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Abstract
We consider the following graph cut problem called Critical Node Cut (CNC): Given a graph
G on n vertices, and two positive integers k and x, determine whether G has a set of k vertices
whose removal leaves G with at most x connected pairs of vertices. We analyze this problem in
the framework of parameterized complexity. That is, we are interested in whether or not this
problem is solvable in f(κ) · nO(1) time (i.e., whether or not it is fixed-parameter tractable), for
various natural parameters κ. We consider four such parameters:

The size k of the required cut.
The upper bound x on the number of remaining connected pairs.
The lower bound y on the number of connected pairs to be removed.
The treewidth w of G.

We determine whether or not CNC is fixed-parameter tractable for each of these parameters.
We determine this also for all possible aggregations of these four parameters, apart from w + k.
Moreover, we also determine whether or not CNC admits a polynomial kernel for all these
parameterizations. That is, whether or not there is an algorithm that reduces each instance of
CNC in polynomial time to an equivalent instance of size κO(1), where κ is the given parameter.
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1 Introduction

In 2013 a polio virus struck Israel. The virus spread in alarming speed, creating a nationwide
panic of parents concerned about the well-being of their children. It was obvious to the
Israeli health department that vaccinating all Israeli children is not a practical solution
in the given time frame. Thus it became clear that some areas of the country should be
vaccinated first in order to stop the spread of the virus as quickly as possible. Let us represent
a geographic area as a vertex of a graph, and the roads between areas as edges of the
graph. In this setting, vaccinating an area corresponds to deleting a certain vertex from the
graph. Thus, the objective of stopping the virus from spreading translates to minimizing the
number of connected pairs (two vertices which are in the same connected component) in the
corresponding graph after applying the vaccination.

This scenario can be modeled by the following graph-theoretic problem called Critical
Node Cut (CNC). In this problem, we are given an undirected simple graph G and two
integers k and x. The objective is to determine whether there exists a set C ⊆ V (G) of
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at most k vertices in G, such that the graph G − C which results from removing C from
G, contains at most x connected pairs. In this sense, the cut C is considered critical since
removing it from G leaves few (at most x) connected pairs. For convenience, throughout the
paper we will count ordered connected pairs; i.e., pairs (u, v) ∈ V (G)× V (G), u 6= v, where
u and v belong to same connected component in G− C.

The goal of CNC is thus, roughly speaking, to destroy the connectivity of a given graph as
much as possible given a certain budget for deleting vertices. From this point of view, CNC
fits nicely to the broad family of graph-cut problems. Graph-cut problems have been studied
widely and are among the most fundamental problems in algorithmic research. Examples
include Min Cut, Max Cut, Multicut, Multiway Cut, Feedback Vertex Set, and
Vertex Cover (see e.g. [19] for definitions of these problems). The latter is the special
case of CNC with x = 0. Since Vertex Cover is one of the most important problems in
the theory of algorithmic design for NP-hard problems, CNC provides a natural test bed to
see which of the techniques from this theory can be extended, and to what extent.

Previous Work and Applications. The CNC problem has been studied from various angles.
The problem was shown to be NP-complete in [3] (although its NP-completeness follows
directly from the much earlier NP-completeness result for Vertex Cover). In trees, a
weighted version of CNC is NP-complete whereas the unweighted version can be solved
in polynomial time [12]. The case of bounded treewidth can be solved using dynamic
programming in O(nw+1) time, where n is the number of vertices in the graph and w is
its treewidth [1]. Local search [3] and simulated annealing [28] were proposed as heuristic
algorithms for CNC. Finally, in [29] an approximation algorithm based on randomized
rounding was developed.

Due to its generic nature, the CNC problem has been considered in various applications.
One example application is the virus vaccination problem discussed above [3]. Other inter-
esting applications include protecting a computer/communication network from corrupted
nodes, analyzing anti-terrorism networks [23], measuring centrality in brain networks [21],
insulin signaling [27], and protein-protein interaction network analysis [6].

Our Results. From reviewing the literature mentioned above, it is noticeable that an
analysis of CNC from the perspective of parameterized complexity [13] is lacking. The
purpose of this paper is to remedy this situation. We examine CNC with respect to four
natural parameters along with all their possible combined aggregations. The four basic
parameters we examine are:

The size k of the solution (i.e., the critical node cut) C.
The bound x on the number of connected pairs in the resulting graph G− C.
The number of connected pairs y to be removed from G; if G is connected and has n
vertices then y = n(n− 1)− x.
The treewidth w of G.

