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Abstract
Let c, k be two positive integers. Given a graph G = (V,E), the c-Load Coloring problem
asks whether there is a c-coloring ϕ : V → [c] such that for every i ∈ [c], there are at least k
edges with both endvertices colored i. Gutin and Jones (IPL 2014) studied this problem with
c = 2. They showed 2-Load Coloring to be fixed-parameter tractable (FPT) with parameter
k by obtaining a kernel with at most 7k vertices. In this paper, we extend the study to any fixed
c by giving both a linear-vertex and a linear-edge kernel. In the particular case of c = 2, we
obtain a kernel with less than 4k vertices and less than 8k edges. These results imply that for
any fixed c ≥ 2, c-Load Coloring is FPT and the optimization version of c-Load Coloring
(where k is to be maximized) has an approximation algorithm with a constant ratio.
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1 Introduction

Given a graph G = (V,E) and an integer k, the 2-Load Coloring Problem introduced
in [1], asks whether there is a coloring ϕ : V → {1, 2} such that for i = 1 and 2, there
are at least k edges with both endvertices colored i. This problem is NP-complete [1], and
Gutin and Jones studied its parameterization by k [9]. They proved that 2-Load Coloring
is fixed-parameter tractable (FPT)1 by obtaining a kernel with at most 7k vertices. It is
natural to extend 2-Load Coloring to any number c of colors as follows. Henceforth, for a
positive integer p, [p] = {1, 2, . . . , p}.

I Definition 1 (c-Load Coloring). Let c be a positive integer. Given a positive integer k
and a graph G = (V,E), the c-Load Coloring problem asks whether there is a c-coloring
ϕ : V → [c] such that for every i ∈ [c], there are at least k edges with both endvertices colored
i. If such a coloring ϕ exists, we call ϕ a (c, k)-coloring of G and we write G ∈ (c, k)-LC.

The c-Load Coloring problem can be viewed as a subgraph packing problem: decide
whether a graph G contains c disjoint k-edge subgraphs.

Observe first that G ∈ (1, k)-LC if and only if |E(G)| ≥ k. In this paper, we consider
c-Load Coloring parameterized by k for every fixed c ≥ 2. Note that c-Load Coloring
is NP-complete for every fixed c ≥ 2. Indeed, we can reduce 2-Load Coloring to c-Load
Coloring with c > 2 by taking the disjoint union of G with c− 2 stars K1,k.

1 For comprehensive introductions to parameterized algorithms and complexity, see recent monographs
[4, 7]; [10, 11] are excellent recent survey papers on kernelization.
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We prove that the problem admits a kernel with less than 2ck vertices. Thus, for c = 2
we improve the kernel result of [9]. To show our result, we introduce reduction rules, which
are new even for c = 2. We prove that the reduction rules can run in polynomial time and
that an irreducible graph with at least 2ck vertices is in (c, k)-LC.

While there are many parameterized graph problems which admit kernels linear in the
number of vertices, usually only problems on classes of sparse graphs admit kernels linear in
the number of edges (since in such graphs the number of edges is linear in the number of
vertices), see, e.g., [3, 7, 11]. To the best of our knowledge, only trivial O(k)-edge kernels
for general graphs have been described in the literature, e.g., the kernel for Max Cut
parameterized by solution size (Prieto [12] improved the trivial result by obtaining a kernel
with at most 2k edges and at most k vertices). Thus, our next result is somewhat unusual:
c-Load Coloring admits a kernel with O(k) edges for every fixed c ≥ 2. Namely, the kernel
has less than 8k edges when c = 2 and less than 6.25c2k edges when c > 2.

The optimization version of c-Load Coloring is as follows: for a graph G, find the
maximum k such that G ∈ (c, k)-LC. We show that because of the above bounds on the
number of edges in a kernel, this optimization problem, called the Max c-Load Coloring
problem, admits constant ratio approximation algorithms for any fixed c.

The paper is organized as follows. After providing additional terminology and notation
on graphs in the remainder of this section, we show that the problem admits a kernel with
less than 2ck vertices in Section 2. Then, in Section 3, we prove an upper bound on the
number of edges in a kernel for every c ≥ 2 and the corresponding approximation result for
Max c-Load Coloring. We improve our bound for c = 2 in Section 4. The bound implies
the approximation ratio of 4 + ε for every ε > 0. We complete the paper with discussions in
Section 5.

Graphs. For a graph G, V (G) (E(G), respectively) denotes the vertex set (edge set, re-
spectively) of G, ∆(G) denotes the maximum degree of G, n its number of vertices, and
m its number of edges. A vertex u with degree 0 (1, respectively) is an isolated ver-
tex (a leaf-neighbor of v, where uv ∈ E(G), respectively). For a vertex x and a vertex
set X in G, N(x) = {y : xy ∈ E(G)} and NX(x) = N(x) ∩ X. For disjoint vertex
sets X,Y of G, let G[X] be the subgraph of G induced by X, E(X) = E(G[X]) and
E(X,Y ) = {xy ∈ E(G) : x ∈ X, y ∈ Y }. For a coloring ϕ, we say that an edge uv is colored
i if ϕ(u) = ϕ(v) = i.

