] for some corrections. Note that the version of hd-bisimilarity
introduced in our earlier work [6, 7] for HDA is different from the one we define here; indeed
the earlier variant is incomparable with history-preserving bisimilarity. This is essentially
because HDA are required to have all boundaries and is avoided by passing to partial HDA.

2 Categorical Background

To warm up, we review some of the work in [35, 17] on the category of transition systems and
open maps for bisimulations, modified slightly to suit our purposes. This categorical setting
is useful for us, because it allows to state properties in an abstract generality which allows
for immediate generalization to other settings. More specifically, the work of Joyal, Winskel
and Nielsen in [35, 17] and other papers has been influential because through the categorical
setting, properties can be stated and proven across formalisms and easily be transferred from
one formalism to another. This has exposed some very useful similarities between formalisms
which look very different, for example transition systems, Petri nets, and event structures.
Hence category theory is useful here as an ordering principle.

2.1 Digraphs
A digraph X = (X1, X0) consists of two sets X1, X0, of edges and vertices, together with
face maps δ0, δ1 : X1 → X0 assigning start and end vertices to every edge. Note that we
allow loops and multiple edges in our digraphs.

A morphism of digraphs f : X → Y consists of two mappings f1 : X1 → Y1, f0 : X0 → Y0
which commute with the face maps, i.e. such that f0(δ0a) = δ0f1(a) and f0(δ1a) = δ1f1(a)
for every edge a ∈ X1. Hence morphisms are standard digraph homomorphisms.

Digraphs and their morphisms form a category, in that composition of morphisms is
associative and every digraph X has an identity morphism idX given by idX1 (a) = a and
idX0 (x) = x. We will denote this category by Dgr.

U. Fahrenberg and A. Legay 103

2.2 Transition Systems

A transition system (X, i0) is a digraph X with a specified initial vertex (state) i0 ∈ X0.
This is the same as specifying a mapping i0 : {0} → X0 from a one-point set into the vertices,
which can be extended (uniquely) to a morphism i : ∗ → X from the one-point digraph
(without edges). We have hence transferred an internal object, an element i0 ∈ X0, to an
external setting, a morphism i : ∗ → X. This process of externalization is very important
in applications of category theory, as it allows to transfer properties internal to objects or
morphisms (here the very simple property of having a specified initial element) to an external
setting which only uses objects and morphisms as-is.

Morphisms of transition systems are required to respect the initial states, i.e. if f :
(X, i)→ (Y, j) is such a morphism, then we must have f(i) = j. This is the same as saying
that the category of transition systems is the comma category (or slice) of digraphs under
the object ∗: objects are digraph morphisms ∗ → X and morphisms are digraph morphisms
f : X → Y for which the diagram

∗
i
}}

j
!!

X
f
// Y

commutes. We denote this comma category by ∗ ↓ Dgr.

2.3 Labeled Transition Systems

A labeled transition system (LTS) (X, i, λ1), over some alphabet Σ, is a transition system
i : ∗ → X together with an edge labeling λ1 : X1 → Σ. We externalize the edge labeling:
Let !Σ = ({0},Σ) be the one-point digraph with edge set Σ (i.e. the digraph with one
vertex 0 and δ0α = δ1α = 0 for every α ∈ Σ), then any mapping λ1 : X1 → Σ can be
extended (uniquely) to a digraph morphism λ : X → !Σ. A LTS is, then, a system of digraph
morphisms ∗ i−→ X

λ−→ !Σ: i : ∗ → X specifies the initial state, and λ : X → !Σ associates
labels to edges.

Morphisms of LTS (X, i, λ1)→ (Y, j, µ1) are digraph morphisms f : X → Y which respect
the initial state and the labeling: for every a ∈ X1, µ1(f1(a)) = λ1(a). (For simplicity we
only consider such label-preserving morphisms here; this is all we will need later.) This is
the same as saying that the category of LTS is the double comma category ∗ ↓ Dgr ↓ !Σ
of digraphs between ∗ and !Σ: objects are structures ∗ i−→ X

λ−→ !Σ and morphisms are
commutative diagrams

∗
i
||

j
##

X
f
//

λ
""

Y .

µ||

!Σ

Posing initial states and labels as a double comma category has the advantage that many
constructions can be simply defined on the base category (here: digraphs; below: partial
precubical sets) and then lifted to the double comma category. We will exploit this below to
do most of our work in the unlabeled category (of partial HDA) and only in the last section
lift it to the labeled setting.

CALCO’15

104 Partial Higher-dimensional Automata

2.4 Open Maps and Bisimilarity
A digraph morphism f : X → Y is called an open map if it holds that for all x ∈ X0 and
b ∈ Y1 with δ0b = f0(x), there exists a ∈ X1 with δ0a = x such that b = f1(a). Hence any
edge b which starts in f0(x) can be lifted (not necessarily uniquely) to an edge a, emanating
from x, for which b = f1(a).

One of the contributions of [17] is the lift of the above open maps to the usual relational
setting of bisimulation [21, 19]: by a theorem of [17], two LTS X, Y are bisimilar iff there
exists an LTS Z and a span of open maps X ← Z → Y .

2.5 Path Objects
To externalize the property of being open, one defines a category of path objects (or compu-
tations). A path object is a transition system ({x0, . . . , xn}, {(x0, x1), . . . , (xn−1, xn)}, x0),
for n ≥ 0, i.e. a path in the graph-theoretical sense, with distinct states x0, . . . , xn and
transitions from xi to xi+1 for all i = 0, . . . , n− 1. Morphisms of path objects are inclusions
of shorter paths into longer ones (hence path objects form a full subcategory of transition
systems). It can then be shown that a transition system morphism f : X → Y is open iff
there is a morphism (a lift) r : Q→ X in any diagram of the form

P //

��

X

f

��

Q //

r

??

Y ,

where P and Q are path objects.
We have established that bisimulation of LTS can be posed in an entirely external

categorical setting, where two LTS are bisimilar iff here is a span of morphisms which have a
special property of being open which is defined through a (right) lifting property with respect
to a subcategory of paths. This will be a guidance for our developments in later sections.

3 Partial Higher-dimensional Automata

Higher-dimensional automata [23, 29] generalize transition systems in the sense that they
allow for higher-dimensional transitions: they admit states and transitions, but also two-
dimensional (squares) and three-dimensional (cubes) transitions, etc. Partial HDA, as
presented in this paper, are a further generalization in which some transitions may not have
start or end states, or squares may not have some of their start or end transitions, etc. As in
the preceding section, we define partial HDA using a comma category construction.

3.1 HDA
We start by recalling HDA. A precubical set is a graded set X = {Xn}n∈N together with
mappings δνk(n) : Xn → Xn−1, k ∈ {1, . . . , n}, ν ∈ {0, 1}, satisfying the precubical identity

δνkδ
µ
` = δµ`−1δ

ν
k (k < `) .

The mappings δνk(n) are called face maps (note that we will omit the extra index (n)), and
elements of Xn are called n-cubes. Faces δ0

kx of an element x ∈ X are to be thought of as
start faces, δ1

kx as end faces. The precubical identity expresses the fact that (n− 1)-faces of
an n-cube meet in common (n−2)-faces; see Fig. 1 for an example. Note how this generalizes

U. Fahrenberg and A. Legay 105

xδ0
1x δ1

1x

δ0
2x

δ1
2x

δ0
1δ

0
2x = δ0

1δ
0
1x

δ0
1δ

1
2x = δ1

1δ
0
1x

δ1
1δ

0
2x = δ0

1δ
1
1x

δ1
1δ

1
2x = δ1

1δ
1
1x

Figure 1 A 2-cube x with its four faces δ0
1x, δ1

1x, δ0
2x, δ1

2x and four corners.

digraphs to arbitrary dimensions: a precubical set includes vertices and edges, and some
squares of edges may be filled in, some cubes of squares may be filled in, etc.

Similarly to digraph morphisms, morphisms f : X → Y of precubical sets are graded
functions f = {fn : Xn → Yn}n∈N which commute with the face maps: δνk ◦ fn = fn−1 ◦ δνk
for all n ∈ N, k ∈ {1, . . . , n}, ν ∈ {0, 1}. This defines a category of precubical sets.

The category of HDA is then the comma category of precubical sets under the one-point
precubical set ∗ with one 0-cube and no other n-cubes. Hence a one-dimensional HDA is a
transition system; indeed, the category of transition systems [35] is isomorphic to the full
subcategory of one-dimensional HDA.

3.2 Partial HDA
The following example exposes a simple system which cannot be modeled as HDA; this
motivates the introduction of partial HDA below.

I Example 1. Let a and b be two independent events (which hence may run concurrently)
with the constraint that b cannot start before a and has to finish before a can finish. Hence b
can only run “inside” a; by way of motivation, a could be a supervisor process which provides
resources for b. (Hence this is an example of the disabling of an event by another event.)

Note that this system cannot be modeled as an event structure. We can represent it as
an ST-structure as introduced in [24], which is comprised of configurations (S, T) of started
(S) and terminated (T) events (hence always T ⊆ S):

(∅, ∅) a−→
s

({a}, ∅) b−→
s

({a, b}, ∅) b−→
t

({a, b}, {b}) a−→
t

({a, b}, {a, b})

When trying to model this example as a HDA, cf. Fig. 2 below, we see that existence of the
2-cube corresponding to the configuration ({a, b}, ∅) forces us to introduce all its boundaries
into the model, i.e. not only the configurations ({a}, ∅) and ({a, b}, {b}) as above, but also
({b}, ∅) and ({a, b}, {a}). Thus we lose the property that b can only run inside a.

We hence define a partial precubical set (PPS) to be a graded set X = {Xn}n∈N together
with partial mappings δνk : Xn ↪→ Xn−1, k ∈ {1, . . . , n}, ν ∈ {0, 1}, satisfying the precubical
identity

δνkδ
µ
` = δµ`−1δ

ν
k (k < `) (1)

whenever all the involved mappings are defined. We will always assume the sets Xn to be
disjoint. For an n-cube x ∈ Xn, we denote by dim x = n its dimension.

Morphisms f : X → Y of PPS are graded total functions f = {fn : Xn → Yn}n∈N
which commute with the face maps: δνk ◦ fn = fn−1 ◦ δνk for all n ∈ N, k ∈ {1, . . . , n},

CALCO’15

106 Partial Higher-dimensional Automata

ν ∈ {0, 1} whenever the involved face maps are defined. This defines a category PPS of
partial precubical sets and morphisms.

Products of PPS are given point-wise: for PPS X, Y , X × Y = Z with Zn = Xn × Yn
and face maps defined by δνk(x, y) = (δνkx, δνky) iff both individual faces are defined. (This
is the categorical product.) Also subsets are given point-wise: for X,Y ∈ PPS, Y ⊆ X iff
Yn ⊆ Xn for all n ∈ N.

A pointed PPS is a PPS X with a specified 0-cube i ∈ X0, and a pointed morphism is
one which respects the point. This defines a category which is isomorphic to the comma
category ∗ ↓ PPS, where ∗ ∈ PPS is the precubical set with one 0-cube and no other n-cubes.

I Definition 2. The category of partial higher-dimensional automata (PHDA) is the comma
category PHDA = ∗ ↓ PPS, with objects pointed PPS and morphisms commutative diagrams

∗
}} ""

X
f
// Y .

Intuitively, 0-cubes x ∈ X0 are to be thought of as states, 1-cubes are transitions, and
n-cubes for n ≥ 2 model concurrent executions of n events. Note that a one-dimensional
PHDA is a transition system in which transitions do not necessarily have start or end states.
This may be useful for modeling deadlocks, even though we are not aware of any work in
which this is done.

3.3 Labeled Partial HDA
For labeling PHDA, we let Σ = {a1, a2, . . . } be a finite or infinite set of events. We construct a
precubical set !Σ = {!Σn} by letting !Σn = {(ai1 , . . . , ain) | ik ≤ ik+1 for all k = 1, . . . , n−1}
with face maps defined by δνk(ai1 , . . . , ain) = (ai1 , . . . , aik−1 , aik+1 , . . . , ain). Note that !Σ is
a torus: start and end faces of any n-cube agree, hence all n-cubes are loops.

I Definition 3. The category of labeled PHDA over Σ is the double comma category
LHDA = ∗ ↓ PPS ↓ !Σ.

Note that this labels opposite transitions with the same event, i.e. λδ0
1z = λδ1

1z and
λδ0

2z = λδ1
2z, for every z ∈ X2, whenever these boundaries exist in X1. This conveys the

intuition that opposite boundaries of a square execute the same event, connected by possible
concurrent execution of another event. We develop most of the material in this paper for
unlabeled PHDA and transport it to the labeled setting in Section 6.

I Example 4. We can now expose a labeled PHDA model for the system of Example 1. Let
X ∈ PHDA be such that Xn = ∅ for n ≥ 3, X2 = {z}, X1 = {y1, y2} and X0 = {x0, x2}, with
face maps δ0

2z = y1, δ1
2z = y2, δ0

1y1 = x0, δ1
1y2 = x2 (and all others undefined), initial state

x0 and labeling λ(y1) = λ(y2) = a, λ(z) = ab, see Fig. 2. The computational interpretation
of X is that b can only start while a is executing, and a can only finish once b is done.

I Example 5. For a slightly more involved example, let again a and b be independent
events, but this time so that a is executed in a loop; once b has started, a cannot be started
anymore; and b can only finish when a is not running (hence b has priority over a). By way
of motivation, b could be a “shutdown” process which waits for other processes to terminate
but does not allow new ones to start. As a labeled PHDA, this can be modeled as in Fig. 2.
Note that this PHDA contains a cycle; the two copies of x0 on the left indicate that they are
to be identified, as can be seen on the right.

U. Fahrenberg and A. Legay 107

x0

x2

y1

a

y2

a

z ab

x0 x0
a

bab a b

ab

Figure 2 Labeled PHDA of Examples 4 and 5. The gray area signifies a 2-cube; labels are
indicated in red.

x0 x1

x2

y1 y2

y3

y4

z

Figure 3 The two-dimensional path object (x0, y1, x1, y2, z, y3, x2, y4). Its computational inter-
pretation is that y1 is executed first; after it finishes, y2 is started, and while y2 is running, y3 starts
to execute. After this, y2 finishes, then y3 finishes, and then execution of y4 is started. Note that
the computation is partial, as y4 does not finish.

4 Higher-dimensional Bisimilarity

Following the procedure outlined in Section 2, we now introduce path objects, define open
maps as these morphisms which have the right-lifting property with respect to the path
category, and use this to define bisimilarity. This is similar to what we did in [6], but because
we are working with partial HDA, things are closer to the computational intuition.

4.1 Path Objects

We say that a PPS X is a path object if its n-cubes can be sorted into a (necessarily unique)
sequence (x1, . . . , xm) such that xi 6= xj for i 6= j, for each j = 1, . . . ,m− 1, there is k ∈ N
for which xj = δ0

kxj+1 or xj+1 = δ1
kxj , and no other relations exist between the xi. Hence a

path object is a sequence of cubes which are connected so that either xj+1 is an extension of
xj , signifying the start of a new event, or xj+1 is an end face of xj , signifying the end of an
event, see Fig. 3 for an example.

A pointed path object i : ∗ → X consists of a path object X and the mapping i which
includes the point as x1 (hence x1 ∈ X0). Intuitively, path objects are models of PHDA
computations, just as paths are models of transition system computations (Section 2). Pointed
path objects are computations from an initial state.

If X and Y are path objects with representations (x1, . . . , xm), (y1, . . . , yp), then a
morphism f : X → Y is called a cube path extension if xj = yj for all j = 1, . . . ,m (hence
m ≤ p). This models the extension of one computation by zero or more steps, in analogy to
extensions of paths in Section 2.

I Definition 6. The category HDP of higher-dimensional paths is the subcategory of PHDA
which as objects has pointed path objects and whose morphisms are generated by pointed
cube path extensions and isomorphisms.

CALCO’15

108 Partial Higher-dimensional Automata

4.2 Open Maps and Hd-bisimilarity

I Definition 7. A pointed morphism f : X → Y in PHDA is an open map if it has the
right lifting property with respect to HDP, i.e. if it is the case that there is a lift r in any
commutative diagram as below, for morphisms g : P → Q ∈ HDP, p : P → X, q : Q→ Y ∈
PHDA:

P
p
//

g

��

X

f

��

Q
q
//

r

??

Y

Note how this is entirely analogous to what we did in Section 2. Stating concepts in a
categorical way has allowed us to transport them from transition systems to PHDA.

I Definition 8. PHDA X, Y are hd-bisimilar if there is Z ∈ PHDA and a span of open maps
X ← Z → Y in PHDA.

A relational formulation of this is as follows:

I Theorem 9. PHDA i : ∗ → X, j : ∗ → Y are hd-bisimilar iff there exists a PPS R ⊆ X×Y
for which (i, j) ∈ R, and such that for all (x1, y1) ∈ R,
1. for any x2 ∈ X for which x1 = δ0

kx2 for some k, there exists y2 ∈ Y for which y1 = δ0
ky2

and (x2, y2) ∈ R,
2. for any x2 ∈ X for which x2 = δ1

kx1 for some k, there exists y2 ∈ Y for which y2 = δ1
ky1

and (x2, y2) ∈ R,
3. for any y2 ∈ Y for which y1 = δ0

ky2 for some k, there exists x2 ∈ X for which x1 = δ0
kx2

and (x2, y2) ∈ R,
4. for any y2 ∈ Y for which y2 = δ1

ky1 for some k, there exists x2 ∈ X for which x2 = δ1
kx1

and (x2, y2) ∈ R.

Proof. For the forward implication, let X f←− Z
g−→ Y be a span of open maps and define

R = {(x, y) ∈ X × Y | ∃z ∈ Z : x = f(z), y = g(z)}. Then (i, j) ∈ R because f and g are
pointed morphisms, properties (1) and (3) hold because f and g are PPS morphisms, and
properties (2) and (4) hold because f and g are open. For the backwards implication, let
πX : R→ X, πY : R→ Y be the projections; these are easily shown to be open maps. J

I Corollary 10. For finite PHDA, hd-bisimilarity is decidable in polynomial time.

Proof. The condition in Theorem 9 immediately gives rise to a fixed-point algorithm similar
to the one used to decide standard bisimilarity, cf. [19, 18]. J

I Example 11. The two (total) labeled HDA in Fig. 4 are hd-bisimilar, as witnessed by the
following PPS R ⊆ X ×X ′:

R0 = {(x0, x
′
0), (x1, x

′
1), (x2, x

′
2), (x3, x

′
4), (x4, x

′
4)}

R1 = {(y1, y
′
1), (y2, y

′
2), (y3, y

′
4), (y4, y

′
4), (y5, y

′
5)}

R2 = {(z, z′)}

U. Fahrenberg and A. Legay 109

x0

x1 x2

x3 x4

y1a y2 b

y3b y4 y5

z

x′
0

x′
1 x′

2

x′
4

y′
1

a y′
2 b

y′
4 y′

5

z′

Figure 4 Two HDA pertaining to Example 11.

4.3 Hd-bisimulation Games
We can also expose a game characterization of hd-bisimilarity, similar to the notion of
bisimulation game for interleaving bisimilarity [28]. The game is played by two players,
Spoiler and Duplicator, and a configuration of the game is a pair (x, y) of n-cubes x ∈ X,
y ∈ Y of equal dimension. The initial configuration is (i, j).

At each round of the game, from a configuration (x1, y1), the spoiler chooses to play one
of four moves: either
1. to choose x2 ∈ X with x1 = δ0

kx2 for some k,
2. to choose x2 ∈ X with x2 = δ1

kx1 for some k,
3. to choose y2 ∈ Y with y1 = δ0

ky2 for some k, or
4. to choose y2 ∈ Y with y2 = δ1

ky1 for some k.
Depending on the type of move of the spoiler, the duplicator now has to answer by, respectively,
1. choosing y2 ∈ Y with y1 = δ0

ky2,
2. choosing y2 ∈ Y with y2 = δ1

ky1,
3. choosing x2 ∈ X with x1 = δ0

kx2, or
4. choosing x2 ∈ X with x2 = δ1

kx1,
and the game continues from the configuration (x2, y2).

The spoiler wins the game if the duplicator gets stuck, i.e. if the game finishes because
duplicator has no answer to a move of the spoiler. Otherwise (if the game is infinite, or if it
finishes because the spoiler has no move) the duplicator has won. The proof of the following
theorem is similar to the one for the game characterization of interleaving bisimilarity [28].

I Theorem 12. PHDA X and Y are hd-bisimilar iff the duplicator has a winning strategy
in the hd-bisimulation game between X and Y .

5 Homotopy and Unfoldings

Most other common notions of equivalences for concurrent systems, such as (hereditary)
history-preserving bisimilarity, ST-bisimilarity or split bisimilarity, are defined on compu-
tations rather than structurally (see [30]; we will define them formally below). Hence to
compare our notion of hd-bisimilarity to these other equivalences, we need to lift it to a
relation on computations. The vehicle for doing so is the unfolding of a PHDA, similar to
the universal covering space in algebraic topology.

5.1 Computations
We have already introduced path objects above, which embody the intuition behind PHDA
computations. Using these to define computations within a given PHDA, we say that a cube

CALCO’15

110 Partial Higher-dimensional Automata

x0

x1

x3

y1

y2

y4

y6

z

x0

x1

x3

y1

y3
y4

y6

z

x0

x1

x3

y1

y3

y5

y6

z

x0

x1

x2 x3

y1

y3

y5

y6

Figure 5 The cube path homotopy (x0, y1, x1, y2, z, y4, x3, y6) ∼ (x0, y1, x1, y3, z, y4, x3, y6) ∼
(x0, y1, x1, y3, z, y5, x3, y6) ∼ (x0, y1, x1, y3, x2, y5, x3, y6).

path in a PPS X is a morphism P → X from a path object P . In elementary terms, this
is a sequence (x1, . . . , xm) of elements of X such that for each j = 1, . . . ,m − 1, there is
k ∈ N for which xj = δ0

kxj+1 (start of a new part of a computation) or xj+1 = δ1
kxj (end of

a computation part).
Note that cube paths, contrary to path objects, may have loops and self-intersections

(conforming to the intuition that they be computations in a PHDA). As an example, the
PHDA in Fig. 2 is not itself a path object, but any finite sequence of a-labeled transitions is
a cube path within it, as is any finite sequence of a-labeled transitions followed by a b-labeled
transition.

A pointed cube path in a PHDA ∗ → X is a pointed morphism from a pointed path
object. We will say that a cube path (x1, . . . , xm) is from x1 to xm, and that an n-cube
x ∈ X in a PHDA X is reachable if there is a pointed cube path to x in X.

5.2 Homotopy of Computations
We define an equivalence relation on cube paths which formalizes the intuition of when
two concurrent computations are the same. We say that cube paths ρ = (x1, . . . , xm),
σ = (y1, . . . , ym) are p-adjacent, and write ρ p∼ σ, for p ∈ {2, . . . ,m − 1}, if xp 6= yp and
xj = yj for j 6= p, and one of the following conditions is satisfied:

xp−1 = δ0
kxp, xp = δ0

`xp+1, yp−1 = δ0
`−1yp, and yp = δ0

kyp+1 for some k < `, or vice versa,
xp = δ1

kxp−1, xp+1 = δ1
`xp, yp = δ1

`−1yp−1, and yp+1 = δ1
kyp for some k < `, or vice versa,

xp = δ0
kδ

1
` yp, yp−1 = δ0

kyp, and yp+1 = δ1
` yp for some k < `, or vice versa, or

xp = δ1
kδ

0
` yp, yp−1 = δ0

` yp, and yp+1 = δ1
kyp for some k < `, or vice versa.

The intuition of adjacency is rather simple, even though the combinatorics may look
complicated; see Fig. 5 for an example. Note that adjacencies come in two basic “flavors”:
the first two above in which the dimensions of xp and yp are the same, and the last two in
which they differ by 2.

We say that two cube paths are adjacent if they are p-adjacent for some p, and homotopy
of cube paths is defined to be the reflexive, transitive closure of the adjacency relation. We
denote homotopy of cube paths using the symbol ∼, and the homotopy class of a cube path
(x1, . . . , xm) is denoted [x1, . . . , xm].

5.3 Unfoldings
We will unfold PHDA into higher-dimensional trees, which are PHDA X for which it holds
that there is precisely one homotopy class of cube paths to any n-cube x ∈ X. The full

U. Fahrenberg and A. Legay 111

subcategory of PHDA spanned by the higher-dimensional trees is denoted HDT. Note that
any path object is a higher-dimensional tree.

I Definition 13. The unfolding of a PHDA i : ∗ → X consists of a PHDA ĩ : ∗ → X̃ and a
pointed projection morphism πX : X̃ → X, which are defined as follows:

X̃n =
{

[x1, . . . , xm] | (x1, . . . , xm) pointed cube path in X,xm ∈ Xn

}
; ĩ = [i]

δ̃0
k[x1, . . . , xm] =

{
(y1, . . . , yp) | yp = δ0

kxm, (y1, . . . , yp, xm) ∼ (x1, . . . , xm)
}
provided

this set is non-empty; otherwise undefined
δ̃1
k[x1, . . . , xm] = [x1, . . . , xm, δ

1
kxm] if δ1

kxm exists; otherwise undefined
πX [x1, . . . , xm] = xm

I Theorem 14. The unfolding (X̃, πX) of a PHDA X is well-defined, and X̃ is a higher-
dimensional tree. If X itself is a higher-dimensional tree, then the projection πX : X̃ → X is
an isomorphism.

Proof sketch. Note the complete analogy to the construction of universal covering spaces in
algebraic topology: X̃ consists of homotopy classes of (cube) paths, and the projection maps
a path to its end point (cube). The proof is similar to the one we gave for (total) HDA in [6],
but with the important difference that a certain (“fan-shaped”) normal form for cube paths,
which we used in [6], is not available for partial HDA. We present a sketch of the proof here;
the full proof is in appendix.

To see that X̃ is well-defined, we need to show that the face maps δ̃0
k and δ̃1

k are independent
of the representative in the homotopy class. For δ̃1

k this is trivial, but for δ̃0
k it requires more

work. We also need to prove that the precubical identity δ̃νk δ̃
µ
` = δ̃µ`−1δ̃

ν
k is satisfied whenever

the faces exist; this is again trivial for ν = µ = 1 and more complicated for the other cases.
The projection π : X̃ → X is clearly well-defined, as homotopic cube paths have identical

end points. To see that it is a PHDA morphism, i.e. that πX δ̃νk = δνkπX , is again trivial for
ν = 1 and more complicated for ν = 0.

The proof that X̃ is a higher-dimensional tree is in appendix. If X itself is a higher-
dimensional tree, then an inverse to πX is given by mapping x ∈ X to the unique homotopy
class [x1, . . . , xm] ∈ X̃ of any pointed cube path (x1, . . . , xm) in X with xm = x. J

I Theorem 15. Projections πX : X̃ → X are open, hence any PHDA is hd-bisimilar to its
unfolding.

Transitivity of hd-bisimilarity now implies the following, relating hd-bisimilarity of PHDA
to hd-bisimilarity of homotopy classes of computations. This will be central in our comparison
to other equivalences in Section 6.

I Corollary 16. PHDA X, Y are hd-bisimilar iff their unfoldings X̃, Ỹ are hd-bisimilar.

6 Relation to Other Equivalences

We now lift hd-bisimilarity to the labeled setting and relate it to other equivalences for
concurrent models. We will show that hd-bisimilarity is implied by history-preserving
bisimilarity, but not by split bisimilarity. As LHDA = ∗ ↓ PPS ↓ !Σ is defined as a double
comma category, our notions of open maps and hd-bisimilarity trivially carry over; in LHDA,
these are now required to preserve labels.

We recall the notions of history-preserving bisimilarity, ST-bisimilarity and split bisimi-
larity from [30] (and extend them to partial HDA). For a labeled PHDA ∗ → X

λ−→ !Σ, we
extend λ to cube paths in X by λ(x1, . . . , xm) = (λ(x1), . . . , λ(xm)). Note that there is a

CALCO’15

112 Partial Higher-dimensional Automata

one-to-one correspondence between label sequences λ(ρ) and split traces, see [30, Sect. 7.5].
Below we use for cube path extensions, i.e. ρ ρ′ iff ρ is a prefix of ρ′.

Labeled PHDA ∗ i−→ X
λ−→ !Σ, ∗ j−→ Y

µ−→ !Σ are split bisimilar iff there exists a relation R
between pointed cube paths in X and pointed cube paths in Y for which ((i), (j)) ∈ R, and
such that for all (ρ, σ) ∈ R,
(1) λ(ρ) = µ(σ),
(2) for all ρ ρ′ there exists σ σ′ with (ρ′, σ′) ∈ R, and
(3) for all σ σ′ there exists ρ ρ′ with (ρ′, σ′) ∈ R.
X and Y are ST-bisimilar if, instead of condition 1 above, it holds that
(1’) ST-trace(ρ) = ST-trace(σ).
Here ST-trace(ρ) is the ST-trace of ρ defined by annotating split-trace(ρ) with a mapping
which gives the starting point of any terminating action, see [30] (this is important for auto-
concurrency). X and Y are history-preserving bisimilar iff 6, 2 and 3 hold and, additionally,
for all (ρ, σ) ∈ R and all p,
(4) for all ρ p∼ ρ′, there exists σ p∼ σ′ with (ρ′, σ′) ∈ R, and
(5) for all σ p∼ σ′, there exists ρ p∼ ρ′ with (ρ′, σ′) ∈ R.

I Example 11 (contd.). In the example in Fig. 4 above, there is an ST-bisimilarity relation
which relates the cube path (x0, y1, x1, y3, x3) to (x′0, y′1, x′1, y′4, x′4), and in fact any ST-
bisimilarity needs to do so. But then (x′0, y′1, x′1, y′4, x′4) is 3-adjacent to (x′0, y′1, z′, y′4, x′4),
whereas (x0, y1, x1, y3, x3) admits no 3-adjacency. Hence these HDA are ST-bisimilar but
not history-preserving bisimilar.

The following theorem expresses hd-bisimilarity in a way comparable to the above
definitions.

I Theorem 17. Labeled PHDA ∗ i−→ X
λ−→ !Σ, ∗ j−→ Y

µ−→ !Σ are hd-bisimilar iff there
exists a relation R between pointed cube paths in X and pointed cube paths in Y for which
((i), (j)) ∈ R, and such that for all (ρ, σ) ∈ R,
1. λ(ρ) ∼ µ(σ),
2. for all ρ ρ′, there exists σ σ′ with (ρ′, σ′) ∈ R,
3. for all σ σ′, there exists ρ ρ′ with (ρ′, σ′) ∈ R,
4. for all ρ ∼ ρ′, there exists σ ∼ σ′ with (ρ′, σ′) ∈ R, and
5. for all σ ∼ σ′, there exists ρ ∼ ρ′ with (ρ′, σ′) ∈ R.

I Example 11 (contd.). Continuing the example in Fig. 4 above, a hd-bisimilarity relation
as in Theorem 17 relates the cube path (x0, y1, x1, y3, x3) to (x′0, y′1, x′1, y′4, x′4), but also to
(x′0, y′1, z′, y′4, x′4) and to any other cube path in X ′ homotopic to (x′0, y′1, x′1, y′4, x′4).

I Theorem 18. Hd-bisimilarity is strictly weaker than history-preserving bisimilarity, but
not weaker than split bisimilarity.

Proof. When comparing the conditions in Theorem 17 with the ones for history-preserving
bisimilarity above, we see that λ(ρ) = µ(σ) implies λ(ρ) ∼ µ(σ) and adjacency implies
homotopy. (For history-preserving bisimilarity, the adjacencies are required to happen in the
same place in the cube paths.) Thus history-preserving bisimilarity implies hd-bisimilarity.

In Example 11 we have seen two labeled HDA which are hd-bisimilar but not history-
preserving bisimilar, hence hd-bisimilarity is strictly weaker than history-preserving bisim-
ilarity. Example 19 below will expose two labeled HDA which are split bisimilar but not
hd-bisimilar, showing the last claim of the theorem. J

U. Fahrenberg and A. Legay 113

x0

x1 x2

x3 x4 x5

x6 x7

x8 x9 x10

x11 x12

x13

y1a y2 b

y3c y4 y5 y6 c

y7 y8 y9 y10

y11 y12y13 y14

y15 y16 y17 y18

y19e y20 d

x14

x15

x16

x17

x18

y21

y22

y23c

y24

y25

y26d

y27e

x19

x20

x21

x22

x23

y28

y29

y30 c

y31

y32

y33 e

y34 d

z1

z2 z3

z4

z5 z6

z7

z8

z9

z10

z11

x′
0

x′
1 x′

2

x′
3 x′

4 x′
5

x′
6 x′

7

x′
8 x′

9 x′
10

x′
11 x′

12

x′
13

y′
1a y′

2 b

y′
3c y′

4 y′
5 y′

6 c

y′
7 y′

8 y′
9 y′

10

y′
11 y′

12y
′
13 y′

14

y′
15 y′

16 y′
17 y′

18

y′
19d y′

20 e

x′
14

x′
15

x′
16

x′
17

x′
18

y′
21

y′
22

y′
23c

y′
24

y′
25

y′
26e

y′
27d

x′
19

x′
20

x′
21

x′
22

x′
23

y′
28

y′
29

y′
30 c

y′
31

y′
32

y′
33 d

y′
34 e

z′
1

z′
2 z′

3

z′
4

z′
5 z′

6

z′
7

z′
8

z′
9

z′
10

z′
11

Figure 6 Two HDA pertaining to Example 19.

I Example 19. Using a hd-bisimulation game, we show that the HDA in Fig. 6 are not
hd-bisimilar. Note that according to [34], they are split bisimilar. This shows that split
bisimilarity does not imply hd-bisimilarity. From the initial configuration (x0, x

′
0) of the

game, the spoiler plays y1, to which the duplicator can only answer y′1. Then the spoiler
plays z1, with only possible answer z′1, leading to the configuration (z1, z

′
1). Playing y4 and

then z2, the spoiler forces the configuration (z2, z
′
2) and, playing y8 and then z4, leads the

game to the cc-labeled configuration (z4, z
′
4). Here the spoiler plays y12, which the duplicator

has to answer by the z′4-boundary in the same direction, hence y′12. But then the spoiler can
play the cd-labeled z5, to which the duplicator has no answer.

7 Conclusion and Further Work

We have introduced a generalization of higher-dimensional automata, partial HDA, which
alleviates some modeling shortcomings of HDA. We have seen that PHDA are useful for
modeling priorities and the disabling of events by other events, but they should also be useful

CALCO’15

114 Partial Higher-dimensional Automata

for example in the context of left-merge (e.g. in ACP [2]) and other asymmetric operators.
We have seen that PHDA have a natural notion of (higher-dimensional) bisimilarity, which

is polynomial-time decidable for finite PHDA. We have lifted this notion to a relation on
computations in PHDA and seen that it is strictly weaker than history-preserving bisimilarity
but not weaker than split bisimilarity, but its precise placement in the concurrent hierarchy,
especially its relation with ST-bisimilarity, remains open.

To the best of our knowledge, hd-bisimilarity is the first useful equivalence notion for
concurrent systems which is defined directly on the structure, instead of on computations.
This is important from a practical point of view: we have seen that it can be decided using a
simple fixed-point algorithm, or alternatively using a sort of higher-dimensional bisimulation
game. We plan to implement these algorithms in a tool for equivalence checking of PHDA;
this would make equivalence checking of concurrent systems feasible in practice.

Acknowledgments. The authors wish to thank Cristian Prisacariu and Rob van Glabbeek
for enlightening discussions on the subject of this paper, and the organizers of SMC 2014 in
Lyon for providing a forum for these discussions.

References
1 Marek A. Bednarczyk. Categories of asynchronous systems. PhD thesis, University of

Sussex, UK, 1987.
2 Jan A. Bergstra and Jan W. Klop. Process algebra for synchronous communication. Inf.

Cont., 60(1-3):109–137, 1984.
3 Ronald Brown and Philip J. Higgins. On the algebra of cubes. J. Pure Appl. Alg., 21:233–

260, 1981.
4 Uli Fahrenberg. A category of higher-dimensional automata. In FOSSACS, volume 3441

of Lect. Notes Comput. Sci., pages 187–201. Springer, 2005.
5 Uli Fahrenberg. Higher-Dimensional Automata from a Topological Viewpoint. PhD thesis,

Aalborg University, Denmark, 2005.
6 Uli Fahrenberg and Axel Legay. History-preserving bisimilarity for higher-dimensional

automata via open maps. Electr. Notes Theor. Comput. Sci., 298:165–178, 2013.
7 Uli Fahrenberg and Axel Legay. Homotopy bisimilarity for higher-dimensional automata.

CoRR, abs/1409.5865, 2014.
8 Lisbeth Fajstrup. Dipaths and dihomotopies in a cubical complex. Adv. Appl. Math.,

35(2):188–206, 2005.
9 Lisbeth Fajstrup, Éric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin

Raußen. Trace spaces: An efficient new technique for state-space reduction. In Helmut
Seidl, editor, ESOP, volume 7211 of Lecture Notes in Computer Science, pages 274–294.
Springer, 2012.

10 Lisbeth Fajstrup, Martin Raussen, and Éric Goubault. Algebraic topology and concurrency.
Theor. Comput. Sci., 357(1-3):241–278, 2006.

11 Philippe Gaucher. Homotopical interpretation of globular complex by multipointed d-space.
Theory Appl. Categories, 22:588–621, 2009.

12 Philippe Gaucher. Towards a homotopy theory of higher dimensional transition systems.
Theory Appl. Categories, 25:295–341, 2011.

13 Éric Goubault. Geometry and concurrency: A user’s guide. Math. Struct. Comput. Sci.,
10(4):411–425, 2000.

14 Éric Goubault and Thomas P. Jensen. Homology of higher dimensional automata. In
Rance Cleaveland, editor, CONCUR, volume 630 of Lect. Notes Comput. Sci., pages 254–
268. Springer, 1992.

U. Fahrenberg and A. Legay 115

15 Éric Goubault and Samuel Mimram. Formal relationships between geometrical and classical
models for concurrency. Electronic Notes in Theoretical Computer Science, 283:77–109,
2012.

16 Marco Grandis. Directed algebraic topology: models of non-reversible worlds. New mathe-
matical monographs. Cambridge Univ. Press, 2009.

17 André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. Inf.
Comput., 127(2):164–185, 1996.

18 Dexter Kozen. Automata and Computability. Undergraduate Texts in Computer Science.
Springer, 1997.

19 Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
20 Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and

domains, part I. Theor. Comput. Sci., 13:85–108, 1981.
21 David M.R. Park. Concurrency and automata on infinite sequences. In Peter Deussen,

editor, IFIP TCS, volume 104 of Lect. Notes Comput. Sci., pages 167–183. Springer, 1981.
22 Carl A. Petri. Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathe-

matik, Schriften des IIM Nr. 2, 1962.
23 Vaughan Pratt. Modeling concurrency with geometry. In POPL, pages 311–322. ACM

Press, 1991.
24 Cristian Prisacariu. The glory of the past and geometrical concurrency. In Andrei Voronkov,

editor, Turing-100, volume 10 of EPiC, pages 252–267. EasyChair, 2012.
25 Alexander M. Rabinovich and Boris A. Trakhtenbrot. Behavior structures and nets. Fund.

Inf., 11(4):357–403, 1988.
26 Jean-Pierre Serre. Homologie singulière des espaces fibrés. PhD thesis, Ecole Normale

Supérieure, 1951.
27 Mike W. Shields. Concurrent machines. The Computer Journal, 28(5):449–465, 1985.
28 Colin Stirling. Modal and temporal logics for processes. In Proc. Banff Higher Order

Workshop, volume 1043 of Lect. Notes Comput. Sci., pages 149–237. Springer, 1995.
29 Rob J. van Glabbeek. Bisimulations for higher dimensional automata. Email message, June

1991. http://theory.stanford.edu/~rvg/hda.
30 Rob J. van Glabbeek. On the expressiveness of higher dimensional automata. Theor.

Comput. Sci., 356(3):265–290, 2006.
31 Rob J. van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for

concurrent systems. Acta Inf., 37(4/5):229–327, 2001.
32 Rob J. van Glabbeek and Gordon D. Plotkin. Configuration structures, event structures

and petri nets. Theor. Comput. Sci., 410(41):4111–4159, 2009.
33 Rob J. van Glabbeek and Frits W. Vaandrager. Petri net models for algebraic theories of

concurrency. In J. W. de Bakker, A. J. Nijman, and Philip C. Treleaven, editors, PARLE
(2), volume 259 of Lect. Notes Comput. Sci., pages 224–242. Springer, 1987.

34 Rob J. van Glabbeek and Frits W. Vaandrager. The difference between splitting in n and
n+1. Inf. Comput., 136(2):109–142, 1997.

35 Glynn Winskel and Mogens Nielsen. Models for concurrency. In Samson Abramsky, Dov M.
Gabbay, and Thomas S.E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 4. Clarendon Press, Oxford, 1995.

CALCO’15

http://theory.stanford.edu/~rvg/hda

A Recipe for State-and-Effect Triangles
Bart Jacobs

Radboud University, Nijmegen, The Netherlands
bart@cs.ru.nl

Abstract
In the semantics of programming languages one can view programs as state transformers, or
as predicate transformers. Recently the author has introduced ‘state-and-effect’ triangles which
captures this situation categorically, involving an adjunction between state- and predicate-trans-
formers. The current paper exploits a classical result in category theory, part of Jon Beck’s
monadicity theorem, to systematically construct such a state-and-effect triangle from an adjunc-
tion. The power of this construction is illustrated in many examples, both for the Boolean and
probabilistic (quantitative) case.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Duality, predicate transformer, state transformer, state-and-effect tri-
angle

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.116

1 Introduction

In program semantics three approaches can be distinguished.
Interpreting programs themselves as morphisms in certain categories. Composition in
the category then corresponds to sequential composition. Parallel composition may be
modeled via tensors ⊗. Since [26] the categories involved are often Kleisli categories K̀ (T)
of a monad T , where the monad T captures a specific form of computation: deterministic,
non-deterministic, probabilistic, etc.
Interpreting programs via their actions on states, as state transformers. For instance,
in probabilistic programming the states may be probabilistic distributions over certain
valuations (mapping variables to values). Execution of a program changes the state, by
adapting the probabilities of valuations. The state spaces often have algebraic structure,
and take the form of Eilenberg-Moore categories EM(T) of a monad T .
Interpreting programs via their actions on predicates, as predicate transformers. The
predicates involved describe what holds (is true) at a specific point. Execution of a
program may then adapt the validity of predicates. A particular form of semantics of
this sort is weakest precondition computation [6]. In the context of (coalgebraic) modal
logic, these predicate transformers appear as modal operators.

A systematic picture of these three approaches has emerged in categorical language, using
triangles of the form described below, see [15], and also [13, 14].�� ��Heisenberg

�� ��Schrödinger

Logop =
(

predicate
transformers

) --
>

(
state

transformers
)

mm

(
computations

)Pred

gg

Stat

77 (1)

© Bart Jacobs;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 116–129

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.116
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Jacobs 117

The three nodes in this diagram represent categories of which only the morphisms are
described. The arrows between these nodes are functors, where the two arrows � at the
top form an adjunction. The two triangles involved should commute. In the case where two
up-going ‘predicate’ and ‘state’ functors Pred and Stat in (1) are full and faithful, we have
three equivalent ways of describing computations. On morphisms, the predicate functor yields
what is called substitution in categorical logic, but what amounts to a weakest precondition
operation in program semantics, or a modal operator in programming logic. The upper
category on the left is of the form Logop, where Log is some category of logical structures.
The opposite category (−)op is needed because predicate transformers operate in the reverse
direction, taking a postcondition to a precondition.

In a setting of quantum computation this translation back-and-forth� in (1) is associated
with the different approaches of Heisenberg (logic-based, working backwards) and Schrödinger
(state-based, working forwards), see e.g. [12]. In quantum foundations one speaks of the
duality between states and effects (predicates). Since the above triangles first emerged in
the context of semantics of quantum computation [14], they are sometimes referred to as
‘state-and-effect’ triangles.

In certain cases the adjunction � in (1) forms – or may be restricted to – an equivalence
of categories, yielding a duality situation. It shows the importance of duality theory in
program semantics and logic; this topic has a long history, going back to [1].

In [14] it is shown that in the presence of relatively weak structure in a category B, a
diagram of the form (1) can be formed, with B as base category of computations, with
predicates forming effect modules (see below) and with states forming convex sets. A category
with this relatively weak structure is now called an effectus, see [20].

The main contribution of this paper is a “new” way of generating state-and-effect triangles,
namely from adjunctions. We write the word ‘new’ between quotes, because the underlying
category theory uses a famous of result of Jon Beck, and is not new at all. What the paper
contributes is mainly a new perspective: it reorganises the work of Beck in such a way that an
appropriate triangle appears, see Section 2. The rest of the paper is devoted to illustrations
of this recipe for triangles. These examples are either of a Boolean or a probabilistic nature,
see Sections 3 and 4 respectively. The Boolean examples are all obtained from an adjunction
using “homming into {0, 1}”, whereas the probabilistic (quantitative) examples all arise from
“homming into [0, 1]”, where [0, 1] is the unit interval of probabilities.

The series of examples in this paper involves many mathematical structures, ranging from
Boolean algebras to compact Hausdorff spaces and C∗-algebras. It is impossible to explain
all these notions in detail here. Hence the reader is assumed to be reasonably familiar with
these structures. It does not matter so much if some of the examples involve unfamiliar
mathematical notions. The structure of these sections 3 and 4 is clear enough, and it does
not matter if some of the examples are skipped.

An exception is made for the notions of effect algebra and effect module. They are
explicitly explained (briefly) in the beginning of Section 4 because they play such a prominent
role in quantitative logic.

The examples involve many adjunctions that are known in the literature. Here they are
displayed in triangle form. In several cases monads arise that are familiar in coalgebraic
research, like the neighbourhood monad N in Subsection 3.1, the monotone neighbourhood
monadM in Subsection 3.2, the infinite distribution monad D∞ in Subsection 4.4, and the
Giry monad G in Subsection 4.5. Also we will see several examples where we have pushed
the recipe to a limit, and where the monad involved is simply the identity.

CALCO’15

118 A Recipe for State-and-Effect Triangles

2 A basic result about monads

We assume that the reader is familiar with the categorical concept of a monad T , and with
its double role, describing a form of computation, via the associated Kleisli category K̀ (T),
and describing algebraic structure, via the category EM(T) of Eilenberg-Moore algebras.

The following result is a basic part of the theory of monads, see e.g. [3, Prop. 3.15 and
Exercise (KEM)] or [22, Prop. 6.5 and 6.7] or [2, Thm. 20.42], and describes the initiality
and finality of the Kleisli category and Eilenberg-Moore category as ‘adjunction resolutions’
giving rise to a monad.

I Theorem 1. Consider an adjunction F a G with induced monad T = GF . Then there are
‘comparison’ functors K̀ (T)→ A→ EM(T) in a diagram:

K̀ (T)
L

,,

&&

A
K

,,

a G

> EM(T)

>

ss

M

ll

B

33

F

II

T=GF

ZZ

⊥

gg

(2)

where the functor L : K̀ (T)→ A is full and faithful.
In case the category A has coequalisers (of reflexive pairs), then K has a left adjoint M ,

as indicated via the dotted arrow, satisfying MKL ∼= L.

The famous monadicity theorem of Jon Beck gives conditions that guarantee that the
functor K : A→ EM(T) is an equivalence of categories, so that objects of A are algebras.
The existence of the left adjoint M is the part of this theorem that we use in the current
setting. Other (unused) parts of Beck’s theorem require that the functor G preserves and
reflects coequalisers of reflexive pairs. For convenience we include a proof sketch.

Proof. Define L(X) = F (X) and L
(
X

f→ GF (Y)
)

= εF (Y) ◦ F (f) : F (X) → F (Y). This
functor L is full and faithful because there is a bijective adjoint correspondence:

F (X) // F (Y)
===============
X // GF (Y) = T (Y)

The functor K : A→ EM(T) is defined as:

K(A) =
(
GFG(A)

G(A)
G(εA)
��

)
and K

(
A

f→ B
)

= G(f).

We leave it to the reader to see that K is well-defined. For a Kleisli map f : X → T (Y) the
map KL(f) is Kleisli extension:

KL(f) = G(εF (Y) ◦ F (f)) = µY ◦ T (f) : T (X) −→ T (Y).

Assume that the category A has coequalisers. For an algebra a : T (X)→ X let M(X, a)
be the (codomain of the) coequaliser in:

FGF (X)
F (a)

--

εF (X)

11 F (X) c // // M(X, a)

B. Jacobs 119

It is not hard to see that there is a bijective correspondence:

M(X, a) f
// A in A

========================(
T (X)

X

a
��

)
g
//

(
TG(A)

G(A)
G(εA)
��

)
= K(A) in EM(T)

What remains is to show MKL ∼= L. This follows because for each X ∈ B, the following
diagram is a coequaliser in A.

FGFGF (X)
F (µX)=FG(εF (X))

..

εF GF (X)

00 FGF (X)
εF (X)

// // F (X)

Hence the codomain MKL(X) of the coequaliser of FKL(X) = FG(εF (X)) and the counit
map εFGF (X) is isomorphic to F (X) = L(X). Proving naturality of MKL ∼= L (wrt. Kleisli
maps) is a bit of work, but is essentially straightforward. J

An essential ‘aha moment’ underlying this paper is that the above result can be massaged
into triangle form. This is what happens in the next result, to which we will refer as the
‘triangle corollary’. It is the ‘recipe’ that occurs in the title of this paper.

I Corollary 2. Consider an adjunction F a G, where F is a functor B→ A, the category
A has coequalisers, and the induced monad on B is written as T = GF . Diagram (2) then
gives rise to a triangle as below, where both up-going functors are full and faithful.

A
K

++> EM(T)
M

kk

K̀ (T)
Pred=L

__

KL=Stat

== (3)

This triangle commutes, trivially from left to right, and up-to-isomorphism from right to left,
since MKL ∼= L. In this context we refer to the functor L as the ‘predicate’ functor Pred,
and to the functor KL as the ‘states’ functor Stat.

The remainder of the paper is devoted to instances of this triangle corollary. In each
of these examples the category A will be of the form Pop, where P is a category of
predicates (with equalisers). The full and faithfulness of the functors Pred: K̀ (T) → Pop

and Stat : K̀ (T)→ EM(T) means that there are bijective correspondences between:

X
computations

// T (Y)
===============================
Pred(Y)

predicate transformers
// Pred(X)

X
computations

// T (Y)
==============================
Stat(X)

state transformers
// Stat(Y)

(4)

Since Stat(X) = T (X), the correspondence on the right is given by Kleisli extension, sending
a map f : X → T (Y) to µ ◦ T (f) : T (X)→ T (Y). This bijective correspondence on the right
is a categorical formality. But the correspondence on the left is much more interesting, since
it precisely describes to which kind of predicate transformers (preserving which structure)
computations correspond. This will be illustrated below.

Aside: as discussed in [14], the predicate functor Pred: K̀ (T)→ A is in some cases an
enriched functor, preserving additional structure that is of semantical/logical relevance. For

CALCO’15

120 A Recipe for State-and-Effect Triangles

instance, operations on programs, like ∪ for non-deterministic sum, may be expressed as
structure on Kleisli homsets. Preservation of this structure by the functor Pred gives the
logical rules for dealing with such structure in weakest precondition computations. These
enriched aspects will not be elaborated in the current context.

3 Boolean examples

We split our series of examples in two parts, namely into Boolean and probabilistic examples.
The Boolean ones are obtained via adjunctions that involve ‘homming into 2’, where 2 = {0, 1}
is the 2-element set of Booleans. The probabilistic (aka. quantitative) examples in the next
section are obtained via ‘homming into [0, 1]’, where [0, 1] ⊆ R is the unit interval of
probabilities.

3.1 Sets and sets
We will present examples in the following manner, in three stages.

Setsop

P=Hom(−,2)
��a

Sets
P=Hom(−,2)

CC

N=PP

ZZ

P(X) Setsop
// Y

============
Y

Sets // P(X)
============
X

Sets
// P(Y)

Setsop **> EM(N) = CABAll

K̀ (N)
Pred

__

Stat

BB

On the left we describe the adjunction that forms the basis for the example at hand, together
with the induced monad. In this case we have the familiar fact that the powerset functor P
is adjoint to itself, as indicated. The induced double-powerset monad PP is known in the
coalgebra/modal logic community as the neighbourhood monad N , because its coalgebras
are related to neighbourhood frames in modal logic.

In the middle the bijective correspondence is described that forms the basis of the
adjunction. In this case there is the obvious correspondence between functions Y → P(X)
and functions X → P(Y) – which are all relations on X × Y .

On the right the result is shown of applying the triangle corollary 2 to the adjunction
on the left. The full and faithfulness of the predicate functor Pred: K̀ (N)→ Setsop plays
an important role in the approach to coalgebraic dynamic logic in [11], relating coalgebras
X → N (X) to predicate transformer functions P(X) → P(X), going in the opposite
direction. The category EM(N) of Eilenberg-Moore algebras of the neighbourhood monad N
is the category CABA of complete atomic Boolean algebras (see e.g. [28]). The adjunction
Setsop � EM(N) is thus an equivalence.

3.2 Sets and posets
We now restrict the adjunction in the previous subsection to posets.

PoSetsop

Up=Hom(−,2)
��a

Sets
P=Hom(−,2)

CC

M=UpP

ZZ

Y
PoSets // P(X)

=============
X

Sets
// Up(Y)

PoSetsop ,,
> EM(M)= CDLmm

K̀ (M)
Pred

bb

Stat

==

The functor Up: PoSetsop → Sets sends a poset Y to the collection of upsets U ⊆ Y ,
satisfying y ≥ x ∈ U implies y ∈ U . These upsets can be identified with monotone maps
p : Y → 2, namely as p−1(1).

B. Jacobs 121

Notice that this time there is a bijective correspondence between computations X →
M(Y) = UpP(Y) and monotone predicate transformers P(Y)→ P(X). This fact is used
in [11]. The algebras of the monadM are completely distributive lattices, see [24] and [21, I,
Prop. 3.8].

3.3 Sets and meet-semilattices
We now restrict the adjunction further to meet semilattices, that is, to posets with finite
meets ∧,>.

MSLop

Hom(−,2)
��a

Sets
P=Hom(−,2)

CC

F=MSL(P(−),2)

ZZ

Y
MSL // P(X)

=================
X

Sets
//MSL(Y, 2)

MSLop ,,
> EM(F)= CCLmm

K̀ (F)
Pred

``

Stat

>>

Morphisms in the category MSL of meet semilattices preserve the meet ∧ and the top
element > (and hence the order too). For Y ∈MSL one can identify a map Y → 2 with a
filter of Y , that is, with an upset U ⊆ Y closed under ∧,>.

The resulting monad F(X) = MSL(P(X), 2) gives the filters in P(X). This monad is
thus called the filter monad. In [29] it is shown that its category of algebras EM(F) is the
category CCL of continuous complete lattices, that is, of complete lattices in which each
element x is the (directed) join x =

∨
{y | y � x} of the elements way below it.

3.4 Sets and Boolean algebras
We further restrict the adjunction to the category BA of Boolean algebras.

BAop

Hom(−,2)
��a

Sets
P=Hom(−,2)

CC

U=BA(P(−),2)

ZZ

Y
BA // P(X)

===============
X

Sets
// BA(Y, 2)

BAop **
> EM(U) = CHll

K̀ (U)
Pred

^^

Stat

BB

The functor Hom(−, 2) : BAop → Sets sends a Boolean algebra Y to the set BA(Y, 2) of
Boolean algebra maps Y → 2. They can be identified with ultrafilters of Y . The resulting
monad U = BA(P(−), 2) is the ultrafilter monad, sending a set X to the BA-maps P(X)→ 2,
or equivalently, the ultrafilters of P(X).

An important result of Manes (see [23], and also [21, III, 2.4]) says that the category
of Eilenberg-Moore algebras of the ultrafilter monad U is the category CH of compact
Hausdorff spaces. This adjunction BAop � CH restricts to an equivalence BAop ' Stone
called Stone duality, where Stone ↪→ CH is the full subcategory of Stone spaces – in which
each open subset is the union of the clopens contained in it.

3.5 Sets and complete Boolean algebras
We can restrict the adjunction BAop � Sets from the previous subsection to an adjunction
CBAop � Sets between complete Boolean algebras and sets. The resulting monad on Sets
is of the form X 7→ CBA(P(X), 2). But here we hit a wall, since this monad is the identity.

I Lemma 3. For each set X the unit map η : X → CBA(P(X), 2), given by η(x)(U) = 1
iff x ∈ U , is an isomorphism.

CALCO’15

122 A Recipe for State-and-Effect Triangles

Proof. Let h : P(X)→ 2 be a map of complete Boolean algebras, preserving the BA-structure
and all joins (unions). Since each subset U ∈ P(X) can be described as union of singletons, the
function h is determined by its values h({x}) for x ∈ X. We have 1 = h(X) =

⋃
x∈X h({x}).

Hence h({x}) = 1 for some x ∈ X. But then h(X − {x}) = h(¬{x}) = ¬h({x}) = ¬1 = 0.
This implies h({x′}) = 0 for each x′ 6= x. But then h = η(x). J

4 Probabilistic examples

The next series of examples starts from adjunctions that are obtained by homming into
the unit interval [0, 1]. The quantitative logic that belongs to these examples is given in
terms of effect modules. These can be seen as “probabilistic vector spaces”, involving scalar
multiplication with scalars from the unit interval [0, 1], instead of from R or C. We provide
a crash course for these structures, and refer to [17, 15] or [7] for more information.

A partial commutative monoid (PCM) consists of a set M with a partial binary operation
> and a zero element 0 ∈ M . The operation > is commutative and associative, in an
appropriate partial sense. One writes x ⊥ y if x> y is defined.

An effect algebra is a PCM with an orthocomplement (−)⊥, so that x> x⊥ = 1, where
1 = 0⊥, and x ⊥ 1 implies x = 0. An effect algebra is automatically a poset, via the definition
x ≤ y iff x> z = y for some z. The main example is the unit interval [0, 1], with x ⊥ y iff
x+ y ≤ 1, and in that case x> y = x+ y; the orthocomplement is x⊥ = 1− x. A map of
effect algebras f : E → D is a function that preserves 1 and >, if defined. We write EA for
the resulting category. Each Boolean algebra is an effect algebra, with x ⊥ y iff x ∧ y = 0,
and in that case x> y = x ∨ y. This yields a functor BA→ EA, which is full and faithful.

An effect module is an effect algebra E with an action [0, 1]×E → E that preserves >, 0 in
each argument separately. A map of effect modules f is a map of effect algebras that preserves
scalar multiplication: f(r ·x) = r · f(x). We thus get a subcategory EMod ↪→ EA. For each
setX, the set [0, 1]X of fuzzy predicates onX is an effect module, with p ⊥ q iff p(x)+q(x) ≤ 1
for all x ∈ X, and in that case (p > q)(x) = p(x) + q(x). Orthocomplement is given by
p⊥(x) = 1 − p(x) and scalar multiplication by r · p ∈ [0, 1]X , for r ∈ [0, 1] and p ∈ [0, 1]X ,
by (r · p)(x) = r · p(x). This assignment X 7→ [0, 1]X yields a functor Sets → EModop

that will be used below. Important examples of effect modules arise in quantum logic.
For instance, for each Hilbert space H, the set Ef(H) = {A : H → H | 0 ≤ A ≤ id} of
effects is an effect module. More generally, for a (unital) C∗-algebra A, the set of effects
[0, 1]A = {a ∈ A | 0 ≤ a ≤ 1} is an effect module. In [8] it is shown that taking effects yields
a full and faithful functor:

CstarPU
[0,1](−)

// EMod (5)

Here we write CstarPU for the category of C∗-algebras with positive unital maps.
An MV-algebra [5] can be understood as a ‘commutative’ effect algebra. It is an effect

algebra with a join ∨, and thus also a meet ∧, via De Morgan, in which the equation
(x ∨ y)⊥ > x = y⊥ > (x ∧ y) holds. There is a subcategory MVA ↪→ EA with maps
additionally preserving joins ∨ (and hence also ∧). Within an MV-algebra one can define
(total) addition and subtraction operations as x+ y = x> (x⊥ ∧ y) and x− y = (x⊥ + y)⊥.
The unit interval [0, 1] is an MV-algebra, in which + and − are truncated (to 1 or 0), if
needed.

There is a category MVMod of MV-modules, which are MV-algebras with [0, 1]-scalar
multiplication. Thus MVMod is twice a subcategory in: MVA ←↩ MVMod ↪→ EMod.

B. Jacobs 123

The effect module [0, 1]X of fuzzy predicates is an MV-module. For a commutative C∗-algebra
A the set of effects [0, 1]A is an MV-module. In fact there is a full and faithful functor:

CCstarMIU
[0,1](−)

//MVMod (6)

where CCstarMIU is the category of commutative C∗-algebras, with MIU-maps, preserving
multiplication, involution and unit (aka. ∗-homomorphisms).

Having seen this background information we continue our series of examples.

4.1 Sets and effect modules

As noted above, fuzzy predicates yield a functor Sets → EModop. This functor involves
homming into [0, 1], and has an adjoint that is used as starting point for several variations.

EModop

Hom(−,[0,1])
��a

Sets
Hom(−,[0,1])

CC

E=EMod([0,1](−),[0,1])

ZZ

Y
EMod // [0, 1]X

=====================
X

Sets
// EMod(Y, [0, 1])

EModop ,,
> EM(E)= CCHsepmm

K̀ (E)
Pred

^^

Stat

BB

The induced monad E is the expectation monad introduced in [16]. It can be understood as
an extension of the (finite probability) distribution monad D, since E(X) ∼= D(X) if X is a
finite set. The triangle corollary on the right says in particular that Kleisli maps X → E(Y)
are in bijective correspondence with effect module maps [0, 1]Y → [0, 1]X acting as predicate
transformers, on fuzzy predicates.

The category of algebras EM(E) of the expectation monad is the category CCHsep of
convex compact Hausdorff spaces, with a separation condition (see [16, 18] for details). State
spaces in quantum computing are typically such convex compact Hausdorff spaces.

Using the full and faithfulness of the functor [0, 1](−) : CstarPU → EMod from (5), the
expectation monad can alternatively be described in terms of the states of the commutative
C∗-algebra `∞(X) of bounded functions X → C, via:

Stat(`∞(X)) def= CstarPU
(
`∞(X),C

) (5)∼= EMod
(
[0, 1]`∞(X), [0, 1]C

)
= EMod

(
[0, 1]X , [0, 1]

)
= E(X). (7)

In this way one obtains the result from [8] that there is a full & faithful functor:

K̀ (E) //
(
CCstarPU

)op (8)

embedding the Kleisli category K̀ (E) of the expectation monad into commutative C∗-algebras
with positive unital maps. On objects this functor (8) is given by X 7→ `∞(X).

4.2 Compact Hausdorff spaces and effect modules

In the previous example we have used the set EMod(E, [0, 1]) of effect module maps
E → [0, 1], for an effect module E. It turns out that this homset has much more structure: it
is a compact Hausdorff space. The reason is that the unit interval [0, 1] is compact Hausdorff,
and so the function space [0, 1]E too, by Tychonoff. The homset EMod(E, [0, 1]) ↪→ [0, 1]E

CALCO’15

124 A Recipe for State-and-Effect Triangles

can be described via a closed subset of maps satisfying the effect module map requirements.
Hence EMod(E, [0, 1]) is compact Hausdorff itself. We thus obtain the following situation.

EModop

Hom(−,[0,1])
��a

CH
Hom(−,[0,1])

CC

R=EMod(C(−,[0,1]),[0,1])

ZZ

Y
EMod // C(X, [0, 1])

=====================
X

CH
// EMod(Y, [0, 1])

EModop ,,
> EM(R)= CCHsepmm

K̀ (R)
Pred

__

Stat

AA

For a compact Hausdorff space X, the subset C(X, [0, 1]) ↪→ [0, 1]X of continuous maps
X → [0, 1] is a (sub) effect module. The induced monad R(X) = EMod

(
C(X, [0, 1]), [0, 1]

)
is the Radon monad. Using the full & faithful functor (5) the monad can equivalently be
described as X 7→ Stat(C(X)), where C(X) is the commutative C∗-algebra of functions
X → C. The monad occurs in [25] as part of a topological and domain-theoretic approach to
information theory. The main result of [8] is the equivalence of categories

K̀ (R) '
(
CCstarPU

)op

between the Kleisli category of this Radon monad R and the category of commutative
C∗-algebras and positive unital maps. This shows how (commutative) C∗-algebras appear in
state-and-effect triangles (see also [15]).

The algebras of the Radon monad are convex compact Hausdorff spaces (with separation),
like for the expectation monad E , see [9] for details.

4.3 Compact Hausdorff spaces and MV-modules
The adjunction EModop � CH can be restricted to an adjunction MVModop � CH,
involving MV-modules instead of effect modules. This can be done since continuous functions
X → [0, 1] are appropriately closed under joins ∨, and thus form an MV-module. Additionally,
for an MV-module E, the MV-module maps E → [0, 1] form a compact Hausdorff space
(using the same argument as in the previous subsection).

Via this restriction to an adjunction MVModop � CH we hit a wall again.

I Lemma 4. For a compact Hausdorff space X, the unit η : X →MVMod
(
C(X, [0, 1]), [0, 1]

)
,

given by η(x)(p) = p(x), is an isomorphism in CH.

This result can be understood as part of the Yosida duality for Riesz spaces. It is
well-known in the MV-algebra community, but possibly not precisely in this form. For
convenience, we include a proof.

Proof. We only show that the unit η is an isomorphism, not that it is also a homeomorphism.
Injectivity is immediate by Urysohn. For surjectivity, we first establish the following two
auxiliary results.
1. For each p ∈ C(X, [0, 1]) and ω ∈MVMod

(
C(X, [0, 1]), [0, 1]

)
, if ω(p) = 0, then there is

an x ∈ X with p(x) = 0.
If not, then p(x) > 0 for all x ∈ X. Hence there is an inclusion X ⊆

⋃
r>0 p

−1((r, 1]
)
. By

compactness there are finitely many ri with X ⊆
⋃
i p
−1((ri, 1]

)
. Thus for r =

∧
i ri > 0

we have p(x) > r for all x ∈ X. Find an n ∈ N with n · r ≥ 1. The n-fold sum n · p in the
MV-module C(X, [0, 1]) then satisfies p(x) = 1 for all x, so that n · p = 1 in C(X, [0, 1]).
But now we get a contradiction: 1 = ω(1) = ω(n · p) = n · ω(p) = 0.

B. Jacobs 125

2. For each finite collection of maps p1, . . . , pn ∈ C(X, [0, 1]) and for each function ω ∈
MVMod

(
C(X, [0, 1]), [0, 1]

)
there is an x ∈ X with ω(pi) = pi(x) for all 1 ≤ i ≤ n.

For the proof, define p ∈ C(X, [0, 1]) using the MV-structure of C(X, [0, 1]) as:

p =
∨
i

(
pi − ω(pi) · 1

)
∨
(
ω(pi) · 1− pi

)
.

Since the state ω : C(X, [0, 1])→ [0, 1] preserves the MV-structure we get in [0, 1]:

ω(p) =
∨
i

(
ω(pi)− ω(pi) · 1

)
∨
(
ω(pi) · 1− ω(pi)

)
= 0.

Hence by the previous point there is an x ∈ X with p(x) = 0. But then pi(x) = ω(pi), as
required.

Now we can prove surjectivity of the unit map η : X →MVMod
(
C(X, [0, 1]), [0, 1]

)
. Let

ω : C(X, [0, 1])→ [0, 1] be an MV-module map. Define for each p ∈ C(X, [0, 1]) the subset
Up = {x ∈ X | ω(p) 6= p(x)}. This subset Up ⊆ X is open since it can be written as
f−1(R− {0}), for the continuous function f(x) = p(x)− ω(p).

Suppose towards a contradiction that ω 6= η(x) for all x ∈ X. Thus, for each x ∈ X there
is a p ∈ C(X, [0, 1]) with ω(p) 6= η(x)(p) = p(x). This means X ⊆

⋃
p Up. By compactness

of X there are finitely many pi ∈ C(X, [0, 1]) with X ⊆
⋃
i Upi

. The above second point
however gives an x ∈ X with ω(pi) = pi(x) for all i. But then x 6∈

⋃
i Upi

. J

4.4 Sets and directed complete effect modules
In the remainder of this paper we shall consider effect modules with additional completeness
properties (wrt. its standard order). Specifically, we consider ω-complete, and directed-
complete effect modules. In the first case each ascending ω-chain x0 ≤ x1 ≤ · · · has a least
upperbound

∨
n xn; and in the second case each directed subset D has a join

∨
D. We write

the resulting subcategories as:

DcEMod �
�

// ω-EMod �
�

// EMod

where maps are required to preserve the relevant joins
∨
.

We start with the directed-complete case. The adjunction EModop � Sets from
Subsection 4.1 can be restricted to an adjunction as on the left below.

DcEModop

Hom(−,[0,1])
��a

Sets
Hom(−,[0,1])

CC

E∞=DcEMod([0,1](−),[0,1])

ZZ

Y
DcEMod // [0, 1]X

======================
X

Sets
// DcEMod(Y, [0, 1])

DcEModop ,,
> EM(E∞)=Conv∞nn

K̀ (E∞)
Pred

bb

Stat

??

The resulting monad E∞ = DcEMod
(
[0, 1](−), [0, 1]

)
on Sets is in fact isomorphic1 to the

infinite (discrete probability) distribution monad D∞. We recall, for a set X,

D∞(X) = {ω : X → [0, 1] | supp(ω) is countable, and
∑
x ω(x) = 1}.

1 This isomorphism E∞ ∼= D∞ in Proposition 5 is inspired by work of Robert Furber (PhD Thesis,
forthcoming): he noticed the isomorphism NStat(`∞(X)) ∼= D∞(X) in (11), which is obtained here as
a corollary to Proposition 5.

CALCO’15

126 A Recipe for State-and-Effect Triangles

The subset supp(ω) ⊆ X contains the elements x ∈ X with ω(x) 6= 0. The requirement in
the definition of D∞(X) that supp(ω) be countable is superfluous, since it follows from the
requirement

∑
x ω(x) = 1. Briefly, supp(ω) ⊆

⋃
n>0 Xn, where Xn = {x ∈ X | ω(x) > 1

n}
contains at most n− 1 elements (see e.g. [27, Prop. 2.1.2]).

I Proposition 5. There is an isomorphism of monads D∞ ∼= E∞, where E∞ is the monad
induced by the above adjunction DcEModop � Sets.

Proof. For a subset U ⊆ X we write 1U : X → [0, 1] for the ‘indicator’ function, defined
by 1U (x) = 1 if x ∈ U and 1U (x) = 0 if x 6∈ U . We write 1x for 1{x}. This function
1(−) : P(X)→ [0, 1]X is a map of effect algebras that preserves all joins.

Let h ∈ E∞(X), so h is a Scott-continuous map of effect modules h : [0, 1]X → [0, 1].
Define h : X → [0, 1] as h(x) = h(1x). Notice that if U ⊆ X is a finite subset, then:

1 = h(1) = h(1X) ≥ h(1U) = h(>x∈U 1x) = >x∈U h(1x) = >x∈U h(x).

We can write X as directed union of its finite subsets, and thus also 1X =
∨
{1U | U ⊆

X finite}. But then h ∈ D∞(X), because h preserves directed joins:

1 = h(1X) =
∨
{h(1U) | U ⊆ X finite} =

∨
{
∑
x∈U h(x) | U ⊆ X finite} =

∑
x∈X h(x).

Conversely, given ω ∈ D∞(X) we define ω : [0, 1]X → [0, 1] as ω(p) =
∑
x∈X p(x) · ω(x).

It is easy to see that ω is a map of effect modules. It is a bit more challenging to see that it
preserves directed joins

∨
i pi, for pi ∈ [0, 1]X .

First we write the countable support of ω as supp(ω) = {x0, x1, x2, . . .} ⊆ X in such a
way that ω(x0) ≥ ω(x1) ≥ ω(x2) ≥ · · · . We have 1 =

∑
x∈X ω(x) =

∑
n∈N ω(xn). Hence, for

each N ∈ N we get: ∑
n>N ω(xn) = 1−

∑
n≤N ω(xn).

By taking the limit N →∞ on both sides we get:

lim
N→∞

∑
n>N ω(xn) = 1− lim

N→∞

∑
n≤N ω(xn) = 1−

∑
n∈N ω(xn) = 1− 1 = 0.

We have to prove ω(
∨
i pi) =

∨
i ω(pi). The non-trivial part is (≤). For each N ∈ N we have:

ω(
∨
i pi) =

∑
n∈N(

∨
i pi)(xn) · ω(xn)

=
∑
n∈N(

∨
i pi(xn)) · ω(xn)

=
∑
n∈N

∨
i pi(xn) · ω(xn)

=
(∑

n≤N
∨
i pi(xn) · ω(xn)

)
+
(∑

n>N

∨
i pi(xn) · ω(xn)

)
=

(∨
i

∑
n≤N pi(xn) · ω(xn)

)
+
(∑

n>N

∨
i pi(xn) · ω(xn)

)
≤

(∨
i

∑
n≤N pi(xn) · ω(xn)

)
+
(∑

n>N ω(xn)
)

since pi(x) ∈ [0, 1].

Hence we are done by taking the limit N →∞. Notice that we use that the join
∨

can be
moved outside a finite sum. This works precisely because the join is taken over a directed set.

What remains is to show that these mappings h 7→ h and ω 7→ ω yield an isomorphism
D∞(X) ∼= E∞(X), which is natural in X, and forms an isomorphism of monads. This is left
to the interested reader. J

As a result, the Eilenberg-Moore category EM(E∞) is isomorphic to EM(D∞) = Conv∞,
where Conv∞ is the category of countably-convex sets X, in which convex sums

∑
n∈N rnxn

exist, where xn ∈ X and rn ∈ [0, 1] with
∑
n rn = 1.

B. Jacobs 127

We briefly look at the relation with C∗-algebras (actually W ∗-algebras), like in Subsec-
tion 4.1. We write WstarNPU for the category of W ∗-algebras with normal positive unital
maps. The term ‘normal’ is used in the operator algebra community for what is called
‘Scott-continuity’ (preservation of directed joins) in the domain theory community. This
means that taking effects yields a full and faithful functor:

WstarNPU
[0,1](−)

// DcEMod (9)

This is similar to the situation in (5) and (6). One could also use AW ∗-algebras here. Next,
there is now a full and faithful functor to the category of commutative W ∗-algebras:

K̀ (D∞) ∼= K̀ (E∞) // CWstarNPU (10)

On objects it is given by X 7→ `∞(X). This functor is full and faithful since there is a
bijective correspondence:

`∞(X) // `∞(Y) in CWstarNPU
===================
Y // NStat(`∞(X)) ∼= E∞(X) ∼= D∞(X) in Sets

where the isomorphism ∼= describing normal states is given, like in (7), by:

NStat(`∞(X)) def= WstarNPU
(
`∞(X),C

) (9)∼= DcEMod
(
[0, 1]`∞(X), [0, 1]C

)
= DcEMod

(
[0, 1]X , [0, 1]

)
= E∞(X)
∼= D∞(X).

(11)

4.5 Measurable spaces and ω-complete effect modules
In our final example we use an adjunction between effect modules and measurable spaces
(instead of sets or compact Hausdorff spaces). We write Meas for the category of measurable
spaces (X,ΣX), where ΣX ⊆ P(X) is the σ-algebra of measurable subsets, with measurable
functions between them (whose inverse image maps measurable subsets to measurable subsets).
We use the unit interval [0, 1] with its standard Borel σ-algebra (the least one that contains
all the usual opens). A basic fact in this situation is that for a measurable space X, the
set Meas(X, [0, 1]) of measurable functions X → [0, 1] is an ω-effect module. The effect
module structure is inherited via the inclusion Meas(X, [0, 1]) ↪→ [0, 1]X . Joins of ascending
ω-chains p0 ≤ p1 ≤ · · · exists, because the (pointwise) join

∨
n pn is a measurable function

again. In this way we obtain a functor Meas(−, [0, 1]) : Meas→ ω-EModop.
In the other direction there is also a hom-functor ω-EMod(−, [0, 1]) : ω-EModop →

Meas. For an ω-effect module E we can provide the set of maps ω-EMod(E, [0, 1]) with a σ-
algebra, namely the least one that makes all the evaluation maps evx : ω-EMod(E, [0, 1])→
[0, 1] measurable, for x ∈ E. This function evx is given by evx(p) = p(x). This gives the
following situation.

ω-EModop

Hom(−,[0,1])
��a

Meas
Hom(−,[0,1])

CC

G=ω-EMod(Meas(−,[0,1]),[0,1])

ZZ

Y
ω-EMod //Meas(X, [0, 1])

======================
X

Meas
// ω-EMod(Y, [0, 1])

ω-EModop ,,
> EM(G)nn

K̀ (G)
Pred

bb

Stat

??

We use the symbol G for the induced monad because of the following result.

CALCO’15

128 A Recipe for State-and-Effect Triangles

I Proposition 6. The monad G = ω-EMod
(
Meas(−, [0, 1]), [0, 1]

)
on Meas in the above

situation is (isomorphic to) the Giry monad [10], given by probability measures:

Giry(X) def= {φ : ΣX → [0, 1] | φ is a probability measure} = ω-EA(ΣX , [0, 1]).

Proof. The isomorphism involves Lebesgue integration:

G(X) = ω-EMod
(
Meas(X, [0, 1]), [0, 1]

) I 7→(M 7→I(1M))
++∼= ω-EA(ΣX , [0, 1]) = Giry(X)

φ 7→(p 7→
∫
p dφ))

kk

See [13] or [19] for more details. J

The above triangle is further investigated in [13]. It resembles the situation described
in [4] for Markov kernels (the ordinary, not the abstract, ones).

Acknowledgements. Several people have contributed to the ideas and examples presented
here, including, in alphabetical order: Kenta Cho, Robert Furber, Helle Hansen, Bas and
Bram Westerbaan. Thanks to all of them!

References
1 S. Abramsky. Domain theory in logical form. Ann. Pure & Appl. Logic, 51(1/2):1–77, 1991.
2 J. Adámek, H. Herrlich, and G.E. Stecker. Abstract and Concrete Categories. The Joy of

Cats. John Wiley and Sons, New York, 1990. Republished in: Reprints in Theory and Appl.
of Categories 17, see http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf.

3 M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Revised
and corrected version available from URL: http://www.cwru.edu/artsci/math/wells/
pub/ttt.html.

4 P. Chaput, V. Danos, P. Panangaden, and G. Plotkin. Approximating Markov processes
by averaging. Journ. ACM, 61(1), 2014.

5 R. Cignoli, I D’Ottaviano, and D. Mundici. Algebraic Foundations of Many-Valued Reas-
oning, volume 7 of Trends in Logic. Springer, 2000.

6 E. Dijkstra and C. Scholten. Predicate Calculus and Program Semantics. Springer, Berlin,
1990.

7 A. Dvurečenskij and S. Pulmannová. New Trends in Quantum Structures. Kluwer Acad.
Publ., Dordrecht, 2000.

8 R. Furber and B. Jacobs. From Kleisli categories to commutative C∗-algebras: Probabilistic
Gelfand duality. In R. Heckel and S. Milius, editors, Conference on Algebra and Coalgebra in
Computer Science (CALCO 2013), number 8089 in Lect. Notes Comp. Sci., pages 141–157.
Springer, Berlin, 2013.

9 R. Furber and B. Jacobs. From Kleisli categories to commutative C∗-algebras: Probabilistic
Gelfand duality, 2014. Extended journal version of [8], see arxiv.org/abs/1303.1115.

10 M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Cat-
egorical Aspects of Topology and Analysis, number 915 in Lect. Notes Math., pages 68–85.
Springer, Berlin, 1982.

11 H. H. Hansen, C. Kupke, and R. Leal. Strong completeness for iteration-free coalgebraic
dynamic logics. In J. Diaz, I. Lanese, and D. Sangiorgi, editors, Theoretical Computer
Science, number 8705 in Lect. Notes Comp. Sci., pages 281–295. Springer, Berlin, 2014.

12 T. Heinosaari and M. Ziman. The Mathematical Language of Quantum Theory. From
Uncertainty to Entanglement. Cambridge Univ. Press, 2012.

http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
http://www.cwru.edu/artsci/math/wells/pub/ttt.html
http://www.cwru.edu/artsci/math/wells/pub/ttt.html

B. Jacobs 129

13 B. Jacobs. Measurable spaces and their effect logic. In Logic in Computer Science. IEEE,
Computer Science Press, 2013.

14 B. Jacobs. Dijkstra monads in monadic computation. In M. Bonsangue, editor, Coalgebraic
Methods in Computer Science (CMCS 2014), number 8446 in Lect. Notes Comp. Sci., pages
135–150. Springer, Berlin, 2014.

15 B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic.
LMCS, to appear, 2015. See arxiv.org/abs/1205.3940.

16 B. Jacobs and J. Mandemaker. The expectation monad in quantum foundations. In
B. Jacobs, P. Selinger, and B. Spitters, editors, Quantum Physics and Logic (QPL) 2011,
volume 95 of Elect. Proc. in Theor. Comp. Sci., pages 143–182, 2012.

17 B. Jacobs and J. Mandemaker. Relating operator spaces via adjunctions. In J. Chubb,
A. Eskandarian, and V. Harizanov, editors, Logic and Algebraic Structures in Quantum
Computing, volume 45 of Lect. Notes in Logic, pages 123–150. Cambridge Univ. Press,
2015. See arxiv.org/abs/1201.1272.

18 B. Jacobs, J. Mandemaker, and R. Furber. The expectation monad in quantum foundations,
2015.

19 B. Jacobs and A. Westerbaan. An effect-theoretic account of Lebesgue integration, 2015.
Math. Found. of Programming Semantics XXXI.

20 B. Jacobs, B. Westerbaan, and A. Westerbaan. States of convex sets. In A. Pitts, editor,
Foundations of Software Science and Computation Structures, number 9034 in Lect. Notes
Comp. Sci., pages 87–101. Springer, Berlin, 2015.

21 P. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics.
Cambridge Univ. Press, 1982.

22 J. Lambek and P. Scott. Introduction to higher order Categorical Logic. Number 7 in
Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, 1986.

23 E. Manes. A triple-theoretic construction of compact algebras. In B. Eckman, editor,
Seminar on Triples and Categorical Homolgy Theory, number 80 in Lect. Notes Math.,
pages 91–118. Springer, Berlin, 1969.

24 G. Markowsky. Free completely distributive complete lattices. Proc. Amer. Math. Soc.,
74(2):227–228, 1979.

25 M. Mislove. Probabilistic monads, domains and classical information. In E. Kashefi, J. Kriv-
ine, and F. van Raamsdonk, editors, Developments of Computational Methods (DCM 2011),
volume 88 of Elect. Proc. in Theor. Comp. Sci., pages 87–100, 2012.

26 E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92, 1991.
27 A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis, Techn. Univ. Eind-

hoven, 2005.
28 P. Taylor. Subspaces in abstract Stone duality. Theory and Appl. of Categories, 10(13):301–

368, 2002.
29 O. Wyler. Algebraic theories of continuous lattices. In B. Banaschewski and R.-E. Hoffman,

editors, Continuous Lattices, number 871 in Lect. Notes Math., pages 390–413. Springer,
Berlin, 1981.

CALCO’15

Towards Concept Analysis in Categories:
Limit Inferior as Algebra, Limit Superior as
Coalgebra∗

Toshiki Kataoka1,2 and Dusko Pavlovic3

1 The University of Tokyo, Tokyo, Japan
toshikik@is.s.u-tokyo.ac.jp

2 JSPS Research Fellow
3 University of Hawaii at Manoa, Honolulu HI, US

dusko@hawaii.edu

Abstract
While computer programs and logical theories begin by declaring the concepts of interest, be it
as data types or as predicates, network computation does not allow such global declarations, and
requires concept mining and concept analysis to extract shared semantics for different network
nodes. Powerful semantic analysis systems have been the drivers of nearly all paradigm shifts
on the web. In categorical terms, most of them can be described as bicompletions of enriched
matrices, generalizing the Dedekind-MacNeille-style completions from posets to suitably enriched
categories. Yet it has been well known for more than 40 years that ordinary categories themselves
in general do not permit such completions. Armed with this new semantical view of Dedekind-
MacNeille completions, and of matrix bicompletions, we take another look at this ancient mystery.
It turns out that simple categorical versions of the limit superior and limit inferior operations
characterize a general notion of Dedekind-MacNeille completion, that seems to be appropriate for
ordinary categories, and boils down to the more familiar enriched versions when the limits inferior
and superior coincide. This explains away the apparent gap among the completions of ordinary
categories, and broadens the path towards categorical concept mining and analysis, opened in
previous work.

1998 ACM Subject Classification I.2.6 Learning, H.3.3 Information Search and Retrieval

Keywords and phrases concept analysis, semantic indexing, category, completion, algebra

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.130

It is an open problem whether there exists a sup- and inf-complete
category A′′′′ with a sup- and inf-dense embedding A −→ A′′′′ in

analogy to the Dedekind completion of an ordered set.

Joachim Lambek [15, Introduction]

No Lambek extension of the one-object category Z4 has finite limits.

John Isbell [10, Thm. 3.1]

∗ T.K. is supported by Japan Society for the Promotion of Science. D. P. is partially supported by AFOSR
and AFRL, and by UHM.

© Toshiki Kataoka and Dusko Pavlovic;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 130–155

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.130
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Kataoka and D. Pavlovic 131

Figure 1 Unidentified object: The external and the internal view.

1 Introduction

1.1 Problem of concept mining and analysis

Suppose you come across upon the object depicted in Fig. 1. The conic top is easily removed
to uncover the mechanism on the right. What is this thing?

You would surely approach the problem from both directions at once: on one hand,
you would look how the parts fit together and try to discern the structural components of
the device; on the other hand, you would twiddle with some parts and watch what moves
together, trying to figure out the functional modules. The parts that move together may not
be next to each other, but they probably belong to the same functional module. The parts
that are related structurally are more likely to be related functionally. If you manage to
discern some distinct components corresponding to distinct functionalities, then each such
component-function pair will presumably correspond to a concept conceived by the designer
of the device. By analyzing the device you will extract the designer’s idea.

Similar analyses are formalized under different names in different research communities:
some speak of concept analysis, some of knowledge acquisition, semantic indexing, or data
mining [4, 8, 22]. The application domains and the formalisms vary very widely, from
mathematical taxonomy [11], through text analysis [32] and pattern recognition [5], to web
search and recommender systems [31]. The importance of formalizing and implementing
concept analysis grew rapidly with the advent of the web, as almost anything found on the
web requires some sort of concept mining and analysis, not only because there are no global
semantical declarations, and the meaning has to be extracted from the network structure
[23], but also to establish trust [25]. Diverse toy examples of such concept analysis tasks,
motivating the modeling approach extended in this paper, can be found in [24, 25, 27, 28].

The analytic process that a formal concept analyst may initiate upon an encounter with
the unidentified object from Fig. 1 is thus not all that different from what a curious child
would do: they would both start by recording the observed components on one hand, and
the observed functionalities on the other, and they would note which components are related
to which functionalities. With the “yes-no” relations, the formal version of this process leads
to the simple and influential method that goes under the name Formal Concept Analysis
(FCA) [7, 6]. If the relations between the components and the functionalities are quantified
by real numbers and stored in pattern matrices, then the analysis usually proceeds by the
methods of statistics and linear algebra, and goes under the name Principal Component
Analysis (PCA) [13], or Latent Semantic Analysis (LSA) [17], etc. It performs the singular
value decomposition of the pattern matrix, and thus mines the concepts as the eigenspaces
of the induced linear operators.

CALCO’15

132 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

Interestingly, if you wanted to record that the unidentified device has 4 identical wheels,
and that each wheel has 12 identical cogs, and that two of the wheels are related to two
different functionalities, driving and steering, you would be led beyond the familiar concept
mining approaches. While the experts in these approaches would surely figure out multiple
tricks to record what is needed (e.g. by using multi-level pattern matrices), the straightforward
approach leads beyond the FCA matrices of 0s and 1s, and beyond the LSA matrices of real
numbers, to matrices of sets between components on one hand, matrices of sets between
functionalities on the other hand, and matrices of sets between components and functionalities
in-between. You would construct a category of components, a category of functionalities, and
a profunctor/distributor between them. If the cog is recognized as a part, then a coproduct
of 12 cogs would be embedded in each wheel. If the cogs are attached with rivets, then
their morphisms may not be monic, since the distinctions of some of their parts may be
obliterated through deformations. So why have such categorical models not been used in
concept analysis?

Many of the concept mining approaches derived from LSA are instances of spectral
decomposition [1]. Formalized in terms of enriched category theory [14], the problem of
concept mining turns out to be an instance of a general spectral decomposition problem
[25, 27], which can also be viewed as a problem of minimal bicompletion of a suitably
enriched matrix [28]. Even the standard linear algebra of LSA seems to be an instance
of such bicompletion, over a suitable category1 of real numbers. The problem of minimal
bicompletions of enriched categories, which subsume the Dedekind-MacNeille completions of
posets, is the special case, arising when a category itself is viewed as a matrix. Instantiated
to categories enriched over sets, also known as “ordinary” categories, this turned out to be a
strange problem, as suggested by the quotations at the very beginning of the paper. Maybe
this is the reason for the notable absence of ordinary categories in the extensive concept
mining toolkits? We sketch the problem of bicompletions of ordinary categories in the next
section.

1.2 Problem of minimal bicompletions of matrices and categories

Throughout the paper, we assume familiarity with the basic concepts of category theory, e.g.
at the level of [20]. To understand the general approach to concept mining through minimal
bicompletions, explained in this section, the reader may need some ideas about enriched
categories as well, e.g. as presented in [14]. Beyond this section, the rest of the paper will be
about ordinary categories.

Suppose that we have thus proceeded as in the preceding section, and built a category of
components A and a category of functionalities B. If we have recorded just the inclusion
relations, then each of these categories is a poset, i.e. enriched over the ordered monoid
({0, 1},∧, 1). If we have recorded the distances among the components on one hand, and
among the functionalities on the other, then our categories are metric spaces [18], viewed
as categories enriched over the monoidal poset ([0,∞],+, 0). If we capture the components
and the functionalities as ordinary categories, then A and B are enriched over the monoidal
category (Set,×, 1).

1 not poset!

T. Kataoka and D. Pavlovic 133

Φ: Ao × B −→ V

Φ# : A −→
(
VB)o Φ# : B −→ VAo

Φ∗ : VAo −→
(
VB)o Φ∗ :

(
VB)o −→ VAo

←−Φ = Φ∗Φ∗ : VAo −→ VAo −→Φ = Φ∗Φ∗ :
(
VB)o −→ (

VB)o
Figure 2 Deriving the two extensions and the two kernels of a matrix Φ.

A ⇓A (⇓A)
←−Φ

B ⇑B (⇑B)
−→Φ

∇

∇Φ

©Φ

Φ#

Φ∗

←−Φ

Φ
⊥
U

←→Φ©

∆

∆Φ

Φ#

a Φ∗

−→Φ

Φ
⊥
V

Figure 3 Minimal bicompletion of a matrix Φ.