Table 1 summarizes all we know regarding the complexity of CNC with respect to these four
parameters and their aggregation.

Let us briefly go through some of the trivial results given in the table above. First note
that CNC with x = 0 is precisely the Vertex Cover problem, which means that CNC is
not in FPT (and therefore has no polynomial kernel) for parameter x unless P=NP. This also
implies that the problem is unlikely to admit a polynomial kernel even when parameterized by
w+x, since such a kernel would imply a polynomial kernel for Vertex Cover parameterized
by the treewidth w which is known to cause the collapse of the polynomial hierarchy [5, 15].
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Table 1 Summary of the complexity results for Critical Node Cut.

Parameter Result
k x y w FPT P-Kernel
X NO (Thm. 1) NO (Thm. 1)

X NO NO
X YES (Thm. 13) NO (Thm. 14)

X NO (Thm. 5) NO (Thm. 14)
X X YES (Thm. 3) YES (Thm. 4)
X X YES (Thm. 13) NO (Thm. 14)
X X ? NO (Thm. 14)

X X YES YES
X X YES (Thm. 12) NO

X X YES (Thm. 13) NO (Thm. 14)
X X X YES YES
X X X YES (Thm. 3) YES (Thm. 4)
X X X YES (Thm. 13) NO (Thm. 14)

X X X YES YES
X X X X YES YES

Next, notice that if our input graph G has no isolated vertices, we have x+ y = Ω(n), and
therefore CNC is FPT and has a polynomial kernel for x+ y (as isolated vertices can safely
be discarded). This of course means that the same applies for parameters k+x+y, x+y+w,
and k + x+ y + w.

Our first result, stated in Theorem 1, shows that CNC parameterized by k is W[1]-hard.
Thus, CNC is unlikely to have an FPT algorithm under this parameterization. We then
show in Theorem 3 and Theorem 4, that when considering x + k as a parameter, we can
extend two classical Vertex Cover techniques to the CNC problem. Our main technical
result is stated in Theorem 5, where we prove that CNC is W[1]-hard with respect to w,
the treewidth of the input graph. This is somewhat surprising since not many graph cut
problems are known to be W[1]-hard when parameterized by treewidth. Also, the result
complements nicely the O(nw+1)-time algorithm of [1] by showing that this algorithm cannot
be improved substantially. We complement this algorithm from the other direction by
showing in Theorem 12 that CNC can be solved in f(w + x) · nO(1) time. Finally, we show
in Theorem 13 and Theorem 14 that CNC is FPT with respect to y, and has no polynomial
kernel even for y + w + k. Due to lack of space, most proofs are deferred to a full version of
the article.1

Related Work. This paper belongs to a recent extensively explored line of research in
parameterized complexity where various types of graph cut problems are analyzed according
to various natural problem parameterizations. This line of research can perhaps be traced
back to the seminal paper of Marx [24] who studied five such problems, and in the process
introduced the fundamental notion of important separators. This paper paved the way to
several parameterized results for various graph cut problems, including Multicut [7, 20,
22, 24, 25, 26, 30], MultiwayCut [9, 10, 11, 20, 24, 30], and Steiner Multicut [8]. A
particularly closely related problem to CNC is the so-called Vertex Integrity problem
where we want to remove k vertices from a graph such that the largest connected component

1 A preliminary full version can be obtained at http://arxiv.org/abs/1503.06321.

IPEC’15

http://arxiv.org/abs/1503.06321


346 Parameterized Complexity of Critical Node Cuts

in the remaining graph has a bounded number of vertices. Fellows and Stueckle [18] were
the first to analyze this problem from a parameterized point of view; we refer the reader
to [14] for a detailed overview. The edge deletion variant of Vertex Integrity has also
been studied [16].

2 Parameters k and k + x

We now consider the parameters k and k + x for CNC. We first show that the problem is
W[1]-hard for k. To this end, we devise a reduction from Clique. From an instance (G, `)
of Clique, which asks whether G contains a complete subgraph of order `, we construct H,
the graph of our CNC instance, as follows: Replace each edge in G by n parallel edges, and
then subdivide each of the new edges once. Next, add an edge in H between each pair of
nonadjacent vertices of G. Finally, set k := `.

