Fragments of Fixpoint Logic on Data Words*

Thomas Colcombet! and Amaldev Manuel?

1 LIAFA, CNRS, Université Paris 7-Paris Diderot, Paris, France
thomas.colcombet@liafa.univ-paris-diderot.fr

2 MIMUW, University of Warsaw, Poland
amal@mimuw.edu.pl

—— Abstract

We study fragments of a p-calculus over data words whose primary modalities are ‘go to next
position’ (X9), ‘go to previous position’ (YY), ‘go to next position with the same data value’ (X¢),
‘go to previous position with the same data value (Y¢). Our focus is on two fragments that are
called the bounded mode alternation fragment (BMA) and the bounded reversal fragment (BR).
BMA is the fragment of those formulas that whose unfoldings contain only a bounded number of
alternations between global modalities (X9,Y9) and class modalities (X¢,Y¢). Similarly BR is the
fragment of formulas whose unfoldings contain only a bounded number of alternations between
left modalities (Y9,Y¢) and right modalities (X9,X¢). We show that these fragments are decidable
(by inclusion in Data Automata), enjoy effective Boolean closure, and contain previously defined
logics such as the two variable fragment of first-order logic and DataLLTL. More precisely the
definable language in each formalism obey the following inclusions that are effective.

FO? C DatalL.TL € BMA ¢ BR C v C Data Automata .

Our main contribution is a method to prove inexpressibility results on the fragment BMA by
reducing them to inexpressibility results for combinatorial expressions. More precisely we prove
the following hierarchy of definable languages,

) = BMA° C BMA' C--- C BMA C BR,

where BMAPF is the set of all formulas whose unfoldings contain at most k—1 alternations between
global modalities (X9,Y9) and class modalities (X¢,Y¢). Since the class BMA is a generalisation
of FO? and DataLTL the inexpressibility results carry over to them as well.

1998 ACM Subject Classification F.4.1 Mathematical Logic
Keywords and phrases Data words, Data automata, Fixpoint logic

Digital Object ldentifier 10.4230/LIPIcs. FSTTCS.2015.98

1 Introduction

Data words are words of the form (ay,dy)...(an,d,) € (X x D)* where ¥ is a finite set of
letters and D is an infinite domain of data values. Typically the alphabet 3 abstracts a finite
set of actions or events and the set of data values D models some sort of identity information.
Thus, data words can model a number of scenarios where the information is linearly ordered
and it is composed of finite as well as unbounded elements. For example the authors of [1]
imagine X as the actions of a finite program and D as process ids. Then, an execution trace

* The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n® 259454.

© Thomas Colcombet and Amaldev Manuel;

Bv licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 98-111

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.98
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Colcombet and A. Manuel

of a system with unbounded instances of the program can be modeled as a data word in
which each action is associated with the identifier of the process which has generated it.

The paradigmatic question in the study of data words is to develop suitable models (in
particular automata and logics) to specify properties of data words. Sure enough there exists
a rich variety of models for specifying properties of data words that includes Data Automata
[4], Register Automata [14, 9], Pebble Automata [18], Class Memory Automata [1], Class
Automata [2], Walking Automata [17], Variable Automata [12], First-Order logic with two
variables [4], guarded MSO logic [5], DataLTL [15], Freeze-Logics[9, 13], Logic of Repeating
Values [8], XPath [10, 11], Regular expressions [16], Data Monoids [3] etc.

In this work we further study a modal fixpoint logic on data words that we introduced in
[6]. This logic is composed of four modalities that allow to evaluate formulas on the successor,
class successor (the nearest future position with the same data value), predecessor and class
predecessor (nearest past position with the same data value) positions, Y9,Y¢. In addition
there is a couple of zeroary modalities that describes whether these positions coincide or
not. To build the formulas, besides the usual Boolean operations, it is allowed to form the
least and greatest fixpoints of formulas . In [6] it is shown that the satisfiability problem
for the set of formulas that use only least fixpoints is undecidable, whereas the fragment
that consists of only greatest fixpoints is subsumed by Data Automata and hence it has
a decidable satisfiability problem. The main result of the work was the decidability of an
alternation-free fragment of the logic that further bounds the number of change of directions
in evaluating the formulas by using a generalisation of Data Automata.

Contributions

In the present paper, we aim at restricting the power of the above p-calculus logic for data
words for obtaining classes that are closed under all Boolean connectives, mirroring, and
enjoy decidability of emptiness and universality. We consider two restricted fragments that
achieve this goal. The first one, called BMA (for Bounded Mode Alternation) syntactically
bounds the number of changes between class and global modes. The second, called BR (for
Bounded Reversal), syntactically bounds the number of changes between left modalities and
right modalities.

It is easy to show that BMA is contained in Data Automata. It is not very difficult to
show that BMA is subsumed by BR, that is to say for every formula in BMA there is an
equivalent one in BR. Our main result is the strictness of this last inclusion, i.e. that there
is a formula in BR for which there is no equivalent formula in BMA. This proof uses a deep
result from combinatorics called the Hales-Jewett theorem. As a proof device we use a sort of
circuits called combinatorial expressions that were introduced in [7]. These expressions define
functions over an infinite domain (for instance the integers). They are built by composing
gates that are functions of two kinds, either the function has a bounded arity, or the function
has a bounded domain. In [7] it is shown that certain properties (a property is a function
that has a binary codomain) for instance the given sequence of positive integers has ged 1 or

the given sequence of integers sum to 0 cannot be computed by expressions of fixed depth.

