
Congestion Games with Multisets of Resources
and Applications in Synthesis
Guy Avni1, Orna Kupferman1, and Tami Tamir2

1 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

2 School of Computer Science, The Interdisciplinary Center, Israel

Abstract
In classical congestion games, players’ strategies are subsets of resources. We introduce and
study multiset congestion games, where players’ strategies are multisets of resources. Thus, in
each strategy a player may need to use each resource a different number of times, and his cost for
using the resource depends on the load that he and the other players generate on the resource.

Beyond the theoretical interest in examining the effect of a repeated use of resources, our study
enables better understanding of non-cooperative systems and environments whose behavior is not
covered by previously studied models. Indeed, congestion games with multiset-strategies arise,
for example, in production planing and network formation with tasks that are more involved than
reachability. We study in detail the application of synthesis from component libraries: different
users synthesize systems by gluing together components from a component library. A component
may be used in several systems and may be used several times in a system. The performance of
a component and hence the system’s quality depends on the load on it.

Our results reveal how the richer setting of multisets congestion games affects the stability and
equilibrium efficiency compared to standard congestion games. In particular, while we present
very simple instances with no pure Nash equilibrium and prove tighter and simpler lower bounds
for equilibrium inefficiency, we are also able to show that some of the positive results known for
affine and weighted congestion games apply to the richer setting of multisets.

1998 ACM Subject Classification F.2.0 Analysis of algorithms and problem complexity – Gen-
eral, J.4 Social and behavioral sciences – Economics

Keywords and phrases Congestion games, Multiset strategies, Equilibrium existence and com-
putation, Equilibrium inefficiency

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.365

1 Introduction

Congestion games model non-cooperative resource sharing among selfish players. Resources
may be shared by the players and the cost of using a resource increases with the load on it.
Such a cost paradigm models settings where high congestion corresponds to lower quality of
service or higher delay. Formally, each resource e is associated with an increasing latency
function fe : IN→ IR, where fe(`) is the cost of a single use of e when it has load `.

Previous work on congestion games assumes that players’ strategies are subsets of resources,
as is the case in many applications, most notably routing and network design. For example,
in the setting of networks, players have reachability objectives and strategies are subsets of
edges, each inducing a simple path from the source to the target [29, 3, 19]. We introduce
and study multiset games, where players’ strategies are multisets of resources. Thus, a player
may need a resource multiple times – depending on the specific resource and strategy, and

© Guy Avni, Orna Kupferman, and Tami Tamir;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 365–379

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.365
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

366 Congestion Games with Multisets of Resources and Applications in Synthesis

his cost for using the resource depends on the load that he and the other players generate on
it. Formally, in multiset congestion games (MCGs, for short), a player that uses j times a
resource e that is used ` times by all players together, pays j · fe(`) for these uses.

Beyond the theoretical interest in examining the effect of multisets on the extensively-
studied classical games, multiset congestion games arise naturally in many applications and
environments. The use of multisets enables the specification of rich settings that cannot be
specified by means of subsets. We give here several examples.

As a first example, consider network formation. In addition to reachability tasks, which
involve simple paths (and hence, subsets of resources), researchers have studied tasks whose
satisfaction may involve paths that are not simple. For example, a user may want to specify
that each traversal of a low-security channel is followed by a visit to a check-sum node. A
well-studied class of tasks that involve paths that need not be simple are these associated with
a specific length, such as patrols in a geographical region. Several communication protocols
are based on the fact that a message must pass a pre-defined length before reaching its
destination, either for security reasons (e.g., in Onion routing, where the message is encrypted
in layers [27]) or for marketing purposes (e.g., advertisement spread in social networks). In
addition, tasks of a pre-defined length are the components of proof-of-work protocols that
are used to deter denial of service attacks and other service abuses such as spam (e.g., [15]),
and of several protocols for sensor networks [7]. The introduction of multiset corresponds to
strategies that are not necessarily simple paths [5].

In production systems or in planning, a system is modeled by a network whose nodes
correspond to configurations and whose edges correspond to actions performed by resources.
Users have tasks, that need to be fulfilled by taking sequences of actions. This setting
corresponds to an MCG in which the strategies of the players are multisets of actions that
fulfill their tasks, which indeed often involve repeated execution of actions [13]; for example
“once the arm is up, do not put it down until the block is placed". Also, multiset games can
model preemptive scheduling, where the processing of a job may split in several feasible ways
among a set of machines.