I Theorem 1. Critical Node Cut is W[1]-hard with respect to k.

We next show that the above result holds also for some restricted subclasses. A split
graph is a graph in which the vertices can be partitioned into a clique and an independent
set. We slightly modify the construction by adding all the edges missing between every pair
of non-dummy vertices. In this way, the vertices of G form a clique and the dummy vertices
form an independent set, while all arguments in the proof above still hold. For a fixed integer
d ≥ 1, a graph is called d-degenerate if each of its subgraphs has a vertex with a degree of at
most d. For d = 1 (i.e., a forest), the CNC problem has a polynomial algorithm based on
dynamic programming [12]. We modify the construction in the proof above by subdividing
all the edges except those that are adjacent to dummy vertices. This results in a 2-degenerate
graph, and also a bipartite graph with one side containing all vertices of G and the other
containing all the dummy vertices. By a slightly more careful (yet still along the same lines)
argument it can be shown that the conclusion of Theorem 1 still stands.

I Corollary 2. Critical Node Cut remains W[1]-hard with respect to k even if the input
graph is split, bipartite, or d-degenerate for any fixed d ≥ 2.

We next consider the parameter k + x. We will show that the basic techniques known for
the case of x = 0, i.e., Vertex Cover, can be extended to the case where x > 0. First, a
simple branching strategy can be developed into an FPT algorithm for the parameter k + x.

I Theorem 3. Critical Node Cut is FPT with respect to k + x.

The running time can be improved by using a more elaborate approach in the last step.
For example, isolated edges can be dealt with in a dynamic programming subroutine. Then
the remaining instance on which brute-force has to be applied has at most 1.5x vertices.
Next, we show that a simple “high-degree rule” leads to a polynomial kernel.

I Theorem 4. Critical Node Cut has a polynomial kernel with respect to k + x.

3 Parameter w

In this section we will show that CNC is unlikely to be fixed-parameter tractable when
parameterized by w. This implies that we cannot substantially improve on the O(nw+1)
algorithm of [1]. Since we will not directly use the notion of treewidth and tree decompositions,
we refer to [4] for their definition.
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I Theorem 5. Critical Node Cut is W[1]-hard with respect to the treewidth w of the
input graph.

Our proof of the theorem above is via the well-known multicolored clique technique [17]
which utilizes generic gadget structure to construct a reduction from the W[1]-complete
Multicolored Clique problem: Given an undirected simple graph G with n vertices and
m edges, a coloring function c : V (G) → {1, . . . , `} of the vertices of G, and a parameter
`, determine whether G has a clique which includes exactly one vertex from each color.
Throughout this section we use (G, c, `) to denote an arbitrary input to Multicolored
Clique. As usual in parameterized reductions, we can assume that n and ` are sufficiently
larger than any fixed constant, and that n is sufficiently larger than `.

In the multicolored clique technique, we construct selection gadgets which encode the
selection of vertices and edges of G (one per each color class and pair of color classes,
respectively), and validation gadgets which ensure that the vertices and edges selected indeed
form a clique in G. In our reduction below, we will force any feasible solution to delete a
large number of vertices from the constructed CNC instance in order to reach the required
bound on the number of remaining connected pairs. We will ensure that such a solution
always leaves 4

(
`
2
)
very large components which encode the selection of

(
`
2
)
edges in G. The

bound on the number of connected pairs will require all these huge components to have equal
size, which in turn can only happen if the edges selected in G are edges between the same
set of ` vertices (implying that these ` vertices form a clique in G). In what follows, we use
(H, k, x) to denote the instance of CNC that we construct, where H is the input graph, k is
the size of the required cut, and x is the bound on the number of connected pairs. Note that
for our proof to go through, we will also need to show that the treewidth of H is bounded by
some function in `.