2 Bounding Number of Vertices in Kernel

In this section, we show that c-Load Coloring admits a kernel with less than 2ck vertices.
The fact that (ck − 1)K2 is a No-instance suggests that this bound is likely to be optimal.

For any integer i ≥ 1 and τ ∈ {<,≤,=, >,≥}, K1,τi denotes a star K1,j such that j τ i
and j ≥ 1. For instance, K1,≤p is a star with q edges, q ∈ [p]. Then, a K1,τi-graph is a forest
in which every component is a star K1,τi, and a K1,τi-cover of G is a spanning subgraph of
G which is a K1,τi-graph. We call any K1,τi-graph a star graph and any K1,τi-cover a star
cover.

We first prove the bound for star graphs with small maximum degree.

I Lemma 2. If G is a K1,<2k-graph with n ≥ 2ck, then G ∈ (c, k)-LC.

Proof. Let G be a K1,<2k-graph with n ≥ 2ck. We prove the lemma by induction on c. The
base case of c = 1 holds since a K1,<2k-graph has no isolated vertices. Indeed, this property
implies G has at least V (G)

2 ≥ k edges.
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Figure 1 An overload from O3,2.

Since all components of G are trees, for each one the number of vertices is one more than
the number of edges. If there is a component C, with k ≤ |E(C)| < 2k, we may color V (C)
with the same color (then, G[V (C)] ∈ (1, k)-LC). Since we only used |V (C)| ≤ 2k vertices,
H = G − V (C) has at least 2(c − 1)k vertices and so H ∈ (c − 1, k)-LC by the induction
hypothesis. Thus, G ∈ (c, k)-LC.

We may assume that every component has less than k edges and let C1, . . . , Ct be the
components of G. Let b be the minimum nonnegative integer for which there exists I ⊆ [t]
such that Σi∈I |E(Ci)| = k + b ≥ k. Since there is no isolated vertex in a star graph,
m ≥ n/2 ≥ ck, and thus such a set I exists. Observe that for any i ∈ I, |E(Ci)| > b, as
otherwise Σj∈I\{i}|E(Cj)| = k+b−|E(Ci)| ≥ k, a contradiction to the minimality of b. Since
every component has less than k edges, b ≤ k − 2. For a star (V,E), the ratio |V ||E| increases
when |E| decreases. Thus, we have Σj∈I |V (Cj)| ≤ Σj∈I |E(Cj)|maxh∈I( |V (Ch)|

|E(Ch)| ) ≤ (k+b) b+2
b+1 .

But 2k−(k+b) b+2
b+1 = (k−2−b)b

b+1 ≥ 0, and so Σj∈I |V (Cj)| ≤ 2k. We may color the components
Ci, i ∈ I, by the same color. Again, we have that H = G− V (

⋃
i∈I Ci) has at least 2(c− 1)k

vertices and so H ∈ (c− 1, k)-LC by the induction hypothesis. Thus, G ∈ (c, k)-LC. J

Since G ∈ (c, k)-LC whenever G has a subgraph H ∈ (c, k)-LC, we have that any graph
with n ≥ 2ck and a K1,<2k-cover is in (c, k)-LC. To decide the second property, we introduce
a family (Oi,k)i,k∈N of overloads.

I Definition 3. We call a pair (V1, V2) of disjoint vertex sets an overload from Oi,k if |V1| = i,
N(v) ⊆ V1 for all v ∈ V2, and for every u ∈ V1 there is a set Vu ⊆ NV2(u) such that |Vu| ≥ k
and for every pair u, v of distinct vertices of V1, Vu ∩ Vv = ∅ (see Fig. 1).

Note that if v is an isolated vertex, the pair (∅, {v}) is an overload from O0,k. If a graph
G has an overload (V1, V2) from Oi,k, then G[V1 ∪ V2] ∈ (i, k)-LC: for each u ∈ V1, color
Vu ∪ {u} with one color. However, G[V1 ∪ V2] /∈ (i+ 1, k)-LC. Indeed, an edge can only be
colored with one of |V1| = i colors. So, in any coloring, an overload from Oi,k may give
k edges for each of i colors but cannot bring any edge for all the other colors. From this
observation, we deduce the following set of reduction rules. (Note that our reduction rules
generalize the well-known Crown Reduction Rule. Similar, but different, reduction rules were
used in [8].)

Reduction rule Ri,k. If an instance G for (c, k)-LC contains an overload (V1, V2) from Oi,k,
delete all the vertices of V1 ∪ V2 from G and decrease c by i.

Since the existence of an overload from Oi,k for i ≥ c, in a graph G implies G ∈ (c, k)-LC,
we only consider Ri,k for i < c. We now show rules Ri,k are safe and can be applied in time
polynomial in n (recall that c is fixed). We say that a graph is irreducible for (c, k)-LC if it
is not possible to apply any rule Ri,k, i < c, to the graph.

IPEC’15
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I Lemma 4. Let G be a graph and G′ be the graph obtained from G after applying reduction
rule Ri,k. Then G ∈ (c, k)-LC if and only if G′ ∈ (c− i, k)-LC.