Our last example, which we are going to study in detail, is synthesis form component
libraries. A central problem in formal methods is synthesis [26], namely the automated
construction of a system from its specification. In real life, hardware and software systems are
rarely constructed from scratch. Rather, a system is typically constructed from a library of
components by gluing components from a library (allowing multiple uses) [23]. For example,
when designing an internet browser, a designer does not implement the TCP protocol but
uses existing implementations as black boxes. The library of components is used by multiple
users simultaneously, and the usages are associated with costs. The usage cost can either
decrease with load (e.g., when the cost of a component represents its construction price,
the users of a component share this price) as was studied in [4], or increase with load (e.g.,
when the components are processors and a higher load means slower performance). The later
scenario induces an instance of an MCG.

Let us demonstrate the intricacy of the multiset setting with the question of the existence
of a pure Nash equilibrium (PNE). That is, whether each instance of the game has a profile
of pure strategies that constitutes a PNE – a profile such that no player can decrease his cost
by unilaterally deviating from his current strategy. By [28], classical congestion games are
potential games and thus always have a PNE. Moreover, by [19], in a symmetric congestion
game, a PNE can be found in polynomial time. As we show in Example 1 below, a PNE
might not exist in an MCG even in a symmetric two-player game over identical resources.

G. Avni, O. Kupferman, and T. Tamir 367

Table 1 Players costs. Each entry describes the cost of Player 1 followed by the cost of Player 2.

{a, a, b} {b, b, c} {c, c, a}

{a, a, b} 36, 36 19, 17 17, 19
{b, b, c} 17, 19 36, 36 19, 17
{c, c, a} 19, 17 17, 19 36, 36

Example 1: Consider the following symmetric MCG with two players and three resources:
a, b, and c. The players’ strategy space is {a, a, b} or {b, b, c} or {c, c, a}. That is, a player
needs to access some resource twice and the (cyclically) consequent resource once. The
latency function of all three resources is the same, specifically, fa(`) = fb(`) = fc(`) = `2.
The players’ costs in all possible profiles are given in Table 1. We show that no PNE exists
in this game. Assume first that the two players select distinct strategies, w.l.o.g. {a, a, b}
and {b, b, c}. In this profile, a is accessed twice, b is accessed three times, and c is accessed
once. Thus, every access of a, b and c costs 4, 9 and 1 respectively. The cost of Player 1 is
8 + 9 = 17, while the cost of Player 2 is 18 + 1 = 19. By deviating to {c, c, a}, the cost of
Player 2 will reduce to 17 (while the cost of Player 1 will increase to 19). Thus, no PNE in
which the players select different strategies exists. If the player select the the same strategy,
then one resource is accessed 4 times, and one resource is accessed twice, implying that the
cost of both players is 2 · 16 + 1 · 4 = 36, and any deviation is profitable. We conclude that
no PNE exists in the game.

We study and answer the following questions in general and for various classes of multiset
congestion games (for formal definitions, see Section 2): (i) Existence of a PNE. (ii) An
analysis of equilibrium inefficiency. A social optimum (SO) of the game is a profile that
minimizes the total cost of the players; thus, the one obtained when the players obey some
centralized authority. It is well known that decentralized decision-making may lead to
solutions that are sub-optimal from the point of view of society as a whole. We quantify
the inefficiency incurred due to selfish behavior according to the price of anarchy (PoA) [22]
and price of stability (PoS) [3] measures. The PoA is the worst-case inefficiency of a PNE
(that is, the ratio between the cost of a worst PNE and the SO). The PoS is the best-case
inefficiency of a Nash equilibrium (that is, the ratio between the cost of a best PNE and the
SO). (iii) Computational complexity of finding a PNE.

Before we turn to describe our results, let us review related work. Weighted congestion
games (WCGs, for short), introduced in [25], are congestion games in which each player i
has a weight wi ∈ IN, and his contribution to the load of the resources he uses as well as his
payments are multiplied by wi. WCGs can be viewed as a special case of MCGs, where each
resource in a strategy for Player i repeats wi times. A different extension of WCGs in which
players may use a resource more than once is integer splittable WCGs [24, 30]. These games
model the setting in which a player has a number (integer) of tasks he needs to perform and
can split them among the resources. For example, in the network setting, a player might need
to send ` ∈ IN packets from vertex s to t. He can send the packets on different paths, but a
packet cannot be split. MCGs are clearly more general than WCGs and integer splittable
WCGs – the ability to repeat each resource a different number of times lead to a much more
complex setting. Thus, it is interesting to compare our results with these known for these
games.

It is shown in [17, 21] that the existence of a PNE in WCGs depends on the latency
function: when the latency functions are either affine or exponential, WCGs are guaranteed

FSTTCS 2015

368 Congestion Games with Multisets of Resources and Applications in Synthesis

to admit a PNE, whereas WCGs with a polynomial latency function need not have a PNE.
In [24], the author shows that PNE always exists when the latency functions are linear using
a potential function argument. This argument fails when the latency functions are convex,
but [30] are still able to show that there is always a PNE in these games. We are able to
show that the exact potential function of [17] applies also to (the much richer) affine MCGs
(that is, MCGs with a affine latency function), and thus they always admit a PNE. As
demonstrated in Example 1, very simple MCGs with quadratic latency functions might have
no PNE.