Connector gadgets. To each vertex u ∈ V (G), we assign two unique integer identifiers:
low(u) ∈ {1, . . . , n} and high(u) ∈ {n+ 1, . . . , 2n}, where high(u) = 2n+ 1− low(u). Our
selection gadgets are composed from gadgets which we call connector gadgets. A connector
gadget corresponds to a vertex of G, and can be of low order or high order. A low order
connector gadget corresponding to a vertex u ∈ V (G) consists of a clique of size `4 and
an independent set of size n16 + low(u) which have all edges between them; i.e., it is a
complete split graph on these two sets of vertices. Similarly, a high order connector gadget
corresponding to u ∈ V (G) is a complete split graph on a clique of size `4 and an independent
set of size n16 + high(u).

We refer to the clique in a connector gadget as the core of the gadget, and to the remaining
vertices as the guard of the gadget. Only vertices in the core will be adjacent to vertices
outside the gadget. Notice that the huge independent set in the core contributes to a large
number of connected pairs in H, and one can delete all these connected pairs only by adding
all core vertices to the solution cut. Below we use this property to help us control solutions
for our CNC instance.

Selection gadgets. The graph H consists of a selection gadget for each vertex and edge in G
(see Figure 1): For a vertex u ∈ V (G), we will construct a u-selection gadget as follows: First
we add a clique U of size `2 to H, and then we connect all the vertices of U to an additional
independent set of n9 vertices, which we call the dummy vertices of the u-selection gadget.
We next connect U to (` − 1) gadget pairs, one pair for each color i ∈ {1, . . . , `} \ {c(u)}.
Each pair consists of a low order and a high order connector gadget corresponding to u.
We let Ai

o[u] and Bi
o[u] respectively denote the core and guard of the connector gadget

IPEC’15
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associated with color i ∈ {1, . . . , `} \ {c(u)} and of order o ∈ {low, high}. We connect U
to each connector gadget by adding all edges between all vertices of U and Ai

o[u], for each
i ∈ {1, . . . , `} \ {c(u)} and o ∈ {low, high}.

For an edge {u1, u2} ∈ E(G), we will construct a {u1, u2}-selection gadget as follows:
First we add a vertex which we denote by {u1, u2} to H. We then connect {u1, u2} ∈ V (H)
to a low order and a high order connector gadget associated with u1, and to a low order
and a high order connector gadget associated with u2, by adding all edges between vertex
{u1, u2} ∈ V (H) and the core vertices of these gadgets. We let Au

o [u1, u2] and Bu
o [u1, u2]

respectively denote the core and guard of the connector gadget corresponding to u ∈ {u1, u2}
of order o ∈ {low, high} in the {u1, u2}-selection gadget. Finally, we connect {u1, u2} ∈ V (H)
to an additional set of n4 dummy neighbors of degree one in H.

Validation gadgets. We next add the validation gadgets to H, one for each ordered pair
of distinct colors (i, j), i 6= j. For such a pair (i, j), the (i, j)-validation gadget simply
consists of two cliques Vlow[i, j] and Vhigh[i, j], each of size `7. The validation is done through
the connections of these two cliques to the remainder of the graph. Consider a u-selection
gadget for a vertex u ∈ V (G) of color i. We add all possible edges between Vlow[i, j] and
Aj

low[u], and all edges between Vhigh[i, j] and Aj
high[u]. This is done for every vertex of color

i. Consider next a {u1, u2}-selection gadget where c(u1) = i and c(u2) = j. We add all
possible edges between Vlow[i, j] and Au1

high[u1, u2], and all possible edges between Vhigh[i, j]
and Au1

low[u1, u2]. In this way, Vlow[i, j] is connected to low order connector gadgets of vertex
selection gadgets and to high order connector gadgets of edge selection gadgets, and Vhigh[i, j]
is connected in the opposite way.

CNC instance. The graph H of our CNC instance is thus composed of 4
(

`
2
)
validation

cliques which have `7 vertices each, n vertex selection gadgets each of size (`− 1)(2n16 + 2n+
1 + 2`4) + n9 + `2, and m edge selection gadgets which have 2(2n16 + 2n+ 1 + 2`4) + n4 + 1
vertices each. We finish the description of our reduction by setting k, the size of the required
critical node cut, to

k :=
(

2(`− 1)n+ 4m− 8
(
`

2

))
· `4 + `3 +

(
`

2

)
,

and setting x, the bound on the number of connected pairs, to

x := (n− `) (n9 + `2)(n9 + `2 − 1) +
(
m−

(
`

2

))
(n4 + 1)n4 +

4
(
`

2

)
(2n16 + 2n+ 1 + `7 + 2`4)(2n16 + 2n+ `7 + 2`4).