Proof. Let (V1, V2) be the overload from Oi,k used to map (G, c) to (G′, c − i). On the
one hand, if G′ ∈ (c − i, k)-LC, there exists a (c − i, k)-coloring of G′ and together with
a (i, k)-coloring of the overload, we obtain a (c, k)-coloring of G: G ∈ (c, k)-LC. On the
other hand, observe that the vertices of V2 are isolated in G − V1. Thus E(G − V1) =
E(G − V1 − V2) = E(G′). If G ∈ (c, k)-LC, in any (c, k)-coloring of G, there are at least
c− |V1| = c− i colors with no edge with endvertices in V1. These colors must have their k
edges in E(G− V1) = E(G′). Thus G′ ∈ (c− i, k)-LC. J

I Lemma 5. One can decide whether Rule Ri,k is applicable to G in time O(ni+O(1)).

Proof. Generate all i-size subsets V1 of V (G). For each V1, construct the set V2 that includes
every vertex outside V1 whose only neighbors are in V1. If |V2| ≥ ik, construct the following
bipartite graph B: the partite sets of B are V ′1 and V2, where V ′1 contains k copies of every
vertex v of V1 with the same neighbors as v. Observe that B has a matching covering V ′1
if and only if Ri,k can be applied to G for the overload (V1, V2). It is not hard to turn the
above into an algorithm of runtime O(ni+O(1)). J

In fact, the running time in Lemma 5 can be improved: in the journal version of this
paper, we will show that O(ni+O(1)) can be replaced by O((cn)2).

Now, we want to show that a graph without any overloads has a star cover with small
degree. If so, since an irreducible graph has no overload from Oi,k, i ∈ [c− 1], an irreducible
graph for (c, k)-LC with at least 2ck vertices would be in (c, k)-LC:

I Lemma 6. Let G be a graph and k a positive integer. If G has no overload from Oi,k for
any i ≤ n, then G has a K1,≤max{3,k}-cover.

Proof. Let G be a graph with no overload from Oi,k for any i ≤ n. We first show that G has
a star cover. Since it is not possible to apply R0,k, G has no isolated vertex. By choosing a
spanning tree of each component of G, we obtain a forest F . If a tree in F is not a star, it
has an edge between two non-leaves. As long as F contains such an edge, delete it from F .
Observe that F becomes a star cover of G. However, the number of leaves in each star of
F is only bounded by ∆(G). We will show that among the possible star covers of G, there
exists a K1,≤max(3,k)-cover.

For each star cover F , we define the F -sequence (F∆(G),F∆(G)−1,. . ., F1), where Fi is the
number of stars with exactly i edges, i ∈ [∆(G)]. We say a star cover F is smaller than a
star cover F ′ if and only if the F -sequence is smaller than the F ′-sequence lexicographically,
i.e. there exists some i ∈ [∆(G)] such that Fi < F ′i and for every j > i, Fj = F ′j .

We select a star cover S of G which has the lexicographically minimum sequence, that is,
for any star cover F of G, the S-sequence is smaller or equal to the F -sequence. Suppose that
∆(S) > max{3, k}. Let Ci (Li, respectively) be the set of all the centers (leaves, respectively)
of all stars of S isomorphic to K1,i. We also define L≥i = ∪j≥iLj . We will now prove two
claims.

Claim 1. There is no edge uv ∈ E(G) \ E(S) such that u ∈ L≥3 and v ∈ L≥1.
Indeed, suppose there exists one and let x, y be such that xu, yv ∈ E(S). If v ∈ L≥2, then

by deleting edges xu, yv and adding edge uv, we do not create any isolated vertex but we
decrease the size of the stars centered at x and y, and thus we get a smaller star cover than
S, a contradiction. Otherwise, v is an endvertex of an independent edge, and by deleting
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x c1 c2 y

⊆ S′

∈ E(S)
∈ E(G) \ E(S)

Figure 2 An alternating path from x to y with ∆(S) = 4.

edge xu and adding edge uv, we decrease the size of the star centered at x, and create a star
K1,2 centered at v, which still induces a star cover smaller than S, a contradiction.

Claim 2. Suppose S contains a star isomorphic to K1,i and centered at vertex x, and a star
isomorphic to K1,j and centered at vertex y, such that i− j ≥ 2. There is no path from x to
y in which the odd edges are in E(S) and go from a center to a leaf, and the even edges are
in E(G) \ E(S) and go from a leaf to a center. (see Fig. 2)

Suppose there exists such a path. Then by deleting the odd edges of the path and
adding the even ones, we do not create isolated vertices because x still has leaf-neighbors,
y gets a neighbor, every transitional center keeps the same number of leaf-neighbors and
the transitional leaves always go to a new center. This operation only decreases the size
of star centered at x by 1 and increases the size of star centered at y by 1, giving us a
lexicographically smaller star cover, a contradiction.

Let S′ be the subgraph of S containing all stars K1,∆(S) of S. While there is an edge
uv ∈ E(G) \ E(S) such that u is a leaf of S′ and v ∈ C∆(S)−1 \ S′, we add the star centered
at v to S′. Let C ′ (L′, respectively) be the centers (leaves, respectively) in S′. Suppose there
is an edge uv ∈ E(G) \ E(S) such that u ∈ L′ ⊆ L≥∆(S)−1 ⊆ L≥3 and v ∈ V (G) \ C ′. By
Claim 1, v 6∈ L≥1. Since v 6∈ C∆(S) ⊆ C ′ and since the above procedure has terminated,
v ∈ Cj for some j such that ∆(S) − j ≥ 2. Now, by construction, there is an alternating
path from a vertex in C∆(S) to a vertex in Cj of the type described in Claim 2, which is
impossible.