We use a variant of this theorem in this paper to show that there is a formula in BR for which
there is no equivalent one in BMA. More precisely it is shown that there is a specific formula
in BR such that if it has an equivalent formula in BMA, then it is possible to construct
expressions of fixed depth for a particular property and since that particular property cannot
be computed by fixed depth expressions, we derive a contradiction. One thing to note is that
since the techniques developed in [7] are general enough to derive impossibility results for a
large family of properties, correspondingly the proof method developed here can be used to
show inexpressibility results for a variety of formulas.

99

FSTTCS 2015

100

Fragments of Fixpoint Logic on Data Words

Now we examine the implications of our result in a larger context. As mentioned earlier,
the results mentioned here have very close connection with Data Automata (DA for short).
The well known feature of DA is that it subsumes the logic FO? (X, <, +1,~, +°1) on data
words where X denotes the unary predicates indicating the letters, < is the linear order on
positions, +1 is the successor relation on positions, ~ is the equivalence relation on positions
with respect to the data values (i.e. i ~ j if d; = d;), and +°1 is the class successor relation.
It is known that data languages recognisable by DA are closed under union, intersection and
letter-to-letter projection, but not under complementation [4]. Since FO? formulas are closed
under Boolean operations, it is evident that Data Automata strictly subsumes the logic FO?2.
This observation prompts the question that if there are other classes subsumed by DA that
are closed under Boolean operations. The fragments introduced in the paper answer this
question positively. Note only that, there are automata theoretic characterisations that are
natural variants of DA for both these fragments (we only present the one for BMA).

Another and perhaps more important question is how to show that a given data language
is not expressible in FO?. Note that in some cases, using the techniques on words over finite
alphabets it is possible to show that a given data language is not definable in FO? (for
instance to show that data words of even length are not definable in FO?). We are interested
in those cases where such reductions are not possible, in particular where the property given
is dependent on the data values. We don’t have a complete solution to this problem yet,
but our method to prove inexpressibility results on BMA offers a partial answer. This is
because the logic FO? (3, <, +1,~, +¢1), as it is shown in this paper, is equivalent to the
unary fragment of a temporal logic, namely DataL.TL [15], which is a strict subfragment of
BMA. DataLLTL is the temporal logic where usual temporal operators such as until, future,
past etc. exist both on the linear order on positions (called the global order) as well as on
the suborders formed by subsets of positions that share the same data value (called the class
orders). For instance the temporal operator F9¢p is true a position if there is a position in the
future that satisfies the formula ¢, whereas the formula F€y is true at a position if there is a
future position that has the same data value as the current position and that satisfies the
formula ¢. The unary fragment of DatalLTL is the subclass of formulas that uses only the
unary temporal operators (such as FI9, P9 F¢ etc). Since every such operator is expressible in
FO? it is immediate that unary DatalTL is subsumed by the logic FO2. But the converse
direction, which is shown in the paper, is not obvious, since it is not immediate how to
translate formulas like Jy (a(x) A b(y) Ax < y Az # y). Thus inexpressibility results on the
fragment BMA renders directly corresponding results on all sublogics including FO? and
DataLTL.

Finally let us also note that the translations outlined in this paper, namely

FO? C DatalL,TL C BMA C BR C v C DA,

constitutes an alternate proof the main result of [4] that FO? is subsumed by DA. The proof
in [4] is a direct translation of FO? formulas by a intricate case analysis. Our proof, however,
is modular and makes use of analogous constructions from automata theory on finite words.

Related work

As mentioned already this work is strongly related to DataLTL, FO? and DA. One other
very popular ecosystem on data words is that of Register Automata and the associated logics
such as Freeze LTL, Freeze u-calculus, Xpath [9, 13, 8, 10, 11] etc. Our inexpressibility result
implies that BMA is incomparable to Register Automata (in particular nondeterministic 1-
Register Automata). Since all our modalities are expressible in terms of successor, predecessor,

T. Colcombet and A. Manuel

Figure 1 A data word and its graph. Dotted and thick arrows denote the successor and class
successor relations respectively.

freeze operator and fixpoint operators, our fixpoint logic is subsumed by Freeze p-calculus
of [13]. However it should be noted that the latter logic is highly undecidable [9]. The
decidable fragment of Freeze p-calculus (and also Freeze LTL) is unidirectional (only future
modalities) but our logic is naturally two-way. Finally the decidable two-way fragment of
Freeze LTL, namely Simple Freeze LTL is equivalent to FO? and hence it is subsumed by
BMA. Therefore our method of proving inexpressibility extends to this logic as well.

Structure of the document

In Section 2 we present the definition of our fixpoint logic and give some examples. In Section
3 we recall the composition operator (comp) on sets of formulas and define the fragments
BMA and BR using it. Thereafter, a characterisation of the class BMA in terms of cascades
of automata, that is used in the proof of the separation theorem, is given. In Section 4, first
we recollect the paradigm of combinatorial expressions and state the necessary results for
our purpose. Afterwards it shown how to translate a cascade on data words with a specific
structure to expressions and the separation theorem is proved. In Section 5 we conclude.

2 p-Calculus on Data Words

In this section, we recall the basics of the p-calculus on data words [6].
Fix an infinite set D of data values. Data words are words of the form

u=(a1,dy) - (an,d,) € (X x D)*

where Y is a finite alphabet of letters. Indices in a word are called positions. A maximal
set of positions in uw with the same data value is called a class. The set of classes in
u define an equivalence relation ~, called the class relation, on the set of positions of
u. Given a permutation o of D, it can be applied on a data word as expected, yielding

o(u) = (a1,0(dy)) ... (an,0(d,)). The data words u and o(u) have the same class relation.