We turn on to results in the front of equilibrium inefficiency. In congestion games with
affine latency functions, both the PoA and PoS measures are well understood. It was shown
in [12] that PoS ≥ 1 + 1√

3 ≈ 1.577 and is at most 1.6. A tight upper bound was later shown
in [10]. Also, PoA = 5

2 [12]. Going one step towards our setting to the study of affine WCGs,
[6] shows that PoA = 1 + φ, where φ ≈ 1.618 is the golden ratio. The PoS question is far
from being settled. Only recently, [9] shows a first upper bound of 2 for PoS in linear WCGs,
which is a subclass of affine WCGs. As far as we know, the only lower bound that is known
for affine WCGs is the lower bound from the unweighted setting. So there is a relatively
large gap between the upper- and lower-bounds for the PoS in these games.

We bound the potential function in order to show that every affine MCGG has PoS(G) < 2.
This improves and generalizes the result in [9]. Our most technically-challenging result is
the PoS lower-bound proof, which involves the construction of a family G of linear MCGs.
Essentially, the game Gk ∈ G is parameterized by the number of players and defined
recursively. The use of multisets enables us to to define a game in which, although the
sharing of resources dramatically changes between its profiles, the cost a player pays is equal
in all of them. For k = 17 we obtain that PoS(G17) > 1.631. This is the first lower bound in
these models that exceeds the 1.577 lower bound in congestion games. Finally, the PNE in G
is achieved with dominant strategies, so our bound holds for stronger equilibrium concepts.

As for the PoA, we show that MCGs with latency functions that are polynomials of
degree at most d have PoA = Φd+1

d , where Φd is the unique nonnegative real solution to
(x+ 1)d = xd+1. Observe that Φd is a natural generalization of the golden ratio to higher
degrees. Specifically, Φ1 = φ. For the upper bound, we adjust the upper-bound proof of [2]
to our setting. We show a simplified matching lower bound; a simple two-player MCG with
only two resources and latency functions of the form f(`) = `d. For general latency functions
we show that the PoA can be arbitrarily high.

We turn to study the application of synthesis from component libraries by multiple
players. Recall that in this application, different users synthesize systems from components.
A component may be used in several systems and may be used several times in a system.
The quality of a system depends on the load on its components. This gives rise to an MCG,
which we term a component library game (CLG, for short). On the one hand, a CLG is a
special case of MCG, so one could expect positive results about MCGs to apply to CLGs.
On the other hand, while in MCGs the strategies of the players are given explicitly by means
of multisets of resources, in CLGs the strategies of the players are given symbolically by
means of a specification deterministic finite automaton – the one whose language has to be
composed from the library’s components.

We prove that every MCG has a corresponding CLG, implying that negative results
for MCGs apply to CLGs. Moreover, we show that the succinctness of the presentation of
the strategies makes decision problems about MCGs more complex in the setting of CLGs.
We demonstrate this by studying the complexity of the best-response problem – deciding
whether a player can benefit from a unilateral deviation from his strategy, and the problem

G. Avni, O. Kupferman, and T. Tamir 369

of deciding whether a PNE exists in a given game. For the best-response problem, which is in
P for MCGs, we prove NP-completeness for CLGs. The problem of deciding the existence of
a PNE is known to be strongly NP-complete for weighted symmetric congestion games. For
network congestion games with player specific cost functions, this problem is NP-complete
for arbitrary networks, while a PNE can be found efficiently for constant size networks [1].
We provide a simpler hardness proof for MCGs, which is valid also for a constant number of
resources, and we show that for CLGs the problem is ΣP2 -complete. As good news, we are
able to prove a “small-design property” for CLGs, which bounds the number of strategies
that one needs to consider and enables us to lift to CLGs the positive results for MCGs with
linear latency functions. Thus, such CLGs always have a PNE and their PoS is at most 2.

Due to the lack of space, some examples and proofs are omitted and can be found in the full
version available at: http://www.cs.huji.ac.il/~guya03/papers/FSTTCS15-full.pdf.

2 Preliminaries

A multiset over a set E of elements is a generalization of a subset of E in which each element
may appear more than once. For a multiset A over E and an element e ∈ E, we use A(e) to
denote the number of times e appears in A, and use e ∈ A to indicate that A(e) ≥ 1. When
describing multisets, we use em, for m ∈ IN, to denote m occurrences of e.