I Lemma 6. The graph H has treewidth at most 4
(

`
2
)
`7 + `4 + `2.

Proof. We use two well known facts about treewidth: The treewidth of a graph is the
maximum treewidth of all its components, and adding α vertices to a graph of treewidth at
most β results in a graph of treewidth at most α+ β. Using these two facts we get that a
connector gadget has treewidth at most `4, since we add `4 vertices to a graph of treewidth
0 (the independent set of vertices). From this we conclude that each selection gadget has
treewidth at most `4 + `2, since we either add a clique of size `2 or a single vertex to a graph
whose connected components have treewidth bounded by `4. Therefore, since H itself is
constructed by adding 4

(
`
2
)
· `7 validation vertices to a graph whose connected components

have treewidth at most `4 + `2, the lemma follows. J
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`2

n9

n4

`4 `7 `4

n16 + high(u1) n16 + low(u1)

n16 + low(u1) n16 + high(u1)

Aj
high[u1]

Bj
high[u1]

U

Aj
low[u1]

Bj
low[u1]

Vhigh[i, j]

Vlow[i, j]

Au1
low[u1, u2]

Bu1
low[u1, u2]

Au1
high[u1, u2]

Bu1
high[u1, u2]

Au2
low[u1, u2]

Bu2
low[u1, u2]

Au2
high[u1, u2]

Bu2
high[u1, u2]

{u1, u2}

Figure 1 The connection of selection gadgets via a validation gadget. In the example, we consider
a vertex u1 ∈ V (H) with c(u1) = i which is adjacent to a vertex u2 ∈ V (H) with c(u2) = j. The
diagram depicts the pair of low and high connector gadgets associated with color j in the u-selection
gadget that are connected to the {u1, u2}-selection gadget. The remaining (`− 2) pairs of connector
gadgets in the u-selection gadget are not depicted. The rectangle boxes represent cliques and each
ellipsis represents an independent set. The dotted lines depict a complete set of edges between two
sets of vertices.

From a multicolored clique to a critical node cut. Suppose (G, c, `) has a solution, i.e., a
multicolored clique S of size `. Then one can verify that the cut C ⊆ V (H) defined by

C := {U : u ∈ S} ∪ {{u1, u2} : u1 6= u2 ∈ S} ∪
{
v : v ∈ Ac

o[u], u /∈ S
}

∪
{
v : v ∈ Au

o [u1, u2], u1 6= u2 /∈ S
}

is of size k, and H − C contains exactly three types of non-trivial connected components:
n− ` components which include a clique U of size `2 along with n9 dummy vertices.
m−

(
`
2
)
components which include a single vertex of E(G) along with n4 dummy vertices.

4
(

`
2
)
components which have 2n16 + 2n+ 1 + `7 + 2`4 vertices each.

Thus, H − C has exactly x connected pairs, and C is indeed a solution to (H, k, x).

From a critical node cut to a multicolored clique. To complete the proof of Theorem 5,
we show that if (H, k, x) has a solution, i.e., a cut C of size k where H − C has at most x
connected pairs, then G has a multicolored clique of size `. We do this, using a few lemmas
that restrict the structure of solutions to our CNC instance. The first one of these, Lemma 7
below, shows that we can restrict our attention to cuts which include only core vertices of
connector gadgets and vertices of V (G) ∪ E(G).

I Lemma 7. If there is a solution to (H, k, x), then there is a solution C to this instance
which includes no guard vertices, no dummy vertices, and no validation vertices of H.

IPEC’15
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Proof. Let C be a solution to (H, k, x). If C includes any dummy vertex v of H, then since v
is a vertex whose neighborhood is a clique, we can either replace v with one of its neighbors
(which is a non-dummy vertex) or, if C contains all neighbors of v, we remove v from C.
Both modifications of C do not increase the number of connected pairs in H − C. Similarly,
if C includes guard vertices, these can be safely replaced with core vertices.