A data language is a set of data words that is invariant under such applications of the
permutations of D.

For our purposes, it is convenient to see data words as graphs in the following manner. To
each data word w = (a1,d1) ... (an,dy) € (X x D)* associate the graph G,, = ([n], ¢, +1, +°1)
where [n] is the set of positions {1,...,n}, £: 3 — 2[is the labelling function £(a) = {i |
a; = a}, the binary relation +1 denotes the successor relation on positions, i.e., +1(i,j)
if j =4+ 1, and the binary relation +°1 denotes the class successor relation on positions,
i.e., +°1(3,5) if i < j, d; = d;, and d,,, # d; for all i <m < j. We call predecessor relation
(resp., class predecessor relation) the reverse of the successor relation (resp., class successor
relation). We implicitly identify a data word with its graph. Figure 1 shows a data word
and its corresponding graph.

Seen as such graphs, data words are naturally prone to the use of temporal logics. Let
Prop = {p,q,...} and Var = {x,y,...} be countable sets of propositional variables and

101

FSTTCS 2015

102

Fragments of Fixpoint Logic on Data Words

[fst?]w = {1} Xl = [elw —1
[lst°]w = {n} [Y¢lw = [¢lw +1
[fstTw = {i | fj=i—° 1} [Xplw = [p]w =1
[istw = {i | 3 =i+ 1} [Ye¢lw = [p]w +° 1
[e1 A @2]w = [e1]w N [w2]w [Slo ={i]i+1=i+1}
[p1V p2]w = [1]w U [@2]w [Plo={ili-1=i-"1}
[pz.olw = 0{S S [n] | [Pluwle@):=s) € S} [Plw = €(p)
[va.plw = U{S S [n] [S C [lupe@)=s} [=plw = [n] \ £(p)

[2]w = £(2)

Figure 2 Semantics of p-calculus on data words w = ([n], +1, +°1, £).

fixpoint variables respectively. The p-calculus on data words is the set of all formulas ¢
respecting the following syntax:

p=x|A|-A|Mp|eVeloNe|pz.p|vee
where M:=X9|X°|Y9|Y° and A:=pe€ Prop|S|P]| fst] fst? | lst® | lst?

The elements of M are called modalities, and the ones of A, atoms. The set of zeroary
modalities {fst®, fst9, Ist®, IstY, P, S} will be denoted by the symbol Z for the rest of the paper.

The semantic of a formula ¢, over a data word w is the set of positions of w where “p is
true” (denoted as [¢]). The formal definition is given in Figure 2. The different constructs
have their expected meaning, keeping in mind that the class modalities X¢, Y¢, fst¢, Ist® have
to be interpreted on the word restricted to the current data value. The modality S (resp., P)
holds at a position 7 if the successor and class successor i coincide (resp. the predecessor and
class predecessor coincide).

Note that in this definition of the logic, negations in a formula are located at the leaves. It
is nevertheless possible, as usual, to negate such formulas by pushing the negation toward the
leaves, but this requires a bit of care when negating modalities and fixpoints. For instance,
—X¢p is not equivalent to X°—p, but to Ist® V X*—p. Similar arguments have to be used
for all modalities. Following these ideas, we define the dual modalities X9 = IstY V X9,
Yo = fstI vV Y9, X¢p = Ist° V X¢p and Y¢p = fst® vV Y. These modalities are considered
dual since X9¢p = —X9—, ... Similarly pz.o(x) = —vz.~p(—x).

Next we lay out some terminology and abbreviations which we will use in the subsequent
sections. Let A denote either p or v. Every occurrence of a fixpoint variable x in a subformula
Az.¢p of a formula is called bound. All other occurrences of x are called free. A formula is
called a sentence if all the fixpoint variables in ¢ are bound. If ¢(z1, ..., x,) is a formula with
free variables x1, . .., 2,, then by ©(¢1,...,1,) we mean the formula obtained by substituting
1; for each x; in . As usual the bound variables of p(z1,...,z,) may require a renaming
to avoid the capture of the free variables of 1;’s. For a sentence ¢ and a position 7 in the
word w, we denote by w,i = ¢ if i € [¢],. The notation w = ¢ abbreviates the case when
i = 1. The data language of a sentence ¢, denoted as L(¢p), is the set of data words w such
that w = .

By p-fragment we mean the subset of p-calculus which uses only p-fixpoints. Similarly
v-fragment stands for the subset which uses only v-fixpoints.

T. Colcombet and A. Manuel

» Example 1 (temporal modalities). An example of a formula would be ¢ U9 ¢ which holds if
1 holds in the future, and ¢ holds in between. This can be implemented as px.1 V (¢ A X9x)
The formula Ut = pz.ypV (@ AX x) is similar, but for the fact that it refers only to the class
of the current position. The formula F9¢p abbreviates T U9 ¢, and its dual is G = =FI—¢p.
The constructs 89, S¢, P9, P¢, HY and H¢, are defined analogously, using past modalities, and
correspond respectively to U9, U¢, FI9, F¢, GY and G°. For instance, F°P°yp expresses that there
is a position in the class that satisfies ¢ and FP¢(p A X¢G—p A ¥°H —p) expresses that there
exists exactly one position which satisfies ¢ in the class.

3 The bounded reversal and bounded mode alternation fragments

In this section we introduce the bounded mode alternation and bounded reversal fragments
(BMA and BR) and compare these two fragments between themselves and with other logics
(Theorem 5).