A multiset congestion game (MCG) is a tuple G = 〈K,E, {Σi}i∈K , {fe}e∈E〉, where
K = {1, . . . , k} is a set of players, E is a set of resources, for every 1 ≤ i ≤ k, the strategy
space Σi of Player i is a collection of multisets over E, and for every resource e ∈ E, the
latency function fe : IN→ IR is a non-decreasing function. The MCG G is an affine MCG
if for every e ∈ E, the latency function fe is affine, i.e., fe(x) = aex+ be, for non-negative
constants ae and be. Similarly, we say that G is a linear MCG if it is affine and for e ∈ E we
have be = 0. We assume w.l.o.g. that for e ∈ E we have ae ≥ 1. Classical congestion games
are a special case of MCGs where the players’ strategies are sets of resources. Weighted
congestion games can be viewed as a special case of MCGs, where for every 1 ≤ i ≤ k,
multiset si ∈ Σ and e ∈ si, we have si(e) = wi.

A profile of a game G is a tuple P = 〈s1, s2, . . . , sk〉 ∈ (Σ1 × Σ2 × . . .× Σk) of strategies
selected by the players. For a resource e ∈ E, we use Le,i(P) to denote the number of times
e is used in P by Player i. Note that Le,i(P) = si(e). We define the load on e in P , denoted
Le(P), as the number of times it is used by all players, thus Le(P) =

∑
1≤i≤k Le,i(P) 1.

In classical congestion games, all players that use a resource e pay fe(`), where ` is
the number of players that use e. As we formalize below, in MCGs, the payment of a
player for using a resource e depends on the number of times he uses it. Given a profile
P , a resource e ∈ E, and 1 ≤ i ≤ k, the cost of e for Player i in P is coste,i(P) =
Le,i(P) · fe(Le(P)). That is, for each of the Le,i(P) uses of e, Player i pays fe(Le(P)). The
cost of Player i in the profile P is then costi(P) =

∑
e∈E coste,i(P) and the cost of the profile

P is cost(P) =
∑

1≤i≤k costi(P). We also refer to the cost of a resource e in P , namely
coste(P) =

∑
i∈K coste,i(P).

Consider a game G. For a profile P , player i ∈ K, and a strategy s′i ∈ Σ for Player i, let
P [i ← s′i] denote the profile obtained from P by replacing the strategy for Player i by s′i.

1 Since our strategies are multisets, we have that si(e), for all i and e, is an integer. Our considerations,
however, are independent of this, thus all our results are valid also for games in which strategies might
include fractional demands for resources. In non-splittable (atomic) games, the players must select a
single strategy, even if fractional demands are allowed.

FSTTCS 2015

http://www.cs.huji.ac.il/~guya03/papers/FSTTCS15-full.pdf

370 Congestion Games with Multisets of Resources and Applications in Synthesis

A profile P is a pure Nash equilibrium (PNE) if no Player i can benefit from unilaterally
deviating from his strategy in P to another strategy; i.e., for every player i and every strategy
s′i ∈ Σ it holds that costi(P [i← s′i]) ≥ costi(P).

We denote by OPT the cost of a social-optimal solution; i.e., OPT = minP cost(P). It is
well known that decentralized decision-making may lead to sub-optimal solutions from the
point of view of society as a whole. We quantify the inefficiency incurred due to self-interested
behavior according to the price of anarchy (PoA) [22] and price of stability (PoS) [3] measures.
The PoA is the worst-case inefficiency of a Nash equilibrium, while the PoS measures the
best-case inefficiency of a Nash equilibrium. Formally,

I Definition 1. Let G be a family of games, and let G be a game in G. Let Υ(G) be the set
of Nash equilibria of the game G. Assume that Υ(G) 6= ∅.

The price of anarchy of G is the ratio between the maximal cost of a PNE and the social
optimum of G. That is, PoA(G) = maxP∈Υ(G) cost(P)/OPT (G). The price of anarchy
of the family of games G is PoA(G) = supG∈GPoA(G).
The price of stability of G is the ratio between the minimal cost of a PNE and the social
optimum of G. That is, PoS(G) = minP∈Υ(G) cost(P)/OPT (G). The price of stability of
the family of games G is PoS(G) = supG∈GPoS(G).

3 Existence of a Pure Nash Equilibrium

As demonstrated in Example 1, MCGs are less stable than weighted congestion games:

I Theorem 2. There exists a symmetric two-player MCG with identical resources and
quadratic latency function that has no PNE.

On the positive side, we show that a PNE exists in all MCGs with affine latency functions.
We do so by showing that an exact potential function exists, which is a generalization of the
one in [9, 18].

I Theorem 3. Affine MCGs are potential games.