Next, we show that C cannot contain any validation clique completely. To this end,
note that a core of a connector gadget which is not completely included in C contributes
more than n32 connected pairs in H − C. This can be seen by counting the number of
connected pairs between a single core vertex and all of its guard neighbors. Thus, since
(16
(

`
2
)
+1)n32 > x assuming a sufficiently large n, the cut C must include all but at most 16

(
`
2
)

cores of connector gadgets in H. But as each validation clique is of size `7 > 8
(

`
2
)
`4 + `3 +

(
`
2
)

(for sufficiently large `), we have k− `7 < (2(`− 1)n+ 4m− 16
(

`
2
)
)`4, which means that if C

includes a validation clique it does not include enough cores. Thus, C cannot completely
contain any validation clique.

Finally, consider the case that C contains a proper subset of some validation clique Vo[i, j]
in H. Observe first that if the validation clique is not completely isolated in H − C, then
a vertex v ∈ C ∩ Vo[i, j] can be safely replaced by a core vertex that is adjacent to Vo[i, j]
as v is not a cut vertex in H − (C \ {v}). Thus, the only remaining case is that all vertices
that have a neighbor in Vo[i, j] are in C. Then, deleting the vertices in Vo[i, j] removes at
most `7(`7 − 1) connected pairs. By the choice of k, and the number of core vertices, C
cannot contain all core vertices. Consider a core vertex u /∈ C. Since C does not contain any
guard vertices, adding u to C removes at least n16 > `7(`7 − 1) connected pairs. Thus, we
can remove all vertices of Vo[i, j] ∩ C from C and replace them by u without increasing the
number of connected pairs in H − C. Thus, there is a solution that contains no vertices of
validation cliques. J

Assume that (H, k, x) has a solution, and fix a solution C as in Lemma 7. By the
definition of k, we know that the cut C cannot include all connector gadgets. A connector
gadget in H − C induces a large number of connected pairs, at least n32, due to the guard
vertices of the gadget. Let us therefore call a connected component in H − C huge if it
contains at least n32 connected pairs. The next lemma shows that there can only be a certain
number of these huge components in H − C, and reveals some further restriction on any
solution cut C. We call a maximal non-empty (but not necessarily proper) subset of a core
in H − C a partial core.

I Lemma 8. If C is a solution to (H, k, x) as in Lemma 7, then C includes (2(` − 1)n +
4m − 8

(
`
2
)
) cores. Furthermore, there are precisely 4

(
`
2
)
huge components in H − C, each

consisting of a validation clique, two partial cores, and the two guard sets of the partial cores.

Proof. Let A1, . . . , At denote all partial cores in H − C. Note that since each core is of size
`4 > `3 +

(
`
2
)
(for sufficiently large `), the cut C can include at most (2(`− 1)n+ 4m− 8

(
`
2
)
)

complete cores by definition of k, and so t ≥ 8
(

`
2
)
. By Lemma 7, the graph H − C contains

all 4
(

`
2
)
validation cliques. Let Q1, . . . , Qs denote the components in H − C that contain at

least one validation clique, and let qi := |Qi| − 1 for each i, 1 ≤ i ≤ s. Observe that for any
huge component Q in H − C, we have Q ∈ {Q1, . . . , Qs}.

Now, since the total number of validation cliques is 4
(

`
2
)
, we have s ≤ 4

(
`
2
)
, and the

total number of connected pairs in all the Qi’s is lower bounded by
∑s

i=1 q
2
i . Note that

each partial core Aj belongs to some Qi and contributes at least n16 + 1 vertices to its size
(accounting for a single vertex of Aj and all its guard neighbors), and therefore at least
n32 connected pairs. It can now be seen that since

∑s
i=1 q

2
i is concave and symmetric, it is
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minimized when the number of addends is as large as possible and all of the addends are of
equal size. This happens when s = 4

(
`
2
)
and each Qi includes exactly two Aj ’s, giving us∑s

i=1 q
2
i =

∑s
i=1((2n16)2) + o(n32) = 16

(
`
2
)
n32 + o(n32). If s < 4

(
`
2
)
or there is one Qi that

contains more then two Aj ’s, then the sum will be at least (16
(

`
2
)

+ 1)n32 > x. It follows that
there are exactly 4

(
`
2
)
huge components, that each have two Aj ’s. These huge components

contribute altogether at least 16
(

`
2
)
n32 connected pairs.