3.1 Definition of the fragments

Before delving into the technical details let us outline the intuition behind each of the
fragments. The four modalities X9, Y9 X¢ and Y¢ can be divided along two axis. Based on
the directions: there are the left modalities Y9, Y¢, and right modalities X9, X¢. Based on the
modes: there are global modalities X9, Y9, and class modalities X¢, Y¢. The BR and BMA

fragments are defined by limiting the number of alternation between this types of modalities.

This is formally achieved using the operation comp that we define now.
Let ¥ be a set of y-calculus formulas. Define the sets comp®(¥) for i € N inductively
comp®(¥) = (),
comp™H (W) = {W(p1,. .., 0n) | V(21, .. 20) €V, ©1,..., 0, € comp’(¥)} in which the
substitution ¥ (p1,...,v,) is allowed only if none of the free variables of o1, ..., ¢, get
bound in ¥(p1,. .., ©n).

The set of formulas comp(¥) is defined as comp(¥) = |J,cy comp’(¥). For a formula
¥ € comp(V), the comp-height of ¢ in comp(¥) in the least ¢ such that v is in comp*(¥).

We are now ready to define the BR and BMA fragments of the p-calculus. For a set of
modalities M, define formulas(M) to be the set of formulas that uses only the modalities M
apart from the zeroary modalities.

» Definition 2. The BMA and the BR fragments of p-calculus are respectively:

BMA = comp (formulas ({X9,Y9}) U formulas ({X°,Y°})),
and BR = comp (formulas ({X9,X°}) U formulas ({Y9,Y})) .

Further, BMA* denotes the subset of BMA with comp-height k. Similarly BR* stands for
the subset of BR with comp-height k.

» Example 3. Let

1 =ve. (X% VXIpuy.(¢ AN YY), w2 = vx. (X¢st? V XYIx) ,
w3 = px.((vy.q VX)) VX2 vV Yix), and g = pr. (XX V p).

The formula ¢; is in BR? and in BMA3. The formula ¢ is neither in BR nor in BMA. The
formula 3 is in BMA? but not in BR. The formula ¢4 is in BR! but not in BMA.

103

FSTTCS 2015

104

Fragments of Fixpoint Logic on Data Words

» Example 4. Consider the language Ly, that contains the data words such that, by applying
k-times the sequence of the global successor followed by the class successor, one reaches a
position labeled with letter a. The language L is the union of all Ly for k ranging over all
non-negative integers. The language Ly is defined by ¢y, and L by ¢ defined as follows:

k-times

—N—
pr = X9X°...X9Xq, and o =pz.(X9XcVa).

The formula ¢y, is in BR! and in BMAZ?*. The formula ¢ is in BR', but not in BMA. Later
in Section 4 we will prove that a variant of L is not definable by any formula in BMA.

Let us now state the main theorem of this section, namely the inclusions between the
fragments of the p-calculus in terms of the data languages defined. Below DataLTL denotes
the temporal logic on data words consisting of the modalities {S, P, X9, Y9, X¢,Y¢, U9, S9,U°, S},
uDataLTL is the unary sublogic consisting of the modalities {S, P,X9,X¢, Y9, Y¢, F¢, F9, P9 P}
and v denotes the fragment of the u-calculus containing only the greatest fixpoints (v’s).

» Theorem 5. The following inclusions hold for definable languages,

FO*(%, <, +1,~, +°1) = uDataLTL C DatalLTL C BMA C BR C v C DA .

3.2 Characterising BMA as cascades of automata

Next we give a characterisation of BMA in terms of cascades of finite state automata. It
is classical that composition (comp) corresponds to the natural operation of composing
sequential transducers that compute subset of subformulas that are true at each position.
Given a p-calculus formula ¢ over words, we can see it as a transducer that reads the input,
and labels every position with one extra bit of information denoting the truth value of the
formula ¢ at that position. Under this view, the composition of formulas corresponds to
applying the transducers in sequence: the first transducer reads the input, and adds some
extra labelling on it. Then a second transducer reads the resulting word, and processes it in
a similar way, etc... If we push this view further, we can establish exact correspondences
between the class BMA, and suitable cascades of transducers. Furthermore, the comp-height
of the formula matches the number of transducers involved in the cascade.

First we introduce some notation. Given a data word w = (a1,dy) - - - (an, dy) the string
projection of w, denoted by str(w), is the word a; - - - a,. For a class S = {i1,...,4,,} the
class projection corresponding to S, denoted as str(w|s), is the finite word a;, - - - a;,, . For a
word u = by - - - by, the relabelling of w by w is the data word (b1,d;) ... (by,dy). Similarly
the relabelling of the class S in w by by - - by, is the data word (a},dy)--- (al,,d,) where
a; =b; if ¢ = i; and a; otherwise.

The marking of a position 7 in the data word w, in notation m(i), is the subset of zeroary
modalities Z satisfied by i. The marked string projection of w, denoted as mstr(w), is the
word (ay,m(1))---(an,m(n)) over the alphabet ¥ x 2%. For a class S = {iy,...,i,} the
marked class projection of S is the finite word (a;,,m(i1)) - - - (@i, ,m(in)), and it is denoted
as mstr(w|g).

A functional letter-to-letter transducer A : ¥* — I'* over words is a nondeterministic
finite state letter-to-letter transducer such that every input word w € ¥* has at most one
output word A(w) € I'*.

We next disclose two forms of transductions possible by a word transducer on data words.
Let A: (X x 2%)* — I'* be a functional letter-to-letter transducer.