So, there is no edge uv ∈ E(G) \ E(S) such that u ∈ L′ and v 6∈ C ′. This means that for
any u ∈ L′, N(u) ⊆ C ′. Furthermore, for each u ∈ C ′, we can define Vu to be the leaves of
the star centered at u, for which we have |Vu| ≥ ∆(S)− 1 ≥ k. Thus, (C ′, L′) is an overload
from O|C′|,k, which is impossible. J

Since we obtain the expected result, we can deduce our theorem:

I Theorem 7. For k > 1, if G is irreducible for (c, k)-LC and has at least 2ck vertices,
then G ∈ (c, k)-LC. Furthermore, for any fixed c ≥ 2 and for any positive integer k, c-Load
Coloring admits a kernel with less than 2ck vertices.

Proof. Observe first that for every c ≥ 2, G ∈ (c, 1)-LC if and only if G has a matching
with at least c edges. Since this property can be decided in polynomial time, we just need to
consider the case when k > 1.

By Lemmas 4 and 5, there is a polynomial algorithm that reduces an instance (G, c) to
an instance (G′, c′) such that c′ ≤ c and G′ is irreducible for (c′, k)-LC. Suppose the kernel
G′ has at least 2c′k vertices, but G 6∈ (c′, k)-LC. Then, observe that G′ does not have an
overload from Oi,k, i ≥ c′, and thus G′ has a K1,≤max(3,k)-cover by Lemma 6. Since k > 1,
this star cover is a K1,<2k-cover and Lemma 2 implies that G′ ∈ (c′, k)-LC, a contradiction.
So, if |V (G′)| ≥ 2c′k, then G′ ∈ (c′, k)-LC and G ∈ (c, k)-LC, hence we may conclude the
kernel G′ has less than 2c′k ≤ 2ck vertices. J

IPEC’15
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3 Bounding Number of Edges in Kernel

Let S(c) be the integer sequence defined by induction by S(1) = 1, S(2c) = 4S(c) and
S(2c+1) = 2S(c)+2S(c+1). This sequence is known as A073121 in the Online Encyclopedia
of Integer Sequences [13] (see also [2]). We will use the following technical result.

I Lemma 8. If c is even, S(c) ≤ 9c2−4
8 . For arbitrary c, S(c) ≤ 9c2−1

8 .

Proof. It is easy to check the base cases: S(1) = 1 = 9(1)2−1
8 , S(2) = 4 = 9(2)2−4

8 and
S(3) = 10 = 9(3)2−1

8 . We now assume the claim holds for every c ≤ 2c′ − 1 and we will prove
it for c = 2c′ and c = 2c′ + 1.

For even value, we have:

S(2c) = 4S(c) ≤ 49c2 − 1
8 = 9(2c)2 − 4

8 .

For odd value, we have:

S(2c+ 1) = 2(S(c) + S(c+ 1))

≤ 29c2 + 9(c+ 1)2 − 1− 4
8 = 9(2c+ 1)2 − 1

8 . J

By using the kernel we proved in the previous section, we show that c-Load Coloring
admits a kernel with less than (2S(c) + 4c2 − 5c)k edges. Because of the upper bound on
S(c) given by Lemma 8, the number of edges in a kernel may be bounded by 6.25c2k. We
first prove a smaller bound for bipartite graphs.

I Lemma 9. Let b(c, k, n) = S(c)k + (c − 1)n. For every positive integer c and bipartite
graph G with n vertices, if m ≥ b(c, k, n) then G ∈ (c, k)-LC.

Proof. We prove the lemma by induction on c. For the base case, observe that any graph
with at least k = b(1, k, n) edges is in (1, k)-LC for every k and n. We now assume the claim
holds for every c ≤ 2c′ − 1 and we will prove it for c = 2c′ and c = 2c′ + 1.

Suppose that G = (A ∪B,E) is a bipartite graph with n vertices and at least b(c, k, n)
edges, but G 6∈ (c, k)-LC. Let B2 be a maximal subset of B such that

|E(A,B2)| < b(c− c′, k, |A|+ |B2|) + b(c− c′, k, |B2|) . (1)

So, for any vertex u ∈ B \B2, the set B2 ∪ {u} doesn’t satisfy (1). Such a set B2 exists since
the empty set satisfies (1). Moreover, for any partition (A1, A2) of A, we know there exists
i ∈ {1, 2} such that

|E(Ai, B2 ∪ {u})| ≥ b(c− c′, k, |Ai|+ |B2 ∪ {u}|) (2)

as otherwise, the linearity in n of b(c, k, n) implies a contradiction with the maximality of B2:

|E(A,B2 ∪ {u})| = |E(A1, B2 ∪ {u})|+ |E(A2, B2 ∪ {u})|
< b(c− c′, k, |A1|+ |B2 ∪ {u}|) + b(c− c′, k, |A2|+ |B2 ∪ {u}|)
= b(c− c′, k, |A|+ |B2 ∪ {u}|) + b(c− c′, k, |B2 ∪ {u}|).