Proof. For a profile P and a resource e ∈ E, define

Φe(P) = ae ·
(k∑
i=1

k∑
j=i

Le,i(P) · Le,j(P)
)

+
(
be ·

k∑
i=1

Le,i(P)
)
.

Also, Φ(P) =
∑
e∈E Φe(P). In the full version, we prove that Φ is an exact potential

function. J

The negative result in Theorem 2 gives rise to the decision problem ∃PNE; given an
MCG, decide whether it has a PNE. Being a generalization of WCGs, the hardness results
known for WCGs imply that ∃PNE is NP-hard [14]. Using the richer definition of MCGs,
we show below a much simpler hardness proof. We also show hardness for games with a
constant number of resources, unlike congestion games with user-specific cost functions [1].

I Theorem 4. Given an instance of an MCG, it is strongly NP-complete to decide whether
the game has a PNE, as well as to find a PNE given that one exists. For games with a
constant number of resources, the problems are NP-Complete.

I Remark 5. In splittable (non-atomic) games, each player can split his task among several
strategies. This can be seen as if each player is replaced by M → ∞ identical players all

G. Avni, O. Kupferman, and T. Tamir 371

having the same strategy space scaled by 1/M . This model suits several applications, in
particular planning of preemptive production. Splittable games are well-understood in classical
and weighted congestion games [29, 8]. In the full version we define the corresponding MCG
and show that the positive PNE-existence result, known for weighted congestion games, carry
over to games with multisets of resources.

4 Equilibrium Inefficiency in MCGs

4.1 The Price of Stability
The PoS problem in affine congestion games is settled: [12, 10] show that PoS = 1+ 1√

3 ≈ 1.577.
For affine WCGs, the problem was open for a long time, and only recently progress was
made by [9], who showed that PoS ≤ 2 for linear WCGs. As far as we know, there is no
known lower bound for linear WCGs that exceeds the 1.577 bound for unweighted games.
We show that every affine MCG G has PoS(G) < 2. Thus, we both improve the result to
include affine functions, tighten the bound, and generalize it. For the lower bound, we show
a family of linear MCGs G that has PoS(G) > 1.631. We start with the upper bound.

I Theorem 6. Every affine MCG G has PoS(G) < 2.

Proof. Consider an affine MCG G and a profile P . It is not hard to see that for the potential
function Φ that is presented in Theorem 3 we have Φ(P) ≤ cost(P). Moreover, for e ∈ E we
have 2Φe(P) = coste(P) + ae

∑
1≤i≤k L

2
e,i(P) + be

∑
1≤i≤k Le,i(P). Thus, Φ(P) > 1

2cost(P).
The theorem follows using standard techniques: cost(O) ≥ Φ(O) ≥ Φ(N) > 1

2cost(N), where
O is the social optimum and N is a PNE that is reached from O by a sequence of best-respond
moves of the players. Then, PoS(G) ≤ cost(N)

cost(O) < 2. The details of the proof can be found in
the full version. J

Note that while the PoS can get arbitrarily close to 2, it is strictly smaller than 2 for
every game instance. The proof in [9], on the other hand, only shows PoS ≤ 2 for the family
of affine MCGs, and our result does not improve this bound.

For the lower bound, we show a family of linear MCG G = {Gk}k≥2 that are parameterized
by the number of players. Using a computerized simulation, we obtain that for the game
with 17 players, we have PoS(G17) > 1.631. We leave open the problem of calculating the
exact value the PoS tends to as the number of players increases. In the full version we show
a graph of the PoS as a function of k, which hints that the answer is only slightly higher
than 1.631.

The PNE in the games in the family is achieved with dominant strategies, and thus it is
resistant to stronger types of equilibria.

I Theorem 7. There is a linear MCG G with PoS(G) > 1.631.

Proof. We define a family of games {Gk}k≥2 as follows. The game Gk is played by k players,
thus Kk = {1, . . . , k}. For Player 1, all strategies Σk

1 = {Ok1} consists of a single multiset.
For ease of presentation we sometimes refer to Ok1 as Nk

1 . For i ≥ 2, the strategy space of
Player i consists of two multisets, Σk

i = {Oki , Nk
i }. We define Gk so that for all k ≥ 2, the

profile Ōk = 〈Ok1 , . . . , Okk〉 is the social optimum and the profile N̄k = 〈Nk
1 , . . . , N

k
k 〉 is the

only PNE.
When describing the games in the family, we partition the resources into types and

describe a multiset as a collection of triples. A triple 〈t, y, l〉 stands for y different resources
of type t, each appearing l times. For example, {〈a, 2, 1〉, 〈b, 1, 3〉, 〈c, 2, 2〉} stands for the

FSTTCS 2015

372 Congestion Games with Multisets of Resources and Applications in Synthesis

multiset {a1, a2, b1, b1, b1, c1, c1, c2, c2}. In all games and resources, there are two types of
latency functions; the identity function, or identity plus epsilon, where the second type of
function are linear functions of the form f(x) = (1 + ε) · x, for some ε > 0. The latency
function of resources of the same type is the same, and we use the terms “a has identity
latency" and “b has identity plus ε latency" to indicate that all the resources a′ of type a have
fa′(j) = j and all the resources b′ of type b have fb′(j) = (1 + ε) · j, for all numbers j of uses.