T. Colcombet and A. Manuel

The automaton A acts as a global transducer when it runs on the marked string projection
mstr(w) of the input data word w € (3 x D)*. If the run succeeds then the unique output
data word w’ € (' x D)* = A(w) (by abuse of notation) is the relabelling of w with the word
A(mstr(w)).

Automaton A is a class transducer when for each class S in the input data word w, a
copy of the automaton A runs on the marked class projection mstr(w|g). If all the runs
succeed then the unique output data word A(w) (by abuse of notation) is the relabelling of
each class of S of w by A (mstr(w|s)).

» Definition 6. A cascade of class and global transducers over data words (hereafter simply
cascade) C is a sequence (¥ = Yo, A41,%1,...,%,-1,Ap, 5,) such that A;,..., A, is a
sequence of class and global transducers over data words and for each 7, the transducer A;
has input alphabet ¥;_; x 2% and output alphabet ;. Sets £g, ¥, are respectively the input
and output alphabets of the cascade C and n is the height of the cascade.

The cascade C has a successful run on a given data word w if there is a sequence of data
words wg = w, w1, . .., Wn—1, W, such that each transducer A; has a successful run on w;_1
outputing the data word w;. The data word w, is the output of the cascade C, in notation
C(w) = wy,. The language accepted by the cascade C, denoted as L(C), is the set of all data
words w on which C has a successful run.

Two cascades C; and Cy can be composed to form the cascade C; o Cy if the output
alphabet of C; and the input alphabet of Cy are the same. Composition of cascades is the
natural analogue of composition of formulas; this is expressed by the following proposition.

» Proposition 7. Let L be a set of data words. Then the following statements are equival-
ent.

1. L is definable by a formula in BMA of comp-height k.

2. L is recognisable by a cascade of height k.

4 Separation of the fragments BMA and BR

In this section we prove the main theorem of the paper, namely the separation of the
fragments of BMA and BR. More precisely it is shown that there is a formula in BR that
has no equivalent formula in BMA. We start by presenting our technical tool, namely
combinatorial expressions [7].

4.1 Combinatorial expressions

Put simply, combinatorial expressions are circuits over a data domain €. For our purposes it
is sufficient to assume that £ is a set that contains all the usual data types such as Booleans,
integers, finite words etc. We form expressions by composing variables (denoted by X,Y
etc.) and functions (denoted by f, g etc.) whose domains and ranges are explicitly specified.
A variable X has range E C &, denoted as X : FE, if it takes values from the set . We say a
function f: By X --- X By, — F, where Eq,...,E,, F C &, has arity k, domain E1 X -+ X Ej,
and range F'. The expressions are built using two specific classes of functions (called gates),
namely:

binary functions — when k < 2, and,

finitary functions — when each of Eq,..., E} is finite.

For example the addition on integers + : Z X Z — 7Z is a binary function, whereas the
Boolean disjunction of k inputs V : {0,1}* — {0, 1} is a finitary function.

105

FSTTCS 2015

106

Fragments of Fixpoint Logic on Data Words

» Definition 8. Combinatorial expressions are defined inductively;
a variable X : E is a combinatorial expression with range E, and depth 0.

if f:E) x---Xx E, — F is a binary or a finitary function, and ¢1, ..., t; are combinatorial
expressions with ranges E1, ..., By and depths dy, ..., dj respectively, then f(¢1,..., k)
is a combinatorial expression with range F' and depth max(ds,...,dx) + 1.

Let t(X) be a combinatorial expression that contains (possibly vacuously) the variables
X=X;: FEq,..., X, : E,. For the valuation a = a4, ..., a,, where a; € E; for each i, of the
variables X, the value of the expression ¢, denoted as t(a), is defined inductively; if ¢ is a
variable X; then t(a) = a;, and if t = f(t1,...,t;) then t(a) = f(t1(a),...,tx(a)). Assume
F C € is the range of the expression ¢. Naturally ¢ defines a map [t] : @ — t(a) from the set
Ey x--- x E, to the set F'. Given amap m : By X --- X B, = F, where Ey,...,E,,F C¢&,
we say the map is recognised by an expression ¢ if [t] = m. A particular case is when the
range of the map m is restricted to a set of size two (without loss of generality {0,1}); in
which case we say that t recognises the property {ai,...,a, : m(ay,...,a,) =1}

» Example 9. Each map f: E" — F, for some E, F C £ n € N, has an expression of depth
[logn] + 1 recognising it. Let cat : E* x E* — E* be the concatenation operation on words
over the alphabet E and let ¢(X; : E,..., X, : E) be an expression of depth [logn] that
consists of only the function cat and that computes the concatenation of the inputs. Let
u: E* — F be a binary function on words over E such that u(e; ---e,) = f(e1,...,e,). The
map f is recognised by expression u(t(X; : F,..., X, : E)).

» Example 10. Consider the set P, of n-tuples (uq,...,u,) of words in {0,1}* that all have
equal length. The property P, is recognised by the expression

t= /\ (el (Xl,XQ) yoeny el (Xl,Xn) s el (Xg,Xg) geeny el (XQ,Xn) gy 6l<Xn_1,Xn))

where / is the Boolean conjunction on n - (n — 1)/2 inputs and el : A* x A* — {0,1} is the
function on words defined as el(u,v) = 1 iff the words u and v are of the same length. The
function /\ is finitary and the function el is binary. The expression ¢ has depth 2.

In the previous example, regardless of the value of n the expression ¢ has a constant
depth. But there exists properties for which it is not the case.

» Definition 11. Let V,, be the set of n-tuples (ug,...,u,) of words over the alphabet {0,1}
such that:

1. the words uq,...,u, are of the same length, and;

2. there exists a position 1 <14 < |u;| such that the ith letter of each of u; to u,, is 1.