1.2.1 The setting of minimal bicompletion

The relationships between the components and the functionalities will be expressed as a
V-enriched functor Φ: Ao × B −→ V, where V is the enriching category, such as {0, 1}, [0,∞]
or Set above. We call such V-enriched functor a matrix. In particular, given a V-matrix
Φ: Ao × B −→ V we derive its extensions as in Fig. 2.

The functors Φ# and Φ# are the transpositions of Φ. The presheaves in the form Φ#b

and the postsheaves in the form Φ#a are called Φ-representable. The functors Φ∗ and Φ∗
are the Kan extensions [14, Ch. 4] of Φ# and Φ#. Since they form an adjunction, their
composite ←−Φ is a monad and −→Φ is a comonad.

When the enrichment is clear from the context, it is convenient to abbreviate the matrix
Ao×B −→ V to A# B and the completions VAo and

(
VB)o to ⇓A and ⇑B respectively, so that

the derivations in Fig. 2 give the diagram in Fig. 3 where ∇ and ∆ are the Yoneda embeddings
[14, Sec. 2.4]. The monad ←−Φ = Φ∗Φ∗, induced by the Kan extensions Φ∗ a Φ∗ : ⇑B −→ ⇓A,
induces the category of (Eilenberg-Moore) algebras (⇓A)

←−Φ , whereas the comonad −→Φ = Φ∗Φ∗
induces (⇑B)

−→Φ . The functor ∇Φ = Φ ◦ ∇ maps A to free ←−Φ -algebras generated by the
representable presheaves, whereas the functor ∆Φ = Φ ◦∆ maps B to cofree −→Φ -coalgebras
cogenerated by the representable postsheaves.

1.2.2 Familiar cases

When V = {0, 1}, the V-enriched categories A and B are posets. Then ⇓A consists of antitone
maps ←−L : Ao −→ {0, 1}, or equivalently of the lower-closed sets in A, whereas ⇑B consists of

CALCO’15

134 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

the monotone maps −→U : B −→ {0, 1}, or equivalently of the upper-closed sets in B. The Yoneda
embedding ∇ : A −→ ⇓A is then the supremum (or join) completion, and the ∆: B −→ ⇑B is
the infimum (or meet) completion. A matrix Φ: Ao × B −→ {0, 1} corresponds to a subset of
the product poset which is lower closed in A and upper closed in B. Its extensions are then

Φ∗←−L =
{
u ∈ B

∣∣∣ ∀x.←−L (x)⇒ Φ(x, u)
}

(1)

Φ∗
−→
U =

{
` ∈ A

∣∣∣ ∀y.−→U (y)⇒ Φ(`, y)
}

(2)

Intuitively, Φ∗←−L can be construed as the set of upper bounds in B of the Φ-image of the
lower set ←−L , whereas Φ∗

−→
U can be construed as the set of Φ-lower bounds of the upper set

−→
U . The operator ←−Φ = Φ∗Φ∗ thus maps each lower set ←−L to the set of the Φ-lower bounds
of the set of its Φ-upper bounds; whereas the operator −→Φ = Φ∗Φ∗ maps each upper set −→U
to the set of the Φ-upper bounds of its Φ-lower bounds. Both operators are thus closure
operators. Their lattices of closed sets (⇓A)

←−Φ and (⇑B)
−→Φ turn out to be isomorphic, and

form the nucleus of Φ [27]. A ←−Φ -closed set in A and the corresponding −→Φ -closed set in B, of
course, completely determine each other, but the most informative presentation carries both,
as Dedekind-style cuts. When A = B and Φ ⊆ Ao × A is the partial ordering

Φ(x, y) ⇐⇒ x ≤ y (3)

then the nucleus is just the Dedekind-MacNeille completion mA of the poset A [21]. This is
the minimal bicompletion, in the sense that the embedding A −→ mA preserves any suprema
and infima that A may already have, and only adds those that do not yet exist [21, 2, 12,
III.3.11]. The consequence of this minimality is that every element of the completion mA
is both a supremum and an infimum of the elements of A. The nucleus of a {0, 1}-matrix
is a minimal bicompletion in a similar sense, as are the nuclei of [0, 1]-matrices, and of
[0,∞]-matrices2: the nuclei give the semantic bicompletions of matrices, uncovering their
concepts [27, 28].

1.2.3 The trouble with ordinary categories
Our main concern in the present paper are the minimal bicompletions of matrices and
categories enriched over (Set,×, 1). Categories enriched in Set are usually called ordinary
categories. Set-matrices are variably called profunctors or distributors. We increase the
wealth of terminology by calling them matrices. The functors ←−α ∈ ⇓A = SetA

o

are called
presheaves. The functors

−→
β ∈ ⇑B =

(
SetB

)o are usually called covariant functors to Set, but
we call them postsheaves. We use without further explanation the well known fact [9, 19]
that presheaves are equivalent to discrete fibrations, and that postsheaves are equivalent
with discrete opfibrations.

We also call the categorical limits the infima, and the categorical colimits the suprema,
following Lambek’s 1966 Lectures on Completions of Categories [15], quoted at the beginning

2 Since the monoidal posets ([0,∞], +, 0) and ([0, 1],×, 1) are isomorphic as monoidal categories, all
statements about categories enriched over them transfer trivially. However, isomorphisms are not always
trivial phenomena. E.g., the Laplace transform is an isomorphism, which maps differential operations
into algebraic operations, and thus allows solving differential equations as algebraic equations, and
mapping back the solutions [30]. In a similar way, it often happens that a distance space presentation
of a data pattern, enriched over ([0,∞], +, 0), displays some geometric content, whereas an isomorphic
proximity lattice presentation of the same data pattern, enriched over ([0, 1],×, 1), displays some
generalized order structure, not apparent in the first interpretation.

T. Kataoka and D. Pavlovic 135

of this paper. The Yoneda embeddings ∇ : A −→ ⇓A and ∆: B −→ ⇑B are then again,
respectively, the supremum and the infimum completion, this time of the categories A and
B. The transposes Φ# and Φ# now extend to the adjunction Φ∗ a Φ∗ : ⇑B −→ ⇓A, which
are defined similarly to (1–2). More precisely, the mappings between the A-presheaves and
B-postsheaves

←−α : Ao −→ Set
Φ∗←−α : B −→ Set

−→
β : B −→ Set

Φ∗
−→
β : Ao −→ Set

are defined as follows

Φ∗←−α (u) = lim←−
x∈A

(
←−α (x)⇒ Φ(x, u)

)
= ⇓A

(
←−α ,Φ#u

)
(4)

Φ∗
−→
β (`) = lim←−

y∈B

(−→
β (y)⇒ Φ(`, y)

)
= ⇑B

(
Φ#`,

−→
β
)

(5)

Here we write X ⇒ Y for the set exponents Y X not only because the multiple exponents
tend to “fly away” in the latter notation, but also to emphasize the parallel with (1–2). When
A = B is the same category, and Φ = H : Ao ×A −→ Set is the hom-set matrix, then H∗←−α (u)
is the set of (right) cones from the presheaf ←−α , viewed as a diagram, to the object u as the
tip of the cone. Dually, H∗

−→
β (`) is the set of (left) cones from the tip ` to the diagram

−→
β .

For a general matrix Φ: A# B, thinking of the elements of each set Φ(a, b) as “arrows” from
a ∈ A to b ∈ B also allows thinking of −→% ∈ Φ∗←−α (u) as a (right) “cone” from the diagram ←−α
in A to the tip u ∈ B, and of

←−
λ ∈ Φ∗

←−
β (`) as a (left) “cone” from the tip ` ∈ A to a diagram

←−
β in B. The presheaves and postsheaves of (4) and (5) thus generalize the lower and the
upper sets of (1) and (2).

At the very beginning of his lectures, Lambek raised the question of the Dedekind-
MacNeille completion of a category, and left it open. He did not raise the general question of
semantic completions of matrices (profunctors, or distributors) only because the semantical
impact was not clear at the time; but the general situation from Fig. 3 was well known.
Lambek’s open question of the Dedekind-MacNeille completion of a category was closed by
Isbell a couple of years later, who showed in [10, Sec. 3] that already the group Z4, viewed
as a category with a single object, cannot have a completion generated both by the suprema
and by the infima.

However, taking a broader semantical view, and seeking semantic completions of matrices,
shows that the story does not really end with Isbell’s counterexample. A semantic completion
of a matrix, relating, say, the parts and the moves observed within a device like the one on
Fig. 1, should uncover the concepts underlying the design of the device. These concepts are
expressed through the structural component of the device, and through its functional units.
When the matrix is enriched over a monoidal poset, then there is a one-to-one correspondence
between the structural components and the functional modules, and they form the nucleus
of the matrix [27, 28]. In reality, though, a single structural component may play a role in
several functional modules, and vice versa. While the posetal enrichment cannot capture
this, the enrichment in sets, or in a proper category of real numbers, can record how many
copies of a given a part are used for a certain function. Modeled in this way, the spaces
of structural components and of functional modules will not be isomorphic. The concepts
will not be uncovered as a single category of component-function pairs, like in the posetal
case, but as a nontrivial matrix relating some component-concepts approximated by their
functionalities with some function-concepts approximated by the components that perform
them.

CALCO’15

136 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

Contributions

To spell this out, we consider the following technical questions:
(a) What kind of completions of a given matrix Φ: A# B are provided by the categories

(⇓A)
←−Φ and (⇑B)

−→Φ ? (The idea is that the former captures the component-concepts, the
latter the function-concepts.)

(b) What kind of matrix ←→Φ : (⇓A)
←−Φ # (⇑B)

−→Φ is the minimal bicompletion of Φ: A# B?
(Capturing the relations between the component-concepts and the function-concepts.)

Our approach to these questions is based on a new family of limits and colimits, introduced
in the next section. It seems intuitive and appropriate to call them limit inferior, and limit
superior. For consistency, we also revert, albeit just for the duration of this paper3, from
limits and colimits to infima and suprema, following Lambek [15]. The reader is reminded
that in posets

the limit inferior is the supremum of the lower bounds of a set, whereas
the limit superior is the infimum of the upper bounds.

Mutatis mutandis, the categorical concepts will behave similarly.

Overview of the paper

In Sec. 2, we propose the answers to the above question. Sec. 2.1 spells out the preliminaries.
Sec. 2.2 defines categorical limits inferior and superior and characterizes their completions.
Sec. 2.3 proposes an answer to question (a) above. Sec. 2.4 proposes an answer to question (b)
above. In Sec. 3 we study some simple examples, illustrating and validating the introduced
concepts. Sec. 3.1 describes a monadicity workflow useful for analyzing the examples. Sec. 3.2
characterizes completions of constant matrices. Sections 3.3 and 3.4 characterize completions
of the matrices representing groups or posets, respectively. Sec. 3.5 characterizes completions
of a vector in the (cyclic) group Zp of prime order p. Sec. 4 closes the paper, to some extent.

Due to the space constraints of this conference paper and the scope of the presented
material, all proofs and many lemmas had to be moved into the appendices. Full details will
require a significantly longer paper.

2 Categorical limit inferior and limit superior

2.1 Preliminaries

Although suprema and infima are very basic concepts, familiar to most readers, and easily
found in [20, Sec. III.3–4], we spell them out here not only to introduce the notation and
practice using the words infimum and supremum instead of limit and colimit, but also to
align these familiar definitions with the variations needed to define the limit superior and
the limit inferior.

Let C and J be categories and CJ the category of functors between them, with natural
transformations as morphisms. Let � : C −→ CJ be the functor taking each object of x of C
to the constant functor �x : J −→ C, which maps all objects of J to x ∈ C and all morphisms
of J to idx.

3 We hope that our terminological contributions, advancing from “profunctors” and “distributors” to
“matrices” and from “covariant functors to Set” to “postsheaves”, as well as retreating from “limits” to
“infima” and from “colimits” to “suprema”, will not end up being the central features of the paper.

T. Kataoka and D. Pavlovic 137

The suprema and the infima in C can be defined as, respectively, the left and the right
adjoint of the constant functor, i.e.

lim−→ a � a lim←− : CJ −→ C

These adjunctions can be viewed as the natural bijections

CJ(F,�x) ∼= C
(
lim−→F, x

)
(6)

CJ(�x, F) ∼= C
(
x, lim←−F

)
(7)

It is well known that the Yoneda embeddings realize the lim−→ and lim←−-completions [20,
Sec. X.6]:
∇ : C −→ ⇓C is the lim−→-completion of C, whereas
∆: C −→ ⇑C is the lim←−-completion of C

where
⇓C denotes the category SetC

o

of C-presheaves, or equivalently4 the category of discrete
fibrations over C,
⇑C denotes the category

(
SetC

)o of C-postsheaves, or equivalently the opposite category
of discrete opfibrations over C.

For completeness, we note the following well known and routinely checkable fact.

I Lemma 2.1. Given a functor F : J −→ C, consider the presheaf and the postsheaf(←−
F : C//F −→ C

)
∈ ⇓C

(−→
F : F//C −→ C

)
∈ ⇑C (8)

where C//F is the category of connected components5 of the comma category C/F from IdC
to F , whereas F//C is the category of connected components of the comma category F/C the
other way around [20, Sections II.6 and IX.3]. Then

lim−→F = lim−→
←−
F lim←−F = lim←−

−→
F (9)

Notations have been introduced in Sec. 1.2, especially in Figures 2 and 3. The next section
studies the special case Φ = H : C# C of the matrix of hom-sets of a category.

2.2 Limit inferior and limit superior over a category
I Definition 2.2. For arbitrary categories C and J we define

the category of left saturated diagrams CJ
⇓ to consist of

objects |CJ
⇓| = |CJ|

morphisms CJ
⇓(F,G) = ⇓C

(
H∗
−→
F ,H∗

−→
G
)

the category of right saturated diagrams CJ
⇑ to consist of

objects |CJ
⇑| = |CJ|

morphisms CJ
⇑(F,G) = ⇑C

(
H∗
←−
F ,H∗

←−
G
)

4 The equivalence between the “indexed” and “fibered” versions of sheaves lies at the heart of
Grothendieck’s descent theory [9, VI], but also generalizes to substantially different purposes [29, 26].

5 To be precise, each fiber category (C//F)x at x ∈ C is defined to be the category of connected components
of the fiber category (C/F)x = C/F x.

CALCO’15

138 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

I Definition 2.3. In a category C we define
the limit inferior operation −→lim over left diagrams from J by the adjunction
−→lim a � : C −→ CJ

⇓

which can be viewed as the natural bijection

CJ
⇓(F,�x) ∼= C

(−→limF, x
)

the limit superior operation ←−lim over right diagrams from J by the adjunction

� a
←−lim : CJ

⇑ −→ C

which can be viewed as the natural bijection

CJ
⇑(�x, F) ∼= C

(
x,
←−limF

)
I Remark. Note that the operations −→lim and ←−lim are defined over arbitrary diagrams. Indeed,
the objects of the categories of saturated diagrams are arbitrary diagrams; the saturation is
imposed on them in the definitions of the morphisms in these categories.

The operations lim−→ and lim←− are also defined over arbitrary diagrams, but differently: the
supremum of a diagram is equal to the supremum of the induced presheaf; and the infimum
of a diagram is equal to the infimum of the induced postsheaf, as stated in Lemma 2.1. This
is analogous to lattices, where a supremum of a set is equal to the supremum of its lower
closure, whereas the infimum of a set is the infimum of the upper closure. However, the limit
inferior of a diagram is the supremum of the presheaf induced by the postsheaf induced by
the diagram; and the limit superior is the infimum of the postsheaf induced by the presheaf
induced by the diagram. In a partially ordered set, the limit inferior of a set is the join of
the lower bounds of all of its upper bounds; whereas the limit superior of a set is the meet of
the upper bounds of all of its lower bounds.

I Lemma 2.4. Every representable presheaf ∇x is a free algebra in ⇓C
←−
H , with ∇x

η∼=
←−
H∇x.

Every representable postsheaf ∆x is a cofree coalgebra in ⇑C
−→
H , with −→H∆x

ε∼= ∆x.

I Proposition 2.5. Every ←−H -algebra is a limit inferior in ⇓C
←−
H of representable presheaves,

viewed as ←−H -algebras. Every −→H -coalgebra is a limit superior in ⇑C
−→
H of representable

postsheaves, viewed as −→H -coalgebras.

I Corollary 2.6. ⇓C
←−
H is −→lim-complete. ⇑C

−→
H is ←−lim-complete.

I Theorem 2.7. The extended Yoneda embeddings realize the limit inferior and limit superior
completions:
∇H : C ∇−→ ⇓C H−→ ⇓C

←−
H is the −→lim-completion of C, whereas

∆H : C ∆−→ ⇑C H−→ ⇑C
−→
H is the ←−lim-completion of C.

2.3 Limit inferior and limit superior over a matrix
Given a category C, Lem. 2.1 implies that the suprema and the infima, defined by (6) and
(7) respectively, can be viewed as the left and the right adjoint of the corresponding Yoneda
embeddings:

C ⇓C
∇
⊥

lim−→
C ⇑C

∆
>

lim←−

T. Kataoka and D. Pavlovic 139

Given a matrix Φ: Ao × B −→ Set, the suprema and the infima weighted by its transposes
Φ# : A −→ ⇑B and Φ# : B −→ ⇓A can similarly be viewed as adjoints:

B ⇓A
Φ#

⊥

lim−→Φ

A ⇑B
Φ#
>

lim←−Φ

It is, of course, well known and easy to see that the weighted limits can in ordinary categories
be reduced to the ordinary limits. The situation is slightly more subtle with the weighted
inferior and superior limits. To align the two situations, note that the adjunctions

B
(

lim−→Φ
←−α , b

)
∼= ⇓A

(
←−α ,Φ#b

)
A
(
a, lim←−Φ

−→
β
)
∼= ⇑B

(
Φ#a,

−→
β
)

will now become

A
(−→limΦ

−→
β , a

)
∼= (⇓A)

←−Φ
(

Φ∗
−→
β ,∇Φa

)
B
(
b,
←−limΦ

←−α
)
∼= (⇑B)

−→Φ
(

∆Φb,Φ∗←−α
)

I Definition 2.8. Given a matrix Φ: Ao×B −→ Set, with the induced extensions as in Fig. 3,
we define the operations Φ-limit inferior −→limΦ and ←−limΦ by the following adjunctions

A (⇓A)
←−Φ

∇Φ

⊥

−→limΦ

B (⇑B)
−→Φ

∆Φ

>

←−limΦ

where ∇Φ and ∆Φ are as defined in Fig. 3.

2.3.1 Two pairs of “Yoneda embeddings”
In this section we spell out the basic properties of the two kinds of “Yoneda embeddings”
induced by a matrix Φ: A# B:
←−Φ -algebra representables and −→Φ -coalgebra representables

∇Φ : A −→ (⇓A)
←−Φ ∆Φ : B −→ (⇑B)

−→Φ

Φ-representable presheaves and postsheaves

Φ# : A −→ (⇑B)
−→Φ Φ# : B −→ (⇓A)

←−Φ

The underlying functors are as in Fig. 3. The structures are as follows.

I Lemma 2.9. Every presheaf ←−α ∈ ⇓A induces the −→Φ -coalgebra Φ∗←−α Φ∗η−−→ Φ∗Φ∗Φ∗←−α .
Every Φ-representable postsheaf Φ#a is thus canonically a −→Φ -coalgebra, since Φ#a = Φ∗∇a.

Any postsheaf
−→
β ∈ ⇑B induces the←−Φ -algebra Φ∗

−→
β

Φ∗ε←−− Φ∗Φ∗Φ∗
−→
β . Every Φ-representable

presheaf Φ#b is thus canonically a ←−Φ -algebra, since Φ#b = Φ∗∆b.

I Lemma 2.10 (Matrix Yoneda Lemma). For every a ∈ A and every
−→
β ∈ ⇑B there is a

natural bijection

(⇓A)
←−Φ
(
∇Φa,Φ∗

−→
β
)
∼= Φ∗

−→
β (a) (10)

For every b ∈ B and every ←−α ∈ ⇓A there is a natural bijection

(⇑B)
−→Φ
(

Φ∗←−α ,∆Φb
)
∼= Φ∗←−α (b) (11)

I Corollary 2.11 (Matrix Yoneda embedding).

(⇓A)
←−Φ (∇Φa,Φ#b

) ∼= Φ(a, b) ∼= (⇑B)
−→Φ (Φ#a,∆Φb

)
(12)

CALCO’15

140 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

2.3.2 Completeness and generation
I Corollary 2.12. (⇓A)

←−Φ is −→limΦ-complete. (⇑B)
−→Φ is ←−limΦ-complete.

I Proposition 2.13. Every←−Φ -algebra is a limit inferior in (⇓A)
←−Φ of←−Φ -algebra representables.

Every −→Φ -coalgebra is a limit superior in (⇑B)
−→Φ of −→Φ -coalgebra representables.

I Theorem 2.14. The Φ-extended Yoneda embeddings realize the −→limΦ-completion and
←−limΦ-completion:
∇Φ : A ∇−→ ⇓A Φ−→ (⇓A)

←−Φ is the −→lim-completion of A, whereas
∆Φ : B ∆−→ ⇑B Φ−→ (⇑B)

−→Φ is the ←−lim-completion of B.

2.4 Minimal bicompletion of a matrix

2.4.1 Loose extensions
In general, a matrix Φ: A # B always induces a loose extension mΦ: (⇓A)

←−Φ # (⇑B)
−→Φ ,

defined

mΦ(a, b) =

f ∈ ⇓A
(
←−α ,Φ∗

−→
β
)
∣∣∣∣∣∣∣∣∣∣

Φ∗Φ∗←−α Φ∗Φ∗Φ∗
−→
β

←−α Φ∗
−→
β

a

Φ∗Φ∗f

f

Φ∗b

 (13)

I Proposition 2.15. Each of the following squares commutes if and only if the other one
commutes.

Φ∗Φ∗←−α Φ∗Φ∗Φ∗
−→
β Φ∗Φ∗Φ∗←−α Φ∗Φ∗

−→
β

⇐⇒

←−α Φ∗
−→
β Φ∗←−α β

a

Φ∗Φ∗f

Φ∗a

Φ∗Φ∗f ′

f

Φ∗b

f ′

b

The commutativity of the preceding squares implies the commutativity of the following squares,
which are each other’s transposes.

Φ∗Φ∗Φ∗←−α Φ∗Φ∗
−→
β

←−α Φ∗
−→
β Φ∗Φ∗Φ∗

−→
β ⇐⇒

Φ∗←−α
−→
β

Φ∗Φ∗f ′

f Φ∗b

η
Φ∗η

f ′

b

Φ∗Φ∗←−α Φ∗Φ∗Φ∗
−→
β

Φ∗Φ∗Φ∗←−α Φ∗←−α
−→
β ⇐⇒

←−α Φ∗
−→
β

a

Φ∗Φ∗f ′

Φ∗ε
Φ∗a

ε

f ′

f ′

T. Kataoka and D. Pavlovic 141

I Conjecture 2.16. mΦ isomorphic with the matrix

mΦ(a, b) =
(
⇓(A× Bo)

)←−Φ×−→Φ(←−α ×−→β ,Φ)
which is equivalent to the matrix of the adjunction Φ~ a Φ~ : (⇑B)

−→Φ −→ (⇓A)
←−Φ , defined

Φ~←−α (u) = (⇓A)
←−Φ
(
←−α ,Φ#u

)
(14)

Φ~
−→
β (`) = (⇑B)

−→Φ
(

Φ#`,
−→
β
)

(15)

with the structure maps induced by composition with the structure maps a : Φ∗Φ∗←−α −→ ←−α
and b :

−→
β −→ Φ∗Φ∗

−→
β .

2.4.2 Tight extensions
But this loose extension is of little semantical value. E.g., when Φ is a partial ordering like in
(3), mΦ picks all pairs of a saturated lower set and a saturated upper set which are contained
in each other’s sets of bounds, but do not necessarily contain all such bounds. So it does not
capture the Dedekind cuts.

The tight extension ←→Φ brings us closer to the Dedekind cuts:
←→Φ (a, b) = {f ∈ mΦ(a, b) | f is mono, and f ′ is epi} (16)

Since (⇓A)
←−Φ and (⇑B)

−→Φ are regular categories, ←→Φ can be extracted from mΦ by two closure
operators: first extracting the mono factors, and then the epis of their transposes, or
equivalently the other way around. After the factorizations, in the first case the transpose of
the resulting epi will be mono; in the second the transpose of the resulting mono will be epi.
Either way, the process will stop.

The resulting matrix ←→Φ will be a reflective submatrix of mΦ. The completeness and the
generation will be inherited, but tight. We need to prove that the inferior limits that existed
in A and the superior limits that existed in B are preserved.

I Conjecture 2.17. For every matrix Φ: A −→ B, the tight extension ←→Φ : (⇓A)
←−Φ # (⇑B)

−→Φ

is the minimal bicompletion.

3 When does limit inferior boil down to limit?

By the couniversal property of the (Eilenberg-Moore) categories of algebras for a monad [16,
Part 0.6], there are always the comparison adjunctions between ⇓A and (⇑B)

−→Φ , and between
⇑B and (⇓A)

←−Φ , as displayed in the leftmost diagram of Fig. 4, since the monad ←−Φ and the
comonad −→Φ are induced by the adjunction Φ∗ a Φ∗ : ⇑B −→ ⇓A. When these comparisons
are equivalences, then this adjunction transfers to the two Eilenberg-Moore categories, as
indicated in the rightmost diagram of Fig. 4. Moreover, the inferior Φ-limits −→limΦ in B then
boil down to the suprema lim−→ in A, whereas the superior Φ-limits ←−limΦ in A boil down to
the infima lim←− in B. In terms of the concept mining example from the Introduction, the
structural components represented in (⇓A)

←−Φ can be computed as infima functions in ⇑B,
whereas the functional modules represented in (⇑B)

−→Φ can be computed as suprema of parts
in ⇓A. Connecting the extensions mΦ and ←→Φ along the equivalences ⇓A ' (⇑B)

−→Φ and
⇑B ' (⇓A)

←−Φ shows that all loose extensions are already tight.

CALCO’15

142 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

⇓A (⇓A)
←−Φ

⇑B (⇑B)
−→Φ

←−Φ

Φ∗ Φ∗a

Φ

U

⊥

−→Φ

V

Φ
⊥

⇓A (⇓A)
←−Φ

C C
←−Φ |C

D D
−→Φ |D

⇑B (⇑B)
−→Φ

←−Φ

Φ∗ Φ∗a

Φ

U

⊥
←−Φ |C

Φ∗|C Φ∗|Da

⊥

−→Φ |D

⊥

−→Φ

V

Φ
⊥

⇓A (⇓A)
←−Φ

⇑B (⇑B)
−→Φ

←−Φ

Φ∗ Φ∗a

−→Φ

a

Figure 4 Comparisons between the lim←−- and
−→limΦ-completions, and between the lim−→- and ←−limΦ-

completions.

I Proposition 3.1. For any matrix Φ: A# B, the extensions Φ∗ a Φ∗ : ⇑B −→ ⇓A are both
monadic if and only if the loose and the tight extensions coincide, i.e. mΦ ' ←→Φ .

The notion of monadicity [20, Sec. VI.7] here precisely captures the equivalences of interest,
as ⇑B ' (⇓A)

←−Φ means that Φ∗ is monadic and ⇓A ' (⇑B)
−→Φ means that Φ∗ is (co)monadic.

In this section, we study the monadicity of the extensions Φ∗ and Φ∗ in order to gain insight
into the situations when the inferior and superior limits boil down to the ordinary limits,
and the situations when they genuinely provide new information.

3.1 Monadicity workflow
As a reminder, we quote the Precise Monadicity Theorem in Appendix B. Intuitively, its
impact on the concrete instances of our situation is that it allows constructing the inferior
limits, which are in principle the suprema of lower bounds, as specific maximal cones into
the infima.

We begin describing a convenient setting of subcategories, as displayed in the middle in
Fig. 4. When Φ∗ : ⇑B −→ ⇓A restricts to a monadic functor D −→ C, so that D ' C

←−Φ |C , then
we have an embedding (⇓A)

←−Φ � ⇑B as indicated in the rightmost diagram in Fig. 4.
In the general framework of an adjunction as in Appendix B, items (a–b) of the Monadicity

Theorem say that the induced Eilenberg-Moore category CT is coreflective within the category
D whenever D has and U preserves reflexive U -split coequalizers. However, its converse does
not hold (see Example 3.6 and Prop. 3.8). The task is thus to spell out the full subcategories
C ⊆ ⇓A, D ⊆ ⇑B explicitly, even if we cannot apply the Monadicity Theorem to the setting
C = ⇓A, D = ⇑B. Towards this goal, and to simplify calculations with the algebras, we
propose the following lemma.

I Definition 3.2. An object B is said to be a retract of an object A if there exist morphisms
B −→ A −→ B whose composite is idB. For a full subcategory F ⊆ E , we denote by
RetrE(F) ⊆ E the full subcategory of all retracts in E of objects in F .

Notational conventions. For a functor G, we denote its full image by ImG. For a category
E and its full subcategories F ,F ′, we loosely use F ⊆ F ′ to denote that any object in F is
isomorphic in E to some object in F ′.

T. Kataoka and D. Pavlovic 143

I Lemma 3.3. Let F a U : B −→ A be an adjunction and T be its monad on A.

A AT

C CT |C

B B

T

F Ua

>

T |C

F |C Ua

>

A AT

B D

T

F Ua

>

L

K

>

1. Let C ⊆ A be a full subcategory such that ImU ⊆ C. If RetrA(ImU) ⊆ C, then the
canonical inclusion is an equivalence of categories CT |C ' AT .

2. Let D be the full subcategory that depicts the equivalence induced by the comparison functor
K : B −→ AT and its partial left adjoint L : AT ⇀ B (see e.g. [14, Sec. 1.11]). Then,
RetrB(ImF) ⊆ D. In particular, RetrB(ImF) ⊆ AT if the category AT is a (coreflective)
subcategory of B by L : AT � B.

The above lemma intuitively means
we need at most retracts of images under U in A, and that
we need at least retracts of images under F in B,

in order to obtain a monadic functor of the form AT ' D U |D−−→ C. In the later discussion,
we restrict an adjunction as the diagram below and calculate the category of T -algebras by
AT = (Retr(ImU))T ′ ⊇ (Retr(ImF)).

A Retr(ImU) AT

B Retr(ImF)

T

F Ua

T ′

F ′ U ′a

>

K′

where

T ′ = U ′F ′ = T |Retr(ImU) ,

F ′ = F |Retr(ImU) ,

U ′ = U |Retr(ImF) ,

K ′ = K|Retr(ImF)

3.2 Completing constant matrices
Any set R can be viewed as a constant matrix R̃ : 1 # 1 by setting R̃(0, 0) = R, where
1 = {0}. We abuse notation and write R̃ as R. The extensions R∗ a R∗ : Seto −→ Set are thus
R∗X = R∗X = RX , and they induce the continuation monad ←−RX = RR

X on Set, and the
same comonad −→R on Seto.

Lem. B.2 in the Appendix B helps characterizing the monadicity of R∗ and R∗.

I Proposition 3.4. For a set R with at least 2 elements, the functor R∗ : Seto −→ Set is
monadic. When R is a singleton, then the monad ←−R on Set has a single algebra, and the
comonad −→R on Seto has a single coalgebra. When R is empty, then they have two algebras
and coalgebras respectively.

I Corollary 3.5. The loose extension of the constant matrix R is always in the form mR :
Set# Set with mR(X,Y) = Set(X,Y). The tight extension is
←→
R = mR : Set# Set when R has at least 2 elements
←→1 : 1# 1 with ←→1 (0, 0) = 1, where 1 = {0}
←→0 : 2# 2 with ←→0 (x, y) = 1 if and only if x ≤ y within 2 = {0 < 1}.

CALCO’15

144 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

3.3 Completing groups
Let C be a group G, viewed as a one-object category with invertible morphisms. The category
⇓G of presheaves is the category of right G-sets, or the category Go-Set of (left) Go-sets.
Indeed as a discrete fibration over the one-object category, the total category of the presheaf
is a set X with an action X × G −→ X. The adjunction H∗ a H∗ is given explicitly as
follows. We think of G as a (left G, right G)-set by the multiplication. For a right G-set X,
the (left) G-set H∗X is the set Go-Set(X,G) with the action (g · f)(i) = g

(
f(i)

)
. Similarly,

H∗Y = G-Set(Y,G) with the right action (f · g)(i) =
(
f(i)

)
g for a left G-set Y .

We assume later that the group G is nontrivial (i.e. G has at least two elements).

I Example 3.6. The diagram 0 −→ 1 ⇒ 1 + 1 displays an equalizer of a reflexive H∗-split
pair of left G-maps (i.e. a coequalizer in ⇑G). However, the image of this diagram under H∗
is not a coequalizer: 1←− 0⇔ 0.

I Proposition 3.7. We have ImH∗ ' {0} ∪ {GI | I ∈ Set} and Retr(ImH∗) ' {1} ∪
{G × I | I ∈ Set}, where GI is the exponential in Set with the pointwise multiplication
(g · f)(i) = g

(
f(i)

)
and G× I is the free G-set generated by the set I (i.e. g · 〈h, i〉 = 〈gh, i〉).

We denote by G-Set1,free the full subcategory {1} ∪ {G × I | I ∈ Set} ⊆ G-Set of a
singleton and free G-sets.

I Proposition 3.8. The functor H∗ : (G-Set1,free)o −→ Go-Set1,free is monadic. In particular,
the category (Go-Set)

←−
H of ←−H -algebras is equivalent to (G-Set1,free)o.

I Corollary 3.9. The loose extension of a nontrivial group is the canonical connection of its
left and right actions. The tight extension is the canonical extension of its free actions.

3.4 Completing posets
Let C be a poset (P,≤). We denote the poset of lower sets of P by ↓P , and the poset of
upper sets of P by ↑P .6 They are respectively the join and the meet completions. While P ’s
categorical supremum completion ⇓P = SetP

o

and its infimum completion ⇑P =
(
SetP

)o
are proper categories, its limit inferior completion ⇓P

←−
H , and its limit superior completion

⇑P
−→
H , although still constructed over Set — turn out to be both equivalent to a lattice, and

in particular to P ’s Dedekind-MacNeille completion lP .

I Lemma 3.10. The lattice of subobjects of the terminal object in ⇓P is isomorphic to
↓P . The lattice of quotient objects of the initial object of ⇑P is isomorphic to ↑P . The full
subcategories ↓P ⊆ ⇓P and ↑P ⊆ ⇑P contain all the representables.

I Lemma 3.11. The adjunction H∗ a H∗ : ⇑P −→ ⇓P restricts to an adjunction between
posets ↓P, ↑P (i.e. a Galois connection), which coincides with the {0, 1}-enriched construction.
Moreover, ImH∗ = Im(H∗|↓P) and ImH∗ = Im(H∗|↑P).

I Corollary 3.12. It holds Retr⇑P (ImH∗) = Im(H∗|↓P).

Therefore, the category (⇓P)
←−
H is nothing more than the category of algebras for the

adjunction ↑P � ↓P .

I Proposition 3.13. There exist equivalences of categories (⇓P)
←−
H ' lP ' (⇑P)

−→
H .

I Corollary 3.14. The tight extension ←→P of a poset P coincides with its Dedekind-MacNeille
completion lP .

6 The poset ↓P is ordered by L ≤ L′ ⇐⇒ L ⊆ L′, whereas ↑P is ordered by U ≤ U ′ ⇐⇒ U ⊇ U ′.

T. Kataoka and D. Pavlovic 145

Φ = 1Φ1 + pΦp Φp = 0 Φp ≥ 1

Φ1 = 0
{0, 1}

{0, 1}o

a

Set

({1} ∪ {pUp | Up ∈ Set})o

a

Φ1 = 1
{1}

{1}o

a

Set

{1 + pUp | Up ∈ Set}o

a

Φ1 ≥ 2
Set

{1U1 | U1 ∈ Set}o

a

Set

(Zp-Set)o

a

Figure 5 The ←−limΦ-completion and the −→limΦ-completion of a Zp-vector Φ: 1# Zp.

3.5 Completing a Zp-vector
A vector is a matrix in the form Φ: 1 # B. We consider the vectors in B = Zp, viewed
as an additive cyclic group of prime order p. Every Zp-set X has an orbit-decomposition
X ∼= 1×X1 + Zp ×Xp where the action on 1 is trivial and the action on Zp is defined by
the addition.. We abbreviate the decomposition 1×X1 + Zp ×Xp as 1X1 + pXp.

I Lemma 3.15. Zp-Set(1X1 + pXp, 1Y1 + pYp) ∼= Y X1
1 (Y1 + pYp)Xp .

Hence for a vector Φ = 1Φ1 + pΦp, the adjunction Φ∗ a Φ∗ : (Zp-Set)o −→ Set is explicitly

Φ∗L ∼= (1Φ1 + pΦp)L (L ∈ Set),
Φ∗U ∼= ΦU1

1 (Φ1 + pΦp)Up (U = 1U1 + pUp ∈ Zp-Set).

I Lemma 3.16. Let f, g : U ⇒ U ′ be a reflexive pair in Zp-Set. The Zp-sets U,U ′ have
suitable isomorphisms to their orbit-decompositions such that the right square of the diagram

E U U ′

1E1 + pEp 1U1 + pUp 1U ′1 + pU ′p

∼=

e

∼=

f

g
∼=

1e1+pep 1f1+pfp

1g1+pgp

serially commutes for some maps f1, g1 : U1 ⇒ U ′1, fp, gp : Up ⇒ U ′p. Moreover, equalizers
E1

e1−→ U1, Ep
ep−→ Up of the pairs (f1, g1), (fp, gp), which induce an equalizer E e−→ U of the

pair (f, g) in Zp-Set, satisfy the condition of Lem. B.2.2.

Let us find full subcategories Retr(Im Φ∗) ⊆ C ⊆ Set and Retr(Im Φ∗) ⊆ D ⊆ (Zp-Set)o
to fit the scheme of Fig. 4.

I Proposition 3.17. Fig. 5 depicts a restriction of the adjunction Φ∗ a Φ∗ : (Zp-Set)o −→ Set
that makes both Φ∗ and Φ∗ monadic, without changing the categories of algebras:

Set C C
←−Φ |C Set

←−Φ

(Zp-Set)o D D
−→Φ |D (Zp-Seto)

−→Φ .

Φ∗ Φ∗a

'

a

'

Thus, the subcategories C and D are equivalent to the←−limΦ- and
−→limΦ-completions, respectively.

CALCO’15

146 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

Figure 6 Identified object: The external and the internal view

4 Conclusion

Deploying the categorical concept analysis of the unidentified object from Fig. 1 according
to the technical recipes proposed in this paper, our diligent reader has surely uncovered that
the mysterious device consists of two main structural components: the internal mechanism
of wheels and gears, and the external protection shell. On the other hand, the detailed
categorical analysis has surely displayed three main functional modules: moving, defending
from the outside attacks, and attacking from inside. As desired, the tight matrix then clearly
shows that the object must be a model of a man-powered armored combat vehicle from XV
century. It was conceived by Leonardo da Vinci, whose drawings are reproduced on Fig. 6.
The advances of category theory will undoubtedly permit us to better understand Leonardo’s
conceptualizations of warfare.

References
1 Yossi Azar, Amos Fiat, Anna Karlin, Frank McSherry, and Jared Saia. Spectral analysis of

data. In Proceedings of the thirty-third annual ACM Symposium on Theory of Computing,
STOC’01, pages 619–626, New York, NY, USA, 2001. ACM.

2 Bernhard Banaschewski and Gunter Bruns. Categorical characterization of the MacNeille
completion. Archiv der Mathematik, 18(4):369–377, September 1967.

3 Michael Barr and Charles Wells. Toposes, Triples, and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1985.

4 Claudio Carpineto and Giovanni Romano. Concept Data Analysis: Theory and Applications.
John Wiley & Sons, 2004.

5 Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-
Interscience, 2000.

6 Bernhard Ganter, Gerd Stumme, and Rudolf Wille, editors. Formal Concept Analysis,
Foundations and Applications, volume 3626 of Lecture Notes in Computer Science. Springer,
2005.

7 Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg, 1999.

8 Peter Gärdenfors. The Geometry of Meaning: Semantics Based on Conceptual Spaces. MIT
Press, 2014.

9 Alexander Grothendieck. Revêtements étales et groupe fondamental (SGA 1), volume 224
of Lecture notes in mathematics. Springer-Verlag, 1971.

10 John R. Isbell. Small subcategories and completeness. Mathematical Systems Theory,
2(1):27–50, 1968.

11 Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. John Wiley & Sons, Ltd,
1971.

T. Kataoka and D. Pavlovic 147

12 Peter Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1982.

13 Ian T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer, 2002.
14 Gregory Max Kelly. Basic Concepts of Enriched Category Theory. Number 64 in London

Mathematical Society Lecture Notes. Cambridge University Press, 1982.
15 Joachim. Lambek. Completions of categories : seminar lectures given 1966 in Zurich.

Number 24 in Springer Lecture Notes in Mathematics. Springer-Verlag, 1966.
16 Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical Logic. Num-

ber 7 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.
17 Thomas K. Landauer, Danielle S. Mcnamara, Simon Dennis, and Walter Kintsch, editors.

Handbook of Latent Semantic Analysis. Lawrence Erlbaum Associates, 2007.
18 F. William Lawvere. Metric spaces, generalised logic, and closed categories. Rendiconti del

Seminario Matematico e Fisico di Milano, 43:135–166, 1973.
19 Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduc-

tion to Topos Theory. Universitext. Springer-Verlag, New York, 1992.
20 Saunders MacLane. Categories for the Working Mathematician. Number 5 in Graduate

Texts in Mathematics. Springer-Verlag, 1971.
21 Holbrook Mann MacNeille. Extensions of partially ordered sets. Proc. Nat. Acad. Sci. USA,

22(1):45–50, 1936.
22 Oded Maimon and Lior Rokach, editors. Data Mining and Knowledge Discovery Handbook,

2nd ed. Springer, 2010.
23 Dusko Pavlovic. Network as a computer: ranking paths to find flows. In Alexander

Razborov and Anatol Slissenko, editors, Proceedings of CSR 2008, volume 5010 of Lecture
Notes in Computer Science, pages 384–397. Springer Verlag, 2008. arxiv.org:0802.1306.

24 Dusko Pavlovic. On quantum statistics in data analysis. In Peter Bruza, editor, Quantum
Interaction 2008. AAAI, 2008. arxiv.org:0802.1296.

25 Dusko Pavlovic. Quantifying and qualifying trust: Spectral decomposition of trust networks.
In Pierpaolo Degano, Sandro Etalle, and Joshua Guttman, editors, Proceedings of FAST
2010, volume 6561 of Lecture Notes in Computer Science, pages 1–17. Springer Verlag, 2011.
arxiv.org:1011.5696.

26 Dusko Pavlovic. Relating toy models of quantum computation: comprehension, complemen-
tarity and dagger autonomous categories. E. Notes in Theor. Comp. Sci., 270(2):121–139,
2011. arxiv.org:1006.1011.

27 Dusko Pavlovic. Quantitative Concept Analysis. In Florent Domenach, Dmitry I. Ignatov,
and Jonas Poelmans, editors, Proceedings of ICFCA 2012, volume 7278 of Lecture Notes
in Artificial Intelligence, pages 260–277. Springer Verlag, 2012. arXiv:1204.5802.

28 Dusko Pavlovic. Bicompletions of distance matrices. In Bob Coecke, Luke Ong, and Prakash
Panangaden, editors, Computation, Logic, Games and Quantum Foundations. The Many
Facets of Samson Abramsky, volume 7860 of Lecture Notes in Computer Science, pages
291–310. Springer Verlag, 2013.

29 Dusko Pavlovic and Samson Abramsky. Specifying interaction categories. In E. Moggi and
G. Rosolini, editors, Category Theory and Computer Science 1997, volume 1290 of Lecture
Notes in Computer Science, pages 147–158. Springer Verlag, 1997.

30 Duško Pavlović and Martín Escardó. Calculus in coinductive form. In V. Pratt, editor,
Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science, pages
408–417. IEEE Computer Society, 1998.

31 F. Ricci, L. Rokach, B. Shapira, and P.B. Kantor. Recommender Systems Handbook.
Springer, 2010.

32 Ashok N. Srivastava and Mehran Sahami. Text Mining: Classification, Clustering, and
Applications. Data Mining and Knowledge Discovery Series. CRC Press, 2009.

CALCO’15

148 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

A Appendix: Proofs

Proof of Thm. 2.7. Suppose that X is a category with all limits inferior, and that G : C −→ X
is an arbitrary functor. We show that G has a unique extension G′ : (⇓C)

←−
H −→ X, such that

G = G′ ◦H ◦ ∇ (17)

where H : ⇓C −→ (⇓C)
←−
H , as defined on Fig. 3 instantiated to Φ = H, maps C-presheaves

to free ←−H -algebras, i.e. it is the left adjoint of the forgetful functor U : (⇓C)
←−
H −→ ⇓C. The

construction is illustrated on the following diagram.

(⇓C)
←−
H ←−γ

a←−−−
←−
H←−γ

⇓C

C

X
−→lim G ◦ −→ϕ

G′ G′

H

∇

G

Given an arbitrary ←−H -algebra ←−γ a←−−−
←−
H←−γ in ⇓C, we construct the equalizer of postsheaves

−→ϕ H∗
←−γ H∗

←−
H←−γ

H∗a

ηH∗←−γ

which is a coequalizer in ⇑C. Note that the ←−H -algebra a displays the presheaf ←−γ as
the coequalizer of the H∗-image of the pair

〈
H∗a, ηH∗←−γ

〉
. The ←−H -algebra a itself is the

coequalizer of the free ←−H -algebras over this image, and as the limit inferior as decomposed in
Proposition 2.5. We set the G′-image of the←−H -algebra a to be the limit inferior of the functor
F ϕ−→ C G−→ X. Equation (17) follows from Lem. 2.4. The fact that G′ preserves inferior
limits follows from the fact that every inferior limit cone H∗−→F λ−−→←−γ factors through any
structure map ←−H←−γ a−−→ ←−γ : the factorization is the composite H∗−→F λ−−→ ←−γ η−−→ H∗←−γ ,
which obviously boils down to λ when further postcomposed with a. The uniqueness follows
from Proposition 2.5. J

Proof of Lem. 2.10. Consider a natural transformation ψ ∈ (⇓A)
←−Φ
(

Φ∗Φ#a,Φ∗
−→
β
)
on the

left-hand side of (10). By (5) and by the naturality of ψ, for f ∈ A(x, a) the left-hand square
diagram in Fig. 7 must commute.

Φ∗Φ#a(a) ⇑B
(
Φ#a,Φ#a

)
⇑B
(

Φ#a,
−→
β
)

Φ∗
−→
β (a)

[
∇Φa

]
(∇Φa)

[
Φ∗
−→
β
]

(∇Φa)

Φ∗Φ#a(x) ⇑B
(
Φ#x,Φ#a

)
⇑B
(

Φ#x,
−→
β
)

Φ∗
−→
β (x)

[
∇Φa

]
(∇Φx)

[
Φ∗
−→
β
]

(∇Φx)

Φ∗Φ#a(f)

ψa

(−)◦f (−)◦f Φ∗
−→
β (f)

[ψ]

[
∇Φa

]
f̂

[
Φ∗
−→
β
]
f̂

ψx

[ψ]

Figure 7 Matrix Yoneda squares

Recall that ←−Φ -algebras like ∇Φa,Φ∗
−→
β : Ao −→ Set always canonically extend to functors[

∇Φa
]
−→
[
Φ∗
−→
β
]

: (⇓A)o←−Φ −→ Set , and that ←−Φ -algebra homomorphism ψ : ∇Φa −→ Φ∗
−→
β

extend to
[
ψ
]
:
[
∇Φa

]
−→
[
Φ∗
−→
β
]
. It follows that a ←−Φ -algebra homomorphism ψ must be

T. Kataoka and D. Pavlovic 149

natural with respect to all homomorphisms between free ←−Φ -algebras, and not just with
respect to those arising from A.

In particular, consider the natural isomorphism

⇑B
(
Φ#x,Φ#a

) (a)= Φ∗Φ#a(x)
(b)∼= ⇓A

(
∇x,Φ∗Φ#a

) (c)= (⇓A)o←−Φ (∇Φa,∇Φx) (18)

where (a) is based on (5), (b) on the usual Yoneda lemma, and (c) on the definition of the
Kleisli category (⇓A)←−Φ . Every f ∈ ⇑B

(
Φ#x,Φ#a

)
thus induces a unique homomorphism

f̂ ∈ (⇓A)o←−Φ (∇Φa,∇Φx), and vice versa. The naturality condition on
[
ψ
]
now implies that

the right-hand square on Fig. 7 must commute, which implies[
ψ
]
∇Φx

(
f̂
)

=
[
ψ
]
∇Φx
◦
[
∇Φa

]
f̂ (id∇Φa) =

[
Φ∗
−→
β
]
f̂◦
[
ψ
]
∇Φa

(id∇Φa) =
[
Φ∗
−→
β
]
f̂
([

Ψ
])

(19)

where
[
Ψ
]

=
[
ψ
]
∇Φa

(id∇Φa). Hence the bijection between the natural transformations[
ψ
]
:
[
∇Φa

]
−→
[
Φ∗
−→
β
]
and the elements

[
Ψ
]
of
[
Φ∗
−→
β
]

(∇Φa). The restriction to ψ : ∇Φa −→
Φ∗
−→
β of

[
ψ
]
must be coherent with respect to the natural bijection (18), which means that

ψ must be natural with respect to f ∈ ⇑B
(
Φ#x,Φ#a

)
just like

[
ψ
]
was with respect to

f̂ ∈ (⇓A)o←−Φ (∇Φa,∇Φx). The naturality of the left-hand square in Fig. 7 now gives

ψx (f) = ψx ◦ ∇Φaf (idΦ#a) = Φ∗
−→
β (f) ◦ ψa (idΦ#a) = Φ∗

−→
β (f)Ψ (20)

where Ψ = ψa (idΦ#a). Hence the bijection between the ←−Φ -algebra homomorphisms ψ ∈
(⇓A)

←−Φ
(
∇Φa,Φ∗

−→
β
)
and the elements Ψ of Φ∗

−→
β (a), as claimed in (10). Claim (11) is proven

dually. J

Proof of Lem. 3.3.
1. Let A h←− UFA be a T -algebra. By the unit law of Eilenberg-Moore algebras, we have a

retract A
ηA
� UFA

h
� A. In particular, the underlying object A of the algebra is a retract

of an image under U .
2. Firstly, we shall show that

D =
{
B ∈ B

∣∣∣ B FUB FUFUB
εB

FUεB

εFUB
is a coequalizer

}
(21)

as a full subcategory of B. Recall that KB = (UB UεB←−−− UFUB). For a T -algebra
A

h←− UFA, its image under L : AT ⇀ B is defined by the representability:

B
(
L(A h←− UFA), B

) ∼= AT ((A h←− UFA), (UB UεB←−−− UFUB)
)

∼=
{
f ∈ B(FA,B)

∣∣∣ B FA FUFA
f Fh

εFA
commutes

}
,

where the latter isomorphism is essentially shown at the item (a) of the precise monadicity
theorem. In particular, a counit LKB −→ B of the partial adjunction L a K (exists and)
is an isomorphism if and only if the diagram in (21) is a equalizer in B, because the above
bijection maps idKB ∈ AT (KB,KB) to εB ∈ B(FUB,B).
Secondly, we claim that ImF ⊆ D as full subcategories of B. It is obvious as the following
is a split coequalizer diagram:

FA FUFA FUFUFA .

FηA

εFA

FUFηA

FUεFA

εFUFA

CALCO’15

150 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

Finally, we shall prove that the subcategory D ⊆ B is closed under taking retracts. Let
D be an object of D, and B

s
� D

r
� B be a retract of D in B. We have shown that the

upper row of the following diagram is a coequalizer in B.

D FUD FUFUD

B FUB FUFUB

εD
FUεD

εFUD
s r

εB

FUs FUr
FUεB

εFUB

FUFUs FUFUr

The squares commutes serially, and all the columns are retracts. It is a straightforward
consequence that the lower row of the diagram is also a coequalizer. J

I Lemma A.1. Let X be a G-set and J be a set. Any G-map f : X −→ G × J to the free
G-set generated by J is a composite X ∼= G× I idG×k−−−−→ G× J for some k : I −→ J in Set.

Proof of Lem. A.1. Let I = f−1({e} × J). The action of X induces an isomorphism
X ∼= G× I of G-sets. J

I Lemma A.2. A retract of a singleton in G-Set is a singleton. A retract of a free G-set is
free.

Proof of Lem. A.2. The first claim is obvious. The latter claim is by Lem. A.1. J

Proof of Prop. 3.7. Let X be a right G-set. If there exists a right G-map X −→ G, there
exists an isomorphism X ∼= I ×G for some set I by Lem. A.1. Then, we have a bijection

H∗X = Go-Set(X,G) ∼= Go-Set(I ×G,G) ∼= Set(I,G) = GI ,

which is moreover an isomorphism of left G-sets. If X does not have a right G-map X −→ G,
then we have H∗X = 0. For instance, letting X = 1 gives H∗1 = 0 since |G| ≥ 2. J

Proof of Prop. 3.8. By the Monadicity Theorem, this proposition reduces to the following
two lemmas. J

I Lemma A.3. The following hold.
1. The category G-Set1,free has reflexive equalizers.
2. The functor H∗ : (G-Set1,free)o −→ Go-Set1,free preserves reflexive coequalizers.

Proof. By Lem. A.2, a reflexive pair in G-Set1,free is either 1⇒ 1 or G× I ⇒ G× J . The
pair 1⇒ 1 trivially has an equalizer that is preserved by any functor.

Let r : G×J −→ G×I be a common retraction inG-Set1,free of the pair (f, h) : G×I ⇒ G×J .
We may assume r = idG × r′ for some map r′ : J −→ I by Lem. A.1. Define a map f ′ : I −→ J

by 〈gi, f ′(i)〉 = f(〈e, i〉) for each i ∈ I where it turns out to hold gi = e since

〈e, i〉 = r
(
f(〈e, i〉)

)
= r
(
〈gi, f ′(i)〉

)
=
〈
gi, r

′(f ′(i))〉 .
Moreover for any g ∈ G, it holds

f(〈g, i〉) = f(g · 〈e, i〉) = g · f(〈e, i〉) = g · 〈e, f ′(i)〉 = 〈g, f ′(i)〉 .

Therefore, there exist maps f ′, h′ : I ⇒ J such that f = idG × f ′, h = idG × h′, and r′ is a
common retraction of the pair (f ′, h′) in Set.

T. Kataoka and D. Pavlovic 151

Using an equalizer E −→ I ⇒ J in Set, we have an equalizer G × E −→ G × I ⇒ G × J
in G-Set1,free. We shall show that this (co)equalizer is preserved by H∗ : (G-Set1,free)o −→
Go-Set1,free, i.e. the diagram

GE ←− GI ⇔ GJ

is a coequalizer of right G-sets. Their underlying sets form a coequalizer diagram in Set
because the functor |G|(−) : Seto −→ Set preserves reflexive coequalizers for |G| ≥ 2 by
Lem. B.2. Hence, the diagram is also a coequalizer in Go-Set. J

I Lemma A.4. The functor H∗ : (G-Set1,free)o −→ Go-Set1,free reflects isomorphisms.

Proof. Let f : X −→ Y be a morphism in G-Set1,free such that H∗f : H∗Y −→ H∗X is an
isomorphism. There are three cases of the G-map f :

1 −→ 1 , G× I −→ 1 , G× I −→ G× J .

The first two cases are trivial. For the last case, we may assume that f = idG × k for some
map k : I −→ J by Lem. A.1. Then, the right G-bijection H∗f : H∗(G× J) −→ H∗(G× I) can
be written as Gk : GJ −→ GI . By |G| ≥ 2, the map k is a bijection, which shows that the
G-map f = idG × k is an isomorphism. J

Proof of Lem. 3.10. The terminal object in ⇓P is a constant presheaf 1. A presheaf←−α ∈ ⇓P
is a subobject of the presheaf 1 if and only if ←−α � 1 in Set for any x ∈ P .

A representable presheaf ∇x is a subobject of 1, since (∇x)(y) = P (y, x)� 1. J

Proof of Lem. 3.11. Firstly, we shall show that ImH∗ ⊆ ↑P . Let ←−α ∈ ⇓P be a presheaf.
We shall show H∗←−α ∈ ↑P . The set (H∗←−α)(x) = ⇓P (←−α ,∇x) has at most one element for
any x ∈ P , since ∇x is a subobject of a terminal object 1 ∈ ⇓P . In particular, the postsheaf
H∗←−α ∈ ⇑P is an upper set of P .

Dually, we have ImH∗ ⊆ ↓P . Then, the adjunction H∗ a H∗ restricts as

↓P ⇓P

↑P ⇑P .

H∗|↓P H∗|↑Pa H∗ H∗a

It is obvious by definition that the restricted adjunction coincides with the {0, 1}-enriched
construction.

The claim ImH∗ = Im(H∗|↓P) follows from that the embedding ↓P � ⇓P has a left
adjoint ⇓P −→ ↓P , which maps a presheaf ←−α to the image of ←−α −→ 1. Just for reference, we
describe the following elementary proof, which boils down to the above argument.

A presheaf ←−α can be written as a canonical colimit ←−α = lim−→i∈I∇ai. Let L ⊆ P be the
image of ←−α −→ 1, i.e.

L =
{
x ∈ P

∣∣←−α (x) is nonempty
}

=
⋃
i∈|I|

{x ∈ P | x ≤ ai} =
⋃
i∈|I|

∇ai .

We shall show that this lower set L ∈ ↓P satisfies H∗L = H∗←−α . We have

H∗L = H∗
⋃
i∈|I|

∇ai =
⋂
i∈|I|

H∗∇ai =
⋂
i∈|I|

∆ai ∈ ↑P ,

H∗←−α = H∗ lim−→
i∈I
∇ai = lim−→

i∈I
H∗∇ai = lim−→

i∈I
∆ai ∈ ⇑P

CALCO’15

152 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

by the adjunctions H∗|↓P a H∗|↑P and H∗ a H∗, respectively. The colimit lim−→i∈I ∆ai in ⇑P
is a limit in SetP , and it is just a product in SetP because the objects ∆ai are subobjects of
1 in SetP . Therefore, H∗L = H∗←−α . J

Proof of Cor. 3.12. A retract of an upper set U ⊆ P is also an upper set, because the
retract is always U itself. Thus,

Retr⇑P (ImH∗) = Retr⇑P (Im(H∗|↓P)) by Lem. 3.11
= Im(H∗|↓P) by Im(H∗|↓P) ⊆ ↑P . J

Proof of Prop. 3.13. By Lem. 3.11 and Cor. 3.12. J

Proof of Lem. 3.15. For a Zp-set Y = 1Y1 + pYp, an element y ∈ Y forms a Zp-map
y : 1 −→ Y if and only if y ∈ 1Y1. For the free Zp-set p, an element y ∈ Y bijectively
corresponds to a Zp-map p −→ Y . Since an orbit-decomposition is a coproduct,

Zp-Set(1X1 + pXp, 1Y1 + pYp) ∼=
(
Zp-Set(1, 1Y1 + pYp)

)X1(Zp-Set(p, 1Y1 + pYp)
)Xp

∼= Y X1
1 (Y1 + pYp)Xp . J

Proof of Lem. 3.16. Let r be a common retraction of the pair (f, g), and I = Im f ∪ Im g ∼=
1I1+pIp. By the existence of retraction, we have f = f ′1+f ′p : 1U1+pUp −→ 1U ′1+pU ′p for some
Zp-maps f ′1, f ′p, and similar for g. Hence, there exists r|I = r′1 + r′p : 1I1 + pIp −→ 1U1 + pUp.
We may assume r′1 + r′p = 1r1 + prp by modifying the coercing isomorphism U ′ ∼= 1U ′1 + pU ′p
on I ⊆ U ′. Under the assumption, we obtain f ′1 + f ′p = 1f1 + pfp and g′1 + g′p = 1g1 + pgp.

The reflexive equalizer in Zp-Set is also a reflexive equalizer in Set, which induces the
following pullback of injections in Set by Lem. B.2.1.

E1 + pEp U1 + pUp

U1 + pUp U ′1 + pU ′p .

e1+pep

e1+pep

f1+pfp

g1+pgp

Changing the base by maps U ′1 −→ U ′1 + pU ′p, U ′p −→ U ′1 + pU ′p concludes the proof. J

Proof of Prop. 3.17. It is easy to check the full subcategories C,D contain all retracts of
images. Then, by Lem. 3.3.1, we have only to show that the restrictions Φ∗|D : D −→ C,
Φ∗|C : C −→ D are monadic functors. By the Monadicity Theorem, it follows from the following
two lemmas that the functor Φ∗|D is monadic. The comonadicity of Φ∗|C is shown similarly
to the comonadicity of the restriction of R∗ : Set −→ Seto (Prop. 3.4) for R = Φ1 + pΦp. J

I Lemma A.5. For the adjunction Φ∗|C a Φ∗|D : D −→ C in Fig. 5, the category D has and
the functor Φ∗|D preserves reflexive coequalizers.

Proof. By Lem. 3.16, an equalizer in Zp-Set of a reflexive pair in Do ⊆ Zp-Set can be taken
as

E U U ′

1E1 + pEp 1U1 + pUp 1U ′1 + pU ′p

e
f

g

1e1+pep 1f1+pfp

1g1+pgp

T. Kataoka and D. Pavlovic 153

for some equalizers

E1 U1 U ′1
e1

f1

g1
, Ep Up U ′p

ep
fp

gp
.

It is easy to show that 1E1 + pEp ∈ D. For example, if Φ = 1 + pΦp then U1 = U ′1 = 1,
which implies E1 = 1.

By Lem. B.2.2, the diagrams

ΦE1
1 ΦU1

1 ΦU
′
1

1
Φe11

Φf11

Φg11

, (Φ1 + pΦp)Ep (Φ1 + pΦp)Up (Φ1 + pΦp)U
′
p

(Φ1+pΦp)ep (Φ1+pΦp)fp

(Φ1+pΦp)gp

are split coequalizers. Hence, their pointwise product

Φ∗(1E1 + pEp) Φ∗(1U1 + pUp) Φ∗(1U ′1 + pU ′p)
Φ∗(1e1+pep) Φ∗(1f1+pfp)

Φ∗(1g1+pgp)

is a (split) coequalizer. J

I Lemma A.6. The right adjoint functor Φ∗|D : D −→ C in Fig. 5 reflects isomorphisms.

Proof. Let f : U −→ U ′ be a Zp-map. In general, f is of the form

1U1 + p(Up,1 + Up,p) −→ 1U ′1 + pU ′p

induced by maps f1 : U1 −→ U ′1, g : Up,1 −→ U ′1, h : Up,p −→ pU ′p up to isomorphisms, by
Lem. 3.15. Modify the embedding pUp,p� U , and we may assume further that the map h is
induced by a map fp : Up,p −→ U ′p. Then, f = [id1 × f1, ! × g, idp × fp] where ! : p −→ 1 is a
unique Zp-map.

Assume that U,U ′ ∈ D and that Φ∗f : Φ∗U ′ −→ Φ∗U is a bijection. We have only to prove
the bijectivity of the maps f1, fp and Up,1 = 0. The map Φ∗f factors through an injection as
the following diagram:

ΦU1
1 ΦUp,11 (Φ1 + pΦp)Up,p

ΦU
′
1

1 (Φ1 + pΦp)U
′
p ΦU1

1 (Φ1 + pΦp)Up,1(Φ1 + pΦp)Up,p .

〈Φf11 ,Φg1〉×(Φ1+pΦp)fp

Φ∗f

Since the injection must be a bijection, we have

ΦU1
1 (Φ1 + pΦp)Up,p = 0 or Φp = 0 or Up,1 = 0 .

The rest is straightforward for each Φ: 1# Zp.
For example, let Φ = pΦp. The full subcategory D ⊆ (Zp-Set)o contains only Zp-sets

with trivial actions, i.e. D ⊆ Seto ⊆ (Zp-Set)o. In particular, we have Up,1 = Up,p = 0, and
the claim reduces to the monadicity of a restriction of the functor Φ(−)

1 : Seto −→ Set. J

CALCO’15

154 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

B Appendix: General propositions

I Proposition B.1 (Precise monadicity theorem). Let U : D −→ C be a functor that has a left
adjoint F : C −→ D, and T = U ◦ F be the induced monad.

C CT

D

T

F Ua

FT

UT

>

L

K
>

KD = (UD UεD←−−− UFUD) ,

L(C h←− UFC) ←− FC
Fh
⇔
εFC

FUFC is a coequalizer.

(a) The comparison functor K : D −→ CT has a left adjoint L : CT −→ D if the category D has
reflexive U -split coequalizers.

(b) The functor L is full and faithful if D has and U preserves reflexive U -split coequalizers.
(c) The comparison functor K is full and faithful if U reflects isomorphisms [3, Sec. 3.3].
In particular, the right adjoint functor U is monadic if U creates reflexive U -split coequalizers.

Conversely, for a monad T , the forgetful functor UT : CT −→ C creates UT -split coequaliz-
ers.

The statements and the proof of the following lemma is inspired by the proof of the
monadicity of powerset functors Ω(−) (see e.g. [3, Sec. 5.1]).

I Lemma B.2. Let X,Y be sets, and f, g : X ⇒ Y be maps.
1. If the pair (f, g) is reflexive, then the maps f, g are injections and the diagram

Z X

X Y

e

e

f

g

(22)

is a pullback for an equalizer Z e−→ X of the pair (f, g).
2. Let R be a nonempty set and e : Z −→ X be a map such that the above diagram (22) is a

pullback. If the map f is an injection, then RZ Re←−− RX
Rf

⇔
Rg

RY is a split coequalizer. In

particular, the functor R(−) : Seto −→ Set preserves such coequalizers.

Proof of Lem. B.2.
1. Obvious.
2. Firstly, the map e is an injection, because f is. Fix an element r ∈ R. Since the maps

e, f are injective, we may and shall define maps RZ er−→ RX
fr−→ RY by

er(k)(x) =
{
k(z) if x = e(z),
r otherwise

fr(h)(y) =
{
h(x) if y = f(x),
r otherwise

where h : X −→ R and k : Z −→ R. The maps give a splitting

RZ RX RY ,
er

Re

fr

Rf

Rg

T. Kataoka and D. Pavlovic 155

i.e. the diagrams

RZ

RZ RX

id

er

Re

RX

RX RY

id

fr

Rf

RZ RX

RX RY

er

Re

fr

Rf

commute. J

CALCO’15

Codensity Liftings of Monads
Shin-ya Katsumata and Tetsuya Sato

Research Institute for Mathematical Sciences, Kyoto University
Kitashirakawaoiwakecho, Sakyoku, Kyoto, 606-8502, Japan
{sinya,satoutet}@kurims.kyoto-u.ac.jp

Abstract
We introduce a method to lift monads on the base category of a fibration to its total category
using codensity monads. This method, called codensity lifting, is applicable to various fibrations
which were not supported by the categorical >>-lifting. After introducing the codensity lifting,
we illustrate some examples of codensity liftings of monads along the fibrations from the category
of preorders, topological spaces and extended psuedometric spaces to the category of sets, and
also the fibration from the category of binary relations between measurable spaces. We next study
the liftings of algebraic operations to the codensity-lifted monads. We also give a characterisation
of the class of liftings (along posetal fibrations with fibred small limits) as a limit of a certain
large diagram.

1998 ACM Subject Classification F.3.2. Semantics of Programming Languages

Keywords and phrases Monads, Lifting, Fibration, Giry Monad

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.156

1 Introduction

Inspired by Lindley and Stark’s work on extending the concept of reducibility candidates to
monadic types [9, 10], the first author previously introduced its semantic analogue called
categorical >>-lifting in [6]. It constructs a lifting of a strong monad T on the base category
of a closed-structure preserving fibration p : E→ B to its total category. The construction
takes the inverse image of the continuation monad on the total category along the canonical
monad morphism b : T → (− ⇒ TR)⇒ TR in the base category, which exists for any strong
monad T :

T >> // (− ⇒ S)⇒ S

T
b

// (− ⇒ TR)⇒ TR

The objects R and S (such that TR = pS) are presupposed parameters of this >>-lifting,
and by varying them we can derive various liftings of T . The categorical >>-lifting has been
used to construct logical relations for monads [7] and to analyse the concept of preorders on
monads [8].

One key assumption for the >>-lifting to work is that the fibration p preserves the closed
structure, so that the continuation monad (− ⇒ S) ⇒ S on the total category becomes a
lifting of the continuation monad (− ⇒ TR)⇒ TR on the base category. Although many
such fibrations are seen in the categorical formulations of logical relations [12, 3, 7], requiring
fibrations to preserve closed structures on their total categories imposes a technical limitation
to the applicability of the categorical >>-lifting. Indeed, outside the categorical semantics of
type theories, it is common to work with the categories that have no closed structure. In the

© Shin-ya Katsumata and Tetsuya Sato;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 156–170

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.156
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Katsumata and T. Sato 157

study of coalgebras, predicate / relational liftings of functors and monads are fundamental
structures to formulate modal operators and (bi)simulation relations, and the underlying
categories of them are not necessarily closed. For instance, the category Meas of measurable
spaces, which is unlikely to be cartesian closed, is used to host labelled Markov processes.
The categorical >>-lifting does not work in such situations.

To overcome this technical limitation, in this paper we introduce an alternative lifting
method called codensity lifting. The idea is to replace the continuation monad (− ⇒ S)⇒ S

with the codensity monad RanSS given by a right Kan extension. We then ask fibrations to
preserve the right Kan extension, which is often fulfilled by the preservation of limits. We
demonstrate that the codensity lifting is applicable to lift monads on the base categories of
the following fibrations:

Pre

��

Top

��

ERel(Meas) //

��

BRel(Meas)

��

// Pred

��

U∗EPMet //

��

EPMet

��
Set Set Meas

∆
//Meas2

(×)◦U2
// Set Meas

U
// Set

Another issue when we have a lifting Ṫ of a monad T is the liftability of algebraic
operations for T to the lifting Ṫ . For instance, let Ṫ be a lifting of the powerset monad Tp
on Set along the canonical forgetful functor p : Top→ Set, which is a fibration. A typical
algebraic operation for Tp is the union of A-indexed families of sets: unionAX(f) =

⋃
a∈A f(a).

Then the question is whether we can “lift” the ordinary function unionAX : A t TpX → TpX

to a continuous function of type A t Ṫ (X,OX) → Ṫ (X,OX) for every topological space
(X,OX). We show that the liftability of algebraic operations to codensity liftings has a good
characterisation in terms of the parameters supplied to the codensity liftings.

We are also interested in the categorical property of the collection of liftings of a monad
T (along a limited class of fibrations). We show a characterisation of the class of liftings of
T as a limit of a large diagram of partial orders. This is yet an abstract categorical result,
we believe that this will be helpful to construct and enumerate the possible liftings of a given
monad T .

1.1 Preliminaries
We use white bold letters B,C,E, · · · to range over locally small categories. We sometimes
identify an object in a category C and a functor of type 1→ C.

We do a lot of 2-categorical calculations in CAT. To reduce the notational burden,
we omit writing the composition operator ◦ between functors, or a functor and a natural
transformation. For instance, for functors G,F, P,Q and a natural transformation α : P → Q,
by GαF we mean the natural transformation G(αFI) : G ◦P ◦F (I)→ G ◦Q ◦F (I). We use
• and ∗ for the vertical and horizontal compositions of natural transformations, respectively.

Let A be a set and X ∈ C. An A-fold cotensor of X is a pair of an object A t X and an
A-indexed family of projection morphisms {πa : A t X → X}a∈A. They satisfy the following
universal property: for any A-indexed family of morphisms {fa : B → X}a∈A, there exists a
unique morphism m : B → A t X such that πa ◦m = fa holds for all a ∈ A. Here are some
examples of cotensors:
1. When C = Set, the function space A⇒ X and the evaluation function πa(f) = f(a) give

an A-fold cotensor of X.
2. When C has small products, the product of A-fold copies of X and the associated

projections give an A-fold cotensor of X.

CALCO’15

158 Codensity Liftings of Monads

3. When C has A-fold cotensors, any functor category [D,C] also has A-fold cotensors, which
can be given pointwisely: (A t F)X = A t (FX).

A right Kan extension of F : A → C along G : A → D is a pair of a functor RanGF :
D→ C and a natural transformation c : RanGF ◦G→ F making the following mapping φH :

φH(α) = c • (αG) : [D,C](H,RanGF)→ [A,C](H ◦G,F)

bijective and natural on H ∈ [D,C]. A functor p : C→ C′ preserves a right Kan extension
(RanGF, c) if (p(RanGF), pc) is a right Kan extension of pF along G. Thus for any right
Kan extension (RanG(pF), c′) of pF along G, we have p(RanGF) ' RanG(pF) by the
universal property.

Let T be a monad on a category C. Its components are denoted by (T, η, µ). The
Kleisli lifting of a morphism f : I → TJ is µJ ◦ Tf : TI → TJ , denoted by f#. We write
J : C → CT and K : CT → C for the Kleisli adjunction of T , and ε : JK → IdC for the
counit of this adjunction. When T is decorated with an extra symbol, like Ṫ , the same
decoration is applied to the notation of adjunction, like η̇, J̇ , ε̇, etc.

For the definition of fibrations and related concepts, see [4].

I Proposition 1 ([4, Exercise 9.2.4]). Let p : E→ B be a fibration, and assume that B has
small limits. If p has fibred small limits, then E has small limits and p preserves them.

2 Codensity Lifting of Monads

Fix a fibration p : E→ B and a monad T on B. We first introduce the main subject of this
study, liftings of T .

I Definition 2. A lifting of T (along p) is a monad Ṫ on E such that pṪ = Tp, pη̇ = ηp and
pµ̇ = µp.

We do not require fibredness on Ṫ . The codensity lifting is a method to construct a lifting of
T from the following data called lifting parameter.

I Definition 3. A lifting parameter (for T) is a span BT A S //Roo E of functors such that
KR = pS. We say that it is single if A = 1.

A single lifting parameter is thus a pair (R,S) of objects R ∈ B and S ∈ ETR. This is the
same data used in the original (single-result) categorical >>-lifting in [6].

In this section we first introduce the codensity lifting under the situation where the
fibration and the lifting parameter satisfy the following codensity condition.

I Definition 4. We say that a fibration p : E → B and a functor S : A → E satisfy the
codensity condition if
1. a right Kan extension of S along S exists, and
2. p : E→ B preserves this right Kan extension.
Later in Section 6, we give the codensity lifting without relying on the codensity condition.
Although it is applicable to wider situations, the codensity lifting using the right Kan
extension given below has a conceptually simpler description.

The codensity condition relates the size of A and the completeness of E.

I Proposition 5. Let p be a fibration and A be a category. If one of the following conditions
holds:

S. Katsumata and T. Sato 159

1. E has, and p preserves cotensors, and A = 1
2. E has, and p preserves small products, and A is small discrete
3. E has, and p preserves small limits, and A is small
then for any functor S : A → E from a category A satisfying the condition, the pair p, S
satisfies the codensity condition.

I Proposition 6. For any fibration p and right adjoint functor S : A→ E, p, S satisfies the
codensity condition.

Proof. Let P be a left adjoint of S. Then the assignment F 7→ FP extends to a right Kan
extension of F along S. This Kan extension is absolute [11, Proposition X.7.3]. J

Fix a lifting parameter BT A S //Roo E and assume that the fixed p, S satisfies the
codensity condition. We take a right Kan extension (RanSS, cS : (RanSS)S → S). As p
preserves this right Kan extension, (p(RanSS), pcS) is a right Kan extension of pS along S.
Thus the following mapping:

(−) = pcS • −S : [E,B](H, p(RanSS))→ [A,B](HS, pS).

is bijective and natural on H : E→ B. We write (−) for its inverse.
The right Kan extension RanSS is the functor part of the codensity monad [11, Exercise

X.7.3]. Its unit uS : Id → RanSS and multiplication mS : (RanSS)RanSS → RanSS
are respectively given by the unique natural transformations such that cS • uSS = idS and
cS •mSS = cS • (RanSS)cS .

The codensity lifting constructs a lifting T >> = (T>>, η>>, µ>>) of T along p as follows.
We first lift the endofunctor T . We send KεR : KJpS = KJKR → KR = pS to

KεR : Tp → p(RanSS), then take its cartesian lifting with respect to RanSS; This is
possible because [E, p] : [E,E]→ [E,B] is a fibration. We name the cartesian lifting σ. We
then define T>> to be the codomain of σ.

T>>
σ // RanSS [E,E]

[E,p]
��

Tp
KεR

// p(RanSS) [E,B]

We next lift the unit η. Consider the following diagram:

IdE

η>> !!

uS

%%
T>>

σ
// RanSS [E,E]

[E,p]

��

p

ηp
""

puS

&&
Tp

KεR

// p(RanSS) [E,B]

The triangle in the base category commutes by:

KεR • ηp = KεR • ηpS = KεR • ηKR = idKR = idpS = puS .

CALCO’15

160 Codensity Liftings of Monads

Therefore from the universal property of σ, we obtain the unique natural transformation η>>
above ηp making the triangle in the total category commute.

We finally lift the multiplication µ. Consider the following diagram.

T>>T>>

µ>>
&&

T>>σ // T>>RanSS
σRanSS// (RanSS)RanSS

mS

��
T>>

σ // RanSS [E,E]

[E,p]

��

TTp
TKεR //

µp
&&

Tp(RanSS)KεRRanSS// p(RanSS)RanSS
pmS

��
Tp

KεR

// p(RanSS) [E,B]

The pentagon in the base category commutes by:

pmS •KεRRanSS • TKεR = pcS • p(RanSS)cS •KεR(RanSS)S • TKεRS
(interchange law) = pcS •KεRS • TpcS • TKεRS = KεR •KJKεR

= KεR • µKR = KεR • µpS = KεR • µp.

Therefore from the universal property of σ, we obtain the unique morphism µ>> above µp
making the pentagon in the total category commute. We take µ>> as the lifting of µ.

I Theorem 7. Let p : E → B be a fibration, T be a monad on B, BT A S //Roo E be a
lifting parameter for T , and assume that p, S satisfies the codensity condition. The tuple
T >> = (T>>, η>>, µ>>) constructed as above is a lifting of T along p.

I Corollary 8. The cartesian morphism σ : T>> → RanSS is a monad morphism.

Any lifting of T along p can be obtained by the codensity lifting, although the choice of
the lifting parameter is rather canonical.

I Theorem 9. Let p : E → B be a fibration, T be a monad on B and Ṫ be a lifting of T .
Then there exists a lifting parameter R,S such that p, S satisfies the codensity condition and
Ṫ ' T >>.

Proof. We write pk : EṪ → BT for the canonical functor extending p : E → B to Kleisli

categories. Then the span BT EṪ
K̇ //pkoo E is a lifting parameter that satisfies the codensity

condition by Proposition 6. We can even choose RanK̇K̇ so that it equals Ṫ . Then the
morphism Kεpk : Tp → p(RanK̇K̇) = Tp becomes the identity morphism. Hence Ṫ is
isomorphic to T . J

3 Examples of Codensity Liftings with Single Lifting Parameters

We illustrate some examples of the codensity liftings of monads. The fibration p : E → B
appearing in each example has fibred small limits, and its base category B has small limits.
Hence E also has small limits that are preserved by p (Proposition 1). We focus on the
codensity liftings of monads with single lifting parameters. We give a general scheme to
calculate them.

S. Katsumata and T. Sato 161

I Proposition 10. Let p : E→ B a fibration such that p has fibred small limits and B has
small limits, T be a monad on B, and R ∈ B, S ∈ ETR be a single lifting parameter. Then
the functor part of T >> satisfies

T>>X '
∧

f∈E(X,S)

((pf)#)−1(S) (1)

where
∧

stands for the fibred product in ET (pX).

3.1 Lifting Set-Monads to the Category of Preorders
The canonical forgetful functor p : Pre → Set from the category Pre of preorders and
monotone functions is a fibration with fibred small limits: the inverse image of a preorder
(J,≤J) along a function f : I → J is the preorder (I,≤I) given by i ≤I i′ ⇐⇒ f(i) ≤J f(i′).
The fibred small limits are given by the set-theoretic intersections of preorders on the same set.
We note that p does not preserve exponentials, hence the >>-lifting in [6] is not applicable
to p.

We consider the codensity lifting of a monad T over Set along p : Pre → Set with a
single lifting parameter: a pair of R ∈ Set and S = (TR,≤) ∈ Pre. By instantiating (1), for
every (X,≤X) ∈ Pre (X for short), the preorder T>>X is of the form (TX,≤>>X) where the
preorder ≤>>X is given by

x≤>>X y ⇐⇒ ∀f ∈ Pre(X,S) . (pf)#(x) ≤ (pf)#(y). (2)

We further instantiate this by letting T be the powerset monad Tp, R = 1 and ≤ be the
following partial orders on Tp1 = {∅, 1}:
1. Case ≤ = {(∅, ∅), (∅, 1), (1, 1)}. The homset Pre(X,S) is isomorphic to the set Up(X)

of upward closed subsets of X, and (2) is rewritten to:
x≤>>X y ⇐⇒ (∀F ∈ Up(X) . x ∩ F 6= ∅ =⇒ y ∩ F 6= ∅)

⇐⇒ ∀i ∈ x . ∃j ∈ y . i ≤X j,

that is, ≤>>X is the lower preorder.
2. Case ≤ = {(∅, ∅), (1, ∅), (1, 1)}. By the similar argument, ≤>> is the upper preorder:

x≤>>X y ⇐⇒ ∀j ∈ y . ∃i ∈ x . i ≤X j.

In order to make ≤>> the convex preorder on Tp:

x≤>>X y ⇐⇒ (∀i ∈ x . ∃j ∈ y . i ≤X j) ∧ (∀j ∈ y . ∃i ∈ x . i ≤X j),

we supply the cotupling SetTp
← 1+1→ Pre of the above lifting parameters to the codensity

lifting.

3.2 Lifting Set-Monads to the Category of Topological Spaces
The canonical forgetful functor p : Top→ Set from the category Top of topological spaces
and continuous functions is a fibration with fibred small limits. For a topological space
(X,OX) and a function f : Y → X, the inverse image topological space f∗(X,OX) is given by
(Y, {f−1(U) | U ∈ OX}). We note that each fibre category TopX is the poset of topological
spaces on a set X ordered in the opposite direction, that is, (X,O1) ≤ (X,O2) holds if and
only if O2 ⊆ O1.

We consider the codensity lifting of a monad T over Set along p : Top → Set with a
single lifting parameter: a pair of R ∈ Set and S = (TR,OS) ∈ Top. By instantiating (1),
for every (X,OX) ∈ Top (X for short), T>>X is the topological space (TX, T>>OX) whose

CALCO’15

162 Codensity Liftings of Monads

topology T>>OX is the coarsest one making every set ((pf)#)−1(U) open, where f and U
range over Top(X,S) and OS , respectively.

We further instantiate this by letting T = Tp, R = 1, and OS be the following topologies
on Tp1. The topologies given to powersets by the following liftings are similar to lower and
upper Vietoris topology.
1. Case OS = {∅, {1}, {∅, 1}}. The topology T>>p OX is the coarsest one making every set
{V ⊆ pX | V ∩U 6= ∅} open, where U ranges over OX . We call this lower Vietoris lifting.

2. Case OS = {∅, {∅}, {∅, 1}}. The topology T>>p OX is the coarsest one making every set
{V ⊆ pX | V ⊆ U} open, where U ranges over OX . We call this upper Vietoris lifting.

3.3 Simulations on Labelled Markov Processes by Codensity Lifting
We next move on to the category Meas of measurable spaces and measurable functions
between them. Recall that Meas has small limits (as the canonical forgetful functor
U : Meas→ Set is topological). We introduce some notations: For X ∈Meas, byMX we
mean the σ-algebra of X. For X ∈ Top, by BX ∈Meas we mean the Borel (measurable)
space of X.

We consider the following two fibrations q, r obtained by the change-of-base of the
subobject fibration of Set:

ERel(Meas) //

r

��

BRel(Meas) //

q

��

Pred
p

��
Meas

∆
//Meas2

U2
// Set2

Prod
//// Set

Here, ∆ is the diagonal functor and and Prod is the product functor. The legs q and r

of the change-of-base are fibrations with fibred small limits. 1 The explicit description of
BRel(Meas) is:

An object X is a triple, whose components are denoted by X0, X1, X2, such that X1, X2
are measurable spaces and X0 ⊆ UX0 × UX1.
A morphism (f1, f2) : X → Y is a pair of measurable functions f1 : X1 → Y1 and
f2 : X2 → Y2 such that (Uf1 × Uf2)(X0) ⊆ X1.

The explicit description of ERel(Meas) is:
An object is a pair, whose components are denoted byX0, X1, such thatX1 is a measurable
space and X0 ⊆ UX1 × UX1.
A morphism f : X → Y is a measurable function f : X1 → Y1 such that (Uf×Uf)(X0) ⊆
Y0.

For a binary relation R ⊆ X × Y and A ⊆ X, the image of A by R is defined to be the set
{y ∈ Y | ∃x ∈ A . (x, y) ∈ R}, and is denoted by R[A].

For X ∈Meas, by SPMsr(X) we mean the set of sub-probability measures on X. We
equip it with the σ-algebra generated from the sets of the following form:

{µ ∈ SPMsr(X) | µ(U) ∈ V } (U ∈MX , V ∈MB[0,1]),

and denote this measurable space by GX. The assignment X 7→ GX can be extended to a
monad G on Meas, called Giry monad [2]. Notice that G1 = B[0, 1].

1 BRel and ERel stands for binary relations and endo-relations, respectively.

S. Katsumata and T. Sato 163

We consider the codensity lifting of G along r : ERel(Meas) → Meas with a single
lifting parameter R = 1 (the one-point measurable space) and S = (≤, G1); here ≤ is the
usual order on [0, 1] = U(G1). By instantiating (1), we obtain

(v1, v2) ∈ (G>>X)0 ⇐⇒ ∀f ∈ ERel(Meas)(X,S) .
∫
X1

f dv1 ≤
∫
X1

f dv2.

I Theorem 11. The relation part (G>>X)0 satisfies:

(v1, v2) ∈ (G>>X)0 ⇐⇒ (∀U ∈MX1 . X0[U] ⊆ U =⇒ v1(U) ≤ v2(U)).

Proof.
(⊆) Suppose (v1, v2) ∈ G>>X0. Let U ∈ MX1 be a measurable set satisfying X0[U] ⊆ U .
The indicator function χU is a morphism in ERel(Meas) from X to S. Hence,

v1(U) =
∫
X1

χU dv1 ≤
∫
X1

χU dv2 = v2(U).

(⊇) Suppose that X0[U] ⊆ U =⇒ v1(U) ≤ v2(U) holds for all U ∈ MX1 . Let f ∈
ERel(Meas)(X,S) be a morphism and

∑n
i=0 αiχAi

≤ f be a positive measurable
simple function. Without loss of generality, we may assume A0 ⊇ A1 ⊇ · · · ⊇ An and∑n
i=0 αi ≤ 1. Let Ci be f−1

(
[
∑i
k=0 αk, 1]

)
, the inverse image of the closed interval

[
∑i
k=0 αk, 1] along f . We have

∑n
i=0 αiχAi ≤

∑n
i=0 αiχCi ≤ f , and we obtain Ci ∈MX1

and X0[Ci] ⊆ Ci because f ∈ ERel(Meas)(X,S). Hence,

n∑
i=0

αiv1(Ai) ≤
n∑
i=0

αiv1(Ci) ≤
n∑
i=0

αiv2(Ci) ≤
∫
X1

f dv2.

This implies∫
X1

f dv1 = sup
{

n∑
i=0

αiv1(Ai)

∣∣∣∣∣
n∑
i=0

αiχAi ≤ f

}
≤
∫
X1

f dv2. J

This lifting is related to the concept of simulation relation between two states on the
same labelled Markov process (LMP) in [15]. Let Act be a set (of actions). An LMP over
X1 ∈ Meas is a measurable function x : X1 → Act t GX1. Then a reflexive relation
X0 ⊆ UX1 × UX1 is a simulation in the sense of [15, Definition 3] if and only if x is a
morphism of type (X0, X1)→ Act t G>>(X0, X1) in ERel(Meas).

We next consider the codensity lifting of the product Giry monad G2 on Meas2 along
q : BRel(Meas)→Meas2 with a single lifting parameter R = (1, 1) and S = (≤, G1, G1).
By instantiating (1), we obtain

(v1, v2) ∈ (G>>X)0 ⇐⇒ ∀(f1, f2) ∈ ERel(Meas)(X,S) .
∫
X1

f1 dv1 ≤
∫
X2

f2 dv2.

I Theorem 12. The relation part (G>>X)0 satisfies:

(v1, v2) ∈ (G>>X)0 ⇐⇒ (∀U ∈MX1 , V ∈MX2 . X0[U] ⊆ V =⇒ v1(U) ≤ v2(V)).

Employing this lifting, we naturally obtain the concept of simulation relation between
two states in different LMPs. Let X ∈ BRel(Meas) and xi : Xi → Act t GXi be LMPs

CALCO’15

164 Codensity Liftings of Monads

(i = 1, 2). We say that X is a simulation from x1 to x2 if (x1, x2) is a morphism of type
X → Act t G>>X in BRel(Meas). This is equivalent to:

∀(s1, s2) ∈ X0 . ∀U ∈MX1 , V ∈MX2 . X0[U] ⊆ V =⇒ x1(s1)(U) ≤ x2(s2)(V).

One natural property we expect on simulation relations between LMPs is the composability.
However, G>> fails to satisfy the lax compositionality (G>>X)0; (G>>Y)0 ⊆ (G>>(X;Y))0 for
general X,Y ; here “;” is the left-first relation composition. Therefore the above definition
of simulation relation is not closed under the relation composition. One way to solve this
problem is to require each simulation relation X to preserve measurability in the following
sense: ∀U ∈MX1 . X0[U] ∈MX2 .

3.4 Kantorovich Metric by Codensity Lifting
An extended pseudometric space (we drop “extended” hereafter) is a pair (X, d) of a set X
and a pseudometric d : X ×X → [0,∞] giving distances (including ∞) between elements in
X. The axioms for pseudometrics are

d(x, x) = 0, d(x, y) = d(y, x), d(x, y) + d(y, z) ≥ d(x, z).

For pseudometric spaces (X, d), (Y, e), a function f : X → Y is non-expansive if for any
x, x′ ∈ X, d(x, x′) ≥ e(f(x), f(x′)) holds. We define EPMet to be the category of extended
pseudometric spaces and non-expansive functions. The canonical forgetful functor p :
EPMet→ Set is a fibration with fibred small limits. The inverse image of a pseudometric
(Y, d) along a function f : X → Y is given by f∗(Y, d) = (X, d ◦ (f × f)). The fibred small
limit of pseudometric spaces {(X, di)}i∈I above the same set X is given by the pointwise
sup of pseudometrics:

∧
i∈I(X, di) = (X, supi∈I di).

We first consider the codensity lifting of a monad T on Set along p : EPMet→ Set with
a single lifting parameter: a pair of R ∈ Set and S = (TR, s) ∈ EPMet. By instantiating
(1), for every (X, d) ∈ EPMet (X for short), the pseudometric space T>>X is of the form
(TX, T>>d) where the pseudometric T>>d is given by

T>>d(c, c′) = sup
f∈EPMet(X,S)

s(f#(c), f#(c′)).