The definition of Gk is complicated and we start by describing the idea in the construction
of G2 and G3. In the full version we also describe G4. We start by describing G2. The game
G2 is defined with respect to two types of resources, a and b, with identity and identity plus ε
latency, respectively. We define Player 1’s strategy space Σ2

1 = {O2
1} and Player 2’s strategy

space Σ2
2 = {O2

2, N
2
2 }, with O2

1 = N2
2 = 〈a, 2, 1〉 and O2

2 = 〈b, 1, 2〉. That is, Σ2
1 = {{a1, a2}}

and Σ2
2 = {{a1, a2}, {b1, b1}}. Clearly, the profile N̄2 = 〈O2

1, N
2
2 〉 is the only PNE in G2.

We continue to describe G3. The game G3 is defined with respect to four types of resources,
a, b, c1 and c2, where b has identity plus ε latency, c1 has identity plus ε′ latency, and the
other resources have identity latency. Let x3 = 3! = 6. We define Σ3

1 = {O3
1}, Σ2

2 = {O3
2, N

3
2 },

and Σ3
3 = {O3

3, N
3
3 }, with O3

1 = N3
2 = 〈a, x3, 1〉, O3

2 = 〈b, x3
2 , 2〉, O

3
3 = {〈c1, x3

3 , 3〉, 〈c
2, x3

2 , 1〉},
and N3

3 = {〈b, x3
2 , 1〉, 〈a, x3, 1〉}. We claim that N̄3 = 〈O3

1, N
3
2 , N

3
3 〉 is the only PNE. Our

goal here is not to show a complete proof, but to demonstrate the idea of the construction. It
is not hard to see that Player 2 deviates to N3

2 from the profile Ō3 = 〈O3
1, O

3
2, O

3
3〉, Player 3

deviates from the resulting profile N̄3 = 〈O3
1, N

3
2 , N

3
3 〉. The crux of the construction is

to keep Player 2 from deviating back from N̄3. Note that since Player 3 uses the b-type
resources once in N̄3, when Player 2 deviates from N3

2 to O3
2, their load increases to 3. Thus,

cost2(N̄3[2← O3
2]) = 3(3 ·2 · (1 + ε)) > 6(3 ·1) = cost2(N̄3) and the deviation is not beneficial.

We define the game Gk, for k ≥ 2, as follows. Let xk = k!. Player 1’s strategy space
consists of a single multiset Ok1 = 〈e1,1, xk, 1〉. For 2 ≤ i ≤ k, assume we have defined
the strategies and resources for players 1, . . . , i − 1. We define Player i’s strategies as
follows. We start with the multiset Nk

i , which does not introduce new resources. We define
Nk
i = ∪1≤j≤i−1{〈t, x, 1〉 : 〈t, x, l〉 ⊆ Oki }. The definition of Oki is more involved, but the idea

is simple. We define Oki so that it satisfies two properties. First, Oki uses new resources.
That is, for every 1 ≤ j ≤ i− 1, both Oki ∩Okj = ∅ and Oki ∩Nk

j = ∅. Consider the profile Pi
in which, for every 1 ≤ j < i, Player j uses Nk

j and, for every i ≤ l ≤ k, Player l uses Okl .
We define Oki so that when all resources have identity latency, costi(Pi) = costi(Pi[i← Nk

i]).
For every multiset 〈ej,a, xj,a, 1〉 in Nk

i , which we have just defined, we introduce a multiset
〈ei,b, xi,b, li,b〉 in Oki that uses new resources, where b is a unique index that is arbitrarily
chosen, and xib and lib are defined as follows. Let l = |{j : ej,a ∈ Nk

j }|. We define li,b = l + 1
and xi,b = xj,a/li,b. Since Oki uses new resources, showing the first property is easy. In the
full version we show it satisfies a much stronger property.

I Claim 8. Consider k ∈ IN, a profile P in Gk, and 1 < i ≤ k. Assume Player i plays Oik
in P . When the latency functions are identity, we have costi(P) = costi(P [i← N i

k]).