It is shown in [7] that,

» Theorem 12. There is no expression of depth at most k that recognises the property Vor 4.

4.2 Separation results

We now apply the above theorem to derive our inexpressibility results. The idea is to define
a data language B, that corresponds to the property V,, and to show that if there is a
BMA-formula of comp-height k recognising B,, then there is a combinatorial expression of
depth O(k) (precise bound disclosed later) recognising the property V,,. This claim along
with the Theorem 12 implies a lower bound on the comp-height of formulas defining the
language B,,.

T. Colcombet and A. Manuel

For the proof we rely on data words with a special structure that encode a sequence of
words. Let vq,...,v, € X* be words of identical and even length, say 2¢ € N. A data word
w € (X x D)* is a coding of the words vy, ...,v, € 5*, denoted as w = coding(vy, . .., vy,), if
w = w; - wy, wWith v1 = str(wy), ..., v, = str(w,) and the class relation is the set of tuples
(k-204+2i,(k+1)-204+2i—1) for 0 <k <n—1,1<i </ the position k - 2¢ + 2i is the
ith even position in the block wy11 and (k4 1) - 2¢ + 2i — 1 is the ith odd position in the
block wg42. Coding is only defined for words of identical even length and hereafter whenever
we say coding(vy,...,v,) it is understood that vy, ..., v, are of identical even length.

A data word w is a n-coding (or simply a coding when the value n is clear from the
context) if it is the coding of some words vy, ..., v, € X*. We write n-Codings for the set of
all n-codings.

a aa a b bbb b c c d d>d d

Figure 3 The coding of the words aaaa, bbbb, ccce, dddd € {a, b, c,d}*.

Next we introduce some gates and expressions that we use in the proofs. If w is the
coding of uq,...,u, € ¥* then mstr(w) = my(uy) - ma(uz) - - - ma(un—1) - m3(uy,) for binary
gates my, ma, m3 : X* — (X x 24)* such that:

1. For or all words u = ay---agp € X*,20 > 2

{fst?, fst€,Ist} ifi=1,
{fst®, Ist“} if 4 is odd and 7 # 1,

{fst°} if 7 is even.

mi(u) = (ay,21) - - - (ag¢, x2¢) where x; =

{lst®} if i is odd,

{fst°} if i is even.

{Ist°} if ¢ is odd,

{fst®, Ist“} if 4 is even and ¢ # 2/,
{fst®, Ist®, Ist9} if ¢ = 2.

ms(u) = (ay,21) - - - (age, x2¢) where x; =

ma(u) = (ay,21) - - - (az¢, x2¢) where z; = {

2. For each word ab € 32,

mq(ab) = (a, {fst®, fst?, Ist°})(b, {fst,S}) , ma(ab) = (a,{lst,P})(b, {fst®,S}) ,
ms(ab) = (a, {Ist®, P})(b, {fst®, Ist®, Ist}) .

3. For words of odd length the functions my, mq, m3 are fixed arbitrarily.

Let ise : ¥* — {0,1} be the binary gate defined as ise(w) = 1 precisely when w € ¥*
is not the empty word. Let bI : ¥* x {0,1} — X* be the binary function bI(z,1) = =
and bI(x,0) = e. For variables X = X; : ¥*,..., X,, : ¥*, let NE(X) be the expression
NA(ise(X1), ..., ise(X,,)) of depth 2 that recognises the property that none of the input words
is the empty word. Sometimes we use these gates and expressions over other alphabets, and
then it is understood that the domains of the functions are appropriately defined.

Next we prove that class transductions and global transductions on n-codings can be
defined by expressions of fixed height (irrespective of n). To summarise the intuition,
let w = wy---w, be the coding of the words uy,...,u, € X* such that str(w;) = w;.
Assume A : (X x 24)* — I'* is a class transducer that has a successful run on w and let
Alw) =w' = wi---w), € (I' x D)* where w, is a relabelling of w;. Observe that the only

107

FSTTCS 2015

108

Fragments of Fixpoint Logic on Data Words

other positions in the class of a position in w; appear either in w;_; or w;y1. Therefore to
compute str(w}) it suffices to know the words u;_1, u;, u;41 and hence there is an expression
that takes as inputs u;_1, u;, u;41 and outputs the word str(w}).

» Lemma 13. For ecach class transducer A : (¥ x 2%4)* — T'* and each n € N there
exist combinatorial expressions e1(X),...,en(X), where X = X1 : ¥*,...,X,, : ¥*, of
depth 7 such that for all n-tuple u = (uy,...,u,) of words in X* of identical even length

coding(e1 (), . .., en(w)) = A(coding(w)) .

Next we prove a similar claim for global transducers. The idea is as follows. Assume
A (3 x 22)* — I'* is a global transducer and let w = wy - - - w,, be the coding of the words
Uly. .., Uy € 3* such that str(w;) = u;. Assume that A has a successful run on w and let
Aw) =w' = wy---w), € (I x D)* where w, is a relabelling of w;. To compute str(w}) it
suffices to know the word wu; and the pair (p,q) of states of the automaton A which are
respectively the state of the automaton A before and after reading the word mstr(u;) on the
unique run on mstr(w). Among these, the pair (p,¢) can be computed a finitary function
that aggregates the set of all possible partial runs of A on each of the words uy, ..., u, and

hence an expression of fixed height can compute the word str(w}).