Let B1 = B \B2, A1 = A and A2 = ∅. We define the following inequalities.

|E(A1, B1)| < b(c′, k, |A1|+ |B1|) + |A1| (3)
|E(A2, B1)| < b(c′, k, |A2|+ |B1|) + |A2|. (4)
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While (3) does not hold and (4) holds, we move an arbitrary vertex from A1 to A2.
Suppose eventually (3) and (4) are both false and let u be an arbitrary vertex in B1. We
deduce for both i = 1 and i = 2 that

|E(Ai, B1 \ {u})| ≥ b(c′, k, |Ai|+ |B1|) .

Thus, there exist disjoint vertex sets X and Y such that |E(X)| ≥ b(c′, k, |X|) and
|E(Y )| ≥ b(c−c′, k, |Y |) (eitherX = A1∪B1\{u} and Y = A2∪B2∪{u}, orX = A2∪B1\{u}
and Y = A1 ∪ B2 ∪ {u}), depending on whether (2) holds for i = 1 or i = 2. By taking a
(c′, k)-coloring of X and a (c−c′, k)-coloring of Y , we have that G ∈ (c, k)-LC, a contradiction.

So, we may assume (3) eventually holds. If A2 = ∅, then |E(A2, B1)| = 0. Otherwise, let
v be the last vertex moved from A1 to A2. Observe that

|E(A2, B1)| ≤ |E(A2 \ {v}, B1)|+ |B1|
< b(c′, k, |A2 \ {v}|+ |B1|) + |A2 \ {v}|+ |B1| (by (4)).
< b(c′, k, |A2|+ |B1|) + |A2|+ |B1|. (5)

In both cases, (5) holds and we can bound the number of edges in G:

|E(G)| = |E(A,B2)|+ |E(A1, B1)|+ |E(A2, B1)|
< b(c− c′, k, |A|+ |B2|) + b(c− c′, k, |B2|)
+ b(c′, k, |A1|+ |B1|) + |A1|
+ b(c′, k, |A2|+ |B1|) + |A2|+ |B1|

(by inequalities (1),(3),(5)).

If c = 2c′, we have c− c′ = c′ and it is not hard to check that

|E(G)| < 4S(c′)k + 2(c′ − 1)n+ n = b(c, k, n).

Otherwise, c = 2c′ + 1 and then c− c′ = c′ + 1. Thus,

|E(G)| < 2S(c′)k + 2S(c′ + 1)k + 2(c′ − 1)n
+|A|+ 2|B2|+ |A1|+ |A2|+ |B1|

≤ S(2c′ + 1)k + 2c′n = b(c, k, n).

Thus, for c = 2c′ and c = 2c′ + 1, we have |E(G)| < b(c, k, n), a contradiction. So, there is
no bipartite graph with n vertices and at least b(c, k, n) edges such that G 6∈ (c, k)-LC. J

We now generalize this lemma for any graph. We would like to find a partition (A,B) of
V such that |E(A)|+ |E(B)| is bounded, since |E(A,B)| is bounded.

I Lemma 10. Let f(c, k, n) = (2S(c) − c)k + 2(c − 1)n. For every positive integer c and
every graph G with n vertices, if m ≥ f(c, k, n) then G ∈ (c, k)-LC.

Proof. We prove the lemma by induction on c. For the base case, observe that any graph
with at least k = f(1, k, n) edges is in (1, k)-LC for every k and n. We now assume the claim
holds for every c ≤ 2c′ − 1 and we will prove it for c = 2c′ and c = 2c′ + 1.

Consider a graph G with n vertices and at least f(c′, k, n) edges, such that G 6∈ (c, k)-LC.
We will first show that there exists a set A ⊆ V (G) such that f(c′, k, |A|) ≤ |E(A)| ≤
f(c′, k, |A|) + |A| (and thus G[A] ∈ (c′, k)-LC). We may construct the set A as follows:

IPEC’15
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initially A = ∅ and while |E(A)| < f(c′, k, |A|), add an arbitrary vertex of V (G) \ A to A.
Let u be the last added vertex. Then

|E(A)| ≤ |E(A \ {u})|+ |A \ {u}| < f(c′, k, |A \ {u}|) + |A \ {u}| < f(c′, k, |A|) + |A|.

Let B = V (G) \ A. If G[B] ∈ (c − c′, k)-LC, then G ∈ (c, k)-LC, a contradiction. So
|E(B)| < f(c− c′, k, |B|). Furthermore, |E(A,B)| < b(c, k, n) by Lemma 9. Finally, we may
bound |E(G)|. If c = 2c′, we have c− c′ = c′

|E(G)| < f(c′, k, |A|) + f(c′, k, |B|) + b(2c′, k, n) + |A|
≤ (2S(2c′)− 2c′)k + (4c′ − 2)n = f(c, k, n).

Otherwise, c = 2c′ + 1 and c− c′ = c′ + 1. Thus,

|E(G)| < f(c′, k, |A|) + f(c′ + 1, k, |B|) + b(2c′ + 1, k, n) + |A|
≤ (2S(2c′ + 1)− (2c′ + 1))k + 4c′n = f(c, k, n).