To complete the construction, we define the latency functions so that for every 2 ≤ i ≤ k,
we have that ei,1-type resources have identity plus εi latency for 0 < ε2 < . . . < εk. By
Claim 8 there are such values that make Nk

i a dominant strategy for Player i. Thus, the only
PNE in Gk, for k ≥ 2, is the profile N̄k = 〈Ok1 , Nk

2 , . . . , N
k
k 〉. Next, we identify the social

optimum.

I Claim 9. The profile Ōk = 〈Ok1 , . . . , Okk〉 is the social optimum.

Once we identify Ōk as the social optimum and N̄k as the only PNE, the calculation of
the PoS boils down to calculating their costs, which we do using a computer. Specifically,

G. Avni, O. Kupferman, and T. Tamir 373

we have PoS(G17) = 1.6316, and we depict the values of Gk, for 2 ≤ k ≤ 17, in the full
version. J

I Remark 10. We conjecture that the correct value for the PoS is closer to our lower bound
of 1.631 rather than to the upper bound of 2. In the full version we show a more careful
analysis of the potential function than the one in Theorem 6 that shows that for every linear

MCG G we have PoS(G) ≤ 2 −
∑

e∈E

√
coste(NG)

cost(OG) , where NG and OG denote the cheapest
PNE and the social optimum of G, respectively. Also, we show that for every n ≥ 2, for the
MCG Gn that is described in Theorem 7, the inequality in the expression is essentially an
equality.

I Remark 11. We can alter the family in Theorem 7 to have quadratic latency functions
instead of identity functions. Although Claim 8 does not hold in the altered family, a
computerized simulation shows that the N strategies are still dominant strategies. Also, using
a computerized simulation, we show that the PoS for G15 is 2.399, higher than the upper
bound of 2.362 for congestion games, which is shown in [9, 11].

4.2 The Price of Anarchy
In this section we study the PoA for MCGs. We start with MCGs with polynomial latency
functions and show that the upper bound proven in [2] for WCGs can be adjusted to our
setting. Being a special case of MCGs, the matching lower bound for WCGs applies too.
Still, we present a different and much simpler lower-bound example, which uses a two-player
singleton MCG. In a singleton game, each strategy consists of (multiple accesses to) a single
resource. Finally, when the latency functions are not restricted to be polynomials, we show
that the PoA is unbounded, and it is unbounded already in a singleton MCG with only two
players.

We start by showing that the PoA in polynomial MCGs is not higher than in polynomial
WCGs. The proof adjusts the one known for WCGs [2] to our setting. For d ∈ IN, we denote
by Pd the set of polynomials of degree at most d.

I Theorem 12. The PoA in MCGs with latency functions in Pd is at most Φd+1
d , where Φd

is the unique nonnegative real solution to (x+ 1)d = xd+1.

Next, we show a matching lower bound that is stronger and simpler than the one in [2].

I Theorem 13. For d ∈ IN, the PoA in two-player singleton MCG with latency functions in
Pd is at least Φd+1

d .

Proof. Let d ∈ IN. Consider the two-player singleton MCG G with resources E = {e1, e2},
strategy spaces Σ1 = {ex1 , e

y
2} and Σ2 = {ey1, ex2}, and for ` ∈ IR, we define the latency

functions fe1(`) = fe2(`) = `d. We define x = Φd and y = 1. Since x > y the social optimum
is attained in the profile 〈ey1, e

y
2〉 and its cost is 2yd = 2. Recall that in MCGs, the players’

strategies are multisets. In particular, x should be a natural number. To fix this, we consider
a family of MCGs in which the ratio between x and y tends to the ratio above.

We claim that the profile N = 〈ex1 , ex2〉 is a PNE. This would imply that PoA(G) =
2xd+1

2 = Φd+1
d , which would conclude the proof. We continue to prove the claim. The cost of

a player in N is x · xd = xd+1 and by deviating, the cost changes to y · (x+ y)d = (x+ 1)d.
Our definition of x implies that xd+1 = (x + 1)d. Thus, the cost does not change after
deviating. Since the players are symmetric, we conclude that the profile N is a PNE, and we
are done. J

FSTTCS 2015

374 Congestion Games with Multisets of Resources and Applications in Synthesis

Finally, by taking variants with factorial latency functions to the game described in
Theorem 13, we are able to increase the PoA in an unbounded manner.

I Theorem 14. The PoA in two-player MCGs is unbounded.

5 Synthesis from Component Libraries

In this section we describe the application of MCGs in synthesis from component libraries.
As briefly explained in Section 1, in this application, different users synthesize systems by
gluing together components from a component library. A component may be used in several
systems and may be used several times in a system. The performance of a component and
hence the system’s quality depends on the load on it. We describe the setting in more detail,
formalize it by means of MCGs, and relate to the results studied in earlier sections.