» Lemma 14. For each global transducer A : (X x 2%)* — T'* and each n € N there
exist combinatorial expressions e1(X),...,en(X), where X = X; : ¥*,..., X, : ©*, of
depth 5 such that for all n-tuple © = (u1,...,u,) of words in X* of identical even length
coding(e1 (), ..., en(n)) = A(coding(u)) .

The above two lemmas can be generalised to a similar claim on cascades by induction (on
the height of the cascade).

» Lemma 15. For a cascade C = (Ay, ..., Ax) with input alphabet ¥, and each n € N there
exist combinatorial expressions 61()_(), e en()_(), where X = X, : 3%, ..., X,, : 2%, of depth
at most 7k such that for all n-tuple @ = (uq,...,u,) of words in X* of identical even length
coding(ey(a), . .., en(u)) = C(coding(w)) .

Next we define a data language B,, that corresponds to the property V,,.

For a word w = ajas ...a; € {0,1}* we let pad(w) = lajlas - - - 1la;. We will also use pad
as a binary gate. A bridge in a data word w is a sequence of positions along a path that
consists of alternating class successor and global successor edges. Formally the sequence
of positions iy, ...,1, forms a bridge in w if there exists a sequence of successor and class
successor edges eq,...e,—1 in w such that for each 1 < j < n, e; = (4;,4;41) and for each
1<j<n—1,e;is asuccessor edge iff ;11 is a class successor edge. A bridge is a-labelled,
for a € 3, if all the positions in the bridge are labelled by the letter a.

» Definition 16. Let B,, C ({0,1} x D) be the set of all data words w such that w has a
1-labelled bridge 41, .. .,%2,—1 (connected by a path of 2n—2 edges), and
1. all positions to the left of i1 are first positions of classes,
2. all positions to the right of is, ;1 are last positions of classes, and
3. the path corresponding to the bridge starts with a class successor edge.
Define the data language B = |J,—, By.
The language B,, is defined by the BMA formula (also in unary-DataL'TL) of comp-height
2n + 1,

where 1X9¢ stands for the formula (1 A X9¢),

F9 (H9fst° A (1X°1X9)"G91st°) and 1X°p for (1 A X%p). v

T. Colcombet and A. Manuel

Similarly the language B is defined by the BR formula
fst€ U9 (px.(1X°1X92 V 1X°1X9G71st)) . (2)

» Proposition 17. Let (u1,...,uy) be a tuple of words of identical length over the alphabet
{0,1}. Then the following are equivalent.

1. (u1,...,up) € Vy.

2. The data word w = coding(pad(u1), ..., pad(uy)) is in the language B,,.

1 a1 " C1brS1 by C1-erS1 ¢ Cledivl ds

Figure 4 The data word w corresponding to the words ajaz, b1bs, cica,d1d2, and a bridge of
length 7 in w.

For a data language L C (¥ x D)* we write L° = {w € (X x D)* | w ¢ L} for
the complement of L. The data language L C (X x D)" separates the data languages
L1,Ly C (X xD) if L,NL=0and Ly;_; C L for some i € {0,1}. A cascade C (respectively

a formula @) separates the data languages Ly, Lo if L(C) (respectively L(p)) separates L1, L.

» Lemma 18. If there is a cascade C of height k that separates the data languages L1 =
B, Nn-Codings, Ly = (B,,)° N n-Codings then there is a combinatorial expression of depth
7k + 4 recognising the property V,,.

Proof. Assume that C is a cascade of height k separating the languages L1, Ls. Since
cascades (of height k) are closed under complementation, without loss of generality assume
that L(C) 2 Ly and L(C) N Ly = (. Therefore the cascade C produces an output on a
data word n-Codings 3 w € ({0,1} x D)* if and only if w is in the language B,. Let
e1(X),...,en(X), for X = X; :{0,1}*,..., X,, : {0,1}*, be the combinatorial expressions of
depth at most Tk, guaranteed by the Lemma 15 such that for all n-tuple @ = (uq, ..., uy) of
words in {0, 1}* of identical even length, coding(e1(a),...,e, (1)) = C(coding(w)).

Let pad(X) stand for the vector of expressions pad(X1), ..., pad(X,). We claim that the
expression

e = \(NE(ex(pad(X)),..., en(pad(X)),t(X1, ..., X0)) ,

where t is the expression from Example 10 for the alphabet {0,1} that checks if all the input
words are of the same length, computes the property V,. The expression e has depth at most
Tk + 4. To show the claim it is enough to verify that for a tuple u = (uq,...,u,) of words
from {0,1}* of equal length, none of the words vy = e;(pad(u)), ..., v, = ey (pad(w)) is the
empty word if and only if u € V,,. By Lemma 15, the words v; to v, are nonempty iff C
accepts the data word w = coding(pad(u)). By assumption, the data word w is accepted by
the cascade C iff w € B,,. By Lemma 17, the data word w is in the language B,, iff u is in
the property V,,. Hence the claim is proved. |

We are now ready for the main theorem;

Theorem 19 (Separation). Let N = Tk+4.

The data languages L1 = Byn 1 N (2V+1)-Codings and Ly = (Ban 1) N (2N +1)-Codings

are not separable by a formula in BMA of comp-height k.

2. The data language Bon 1 is not definable by a formula in BMA of comp-height k.

3. Class of BMA definable languages form a hierarchy under composition height; more
precisely for every k there exists a BMA-formula ¢ with comp-height k that has no
equivalent formula of comp-height k—1.

4. The class of BMA definable languages is strictly subsumed by the class of BR definable

languages.

=V

109

FSTTCS 2015

110

Fragments of Fixpoint Logic on Data Words

Proof.