Thus, in both cases |E(G)| < f(c, k, n), as required. J

I Theorem 11. The c-Load Coloring Problem admits a kernel with less than f(c, k, 2ck) <
6.25c2k edges.

Proof. By Theorem 7, we can get a kernel with less than 2ck vertices. Thus by Lemmas 10
and 8, we get a kernel such that |E(G)| < f(c, k, 2ck) < 6.25c2k. J

The size of this kernel may be optimal up to a constant factor. Indeed, the complete
bipartite graph Kc,ck−1 is an irreducible graph for (c, k)-LC with c2k − c = O(c2k) edges,
but Kc,ck−1 6∈ (c, k)-LC. We can increase this lower bound by joining all c vertices on the
smaller side of Kc,ck−1. The resulting graph is not in (c, k)-LC either, and it has c2k+ c(c−3)

2
edges.

We now consider an approximation algorithm for the Max c-Load Coloring problem:
Given a graph G and integer c, we wish to determine the maximum k, denoted kopt, for
which G ∈ (c, k)-LC. Given an approximation algorithm, we define the approximation ratio
r(c) = kopt

k , where k is the output of the approximation algorithm.
Let K(c)k be an upper bound of the number of edges in a kernel for (c, k)-LC and let

P (c) =
∏c
i=1

K(i)
i . By Theorem 11, we may have K(c) = 6.25c2.

I Theorem 12. There is a 2c−1P (c)-approximation algorithm for Max c-Load Coloring.

Proof. We prove the claim by induction on c. For c = 1, we have P (1) = 1. Assume the
theorem is true for all c′ < c and let G be an instance for c-Load Coloring with n vertices
and m edges. We may assume that G has no isolated vertices. Clearly, kopt ≤ m

c . Consider
k = b m

K(c)c.
If k = 0, then m < K(c) and we can find kopt in O(1) time.
Now let k > 0. If n ≤ 2ck, then by the proof of Theorem 11, since m ≥ K(c)k,

G ∈ (c, k)-LC. So we return k, and kopt

k ≤
m
ck ≤

K(c)(k+1)
ck ≤ 2K(c)

c ≤ 2c−1P (c).
If n ≥ 2ck and G is irreducible for (c, k)-LC, then by Theorem 7, G ∈ (c, k)-LC and

we return k as above. If n ≥ 2ck and G is not irreducible for (c, k)-LC, we can use
Lemma 5 to reduce (G, c) to (G′, c′) with c′ < c. By induction we may find k′ such that
k′opt ≤ 2c′−1P (c′)k′, where k′opt is the optimal solution for Max c′-Load Coloring on G′.
Now consider three cases:

k′ ≥ k. Then G′ ∈ (c′, k)-LC and so G ∈ (c, k)-LC. This case also leads to the above
conclusion.
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k′opt ≤ 2c′−1P (c′)k′ < k. Because k′opt + 1 ≤ k, an overload from Oc−c′,k is also an
overload from Oc−c′,k′

opt+1, therefore G′ can be derived from G using a reduction rule for
(c, k′opt + 1)-LC. Since G′ 6∈ (c′, k′opt + 1)-LC, G 6∈ (c, k′opt + 1)-LC. Thus kopt = k′opt. The
algorithm may output k′ which satisfies kopt = k′opt ≤ 2c′−1P (c′)k′ ≤ 2c−1P (c)k.
k′ < k ≤ 2c′−1P (c′)k′. The algorithm gives k′ as an approximation of kopt. Then
kopt

k′ ≤ m
ck′ ≤ K(c)(k+1)

ck′ ≤ K(c)
c

2k
k′ ≤ K(c)

c 2c′
P (c′) ≤ 2c−1P (c).

In every case, the approximation ratio is at most 2c−1P (c). J

4 Number of Edges in Kernel for c = 2

In this section, we look into the edge kernel problem for the special case when c = 2. By
doing a refined analysis, we will give a kernel with less than 8k edges for (2, k)-LC, which is a
better bound than the general one. Henceforth, we assume that G is irreducible for (2, k)-LC,
and just consider the case when |V (G)| < 4k, as we have proved that if |V (G)| ≥ 4k then
G ∈ (2, k)-LC.

I Lemma 13. If G has at least 3k− 2 edges and every component in G has less than k edges
then G ∈ (2, k)-LC.

Proof. We consider colorings of the graph such that vertices in the same component are
colored with the same color. Thus every edge in the graph is colored with 1 or 2. Denote
the set of edges colored i with Ei, i = 1, 2. Among all possible colorings, choose a coloring of
the graph such that |E1| ≥ |E2| and ||E1| − |E2|| is minimum. Suppose |E2| ≤ k − 1, then
|E1| ≥ 2k − 1, ||E1| − |E2|| > k. Changing the color of one component from 1 to 2, we get
a new coloring of the graph. For the new coloring, denote the set of edges colored i with
E′i, i = 1, 2. Since each component has less than k edges, |E1| > |E′1| ≥ k, |E′2| ≤ 2k − 2.
So ||E′1| − |E′2|| < ||E1| − |E2||, a contradiction. Therefore we have |E1| ≥ |E2| ≥ k, so
G ∈ (2, k)-LC. J

If G has at least two components, each with at least k edges, it is obviously a Yes-instance.
Therefore by Lemma 13, we may assume there is exactly one component C with at least k
edges in the graph. Denote the total number of edges in G− V (C) with m′. Observe that if
m′ ≥ k, trivially G ∈ (2, k)-LC. So assume that m′ < k.