The following example is inspired by Ogawa’s work deriving Kantorovich metric on
subprobability distributions [13]. We perform the following change-of-base of the fibration

U∗(EPMet)

q

��

// EPMet
p

��
Meas

U
// Set

We obtain a new fibration q with fibred small limits. An object in U∗(EPMet) is a pair of
a measurable space (X,MX) and a pseudometric d on X. A morphism from ((X,MX), d)
to ((Y,MY), e) in U∗(EPMet) is a measurable function f : (X,MX) → (Y,MY) that is
also non-expansive with respect to pseudometrics d and e.

We consider the codensity lifting of G along q : U∗EPMet→Meas with the following
single lifting parameter: a pair of R = 1 and S = (G1, s) = (B[0, 1], s) where s(x, y) = |x− y|.
For every (X, d) ∈ EPMet (X for short), G>>X is the pair of the measurable space GX and
the following pseudometric G>>d on the set SPMsr(X) of subprobability measures on X:

G>>d(v1, v2) = sup
f

∣∣∣∣∫
X

fdv1 −
∫
X

fdv2

∣∣∣∣ ;

S. Katsumata and T. Sato 165

in the above sup, f ranges over U∗EPMet(X,S), the set of measurable functions of type
X → B[0, 1] that are also non-expansive, that is, ∀x, y ∈ UX . d(x, y) ≥ |f(x)− f(y)|. The
pseudometric G>>d between subprobability measures is called Kantorovich metric [5].

We briefly mention two works related to this lifting.

In a recent work [1], Baldan et al. introduces Kantorovich lifting of Set-functors. Although
they consider lifting of general Set-functors rather than Set-monads, their lifting scheme
is very close to the codensity lifting of Set-monads along p : EPMet→ Set.

Ogawa reported that the Kantorovich metric on finite subprobability distributions can
be derived using the technique of observational algebra [13].

4 Lifting Algebraic Operations to Codensity-Lifted Monads

We adopt the concept of algebraic operation [14] for general monads, and discuss their liftings
to codensity-lifted monads. The following definition is a modification of [14, Proposition 2]
for non-strong monads, and coincides with the original one when C = Set.

I Definition 13. Let C be a category, A be a set and assume that C has A-fold cotensors. An
A-ary algebraic operation for a monad T on C is a natural transformation α : A t K → K

(see Section 1.1 for K). We write Alg(T , A) for the class of A-ary algebraic operations for T .

I Example 14. For each set A, the powerset monad Tp has the algebraic operation of A-ary
set-union unionAX : A t TpX → TpX given by unionAX(f) =

⋃
x∈A f(x).

Fix a fibration p : E → B, a monad T on B, a set A and assume that E has and p

preserves A-fold cotensors.

I Definition 15. Let Ṫ be a lifting of T along p. A lifting of an algebraic operation
α ∈ Alg(T , A) to Ṫ is an algebraic operation α̇ ∈ Alg(Ṫ , A) such that pα̇ = αpk; here
pk : EṪ → BT is the canonical extension of p to Kleisli categories. We write Algα(Ṫ , A) for
the class {α̇ ∈ Alg(Ṫ , A) | pα̇ = αpk} of liftings of α to Ṫ .

I Example 16. (Continued from Example 14) Let Ṫ be a lifting of Tp along p : Top→ Set.
Since p is faithful, there is at most one lifting of unionA to Ṫ . It exists if and only if for
every (X,OX) ∈ Top, unionAX is a continuous function of type A t Ṫ (X,OX)→ Ṫ (X,OX).

We give a characterisation of the liftings of algebraic operations to codensity-lifted monads.
Fix a lifting parameter BT A S //Roo E and assume that p, S satisfies the codensity condition.
Note that the canonical extension pk : ET >> → BT of p satisfies

pkJ
>> = Jp, pK>> = Kpk, pη>> = ηp, pkε

>> = εpk.

Starting from a natural transformation α0 : A t S → S such that pα0 = αR, we construct
a lifting φ(α0) ∈ Algα(T >>, A) of α as follows.

CALCO’15

166 Codensity Liftings of Monads

From A t S = (A t IdE)S, the natural trasnformation α0 induces the mate α0 : A t
IdE → RanSS. We then obtain the following situation:

A t IdE α0

&&β $$
T>>

σ
// RanSS [E,E]

[E,p]

��

A t p

αJp•Atηp $$

αR

&&
Tp

KεR

// p(RanSS) [E,B]

The triangle in the base category commutes by:

KεR • αJp •A t ηp = KεR • αJpS •A t ηpS = KεR • αJKR •A t ηKR

= (Kε • αJK •A t ηK)R = (α •A t Kε •A t ηK)R = pα0.

We thus obtain the unique morphism β above αJp •A t ηp making the triangle in the total
category commute. Using this β, we define φ(α0) : A t K>> → K>> by

φ(α0) = K>>ε>> • βK>> : A t K>> → K>>.

This algebraic operation is a lifting of α to T>>:

pφ(α0) = p(K>>ε>> •βK>>) = (Kε•αJK •A t ηK)pk = (α•A t Kε•A t ηK)pk = αpk.

The following theorem shows that φ characterises the class of liftings of α to the codensity-
lifted monads. It is an analogue of Theorem 11 in [7], which is stated for the categorical
>>-lifting.

I Theorem 17. Let p : E→ B be a fibration, T be a monad on B, and BT A S //Roo E be a
lifting parameter, and A be a set. Suppose that B,E has, and p preserves A-fold cotensor.
Then for any α ∈ Alg(T , A), the mapping φ constructed as above has the following type and
is bijective:

φ : [A,E]αR(A t S, S)→ Algα(T >>, A).

I Example 18. (Continued from Example 16) We look at liftings of unionA ∈ Alg(Tp, A)
to the codensity liftings of Tp along p : Top→ Set with some single lifting parameters.

Let R ∈ Set and S = (TpR,OS) ∈ Top be a single lifting parameter. Theorem 17 is
instantiated to the following statement: a lifting of unionA to T >>p exists if and only if
unionAR : A t TpR → TpR is a continuous function of type A t S → S. Here, A t S is the
product of A-fold copies of S, and its topology OAtS is generated from all the sets of the
form π−1

a (U), where a and U range over A and OS , respectively. We further instantiate the
single lifting parameter as follows (see Section 3.2):
1. Case R = 1,OS = {∅, {1}, {∅, 1}}. For any set A, unionA1 is a continuous function of type

A t S → S because (unionA1)−1({1}) =
⋃
a∈A π

−1
a ({1}) ∈ OAtS . From Theorem 17, for

any set A, unionA lifts to the lower Vietoris lifting T >>p .
2. Case R = 1,OS = {∅, {∅}, {∅, 1}}. For any finite set A, unionA1 is a continuous function

of type A t S → S because (unionA1)−1({∅}) =
⋂
a∈A π

−1
a ({∅})

∗
∈ OAtS . On the other

hand, the membership
∗
∈ does not hold when A is infinite. From Theorem 17, for any set

A, unionA lifts to the upper Vietoris lifting T >>p if and only if A is finite.

S. Katsumata and T. Sato 167

5 Pointwise Codensity Lifting

Fix a fibration p : E→ B, a monad T on B and a lifting parameter BT A S //Roo E . When
A is a large category, or B,E are not very complete, the right Kan extension RanSS may
not exist, hence the codensity lifting in Section 2 is not applicable to lift T . In this section
we introduce an alternative method (called pointwise codensity lifting) that relies on fibred
limits of p. The point of this method is to swap the order of computation. Instead of taking
the inverse image after computing RanSS, we first take the inverse image of the components
of RanSS, bringing everything inside a fibre, then compute the right Kan extension as a
fibred limit.

We assume that A is small (resp. large) and p has fibred small (resp. large) limits. The
pointwise codensity lifting lifts T as follows.

We first lift T to an object mapping Ṫ : |E| → |E|. Let X ∈ E. Consider the following
diagram:

X ↓ S

⇒γX

πX //

!X↓S

��

A R //

S

��

BT

K

��

⇒ε
BT

K

��
1

X
// E

p
// B

T
//

J

==

B

where (X ↓ S, πX , !X↓S , γX) is the comma category. The middle square commutes as R,S is
a lifting parameter. We let δX = KεRπX • TpγX be the composite natural transformation,
and take the inverse image of SπX along δX :

δ−1
X (SπX)

δX(SπX) // SπX [X ↓ S,E]

[X↓S,p]
��

TpX!X↓S
δX

// KRπX [X ↓ S,B]

We obtain a functor δ−1
X (SπX) : X ↓ S → E such that pδ−1

X (SπX) = TpX!X↓S . We then
define T>>X by T>>X = lim(δ−1

X (SπX)), where right hand side is the fibred limit. In the
following calculations we will use the vertical projection and the tupling operation of this
fibred limit, denoted by

PX : (T>>X)!X↓S → δ−1
X (SπX),

〈−〉 : [X ↓ S,E]f !X↓S
(Y !X↓S , δ−1

X (SπX))→ Ef (Y, T>>X) (f ∈ E(Y, TpX)).

We next lift η. Consider the following diagram:

X!X↓S γX

''η′
X &&

δ−1
X (SπX)

δX(SπX)
// SπX [X ↓ S,E]

[X↓S,p]

��

pX!X↓S pγX

''ηpX!X↓S &&
TpX!X↓S

δX

// KRπX [X ↓ S,B]

CALCO’15

168 Codensity Liftings of Monads

where the lower triangle commute by:

δX • ηpX!X↓S = KεRπX • ηpSπX • pγX = KεRπX • ηKRπX • pγX = pγX .

Therefore there exists the unique natural transformation η′X above ηpX!X↓S making the
upper triangle commute. We define η>>X = 〈η′X〉, which is above ηpX.

We finally lift the Kleisli lifting (−)# of T . Let g : X → T>>Y be a morphism in
E, and f = PY • g!Y ↓S : X!Y ↓S → δ−1

Y (SπY) be a morphism, which is above pg!Y ↓S and
satisfies g = 〈f〉. We obtain the composite natural transformation δY (SπY) • f : X!Y ↓S →
δ−1
Y (SπY)→ SπY . From the universal property of the comma category, we obtain the unique
functor Mf : Y ↓ S → X ↓ S such that πXMf = πY and γXMf = δY (SπY) • f . We next
consider the following diagram:

δ−1
X (SπX)Mf

f[''

δX(SπX)Mf

''
δ−1
Y (SπY)

δY (SπY)
// SπY [Y ↓ S,E]

[Y ↓S,p]

��

TpX!Y ↓S δXMf

((µpY !Y ↓S•Tpf ''
TpY !Y ↓S

δY

// KRπY [Y ↓ S,B]

where the lower triangle commutes. Therefore there exists the unique natural transformation
f [above µpY !Y ↓S • Tpf = µpY !Y ↓S • Tpg!Y ↓S = (pg)#!Y ↓S making the upper triangle
commute. Then we define g#>> = 〈f [• PXMf 〉, which is above (pg)#.

I Theorem 19. Let p : E→ B be a fibration with fibred small (resp. large) limits, T be a
monad on B, BT A S //Roo E be a lifting parameter for T and assume that A is small (resp.
large). The tuple (T>>, η>>, (−)#>>) constructed as above is a Kleisli triple on E, and the
corresponding monad is a lifting of T .

The pointwise codensity lifting coincides with the codensity lifting in Section 2, provided
that RanSS and p(RanSS) are both pointwise.

I Theorem 20. Let p : E→ B be a fibration, T be a monad on B and BT A S //Roo E be a
lifting parameter. Assume that p, S satisfies the codensity condition, and moreover RanSS
and p(RanSS) are both pointwise. Then ((KεR)−1(RanSS))X ' lim(δ−1

X (SπX)).

6 Characterising lift(T) as a Limit

We give a characterisation of the class of liftings of T as a limit of a large diagram. This is
shown for posetal fibrations p : E→ B with fibred small limits, which bijectively correspond
to functors of type Bop → Lat∧; here Lat∧ is the category of complete lattices and meet-
preserving functions. Notice that each fibre actually admits large limits computed by meets.

Fix such a fibration p : E → B and a monad T on B. Since p is posetal, p is faithful.
Thus we regard each homset E(X,Y) as a subset of B(pX, pY), and make p implicit.

I Definition 21. We define lift(T) to be the class of liftings of T along p. We introduce a
partial order � on them by Ṫ � Ṫ ′ ⇐⇒ ∀X ∈ E . ṪX 6 Ṫ ′X (in ET (pX)).

S. Katsumata and T. Sato 169

The partially ordered class lift(T) admits arbitrary large meets given by the pointwise meet.
We introduce a specific notation for the codensity liftings of T with a single lifting

parameter R,S. By [S]R we mean the codensity lifting T >> with R,S. Using Proposition 10,
it is given as: [S]RX =

∧
f∈E(X,S)(f#)−1(S).

I Definition 22. Let X ∈ E. An object S ∈ ET (pX) is closed with respect to X if 1)
ηpX ∈ E(X,S) and 2) for all f ∈ E(X,S), we have f# ∈ E(S, S).

I Proposition 23. Let X ∈ E. Then S ∈ ET (pX) is closed with respect to X if and only if
S = [S]pXX.

I Definition 24. We define Cls(T , X) to be the subposet ({S | S = [S]pXX},≤) of ET (pX)
consisting of closed objects with respect to X. We also define the following mappings:

Cls(T , X)
[−]pX

// lift(T)
qX

oo , [S]pX = T>>(pX,S), qX(Ṫ) = ṪX.

The mapping qX is monotone, while [−]pX is not, because its argument is used both in
positive and negative way. Still, we have the following adjoint-like relationship:

I Theorem 25. For each X ∈ E, we have qX ◦ [−]pX = idCls(T ,X) and idlift(T) � [−]pX ◦qX .

We define a function φX,Y : Cls(T , X)→ Cls(T , Y) by φX,Y (S) = qY ([S]pX) = [S]pXY.
This is not monotone. Theorem 25 asserts that φX,X = idCls(T ,X). Using the second
inequality of Theorem 25, for each X,Y ∈ E, we also have

[S]pX � [[S]pXY]pY = [φX,Y (S)]pY . (3)

From Theorem 25, Ṫ is a lower bound of the class {[qX(Ṫ)]pX | X ∈ E}. In fact, Ṫ is the
greatest lower bound:

I Theorem 26. For any lifting Ṫ of T , we have Ṫ =
∧
X∈E[qX(Ṫ)]pX .

I Definition 27. We say that X ∈ E is a split subobject of Y ∈ E, (denoted by X C Y) if
there is a split monomorphism m : X → Y .

I Lemma 28. Let X C Y in E. The following holds: 1) φY,X ◦ qY = qX . 2) For any Z ∈ E,
φY,X ◦ φZ,Y = φZ,X . 3) [qY (Ṫ)]pY � [qX(Ṫ)]pX .

Let us write Split(E) for the large preorder of E-objects ordered by C. We extend
Cls(T ,−) to a functor of type Split(E)op → Pre by Cls(T , X C Y) = φY,X : Cls(T , Y)→
Cls(T , X). This is indeed a functor thanks to Theorem 25 (for identity) and Lemma 28-2
(for composition). Moreover, qX : lift(T) → Cls(T , X) is a large cone over the diagram
Cls(T ,−) by Lemma 28-1. When Split(E) is directed, q is a limiting cone.

I Theorem 29. Suppose that Split(E) is directed. Then the cone qX : lift(T)→ Cls(T , X)
over the large diagram Cls(T ,−) is limiting.

7 Conclusion and Future Work

We introduced the codensity lifting of monads along the fibrations that preserve the right Kan
extensions giving codensity monads (this codensity condition was relaxed later in Section 5).
The codensity lifting allows us to lift various monads on non-closed base / total categories,
which was not possible by the previous >>-lifting [6].

CALCO’15

170 Codensity Liftings of Monads

Theorem 29 is an analogue of the characterisation of the collection of preorders on a
Set-monad as a limit of Cardop-chain in [8]. There we exploited this characterisation
to enumerate the collection of preorders on some monads. We are wondering whether
Theorem 29 is also useful to identify all the liftings of a given monad T .

Acknowledgement. The derivation of Kantorovich metric by the codensity lifting of Giry
monad in Section 3.4 was constructed after the first author learned Ogawa’s work on
deriving Kantorovich metric for finitely-supported subdistributions using observational
algebra [13]. The first author is grateful to him for the discussion about Kantorovich metric
and pseudometric spaces in CSCAT 2015. This paper was supported by JSPS KAKENHI
Grant Number 24700012.

References
1 P. Baldan, F. Bonchi, H. Kerstan, and B. König. Behavioral Metrics via Functor Lifting.

In Proc. FSTTCS 2014, volume 29 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 403–415, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

2 M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Categor-
ical Aspects of Topology and Analysis, volume 915 of LNM, pages 68–85. Springer, 1982.

3 C. Hermida. Fibrations, Logical Predicates and Indeterminants. PhD thesis, University of
Edinburgh, 1993.

4 B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
5 L. Kantorovich. On the transfer of masses (in russian). Doklady Akademii Nauk, 5(1),

October 1942. Translated in Management Science, 5(1):1–4, 1958.
6 S. Katsumata. A semantic formulation of >>-lifting and logical predicates for compu-

tational metalanguage. In Proc. CSL’05, volume 3634 of LNCS, pages 87–102. Springer,
2005.

7 S. Katsumata. Relating computational effects by >>-lifting. Inf. Comput., 222:228–246,
2013.

8 S. Katsumata and T. Sato. Preorders on monads and coalgebraic simulations. In Proc.
FOSSACS 2013, volume 7794 of LNCS, pages 145–160, 2013.

9 S. Lindley. Normalisation by Evaluation in the Compilation of Typed Functional Program-
ming Languages. PhD thesis, University of Edinburgh, 2005.

10 S. Lindley and I. Stark. Reducibility and >>-lifting for computation types. In Proc. TLCA
2005, volume 3461 of LNCS, pages 262–277, 2005.

11 S. MacLane. Categories for the Working Mathematician (Second Edition), volume 5 of
Graduate Texts in Mathematics. Springer, 1998.

12 J. Mitchell and A. Scedrov. Notes on sconing and relators. In Proc. CSL’92, volume 702
of LNCS, pages 352–378. Springer, 1993.

13 H. Ogawa. Quotient and Kantorovich metric via observational-algebra in Lawvere theory.
Oral Presentation in CSCAT 2015, Kagoshima University, Japan, Mar 14, 2015.

14 G. D. Plotkin and J. Power. Algebraic operations and generic effects. Applied Categorical
Structures, 11(1):69–94, 2003.

15 F. van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell. Domain theory, testing and
simulation for labelled markov processes. Theor. Comput. Sci., 333(1-2):171–197, 2005.

A First-order Logic for String Diagrams
Aleks Kissinger and David Quick

Department of Computer Science
University of Oxford, UK
{aleks.kissinger,david.quick}@cs.ox.ac.uk

Abstract
Equational reasoning with string diagrams provides an intuitive means of proving equations
between morphisms in a symmetric monoidal category. This can be extended to proofs of infin-
ite families of equations using a simple graphical syntax called !-box notation. While this does
greatly increase the proving power of string diagrams, previous attempts to go beyond equational
reasoning have been largely ad hoc, owing to the lack of a suitable logical framework for diagram-
matic proofs involving !-boxes. In this paper, we extend equational reasoning with !-boxes to
a fully-fledged first order logic with conjunction, implication, and universal quantification over
!-boxes. This logic, called !L, is then rich enough to properly formalise an induction principle
for !-boxes. We then build a standard model for !L and give an example proof of a theorem for
non-commutative bialgebras using !L, which is unobtainable by equational reasoning alone.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.4.1 Mathematical
Logic

Keywords and phrases string diagrams, compact closed monoidal categories, abstract tensor
systems, first-order logic

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.171

1 Introduction

Many processes come with natural notions of parallel and sequential composition. In
such cases, it is advantageous to switch from traditional term-based (i.e. one-dimensional)
syntax to the two-dimensional syntax of string diagrams. This diagrams, which consist of
boxes (or various other shapes) connected by wires, form a sound and complete language
for compositions of morphisms in a monoidal category [8]. Recently, the use of string
diagrams has gained much interest in a wide variety of areas, including categorical quantum
mechanics [4, 3, 5], computational linguistics [9] and control theory [2, 1].

What many of these applications have in common is they make extensive use of equational
reasoning for string diagrams. That is, proofs are constructed by starting with a fixed set of
diagram equations, e.g.

= == =
(ii) (iii) (iv)(i)

and using those to construct new equations by substitution of sub-diagrams. For example,
the following is a derivation making use of the four rules above:

= = ==
(i) (iii) (ii) (iv)

© Aleks Kissinger and David Quick;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 171–189

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.171
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

172 A First-order Logic for String Diagrams

However, to prove more powerful theorems, one often needs to pass from statements about
single diagrams to entire families of diagrams and diagram equations. One way to do this,
while staying within the realm of string diagrams is to use !-box notation (pronounced
‘bang-box notation’), introduced in [6] and formalised in [11]. In this notation, certain
sub-diagrams are wrapped in boxes, which mean ‘repeat this sub-diagram any number of
times’. For example, suppose we considered a family of ‘copy’ operations with 1 input and
n outputs. Then, if we had some other map with just a single output, we might ask that
connecting it to the n-fold ‘copy’ results in n copies. We can represent this family of rules
using !-box notation as follows:

...
=

...

AA

= (1)

Whereas the equation on the left is informal, the expression on the right defines a family of
equations without ambiguity. Formally, a !-box rule represents a set of string diagram rules
obtained by instantiating the !-box, which essentially amounts fixing the number of times to
copy each !-box. For example, the instances of the !-box rule above are precisely the ones we
meant to capture with the informal expression:

AA

= ==
{

= , =, , · · ·
}

where the ‘blank space’ in the first equation represents the monoidal unit. We can even use
this more expressive notation to make recursive definitions. For instance, we could recursively
define the n-fold copy operation as a tree of binary copy operations:

A

=
A

where = (2)

Using just equational reasoning, there is no way to get from the equations in (2) to the n-fold
copy equation (1). However, if we introduce an induction principle:

=
A

A

= A
A

= → = A
A

(Induct)

we can split into a base case (zero copies of the !-box) and a step case (n copies implies
n+ 1 copies). Taking the base case as given, we can prove the step case using the induction
hypothesis and the rules in (2):

= A
A A A

= i.h.=

Unfortunately, this doesn’t quite work. If we interpret → to mean ‘the rule on the left can be
used in the proof of the rule on the right’, the step case is vacuous. The rule on the right is
already an instance of the rule on the left. This is a bit like saying: (∀n.Pn)→ (∀n.P (n+ 1)),
which is of course true for any P .

A. Kissinger and D. Quick 173

The problem is, when we pass to !-box notation, where single diagram rules now represent
whole families of rules, our existing reasoning tools do not provide enough control over
instances of rules, and how those instances interact with each other. This problem was solved
for the specific case of induction in [15] using an operation called fixing, which essentially
freezes a !-box so it can’t be instantiated. However, this was introduced more as a stopgap,
until a proper logic could be developed, suitable for handling conjunction, implication, and
crucially universal quantification over !-boxes. In this paper, we develop that logic. With
this new !-logic in hand, we can correct our failed attempt at induction to:(

=
)
∧

∀A. A
A

= → = A
A

→
∀A. AA

=

In addition to giving a solid foundation for proofs constructed using !-boxes, a major

motivating factor for the development of a formal logic of !-boxes is its implementation in
the proof assistant Quantomatic [14]. Currently, Quantomatic supports pure equational
reasoning on string diagrams with !-boxes. The implementation of !-logic will allow it to
support diagrammatic versions of all the usual trappings of a fully-featured proof assistant,
such as local assumptions, goal-driven (i.e. backward) reasoning, and of course inductive
proofs.

There are two essentially equivalent ways to formalise string diagrams with !-boxes: one
combinatoric (as in the original formulation) and one syntactic, building on the tensor
notation for compact closed categories. Here we opt for the latter, as it more conveniently fits
into the presentation of the logic and provides a means of elegantly representing commutative
and non-commutative generators. Equational reasoning using !-tensor notation was presented
in [12] allowing some basic rules which were shown to be sound in the extended version [13].
In this paper we begin by reviewing compact closed categories, tensor notation, and !-tensors
in Section 2. Next, we define the concept of an instantiation, which will play a central role in
the logic in Section 3. We introduce the syntax of our logic, namely !-formulas, in Section 4
and give the rules of the logic in Section 5. We provide a semantics for !-formulas based on
sets of instantiations evaluated in a compact closed category C in Section 6. We conclude
by exhibiting a non-trivial proof involving non-commutative bialgebras, which can be done
entirely within !L and diagram rewriting.

2 Preliminaries

2.1 Compact closed categories and signatures
Throughout this paper, we will work with compact closed categories, i.e. symmetric monoidal
categories where every object X has a dual object X∗ and two morphisms ηX : I → X∗ ⊗X,
εX : X ⊗X∗ → I satisfying the yanking equations:

(εX ⊗ 1X) ◦ (1X ⊗ ηX) = 1X (1X∗ ⊗ εX) ◦ (ηX ⊗ 1X∗) = 1X∗

For simplicity, we will focus on strict compact closed categories, where associativity and
unitality of ⊗ hold on-the-nose. However, all of the concepts we will use in this paper go
through virtually unmodified by Mac Lane’s coherence theorem.

As string diagrams, we will depict X as a wire directed upwards, and X∗ as a wire
directed downwards. Thus ηX and εX can be depicted as half-turns:

ηX = εX =

CALCO’15

174 A First-order Logic for String Diagrams

which we typically call ‘cups’ and ‘caps’, respectively. Using this notation, the yanking
equations resemble their namesake:

= =

One consequence of the inclusion of cups and caps is that we can now introduce ‘feedback
loops’, allowing us to make sense of arbitrary string diagrams, not just directed acyclic ones.
A second consequence is that any map f : X → Y can be equivalently represented as a map
of the form f̃ : I → X∗ ⊗ Y just by ‘bending’ the input up to be an output:

ff

Thus, we will always assume that our generating morphisms can be written in the form
φ : I → X1 ⊗X2 ⊗ . . .⊗Xn for objects X1, X2, . . . , Xn. A morphism whose domain is the
monoidal unit is called a point.

I Definition 1. A compact closed signature Σ consists of a set O := {x, y, . . .} and a setM
of pairs (ψ,w), where w is a word in {x, x∗, y, y∗, . . .}. If ψ occurs precisely once inM, it is
said to have fixed arity, otherwise it has variable arity.

For simplicity, we will assume every generator in Σ is defined for every arity. This can
be avoided if we add extra conditions to Definition 6 to ensure we never get ‘undefined’
generators, but for our purposes, this won’t be necessary.

I Definition 2. For a compact closed category C, a valuation J−K : Σ → C is a choice of
object X ∈ ob (C) for every x ∈ O, and a choice of point JψK : I → X1 ⊗X∗2 ⊗ . . .⊗Xn for
every (ψ, x1x

∗
2 . . . xn) ∈M.

When there can be no confusion, we write pairs (ψ, x1x
∗
2 . . . xn) also as ψ : I → X1⊗X∗2 ⊗

. . . Xn. As usual , the free compact closed category Free(Σ) is characterised by the universal
property that any valuation lifts uniquely to functor J−K : Free(Σ) → C preserving all of
the compact closed structure [12]. In the next section, we will give a convenient syntactic
presentation of this category.

2.2 Tensor notation for compact closed categories
From now on, we will assume that Σ only has one object X, so morphisms will be maps from
I to monoidal products of X and X∗.

Suppose that we have two generators in Σ, φ : I → X ⊗ X ⊗ X∗ ⊗ X∗ ⊗ X∗ and
ψ : I → X ⊗X∗ ⊗X∗. Diagrammatically we will depict these generators as circular nodes
with the edges ordered clockwise around the node. To avoid ambiguity we place a tick on
the node between the last and first edge. We will name free edges so they can be referred to
when manipulating diagrams. Hence the generators in our example (with arbitrarily named
edges) are:

φ

a b c d e

 φ

a b

c
d

e ψ

f g h

 ψ

f

gh

(3)

A. Kissinger and D. Quick 175

Now, wires connecting these dots indicate the presence of caps:

ψ

f d e

φ

c

φ

c
d

e

ψ

f

(4)

To succinctly express these kinds of string diagrams syntactically, we can use tensor
notation. Here, we represent generators by writing their names, followed by a list of subscripts
indicating their (named) inputs and outputs:

φâb̂čďě := φ

a b

c
d

e

ψf̂ ǧȟ := ψ

f

gh

Inputs (i.e. outputs of type X∗) are represented as names with ‘checks’ ǎ, b̌, . . ., whereas
outputs are represented as names with ‘hats’ â, b̂, We combine generators into a single
diagram by concatenating them, and the process of connecting generators together by
caps—which we call contraction—is indicated by repeating names:

ψf̂ ǎb̌φâb̂čďě :=
φ

c
d

e

ψ

f

(5)

If a name occurs once, it is called a free edgename. If it is repeated, it is called a bound
edgename. As the name would suggest, bound edgenames have no meaning in their own
right, and can be changed (a.k.a. α-converted) at will. Hence the expressions ψf̂ ǎb̌φâb̂čďě and
φĝĥčďěψf̂ ǧȟ both represent (5). Also, since it is the names that indicate inputs/outputs of a
tensor expression, the order in which we write tensor symbols is irrelevant. So, for example,
ψf̂ ǎb̌φâb̂čďě = φâb̂čďěψf̂ ǎb̌.

This notation gives a simple presentation of string diagrams, and hence of morphisms in
the free compact closed category over Σ. The only mismatch between tensors and morphisms
in the free category is that tensors use names to identify inputs/outputs, whereas categories
use positions. Thus, to relate the two concepts, we assume the set of edgenames contains two
disjoint sets {a1, a2, . . .} and {b1, b2, . . .} that are totally ordered and (countably) infinite,
and introduce the notion of canonically named tensors.

I Definition 3. A tensor is canonically named if its free names are a1, . . . am, b1, . . . , bn for
some m,n ≥ 0.

We can then express a morphism in Free(Σ) as a tensor whose i-th input is named ai

and whose j-th output is named bj . It was shown in [10] (for the traced case) and [13] (for
the compact closed case) that Free(Σ) is equivalent to the category whose morphisms are
canonically-named tensors, with ◦ and ⊗ defined in the obvious way using renaming and
contraction. This gives us an important consequence:

I Theorem 4. For any compact closed signature Σ, a valuation J−K : Σ→ C lifts uniquely
to an operation which sends canonically named tensors G over Σ to morphisms JGK in C.

CALCO’15

176 A First-order Logic for String Diagrams

2.3 !-tensors

As mentioned in the intro, a string diagram with !-boxes represents a family of string
diagrams, where the sub-diagram in the !-box has been copied an arbitrary number of
times. To formalise this, we extend the tensor syntax to include !-boxes. These extended
expressions are called !-tensors. Fix disjoint, infinite sets E and B of edgenames and boxnames,
respectively.

I Definition 5. The set of edgeterms Te is defined inductively as follows:

ε ∈ Te (empty edgeterm)
ǎ, â ∈ Te a ∈ E
〈e]A, [e〉A ∈ Te e ∈ Te, A ∈ B
ef ∈ Te e, f ∈ Te

Letting 1 represent the empty !-tensor and 1âb̌ represent an identity edge with input
named b and output named a, we can define !-tensor expressions as follows:

I Definition 6. The set of all !-tensor expressions TΣ for a signature Σ is defined inductively
as:

1, 1âb̌ ∈ TΣ a, b ∈ E
φe ∈ TΣ e ∈ Te, φ ∈ Σ
[G]A ∈ TΣ G ∈ TΣ, A ∈ B
GH ∈ TΣ G,H ∈ TΣ

Subject to the conditions that (F1) ǎ and â must occur at most once for each edgename a and
(F2) [. . .]A must occur at most once for each boxname A, as well as consistency conditons
(C1)–(C3) for !-boxes given in [13].

We omit the formal statement of (C1)-(C3) here, as they are easiest to understand in
the graphical presentation of !-tensors. Sub-expressions of the form [. . .]A are represented by
wrapping a box around part of the string diagram:

φâ[ψb̌]B :=
ψ

φ

B
a

b

Edges connecting into or out of a !-box must be annotated with the !-box name and a direction,
indicating whether the new edgenames should be produced to the left (anticlockwise) or to
the right (clockwise) when a !-box is expanded. We indicate this direction by drawing an arc
over the annotated edges:

φ〈â]B [ψǎ]B :=
B

ψ

φ

B

vs. φ[â〉B [ψǎ]B :=
B

ψ

φ

B

We drop the label on the arc when it can be inferred from context. The remaining consistency
conditions say that any edge connecting into or out of a !-box must have an annotation, and

A. Kissinger and D. Quick 177

those annotations should respect nesting of !-boxes, as in e.g.:

φâ〈〈b̌]B]A [[φb̂č]B]A :=

B
A

φ

φ
B

A

a

c

For a fully rigorous account of these conditions, see [13]. However, the above description
should suffice for the purposes of this paper, so we’ll proceed to how !-tensors are instantiated.
The primary instantiation operations are expand, which produces a new copy of the contents
of a !-box and kill, which removes the !-box from the diagram:

← KillB−

eB

− ExpB→

eB e′

These two operations suffice to produce all concrete instances, that is all instances not
involving any !-boxes, of a !-tensor. If we wish to get all instances of a !-tensor, including
those with !-boxes, we factorise expand into two additional operations: copy, which makes a
copy of the !-box and its contents, and drop, which removes a !-box and leaves its contents
behind:

e

← DropB−

eB

− CopyB→

eB e′B′

We can define all four of these operations recursively on !-tensor expressions. We first
give the recursive cases where all four operations behave the same:

OpB(GH) := OpB(G) OpB(H) OpB(ef) := OpB(e) OpB(f)
OpB([G]A) := [OpB(G)]A OpB([e〉A) := [OpB(e)〉A

OpB(φe) := φOpB(e) OpB(〈e]A) := 〈OpB(e)]A

OpB(x) := x

where A 6= B and x ∈ {1, 1âb̌, ǎ, â, ε}. The four operations are distinguished on the remaining
three cases:

ExpB([G]B) := [G]B fr(G) KillB([G]B) := 1
ExpB([e〉B) := [e〉B fr(e) KillB([e〉B) := ε

ExpB(〈e]B) := fr(e)〈e]B KillB(〈e]B) := ε

CopyB([G]B) := [G]B [fr(G)]fr(B) DropB([G]B) := G

CopyB([e〉B) := [e〉B [fr(e)〉fr(B) DropB([e〉B) := e

CopyB(〈e]B) := 〈fr(e)]fr(B)〈e]B DropB(〈e]B) := e

CALCO’15

178 A First-order Logic for String Diagrams

Where fr is a function assigning fresh names to all edges and !-boxes in an expression. We
occasionally write ExpB,fr and CopyB,fr to explicitly reference the freshness function of a
!-box operation. Note that if B is not contained in G, each of these operations will leave G
unchanged.

3 Compatibility and instantiations of !-boxes

In Section 4, we will define the formulas of !-logic. It only makes sense to combine !-tensors
into single formulas if their !-boxes are compatible in some sense, so we first provide some
basic notions relating to compatibility.

I Definition 7. If F is a set and ≺ is a binary relation on F then the pair (F,≺) is called a
forest if it forms a cycle-free directed graph where each node A has at most one node B s.t
A ≺ B. A forest can also be seen as a graph made up of disconnected directed trees. We
write < for the transitive closure and ≤ for the reflexive and transitive closure of ≺.

Let ↓X and ↑X be the downward and upward closure of X ⊆ F , respectively. For a
single element A ∈ F , we write ↓A for ↓{A}.

I Definition 8. If a subset X ⊆ F is both upward and downward closed (i.e. X =↓X =↑X)
then we say X is a component of (F,≺). If it contains no proper sub-components, it is called
a connected component.

We write F> ⊆ F for the set of maximal elements with respect to ≤. Note that for
A ∈ F> the set ↓ A is always a connected component, and for F finite, all connected
components are of this form.

I Definition 9. Two forests F, F ′ are said to be compatible, written F4F ′, if the intersection
F ∩ F ′ is a (possibly empty) component of both F and F ′.

Equivalently, F, F ′ are compatible if and only if there exist forests X,Y, Z such that
F = X] Y and G = Y] Z. As a consequence, the union of compatible forests is always
well-defined (F ∪ F ′ := X] Y] Z), and itself a forest. For any !-tensor, we can always
associate a forest of !-boxes:

I Definition 10. For a !-tensor G, let (Boxes(G),≺G) be the forest of !-boxes in G, where
A ≺G B iff A is a direct descendent of B. That is, A is nested inside of B with no intervening
!-boxes.

An important concept for !-tensors is that of instantiations. These capture precisely the
sequence of operations by which a !-tensor is transformed into some instance of itself. For
a !-tensor G, an instantiation i of G is a sequence of zero or more Exp and Kill operations
such that i(G) doesn’t contain any !-boxes.

In fact, we can divorce the notion of instantiation from a particular !-tensor if we notice
that instantiations make sense for any forest. For a forest F , define the ExpB and KillB
operations as identity maps if B 6∈ F and else as follows:

ExpB(F) := F ∪ fr(↓B \ B) KillB(F) := F \ ↓B

where the top elements of fr(↓B \ B) are added as descendants of the parent of B (if it has
one). So, KillB removes B and all of its children, whereas ExpB behaves just like expanding

A. Kissinger and D. Quick 179

a !-box, in that it adds a fresh copy of all of the children as siblings:

ExpB

A

B

C D

E

 =

A

B

C D

C ′ D′ E KillB

A

B

C D

E

 =

A

E

We can now define instantiations in a way that only refers to forests:

I Definition 11. For a forest F , an instantiation of F is a composition i of zero or more
operations ExpB , KillB such that B is in the domain of each operation and i(F) = {}. Let
Inst(F) be the set of all instantiations of F .

In particular, if F is empty, Inst(F) only contains the trivial instantiation 1. Note that for
any instantiation i ∈ Inst(F) where F4Boxes(G), i(G) is a well defined !-tensor. This added
flexibility will be important to the interpretation of !-logic formulas, where instantiations
may act on many !-tensors simultaneously.

4 !-logic formulas

In this section, we will introduce the syntax of !-logic. The atomic !-logic formulas are
well-formed equations between !-tensors and generic formulas are built up from the atomic
formulas using conjunction, implication, and universal quantification. There does not appear
to be any obstacle to adding negation (and hence existential quantification) to !-logic formulae
but no application has currently been found by the authors.

Well-formed !-tensor equations are pairs of !-tensors with the property that any simultan-
eous instantiation of the LHS and RHS produces a valid equation between tensors. That is,
the LHS and the RHS of any instance of the equation should have identical free edgenames
for their inputs and outputs.

I Definition 12. A !-tensor equation G = H is well-formed if G and H have identical inputs
and outputs, Boxes(G)4Boxes(H), and an input ǎ (resp. output â) occurs in a !-box A in
G iff it occurs in the same !-box in H.

Note that by ‘ǎ occurs in A’ we mean ǎ occurs as a sub-expression of [. . .]A, 〈. . .]A or
[. . .〉A. Also note that we only require the !-boxes on the LHS and RHS be compatible,
rather than identical. This is unproblematic, since as mentioned at the end of Section 2.3,
operations on !-boxes that are missing from the LHS or the RHS will simply be ignored.

The other formulas are built inductively, while maintaining the property that the sub-
formulas have compatible !-boxes. To accomplish this, it is most convenient to define the set
of !-formulas while simultaneously defining the operation Boxes(X) for any !-formula X.

I Definition 13. The set of !-formulas, FΣ, for a signature Σ is defined inductively as:

G = H ∈ FΣ G,H ∈ TΣ, G = H well-formed
X ∧ Y ∈ FΣ X,Y ∈ FΣ, Boxes(X)4Boxes(Y)
X → Y ∈ FΣ X,Y ∈ FΣ, Boxes(X)4Boxes(Y)
∀A. X ∈ FΣ X ∈ FΣ, A ∈ Boxes(X)>

where Boxes(−) is defined recursively on !-formulas by:

CALCO’15

180 A First-order Logic for String Diagrams

Boxes(G = H) := Boxes(G) ∪ Boxes(H)
Boxes(X ∧ Y) := Boxes(X) ∪ Boxes(Y)
Boxes(X → Y) := Boxes(X) ∪ Boxes(Y)
Boxes(∀A. X) := Boxes(X)\ ↓A

Just like one can read formulas in predicate logic as mappings from values of the free
variables to truth values, one should read !-formulas as mappings from instantiations of
!-boxes to truth values. Thus, universal quantification over !-boxes states that a particular
formula holds for all instantiations involving those !-boxes. We will make this interpretation
precise in Section 6.

One important thing to note is that universal quantification over a top-level !-box A
should be interpreted as quantifying over the entire connected component ↓A. In the absence
of nesting, this is the same as quantifying over individual !-boxes. However, in the presence
of nesting, this restriction to only quantifying over entire components seems to be necessary
for giving a consistent interpretation to !-logic formulas. This boils down to the fact that
!-box operations on separate components of Boxes(X) commute, whereas arbitrary !-box
operations do not.
I Remark. Note that the set FΣ in Definition 13 is defined inductively by relying on a
simultaneous recursive definition of Boxes. This is non-circular, since the inductive steps
always rely on calls to Boxes on strictly smaller formulas. Unsurprisingly, this style of
definition is called induction-recursion [7].

In order to talk about instances of !-formulas, we must extend !-box operations from
!-tensors to arbitrary formulas.

I Definition 14. For OpB one of the operations KillB ,ExpB,fr,CopyB,fr,DropB :
OpB(G = H) := OpB(G) = OpB(H)
OpB(X ∧ Y) := OpB(X) ∧OpB(Y)
OpB(X → Y) := OpB(X)→ OpB(Y)

OpB(∀A. X) :=
{
∀A. X B ∈↓A
∀A. OpB(X) B 6∈↓A

I Theorem 15. !-box operations preserve the property of being a formula.

Proof. We prove this using structural induction on !-formulas.
If G = H is a formula then G and H have the same free edges in the same !-boxes. Hence
OpB(G) and OpB(H) have the same free edges (a or fr(a) for a free in G = H) and these
are in the same !-boxes.
For the next two cases we have Boxes(X) and Boxes(Y) compatible. OpB takes the
unique connected component, S, containing B and replaces it with OpB(S). This can
only have gained fresh !-box names so Boxes(OpB(X)) and Boxes(OpB(Y)) are still
compatible.
If B ∈↓A then the final case is trivial. If B 6∈↓A then the component ↓A is not affected
by OpB so is still a component of OpB(X). J

5 The rules of !L

We now define a simple logic over !-formulas, which we call !L. Our presentation is given
in terms of sequents of the form: Γ ` Y , where Γ := X1, X2, . . . , Xn is a finite sequence of

A. Kissinger and D. Quick 181

!-formulas. We will always assume in writing a sequent that all of the formulas involved have
compatible !-boxes. We take the core logical rules to be those from positive intuitionistic
logic with cut:

(Ident)
X ` X

Γ ` Y (Weaken)
Γ, X ` Y

Γ, X, Y,∆ ` Z
(Perm)

Γ, Y,X,∆ ` Z
Γ, X,X ` Y

(Contr)
Γ, X ` Y

Γ ` X ∆ ` Y (∧I)
Γ,∆ ` X ∧ Y

Γ ` X ∧ Y (∧E1)Γ ` X
Γ ` X ∧ Y (∧E2)Γ ` Y

Γ ` X → Y (→ E)
Γ, X ` Y

Γ, X ` Y
(→ I)

Γ ` X → Y

Γ ` X ∆, X ` Y
(Cut)

Γ,∆ ` Y
The rules for introducing and eliminating ∀ are also analogous to the usual rules. Given any
rn : B → B a bijective renaming function for !-boxes that is identity except on ↓A, and let
rn(X) be the application of that renaming to a formula. Then:

Γ ` rn(X)
(∀I)

Γ ` ∀A. X
Γ ` ∀A. X (∀E)
Γ ` rn(X)

where in the case of ∀I we also require that rn(↓A) is disjoint from Boxes(Γ).
To these core logical rules, we add rules capturing the fact that = is an equivalence

relation and a congruence:

(Refl)
Γ ` G = G

Γ ` G = H (Symm)
Γ ` H = G

Γ ` G = H Γ ` H = K (Trans)
Γ ` G = K

Γ ` G = H (Box)
Γ ` [G]A = [H]A

Γ ` G = H (Prod)
Γ ` FG = FH

Γ ` G = G′ (Ins)
Γ ` InsA3K(G) = InsA3K(G′)

where InsA3K inserts the expression K into the !-box A ∈ Boxes(G). The last three rules
allow an equation to be applied to a sub-expression. The first two rules allow us to build the
context on to the outside of an equation, whereas the third one allows us to add some extra
context within any !-box in an equation. These are precisely the equational reasoning rules
introduced for !-tensors in [13]. The only difference is we call the ‘weakening’ operation from
that paper ‘insertion’ to avoid clash with the logical notion.

The main utility of universal quantification is to control the application of !-box operations.
In order to start instantiating a !-box (or one of its children), it must be under a universal
quantifier:

Γ ` ∀A. X (Kill)
Γ ` KillB(X)

Γ ` ∀A. X (Exp)
Γ ` ExpB(X)

Γ ` ∀A. X (Drop)
Γ ` DropB(X)

Γ ` ∀A. X (Copy)
Γ ` CopyB(X)

where B ≤ A ∈ Boxes(X). These rules, along with (∀E) play an analogous role to the
substitution of a universally-quantified variable for an arbitrary term.

The final rule of the logic is !-box induction, which allows us to introduce new !-boxes.
For a top-level !-box A, we have:

Γ ` KillA(X) ∆, X ` ∀B1. . . . ∀Bn. ExpA(X)
(Induct)

Γ,∆ ` X
where A does not occur free in Γ or ∆ and B1 to Bn are the fresh names of children of A
coming from its expansion.

CALCO’15

182 A First-order Logic for String Diagrams

6 Semantics

In this section, we give a semantic interpretation for !-logic formulas using a compact closed
category C. For any compact closed category C, a choice of valuation J−K : Σ → C of the
generators in Σ will fix a unique morphism JGK for any concrete (i.e. !-box-free) tensor G.
Thus C comes with an interpretation for equality between concrete tensors. From this, we
can build up everything else. For concrete tensors G,H, there is an obvious way to assign a
truth value to the formula G = H:

JG = HK :=
{
T if JGK = JHK
F otherwise

(6)

As we first mentioned in Section 4, !-logic formulas should be thought of as mappings from
instantiations to truth values. Equivalently, they can be thought of as sets of instantiations:
namely the set of all instantiations for which the formula holds. Applying this interpretation
to atomic formulas yields the following definition:

I Definition 16. For an atomic !-formula G = H and a valuation J−K : Σ→ C, we let:

JG = HK =
{
i ∈ Inst(Boxes(G = H))

∣∣∣∣ Ji(G)K = Ji(H)K
}

(7)

Concrete tensors are equal if and only if they are equal for the trivial instantiation 1. We
can interpret truth values as a special case of sets of instantiations: T = {1} and F = {}.
Then, in the case of concrete tensors, (7) reduces to (6).

For a forest F and any i ∈ Inst(F), and a component S ⊆ F , we write i|S for the
restriction of i to only operations involving elements of S (or fresh copies thereof). For a
!-formula X, we write i|X for i|Boxes(X). Using restrictions of instantiations, we can lift the
above definition from atoms to all formulas.

I Definition 17. The interpretation J−K of a !-logic formula is defined recursively as:

JX ∧ Y K :=
{
i ∈ Inst(Boxes(X ∧ Y))

∣∣∣∣ i|X ∈ JXK ∧ i|Y ∈ JY K
}

JX → Y K :=
{
i ∈ Inst(Boxes(X → Y))

∣∣∣∣ i|X ∈ JXK→ i|Y ∈ JY K
}

J∀A. XK :=
{
i ∈ Inst(Boxes(∀A. X))

∣∣∣∣ ∀j ∈ Inst(↓A) . i ◦ j ∈ JXK
}

This style of interpretation is very much analogous to that of predicate logic. Whereas
one can interpret a predicate with free variables as the set of all values of those variables for
which the predicate is true, a !-logic formula is interpreted as the set of all instantiations at
which the resulting concrete formula holds.

By contrast, we always interpret sequents as truth values. To do so, we push all of the
assumptions to the right and universally quantify over any free !-boxes:

JX1, . . . , Xn ` Y K := J∀A1 . . . ∀Am.((X1 ∧ . . . ∧Xn)→ Y)K

where ↓A1, . . . , ↓Am are the free !-boxes in X1, . . . , Xn, Y .

I Theorem 18 (Soundness). If Γ ` X is derivable in !L, then JΓ ` XK is true for any
compact closed category C.

A. Kissinger and D. Quick 183

Proof. See Appendix A. J

The question of completeness for !L is still open. For the case of atomic !-formulas, this
seems to follow straightforwardly from the fact that string diagrams (or equivalently, tensors)
are sound and complete for compact closed categories. So, concrete !-tensor equations are
true in all models if and only if they are identical tensors. Thus, for the case of general
!-tensor equations, the problem reduces to deciding whether two !-tensors with corresponding
!-boxes always have identical instances. However, once implication enters the game, we get
many non-trivial formulas that hold in all models. For example, an equation with two !-boxes
without edges between them always implies another equation obtained by merging those
!-boxes:

A B A B

= → =
C C

In this case, it is always possible to use !-box induction to prove such an implication (and
many others). However, whether the rules in Section 5 suffice to get everything is a topic of
continuing research.

7 Inductive proofs for non-commutative bialgebras

In this section, we will give a flavour for formal proofs in !L and show how they can be
used to derive highly non-trivial !-box equations using a combination of !-box induction and
rewriting. To avoid massive proof trees, we will abbreviate stacks of equational reasoning
rules as sequences of rewrite steps (marked with (*)’s), suppress ∀-intro/elim, and write
(Assm) to abbreviate using an assumption.

Recall that a bialgebra consists of a monoid, a comonoid, and four extra equations
governing their interaction. We will extend the signature of (co)monoids to also allow for
n-ary operations, standing for left-associated trees of multiplications and comultiplications:

...
...

:= ...
...

:=

We then assume the usual (co)monoid laws, along with the definition of a higher-arity tree:

ΓM := = , = , = , ∀A.
A

=
A

ΓC := = , = , = , ∀A.
A

=
A

For bialgebras, we start with these equations and add four more:

ΓBA := ΓM , ΓC , = , = , = , =

As can be seen from the second bialgebra equation, units are copied by comultiplications.
We saw an n-ary generalisation of this in equation (1), which we can now prove formally
(and succinctly!):

CALCO’15

184 A First-order Logic for String Diagrams

I Theorem 19.

A
A

=

(19)

ΓBA ` ∀A.

Proof.

= ` =

(Induct)

(Assm)

(*)

ΓBA,ΓBA `

=ΓBA `

=

(*) = = i.h.=

J

The fact that counits are copied by trees of multiplications could be proved similarly, but
we can generalise even more. We now prove that a tree of multiplications, followed by a
tree of comultiplications is equal to a complete bipartite graph of comultiplications before
multiplications. This rule generalises (and hence can replace) all 4 of the existing bialgebra
rules. First we need a little lemma:

I Lemma 20.

A

=

(20)

ΓBA `
A

∀A.

Proof.

(Induct)

(Assm)

(**)

ΓBA,ΓBA `

ΓBA ` =

=
== `

(**) ==i.h.== =

J

. . . from which we can prove the main theorem:

A. Kissinger and D. Quick 185

I Theorem 21.

∀A.∀B.

B

A

A

ΓBA `

B

=

Proof.

(Induct)

(***)

ΓBA, `

ΓBA `

=

=

=
(19)

ΓBA ` =

(***) = = =
i.h.

=
(20)

J

References
1 John C. Baez and Jason Erbele. Categories in control. Technical report, arXiv:1405.6881,

2014.
2 F. Bonchi, P. Sobocinski, and F. Zanasi. A categorical semantics of signal flow graphs. In

CONCUR’14: Concurrency Theory., volume 8704 of Lecture Notes in Computer Science,
pages 435–450. Springer, 2014.

3 B. Coecke. Quantum picturalism. Contemporary Physics, 51:59–83, 2009. arXiv:0908.1787.
4 B. Coecke and R. Duncan. Interacting quantum observables. In Proceedings of the 37th

International Colloquium on Automata, Languages and Programming (ICALP), Lecture
Notes in Computer Science, 2008.

5 B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong complementarity and
non-locality in categorical quantum mechanics. In Proceedings of the 27th Annual
IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society, 2012.
arXiv:1203.4988.

6 Lucas Dixon and Ross Duncan. Extending Graphical Representations for Compact Closed
Categories with Applications to Symbolic Quantum Computation. AISC/MKM/Cal-
culemus, pages 77–92, 2008.

7 Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In
Jean-Yves Girard, editor, Typed Lambda Calculi and Applications, volume 1581 of Lecture
Notes in Computer Science, pages 129–146. Springer Berlin Heidelberg, 1999.

8 Andre Joyal and Ross Street. The geometry of tensor calculus I. Advances in Mathematics,
88:55–113, 1991.

9 D. Kartsaklis. Compositional Distributional Semantics with Compact Closed Categories
and Frobenius Algebras. PhD thesis, University of Oxford, 2014.

CALCO’15

186 A First-order Logic for String Diagrams

10 Aleks Kissinger. Abstract tensor systems as monoidal categories. In C Casadio, B Coecke,
M Moortgat, and P Scott, editors, Categories and Types in Logic, Language, and Physics:
Festschrift on the occasion of Jim Lambek’s 90th birthday, volume 8222 of Lecture Notes in
Computer Science. Springer, 2014. arXiv:1308.3586 [math.CT].

11 Aleks Kissinger, Alex Merry, and Matvey Soloviev. Pattern graph rewrite systems. In
Proceedings of DCM 2012, volume 143 of EPTCS, 2012. arXiv:1204.6695 [math.CT].

12 Aleks Kissinger and David Quick. Tensors, !-graphs, and non-commutative quantum struc-
tures. In Proceedings of the 11th workshop on Quantum Physics and Logic, QPL 2014,
Kyoto, Japan, 4-6th June 2014., pages 56–67, 2014. arXiv:1412.8552 [cs.LO].

13 Aleks Kissinger and David Quick. Tensors, !-graphs, and non-commutative quantum struc-
tures (extended version), 2015. arXiv:1503.01348.

14 Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for diagrammatic
reasoning, 2015. arXiv:1503.01034.

15 Alexander Merry. Reasoning with !-Graphs. PhD thesis, University of Oxford, 2014.

A. Kissinger and D. Quick 187

A Proof of soundness for !L

In this section, we prove Theorem 18, i.e. the soundness of J−K with respect to !L. To do so,
it suffices to show that J−K respects each of the rules of the logic.

For i ∈ Inst(F) and a formula X such that Boxes(X) is a component of F , we will write
i � X as shorthand for i|X ∈ JXK. Using this notation, we can rewrite the interpretation as
follows:

i � G = H ⇐⇒ Ji(G)K = Ji(H)K i ∈ Inst(Boxes(G = H))
i � X ∧ Y ⇐⇒ i � X ∧ i � Y i ∈ Inst(Boxes(X ∧ Y))
i � X → Y ⇐⇒ i � X → i � Y i ∈ Inst(Boxes(X → Y))
i � ∀A.X ⇐⇒ ∀j ∈ Inst(↓A). i ◦ j � X i ∈ Inst(Boxes(∀A.X))

Universal quantification over entire components of Boxes(X) is well-behaved for the
following reason:

I Lemma 22. For a forest F , let A,B be elements in distinct connected components of
F , and let Boxes(X)4F . Then, OpA(Op′B(X)) = Op′B(OpA(X)) for any !-box operations
OpA,Op′B.

Proof. Since !-box operations recurse down to equations between !-tensors, it suffices to
show that OpA(Op′B(G = H)) = Op′B(OpA(G = H)). Since neither A nor B is a child of
the other, this is easy to check. The only complication is dealing with the freshness functions
frA, frB (possibly) associated with the two operations. These necessarily operate on disjoint
sets of boxnames, so the only overlap might be on edgenames. However, since there is an
infinite supply of fresh edgenames, it is always possible to choose new freshness functions such
that frA ◦ frB = fr′B ◦ fr′A. Then, it is straightforward to check that OpA,frA

(Op′B,frB
(G =

H)) = Op′B,fr′
B

(OpA,fr′
A

(G = H)). J

A related fact about re-ordering operations in an instantiation is that they can always be
put in normal form:

I Lemma 23. Given an instantiation i ∈ Inst(X) and a top-level !-box A ∈ X>, i can be
rewritten as i′ ◦KillA ◦Expn

A where i′ ∈ Inst(KillA ◦Expn
A(X)).

Proof. We need to check that operations on A can always be commuted to the right, past
other operations. If B is not nested in A, this is true by Lemma 22. Otherwise, B ≤ A and:

If OpA = KillA then killing A will erase any part of the !-formula resulting from OpB , i.e.
KillA ◦OpB = KillA.
If OpA = ExpA,fr then ExpA,fr ◦OpB = Opfr(B) ◦OpB ◦ExpA,fr. In the case that
OpB = ExpB, freshness functions on the RHS need to be chosen to produce identical
names to the LHS. J

I Notation 24. We will write KEn
A as a shorthand for KillA ◦Expn

A.

I Lemma 25. For any !-formula X and for B1, . . . Bn the free, top-level !-boxes in X:

∀i ∈ Inst(Boxes(X)). i � X ⇐⇒ J∀B1 . . . ∀Bn.XK = {1} = T

Proof. First, assume the LHS, which is equivalent to JXK = Inst(BoxesX). For any !-
formula Y , if Bk ∈ Boxes(Y)> and JY K = Inst(Boxes(Y)), then JY K contains all possible
instantiations of Boxes(Y). In particular, it contains i ◦ j for any i ∈ Inst(Boxes(∀Bk.Y))

CALCO’15

188 A First-order Logic for String Diagrams

and j ∈ Inst(↓Bk). Thus, J∀Bk.Y K = Inst(Boxes(∀Bk.Y)). Iterating this implication, we
have J∀B1 . . . ∀Bn.XK = Inst(Boxes(∀B1 . . . ∀Bn.X)) = {1} = T .

Conversely, assume J∀B1 . . . ∀Bn.XK = T . Then every instantiation of the form j =
i1 ◦ i2 ◦ . . . ◦ in, where the operations in ik only involve !-boxes in ↓Bk is in JXK. But then,
by Lemma 22, we can freely commute !-box operations in distinct components of Boxes(X).
So, in fact, every instantiation i ∈ Inst(Boxes(X)) is equivalent to an instantiation of the
form of j. Then, since j ∈ JXK, so is i. J

I Theorem 26. For any valuation J−K : Σ → C, the rules (Ident), (Weaken), (Perm),
(Contr), (∧I), (∧E1), (∧E2), (→ E), (→ I), (Cut), (∀I), (∀E), (Refl), (Symm), (Tran),
(Box), (Prod), (Ins), (Kill), (Exp), (Drop), (Copy), and (Induct) are sound with respect to
J−K.

Proof. The basic structural rules just reduce to the same rules concerning instantiations. Let
K be the conjunction of Γ and K ′ the conjunction of ∆ throughout. By Lemma 25, to check
that JΓ ` XK is true, it suffices to check that, for all i ∈ Inst(Boxes(K → X)), i � K → X.

(Ident) Fix i ∈ Inst(Boxes(X)). We need to show i ∈ X → X, but this is equivalent to
i � X → i � X, which is trivially true.
(Weaken) Fix i ∈ Inst(Boxes((K∧X)→ Y)) and assume i � K → Y . Then, if i � K∧X,
then i � K. So, by assumption, i � Y . Thus i ` (K ∧X)→ Y .
(Perm) and (Contr) follow from associativity, commutativity and idempotence of ∧.
(∧I) Fix i ∈ Inst(Boxes((K ∧K ′)→ (X ∧ Y))) and assume i � K → X and i � K ′ → Y .
If i � K ∧K ′, we have i � K and hence i � X. We also have i � K ′ and hence i � Y .
Thus i � X ∧ Y .
(∧E1) Fix i ∈ Inst(Boxes(K → X)). Then, there exists i′ ∈ Inst(Boxes(K → (X ∧ Y)))
that restricts to i. Assume i′ � K → (X ∧Y). If i � K then i′ � K and hence i′ � X ∧Y ,
which implies that i′ � X. So, i � X.
(∧E2) is similar to (∧E1).
(→ E) Fix i ∈ Inst(Boxes((K ∧ X) → Y)) and assume i � K → (X → Y). Then, if
i � K ∧X then i � K. So, i � X → Y . But, since it is also the case that i � X, i � Y .
Thus i � (K ∧X)→ Y .
(→ I) is the same as (→ E) in reverse.
(Cut) Fix i ∈ Inst(Boxes(K ∧ K ′ → Y)). Then, there exists i′ ∈ Inst(Boxes(K →
X)∪Boxes((K ′∧X)→ Y)) that restricts to i. Assume i′ � K → X and i′ � (K ′∧X)→ Y .
If i � K ∧ K ′, then i′ � K ∧ K ′ so i′ � K and i′ � K ′. The former also implies that
i′ � X. So, i′ � K ′ ∧X and hence i′ � Y . Finally, this implies i � Y .

(∀I) Fix i ∈ Inst(Boxes(K → ∀A.X)). We need to show that for any j ∈ Inst(↓ A),
i ◦ j � K → X. Assume without loss of generality that any !-box names on operations in i
are disjoint from rn(↓A). This is possible because rn(↓A) must already be disjoint from
Boxes(Γ) (by side-condition) and it must be disjoint from Boxes(∀A.X) = Boxes(X)\ ↓A by
injectivity of rn. The only other !-box names in i are those introduced during instantiation,
which can be freely chosen. Let rn(j) be the instantiation of rn(↓A) obtained by renaming
operations according to rn. Then, by assumption of the rule, we have i◦rn(j) � K → rn(X).
Since rn is identity except on ↓A, we have rn(i ◦ j) � rn(K → X) and thus i ◦ j � K → X.

(∀E) Fix i ∈ Inst(Boxes(K → rn(X))). Suppose i � K, then, by assumption i � ∀A.X.
Let i′ = i|∀A.X , then i′ � ∀A.X, which implies that for all j ∈ Inst(↓A), we have i′ ◦ j � X.
Renaming both sides yields rn(i′ ◦ j) � rn(X), and since rn is identity except on ↓ A,

A. Kissinger and D. Quick 189

i′ ◦rn(j) � rn(X). Now, since we are free to choose j, we choose it such that (i′ ◦rn(j))|rn(X)
is equivalent to i|rn(X). Then i � rn(X).

The rules (Refl), (Symm), and (Trans) reduce to the properties of equality in C. The
congruence rules (Box), (Prod), and (Ins) were proven sound in [13], where the only difference
here is the additional (unused) context Γ.

(Kill) Fix i ∈ Inst(Boxes(K → KillB(X))). Then if i � K, by assumption i � ∀A.X. Since
B ≤ A does not occur free in ∀A.X, i ◦KillB � ∀A.X. For i′ = i|∀A.X , choose j ∈ Inst(↓A)
such that (i′ ◦ j)|X is equivalent to (i ◦ KillB)|X . Then, i′ ◦ j � X, so i ◦ KillB � X, and
i � KillB(X). (Exp) is similar.

(Copy) and (Drop) are also similar. However, when we choose j ∈ Inst(↓A) such that
(i′ ◦ j)|X is equivalent to (i ◦ CopyB)|X or (i ◦ CopyB)|X , we make use of the fact that
instantiations involving Copy /Drop can always be reduced to a normal form which only
includes Exp and Kill. This was proven in [13].

Finally, we prove the (Induct) rule. For any top-level !-box A, Lemma 23 says that we
can write any instantiation i equivalently as j ◦KEn

A, where j doesn’t contain A. Thus, we
will show that, for all n, and all instantiations of the form i := j ◦KEn

A, i � (K ∧K ′)→ X.
We proceed by induction on n.

For the base case, i = j ◦KillA. If i � K, then since K doesn’t contain A, i � K implies
j � K. So, by the first premise j � KillA(X). Thus j ◦ KillA � X, as required. For the
step case, assume that for all instantiations of (K ∧ K ′) → X of the form i := j ◦ KEn

A,
i � (K ∧ K ′) → X. We need to show for all i′ := j ◦ KEn+1

A , i′ � (K ∧ K ′) → X. If
i′ � K ∧K ′, then i′ � K ′. Then, since K doesn’t contain A, i � K ′. Combining this with
the induction hypothesis yields i � ∀B1 . . . ∀Bm.ExpA(X). Thus, for any instantiation k of
the ↓B1, . . . , ↓Bm, i ◦ k � ExpA(X). So, i ◦ k ◦ ExpA � X. i′ is equivalent to i ◦ k ◦ ExpA

for some i, k, so i′ � X. J

Soundness of !L with respect to J−K then follows from Theorem 26.

CALCO’15

Presenting Morphisms of Distributive Laws∗

Bartek Klin1 and Beata Nachyła2

1 University of Warsaw, Poland
klin@mimuw.edu.pl

2 Institute of Computer Science, Polish Academy of Sciences, Poland
beatanachyla@gmail.com

Abstract
A format for well-behaved translations between structural operational specifications is derived
from a notion of distributive law morphism, previously studied by Power and Watanabe.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages – Operational
semantics

Keywords and phrases coalgebra, bialgebra, distributive law, structural operational semantics

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.190

1 Introduction

Since [13], distributive laws of functors (or pointed functors, or monads) over other functors
(or copointed functors, or comonads), and bialgebras for them, have been a useful categorical
tool to study various kinds of structural operational semantics (SOS, [10, 1]). Several formats
of well-behaved operational specifications can be understood as kinds of distributive laws,
and some desired properties (mostly compositionality of behavioural equivalences) can be
proved in terms of bialgebras. See [7] for a recent introduction to this topic.

One advantage of abstraction is that sometimes notions or results readily available at the
abstract level, can be instantiated in the concrete setting in previously unforeseen ways. One
such example are morphisms of distributive laws, studied by Power and Watanabe [11, 14]
as abstract notions of well-behaved translations between operational specifications.

The issue of translating specifications have attracted limited attention in the SOS
community so far; apart from a general notion of conservative extension [1], which can be
seen as a simple embedding of one specification into another, only isolated examples of
well-behaved translations have been studied [5], with no attempt at a general theory. This is
unfortunate, as translating operational semantics from one language to another, and from
one type of behaviour to another, is very useful in modular SOS development. When different
parts of a language, or different aspects of its semantics, are specified separately, they must
be combined somehow, for example via a family of translations.

In [11], distributive law morphisms were studied in the abstract, with a few concrete
examples provided in [14] (see also [4] for a slightly different application). In this paper
we pick up that line of work and provide a characterization of morphisms between GSOS
specifications [3] understood as distributive laws. A morphism between laws is presented as
a syntactic translation, together with a behavioural translation presented by inference rules
similar to SOS, subject to a compatibility condition. Importantly, for finite specifications
the condition is decidable. Decidability is a key property of any reasonable format for

∗ This work was supported by the Polish National Science Centre (NCN) grant 2012/07/E/ST6/03026.

© Bartek Klin and Beata Nachyła;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 190–204

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.190
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Klin and B. Nachyła 191

specifications or their translations, and it is the reason why we choose to work with GSOS
rather than with more general, and mathematically more pleasing, distributive laws of
monads over comonads [13, 9]. The latter do not admit a decidable presentation (see [8]).

This paper is only a small step in what should become a long-term research programme.
We only study morphisms between GSOS specifications of labelled transition systems (LTSs),
whereas the abstract framework of distributive laws and their morphisms covers different types
of behaviour and even different underlying categories. A question of translating operational
descriptions up to various behavioural equivalences, using e.g. ideas from [6], is not touched
upon. A framework for defining diagrams of distributive law morphisms and combining
operational descriptions by means of (co)limits of such diagrams, and many other related
tasks, are left for future work. However, we believe that even a simple characterization
of GSOS specification morphisms sheds some light on the strengths and limitations of the
bialgebraic approach to SOS translation.

We begin the paper by studying a special case of GSOS, so called simple SOS specifications,
recalled from [7] in Section 3. We work out this special case in detail: in Section 4 we define
morphisms of simple distributive laws, a special case of definitions studied in [11, 14]. In
Section 5, syntactic and behavioural translations are defined, and in Section 6 a compatibility
condition is shown that is equivalent to the translations forming a morphism of distributive
laws. In Section 7, the case of full GSOS is sketched briefly: while technically slightly more
complicated, it does not introduce any new conceptual difficulties. Section 8 contains some
illustrative examples.

2 Preliminaries

A signature is a set Σ of symbols, where each symbol f ∈ Σ has an associated finite arity
]f ∈ N. With any signature we associate an endofunctor ΣX =

∐
f∈ΣX

]f on the category
Set of sets and functions. We shall only consider endofunctors Σ that arise from signatures
in this way. Algebras for the functor (in the categorical sense) are then exactly algebras
for the signature (in the universal-algebraic sense). For any set X, the set Σ∗X of Σ-terms
with variables from X carries an obvious Σ-algebra structure; Σ∗0, for 0 the empty set, is an
initial Σ-algebra. The construction Σ∗ is a monad on Set; it is the free monad over Σ.

All coalgebras [12] considered in this paper are for Set-functors of the form BX = (PωX)L,
where Pω is the finite powerset functor and L is a finite set of labels. As is well known, such
coalgebras are finitely branching L-labeled transition systems (LTSs). B-coalgebra morphisms
are functional bisimulations, i.e., functions whose graphs are bisimulation relations.

3 Simple distributive laws and SOS

A simple distributive law of an endofunctor Σ over an endofunctor B is a natural transform-
ation λ : ΣB =⇒ BΣ. A λ-bialgebra is then a Σ-algebra g : ΣX → X and a B-coalgebra
k : X → BX with the same carrier X, such that the following diagram commutes:

ΣX g //

Σk
��

X
k // BX

ΣBX
λX

// BΣX.

Bg

OO

Morphisms of bialgebras are functions between their carriers that are simultaneously algebra
and coalgebra morphisms between the respective bialgebra components. Bialgebras for a

CALCO’15

192 Presenting Morphisms of Distributive Laws

fixed distributive law form a category. Under our assumptions an initial λ-bialgebra always
exists, and is of the form:

ΣΣ∗0
∼= // Σ∗0 kλ // BΣ∗0 , (1)

where the algebraic component is an initial Σ-algebra, hence (by Lambek’s Lemma) an
isomorphism. The coalgebraic component kλ of an initial λ-bialgebra is called the B-coalgebra
induced by λ. For a detailed introduction to these notions see e.g. [7].

If Σ is a polynomial functor arising from a signature, and if BX = (PωX)L for some
finite set L of labels, simple distributive laws may be presented by sets of inference rules.
This has been known since [13] for the more general case of GSOS laws (see Section 7.1),
and studied in detail in [2, 7]. We now briefly recall the main idea.

For any set X, an X-literal (or simply a literal, when no risk of confusion arises) is an
expression x a→ y where x, y ∈ X and a ∈ L. In such a literal, x is called the source, a the
label and y the target.

Fix a countably infinite set of variables V 3 x, y, z,

I Definition 1. A simple SOS specification (over Σ and L) is a finite set of simple SOS rules,
i.e., expressions of the form{

xij
aj→ yj

}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , x]f) c→ g(z1, . . . , z]g)
(2)

where f, g ∈ Σ and m, l ∈ N; all ij , ik ∈ {1, . . . ,]f}; all xi, yj ∈ V are pairwise distinct;
z1, . . . , z]g ∈ {y1, . . . , ym}; and aj , bk, c ∈ L.

The V-literals xij
aj→ yj above are called positive premises, and the expressions xik 6

bk→
negative premises of the rule. The ΣV-literal below the inference line is called the conclusion.
The source and target of the rule are, respectively, the source and the target of its conclusion.
Note that variables from the source of a simple SOS rule do not appear in its target.

For any set X, we say that a rule R as in (2) is triggered by a set Φ of X-literals if there
is a substitution σ : V → X such that:

for each positive premise xi
a→ y in R, the literal σ(xi) a→ σ(y) is in Φ,

for each negative premise xi 6 b→ in R, there is no literal of the form σ(xi) b→ y in Φ.
If that is the case, the rule R infers from Φ the ΣX-literal

f(σ(x1), . . . , σ(x]f)) c→ g(σ(z1), . . . , σ(z]g)).

Note that a single rule may infer more than one ΣX-literal from the same set of X-literals,
depending on the substitution σ used. Note also that the literal inferred from a rule, if any,
depends only on how σ acts on the variables present in the rule. Moreover, the target of the
literal and its transition label depend only on how σ acts on the variables yj .

By Λ[Φ] we will denote the set of literals inferred from Φ by rules from a specification Λ.
Given a specification Λ, for any set X define a function λX : Σ(PωX)L → (PωΣX)L by:

λX(f(γ1, . . . , γ]f))(c) =
{
t ∈ ΣX | (f(x1, . . . , x]f) c→ t) ∈ Λ[Φ]

}
, where (3)

Φ = {xi a→ y | 1 ≤ i ≤]f, a ∈ L, y ∈ γi(a)}

for any f ∈ Σ, a family of functions γ1, . . . , γ]f : L→ PωX, a c ∈ L, and a family of distinct
x1, . . . , x]f. It is not difficult to see that for a given f(γ1, . . . , γ]f), the value of λX does not
depend on the choice of x1, . . . , x]f, as long as they are distinct; this is thanks to the fact
that variables from the source of a simple SOS rule do not appear in its target. Note that
one could even choose some xi = xj as long as γi = γj , without affecting the value of λX .

B. Klin and B. Nachyła 193

I Example 2. Consider a signature Σ = {f, g} with]f = 2,]g = 1, giving rise to a functor
ΣX = X2 +X. Consider also a set of labels L = {a, b}, and let a specification Λ consist of
the following three rules:

x a→ x′ y b→ y′

f(x, y) a→ f(x′, y′)
x 6 b→ x a→ x′ y a→ y′

f(x, y) a→ g(y′)
x b→ x′

g(x) b→ f(x′, x′)

where x, y, y′, y′ ∈ V. For X = {u, v, w}, consider the set of X-literals:

Φ = {u a→ v, u a→ w, v a→ u, v b→ w}.

Then all three rules are triggered, and the following literals are inferred:

Λ[Φ] = {f(u, v) a→ f(v, w), f(u, v) a→ f(w,w), f(v, v) a→ f(u,w), f(u, u) a→ g(v),

f(u, u) a→ g(w), f(u, v) a→ g(u), g(v) b→ f(w,w)}.

Keeping Λ and X as above, choose f ∈ Σ and a ∈ L, and consider γ1, γ2 : L → PωX

defined by: γ1(a) = {v, w}, γ1(b) = ∅, γ2(a) = {u}, γ2(b) = {w}. For any x1 6= x2,
according to (3) this gives rise to:

Φ = {x1
a→ v, x1

a→ w, x2
a→ u, x2

b→ w}, and
λX(f(γ1, γ2))(a) = {f(v, w), f(w,w), g(u)};

note how the latter does not depend on the choice of x1 and x2.

The following theorem is a special case of a more general result concerning GSOS
specifications, formulated first in [13] and proved in detail in [2]; we omit the proof here.

I Theorem 3. For any specification Λ, the functions λX defined by (3) form a natural
transformation λ : Σ(Pω−)L =⇒ (PωΣ−)L. Moreover, every natural transformation of this
type arises this way from some simple SOS specification.

Rule-based presentation of distributive laws suggests a notion of derivation; this can be
defined in standard terms of SOS theory, see e.g. [1]. A labelled transition system derived
from a simple SOS specification Λ coincides with the coalgebra induced by the corresponding
distributive law λ, i.e., with the coalgebraic component of the initial λ-bialgebra (1).

4 Distributive law morphisms

I Definition 4. A distributive law morphism from λ : ΣB =⇒ BΣ to λ′ : Σ′B′ =⇒ B′Σ′
consists of natural transformations α : Σ =⇒ Σ′ and θ : B′ =⇒ B such that the following
diagram commutes:

ΣB′ Σθ +3

αB′ �'

ΣB λ +3 BΣ
Bα

�'
Σ′B′

λ′
+3 B′Σ′

θΣ′
+3 BΣ′.

(4)

In [11, 14] distributive law morphisms were defined in a more general framework where
Σ, B and Σ′, B′ operate on different categories connected by an additional functor. Although
important for SOS specifications of systems other than LTSs, here we work in a simplified
setting to illustrate the basic issues of presenting morphisms on a classical example.

CALCO’15

194 Presenting Morphisms of Distributive Laws

In [11, 14] another definition of distributive law morphism was also considered, with two
natural transformations α : Σ =⇒ Σ′, θ : B =⇒ B′ going in the same direction. We defer
the issue of presenting such morphisms to a full version of this paper; their presentations are
technically quite similar to the ones presented here, although they carry slightly different
intuitions.

Any distributive law morphism as in Definition 4 induces a functor from the category of
λ′-bialgebras to the category of λ-bialgebras (see also [4]), mapping every

Σ′X g // X
k // B′X to ΣX αX // Σ′X g // X

k // B′X
θX // BX.

Consider this functor applied to the initial λ′-bialgebra, and the unique morphism α∗0 from
the initial λ-bialgebra to the result of that application:

ΣΣ∗0
∼= //

Σα∗0
��

Σ∗0 kλ //

α∗0
��

BX

Bα∗0
��

ΣΣ′∗0
αΣ′∗0 // Σ′Σ′∗0

∼= // Σ′∗0
kλ′ // B′Σ′∗0

θΣ′∗0 // BΣ′∗0

As an algebra morphism from an initial Σ-algebra, α∗0 is an inductively defined translation of
Σ-terms to Σ′-terms according to α (hence the name). As a bialgebra morphism, it is also a
B-coalgebra morphism.

For BX = (PωX)L, coalgebra morphisms are functional bisimulations. As a result, if
α and θ form a distributive law morphism from λ to λ′ then the translation α∗0 of Σ-terms
to Σ′-terms according to α, maps a term in the transition system kλ induced by λ, to a
bisimilar term in the system kλ′ induced by λ′, with the behaviour translated according to θ.
A useful intuition to hold is that B′ is somehow richer than B, and θ projects B′-behaviours
to B-behaviours by ignoring some components. In the following sections we will provide
examples of both α and θ that will illustrate these intuitions.

5 Syntactic and behavioural translations

To characterize morphisms of distributive laws in terms of rules, premises, literals etc., we
first provide straightforward complete characterizations of natural transformations α and θ
introduced in the previous section.

5.1 Syntactic translations
I Definition 5. For signatures Σ, Σ′, a syntactic translation from Σ to Σ′ consists of:

a function α : Σ→ Σ′ between the underlying sets of function symbols,
for each f ∈ Σ, a function αf : {1, . . . ,]α(f)} → {1, . . . ,]f}.

For any set X, a syntactic translation α determines a function αX : ΣX → Σ′X by:

αX(f(x1, . . . , x]f)) = α(f)
(
xαf(1), . . . , xαf(]α(f))

)
. (5)

We abuse the notation by denoting different entities by α, but this should not lead to any
confusion.

I Example 6. For Σ = {‖} with](‖) = 2, consider a syntactic translation from Σ to Σ that
exchanges the arguments of ‖, defined by α(‖) = ‖ and α‖(1) = 2, α‖(2) = 1. For any set X,
this determines a function αX : ΣX → ΣX given by αX(x ‖ y) = y ‖ x for x, y ∈ X.

B. Klin and B. Nachyła 195

Neither component of a syntactic translation is required to be an injective function. For
example, consider Σ = {f, g} and Σ′ = {k} with]f =]g = 1 and]k = 2, and a syntactic
translation from Σ to Σ′ defined by: α(f) = α(g) = k and αf(1) = αf(2) = αg(1) = αg(2) = 1.
This determines, for any X, a function αX(f(x)) = αX(g(x)) = k(x, x).

It is a standard exercise to prove that for any syntactic translation, the functions αX
defined by (5) form a natural transformation α : Σ =⇒ Σ′. Moreover, every natural
transformation of this type arises this way from some syntactic translation.

5.2 Behavioural translations
Natural transformations θ : (Pω−)L′ =⇒ (Pω−)L are almost a special case of simple
distributive laws λ : Σ(Pω−)L =⇒ (PωΣ−)L considered in Section 3, for Σ = Id; the only
difference is the use of two sets of transition labels L,L′. Accordingly, specifications of such
transformations look almost like degenerated cases of simple SOS specifications.

I Definition 7. A behavioural translation Θ (from L′ to L) is a set of behavioural rules, i.e.,
expressions of the form{

x aj→ yj
}
j=1..m

{
x 6 bk→

}
k=1..l

x c→ y
(6)

where m, l ∈ N; x and all yj ∈ V are all distinct; y ∈ {y1, . . . , ym}; aj , bk ∈ L′ and c ∈ L.

For any set X, rules are triggered by sets of X-literals just as in the case of SOS specifications;
the only difference is that they infer X-literals rather than ΣX-literals, and that the triggering
literals use labels from L′ rather than L. For a behavioural translation Θ, Θ[Φ] will denote
the set of literals inferred from Φ by rules from Θ.

A behavioural translation Θ induces a function θX : (PωX)L′ =⇒ (PωX)L by:

θX(γ)(c) = {y ∈ X | (x c→ y) ∈ Θ[Φ]}, where Φ = {x a→ y | a ∈ L′, y ∈ γ(a)} (7)

for a function γ : L′ → PωX, a c ∈ L, and any x ∈ X. As in (3), the value of θX does not
depend on the choice of x.

I Example 8. Consider a totally ordered set of labels L = {a1, a2, . . . , an}, with the
intuition that ai has a higher “priority” than aj , for i < j. Consider the following behavioural
translation from L to L:{

x 6 aj→
}
j<i

x ai→ y

x ai→ y
for i = 1, . . . , n.

Intuitively, this translation selects transitions with labels of the highest available priority.
According to (7), this defines:

θX(γ)(ai) =
{
γ(ai) if γ(aj) = ∅ for all j < i

∅ otherwise.

I Theorem 9. For any behavioural translation from L′ to L, the functions θX defined
in (7) form a natural transformation θ : (Pω−)L′ =⇒ (Pω−)L. Moreover, every natural
transformation of this type arises this way from some behavioural translation.

Proof. This is essentially a special case of Theorem 3; the distinction between sets of labels
L and L′ does not change the proof in any essential way. J

CALCO’15

196 Presenting Morphisms of Distributive Laws

Some behavioural translations arise from functions between transition labels. On one
hand, a function l : L→ L′ gives rise to a natural transformation θ : (Pω−)L′ =⇒ (Pω−)L:

θX(γ)(c) = γ(l(c)) for γ : L′ → PωX and c ∈ L,

specified by rules x l(c)→ y
x c→ y

for c ∈ L. On the other hand, a function k : L′ → L determines

a transformation θ of the same type by:

θX(γ)(c) =
⋃
{γ(a) | k(a) = c} for γ : L′ → PωX and c ∈ L,

specified by rules x a→ y

x k(a)→ y
for a ∈ L′.

6 Compatible translations

A morphism from an SOS specification Λ over syntax Σ and transition labels L, to a
specification Λ′ over syntax Σ′ and transition labels L′, should be presented by a syntactic
translation from Σ to Σ′ and a behavioural translation from L′ to L, specified as in Sections 5.1-
5.2, subject to a condition abstractly presented as the diagram (4). We shall now present
that condition in elementary terms.

I Definition 10. A syntactic translation α together with a behavioural translation Θ are
compatible translations from Λ to Λ′ if for any set Φ of V-literals with transition labels from
L′, a term s ∈ ΣV and a label c ∈ L:

for every r ∈ ΣV such that s c→ r is in Λ[Θ[Φ]], the literal αV(s) c→ αV(r) is in Θ[Λ′[Φ]],
and
for every t ∈ Σ′V such that αV(s) c→ t is in Θ[Λ′[Φ]], there is some r ∈ ΣV such that:
αV(r) = t and the literal s c→ r is in Λ[Θ[Φ]].

This bisimulation-like condition can be more succinctly written as:

{αV(r) ∈ Σ′V | (s c→ r) ∈ Λ[Θ[Φ]]} = {t ∈ Σ′V | (αV(s) c→ t) ∈ Θ[Λ′[Φ]]}. (8)

Before we prove that compatible translations are equivalent to distributive law morphisms,
let us elaborate the sets Λ[Θ[Φ]] and Θ[Λ′[Φ]], which arise from different ways of combining
SOS rules with behavioural rules. In the following, a V-instance of a rule (either an SOS
one, or one of a behavioural translation) will mean a rule translated along some renaming
function σ : V → V, not necessarily bijective.

For a Λ and Θ as above, a ΛΘ-derivation consists of:
an V-instance R of a rule in Λ,
for each positive premise of R, a V-instance of a rule in Θ with that premise as the
conclusion.

A derivation is naturally presented as a simple tree-like structure built of rule instances. It
has three types of premises: (a) positive premises of the Θ-rules, (b) negative premises of the
Θ-rules, and (c) negative premises of the Λ-rule. Note that transition labels in premises of
type (a) and (b) come from L′, and of type (c) – from L.

We say that such a derivation is triggered by a set Φ of V-literals with labels from L′ if:
every Θ-rule in the derivation is triggered by Φ, and
for every premise x 6 a→ of type (c), there is no instance of a Θ-rule triggered by Φ and
with conclusion of the form x a→ y for any y ∈ V.

B. Klin and B. Nachyła 197

In that case we say that the ΣV-literal (with a transition label from L) that is the conclusion
of the derivation, is ΛΘ-inferred from Φ. It is straightforward to check that Λ[Θ[Φ]] is the
set of all literals ΛΘ-inferred from Φ.

I Example 11. For Σ = {⊗} with](⊗) = 2, and for L = {a1, . . . , an}, consider a specification
Λ with rules:

x ai→ x′ y ai→ y′

x⊗ y ai→ x′ ⊗ y′
for i = 1, . . . , n.

For the behavioural translation Θ from Example 8, ΛΘ-derivations are of the form:{
w 6 aj→

}
j<i

w ai→ w′

w ai→ w′

{
z 6 aj→

}
j<i

z ai→ z′

z ai→ z′
w⊗ z ai→ w′ ⊗ z′

for any (not necessarily distinct) w, w′, z, z′ ∈ V and ai ∈ L. A set Φ of V-literals triggers the
derivation if and only if {w ai→ w′, z ai→ z′} ⊆ Φ and Φ contains no literals with source w
or z and label aj for j < i.

On the other hand, a ΘΛ′-derivation consists of:
an Σ′V-instance R of a rule in Θ,
for each positive premise of R, a V-instance of a rule in Λ′ with that premise as the
conclusion.

Such a derivation has three types of premises: (a) positive premises of the Λ′-rules, (b)
negative premises of the Λ′-rules, and (c) negative premises of the Θ-rule. Note that transition
labels in all these premises come from L′. However, while sources of premises of type (a)
and (b) come from V, sources of premises of type (c) come from Σ′V. Such a derivation is
triggered by a set Φ of V-literals with transition labels from L′, if:

every Λ′-rule in the derivation is triggered by Φ, and
for every premise f(x1, . . . , x]f) 6 a→ of type (c), there is no instance of a Λ′-rule triggered
by Φ and with conclusion of the form f(x1, . . . , x]f) a→ t for any t ∈ Σ′V.

In that case we say that the Σ′V-literal that is the conclusion of the derivation, is ΘΛ′-inferred
from Φ. As before, it is easy to check that the set of all such literals is equal to Θ[Λ′[Φ]].

I Example 12. For Σ, L, Λ′ = Λ and Θ as in Example 11, ΘΛ-derivations are of the form:

{
w⊗ z 6 aj→

}
j<i

w ai→ w′ z ai→ z′

w⊗ z ai→ w′ ⊗ z′

w⊗ z ai→ w′ ⊗ z′

for any (not necessarily distinct) w, w′, z, z′ ∈ V and ai ∈ L. A set Φ of V-literals triggers
the derivation if and only if {w ai→ w′, z ai→ z′} ⊆ Φ and Λ infers from Φ no literals with
source w⊗ z and label aj for j < i.

For example, Φ = {w a2→ w′, z a1→ z′, z a2→ z′} triggers the above derivation (for i = 2),
but it does not trigger the ΘΛ-derivation in Example 11. Indeed, it is easy to check that
w⊗ z a2→ w′ ⊗ z is ΛΘ-inferred but not ΘΛ-inferred from Φ so, according to Definition 10,
the identity syntactic translation from Σ to itself, together with Θ from Example 8, do not
form a compatible translation from Λ to itself.

We are now ready for our main characterization of distributive law morphisms:

I Theorem 13. Translations α and Θ are compatible from Λ to Λ′ if and only if α and the
corresponding θ form a morphism of the corresponding distributive laws from λ to λ′.

CALCO’15

198 Presenting Morphisms of Distributive Laws

Proof. The diagram in Definition 4 states that two composite natural transformations
from ΣB′ to BΣ′ are equal. It is not difficult to see that one can equivalently ask for
their components at V to be equal. Indeed, in general, for any natural transformations
φ, ψ : F =⇒ G between functors on Set, if F is finitary and G preserves monomorphisms
then for any infinite set V , if φV = ψV then φ = ψ. All functors considered in this paper are
finitary and preserve monomorphisms, therefore we can replace the diagram in Definition 4
by its component at V:

ΣB′V ΣθV //

αB′V $$

ΣBV λV // BΣV
BαV

$$
Σ′B′V

λ′V

// B′Σ′V
θΣ′V

// BΣ′V

(9)

and ask for it to commute. To this end, consider an arbitrary A = f(γ1, . . . , γn) ∈ ΣB′V
where n =]f, and denote:

B = ΣθV(A) ∈ ΣBV, C = λV(B) ∈ BΣV, D = BαV(C) ∈ BΣ′V,
E = αB′V(A) ∈ Σ′B′V, F = λ′V(E) ∈ B′Σ′V, G = θΣ′V(F) ∈ BΣ′V.

Our goal is to show that α and Θ are compatible if and only if D = G, for any A. To this
end, we unfold the definition of θ according to (7) to obtain:

B = f(δ1, . . . , δn) where δi(b) = {y ∈ X | (xi b→ y) ∈ Θ[Φi]} for any b ∈ L,
Φi = {xi a→ y | a ∈ L′, y ∈ γi(a)}

where for each i = 1..n a distinct variable xi ∈ V is chosen. Further, we unfold the definition
of λ using the same variables x1, . . . , xn according to (3), to get:

C(c) = {r ∈ ΣV | (f(x1, . . . , xn) c→ r) ∈ Λ[Υ]}

where Υ = {xi b→ y | 1 ≤ i ≤ n, b ∈ L, y ∈ δi(b)} =
n⋃
i=1

Θ[Φi] = Θ
[
n⋃
i=1

Φi

]
for any c ∈ L. The last equality holds by definition of Θ, since literals in distinct Φi have
distinct sources, and all premises in any single Θ-rule have the same source. Denoting
Φ =

⋃n
i=1 Φi, we further obtain

D(c) = {αV(r) ∈ Σ′V | (f(x1, . . . , xn) c→ r) ∈ Λ[Θ[Φ]]}

for any c ∈ L. For the other side of the diagram, put g = α(f) and m =]g; then
E = g(γαf(1), . . . , γαf(m)). Further, unfold according to (3) the definition of λ′ using variables
xαf(1), . . . , xαf(m) where each xi was chosen above, to obtain:

F(b) = {t ∈ Σ′V | (g(xαf(1), . . . , xαf(m)) b→ t) ∈ Λ′[Ψ]}
where Ψ = {xαf(i)

a→ y | 1 ≤ i ≤ m, a ∈ L′, y ∈ γαf(i)(a)}

for any b ∈ L′. Observe that Ψ ⊆ Φ, and Ψ coincides with Φ when restricted to literals whose
sources are among xαf(1), . . . , xαf(m) (indeed, Ψ = Φ if αf : m→ n is surjective). This implies
that Λ′[Ψ] coincides with Λ′[Φ] when restricted to literals with source g(xαf(1), . . . , xαf(m))).
As a result, we may write:

F(b) = {t ∈ Σ′V | (g(xαf(1), . . . , xαf(m)) b→ t) ∈ Λ′[Φ]}.