1.

5

Proof by contradiction. Assume that the data languages L1, Lo are separable by a BMA
formula ¢ of comp-height k. This implies that there is cascade of height k separating
L1, Ly. By Lemma 18 there is an expression of depth IV recognising the property Vor ;.
This is in contradiction with Theorem 12.

Follows from (1).

From (2) and the Equation (1), By~ is definable by a BMA formula of comp-height
2-(2N 4+1) 41 but not by any formula of comp-height k. Therefore (1) the set of languages
defined by BMAF is strictly contained in the set of languages defined by BMAZ (2" +1)+1,
It only remains to separate the languages definable by BMA* and the languages definable
by BMA®+1 for all k. We prove this claim by contradiction. Assume that (x) there is some
m € N such that for every formula in BMA™*! there is an equivalent formula in BMA™.
We claim that for every formula in BMA™%2 there is an equivalent formula in BMA™ as
well. To prove the claim, let x = (1, ..., ¢,) be an arbitrary formula in BMA™*2 such
that 1 € BMA! and ¢,...,¢, € BMA™*L. By assumption (x) there exist formulas
@Y, € BMA™ equivalent to the formulas @1, ..., ¢, respectively. Therefore the
formula X' = (¢, ..., ¢)) is equivalent to the formula y and is in BMA™*!. Applying
the assumption (x) again there is a formula x” € BMA™ equivalent to x’ and hence also
to x, and hence the claim is proved. Extending this argument, by induction on k, it can
be shown that for every formula in BMA™%F there is an equivalent formula in BMA™.
This is in contradiction with the statement (). Hence the statement is proved.

We claim that the data language B is not definable by any BMA formula. For the sake
of contradiction, assume that there is a BMA formula ¢ of comp-height k recognising
the language B and let C be the cascade of height k corresponding to ¢. We claim
that the cascade C separates the languages L, and Lo. Clearly, by definition of the
language B, L; C B. We need to show that Lo N B = () and it suffices to prove that
for every w € (2V+1)-Codings if w € B then w ¢ (By~n,;)°. Since any coding w in
(2N 4-1)-Codings either belongs to By~ or does not belong to B, it follows that if w € B
then w & (Byny1)°. Therefore the cascade C separates the languages Ly and Ly which
contradicts (1) and hence the claim follows. On the other hand, since B is definable by a
formula in BR (Equation 2), the statement is proved. <

Conclusion

In this paper we studied the some fragments of p-calculus over data words. We disclosed two
fragments that are: the Bounded Reversal fragment (BR) and the Bounded Mode Alternation
fragment (BMA) and proved they are separate. BR and BMA happen to form Boolean
algebras making them very natural, and relatively expressive logics over data words. We also
establish the relationship with earlier logics like FO? or DataLTL.

—— References

1

Henrik Bjorklund and Thomas Schwentick. On notions of regularity for data languages.
Theor. Comput. Sci., 411(4-5):702-715, 2010.

M. Bojanczyk and S. Lasota. An extension of data automata that captures xpath. In Logic
in Computer Science (LICS), 2010, pages 243-252, July 2010.

Mikotaj Bojanczyk. Data monoids. In STACS, pages 105-116, 2011.

Mikotaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

T. Colcombet and A. Manuel

10

11

12

13

14

15

16

17

18

Thomas Colcombet, Clemens Ley, and Gabriele Puppis. On the use of guards for logics
with data. In MFCS, volume 6907 of LNCS, pages 243-255. Springer, 2011.

Thomas Colcombet and Amaldev Manuel. Generalized data automata and fixpoint logic.
In FSTTCS 2014, volume 29 of LIPIcs, pages 267278, 2014.

Thomas Colcombet and Amaldev Manuel. Combinatorial expressions and lower bounds.
In STACS 2015, volume 30 of LIPIcs, pages 249-261, 2015.

S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter
systems. In Logic in Computer Science (LICS), 2013, pages 33-42, June 2013.

Stéphane Demri and Ranko Lazi¢. LTL with the freeze quantifier and register automata.
ACM Transactions on Computational Logic, 10(3), April 2009.

D. Figueira. Alternating register automata on finite data words and trees. Logical Methods
in Computer Science, 8(1), 2012.

D. Figueira. Decidability of downward XPath. ACM Transactions on Computational Logic,
13(4), 2012.

O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite alphabets.

In Language and Automata Theory and Applications, pages 561-572. Springer, 2010.

M. Jurdzinski and R. Lazic. Alternating automata on data trees and xpath satisfiability.

ACM Trans. Comput. Log., 12(3):19, 2011.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329-363, 1994.

Ahmet Kara, Thomas Schwentick, and Thomas Zeume. Temporal logics on words with
multiple data values. In FSTTCS, volume 8 of LIPIcs, pages 481-492, 2010.

L. Libkin and D. Vrgoc. Regular expressions for data words. In LPAR, volume 7180 of
Lecture Notes in Computer Science, pages 274-288. SPRINGER, 2012.

A. Manuel, A. Muscholl, and G. Puppis. Walking on data words. In Computer Science
Theory and Applications, volume 7913 of LNCS, pages 64—75. Springer, 2013.

F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite
alphabets. ACM Transactions on Computational Logic, 5(3):403-435, 2004.

111

FSTTCS 2015

	Introduction
	mu-Calculus on Data Words
	The bounded reversal and bounded mode alternation fragments
	Definition of the fragments
	Characterising BMA as cascades of automata

	Separation of the fragments BMA and BR
	Combinatorial expressions
	Separation results

	Conclusion