I Lemma 14. If G is an irreducible graph for (2, k)-LC, m′ < k and ∆ = ∆(G) ≥ 3k− 2m′,
then G ∈ (2, k)-LC.

Proof. Let u be one of the vertices with degree ∆ and N(u) its neighbors. Because the
graph is reduced by Reduction Rule R1,k, u has at least 2k − 2m′ neighbors which are not
leaves. Arbitrarily select k −m′ vertices among them and for each one, select any neighbor
but u. Color the selected vertices and G− V (C) by 1. By construction, there are at least k
edges colored 1 and there are at most 2k − 2m′ colored vertices in N(u). So there are at
least k uncolored vertices in N(u). We color them and u with 2. So G ∈ (2, k)-LC. J

I Lemma 15. Let G be a graph with ∆ < 3k and |E(G)| ≥ 8k, then G ∈ (2, k)-LC.

Proof. By Lemma 13, we may assume there exists a connected component C with at least k
edges. In C, choose a minimal set A ⊆ V (C) such that |A| ≤ k + 1 and |E(A)| = k + d ≥ k.
We may find such a set A in the following way. Select arbitrarily a vertex in C and put it into
A, then keep adding to this set some neighbor of some vertex in A until |E(A)| = k + d ≥ k.
Since each time we select a neighbor of A we strictly increase |E(A)|, |A| ≤ k + 1. If there
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is any vertex u ∈ A with |NA(u)| ≤ d, then A′ = A \ {u} is a smaller vertex set such that
|E(A′)| ≥ k. Thus, we may remove such vertices until |E(A)| = k + d and for each vertex
u ∈ A, |NA(u)| > d. Denote B = V (G) \ A. We may assume |E(B)| < k, as otherwise
G ∈ (2, k)-LC.

We now show that |A|+ d ≤ k + 3. Since every vertex u ∈ A has dA(u) > d, |E(A)| =
1
2Σu∈AdA(u) ≥ d+1

2 |A|. We have k + d = |E(A)| ≥ d+1
2 |A|, thus |A| ≤

2(k+d)
d+1 . Moreover as

d ≤ |A| − 1,

d+ |A| ≤ 2|A| − 1 ≤ 4(k + d)
d+ 1 − 1 < 4k

d+ 1 + 3.

If d ≥ 3, we are done; otherwise d ≤ 2 and d+ |A| ≤ 2 + k + 1 = k + 3.
Let A1, A2, B1, B2 be a partition of V (G) such that A = A1 ∪A2, B = B1 ∪B2, |A2| = 1

and |E(A,B2)| < 2k. Such a partition is possible: let y = argmax{|NB(u)| : u ∈ A} and
initially take A1 = A \ {y}, A2 = {y}, B1 = B,B2 = ∅. Suppose |E(A1, B1)| ≤ k + |A1|.
Then

|E(G)| ≤ |E(A)|+ |E(B)|+ |E(A1, B1)|+ |E(A2, B1)|
≤ (k + d) + (k − 1) + (k + |A| − 1) + ∆
≤ 7k + 1,

a contradiction since |E(G)| > 8k. So, |E(A1, B1)| > k + |A1|. We will consider two cases:
max{|NB1(u)| : u ∈ A} is greater than k or not.

If so, observe that |E(A2, B1)| = |E({y}, B1)| = max{|NB1(u)| : u ∈ A} > k. Move all
vertices of B1 \N(y) to B2. We still have |E({y}, B1)| > k and |E({y}, B2)| = 0. Moreover
B1 ⊆ N(y). If |E(A1, B2)| ≥ k, then G is in (2, k)-LC, thus |E(A1, B2)| < k. While
|E({y}, B1)| ≥ k + 1 and |E(A1, B1)| ≥ k + |A1|, move an arbitrary vertex from B1 to
B2. After each move, |E({y}, B1)| ≥ k and |E(A1, B1)| ≥ k, thus |E(A2, B2)| < k and
|E(A1, B2)| < k as otherwise, G would be in (2, k)-LC.

Eventually, we have |E(A1, B1)| < k + |A1| or |E({y}, B1)| = k. Suppose |E(A1, B1)| <
k + |A1|. Then

|E(G)| ≤ |E(A)|+ |E(B)|+ |E(A1, B1)|+ |E(A1, B2)|+ |E({y}, B)|
≤ (k + d) + (k − 1) + (k + |A1| − 1) + (k − 1) + ∆
≤ 4k − 3 + (d+ |A|) + ∆
< 8k,

a contradiction. Thus, |E(A1, B1)| ≥ k + |A1| and |E({y}, B1)| = k. As B1 ⊆ N(y), we
have |B1| = k. We have found a new partition with the required properties and with
max{|NB1(u)| : u ∈ A} ≤ |B1| = k.

We now consider the case max{|NB1(u)| : u ∈ A} ≤ k. While there exists u ∈ B1 such
that |E(A,B2∪{u})| < 2k, move u from B1 to B2. Then, (if and) while |E(A1, B1)| ≥ k+|A1|
and |E(A2, B1)| < k + |A2|, move an arbitrary vertex from A1 to A2.