B. Klin and B. Nachyła 199

Finally, we unfold the definition of θ according to (7), using g(xαf(1), . . . , xαf(m)) ∈ Σ′V as
the variable, to obtain:

G(c) = {t ∈ Σ′V | (g(xαf(1), . . . , xαf(m)) c→ t) ∈ Θ[Ξ]}

where Ξ = {(g(xαf(1), . . . , xαf(m)) b→ t) | b ∈ L′, t ∈ F(b)} = Λ′[Φ].

Putting it all together, the diagram (9) commutes if and only if, for every f(γ1, . . . , γn) ∈ ΣBV
and every c ∈ L:

{αV(r) ∈ Σ′V | (f(x1, . . . , xn) c→ r) ∈ Λ[Θ[Φ]]} =
{t ∈ Σ′V | (g(xαf(1), . . . , xαf(m)) c→ t) ∈ Θ[Λ′[Φ]]} (10)

where Φ = {xi a→ y | 1 ≤ i ≤ n, a ∈ L′, y ∈ γi(a)}. (11)

It is easy to see that (10) is implied by the condition (8) of the definition of compatible
translation, therefore if α and Θ form a compatible translation from Λ to Λ′ then the
diagram (9) commutes.

For the implication from (10) to (8), consider any s = f(x1, . . . , xn) ∈ ΣV , any c ∈ L and
any set Ψ of V-literals. Define γi(a) = {y ∈ V | (xi a→ y) ∈ Ψ} for 1 ≤ i ≤ n and a ∈ L′,
and define Φ from the γi as in (11). Clearly Φ ⊆ Ψ; moreover, Φ and Ψ coincide on literals
whose sources are among the xi. As a result:

Λ[Θ[Φ]] and Λ[Θ[Ψ]] coincide on literals with source f(x1, . . . , xn), and
Θ[Λ′[Φ]] and Θ[Λ′[Ψ]] coincide on literals with source g(xαf(1), . . . , xαf(m)).

The implication from (10) to (8) follows immediately. J

I Remark. It is important to note that the defining property of compatible translations,
Definition 10, is decidable for given Λ, Λ′, α and Θ. First, for a fixed finite set Φ of literals
it is possible to compute Λ[Θ[Φ]] and Θ[Λ′[Φ]] by checking all combinations of Λ-, Λ′- and
Θ-rules; each rule can have infinitely many V-instances, but one only needs to consider those
instances where all variables are present in Φ, which only leaves finitely many cases to check.

Moreover, one may restrict attention to finitely many sets Φ, all of them finite. Indeed, if
a literal with source s is ΘΛ- or ΛΘ-inferred from Φ, then the derivation only depends on
V-literals with sources that are present in s; this gives a bound on the number of different
source variables in Φ’s worth considering. The number of literals in Φ with a particular
source variable can be bound by the number of premises with the same source in a ΘΛ-
or ΛΘ-derivation; this gives a computable bound on the size of Φ worth checking. Finally,
the condition of Definition 10 is invariant with respect to bijective renaming of variables.
Altogether, this gives an effective procedure for checking whether given translations form a
valid distributive law morphism.

7 Extensions

The framework of simple SOS specifications is very restrictive, and covers very few interesting
examples of operational semantics. Right from the beginning [13], the distributive law
approach to SOS was designed to cover far more general classes of specifications. So far in
this paper we only treated simple SOS, to explain the general idea of presenting distributive
law morphisms in a relatively basic setting. In this section we sketch two extensions of that
basic setting: to GSOS specifications, and to extended syntactic translations. Fortunately, as
we shall see, these extensions require little effort and everything works essentially as before.

CALCO’15

200 Presenting Morphisms of Distributive Laws

7.1 GSOS specifications

A GSOS law of Σ over B is a natural transformation λ : Σ(Id×B) =⇒ BΣ∗, where Σ∗ is the
(underlying functor of) the free monad over Σ. Refer to [13] to see a notion of bialgebra for
such laws, or [9] to see how they are equivalent to distributive laws of the copointed functor
Id×B over the monad Σ∗. Those results are crucial for the abstract theory of GSOS laws,
but not necessary for understanding of our elementary development.

The following, introduced in [3], is a generalization of Definition 1:

I Definition 14. A GSOS specification Λ is finite set of GSOS rules, i.e., expressions of the
form{

xij
aj→ yj

}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , x]f) c→ t
(12)

where: f ∈ Σ; m, l ∈ N; all ij , ik ∈ {1, . . . ,]f}; all xi, yj ∈ V are pairwise distinct, aj , bk, c ∈ L;
and t is a Σ-term whose all variables come from the xi and yj .

GSOS rules generalize simple SOS rules in that their targets t are arbitrary terms rather
than single operations from Σ, and in that their source variables xi are allowed in the target.

The notions of triggering rules and inferred literals Λ[Φ] are as for simple SOS specifications,
except that now targets of inferred literals are arbitrary Σ-terms. A GSOS specification Λ
determines a function λX : Σ(X × (PωX)L)→ (PωΣ∗X)L as in (3):

λX(f(x1, γ1, . . . , x]f, γ]f))(c) =
{
t ∈ Σ∗X | (f(x1, . . . , x]f) c→ t) ∈ Λ[Φ]

}
, where

Φ = {xi a→ y | 1 ≤ i ≤]f, a ∈ L, y ∈ γi(a)},

except this definition is actually slightly simpler than (3), since the values x1, . . . , x]f need
not be chosen arbitrarily, as they are provided in the argument of λX .

A generalization of Theorem 3, which was actually the result stated in [13] and proved in [2],
shows that GSOS specifications correspond to GSOS laws just as simple SOS specifications
correspond to simple distributive laws.

By analogy to Definition 4, a morphism of GSOS laws is a pair of natural transformations
α : Σ =⇒ Σ′ and θ : B′ =⇒ B such that

Σ(Id×B′)
Σ(id×θ)+3

α(Id×B′) #+

Σ(Id×B) λ +3 BΣ∗

Bα∗

�'
Σ′(Id×B′)

λ′
+3 B′Σ′∗

θΣ′
+3 BΣ′∗

commutes, where α∗ : Σ∗ =⇒ Σ′∗ is the obvious inductive extension of α to all Σ-terms.
Definition 10 of compatible translations carries over to GSOS specifications almost

verbatim, except that αV(r) needs to be replaced by α∗V(r), as now r ∈ Σ∗V is an arbitrary
term. Stated succinctly by analogy to (8), the compatibility condition becomes:

{α∗V(r) ∈ Σ′∗V | (s c→ r) ∈ Λ[Θ[Φ]]} = {t ∈ Σ′∗V | (αV(s) c→ t) ∈ Θ[Λ′[Φ]]}

for all s ∈ ΣV, c ∈ L and Φ a set of V-literals. Theorem 13 still holds with these changes,
with a completely analogous proof.

B. Klin and B. Nachyła 201

7.2 Generalized syntactic translations
In practical examples of translations between operational specifications, one often wishes to
interpret an operation from the source signature not as a single operation, but as a complex
term over the target signature. A natural way to model such situations is to consider an
extended definition of a syntactic translation as a natural transformation α : Σ =⇒ Σ′∗. Such
a transformation can be presented much the same as in Section 5.1, by a function from Σ to
Σ′-terms (over some fixed set of variables), together with a function αf for each f ∈ Σ as in
Definition 5, where arity of complex terms is defined inductively in an obvious way.

I Example 15. Consider signatures Σ = {‖} and Σ′ = {b,+}, where all operators have arity 2
(so that ΣX = X2 and Σ′X = X2 +X2). A translation that maps every term x ‖ y ∈ ΣX
to (xby) + (ybx) ∈ Σ′∗X is formally defined by a function that maps the symbol ‖ to a term
(1b2) + (3b4) ∈ Σ′∗N together with a mapping α‖(1) = α‖(4) = 1, α‖(2) = α‖(3) = 2.

I Example 16. Consider signatures Σ = {p} with]p = 3 and Σ′ = {‖} with](‖) = 2. Two
extended syntactic translations from Σ to Σ′ come to mind, given by:

αX(p(x, y, z)) = (x ‖ y) ‖ z or α′X(p(x, y, z)) = x ‖ (y ‖ z), for x, y, z ∈ X.

Generalized syntactic translations make sense already in connection to morphisms of
simple distributive laws, but they are more naturally considered in the context of GSOS
laws. A GSOS law λ : Σ(Id×B) =⇒ BΣ∗ extends, by induction on Σ-terms, to a natural
transformation λ∗ : Σ∗(Id × B) =⇒ BΣ∗ (see [9] for a detailed study of this and related
issues). It is natural to redefine a morphism between GSOS laws λ and λ′ as an (extended)
syntactic translation α : Σ =⇒ Σ′∗ and a natural transformation θ : B′ =⇒ B as before, such
that

Σ(Id×B′)
Σ(id×θ) +3

α(Id×B′) #+

Σ(Id×B) λ +3 BΣ∗

Bα∗

�'
Σ′∗(Id×B′)

λ′∗
+3 B′Σ′∗

θΣ′∗
+3 BΣ′∗.

commutes, where α∗ : Σ∗ =⇒ Σ′∗ is the inductive extension of α to all Σ-terms.
A corresponding notion of compatible translations is straightforward to define, but a

little less so than in Section 7.1. For a GSOS specification Λ, one defines Λ∗-derivations as
well-formed trees built of instances of rules from Λ. For example, for Λ as in Example 11,

x ai→ x′ y ai→ y′

x⊗ y ai→ x′ ⊗ y′ z ai→ z′

(x⊗ y)⊗ z ai→ (x′ ⊗ y′)⊗ z′

is a valid derivation triggered by Φ = {x ai→ x′, y ai→ y′, z ai→ z′}, and it infers the literal
in the conclusion; the (usually infinite) set of all inferred literals is denoted by Λ∗[Φ].

Compatible translations are then defined similarly as in Definition 10, with Λ′-derivations
replaced by Λ′∗-derivations. By analogy to (8), the compatibility condition becomes:

{α∗V(r) ∈ Σ′∗V | (s c→ r) ∈ Λ[Θ[Φ]]} = {t ∈ Σ′∗V | (αV(s) c→ t) ∈ Θ[Λ′∗[Φ]]} (13)

for all s ∈ ΣV, c ∈ L and Φ a set of V-literals. The corresponding version of Theorem 13
still holds; the proof is slightly more complex technically due to the presence of additional
induction on Σ-terms, but no essentially new aspects arise in it.

CALCO’15

202 Presenting Morphisms of Distributive Laws

I Remark. Although even for a finite Φ the set Θ[Λ′∗[Φ]] will often be infinite, it will still be
finite when restricted to literals with the source αV(s), for any fixed s ∈ ΣV. As a result,
the above compatibility condition remains decidable.

8 Examples

I Example 17 (Conservative extension). Consider a signature Σ′ and its subsignature Σ (i.e.,
Σ ⊆ Σ′ and the arities of Σ-symbols are matched in Σ′), and two GSOS specifications Λ and
Λ′ over Σ and Σ′ respectively, with the same set L of transition labels. We say that Λ′ is a
conservative extension of Λ if Λ ⊆ Λ′ and if no rule from Λ′ \ Λ has its source from Σ.

Note that this notion is more restrictive than usual definitions of conservative extension
considered in SOS theory [1]. There, global properties of specifications play a role; for
example, a new rule with a source from Σ may be allowed in Λ′ as long as it it has some
positive premise whose label cannot possibly be matched by a conclusion of a Λ-rule.

Consider a trivial inclusion syntactic translation α : Σ =⇒ Σ′, and the identity behavioural
translation Θ. It is easy to see that α and Θ form a compatible translation from Λ to Λ′.
Indeed, for any s = f(x1, . . . , xn) ∈ ΣV and c ∈ L, there is a correspondence between
ΛΘ- and ΘΛ′-derivations:{

xij
aj→ yj

xij
aj→ yj

}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , xn) c→ t
vs.

{
xij

aj→ yj
}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , xn) c→ t
f(x1, . . . , xn) c→ t

(14)

that are triggered by the same sets Φ and infer the same conclusions, for any rule from Λ as
in (12). No other ΘΛ′-derivation for f is possible, by definition of conservative extension.

I Example 18 (Nservative coextension). Dually, consider a signature Σ, two sets of labels
L ⊆ L′, and two GSOS specifications Λ and Λ′ over Σ and over labels L and L′, respectively.
We say that Λ′ is, for lack of a better name, an nservative coextension of Λ if Λ ⊆ Λ′ and if
the conclusion of each rule from Λ′ \ Λ has a transition label from L′ \ L.

Intuitively, just as a conservative extension (Example 17) defines behaviour for a new
part of syntax while leaving the behaviour of the old syntax intact, an nservative coextension
defines new aspects of behaviour (i.e., L′ \ L-transitions) while leaving old aspects intact.

Consider the identity syntactic translation on Σ and a trivial behavioural translation Θ

from L′ to L specified by rules x c→ y
x c→ y

for c ∈ L. Again, it is easy to see that α and θ are a

compatible translation from Λ to Λ′. Indeed, for any s = f(x1, . . . , xn) ∈ ΣV and c ∈ L, a
correspondence between ΛΘ- and ΘΛ′-derivations is exactly the same as in (14); again, no
other ΘΛ′-derivation is possible since c ∈ L and there are no new rules in Λ′ with c as the
conclusion label.

In the next example, neither α nor θ is identity.

I Example 19. For Σ = {!} with](!) = 2 and L = {a1, . . . , an}, consider Λ with rules:

x ai→ x′ (y 6 aj→)j<i
x!y ai→ x′!y

(x 6 aj→)j<i y ai→ y′

x!y ai→ x!y′
for i = 1, . . . , n. (15)

Moreover, let Σ′ = {‖} with](‖) = 2 and, for the same L, let Λ′ consist of rules:

x ai→ x′

x ‖ y ai→ x′ ‖ y
y ai→ y′

x ‖ y ai→ x ‖ y′
for i = 1, . . . , n. (16)

B. Klin and B. Nachyła 203

Consider a syntactic translation from Σ to Σ′ defined by αX(x!y) = x ‖ y, and the behavioural
translation Θ from Example 8. Then ΛΘ-derivations are of the form:{

x 6 aj→
}
j<i

x ai→ x′

x ai→ x′
{

y 6 aj→
}
j<i

x!y ai→ x′!y

{
x 6 aj→

}
j<i

{
y 6 aj→

}
j<i

y ai→ y′

y ai→ y′

x!y ai→ x!y′

and ΘΛ′-derivations are of the form:
x ai→ x′

x ‖ y ai→ x′ ‖ y
{

x ‖ y 6 aj→
}
j<i

x ‖ y ai→ x′ ‖ y

{
x ‖ y 6 aj→

}
j<i

y ai→ y′

x ‖ y ai→ x ‖ y′

x ‖ y ai→ x ‖ y′

It is easy to see that for any Φ these derivations infer the same literals up to α, since a
negative premise x ‖ y 6 aj→ holds for Φ if and only if both premises x 6 aj→ and y 6 aj→ hold.
As a result, α with Θ form a morphism from Λ to Λ′.

Note that the identity syntactic translation together with Θ does not give a morphism
from Λ′ to itself, for reasons similar to Example 12. Indeed, Λ′Θ-derivations are of the form:{

x 6 aj→
}
j<i

x ai→ x′

x ai→ x′
x ‖ y ai→ x′ ‖ y

{
y 6 aj→

}
j<i

y ai→ y′

y ai→ y′

x ‖ y ai→ x ‖ y′

and for Φ = {x a2→ x′, y a1→ y′} they infer the literal x ‖ y a2→ x′ ‖ y, whereas ΘΛ′-literals
above do not.

The following example was considered also in [14].

I Example 20. Consider Σ and Σ′ from Example 15, over the same set of labels L. Let Λ
consist of rules:

x a→ x′

x ‖ y a→ x′ ‖ y
y a→ y′

x ‖ y a→ y′ ‖ x
for a ∈ L, (17)

and let Λ′ be the GSOS specification:

x a→ x′

x + y a→ x′
y a→ y′

x + y a→ y′
x a→ x′

xby a→ (x′by) + (ybx′)
for a ∈ L.

Pick a syntactic translation is as in Example 15, and let Θ be the identity behavioural
translation. ΛΘ-derivations are very simple:

x a→ x′

x a→ x′
x ‖ y a→ x′ ‖ y

y a→ y′

y a→ y′

x ‖ y a→ y′ ‖ x

ΘΛ′∗-derivations are more interesting; the only ones for the term αV(x ‖ y) = (xby) + (ybx)
are:

x a→ x′

xby a→ (x′by) + (ybx′)
(xby) + (ybx) a→ (x′by) + (ybx′)
(xby) + (ybx) a→ (x′by) + (ybx′)

y a→ y′

ybx a→ (y′bx) + (xby′)
(xby) + (ybx) a→ (y′bx) + (xby′)
(xby) + (ybx) a→ (y′bx) + (xby′)

It is easy to see that the condition (13) is satisfied, therefore α and Θ form a morphism
from Λ to Λ′. Note the slight difference between the targets of rules (16) and (17). There
seems to be no morphism from (16) to Λ′, which suggests that the notion of distributive law
morphism could perhaps be relaxed in a useful way. We leave this for future work.

CALCO’15

204 Presenting Morphisms of Distributive Laws

I Example 21. Consider Σ, Σ′ and α from Example 16. Let Λ over Σ consist of rules:

x a→ x′

p(x, y, z) a→ p(x′, y, z)
y a→ y′

p(x, y, z) a→ p(x, y′, z)
z a→ z′

p(x, y, z) a→ p(x, y, z′)
for a ∈ L,

and let Λ′ over Σ′ be defined by rules as in (16). For the identity Θ, there is an easy
correspondence between ΛΘ-derivations and ΘΛ′-derivations, for example:

x a→ x′

x a→ x′
p(x, y, z) a→ p(x′, y, z)

vs.

x a→ x′

x ‖ y a→ x′ ‖ y
(x ‖ y) ‖ z a→ (x′ ‖ y) ‖ z
(x ‖ y) ‖ z a→ (x′ ‖ y) ‖ z

which shows that α with Θ form a morphism from Λ and Λ′. By analogy, α′ with Example 16
forms a similar morphism with Θ. This proves that the equation (x ‖ y) ‖ z = x ‖ (y ‖ z)
holds up to bisimilarity in the transition system induced by Λ′. This suggests a connection
to quotients of distributive laws studied in [4]; we leave this for future work.

References
1 L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J.A. Bergstra,

A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 197–292. Elsevier,
2002.

2 F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD
dissertation, CWI, Amsterdam, 2004.

3 B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the ACM,
42:232–268, 1995.

4 M. Bonsangue, H.H. Hansen, A. Kurz, and J. Rot. Presenting distributive laws. In Procs.
CALCO’13, volume 8089 of LNCS, pages 95–109, 2013.

5 M. Hennessy, W. Li, and G.D. Plotkin. A first attempt at translating CSP into CCS. In
Proc. Second International Conference on Distributed Systems, pages 105–115, 1981.

6 B. Klin. Bialgebraic methods and modal logic in structural operational semantics. Inform-
ation and Computation, 207:237–257, 2009.

7 B. Klin. Bialgebras for structural operational semantics: An introduction. Theoretical
Computer Science, 412(38):5043–5069, 2011. CMCS Tenth Anniversary Meeting.

8 B. Klin and B. Nachyła. Distributive laws and decidable properties of SOS specifications.
In Procs. EXPRESS/SOS’14, volume 160 of ENTCS, pages 79–93, 2014.

9 M. Lenisa, J. Power, and H. Watanabe. Category theory for operational semantics. The-
oretical Computer Science, 327(1-2):135–154, 2004.

10 G.D. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60-61:17–139, 2004.

11 J. Power and H. Watanabe. Combining a monad and a comonad. Theor. Comput. Sci.,
280:137–162, 2002.

12 J. J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80, 2000.

13 D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In Proc.
LICS’97, pages 280–291. IEEE Computer Society Press, 1997.

14 H.Watanabe. Well-behaved translations between structural operational semantics. ENTCS,
65, 2002.

Approximation of Nested Fixpoints –
A Coalgebraic View of Parametric Dataypes
Alexander Kurz1, Alberto Pardo2, Daniela Petrişan3, Paula Severi1,
and Fer-Jan de Vries1

1 Department of Computer Science, University of Leicester, UK
2 Instituto de Computación, Universidad de la República, Uruguay
3 Radboud University, The Netherlands

Abstract
The question addressed in this paper is how to correctly approximate infinite data given by
systems of simultaneous corecursive definitions. We devise a categorical framework for reasoning
about regular datatypes, that is, datatypes closed under products, coproducts and fixpoints.
We argue that the right methodology is on one hand coalgebraic (to deal with possible non-
termination and infinite data) and on the other hand 2-categorical (to deal with parameters in
a disciplined manner). We prove a coalgebraic version of Bekič lemma that allows us to reduce
simultaneous fixpoints to a single fix point. Thus a possibly infinite object of interest is regarded
as a final coalgebra of a many-sorted polynomial functor and can be seen as a limit of finite
approximants. As an application, we prove correctness of a generic function that calculates the
approximants on a large class of data types.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases coalgebra, Bekič lemma, infinite data, functional programming, type
theory

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.205

1 Introduction

As forcefully argued in [4], the initial algebra semantics underpins much of the theory of
functional programming languages, allowing for structured recursion over data structures.
As long as we restrict our attention to the fragment of Haskell programs that actually
terminate, this is indeed enough. But what happens if we want to take into account infinite
computations? Recursively defined datatypes in Haskell are inherently coinductive and, as we
shall see in this paper, further complications arise when several nested fixpoints are involved.

Let us consider the parametrised datatype of streams and two functions on integers const
and matrix defined as follows.

data Stream a = Cons a (Stream a)

const :: Int -> Stream Int
const n = Cons n (const n)
matrix :: Int -> Stream (Stream Int)
matrix n = Cons (const n) (matrix (n+1))

The function const takes an integer n and evaluates to an infinite normal form, the constant
stream n:n:n... where we abbreviate Cons by a colon to improve readability. The function

© Alexander Kurz, Alberto Pardo, Daniela Petrişan, Paula Severi, and Fer-Jen de Vries;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 205–220

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.205
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

206 Approximating Nested Fixpoints

matrix evaluated at 0 also yields an infinite computation whose normal form is the stream
of streams

(0:0:0:...):(1:1:1:...):(2:2:2:...):...

This is obtained as the limit of the following reduction sequence:

matrix 0 → Cons (const 0) (matrix 1)
→ Cons (Cons 0 (const 0)) (Cons (const 1) (matrix 2))
→ . . .

With finite resources printing an infinite stream like (0:0...) is impossible. One could
try to see this stream as the limit of an ω long sequence of growing finite terms

0, 0:0, 0:0:0, ...

How would this work for the infinite normal form of matrix 0? Continuing in the same
manner as before would give a converging sequence of length ω2 of prefixes:

0 0:0 . . . (0:0:...)
(0:0:...):1 (0:0:...):1:1 . . . (0:0:...):(1:1:...)
...

Note that there is no clue that after 0:0:... the sequence will continue and indeed a naive
Haskell implementation would evaluate only the head of matrix 0 and thus would render
only a sequence of 0′s. In the above sequence of approximants we are missing any indication
where the terms are incomplete. A much better sequence of approximants would be

•, (0:•):•, (0:0:•):(1:•):•, (0:0:0:•):(1:1:•):(2:•):•, ...

Each of these truncations (or approximating terms) is finite and can in principle be
printed, as we show in Section 4. This raises interesting Haskell questions: given a nested
datatype T, how to define a generic datatype B T for such truncations and how to define a
generic function trunc of type Nat -> T -> B T that allows us to print these approximants.
Moreover the above sequence of truncations is ω-long, suggesting that conceptually we
transformed the two nested fixpoints involved in the datatype Stream(Stream(Int)) into a
single fixpoint. Let us analyse this problem from a category theoretic perspective. Consider
a category C, assumed for simplicity complete and cocomplete. The datatype Stream(X)
depending on the parameter X in C can be regarded as the final coalgebra, i.e. the greatest
fixpoint νFX of a functor FX : C → C given by FXZ = X × Z. Therefore the datatype
Stream(Stream(X)) is isomorphic to a final coalgebra of FStream(X), that is,

νY.(νZ.X × Z)× Y. (1)

Performing ω reductions of matrix 0 following the leftmost strategy in the example above
is roughly the same as approximating this final coalgebra by iterating only on Z. But the
sequence obtained in this way does not converge to the infinite normal form. On the other
hand, iterating on Y alone does not work either because νZ.X × Z contains infinite streams
which are not printable. The solution is to iterate on Y and Z simultaneously. This can be
done by using a version of the Bekič lemma which states that the final coalgebra (1) can be
obtained as the first projection of the final coalgebra for the endofunctor on C2 given by(

Y

Z

)
7→
(
Z × Y
X × Z

)
.

A. Kurz, A. Pardo, D. Petrişan, P. Severi, and F-J. de Vries 207

Since this is a polynomial functor, a final coalgebra can be obtained as a limit of the final
ω-chain in C2. Thus, the problem of obtaining an ω-long sequence of truncations for an
element of a datatype containing several nested fixpoints can be solved by approximating
instead elements of a final coalgebra for a polynomial functor on Cn for a positive integer n.

Another question is how to deal with parameters in a coherent manner. We saw that the
parametrised datatype Stream(X) can be obtained as the fixpoint νFX of a C-endofunctor.
But Stream is itself a functor, and this can be proved using the universal property of the
final coalgebra. One can define its action on arrows (the so called map function), using a
mediating coalgebra morphism arising from finality (the unfold map).

However, a more systematic approach to defining the parametrised datatype is to consider
families of fixpoints in one go. So instead of considering a C-endofunctor FX with a parameter
we consider the bifunctor F : C2 → C given by F (X,Y) = X×Y . This induces the endofunctor
F ◦ 〈1,−〉 on the category [C, C] of endofunctors on C, given by G 7→ F ◦ 〈1, G〉, as in [20].
The functor Stream can be defined as the greatest fixpoint of the higher-order functor
F ◦ 〈1,−〉 : [C, C]→ [C, C], where we write 1 for identity functors.

C Stream //

〈1,Stream〉
**

unfold
��

C

C × C
F

OO

We have a canonical natural transformation unfold and for every X in C the morphism
unfoldX : Stream(X)→ X × Stream(X) is the structure map of the final FX -coalgebra.

Higher-order functors have been used in [6, 21] to obtain a categorical semantics for nested
datatypes, that is, parametrised datatypes defined inductively and in whose declarations the
type parameter changes. This approach – inherently 2-categorical – is essential for formalising
the relation between the different categories of coalgebras whose final objects are considered.

It remains to understand what is the precise formulation of the Bekič rule that we can
apply. The result that allows to transform nested fixpoints into a single one is originally
due to Bekič, see [16], and was formulated in terms of least fixpoints of continuous maps
on cpo’s. Categorical fixpoints rules have been established by Lehmann and Smyth [20]
and, under the assumption of algebraic completeness, by Freyd [13] and Fiore [12]. Stronger
versions of Freyd’s results are given in [2]. We are also indebted to an unpublished note of
Pitts [22] which develops a 2-categorical calculus for fixpoints and covers, albeit without
proof, simultaneous least fixpoints.

The 2-categorical theory of nested initial algebra has been developed in [7, 11]. Of course
these results can be recast in the dual coalgebraic setting. In particular the dual of the Bekič
rule we consider in this paper is called the “pairing identity” in [7]. Nevertheless, our proof of
this identity (see Theorem 3 and Corollary 4) is rather different and relies on exhibiting some
adjunctions between categories of coalgebras (Lemma 5 and Lemma 6). The latter results
are interesting in their own right and can also be used for reducing multi-sorted coalgebras to
one-sorted ones. The paper is organised as follows. Section 2 establishes adjunctions between
several categories of coalgebras and as a consequence we obtain a 2-categorical proof of the
Bekič rule. Section 3 explains how to obtain truncations of elements of a final coalgebra.
Section 4 gives a generic implementation of the truncations as a function that can operate
on a large class of data types and applies the theory developed in the previous sections to
prove its correctness.

CALCO’15

208 Approximating Nested Fixpoints

2 A coalgebraic treatment of the Bekič rule

As argued in the introduction, we need higher-order functors to deal with parametricity, and
thus our setting is 2-categorical. For the convenience of the reader we briefly recall basic
definitions, but we emphasise that very little of this theory is required to understand our
results. Moreover, the basic example of a 2-category is Cat – the category of small categories.
The reader unfamiliar with 2-categories is asked to instantiate 0-cell with category (or data
type), 1-cell with functor (or parametrised type) and 2-cell with natural transformation (or
polymorphic function). Formally, a 2-category C consists of the following data:

a class of objects or 0-cells, denoted A,B,C, . . .
for any 0-cells A,B a category C(A,B). Objects of C(A,B) are called 1-cells and are
denoted by f : A→ B, while morphisms in C(A,B), usually denoted by α : f ⇒ g : A→
B, or simply α : f ⇒ g, are called 2-cells. Composition in C(A,B) is denoted by ◦ and
is called vertical composition. The identity arrow on f : A→ B will be denoted 1f , or
sometimes just f .
for any 0-cells A,B,C a functor ∗ : C(A,B) × C(B,C) → C(A,C), called horizontal
composition. The horizontal composition of 2-cells α : f ⇒ f ′ : A→ B and β : g ⇒ g′ :
B → C is denoted by βα : gf ⇒ g′f ′ : A→ C.
for any 0-cell A an identity 1-cell 1A : A→ A, called the identity on A.

Furthermore, both horizontal and vertical composition are required to be associative and
unitary. The graphical representation of 2-cells is very useful since one can compose or
paste 2-cells in any order. This is sound because from the functoriality of the horizontal
composition we obtain the so called interchange law: (β′α′) ◦ (βα) = (β′ ◦ β)(α′ ◦ α) for any
2-cells as in the diagram.

A f ′ //

f

!!�� α

==

f ′′

�� α′

B g′ //

g

!!�� β

==

g′′

�� β
′

C

To improve readability of diagrams and for consistency with the 2-category theoretical
literature, we use small letters for 1-cells. But, when we instantiate C with a category of
categories, 1-cells correspond to functors, and will be denoted by capital letters.

In what follows we will consider a 2-category C that has 2-products. This implies the
existence of products at the level of 0-cells satisfying the usual universal property; so a pair
of 1-cells p : A→ B and q : A→ C yields a unique 1-cell 〈p, q〉 : A→ B × C. Moreover, any
2-cell of the form f ⇒ g : A→ B ×C is essentially a pair 〈ξ, ζ〉 with ξ : π1f ⇒ π1g : A→ B

and ζ : π2f ⇒ π2g : A → C. For the exact definition, see [17]. We need 2-products to
incorporate parameters.

Given a 1-cell f : A × B → B we will consider, as motivated by the example given in
the introduction, the functor f〈1,−〉 : C(A,B)→ C(A,B), that maps a 1-cell u : A→ B to
the 1-cell f〈1A, u〉. To simplify the notation, we will denote the categories of coalgebras for
the C(A,B)-functor f〈1,−〉 by CoalgAB(f) and, we will call an f〈1,−〉-coalgebra simply an
f -coalgebra. Objects of this category are of the form (u, ξ) where u : A→ B is a 1-cell in C

A. Kurz, A. Pardo, D. Petrişan, P. Severi, and F-J. de Vries 209

and ξ is a 2-cell as in the next figure.

A
u //

〈1,u〉
**

ξ

��

B

A×B
f

NN

A morphism between coalgebras (u, ξ) and (u′, ξ′) is a 2-cell α : u⇒ u′ such that ξ′ ◦ α =
f〈1, α〉 ◦ ξ.

As an example, instantiate C to Cat, put A = B = Set and let the 1-cell f be the bifunctor
F : Set2 → Set mapping (X,Y) to X × Y . The final coalgebra in CoalgAB(f) in this instance
is the Stream functor described in the introduction.

A final object in the category CoalgAB(f), when it exists, will be denoted by (νf, ufld).
Notice that νf : A→ B is a 1-cell.

Aside form having 2-products, we require the 2-categories we consider to have a stability
of fixpoints property (2) that was also required in [22].

Stability of fixpoints. Consider 1-cells f : A×B → B and h : A′ → A. Using h we obtain a
1-cell f(h× 1) : A′ ×B → B. This in turn gives rise to the endofunctor f〈h,−〉 on C(A′, B),
for which we consider the corresponding category of coalgebras CoalgA

′

B (f(h× 1)). Then we
require that the final coalgebra ν(f(h× 1)) exists whenever the final coalgebra νf does, and
moreover

ν(f(h× 1)) = (νf)h (2)

I Remark 1. If for a 1-cell h : A′ → A the functor C(h,B) : C(A,B)→ C(A′, B) mapping
u : A → B to uh : A′ → B has a left adjoint,1 then (2) is satisfied. Indeed, since
C(h,B) ◦ (f〈1,−〉) ' (f〈h,−〉) ◦ C(h,B), the adjunction between C(A,B) and C(A′, B) lifts
to an adjunction between the corresponding categories of coalgebras:

CoalgAB(f)

��

44

ss

⊥ CoalgA
′

B (f(h× 1))

��

C(A,B)f〈1,−〉 !!

C(h,B)
44

tt

⊥ C(A′, B) f〈h,−〉}}

In particular, since right adjoints preserve all limits, and hence final objects, the final coalgebra
ν(f(h× 1)) exists whenever νf does, and moreover (2) holds.

The situation we are interested in is the following. Assume we have two 1-cells

f : A×B × C → B g : A×B × C → C

such that there exists a final coalgebra in CoalgA×BC (g). We can ‘plug in’ the 1-cell νg :
A×B → C into f to obtain a 1-cell that we will denote by f C νg : A×B → B, which is

1 As an example, let C be the 2-category of locally finitely presentable categories. In this case, left Kan
extensions exist, so the functors C(h, B) have left adjoints. However, in general, the existence of left
Kan extensions is a stronger requirement than (2) and is not required in the proof of the Bekič rule.

CALCO’15

210 Approximating Nested Fixpoints

formally defined as the composition f〈πA, πB , νg〉. The 1-cell of interest is the final coalgebra

ν(f〈πA, πB , νg〉) (3)

In Cat when we instantiate f and g to functors F : A× B × C → B and G : A× B × C → C,
the 1-cell in (3) actually gives a functor from A to B that for a parameter X in A computes
νY.F (X,Y, νZ.G(X,Y, Z)). The aim of the generalised Bekič rule is to establish that this
fixpoint is the first projection of the greatest fixpoint of the many-sorted functor given by(

Y

Z

)
7→
(
F (X,Y, Z)
G(X,Y, Z)

)
.

Coming back to the 2-categorical setting, we want to find the connection between
the final objects (when they exist) of the categories CoalgAB(f〈πA, πB , νg〉), respectively
CoalgAB×C(〈f, g〉).

I Notation 2. Consider 1-cells f : A × B × C → B and h : A × B → C. Let f C h

denote the composition f〈πA, πB , h〉 : A × B → B and, we abbreviate by 〈f, h〉 the pair
〈f, h〈πA, πB〉〉 : A × B × C → B × C. The natural way to obtain from f and h a 1-cell
with codomain B × C is to precompose h with projections and then use the standard product
pairing. Denoting this 1-cell by 〈f, h〉 is only a mild abuse of notation.

Using this notation, we study the diagram

CoalgAB(f C νg)

I

33
⊥

��

CoalgAB×C(〈f, νg〉)

L
ss

��

CoalgAB×C(〈f, g〉)
(−)†

oo

��

C(A,B) C(A,B × C)π1−oo C(A,B × C)Idoo

where the vertical arrows are forgetful functors and π1− denotes composition with the
projection π1 : B × C → B. The functors L and I are explained in Lemmas 5, while the
functor (−)† is introduced in Lemma 6. From these lemmas we obtain:

I Theorem 3. The diagram above commutes. Further, CoalgAB(f C νg) is a full reflective
subcategory of CoalgAB×C(〈f, νg〉) and (−)† creates final objects.

Before stating the two lemmas let us show how the Bekič rule follows.

I Corollary 4. Assume ν(f C νg) exists. Then ν〈f, g〉 also exists and we have

ν(f C νg) = π1ν〈f, g〉. (4)

Proof. If CoalgAB(f C νg) has a final object, then by Lemma 5, I preserves it, since as
a right adjoint it preserves all limits, see [8, Prop 3.2.2]. Moreover, L also preserves the
final coalgebra, since by Lemma 5 L is a reflector, and thus we can use [8, Prop 3.5.3]. By
Lemma 6 the functor (−)† creates final objects, so ν〈f, g〉 exists. We conclude that L ◦ (−)†
maps the final coalgebra in CoalgAB×C(〈f, g〉) to the final coalgebra in CoalgAB(f C νg). But
the composite L ◦ (−)† acts on the carrier 1-cells of the final coalgebras by composing with
the projection on the first component. Therefore we obtain (4). J

A. Kurz, A. Pardo, D. Petrişan, P. Severi, and F-J. de Vries 211

I Lemma 5. Consider 1-cells f : A×B×C → B and h : A×B → C. Then CoalgAB(f C h)
is isomorphic to a full reflective subcategory of CoalgAB×C(〈f, h〉).

Sketch. We exhibit an adjunction L a I : CoalgAB(f C h)→ CoalgAB×C(〈f, h〉) and show that
I is full and faithful. I acts on an f C h-coalgebra ξ by

A
u //

〈1,u〉 ,,

ξ
��

B

A×B fCh

NN

7→
A

〈u,h〈1,u〉〉
//

〈1,u,h〈1,u〉〉 ''

〈ξ,1〉
��

B × C

A×B × C 〈f,h〉

KK

A coalgebra homomorphism α : u ⇒ u′ : A → B in CoalgAB(f C h) is mapped by I

to 〈α, h〈1, α〉〉 and it is immediate to verify that this is indeed a coalgebra morphism in
CoalgAB×C(〈f, h〉).

The functor L acts on an 〈f, h〉-coalgebra 〈ξ, ζ〉 as follows. We use that f C h = f〈1, h〉.

A
〈u,v〉

//

〈1,〈u,v〉〉
''

〈ξ,ζ〉
��

B × C

A×B × C
〈f,h〉

II

7→

A
u //

〈1,u,v〉 ..
〈1,u〉

$$

ξ
��

B

〈1,1,ζ〉
��

A×B × C
f

KK

A×B 〈1,h〉

HH

fCh

MM

It is routine to check that when 〈α, β〉 is a morphism in CoalgAB×C(〈f, h〉) then α is a
morphism in CoalgAB(f C h). Moreover, one readily verifies that L is left adjoint to I. J

I Lemma 6. Consider 1-cells 〈f, g〉 : A × B × C → B × C. Then there exists a faithful
functor (−)† : CoalgAB×C(〈f, g〉)→ CoalgAB×C(〈f, νg〉) that creates final objects.

Sketch. Consider a coalgebra 〈ξ, ζ〉 in CoalgAB×C(〈f, g〉) as in the left diagram in (5). Then
ζ : v ⇒ g〈1, u, v〉 is a coalgebra in CoalgAC(g(〈1, u〉 × 1)). By the stability condition (2), the
final object in the latter category is isomorphic to

A
〈1,u〉

//

〈1,νg〈1,u〉〉
**

A×B
νg

//

〈1,νg〉

))

= ufld

��

C

A× C
〈1,u〉×1

// A×B × C
g

KK

Thus there exists a unique coalgebra morphism ζ† : v ⇒ νg〈1, u〉 such that

(ufld〈1, u〉) ◦ ζ† = (g(〈1, u〉 × 1)〈1, ζ†〉) ◦ ζ

We can now define the functor (−)† on objects by

A
〈u,v〉

//

〈1,〈u,v〉〉
''

〈ξ,ζ〉
��

B × C

A×B × C
〈f,g〉

II

7→

A
〈u,v〉

//

〈1,〈u,v〉〉
''

〈ξ,ζ†〉
��

B × C

A×B × C
〈f,νg〉

II

(5)

On arrows the functor (−)† is defined as identity. One can show that (−)† creates final
objects. J

CALCO’15

212 Approximating Nested Fixpoints

1

i0

��

j0

��

F1p0oo . . . Fn1
jn

$$

in

��

. . . Fω1

pω
n

uu

i

{{

0 //

e0

��

(•+ F)0

��

. . . (•+ F)n0

��

// (•+ F)n+10

en+1

��

--
. . . (•+ F)ω0

e

��

1 (•+ F)1
q0
oo . . . (•+ F)n1 (•+ F)n+11qnoo . . . (•+ F)ω1

qω
n

jj

qω
n+1

qq

Figure 1 Approximating F ω1.

3 Truncating elements of final coalgebras

Having eliminated fixpoints using the Bekič rule, the remaining problem is approximating
elements of the final F -coalgebra, for a polynomial F on Setn for some positive integer n.
Even though it is essential for us to allow Setn for n > 1 to account for nested fixpoints, the
following simple example is illustrative.

I Example 7. Let F : Set→ Set be given by FX = {a, b}×X×X. We want to approximate
infinite binary trees with nodes a, b, that is, elements of the final F -coalgebra, the carrier of
which we write as Fω1. As a data type of approximants we choose the initial ({•}+F)-algebra,
the carrier of which we write as (•+ F)ω0. We then have injections i and e

Fω1 i // (•+ F)ω1 (•+ F)ω0eoo

In the following we will need the final sequence of F consisting of projections of elements
of Fω1 and the initial sequence of ({•}+F) consisting of the possible truncations of elements
of Fω1. Both sequences embed into the final sequence of ({•}+ F), which will be used to
define the metric that allows us to capture the approximation of infinite elements of Fω1 by
truncations.

Writing • for {•}, this data is made visible in Fig. 1. We consider the horizontal arrows in
the middle row as inclusions and do not give them names. Similarly, we will often treat i and
e as inclusions and drop them from our notation. i0, p0, e0, q0 are uniquely determined by
their types and j0 maps the element of 1 to •. We put pn+1 = Fpn and for f ∈ {i, e, j, q} we
let fn+1 = inr ◦Ffn, where inr is a right coprojection map. The pωn , qωn , and i are determined
by Fω1 and (•+ F)ω1 being limits.

I Proposition 8. In Fig. 1, we have qn ◦ en+1 ◦ jn = in.

We call elements of (•+ F)n0 truncations (or approximations).
I Remark. Why do we use the (•+ F)n0 and not the Fn1 as the range of truncations? As
will become clear in Section 4, in our code we need a datatype for truncations in order to
print them. To this end we need to use a constructor, which, in our code, is given by •. As
far as the implementation is concerned, it is indisputable that we need •. The only question
that remains is how to interpret the • in the code from a semantic perspective. In particular,

A. Kurz, A. Pardo, D. Petrişan, P. Severi, and F-J. de Vries 213

why don’t we interpret the • of the program as the element of 1 in
∐
Fn1? There are two

reasons for this.

1. It is true that the final sequence suggests considering truncations as elements of
∐
Fn1.

However, truncations are required to be finite terms, so from a conceptual point of view,
it is natural to regard them as elements of an initial algebra or an inductively defined
type. Since the initial algebra of F may be empty, as in the case of streams, we are using
the initial algebra of • + F . This section carries out the indispensable analysis of the
relation between the initial sequence of •+ F and the final sequence of F .
A benefit of this analysis is that we solve a question raised by Barrâs theorem, namely
how to approximate a final coalgebra by an initial algebra if the initial algebra sequence
is empty (due to F0 = 0). To replace F by •+ F is an obvious idea, but one needs to
deal with the fact that bullets can appear now at all levels and that is what we do in this
section.

2. Our methodology of proving the productivity of programs in Section 4 should be able to
support correctness proofs of any implementation of printing. It is true that there always
is an implementation that prints the • exactly where the final sequence has a ? (if ? ∈ 1
is the element of 1 in the final sequence Fn1). But there are many other implementations.
This becomes particularly important in the case of nested fixpoints. The implementation
corresponding to the final sequence corresponds to a quite particular strategy of when
each fixpoint is unfolded.
To reinforce this point, let us consider an as an example streams of streams of Int. After
applying Bekič, we get the equations

T = S × T
S = Int× S

telling us that S is the type of streams over Int and T is the type of streams over S. Let
us develop the final sequence for the functor

F (T, S) = (S × T, Int× S).

We use “o” for the 1 of type T and $ for the 1 of type S. And we write “,” for product.
The first four elements of the sequence Fn1 are of the following types, with the first line
referring to the first component (the T -component) and the second line referring to the
second component (the S-component):

o ($, o) (Int, $), ($, o) (Int, Int, $), (Int, $), ($, o)

$ (Int, $) (Int, Int, $) (Int, Int, Int, $)

(6)

This corresponds to an implementation that prints n elements of the first stream, n− 1
elements of the second stream and so on. But there are many other ways of printing
streams of streams. For example, we may want to say that “we want to see more of early
streams” and implement printing 2n elements of the first stream, 2(n− 1) elements of the
second stream, etc. So we need truncations of type ((Int, Int, Int, Int, $), (Int, Int, $), ($, o))
which are not in any Fn1, that is, they don’t appear in the upper row of Diagram (6).

CALCO’15

214 Approximating Nested Fixpoints

I Example 9. Let FX = {a, b} × X × X. Then (7) shows a truncation that cannot be
obtained from any of the Fn1.

a

||
��

b

����

•

• •

(7)

The set of truncations, that is, (•+ F)ω0, carries a metric induced by the embedding
e : (•+ F)ω0→ (•+ F)ω1 and the final sequence (•+ F)n1 as in Barr [3, Proposition 3.1].
Explicitly, for t, s ∈ (•+ F)ω1 let d(t, s) = 0 if t = s and else d(t, s) = 2−n where n is the
largest natural number such that qωn (t) = qωn (s).

Consequently, we have a notion of convergence and Cauchy sequence we can apply to
sequences of truncations. For an example consider some t ∈ Fω1 and its canonical sequence
of truncations jn(pωn(t))n<ω:

I Proposition 10. For all t ∈ Fω1 the sequence jn(pωn(t))n<ω converges to t.

Not all converging sequences of truncations converge to an element in Fω1:

I Example 11. Let FX = {0, 1} ×X ×X. Then the following is a converging sequence of
truncations that does not converge to an element of Fω1:

• ,

0

��

// •

•
,

0

��

// 0

��

// •

• •
,

0

��

// 0

��

// 0

��

// •

• • •
, . . .

The following definition captures the intuition that a productive sequence is a sequence
in which all bullets get eventually eliminated (because jn(tn) has no bullets below level n):

I Definition 12. A sequence (ak)k<ω is called productive if it is Cauchy in (•+ F)ω0 and if
for all n there is tn ∈ Fn1 and k < ω such that qωn (e(ak)) = in(tn).

We read qωn (e(ak)) = in(tn) as tn ‘is below’ ak. Observe that the tn in the definition
necessarily converge to the same limit as the ak. For an example note that for any t ∈ Fω1
the canonical sequence converging to t introduced Proposition 10 is productive (the proof
uses Proposition 8).

I Corollary 13. If (ak)k<ω is ‘a productive sequence of truncations of t’, that is, if for all n
there is k such that qωn (e(ak)) = in(pωn(t)), then lim ak = t.

This shows that all elements of Fω1 are approximated by a productive sequence. A stronger
statement is:

I Proposition 14. Let (ak)k<ω be a sequence in (•+ F)ω0. Then, lim ak ∈ Fω1 iff (ak)k<ω
is productive.

Proof. If lim an = t ∈ Fω1, then for all n there is k such that qωn (e(ak)) = in(tn) as required
by Def. 12. Conversely, if ak is productive, then it converges against the same limit as the
tn from Def. 12. Now qωn (e(ak)) = in(tn) implies that there is t ∈ Fω1 such that lim tn = t,
hence lim ak = t. J

A. Kurz, A. Pardo, D. Petrişan, P. Severi, and F-J. de Vries 215

Our analysis improves somewhat over Barr’s original result as we do not have to as-
sume that F0 6= 0 (which excludes e.g. streams). This comes at the cost that (•+ F)ω1
has ‘spurious elements’ that are not in Fω1. The following summarises two satisfactory
characterisations of Fω1 as a subset of (•+ F)ω1.

I Theorem 15. Let F : Setn → Setn be a many-sorted polyomial functor. An element of
(•+ F)ω1 is in Fω1 iff it is approximated by a productive sequence iff it is bullet-free.2

Proof. The first ‘iff’ is Proposition 14. The second ‘only if’ is obvious. For the other direction,
we show by induction that if an element in (•+ F)n1 is bullet-free then it is already in Fn1,
or, in other words, that the image of in contains all bullet-free elements of (•+ F)n1. J

4 Implementing truncations in Haskell

We apply the theory developed in the previous sections to prove correctness of an effective
procedure for printing infinite objects in Haskell. A naive attempt to printing the infinite
normal form of the stream of streams (matrix 0) only shows an infinite stream of 0’s and
we never see the other streams. Our solution is to print the sequence of truncations of a
term. The truncation of a term at depth n is obtained from the tree representation of the
term by replacing the subterms at depth n by •. Printing the sequence of all truncations is a
faithful way of printing infinite data if we prove the following two correctness properties:

the truncations are always finite (and hence, printable in a finite amount of time) and
the sequence of truncations has length ω and converges to the infinite normal form of the
program at issue.

To this end, we assume that our programs are infinitary normalising (productive). For
example, we exclude programs that do not have infinite normal form at all such as (novalue
0) defined as follows.

loop = loop novalue n = Cons loop (matrix n)

The set of (potentially infinite) normal forms can be seen as the carrier of a final coalgebra
of the form Fω1. Section 4.2 gives the correctness proof of our implementation and relies on
the results of Section 3. The full implementation is available at [18].

We give the type declaration of a class Trunc introducing a new data type

B :: * -> Nat -> *

used for implementing the truncations. The truncation of a term of type a at level n will
have type B a n. The dependency of (B a n) on n :: Nat ensures that inhabitants of
this data type are finite, and thus amenable to printing.

data Nat = Zero | Succ Nat class Trunc (a :: *) where
data SNat n where data B :: * -> Nat -> *

SZ :: SNat Zero trunc :: SNat n -> a -> B a n
SS :: SNat n -> SNat (Succ n)

2 A tree is bullet-free if it contains no occurrence of •.

CALCO’15

216 Approximating Nested Fixpoints

Note that we fake dependent types in Haskell using data promotion and singletons [26, 10].
The data type Nat is promoted to kinds. The singleton type (SNat n) can be thought of
as having one inhabitant, intuitively, the natural number n.

To illustrate how the function trunc works we first present non-generic implementations.
We make the parametric datatype (Stream a) an instance of the class Trunc provided the
parameter a is also an instance of the class Trunc.

data B (Stream a) n where
Bullet :: B (Stream a) Zero
ConsS :: B a n -> B (Stream a) n -> B (Stream a) (Succ n)

trunc SZ _ = Bullet
trunc (SS n) (Cons x xs) = ConsS (trunc n x) (trunc n xs)

We also consider the data type for rose trees which is a multi-way tree structure in which
each node may have an arbitrary number of children [5].

data RoseTree a = RoseTree a [RoseTree a]

The definition of trunc needs more care, the following would be wrong:
trunc SZ x = BulletRose
trunc (SS n) (RoseTree x xs) = RoseTreeB (trunc n x) (map (trunc n) xs)

because (map (trunc n) xs) is infinite if xs is infinite. In order to truncate rosetrees
correctly, we replace the second line in the above code by the following:

trunc (SS n) (RoseTree x xs) = RoseTreeB (trunc n x) (trunc n xs)

where the last truncation is applied to the list xs. The theoretical foundation behind this
solution is the Bekič rule on datatypes as explained in Section 2, which allows us to rewrite
the definition of rose trees νX.A× (νY.1 +X × Y) as Π1(ν(X,Y).(A× Y, 1 +X × Y)). In
other words, (Rosetree a) is written as the solution of two mutually corecursive equations:

X = A× Y
Y = 1 +X × Y (8)

After applying the Bekič rule, the many-sorted functor associated to rosetrees is(
X

Y

)
FRTA−→

(
A× Y

1 +X × Y

)
.

In our implementation, since we are using overloading polymorphism we do not see that we
actually have two different versions of the function trunc, one for each recursive equation
(assuming A is a basic type).

4.1 A generic implementation of truncations
In this section, we give a uniform implementation of truncation for a wide class of data types.
The data types should have the form T1(T2(. . . Tn(Int) . . .)) where Ti(X) = νY.Fi(X,Y) and
Fi is a polynomial functor3. The view of data types as fixpoints of functors is implemented
through a type class called Rep similar to the class Regular but for bifunctors instead of
functors [23, 25]. Associated to this class there is a type family FunctorRep.

3 Actually, Int could be replaced by any basic data type.

A. Kurz, A. Pardo, D. Petrişan, P. Severi, and F-J. de Vries 217

type family FunctorRep (t :: * -> *) :: * -> * -> *

This type family can be seen as a function that given a parametric datatype T , it gives a
polynomial bifunctor F such that T (X) = νY.F (X,Y). Polynomial bifunctors are represented
by the following type constructors which are all made instances of the class BiFunctor:

U for constant,
P1 for first projection,
P2 for second projection,
:**: for product and :++: for sum.

class Bifunctor f where
bimap :: (a -> c) -> (b -> d) -> (f a b -> f c d)

For our applications, we restrict the type a in the constant functor U a to be a basic type
whose elements are all finitely normalising (i.e. printable in a finite amount of time) such
as Int. We can now associate Stream to the functor FStream by means of the type family
FunctorRep as follows.

type instance FunctorRep Stream = FStream
type FStream = P1 :**: P2

The class Rep has two methods that witness the isomorphism in the fixpoint equation
T (A) ∼= F (A, T (A)).

class Rep t where
getRep :: t a -> (FunctorRep t) a (t a)
fromRep :: FunctorRep t a (t a) -> t a

We make Stream an instance of the class Rep as follows.

getRep (Cons x xs) = P1 x :**: P2 xs
fromRep (P1 x :**: P2 xs) = Cons x xs

Figure 2 illustrates the correspondence between our generic Haskell implementation of
truncations and the semantic view given in the previous sections. In our code we have the
following definition for the function trunc, which we explain below and in Figure 2 step by
step.

trunc SZ x = Bullet
trunc (SS n) x = NextStep (bimap (trunc n) (trunc n) (getRep x))

In the second case we define the truncation at level n+1 of a term x of type t a. Semantically,
this is a coinductive type T (A) = νY.F (A, Y) obtained as the greatest fixpoint of a functor
F , which syntactically is given by FunctorRep t.

To compute the truncation of x at level n+ 1, first we “unfold” x via the function getRep.
Then we truncate at level n the terms obtained from the unfolding, and we apply F . In our
code the application of a bifunctor F to two morphisms is done using the function bimap.
To be able to use bimap in this case, we should require that FunctorRep t belongs to the
class Bifunctor.

The type B (t a) n of the truncation is defined as a data type with two constructors
Bullet and NextStep as follows.

data B (t a) n where
Bullet :: B (t a) Zero
NextStep :: FunctorRep t (B a n) (B (t a) n) -> B(t a)(Succ n)

CALCO’15

218 Approximating Nested Fixpoints

t a

getRep

��

T (A) = νY.F (A, Y)

αF

��

FunctorRep t a (t a)

bimap (trunc n) (trunc n)

��

F (A, T (A))

F ((trunc n),(trunc n))

��

FunctorRep t (B a n) (B (t a) n)

NextStep

��

F (B(A,n), B(T (A), n))

B (t a) (Succ n) B(T (A), n+ 1)

Figure 2 Generic definition of truncations in Haskell.

At a semantic level, B(T (A), n) is defined inductively as follows. For the base type Int we
have

B(Int, 0) = {•} B(Int, n+ 1) = Int

while for a coinductive type T (A) = νY.F (A, Y) we have

B(T (A), 0) = {•} B(T (A), n+ 1) = F (B(A,n), B(T (A), n))

This generic definition of trunc does not work if F itself contains a fixpoint. For example, in
the case of rosetrees where F (A,X) = A× (νY.1 +X ×Y) lists are not truncated but remain
infinite. We explain briefly how to extend this generic implementation to include data types
of the form T1(T2(. . . Tn(Int))) where Ti(X) = νY.Fi(X,Y) and Fi contains a fixed point.
As opposed to polynomial Fi, if the functors Fi contain fixpoints, we need to make use of
the Bekič rule in the implementation (as well as in the proof of its correctness). This makes
it necessary to deal with mutually recursive equations, something that our implementation
in terms of the Rep class is not able to manipulate at the moment. There exists a Haskell
package that deals with mutually recursive equations generically [24]. We would need to
extend this package to include parametric data types.

4.2 Correctness of the implementation
For every natural number n the truncation (trunc n p) has a finite normal form vn in-
dependently of whether the normal form v to which p evaluates is finite or not. This is
proved by induction on n. Assume that the program p has type T1(T2(..Tm(Int))) where
Ti(X) = νYi.Fi(X,Yi) and Fi is a polynomial functor for all 1 ≤ i ≤ m. To complete the
correctness proof we need to show:

v = lim
n→∞

vn .

Using Bekič rule (Corollary 4), we have that

T1(T2(..Tn(Int))) = Π1 ◦ ν

Y1
Y2
...
Ym

 .

F1(Y2, Y1)
F2(Y3, Y2)

...
Fm(Int, Ym)

 .

A. Kurz, A. Pardo, D. Petrişan, P. Severi, and F-J. de Vries 219

Let F (Y1, . . . , Ym) = (F1(Y2, Y1), F2(Y3, Y2), . . . Fm(Int, Ym)). We also consider the vector
−−−−−→trunc n = (trunc n, . . . , trunc n) of length m. Then, it is not difficult to show by
induction on n and using the definition of trunc given in Section 4.1 that trunc satisfies
the following:

−−−−−−→
trunc 0 t = (•, . . . , •)
−−−−−−−−−−→
trunc (n+1) = F (−−−−−−→trunc n) ◦ αF

From the above, it is easy to prove by induction on n that −−−−−→trunc n t is equal to the canonical
sequence jn ◦ pωn(t) of truncations as defined in Section 3. By Proposition 10, the sequence
−−−−−−→trunc n t converges to t. It is enough to take a t whose first component is v where v is the
infinite normal form of our original program p of type T1(T2(. . . Tn(Int))).

5 Conclusion

Whereas some of the techniques we used are well known, there are original theoretical
contributions (Theorems 3 and 15) as well as a novel solution to the problem of printing
infinite datatypes in Haskell. Hutton and Gibbons generalised the approximation lemma from
[5] to a certain class of datatypes that includes the polynomial ones [15]. Their definition of
approximant does not cover the case of parametric datatypes. Danielsson et al. implemented
their notion of approximant in the ChasingBottoms package [14], which is implemented using
a style of generic programming called Scrap Your Boilerplate [19]. Our approach is different,
as we use the class Regular which views datatypes as fixed points of functors [25].

It will be interesting to compare our work with [1, 9]. It is currently not clear to us
whether their recursion schemes are strong enough to define truncations of rose trees.

Of course, printing can be seen as an illustrative example only and others, such as the
incremental sending of infinite data over a channel, will be pursued in the future. Moreover,
there are many topics we didn’t touch upon, such as nested datatypes in the sense of [6],
higher order functors, or dependent types, as well as other functional programming languages
such as Agda or Coq. It will also be of interest to investigate type theories with an explicit
Bekič rule.

Acknowledgements. The fourth author would like to acknowledge a Daphne Jackson
fellowship sponsored by EPSRC and the University of Leicester.

References
1 R. Atkey and C. McBride. Productive coprogramming with guarded recursion. In ACM

SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA,
USA – September 25–27, 2013, pages 197–208, 2013.

2 R.C. Backhouse, M. Bijsterveld, R. van Geldrop, and J. van der Woude. Categorical fixed
point calculus. In Category Theory and Computer Science, 1995.

3 M. Barr. Terminal coalgebras for endofunctors on sets. Theoretical Computer Science,
114(2):299–315, 1999.

4 R. S. Bird and O. de Moor. Algebra of programming. Prentice Hall, 1997.
5 R. S. Bird. Introduction to Functional Programming using Haskell (second edition). Prentice

Hall, 1998.
6 R. S. Bird and R. Paterson. Generalised folds for nested datatypes. Formal Asp. Comput.,

11(2), 1999.

CALCO’15

220 Approximating Nested Fixpoints

7 S.L. Bloom, Z. Ésik, A. Labella, and E.G. Manes. Iteration 2-theories. Applied Categorical
Structures, 9(2):173–216, 2001.

8 F. Borceux. Handbook of Categorical Algebra I. Cambridge University Press, 1994.
9 A. Cave, F. Ferreira, P. Panangaden, and B. Pientka. Fair reactive programming. In

The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL’14, San Diego, CA, USA, January 20-21, 2014, pages 361–372, 2014.

10 R.A. Eisenberg and S. Weirich. Dependently typed programming with singletons. In
Proceedings of the 5th ACM SIGPLAN Symposium on Haskell, Copenhagen, pages 117–
130, 2012.

11 Z. Ésik and A. Labella. Equational properties of iteration in algebraically complete cat-
egories. Theoretical Computer Science, 195(1):61–89, 1998.

12 M. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. PhD thesis, University
of Edinburgh, 1994.

13 P. Freyd. Remarks on algebraically compact categories. In Applications of Categories in
Computer Science, volume 77 of London Math. Soc. Lecture Notes Series, pages 95—-106.
Cambridge University Press, 1992.

14 Haskell Chasing Bottoms Package: For testing partial and infinite values. http://hackage.
haskell.org/package/ChasingBottoms. Online: accessed March 2015.

15 G. Hutton and J. Gibbons. The generic approximation lemma. Inf. Process. Lett.,
79(4):197–201, 2001.

16 C.B. Jones, editor. Programming Languages and Their Definition – Hans Bekic (1936–
1982), LNCS 177. Springer, 1984.

17 G.M. Kelly and R. Street. Review of the elements of 2-categories. In Category Seminar
(Proc. Sem. Sydney 1972/73), LNM 420, pages 75–103. Springer, 1974.

18 A. Kurz, D. Petrişan, A. Pardo, P. Severi, and F.-J. de Vries. Haskell code for this paper.
http://www.cs.le.ac.uk/people/ps56/code.xml, 2015.

19 R. Lämmel and S. L. Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. In TLDI’03, 2003.

20 D. J. Lehmann and M.B. Smyth. Algebraic specification of data types: A synthetic ap-
proach. Mathematical Systems Theory, 14:97–139, 1981.

21 C.E. Martin, J. Gibbons, and I. Bayley. Disciplined, efficient, generalised folds for nested
datatypes. Formal Asp. Comput., 16(1):19–35, 2004.

22 A. Pitts. An elementary calculus of approximations. Unpublished note.
23 Haskell Regular: Generic programming library for regular datatypes. http://hackage.

haskell.org/package/regular. Online accessed: March 2015.
24 A. Rodriguez, S. Holdermans, A. Löh, and J. Jeuring. Generic programming with fixed

points for mutually recursive datatypes. In ICFP, 2009.
25 T. van Noort, A. Rodriguez Yakushev, S. Holdermans, J. Jeuring, B. Heeren, and J.P.

Magalhães. A lightweight approach to datatype-generic rewriting. J. Funct. Program.,
20(3-4):375–413, 2010.

26 B.A. Yorgey, S. Weirich, J. Cretin, S. L. Peyton Jones, D. Vytiniotis, and J. P. Magalhães.
Giving Haskell a promotion. In TLDI 2012, pages 53–66, 2012.

http://hackage.haskell.org/package/ChasingBottoms
http://hackage.haskell.org/package/ChasingBottoms
http://www.cs.le.ac.uk/people/ps56/code.xml
http://hackage.haskell.org/package/regular
http://hackage.haskell.org/package/regular

Final Coalgebras from Corecursive Algebras
Paul Blain Levy

School of Computer Science, University of Birmingham, UK
p.b.levy@cs.bham.ac.uk

Abstract
We give a technique to construct a final coalgebra in which each element is a set of formulas
of modal logic. The technique works for both the finite and the countable powerset functors.
Starting with an injectively structured, corecursive algebra, we coinductively obtain a suitable
subalgebra called the “co-founded part”. We see – first with an example, and then in the general
setting of modal logic on a dual adjunction – that modal theories form an injectively structured,
corecursive algebra, so that this construction may be applied. We also obtain an initial algebra
in a similar way.

We generalize the framework beyond Set to categories equipped with a suitable factorization
system, and look at the examples of Poset and Set

op
.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation,
F.4.1 Mathematical Logic – Modal logic

Keywords and phrases coalgebra, modal logic, bisimulation, category theory, factorization sys-
tem

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.221

1 Introduction

1.1 The Problem
Consider image-countable labelled transition systems, i.e. coalgebras for the Set functor
B : X 7→ (PcX)A. Here A is a fixed set (not necessarily countable) of labels and PcX is
the set of countable subsets of X. It is well-known [25] that, in order to distinguish all pairs
of non-bisimilar states, Hennessy-Milner logic with finitary conjunction is not sufficiently
expressive, and we instead require infinitary conjunction. For example, we may take all
formulas

φ ::=
∧
i∈I

φi | ¬φ | [a]φ

where the indexing sets I are countable; and write
∨

and 〈a〉 for the de Morgan duals of
∧

and [a] respectively. Alternatively, it is sufficient to take the following 3-layered formulas.

φ ::= 〈a〉 (
∧
i∈I

φi ∧
∧
j∈J
¬φj) (1)

For a B-coalgebra (X, ζ), the semantics of these formulas is given by

u |= 〈a〉 (
∧
i∈I

φi ∧
∧
j∈J
¬φj) ⇐⇒ ∃x ∈ (ζ(u))a. (∀i ∈ I.x |= φi ∧ ∀j ∈ J. x 6|= ψj) (2)

Following [15, 22], we obtain a final B-coalgebra in which states are sets of formulas,
or, alternatively, sets of 3-layered formulas. Specifically, if LxMX,ζ is the set of 3-layered

© Paul Blain Levy;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 221–237

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.221
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

222 Final Coalgebras from Corecursive Algebras

formulas satisfied by a state x within the coalgebra (X, ζ), then the final coalgebra has carrier

M = {LxMX,ζ | (X, ζ) a T -coalgebra, x ∈ X}

and its structure sends LxMX,ζ to the image of x along the function

X
ζ // FX

F L−MX,ζ// FM

It may, however, be argued that this construction is not quite satisfactory, because it is
couched in terms of all B-coalgebras. We might as well just form the sum of all B-coalgebras1
and then take the strongly extensional quotient, i.e. the quotient by bisimilarity. The modal
logic is not playing any real role.

We therefore ask: is it possible to construct the final coalgebra purely out of the logic,
without referring to other coalgebras? In particular, we shall need to characterize when a set
of formulas is of the form LxMX,ζ .

In the case of coalgebras of the finite powerset functor – for which finite conjunctions
are expressive enough to distinguish non-bisimilar states – this question was answered
in [4, Theorem 5.9] following [1, 23] and [29, Theorem 7.4]. The first step is to construct
a transition system, called the “canonical model of modal logic K” [7], consisting of sets
of modal formulas closed under certain inference rules. Then the subsystem consisting of
hereditarily image-finite elements is a final coalgebra.

It is, however, not evident whether or how this construction could be adapted to logic
with infinite conjunctions. We shall not consider that question in this paper. Instead we
present a different solution, which is applicable quite generally.

Our solution treats sets of modal formulas as elements not of a transition system but of
an algebra. We then cut down that algebra by a novel “co-founded part” construction, and
this gives the final coalgebra.

1.2 Structure of Paper
The paper is in three sections.

In Section 2, we introduce our main construction: the co-founded part of an algebra. We
see how this construction, applied to a suitable algebra, gives a final coalgebra.

In Section 3 we generalize our work to any modal logic on a dual adjunction. We see how
such a logic, if it is expressive, will always give a suitable corecursive algebra so that our
final coalgebra construction can be applied.

In Section 4 we further generalize our results, from Set to other categories equipped with
a factorization system. We look at two examples of particular interest:

Poset, giving a model of similarity;
Set

op
, giving a new construction of initial algebras.

1.3 Notation
Let X be a set.

We write PX for the poset of subsets of X, ordered by inclusion.
We write EqRel(X) for the poset of equivalence relations on X, ordered by inclusion.

1 The sum is a proper class, but this may be avoided e.g. by including only coalgebras carried by a subset
of N.

P.B. Levy 223

For U ∈ PX, we write ◦U for U regarded as a set, and iU : ◦U → X for the inclusion.
For (≡) ∈ EqRel(X) we write X/ ≡ for the quotient set, and e≡ : X → (X/ ≡) for
x 7→ [x]≡.
For U ⊆ V ∈ PX we write iU,V : ◦U →◦ V for the inclusion.
For (≡) ⊆ (≡′) ∈ EqRel(X) we write e≡,≡′ : (X/ ≡)→ (X/ ≡′) for [x]≡ 7→ [x]≡′ .

In diagrams, // // indicates an injection and // // a surjection.
A partial function from a set X to a set Y is a pair (U, f) of U ∈ PX and f : U → Y .

We write (U, f) v (V, g) is when U ⊆ V and U
iU,V //

f

��

V

g

��
Y

. We write X ⇀ Y for the poset of

partial functions ordered by v.

2 Solving the Problem

This section solves the problem set out in Section 1.1. We construct an algebra of theories.
Then we describe how every algebra has a special subalgebra called the co-founded part. The
co-founded part of our algebra of theories provides a final coalgebra as required.

2.1 The B-Algebra of Theories

Our first step is to obtain a B-algebra from the modal logic, where B is our endofunctor
X 7→ (PcX)A.

Say that a theory is any set of 3-layered formulas; this is a crude notion of theory, with
no requirement of deductive closure. Let Form be the set of all theories. Our B-algebra is
(Form, α) where α : B Form → Form can be thought of as describing how the theory of a
state x can be obtained from the theories of its successors. Explicitly, α sendsM∈ B Form
to the set of formulas 〈a〉 (

∧
i∈I φi ∧

∧
j∈J ¬ψj) for which there exists M ∈ Ma such that

∀i ∈ I. φi ∈M and ∀j ∈ J. ψj 6∈M .
This B-algebra has two key properties. Firstly it is corecursive, which we explain in the

next section. Secondly it is injectively structured i.e. α is an injection; we defer the proof of
this until Section 3.4.

2.2 Corecursive Algebras

We reprise here the basic concepts of recursive coalgebras and corecursive algebras.
Let B be an endofunctor on a category C. We write Alg(B) and Coalg(B) for the

categories of B-algebras and B-coalgebras respectively. The evident bijection between
isomorphically structured B-algebras and isomorphically structured B-coalgebras will be
written (−)−1, in either direction.

As explained in [33], a common patten for recursively defining a function f : X → Y

is to first parse x ∈ X into constituent parts, then apply f to each part, then combine the
results. This motivated the following definition.

I Definition 1. [10, 11, 14, 32] A B-coalgebra-to-algebra map from a B-coalgebra (X, ζ) to

CALCO’15

224 Final Coalgebras from Corecursive Algebras

a B-algebra (Y, θ) is a morphism f : X → Y satisfying

BX
Bf // BY

θ
��

X
f
//

ζ

OO

Y

Equivalently, it is a fixpoint of the endofunction

C(X,Y)
BX,Y // C(BX,BY)

C(ζ,θ) // C(X,Y)

Such a map may be composed with a B-algebra map (X ′, ζ ′)→ (X, ζ) or a B-coalgebra map
(Y, θ)→ (Y ′, θ′) in the evident way.

I Definition 2.
1. A B-coalgebra is recursive when there is a unique map from it to each B-algebra.
2. Dually, a B-algebra is corecursive when there is a unique map from each B-coalgebra to

it.

I Proposition 3.
1. (−)−1 gives a bijection between initial B-algebras and isomorphically structured recursive

coalgebras.
2. Dually, (−)−1 gives a bijection between final B-coalgebras and isomorphically structured

corecursive algebras.

Proof. By Lambek’s lemma. J

Recursive coalgebras are an easily grasped concept, thanks to Taylor’s characterization of
recursive coalgebras as well-founded coalgebras in the case where C = Set and B preserves
inverse images [33, 32].

Corecursive algebras (other than free ones [2]) appear not to have such a simple charac-
terization [11]. Still, it is evident that our B-algebra of theories in Section 2.1 is corecursive.
The unique map from a B-coalgebra (X, ζ) to our algebra is L−MX,ζ .

2.3 The Co-founded Part of an Algebra
Certain elements of a B-algebra are said to be co-founded. This is a coinductively defined
predicate. To get some intuition, consider first the case where B is presented by operations.
For an element of a B-algebra to be co-founded, it must be of the form c(yi | i ∈ I) where
each yi is co-founded.

Now for the general case. Let B be an endofunctor on Set, and (Y, θ) a B-algebra.

I Definition 4. We define an endofunction p on PY as follows. For U ∈ PY we define
p(U) ⊆ Y to be the range of the composite

B◦U
BiU // BY

θ // Y

This gives a square B◦U
BiU //

rU
����

BY

θ

��
◦p(U) //

ip(U)

// Y

P.B. Levy 225

We next see that p is monotone and r is natural.

I Proposition 5. If U ⊆ V ∈ PY , then p(U) ⊆ p(V) and B◦U
BiU,V //

rU
����

B◦V

rV
����

◦p(U) //
ip(U),p(V)

// ◦p(V)

writing iU,V for the inclusion of U in V .

Proof. The diagram ◦U // iU,V //

iU

◦V
~~

iV~~
Y

commutes,

so B◦U
BiU,V //

rU
����

BiU

##

B◦V

BiV

{{
rV
����

◦p(U)
##

ip(U) ##

BY

θ

��

◦p(V)
{{

ip(V){{
Y

commutes.

Diagonal fill-in gives B◦U
BiU,V //

rU
����

B◦V

rV
����

◦p(U)
n""

ip(U) ""

◦p(V)
||

ip(V)||
Y

So p(U) ⊆ p(V) and n = ip(U),p(V). J

I Definition 6.
1. A subalgebra of (Y, θ) is U ∈ PY for which there exists a (necessarily unique) function

B◦U

��

BiU // BY

θ
��

◦U
iU

// Y

. Equivalently, it is a prefixpoint of p.

2. The least prefixpoint µp is called the least subalgebra.
3. The greatest postfixpoint µp is called the co-founded part of (Y, θ).
To summarize, we have B-algebra morphisms:

B◦µp

rµp
����

Biµp,νp // B◦νp
Biνp //

rνp
����

BY

θ

��

◦p(µp) //
ip(µp),p(νp)

// ◦p(νp)

◦µp //
iµp,νp

// ◦νp //
iνp

// Y

Clearly the least subalgebra and co-founded parts of (Y, θ) are both surjectively structured
B-algebras. (More generally, a surjectively structured subalgebra is precisely a fixpoint of p.)

CALCO’15

226 Final Coalgebras from Corecursive Algebras

We next see that any map to (Y, θ) from either a surjectively structured algebra or a
coalgebra has range contained in the co-founded part.

I Lemma 7.
1. Any B-algebra homomorphism f : (X,φ)→ (Y, θ) with φ surjective, factorizes uniquely

as (X,φ) g // (◦νp, rνp) //
iνp // (Y, θ)

2. Any B-coalgebra-to-algebra-map f : (X, ζ)→ (Y, θ) factorizes uniquely as

(X, ζ) g // (◦νp, rνp) //
iνp // (Y, θ)

Proof. We encompass both cases by supposing a commutative diagram

Z

φ !! !!

ζ // BX
Bf // BY

θ
��

X
f
// Y

Writing U for the range of f gives Z

φ
����

ζ // BX
Be //

Bf ""

B◦U
rU // //

BiU,Y

��

◦p(U)
��

ip(U)

��

X

e
���� f

++

BY

θ

$$◦U //
iU

// Y

Diagonal fill-in then gives Z

φ
����

ζ // BX
Be // B◦U

rU // // ◦p(U)
��

ip(U)

��

X

e
����
◦U //

iU
//

77

Y

so U is a postfixpoint of p, so U ⊆ νp. There is a morphism ◦νp
iνp

X

g
==

f
// Y

viz. the composite X
e // // ◦U //iU,νp // νp because ◦νp iνp

��
X

e // //

g
==

f

77◦U // iU //
OO iU,νp

OO

Y

Since iνp is monic, g is unique and Z

φ

ζ // BX
Bg // B◦νp

rνp
����

X
g
// ◦νp

commutes.

J

P.B. Levy 227

I Corollary 8.
1. The co-founded part of (Y, θ) is its coreflection into the full subcategory of Alg(B) on

surjectively structured algebras.
2. If (Y, θ) is corecursive then so is its co-founded part.

Proof. Each part follows from the corresponding part of Lemma 7. J

2.4 Injectively Structured Algebras
Let B be an endofunctor on Set preserving injections.

I Lemma 9. Let (Y, θ) be an injectively structured B-algebra. For any U ∈ PY , the map
rU : B◦U →◦ p(U) is an isomorphism.

Proof. Def. 4 is factorizing an injection.. J

I Theorem 10. The (co-founded part)−1 of an injectively structured, corecursive B-algebra
is a final B-coalgebra.

Proof. The co-founded part is a corecursive B-algebra by Corollary 8(2) and isomorphically
structured by Lemma 9. So we apply Proposition 3(2). J

To obtain an initial algebra, we may apply an old result [34, Theorem II.4]

I Theorem 11. The least subalgebra of an injectively structured B-algebra is an initial
B-algebra.

Proof. Consider the endofunction q on Y ⇀ Z that sends a partial function (U, f) to the

partial function (◦p(U), ◦p(U)
r−1
U // B◦U

Bf // BZ
φ // Z).

To show q monotone, if (U, f) v (V, g) i.e. ◦U
~~

iU

~~
iU,V

��

f

Y Z

◦V

``iV

``

g

>>

then Proposition 5 gives ◦p(U)
q(U,f)

��

||ip(U)

||

��

ip(U),p(V)

��

r−1
U

// B◦U
Bf

""
BiU,V

��

Y BZ
φ // Z

◦p(V)
q(V,g)

CC

bbip(V)

bb

r−1
V // B◦V

Bg

<<

Now we have (Y ⇀ Z) q //

dom
��

(Y ⇀ Z)

dom
��

PY
p

// PY

Since Y ⇀ Z has and dom preserves suprema

of ordinal chains, we obtain dom(µq) = µp. Therefore µq is the unique fixpoint of q whose
domain is µp, i.e. the unique B-algebra homomorphism from (µp, rµp) to (Z, φ). J

CALCO’15

228 Final Coalgebras from Corecursive Algebras

Returning to our example: we began in Section 2.1 with a corecursive B-algebra of
theories that is injectively structured (though we have still to prove that). By Theorem 10,
its (co-founded part)−1 is a final coalgebra; and by Theorem 11, its least subalgebra is an
initial algebra. Both are constructed purely from the logic, as stipulated in Section 1.1.

3 Final Coalgebras From Modal Logic on a Dual Adjunction

In the previous section, we saw an example where modal formulas give rise to an injectively
structured corecursive algebra, as required for Theorem 10. We shall now see how this arises
in the general setting of modal logic over a dual adjunction [9, 12, 19, 20, 27]. We begin with
an explanation of this formulation of modal logic, based on [20].

3.1 Dual Adjunctions
An adjunction F a G : D → C may be described by an isomorphism

C(X,GΦ) ∼= D(FX,Φ) natural in X ∈ C
op
,Φ ∈ D.

This gives a functor O : Cop × D → Set (also known as a “bimodule” or “profunctor”),
sending (X,Φ) to either C(X,GΦ) or D(FX,Φ); it does not matter which, since they are
isomorphic. This suggests an alternative (equivalent) definition of adjunction: as a functor
O together with two isomorphisms

C(X,UΦ) ∼= O(X,Φ) ∼= D(FX,Φ) natural in X ∈ C
op
,Φ ∈ D.

For example, we can describe the adjunction P a P : Set
op
→ Set by the isomorphisms

Set(X,PΦ) ∼= Rel(X,Φ) ∼= Set(Φ,PX) natural in X ∈ Set
op
,Φ ∈ Set

op
.

where Rel(X,Φ) is the set of relations between X and Φ. In particular, if X is the set of
states of a transition system (X, ζ) and Φ is the set of formulas of our logic, the satisfaction
relation |= is an element of Rel(X,Φ). It corresponds to a map X → PΦ viz. L−MX,ζ and
also to a map Φ→ PX sending each formula to its satisfying states. This example is a dual
adjunction between Set and itself; more generally we want a dual adjunction between a
category C, whose objects we think of as sets of states, and a category D, whose objects we
think of as sets of formulas. We summarize as follows.

I Definition 12. A dual adjunction for a category C consists of
a category D
a functor O : Cop ×Dop → Set
functors O∗ : Cop → D and O∗ : Dop → C, and isomorphisms

C(X,O∗Φ) ∼= O(X,Φ) ∼= D(Φ,O∗X) natural in X ∈ C
op
,Φ ∈ D

op
.

natural in X ∈ Cop and Φ ∈ Dop .

3.2 Modal Logic on a Dual Adjunction
Recall that, for a set X of states, BX is the set of single-step behaviours ending in a state in
X. In our example BX = Pc(A×X).

As explained in [20], there are two essential ingredients required to build a modal logic.

P.B. Levy 229

Firstly the syntax. For a set Φ of atoms, let LΦ be the set of single-layer formulas with
atoms drawn from Φ. In our example, following (1), LΦ is the set of formulas

〈a〉 (
∧
i∈I

φi ∧
∧
j∈J
¬ψj) (φi, ψj ∈ Φ)

More succinctly LΦ = A×PcΦ× PcΦ. General formulas form an initial L-algebra.
Secondly the semantics. Given a relation |= between X and Φ saying which states satisfy

which atoms, let ρX,Φ(|=) be the induced relation between single-step behaviours (BX) and
single-layer formulas (LΦ). In our example, following (2), we have for s ∈ BX

s (ρX,Φ(|=)) 〈a〉 (
∧
i∈I

φi ∧
∧
j∈J
¬ψj) ⇐⇒ ∃x ∈ sa. (∀i ∈ I.x |= φi ∧ ∀j ∈ J. x 6|= ψj)

The general situation is summarized as follows.

I Definition 13. For an endofunctor B on C, a modal logic on a dual adjunction, or just
modal logic, consists of

a dual adjunction (D,O) for C
an endofunctor L on D, the syntax functor
a map ρX,Φ : O(X,Φ)→ O(BX,LΦ) natural in X ∈ Cop

,Φ ∈ Dop , called the semantics.
We have expressed the semantics ρ in terms of O, but could alternatively express it in terms
of O∗ or O∗.

I Proposition 14. Let (D,O, L, ρ) be a modal logic for an endofunctor B on C.
1. There is a unique natural transformation

Cop O∗ //

B
��
⇓ρ∗

D

L

��
Cop

O∗
// D

from which ρX,Φ may be recovered via

O(X,Φ)
ρX,Φ //

∼=

O(BX,LΦ)

∼=

D(Φ,O∗X)
LΦ,O∗X

// D(LΦ, LO∗X)
D(LΦ,ρX∗)

// D(LΦ,O∗BX)

2. There is a unique natural transformation

Dop O∗ //

L
��
⇓ρ∗

C

B

��
Dop

O∗
// C

from which ρX,Φ may be recovered via

O(X,Φ)
ρX,Φ //

∼=

O(BX,LΦ)

∼=

C(X,O∗Φ)
BX,O∗Φ

// C(BX,BO∗Φ)
C(BX,ρ∗Φ)

// C(BX,O∗LΦ)

CALCO’15

230 Final Coalgebras from Corecursive Algebras

Before proving this, let us explain these maps in logical terms.
ρX∗ associates, to each single-layer formula φ built from properties on X, the property
on single-step behaviours ending in X that φ describes. In our example logic, it sends
〈a〉 (

∧
i∈I φi ∧

∧
j∈J ¬ψj), where φi and ψj are subsets of X, to the set of s ∈ BX such

that ∃x ∈ sa. (∀i ∈ I. x ∈ φi ∧ ∀j ∈ J. x 6∈ ψj)
ρ∗Φ associates, to each single-step behaviour ending in theories on Φ, the theory consisting
of single-layer formulas constructed from Φ satisfied by that behaviour. In our example,
it sends s ∈ BPΦ to the set of formulas 〈a〉 (

∧
i∈I φi ∧

∧
j∈J ¬ψj), with φi, ψj ∈ Φ, such

that ∃M ∈ sa. (∀i ∈ I. φi ∈M ∧ ∀j ∈ J. ψj 6∈M)

Proof. (of Proposition 14) For part (1), we use calculus of ends.

Maps O(X,Φ)→ O(BX,LΦ) natural in X, Φ
∼= Maps D(Φ,O∗X)→ D(LΦ,O∗BX) natural in X, Φ

∼=
∫
X,Φ

Set(D(Φ,O∗X),D(LΦ,O∗BX))

∼=
∫
X

D(LO∗X,O∗BX) (by the Yoneda Lemma)
∼= Maps LO∗X → O∗BX natural in X

Tracing through the bijection backwards gives the constructions described. Part (2) is proved
similarly. J

Explicitly, ρX∗ is the image of idO∗X in the composite

D(O∗X,O∗X) ∼= O(X,O∗X)
ρX,O∗X // O(BX,LO∗X) ∼= D(LO∗X,O∗BX)

and ρ∗Φ is the image of idO∗Φ in the composite

C(O∗Φ,O∗Φ) ∼= O(O∗Φ,Φ)
ρO∗Φ,Φ // O(BO∗Φ, LΦ) ∼= C(BO∗Φ,O∗LΦ)

3.3 Relating States to Modal Formulas
In this section, let (D,O, L, ρ) be a modal logic for an endofunctor B on C.

We want to relate B-coalgebras (transition systems) to the initial L-algebra (the set of
formulas).

I Definition 15.
1. An (O|ρ)-connection between a B-coalgebra (X, ζ) and an L-coalgebra (Φ, γ) is a fixpoint

of the endofunction O(X,Φ)
ρX,Φ // O(BX,LΦ)

O(ζ,γ) // O(X,Φ) .
2. Let (O|ρ)∗ : Coalg(B)→ Alg(L) be the functor sending (X, ζ) to

(O∗X, LO∗X
ρX∗ // O∗BX

O∗ζ // O∗X)

3. Let (O|ρ)∗ : Coalg(L)→ Alg(B) be the functor sending (Φ, γ) to

(O∗Φ, BO∗Φ
ρ∗Φ // O∗LΦ O∗γ // O∗Φ)

I Proposition 16. Let (X, ζ) be a B-coalgebra and (Φ, γ) an L-coalgebra. For f ∈ O(X,Φ)
corresponding to f∗ : Φ→ O∗X and f∗ : X → O∗Φ, the following are equivalent.

P.B. Levy 231

f is an (O|ρ)-connection between (X, ζ) and (Φ, γ).
f∗ is an L-coalgebra-to-algebra map (Φ, γ)→ (O|ρ)∗(X, ζ).
f∗ is a B-coalgebra-to-algebra map (X, ζ)→ (O|ρ)∗(Φ, γ).

Proof. The following diagram commutes:

C(X,O∗Φ)

∼=

BX,O∗Φ // C(BX,BO∗Φ)
C(BX,ρ∗Φ)

//

C(ζ,(ρ∗Φ;O∗γ))

--
C(BX,O∗LΦ)

∼=

C(ζ,O∗γ)
// C(X,O∗Φ)

∼=

O(X,Φ)
ρX,Φ //

∼=

O(BX,LΦ)
O(ζ,γ) //

∼=

O(X,Φ)

∼=

D(Φ,O∗X)
LΦ,O∗X

// D(LΦ, LO∗X)
D(LΦ,ρX∗) //

D(γ,(ρX∗ ;O∗ζ))

11D(LΦ,O∗BX)
D(γ,O∗ζ) // D(Φ,O∗X)

An (O|ρ)-connection between (X, ζ) and (Φ, γ) is a fixpoint of the central line.
An L-coalgebra-to-algebra map (Φ, γ)→ (O|ρ)∗(X, ζ) is a fixpoint of the bottom line.
A B-coalgebra-to-algebra map (X, ζ)→ (O|ρ)∗(Φ, γ) is a fixpoint of the top line. J

I Corollary 17.
1. The functor (O|ρ)∗ sends recursive B-coalgebras to corecursive L-algebras.
2. The functor (O|ρ)∗ sends recursive L-coalgebras to corecursive B-algebras.

Now suppose we have an initial L-algebra µL, and regard this as the set of all L-formulas.
Let (X, ζ) be a B-coalgebra.

The unique (O|ρ)-connection between (X, ζ) and (µL)−1 is regarded as the satisfaction
relation |= between states and formulas.
The unique L-coalgebra-to-algebra map (µL)−1 → (O|ρ)∗(X, ζ) can be described more
simply as the unique L-algebra homomorphism µL→ (O|ρ)∗(X, ζ). We regard this as
the function sending each L-formula to the set of states that satisfy it.
The unique B-coalgebra-to-algebra map (X, ζ) → (O|ρ)∗((µL)−1) is regarded as the
function L−MX,ζ sending each state to the set of formulas it satisfies.

We have now seen that (O|ρ)∗((µL)−1) is a corecursive B-algebra. The other requirement of
Theorem. 10, the injective structure, will be addressed in the next section.
I Remark. Proposition 16 and Corollary 17, as well as corresponding results for primitive
recursion and corecursion, have recently appeared (for covariant adjunctions) as part of a
general account of recursion schemes [17, Theorems 3.4 and 5.6].

3.4 Expressive Modal Logics
The key notion of [20] is the following abstract definition of an expressive modal logic.

I Definition 18. A modal logic (D,O, L, ρ) for an injection-preserving endofunctor B on
Set is said to be expressive when ρ∗Φ is injective for every Φ ∈ D.

For such a logic, we can state our main theorem.

I Theorem 19. Let (D,O, L, ρ) be an expressive modal logic for an injection-preserving
endofunctor B on Set . Let µL be an initial algebra for L.
1. The (co-founded part)−1 of (O|ρ)∗((µL)−1) is a final B-coalgebra.
2. The least subalgebra of (O|ρ)∗((µL)−1) is an initial B-algebra.

CALCO’15

232 Final Coalgebras from Corecursive Algebras

Proof. Prop. 2(1) tells us that (µL)−1 is an isomorphically structured recursive coalgebra.
So (O|ρ)∗((µL)−1) is a corecursive B-algebra by Corollary 17(2), and injectively structured
by the definition of (O|ρ)∗. So part (1) follows from Theorem 10, and part (2) from
Theorem 11. J

It remains to establish that our example of a modal logic from described in Sect. 3.2 is
expressive.