We have thus established that there are 4
(

`
2
)
huge components in H − C, and each

includes a validation clique, two partial cores, and the guard sets adjacent to these partial
cores which are not in C according to Lemma 7. To see that the huge components contain
nothing else, recall first that the overall number of connected pairs in these huge components
is at least 16

(
`
2
)
n32. Thus, the number of further additional connected pairs in H − C is

at most x− 16
(

`
2
)
n32 = n · n18 + o(n18) < 2n19. Now, if A contains other vertices, then by

construction it must contain either a vertex from a clique U corresponding to a vertex u of G,
or a vertex {u, u′} corresponding to an edge of G. In either of these cases, this additional
vertex is adjacent to at least n4 dummy vertices, implying that Q has an additional number
of n4 · n16 = n20 > 2n19 connected pairs, a contradiction. J

Slightly smaller than huge components are large components in H−C which have at least
n18 connected pairs and fewer than n32 connected pairs. Further smaller are big components
which have at least n8 connected pairs, and less than n18 connected pairs.

I Lemma 9. If C is a solution to (H, k, x) as in Lemma 7, then C includes exactly ` cliques
U1, . . . , U` corresponding to vertices u1, . . . , u` ∈ V (G), and there are precisely n− ` large
components in H − C.

Proof. Note that x = 16
(

`
2
)
n32 + (n− `)n18 + o(n18). By Lemma 8, we know that H − C

contains 4
(

`
2
)
huge components, and so these already account for 16

(
`
2
)
n32 connected pairs

in H − C. For every u ∈ V (G), if the clique corresponding to U is not completely contained
in C, then there is a large component corresponding to u in H − C, since by Lemma 7,
all n9 dummy neighbors of U are existent in H − C. Furthermore, any large component
in H − C is of this form. Thus, if C contains `′ < ` cliques corresponding to vertices
of G, then the number of connected pairs in H − C is at least 16

(
`
2
)
n32 + (n − `′)n18 >

16
(

`
2
)
n32 + (n− `)n18 + o(n18) = x, a contradiction. Moreover, by our choice of k, the cut C

cannot include (2(`− 1)n+ 4m− 8
(

`
2
)
) cores (as is necessary by Lemma 8) and more than `

such cliques U , since (2(`− 1)n+ 4m− 8
(

`
2
)
)`4 + (`+ 1)`2 > k. J

I Lemma 10. If C is a solution to (H, k, x) as in Lemma 7, then C includes exactly
(

`
2
)

vertices which correspond to edges in G, and there are precisely m−
(

`
2
)
big components in

H − C.

Proof. Let us call each element in the set {U ⊂ V (H) : u ∈ V (G)} ∪ {{u, u′} ∈ V (H) :
{u, u′} ∈ E(G)} a G-element. Thus, each G-element belongs to its unique selection gadget
in H, and corresponds to either a vertex or an edge of G. Moreover, each core is adjacent to
exactly one G-element. By Lemma 9 we know that C contains ` G-elements corresponding
to vertices of G. We next argue that it also contains

(
`
2
)
G-elements corresponding to edges

of G.
Consider a huge component Q in H − C. By Lemma 8, Q contains two partial cores A

and A′ and Q does not contain the unique G-element that is adjacent to the two partial cores.
Thus, the G-element neighbors of exactly 8

(
`
2
)
partial cores are contained in C. The set of

cliques U1, . . . , U` ⊆ C promised by Lemma 9 accounts for at most 2(`− 1) · ` = 4
(

`
2
)
such

cores, as each Ui has exactly 2(`− 1) neighboring cores in H. Notice that by the choice of k,
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after accounting for the vertices in C required by Lemma 8 and Lemma 9, the remaining
number of vertices is

(
`
2
)
. Any G-element representing a vertex has `2 >

(
`
2
)
vertices, and

thus all remaining deleted G-elements correspond to edges of G. Now observe that each of
them can account for at most four partial cores as they have exactly four neighboring cores
in H. Consequently, the number of deleted G-elements that correspond to edges in G is at
least

(
`
2
)
. By the choice of k, it is thus exactly

(
`
2
)
. J

I Lemma 11. The set of vertices u1, . . . , u` specified in Lemma 9 induces a multicolored
clique in G.