After all such moves, suppose that |E(A1, B1)| < k + |A1|. If |A2| = 1, we have
|E(A2, B1)| ≤ max{|NB1(u)| : u ∈ A} ≤ k, otherwise we moved some vertices from A1 to
A2. Let u be the last one. Since |E(A2 \ {u}, B1)| < k + |A2 \ {u}|, we know |E(A2, B1)| ≤
|E(A2 \ {u}, B1)|+ max{|NB1(u)| : u ∈ A} < k + |A2| − 1 + k = 2k + |A2| − 1. For both
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cases,

|E(G)| = |E(A)|+ |E(B)|+ |E(A1, B1)|+ |E(A2, B1)|+ |E(A,B2)|
≤ (k + d) + (k − 1) + (k + |A1| − 1) + (2k + |A2| − 2) + (2k − 1)
≤ 7k + d+ |A| − 5
< 8k,

which is impossible.
So, |E(A1, B1)| ≥ k+|A1| which implies |E(A2, B1)| ≥ k+|A2|. For any vertex u ∈ B1, we

have |E(A1, B1\{u})| ≥ k and |E(A2, B1\{u})| ≥ k and we also obtain |E(A,B2∪{u})| ≥ 2k,
i.e E(A1, B2 ∪ {u}) or E(A2, B2 ∪ {u}) has at least k edges. Thus, G ∈ (2, k)-LC. J

The lemmas of this section and the fact that their proofs can be turned into polynomial
algorithms, imply the following:

I Theorem 16. If G is irreducible for (2, k)-LC and has at least 8k edges, then G ∈ (2, k)-LC.
Thus, 2-Load Coloring admits a kernel with less than 8k edges.

Since we have a better bound for the number of edges in a kernel when c = 2, we may
get a better approximation when c = 2.

I Theorem 17. For every ε > 0, there is a (4 + ε)-approximation algorithm for 2-Max
Load Coloring.

Proof. Let G be an instance for 2-Max Load Coloring with m = 8p + q edges, where
0 ≤ q < 8. Let kopt be the optimal solution of 2-Max Load Coloring on G, and observe
that kopt ≤ bm2 c ≤ 4p+ 3. Let p0 = d 3

εe. If p ≤ p0 − 1 then we can find kopt in O(1) time.
So assume that p ≥ p0. Note that kopt

p ≤
4p+3
p ≤ 4 + ε. If G is irreducible for (2, p)-LC,

G ∈ (2, p)-LC by Theorem 16, and so p gives the required approximation. We may assume
that G is not irreducible for (2, p)-LC and reduce G to G′. If |E(G′)| ≥ p, then G′ ∈ (1, p)-LC,
and by Lemma 4, G ∈ (2, p)-LC. Again, p gives the required approximation.

Now assume that |E(G′)| < p and let k′opt = |E(G′)| be the optimal solution of Max
1-Load Coloring on G′. Then k′opt+1 ≤ p and so an overload from O1,p is also an overload
from O1,k′

opt+1. Thus, G′ can be derived from G using a reduction rule for (2, k′opt + 1)-LC.
Since G′ 6∈ (1, k′opt + 1)-LC, G 6∈ (2, k′opt + 1)-LC. Thus kopt = k′opt = |E(G′)|. So let our
algorithm output |E(G′)| in this case. J

5 Discussions

To the best of our knowledge, we obtained the first nontrivial linear-edge kernel for a problem
on general graphs. As we saw, such kernels can be used to obtain approximation algorithms.
It would be interesting to obtain such kernels for other problems.

It is clear that our approximation algorithm is far from optimal; we will present an
O(c)-approximation algorithm in the journal version of this paper.

Our linear-vertex kernel result implies an O∗(c2ck)-time algorithm for c-Load Coloring,
which simply tests all the c-colorings of the kernel. However, it is possible that there is a
subexponential FPT algorithm, since the problem No c-Load Coloring (the complement of
c-Load Coloring) has small, but not constant, forbidden minors and is minor-bidimensional
(see [5, 6] for more information on forbidden minors and bidimensionality).

Let tw(G) denote the treewidth of G. The O∗(2tw(G))-time algorithm for 2-Load
Coloring from [9] can be generalized to an O∗(ctw(G))-time algorithm for c-Load Coloring.
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By [5, 6], if we require that the input G is H-minor-free for some fixed graph H, then we
obtain an O∗(c

√
ck)-time algorithm. Unfortunately, there is no constant forbidden minor for

No c-Load Coloring as membership in (c, k)-LC requires at least ck edges.
We think that there exists a subexponential algorithm for c-Load Coloring. By

Theorem 4.12 of [5], and since branchwidth is linked to the treewidth up to a constant
factor, any graph G contains an (Ω( tw(G)

gen(G) )× Ω( tw(G)
gen(G) ))-grid as a minor, where gen(G) is

the genus of G. Since the (r × r)-grid is a forbidden minor for No c-Load Coloring for
r = d

√
(c+ 1)k e, we have tw(G) = O(

√
ck gen(G)). Thus, we obtain an O∗(c

√
ck gen(G))-

time algorithm to solve c-Load Coloring, which is subexponential for graphs of bounded
genus.
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