Proof. (essentially the same as [20, Section 6.1])
Let s, t ∈ BO∗Φ with ρ∗Φs = ρ∗Φt. For a ∈ A, we want to show sa = ta.
Let M ∈ sa. Define the sets I = {N ∈ ta |M 6⊆ N} and J = {N ∈ ta | N 6⊆M}, which

are countable since ta is. For N ∈ I choose φN ∈M \N , and for N ∈ J choose ψN ∈ N \M .
The formula 〈a〉 (

∧
N∈I φN ∧

∧
N∈J ¬ψN) is in ρ∗Φs = ρ∗Φt, so there is P ∈ ta such that

1. for all N ∈ I, φN ∈ P (implying P 6= N);
2. for all N ∈ J , ψN 6∈ P (implying P 6= N).
(1) gives P 6∈ I, so M ⊆ P . (2) gives P 6∈ J , so P ⊆M . Thus P = M , giving M ∈ ta.

Likewise M ∈ ta implies M ∈ sa. J

4 Beyond Set

In this section we generalize our results to categories other than Set. We give our general
results in Section 4.1, and examine the special cases of Poset in Section 4.2 and Set

op
in

Section 4.3.

4.1 General Results
We work with a category C equipped with an orthogonal factorization system (E ,M). This
consists of two lluf subcategories E and M of C, containing all isomorphisms, with every

C-morphism X
f // Y having an essentially unique factorization into an E-morphism

X
e // // U and a M-morphism U // m // Y See e.g. [3] for an account of these systems.

Here are some examples:
on Set, let E consist of surjections, andM of injections;
on Poset, let E consist of surjective maps, andM of order-reflecting (hence injective)
maps;
on Set

op
, let E consists of injections, andM of surjections.

We further require that allM-morphisms are monic, and theM-subobjects of any object form
a small complete lattice. (A stronger assumption, which apparently includes all examples of
interest, is that C is equipped with a well-powered sink factorization system. See [3] for an
account of source and sink factorization.)

Let B be anM-preserving endofunctor on C. We adapt our results as follows; the proofs
are essentially unchanged.

I Theorem 20 (generalizing Theorem 10). Let (Y, θ) be an M-structured, corecursive B-
algebra. Then its (co-founded part)−1 is a final B-coalgebra.

I Theorem 21 ([34, Theorem II.4], generalizing Theorem 11). Suppose that M has, and
the inclusionM⊆ C preserves, colimits of ordinal chains. Then the least subalgebra of an
injectively structured B-algebra is an initial B-algebra.

P.B. Levy 233

Note the extra condition imposed here, needed to ensure the poset Y ⇀ Z has suprema of
ordinal chains. The condition is true for Poset, but false for Set

op
, whereM lacks an initial

object because it is the opposite of the category of surjections.

I Theorem 22 (generalizing Theorem 19). Let (D,O, L, ρ) be a modal logic for B that is
M-expressive, i.e. ρ∗Φ ∈M for every Φ ∈ D [19]. Let µL be an initial algebra for L.
1. The (co-founded part)−1 of (O|ρ)∗((µL)−1) is a final B-coalgebra.
2. Suppose thatM has, and the inclusionM⊆ C preserves, colimits of ordinal chains. Then

the least subalgebra of (O|ρ)∗((µL)−1) is an initial B-algebra.

All the proofs of the above theorems are essentially the same as the ones we gave for Set.
We now look at two examples of this more general theory.

4.2 Poset Example
Notation. For a poset X we write

UpX for the set of upsets
DownX for the set of downsets
UpcX for the set of countably generated upsets
DowncX for the set of countably generated downsets.

all ordered by inclusion.
It was shown in [24] following [16, 18, 36] that the collection of states of image-countable

transition systems can be characterized modulo similarity as a final coalgebra for the
endofunctor B on Poset sending X to (DowncX)A. Similarity is also characterized by
modal formulas of the form

φ ::= 〈a〉
∧
i∈I

φi

Coalgebraic accounts of logic for similarity have been given in [5, 13, 35].
Once again we ask how to construct a final coalgebra directly from the logic. We answer

this with the following modal logic (D,O, L, ρ) for B.
D = C = Poset.
O(X,Φ) = Up (X × Φ), because if x |= φ and x . y and φ⇒ ψ then y |= ψ.
O∗ andO∗ are Up, with evident natural isomorphisms Poset(X,Up Φ) ∼= Up (X×Φ) ∼=
Poset(Φ,UpX).
L maps Φ to the set of formulas 〈a〉

∧
i∈I φi modulo the following preorder: we have

〈a〉
∧
i∈I φi 6 〈b〉

∧
j∈J ψj when a = b and for all j ∈ J there is i ∈ I with φi ⇒ ψj .

More briefly L maps Φ to the poset A× UpcΦ.
ρX,Φ(|=) is the relation from BX to LΦ that relates s to 〈a〉

∧
i∈I φi when ∃x ∈ sa. ∀i ∈

I.x |= φi.

We deduce the form of ρ∗ and ρ∗.
The function ρX∗ maps 〈a〉

∧
i∈I φi, where φi and ψj are upsets of X, to the upset of

s ∈ BX such that ∃x ∈ sa. ∀i ∈ I. x ∈ φi
The function ρ∗Φ maps s ∈ B Up Φ to the upset of formulas 〈a〉

∧
i∈I φi, with φi, ψj ∈ Φ,

such that ∃M ∈ sa. ∀i ∈ I. φi ∈M
To apply Theorem 22, we show that ρ∗Φ is order-injective.

Proof. Suppose s, t ∈ B Up Φ and ρ∗Φs ⊆ ρ∗Φt. For a ∈ A, we want to show sa ⊆ ta.

CALCO’15

234 Final Coalgebras from Corecursive Algebras

Let M ∈ sa. It is a downset in Up Φ generated by {φi | i ∈ I}, where I is countable.
The formula 〈a〉

∧
i∈I φi is in ρ∗Φ(s), and hence is in ρ∗Φ(t), so there is N ∈ ta such that

∀i ∈ I. φi ∈ N . Hence M ⊆ N . Since ta is a downset in Up Φ, we have M ∈ ta. J

We therefore obtain both a final coalgebra and an initial algebra from Theorem 22.

4.3 The Dual Construction
We briefly consider the dual of Theorem 10, i.e. the case of Theorem 20 where C = Set

op
.

Here the complete lattice PY is replaced by the complete lattice EqRel(Y) of equivalence
relations on Y .

Let B be an endofunctor on Set. We now need B to preserve surjections, not injections,
but that is automatic since surjections are split epis. An injectively structured coalgebra is
sometimes called an extensional coalgebra, after ZF set theory’s Axiom of Extensionality.

Given a B-coalgebra (Y, ζ), and (≡) ∈ EqRel(Y), we define p(≡) ∈ EqRel(Y) to be the
kernel of the composite

Y
ζ // BY

Be≡ // // B(Y/ ≡)

where e≡ : Y → (Y/ ≡) sends x 7→ [x]≡. This gives a square

Y
ep(≡) // //

ζ

��

Y/p(≡)
��
r≡

��
BY

Be≡

// // B(Y/ ≡)

Then p is a monotone endofunction on EqRel(Y). Its least prefixpoint µp is called extensional
equivalence, and the B-coalgebra (Y/µp, rµp) is called the extensional quotient of (X, ζ).
This is dual to the co-founded part construction. Therefore, dually to Corollary 8(1),
the extensional quotient is a reflection of (Y, ζ) into the full subcategory of Coalg(B) on
extensional coalgebras.

The dual of Theorem 10 is as follows.

I Theorem 23. Let (X, ζ) be a surjectively structured, recursive B-coalgebra. Then its
(extensional quotient)−1 is an initial B-algebra.

We illustrate this with the endofunctor B : X 7→ PcX. Let X be the set of well-founded
terms built from an ω-ary operation c and a constant d. Let ζ be the function

c(ti | i ∈ N) 7→ {ti | i ∈ N}
d 7→ { }

The Pc-coalgebra (X, ζ) is surjectively structured, and it is recursive because it is well-
founded [33]. Therefore, by Theorem 23 its (extensional quotient)−1 is an initial Pc-algebra.

5 Conclusions and Further Work

We now have a general machinery for building final coalgebras from modal formulas. Many
interesting questions remain.

Having considered several least prefixpoints and greatest postfixpoints, we may ask how
long it takes to reach these fixpoints.

P.B. Levy 235

If the functor B preserves arbitrary intersections of subsets, then p will preserve nonempty
intersections of subsets. Therefore νp will be reached at ω, cf. [37].
If the functor B preserves κ-filtered colimits then p will do so too. Therefore µp will be
reached at κ.

Our example functor X 7→ (PcX)A preserves intersections and ω1-filtered colimits, so νp is
reached at ω and µp at ω1, at the latest.

But this leaves the question of functors on Set that do not preserve intersection, cf. [37],
and also the examples in Section 4. We leave these for future work.

Another task remaining is to consider canonical models for infinitary modal logics, and
the relationship with logical completeness results [26, 28, 30, 31].

Finally, there are intriguing connections to explore with the use of algebras, coalgebras
and duality in [6, 8, 21], and with the recent general account of recursion schemes in [17].

References
1 Samson Abramsky. A cook’s tour of the finitary non-well-founded sets. In Sergei N. Artë-

mov, Howard Barringer, Artur S. d’Avila Garcez, Luís C. Lamb, and John Woods, editors,
We Will Show Them! Essays in Honour of Dov Gabbay, Volume One, pages 1–18. College
Publications, 2005.

2 Jiří Adámek, Mahdieh Haddadi, and Stefan Milius. Corecursive algebras, corecursive mon-
ads and bloom monads. Logical Methods in Computer Science, 10(3), 2014.

3 Jiří Adamek, Horst Herrlich, and George Strecker. Abstract and Concrete Categories – The
Joy of Cats. Wiley, 1990.

4 Jiří Adámek, Paul B. Levy, Stefan Milius, Lawrence S. Moss, and Lurdes Sousa. On final
coalgebras of power-set functors and saturated trees. Applied Categorical Structures, June
2014.

5 Alexandru Baltag. A logic for coalgebraic simulation. Electronic Nptes in Theoretical
Computer Science, 33, 2000.

6 Nick Bezhanishvili, Clemens Kupke, and Prakash Panangaden. Minimization via duality,
volume 7456 LNCS of Lecture notes in computer science / Theoretical Computer Science
and General Issues, pages 191–205. Springer, 2012.

7 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge University
Press, 2002.

8 Filippo Bonchi, Marcello M. Bonsangue, Helle H. Hansen, Prakash Panangaden, Jan J.
M. M. Rutten, and Alexandra Silva. Algebra-coalgebra duality in Brzozowski’s minimiza-
tion algorithm. ACM Transactions on Computational Logic, 15(1):3:1–3:29, March 2014.

9 Marcello Bonsangue and Alexander Kurz. Duality for logics of transition systems. In
FOSSACS: International Conference on Foundations of Software Science and Computation
Structures. Lecture Notes in Computer Science, 2005.

10 Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Recursive coalgebras from comonads.
INFCTRL: Information and Computation (formerly Information and Control), 204, 2006.

11 Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Corecursive algebras: A study of
general structured corecursion. In M. Oliveira and J. Woodcock, editors, Formal Methods:
Foundations and Applications, 12th Brazilian Symposium on Formal Methods, SBMF 2009,
Gramado, Brazil, Revised Selected Papers, volume 5902 of LNCS, pages 84–100. Springer,
2009.

12 Liang-Ting Chen and Achim Jung. On a categorical framework for coalgebraic modal logic.
Electronic Notes in Theoretical Computer Science, 308:109–128, 2014.

13 Corina Cîrstea. A modular approach to defining and characterising notions of simulation.
Information and Computation, 204(4):469–502, 2006.

CALCO’15

236 Final Coalgebras from Corecursive Algebras

14 Adam Eppendahl. Coalgebra-to-algebra morphisms. Electronic Notes in Theoretical Com-
puter Science, 29:42–49, 1999.

15 Robert Goldblatt. Final coalgebras and the hennessy-milner property. Annals of Pure and
Applied Logic, 138(1-3):77–93, 2006.

16 Wim H. Hesselink and Albert Thijs. Fixpoint semantics and simulation. Theoretical Com-
puter Science, 238(1-2):275–311, 2000.

17 Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Conjugate hylomorphisms – or: The mother
of all structured recursion schemes. In Sriram K. Rajamani and David Walker, editors,
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 527–
538. ACM, 2015.

18 Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theoretical Computer Science,
327(1-2):71–108, 2004.

19 Bart Jacobs and Ana Sokolova. Exemplaric expressivity of modal logics. Journal of Logic
and Computation, 20(5):1041–1068, 2010.

20 Bartek Klin. Coalgebraic modal logic beyond sets. Electronic Notes in Theoretical Com-
puter Science, 173:177–201, 2007.

21 Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics. In An-
drew M. Pitts, editor, Foundations of Software Science and Computation Structures – 18th
International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Pro-
ceedings, volume 9034 of Lecture Notes in Computer Science, pages 151–166. Springer, 2015.

22 Clemens Kupke and Raul Andres Leal. Characterising behavioural equivalence: Three
sides of one coin. In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors, Al-
gebra and Coalgebra in Computer Science, Third International Conference, CALCO 2009,
Udine, Italy, September 7-10, 2009. Proceedings, volume 5728 of Lecture Notes in Computer
Science, pages 97–112. Springer, 2009.

23 Alexander Kurz and Dirk Pattinson. Coalgebraic modal logic of finite rank. Mathematical
Structures in Computer Science, 15(3):453–473, 2005.

24 Paul B. Levy. Similarity quotients as final coalgebras. In Martin Hofmann, editor, Proceed-
ings, 14th International Conference on Foundations of Software Science and Computational
Structures, Saarbrücken, Germany, volume 6604 of Lecture Notes in Computer Science,
pages 27–41. Springer, 2011.

25 Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
26 Pierluigi Minari. Infinitary modal logic and generalized Kripke semantics. Annali del

Dipartimento di Filosofia, 17(1), 2012.
27 Dusko Pavlovic, Michael W. Mislove, and James Worrell. Testing semantics: Connect-

ing processes and process logics. In Michael Johnson and Varmo Vene, editors, Algebraic
Methodology and Software Technology, 11th International Conference, AMAST 2006, Kur-
essaare, Estonia, July 5-8, 2006, Proceedings, volume 4019 of Lecture Notes in Computer
Science, pages 308–322. Springer, 2006.

28 Slavian Radev. Infinitary propositional normal modal logic. Studia Logica, 46(4):291–309,
1987.

29 Jan J. M. M. Rutten. A calculus of transition systems (towards universal coalgebra). In
97, page 25. Centrum voor Wiskunde en Informatica (CWI), ISSN 0169-118X, January 31
1995. CS-R9503.

30 Lutz Schröder and Dirk Pattinson. Strong completeness of coalgebraic modal logics. In
S. Albers and J.-Y. Marion, editors, Proc. STACS 2009, volume 09001 of Dagstuhl Seminar
Proceedings, pages 673–684. Schloss Dagstuhl, 2009.

P.B. Levy 237

31 Yoshihito Tanaka and Hiroakira Ono. Rasiowa-Sikorski lemma, Kripke completeness of pre-
dicate and infinitary modal logics. In Michael Zakharyaschev, Krister Segerberg, Maarten
de Rijke, and Heinrich Wansing, editors, Advances in Modal Logic, pages 401–420. CSLI
Publications, 1998.

32 Paul Taylor. Towards a unified treatment of induction i: the general recursion theorem.
preprint, 1996.

33 Paul Taylor. Practical Foundations of Mathematics. Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge, 1999.

34 Vera Trnková, Jiří Adámek, Václav Koubek, and Jan Reiterman. Free algebras, in-
put processes and free monads. Commentationes Mathematicae Universitatis Carolinae,
016(2):339–351, 1975.

35 Toby Wilkinson. A characterisation of expressivity for coalgebraic bisimulation and simu-
lation. Electronic Notes in Theoretical Computer Science, 286:323–336, 2012.

36 James Worrell. Coinduction for recursive data types: partial orders, metric spaces and
ω-categories. Electronic Notes in Theoretical Computer Science, 33, 2000.

37 James Worrell. On the final sequence of a finitary set functor. Theoretical Computer
Science, 338(1–3):184–199, June 2005.

CALCO’15

Uniform Interpolation for Coalgebraic Fixpoint
Logic
Johannes Marti, Fatemeh Seifan, and Yde Venema

ILLC, Universiteit van Amsterdam, The Netherlands
johannes.marti@gmail.com, F.Seifan@uva.nl, Y.Venema@uva.nl

Abstract
We use the connection between automata and logic to prove that a wide class of coalgebraic
fixpoint logics enjoys uniform interpolation. To this aim, first we generalize one of the central
results in coalgebraic automata theory, namely closure under projection, which is known to hold
for weak-pullback preserving functors, to a more general class of functors, i.e., functors with quasi-
functorial lax extensions. Then we will show that closure under projection implies definability of
the bisimulation quantifier in the language of coalgebraic fixpoint logic, and finally we prove the
uniform interpolation theorem.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases µ-calculus, uniform interpolation, coalgebra, automata

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.238

1 Introduction

The connection between automata and logic goes back to the early seventies by the works of
Büchi [3] and Elgot [6], who showed that finite automata and monadic second-order logic
have the same expressive power over finite words, and that the transformations from formulas
to automata and vice versa are effective. This connection has found important applications
and landmark results, such as Rabin’s decidability theorem [18]. During the last twenty
years study of the link between automata and logic has been continued and many interesting
results have been obtained, such as results in [10], where Janin and Walukiewicz established
the connection between the modal µ-calculus and parity automata operating on labeled
transition systems.

The coalgebraic perspective on the link between automata and logic has been uniformly
studied in [22], where the author introduces the notion of a coalgebra automaton and
establishes the connection between these automata and coalgebraic fixpoint logic based on
Moss’ modality ∇ [15]. Coalgebraic fixpoint logic is a powerful extension of coalgebraic
modal logic [15] with fixpoint operators. The main contribution of this paper will be to add
uniform interpolation to the list of properties of coalgebraic fixpoint logic.

A logic has interpolation if, whenever we have formulas a and b such that |= a → b

(meaning that the formula a→ b holds in every model), then there is an interpolant formula
c in the common language of a and b (i.e., c may use only propositional letters that appear
both in a and b), such that |= a→ c and |= c→ b. This notion is familiar from first-order
logic, and is known there as Craig interpolation [4] . Some logics enjoy a much stronger
version of interpolation, namely uniform interpolation, which has been introduced by Pitts in
[17]. A logic has uniform interpolation if the interpolant c does not really depend on b itself,
but only on the language that b shares with a. Although it is easy to show that classical
propositional logic has uniform interpolation, not many logics have this property, for instance
first-order logic has interpolation, but it does not enjoy the uniform version [9].

© Johannes Marti, Fatemeh Seifan, and Yde Venema;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 238–252

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.238
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Marti, F. Seifan, and Y. Venema 239

As a motivation for studying uniform interpolation, let us mention some recent works on
this property. Starting with the seminal work of Pitts [17] who introduced this version of
interpolation and proved that intuitionistic logic has uniform interpolation, the study of this
property for different logics has been actively pursued by various authors. In modal logic,
Shavrukov [21] proved that the Gödel-Löb logic GL has uniform interpolation. Subsequently,
Ghilardi [7] and Visser [23] independently established the property for modal logic K, while [8]
contains negative results for modal logic S4. In the theory of modal fixpoint logic D’Agostino
and Hollenberg proved that the modal µ-calculus has uniform interpolation [5].

In this paper we study uniform interpolation in the context of coalgebraic fixpoint logic.
More specifically, we restrict attention to set functors T that preserve finite sets and that
admit a so-called quasi-functorial lax extension L, that is, a certain kind of relation lifting
satisfying somewhat weaker conditions than the standard Barr extension (see Definition 2.11
for the details). This class of functors includes the ones that preserve weak pullbacks, but
also the monotone neighborhood functor, and it is closed under various natural operations on
functors, see Fact 2.15. For each of these functors we consider a coalgebraic modal fixpoint
logic µLT

L, in the style of [22], where the semantics of the Moss-style modality is given by
the relation lifting L (a definition is given in section 3). Our main result, Theorem 5.3 states
that the resulting logic enjoys the property of uniform interpolation; our proof also applies
to the fixpoint-free fragment of the logic.

As usual in the setting of modal logic, our proof is based on the link between uniform
interpolation and the definability of a certain nonstandard second-order quantifier, the so-
called bisimulation quantifier. More specifically, our aim will be to define, for each proposition
letter p, a map ∃p on µLT

L, and prove that this map satisfies

S, s ∃p.b iff S′, s′ b, for some S′, s′ with S, s↔p S′, s′, (1)

for all pointed coalgebras (S, s). Here ↔p denotes bisimilarity, with respect to the relation
lifting L, up to the proposition letter p.

Our proof follows the automata-theoretic approach by D’Agostino and Hollenberg. That
is, in section 3.2 we define a class of nondeterministic parity automata that closely correspond
to our language, in the sense that there are effective translation transforming a µLT

L-formula
into an equivalent automaton, and vice versa. Our main technical result, generalizing earlier
work by Kupke and the third author [12], is in section 4; it provides a construction revealing
that the class of coalgebra automata associated with our logic, is closed under projection.
From this we may easily derive the definability of bisimulation quantifiers in our logic.

In order to finish the introduction, let us mention some related work. First of all, our
paper should be considered as the publication of results from the first author’s MSc thesis [13]
on uniform interpolation for the fixpoint-free fragment of our language. Pattinson [16]
introduced a variant of Moss-style coalgebraic modal logic which nicely works for all set
functors: the so-called logic of exact covers, and he showed that this logic enjoys uniform
interpolation. Since the modality of this language seems to be inherently non-monotonic, it
is not so clear how to extend his result to the setting with fixpoint operators.

Overview. We first fix notation and terminology and equip the reader with the necessary
background material. In section 3 we introduce coalgebraic fixpoint logic and give a brief
introduction to automata theory. After that, we prove in section 4 our main technical result.
We show that if functor T : Set→ Set has a quasi-functorial lax extension L which preserves
diagonals, then T-automata are closed under projection. Finally in section 5 we combine the

CALCO’15

240 Uniform Interpolation for Coalgebraic Fixpoint Logic

results from section 3 and section 4 in order to prove uniform interpolation for coalgebraic
fixpoint logic µLT

L. We finish the paper in section 6 with an outlook on future results.

2 Preliminaries

This section contains some of the preliminaries and fixes the notation. We presuppose that
reader has made contact with basic concepts from category theory before. For example we
assume familiarity with basic notions such as categories, functors, natural transformations
and isomorphic categories.

We also presupposes knowledge of the theory of coalgebras. An extensive introduction is
given for example in [19].

2.1 Set Functors
We will work in the category Set, that has sets as objects and functions as arrows. For
sets X ′ ⊆ X, the inclusion map from X ′ to X is denoted by iX′,X : X ′ ↪→ X, x 7→ x.
For a function f : X → Y we define the set Rng(f) = {y ∈ Y | ∃x ∈ X, f(x) = y} ⊆ Y .
In the following we assume, if not explicitly stated otherwise, that functors are covariant
endofunctors in the category Set.

We first introduce some of the functors that concern us in this paper. The powerset
functor is the functor P : Set → Set, which maps a set S to the set of all its subsets
PS = {V | V ⊆ S}. A function f : S → T is mapped to Pf : PS → PT , which is defined
for any V ⊆ S by Pf(V) = f [V] = {f(v) | v ∈ V }. The contravariant powerset functor P̆
also maps a set S to P̆S = PS. On functions P̆ is the inverse image map, that is for an
f : S → T we have P̆f : P̆S → P̆T , V 7→ f−1[V]. The neighborhood functor N = P̆P̆ is the
double contravariant powerset functor. Given a set S and an element α ∈ NS, we define

α↑ := {X ∈ PS | Y ⊆ X for some Y ∈ α}

and we say that α is upward closed if α = α↑. The monotone neighborhood functor M
is the restriction of the neighborhood functor to upward closed sets. More concretely the
functor M is given by MS := {β ∈ NS | β is upward closed}, while for f : S → T , we
defineMf :MS →MT byMf(β) := (N f(β))↑.

I Definition 2.1. T : Set→ Set preserves inclusions if TiA,B = iTA,TB for all sets A ⊆ B.

I Proposition 2.2. If T : Set→ Set preserves inclusions, then T(Rng(f)) = RngT(f) for
any function f in Set.

In coalgebraic logic one pays special attention to finitary, finite set preserving functors.

I Definition 2.3. A functor T preserves finite sets if TX is finite whenever X is.
An inclusion preserving functor T is called finitary if it satisfies

TX =
⋃
{TX ′ ⊆ TX | X ′ ⊆ X, X ′ is finite }

for all sets X. The finitary version Tω of an inclusion preserving functor T is defined such
that it maps a set X to TωX =

⋃
{TX ′ | X ′ ⊆ X, X ′ is finite }, and a function f to itself.

These definitions can be simply generalized to the class of all set functors.
An example of a finitary version of a functor is Pω, that maps a set X to the set of all its

finite subsets. An other important class of set functors in the context of coalgebraic modal
logic is the class of intersection preserving functors.

J. Marti, F. Seifan, and Y. Venema 241

I Definition 2.4. A set functor T preserves finite intersections if for all sets A and B,
T(A ∩B) = TA ∩ TB.

2.2 Coalgebras
In the following part of this section, we will briefly recall the basic notions from the theory
of coalgebras that we will use later. For a detailed introduction into coalgebras see e.g. [19].

I Definition 2.5. Given a set functor T, a T-coalgebra is a pair S = (S, σ) with σ : S → TS.
A pointed T-coalgebra is a pair consisting of a T-coalgebra together with an element of
(the carrier set of) that coalgebra. A T-coalgebra morphism from T-coalgebra S = (S, σ) to
S′ = (S′, σ′), written f : S→ S′, is a function f : S → S′ such that T(f) ◦ σ = σ′ ◦ f . The
collection of T-coalgebras with their morphisms form a category denoted by Coalg(T).

I Definition 2.6. Let T be an endofunctor on the category Set, and C an arbitrary set
of objects that we shall call colors. We let TC denote the functor TCS = TS × C; that
is, TC maps a set S to the set TS × C (and a function f : S → S′ to the function
Tf × idC : TS × C → TS′ × C). TC-coalgebras will also be called C-colored T-coalgebras.
We will usually denote TC -coalgebras as triples S = (S, σ, γ), with σ : S → TS the coalgebra
map and γ : S → C the coloring (marking).

I Convention 2.7. From now on in all our investigations, without lose of generality, we can
assume set functor T preserves inclusions and finite intersections. Indeed given any T we
can find a naturally isomorphic T′ that preserves inclusions and finite intersections. The
details can be found in [1]. The important point for us is that the category of Coalg(T) and
Coalg(T′) are isomorphic.

2.3 Relation Lifting and Bisimulation
In the remaining part of this section we introduce the notion of relation lifting to define a very
general notion of bisimulation for coalgebras. First we recall some central definitions and fix
mathematical notation and terminology. Given sets X and Y , we denote a relation R between
X and Y by R : X → Y to specify its domain X and codomain Y . We write R;S : X → Z

for the composition of two relations R : X → Y and S : Y → Z and R◦ : Y → X for the
converse of R : X → Y with (y, x) ∈ R◦ iff (x, y) ∈ R. The graph of any function f : X → Y

is a relation f : X → Y between X and Y for which we also use the symbol f . It will be
clear from the context in which a symbol f occurs whether it is meant as a function or a
relation. Note that the composition of functions is denoted the other way round than the
composition of relations, so we have g ◦ f = f ; g for functions f : X → Y and g : Y → Z.
For a relation R : X → Y we define the sets

Dom(R) = {x ∈ X | ∃y ∈ Y, (x, y) ∈ R} ⊆ X,
Rng(R) = {y ∈ Y | ∃x ∈ X, (x, y) ∈ R} ⊆ Y.

The relation R : X → Y is full on X if Dom(R) = X and is full on Y if Rng(R) = Y .
Given sets X ′ ⊆ X and Y ′ ⊆ Y , we define the restriction R |X′×Y ′ : X ′ → Y ′ of the relation
R : X → Y as R |X′×Y ′= R ∩ (X × Y). For any set X let ∈X : X → PX be the membership
relation between elements of X and subsets of X. Given a set X we define the diagonal
relation ∆X : X → X with (x, x′) ∈ ∆X iff x = x′. Note that ∆X = idX , where idX is the
graph of the identity function.

CALCO’15

242 Uniform Interpolation for Coalgebraic Fixpoint Logic

I Definition 2.8. A relation lifting L for a set functor T is a collection of relations LR for
every relation R, such that LR : TX → TY if R : X → Y . We require relation liftings to
preserve converse, this means that L(R◦) = (LR)◦ for all relations R.

I Example 2.9.
(i) The Egli-Milner lifting P is a relation lifting for covariant power set functor P that is

defined for any R : X → Y such that PR = −→PR ∩←−PR, where:
−→
PR := {(U, V) ∈ PX × PY | ∀u ∈ U ∃v ∈ V s.t. (u, v) ∈ R},

←−
PR := {(U, V) ∈ PX × PY | ∀v ∈ V ∃u ∈ U s.t. (u, v) ∈ R}.

(ii) For the constant functor D of a fixed set D define a relation lifting D for any R : X → Y

such that DR = ∆D.
(iii) Recall the notion of −→PR from (i) we can define a relation lifting M̃ for the monotone

neighborhood functorM on a relation R : X → Y as follows:

M̃R := −→P←−PR ∩←−P−→PR.

An important use of relation liftings is to yield a notion of bisimulation.

I Definition 2.10. Let L be a relation lifting for T and S = (S, σ) and S′ = (S′, σ′) be
two T-coalgebras. An L-bisimulation between S and S′ is a relation R : S → S′ such that
(σ(s), σ′(s′)) ∈ LR, for all (s, s′) ∈ R. Two states s ∈ S and s′ ∈ S′ are L-bisimilar if there
is an L-bisimulation R between S and S′ with (s, s′) ∈ R. We write ↔L for the notion of
L-bisimilarity between fixed coalgebras. Given two C-colored T-coalgebras S = (S, σ, γ) and
S′ = (S′, σ′, γ′) and a relation lifting L for T, a relation R : S → S′ is an LC-bisimulation
between S and S′, whenever (σ(s), σ′(s′)) ∈ LR and γ(s) = γ′(s′) for all (s, s′) ∈ R.

Now we will give the definition of lax extensions, which are relation liftings satisfying
certain conditions that make them well-behaved in the context of coalgebra.

I Definition 2.11. A relation lifting L for a functor T is called a lax extension of T if it
satisfies, for all relations R,R′ : X → Z and S : Z → Y and all functions f : X → Z:
(L1) R′ ⊆ R implies LR′ ⊆ LR,
(L2) LR;LS ⊆ L(R;S),
(L3) Tf ⊆ Lf.
We say that a lax extension L preserves diagonals if it additionally satisfies:
(L4) L∆X ⊆ ∆TX .

We call a lax extension L of T functorial, if it distributes over composition, i.e., if LR;LS =
L(R;S), and quasi-functorial, if

LR;LS = L(R;S) ∩ (Dom(LR)×Rng(LS))

for all relations R : X → Z and S : Z → Y .

I Example 2.12. The relation lifting M̃ which has been defined in Example 2.9, is quasi-
functorial.

I Proposition 2.13. Let T be a set functor and let L be a quasi-functorial lax extension for
T. Then we have:
(1) L preserves fullness: If R : X → Z is full on both sides, then so is LR : TX → TZ;

J. Marti, F. Seifan, and Y. Venema 243

(2) If R : X → Z is full on X and i : Z ↪→ Z ′ is the inclusion map between Z and Z ′ then
L(R; i) is full on TX;

(3) If L preserves diagonals then for any function f , Tf = Lf .

Let us now summarize some facts that we will use about L-bisimulations in the sequel.

I Proposition 2.14. For a lax extension L of T and T-coalgebras S, S′ and Q the following
hold:
(1) The graph of a coalgebra morphism f from S to S′ is an L-bisimulation between S and

S′;
(2) if R : S → Q respectively R′ : Q→ S′ are L-bisimulations between S and Q respectively

Q and S′, then R;R′ : S → S′ is an L-bisimulation between S and S′.

For the proof we refer to [14, Proposition 3].
We will finish this section with a remark on some of the closure properties of the class of

functors with a quasi-functorial lax extension:

I Fact 2.15. The collection of functors with a quasi-functorial lax extension (FQL) has the
following properties:
1. the identity functor I : Set→ Set is in FQL;
2. for each set D, the constant functor D : Set→ Set is in FQL;
3. the product X 7→ T1(X)× T2(X) of two FQLs T1 and T2 is in FQL;
4. the coproduct X 7→ T1(X) + T2(X) of two FQLs T1 and T2 is in FQL;
5. the composition X 7→ (T1 ◦ T2)(X) of a FQL functor T1 and a functor T2 which has a

functorial lax extension, is in FQL.

3 Coalgebraic Fixpoint Logic and Automata

3.1 Coalgebraic Fixpoint Logic
In this section we show how to define the syntax and semantics of a coalgebraic fixpoint
logic, using a quasi-functorial lax extension L of T. For this purpose from now on we fix
a functor T with a quasi-functorial lax extension L. Recall that by our convention 2.7, T
preserves all inclusions and finite intersections. We also fix a set P of propositional letters
and assume that L preserves diagonals.

I Definition 3.1. Given a functor T, we define for every set X the function

Base : TωX → PωX, α 7→
⋂
{X ′ ⊆ X | α ∈ TX ′}.

The point of this notion is that Base(α) ∈ PωX is the least set U ∈ PωX such that α ∈ TU .
The language of the coalgebraic fixpoint logic is defined as follows:

I Definition 3.2. For P as the set of propositional letters, define the language µLT
L(P) by

the following grammar:

a ::= p | ¬a |
∨
A | ∇α | µp.a,

where p ∈ P, A ∈ Pω(µLT
L) and α ∈ Tω(µLT

L(P)). There is a restriction on the formulation
of the formulas µp.a, namely, no occurrence of p in a may be in the scope of an odd number
of negations.1

1 For a precise definition of the notions scope and occurrence, we can inductively define a construction
tree of a formula, where the children of a node labeled ∇α are given by the formulas in Base(α).

CALCO’15

244 Uniform Interpolation for Coalgebraic Fixpoint Logic

I Remark 3.3. For a given formula a ∈ µLT
L(P), Pa ⊆ P denotes the set of all propositional

letters occurring in a. Observe that for Q′ ⊆ Q ⊆ P, we have that µLT
L(Q′) ⊆ µLT

L(Q). This
can be proved by induction on the complexity of formulas in µLT

L(Q′).

Before we turn to the coalgebraic semantics of this language, there are a number of syntactic
definitions to be fixed.

I Definition 3.4. We will write b E a if b is a subformula of a. Inductively we define the set
Sfor(a) of subformulas of a as follows:

Sfor(p) := {p},
Sfor(¬a) := {¬a} ∪ Sfor(a),

Sfor
(∨

A
)

:= {
∨
A} ∪

⋃
a∈A

Sfor(a),

Sfor(µp.a) := {µp.a} ∪ Sfor(a),
Sfor (∇α) := {∇α} ∪

⋃
a∈Base(α)

Sfor(a)

The elements of Base(α) will be called the immediate subformulas of ∇α.

I Definition 3.5. A formula a ∈ µLT
L(P) is guarded if every subformula µp.b of a has the

property that all occurrences of p inside b are within the scope of a ∇.

We now introduce the semantics of coalgebraic fixpoint logic. For this purpose we define the
notion of a T-model over a set P of propositional letters.

I Definition 3.6. A T-model S = (S, σ, V) is a T-coalgebra (S, σ) together with a valuation
V that is a function V : P→ PS.

Using the fixed quasi-functorial lax extension L for the functor T we can define the semantics
for the language µLT

L(P) on T-models, by giving the definition of the satisfaction relation
S: S → µLT

L(P) for a T-model S = (S, σ, V).

I Definition 3.7. Before going to the definition of the satisfaction relation, we need to fix
some notation: For X ⊆ S, V [p 7→ X] denotes the valuation that is exactly like V apart
from mapping p to X. We also use JaKS for the extension of formula a in a T-model S:
JaKS := {s ∈ S | s S a}.Then JaKS[p 7→X] denotes the extension of a considering the valuation
V [p 7→ X], instead of V .
Now we are ready to define the satisfaction relation as follows:

s S p iff s ∈ V (p)
s S ¬a iff not s S a

s S
∨
A iff s S a for some a ∈ A

s S ∇α iff (σ(s), α) ∈ L S

s S µp.a iff s ∈
⋂
{X ⊆ S | JaKS[p 7→X] ⊆ X}.

I Remark 3.8. The clauses in Definition 3.7 are not stated in a correct recursive way. In
the recursive clause for the ∇ modality we make use of the unrestricted satisfaction relation
S that has yet to be defined. We can only suppose that S|S×Base(α) is already defined.
The actual recursive definition is that s S ∇α iff (σ(s), α) ∈ L(S|S×Base(α)). To see why
this is equal to the clause given above, see [14, Proposition 6].

J. Marti, F. Seifan, and Y. Venema 245

I Remark 3.9. Given a valuation V : P→ PS, one can think of it as a coloring γV : S → PP
given by: γV (s) := {p ∈ P | s ∈ V (p)}. So following Definition 2.6, a T-model S = (S, σ, V)
can also be seen as a P(P)-colored T-coalgebra denoted as Ŝ = (S, σ, γV).

I Definition 3.10. The projection of a P(P)-colored T-coalgebra S = (S, σ, γ) to a set Q ⊆ P
is the P(Q)-colored T-coalgebra SQ = (S, σ, γQ) where γQ : S → PQ, s 7→ γ(s) ∩ Q.

I Definition 3.11. Given a set Q ⊆ P, an LQ-bisimulation between two T-models S and Y
is defined to be an LP(Q)-bisimulation between P(Q)-colored T-colagebras ŜQ and ŶQ, which
are given by Remark 3.9 and Definition 3.10. More precisely, a relation R : S → Y is an
LQ-bisimulation between T-models S = (S, σ, VS) and Y = (Y, λ, VY) if and only if R is an
L-bisimulation between T-coalgebras S = (S, σ) and Y = (Y, λ) and R preserves the truth of
all propositional letters in Q, that is, for all (s, y) ∈ R and p ∈ Q, s ∈ VS(p) iff y ∈ VY (p).

From this definition, it is easy to see that for any Q′ ⊆ Q, if a relation R is an LQ-bisimulation
between T-models S and Y, then it is also an LQ′ -bisimulation between them.

I Definition 3.12. Given a propositional letter p ∈ P, a relation R : S → S′ is an up-
to-p LP-bisimulation between two T-models S = (S, σ, V) and S′ = (S′, σ′, V ′), if it is an
LP\{p}-bisimulation between T-models S and S′. We write s ↔L

p s
′ if s and s′ are up-to-p

LP-bisimilar, that is where we disregard the proposition letter p.

Now we are going to look at the expressive power of µLT
L(P) with respect to states in

T-models. For this, we start with a definition.

I Definition 3.13. Two states s in T-model S = (S, σ, V) and s′ in T-model S′ = (S′, σ′, V ′)
are called equivalent for formulas in µLT

L(P) if s S a iff s′ S′ a, for all a ∈ µLT
L(P).

An important property of our coalgebraic fixpoint logic is that truth is bisimulation invariant.
This fact is given by the following proposition.

I Proposition 3.14. Given a state s in a T-model S = (S, σ, V) and a state s′ in a T-model
S′ = (S′, σ′, V ′), if s and s′ are LP-bisimilar then s and s′ are equivalent for formulas in
µLT

L(P).

For the proof of this proposition we refer to [22, Proposition 5.14], [13, Proposition 4.11]
and the fact that lax extensions are monotone.

Now we are ready to state the last semantic result we will need throughout this paper.

I Proposition 3.15. Each formula in µLT
L(P) can be transformed into an equivalent guarded

formula in µLT
L(P).

It can be proved by induction on the complexity of formulas, see [22, Proposition 5.15]

I Convention 3.16. Throughout this paper we always assume µLT
L(P)-formulas to be

guarded.

3.2 Coalgebraic Automata
Coalgebraic automata are supposed to operate on pointed coalgebras. Basically, the idea is
that an initialized T-automaton will either accept or reject a given pointed T-coalgebra. In
the following section, we will recall the basic definitions from coalgebraic automata theory.

CALCO’15

246 Uniform Interpolation for Coalgebraic Fixpoint Logic

I Definition 3.17. Given a functor T : Set→ Set. A (non-deterministic) T-automaton over
a color set C is a triple A = (A,∆,Ω), with A some finite set (of states), ∆ : A× C → PTA
the transition map and Ω : A→ ω a parity map. An initialized version of A is a pair (A, a)
consisting of an automaton A together with an element a ∈ A, which is the initial state.

The acceptance condition for T-automaton is formulated in terms of a parity game[12]. The
acceptance game G(S,A) between initialized automaton (A, aI) and a pointed coalgebra
(S, sI) is given by the Table 1. The game is played by two players: Éloise (∃) and Abélard
(∀). A match of the game is a (finite or infinite) sequence of positions which is given by the
two players moving from one position to another according to the rules of Table 1. Let us
now give the formal definition of acceptance game.

I Definition 3.18. Let (A, aI) be an initialized T-automaton over the color set C. Further-
more let (S, sI) = (S, σ, γ, sI) be a pointed C-colored T-coalgebra. Then the acceptance game
G(S,A) is given by the following table:

Table 1 Acceptance game for T-automaton.

Position Player Admissible moves Parity
(s, a) ∈ S ×A ∃ (σ(s), φ) s.t. φ ∈ ∆(a, γ(s)) Ω(a)
(σ(s), φ) ∈ TS × TA ∃ {Z : S → A | (σ(s), φ) ∈ LZ 0
Z ⊆ S ×A ∀ Z 0

Positions of the form (s, a) ∈ S ×A will be called basic positions of the game. A partial
play of the game of the form (s, a)(σ(s), φ)Z(t, b) (with (s, a) ∈ S ×A, (σ(s), φ) ∈ TS × TA,
Z : S → A and (t, b) ∈ Z) will be called a round of the play. For the winning conditions,
recall that finite matches are lost by the player who gets stuck. For infinite matches, consider
an arbitrary such match:

ρ = (s0, a0)(σ(s0), φ0)Z0(s1, a1)(σ(s1), φ1)Z1(s2, a2)...

Clearly, ρ induces an infinite sequence of basic positions (s0, a0)(s1, a1)(s2, a2)... and, thus,
an infinite sequence of states in A: ρ �A:= a0a1a2... Now ∃ is the winner of the match ρ if the
maximum priority occurring infinitely often on ρ |A is even. Otherwise ∀ wins ρ. A positional
or history free strategy for ∃ is a pair of functions (Φ : S ×A→ TA,Z : S ×A→ P(S ×A)).
Such a strategy is legitimate if at any position, it maps the position to an admissible next
position. A legitimate strategy is winning for ∃ from a position in the game, if it guarantees
∃ to win any match starting from that position, no matter how ∀ plays. A position starting
from which ∃ has a winning strategy is called a winning position for ∃ . The set of all winning
positions for ∃ in G(S,A) is denoted by Win∃(S,A) or shortly by Win∃. A history-free
strategy (Φ, Z) initialized at (sI , b) ∈ S ×A is called scattered if the relation

{(sI , b)} ∪
⋃
{Zs,a ⊆ S ×A | (s, a) ∈Win∃},

with Zs,a the value of Z on (s, a), is functional. Finally we say that initialized T-automaton
(A, aI) accepts (S, sI) if ∃ has a winning strategy in the game G(A,S) initialized at position
(sI , aI). If ∃ has a scattered winning strategy starting from (sI , aI), we will say (A, aI)
strongly accepts (S, sI).

I Definition 3.19. For every initialized T-automaton (A, aI) over some color set C, L(A, aI),
the recognizable language of (A, aI), is the class of all pointed C-colored T-coalgebras that
are accepted by (A, aI). We call two initialized T-automata (A, aI) and (A′, a′I) over set C
equivalent iff L(A, aI) = L(A′, a′I).

J. Marti, F. Seifan, and Y. Venema 247

3.3 Logic and Automata
There is a routine construction of an equivalent initialized T-automaton (A, aI) from a
µLT

L(P)-formula, and vice versa. Given the finitary nature of our automata, this construction
requires the functor T to preserve finite sets.

I Proposition 3.20. Let T be a functor that preserves finite sets. There exists an effective pro-
cedure to transform a formula b ∈ µLT

L(P) to an initialized T-automaton (Ab, ab) over the set
C = P(P) such that for every C-colored T-coalgebra (S, s): (S, s) S b iff (Ab, ab) accepts (S, s).

Proof sketch. Our construction proceeds along the exact same lines as the construction of an
initialized alternating T-automaton from a given formula [22, Theorem 2] and transforming
it to a non-deterministic T-automaton [12, Theorem 1] in the case of a functor that preserves
weak pullbacks, and uses some facts from [13] to the fact that also in our case, the nabla
operator has certain desirable properties. The construction proceeds in the following stages:
(0) First of all we generalize our notion of a T-automaton (which is non-deterministic

in nature) to that of an alternating T-automaton, which has a transition map of the
type ∆ : A→ PPTA. For these automata, acceptance is defined as for the alternating
automata in [12] and [22].

(1) Using routine methods [22, Theorem 2] we can inductively show that every formula in
our language can be effectively transformed into an equivalent alternating automaton.
For the case of negation we use the method of [11] together with the fact that the dual of
our nabla operator can be expressed using disjunctions and the nabla operator itself [13,
Theorem 4.14].

(2) What is still missing is a simulation theorem stating that every alternating automaton
can be replaced with an equivalent non-deterministic one. This result is in fact also a
more or less routine result [2, section 9.6], since we can use the fact that our nabla also
satisfies a certain modal distributive law, stating that the conjunction of nablas over some
formulas is equivalent to a disjunction of nablas over some conjunctions of these formulas
[13, Proposition 4.17].

(3) Combining (1) and (2) we see that every formula in our coalgebraic fixpoint language is
equivalent to one of our automata indeed. J

I Proposition 3.21. There exists an effective procedure transforming an initialized T-
automaton (A, aI) to an equivalent µLT

L(P)-formula aA.

This result is rather standard, see for instance [22, Theorem 3].

4 Automata are Closed under Projection

This section is devoted to the proof of our main technical result i.e., closure under projection.

I Definition 4.1. Let A = (A,∆,Ω) be a T-automaton over color set C. We call a state a ∈ A
a true state of A if Ω(a) is even and ∆(a, c) = T({a}). We will standardly use the notation
a> to refer to a true state. Given (a, c) ∈ A× C we call φ ∈ ∆(a, c) a satisfiable element of
A if there is a witnessing T-coalgebra (Qφ, ρ, γQ), τ ∈ TQ and a relation Zφ : Q→ A such
that (τ, φ) ∈ LZφ and Zφ ⊆Win∃(Q,A). Finally we call a T-automaton A totally satisfiable
whenever for all (a, c) ∈ A× C and φ ∈ ∆(a, c), φ is satisfiable.

The following proposition states that without loss of generality we can always assume that
an initialized T-automaton (A, aI) is totally satisfiable and has a true state. Furthermore,
we may always assume that there exists a witnessing T-coalgebra Q that works for all
(a, c) ∈ A× C and φ ∈ ∆(a, c).

CALCO’15

248 Uniform Interpolation for Coalgebraic Fixpoint Logic

I Proposition 4.2. For any initialized T-automaton (A, aI) over a color set C we have
that:
1. There is an equivalent initialized T-automaton (A′, aI) such that A′ has a true state.
2. There exists a totally satisfiable initialized T-automaton (A′, a′I) which is equivalent to

(A, aI).
3. If (A, aI) is totally satisfiable, then there is a C-colored witnessing coalgebra Q = (Q, ρ, γQ)

and a relation Y : Q → A with Y ⊆ Win∃(Q,A) such that for all (a, c) ∈ A × C and
φ ∈ ∆(a, c), there is a τ ∈ TQ such that (τ, φ) ∈ LY .

Now we will state the main technical result of this paper. Theorem 4.3 is a generalization
of [12, Proposition 5.9], where the same result is proved for the weak-pullback preserving
functors. In the following theorem we will generalize the proposition to the class of all
functors with a quasi-functorial lax extension that preserves diagonals. The proof strategy is
the same as in [12], but the construction here is more involved.

I Theorem 4.3 (Closure under projection). Given an initialized T-automaton (A, aI) over
a color set P(P) and an element p ∈ P, then there exists an initialized T-automaton (∃p.A, aI)
over the color set P(P \ {p}) such that:

(S, sI) ∈ L(∃p.A, aI) iff (S, sI) ∈ L(A, aI) for some (S, sI) with S, sI ↔L
p S, sI . (2)

Proof. Given (A, aI) over color a set PP, we define the initialized T-automaton (∃p.A, aI)
over the color set P(P \ {p}) as the automaton (∃p.A, aI) := (A,∆p,Ω, aI), where

∆p : A× P(P \ {p})→ PTA, (a, c) 7→ ∆(a, c) ∪∆(a, c ∪ {p}).

We need to show that (∃p.A, aI) satisfies (2). The right-to-left direction of (2) is straightfor-
ward, since all legitimate moves of ∃ in the game G(A,S′) are also legitimate in G(∃p.A,S′p).

To show the left-to-right direction of (2) assume that (∃p.A, aI) accepts the P(P \ {p})-
colored T-coalgebra (S, sI) = (S, σ, γ, sI). We need to define a PP-colored coalgebra (S, sI) =
(S, σ, γ, sI) ∈ L(A, a) that is up-to-p bisimilar to (S, sI).

By Proposition 4.2 we can assume that (∃p.A, aI) has a true state and is totally satisfiable,
which entails that there is a PP-colored coalgebra Q = (Q, ρ, γQ) and a relation Y : Q→ A

with Y ⊆Win∃(Q,∃p.A) such that for all (a, c) ∈ A× C and φ ∈ ∆(a, c) there is a τ ∈ TQ
with (τ, φ) ∈ LY .

The carrier of (S, sI) is the set S := (S × A)] Q. To define the coalgebra structure
σ : S → TS we distinguish the following cases:
(1) If q ∈ Q, define σ(q) := ρ(q).
(2) If (s, a) ∈ S × A and (s, a) /∈ Win∃(S,∃p.A), define σ(s, a) := Tκa(σ(s)), where κa :

S → S ×A, s 7→ (s, a).
(3) In the case where (s, a) ∈ S × A and (s, a) ∈ Win∃(S,∃p.A) we define σ(s, a) as

follows: From the winning strategy that witnesses (s, a) ∈ Win∃(S,∃p.A) we obtain
a φs,a ∈ ∆(a, γ(s)) and a relation Zs,a : S → A such that Zs,a ⊆ Win∃(S,∃p.A) and
(σ(s), φs,a) ∈ LZs,a. Because (A, aI) contains a true state we can assume without loss
of generality that Zs,a is full on S. We can write Zs,a = π◦1 ;π2 where π1 : Zs,a → S

and π2 : Zs,a → A are the projections of Zs,a. These projections can be seen as
relations with domain (S × A)]Q for which it then follows that Zs,a ⊆ π◦1 ; (πs] Y).
Because L is a lax extension one obtains that LZs,a ⊆ L(π◦1 ; (πs] Y)) and hence
(σ(s), φs,a) ∈ L(π◦1 ; (πs] Y)). It also holds that σ(s) ∈ Dom(L(π◦1)) because Zs,a is
full on S, so π◦1 is full on S, and hence by Proposition 2.13 (2) L(π◦1) is full on TS.

J. Marti, F. Seifan, and Y. Venema 249

Moreover φs,a ∈ Rng(L(π2] Y)) because φs,a ∈ Rng(LY) by the properties of Y and
LY ⊆ L(L(π2] Y).
With the quasi-functoriality of L it now follows that (σ(s), φs,a) ∈ L(π◦1);L(πs] Y).
Hence it is possible to choose σ(s, a) ∈ T((S ×A)]Q) such that

(σ(s), σ(s, a)) ∈ L(π◦1) and (σ(s, a), φs,a) ∈ L(π2] Y).

To complete the definition of the PP-colored pointed coalgebra (S, sI) we set sI := (sI , aI)
and define the coloring γ : S → P(P) by distinguishing the following cases:
(1) If q ∈ Q, define γ(q) := γQ(q).
(2) If (s, a) ∈ S ×A and (s, a) /∈Win∃(S,∃p.A), define γ(s, a) := γ(s).
(3) If (s, a) ∈ S×A and (s, a) ∈Win∃(S,∃p.A) we define γ(s, a) by considering the choice of
∃ at (s, a). Since (s, a) is a winning position for ∃, she picks an element φs,a ∈ ∆p(a, γ(s)).
The function ∆p is defined such that ∆p(a, γ(s)) = ∆(a, γ(s))∪∆(a, γ(s)∪{p}). We set

γ(s, a) :=
{
γ(s) ∪ {p} if φs,a ∈ ∆(a, γ(s) ∪ {p}),
γ(s) otherwise.

We need to show that S, sI ↔L
p S, (sI , aI) and that ((sI , aI), aI) ∈Win∃(S,A).

I Claim (1). S, sI ↔L
p S, (sI , aI).

Proof of claim (1). We show that graph of the projection πS : S×A→ S seen as a relation
between S and S is an up-to-p bisimulation between S, sI and S, sI . We need to prove that

(σ(s, a), σ(s)) ∈ LπS and γ(s, a) \ {p} = γ(s) whenever ((s, a), s) ∈ π1.

That γ(s, a) \ {p} = γ(s) follows directly from the definition of γ. For (σ(s, a), σ(s)) ∈ LπS
we distinguish two cases:
(i) If (s, a) ∈ S × A and (s, a) /∈ Win∃(S,∃p.A) then the statement holds because by

definition σ(s, a) = Tκa(σ(s)) and since L is a lax extensions and κa ⊆ πS we have that

(Tκa(σ(s)), σ(s)) ∈ Tκa = Lκa ⊆ LπS

(ii) If (s, a) ∈ S × A and (s, a) ∈ Win∃(S,∃p.A) then we get by the definition of σ that
(σ(s, a), σ(s)) ∈ Lπ1. It follows that (σ(s, a), σ(s)) ∈ LπS because L is a lax extensions
and π1 ⊆ πS since π1 : Zs,a → S is the projection of the relation Zs,a ⊆ S ×A. J

I Claim (2). ((sI , aI), aI) ∈Win∃(S,A).

Proof of claim (2). Let (Ψ, Y ′) be a strategy for ∃ witnessing that Y ⊆ Win∃(Q,∃p.A).
Define ∃’s strategy in G(S,A) as follows:

Φ : S ×A→ TA
((s, b), a) 7→ φs,a

(q, a) 7→ ψq,a

Z : S ×A→ P(S ×A)
((s, b), a) 7→ π2] Y

(q, a) 7→ Y ′q,a

where π2 is the projection of Zs,a, if (s, a) ∈Win∃(S,∃p.A), and arbitrary otherwise. J

I Claim (2a). For the following types of positions in G(S,A), the given strategy (Φ, Z)
provides legitimate moves for ∃:
(i) (q, a) ∈ S ×A and (q, a) ∈Win∃(Q,∃p.A),
(ii) ((s, a), a) ∈ S ×A and (s, a) ∈Win∃(S,∃p.A)

CALCO’15

250 Uniform Interpolation for Coalgebraic Fixpoint Logic

Proof of Claim (2a).
(i) This is clear since σ(q) = ρ(q) and ∃ plays her winning strategy in G(Q,∃p.A).
(ii) By the definition of γ we have that φs,a = φs,a ∈ ∆(a, γ(s, a)). Also (σ(s, a), φs,a) ∈

LZs,a because (σ(s, a), φs,a) ∈ L(π2] Y).
J

I Claim (2b). (Φ, Z) guarantees ∃ to win any match of G(S,A) starting from ((sI , aI), aI).

Proof of Claim (2b). To check that (Φ, Z) is winning it suffices to distinguish the following
two kinds of matches:
(i) At some stage ∀ chooses an element (q, a) ∈ Y . From this moment on, there is no way to

go through the states of S and since Y ⊆Win∃(Q,∃p.A), ∃ plays her winning strategy
in G(Q,A) and wins the match.

(ii) ∀ never picks an element of the form (q, a). In this case any (Φ, Z)-conforming match is
of the form

((sI , aI), aI)((s1, a1), a1)((s2, a2), a2) . . .

This match corresponds to the (Φ, Z)-conforming match

(sI , aI)(s1, a1)(s2, a2) . . .

in the game G(S,A). Since we assumed (Φ, Z) to be a winning strategy for ∃, (Φ, Z) is
also a winning strategy for her.

J

This finishes the proof of Theorem 4.3. J

5 Uniform Interpolation for µLT
L

In the following section we will prove the main theorem of this paper, viz., uniform interpola-
tion for µLT

L. Our proof follows and generalizes the proof in [20] which shows a similar result
for monotone modal logic (without fixpoints). We first need some auxiliary definitions.

I Definition 5.1. Define the relation of logical consequence �: µLT
L(P)→ µLT

L(P) by a � a′
if and only if s S a implies s S a

′ for all states s in any T-model S.

I Definition 5.2. Given a formula a ∈ µLT
L(P), we let Pa denote the (obviously defined) set

of proposition letters occurring in a.

Our main result can now be formulated as follows.

I Theorem 5.3 (Uniform Interpolation). Let T be a set functor that preserves finite sets, and
let L be a quasi-functorial lax extension for T. For any formula a ∈ µLT

L(P) and any set
Q ⊆ Pa of propositional letters, there is a formula aQ ∈ µLT

L(Q), effectively constructable
from a, such that for every formula b ∈ µLT

L(P) with Pa ∩ Pb ⊆ Q, we have that

a � b iff aQ � b.

If a is fixpoint-free, then so is aQ.

As mentioned in the introduction, our proof is based on the definability of the bisimulation
quantifier in our language.

J. Marti, F. Seifan, and Y. Venema 251

I Proposition 5.4. Given any proposition letter p, there is a map ∃p : µLT
L(P) −→ µLT

L(P)
such that P∃p.b = Pb \ {p} and

S, s ∃p.b iff S′, s′ b, for some S′, s′ with S, s ↔L
p S′, s′. (3)

for any formula b ∈ µLT
L(P).

Proof. Take a formula b ∈ µLT
L(P). By Proposition 3.20 we can transform it to an equivalent

initialized T-automaton (Ab, ab). From Theorem 4.3 we have an initialized T-automaton
(∃p.Ab, ab) such that:

(∃p.Ab, ab) accepts (S, s) iff (Ab, ab) accepts (S′, s′) for some (S′, s′) with S, s↔L
p S′, s′.

Now by Proposition 3.21 we can transform the initialized T-automaton (∃p.Ab, ab) to an
equivalent formula a(∃p.Ab) and put ∃p.b := a(∃p.Ab). It is easy to show that:

S, s a(∃p.Ab) iff S′, s′ b, for some S′, s′ with S, s↔L
p S′, s′.

We leave it for the reader to verify that P∃p.b = Pb \ {p}. J

Now we are ready to prove the uniform interpolation theorem:

Proof of Theorem 5.3. Let p0, p1, ..., pn−1 enumerate the proposition letters in Pa \ Q, and
set

aQ := ∃p0∃p1 . . . ∃pn−1.a.

It is not difficult to verify that aQ is fixpoint-free if a is so.
In order to check that a � b iff aQ � b, first assume that a � b. To prove that aQ � b

take a pointed T-model (S0, s0) with s0 S0 aQ. By the semantics of the bisimulation
quantifiers we get states si in T-models Si for i = 1, 2, . . . , n such that si -pi

si+1 for
i = 0, ..., n and sn Sn

a. From the latter fact it follows that sn Sn
b since we have assumed

a � b. Because each of the witnessing up-to-pi LP-bisimulations for i = 0, 1, . . . , n − 1 is
also an LP\{p0,p1,...,pn−1}-bisimulation, we can compose them and obtain an LP\{p0,p1,...,pn−1}-
bisimulation between s0 and sn. Since Pb ⊆ P \ {p0, p1, . . . , pn−1} we get s0 S0 b.

For the other direction, we show that a � aQ, then a � b follows by transitivity from
aQ � b. Take any state s in a T-model S = (S, σ, V) with s S a. Then s S aQ because s is
up-to-p LP-bisimilar to itself for any p ∈ P, since the identity on S is an LP-bisimulation. J

6 Conclusions and Future Work

In this paper we showed that the coalgebraic fixpoint logic for functors with a quasi-functorial
lax extension that preserves diagonals, enjoys uniform interpolation. This suggests to further
study the class of functors possessing such a relation lifting. For instance one might try to
characterize this class of functors in categorical terms and investigate how the cover modality
of such a relation lifting relates to modalities arising from predicate liftings [14].

References
1 Jiří Adámek and Věra Trnková. Automata and algebras in categories, volume 37 of Math-

ematics and its Applications (East European Series). Kluwer Academic Publishers Group,
Dordrecht, 1990.

2 A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2001.

CALCO’15

252 Uniform Interpolation for Coalgebraic Fixpoint Logic

3 J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

4 William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and
proof theory. J. Symb. Logic, 22:269–285, 1957.

5 Giovanna D’Agostino and Marco Hollenberg. Logical questions concerning the µ-calculus:
interpolation, Lyndon and Łoś-Tarski. J. Symbolic Logic, 65(1):310–332, 2000.

6 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21–51, 1961.

7 Silvio Ghilardi. An algebraic theory of normal forms. Ann. Pure Appl. Logic, 71(3):189–245,
1995.

8 Silvio Ghilardi and Marek Zawadowski. Undefinability of propositional quantifiers in the
modal system S4. Studia Logica, 55(2):259–271, 1995.

9 Leon Henkin. An extension of the Craig-Lyndon interpolation theorem. J. Symbolic Logic,
28:201–216, 1963.

10 David Janin and Igor Walukiewicz. Automata for the modal µ-calculus and related results.
In Mathematical foundations of computer science 1995 (Prague), volume 969 of Lecture
Notes in Comput. Sci., pages 552–562. Springer, Berlin, 1995.

11 Christian Kissig and Yde Venema. Complementation of coalgebra automata. In Algebra
and coalgebra in computer science, volume 5728 of Lecture Notes in Comput. Sci., pages
81–96. Springer, Berlin, 2009.

12 Clemens Kupke and Yde Venema. Coalgebraic automata theory: basic results. Log. Methods
Comput. Sci., 4(4):4:10, 43, 2008.

13 Johannes Marti. Relation liftings in coalgebraic modal logic. Master’s thesis, Universiteit
van Amsterdam, 2011.

14 Johannes Marti and Yde Venema. Lax extensions of coalgebra functors and their logic. J.
Comput. System Sci., 81(5):880–900, 2015.

15 Lawrence S. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96(1-3):277–317, 1999. Fest-
schrift on the occasion of Professor Rohit Parikh’s 60th birthday.

16 Dirk Pattinson. The logic of exact covers: Completeness and uniform interpolation. In
Logic in Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium on, pages
418–427. IEEE, 2013.

17 Andrew M. Pitts. On an interpretation of second-order quantification in first-order intu-
itionistic propositional logic. J. Symbolic Logic, 57(1):33–52, 1992.

18 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1–35, 1969.

19 J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci.,
249(1):3–80, 2000. Modern algebra and its applications (Nashville, TN, 1996).

20 Luigi Santocanale and Yde Venema. Uniform interpolation for monotone modal logic. In
Advances in modal logic. Volume 8, pages 350–370. Coll. Publ., London, 2010.

21 Vladimir Yurievich Shavrukov. Adventures in diagonalizable algebras. ILLC Publications,
1994.

22 Yde Venema. Automata and fixed point logics for coalgebras. In Proceedings of the Work-
shop on Coalgebraic Methods in Computer Science, volume 106 of Electron. Notes Theor.
Comput. Sci., pages 355–375 (electronic). Elsevier, Amsterdam, 2004.

23 Albert Visser. Uniform interpolation and layered bisimulation. In Gödel’96 (Brno, 1996),
volume 6 of Lecture Notes Logic, pages 139–164. Springer, Berlin, 1996.

Generic Trace Semantics and Graded Monads∗

Stefan Milius1, Dirk Pattinson2, and Lutz Schröder1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
2 The Australian National University, Australia

Abstract
Models of concurrent systems employ a wide variety of semantics inducing various notions of pro-
cess equivalence, ranging from linear-time semantics such as trace equivalence to branching-time
semantics such as strong bisimilarity. Many of these generalize to system types beyond standard
transition systems, featuring, for example, weighted, probabilistic, or game-based transitions;
this motivates the search for suitable coalgebraic abstractions of process equivalence that cover
these orthogonal dimensions of generality, i.e. are generic both in the system type and in the
notion of system equivalence. In recent joint work with Kurz, we have proposed a parametriza-
tion of system equivalence over an embedding of the coalgebraic type functor into a monad. In
the present paper, we refine this abstraction to use graded monads, which come with a notion
of depth that corresponds, e.g., to trace length or bisimulation depth. We introduce a notion of
graded algebras and show how they play the role of formulas in trace logics.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.4.1 Mathem-
atical Logic, D.3.1 Formal Definitions and Theory

Keywords and phrases Traces, transition systems, monads, coalgebra, trace logics

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.253

1 Introduction

Concurrent systems are typically modelled as state-based systems of some form, with a
notion of state transition. Often, transitions between states are given by a transition relation,
i.e. the system records only whether or not a transition between two given states is possible.
More generally, however, the transition system may implement a more fine-grained modelling
that specifies also, for example, the probability or the weight of a given transition, games
determining transitions depending on the choices of participating agents, or sets of jointly
reachable states. The aim of universal coalgebra [25] is to provide a unified framework for
the treatment of various system types such as these.

A core topic in concurrent systems are notions of observable equivalence, which range
from linear-time equivalences to branching-time equivalences [33]. While branching-time
equivalences, based on suitable notions of bisimilarity, fit in seamlessly with the coalgebraic
paradigm [25, 32, 11], other, in particular linear-time, equivalences require more effort.
Coalgebraic treatments of trace semantics have previously been based on splitting the functor
into a monad, the so-called branching type, and a functor, the transition type; the transition
type is then transferred, by means of suitable distributive laws, to the Kleisli category [12] or
the Eilenberg-Moore category [17, 14, 30, 5] of the branching monad, and trace equivalence
is cast as bisimilarity in the new category.

∗ The first and the last author acknowledge support by the German Research Council (DFG) in the
project COAX (MI 717/5-1/SCHR 1118/12-1).

© Stefan Milius, Dirk Pattinson, and Lutz Schröder;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 253–269

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.253
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

254 Generic Trace Semantics and Graded Monads

In recent joint work with Kurz [19], we have proposed a quite simple-minded approach
where the coalgebraic type functor, for which no particular form of decomposition needs
to be assumed, is embedded into a monad M ; monadic trace semantics is then obtained
by iterating the coalgebra structure in the Kleisli category of M . This approach covers
the standard examples including traces without explicit termination (not handled in other
approaches) and probabilistic traces; moreover, it subsumes Kleisli-style and Eilenberg-Moore
style trace semantics in the sense that these coarser semantics are obtained by applying
natural quotient maps to monadic traces for the expected monads.

In more detail, monadic traces for a monad M (e.g. MX = P(Σ∗ × X) in the basic
example of labelled transition systems) are sequences of elements of M1; the n-th element of
such a sequence represents the traces obtained after n transitions. These traces typically all
have length n, so the typeM1 given to the n-th element of the trace sequence is unnecessarily
general. This observation motivates using graded monads: a graded monad [31] associates
to each set X a family of sets MnX intuitively understood as consisting of the terms of
uniform depth n over X in a given algebraic theory. It turns out that the key examples
for trace semantics have easier and more general descriptions using graded monads than
ordinary monads. We introduce graded Eilenberg-Moore algebras for graded monads, and
observe that unlike in the modelling via vanilla monads, taking graded Eilenberg-Moore
algebras as formulas leads to reasonable trace logics, i.e. logics that are invariant under trace
equivalence. As a particularly tractable class of graded monads, we identify depth-1 graded
monads, corresponding to algebraic theories with only shallow equations; this class contains
most of the leading examples. For depth-1 graded monads, we establish a compositionality
result for graded algebras, which amounts to a compositional syntax for trace formulas.

Related Work. We study finite traces, orthogonally to work on coalgebraic infinite traces [7].
The previous coalgebraic treatments of finite traces mentioned above [12, 17, 14, 30, 5]
generally restrict to traces ending in accepting states, i.e. focus on language semantics in the
sense of automata theory rather than on trace semantics of reactive systems [1]. Especially
in the approach via the Eilenberg-Moore category [14, 30, 5], trace semantics is defined
via determinization, while in the present paper we opt for a direct definition. Recent work
by Klin and Rot [18] is, like the present paper and [17], concerned with trace logics. It
takes a principled choice of trace logic as the definition of trace equivalence, while we give
a semantic definition of trace equivalence and then develop logics that are invariant under
trace equivalence. The path-based semantics of linear-time logics considered in [8] implicitly
uses Kleisli composition in the graded monad induced by a Kleisli law.

2 Preliminaries

We fix a base category C throughout. A G-coalgebra (X, γ) for a functor G : C→ C consists
of a C-object X and a morphism γ : X → GX. A coalgebra morphism between G-coalgebras
(X, γ) and (Y, δ) is a morphism f : X → Y such that δ ◦ f = Gf ◦ γ. When C = Set, we say
that states x ∈ X and y ∈ Y in G-coalgebras (X, γ) and (Y, δ) are behaviourally equivalent
if there exist coalgebra morphisms f, g with common codomain such that f(x) = g(y).
Behavioural equivalence can be approximated using the (initial ω-segment of the) final
coalgebra sequence (Gn1)n∈N where 1 is a final object in C and Gn is n-fold composition
of G. The projections pn+1

n : Gn+11 → Gn1 are defined by induction where p1
0 : G1 → 1

is the unique arrow to 1 and pn+2
n+1 = G(pn+1

n). For every G-coalgebra (X, γ), there is a
canonical cone γn : X → Gn1 defined inductively by γ0 : X → 1 and γn+1 = G(γn)γ. We

Stefan Milius, Dirk Pattinson, and Lutz Schröder 255

say that states x ∈ X, y ∈ Y in G-coalgebras (X, γ) and (Y, δ) are finite-depth behaviourally
equivalent if γn(x) = δn(y) for all n ∈ N. If G is a finitary functor on Set, then finite-depth
behavioural equivalence coincides with behavioural equivalence [34].

A monad is a triple (M,η, µ) where M : C → C is a functor, and η : Id → M

and µ : MM → M are natural transformations such that µ ◦Mη = µ ◦ ηM = id and
µ◦Mµ = µ◦µM . Examples of monads are the powerset monad P and the distribution monad
D, which maps a set X to the set of functions f : X → [0, 1] such that

∑
x∈X f(x) = 1. An

Eilenberg-Moore algebra for a monad M is a morphism a : MX → X such that a ◦ ηX = idX
and a ◦Ma = a ◦ µX .

3 Monadic Trace Semantics, Informally

We recall monad-based trace semantics [19] using the basic example of labelled transition
systems, and then motivate the transition to the more fine-grained modelling using graded
monads. Consider the labelled transition system (LTS) over the alphabet Σ = {a, b} depicted
on the left below,

s0
a

}}

a

!!
s10

b

��

s11

s20

Pretraces Traces

Stage 0 : {(ε, s0)} {ε}

Stage 1 : {(a, s10), (a, s11)} {a}

Stage 2 : {(ab, s20))} {ab}

Stage 3 : ∅ ∅

whose traces at s0 are the prefixes of ab. The idea of monadic trace semantics is to produce
these traces from what we call pretraces, which in the case of LTS are pairs consisting of
a trace and a poststate; pretraces are generated incrementally by iterating the coalgebra
map representing the system in the Kleisli category of a suitable monad. LTS are standardly
modelled as coalgebras for the functor G given on sets by GX = P(Σ×X) ∼= P(X)Σ. We
embed G into the monadM given byMX = P(Σ∗×X) via an evident natural transformation
α. Let γ be the G-coalgebra structure representing the above LTS. Then the pretraces of s0
at stage n are the elements of (αγ)n(s0) where (αγ)n denotes the n-fold Kleisli composite of
αγ : X →MX, a morphism X → X in the Kleisli category of M . The traces are obtained
as the first projections of the pretraces, i.e. at each stage the trace set is an element of
M1 ∼= P(Σ∗), as summarized in the table above right. We observe that the pretraces at stage
n all have length n, so that viewing them just as elements of P(Σ∗ ×X) loses information.
One consequence of this loss of information is that a natural idea for developing a trace logic
for a monadic trace semantics fails, as explained in Remark 3.2.

I Remark 3.1. A property of states is trace-invariant if it is closed under trace equivalence.
In what follows, by a trace logic we mean a compositional syntax for trace-invariant properties.
To set the stage for our considerations on trace logics, we remark that being trace-invariant
alone is not a compositional property. E.g. in Hennessy-Milner logic, the formula ♦a>∧♦b>
is trace-invariant – it states that a and b are both traces. Now any sufficiently expressive
trace logic for LTS should presumably feature the operator ♦a; however, ♦a(♦a> ∧ ♦b>)
fails to be trace invariant. Indeed, the (known) logics that characterise trace equivalence in
labelled and probabilistic transition systems [3] (necessarily) do not come with the full set of
standard boolean connectives.

CALCO’15

256 Generic Trace Semantics and Graded Monads

Note also that in the case of probabilistic trace equivalence, the corresponding trace logic
is not interpreted over the standard set {⊥,>} of truth values: for probabilistic systems, a
formula ♦a1 . . .♦an

> evaluates to the probability of a system exhibiting a trace beginning
with a1 . . . an.

I Remark 3.2. In the above standard example, trace sets (at a given stage) are elements
of M1, the carrier of the free Eilenberg-Moore algebra for M on one generator. A putative
trace logic would have formulas whose evaluation at a state depends only on the traces of
that state, i.e. the evaluation map will, at each stage, factor through M1. It is thus tempting
to postulate that the semantics of trace formulas will arise via Eilenberg-Moore algebras for
M on the set of intended truth values, say, on 2 = {⊥,>} (see also a similar suggestion by
Moggi [22]). Specifically, an M -algebra on 2 consists of a complete lattice structure, w.l.o.g.
the usual one, and unary operations a, b; since the monad M arises via a distributive law
between P and Σ∗ × (−), a and b must moreover be join-continuous. There are only two
join-continuous self-maps of 2, the identity and the constant map ⊥. Thus, an M -algebra on
2 is determined by the subset Σ0 ⊆ Σ of letters that it interprets as the identity. Such an
algebra yields an operator 〈Σ0〉 of our trace logic, and the formula 〈Σ0〉> holds for a state
if each of its traces has a prefix mentioning only actions in Σ0. However, this constraint is
trivially satisfied for every trace by considering the empty prefix. Hence, we clearly want
to impose a more precise condition: 〈Σ0〉> should be satisfied by states all of whose traces
start with an action from Σ0.

Let us make this point more formal. For any formula φ of a trace logic, its semantics JφK
should be a sequence of predicates JφKn : M1→ 2, n ∈ N, determining at each stage n the sets
of traces satisfying φ. Now for any operator L of the logic we expect to have a compositional
definition of the semantics of L; that is, given a formula φ we wish to define the semantics
of Lφ knowing only the semantics JφK and using the interpretation of L as an M -algebra
JLK : M2→ 2. With only the monad structure of M available, the only natural definition
of the semantics of Lφ that comes to mind requires that JLKMJφKn : MM1 → 2 factors
through µ1 : MM1 → M1, yielding JLφKn : M1 → 2. But then JLφKn = JLφKnµ1Mη1 =
JLKMJφKnMη1 = JLKM(JφKnη1) so that JLφKn depends only on JφKnη1, i.e. only on whether
φ holds for the trace set {ε}. Again, the problem here is that in the preimage of a trace
set T under µ1 we have the element {({ε}, T)}, i.e. we have no control over the length of
prefixes that are split off T in the preimage under µ1.

It is the core contribution of the current work to show that under a more fine-grained modelling
via graded monads, discussed next, Eilenberg-Moore algebras do induce a reasonable notion
of trace logic that is expressive enough in several important examples and, for so-called
depth-1 graded monads, admits a compositional semantics, in fact following the ideas of the
above remark.

4 Graded Monads

We discuss some of the basic theory of graded monads, originally introduced by Smirnov [31]
(with grades in an arbitrary commutative monoid; here, we need only the case where grades
are natural numbers). Recall that finitary monads on Set correspond to algebraic theories;
under this correspondence, the functor part M of a monad may be thought of as mapping a
set X to the set MX of terms over X modulo equality. A graded monad has sets MnX for
all n ∈ N, which may be thought of as sets of terms of uniform depth n.

Stefan Milius, Dirk Pattinson, and Lutz Schröder 257

I Definition 4.1 (Graded Monad). A graded monad on C consists of a family of functors
Mn : C → C, n ∈ N, a natural transformation η : Id → M0 (the unit), and a family of
natural transformations

µnk : MnMk →Mn+k (n, k ∈ N),

the multiplication. These data are subject to the unit laws for each n ∈ N on the left below,

µ0nηMn = idMn = µn0Mnη

MnMkMm
Mnµ

km

//

µnkMm

��

MnMk+m

µn,k+m

��

Mn+kMm
µn+k,m

// Mn+k+m

and the associative law stating that for all n, k,m ∈ N, the above right diagram commutes.

Notice that the above definition implies that (M0, η, µ
00) is a monad. More abstractly,

a graded monad can be defined either as a graded monoid in the endofunctor category
[C,C] [31] or as a lax monoidal functor N→ [C,C] (with N viewed as a discrete monoidal
category), the latter making it an instance of the notion of parametric monad [21, 16].

Two standard equivalent presentations of monads carry over mutatis mutandis to the
graded setting, namely Kleisli triples and, over Set, algebraic theories. Graded Kleisli triples
have been introduced (in a more general setting) and proved equivalent to graded monads by
Katsumata [16]. All we need here is the Kleisli star notation: For f : X →MkY , we write

f∗n = µnkY Mnf : MnX →Mn+kY.

The presentation of graded monads in terms of graded theories is a stepping stone for isolating
depth-1 theories, which in turn are the key to obtaining compositional trace logics:

I Definition 4.2 (Graded theory). A graded theory (Σ, E, d) consists of an algebraic theory, i.e.
a (possibly class-sized) algebraic signature Σ and a class E of equations, and an assignment
d of a depth d(f) ∈ N to every operation f ∈ Σ. This induces a notion of a term having
uniform depth n: all variables have uniform depth 0, and f(t1, . . . , tn) with d(f) = k has
uniform depth n+ k if all ti have uniform depth n. (In particular, a constant c has uniform
depth n for all n ≥ d(c)). We then require that all equations t = s in E have uniform depth,
i.e. there exists n such that both t and s have uniform depth n. Moreover, we require that
for every set X and every k ∈ N, the class of terms of uniform depth k over variables from
X modulo provable equality is small (i.e. in bijection with a set).

We defer the discussion of an example to the next section (Example 5.2.3).
Graded theories and graded monads on Set are essentially equivalent concepts; for the

finitary case, this is implicit in [31]. In detail, a graded theory (Σ, E, d) induces a graded
monad by taking MnX to be the set of Σ-terms over X that have uniform depth n, modulo
equality derivable under E. Unit and multiplication are then defined as usual as conversion of
variables into terms and collapsing of layered terms, respectively, noting that these operations
behave as required w.r.t. uniform depth.

Conversely, a graded monad (Mn) over Set induces a graded theory (Σ, E, d) by taking Σ
to be the disjoint union of all sets Mnκ taken over all n ∈ N and all cardinals κ (so Σ is a
proper class) and letting f ∈Mnκ have arity κ and depth n. Then every Σ-term t over X of
uniform depth n has a canonical interpretation JtK ∈MnX defined recursively in the usual

CALCO’15

258 Generic Trace Semantics and Graded Monads

way, noting that this definition does produce an element of MnX. We take E to consist of
all equations s = t of uniform depth n over X such that JsK = JtK in MnX.

Formally, these constructions establish an equivalence of categories between graded
monads and graded monad morphisms in the obvious sense on one side, and graded theories
and derived theory morphisms on the other side (i.e. maps that take signature symbols to
terms, mapping axioms to derivable equations).

Examples. We proceed to discuss examples of graded monads; some of these are generic
constructions that depend on grades being natural numbers.

I Example 4.3.
1. Every monadM with multiplication µ and unit η gives rise to a graded monad, by putting

Mn = M and µnk = µ.
2. If F : C→ C is a functor, then Mn = Fn, the n-fold composition of F , defines a graded

monad with unit η = id and multiplication µnk = idFn+k .
3. Let C have binary coproducts, and let M0 = Id and Mn+1 = FMn + Id. Define the

natural transformations εn,n+k : Mn →Mn+k by ε00 = id, ε0,k+1 = inr (right injection)
and εn+1,n+1+k = Fεnk+Id, and the multiplication µnk : MnMk →Mn+k by µ0k = idMk

and µn+1,k = [inl ◦ Fµnk, εk,n+k+1] : FMnMk + Mk → FMn+k + Id. Then (Mn) is a
graded monad with multiplication (µnk) and unit η = id. For C = Set, we may think
of MnX as the set of terms of depth at most n in an algebraic theory, i.e. (Mn) is the
stratification of the free monad on F .

When C is monoidal, we have the following more specific example motivated fairly directly
by trace semantics. For the sake of readability, we elide coherence isomorphisms.

I Lemma 4.4. Let (C,⊗, I) be a monoidal category, and let M be a strong monad on C
with unit η, multiplication µ and strength t. Then for every object Σ of C, the assignment

MnX = M(Σn ⊗X)

with the unit η and the multiplication with components

µnkX = (M(Σn ⊗M(Σk ⊗X)) Mt //M2(Σn+k ⊗X) µ
//M(Σn+k ⊗X)),

where Σn denotes the n-th tensor power of the object Σ, defines a graded monad on C.

(Σ = I yields Example 4.3.1.) We may think of Σn as an object of length-n traces; cf.
Example 5.2.1.

Another example of graded monads is provided by monads that distribute over a functor
by means of a so-called Kleisli law. Given a monad T with multiplication µ and unit η, and
a functor F , a Kleisli law is a natural transformation λ : FT → TF such that λ ◦ Fη = ηF

and λ ◦ Fµ = µF ◦ Tλ ◦ λT . It is well-known [23] that Kleisli laws are in 1-1 correspondence
with liftings of F to the Kleisli category of M ; they also induce graded monads:

I Lemma 4.5. Let T be a monad with multiplication µ and unit η, F a functor, and
λ : FT → TF a Kleisli-law. Define λn : FnT → TFn by

λ0 = id and λn = λn−1F ◦ Fn−1λ.

Then the data

Mn = TFn µnk = µFn+k ◦ TλnF k

define a graded monad whose unit is the unit η of M .

Stefan Milius, Dirk Pattinson, and Lutz Schröder 259

A related example is obtained from a distributive law of a monad T over an endofunctor F
(also called an EM-law), i.e., a natural transformation δ : TF → FT such that λ ◦ ηF = Fη

and λ ◦ µF = Fµ ◦ λT ◦ Tλ. Such distributive laws are in 1-1 correspondence with liftings of
F to the category of Eilenberg-Moore algebras for T [15], and like Kleisli laws they induce
graded monads:

I Lemma 4.6. Let M be a monad with multiplication µ and unit η, F a functor, and
λ : TF → FT an EM-law. Define λn : TFn → FnT by

λ0 = id and λn = Fλn−1 ◦ λFn−1.

Then the data

Mn = FnT µnk = Fn+kµ ◦ FnλkT

define a graded monad whose unit is the unit η of M .

(Lemmas 4.5 and 4.6 both have Example 4.3.2 as a trivial special case.) This lemma is a
2-categorical dual of Lemma 4.5. Note that no accessibility assumptions on F or T are needed;
contrastingly, to obtain a monad from F and T in the situation of the lemma as in [19], one
needs to assume that F and T are finitary. Intuitively, a distributive law TF → FT allows
shifting all F -operations to the top of a term only for terms of sufficiently uniform shape, i.e.
those in TFn.

5 Trace Semantics Via Graded Monads

We now give our generic definition of coalgebraic trace semantics, induced by a natural
transformation from the coalgebraic type functor into a graded monad.

I Definition 5.1 (Trace semantics). A trace semantics for G-coalgebras consists of a graded
monad (Mn)n∈N and a natural transformation

α : G→M1.

The α-pretrace sequence (γ(n) : X →MnX)n∈N for a G-coalgebra γ : X → GX is defined by
induction on n: γ(0) = ηX : X →M0X and

γ(n+1) = (γ(n))∗1 ◦ αX ◦ γ = (X αγ
//M1X

M1γ
(n)

//M1MnX
µ1n

X //Mn+1X).

The α-trace sequence Tαγ is the sequence

(Mn! ◦ γ(n) : X →Mn1)n∈N.

Over an unrestricted base category, we just view the α-trace sequence as the α-trace semantics,
speaking informally of α-trace equivalence as identification under α-trace semantics, and of
properties of states being α-trace invariant if they depend only on the α-trace sequence. If
C = Set then states x ∈ X, y ∈ Y in G-coalgebras (X, γ), (Y, δ) are α-trace equivalent if
Mn!◦γ(n)(x) = Mn!◦δ(n)(y) for all n ∈ N. We think ofMnX as containing length-n pretraces
over X and of Mn1 as containing length-n traces. The morphism Mn! : MnX →Mn1 forgets
the poststate of a pretrace.

The graded monad (Mn) is a parameter of the framework, and typically arises by
imposing additional equational laws such as distributivity on the graded monad (Gn)n<ω of
Example 5.2.4.

CALCO’15

260 Generic Trace Semantics and Graded Monads

I Example 5.2. We proceed to elaborate some concrete instances of trace semantics via
graded monads, beginning with our initial motivating example. In all these examples, α is
just identity. (As a trivial example where α is not identity, take MnX = 1, which makes all
states α-trace equivalent.)
1. Trace semantics of labelled transition systems: Labelled transition systems are coalgebras

for the functor G defined by GX = P(Σ×X). To capture standard trace semantics, we
define a graded monad ((Mn), η, (µnk)) by

MnX = P(Σn ×X),

with ηX(x) = {(ε, x)} ∈M0(X) for x ∈ X, and µnk(S) = {(uv, x) | ∃(u, V) ∈ S. (v, x) ∈
V }. This is in fact just a special case of Lemma 4.4. We then have that given a state x in a
G-coalgebra γ : X → P(Σ×X), i.e. in a labelled transition system, γ(n)(x) ∈ P(Σn ×X)
is the set of pairs (w, y) where w is a length-n trace of x and y is the corresponding
poststate. Thus, the n-th component Mn!γ(n) of the α-trace sequence maps x to the the
set of its length-n traces.

2. Trace semantics of probabilistic labelled transition systems: Recall that generative probab-
ilistic (transition) systems (for simplicity without the possibility of deadlock, the latter
not to be confused with explicit termination) are modelled as coalgebras for the functor
D(Σ × −) where D denotes the discrete distribution functor (i.e. D(X) is the set of
discrete probability distributions on X, and D(f) takes image measures under f). That
is, a coalgebra structure γ : X → D(Σ ×X) assigns to each state x ∈ X a probability
distribution over pairs of actions and successor states. As in the previous example, we
obtain a graded monad for probabilistic trace semantics as an instance of the construction
from Lemma 4.4. In this case, we have MnX = D(Σn×−); η(x) is the Dirac distribution
at (ε, x); and for ν ∈ D(Σn ×D(Σk ×X)),

µnk(ν)(u, y) =
∑

u=vw,w∈Σk,ρ∈D(Σk×X)

ν(v, ρ)ρ(w, y)

for (u, y) ∈ Σn+k × X. We identify Mn1 with D(Σn). Thus, given a state x in a G-
coalgebra γ, i.e. in a generative probabilistic system, (Mn!γ(n))(x)(u) is the probability
of x to exhibit a trace u ∈ Σn when run for n steps; this captures the standard notion of
probabilistic trace [6].

3. Mazurkiewicz traces: The trace semantics proposed by Mazurkiewicz [20] takes concurrent
actions into account. Given an action alphabet Σ and an independence relation I, i.e.,
a symmetric and irreflexive relation I ⊆ Σ× Σ, let WI denote the monoid obtained by
quotienting Σ∗ modulo commutation of independent letters, and put Wn

I = {[w] ∈WI |
|w| = n}. Then MnX = P(Wn

I ×X) models length-n Mazurkiewicz pretraces, consisting
of a Mazurkiewicz trace and a poststate. Defining the unit and multiplication analogously
as for standard traces, we obtain a graded monad M for Mazurkiewicz traces.
By the considerations in Section 4, M corresponds to a graded theory. For the finitely
branching case, i.e. replacing P with the finite powerset functor Pf , this theory is explicitly
described as follows. It has the join semilattice operations and equations as operations
and equations of depth 0, and one unary operation a of depth 1, called an action, for every
a ∈ Σ. The theory expresses distribution of actions over the join semilattice structure, by
the depth-1 equations

a(⊥) = ⊥ a(x ∨ y) = a(x) ∨ a(y), (1)

and commutation of independent actions a, b by depth-2 equations a(b(x)) = b(a(x)).

Stefan Milius, Dirk Pattinson, and Lutz Schröder 261

4. Finite-depth behavioural equivalence: Recall that states in labelled transition systems
are finitely bisimilar [10] if Duplicator wins all finite-length bisimulation games. More
generally, two states in G-coalgebras are finite-depth behaviourally equivalent if their
images coincide in all stages of the final sequence [27]; see Section 2. Finite-depth
behavioural equivalence is an instance of α-trace equivalence: take the graded monad
induced by G as in Example 4.3.2, i.e. Mn = Gn. Then for a state x in a G-coalgebra
γ, M ! ◦ γ(n)(x) ∈ Gn1 is the image of x in the n-th stage of the final sequence under
the canonical cone [19]; i.e. two states are α-trace equivalent iff they are finite-depth
behaviourally equivalent.

5. Kleisli liftings: If G is of the form G = TF for a functor F and a monad T with
a Kleisli law λ : FT → TF , then we obtain a graded monad with Mn = TFn as in
Lemma 4.5. The arising α-trace equivalence is typically finer than the language equivalence
targeted in previous work on Kleisli-lifting based semantics [12], which for the sake of
distinction we shall refer to as generic language semantics. E.g. in the base example
for language semantics, non-deterministic automata, the coalgebraic model is given by
G = P(1 + Σ × (−)) for an alphabet Σ, with 1 = {X} denoting explicit termination,
i.e. acceptance; here, T = P, and F = 1 + Σ × −. Language semantics effectively has
TA as its semantic domain, where A is the initial F -algebra; in this case, TA = P(Σ∗),
and indeed generic language semantics instantiates exactly to the standard language
semantics of nondeterministic automata. In other words, generic language semantics
focusses entirely on explicit termination; in cases where the latter is not present, e.g.
labelled transition systems, generic language semantics becomes trivial.
Contrastingly, α-trace equivalence in TFn1 ∼= P(

∑n
i=0 Σi) records, at stage n, not only

the accepted words of length at most n−1 (gathered in the first n−1 summands) but also
those words of length n that are traces in the same sense as for labelled transition systems,
i.e. can be run without blocking. This is similar in spirit to the denotational semantics of
CSP [13], which distinguishes deadlock from successful termination X. Generic language
semantics is obtained by just forgetting this last summand, and one can generalize this
observation to show that generic language semantics is obtained as a natural quotient of
α-trace semantics [19].