Proof. Lemma 8, Lemma 9, and Lemma 10 together state that C includes at least (2(`−
1)n+ 4m− 8

(
`
2
)
) · `4 core vertices, at least `3 vertices in cliques corresponding to vertices

of G, and at least
(

`
2
)
vertices corresponding to edges of G. By our selection of k, all these

lower bounds are in fact equalities. Thus, all but ` cliques U , u ∈ V (G), are present in
H − C, and all but

(
`
2
)
edges of G are present in H − C. All these vertices contribute at

least (n− `) (n9 + `2)(n9 + `2 − 1) +
(
m−

(
`
2
))

(n4 + 1)n4 connected pairs in H −C, due to
their dummy neighbors. Thus, by definition of x, the total number of connected pairs from
huge components in H − C is 4

(
`
2
)
(2n16 + 2n+ 1 + `7 + 2`4)(2n16 + 2n+ `7 + 2`4).

Now, note that according to Lemma 8, H −C includes exactly 8
(

`
2
)
partial cores with no

neighboring G-elements. The set of cliques U1, . . . , U` ⊆ C , promised by Lemma 9, accounts
for at most 2(`− 1) · ` = 4

(
`
2
)
partial cores. Moreover, each clique (corresponding to a vertex)

is of a different color, otherwise the specific structure promised by Lemma 8 is violated.
Similarly, the

(
`
2
)
deleted G-elements that correspond to edges in G, promised by Lemma 10,

account for at most 4
(

`
2
)
partial cores, and each edge corresponds to a different pair of colors.

Consequently, the only way to remove the required number of neighboring G-elements is if
these upper bounds are met with equality. Thus, we have ` vertices and

(
`
2
)
edges of different

colors, as required in a multicolored clique.
Finally, observe that due to the fact that we have accounted for all the vertices in C, it is

clear that each huge component consists of two complete (i.e., non-partial) cores. Thus, the
size of each of these huge components is 2n16 +`7 +2`4 +high(u1)+low(u′

1) for u1, u
′
1 ∈ V (G).

Therefore, the only way for the total number of connected pairs in all huge components to
not exceed 4

(
`
2
)
(2n16 + 2n+ 1 + `7 + 2`4)(2n16 + 2n+ `7 + 2`4) is if all huge components

have equal size, i.e., exactly (2n16 + 2n+ 1 + `7 + 2`4) vertices each. But this can happen
only if we have u1 = u′

1 in the pair of connector guards Bi
o[u1] and Bu′

1
ō [u′

1, u2], in each huge
component of H−C, as this is the only way for the guard vertices to sum up to 2n16 +2n+1.
Consequently, the set of

(
`
2
)
edges selected in G are edges between u1, . . . , u` implying that

they indeed form a clique. J

4 Parameters w + x and y

If we combine the treewidth parameter w with the parameter for the number of connected
pairs x, then we obtain fixed-parameter tractability. This can be derived via an optimization
variant of Courcelle’s theorem due to Arnborg et al. [2]. Using tree decompositions, we
obtain a more efficient algorithm.

I Theorem 12. The Critical Node Cut problem is FPT with respect to w + x.

Finally, we consider the CNC problem parameterized by y. We will show that the problem
is FPT under this parameterization but has no polynomial kernel even for the aggregate
parameterization of k + y + w.
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I Theorem 13. The Critical Node Cut problem is FPT with respect to y.

I Theorem 14. The Critical Node Cut problem parameterized by k + y + w has no
polynomial kernel unless the polynomial hierarchy collapses.

5 Discussion

We considered a natural graph cut problem called Critical Node Cut (CNC) under the
framework of parameterized complexity. The only parameterization left open in our analysis
is the parameter w + k, and so the first natural question left open in the paper is whether
CNC is fixed-parameter tractable under this parameterization (we know it is unlikely that it
admits a polynomial kernel). It would also be interesting to see how parameters maximum
degree and pathwidth affect the parameterized complexity of CNC. Finally, one can consider
the edge variant of the problem (where one is required to delete edges instead of vertices) and
the directed variant of the problem. Several of our proofs do not transfer directly to these
variants. For example, it is open whether the edge deletion variant of CNC is W[1]-hard with
respect to the number of edge deletions.
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