6. Eilenberg-Moore liftings: An alternative approach to generic language semantics defines
trace equivalence as bisimilarity in a generic determinization that can be constructed under
certain conditions [14]. We shall refer to this approach as extension semantics. It is based
on assuming a coalgebraic type functor of the form G = FT where F is a functor and T
is a monad, together with a EM-law δ : TF → FT . The domain of extension semantics
is the final coalgebra Z of F . The standard example of non-deterministic automata is
subsumed under this approach by taking FX = 2×XΣ and T = P. Here, Z ∼= P(Σ∗),
and extension semantics captures precisely the language semantics of non-deterministic
automata. Like Kleisli-style generic language semantics, extension semantics becomes
trivial in the absence of explicit termination; e.g. when we change F to be just FX = XΣ,
then the final F -coalgebra becomes trivial.
In our framework, we define a graded monad with Mn = FnT as in Lemma 4.6. In
the example of non-deterministic automata, we have Mn1 = FnP1 with FX = 2×XΣ,
i.e. Mn1 consists of Σ-branching trees of uniform depth n, with inner nodes labelled in
2 = {⊥,>} and leaves in P1. Such a tree may be identified with a set A of words w of
length ≤ n over Σ: if |w| < n then w ∈ A iff the inner node addressed by w is labelled by
>; w is then accepted. If |w| = n then w ∈ A iff the leaf node addressed by w is labelled
by 1; w is then a trace, i.e. a state having w in its trace sequence at stage n can execute

CALCO’15

262 Generic Trace Semantics and Graded Monads

w without deadlocking. Language equivalence is recovered from α-trace equivalence by
canonically forgetting the information about traces; see [19] for details.

6 Graded Algebras

Fix for this section a graded monad M = ((Mn), η, (µnk)). As we think ofMn as constructing
terms of uniform depth n, it is natural to take graded algebras as providing an interpretation
of depth-n-terms to which additional layers can be added uniformly. The Mn-algebras
introduced below allow interpreting terms up to uniform depth n, and Mω-algebras terms of
arbitrary depth.

I Definition 6.1 (Graded algebras). For a given natural number n, an Mn-algebra A =
((Ak)k≤n, (amk)m+k≤n) consists of a family of carrier objects Ai and structure morphisms

amk : MmAk → Am+k

such that a0mηAm
= idAm

for all m ≤ n, and whenever m+ r + k ≤ n, the diagram on the
left

MmMrAk
Mma

rk

//

µmr
Ak

��

MmAr+k

am,r+k

��

Mm+rAk
am+r,k

// Am+r+k

MmAk
Mmfk //

amk

��

MmBk

bmk

��

Am+k
fm+k

// Bm+k

(2)

commutes. A morphism of Mn-algebras from A = ((Ak), (amk)) to B = ((Bk), (bmk)) is a
family of morphisms fk : Ak → Bk, k ≤ n, such that the right hand diagram above commutes
whenever m+ k ≤ n. Mω-algebras and their morphisms are defined similarly but with all
indices ranging over m, k, r ∈ N.

As expected, applying a graded monad to a given set yields a free algebra:

I Proposition 6.2. For every n ∈ N, FX = ((MmX)m≤n, (µmk)m+k≤n) is an Mn-algebra,
the freeMn-algebra over X w.r.t. the forgetful functor Un that maps anMn-algebra ((Ak), (amk))
to A0 and a morphism (fk) to f0; similarly for Mω-algebras.

In other words, Mn-algebras realize the monad M0 by an adjunction; for n = 0, we just
obtain the usual Eilenberg-Moore construction for M0. For later use in the semantics of
trace formulas, we note

I Proposition 6.3. If C has products, then the category ofMn-algebras has products described
as follows. The product of a family of Mn-algebras Ai = ((Aik)k≤n, (amki)m+k≤n) indexed
over i ∈ I has carriers

∏
i∈I A

k
i for k ≤ n and structure morphisms being composites

Mm

∏
i∈I A

i
k

〈Mmπi〉
//
∏
i∈IMmA

i
k

∏
i∈I

amk
i
//
∏
i∈I A

i
m+k.

7 Depth-1 Theories

Graded algebras in general need to be constructed monolithically – due to the entanglement
between the structure morphisms imposed by Diagram (2), it is not in general possible to
combine, say, an Mn-algebra and an Mk-algebra into an Mn+k-algebra. A combination
mechanism becomes possible, however, if we restrict the depth of equations in the associated
graded theory, as follows.

Stefan Milius, Dirk Pattinson, and Lutz Schröder 263

I Definition 7.1 (Depth-1 generation and presentation). We say that a graded theory is
depth-1-generated if all its operations have depth 1, and depth-1-presented or just depth-1 if
additionally all its equations have depth 1. A graded monad on Set is said to have these
properties if it can be generated by a corresponding graded theory.

I Example 7.2. All graded monads in Example 5.2 except the one in Example 5.2.3 are
depth-1.

We proceed to develop a more abstract characterization of depth-1 monads usable over
arbitrary base categories. Recall that an epi-transformation between set functors is a natural
transformation with surjective components.

I Proposition 7.3. A graded monad M = ((Mn), η, (µnk)) on Set is depth-1 generated iff
all µnk are epi-transformations, equivalently if all µ1k are epi-transformations. Moreover, M
is depth-1 iff additionally the diagram below is a coequalizer diagram for every n:

M1M0Mn

M1µ
0n

//

µ10Mn

//M1Mn
µ1n

//M1+n . (3)

I Remark 7.4. Notice that the coequalizer (3) is reflexive; indeed we haveM1µ
0n◦M1ηMn =

idM1Mn
= µ10Mn ◦M1ηMn by the unit law of the graded monad.

This motivates the following definition (over unrestricted base categories).

I Definition 7.5. A graded monad M = ((Mn), η, (µnk)) is depth-1 generated if all µnk are
epi-transformations. Moreover, M is depth-1 if it is depth-1 generated and for every n, the
diagram (3) is a coequalizer diagram, and M0µ

1n is an epi-transformation.

I Remark 7.6. [leftmargin=0pt,itemindent=3em]
1. Proposition 7.3 shows that Definition 7.1 and Definition 7.5 agree where both apply,

i.e. for graded monads on Set. The condition that M0µ
1n be an epi-transformation is

automatic in this case, since each µ1n
X is a coequalizer (hence a surjective map) and every

functor on Set preserves surjective maps.
2. The condition that M0µ

1n is an epi-transformation holds as soon as C is an algebraic
category such that every finitely presentable object is regular projective and M0 is finitary.
Indeed, by [2, 6.30] M0 preserves sifted colimits (and, in particular, reflexive coequalizers).
Thus, M0µ

1n is a (reflexive) coequalizer and therefore an epi-transformation.

The salient point about depth-1 monads is that they allow reducing Mn-algebras to families
of M1-algebras. We begin with morphisms:

I Proposition 7.7. If M is depth-1-generated then given Mn-algebras ((Ak), (akl)) and
((Bk), (bkl)), a family of maps fk : Ak → Bk is a morphism of Mn-algebras iff for each l < n,
(fl, fl+1) is a morphism of M1-algebras; i.e. f1+la

1l = b1lM1fl, and each fl is a morphism
(Al, a0l)→ (Bl, b0l) of M0-algebras.

We now present our main technical result, which states essentially that Mn-algebras for
depth-1 monads can be assembled from M1-algebras:

I Theorem 7.8. Let M = ((Mn), η, (µnk)) be a depth-1 graded monad, and let n ∈ N. Then
every family of morphisms

a1k : M1Ak → Ak+1, a0k : M0Ak → Ak (k ≤ n)

such that for each k < n, (a0k, a0,k+1, a1k) form an M1-algebra extends uniquely to an
Mn-algebra.

CALCO’15

264 Generic Trace Semantics and Graded Monads

In other words, combining this with the previous proposition, we have that in the depth-1-case,
an Mn-algebra is just a chain of M1-algebras with compatible M0-parts.

I Remark 7.9. In the corner case where Mn = Fn for an endofunctor F (Example 4.3.2),
M0-algebras are trivial and M1-algebras are just maps FA0 → A1. Therefore, the graded
objects studied by Ghilardi and Bezhanishvili [9, 4] can formally be seen as Mω-algebras with
additional structure.

8 Trace Logics

We now return to our original goal, to identify a generic notion of α-trace logic, understood as
a compositional syntax for α-trace-invariant properties (see Remark 3.1). The key ingredient
in our approach is the compositionality of graded algebras for depth-1 monads (Theorem 7.8):
We use M1-algebras as modal operators; by Theorem 7.8, we can build an Mn-algebra out
of n such operators. By Proposition 6.2, we can then use Mn-algebras (Ak) as formulas
describing α-traces of length n: we fix a truth value, i.e. an element τ : 1→ A0, and obtain
a morphism τ# of Mn-algebras by free extension. In particular, the diagram

M1Mk1

µ1k

��

M1τ
#
k // M1Ak

a1k

��

M1+k1
τ#

1+k

// A1+k

commutes for 1 + k ≤ n, thus precisely realizing the idea for a compositional semantics of
operators that previously failed for ordinary monads (Remark 3.2). Before we introduce
more specific syntax, we formally fix the semantics as just indicated:

I Definition 8.1. An α-trace property (A, τ) of rank n consists of an Mn-algebra A =
((Ak), (amk)) and a distinguished global element τ : 1→ A0 called the base. We think of the
elements of the Ak as truth values, and refer to An as the type of (A, τ). The evaluation of
(A, τ) on a G-coalgebra γ : C → GC is the morphism

C
γ(n)
//MnC

Mn!
//Mn1

τ#
n //An ,

where τ# is the unique homomorphism from the free Mn-algebra on 1, (Mk1)k≤n, to A such
that τ#

0 η = τ . (In particular, α-trace properties are, by definition, α-trace invariant, i.e their
evaluation factors through the α-trace sequence.)

We now develop a generic notion of α-trace formula as a syntax for α-trace properties, with
a number of syntactic and semantic parameters that can be chosen freely. Given an α-trace
property (A, τ), the Ai are, in principle, arbitrary M0-algebras; however, the current set of
examples suggests that it suffices to choose the Ai as powers of a fixed M0-algebra Ω of truth
values. We thus arrive at the following definition of generic α-trace logic.

Syntax. We parametrize the syntax over signatures Λ and Θ where Λ consists of modal
operators with given finite arities and Θ of truth constants. α-Trace formulas φ of rank n
are then defined by induction over n: the α-trace formulas of rank 0 are the truth constants;
α-trace formulas φ of rank n+ 1 have the form

φ ::= L(φ1, . . . , φk)

Stefan Milius, Dirk Pattinson, and Lutz Schröder 265

where L ∈ Λ is k-ary, and φ1, . . . , φk are α-trace formulas of rank n. (Again, observe that
this implies that when L is nullary, the formula L has rank n for every n ≥ 1.)

Semantics. We assume from now on that C has finite products. As parameters of the
semantics, we fix an M0-algebra Ω with structure map ω : M0Ω→ Ω serving as an object
of truth values, and interpretations of the signature symbols. We let Ωn denote the n-th
Cartesian power of Ω as anM0-algebra, with structure map ω(n) (formed as in Proposition 6.3).
An n-ary modal operator L ∈ Λ is interpreted as a morphism JLK : M1(Ωn)→ Ω such that
(ω(n), ω, JLK) form an M1-algebra with carriers Ω0 = Ωn, Ω1 = Ω; explicitly, ω and ω(n) are
algebras for the monad M0 and the diagrams

M1M0(Ωn) M1ω
(n)

//

µ10

��

M1(Ωn)

JLK
��

M0M1(Ωn)
M0JLK

//

µ01

��

M0Ω

ω

��

M1Ωn
JLK

// Ω M1(Ωn)
JLK

// Ω

commute. Finally, a truth constant c ∈ Θ is interpreted as a truth value JcK : 1→ Ω.
The semantics of an α-trace formula φ is an α-trace property JφK of type Ω, defined

recursively as follows. For c ∈ Θ, we put (overloading notation)

JcK = (Ω, JcK),

an α-trace property of rank 0. For an α-trace formula L(φ1, . . . , φk) of rank n+ 1, we form
the product of the rank-n α-trace properties Jφ1K, . . . , JφkK; explicitly, this product is formed
by taking products of Mn-algebras as in Proposition 6.3, and by tupling the bases (observe
that the evaluation of the product according to Definition 8.1 is the tuple formed from
the evaluations of the component properties). We thus obtain a rank-n α-trace property
(((Ar)r≤n, (amr)m+r≤n), τ) of type Ωk. Using Theorem 7.8, we then extend the latter to a
rank-(n+1) α-trace property (((Ar)r≤n+1, (amr)m+r≤n+1), τ) of type Ω by taking An+1 = Ω,
a0,n+1 = ω, and a1n = JLK : An = Ωk → Ω = An+1.

I Example 8.2.
1. Labelled transition systems. As truth value object, we take 2 = {⊥,>} with the usual

join semilattice structure; we put Θ = {>} and J>K = > : 1→ 2. We could then take Λ
to consist just of unary modal operators of the form 〈a〉, interpreted as

J〈a〉K : P(Σ× 2)→ 2, S 7→

{
> (a,>) ∈ S
⊥ otherwise

much as in Remark 3.2. This defines exactly the usual trace logic for LTS (in particular
is already sufficient to distinguish states up to trace equivalence): 〈a〉φ says that there
exists a trace that begins with a and continues with a trace satisfying φ.
We obtain a slightly more interesting logic by extending Λ with operators of higher arity.
Due to the equations imposed by the graded monad (Mn) = (P(Σn×−)), an M1-algebra
with carriers 2k, 2 interprets a ∈ Σ as a join-continuous map 2k → 2; such maps have
the form (b1, . . . , bk) 7→

∨
i∈I bi for some I ⊆ {1, . . . , k}. Thus, we can introduce k-ary

operators L of the form

L(φ1, . . . , φk) =
∨
a∈Σ〈a〉

∨
i∈Ia

φi (Ia ⊆ {1, . . . , k});

that is, we enrich the language with disjunction.

CALCO’15

266 Generic Trace Semantics and Graded Monads

2. Probabilistic trace logic: Recall that generative probabilistic transition systems are
coalgebras for D(Σ×−), and their trace semantics is given by the graded monad (Mn) =
(D(Σn×−)); in particular,M0 ∼= D. To obtain a trace logic, we take Λ = {〈Σ0〉 | Σ0 ⊆ Σ},
and Θ = {1}. We choose Ω = [0, 1] as the object of truth values, made into a D-algebra
by taking expected values, i.e. a formal convex combination

∑
piqi over [0, 1] is mapped

to the arithmetic sum
∑
piqi. We put J1K = 1 ∈ [0, 1]. Finally, we interpret the modal

operator 〈Σ0〉 by

J〈Σ0〉K : D(Σ× [0, 1])→ [0, 1], µ 7→
∑
a∈Σ0,p∈[0,1] pµ({(a, p)}).

Then a formula 〈Σn〉 · · · 〈Σ1〉p evaluates, at a state c, to p times the probability that c
takes a trace in Σn · · ·Σ1; up to the slightly more general syntax, this is exactly the usual
trace logic for generative probabilistic transition systems (see, e.g., [3]). Similarly as in
the previous example, we can move to a richer language with higher-arity modal operators.
As the distributive law behind the multiplication of D(Σn ×−) (Example 5.2.2) amounts
to requiring that an M1-algebra with carriers [0, 1]k, [0, 1] interprets every a ∈ Σ as a
morphism [0, 1]k → [0, 1] of D-algebras, we thus extend the language with affine maps (in
analogy to adding disjunction in the case of LTS), i.e. with formulas c+

∑
i qiφi, subject

to the proviso that (xi) 7→ c +
∑
qixi defines a map [0, 1]k → [0, 1]. In particular, the

extended language includes fuzzy negations 1− φ.
3. Coalgebraic modal logic: Recall that finite-depth behavioural equivalence on G-coalgebras

is α-trace equivalence for the graded monad MnX = GnX (Example 5.2.4). Now
finite-depth behavioural equivalence is precisely the equivalence described by coalgebraic
modal logic for a separating set of predicate liftings (no assumptions are needed on
the functor) [24, 28, 29]. The simplest example is Hennessy-Milner logic over labelled
transition systems; other examples include probabilistic, graded, and neighbourhood-
based logics [26]. In fact, coalgebraic modal logic can be seen as an α-trace logic.
Specifically, let Λ be a signature of finitary (possibly nullary) modal operators L, with
given interpretations as predicate liftings for G. The latter are equivalent to subsets
of G(2k) where k is the arity, i.e. to maps JLK : G(2k) → 2. Predicate liftings are
closed under Boolean combination [28], so we can assume that Λ is closed under Boolean
combinations. Therefore, we can restrict the syntax of coalgebraic modal logic to nothing
but closed terms formed from the operations in Λ (the only other standard ingredient are
Boolean operators, now absorbed by Λ).
We define an α-trace logic by taking the same Λ, and Θ = ∅; moreover, we take Ω = 2 to be
the truth value object. The interpretations Λ already have the required type G(2k)→ 2;
since M0 is the identity monad, and the M0-algebra structure on 2 is therefore trivial,
there are no further conditions to check. Trace formulas over Λ and Θ are, then, exactly
the same as formulas in coalgebraic modal logic over Λ, and the semantics is the same in
both settings.

I Remark 8.3. The above examples seem to indicate that there is no single canonical
choice for the truth value object Ω. In some cases, the free M0-algebra M01 will do,
as in Example 8.2.1 or in a variant of Example 8.2.2 that uses subprobabilities instead
of probabilities. As it stands, Ω is isomorphic to M02 in Example 8.2.2, similarly in
Example 8.2.3. Given Ω, a morphism M1(Ωn) → Ω corresponds to an n-ary lifting of
Ω-valued predicates for M1, i.e. a transformation (ΩX)n → ΩM1X , natural in X [28]; we
leave the analysis of the predicate liftings arising from the interpretations JLK : M1(Ωn)→ Ω
of n-ary modal operators L to future work.

Stefan Milius, Dirk Pattinson, and Lutz Schröder 267

I Remark 8.4. In all the above examples, the trace logic is expressive, i.e. logically equivalent
states are α-trace equivalent. In the general case, it is trivial to come up with an expressive
set of α-trace properties: just take, for each n, the free Mn-algebra over 1 (Proposition 6.2)
as an α-trace property of rank n. Of course, this is uninteresting, as it amounts to just
taking trace sets as logical formulas; also, it does not constitute a compositional syntax for
α-trace formulas. We leave the identification of criteria for expressiveness of a given trace
logic to future research.

9 Conclusions and Future Work

We have shown how many forms of trace semantics of coalgebras, including the usual trace
semantics of nondeterministic and probabilistic labelled transition systems and Mazurkiewicz
traces as well as finite-depth behavioural equivalence, can be modelled uniformly by embedding
the coalgebraic type functor into a graded monad. A salient point about this approach is
that it constitutes, to our best understanding, the first native semantic definition of generic
trace equivalence, while existing approaches start either from a determinization procedure or
a trace logic.

We have introduced a notion of graded algebras, which serve as trace-invariant properties.
As our main technical result, we have shown that for the more restrictive class of depth-1
monads, graded algebras can be built in a modular fashion. This gives rise to a compositional
syntax for trace-invariant logics. We have illustrated how such logics arise for our main
examples of trace semantics, thus regaining and extending standard logics in the case of plain
and probabilistic traces, and coalgebraic modal logic in the case of finite-depth behavioural
equivalence.

Future investigations will be directed at analysing the expressivity as well as algorithmic
aspects of trace logics, including the exploration of temporal extensions.

Acknowledgements. We wish to thank Alexander Kurz and Tadeusz Litak for useful
discussions and pointers to the literature, and Erwin R. Catesbeiana for hints on inconsistent
graded monads.

References
1 Luca Aceto, Anna Ingólfsdóttir, Kim Larsen, and Jiři Srba. Reactive systems: modelling,

specification and verification. Cambridge Univ. Press, 2007.
2 JiříAdámek, JiříRosický, and Enrico Vitale. Algebraic Theories. Cambridge Univ. Press,

2011.
3 Marco Bernardo and Stefania Botta. A survey of modal logics characterising behavioural

equivalences for non-deterministic and stochastic systems. Math. Struct. Comput. Sci.,
18:29–55, 2008.

4 Nick Bezhanishvili and Silvio Ghilardi. The bounded proof property via step algebras and
step frames. Ann. Pure Appl. Logic, 165:1832–1863, 2014.

5 Marcello Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axiomatiza-
tions of coalgebraic language equivalence. ACM Trans. Comput. Log., 14, 2013.

6 Ivan Christoff. Testing equivalences and fully abstract models for probabilistic processes. In
Theories of Concurrency, CONCUR 1990, volume 458 of LNCS, pages 126–140. Springer,
1990.

7 Corina Cîrstea. A coalgebraic approach to linear-time logics. In Foundations of Software
Science and Computation Structures, FoSSaCS 2014, volume 8412 of LNCS, pages 426–440.
Springer, 2014.

CALCO’15

268 Generic Trace Semantics and Graded Monads

8 Corina Cîrstea. Canonical coalgebraic linear time logics. In Proc. CALCO, 2015. This
volume.

9 Silvio Ghilardi. An algebraic theory of normal forms. Ann. Pure Appl. Logic, 71:189–245,
1995.

10 Valentin Goranko and Martin Otto. Model theory of modal logic. In P. Blackburn, J. van
Benthem, and F. Wolter, editors, Handbook of Modal Logic, pages 249–329. Elsevier, 2006.

11 Daniel Gorín and Lutz Schröder. Simulations and bisimulations for coalgebraic modal logics.
In Algebra and Coalgebra in Computer Science, CALCO 2013, volume 8089 of LNCS, pages
253–266. Springer, 2013.

12 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Log. Meth. Comput. Sci., 3, 2007.

13 Antony Hoare. Communicating sequential processes. Prentice Hall, 1985.
14 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization.

In Coalgebraic Methods in Computer Science, CMCS 2012, volume 7399 of LNCS, pages
109–129. Springer, 2012.

15 Peter Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London
Math. Soc., 7:294–297, 1975.

16 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Principles
of Programming Languages, POPL 2014, pages 633–646. ACM, 2014.

17 Christian Kissig and Alexander Kurz. Generic trace logics. arXiv preprint 1103.3239, 2011.
18 Bartek Klin and Juriaan Rot. Coalgebraic trace semantics via forgetful logics. In Founda-

tions of Software Science and Computation Structures, FoSSaCS’15, 2015.
19 Alexander Kurz, Stefan Milius, Dirk Pattinson, and Lutz Schröder. Simplified coalgebraic

trace equivalence. In Software, Services, and Systems, volume 8950 of LNCS, pages 75–90.
Springer, 2015.

20 A. Mazurkiewicz. Concurrent Program Schemes and Their Interpretation. Aarhus Univer-
sity, Comp. Sci. Depart., DAIMI PB-78, July 1977.

21 P.-A. Mellies. The parametric continuation monad. Preprint, 2015.
22 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93:55–92, 1991.
23 Philip Mulry. Lifting theorems for Kleisli categories. In Mathematical Foundations of

Programming Semantics, MFPS 1993, volume 802 of LNCS, pages 304–319. Springer, 1994.
24 D. Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame

J. Formal Logic, 45:19–33, 2004.
25 J. Rutten. Universal coalgebra: A theory of systems. Theor. Comput. Sci., 249:3–80, 2000.
26 L. Schröder and D. Pattinson. PSPACE bounds for rank-1 modal logics. ACM Trans.

Comput. Log., 10:13:1–13:33, 2009.
27 L. Schröder and D. Pattinson. Rank-1 modal logics are coalgebraic. J. Log. Comput., 20,

2010.
28 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theor.

Comput. Sci., 390:230–247, 2008.
29 Lutz Schröder and Dirk Pattinson. Coalgebraic correspondence theory. In Foundations of

Software Structures and Computer Science, FoSSaCS 2010, volume 6014 of LNCS, pages
328–342. Springer, 2010.

30 Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. Generalizing de-
terminization from automata to coalgebras. Log. Meth. Comput. Sci, 9(1:9), 2013.

31 A. Smirnov. Graded monads and rings of polynomials. J. Math. Sci., 151:3032–3051, 2008.
32 Sam Staton. Relating coalgebraic notions of bisimulation. Log. Meth. Comput. Sci., 7,

2011.

Stefan Milius, Dirk Pattinson, and Lutz Schröder 269

33 Rob van Glabbeek. The linear time-branching time spectrum (extended abstract). In
Theories of Concurrency, CONCUR’90, volume 458 of LNCS, pages 278–297. Springer,
1990.

34 James Worrell. On the final sequence of a finitary set functor. Theor. Comput. Sci.,
338:184–199, 2005.

CALCO’15

Open System Categorical Quantum Semantics in
Natural Language Processing
Robin Piedeleu1, Dimitri Kartsaklis2, Bob Coecke1, and
Mehrnoosh Sadrzadeh2

1 Department of Computer Science, University of Oxford
Parks Road, Oxford OX1 3QD, UK
{robin.piedeleu;bob.coecke}@cs.ox.ac.uk

2 School of Electronic Engineering and Computer Science, Queen Mary
University of London
Mile End Road, London E1 4NS, UK
{d.kartsaklis;m.sadrzadeh}@qmul.ac.uk

Abstract
Originally inspired by categorical quantum mechanics (Abramsky and Coecke, LiCS’04), the
categorical compositional distributional model of natural language meaning of Coecke, Sadrzadeh
and Clark provides a conceptually motivated procedure to compute the meaning of a sentence,
given its grammatical structure within a Lambek pregroup and a vectorial representation of the
meaning of its parts. Moreover, just like CQM allows for varying the model in which we interpret
quantum axioms, one can also vary the model in which we interpret word meaning.

In this paper we show that further developments in categorical quantum mechanics are relev-
ant to natural language processing too. Firstly, Selinger’s CPM-construction allows for explicitly
taking into account lexical ambiguity and distinguishing between the two inherently different
notions of homonymy and polysemy. In terms of the model in which we interpret word meaning,
this means a passage from the vector space model to density matrices. Despite this change of
model, standard empirical methods for comparing meanings can be easily adopted, which we
demonstrate by a small-scale experiment on real-world data. Secondly, commutative classical
structures as well as their non-commutative counterparts that arise in the image of the CPM-
construction allow for encoding relative pronouns, verbs and adjectives, and finally, iteration of
the CPM-construction, something that has no counterpart in the quantum realm, enables one to
accommodate both entailment and ambiguity.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases category theory, density matrices, distributional models, semantics

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.270

1 Introduction

Language serves to convey meaning. From this perspective, the ultimate and long-standing
goal of any computational linguist is to capture and adequately represent the meaning of
an utterance in a computer’s memory. At word level, distributional semantics offers an
effective way to achieve that goal; following the distributional hypothesis [11] which states
that the meaning of a word is determined by its context, words are represented as vectors
of co-occurrence statistics with all other words in the vocabulary. While models following
this paradigm have been found very useful in a number of natural language processing tasks,
they do not scale up to the level of phrases or sentences. This is due to the capacity of

© Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke, and Mehrnoosh Sadrzadeh;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 270–289

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.270
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 271

natural language to generate an infinite number of structures (phases and sentences) from
finite means (words); no text corpus, regardless of its size, can provide reliable distributional
statistics for a multi-word sentence. On the other hand, type-logical approaches conforming
to the tradition of Lambek [16], Montague and other pioneers of language, are compositional
and deal with the sentence at a more abstract level based on the syntactical rules that hold
between the different text constituents, but in principle they do not provide a convincing
model for word meaning.

The categorical compositional distributional model of Coecke, Sadrzadeh and Clark [7]
addresses the challenge of combining these two orthogonal models of meaning in a unified
setting. The model is based on the observation that a grammar expressed as a pregroup [15]
shares the same structure with the category of finite dimensional vector spaces and linear
maps, that of a compact closed category [14]. In principle, this offers a canonical way to
express a grammatical derivation as a morphism that defines linear-algebraic manipulations
between vector spaces, resulting in a sentence vector. The main characteristic of the model
is that the grammatical type of a word determines the vector space in which it lives. Words
with atomic types, such as nouns, are represented by vectors living in some basic vector
space N ; on the contrary, relational words such as verbs and adjectives live in tensor product
spaces of higher order. An adjective, for example, is an element of N ⊗N , while a transitive
verb lives in N ⊗ S ⊗N . The relational tensors act on their argument by tensor contraction,
a generalization of the familiar notion of matrix multiplication to higher order tensors.

Ambiguity is a dominant feature of language. At the lexical level, one can distinguish
between two broad types of ambiguity: homonymy refers to cases in which, due to some
historical accident, words that share exactly the same spelling and pronunciation are used
to describe completely distinct concepts; such an example is ‘bank’, meaning a financial
institution and a land alongside a river. On the other hand, the senses of a polysemous word
are usually closely related with only small deviations between them; as an example, think
of ‘bank’ again as a financial institution and the concrete building where that institution is
accommodated. These two notions of ambiguity are inherently different; while a polysemous
word still retains a certain level of semantic coherence, a homonymous word can be seen as
an incoherent mixing due to coincidence. The issue of lexical ambiguity and the different
levels of it is currently ignored from almost all attempts that aim to equip distributional
models of meaning with compositionality.

The purpose of this paper is to provide the theoretical foundations for a compositional
distributional model of meaning capable of explicitly dealing with lexical ambiguity. In the
proposed model we exploit the observation that the compact closed structure on which the
original model of Coecke et al. [7] was based provides an abstraction of the Hilbert space
formulation used in the quantum theory, in terms of pure quantum states as vectors, which is
known under the umbrella of categorical quantum mechanics [1]. In fact, the original model
of Coecke et al. was itself greatly inspired by quantum theory, and in particular, by quantum
protocols such as quantum teleportation. Importantly, vectors in a Hilbert space represent
the states of a closed quantum system, also called pure states. Selinger’s CPM-construction
[21], which maps any dagger compact closed category on another one, then adjoins open
system states, also called mixed states. In the new model, these allow for a lack of knowledge
on part of the system under consideration, which may be about an extended part of the
quantum system, or uncertainty (read: ambiguity) regarding the preparation procedure.

The crucial distinction between homonymous and polysemous words is achieved as follows:
while a polysemous word corresponds to a pure quantum state, a homonymous word is
given by a mixed state that essentially embodies a probability distribution over all potential

CALCO’15

272 Open System Categorical Quantum Semantics in Natural Language Processing

meanings of that word. Mathematically, a mixed states is expressed as a density matrix:
a self-adjoint, positive semi-definite operator with trace one. The new formulation offers
many opportunities for interesting and novel research. For instance, by exploiting the notion
of Von Neumann entropy one can measure how ambiguity evolves from individual words to
larger text constituents; we would expect that the level of ambiguity in word ‘bank’ is higher
than that of the compound ‘river bank’.

Furthermore, the richness of the new category in which the meanings of words now live
offers interesting alternative design options. In the past, for example, Sadrzadeh, Kartsaklis
and colleagues [19, 12] enriched the categorical compositional model with elements of classical
processing, exploiting the fact that any basis of a finite-dimensional vector space induces a
commutative Frobenius algebra over this space, which allows the uniform copying or deleting of
the information relative to this basis [6]. As we will see in Sect. 4, the dagger compact closed
categories arising from the CPM-construction also accommodate canonical non-commutative
Frobenius algebras which have the potential to account for the non-commutativity of language.

Finally, we discuss how iterated application of the CPM-construction, which gives rise
to states that have no interpretation in quantum theory, does have a natural application
in natural language processing. It allows for simultaneous semantic representation of more
than one language feature that can be represented by density matrices, for example, lexical
entailment in conjunction with ambiguity.

Related work. The issue of lexical ambiguity in categorical compositional models of meaning
has been previously experimentally investigated by Kartsaklis and Sadrzadeh [13], who present
evidence that the introduction of an explicit disambiguation step on the word vectors prior
to composition improves the performance of the models. Furthermore, the research presented
here is not the only one that uses density matrices for linguistic purposes. Balkır [2] uses
a form of density matrices in order to provide a similarity measure that can be used for
evaluating hyponymy-hypernymy relations. In Sect. 5 we indicate how these two uses of
density matrices can be merged into one. Finally, Blacoe et al. [3] describe a distributional
(but not compositional) model of meaning based on density matrices created by grammatical
dependencies.

2 Background

The field of category theory aims at identifying and studying connections between seemingly
different forms of mathematical structures. A very representative example of its potency is
the compositional categorical framework of Coecke et al. [7], which shows that a grammatical
derivation defining the structure of a sentence is homomorphic to a linear-algebraic formula
acting on a semantic space defined by a distributional model. The framework offers a concrete
manifestation of the rule-to-rule hypothesis and a mathematical counterpart to the formal
semantics perspective on language. As noted above, the main idea is based on the fact
that both the type-logic of the model, a pregroup grammar, and the semantic category,
namely FHilb, possess a compact-closed structure. Recall that a compact closed category is
a monoidal category in which every object A has a left and right adjoint, denoted as Al, Ar
respectively, for which the following special morphisms exist:

ηl : I → A⊗Al ηr : I → Ar ⊗A εl : Al ⊗A→ I εr : A⊗Ar → I (1)

These maps need to satisfy certain conditions (known as yanking equations) which ensure

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 273

that all relevant diagrams commute:

(1A ⊗ εlA) ◦ (ηlA ⊗ 1A) = 1A (εrA ⊗ 1A) ◦ (1A ⊗ ηrA) = 1A (2)
(εlA ⊗ 1Al) ◦ (1Al ⊗ ηlA) = 1Al (1Ar ⊗ εrA) ◦ (ηrA ⊗ 1Ar) = 1Ar

Finally, the passage from syntax to semantics is carried out by a strong monoidal functor
and, as a result, preserves the compact closed structure. Before we proceed to expand on the
above constructions, we refer the reader to App. A for a brief introduction to the graphical
calculus of monoidal categories which will be used throughout our exposition.

2.1 Pregroup grammars
A pregroup algebra [15] is a partially ordered monoid with unit 1, whose each element p has
a left adjoint pl and a right adjoint pr, conforming to the following inequalities:

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p (3)

A pregroup grammar is a pregroup algebra freely generated over a set of basic types B
including a designated end type and a type dictionary that assigns elements of the pregroup
to the vocabulary of a language. For example, it is usually assumed that B = {n, s}, where
n is the type assigned to a noun or a well-formed noun phrase, while s is a designated type
kept for a well-formed sentence. Atomic types can be combined in order to provide types
for relational words; for example, an adjective has type n · nl, reflecting the fact that it is
something that expects for a noun at its right-hand side in order to return another noun.
Similarly, a transitive verb has type nr · s · nl, denoting something that expects two nouns
(one at each side) in order to return a sentence. Based on (3), for this latter case the pregroup
derivation gets the following form:

n · (nr · s · nl) · n = (n · nr) · s · (nl · n) ≤ 1 · s · 1 ≤ s (4)

Let CF denote the free compact closed category derived from the pregroup algebra of a
pregroup grammar [18]; then, according to (1), the above type reduction corresponds to the
morphism εrn · 1s · εln : n · nr · s · nl · n→ s in CF.

2.2 From syntax to semantics
The type-logical approach presented in Sect. 2.1 is compositional, but unable to distinguish
between words of the same type; even more importantly, the only information that a
derivation such as the one in (4) can provide to us is whether the sentence is well-formed
or not. Distributional models of meaning offer a solution to the first of these problems, by
representing a word in terms of its distributional behaviour in a large corpus of text. While
the actual methods for achieving this can vary (see App. D for a concrete implementation), the
goal is always the same: to represent words as points of some metric space, where differences
in semantic similarity can be detected and precisely quantified. The prime intuition is that
words appearing in similar contexts must have a similar meaning [11]. The word vectors
typically live in a highly dimensional semantic space with a fixed orthonormal basis, the
elements of which correspond to content-bearing words. The values in the vector of a target
word wt express co-occurrence statistics extracted from some large corpus of text, showing
how strongly wt is associated with each one of the basis words. For a concise introduction to
distributional models of meaning see [23].

CALCO’15

274 Open System Categorical Quantum Semantics in Natural Language Processing

We take (FHilb,⊗), the category of finite dimensional Hilbert spaces and linear maps
over the scalar field I, to be the semantic counterpart of CF which, as we saw before,
accommodates the grammar. FHilb is a dagger compact closed category (or, †-compact
closed); that is, a symmetric compact closed category (so that Ar ∼= Al = A∗ for all A)
equipped with an involutive contravariant functor † : FHilb→ FHilb that is the identity on
objects. Concretely, in FHilb, for a morphism f : A→ B, its dagger f† : B → A is simply
its adjoint. Furthermore, εA = η†A ◦ σA∗,A for all A.

Taking |ψ〉 and |φ〉 to be two vectors in a Hilbert space H, εA : A∗ ⊗ A → I is the
pairing εA(〈ψ|, |φ〉) = 〈ψ|(|φ〉) = 〈ψ|φ〉 and ηA = ε†A. This allows the inner product to be

categorically defined as 〈ψ|φ〉 : I ψ−−→ H φ†−−−→ I. In practice it is often necessary to normalise
in order to obtain the cosine of the angle between vectors as a measure of semantic similarity.

2.3 Quantizing the grammar
We now proceed to present a solution to the second problem posed above, that of providing
a quantified semantic representation for a sentence by composing the representations of the
words therein: in this paper we follow [17] and [12] and we achieve the transition from syntax
to semantics via a strong monoidal functor Q : CF → FHilb which can be shown to also
preserve the compact structure so that Q(pl) = Q(p)l and Q(pr) = Q(p)r for p an object
of CF. Since each object in FHilb is its own dual we also have Q(pl) ∼= Q(p) ∼= Q(pr).
Moreover, for basic types, we let Q(n) = N and Q(s) = S. Note that since Q is strongly
monoidal, complex types are mapped to tensor product of vector spaces:

Q(n ·nr) = Q(n)⊗Q(nr) = N ⊗N Q(nr · s ·nl) = Q(nr)⊗Q(s)⊗Q(nl) = N ⊗S⊗N

Finally, each morphism in CF is mapped to a linear map in FHilb. Equipped with such
a functor, we can now define the meaning of a sentence as follows:

I Definition 1. Let |wi〉 be a vector I → Q(pi) corresponding to word wi with type pi in a
sentence w1w2 . . . wn. Given a type-reduction α : p1 · p2 · . . . · pn → s, the meaning of the
sentence is defined as:

|w1w2 . . . wn〉 := Q(α)(|w1〉 ⊗ . . .⊗ |wn〉) (5)

Take as an example the sentence “Trembling shadows play hide-and-seek”, with the
standard types n · nl and nr · s · nl assigned to adjectives and verbs, respectively. Then the
adjective ‘trembling’ will be a morphism I → Q(n · nl) = I → N ⊗ N , that is, a state in
the tensor product space N ⊗N . Note that this matrix defines a linear map N → N , an
interpretation that is fully aligned with the formal semantics perspective: an adjective is a
function that takes a noun as input and returns a modified version of it. Similarly, the verb
‘play’ lives in N ⊗ S ⊗N or, equivalently, is a bi-linear map N ⊗N → S (with a subject and
an object as arguments) which returns a sentence. In contrast to those two relational words,
the nouns ‘shadows’ and ‘hide-and-seek’ are plain vectors in N . The syntax of the sentence
conforms to the following type reduction:

(εrn · 1s) ◦ (1n · εln · 1nr · 1s · εln) : n · nl · n · nr · s · nl · n→ s (6)

which, when transferred to FHilb via Q, yields the following diagrammatic derivation:

S

N N l N Nr N l N

Trembling shadows play hide-and-seek

(7)

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 275

2.4 Using Frobenius algebras in language
Compact closed categories on their own do not have much structure. The expressive power of
these categories can be increased using Frobenius algebras. Recall from [4] that a Frobenius
algebra in a monoidal category is a quintuple (A,∆, ι, µ, ζ) such that:

(A,µ, ζ) is a monoid, that is we have µ : A⊗A→ A and ζ : I → A satisfying

associativity and unit conditions,
(A,∆, ι) is a co-monoid, so that ∆ : A → A ⊗ A and ι : A → I satisfy

co-associativity and co-unit conditions;
furthermore, ∆ and µ adhere to the following Frobenius condition:

= = (8)

In a monoidal †-category, a †-Frobenius algebra is a Frobenius algebra whose co-monoid
is adjoint to the monoid. As shown in [6], every finite dimensional Hilbert space H with
orthonormal basis {|i〉} has a †-Frobenius algebra associated to it, the co-multiplication and
multiplication of which correspond to uniformly copying and uncopying the basis as follows:

∆ :: |i〉 7→ |i〉 ⊗ |i〉 ι :: |i〉 7→ 1 µ :: |i〉 ⊗ |j〉 7→ δij |i〉 :=
{
|i〉 i = j

|0〉 i 6= j
ζ :: 1 7→

∑
i

|i〉

Abstractly, this enables us to copy and delete the (classical) information relative to the
given basis. Concretely, the copying ∆-map amounts to encoding faithfully the components
of a vector in H as the diagonal elements of a matrix in H ⊗ H, while the “uncopying”
operation µ picks out the diagonal elements of a matrix and returns them as a vector in
H. Kartsaklis et al. [12] use the Frobenius co-multiplication in order to faithfully encode
tensors of lower order to higher order ones, thus restoring the proper functorial relation. An
adjective, for example, is given as ∆(

∑
i |nouni〉), where |nouni〉 is a noun modified by the

specific adjective in a training corpus. Furthermore, given a transitive verb constructed as
|verb〉 =

∑
i |subji〉⊗ |obji〉 [10], we can encode it to a tensor in H⊗H⊗H by either copying

the row dimension (responsible for the interaction of the verb with the subject noun) or
the column dimension (responsible for the interaction with the object). For the latter case,
referred to by Copy-Object, the composition becomes as follows:

=verb: (9)

The composition for the case of copying the subject dimension proceeds similarly on the
left-hand side. In practice, empirical work has shown that objects have stronger influence on
the meaning of a transitive sentence than subjects [12], which suggests that the Frobenius
structure of the Copy-Object approach is a more effective model of sentential compositionality.

Finally, Sadrzadeh et al. [19] exploit the abilities of Frobenius algebras in order to model
relative pronouns. Specifically, copying is used in conjunction with deleting in order to allow
the head noun of a relative clause to interact with its modifier verb phrase from the far
left-hand side of the clause to its right-hand side. For the case of a relative clause modifying
a subject this is achieved as follows:

N N N S N N S N N N N N N=

the man who likes Mary the man likes Mary

(10)

CALCO’15

276 Open System Categorical Quantum Semantics in Natural Language Processing

3 Encoding ambiguity

The previous compositional model relies on a strong monoidal functor from a compact closed
category, representing syntax, to FHilb, modelling a form of distributional semantics. In
this section we will modify the functor to a new codomain category. To achieve our goal, we
will explore a categorical construction, inspired from quantum physics and originally due to
Selinger [21], in the context of the categorical model of meaning developed in the previous
sections.

3.1 Mixing in FHilb
Although seemingly unrelated, quantum mechanics and linguistics share a common link
through the framework of †-compact closed categories, an abstraction of the Hilbert space
formulation, and have been used in the past [1] to provide structural proofs for a class of
quantum protocols, essentially recasting the vector space semantics of quantum mechanics in
a more abstract way. Shifting the perspective to the field of linguistics, we saw how the same
formalism proposes a description of the semantic interactions of words at the sentence level.
Here we make the connection between the two fields even more explicit, taking advantage of
the fact that the ultimate purpose of quantum mechanics is to deal with uncertainty – and
this is essentially what we need to achieve here in the context of language.

We start by observing that, in quantum physics, the Hilbert space model is insufficient
to incorporate the epistemic state of the observer in its formalism: what if one does not
have knowledge of a quantum system’s initial state and can only attribute a probability
distribution to a set of possible states? The answer is by considering a statistical ensemble of
pure states: for example, one may assign a 1

2 probability that the state vector of a system is
|ψ1〉 and a 1

2 probability that it is in state |ψ2〉. We say that this system is in a mixed state.
In the Hilbert space setting, such a state cannot be represented as a vector. In fact, any
normalised sum of pure states is again a pure state (by the vector space structure). Note that
the state (ψ1 + ψ2)/

√
2 is a quantum superposition and not the mathematical representation

of the mixed state above.
This situation is similar to the issue we face when trying to model ambiguity in distri-

butional semantics: given two different meanings of a homonymous word and their relative
weights (given as probabilities), simply looking at the convex composition of the associated
vectors collapses the ambiguous meaning to a single vector, thereby fusing together the
two senses of the word. The mathematical response to this problem is to move the focus
away from states in a Hilbert space to a specific kind of operators on the same space: more
specifically, to density operators, i.e., positive semi-definite, self-adjoint operators of trace
one. The density operator formalism is our means to express a probability distribution over
the potential meanings of a homonymous word in a distributional model (see App. C for a
more detailed linguistic intuition). We formally define this as follows:

I Definition 2. Let a distributional model be given in the form of a Hilbert space M , in
which every word wt is represented by a statistical ensemble {(pi, |wit〉)}i – where |wit〉 is a
vector corresponding to a specific unambiguous meaning of the word that can occur with
probability pi. The distributional meaning of the word is defined as:

ρ(wt) =
∑
i

pi|wit〉〈wit| (11)

Note that for the case of a non-homonymous word, the above formula reduces to |wt〉〈wt|,
with |wt〉 corresponding to the state vector assigned to wt. Now, if mixed states are density

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 277

operators, we need a notion of morphism that preserves this structure, i.e., that maps
states to states. In the Hilbert space model, the morphisms were simply linear maps. The
corresponding notion in the mixed setting is that of completely positive maps, that is, positive
maps that respect the monoidal structure of the underlying category.

To constitute a compositional model of meaning, our construction also needs to respect
our stated goals: specifically, the category of operator spaces and completely positive maps
must be a †-compact closed category; furthermore, we need to identify the morphism that
plays the part of the Frobenius algebra of the previous model. We start working towards
these goals by describing a construction that builds a similar category, not only from FHilb,
but, more abstractly, from any †-compact closed category.

3.2 Doubling and complete positivity

The category that we are going to build was originally introduced by Selinger [21] as
a generalisation of the corresponding construction on Hilbert spaces. Conceptually, it
corresponds to shifting the focus away from vectors or morphisms of the form I → A to
operators on the same space or morphisms of type A→ A. We will formalise this idea by first
introducing the category D(C) on a compact closed category C, which can be perhaps better
understood in its diagrammatic form as a doubling of the wires. In this context, we obtain a
duality between states of D(C) and operators of C, pictured by simple wire manipulations.
As we will see, D(C) retains the compact closedness of C and is therefore a viable candidate
for a semantic category in our compositional model of meaning. However, at this stage,
states of D(C) do not yet admit a clear interpretation in terms of mixing. This is why we
need to introduce the notion of completely positive morphisms, of which positive operators
on a Hilbert space (mixed states in quantum mechanics) are a special case. This will allow
us later to define the subcategory CPM(C) of D(C).

3.2.1 The D construction (doubling)

First, given a †-compact closed category1 C we define:

I Definition 3. The category D(C) with
the same objects as C;
morphisms between objects A and B of D(C) are morphisms A⊗A∗ → B ⊗B∗ of C.
composition and dagger are inherited from C via the embedding E : D(C) ↪→ C defined
by A 7→ A⊗A∗ on objects and f 7→ f on morphisms.

In addition, we can endow the category D(C) of a monoidal structure by defining the
tensor ⊗D as A⊗DB = A⊗B on objects A and B, and for morphisms f1 : A⊗A∗ → B⊗B∗
and f2 : C ⊗ C∗ → D ⊗D∗, by:

f1 ⊗D f2 : A⊗ C ⊗ C∗ ⊗A∗
∼=−→ A⊗A∗ ⊗ C ⊗ C∗

f1⊗f2−−−−→ B ⊗ B∗ ⊗D ⊗D∗
∼=−→ B ⊗D ⊗D∗ ⊗ B∗ (12)

1 The construction works on any monoidal category with a dagger, i.e., an involution, but we will not
need the additional generality.

CALCO’15

278 Open System Categorical Quantum Semantics in Natural Language Processing

Or graphically by,

f2
f1 f2 7→ f1 f2 =

f1

(13)

where the arrow 7→ represents the functor E and we use the convention of depicting morphisms
in D(C) with thick wires and boxes to avoid confusion. Note that the intuitive alternative
of simply juxtaposing the two morphisms as we would in C fails to produce a completely
positive morphism in general, as will become clearer when we define completely positivity in
this context. This category carries all the required structure. We refer the reader to [21] for
a proof of the following:

I Proposition 4. The category D(C) inherits a †-compact closed structure from C via the
strict monoidal functor M : C → D(C) defined inductively by

f1 ⊗ f2 7→M(f1)⊗D M(f2) ;
A 7→ A on objects;
f 7→ f ⊗ f∗ on morphisms.

where f∗ = (f†)∗ by definition.

The functor M shows that we are not losing any expressive power since unambiguous
words (represented as maps of C) still admit a faithful representation in doubled form. For
reference, the reader can find in App. B a dictionary that translates useful diagrams from
one category to the other. Now, notice that we have a bijective correspondence between
states of D(C), i.e., morphisms I → A and operators on A in C. Explicitly, the map
C(A,A)→ C(I, A⊗A∗) is, for an operator ρ : A→ A,

ρ 7→ pρq = (ρ⊗ 1A∗) ◦ ηA∗ = ρ (14)

that is easily seen to be an isomorphism by bending back the rightmost wire (by application
of the yanking equations (2)). In the special case of states, the generalised inner product
generated by the dagger functor can be computed in terms of the canonical trace induced by
the compact closed structure (and reduces to the usual inner product on a space of operators
in FHilb):

ρ†2

7→ ρ1 ρ2∗ = = Tr(ρ†2ρ1)
ρ1

(15)

3.2.2 The CPM construction (complete positivity)

I Definition 5. A morphism f : A→ B of D(C) is completely positive if there exists an object
C and a morphism k : C⊗A→ B, in C, such that f embeds in C as (k⊗k∗)◦(1A⊗ηC∗⊗1A∗)

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 279

or, pictorially,
B B

f 7→ k k∗

A A
C

A∗

B∗

(16)

From this last representation, we easily see that the composition of two completely
positive maps is completely positive. Similarly, the tensor product of two completely positive
maps is completely positive. Therefore, we can define:

I Definition 6. The category CPM(C) is the subcategory of D(C) whose objects are the
same and morphisms are completely positive maps.

CPM(C) is monoidal and ⊗CPM = ⊗D. We easily recover the usual notion of positive
operator from this definition:

k

7→ k k∗ = = pk ◦ k†q
k†

(17)

with pure states corresponding to the disconnected case. Finally, from Def. 5 it is clear that,
for a morphism f of C, M(f) = f ⊗ f∗ is completely positive. Thus,

I Proposition 7. M factors through the embedding I : CPM(C) ↪→ D(C), i.e., there exists
a strictly monoidal functor M̃ : C → CPM(C) such that M = IM̃ .

3.3 Categorical model of meaning: Reprise
We are now ready to put together all the concepts introduced above in the context of a
compositional model of meaning. Our aim in this section is to reinterpret the previous model
of [7] as a functor from a compact closed grammar to the category CPM(C), for any compact
closed category C. Given semantics in the form of a strong monoidal functor Q : CF → C,
our model of meaning is defined by the composition:

M̃Q : CF → C → CPM(C) (18)

Since M̃ sends an object A to the same A in CPM(C), the mapping of atomic types,
their duals and relational types of the grammar occurs in exactly the same fashion as in the
previous model. Furthermore, note that Q is strongly monoidal and M̃ is strictly monoidal, so
the resulting functor is strongly monoidal and, in particular, preserves the compact structure.
Thus, we can perform type reductions in CPM(C) according to the grammatical structure
dictated by the category CF.

Note that we have deliberately abstracted the model to highlight its richness – the
category C could be any compact closed category: FHilb, the category Rel of sets and
relations (in which case we recover a form of Montague semantics) or, as we will see in Sect. 5,
even another iteration of the CPM construction.

I Definition 8. Let ρ(wi) be a meaning state I → M̃Q(pi) corresponding to word wi with
type pi in a sentence w1 . . . wn. Given a type-reduction α : p1 · . . . · pn → s, the meaning of
the sentence is defined as:

ρ(w1 . . . wn) := M̃Q(α)
(
ρ(w1)⊗CPM . . .⊗CPM ρ(wn)

)

CALCO’15

280 Open System Categorical Quantum Semantics in Natural Language Processing

For example, assigning density matrix representations to the words in the previous
example sentence “trembling shadows play hide and seek”, we obtain the following meaning
representation:

N N N NSN NN N N NSN N

7→

Trembling shadows play hide-and-seek

Diagrammatically, it is clear that in the new setting the partial trace implements meaning
composition. Note that diagrams as the above illustrate the flow of ambiguity or information
between words. The question of how does ambiguity evolve when composing words to
form sentences is very hard to answer precisely in full generality. The key message is that
(unambiguous) meaning emerges in the interaction of a word with its context, through the
wires. This process of disambiguation is perhaps better understood by studying very simple
examples, as we are going to do in the next section.

3.4 Introducing ambiguity in formal semantics
Here, we will work in the category CPM(Rel). We recall that Rel is the †-compact category
of sets and relations. The tensor product is the Cartesian product and the dagger associates
to a relation its opposite. Let our sentence set be S = {true, false}. In Rel, this means that
we are only interested in the truth of a sentence, as in Montague semantics. In this context,
nouns are subsets of attributes. Given a context to which we pass the meaning of a word, the
meaning of the resulting sentence can be either |false〉, |true〉 or |false〉+ |true〉, the latter
representing superposition, i.e., the case for which the context is insufficient to determine
the truth of all the attributes of the word (classically, this can be identified with false).

On the other hand, in the internal logic of CPM(Rel), mixing adds a second dimension
that can be interpreted as ambiguous meaning, regardless of truth. The possible values are:

N N S

ambiguous context
word

=

|true〉〈true|,
|false〉〈false|,
(|true〉+ |false〉)(〈true|+ 〈false|),
1S

where the identity on S represents ambiguity. Note that we use Dirac notation in Rel rather
than set theoretic union and cartesian product, since elements in finite sets can be seen
as basis vectors of free modules over the semi-ring of Booleans; a binary relation can be
expressed as an adjacency matrix. The trace of a square matrix picks out the elements for
which the corresponding relation is reflexive.

Consider the phrase ‘queen rules’. We allow a few highly simplifying assumptions: first,
we restrict our set of nouns to the rather peculiar ‘Freddy Mercury’, ‘Brian May’, ‘Elisabeth
II’, ‘chess’, ‘England’ and the empty word ε. Moreover, we consider the verb ‘rule’, supposed
to have the following unambiguous meaning:

|rule〉 = |band〉 ⊗ |true〉 ⊗ |ε〉+ |chess〉 ⊗ |false〉 ⊗ |ε〉+ |elisabeth〉 ⊗ |true〉 ⊗ |england〉

with the obvious |band〉 = |freddy〉 + |brian〉. This definition reflects the fact that a band
can rule (understand “be the best") as well as a monarch. Finally, the ambiguous meaning of

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 281

Table 1 Computing entropy for nouns modified by relative clauses and adjectives.

Relative Clauses
noun: v1/v2 noun n that v1 n that v2

organ: enchant/ache 0.18 0.11 0.08
vessel: swell/sail 0.25 0.16 0.01
queen: fly/rule 0.28 0.14 0.16
nail: gleam/grow 0.19 0.06 0.14
bank: overflow/loan 0.21 0.19 0.18

Adjectives
adj1/adj2 adj1 n adj2 n
music/body 0.10 0.13
blood/naval 0.05 0.07
fair/chess 0.05 0.16
rusty/finger 0.04 0.11
water/financial 0.20 0.16

‘queen’ is represented by the following operator:

ρ(queen) = |elisabeth〉〈elisabeth|+ |band〉〈band|+ |chess〉〈chess|

A computation of the meaning of the sentence in algebraic form yields, TrN (|rule〉〈rule| ◦
(TrN ′(ρ(queen))⊗ 1′N)) = 1S . In other words, the meaning of the sentence is neither true nor
false but still ambiguous. This is because the context that we pass to ‘queen’ is insufficient to
disambiguate it (the band or the monarch can rule). Now, if we consider ‘queen rules England’,
the only matching pattern in the definition of |rule〉 is |elisabeth〉 which corresponds to a
unique and therefore unambiguous meaning of ρ(queen). Hence, a similar calculation yields
TrN (|rule〉〈rule| ◦ (TrN ′(ρ(queen))⊗ |england〉〈england|)) = |true〉〈true| and the sentence is
not only true but unambiguous. In this case, the context was sufficient to disambiguate the
meaning of the word ‘queen’.

3.5 Measuring ambiguity with real data
While a large-scale experiment is out of the scope of this paper, in this section we present
some preliminary witnessing results that showcase the potential of the model. Using 2000-
dimensional meaning vectors created by the procedure described in App. D, we show how
ambiguity evolves for five ambiguous nouns when they are modified by an adjective or a
relative clause. For example, ‘nail’ can appear as ‘rusty nail’ or ‘nail that grows’; in both
cases the modifier resolves part of the ambiguity, so we expect that the entropy of the
larger compound would be lower than that of the original ambiguous noun. Both types of
composition use the Frobenius framework described in Sect. 2.4; We further remind that for
a density matrix ρ with eigen-decomposition ρ =

∑
ei|ei〉〈ei|, Von Neumann entropy is given

as S(ρ) = −Tr(ρ ln ρ) = −
∑
i ei ln ei.

As Table 1 shows, the entropy of the compounds is always lower than that of the ambiguous
noun. Even more interestingly, for some cases (e.g ‘vessel that sails’) the context is so strong
that is capable to almost purify the meaning of the noun. This demonstrates an important
aspect of the proposed model: disambiguation = purification.

3.6 Flow of information with †-Frobenius algebras
In the above examples we used the assumption that a verb tensor had been faithfully
constructed according to its grammatical type. However, as we saw in Sect. 2.4, concrete
constructions might yield operators on a space of tensor order lower than the space to
which the functor M̃Q maps their grammatical type. As before, †-Frobenius algebras can be
used to solve this type mismatch and encode the information carried by an operator into
tensors of higher order. Specifically, we will first consider the †-Frobenius algebra whose
copying map isM(∆) and whose deleting map isM(ι), as doubling preserves both operations.

CALCO’15

282 Open System Categorical Quantum Semantics in Natural Language Processing

In addition, the monoid operation is clearly completely positive. In more concrete terms,
the monoid operation is precisely the point-wise (sometimes called Hadamard) product of
matrices. Assuming we have a distributional model in the form of a vector space W with a
distinguished basis and density matrices on W (to represent the meaning of our nouns and
adjectives) and on W ⊗W (for verbs), our example sentence is given by:

W W WW W W W WW W

7→

Trembling shadows play hide-and-seek

4 Non-commutativity

If the last section was concerned with applications of the CPM-construction to model
ambiguity, here we discuss the role of the D-construction for the same purpose. Frobenius
algebras on objects of D(C) are not necessarily commutative and thus their associated monoid
is not a completely positive morphism. In the quantum physical literature, non-completely
positive maps are not usually considered since they are not physically realisable. However,
in linguistics, free from these constraints, we could theoretically venture outside of the
subcategory CPM(C), deep into D(C).

For example, Coecke, Heunen and Kissinger [8] introduced the category CP∗(C) of †-
Frobenius algebras (with additional technical conditions) and completely positive maps, over
an arbitrary †-compact category C, in order to study the interaction of classical and quantum
systems in a single categorical setting: classical systems are precisely the commutative algebras
and completely positive maps are quantum channels, that is, physically realisable processes
between systems. Interestingly, in accordance with the content of the no-broadcasting
theorem for quantum systems the multiplication of a commutative algebra is a completely
positive morphism while the multiplication of a non-commutative algebra is not. It is clear
that the meaning composition of words in a sentence is only commutative in exceptional
cases; the non commutativity of the grammatical structure reflects this. However, in earlier
methods of composition, this complexity was lost in translation when passing to semantics.

With linguistic applications in mind, the CP∗ construction suggests various ways of
composing the meaning of words, each corresponding to a specific Frobenius algebra operation.
Conceptually, this idea makes sense since a verb does not compose with its subject in the
same way that an adjective composes with the noun phrase to which it applies. The various
ways of composing words may also offer a theoretical base for the introduction of logic in
distributional models of natural language. This is where the richness of D(C) reveals itself:
algebras in this category are more complex and, in particular, allow us to study the action
of non-commutative structures – a topic of great interest to formal linguistics where the
interaction of words is highly non-commutative. Hereafter we introduce a non-commutative
†-Frobenius algebra that is not the doubled image of any algebra in C.

I Definition 9. For every object A of D(C), the morphisms of D(C), µ : A⊗D A→ A and
ι : I → A defined by the following diagrams in C:

= (1A ⊗ εA ⊗ 1A∗) ◦ (1A⊗A ⊗ σA,A∗) 7→ = ηA∗7→

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 283

are the multiplication and unit of a †-Frobenius algebra FD – where σ is the natural swap
isomorphism in C.

Proof that the above construction is indeed a †-Frobenius algebra can be found in [9]. The
action of the Frobenius multiplication µ on states I → A of D(C) is particularly interesting;
in fact, it implements the composition of operators of C, in D(C):

ρ1
7→ = = pρ1 ◦ ρ2qρ1 ρ2

ρ2

The meaning of the “trembling shadows...” sentence using the algebra FD becomes:

W W WW W W WW W

7→

Trembling shadows play hide-and-seek

How does composition with the new algebra affect the flow of ambiguity in the simple case
of an ambiguous word to which we pass an unambiguous context? Given a projection onto a
one-dimensional subspace |w〉〈w| and a density operator ρ, the composition |w〉〈w|ρ is a (not
necessarily orthogonal) projection. In a sense, the meaning of the pure word determines that
of the ambiguous word as evidenced by the disconnected topology of the following diagram:

N N

7→

pure ambiguous
context word

5 Adding lexical entailment

We now demonstrate the advantage of the fact that the CPM-construction is an abstract
construction, and hence can be applied to any suitable (i.e. living in a †-compact closed
category) model of word meaning. Besides ambiguity, another feature of language which
is not captured by the distributional model is the fact that the meaning of one word (=
hypernym) generalises that of another word (= hyponym). This points at a partial ordering
of word meanings. For example, ‘painter’ generalises ‘Brueghel’. Density matrices can be
endowed with a partial ordering which could play that role, e.g. the Bayesian ordering
[5]. This raises the question of how to accommodate both features together in a model of
natural language meaning. Since CPM(C) is always †-compact closed, a canonical solution
is obtained by iterating the CPM-construction:

x x∗ x x∗f 7→ k k∗ 7→ x x∗ x x∗7→

CALCO’15

284 Open System Categorical Quantum Semantics in Natural Language Processing

Given a word/phrase/sentence meaning as above, lack of any ambiguity or generality cor-
respond to distinct diagrams, respectively (left), and can be measured by taking the von
Neumann entropy of different operators (right):

x x∗ x x∗ vs. x x∗ x x∗

x∗ x

x∗x x x∗

x∗ x
vs.

6 Conclusion and future work

In this paper we detailed a compositional distributional model of meaning capable of explicitly
handling lexical ambiguity. We discussed its theoretical properties and demonstrated its
potential for real-world natural language processing tasks by a small-scale experiment. A
large-scale evaluation will be our challenging next step, aiming to provide empirical evidence
regarding the effectiveness of the model in general and the performance of the different
Frobenius algebras in particular. On the theoretical side, the logic of ambiguity in CPM(Rel),
the non-commutative features of the D-construction as well as further exploration of nested
levels of CPM, each deserve a separate treatment. In addition, one important weakness of
distributional models is the representation of words that serve a purely logical role, like logical
connectives or negation. Density operators support a form of logic whose distributional
and compositional properties could be examined, potentially providing a solution to this
long-standing problem of compositional distributional models.

References
1 Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In 19th

Annual IEEE Symposium on Logic in Computer Science, pages 415–425, 2004.
2 Esma Balkır. Using density matrices in a compositional distributional model of meaning.

Master’s thesis, University of Oxford, 2014.
3 William Blacoe, Elham Kashefi, and Mirella Lapata. A quantum-theoretic approach to

distributional semantics. In Proceedings of NACL 2013, pages 847–857. Association for
Computational Linguistics, June 2013.

4 A. Carboni and R.F.C. Walters. Cartesian Bicategories I. Journal of Pure and Applied
Algebra, 49, 1987.

5 B. Coecke and K. Martin. A partial order on classical and quantum states. In B. Coecke,
editor, New Structures for Physics, Lecture Notes in Physics, pages 593–683. Springer,
2011.

6 B. Coecke, D. Pavlovic, and J. Vicary. A New Description of Orthogonal Bases. Mathem-
atical Structures in Computer Science, 1, 2008.

7 B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical Foundations for a Compositional
Distributional Model of Meaning. Lambek Festschrift. Linguistic Analysis, 36:345–384,
2010.

8 Bob Coecke, Chris Heunen, and Aleks Kissinger. Categories of quantum and classical
channels. arXiv preprint arXiv:1305.3821, 2013.

9 Bob Coecke and Robert W Spekkens. Picturing classical and quantum Bayesian inference.
Synthese, 186(3):651–696, 2012.

10 E. Grefenstette and M. Sadrzadeh. Experimental support for a categorical compositional
distributional model of meaning. In Proceedings of the EMNLP 2011, 2011.

11 Z. Harris. Mathematical Structures of Language. Wiley, 1968.

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 285

12 D. Kartsaklis, M. Sadrzadeh, S. Pulman, and B. Coecke. Reasoning about meaning in
natural language with compact closed categories and Frobenius algebras. arXiv preprint
arXiv:1401.5980, 2014.

13 Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. Prior disambiguation of word tensors for
constructing sentence vectors. In Proceedings of EMNLP 2013, pages 1590–1601, 2013.

14 G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories. Journal of Pure
and Applied Algebra, 19:193–213, 1980.

15 J. Lambek. From Word to Sentence. Polimetrica, Milan, 2008.
16 Joachim Lambek. The mathematics of sentence structure. American mathematical monthly,

pages 154–170, 1958.
17 A. Preller and M. Sadrzadeh. Bell states and negative sentences in the distributed model of

meaning. In P. Selinger B. Coecke, P. Panangaden, editor, Electronic Notes in Theoretical
Computer Science, Proceedings of the 6th QPL Workshop on Quantum Physics and Logic.
University of Oxford, 2010.

18 Anne Preller and Joachim Lambek. Free compact 2-categories. Mathematical Structures
in Computer Science, 17(02):309–340, 2007.

19 M. Sadrzadeh, S. Clark, and B. Coecke. The Frobenius anatomy of word meanings I:
subject and object relative pronouns. Journal of Logic and Computation, Advance Access,
October 2013.

20 H. Schütze. Automatic Word Sense Discrimination. Computational Linguistics, 24:97–123,
1998.

21 Peter Selinger. Dagger compact closed categories and completely positive maps. Electronic
Notes in Theoretical Computer Science, 170:139–163, 2007.

22 Peter Selinger. A survey of graphical languages for monoidal categories. In Bob Coecke,
editor, New structures for physics, pages 289–355. Springer, 2011.

23 Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space models of
semantics. Journal of artificial intelligence research, 37(1):141–188, 2010.

A Graphical calculus

Monoidal categories are complete with regard to a graphical calculus [22] which depicts
derivations in their internal language very intuitively, thus simplifying the reading and the
analysis. Objects are represented as labelled wires, and morphisms as boxes with input and
output wires. The η- and ε-maps are given as half-turns.

B ηl: ηr:
f A

εl: εr:A

Composing morphisms amounts to connecting outputs to inputs, while the tensor product
is simply juxtaposition:

C
C B g B D B D

g ◦ f = B f ⊗ g = f g

B A f A C A C
A

In this language, the yanking equations (2) get an intuitive visual justification (here for
the first two identities):

A Al
A = A A Ar A = A

CALCO’15

286 Open System Categorical Quantum Semantics in Natural Language Processing

For a given object A, we define a state of A to be a morphism I → A. If A denotes a
vector space, we can think of a state as a specific vector living in that space. In our graphical
language the unit object I can be omitted, leading to the following representation of states:

A A B A B A B
⊗ =

Note that the second diagram from the left depicts an entangled state of A⊗B; product
states (such as the rightmost one) are simple juxtapositions of two states.

B Translation from C to D(C)

D(C) C D(C) C
B B B∗

1A A A A∗ f f f

A A A∗

C C C∗

A A A∗ g g
Bf† f† f B B∗g ◦ f
f f

B B B∗

A A A∗

εη

Frob. µFrob. ∆

Frob. ι Frob. ζ

C Linguistic intuition

In order to deal with lexical ambiguity we firstly need to understand its nature. In other words,
we are interested to study in what way an ambiguous word differs from an unambiguous one,
and what is the defining quality that makes this distinction clear. On the surface, the answer
to these questions seems straightforward: an ambiguous word is one with more than one
lexicographic entries in the dictionary. However, this definition fits well only to homonymous
cases, in which due to some historical accident words that share the same spelling and
pronunciation refer to completely unrelated concepts. Indeed, while the number of meanings
of a homonymous word such as ‘bank’ is almost fixed across different dictionaries, the same
is not true for the small (and overlapping) variations of senses that might be listed under a
word expressing a polysemous case.

The crucial distinction between homonymy and polysemy is that in the latter case a word
still expresses a coherent and self-contained concept. Recall the example of the polysemous
use of ‘bank’ as a financial institution and the building where the services of the institution
are offered; when we use the sentence ‘I went to the bank’ (with the financial meaning of
the word in mind) we essentially refer to both of the polysemous meanings of ‘bank’ at the

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 287

same time – at a higher level, the word ‘bank’ expresses an abstract but concise concept that
encompasses all of the available polysemous meanings. On the other hand, the fact that the
same name can be used to describe a completely different concept (such as a river bank or
a number of objects in a row) is nothing more than an unfortunate coincidence expressing
lack of specification. Indeed, a listener of the above sentence can retain a small amount
of uncertainty regarding the true intentions of the sayer; although her first guess would be
that ‘bank’ refers to the dominant meaning of financial institution (including all related
polysemous meanings), a small possibility that the sayer has actually visited a river bank still
remains. Therefore, in the absence of sufficient context, the meaning of a homonymous word
is more reliably expressed as a probabilistic mixing of the unrelated individual meanings.

In a distributional model of meaning where a homonymous word is represented by a
single vector, the ambiguity in meaning has been collapsed into a convex combination of the
relevant sense vectors; the result is a vector that can be seen as the average of all senses,
inadequate to reflect the meaning of any of them in a reliable way. We need a way to avoid
that. In natural language, ambiguities are resolved with the introduction of context (recall
that meaning is use), which means that for a compositional model of meaning the resolving
mechanism is the compositional process itself. We would like to retain the ambiguity of a
homonymous word when needed (i.e. in the absence of appropriate context) and allow it to
collapse only when the context defines the intended sense, during the compositional process.

In summary, we seek an appropriate model that will allows us: (a) to express homonymous
words as probabilistic mixings of their individual meanings; (b) to retain the ambiguity until
the presence of sufficient context that will eventually resolve it during composition time; (c)
to achieve all the above in the multi-linear setting imposed by the vector space semantics of
our original model.

D From Theory to Practice

The purpose of this appendix is to show how the theoretical ideas presented in this paper can
take a concrete form using standard natural language processing techniques. The setting we
present below has been used for the mini-experiments in Sect. 3.5. We approach the creation
of density matrices as a three-step process: (a) we first produce an ambiguous semantic
space; (b) we apply a word sense induction method on it in order to associate each word with
a set of sense vectors; and finally (c) we use the sense vectors in order to create a density
matrix for each word. These steps are described in separate sections below.

D.1 Creating a Concrete Semantic Space

We train our basic vector space using ukWaC, a corpus of English text with 2 billion words (100
million sentences). The basis of the vector space consists of the 2,000 most frequent content
words (nouns, verbs, adjectives, and adverbs), excluding a list of stop words.2 Furthermore,
the vector space is lemmatized and unambiguous regarding syntactic information; in other
words, each vector is uniquely identified by a (lemma,pos-tag) pair, which means for example
that ‘book’ as a noun and ‘book’ as a verb are represented by different meaning vectors. The
weights of each vector are set to the ratio of the probability of the context word ci given the

2 That is, very common words with low information content, such as the verbs ‘get’ and ‘take’ or adverbs
like ‘really’ and ‘always’.

CALCO’15

288 Open System Categorical Quantum Semantics in Natural Language Processing

Table 2 Derived Meanings for Word ‘Vessel’.

Meaning 1: 24070 contexts
port owner cargo fleet sailing ferry craft Navy merchant cruise navigation officer metre voyage
authority deck coast launch fishery island charter Harbour pottery radio trip pay River Agency
Scotland sell duty visit fish insurance skipper Roman sink War shore sail town Coastguard
assistance Maritime registration call rescue bank Museum captain incident customer States
yacht mooring barge comply landing Ireland sherd money Scottish tow tug maritime wreck
board visitor tanker freight purchase lifeboat

Meaning 2: 5930 contexts
clot complication haemorrhage lymph stem VEGF Vitamin glucose penis endothelium
retinopathy spasm antibody clotting AMD coagulation marrow lesion angina blindness
medication graft vitamin vasoconstriction virus proliferation Ginkgo diabetic ventricle
thickening tablet anaemia thrombus Vein leukocyte scleroderma stimulation degeneration
homocysteine Raynaud breathe mediator Biloba Diabetes LDL metabolism Gene infiltrate
atheroma arthritis lymphocyte lobe C’s histamine melanoma gut dysfunction vitro triglyceride
infarction lipoprotein

target word t to the probability of the context word overall, as follows:

vi(t) = p(ci|t)
p(ci)

= count(ci, t) · count(total)
count(t) · count(ci)

where count(ci, t) refers to how many times ci appears in the context of t (that is, in a 5-word
window at either side of t) and count(total) is the total number of word tokens in the corpus.

D.2 Word Sense Induction

The notion of word sense induction, that is, the task of detecting the different meanings
under which a word appears in a text, is intimately connected with that of distributional
hypothesis – that the meaning of a word is always context-dependent. If we had a way to
create a vectorial representation for the contexts in which a specific word occurs, then, a
clustering algorithm could be applied in order to create groupings of these contexts that
hopefully reveal different usages of the word – different meanings – in the training corpus.

This intuitive idea was first presented by Schütze [20] in 1998, and more or less is the
cornerstone of every unsupervised word sense induction and disambiguation method based on
semantic word spaces up to today. The approach we use is a direct variation of this standard
technique. For what follows, we assume that each word in the vocabulary has already been
assigned to an ambiguous semantic vector by following typical distributional procedures, for
example similar to the setting described in Sect. D.1.

We assume for simplicity that the context is defined at the sentence level. First, each
context for a target word wt is represented by a context vector of the form 1

n

∑n
i=1 |wi〉,

where |wi〉 is the semantic vector of some other word wi 6= wt in the same context. Next,
we apply hierarchical agglomerative clustering on this set of vectors in order to discover the
latent senses of wt. Ideally, the contexts of wt will vary according to the specific meaning
in which this word has been used. Table 2 provides a visualization of the outcome of this
process for the ambiguous word ‘vessel’. Each meaning is visualized as a list of the most
dominant words in the corresponding cluster, ranked by their TF-IDF values.

R. Piedeleu, D. Kartsaklis, B. Coecke, and M. Sadrzadeh 289

We take the centroid of each cluster as the vectorial representation of the corresponding
sense/meaning. Thus, each word w is initially represented by a tuple (|w〉, Sw), where |w〉 is
the ambiguous semantic vector of the word as created by the usual distributional practice,
and Sw is a set of sense vectors (that is, centroids of context vectors clusters) produced by
the above procedure.

Note that our approach takes place at the vector level (as opposed to tensors of higher
order), so it provides a natural way to create sets of meaning vectors for “atomic” words of the
language, that is, for nouns. It turns out that the generalization of this to tensors of higher
order is straightforward, since the clustering step has already equipped us with a number of
sets consisting of context vectors, each one of which stands in one-to-one correspondence
with a set of contexts reflecting a different semantic usage of the higher-order word. One
then can use, for example, the argument “tensoring and summing” procedure of [10] (briefly
described in Sect. 2.4) in order to compute the meaning of the ith sense of a word of arity n
as:

|word〉i =
∑
c∈Ci

n⊗
k=1
|argk,c〉 (19)

where Ci is the set of contexts associated with the ith sense, and argk,c denotes the kth
argument of the target word in context c. Of course, more advanced statistical methods could
be also used for learning the sense tensors from the provided partitioning of the contexts, as
long as these methods respect the multi-linear nature of the model. This completes the word
sense induction step.

D.3 Creating Density Matrices
We have now managed to equip each word with a set of sense vectors (or higher-order tensors,
depending on its grammatical type). Assigning a probability to each sense is trivial and can
be directly derived by the number of times the target word occurs under a specific sense
divided by the total occurrences of the word in the training corpus. This creates a statistical
ensemble of state vectors and probabilities that can be used for computing a density matrix
for the word according to Def. 2.

CALCO’15

Modules Over Monads and Their Algebras
Maciej Piróg1, Nicolas Wu2, and Jeremy Gibbons1

1 Department of Computer Science, University of Oxford
Wolfson Building, Parks Rd, Oxford OX1 3QD, UK
{firstname.lastname}@cs.ox.ac.uk

2 Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Rd, Bristol BS8 1UB, UK
nicolas.wu@bristol.ac.uk

Abstract
Modules over monads (or: actions of monads on endofunctors) are structures in which a monad
interacts with an endofunctor, composed either on the left or on the right. Although usually not
explicitly identified as such, modules appear in many contexts in programming and semantics.
In this paper, we investigate the elementary theory of modules. In particular, we identify the
monad freely generated by a right module as a generalisation of Moggi’s resumption monad
and characterise its algebras, extending previous results by Hyland, Plotkin and Power, and by
Filinski and Støvring. Moreover, we discuss a connection between modules and algebraic effects:
left modules have a similar feeling to Eilenberg–Moore algebras, and can be seen as handlers
that are natural in the variables, while right modules can be seen as functions that run effectful
computations in an appropriate context (such as an initial state for a stateful computation).

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.3.3 Studies of
Program Constructs

Keywords and phrases monad, module over monad, algebraic data types, resumptions, free
object

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.290

1 Introduction

Given a monad M , a right module over M (or: an M -module) is an endofunctor S together
with a natural transformation (called an action)
−→µ : SM → S

coherent with the monadic structure of M . Dually, a left module over M is an endofunctor L
together with a natural transformation
←−µ : ML→ L

also coherent with the monadic structure of M .
Modules over monads are special cases of modules over monoids in monoidal categories

(as monads are monoids in categories of endofunctors). They are discussed, for example, by
Dubuc [10] and Mac Lane [23, Sec. VI.4]), as well as, in a more general setting, by Street [32].
In this paper, by developing some elementary theory of modules, we show their connections
to some constructions in semantics of programming languages and the theory of algebraic
data structures.

As our primary result, we describe the monad freely generated by a right M -module S.
The functor part of this monad is given by the composition MS∗, where S∗ is the free

© Maciej Piróg, Nicolas Wu, and Jeremy Gibbons;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 290–303

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.290
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Piróg, N. Wu, and J. Gibbons 291

monad generated by S as an endofunctor. We also introduce the notion of algebra for a
module, which is a coherent pair consisting of an S-algebra (for S as an endofunctor) and
an Eilenberg–Moore M -algebra. We observe that algebras for a right M -module S coincide
with Eilenberg–Moore algebras for the monad MS∗.

These considerations have some practical aspects as well. The monad MS∗ is a gen-
eralisation of Moggi’s [27] resumption monad M(GM)∗ for an endofunctor G, which has
applications in semantics and functional programming. The universal property of MS∗

subsumes Hyland, Plotkin, and Power’s [20] result that M(GM)∗ is the coproduct of M and
G∗ in the category of monads, or Filinski and Støvring’s [13] construction of data types that
interleave data and monadic effects. Generalising the above constructions to the setting of
modules gives us new, interesting instances.

In passing, we investigate more of the theory of modules. We give examples and general
constructions, which suggest the ubiquity of modules. For instance, every (left or right)
adjoint comonad is a module over its adjoint monad, and every endofunctor is a module
over its codensity monad. We show that a large portion of the theory of monads can be
transported to the theory of modules. For example, the connection between monads and
adjunctions is lifted to the connection between modules and adjunctions paired with a
functor, while the correspondence between distributive laws and liftings is extended to the
correspondence between their obvious counterparts.

2 Modules over monads

2.1 Preliminaries

We work in a base category C , which is locally small and complete. We reserve A,B,C,X, Y, Z
to denote objects in categories, while f, g, h denote morphisms and natural transformations.
Functors are usually denoted as F,U,G,H,M, T . We reserve M , T for monads, and F , U
for left and right adjoints respectively. To avoid confusion, we sometimes add superscripts.
Given functors G,G′, H,H ′ and two natural transformations g : G→ G′ and h : H → H ′,
we denote the composition of endofunctors by juxtaposition (for example, GH). The parallel
composition of g and h is also denoted by juxtaposition, as in gh : GH → G′H ′.

For an endofunctor G, we write Alg(G) for the category of G-algebras, Mnd for the
category of monads and monad morphisms over a base category, and EM(M) for the
category of Eilenberg–Moore algebras for a monad M . We always denote the unit and the
multiplication of a monad as η and µ respectively. If there is more than one monad in context,
we add superscripts. We follow the standard abuse of notation and denote a monad by its
underlying endofunctor.

Given an endofunctor G : C → C , we denote the free monad generated by G (if it
exists) as G∗, and the canonical injection by emb : G→ G∗. For a monad T and a natural
transformation g : G→ T , we denote by JgK : G∗ → T the monad morphism given by the
freeness of G∗, that is, the unique monad morphism JgK with the property that g = JgK · emb.
Note that if the base category has binary coproducts, the functor part of G∗ is given by
G∗A = µX.GX+A, where µX.HX denotes the carrier of the initialH-algebra (see Kelly [21]).
In such a case, the free monad arises from the adjunction between FAlg : C → Alg(G) and
UAlg : Alg(G) → C , which we write as FAlg a UAlg : C ⇀ Alg(G). This adjunction is
strictly monadic, which means that the canonical comparison functor K : Alg(G)→ EM(G∗)
is an isomorphism.

CALCO’15

292 Modules Over Monads and Their Algebras

2.2 Modules defined
I Definition 1. LetM be a monad. An endofunctor S together with a natural transformation
(an action) −→µ : SM → S is called a right M-module (or: a right module over M) if the
following diagrams commute:

SMM SM

SM S

Sµ

−→µ−→µ M
−→µ

S SM

S

Sη

−→µ
id

We define a morphism between an M -module S and a M ′-module S′ as a pair 〈m, s〉,
where m : M →M ′ is a monad morphism and s : S → S′ is a natural transformation such
that the following diagram commutes:

SM S

S′M ′ S′

−→µ S

ssm

−→µ S′

We refer to the category of all right modules over monads as Mod. Its objects are pairs
〈M,S〉, whereM is a monad and S is anM -module. Arrows are given by morphisms between
modules.

Similarly, we define a left M-module as an endofunctor L together with ←−µ : ML → L

such that the obvious analogues of the diagrams above commute.

I Example 2. The following are examples of general constructions of right modules (most
of them dualise easily to the case of left modules):
1. Let M be a monad. Then, M is itself an M -module with the action given by the

multiplication µM : MM →M .
2. Let m : M → T be a monad morphism. Then, T is an M -module with the action given

by µT · Tm : TM → T .
3. Let S be an M -module and G be an endofunctor. Then, GS is also an M -module with

the action given by G−→µ : GSM → GS. An important instance of this construction is
when the original module is the monad itself, that is, when the module is given by GM .

4. With the definitions as above, let λ : TM →MT be a distributive law between monads.
Then, the composition ST is a module of the induced monad MT . The action is given
by (−→µ µT) · SλT : STMT →MT .

5. If S and Q are two M -modules, their coproduct S + Q is also an M -module with the
action defined componentwise.

6. Let F be an endofunctor with a right adjoint U . Then, F is an UF -module with the
action given by εF : FUF → F , where ε is the counit of the adjunction.

7. Let M be a monad with a left adjoint W . In such a case, W is a comonad (the situation
is dual to the one observed by Eilenberg and Moore [12], in which M has a right adjoint).
Also, W is an M -module with the action given by cW ·WµW ·WMu : WM →W , where
u : Id→MW is the unit and c : WM → Id is the counit of the adjunction.

I Example 3. The last two constructions from Example 2 can be illustrated with the
‘currying’ adjunction native to cartesian closed categories, A× - a (-)A, for a fixed object A.

M. Piróg, N. Wu, and J. Gibbons 293

As for Example 2 (6), this adjunction gives rise to the state monad (A × -)A, which can
be seen as a model of stateful computations. The action of the module given by the left
adjoint is equal to −→µX = evalAA×X : A× (A×X)A → A×X, where evalAB : A×BA → B is
the evaluation morphism for exponentials. Alternatively, using the fact that simply-typed
λ-calculus is the internal language of CCCs, one could say −→µX = λ〈a, f〉:A× (A×X)A. f a.
Intuitively, −→µ takes as its arguments an initial state and a stateful computation, and returns
the final state paired with the final answer. In other words, it is a morphism that ‘executes’
the stateful computation.

Example 2 (7) comes from the fact that (-)A is a monad, known in the functional
programming community as the reader monad. Its multiplication (XA)A → XA is given
by the diagonal λf :(XA)A. λa:A. f a a. Its adjoint comonad (known as the environment
comonad) A× - is a (-)A-module. The action of this module −→µX : A×XA → A×X is given
as λ〈a, f〉:A×XA. 〈a, f a〉.

I Example 4. For all n ≥ 1, the Set functor of lists with at least n elements is a module of
the non-empty list monad (the free semigroup monad).

I Example 5. An Eilenberg–Moore algebra 〈A, f : MA→ A〉 can be understood as a leftM -
module given by the constant endofunctor CA and a natural transformation f : MCA → CA.
Indeed, in the literature, Eilenberg–Moore algebras are sometimes called ‘modules’.

We can consider Cat (the category of all categories up to a certain size) as a 2-category:
0-cells are categories, 1-cells are functors, and 2-cells are natural transformations. We consider
different opposites of Cat: the op-dual Catop obtained by reversing 1-cells, the co-dual
Catco obtained by reversing 2-cells, and the bidual Catcoop obtained by reversing both. For
example, monads and comonads are mutually co-dual concepts (that is, a monad in Catco is
a comonad in Cat), while both are self-op-dual (that is, a monad is an opmonad, while a
comonad is a co-opmonad). Left and right modules are mutually op-dual concepts, that is, a
left module is a right opmodule, while a right module is a left opmodule. In the obvious way,
co-duality gives us the concepts of left and right comodules over comonads.

I Example 6. Given an endofunctor G : C → C , its codensity monad is given by the right
Kan extension of G along itself:

C C

C

⇑κ

G

G
RanGG

In this case, G is a left module of RanGG with the natural transformation κ : (RanGG)G→ G

being the module action. Intuitively, we can see the codensity monad as a generalised type of
computations in continuation-passing style. The transformation κ executes the computation
by supplying it with the identity continuation. Moreover, if G happens to have a left
adjoint F , the codensity monad is equal to GF , and the situation simplifies to the op-dual of
Example 2 (6).

Examples 3 and 6 suggest that some actions of modules can be intuitively seen as functions
that run computations, while the functor parts provide context for the execution. We say
more about this view on modules in Section 5.

CALCO’15

294 Modules Over Monads and Their Algebras

2.3 Adjunctions paired with a functor
Monads and pairs of adjoint functors are closely related: every adjunction induces a monad,
and every monad is induced by a number of adjunctions. This can be extended to modules
over monads: M -modules are induced by adjunctions that induce M together with an
additional functor. The only condition imposed on the functor is that it has the same type
as the right adjoint (for right modules) or the left adjoint (for left modules). In detail:

I Theorem 7. Let F : C → D be a functor with a right adjoint U : D → C . We denote the
unit and the counit as η and ε respectively. Then:

Let L : C → D be a functor. Then, UL is a left UF -module with the action given as
UεL : UFUL→ UL.
Let R : D → C be a functor. Then, RF is a right UF -module with the action given as
RεF : RFUF → RF .

Conversely, every M -module arises from an adjunction that induces M together with
a functor of the appropriate type. In the case of left modules, this fact was noticed by
Dubuc [10]; we complement it with a suitable counterpart of the Kleisli construction for right
modules.

I Theorem 8. Let FEM a UEM be the Eilenberg–Moore adjunction for a monad M on a
category C . For a left M -module S, we define a functor L : C → EM(M) as follows:

LA = 〈SA, MSA
←−µA−−→ SA〉

L(f : A→ B) = SA
Sf−−→ SB

The induced module UEML is equal to S.

I Theorem 9. Let FKl a UKl be the Kleisli adjunction for a monad M on a category C .
For a right M -module S, we define a functor R : Kleisli(M)→ C as follows:

RA = SA

R(f : A→MB) = SA
Sf−−→ SMB

−→µB−−→ SB

The induced module RFKl is equal to S.

2.4 Distributive laws and liftings
Since most results about monads boil down to results about adjunctions, the construction
above suggests that we can generalise much of the theory of monads to the theory of
modules. As an example, we now consider distributive laws and liftings, introduced and
proved equivalent by Beck [8] (see also Barr and Wells [7, Sec. 9.2] or Tanaka’s PhD
dissertation [33]):

I Definition 10. A distributive law of an endofunctor G over a monad M is a natural
transformation λ : GM → MG such that λ · Gµ = µG · Mλ · λM and λ · Gη = ηG.
Similarly, a distributive law of a monad T over an endofunctor G is a natural transformation
λ : TG→ GT such that λ · µG = Gµ · λG ·Mλ and λ · ηG = Gη. A distributive law between
monads T and M is a natural transformation λ : TM →MT that is both a distributive law
of T as a endofunctor over M as a monad and T as a monad over M as an endofunctor.

M. Piróg, N. Wu, and J. Gibbons 295

I Definition 11. Given a monad T and an endofunctor G, we call an endofunctor G :
EM(T) → EM(T) a lifting of G to EM(T) if UEMG = GUEM, where U : EM(T) → C

is the forgetful functor. Let M be a monad. We call a monad M : EM(T) → EM(T) a
lifting of M (as a monad) if it is a lifting as an endofunctor and additionally the identities
µMUEM = UEMµM and ηMUEM = UEMηM hold.

I Theorem 12. Let M and T be monads, and G be an endofunctor. Liftings of G to EM(T)
are in 1–1 correspondence with distributive laws of T over G. Moreover, liftings of M (as a
monad) are in 1–1 correspondence with distributive laws of T over M (as monads).

We extend these notions and the correspondence to include modules:

I Definition 13. A distributive law of a monad T over a right M -module S consists of a
distributive law between monads λ : TM →MT together with a distributive law of a monad
over an endofunctor

−→
λ : TS → ST such that

−→
λ · T−→µ = −→µ T · Sλ ·

−→
λ M .

I Definition 14. Let T be a monad and S be a right M -module. An Eilenberg–Moore lifting
of S as a module consists of M and S together with a natural transformation −→µ S : SM → S

such that:
M : EM(T)→ EM(T) is a lifting of M as a monad,
S : EM(T)→ EM(T) is a lifting of S as a functor,
S together with −→µ S form a right M -module,
it is the case that UEM−→µ S = −→µ SUEM.

I Theorem 15. Distributive laws of a monad T over an M -module S and Eilenberg–Moore
liftings of S are in 1–1 correspondence.

3 Resumptions: monads freely generated by modules

In this section, we introduce the monadMS∗ freely induced by a rightM -module S. Its mon-
adic structure is an obvious generalisation of Hyland, Plotkin, and Power’s construction [20]
for Moggi’s [27] monad M(GM)∗ for an endofunctor G.

Since in this and the next sections, we are interested only in right modules, when no
direction (left or right) is given, we mean right modules.

I Theorem 16. Given a monad M , let 〈S,−→µ 〉 be an M -module. The functor MS∗ can be
given monadic structure via a distributive law λ : S∗M →MS∗.

Proof. First, consider the natural transformation δ = η−→µ : SM →MS. It is easy to verify
that it is a distributive law of the functor S over the monad M . Such a distributive law gives
us the following lifting M : Alg(S)→ Alg(S) of M to Alg(S):

M〈A, SA a−→ A〉 = 〈MA, SMA
δA−−→MSA

Ma−−→ A〉
Mf = Mf

Since the category Alg(S) is monadic over C (hence, Alg(S) ∼= EM(S∗)), this lifting can
be seen as a lifting to EM(S∗):

M : EM(S∗)→ EM(S∗)

Applying Theorem 12, we obtain a distributive law λ : S∗M →MS∗, which gives a monadic
structure to MS∗. J

CALCO’15

296 Modules Over Monads and Their Algebras

Using the definitions of the appropriate isomorphisms and with some calculation, we
can read off a direct definition of the distributive law in terms of a fold, that is, the unique
algebra homomorphism from the initial (S(-) +MA)-algebra to the following algebra, where
consA : SS∗A→ S∗A is the action of the free S-algebra generated by the object A:

λA = ([f]) : S∗MA→MS∗A,

where ([f]) is the unique algebra homomorphism from the initial algebra to 〈MS∗A, f〉 for

f = [µMS∗A · consA · −→µ S
S∗A, MηS

∗

A] : SMS∗A+MA→MS∗A.

I Example 17. The monad MS∗ is a generalisation of Moggi’s resumption monad M(GM)∗
for an endofunctor G. Moggi’s monad arises as the special case for S = GM . It follows from
Example 2 (3) that GM is an M -module. Using the ‘rolling rule’ [6], Moggi’s monad can
be rewritten as A 7→ µX.M(GX + A). A distinctive feature of our construction is that in
general it is not given by an initial algebra.

Moggi’s monad is an important data structure in functional programming, as it is often
used to implement a form of algebraic effects. The endofunctor G represents a signature,
while M is a background monad. Handling of the signature takes G to M , which in Haskell
is often the IO monad. Important examples of this pattern are given by streaming I/O
libraries, which help to manage resources efficiently without losing purity; see, for example,
Kiselyov [22].

I Example 18. We instantiate our resumption monad with the reader monad (-)A together
with its module A× (-) (see Example 3) to obtain ((A× (-))∗)A. It is a version of the state
monad that accumulates the intermediate states in a sequence. (We have previously [28]
given a ‘coinductive’ version of this example.)

The monad MS∗ is an important construction in the theory of modules, since it is freely
generated by S understood as a module. First, we notice that the monad M can be seen as
its own module with −→µ = µ. Moreover, this construction is functorial:

I Definition 19. We define a functor ∆ : Mnd→Mod as follows:

∆M = 〈M,M〉
∆f = 〈f, f〉

The above functor can be seen as a form of a (dependent) diagonal, hence the notation
∆. Mac Lane [23] calls the module ∆M the right regular representation of M , referring to a
similar concept from representation theory in abstract algebra. Hirschowitz and Maggesi [18]
call ∆M the tautological module of M .

I Theorem 20. The monad MS∗ is the free object in the category Mnd generated by S
with respect to the functor ∆. More precisely, this means that for monads M and T , an
M -module S, and a module morphism 〈m, f〉 : 〈M,S〉 → ∆T , there exists a unique monad
morphism k : MS∗ → T such that the following diagram commutes:

M MS∗ S∗ S

T

MηS∗ ηMS∗ embS

m k f
(1)

M. Piróg, N. Wu, and J. Gibbons 297

Proof. We define k = µT ·mJfK. Using the direct definition of λ, it can be shown using the
properties of initial algebras that k is indeed a monad morphism.

It is easy to see that the diagram (1) commutes from the properties of monads and
the freeness of S∗. To see that k is unique such a morphism, consider a monad morphism
r : MS∗ → T such that the diagram (1) commutes if we substitute r for k. Since ηMS∗ :
S∗ →MS∗ is a monad morphism, the composition r · ηMS∗ : S∗ → T is a monad morphism,
hence, from the freeness of S∗, we obtain that

r · ηMS∗ = JfK (2)

We calculate:

r = r · µMS∗ · ηMS∗MS∗ (monads)

= r · µMµS
∗
·MλS∗ · ηMηS

∗
MS∗ (def.)

= r · µMµS
∗
· ηMMηS

∗
S∗ (distr. law)

= r · µMµS
∗
·MηMηS

∗
S∗ (monads)

= r · µMµS
∗
·MλS∗ ·MηS

∗
ηMS∗ (distr. law)

= r · µMS∗ ·MηS
∗
ηMS∗ (def.)

= µT · rr ·MηS
∗
ηMS∗ (monad morphism)

= µT ·mJfK (LHS of (1) and (2))
= k (def.)

J

4 Algebras for modules

In this section, we introduce the notion of an algebra for a module. We show that the category
of all such algebras for an M -module S coincides with the category of Eilenberg–Moore
algebras for the monad MS∗.

I Definition 21. An algebra for an M -module S is a triple 〈A, f : MA→ A, g : SA→ A〉
such that:
1. The morphism f is an Eilenberg–Moore M -algebra.
2. The morphism g is an S-algebra.
3. The following coherence diagram commutes:

SMA SA

SA A

Sf

g−→µA

g

A morphism between two algebras 〈A, f, g〉 and 〈B, f ′, g′〉 is a morphism h : A→ B that is
both an S-algebra homomorphism f → f ′ and an M -algebra homomorphism g → g′. We
denote the category of algebras for an M -module S as ModAlg(M,S).

CALCO’15

298 Modules Over Monads and Their Algebras

I Theorem 22. Let S be an M -module. If S∗ exists, the obvious forgetful functor UModAlg :
ModAlg(M,S)→ C has a left adjoint FModAlg given by:

FModAlgA = 〈MS∗A, f, g〉, where

f = MMS∗A
µM

S∗A−−−→MS∗A

g = SMS∗A
−→µS∗A−−−→ SS∗A

consA−−−→ S∗A
ηM

S∗A−−−→MS∗A

FModAlgh = MS∗h

The monad induced by this adjunction is equal to MS∗.

Proof. Consider the adjunction FAlg a UAlg : C ⇀ Alg(S). The lifting M defined in the
proof of Theorem 16 can be seen as a monad on Alg(S). It gives rise to an Eilenberg–Moore
adjunction FEM a UEM : Alg(S) ⇀ EM(M). The objects of EM(M) are algebras of the
following shape:

〈〈A, g : SA→ A〉, f : M〈A, g〉 → 〈A, g〉〉

They satisfy the following conditions:
The morphism g is an S-algebra (obviously).
The morphism f has the Eilenberg–Moore property. Since M inherits its monadic
structure from M , the morphism f : MA → A understood as a C -morphism has the
Eilenberg–Moore property for M .
The morphism f is an algebra homomorphism between M〈A, g〉 = 〈MA, SMA

−→µA−−→

SA
g−→ A

ηM
A−−→MA〉 and 〈A, g〉. The homomorphism diagram is then as follows:

SMA SA A MA

SA A

−→µA g ηM
A

Sf f

g

idA

Since f has the Eilenberg–Moore property, it is the case that f · ηMA = idA (as indicated
by the dashed arrow).

These are exactly the conditions for 〈A, f, g〉 to be an algebra for the module S, which means
that ModAlg(M,S) ∼= EM(M). The adjunction in question is then given by the following
composite adjunction:

FEMFAlg a UAlgUEM : C ⇀ ModAlg(M,S) ∼= EM(M)

It is easy to see that UModAlg agrees with UAlgUEM, so its left adjoint is given by FEMFAlg

modulo the isomorphism. Simple unfolding of the definitions of FAlg and FEM gives us that
the direct definition of their composition is as specified in the theorem. J

I Example 23. We can instantiate the theorem above to the ‘bialgebraic’ proof by Hyland,
Plotkin, and Power’s [20] that M(GM)∗ is a coproduct of M and G∗ in Mnd. First, for two
monads M and T , we define an 〈M,T 〉-bialgebra as a triple 〈A, f : MA→ A, g : TA→ A〉,
where f and g are Eilenberg–Moore algebra actions. All 〈M,T 〉-bialgebras form a category,
BiAlg(M,T), with morphisms given by C -morphisms that are both M - and T -algebra
homomorphisms. As shown by Kelly [21], in a category with coproducts, if the obvious

M. Piróg, N. Wu, and J. Gibbons 299

forgetful functor from BiAlg(M,T) to the base category has a left adjoint, the induced
monad is a coproduct ofM and T in Mnd. Indeed, for anM -module GM (see Example 2 (3)
and (1)), one can prove that the category ModAlg(M,GM) is isomorphic to BiAlg(M,G∗)
as follows.

Since EM(G∗) ∼= Alg(G), we can work with G-algebras (instead of Eilenberg–Moore G∗-
algebras) in the third component of bialgebras. Given an algebra for a module 〈A, f : MA→
A, g : GMA → A〉, we define the corresponding bialgebra as 〈A, f, g · GηA : GA → A〉.
Given a bialgebra 〈A, f : MA→ A, g : GA→ A〉, we define the corresponding algebra for a
module as 〈A, f, g ·Gf : GMA→ A〉. The coherence condition follows easily from the fact
that f is an Eilenberg–Moore algebra action. Simple calculation reveals that that the two
transformations are mutual inverses. It is also easy to verify that a morphism between two
algebras for a module is also a morphism between the corresponding bialgebras and vice
versa.

Theorem 22 characterises the left adjoint to UModAlg (and so, to the forgetful functor
BiAlg(M,G∗)). The induced monad is indeed the free monad generated by the module GM ,
that is, M(GM)∗.

I Example 24. As defined by Atkey et al. [5], following Filinski and Støvring [13], a G-and-M -
algebra is a triple 〈A, m : MA→ A, f : GA→ A〉, whereM is a monad, G is an endofunctor,
f is a morphism, and m is an Eilenberg–Moore algebra action. Morphisms between two
G-and-M -algebras are C -morphisms that are both G- and M -algebra homomorphisms.
The initial G-and-M -algebra (whose carrier is given by µMG ∼= M(µGM)) is used to
model effectful datatypes, which interleave structure and monadic effects. Employing the
isomorphism EM(G∗) ∼= Alg(G), one can easily see that the category of G-and-M -algebras
is isomorphic to BiAlg(M,G∗), and so, as described in the previous example, isomorphic to
ModAlg(M,GM). Since FModAlg : C →ModAlg(M,GM) is cocontinuous (since it is a
left adjoint), the initial G-and-M -algebra can be obviously reconstructed as FModAlg0, where
0 is the initial object of C .

I Theorem 25. If S∗ exists, the functor UModAlg is strictly monadic. This entails that the
category ModAlg(M,S) is isomorphic to EM(MS∗).

Proof. We use the strict version of Beck’s monadicity theorem (see Mac Lane [23, Sec. VI.7]).
We have already shown that UModAlg is a right adjoint, so it remains to show that it creates
coequalisers for those parallel h0, h1 in ModAlg(M,S) for which UModAlgh0 and UModAlgh1
have a split coequaliser in C .

Let h0, h1 : 〈A, fA, gA〉 → 〈B, fB , gB〉 be such a pair. Let c be a split coequaliser of
UModAlgh0 and UModAlgh1. In other words, there exist morphisms s and t such that the
following diagram commutes in C and in which the two horizontal compositions are the
identities:

B A B

C B C

t h0

s c

c h1 c
(3)

We need to show that there exist unique fC : MC → C and gC : SA → A such that
〈C, fC , gC〉 is an algebra for a module, and c : 〈B, fB , gB〉 → 〈C, fC , gC〉 is a homomorphism
and a coequaliser of h0 and h1. From the monadicity of the forgetful functors UEM :
EM(M)→ C and UAlg : Alg(S)→ B, we obtain that there exist a unique Eilenberg–Moore

CALCO’15

300 Modules Over Monads and Their Algebras

M -algebra 〈C, fC〉 and a unique S-algebra 〈C, gC〉, where

fC = MC
Ms−−→MB

fB

−−→ B
c−→ C,

gC = SC
Ss−→ SB

gB

−−→ B
c−→ C,

such that c is the coequaliser of h0, h1 : 〈A, fA〉 → 〈B, fB〉 understood as Eilenberg–Moore
M -algebra homomorphisms and simultaneously the coequaliser of h0, h1 : 〈A, gA〉 → 〈B, gB〉
understood as S-algebra homomorphisms. Thus, it is left to check that 〈C, fC , gC〉 is an
algebra for a module, that is, that the tuple fC and gC satisfy the condition (3) from
Definition 21:

gC · SfC = c · gB · Ss · Sc · SfB · SMs (def.)
= c · gB · Sh1 · St · SfB · SMs (diag. (3))
= c · h1 · gA · St · SfB · SMs (h1 homomorph.)
= c · h0 · gA · St · SfB · SMs (c coequaliser)
= c · gB · Sh0 · St · SfB · SMs (h0 homomorph.)
= c · gB · SfB · SMs (diag. (3))
= c · gB · −→µB · SMs (coherence)
= c · gB · Ss · −→µC (−→µ nat.)
= gC · −→µC (def.)

J

5 Summary and future work

In this paper, we have taken a closer look at the notion of module over a monad, focusing
mainly on right modules. We illustrate our results with a number of examples, some of them
new, some just being a reformulation in the language of modules of previously known results.

One important application we hope for is in functional programming, where structures
similar to resumptions appear in the form of streaming I/O libraries [22] and adaptation of
algebraic effects [31]. Corollary 20 and Theorem 25 give universal properties of the monad
MS∗, which can be used for equational reasoning about programs that utilise them [24].
Providing a simple description of an adjunction that gives rise to MS∗ gives us a more
efficient implementation via the codensity monad trick [17].

Another question is how modules relate to monadic effects, especially their algebraic
presentations, extensively studied by Plotkin and Power [29], and handlers, in the sense of
Plotkin and Pretnar [30]. An algebraic theory induces a monad M as the family of its free
models, while handlers are given by other models, that is, Eilenberg–Moore algebras of the
monad M . As mentioned in Example 5, every Eilenberg–Moore algebra is a module for a
constant endofunctor, but there are families of models that are parametric in variables (for
example, the free model). These can be modelled by general left modules.

As suggested by Example 3, the actions of right modules may represent functions that
run the computations in some context. In these case, the context is a global state A; recall
the types: A× (A×X)A → A×X and A×XA → A×X. Is this a more general situation?
Below, we give another example:

I Example 26. Consider the monad T of binary trees on Set with variables in leaves and
the monad multiplication given by substitution. Intuitively, we interpret them as choice

M. Piróg, N. Wu, and J. Gibbons 301

trees of randomised computations, in which every choice is equally probable. The context
of execution is given by CX = X × Bω, where Bω is the set of infinite binary streams,
representing possible future sequences of coin tosses. Now, to run the computation in the
context, we go down the tree, choosing a branch based on the front element of the stream
(left upon 0, right upon 1), at each step discarding the front element. Then, the result of
−→µX : TX × {0, 1}ω → X × Bω is a pair consisting of the variable in the leaf that is reached
by going down the tree as specified in the prefix of an appropriate length paired with the
unused ‘tail’ of the stream.

6 Related work

The research presented in this paper is inspired by our previous work [28], in which the
coinductive resumption monad MS∞ was studied, where S∞ is the free completely iterative
monad [3] defined as S∞A = νX.SX+A. There, we use an arbitrary right module S instead
of GM mainly to simplify the presentation and the proofs, although the main result considers
the monad M(GM)∞, which is similar to Moggi’s monad.

Modules are used by Adámek, Milius, and Velebil [2, 25] to capture the notion of
guardedness in their study of iterative monads. They define an idealised monad as a right
M -module S together with a suitably coherent natural transformation σ : S → M . The
general intuition for idealised monads is that S is a ‘subset’ (especially if σ is monic) of
computations that have some good properties, which are retained after composing with any
other computation. For instance, consider Example 4, in which the ‘ideal’ of the non-empty
list monad is given by lists of length at least n. An important example of idealised monads are
ideal monads, which are defined by the property M = S+ Id; see also Ghani and Uustalu [15]
for an extended discussion.

There are some obvious generalisations possible. For example, we can allow S to be
a functor to a different category. This definition was used by Street [32] to define the
Eilenberg–Moore object in a 2-category: it is a universal left module (in the generalised
sense). Hirschowitz and Maggesi [18, 19] and Ahrens [4] use generalised left modules to
capture the construction of higher-order syntax and semantics. They, too, discuss the
elementary theory of modules, but from a slightly different angle: instead of Mod, they
study the category of modules over a single monad M , that is, a fibre of Mod with respect
to the functor Mod → C C that extracts the functor part of a module. This functor has
some nice properties: it has a left adjoint given by G 7→ GM and reflects (co)limits, see
Example 2 (5).

Resumptions were introduced by Milner [26] to capture the semantics of concurrency (see
also Abramsky [1]). In programming, resumptions (known also as ‘trampolined style’ [14]
or ‘engines’ [11, 16]) were first used to control program flow. The first use of resumptions
(although, of course, not explicitly named so) was probably the famous result on structured
programming by Böhm and Jacopini [9].

Acknowledgements. We would like to thank the Algebra of Programming group at Oxford
University for discussions; the anonymous referees for their constructive comments, which
helped us to improve this paper; and the EPSRC, whose grant on Unifying Theories of
Generic Programming (EP/J010995/1) partially supported this work.

CALCO’15

302 Modules Over Monads and Their Algebras

References
1 Samson Abramsky. Retracing some paths in process algebra. In Ugo Montanari and

Vladimiro Sassone, editors, CONCUR, volume 1119 of Lecture Notes in Computer Science
(LNCS), pages 1–17. Springer, 1996.

2 Jiří Adámek, Stefan Milius, and Jiří Velebil. On rational monads and free iterative theories.
Electronic Notes in Theoretical Computer Science, 69:23–46, 2002.

3 Jiří Adámek, Stefan Milius, and Jiří Velebil. Free iterative theories: A coalgebraic view.
Mathematical Structures in Computer Science, 13(2):259–320, 2003.

4 Benedikt Ahrens. Modules over relative monads for syntax and semantics. Mathematical
Structures in Computer Science, FirstView:1–35, 12 2014.

5 Robert Atkey, Neil Ghani, Bart Jacobs, and Patricia Johann. Fibrational induction meets
effects. In Lars Birkedal, editor, Foundations of Software Science and Computational Struc-
tures, volume 7213 of Lecture Notes in Computer Science (LNCS), pages 42–57. Springer,
2012.

6 Roland Carl Backhouse, Marcel Bijsterveld, Rik van Geldrop, and Jaap van der Woude.
Categorical fixed point calculus. In David H. Pitt, David E. Rydeheard, and Peter John-
stone, editors, Category Theory and Computer Science, volume 953 of Lecture Notes in
Computer Science (LNCS), pages 159–179. Springer, 1995.

7 Michael Barr and Charles F. Wells. Toposes, Triples, and Theories. Grundlehren der
mathematischen Wissenschaften. Springer-Verlag, 1985.

8 Jonathan M. Beck. Distributive laws. In Seminar on Triples and Categorical Homology
Theory, volume 80 of Lecture Notes in Mathematics, pages 119–140. Springer Berlin / Heidel-
berg, 1969. 10.1007/BFb0083084.

9 Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines and languages
with only two formation rules. Communications of the ACM, 9(5):366–371, May 1966.

10 Eduardo J. Dubuc. Kan extensions in enriched category theory. Lecture Notes in Mathem-
atics. Springer, Berlin, 1970.

11 R. Kent Dybvig and Robert Hieb. Engines from continuations. Computer Languages,
14(2):109–123, 1989.

12 Samuel Eilenberg and John C. Moore. Adjoint functors and triples. Illinois Journal of
Mathematics, 9(3):381–398, 09 1965.

13 Andrzej Filinski and Kristian Støvring. Inductive reasoning about effectful data types. In
International Conference on Functional Programming, pages 97–110. ACM, 2007.

14 Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In Didier
Rémy and Peter Lee, editors, International Conference on Functional Programming, pages
18–27. ACM, 1999.

15 Neil Ghani and Tarmo Uustalu. Coproducts of ideal monads. Theoretical Informatics and
Applications, 38(4):321–342, 2004.

16 Christopher T. Haynes and Daniel P. Friedman. Engines build process abstractions. In
LISP and Functional Programming, pages 18–24, 1984.

17 Ralf Hinze. Kan extensions for program optimisation, or: Art and Dan explain an old trick.
In Jeremy Gibbons and Pablo Nogueira, editors, Mathematics of Program Construction –
11th International Conference, MPC 2012, Madrid, Spain, June 25-27, 2012. Proceedings,
volume 7342 of Lecture Notes in Computer Science, pages 324–362. Springer, 2012.

18 André Hirschowitz and Marco Maggesi. Modules over monads and linearity. In Daniel
Leivant and Ruy J. G. B. de Queiroz, editors, Workshop on Logic, Language, Information
and Computation, volume 4576 of Lecture Notes in Computer Science (LNCS), pages 218–
237. Springer, 2007.

19 André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. In-
formation and Computation, 208(5):545–564, 2010.

M. Piróg, N. Wu, and J. Gibbons 303

20 Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor.
Theoretical Computer Science, 357(1-3):70–99, 2006.

21 Gregory M. Kelly. A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical
Society, 22:1–83, 8 1980.

22 Oleg Kiselyov. Iteratees. In Tom Schrijvers and Peter Thiemann, editors, Functional and
Logic Programming, volume 7294 of Lecture Notes in Computer Science (LNCS), pages
166–181. Springer, 2012.

23 Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Math-
ematics. Springer, 1998.

24 Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional programming with ba-
nanas, lenses, envelopes and barbed wire. In John Hughes, editor, Functional Programming
Languages and Computer Architecture, volume 523 of Lecture Notes in Computer Science,
pages 124–144. Springer, 1991.

25 Stefan Milius. Completely iterative algebras and completely iterative monads. Information
and Computation, 196:1–41, 2005.

26 Robin Milner. Processes: A mathematical model of computing agents. In Logic Colloquium
1973, Studies in logic and the foundations of mathematics, pages 157–173. North-Holland
Pub. Co., 1975.

27 Eugenio Moggi. An abstract view of programming languages. Technical report, Edinburgh
University, 1989.

28 Maciej Piróg and Jeremy Gibbons. The coinductive resumption monad. Electronic Notes
in Theoretical Computer Science, 308:273–288, 2014. Mathematical Foundations of Pro-
gramming Semantics (MFPS XXX).

29 Gordon D. Plotkin and A. John Power. Computational effects and operations: An overview.
Electronic Notes in Theoretical Computer Science, 73:149–163, 2004.

30 Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical Methods in
Computer Science, 9(4), 2013.

31 Tom Schrijvers, Nicolas Wu, Benoit Desouter, and Bart Demoen. Heuristics entwined with
handlers combined. In PPDP 2014: Proceedings of the 16th International Symposium on
Principles and Practice of Declarative Programming. Association for Computing Machinery
(ACM), 2014.

32 Ross Street. The formal theory of monads. Journal of Pure and Applied Algebra, 2(2):149–
168, 1972.

33 Miki Tanaka. Pseudo-Distributive Laws and a Unified Framework for Variable Binding.
PhD thesis, University of Edinburgh, 2005.

CALCO’15

Revisiting the Institutional Approach to
Herbrand’s Theorem
Ionuţ Ţuţu1,2 and José Luiz Fiadeiro1

1 Department of Computer Science, Royal Holloway University of London, UK
ittutu@gmail.com, jose.fiadeiro@rhul.ac.uk

2 Institute of Mathematics of the Romanian Academy, Research group of the
project ID-3-0439, Romania

Abstract
More than a decade has passed since Herbrand’s theorem was first generalized to arbitrary institu-
tions, enabling in this way the development of the logic-programming paradigm over formalisms
beyond the conventional framework of relational first-order logic. Despite the mild assumptions of
the original theory, recent developments have shown that the institution-based approach cannot
capture constructions that arise when service-oriented computing is presented as a form of logic
programming, thus prompting the need for a new perspective on Herbrand’s theorem founded
instead upon a concept of generalized substitution system. In this paper, we formalize the connec-
tion between the institution- and the substitution-system-based approach to logic programming
by investigating a number of features of institutions, like the existence of a quantification space
or of representable substitutions, under which they give rise to suitable generalized substitution
systems. Building on these results, we further show how the original institution-independent
versions of Herbrand’s theorem can be obtained as concrete instances of a more general result.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Institution theory, Substitution systems, Herbrand’s theorem

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.304

1 Introduction

The Fundamental Theorem of Herbrand [15] is a central result in proof theory that deals
with the reduction of provability in first-order logic to provability in propositional logic. Its
importance in the context of automated theorem proving was realized in the early 1960s,
when, in combination with the theory of Horn-clause logic, it played a key role in establishing
the mathematical foundations of logic programming (see e.g. [16]). In the conventional
setting of relational first-order logic, Herbrand’s theorem states that, for a set Γ of Horn
clauses (i.e. for a logic program Γ), the answers to an existential query can be found simply
by examining a term model – called the (least) Herbrand model – instead of all the models
that satisfy Γ. Over the last three decades, the original result has been generalized to a
variety of other logical systems, including Horn-clause logic with equality [13, 14], hidden
algebra [12], and category-based constraint logic [3], culminating in [5] with an investigation
of Herbrand’s theorem in an arbitrary institution [11] – a categorical formalization of the
intuitive notion of logical system put forward by Goguen and Burstall in the late 1970s.

The results presented in [5] are grounded on an institution-independent treatment of
variables as signature morphisms (which correspond in concrete cases to extensions of
signatures with new constant-operation symbols) that was first outlined in [24]. This
enabled the development of fundamental semantic concepts to logic programming like query

© Ionuţ Ţuţu and José L. Fiadeiro;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 304–319

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.304
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Ţuţu and J. L. Fiadeiro 305

and solution in arbitrary institutions. Logic programs, for example, are given by theory
presentations (usually universal Horn presentations), while queries are captured through
existential quantifications of basic sentences. We will recall these concepts together with
their corresponding properties one step at a time in the subsequent sections of this paper.

Thanks to its generality, the institution-based approach to Herbrand’s theorem enabled
the development of logic programming over a wide range of logical systems (see e.g. [10],
and also [6]). All the same, certain institution-based forms of logic programming do not
fit into the framework proposed in [5]. In particular, the logic-programming semantics of
services [30] is grounded on a family of logical systems for which the concept of variable
cannot be faithfully captured by means of representable extensions of signatures, thus failing
to meet one of the most basic assumptions of the institution-independent variant of the
theorem. This led us to advance in [29] a new abstract approach to logic programming and,
implicitly, to Herbrand’s theorem over a concept of generalized substitution system that
extends institutions by allowing for direct representations of variables and substitutions –
similarly to the context institutions of [23], though the latter are concrete, in the sense that
the category of models of every signature is concrete over the category of indexed sets.

In the present paper, we continue the work reported in [29] with an investigation of the
relationship between the institution-based and the substitution-system-based approach to
logic programming. More specifically, we show that the hypotheses of the latter are indeed
more general by examining the role of representability (of signature morphisms in arbitrary
institutions) in the construction of a generalized substitution system. The main challenge
here lies in the treatment of substitutions, which, in the institutional setting, are captured
purely through their corresponding translations of sentences and reductions of models. This
prevents us from using the additional information available when substitutions are regarded
as mappings from variables to terms – which is only possible, however, in concrete examples
of institutions such as first-order logic – thus making it difficult to translate substitutions
along signature morphisms. For this reason, the main contributions of our paper, namely the
derivation of a generalized substitution system from a given institution and the reformulation
of the original institution-independent variants of Herbrand’s theorem in the resulting
framework, are parameterized by a class of general substitutions.

The paper is organized as follows: in Section 2 we review the concept of generalized
substitution system and two well-known formalisms that have been studied in the context of
institution-based logic-programming languages; in Section 3 we examine a class of substitution
systems whose variables are defined through extensions of signatures (of a given institution),
and whose substitutions correspond to the institution-independent notion of substitution;
building on these results, in Section 4 we further investigate the translation of variables along
signature morphisms and identify a set of sufficient conditions under which an institution
can give rise to a generalized substitution system; lastly, in Section 5 we present a different
perspective on the institution-independent versions of Herbrand’s fundamental theorem.

2 Technical preliminaries

We generally assume familiarity with the theory of institutions, including its categorical
underpinnings and the presentation of institutions as functors into the category Room of
rooms and corridors (see, for example, the monographs [6, 25]). In terms of category-theoretic
notations, we denote by |C| the collection of objects of a category C, by f ; g the composition
of arrows f and g in diagrammatic order, and by 1A the identity arrow of an object A.

Our work makes extensive use of comma categories. To this end, for any object A of a
category C, we denote the comma category of C-objects under A by A / C and the forgetful

CALCO’15

306 Revisiting the Institutional Approach to Herbrand’s Theorem

functor A/C→ C by |_|A. We also denote by C~ the category of C-arrows, and by dom the
canonical projection functor C~ → C that maps the arrows f : A→ B in C to their domain.

2.1 Generalized substitution systems

Substitution systems are the most basic structures that underlie both the denotational and
the operational semantics of the logic-independent approach to logic programming proposed
in [29]. Since their definition relies technically on the category Room, we start by recalling
that a room is a triple 〈S,M,�〉 consisting of a set S of sentences, a category M of models,
and a satisfaction relation � ⊆ |M| × S. Furthermore, a corridor (i.e. a morphism of rooms)
〈α, β〉 : 〈S,M,�〉 → 〈S′,M′,�′〉 is defined by a sentence-translation function α : S → S′ and a
model-reduction functor β : M′ →M such that, for all M ′∈ |M′| and ρ ∈ S,

M ′ �′ α(ρ) if and only if β(M ′) � ρ.

The following definitions originate from [29].

I Definition 1 (Substitution system). A substitution system is a triple 〈Subst, G,S〉, usually
denoted simply by S, that consists of

a category Subst of (abstract) signatures of variables and substitutions,
a room G of ground sentences and models, and
a functor S : Subst→ G /Room defining, for every signature of variables X, the corridor
S(X) : G→ G(X) from G to the room G(X) of X-sentences and X-models.

A classical example can be obtained by defining Subst as the category of (sets of) variables
and substitutions over a fixed first-order signature Σ. In that case, G is the room of those
sentences of Σ that are ground (i.e. without variables), and the corridors S(X) correspond
to the signature morphisms that extend Σ by adding the variables of X as new constants.

Generalized substitution systems can be regarded as extensions of substitution systems
that are parameterized by the signature used. In this sense, the connection between general-
ized substitutions systems and substitution systems is similar to that between institutions
and rooms: generalized substitutions systems are functors into the category SubstSys of
substitutions systems. To make this definition more precise, we recall from [29] that a morph-
ism of substitution systems between S : Subst→ G / Room and S ′ : Subst′ → G′/ Room is
a triple 〈Ψ, κ, τ〉, where Ψ is a functor Subst→ Subst′, κ is a corridor G→ G′, and τ is a
natural transformation S ⇒ Ψ ; S ′ ; (κ / Room).

I Definition 2 (Generalized substitution system). A generalized substitution system is a pair
〈Sig,GS〉 given by a category Sig of signatures and a functor GS : Sig→ SubstSys.

2.2 Equational logic programming

Before we embark on the study of institution-based abstract logic-programming languages,
let us briefly survey the logical systems that underlie two of the most prominent examples of
(concrete) logic-programming languages examined in the context of institutions: first-order
and higher-order equational logic programming (see e.g. [13, 19], and also [22]). These
will form the main reference points that we will use to illustrate the various concepts and
properties discussed in the subsequent sections of our paper.

I. Ţuţu and J. L. Fiadeiro 307

First-order equational logic

First-order equational logic programming is defined over the quantifier-free fragment of
many-sorted first-order equational logic, whose institution we denote by qf-FOL=. In what
follows, we only give a succinct presentation of the most important first-order concepts
needed for the purpose of our work. A more in-depth discussion of qf-FOL= can be found,
for example, in [14, 29], or in the recent monographs [6, 25].

Signatures. The signatures of qf-FOL= are pairs 〈S, F 〉, where S is a (finite) set of sorts and
F is a family (Fw→s)w∈S∗,s∈S of (finite) sets of operation symbols indexed by arities and
sorts. Signature morphisms ϕ : 〈S, F 〉 → 〈S′, F ′〉 are defined by functions ϕst : S → S′

between the sets of sorts and by families of functions ϕop
w→s : Fw→s → F ′ϕst(w)→ϕst(s), for

w ∈ S∗ and s ∈ S, between the sets of operation symbols.
Sentences, models, and the satisfaction relation. For every signature 〈S, F 〉 and every sort

s ∈ S, the set TF,s of F -terms of sort s is the least set such that σ(t1, . . . , tn) : s ∈ TF,s
for all σ ∈ Fs1···sn→s and ti ∈ TF,si . The sentences over 〈S, F 〉 are built from equational
atoms l = r, where l, r ∈ TF,s for some s ∈ S, by iteration of the usual Boolean
connectives.
Themodels, or algebras,M of 〈S, F 〉 interpret each sort s ∈ S as a setMs, called the carrier
of s inM , and each operation symbol σ ∈ Fs1···sn→s as a functionMσ : Ms1×· · ·×Msn →
Ms. Homomorphisms h : M1 →M2 are families of functions (hs : M1,s →M2,s)s∈S such
that hs(M1,σ(m1, . . . ,mn)) = M2,σ(hs1(m1), . . . , hsn(mn)) for all σ ∈ Fs1···sn→s and
mi ∈Msi .
Finally, the satisfaction relation is defined by induction on the structure of sentences,
based on the evaluation of terms in models. For instance, an 〈S, F 〉-model M satisfies an
equational atom l = r if and only if the terms l and r yield the same value in M .

Higher-order logic with Henkin semantics

Following the lines of [20], and also of more recent institution-theoretic works such as [25, 28],
we define and study higher-order logic programming over a simplified version of higher-order
logic with Henkin semantics that only takes into account λ-free terms. This does not limit
the expressive power of the logic since for any term λ(x : s). t one can define a new constant
σ and a universal sentence of the form ∀{x : s} · σ x = t.1 Similarly to first-order equational
logic programming, for the results presented in the following sections it suffices to consider
the quantifier-free fragment of higher-order logic, whose institution we denote by qf-HNK.2

Signatures. A higher-order signature consists of a set S of basic types, or sorts, and a
family (Fs)s∈~S of sets of constant-operation symbols indexed by S-types, where ~S is the
least set for which S ⊆ ~S and s1→ s2 ∈ ~S whenever s1, s2 ∈ ~S. Signature morphisms
ϕ : 〈S, F 〉 → 〈S′, F ′〉 comprise functions ϕst : S → ~S′ and ϕop

s : Fs → F ′ϕtype(s), for s ∈
~S, where ϕtype : ~S → ~S′ is the canonical extension of ϕst given by ϕtype(s1 → s2) =
ϕtype(s1)→ ϕtype(s2).

Sentences, models, and the satisfaction relation. Given a signature 〈S, F 〉, the family(
TF,s

)
s∈~S of F -terms is the least family of sets such that σ : s ∈ TF,s for all s ∈ ~S

1 A detailed presentation of this encoding, formalized as an institution comorphism, can be found in [9].
2 Note that the universal sentences needed for encoding λ-terms can still be defined as Horn clauses of

the logic programs under consideration.

CALCO’15

308 Revisiting the Institutional Approach to Herbrand’s Theorem

and σ ∈ Fs, and (t t1) ∈ TF,s2 for all terms t ∈ TF,s1→s2 and t1 ∈ TF,s1 . As in the case
of qf-FOL=, the sentences over 〈S, F 〉 are built from equational atoms l = r, where l
and r are terms in TF,s for some type s ∈ ~S, by repeated applications of the Boolean
connectives.
The models M of a higher-order signature 〈S, F 〉 interpret the types s ∈ ~S as sets
Ms, the constant symbols σ ∈ Fs as elements Mσ ∈ Ms, and define injective maps
[[_]]Ms1→s2 : Ms1→s2→ [Ms1→Ms2], where [Ms1→Ms2] denotes the set of functions from
Ms1 to Ms2 , for any two types s1, s2 ∈ ~S. Model homomorphisms h : M1 → M2 are
families of maps (hs : M1,s →M2,s)s∈~S such that hs(M1,σ) = M2,σ for every type s ∈ ~S
and operation σ ∈ Fs, and [[f]]M1

s1→s2 ; hs2 = hs1 ; [[hs1→s2(f)]]M2
s1→s2 for all s1, s2 ∈ ~S and

f ∈M1,s1→s2 .
The satisfaction relation relies once again on the interpretation of terms in models, which
extends the interpretation of constant-operation symbols as follows: for every 〈S, F 〉-model
M and every pair of terms t ∈ TF,s1→s2 and t1 ∈ TF,s1 , M(t t1) = [[Mt]]Ms1→s2(Mt1).

3 Institution-independent substitutions

The institution-independent concept of substitution (see [5], and also [6]) generalizes first-
order substitutions (as well as second-order and higher-order substitutions, among others)
to arbitrary institutions by taking notice only of their syntactic and semantic effects: the
translations of sentences and the reductions of models that they generate. A key step in
arriving at this notion is the presentation of the extensions of signatures by sets of variables
as particular cases of signature morphisms (along the lines of [24]). Thus, for any two
signature morphisms χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2 (two extensions of Σ) in an institution
I = 〈Sig,Sen,Mod,�〉, a substitution ψ : χ1 → χ2 is a pair 〈SenΣ(ψ),ModΣ(ψ)〉 given by

a sentence-translation function SenΣ(ψ) : Sen(Σ1)→ Sen(Σ2) and
a model-reduction functor ModΣ(ψ) : Mod(Σ2)→ Mod(Σ1)

that preserve Σ, in the sense that Sen(χ1) ; SenΣ(ψ) = Sen(χ2) and ModΣ(ψ) ; Mod(χ1) =
Mod(χ2), and satisfy the following condition:

M2 �Σ2 SenΣ(ψ)(ρ1) if and only if ModΣ(ψ)(M2) �Σ1 ρ1

for every Σ2-model M2 and every Σ1-sentence ρ1.
In this work, we take into consideration an equivalent formulation of the original definition

that makes use of the category Room of rooms and corridors. In addition, we extend the
fact that substitutions inherit the composition of their components – thus giving rise to a
category – to derive a general substitution system of Σ-substitutions for each signature Σ.

I Proposition 3. Let Q ⊆ Sig be a class of signature morphisms of an institution I
regarded as a functor Sig → Room. For every I-signature Σ we obtain a substitution
system SIQΣ : SubstQΣ → I(Σ) / Room defined as follows:

The objects of the category SubstQΣ – i.e. the signatures of Σ-variables – are signature
morphisms χ : Σ → Σ(χ)3 belonging to the class Q. Their corresponding corridors via
the functor SIQΣ are given simply by I(χ) : I(Σ)→ I(Σ(χ)).

3 For convenience, we denote the codomain of the signature morphism χ by Σ(χ); this reflects the intuition
that Σ(χ) is an extension of the signature Σ with variables defined by χ.

I. Ţuţu and J. L. Fiadeiro 309

For every two signatures of Σ-variables χ1 : Σ→ Σ(χ1) and χ2 : Σ→ Σ(χ2), a Σ-substitu-
tion ψ : χ1 → χ2 (i.e. a morphism in SubstQΣ) consists of a corridor 〈SenΣ(ψ),ModΣ(ψ)〉
between I(Σ(χ1)) and I(Σ(χ2)) such that I(χ1) ; 〈SenΣ(ψ),ModΣ(ψ)〉 = I(χ2).

I(Σ(χ1))

〈SenΣ(ψ),ModΣ(ψ)〉

OO
I(Σ)

I(χ1)
oo

I(χ2)
// I(Σ(χ2))

As such, Σ-substitutions are merely arrows in the comma category I(Σ) /Room, meaning
that they are identified with their images under the functor SIQΣ . The composition of
substitutions is defined accordingly.

I Example 4. In qf-FOL=, a variable over a signature 〈S, F 〉 is a triple (x, s, Fε→s),4
often denoted simply by x : s, where x is the name of the variable and s is its sort. Thus,
qf-FOL=-signatures of 〈S, F 〉-variables X are S-indexed families of sets Xs of variables of
sort s such that different variables have different names. First-order substitutions ψ : X → Y

can be further defined as S-indexed families of maps ψs : Xs → TF∪Y,s that assign a term
over the extended signature 〈S, F ∪ Y 〉 to every variable of X.

One can easily check that first-order substitutions ψ : X → Y indeed give rise to general
substitutions between 〈S, F 〉 ⊆ 〈S, F ∪X〉 and 〈S, F 〉 ⊆ 〈S, F ∪Y 〉 (see e.g. [6]). For instance,
the reduct Mod〈S,F 〉(ψ)(N) of an 〈S, F ∪Y 〉-model N is the 〈S, F ∪X〉-expansion of N�〈S,F 〉
given by Mod〈S,F 〉(ψ)(N)x : s = Nψ(x) for every variable x : s of X. Note, however, that not
every general substitution between 〈S, F 〉 ⊆ 〈S, F ∪X〉 and 〈S, F 〉 ⊆ 〈S, F ∪ Y 〉 corresponds
to a first-order substitution; we will discuss this aspect to a greater extent in Section 4.2.

Higher-order signatures of variables and substitutions can be defined likewise, by recalling
that a higher-order variable over a signature 〈S, F 〉 is a triple of the form (x, s, Fs), where x
and s correspond to the name and the type of the variable (see e.g. [28], and also [2]). As
expected, this means that we allow higher-order variables to range over arbitrary functions.

4 Quantification spaces

Due to its mild assumptions, the construction outlined in Propostition 3 cannot be easily
generalized to accommodate signature morphisms. More precisely, one cannot guarantee
that signature morphisms ϕ : Σ→ Σ′ lead to adequate morphisms between the substitution
systems associated with Σ and Σ′: it would suffice, for example, to consider a class Q of
signature morphisms that consists only of extensions of Σ, thus preventing the translation of
the signatures of Σ-variables along ϕ. To overcome this limitation, we take into account only
those extensions of signatures that belong to a quantification space – a notion introduced
in [7] in the context of quasi-Boolean encodings5 and utilized in a series of papers on
hybridization and many-valued institutions (see e.g. [17, 8]). For the purpose of our work,
it will be convenient to consider a more categorical formulation of the original definition of
quantification spaces, based on Fact 5 below.

I Fact 5. Consider a category C and a subcategory Q of the category C~ of C-arrows.
The domain functor dom : Q → C gives rise to a natural transformation ιQ : (_ / Q) ⇒

4 We denote the empty arity by ε; hence, Fε→s is the set of constants of sort s of the signature 〈S, F 〉.
5 It should be noted, however, that the ideas that underlie quantification spaces can be traced back to [27]
– one of the earliest works in which open formulae are treated in arbitrary institutions.

CALCO’15

310 Revisiting the Institutional Approach to Herbrand’s Theorem

domop ; (_ / C) where (_ / Q) : Qop → Cat and (_ / C) : Cop → Cat are the canonical
comma-category functors and, for every triple 〈A1, f, A2〉 in |Q| (i.e. arrow f : A1 → A2
in C), ιQ,f : f /Q→ A1 / C is the functor that maps the morphisms 〈g1, g2〉 : 〈A1, f, A2〉 →
〈A′1, f ′, A′2〉 in Q (corresponding to commutative squares in C) to g1 : A1 → A′1.

A1
g1 //

f
��

A′1

f ′

��

A2 g2
// A′2

7→ A1
g1 // A′1

I Definition 6 (Quantification space). For any institution I : Sig→ Room, a quantification
space consists of a subcategory Q of Sig~ such that
1. every arrow in Q corresponds to a pushout in Sig, and
2. the transformation ιQ : (_ /Q)⇒ domop ; (_ / Sig) is a natural isomorphism.

This means that for every extension of signatures χ : Σ→ Σ(χ) in |Q| and every signature
morphism ϕ : Σ → Σ′ there exist a unique extension χ′ : Σ′ → Σ′(χ′) in |Q| and a unique
signature morphism φ : Σ(χ) → Σ′(χ′) such that the pair 〈ϕ, φ〉 defines a morphism in Q
between the arrows χ and χ′.6 We will henceforth denote the signature extension χ′ and the
signature morphism φ by χϕ : Σ′ → Σ′(χϕ) and ϕχ : Σ(χ)→ Σ′(χϕ), respectively.

Σ ϕ
//

χ

��

Σ′
χϕ

��

Σ(χ)
ϕχ
// Σ′(χϕ)

I Example 7. For both qf-FOL= and qf-HNK, the extensions of signatures χ : 〈S, F 〉 →
〈S, F∪X〉 defined by (families of) finite sets of first-order/higher-order 〈S, F 〉-variablesX form
a quantification space. More precisely, for every signature morphism ϕ : 〈S, F 〉 → 〈S′, F ′〉,

χϕ : 〈S′, F ′〉 → 〈S′, F ′ ∪ Xϕ〉 is the extension of 〈S′, F ′〉 given by the sets of variables
Xϕ
s′ = {x : s′ | x : s ∈ Xs for some sort s ∈ S (or type s ∈ ~S) such that ϕ(s) = s′}, and

ϕχ : 〈S, F ∪X〉 → 〈S′, F ′∪Xϕ〉 is the canonical extension of ϕ that maps each 〈S, F 〉-vari-
able x : s in X to the 〈S′, F ′〉-variable x : ϕ(s) in Xϕ.

I Definition 8 (Adequacy). For any institution, a quantification space Q is said to be adequate
if every arrow 〈ϕ,ϕχ〉 : χ→ χϕ in Q corresponds to a model-amalgamation square: for every
Σ′-model M ′ and Σ(χ)-model N such that M ′�ϕ = N�χ there exists a unique model N ′ of
Σ′(χϕ) – the amalgamation of M ′ and N – such that N ′�χϕ = M ′ and N ′�ϕχ = N .

In semi-exact institutions7 – like qf-FOL= (see [18]) – all quantification spaces are
adequate. This is not the case of qf-HNK, for which it is known that, due to the presence of
higher-order types, not every pushout square of signature morphisms is a model-amalgamation
square (see e.g. [2]). Nonetheless, the quantification space for qf-HNK outlined in Example 7
is adequate: the amalgamation N ′ of any two given modelsM ′ of 〈S′, F ′〉 and N of 〈S, F ∪X〉
is the unique χϕ-expansion of M ′ that satisfies N ′x : ϕ(s) = Nx : s for each variable x : s in X.

I Remark 9. Since the morphisms of any quantification space Q are required to form a
category (by definition, Q is a subcategory of Sig~), for every signature extension χ : Σ→ Σ(χ)

6 Moreover, the signature morphisms χ′ and φ correspond to a pushout of ϕ and χ.
7 We recall that an institution is semi-exact if its model functor preserves pullbacks.

I. Ţuţu and J. L. Fiadeiro 311

in |Q| and every pair of composable signature morphisms ϕ : Σ→ Σ′ and ϕ′ : Σ′ → Σ′′, we
have (χϕ)ϕ

′
= χϕ;ϕ′ and ϕχ ; (ϕ′)χ

ϕ

= (ϕ ; ϕ′)χ. Moreover, χ1Σ = χ and 1χΣ = 1Σ(χ).

Σ ϕ
//

χ

��

Σ′ ϕ′
//

χϕ

��

Σ′′
(χϕ)ϕ

′
=χϕ;ϕ′

��

Σ(χ) ϕχ
//

(ϕ;ϕ′)χ

OO
Σ′(χϕ)

(ϕ′)χ
ϕ

// Σ′′((χϕ)ϕ
′
)

Quantification spaces thus provide adequate support for translating abstract signature exten-
sions along morphisms of signatures in a functorial manner.

4.1 Representable signature extensions

Since the institution-independent substitutions of Proposition 3 correspond to a semantic
concept, we cannot expect to translate them along signature morphisms in the same manner
as the extensions of signatures. The solution that we propose herein relies on an important
characterization of the first-order signature extensions with new constant-operation symbols:
for every qf-FOL=-signature extension 〈S, F 〉 ⊆ 〈S, F ∪X〉 there is a one-to-one correspond-
ence between the models of 〈S, F ∪X〉 and the model homomorphisms defined on the free
〈S, F 〉-algebra TF (X) over the set of variables X; in particular, every 〈S, F ∪X〉-model N
determines the homomorphism h : TF (X)→ N�〈S,F 〉 given by h(x) = Nx for every variable
x in X. In this context, TF (X) is said to be a representation of the inclusion of signatures
〈S, F 〉 ⊆ 〈S, F ∪X〉. The following definition originates from [4].

I Definition 10 (Representable signature morphism). In any institution, a signature morphism
χ : Σ → Σ(χ) is representable if there exist a Σ-model Mχ, called the representation of χ,
and an isomorphism of categories iχ between Mod(Σ(χ)) and Mχ /Mod(Σ) such that the
following diagram commutes.

Mod(Σ)

Mod(Σ(χ))

_�χ

OO

iχ
// Mχ /Mod(Σ)

|_|Mχ
gg

Representable first-order signature morphisms were studied in depth in [26], from where
we recall Proposition 11 below (see also [6]).

I Proposition 11. A first-order signature morphism is representable if and only if it is
bijective on all symbols, except constant-operation symbols.

Consequently, all qf-FOL=-signature extensions with constants are representable.
A similar result can be obtained for qf-HNK. In that case, however, the signature exten-

sions with constants 〈S, F 〉 ⊆ 〈S, F ∪X〉 can only be guaranteed to be quasi-representable,
in the sense that, for every 〈S, F ∪X〉-model N , the canonical functor N/Mod(S, F ∪X)→
N�〈S,F 〉 / Mod(S, F) determined by the model-reduct functor _�〈S,F 〉 is an isomorphism
(see, for example, [2] for more details). Representability further requires that the resulting
higher-order signatures 〈S, F ∪ X〉 have initial models, a property which holds whenever

CALCO’15

312 Revisiting the Institutional Approach to Herbrand’s Theorem

〈S, F ∪X〉 has at least one constant-operation symbol for each type.8

I Remark 12. Let χ : Σ→ Σ(χ) and χ′ : Σ′ → Σ′(χ′) be a pair of representable signature
extensions defined by a quantification space Q, and let β and β′ be two functors as depicted
below such that Mod(χ′) ; β = β′ ; Mod(χ).

Mod(Σ) Mod(Σ′)β
oo

Mod(Σ(χ))

_�χ

OO

iχ ((

Mod(Σ′(χ′))β′
oo

_�χ′

OO

iχ′
))

Mχ /Mod(Σ)

|_|Mχ

\\

Mχ′ /Mod(Σ′)

|_|M
χ′

]]

U
oo

The composition i−1
χ′ ; β′ ; iχ gives rise to a functor U between the comma categories Mχ′ /

Mod(Σ′) and Mχ /Mod(Σ), where
for every Σ′-model homomorphism h′ : Mχ′ →M ′, U(h′) is the Σ-model homomorphism
(i−1
χ′ ; β′ ; iχ)(h′) : Mχ → β(M ′), and

for every arrow f ′ : h′1 → h′2 between model homomorphisms h′1 : Mχ′ → M ′1 and
h′2 : Mχ′ →M ′2, U(f ′) is just the β-reduct of f ′, β(f ′) : β(M ′1)→ β(M ′2).

When β is the model-reduct functor Mod(ϕ) of a signature morphism ϕ : Σ→ Σ′, and when χ′
and β′ are χϕ and Mod(ϕχ), respectively, we will denote the functor U : Mχ′ /Mod(Σ′)→
Mχ /Mod(Σ) by Uϕ,χ. Similarly, when β is the identity of Mod(Σ) and β′ is the underlying
model functor of a substitution ψ : χ→ χ′, we will denote the functor U by Uψ.

Model homomorphisms h′ : Mχ′ → M ′ can be regarded both as objects and as arrows
(between 1Mχ′ and h′) in the comma category Mχ′ / Mod(Σ′). In combination with the
definition of U : Mχ′ / Mod(Σ′) → Mχ / Mod(Σ), the arrow view provides us a useful
factorization of U(h′) as U(1Mχ′) ; β(h′).

Mχ′
1M

χ′

��

h′

��

Mχ′
h′

// M ′
7→

Mχ
U(1M

χ′
)

}}

U(h′)

β(Mχ′)
β(h′)

// β(M ′)

I Fact 13. Under the notation and hypotheses of Remark 12, for every Σ′-model homo-
morphism h′ : Mχ′ →M ′, U(h′) = U(1Mχ′) ; β(h′).

4.2 Representable substitutions
Quantification spaces that have representable extensions of signatures, meaning that every
extension χ : Σ → Σ(χ) defined by the quantification space is representable, allow us to
extend the concept of representability from signature extensions (i.e. signatures of variables)
to substitutions, leading to a purely model-theoretic view of the categories of substitutions.

I Proposition 14. For any signature Σ in an institution with a quantification space Q, the
representation of signature extensions generalizes to a functor RQ

Σ : SubstQΣ → Mod(Σ), where

8 This property is commonly achieved by assuming that, for each type s ∈ ~S, the set Fs contains an
implicit constant-operation symbol.

I. Ţuţu and J. L. Fiadeiro 313

for every extension of signatures χ : Σ→ Σ(χ) in |Q|, RQ
Σ(χ) = Mχ, and

for every substitution ψ : χ1 → χ2, RQ
Σ(ψ) = Uψ(1Mχ2

) : Mχ1 →Mχ2 .
Moreover, for every Σ-substitution ψ, ModΣ(ψ) is uniquely determined by RQ

Σ(ψ).

When the quantification space Q and the signature Σ are clear from the context, we may
also denote the representation RQ

Σ(ψ) of a substitution ψ : χ1 → χ2 by hψ : Mχ1 →Mχ2 .
Note that, in general, the functor RQ

Σ : SubstQΣ → Mod(Σ) of Proposition 14 need be
neither full nor faithful. For example, in the case of qf-FOL=, for every general substitution
ψ we can define another substitution ψ′ (with the same domain and codomain as ψ) such
that, for every atomic sentence l = r that is not ground, SenΣ(ψ′)(l = r) corresponds to
SenΣ(ψ)(r = l). In consequence, we can obtain distinct institution-independent substitutions
having the same underlying model functor – and thus, the same representation. This is
contrary to our intuition concerning first-order substitutions, where, given a signature 〈S, F 〉,
every substitution ψ : X1 → X2, i.e. every S-indexed family of maps ψs : X1,s → TF∪X2,s,
is determined uniquely by its representation RQ

〈S,F 〉(ψ) : TF (X1) → TF (X2). As we will
see later, the full and faithful representation of substitutions as model homomorphisms is
essential for translating substitutions along signature morphisms.

I Definition 15 (Representable substitution). Let Σ be a signature in an institution equipped
with a quantification space Q. For every subcategory SubstΣ ⊆ SubstQΣ, a substitution
ψ : χ1 → χ2 in SubstΣ is said to be Q-representable if it is uniquely determined by its image
under RQ

Σ. In addition, SubstΣ forms a category of Q-representable Σ-substitutions if the
restriction of the functor RQ

Σ : SubstQΣ → Mod(Σ) to SubstΣ is both full and faithful.

I Example 16. Let Q be the quantification space for qf-FOL= presented in Example 7. For
every signature 〈S, F 〉, the subcategory Subst〈S,F 〉 ⊆ SubstQ〈S,F 〉 whose arrows correspond
to the corridors induced by first-order substitution forms a category of Q-representable
substitutions. A similar property can be formulated for higher-order substitutions.

For the remaining part of this paper we will assume that I is an arbitrary but fixed
institution 〈Sig,Sen,Mod,�〉 equipped with

an adequate quantification space Q ⊆ Sig~ of representable signature extensions, and
a broad subcategory SubstΣ ⊆ SubstQΣ (i.e. with the same objects as SubstQΣ), for every
signature Σ ∈ |Sig|, of Q-representable Σ-substitutions.

I Lemma 17. Under the above assumptions, for every morphism ϕ : Σ→ Σ′ in Sig and every
signature extension χ : Σ→ Σ(χ) in |Q|, the homomorphism Uϕ,χ(1Mχϕ

) : Mχ →Mχϕ�ϕ is
a universal arrow from Mχ to Mod(ϕ).

The lemma above enables us to make use of a well-known construction of adjoint functors
from universal arrows (see e.g. [1]) to derive translations between categories of substitutions.

I Proposition 18. Every morphism of signatures ϕ : Σ → Σ′ gives rise to a functor
Ψϕ : SubstΣ → SubstΣ′ that maps

I(Σ) ϕ
//

I(χ1)

�� I(χ2)

��

I(Σ′)
I(χϕ1)

�� I(χϕ2)

��

I(Σ(χ1))
I(ϕχ1)

//

ψ %%

I(Σ′(χϕ1))(
RQ

Σ′

)−1
(hϕ
ψ

) %%

I(Σ(χ2))
I(ϕχ2)

// I(Σ′(χϕ2))

CALCO’15

314 Revisiting the Institutional Approach to Herbrand’s Theorem

every signature extension χ : Σ→ Σ(χ) to χϕ : Σ′ → Σ′(χϕ), and
every Σ-substitution ψ : χ1 → χ2 to ψϕ =

(
RQ

Σ′
)−1(hϕψ), where hϕψ is the unique Σ′-ho-

momorphism Mχϕ1
→Mχϕ2

for which the diagram below commutes.

Mχ1

Uϕ,χ1 (1Mχϕ1
)
//

hψ %%

Mχϕ1
�ϕ

hϕ
ψ
�ϕ
%%

Mχϕ1 hϕ
ψ

%%

Mχ2 Uϕ,χ2 (1Mχϕ2
)
// Mχϕ2

�ϕ Mχϕ2

Moreover, Ψ itself is functorial, in the sense that Ψϕ;ϕ′ = Ψϕ ;Ψϕ′ for every pair of composable
signature morphisms ϕ : Σ→ Σ′ and ϕ′ : Σ′ → Σ′′, and Ψ1Σ = 1SubstΣ .

Proof. The first part of the statement follows by Lemma 17 as a direct consequence of the
universal property of the homomorphism Uϕ,χ1(1Mχ

ϕ
1
) – note that, since the functor RQ

Σ is
assumed to be both full and faithful, for every signature Σ, it suffices to reason about the
representations of substitutions. With respect to the second part of the statement, notice
first that, by the definition of quantification spaces, the translation of signature extensions
along signature morphisms is functorial (see Remark 9). In addition, by Remark 12, for
every signature extension χ : Σ → Σ(χ), Uϕ;ϕ′,χ = Uϕ′,χϕ ; Uϕ,χ. This allows us to deduce,
according to Fact 13, that Uϕ;ϕ′,χ(1Mχϕ

) = Uϕ,χ(1Mχϕ
);Uϕ′,χϕ(1Mχϕ;ϕ′). Hence, by the general

properties of composing universal arrows, we can further conclude that the translation of
substitutions along signature morphisms is also functorial. J

4.3 Deriving generalized substitution systems
For any signature morphism ϕ : Σ → Σ′, the functor Ψϕ : SubstΣ → SubstΣ′ discussed in
Proposition 18 can be extended in a straightforward manner to a morphism 〈Ψϕ, κϕ, τϕ〉
between the substitution systems SIΣ and SIΣ′ obtained by restricting the functors SIQΣ and
SIQΣ′ of Proposition 3 to the subcategories SubstΣ and SubstΣ′ of Σ- and Σ′-substitutions.

SubstΣ
SIΣ //

Ψϕ
��

I(Σ) / Room

SubstΣ′ SIΣ

// I(Σ′) / Room

I(ϕ)/Room
OO

τϕ��

To be more specific, κϕ is the corridor 〈Sen(ϕ),Mod(ϕ)〉 obtained by taking the image I(ϕ)
of ϕ under the institution I, regarded as a functor into Room. Furthermore, for every
signature extension χ : Σ→ Σ(χ), the corridor τϕ,χ : I(Σ(χ))→ I(Σ′(χϕ)) is simply I(ϕχ).
It should be noted, however, that the naturality of τϕ holds in general only up to semantic
equivalence (see Proposition 19 below): this means that we can only guarantee that Mod(ϕχ)
is natural in χ, and thus that, for every substitution ψ : χ1 → χ2 and sentence ρ over Σ(χ1),
ϕχ2(ψ(ρ)) and ψϕ(ϕχ1(ρ)) are satisfied by the same class of models. In concrete cases like
qf-FOL=, the equality ϕχ2(ψ(ρ)) = ψϕ(ϕχ1(ρ)) is usually due to the careful choice of the
categories of substitutions; other choices, which may involve, for example, swapping the
left- and the right-hand side of non-ground equational atoms, do not necessarily give rise to
natural transformations τϕ. For this reason, in what follows, we will implicitly assume that
the categories SubstΣ of Σ-substitutions are compatible with respect to signature morphisms,
meaning that ψ ; I(ϕχ2) = I(ϕχ1) ; ψϕ for every substitution ψ : χ1 → χ2.

I Proposition 19. For every signature morphism ϕ : Σ → Σ′ and every Σ-substitution
ψ : χ1 → χ2, Mod(ϕχ2) ; ModΣ(ψ) = ModΣ′(ψϕ) ; Mod(ϕχ1).

I. Ţuţu and J. L. Fiadeiro 315

We can now conclude the construction of a generalized substitution system SI : Sig→
SubstSys from an arbitrary institution I : Sig→ Room that satisfies the hypotheses laid out
in Section 4.2 by noticing that, according to Proposition 18, to the fact that I is a functor,
and to Remark 9, all components of the morphism of substitution systems 〈Ψϕ, κϕ, τϕ〉
presented above are functorial in ϕ. Moreover, since the quantification space of I is assumed
to be adequate, the generalized substitution system SI has model amalgamation.9

I Theorem 20. For every institution I : Sig→ Room equipped with an adequate quantific-
ation space Q of representable signature extensions and with compatible categories SubstΣ
of Q-representable Σ-substitutions, SI : Sig→ SubstSys is a generalized substitution system
that has model amalgamation.

I Example 21. Both institutions qf-FOL= and qf-HNK, in combination with the extensions
of signatures with constants and with the first-order and higher-order substitutions outlined
in Example 4, give rise to generalized substitution systems.

5 Logic programming over an arbitrary institution

The view we take here is that the logic programming paradigm can be developed over an
arbitrary institution I : Sig → Room by considering logic-programming frameworks and
languages as in [29] defined over the generalized substitution system SI : Sig → SubstSys
introduced in Section 4.3. To this end, we assume that I : Sig→ Room is an institution that
satisfies the hypotheses of Theorem 20, and we let L be a logic-programming language whose
underlying generalized substitution system is derived from I.10

Under the additional assumption that, for every signature Σ, the identity 1Σ is a signature
of variables – the ‘empty’ signature of Σ-variables – the general institution-independent
versions of Herbrand’s theorem presented in [5, 6] can be obtained as concrete instances
of Herbrand’s theorem for abstract logic-programming languages. In particular, the equi-
valence 1 ⇔ 2 of Theorem 25 below captures the denotational aspect of the result – how
the problem of checking whether a logic program entails a given query (formalized as an
existential sentence) can be reduced from all models of the program to those that are initial;
on the other hand, the equivalence 2⇔ 3 emphasizes the operational aspect of the theorem –
the correspondence between those expansions of the program’s initial model that satisfy the
underlying (quantifier-free) sentence of the query and the possible solutions to the query.

To start with, let us recall that, in any category, an object A is projective with respect to
an arrow e : B → C provided that every other arrow f : A→ C can be factored through e as
f = h ; e, for some arrow h : A→ B. For instance, as a consequence of the axiom of choice,
for every qf-FOL=-signature extension 〈S, F 〉 ⊆ 〈S, F ∪X〉, the free algebra TF (X) – that
is the representation of the inclusion 〈S, F 〉 ⊆ 〈S, F ∪X〉 – is projective with respect to all
epimorphisms, and in particular with respect to all quotient homomorphisms between the
initial models 0〈S,F 〉 of the signature 〈S, F 〉 and 0〈S,F 〉,Γ of sets of 〈S, F 〉-clauses Γ.

The concept of basic sentence (see [4], and also [27], where it was studied under the
name of ground positive elementary sentence) captures the satisfaction of the conjunctions of
atomic sentences that are usually involved in defining logic-programming queries.

9 This property is essential for ensuring that the satisfaction of clauses and queries is invariant under
change of notation; in general, it means that, for every signature morphism ϕ : Σ → Σ′ and signature of
Σ-variables X, we can amalgamate those models M ′ of Σ′ and N of X that have the same Σ-reduct.

10 It should be noted that, in the present paper, we do not fully address the operational semantics of L. A
detailed presentation of the goal-directed rules – which, for first-order and higher-order equational logic
programming, correspond to paramodulation – can be found in [29].

CALCO’15

316 Revisiting the Institutional Approach to Herbrand’s Theorem

I Definition 22 (Basic sentence). For any signature Σ, a sentence ρ is said to be basic if
there exists a model Mρ such that, for every Σ-model M , M �Σ ρ if and only if there exists
a model homomorphism Mρ →M .

I Example 23. In the institution qf-FOL=, every (finite) conjunction of first-order equational
atoms forms a basic sentence (see, for example, [6]). This property does not hold in general
for qf-HNK, for which one can define higher-order equational atoms of the form σ1 f = σ2 f ,
with f : s→ s and σ1, σ2 : (s→ s)→ s′, that are not basic (see [2, 6]).

We also recall from [29] the following concept of reachability.

I Definition 24 (Reachable model). Given an extension χ : Σ → Σ(χ), a Σ-model M is
χ-reachable if for every χ-expansion N of M there exists a substitution ψ : χ→ χ′ such that

χ′ is conservative, in the sense that every Σ-model admits a χ′-expansion, and
the canonical map _�χ : N /ModΣ(ψ)→M /Mod(χ′) determined by the reduct functor
Mod(χ) is surjective on objects.

The above preliminaries enable us to recast the institution-independent versions of
Herbrand’s theorem in the context of abstract logic-programming languages.

I Theorem 25. Consider a logic program 〈Σ,Γ〉11 and a Σ-query ∃χ · ρ such that
both the signature Σ and the program 〈Σ,Γ〉 have initial models 0Σ and 0Σ,Γ,
Mχ is projective with respect to the unique homomorphism !Γ : 0Σ → 0Σ,Γ, and
the Σ(χ)-sentence ρ is basic.

Then the following statements are equivalent:
1. Γ �Σ ∃χ · ρ.
2. 0Σ,Γ �Σ ∃χ · ρ.
3. There exists a substitution ψ : χ→ χ′ such that χ′ is conservative and Γ �Σ ∀χ′ ·ψ(ρ).

Proof. According to [29, Theorem 5.12], it suffices to prove that 0Σ,Γ is χ-reachable and
that ρ is preserved by χ-homomorphisms. The latter property follows from the assumption
that ρ is basic (see [4]). Therefore, we will focus solely on proving that 0Σ,Γ is χ-reachable.

Let NΣ,Γ be a χ-expansion of 0Σ,Γ. Since χ is a representable extension of signatures
(by hypothesis), we know that iχ(NΣ,Γ) : Mχ → 0Σ,Γ is an object of the comma category
Mχ/Mod(Σ); and because its representation,Mχ, is projective with respect to !Γ : 0Σ → 0Σ,Γ,
it follows that there exists a homomorphism h : Mχ → 0Σ such that h ; !Γ = iχ(NΣ,Γ).
Moreover, since the identity 1Σ is a signature of Σ-variables – which, by hypothesis, is also
representable – we deduce that 0Σ is (isomorphic to) the representation M1Σ of 1Σ. By the
representability of Σ-substitutions, we further obtain the substitution

(
RQ

Σ′
)−1(h) : χ→ 1Σ,

which we will henceforth denote by ψ. All we need to show now is that the canonical map
_�Σ : NΣ,Γ /ModΣ(ψ)→ 0Σ,Γ /Mod(Σ) is surjective on objects.

To this end, notice that every Σ-model homomorphism g : 0Σ,Γ → M can be viewed
as an arrow in Mχ / Mod(Σ) between iχ(NΣ,Γ) and iχ(NΣ,Γ) ; g, from which we deduce
that i−1

χ (g) is a Σ(χ)-model homomorphism between NΣ,Γ and N = i−1
χ (iχ(NΣ,Γ) ; g).

In addition, by Proposition 14 and the commutativity of the diagram below, we obtain
M�ψ = i−1

χ (h ; !M) = i−1
χ (iχ(NΣ,Γ) ; g) = N , thus confirming that i−1

χ (g) : NΣ,Γ → M�ψ

11For simplicity, we only consider here logic programs defined as theory presentations. The same result
can still be stated for more complex, structured logic programs as in [29].

I. Ţuţu and J. L. Fiadeiro 317

is an object of NΣ,Γ /ModΣ(ψ). The conclusion of the theorem follows by observing that
N�Σ = |iχ(NΣ,Γ) ; g|Mχ

= M and i−1
χ (g)�Σ = |g|Mχ

= g.

Mχ

iχ(NΣ,Γ)

h // 0Σ

!Γ
~~

!M

0Σ,Γ g
// M J

6 Conclusions

In this paper, we have examined the connection between the institution-independent approach
to Herbrand’s theorem reported in [5] and the abstract axiomatic theory of logic programming
that we previously proposed in [29]. We have first shown that, for an arbitrary but fixed
signature Σ of an institution I, any class of I-signature morphisms gives rise to a canonical
Σ-substitution system whose substitutions correspond precisely to the institution-independent
concept of substitution. Lifting this result to institutions and generalized substitution systems
– so as to enable the application of the general variant of Herbrand’s theorem from [29] –
proved to be much more difficult, and it required the development of a number of new
properties and results concerning quantification spaces and the representability of signature
morphisms. To summarize, we have determined that any institution equipped with an
adequate quantification space of representable signature extensions and with compatible
categories of representable substitutions leads to a generalized substitution system. Moreover,
we showed that the resulting generalized substitution system has model amalgamation, and
thus that it forms a suitable foundation for defining logic-programming languages.

The most problematic aspect of the derivation of a generalized substitution system is the
translation of institution-independent substitutions along signature morphisms, for which one
still has to check properties such as compatibility for each particular institution of interest.
For this reason, a promising line of research would be to explore alternative, more syntactic,
and also more specific notions of substitution, inspired for example by the recent study [21]
on derived signature morphisms and substitutions in the context of institutional monads.

Acknowledgements. This research has been supported by a grant of the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI, project PN-II-ID-PCE-2011-3-0439.

References
1 Jiri Adámek, Horst Herrlich, and George Strecker. Abstract and Concrete Categories: The

Joy of Cats. Dover Publications, 2009. reprint.
2 Mihai Codescu. The model theory of higher order logic. Master’s thesis, Şcoala Normală

Superioară Bucureşti, 2007.
3 Răzvan Diaconescu. Category-based constraint logic. Mathematical Structures in Computer

Science, 10(3):373–407, 2000.
4 Răzvan Diaconescu. Institution-independent ultraproducts. Fundamenta Informaticae,

55(3–4):321–348, 2003.
5 Răzvan Diaconescu. Herbrand theorems in arbitrary institutions. Information Processing

Letters, 90(1):29–37, 2004.
6 Răzvan Diaconescu. Institution-Independent Model Theory. Birkhäuser, 2008.
7 Răzvan Diaconescu. Quasi-Boolean encodings and conditionals in algebraic specification.

Journal of Logic and Algebraic Programming, 79(2):174–188, 2010.

CALCO’15

318 Revisiting the Institutional Approach to Herbrand’s Theorem

8 Răzvan Diaconescu. Institutional semantics for many-valued logics. Fuzzy Sets and Systems,
218:32–52, 2013.

9 Daniel Găină. Forcing, Downward Löwenheim-Skolem and Omitting Types theorems, in-
stitutionally. Logica Universalis, 8(3-4):469–498, 2014.

10 Daniel Găină. Foundations of logic programming in hybridised logics. In Recent Trends in
Algebraic Development Techniques, Lecture Notes in Computer Science. Springer, in press.

11 Joseph A. Goguen and Rod M. Burstall. Institutions: abstract model theory for specifica-
tion and programming. Journal of the ACM, 39(1):95–146, 1992.

12 Joseph A. Goguen, Grant Malcolm, and Tom Kemp. A hidden Herbrand theorem: combin-
ing the object and logic paradigms. Journal of Logic and Algebraic Programming, 51(1):1–
41, 2002.

13 Joseph A. Goguen and José Meseguer. EQLOG: Equality, types, and generic modules for
logic programming. In Logic Programming: Functions, Relations, and Equations, pages
295–363. Prentice Hall, 1986.

14 Joseph A. Goguen and José Meseguer. Models and equality for logical programming. In
Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, and Ugo Montanari, editors, Theory
and Practice of Software Development, volume 250 of Lecture Notes in Computer Science,
pages 1–22. Springer, 1987.

15 Jacques Herbrand. Investigations in proof theory. In From Frege to Gödel: A Source Book
in Mathematical Logic, pages 525–581. Harvard University Press, 1967.

16 John W. Lloyd. Foundations of Logic Programming. Springer, 1987.
17 Manuel A. Martins, Alexandre Madeira, Răzvan Diaconescu, and Luís Soares Barbosa.

Hybridization of institutions. In Andrea Corradini, Bartek Klin, and Corina Cîrstea, editors,
Algebra and Coalgebra in Computer Science, volume 6859 of Lecture Notes in Computer
Science, pages 283–297. Springer, 2011.

18 José Meseguer. General logics. In Heinz-Dieter Ebbinghaus, José Fernández-Prida, Manuel
Garrido, Daniel Lascar, and Mario Rodriquez-Artalejo, editors, Logic Colloquium 1987,
volume 129, pages 275–329. Elsevier, 1989.

19 José Meseguer. Multiparadigm logic programming. In Hélène Kirchner and Giorgio Levi,
editors, Algebraic and Logic Programming, volume 632 of Lecture Notes in Computer Sci-
ence, pages 158–200. Springer, 1992.

20 Bernhard Möller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of reach-
able higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors, Abstract Data
Types, volume 332 of Lecture Notes in Computer Science, pages 154–169. Springer, 1987.

21 Till Mossakowski, Ulf Krumnack, and Tom Maibaum. What is a derived signature morph-
ism? In Recent Trends in Algebraic Development Techniques, Lecture Notes in Computer
Science. Springer, in press.

22 Fernando Orejas, Elvira Pino, and Hartmut Ehrig. Institutions for logic programming.
Theoretical Computer Science, 173(2):485–511, 1997.

23 Wieslaw Pawlowski. Context institutions. In Magne Haveraaen, Olaf Owe, and Ole-Johan
Dahl, editors, Specification of Abstract Data Types, volume 1130 of Lecture Notes in Com-
puter Science, pages 436–457. Springer, 1995.

24 Donald Sannella and Andrzej Tarlecki. Building specifications in an arbitrary institution.
In Gilles Kahn, David B. MacQueen, and Gordon D. Plotkin, editors, Semantics of Data
Types, volume 173 of Lecture Notes in Computer Science, pages 337–356. Springer, 1984.

25 Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2011.

26 Traian Florin Şerbănuţă. Institutional concepts in first-order logic, parameterized specific-
ation, and logic programming. Master’s thesis, University of Bucharest, 2004.

I. Ţuţu and J. L. Fiadeiro 319

27 Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of Computer
and System Sciences, 33(3):333–360, 1986.

28 Ionuţ Ţuţu. Comorphisms of structured institutions. Information Processing Letters,
113(22–24):894–900, 2013.

29 Ionuţ Ţuţu and José L. Fiadeiro. From conventional to institution-independent logic pro-
gramming. Journal of Logic and Computation, in press.

30 Ionuţ Ţuţu and José L. Fiadeiro. Service-oriented logic programming. Logical Methods in
Computer Science, in press.

CALCO’15

Coalgebraic Infinite Traces and Kleisli Simulations
Natsuki Urabe and Ichiro Hasuo

Department of Computer Science, The University of Tokyo
Hongo 7-3-1, Tokyo 113-8656, Japan
{urabenatsuki,ichiro}@is.s.u-tokyo.ac.jp

Abstract
Kleisli simulation is a categorical notion introduced by Hasuo to verify finite trace inclusion.
They allow us to give definitions of forward and backward simulation for various types of systems.
A generic categorical theory behind Kleisli simulation has been developed and it guarantees the
soundness of those simulations wrt. finite trace semantics. Moreover, those simulations can be
aided by forward partial execution (FPE) – a categorical transformation of systems previously
introduced by the authors.

In this paper, we give Kleisli simulation a theoretical foundation that assures its soundness
also wrt. infinite trace. There, following Jacobs’ work, infinite trace semantics is characterized
as the “largest homomorphism.” It turns out that soundness of forward simulations is rather
straightforward; that of backward simulation holds too, although it requires certain additional
conditions and its proof is more involved. We also show that FPE can be successfully employed
in the infinite trace setting to enhance the applicability of Kleisli simulations as witnesses of trace
inclusion. Our framework is parameterized in the monad for branching as well as in the functor
for linear-time behaviors; for the former we use the powerset monad (for nondeterminism) as well
as the sub-Giry monad (for probability).

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases category theory, coalgebra, simulation, verification, trace semantics

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.320

1 Introduction

Language inclusion of transition systems is an important problem in both qualitative and
quantitative verification. In a qualitative setting the problem is concretely as follows: for
given two nondeterministic systems X and Y, check if L(X) ⊆ L(Y) – that is, if the set of
words generated by X is included in the set of words generated by Y. In a typical usage
scenario, X is a model of the implementation in question while Y is a model that represents
the specification of X . More concretely, Y is a system such that L(Y) is easily seen not to
contain anything “dangerous” – therefore the language inclusion L(X) ⊆ L(Y) immediately
implies that L(X) contains no dangerous output, either. Such a situation can also arise in a
quantitative setting where a specification is about probability, reward, and so on.

I Example 1.1. In Fig. 1 are four examples of transition systems; X and Y are qualita-
tive/nondeterministic; Z and W exhibit probabilistic branching. We shall denote the finite
language of a system A by L∗(A) and the infinite one by L∞(A). We define that a generated
finite word is one with a run that ends with the termination symbol X.

In the nondeterministic setting, languages are sets of words. We have L∗(X) = {b} ⊆
{b, ab, aab, . . .} = L∗(Y), i.e. finite language inclusion from X to Y . However abb . . . ∈ L∞(X)
while abb . . . 6∈ L∞(Y), hence infinite language inclusion fails.

© Natsuki Urabe and Ichiro Hasuo;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 320–335

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.320
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. Urabe and I. Hasuo 321

X

◦ ◦
◦

X//
a GG

b
// //

b

��
Y

◦ ◦ X//
b
// //

a

��

Z

◦ ◦

◦

X//

a, 2
3

GG

b, 1
3

//
1
2

//

a, 1
2

��

b, 1
2

}}
c, 1

2
!!

W

◦ ◦ X//
b,1
//

1
2 //

a, 1
2

��

Figure 1 Examples of nondeterministic and probabilistic automata.

In the probabilistic setting, languages are naturally probability distributions over words;
and language inclusion refers to the pointwise order between probabilities. For example
L∗(Z) = [b 7→ 1

6 , ba 7→
1

12 , baa 7→
1

24 , . . .] and L
∗(W) = [b 7→ 1

2 , ba 7→
1
4 , baa 7→

1
8 , . . .]; since

the former assigns no greater probabilities to all the words, we say that the finite language
of Z is included in that of W. This quantitative notion of trace inclusion is also useful in
verification: it gives e.g. an upper bound for the probability for something bad.

Finally, the infinite languages for probabilistic systems call for measure-theoretic machin-
ery since, in most of the cases, any infinite word gets assigned the probability 0 (which is also
the case in Z and W). Here it is standard to assign probabilities to cylinder sets rather than
to individual words; see e.g. [2]. An example of a cylinder set is {aw | w ∈ {b, c}ω}. The
language L∞(Z) assigns 2

3 to it, while L∞(W) assigns 0; therefore we do not have infinite
language inclusion from Z to W.

There are many known algorithms for checking language inclusion. A well-known one
for NFA is a complete one that reduces the problem to emptiness check; however it involves
complementation, hence determinization, that incurs an exponential blowup.

One of the alternative approaches to language inclusion is by simulation. In the simulation-
based verification we look for a simulation, that is, a witness for stepwise language inclusion.
The notion of simulation is commonly defined so that it implies (proper, global) language
inclusion – a property called soundness. Although its converse (completeness) fails in many
settings, such simulation-based approaches tend to have an advantage in computational cost.
One prototype example of such simulation notions is forward and backward simulation [14],
by Lynch and Vaandrager, for nondeterministic automata. They are shown in [14] to satisfy
soundness wrt. finite trace: explicitly, existence of a forward (or backward) simulation from
X to Y implies L(X) ⊆ L(Y), where the languages collects all the finite words generated.

Kleisli simulation [8, 9, 18] is a categorical generalization of these notions of forward and
backward simulation by Lynch and Vaandrager. It builds upon the use of coalgebras in a
Kleisli category, in [10], where they are used to characterize finite traces. Specifically:

A branching system X is represented as an F -coalgebra c : X→p FX in the Kleisli category
K`(T), for a suitable choice of a functor F and a monad T . Here F and T are parameters
that determine the (linear-time) transition type and the branching type, respectively, of
the system X . Examples are:
F = 1 + Σ × () (terminate, or (output and continue)) and the powerset monad
T = P on Sets (nondeterminism), if X is a nondeterministic automaton (with explicit
termination); and
the same functor F = 1 + Σ× () and the sub-Giry monad T = G [7] on the category
Meas of measurable spaces and measurable functions, for their probabilistic variant.

In [10], under certain conditions on F and T , it is shown that a final F -coalgebra in
K`(T) arises as a lifting of an initial F -algebra in Sets. Moreover, it is observed that
the natural notion of “finite trace semantics” or “(finite) languages” is captured by a
unique homomorphism via finality. This works uniformly for a wide variety of systems,
by changing F and T .

CALCO’15

322 Coalgebraic Infinite Traces and Kleisli Simulations

It is shown in [8] that, with respect to this categorical characterization of finite trace [10],
both forward and backward Kleisli simulation are indeed sound. This categorical background
allows us to instantiate Kleisli simulation for various concrete systems – including both
qualitative and quantitative ones – and obtain simulation notions whose soundness wrt. finite
traces comes for free [8, 9]. Like many other notions of simulation, the resulting simulation
sometimes fails to be complete. This drawback of incompleteness wrt. finite trace can be
partly mended by forward partial execution (FPE), a transformation of coalgebraic systems
introduced in [18] that potentially increases the likelihood of existence of simulations.

Contributions. In this paper we continue our series of work [8, 9, 18] and study the
relationship between Kleisli simulations and infinite traces. This turns out to be more
complicated than we had expected, a principal reason being that infinite traces are less
well-behaved than finite traces (that are characterized simply by finality).

For a suitable coalgebraic characterization of infinite traces we principally follow [11] –
also relying on observations in [4, 12] – and characterize infinite traces in terms of largest
homomorphisms. More specifically, we lift a final F -coalgebra in Sets to the Kleisli category
K`(T) and exhibit that the latter admits a largest homomorphism. In this paper we
(principally) work with: the powerset monad P (on Sets) and the sub-Giry monad G (on
Meas), as a monad T for branching; and a polynomial functor F for linear-time behaviors.

Here are our concrete contributions. For each of the above combinations of T and F :
We show that forward Kleisli simulations are sound with respect to inclusion of infinite
languages. The proof of this general result is not hard, exploiting the above coalgebraic
characterization of infinite languages as largest homomorphisms.
We show that backward simulations are sound too, although here we have to impose
suitable restrictions, like totality and image-finiteness. The soundness proofs are much
more involved, too, and calls for careful inspection of the construction of infinite trace
semantics. The proofs are separately for T = P and for G.
We show that forward partial execution (FPE) – a transformation from [18] that aids
discovery of fwd./bwd. simulations – is applicable also to the current setting of infinite
trace inclusion. More specifically we prove: soundness of FPE (discovery of a simulation
after FPE indeed witnesses infinite language inclusion); and its adequacy (FPE does not
destroy simulations that are already there).

Organization. §2 is devoted to categorical preliminaries; we fix notations there. In §3 we
review the previous works that we rely on, namely coalgebraic infinite trace semantics [11],
Kleisli simulation [8, 9, 18], and FPE [18]. Our technical contributions are in the subsequent
sections: in §4 we study the nondeterministic setting (i.e. the powerset monad P on Sets
and a polynomial functor F); §5 is for the probabilistic setting (where the monad T is
the sub-Giry monad G). In §6 we briefly discuss other monads like the lift monad L (for
divergence) and the subdistribution monad D on Sets (for discrete probabilities).

Some definitions and results in §4–5 are marked with †. Those marked ones are essentially
proofs of the results for specific settings (namely T = P and T = G) but formulated in
general terms with a general T . We do so in the hope that the axioms thus identified will
help to discover new instances.

Most proofs are deferred to the appendices, that are found in the extended version [19] of
this paper. Auxiliary definitions and examples are also found there.

N. Urabe and I. Hasuo 323

2 Preliminaries

I Definition 2.1. A polynomial functor F on Sets is defined by the following BNF notation:
F ::= id | A | F1 × F2 |

∐
i∈I Fi. Here A ∈ Sets and I is a countable set.

The notion of polynomial functor can be also defined for Meas – the category of measurable
spaces and measurable functions between them.

I Definition 2.2. A (standard Borel) polynomial functor F on Meas is defined by the
following BNF notation: F ::= id | (A,FA) | F1 × F2 |

∐
i∈I Fi . Here I is a countable set;

and we require that (A,FA) ∈Meas is a standard Borel space (see e.g. [6]). The σ-algebra
FFX associated to FX is defined in the obvious manner. Namely: for F = id, FFX = FX ; for
F = (A,FA), FFX = FA; for F = F1×F2, FFX is the smallest σ-algebra that contains A1×A2
for all A1 ∈ FF1X and A2 ∈ FF2X ; for for F =

∐
i∈I Fi, FFX = {

∐
i∈I Ai | Ai ∈ FFiX}.

For arrows, F works in the same manner as a polynomial functor on Sets.
In what follows, a standard Borel polynomial functor is often called simply a polynomial

functor.

The technical requirement of being standard Borel in the above will be used in the probabilistic
setting of §5 (it is also exploited in [4, 17]). A standard Borel space is a measurable space
induced by a Polish space; for further details see e.g. [6].

There is a natural correspondence between polynomial functors and ranked alphabets.
In this paper a functor F for the (linear-time) transition type is restricted to a polynomial
one; this means that we are dealing with (T -branching) systems that generate trees over
some ranked alphabet. We collect some standard notions and notations for such trees in
Appendix A.1; they will be used later in showing that our coalgebraic infinite traces indeed
capture infinite tree languages of such systems.

We go on to introduce monads T for branching. We principally use two monads – the
powerset monad P on Sets and the sub-Giry monad G on Meas. The latter is an adaptation
of the Giry monad [7] and inherits most of its structure from the Giry monad; see Rem. 2.6.

I Definition 2.3 (monads P and G). The powerset monad is the monad (P, ηP , µP) on Sets
such that PX = {A ⊆ X} and Pf(A) = {f(x) | x ∈ A}. Its unit is given by the singleton
set ηPX(x) = {x} and its multiplication is given by µPX(M) =

⋃
A∈M A.

The sub-Giry monad is the monad (G, ηG , µG) on Meas such that
G(X,FX) = (GX,FGX), where the underling set GX is the set of all subprobability
measures on (X,FX). The latter means those measures which assign to the whole space
X a value in the unit interval [0, 1].
The σ-algebra FGX on GX is the smallest σ-algebra such that, for all S ∈ FX , the function
evS : GX → [0, 1] defined by evS(P) = P (S) is measurable.
Gf(ν)(S) = ν(f−1(S)) where f : (X,FX)→ (Y,FY) is measurable, ν ∈ GX, and S ∈ FY .
ηG(X,FX)(x) is given by the Dirac measure: ηG(X,FX)(x)(S) is 1 if x ∈ S and 0 otherwise.
µG(X,FX)(Ψ)(S) =

∫
G(X,FX) evS dΨ where Ψ ∈ G2X, S ∈ FX and evS is defined as above.

A monad gives rise to a category called its Kleisli category (see e.g. [15]).

I Definition 2.4 (Kleisli category K`(T)). Given a monad (T, η, µ) on a category C, the
Kleisli category for T is the category K`(T) whose objects are the same as C, and for each
pair of objects X,Y , the homset K`(T)(X,Y) is given by C(X,TY). An arrow in K`(T) is
referred to as a Kleisli arrow, and depicted by X→p Y for distinction. Note that it is nothing
but an arrow X → TY in the base category C.

CALCO’15

324 Coalgebraic Infinite Traces and Kleisli Simulations

Moreover, for two sequential Kleisli arrows f : X→p Y and g : Y→p Z, their composition
is given by µZ ◦ Tg ◦ f and denoted by g � f . The Kleisli inclusion functor is the functor
J : C→ K`(T) such that JX = X and Jf = ηY ◦ f for f : X → Y in C.

It is known that a functor F : C→ C canonically lifts to a functor F : K`(T)→ K`(T),
given that there exists a natural transformation λ : FT ⇒ TF that is compatible with the
unit and the multiplication of T . Such a natural transformation is called a distributive law.
For more details, see [16].

Throughout this paper, we fix the orders on the homsets of K`(P) and K`(G) as follows.

I Definition 2.5 (order enrichment of K`(P) and K`(G)). We define an order on K`(P)(X,Y)
by f v g

def⇔ ∀x ∈ X. f(x) ⊆ g(x). We define an order on K`(G)(X,Y) by f v g
def⇔ ∀x ∈

X.∀A ∈ FY . f(x)(A) ≤ g(x)(A). Here the last ≤ is the usual order in the unit interval [0, 1].

I Remark 2.6. The sub-Giry monad G is an adaptation of the Giry monad from [7]; in the
original Giry monad we only allow (proper) probability measures, i.e. measures that map the
whole space to 1. We work with the sub-Giry monad because, without this relaxation from
probability to subprobability, the order structure in Def. 2.5 is reduced to the equality.

3 Infinite Traces, Kleisli Simulations and Coalgebras in K`(T)

In this section we review the categorical constructs, the relationship among which lies at
the heart of this paper. They are namely: coalgebraic infinite trace semantics [11], Kleisli
simulation [8, 9, 18] and forward partial execution (FPE) [18].

The following situation is identified in [11], (see also §A.2 and §A.5.3): the largest
homomorphism to a certain coalgebra that we describe below is observed to coincide with
the standard, conventionally defined notion of infinite language, for a variety of systems.
An instance of it is shown to arise, in [11], when C = Sets, T = P and F is a polynomial
functor. In §4 we will give another proof for this fact; the new proof will serve our goal of
showing soundness of backward simulations.

I Definition 3.1 (infinite trace situation). Let F be an endofunctor and T be a monad on a
category C. We assume that each homset of the Kleisli category K`(T) carries an order v.
A functor F and a monad T constitute an infinite trace situation with respect to v if they
satisfy the following conditions.

There exists a final F -coalgebra ζ : Z → FZ in C.
There exists a distributive law λ : FT ⇒ TF , yielding a lifting F on K`(T) of F .
For each coalgebra c : X→p FX in K`(T), the lifting Jζ : Z→p FZ of ζ admits the largest
homomorphism. That is, there exists a homomorphism tr∞(c) : X→p Z from c to Jζ such
that, for any homomorphism f from c to Jζ, f v tr∞(c) holds.

In [8, 9, 18] we augment a coalgebra with an explicit arrow for initial states. The resulting
notion is called a (T, F)-system.
I Definition 3.2 (infinite trace semantics for (T, F)-systems [10, 11]).
Let C be a category with a final object 1 ∈ C. A (T, F)-system is a
triple X = (X, s, c) consisting of a state space X ∈ C, a Kleisli arrow
s : 1→p X for initial states, and c : X→p FX for transition.
Let us assume that the endofunctor F and the monad T on C consti-
tute an infinite trace situation. The coalgebraic infinite trace semantics
of a (T, F)-system X = (X, s, c) is the Kleisli arrow tr∞(c)� s : 1→p Z
(see the diagram, in K`(T), on the right).

FX

=

�F (tr∞(c))
// FZ

X

_c

OO

�tr∞(c)
// Z

_Jζ

OO

1

_s

OO

N. Urabe and I. Hasuo 325

Suppose that we are given two (T, F)-systems X = (X, s, c) and Y = (Y, t, d). Let
us say we aim to prove the inclusion between infinite trace semantics, that is, to show
tr∞(c)� s v tr∞(d)� t with respect to the order in the homset of K`(T). Our goal in this
paper is to offer Kleisli simulations as a sound means to do so.

The notions of forward and backward Kleisli simulation are introduced in [8] as a
categorical generalization of fwd./bwd. simulations in [14]. They are defined as Kleisli arrows
between (the state spaces of) two (T, F)-system that are subject to certain inequalities – in
short they are lax/oplax coalgebra homomorphisms. In [8] they are shown to be sound with
respect to finite trace semantics – the languages of finite words, concretely; and the unique
arrow to a lifted initial algebra (that is a final coalgebra, see [10] and the introduction),
abstractly. In this paper we are interested in their relation to infinite trace semantics.

I Definition 3.3 (fwd./bwd. Kleisli simulation [8]). Let F be an endofunctor
and T be a monad on C such that each homset of K`(T) carries an order
v. Let X = (X, s, c) and Y = (Y, t, d) be (T, F)-systems.
A forward Kleisli simulation from X to Y is a Kleisli arrow f : Y →p X
that satisfies the following conditions (see the diagram).

s v f � t, and c� f v Ff � d.

We write X vF Y if there exists a forward simulation from X to Y.
A backward Kleisli simulation from X to Y is a Kleisli arrow b : X→p Y
that satisfies the following conditions (see the diagram).

b� s v t, and Fb� c v d� f.

We write X vB Y if there exists a backward simulation from X to Y.

FX

v

FY�Ffoo

X

_c
OO

v

Y

_d
OO

f�oo

1
s

OO

t

OO

FX

v

�Fb // FY

X

_c
OO

v

b � // Y

_d
OO

1
s

OO

t

OO

Forward partial execution (FPE) is a transformation of a (T, F)-system introduced in [18]
for the purpose of aiding discovery of Kleisli simulations. Intuitively, it “executes” the given
system by one step.

I Definition 3.4 (FPE [18]). Let F be an endofunctor and T be a monad on C. Forward
partial execution (FPE) is a transformation that takes a (T, F)-system X = (X, s, c) as an
input and returns a (T, F)-system XFPE = (FX, c� s, Fc) as an output.

It is shown in [18] that FPE is a valid technique for establishing inclusion of finite trace
semantics, in the technical senses of soundness and adequacy. Soundness asserts that discovery
of a Kleisli simulation after applying FPE indeed witnesses trace inclusion between the original
systems; adequacy asserts that if there is a Kleisli simulation between the original systems,
then there is too between the transformed systems. In this paper, naturally, we wish to
establish the same results for infinite trace semantics.

4 Systems with Nondeterministic Branching

In the rest of the paper we develop a coalgebraic theory of infinite traces and (Kleisli)
simulations – the main contribution of the paper. We do so separately for the nondeterministic
setting (T = P) and for the probabilistic one (T = G). This is because of the difference in
the constructions of infinite traces, and consequently in the soundness proofs.

In this section we focus on the nondeterministic setting; we assume that F is a polynomial
functor.

CALCO’15

326 Coalgebraic Infinite Traces and Kleisli Simulations

4.1 Construction of Infinite Traces
The following is already known from [11].

I Theorem 4.1. The combination of polynomial F and T = P constitute an infinite trace
situation (Def. 3.1).

The proof in [11] combines fibrational intuitions with some constructions that are specific
to Sets. Here we present a different proof. It exploits an order-theoretic structure of the
Kleisli category K`(P); this will be useful later in showing soundness of (restricted) backward
simulations. Our proof also paves the way to the probabilistic case in §5.

In fact, our proof of Thm. 4.1 is stated axiomatically, in the form of the following
proposition. This is potentially useful in identifying new examples other than the combination
of polynomial F and T = P (although we have not yet managed to do so). It is essentially
the construction of a greatest fixed point by transfinite induction [5].

I Proposition 4.2.† Let C be a category, F be an endofunctor on C, and T be a monad on
C. Assume the following conditions.
1. There exists a final F -coalgebra ζ : Z → FZ in C.
2. There exists a distributive law λ : FT ⇒ TF , yielding a lifting F on K`(T) of F .
3. For each X,Y ∈ K`(T), the homset K`(T)(X,Y) carries a partial order v. Moreover, F ’s

action on arrows, as well as composition of arrows in K`(T), is monotone with respect to
this order.

4. For each X,Y ∈ K`(T), every (possibly transfinite) decreasing sequence in K`(T)(X,Y)
has the greatest lower bound. That is: let a be a limit ordinal and (gi : X→p Y)i<a be a
family of arrows such that i ≤ j implies gi w gj. Then

d
i<a gi exists.

5. For each X ∈ C, the homset K`(T)(X,Z) has the largest element >X,Z .
Then T and F constitute an infinite trace situation with respect to v.

Proof. Let c : X →p FX be an F -coalgebra in K`(T). We shall construct the largest
homomorphism tr∞(c) : X→p Z from c to Jζ, by transfinite induction.

FX

v

�F>X,Z
// FZ

X

_c
OO

�
>X,Z

// Z

_Jζ ∼=
OO

We define an endofunction ΦX : K`(T)(X,Z) → K`(T)(X,Z) by
ΦX(f) = Jζ−1 � Ff � c. By the monotonicity of � and F (As-
sumption 3), ΦX is also monotone. For each ordinal a, we define
Φa
X(>X,Z) ∈ K`(T)(X,Z) by the following transfinite induction.

Φ0
X(>X,Z) = >X,Z .

For a successor ordinal a, Φa
X(>X,Z) = ΦX(Φa−1

X (>X,Z)).
For a limit ordinal a, Φa

X(>X,Z) =
d

i<a Φi
X(>X,Z). (cf. Assumption 4)

We define l to be the smallest ordinal such that the cardinality of l is greater than that of
K`(T)(X,Z). Then from [5], Φl

X(>X,Z) is the greatest fixed point of ΦX . This immediately
implies that Φl

X(>X,Z) is the largest homomorphism from c to Jζ. J

Note that the local continuity of composition in K`(T) is not assumed. This is because
P – our choice for T in this section – does not satisfy it. Indeed, consider f : X→p Y and
a decreasing sequence (gi : Y →p Z)i∈ω, both in K`(P). Then we have

(d
i∈ω gi

)
� f(x) =⋃

y∈f(x)
⋂
i∈ω gi(y) while

d
i∈ω(gi � f)(x) =

⋂
i∈ω
⋃
y∈f(x) gi(y), and these two are not equal

in general (e.g. Example A.31). This failure of continuity prevents us from applying the
(simpler) Kleene fixed-point theorem, in which induction terminates after ω steps.

There does exist a nondeterministic automaton for which the largest homomorphism is
obtained after steps bigger than ω; see Example A.31.

It is easy to check that all the assumptions in Prop. 4.2 are satisfied by polynomial F and
T = P. This yields Thm. 4.1. We can also show that the resulting coalgebraic infinite trace

N. Urabe and I. Hasuo 327

semantics coincides with the usual definition of (infinite) tree languages for nondeterministic
systems. See §A.2.1 for details.

4.2 Kleisli Simulations for Nondeterministic Systems

4.2.1 Forward Simulations

Soundness of forward simulation is not hard; we do not have to go into the construction in
Prop. 4.2.

I Theorem 4.3. Given two (P, F)-systems X = (X, s, c) and Y = (Y, t, d), X vF Y implies
tr∞(c)� s v tr∞(d)� t.

The proof, again, is formulated as a general result, singling out some sufficient axioms.

I Lemma 4.4.† Let F be an endofunctor and T be a monad on C; assume further that
they constitute an infinite trace situation (with respect to v). We assume the following
conditions.
1. Each homset of K`(T) is ω-complete, that is, each increasing ω-sequence in it has the lub.

2. Composition � of arrows in K`(T) and F ’s action on arrows are both ω-continuous (i.e.
they preserve the lub. of an increasing ω-sequence). It follows that they are both monotone.

For two (T, F)-systems X = (X, s, c) and Y = (Y, t, d), if f : Y→p X is a forward simulation
from X to Y, then tr∞(c)� f v tr∞(d). As a consequence we have tr∞(c)� s v tr∞(d)� t.

Proof. Let ζ : Z → FZ be a final F -coalgebra in C. We define a function ΦY : K`(T)(Y,Z)→
K`(T)(Y, Z) by ΦY (g) = Jζ−1 � Fg � d; note that ζ is a final coalgebra and hence an
isomorphism. Then

tr∞(c)� f = Jζ−1 � F (tr∞(c))� c� f (tr∞(c) is a homomorphism)
v ΦY (tr∞(c)� f) (f is a fwd. sim., and the definition of ΦY).

F Y

w

�
Ff

//

�F (tr∞(d))

**
F X

=

�
F (tr∞(c))

// F Z

Y
�

tr∞(d)

55

_d
OO

w

f� // X

_c
OO

�tr∞(c)
// Z

_Jζ
OO

1
t

OO

s

OO

By the assumption that F and the composition are mono-
tone, ΦY is also monotone. Therefore by repeatedly apply-
ing ΦY to the both sides of the above inequality, we obtain
an increasing sequence tr∞(c) � f v ΦY (tr∞(c) � f) v
Φ2
Y (tr∞(c)� f) v · · · in K`(T)(Y, Z).

As K`(T)(Y, Z) is ω-complete, the least upper bound⊔
i<ω Φi(tr∞(c)� f) exists. By the assumption that F and
� are both locally ω-continuous, ΦY is also ω-continuous.
Therefore

⊔
i<ω Φi(tr∞(c) � f) is a fixed point of ΦY , and hence a homomorphism from

d to Jζ. As tr∞(d) is the largest homomorphism from d to Jζ, this implies tr∞(c) � f v⊔
i<ω Φi(tr∞(c)�f) v tr∞(d). Combining with the assumption that f is a forward simulation

(its condition on initial states), we have tr∞(c)� s v tr∞(c)� f � t v tr∞(d)� t. J

It is known from [10] that the combination of polynomial F and T = P satisfy the
conditions of Lem. 4.4. Hence we obtain Thm. 4.3, i.e. soundness of fwd. simulation in the
nondeterministic setting.

CALCO’15

328 Coalgebraic Infinite Traces and Kleisli Simulations

4.2.2 Backward Simulations
Next we wish to establish soundness of backward Kleisli simulations with respect to infinite
traces (for finite traces it is shown in [8]). In fact, the desired soundness fails in general – a
counterexample is in Example A.32. It turns out that we can impose certain restrictions on
backward Kleisli simulations and ensure soundness.

I Definition 4.5 (totality, image-finiteness, TIF-backward simulation). Let X = (X, s, c) and
Y = (Y, t, d) be (P, F)-systems. A backward simulation b : X→p Y from X to Y is total if
b(x) 6= ∅ for all x ∈ X; it is image-finite if b(x) is finite for all x ∈ X. If b satisfies both of
the two conditions, it is called a TIF-backward simulation. We write X vTIF

B Y if there exists
a TIF-backward simulation from X to Y.

I Theorem 4.6 (soundness of vTIF
B). For two (P, F)-systems X = (X, s, c) and Y = (Y, t, d),

X vTIF
B Y implies tr∞(c)� s v tr∞(d)� t.

The proof of Thm. 4.6 is, yet again, via the following axiomatic development.

I Definition 4.7 (TIF-backward simulation, generally).† Let F be an endofunctor and T

be a monad on C that satisfy the conditions in Prop. 4.2 wrt. v. For two (T, F)-systems
X = (X, s, c) and Y = (Y, t, d), a TIF-backward simulation from X to Y is a backward
simulation b : X→p Y that satisfies the following conditions.
1. The arrow b : X→p Y satisfies >Y,Z � b = >X,Z .
2. Precomposing b : X→p Y preserves the greatest lower bound of any decreasing transfinite

sequence. That is, let A ∈ K`(T), a be a limit ordinal, and (gi : Y→p A)i<a be a family of
Kleisli arrows such that i ≤ j implies gi w gj. Then we have

d
i∈a(gi � b) = (

d
i∈a gi)� b.

We write X vTIF
B Y if there exists a TIF-backward simulation from X to Y.

Assumption 2 of Def. 4.7 resembles how “finiteness” is formulated in category theory, e.g.
in the definition of finitary objects.

This general TIF-backward simulation satisfies soundness. For its proof we have to look
into the inductive construction of the largest homomorphism in §4.1.

I Lemma 4.8.† Let F and T be as in Prop. 4.2. For two (T, F)-systems X = (X, s, c) and
Y = (Y, t, d), X vTIF

B Y (in the sense of Def. 4.7) implies tr∞(c) v tr∞(d)� b. Furthermore
it follows that tr∞(c)� s v tr∞(d)� t.

Proof.

FX

v

�
Fb

//

�F>X,Z

((
FY

v

�
F>Y,Z

// FZ

X

_c

OO

�b //

�
>X,Z

77Y

_d

OO

�>Y,Z
// Z

_Jζ ∼=

OO

Let ζ : Z → FZ be a final F -coalgebra in C. We define
ΦX : K`(T)(X,Z) → K`(T)(X,Z) and ΦY : K`(T)(Y, Z) →
K`(T)(Y, Z) as in the proof of Prop. 4.2. Moreover, in the
same manner as in the proof of Prop. 4.2, for each ordinal
a, we define Φa

X(>X,Z) : X →p Z and Φa
Y (>Y,Z) : Y →p Z

by the transfinite induction on a. As we have seen in the
proof of Prop. 4.2, there exist ordinals lX and lY s.t. tr∞(c) =
ΦlX
X (>X,Z) and tr∞(d) = ΦlY

Y (>Y,Z). Let l = max(lX , lY).
We shall now prove by transfinite induction that, for each a, we have Φa

X(>X,Z) v Φa
Y (>Y,Z)�

b; this will yield our goal by taking a = l.
For a = 0, from Assumption 1 of Def. 4.7, we have Φa

X(>X,Z) = >X,Z = >Y,Z � b =
Φa
Y (>Y,Z)� b.
Assume that a is a successor ordinal and Φa−1

X (>X,Z) v Φa−1
Y (>Y,Z)� b. Then

Φa
X(>X,Z) v Jζ−1 � F (Φa−1

Y (>Y,Z))� Fb� c (by induction hypothesis)
v Φa

Y (>Y,Z)� b (b is a bwd. simulation) .

N. Urabe and I. Hasuo 329

Let a be a limit ordinal and assume that Φi
X(>X,Z) v Ψi

Y (>Y,Z)� b for all i < a. Then

Φa
X(>X,Z) v

d
i<a

(
Φi
Y (>Y,Z)� b

)
(by induction hypothesis)

= Φa
Y (>Y,Z)� b (by Assumption 2 of Def. 4.7) .

Thus tr∞(c) v tr∞(d)� b. The last claim follows from b’s condition on initial states. J

Proof of Thm. 4.6. In Lem. A.17 we prove that a TIF-backward simulation in the specific
sense of Def. 4.5 is also a TIF-backward simulation in the general sense of Def. 4.7. Therefore
Lem. 4.8 yields trace inclusion. J

Even with the additional constraints of totality and image-finiteness, backward Kleisli
simulations are a viable method for establishing infinite trace inclusion. An example is in
Example A.33 where a fwd. simulation does not exist but a TIF-bwd. simulation does.

4.3 Forward Partial Execution for Nondeterministic Systems
We now apply forward partial execution (FPE) [18] – a transformation of coalgebraic systems
that potentially increases the likelihood of existence of simulations – in the current setting of
nondeterminism and infinite traces. We follow the setting in [18] for the finite traces, and
formulate FPE’s “correctness” in the following theorem.

I Theorem 4.9. Let F be a polynomial functor on Sets. For (P, F)-systems X = (X, s, c)
and Y = (Y, t, d), the following hold.
1. a. (soundness of FPE for fwd. sim.) XFPE vF Y implies tr∞(c)� s v tr∞(d)� t.

b. (adequacy of FPE for fwd. sim.) X vF Y implies XFPE vF Y.
2. a. (soundness of FPE for bwd. sim.) X vTIF

B YFPE implies tr∞(c)� s v tr∞(d)� t.
b. (adequacy of FPE for bwd. sim.) X vTIF

B Y implies X vTIF
B YFPE, assuming that the

following hold.
i. d(y) 6= ∅ for all y ∈ Y .
ii. d(y) is finite for all y ∈ Y .

Informally: soundness means that discovery after applying FPE still witnesses the trace
inclusion between the original systems; and adequacy means that the relationship vF (or
vTIF

B) is not destroyed by application of FPE. The theorem also implies that FPE must
be applied to the “correct side” of the desired trace inclusion: X in the search for a fwd.
simulation; and Y in the search for a bwd. one.

Note that the adequacy property is independent from the choice of trace semantics (finite
or infinite). Therefore the statement 1b of Thm. 4.9 is the same as its counterpart in [18].
For the statement 2b, however, we have to check that the TIF restriction (that is absent
in [18]) is indeed carried over.

In [18] it is shown that FPE can indeed create a simulation that does not exist between
the original systems. Its practical use is witnessed by experimental results in [18], too. It
would not be hard to observe the same in the current setting for infinite traces.

For the proof of Thm. 4.9, once again, we turn to an axiomatic development.

I Theorem 4.10 (FPE and fwd. sim.).† Let F be an endofunctor and T be a monad on C, as
in Lem. 4.4 (that is, they constitute an infinite trace situation and satisfy the two additional
assumptions.) Let X = (X, s, c) and Y = (Y, t, d) be (T, F)-systems. Then we have:
1. (soundness for fwd. sim.) XFPE vF Y implies tr∞(c)� s v tr∞(d)� t.
2. (adequacy for fwd. sim.) X vF Y implies XFPE vF Y.

CALCO’15

330 Coalgebraic Infinite Traces and Kleisli Simulations

I Theorem 4.11 (FPE and bwd. sim.).† Let F be an endofunctor and T be a monad on C
that satisfy the conditions in Prop. 4.2 (hence those in Lem. 4.8). Let X = (X, s, c) and
Y = (Y, t, d) be (T, F)-systems.
1. (soundness for bwd. sim.) X vTIF

B YFPE implies tr∞(c)� s v tr∞(d)� t.
2. (adequacy for bwd. sim.) X vTIF

B Y implies X vTIF
B YFPE if the following conditions are

satisfied.
a. The coalgebra d : Y→p FY satisfies >FY,Z � d = >Y,Z .
b. Precomposing d preserves the glb. of a decreasing transfinite sequence.

Proof of Thm. 4.9. 1 is immediate from Thm. 4.10. In a similar manner to Lem.A.17, we
can prove 2 using Thm. 4.11. J

5 Systems with Probabilistic Branching

We now turn to probabilistic systems. They are modeled as (G, F)-systems in the category
Meas. Here we establish largely the same statements as in §4, but many constructions
and proofs are different. Throughout this section F is assumed to be a (standard Borel)
polynomial functor on Meas (Def. 2.2).

5.1 Construction of Infinite Traces
I Theorem 5.1. The combination of polynomial F and T = G constitute an infinite trace
situation (Def. 3.1).

Our basic idea of the construction is similar to that for P (§4.1). Our goal is to construct
the largest homomorphism from an F -coalgebra c in to the lifted final coalgebra Jζ : Z→p FZ;
we do so inductively, starting from the top element and going down along a decreasing
sequence. Compared to the nondeterministic case (T = P), major differences are as follows.

Composition of Kleisli arrows is ωop-continuous in K`(G). This is an advantage, because
we can appeal to the Kleene fixed point theorem and we only need inductive construction
up-to ω steps (while, for P, we needed transfinite induction).
A big disadvantage, however, is the absence of the top element >X,Z in K`(T)(X,Z).
One can imagine a top element >X,Z to assign 1 to every event – this is however not a
(probability) measure.

1 F1 F
21

X

Z

. . .

. . .

. . .

FX

FZ

=
�J!oo �JF !oo �JF2!oo

rπ0

��

� π1

��

� π2

L Jγ0

EE

2 Jγ1

AA

* Jγ2

>>
_

tr
∞

(c
)

��

�coo

_

F
(t

r∞
(c

))

�� �Jζ
∼=
oo

To cope with the latter challenge, we turn to
the final F -sequence in Meas that yields a final F -
coalgebra as its limit. Instead of using a sequence like
> w Φ(>) w · · · in K`(T)(X,Z) (where the largest
element > does not exist anyway), we use a decreasing
sequence that goes along the final sequence.

The precise construction is found in the proof of the following proposition (the proof is in
Appendix A.4.

I Proposition 5.2.† Let C be a category, F be an endofunctor on C, and T be a monad on C
where each homset of K`(T) carries an order v. We assume the following conditions.
1. The category C has a final object 1; the final sequence 1 !F1← F1 F !F1← F 21 F 2!F1← . . . has

a limit (Z, (γi : Z → F i1)i∈ω); and moreover, F preserves this limit. (Hence the limit
carries a final F -coalgebra [1].)

2. There exists a distributive law λ : FT ⇒ TF , yielding a lifting F on K`(T) of F .

N. Urabe and I. Hasuo 331

3. For X,Y ∈ K`(T), every decreasing ω-sequence f0 w f1 w . . . in K`(T)(X,Y) has the
greatest lower bound

d
i∈ω fi. Moreover, composition of arrows in K`(T) and F ’s action

on arrows are both ωop-continuous. That is, for each g : Z→p X and h : Y→p W , we have
g� (

d
i∈ω fi) =

d
i∈ω(g�fi), (

d
i∈ω fi)�h =

d
i∈ω(fi�h), and F (

d
i∈ω fi) =

d
i∈ω(Ffi).

4. The lifting J(!X) of the unique arrow to 1 is the largest element of K`(T)(X, 1).
5. The functor J lifts the limit in Assumption 1 to a 2-limit. Namely, for any cone

(X, (πi : X→p F i1)i∈ω) over the sequence 1 J!F1←p F1 JF !F1←p F
21 JF 2!F1←p · · · , there uniquely

exists l : X→p Z s.t. πi = Jγi � l holds for each i ∈ ω. Moreover, if l′ : X→p Z satisfies
Jγi � l′ v Jγi � l for each i ∈ ω, then l′ v l holds.

Then F and T constitute an infinite trace situation with respect to v.

In more elementary terms, Assumption 5 asserts that: J lifts the limit Z; and the lifted limit
satisfies a stronger condition of “carrying over” the order between cones to the order between
mediating maps.

Proof of Thm. 5.1. We have to check that polynomial F and T = G satisfy the assumptions
in Prop. 5.2. The most nontrivial is Assumption 5; there we rely on Kolmogorov’s consistency
theorem, for the fact that a limit is lifted to a limit. That the latter is indeed a 2-limit is not
hard, exploiting suitable monotonicity. Details are found in Lem. A.18. J

We can also show that the resulting coalgebraic infinite trace semantics coincides with the
usual definition of (infinite) tree languages for probabilistic systems. See §A.2.2 for details.

5.2 Kleisli Simulations for Probabilistic Systems
5.2.1 Forward Simulations
Soundness of forward simulation, in the current probabilistic setting, follows immediately
from the the axiomatic development in Lem. 4.4.

I Theorem 5.3. Given two (G, F)-systems X = (X, s, c) and Y = (Y, t, d), X vF Y implies
tr∞(c)� s v tr∞(d)� t.

5.2.2 Backward Simulations
Next we turn to backward simulations. Similarly to nondeterministic setting (§4.2.2), we
have to impose a certain restriction on backward Kleisli simulations to ensure soundness. By
the feature of G that composition in K`(G) is ω-continuous, the image-finiteness condition is
no longer needed.

I Definition 5.4 (totality, T-backward simulation). Let X = (X, s, c) and Y = (Y, t, d) be
(G, F)-systems. A backward simulation b : X→p Y from X to Y is total if b(x)(Y) = 1 for all
x ∈ X. If b is total, it is called a T-backward simulation. We write X vT

B Y if there exists a
T-backward simulation from X to Y.

I Theorem 5.5 (soundness of vT
B). For two (G, F)-systems X = (X, s, c) and Y = (Y, t, d),

X vT
B Y implies tr∞(c)� s v tr∞(d)� t.

The proof of Thm. 5.5 is via the following axiomatic development.

I Definition 5.6 (T-backward simulation, generally).† Let F be an endofunctor and T be
a monad on C that satisfy the conditions in Prop. 5.2 wrt. v. For two (T, F)-systems
X = (X, s, c) and Y = (Y, t, d), a T-backward simulation from X to Y is a backward
simulation b : X→p Y that satisfies the following condition:

CALCO’15

332 Coalgebraic Infinite Traces and Kleisli Simulations

1. The arrow b : X→p Y satisfies J !Y � b = J !X . Here !Y : Y → 1 is the unique function.
We write X vT

B Y if there exists a T-backward simulation from X to Y.

This general T-backward simulation satisfies soundness. For its proof we have to look
into the inductive construction of the largest homomorphism in §5.1 (Prop. 5.2).

I Lemma 5.7.† Let F and T be as in Prop. 5.2. For two (T, F)-systems X = (X, s, c) and
Y = (Y, t, d), X vT

B Y (in the sense of Def. 5.6) implies tr∞(c) v tr∞(d)� b. Furthermore
it follows that tr∞(c)� s v tr∞(d)� t.

Proof of Thm. 5.5. In Lem. A.19 we prove that a T-backward simulation in the specific
sense of Def. 5.4 is also a T-backward simulation in the general sense of Def. 5.4. Therefore
Lem. 5.7 yields trace inclusion. J

5.3 Forward Partial Execution for Probabilistic Systems
We show that FPE can be used to aid discovery of forward and backward simulations, also
in the current probabilistic setting.

I Theorem 5.8. Let F be a polynomial functor on Meas. For (G, F)-systems X = (X, s, c)
and Y = (Y, t, d), the following hold.
1. a. (soundness of FPE for fwd. sim.) XFPE vF Y implies tr∞(c)� s v tr∞(d)� t.

b. (adequacy of FPE for fwd. sim.) X vF Y implies XFPE vF Y.
2. a. (soundness of FPE for bwd. sim.) X vT

B YFPE implies tr∞(c)� s v tr∞(d)� t.
b. (adequacy of FPE for bwd. sim.) X vT

B Y implies X vT
B YFPE, assuming that:

d(y)(FY) = 1 for all y ∈ Y .

The item 1 for forward simulations follows immediately from Thm. 4.10. For the
relationship to backward simulations, we develop another general result.

I Theorem 5.9 (FPE and bwd. sim.).† Let F be an endofunctor and T be a monad on C
that satisfy the conditions in Prop. 5.2 (hence those in Lem. 5.7). Let X = (X, s, c) and
Y = (Y, t, d) be (T, F)-systems.
1. (soundness for bwd. sim.) X vT

B YFPE implies tr∞(c)� s v tr∞(d)� t.
2. (adequacy for bwd. sim.) X vT

B Y implies X vT
B YFPE, assuming that: the coalgebra

d : Y→p FY satisfies J !FY � d = J !Y .

Proof of Thm. 5.8. The item 1 is immediate from Thm. 4.10. In a similar manner to
Lem. A.19, we can prove the item 2 using Thm. 5.9. J

6 Systems with Other Branching Types

In this section we briefly discuss two more pairs of F and T that constitute infinite trace
situations.

The first pair is a polynomial functor F on Sets and the lift monad L. For a given
set X ∈ Sets, LX is given by {⊥} + X. The added element ⊥ represents the aborting
or non-termination of the program, and hence an (L, F)-system can be regarded as a tree
automaton with exception. To show that F and L constitute an infinite trace situation, we
rely on Prop. 5.2 (but not Prop. 4.2, since LX does not have the greatest element). Therefore,
much like for G, we can check trace inclusion by forward or T-backward simulations (see
§5.2). More details are found in §A.5.

N. Urabe and I. Hasuo 333

The second pair is that of polynomial F on Sets and the subdistribution monad D.
For a given set X ∈ Sets, DX is the set {d : X → [0, 1] |

∑
x∈X d(x) ≤ 1} of (discrete)

subdistributions over X. The subdistribution monad D is similar to the sub-Giry monad G,
and a (D, F)-system can be also regarded as a probabilistic tree automaton. We can prove
that F and D constitute an infinite trace situation. The resulting infinite trace semantics has
limited use, however, due to the discrete nature of an arrow X→p DZ (it assigns a probability
to a single tree and the probability is most of the time 0; see Example 1.1). Another difficulty
is that infinite traces for T = D does not follow from either of our general results (Prop. 4.2 or
Prop. 5.2) – in §A.6 we construct infinite traces for T = D in concrete terms. This prevents
us from applying the general theories for Kleisli simulations in §4–5. For more details, see
§A.6.

7 Related Work

The construction of the largest homomorphism given in Prop. 5.2 is based on the one in [4].
The latter imposes some technical conditions on a monad T , including a “totality” condition
that excludes T = P from its instances (the nonempty powerset monad is an instance). Our
assumption of lifting to a 2-limit (Assumption 5 in Prop. 5.2) is inspired by a condition
in [4], namely that the limit Z is lifted to a weak limit in K`(T). It is not the case that
Prop. 5.2 subsumes the construction in [4]: the former does not apply to the nonempty
powerset monad (but our Prop. 4.2 does apply to it).

In [12], an explicit description of a (proper, not weakly) final F -coalgebra is given for
F ∈

{
Σ× (), 1 + Σ× ()

}
and T ∈ {G,G=1}. Here G=1 is the Giry monad and restricts

G to proper, not sub-, distributions. We do not use their results (proper finality) for
characterization of infinite traces, because: 1) if T = G then the final coalgebras do not
coincide with the set of possibly infinite words; and 2) if T = G=1 then language inclusion is
reduced to the equality. We doubt about the value of developing simulation-based methods
for the latter degenerate case, one reason being that trace inclusion is often a more difficult
problem than trace equivalence. For example, finite trace inclusion for probabilistic systems
is undecidable [3] while trace equivalence is decidable [13].

In [17], it is shown that: a limit of a ωop-sequence consisting of standard Borel spaces
and surjective measurable functions is preserved by a polynomial functor F (where constants
are restricted to standard Borel spaces), and also by G. It is also shown there that such a
polynomial functor F preserves standard Borel spaces, and so does G. These facts imply the
existence of a final GF -coalgebra in Meas for every polynomial functor F . Note however
that this final GF -coalgebra captures (probabilistic) bisimilarity, not trace semantics.

8 Conclusions and Future Work

We have shown that the technique forward and backward Kleisli simulations [8] and that of
FPE [18] – techniques originally developed for witnessing finite trace inclusion – are also
applicable to infinite trace semantics. We followed [11] (and also [4, 12]) to characterize infinite
trace semantics in coalgebraic terms, on which we established properties of Kleisli simulations
such as soundness. We developed our theory for two classes of instances: nondeterministic
systems and probabilistic ones.

There are some directions for a future work. In [18], in addition to FPE, a transformation
called backward partial execution (BPE) is introduced. Similarly to FPE, BPE can also aid
forward and backward Kleisli simulation for finite trace in the sense that it satisfy soundness

CALCO’15

334 Coalgebraic Infinite Traces and Kleisli Simulations

and adequacy. However, BPE is only defined for word automata (with T -branching) and
not generally for (T, F)-systems. Defining BPE categorically and proving its soundness and
adequacy with respect to infinite trace, possibly restricting to word automata, is one of the
future work.

Another direction is implementation and experiments. As forward and backward Kleisli
simulations in this paper are defined in almost the same way as [18], we can use the
implementation already developed there to check infinite trace inclusion.

Acknowledgments. The authors are supported by Grants-in-Aid No. 24680001 & 15K11984,
JSPS.

References
1 Jirí Adámek and Václav Koubek. Least fixed point of a functor. J. Comput. Syst. Sci.,

19(2):163–178, 1979.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Vincent D. Blondel and Vincent Canterini. Undecidable problems for probabilistic au-

tomata of fixed dimension. Theory Comput. Syst., 36(3):231–245, 2003.
4 Corina Cîrstea. Generic infinite traces and path-based coalgebraic temporal logics. Electr.

Notes Theor. Comput. Sci., 264(2):83–103, 2010.
5 P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific

Journal of Mathematics, 81(1):43–57, 1979.
6 J.L. Doob. Measure Theory. Graduate Texts in Mathematics. Springer New York, 1994.
7 Michele Giry. A categorical approach to probability theory. In Proc. Categorical Aspects

of Topology and Analysis, volume 915 of Lect. Notes Math., pages 68–85, 1982.
8 Ichiro Hasuo. Generic forward and backward simulations. In Christel Baier and Holger

Hermanns, editors, CONCUR, volume 4137 of Lect. Notes Comp. Sci., pages 406–420.
Springer, 2006.

9 Ichiro Hasuo. Generic forward and backward simulations II: Probabilistic simulation. In
Paul Gastin and François Laroussinie, editors, CONCUR, volume 6269 of Lecture Notes in
Computer Science, pages 447–461. Springer, 2010.

10 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Computer Science, 3(4), 2007.

11 Bart Jacobs. Trace semantics for coalgebras. Electr. Notes Theor. Comput. Sci., 106:167–
184, 2004.

12 Henning Kerstan and Barbara König. Coalgebraic trace semantics for continuous proba-
bilistic transition systems. Logical Methods in Computer Science, 9(4), 2013.

13 Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James Worrell.
Language equivalence for probabilistic automata. In Ganesh Gopalakrishnan and Shaz
Qadeer, editors, CAV, volume 6806 of Lecture Notes in Computer Science, pages 526–540.
Springer, 2011.

14 Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. Untimed
systems. Inf. Comput., 121(2):214–233, 1995.

15 Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer verlag,
1998.

16 Philip S. Mulry. Lifting theorems for kleisli categories. In Stephen D. Brookes, Michael G.
Main, Austin Melton, Michael W. Mislove, and David A. Schmidt, editors, Mathematical
Foundations of Programming Semantics, 9th International Conference, New Orleans, LA,
USA, April 7–10, 1993, Proceedings, volume 802 of Lecture Notes in Computer Science,
pages 304–319. Springer, 1993.

N. Urabe and I. Hasuo 335

17 Christoph Schubert. Terminal coalgebras for measure-polynomial functors. In Jianer Chen
and S. Barry Cooper, editors, Theory and Applications of Models of Computation, 6th
Annual Conference, TAMC 2009, Changsha, China, May 18–22, 2009. Proceedings, volume
5532 of Lecture Notes in Computer Science, pages 325–334. Springer, 2009.

18 Natsuki Urabe and Ichiro Hasuo. Generic forward and backward simulations III: quan-
titative simulations by matrices. In Paolo Baldan and Daniele Gorla, editors, CONCUR
2014 – Concurrency Theory – 25th International Conference, CONCUR 2014, Rome, Italy,
September 2–5, 2014. Proceedings, volume 8704 of Lecture Notes in Computer Science,
pages 451–466. Springer, 2014.

19 Natsuki Urabe and Ichiro Hasuo. Coalgebraic infinite traces and kleisli simulations. CoRR,
abs/1505.06819, 2015.

CALCO’15

Finitary Corecursion for the Infinitary Lambda
Calculus∗

Stefan Milius and Thorsten Wißmann

Lehrstuhl für Theoretische Informatik, FAU Erlangen-Nürnberg, Germany

Abstract
Kurz et al. have recently shown that infinite λ-trees with finitely many free variables modulo
α-equivalence form a final coalgebra for a functor on the category of nominal sets. Here we
investigate the rational fixpoint of that functor. We prove that it is formed by all rational λ-
trees, i.e. those λ-trees which have only finitely many subtrees (up to isomorphism). This yields
a corecursion principle that allows the definition of operations such as substitution on rational
λ-trees.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.4.1 Mathe-
matical Logic, D.3.1 Formal Definitions and Theory

Keywords and phrases rational trees, infinitary lambda calculus, coinduction

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.336

1 Introduction

One of the most important concepts in computer science is the λ-calculus. It is a very
simple notion of computation because its syntax consists only of three constructs: variables,
λ-abstraction and function application, and its semantics consists of only two concepts
α-conversion for renaming of bound variables and β-conversion for executing function ap-
plications. Yet it is very powerful since it is Turing complete and allows to define many
notions of higher level programming languages such as booleans, if-then-else, natural numbers,
arithmetic operations, lists including mapping and folding, recursion etc.1

However, whenever one wants to deal with inductive and coinductive definitions in the
presence of variable binding subtle issues arise and one has to be careful not to mess up the
variable binding. One solution to these problems has been proposed by Gabbay and Pitts [12].
They use nominal sets as a framework for dealing with binding operators, abstraction and
structural induction. Nominal sets go back to Fraenkel’s and Mostowski’s permutation model
for set theory devised in the 1920s and 1930s. They are sets equipped with an action of
the group of finite permutations on a given fixed set V of atoms (here these play the role
of variables). For an arbitrary nominal set one can then define the notions of “free” and
“bound” variables using the notion of support (we recall this in Section 2.2). Gabbay and
Pitts then consider the functor

LαX = V + [V]X +X ×X

expressing the type of the term constructors of the λ-calculus (note that the abstraction
functor [V]X is a quotient of V ×X modulo renaming “bound” variables). And they prove
that the initial algebra for Lα is formed by all λ-terms modulo α-equivalence.

∗ This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-1.
1 Depending on the application a third semantic concept, η conversion, may be of interest. But this is

neither needed for Turing completeness nor for our work.

© Stefan Milius and Thorsten Wißmann;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 336–351

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.336
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Milius and T. Wißmann 337

Recently, Kurz et al. [18] have characterized the final coalgebra for Lα (and more generally,
for functors arising from so-called binding signatures): it is carried by the set of all infinitary
λ-terms (i.e. finite or infinite λ-trees) with finitely many free variables modulo α-equivalence.
This then allows to define operations on infinitary λ-terms by coinduction, for example
substitution and operations that assign to an infinitary λ-term its normal form computations
(e.g. the Böhm, Levy-Longo, and Berarducci trees of a given infinitary λ-term).

Our contribution in this paper is to give a characterization of the rational fixpoint of the
functor Lα. In general, the rational fixpoint for a functor F lies between the initial algebra
and the final coalgebra for F . If one thinks of it as a coalgebra, it is characterized as the
final locally finitely presentable F -coalgebra. Intuitively, one may think of it as collecting all
behaviours of “finite” (more technically, finitely presentable carried) F -coalgebras. Examples
include regular languages, eventually periodic and rational streams, rational formal power-
series etc. For a polynomial endofunctor FΣ on sets associated to the signature Σ, the rational
fixpoint consists of regular Σ-trees of Elgot [10], i.e. those (finite and infinite) Σ-trees having
only finitely many different subtrees (up to isomorphism). We will prove in Section 3 that
the rational fixpoint for Lα on Nom is carried by all rational λ-trees modulo α-equivalence.
Before that we recall in Section 2 preliminaries on the infinitary λ-calculus, nominal sets
and the rational fixpoint. The finality principle of the rational fixpoint may be understood
as a finitary corecursion principle. In Section 4 we show applications of our main result, in
particular, that the coinductive definition of substitution given in [18] restricts to rational
trees. We also discuss coinductive definitions concerning normal form computations. We
conclude in Section 5.
Related work. The work presented here is based on the second author’s student project
reported in [28].

A related approach to variable binding operations which uses presheaves over finite sets
was proposed by Fiore, Plotkin and Turi [11]. By now this has developed into a respectable
body of work by these and other authors. Most related to our work here is the coinductive
approach to infinitary and rational λ-terms studied by Adámek, Milius and Velebil [3]. This
work considers an endofunctor very similar to Lα but on the category of presheafes on finite
sets. Its final coalgebra is shown to be the presheaf of all infinite λ-trees and the rational
fixpoint the presheaf of all rational trees – each of them modulo α-equivalence.

Omitted proofs and details may be found in the full version [22] of our paper.

2 Preliminaries

We assume that readers are familiar with basic notions of category theory and with algebras
and coalgebras for an endofunctor. For a given endofunctor F on the category C we will
write t : νF → F (νF) for the final coalgebra (assuming that it exists). Given an F -coalgebra
(C, c) we write c† : (C, c)→ (νF, t) for the unique F -coalgebra homomorphism from C to νF .
The category of coalgebras for an endofunctor F is denoted by CoalgF . For introductory
texts on coalgebras see [26, 16, 1].

We will now give some background on the (infinitary) λ-calculus, on nominal sets and on
the rational fixpoint of a functor as needed in the present paper.

2.1 Infinitary λ-Calculus and Rational Trees
Before we talk about infinitary λ-terms (aka λ-trees) first recall that ordinary λ-terms are
defined starting from a fixed countable set of variables V by the grammar

T ::= x | λx.T | TT,

CALCO’15

338 Finitary Corecursion for the Infinitary Lambda Calculus

where x ranges over V . We denote the set of all λ-terms by Λ. Free and bound variables and
substitution are defined as usual with the operator λx.(−) binding x in its argument. Often
one considers λ-terms modulo α-equivalence, i.e., the least equivalence relation on λ-terms
identifying two terms that arise by consistently renaming bound variables. One can think
of a term λx.T as representing a computation that takes a parameter P that is used in all
free occurences of x in T . Hence, the main computation rule of the λ-calculus is β-reduction,
i.e. the rule

(λx.T)P →β T [x 7→ P].

For example we have (λx.λy.x) a b →β (λy.a) b →β a, where a cannot be reduced further.
However, terms may have infinite reduction sequences; a prominent example is Y f for the
Y -combinator defined as Y := λg.(λx.g(xx)) (λx.g(xx)) we have:

Y f = (λg.(λx.g(xx)) (λx.g(xx)))f
→β (λx.f(xx)) (λx.f(xx))→β f((λx.f(xx)) (λx.f(xx)))
→β f(f((λx.f(xx)) (λx.f(xx))))→β · · ·

Informally speaking, this “converges” to the infinite term f(f(f(· · ·))). If one takes such
infinite terms as legal objects of the λ-calculus one is led to infinitary λ-calculus. There one
replaces λ-terms by (finite and infinite) λ-trees. A λ-tree is a rooted and ordered tree with
leaves labelled by variables in V and with two sorts of inner nodes: nodes with one successor
labelled by λx for some variable x ∈ V and nodes with two successors labelled by @. For
example, we have the λ-trees

@
λx

@
x x

λx

@
x x

@
f @

f @
f . . .

(1)

representing the λ-term (λx.xx)(λx.xx) and the infinite term f(f(f(· · ·))), respectively. Let
Λ∞ be the set of all λ-trees. The notions of free and bound variables of a λ-tree are clear: a
variable x is bound in a λ-tree t if there is a path from a leave labelled by x to the root of t
that contains a node labelled by λx, and x is free in t if there is a path from an x-labelled
leaf to the root of t that does not contain any node labelled by λx.

The classic approach to defining operations such a substitution on λ-trees uses that Λ∞
is the metric completion of Λ under a natural metric; this idea of using a metric approach to
dealing with infinite trees goes at least back to Arnold and Nivat [5]. Thus, every infinite λ-
tree is regarded as the limit of the Cauchy sequence of its truncations at level n. Notions such
as α-equivalence and substitution of λ-trees are then defined by extending the corresponding
notions on finite λ-trees (i.e. λ-terms) continuously. More concretely, two λ-trees s and t are
α-equivalent iff for every natural number n the pair of truncations at level n of s and t are
α-equivalent λ-terms (see [18, Definition 5.17]).

Our aim in this paper is to give a coalgebraic characterization of an important sub-
class of all λ-trees, the so called rational λ-trees. The following definition follows Ginali’s
characterization [15] of regular Σ-trees for a signature Σ:

I Definition 2.1. A λ-tree having only finitely many subtrees (up to isomorphism) is called
rational. A λ-tree modulo α-equivalence, i.e. an α-equivalence class of λ-trees, is called
rational if it contains at least one rational λ-tree.

S. Milius and T. Wißmann 339

@

f

@

f @

f

λx

@

λx @

x

@

λx

@

λy y

x

λx

λy

@

Figure 1 Finite representations of rational λ-trees.

Intuitively, the rational λ-trees are those λ-trees that admit a finite representation as a λ-tree
with “uplinks”. All finite λ-trees are, of course, rational, and so is the right-hand λ-tree
in (1). Other examples are in Figure 1.

The uplink from some node s to some other node r indicates that the entire tree starting
at r occurs as a subtree of s. In other words, such a λ-tree with uplinks represents its tree
unravelling, i.e. the first and second tree on the left both represent the rational infinite λ-tree
shown in (1) on the right.

Things get more complicated, if abstractions come into play, as in the third tree. Here
the x clearly refers to the λx in the root, but some of the “copies” of x are bound by the
λx in the left branch and other copies are bound to the abstraction in the root. Something
similar can be observed in the last but one tree, which has two free variables x, y, but all
“copies” of x and y are bound by the previous copy of λx and λy respectively. Finally, the
rightmost tree represents a λ-tree that consists of applications and abstractions only:

λxy.(λyλy . . .)(λxy.(λyλy . . .)(λxy.(λyλy . . .) . . .)).

2.2 Nominal Sets
It was the idea of Gabbay and Pitts [12] to use nominal sets as a category-theoretic framework
in which to describe λ-terms modulo α-equivalence as the initial algebra for a functor Lα.
One can then use its universal property to define operations such as substitution of λ-terms.
And Kurz et al. [18] characterized the final coalgebra for Lα; it is carried by the set of λ-trees
with finitely many free variables modulo α-equivalence. Again, the universal property allows
one to define operations such as substitution – this time by corecursion. We will now recall
some background material on nominal sets and the main result of [18].

We fix a countable set V of variable names. Let S(V) be the group of finite permutations
of V , where a permutation π ∈ S(V) is called finite iff {v ∈ V | π(v) 6= v} is a finite set. Now
consider a set X together with a group action · : S(V) ×X → X. Intuitively, one should
think of X as a set of terms, and for a finite permutation of variable names π and some term
x, π · x denotes the new term obtained after renaming the variables in x according to π. In
order to talk about variables “occurring” in x ∈ X we can check which variable renamings
fix the term x. This is captured by the notion of support: a set S ⊆ V supports x ∈ X if for
all π ∈ S(V) with π(v) = v for all v ∈ S we have π · x = x. Some x ∈ X is finitely supported
if there is a finite S ⊆ V supporting x.

A nominal set is a set X together with a S(V)-action such that all elements of X are
finitely supported.

I Example 2.2.
1. The set V of variable names with the group action given by π · v = π(v) is a nominal set;

for each vi ∈ V the singleton {vi} supports vi.

CALCO’15

340 Finitary Corecursion for the Infinitary Lambda Calculus

2. Every ordinary set X can be made a nominal set by equipping it with the trivial action
π · x = x for all x ∈ X and π ∈ S(V). So each x ∈ X can be thought of a term not
containing any variable, i.e. the empty set supports x.

3. The set Λ of all λ-terms forms a nominal set with the group action given by renaming
of free variables. Every λ-term is supported by the set of its free variables. In contrast
the set Λ∞ of all λ-trees is not nominal since λ-trees with infinitely many free variables
do not have finite support. However, the set Λ∞ffv of all λ-trees with finitely many free
variables is nominal.

Notice that if S ⊆ V supports x ∈ X, then S′ ⊇ S also supports x ∈ X. So S supporting
x only means that by not touching the members of S one does not modify the term x. But
it is more interesting to talk about the variables actually occurring in x. This is achieved by
considering the smallest set supporting x, which is denoted by supp(x). If v ∈ V \ supp(x),
we say that v is fresh for x, denoted by v # x.

I Example 2.3. The set Pf (V) of finite subsets of V, together with the point-wise action
is a nominal set. The support of each u ∈ Pf (V) is u itself: π · u = {π · x | x ∈ u} and
supp(u) = u. Note that P(V) with the point-wise action is not a nominal set because the
infinite {v0, v2, v4, . . .} does not have any finite support.

The morphisms of nominal sets are those maps which are equivariant: an equivariant
map f : (X, ·)→ (Y, ?) is a map f : X → Y with f(π · x) = π ? f(x) for all π ∈ S(V), x ∈ X.

For example, the function supp : X → Pf (V) mapping each element to its (finite) support
is an equivariant map.

I Remark 2.4. For any equivariant f : (X, ·) → (Y, ?), we have supp(f(x)) ⊆ supp(x) for
any x ∈ X.

The nominal sets – together with the equivariants as morphisms – form a category, denoted
by Nom. As shown in [14], this category is (equivalent to) a Grothendieck topos (the so-called
Shanuel topos), and so it has rich categorical structure. We only mention some facts needed
for the current paper.

Monomorphisms and epimorphisms in Nom are precisely the injective and surjective
equivariant maps, respectively. It is not difficult to see that every epimorphism in Nom is
strong, i.e., it has the unique diagonalization property w.r.t. any monomorphism: given an
epimorphism e : A � B, a monomorphism m : C ↪→ D and f : A → C, g : B → D with
g · e = m · f , there exists a unique diagonal d : B → C with d · e = f and m · d = g.

Furthermore, Nom has image-factorizations; that means that every equivariant map
f : A → C factorizes as f = m · e for an epimorphism e : A � B and a monomorphism
m : B ↪→ C. Note that the intermediate object B is (isomorphic to) the image f [A] in B
with the restricted action. For an endofunctor F on Nom preserving monos this factorization
systems lifts to CoalgF : every F -coalgebra homomorphism f has a factorization f = m · e
where e and m are F -coalgebra homomorphisms that are epimorphic and monomorphic in
Nom, respectively.

Recall from [24, Section 2.2] that Nom is complete and cocomplete with colimits and finite
limits formed as in Set. In fact, Nom is a locally finitely presentable category in the sense of
Gabriel and Ulmer [13] (see also Adámek and Rosický [4]). We shall not recall that notion
here as it is not needed in the current paper; intuitively, a locally finitely presentable category
is a category with a well behaved “finite” objects (called finitely presentable objects) such that
every object can be build (as a filtered colimit) from these. Petrişan [23, Proposition 2.3.7]
has shown that the finitely presentable objects of Nom are precisely the orbit-finite nominal
sets.

S. Milius and T. Wißmann 341

I Definition 2.5. For a nominal set (X, ·) and x ∈ X the set {π · x | π ∈ S(V)} is called the
orbit of x. A nominal set (X, ·) is said to be orbit-finite if it has only finitely many orbits.

The notion of orbit-finiteness plays a central role in our paper since the rational λ-trees
modulo α-equivalence are described by precisely all the coalgebras with an orbit-finite carrier
for the functor Lα further below (cf. Proposition 2.11 and Theorem 3.4).

We now collect a few easy properties of orbit-finite sets that we are going to need.

I Lemma 2.6. For any x1, x2 ∈ X in the same orbit, we have | supp(x1)| = | supp(x2)|.

I Lemma 2.7. For an element x of a nominal set X, there are at most | supp(x)|! many
elements with support supp(x) in the orbit of x.

I Lemma 2.8. For a finite set W ⊆ V and an orbit O of the nominal set X there are only
finitely many elements in O whose support is contained in W .

Let us now recall from Kurz et al. [18] how all λ-trees form a final coalgebra in Nom.
First consider the following endofunctor on Nom:

LX = V + V ×X +X ×X;

its coproduct components describe the type of the term constructors of the λ-calculus
(variables, λ-abstraction and application, respectively). As shown in [18], the final coalgebra
for this functor is carried by the set of all λ-trees containing finitely many (free and bound)
variables.2 Its coalgebra structure is the obvious map decomposing a λ-tree at the root: a
single node λ-tree is mapped to its node label in V, a λ-tree whose root is labeled by λx to
(x, t), where t is the λ-tree defined by the successor of the root and a λ-tree with root label
@ to the pair of λ-trees defined by the successors of the root.

Since this final coalgebra completely disregards α-equivalence it is not possible to define
substitution as a total operation on it. The solution is to replace the second component V×X
of L by Gabbay and Pitts abstraction functor [12, Lemma 5.1] that takes α-equivalence into
account:

I Definition 2.9. Let (X, ·) be a nominal set. We define α-equivalence ∼α as the relation
on V ×X as

(v1, x1) ∼α (v2, x2) if there exists z # {v1, v2}, z # x1, z # x2 with (v1 z)x1 = (v2 z)x2.

The ∼α-equivalence class of (v, x) is denoted by 〈v〉x. The abstraction [V]X of the nominal
X is the quotient (V ×X)/∼α with the group action defined by

π · 〈v〉x = 〈π(v)〉(π · x).

For an equivariant map f : X → Y , [V]f : [V]X → [V]Y is defined by 〈v〉x 7→ 〈v〉(f(x)).

Note that the abstraction functor [V](−) is strong, i.e., we have a natural transformation τ
with components τX,Y : [V]X × Y → [V](X × Y) given by τX,Y (〈v〉x, y) = 〈v〉(x, y); we will
need the strength τ in Section 4.1. Now one considers the endofunctor Lα on Nom given by

LαX = V + [V]X +X ×X.

2 Note that this is different from the set Λ∞
ffv mentioned in Example 2.10.3; λ-trees in the latter may have

infinitely many bound variables.

CALCO’15

342 Finitary Corecursion for the Infinitary Lambda Calculus

Gabbay and Pitts [12] showed that its initial algebra consists of all λ-terms modulo α-
equivalence, and the main result of Kurz et al. [18] is that the final coalgebra νLα is carried
by the set Λ∞ffv of all λ-trees with finitely many free variables quotiented by α-equivalence.
The coalgebra structure is the same as on the final coalgebra for L – one can show that this
is well-defined on equivalence classes modulo α-equivalence.

2.3 The Rational Fixpoint
Recall that by Lambek’s Lemma [19], the structure of an initial algebra and a final coalgebra
for a functor F are isomorphisms, so both yield fixpoints of F . Here we shall be interested in
a third fixpoint that lies in between initial algebra and final coalgebra called the rational
fixpoint of F . This can on the one hand be characterized as the initial iterative algebra for
F (see [2]) or as the final locally finitely presentable coalgebra for F (see [20]). We will only
recall the latter description since the former will not be needed in this paper.

The rational fixpoint can be defined for any finitary endofunctor F on a locally finitely
presentable (lfp, for short) category C, i.e. F is an endofunctor on C that preserves filtered
colimits. Examples of lfp categories are Set, the categories of posets and of graphs, every
finitary variety of algebras (such as groups, rings, and vector spaces) and every Grothendieck
topos (such as Nom). The finitely presentable objects in these categories are: all finite sets,
posets or graphs, those algebras presented by finitely many generators and relations, and, as
we mentioned before, the orbit-finite nominal sets.

Now let F : C → C be finitary on the locally finitely presentable category C and consider
the full subcategory Coalgf F of CoalgF given by all F -coalgebras with a finitely presentable
carrier. In [20] the locally finitely presentable F -coalgebras were characterized as precisely
those coalgebras that arise as a colimit of a filtered diagram of coalgebras from Coalgf F . It
follows that the final locally finitely presentable coalgebra can be constructed as the colimit
of all coalgebras from Coalgf F . More precisely, one defines a coalgebra r : %F → F (%F)
as the colimit of the inclusion functor of Coalgf F : (%F, r) := colim(Coalgf F ↪→ CoalgF).
Note that since the forgetful functor CoalgF → C creates all colimits this colimit is actually
formed on the level of C. The colimit %F then carries a uniquely determined coalgebra
structure r making it the colimit above.

As shown in [2], %F is a fixpoint for F , i.e. its coalgebra structure r is an isomorphism.
From [20] we obtain that local finite presentability of a coalgebra (C, c) has the following
concrete characterizations: (1) for C = Set local finiteness, i.e. every element of C is contained
in a finite subcoalgebra of C; (2) for C = Nom, local orbit-finiteness, i.e. every element of C
is contained in an orbit-finite subcoalgebra of C; (3) for C the category of vector spaces over
a field K, local finite dimensionality, i.e., every element of C is contained in a subcoalgebra
of C carried by a finite dimensional subspace of C.

I Example 2.10. We list only a few examples of rational fixpoints; for more see [2, 20, 8].
1. Consider the functor FX = 2×XA on Set where A is an input alphabet and 2 = {0, 1}.

The F -coalgebras are precisely the deterministic automata over A (without initial states).
The final coalgebra is carried by the set P(A∗) of all formal languages and the rational
fixpoint is its subcoalgebra of regular languages over A.

2. For FX = R×X on Set the final coalgebra is carried by the set Rω of all real streams
and the rational fixpoint is its subcoalgebra of all eventually periodic streams, i.e. streams
uvvv · · · with u, v ∈ R∗. Taking the same functor on the category of real vector spaces
we get the same final coalgebra Rω with the componentwise vector space structure, but
this time the rational fixpoint is formed by all rational streams (see [27, 20]).

S. Milius and T. Wißmann 343

3. Let Σ be a signature of operation symbols with prescribed arity, i.e. a sequence (Σn)n<ω
of sets. This give rise to an associated polynomial endofunctor FΣ on Set given by
FΣX =

∐
n<ω Σn×Xn. Its initial algebra is formed by all Σ-terms and its final coalgebra

by all (finite and infinite) Σ-trees, i.e. rooted and ordered trees such that every node with
n children is labelled by an n-ary operation symbol. And the rational fixpoint consists
precisely of all regular Σ-trees of Elgot [10] (see also Courcelle [9]), i.e. those Σ-trees
having only finitely many different subtrees up to isomorphism (see Ginali [15]).

Note that in all the above examples the rational fixpoint %F allways occurs as a subcoalge-
bra of the final coalgebra νF . But this need not be the case in general (see [8, Example 3.15]
for a counterexample). However, we have the following result:

I Proposition 2.11 ([8, Proposition 3.12]). Suppose that in C finitely presentable objects are
closed under strong quotients and that F is finitary and preserves monomorphisms. Then the
rational fixpoint %F is the subcoalgebra of νF given by the union of images of all coalgebra
homomorphisms c† : (C, c)→ (νF, t) where (C, c) ranges over Coalgf F .3

In particular, for a finitary functor F on Set (or Nom resp.) preserving monomorphisms the
rational fixpoint is the union in νF of images of all finite (or orbit-finite resp.) coalgebras; in
symbols:

%F =
⋃

(C, c) in Coalgf F

c†[C] ⊆ νF.

Note that it is sufficient to let (C, c) range over those coalgebras in Coalgf F where c† is
injective (or an inclusion map) because for an arbitrary (orbit-)finite (C, c) in CoalgfF its
image c†[C] is an (orbit-)finite F -coalgebra, too.

3 The Rational Fixpoint in Nominal Sets

In this section we are going to prove the main result of our paper, a characterization of the
rational fixpoint for the functor Lα as the rational λ-trees modulo α-equivalence.

But we start with the rational fixpoint of the functor LX = V + V ×X +X ×X. Note
that both functors L and Lα are finitary and preserve monomorphisms (to see this use [18,
Proposition 5.6] and the fact the forgetful functor from Nom to Set creates colimits).

I Proposition 3.1. The rational fixpoint of the functor L : Nom → Nom is formed by all
rational λ-trees.

In the proof of the following theorem we will slightly abuse notation and consider
LX = V + V ×X +X ×X as an endofunctor on Set. Note that its final coalgebra is formed
by the set Λ∞ of all λ-trees and its rational fixpoint by all rational λ-trees (this follows from
Example 2.10.3).

I Theorem 3.2. Let X a−→ LαX be an orbit-finite coalgebra. Then for all root ∈ X,
a†(root) ∈ %Lα is a rational λ-tree.

3 In a general lfp category the image of c† is obtained by taking a strong epi-mono factorization of c†,
and the union is then obtained as a directed colimit of the resulting subobjects of (νF, t).

CALCO’15

344 Finitary Corecursion for the Infinitary Lambda Calculus

Proof sketch. Let m := maxx∈X
∣∣ supp(x)

∣∣ be the maximal number of free variables in any
element of X. This exists by Theorem 2.6 since X is orbit-finite. Let W ⊆ V be some set of
m+ 1 variables containing supp(root). Hence for all x ∈ X there exists a w ∈W with w# x.

In the following, one constructs a rational λ-tree in the α-equivalence class of a†(root).
First, define an L-coalgebra C c−→ LC = V + V × C + C × C in Set with C := {x ∈ X |
supp(x) ⊆W} and

c(x) =

w if a(x) = w ∈W ⊆ V
(`, r) if a(x) = (`, r) ∈ X ×X
(w, y) if a(x) = 〈v〉y′ and y = (v w)y′ for some w ∈W \ supp(x)

Next one readily verifies that c is well-defined, i.e., its image really lies in LC.
Furthermore, C is finite because X is orbit-finite and within any orbit there are only

finitely many elements with a support contained in W by Theorem 2.8. Let c† denote the
unique L-coalgebra homomorphism into the final L-coalgebra in Set. Since C is finite, we
know that c† : C → νL factors through the rational fixpoint, i.e. for every x ∈ C, c†(x) is a
rational λ-tree. One then proves that [c†(x)]α = a†(x) for all x ∈ C ⊆ X, where [−]α denotes
α-equivalence classes. This involves a non-trivial induction argument using the final chains
of the set functor L and the functor Lα on Nom as well as technical details from [18]. It
follows that a†(root) is rational. J

For the L-coalgebra (C, c) in Set from the previous proof, we know that for any x ∈ C,
the resulting tree c†(x) has at most |C| subtrees. This does not hold for an Lα-coalgebra
(X, a) in Nom: if X has a non-trivial action, then the cardinality of X is at least infinite,
i.e. the cardinality does not give a reasonable bound for the number of subtrees. And the
number of orbits n is not a bound either. The problem is that multiple elements from the
same orbit may represent different subtrees. For example, consider the rational tree

t := @
v0 v1

,

and let X := V + {(`, r) ∈ V × V | ` 6= r} be equipped with the coalgebra structure

X
a−→ LαX, a(x) =

{
v if x = v ∈ V
(`, r) if x = (`, r) ∈ V × V.

X is constructed to have two orbits: one consisting of single variables and one consisting of
unequal ordered pairs of variables. We have (v0, v1) ∈ X and a†

(
(v0, v1)

)
= [t]α. But t has

three subtrees, namely t itself, v0, and v1. This example is expanded later in Example 3.5.
But when looking closer at the construction of C in the previous proof, we can give

a bound on the number of its elements, i.e. the number of (up to isomorphism) different
subtrees of the rational tree c†(root).

I Proposition 3.3. Let (X, a) be an orbit-finite Lα-coalgebra with n orbits and let m =
maxx∈X

∣∣ supp(x)
∣∣. Then the number of elements of the coalgebra C (as constructed in the

previous proof) is bounded by n · (m+ 1)!.

Proof. Recall from the proof of Theorem 3.2 that C := {x ∈ X | supp(x) ⊆ W}, where
W is a set of m+ 1 variables. Consider a fixed orbit O whose elements have a support of

cardinality k: there are at most
(
m+ 1
k

)
possibilities of choosing a k-element subset S of

S. Milius and T. Wißmann 345

W and for any such S there are at most k! elements in O with support S, by Theorem 2.7.
Thus, the number of elements of O in C is at most(

m+ 1
k

)
· k! = (m+ 1)!

k! · (m+ 1− k)! · k! = (m+ 1)!
(m+ 1− k)!

k≤m
≤ (m+ 1)!

(m+ 1−m)! = (m+ 1)!.

In total, the cardinality of C is bounded by n · (m+ 1)!. J

That the number of orbits n occurs linearly is not surprising, because if we have some
finite carrier set X with the trivial action that “uses” all its elements for the coalgebra
structure, we have exactly one subtree per element of X. In Example 3.5 we shall see that
the factor is (m+ 1)! is necessary. But before that we state and prove our main result:

I Theorem 3.4. The rational fixed point %Lα contains precisely the rational λ-trees modulo
α-equivalence.

Proof. After Theorem 3.2 it only remains to show that all α-equivalence classes of rational
λ-trees are in %Lα. Let uα ∈ νLα be rational, witnessed by some rational representative
u ∈ uα with only finitely many subtrees (up to isomorphism). Let C be the finite set of all
subtrees of u and define the nominal set X as

X :=
⋃
s∈C

O([s]α) ⊆ νLα,

where [s]α ∈ νLα is the α-equivalence class of the subtree s and O(y) ⊆ νLα denotes the
orbit of a given element y ∈ νLα. Note that the group action of νLα restricts to X since it
is a union of orbits.

Next we define a coalgebra structure a : X → LαX by restriction of the structure
t : νLα → Lα(νLα): set a(x) := t(x) for all x ∈ X. We need to check that this is well-defined,
i.e. that t(x) really lies in LαX for every x ∈ X. For this we consider three cases:
1. The case t(x) ∈ V is clear;
2. Suppose that t(x) = 〈v〉y ∈ [V](νLα) where x = π · [λw.s]α for some π ∈ S(V) and some

subtree λw.s of u. Then we have

〈w〉[s]α = t([λw.s]α) = t(π−1 · x) = π−1 · t(x) = π−1 · 〈v〉y =
〈
π−1(v)

〉
(π−1 · y).

By the definition of abstraction, we have some z ∈ V with

(w z) · [s]α = (π−1(v) z) · π−1 · y.

Hence, y is in the orbit of [s]α and therefore t(x) is in [V]X.
3. For t(x) = (`, r) ∈ νLα× νLα, let x ∈ X be π · [(s`, sr)]α for some π ∈ S(V) and subtrees

s`, sr of u. Analogously to the previous case, we have

(`, r) = t(x) = t(π · [(s`, sr)]α) = π · ([s`]α, [sr]α) = (π · [s`]α, π · [sr]α) ∈ X ×X.

By construction, uα ∈ X and a†(x) = x holds for all x ∈ X. By the finiteness of C, X is
orbit-finite and thus a†[X] ⊆ %Lα, and in particular uα ∈ %Lα. J

The following example shows that the bound in Theorem 3.3 on the number of elements
of the L-coalgebra C from the proof of Theorem 3.2 can essentially not be improved even if
we omit the usage of λ-abstraction.

CALCO’15

346 Finitary Corecursion for the Infinitary Lambda Calculus

@ = rσ

hσ = @

rσ (1 2) rσ (1 ··· m)

@

@ @

@ @ @ @

σv1 σv2 σvm· · ·

` levels

Figure 2

I Example 3.5. Let ` ≥ 1 be a fixed natural number and let m = 2`−1. Further let
V = {v1, . . . , vm} be a set of m variables and consider the rational λ-trees parametrized by
permutations σ ∈ S(V) shown in Figure 2.

With rσ and hσ we denote the corresponding subtrees rooted at the indicated nodes. Note
that the α-equivalence classes in %Lα of each rσ and of any of its subtrees are singletons since
rσ does not contain any λ-abstraction. For this reason we shall henceforth abuse notation
and denote those equivalence classes by their representatives. Observe further that the group
action on %Lα satisfies τ · rσ = rτσ for any τ, σ ∈ S(V). This implies that all rσ and hσ,
respectively, lie in the same orbit. Similarly, one can see that all nodes on the same level in
the right-hand maximal subtrees of every rσ (indicated by the dotted rectangles) lie in the
same orbit.

Now consider rid and the corresponding orbit-finite subcoalgebra X of %Lα from the proof
of Theorem 3.4. The elements of X are all subtrees of rid with the group action inherited
from %Lα. By the above reasoning we see that X has precisely ` + 2 orbits. Hence, the
number of orbits of X is logarithmic in m. But the number of subtrees of rid grows faster
than m!. To see this, notice first that the permutations (1 2) and (1 2 · · · m) generate
the group of all permutations of m elements. Thus, we see that rid has all rσ as subtrees
where σ is any permutation that fixes V \ V . For different σ and τ we have that rσ, hσ,
rτ and hτ are pairwise non-isomorphic. Thus, we see that rid has at least 2 ·m! subtrees.
In addition, consider the i-th level (from 1 at the bottom to ` at the top) on the right in
Figure 2. Each node on that level covers k = 2i−1 variables. Then for each permutation of
those k variables there exists a subtree of the right-hand successor of some subtree rσ of rid
which is a complete binary tree of height i with the front given by the permutation. Thus,
the total number of subtrees of rid is precisely

2 ·m! +
∑̀
i=1

((
m

2i−1

)
· (2i−1)!

)
= 2 ·m! +

∑̀
i=1

m!
(m− 2i−1)! .

4 Application: Corecursive Definitions on Rational λ-trees

Our result in Theorem 3.4 that rational λ-trees modulo α-equivalence form the final locally
orbit-finite Lα-coalgebra yields a corecursion principle. In this section we shall demonstrate
this principle by considering two easy applications. First we show that substitution as defined
corecursively for all λ-trees in [18] restricts to rational λ-trees. Secondly, we discuss the
corecursive definition of the computation of the Böhm tree of a given rational λ-tree.

S. Milius and T. Wißmann 347

4.1 Substitution on Rational λ-trees
When performing operations known from (infinitary) λ-calculus on rational λ-trees, it is
not clear whether the resulting λ-tree still is rational in general. One such operation is
the substitution function subs : νLα × V × νLα −→ νLα, which for a given triple (t, v, s)
replaces each occurence of the variable v in t by s. Kurz et al. [18] show how to define subs
by coinduction: to do this they define an Lα-coalgebra whoose unique homomorphism into
the final coalgebra yields subs. It is possible to adapt this to the orbit-finite case as follows.

For arbitrary coalgebras A a−→ LαA and B b−→ LαB with orbit-finite carriers, one defines
subsA,B : A × V × B → %Lα. This map subsA,B describes the substitution of a variable
within an element of the coalgebra A by some element of the coalgebra B. In the following

B
inl−→ B +A× V ×B inr←− A× V ×B and V in1−−→ LαX

in2←−− [V]X

denote coproduct injections. Now define B + A × V × B [g,h]−−−→ Lα(B + A × V × B) with
g = Lα(inl) ◦ b and h = [hVar, hAbs, hApp] ◦ (a× id× id) using distributivity and

hVar : V × V ×B → Lα(B +A× V ×B), hVar(v, w, x) =

in1v if v 6= w

Lα(inl)(b(x)︸︷︷︸
∈Lα(B)

) if v = w

hAbs : ([V]A)×V ×B → Lα(B +A×V ×B), hAbs := in2 ◦ τA,V×B , using the strength τ
of the functor [V] with τA,V×B : ([V]A)× V ×B → [V](A× V ×B).
hApp : A × A × V × B → Lα(B + A × V × B) is the composition of the obvious steps
A×A× V ×B → (A× V ×B)× (A× V ×B)→ Lα(B +A× V ×B).

B +A× V ×B is orbit-finite, so we get a unique Lα-coalgebra homomorphism [g′, h′] into
%Lα, making the following diagram commute:

B +A× V ×B Lα(B +A× V ×B)

%Lα Lα(%Lα)

[g′, h′]

[g, h]

Lα([g′, h′])

fα

Now we define subsA,B := h′. It remains to extend this to the desired domain %Lα×V ×%Lα.
Let I be the set of all orbit-finite subcoalgebras (X, a) of (νLα, tα). Then we know from (the
discussion following) Proposition 2.11 that

%Lα =
⋃

(X,a) in I

X.

Hence, we can define substitution subsrat : %Lα × V × %Lα → %Lα on rational λ-trees by

subsrat(x, v, y) = subsA,B(x, v, y), for some A,B ∈ I with x ∈ A and y ∈ B.

It remains to prove that the result does not depend on the choice of A and B. But if we
have any other (A′, a′) in I with x ∈ A′ then since both A and A′ are subcoalgebras we have
a(x) = tα(x) = a′(x). Similarly for B and y ∈ B.

Thus, since the function h is defined by pattern matching, i.e. on the alternatives indicated
by a, it behaves independently from the choice of A and B as desired.

To summarize, we can say that one can define operations on %Lα if these n-ary operations
can be defined restricted to n orbit-finite subcoalgebras of νLα as we have just seen for the
operation of substitution.

CALCO’15

348 Finitary Corecursion for the Infinitary Lambda Calculus

4.2 Normalization of Rational λ-trees
In the λ-calculus different kinds of normal forms play an important role. One of them is the
head normal form (hnf, for short). A λ-term is in hnf if it is of the form λx1 . . . λxn.yN1 . . . Nm,
where y is a variable and the Ni are arbitrary terms. If one recursively requires the Ni to be
in hnf as well, one gets the definition of Böhm trees. Adding an additional constant symbol
⊥ to the syntax of the λ-calculus allows the following corecursive definition of the Böhm tree
BT(M) of a λ-term M (see [18]):

BT(M) =
{
λx1 . . . λxn.y BT(N1) . . .BT(Nm) if M �β λx1 . . . λxn.yN1 . . . Nm

⊥ otherwise,
(2)

where �β denoted the reflexive, transitive closure of β-reduction →β . So a Böhm tree of a
term M is the normal form of M in the infinitary λ-calculus, or ⊥ if there is no normal form
[6, 17].

Kurz et al. [18] obtained the operation BT by using the final coalgebra Λ∞α of the following
endofunctor Lbα on Nom expressing the syntax of the λ-calculus extended by ⊥:

LbαX = V + {⊥}+ [V]X +X ×X.

The nominal set Λ∞α consists of all λ-trees over ⊥ modulo α-equivalence, i.e. λ-trees where
some leaves are labelled by ⊥ in lieu of a variable from V. So BT : Λ∞α → Λ∞α is defined
as the unique coalgebra homomorphism from a coalgebra b : Λ∞α → Lbα(Λ∞α), where b is
defined by

b(M) =
{
t(N) if M �β N and N is in hnf
⊥ else,

into the final coalgebra νLbα.
The rational fixpoint %Lbα consists of the rational λ-trees over ⊥ modulo α-equivalence;

in fact, it is easy to extend to the proof of Theorem 3.4 to the functor Lbα.
However, BT does not restrict to %Lbα. Consider the λ-term

u := Y(λg.λx.x (g(x y))), with Yf := (λz.f(z z))(λz.f(z z)). (3)

which is finite and therefore rational. In other words, u represents an element of %Lbα. Let
us look at its Böhm tree, by considering the β-reduction sequence of u using Yf →β f(Yff):

ux = Y(λg.λx.x (g(x y))) x→β (λg.λx.x (g(x y)))
u︷ ︸︸ ︷

Y(λg.λx.x (g(x y))) x�β x (u (x y))

Applying ux�β x (u (x y)) multiple times yields the following sequence:

@

u
x �β

@
x @

u
@

x y

�β

@
x @

@
x y

@

u
@

@
x y

y

�β

@
x @

@
x y

@
@

@
x y

y

. . . �β · · ·

The resulting infinite λ-tree is clearly not rational; in fact, consider the subtrees defined by
the left-hand cildren of every node on the right-most path. Then the subtree rooted at the
left-hand sucessor of the n-th node on that path has the list xyn as its front of leaf labels.

S. Milius and T. Wißmann 349

And since this tree does not contain any λ-operators its α-equivalence class is a singleton,
whence BT(u) 6∈ %Lbα.

Of course, there are also λ-terms, whose Böhm tree is infinitely large but stays rational,
for example:

s := Y(λg.λx.λy.x g y))), with s→β (λg.λx.λy.x g y))) s→β λx.λy.x s y.�β · · ·�β

λx

λy

@
@
x

y

The rational λ-tree on the right above, call it r, is the Böhm tree for s, i.e. BT(s) = r ∈ %Lbα.
In other words the subcoalgebra S of (Λ∞α , b) above generated by [s]α is orbit-finite, hence
the restriction of BT to S factorizes through %Lbα.

Can one characterize the largest subcoalgebra of (Λ∞α , b) whose image under BT lies in
%Lbα? We leave this question for further work.

5 Conclusion and Future Work

We have contributed to the abstract algebraic study of variable binding using nominal
sets. In particular, we have extended a recent coalgebraic approach to infinitary λ-calculus
due to Kurz et al. Whereas they proved in [18] that λ-trees with finitely many variables
modulo α-equivalence form the final coalgebra for the functor Lα on Nom we have given a
characterization of the rational fixpoint of that functor. It contains precisely the rational
λ-trees modulo α-equivalence.

This characterization entails a corecursion principle for rational λ-trees because the
rational fixpoint is the final locally orbit-finite coalgebra for Lα. In this sense we have
achieved finitary corecursion for the infinitary λ-calculus. We have demonstrated the new
principle and its limitations with two applications: a corecursive definition of substitution
and of a normalform computation.

Our work is only a first step in the study of the coalgebraic approach to finitary coinduction
for infinitary terms with variable binding operators. First, it should be clear that our results
generalize from λ-terms to the rational fixpoint for endofunctors on Nom associated to a
binding signature. Other points for future work are: (1) the extension of the coalgebraic
approach to rational and infinitary λ-terms using nominal sets to treat the solutions of
higher-order recursion schemes as was done in the setting of presheaves on finite sets in [3],
and (2) the study of specification formats that extend our simple corecursion principle
that follows from finality; more precisely, Bonsague et al. [7, 21] have proposed bipointed
specifications as an abstract format (by restricting Turi’s and Plotkin’s abstract GSOS
rules [25]) to specify algebraic operations on the rational fixpoint of an endofunctor. It should
be interesting to work out a concrete rule format corresponding to bipointed specifications
for rational λ-terms and rational terms for arbitrary binding signatures. Last, but not least,
the similarity of the results in [3] on the one hand and those in [18] and here on the other
hand is so striking that there should be a formal connection; however, to our knowledge this
has not been worked out in the literature yet.

CALCO’15

350 Finitary Corecursion for the Infinitary Lambda Calculus

References
1 Jiří Adámek. Introduction to coalgebra. Theory Appl. Categ., 14:157–199, 2005.
2 Jiří Adámek, Stefan Milius, and Jiri Velebil. Iterative algebras at work. Math. Structures

Comput. Sci, 16(6):1085–1131, 2006.
3 Jiří Adámek, Stefan Milius, and Jiri Velebil. Semantics of higher-order recursion schemes.

Log. Methods Comput. Sci., 7(1), 2011.
4 Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories. Cambridge

University Press, 1994.
5 André Arnold and Maurice Nivat. The metric space of infinite trees. algebraic and topo-

logical properties. Fundam. Inform., 3(4):445–476, 1980.
6 Hendrik Pieter Barendregt. The Lambda calculus: Its syntax and semantics. North-Holland,

Amsterdam, 1984.
7 Marcello M. Bonsangue, Stefan Milius, and Jurriaan Rot. On the specification of oper-

ations on the rational behaviour of systems. In Proc. EXPRESS/SOS’12, volume 89 of
Electron. Proc. Theoret. Comput. Sci., pages 3–18, 2012.

8 Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axioma-
tizations of coalgebraic language equivalence. ACM Trans. Comput. Log., 14(1:7), 2013.

9 Bruno Courcelle. Fundamental properties of infinite trees. Theoret. Comput. Sci., 25:95–
169, 1983.

10 Calvin C. Elgot. Monadic computation and iterative algebraic theories. In H. E. Rose and
J. C. Sheperdson, editors, Logic Colloquium 1973, volume 80, pages 175–230, Amsterdam,
1975. North-Holland Publishers.

11 Marcelo Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In Proc. Logic in Computer Science 1999, pages 193–202. IEEE Press, 1999.

12 Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving
binders. In Proc. LICS’99, pages 214–224. IEEE Computer Society Press, 1999.

13 Peter Gabriel and Friedrich Ulmer. Lokal präsentierbare Kategorien, volume 221 of Lecture
Notes Math. Springer-Verlag, 1971.

14 Fabio Gaducci, Marino Miculan, and Ugo Montanari. About permutation algebras,
(pre)sheaved and names sets. Higher-Order Symb. Comput., 19:283–304, 2006.

15 Susanna Ginali. Regular trees and the free iterative theory. J. Comput. System Sci.,
18:228–242, 1979.

16 Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:62–222, 1997.

17 Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. Infinitary
Lambda Calculus. Theoret. Comput. Sci., 175(1):93–125, 1997.

18 Alexander Kurz, Daniela Petrisan, Paula Severi, and Fer-Jan de Vries. Nominal coalgebraic
data types with applications to lambda calculus. Log. Methods Comput. Sci., 9(4), 2013.

19 Joachim Lambek. A fixpoint theorem for complete categories. Math. Z., 103:151–161, 1968.
20 Stefan Milius. A sound and complete calculus for finite stream circuits. In Proc. LICS’10,

pages 449–458. IEEE Computer Society, 2010.
21 Stefan Milius, Marcello M. Bonsangue, Robert S.R. Myers, and Jurriaan Rot. Rational op-

eration models. In Proc. MFPS XXIX, volume 298 of Electron. Notes Theor. Comput. Sci.,
pages 257–282, 2013.

22 Stefan Milius and Thorsten Wißmann. Finitary corecursion for the infinitary lambda cal-
culus. full version; available at http://arxiv.org/abs/1505.07736, 2015.

23 Daniela Petrişan. Investigations into Algebra and Topology over Nominal Sets. dissertation,
University of Leicester, 2011.

24 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

http://arxiv.org/abs/1505.07736

S. Milius and T. Wißmann 351

25 Gordon D. Plotkin and Daniele Turi. Towards a mathematical operational semantics. In
Proc. Logic in Computer Science (LICS’97), pages 280–291, 1997.

26 Jan Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci., 249(1):3–80,
2000.

27 Jan Rutten. Rational streams coalgebraically. Log. Methods Comput. Sci., 4(3:9):22 pp.,
2008.

28 Thorsten Wißmann. The rational fixed point in nominal sets and its application to infinitary
lambda-calculus. Project report, available at http://thorsten-wissmann.de/theses/
project-wissmann.pdf, October 2014.

CALCO’15

http://thorsten-wissmann.de/theses/project-wissmann.pdf
http://thorsten-wissmann.de/theses/project-wissmann.pdf

	p000-00-frontmatter
	Preface

	p001-01-adamek
	Introduction
	Preliminaries
	Algebraic Recognition and Syntactic bold0mu mumu DDkock70, lin66DDDD-Monoids
	Transition bold0mu mumu DDkock70, lin66DDDD-Monoids
	bold0mu mumu DDpolak01DDDD-Regular Languages
	Conclusions and Future Work

	p017-02-balan
	Introduction
	Preliminaries
	Categories and functors enriched in a quantale
	Categories, functors and natural transformations, enriched in V- cat

	Extensions from Set to V- cat
	Relating behaviours across different base categories
	Conclusions

	p035-03-baldan
	Introduction
	Preliminaries
	Compositionality for the Wasserstein Lifting
	Lifting of Natural Transformations and Monads
	Trace Metrics in Eilenberg-Moore
	Generalized Powerset Construction
	Final Coalgebra for the Lifted Machine Functor

	Conclusion, Related and Future Work

	p050-04-chen
	Introduction
	Preliminaries
	Local varieties of languages in C
	D-monoids
	Preimages under D-monoid morphisms

	Fibrations for Languages and Monoids
	Local pseudovarieties of D-monoids as an opfibration
	Local varieties of languages in C as an opfibration

	Profinite D-Monoids
	Local pseudovarieties of D-monoids vs. profinite D-monoids
	Pseudovarieties of D-monoids vs. profinite equational theories

	Eilenberg-type Correspondences
	Conclusions and Future Work

	p066-05-cirstea
	Introduction
	Preliminaries
	Partially Additive Monads
	Coalgebraic Linear Time Logics

	Coalgebraic Linear Time Logics via Dual Adjunctions
	Enhanced Coalgebraic Linear Time Logics
	Path-based Semantics for Coalgebraic Linear Time Logics
	Path-based Semantics for uLV
	Path-based Semantics for uFree(V)

	Concluding Remarks

	p086-06-eberhart
	Introduction
	Traces and naive concurrent strategies
	Innocence as a sheaf condition
	Main result
	Contributions
	Related work
	Plan

	Traces
	String diagrams
	From string diagrams to actions
	From actions to traces

	Strategies, behaviours, and semantic fair testing
	Strategies and behaviours
	Semantic fair testing
	Intensional full abstraction

	Conclusion and future work

	p101-07-Fahrenberg
	Introduction
	Categorical Background
	Digraphs
	Transition Systems
	Labeled Transition Systems
	Open Maps and Bisimilarity
	Path Objects

	Partial Higher-dimensional Automata
	HDA
	Partial HDA
	Labeled Partial HDA

	Higher-dimensional Bisimilarity
	Path Objects
	Open Maps and Hd-bisimilarity
	Hd-bisimulation Games

	Homotopy and Unfoldings
	Computations
	Homotopy of Computations
	Unfoldings

	Relation to Other Equivalences
	Conclusion and Further Work

	p116-08-jacobs
	Introduction
	A basic result about monads
	Boolean examples
	Sets and sets
	Sets and posets
	Sets and meet-semilattices
	Sets and Boolean algebras
	Sets and complete Boolean algebras

	Probabilistic examples
	Sets and effect modules
	Compact Hausdorff spaces and effect modules
	Compact Hausdorff spaces and MV-modules
	Sets and directed complete effect modules
	Measurable spaces and -complete effect modules

	p130-09-kataoka
	Introduction
	Problem of concept mining and analysis
	Problem of minimal bicompletions of matrices and categories
	The setting of minimal bicompletion
	Familiar cases
	The trouble with ordinary categories

	Categorical limit inferior and limit superior
	Preliminaries
	Limit inferior and limit superior over a category
	Limit inferior and limit superior over a matrix
	Two pairs of ``Yoneda embeddings''
	Completeness and generation

	Minimal bicompletion of a matrix
	Loose extensions
	Tight extensions

	When does limit inferior boil down to limit?
	Monadicity workflow
	Completing constant matrices
	Completing groups
	Completing posets
	Completing a Zp-vector

	Conclusion
	Appendix: Proofs
	Appendix: General propositions

	p156-10-katsumata
	Introduction
	Preliminaries

	Codensity Lifting of Monads
	Examples of Codensity Liftings with Single Lifting Parameters
	Lifting Set-Monads to the Category of Preorders
	Lifting Set-Monads to the Category of Topological Spaces
	Simulations on Labelled Markov Processes by Codensity Lifting
	Kantorovich Metric by Codensity Lifting

	Lifting Algebraic Operations to Codensity-Lifted Monads
	Pointwise Codensity Lifting
	Characterising lift(T) as a Limit
	Conclusion and Future Work

	p171-11-kissinger
	Introduction
	Preliminaries
	Compact closed categories and signatures
	Tensor notation for compact closed categories
	!-tensors

	Compatibility and instantiations of !-boxes
	!-logic formulas
	The rules of !L
	Semantics
	Inductive proofs for non-commutative bialgebras
	Proof of soundness for !L

	p190-12-klin
	Introduction
	Preliminaries
	Simple distributive laws and SOS
	Distributive law morphisms
	Syntactic and behavioural translations
	Syntactic translations
	Behavioural translations

	Compatible translations
	Extensions
	GSOS specifications
	Generalized syntactic translations

	Examples

	p205-13-kurz
	Introduction
	A coalgebraic treatment of the Bekic rule
	Truncating elements of final coalgebras
	Implementing truncations in Haskell
	A generic implementation of truncations
	Correctness of the implementation

	Conclusion

	p221-14-levy
	Introduction
	The Problem
	Structure of Paper
	Notation

	Solving the Problem
	The B-Algebra of Theories
	Corecursive Algebras
	The Co-founded Part of an Algebra
	Injectively Structured Algebras

	Final Coalgebras From Modal Logic on a Dual Adjunction
	Dual Adjunctions
	Modal Logic on a Dual Adjunction
	Relating States to Modal Formulas
	Expressive Modal Logics

	Beyond Set
	General Results
	Poset Example
	The Dual Construction

	Conclusions and Further Work

	p238-15-marti
	Introduction
	Preliminaries
	Set Functors
	Coalgebras
	Relation Lifting and Bisimulation

	Coalgebraic Fixpoint Logic and Automata
	Coalgebraic Fixpoint Logic
	Coalgebraic Automata
	Logic and Automata

	Automata are Closed under Projection
	Uniform Interpolation for LTL
	Conclusions and Future Work

	p253-16-milius
	Introduction
	Preliminaries
	Monadic Trace Semantics, Informally
	Graded Monads
	Trace Semantics Via Graded Monads
	Graded Algebras
	Depth-1 Theories
	Trace Logics
	Conclusions and Future Work

	p270-17-piedeleu
	Introduction
	Background
	Pregroup grammars
	From syntax to semantics
	Quantizing the grammar
	Using Frobenius algebras in language

	Encoding ambiguity
	Mixing in FHilb
	Doubling and complete positivity
	The D construction (doubling)
	The CPM construction (complete positivity)

	Categorical model of meaning: Reprise
	Introducing ambiguity in formal semantics
	Measuring ambiguity with real data
	Flow of information with -Frobenius algebras

	Non-commutativity
	Adding lexical entailment
	Conclusion and future work
	Graphical calculus
	Translation from C to D(C)
	Linguistic intuition
	From Theory to Practice
	Creating a Concrete Semantic Space
	Word Sense Induction
	Creating Density Matrices

	p290-18-pirog
	Introduction
	Modules over monads
	Preliminaries
	Modules defined
	Adjunctions paired with a functor
	Distributive laws and liftings

	Resumptions: monads freely generated by modules
	Algebras for modules
	Summary and future work
	Related work

	p304-19-tutu
	Introduction
	Technical preliminaries
	Generalized substitution systems
	Equational logic programming

	Institution-independent substitutions
	Quantification spaces
	Representable signature extensions
	Representable substitutions
	Deriving generalized substitution systems

	Logic programming over an arbitrary institution
	Conclusions

	p320-20-urabe
	Introduction
	Preliminaries
	Infinite Traces, Kleisli Simulations and Coalgebras in K-1mu(T)
	Systems with Nondeterministic Branching
	Construction of Infinite Traces
	Kleisli Simulations for Nondeterministic Systems
	Forward Simulations
	Backward Simulations

	Forward Partial Execution for Nondeterministic Systems

	Systems with Probabilistic Branching
	Construction of Infinite Traces
	Kleisli Simulations for Probabilistic Systems
	Forward Simulations
	Backward Simulations

	Forward Partial Execution for Probabilistic Systems

	Systems with Other Branching Types
	Related Work
	Conclusions and Future Work

	p336-21-wissmann
	Introduction
	Preliminaries
	Infinitary -Calculus and Rational Trees
	Nominal Sets
	The Rational Fixpoint

	The Rational Fixpoint in Nominal Sets
	Application: Corecursive Definitions on Rational -trees
	Substitution on Rational -trees
	Normalization of Rational -trees

	Conclusion and Future Work