Today’s rapid development of complex and safety-critical systems requires reliable veri-
fication methods. In formal methods, we reason about systems and their specifications by
solving mathematical questions about their models. A central problem in formal methods
is synthesis, namely the automated construction of a system from its specification. In real
life, systems are rarely constructed from scratch. Rather, a system is typically constructed
from a library of components by gluing components from the library [23]. In this setting, the
input to the synthesis problem is a specification and a library of components, and the goal is
to construct from the components a system that exhibits exactly the behaviors specified in
the specification.

I Remark 15. The above setting corresponds to closed systems, whose behavior is independent
of their environment. It is possible to generalize the definitions to open systems, which interact
with their environment. In [4], we studied both the closed and open settings in the context of
cost-sharing (rather than congestion) games. The technical challenges that have to do with
the system being open are orthogonal to these that arise from the congestion effects, and on
which we focus in this work.

In our setting, we use deterministic finite automata (DFAs, for short) to model the
specification and use box-DFAs to model the components in the library. Formally, a DFA is
A = 〈Σ, Q, δ, q0, F 〉, where Σ is an alphabet, Q is a set of states, δ : Q× Σ→ Q is a partial
transition function, q0 ∈ Q is an initial states, and F ⊆ Q is a set of accepting states. The
run of A on a word w = w1, . . . wn ∈ Σ∗ is the sequence of states r = r0, r1, . . . , rn such that
r0 = q0 and for every 0 ≤ i ≤ n − 1, we have ri+1 = δ(ri, wi+1). Now, a box-DFA B is a
DFA augmented with a set of exit states. When a run of B reaches an exit state, it moves to
another box-DFA, as we formalize below.

The input to the synthesis from component libraries problem is a specification DFA S
over an alphabet Σ and a library of box-DFAs components L = {B1, . . . ,Bn}. The goal is to
produce a design, which is a recipe to compose the components from L to a DFA. A design
is correct if the language of the system it induces coincides with that of the specification.

Intuitively, the design can be thought of as a scheduler; it passes control between the
different components in L. When a component Bi is in control, it reads letters in Σ, visits
the states of Bi, follows its transition function, and if the run terminates, it is accepting iff
it terminates in one of Bi’s accepting states. A component relinquishes control when the
run reaches one of its exit states. It is then the design’s duty to choose the next component,
which gains control through its initial state.

Formally (see an example in Figure 1), a transducer is a DFA that has, in addition to the
input alphabet that labels the transitions, also an output alphabet that labels the states.

G. Avni, O. Kupferman, and T. Tamir 375

B1 e1
b e2

a B2 e3
c D 1 2 1

e1

e2
e3

e2

e1

AL,D
b

a
c

a

b
B1 e1

b e2
a B2 e3

c D 1 2 1
e1

e2
e3

e2

e1

AL,D
b

a
c

a

b

Figure 1 An example of a library L = {B1, B2}, a design D, and the resulting composition AL,D.

Also, a transducer has no rejecting states. Let [n] = {1, . . . , n}. A design is a transducer D
whose input alphabet is the set E of all exit states of all the components in L and whose
output alphabet is [n]. We can think of D as running beside the components. When a
component reaches an exit state e, then D reads the input letter e, proceeds to its next state,
and outputs the index of the component to gain control next. Note that the components in
the library are black boxes: the design D does not read the alphabet Σ of the components
and has no information about the states that the component visits. It only sees which exit
state have been reached. Given a library L and a design D, their composition is a DFA AL,D
obtained by composing the components in L according to D. We say that a design D is
correct with respect to a specification DFA S iff L(AL,D) = L(S). In the full version we
construct AL,D formally.

For example, consider the library L = {B1,B2} over the alphabet Σ = {a, b, c}, and the
design D that are depicted in Figure 1. We describe the run on the word bc. The component
that gains initial control is B1 as the initial state of D outputs 1. The run in B1 proceeds with
the letter b to the exit state e1 and relinquishes control. Intuitively, control is passed to the
design that advances with the letter e1 to the state that outputs 2. Thus, the component B2
gains control, and it gains it through its initial state. Then, the letter c is read, B2 proceeds
to the exit state e3 and relinquishes control. The design advances with the letter e3 to a
state that outputs 1, and control is assigned to B1. Since the initial state of B1 is rejecting,
the word ab is rejected. As a second example, consider the word ab. Again, B1 gains initial
control. After visiting the exit state e2, control is reassigned to B1. Finally, after visiting
the state e1, control is assigned to B2, where the run ends. Since the initial state of B2 is
accepting, the run is accepting.

The synthesis problem defined above is aimed at synthesizing correct designs. We now add
costs to the setting. A component library game (CLG, for short) is a tuple 〈K,L, {Si}i∈K ,
{fB}B∈L〉, where K = {1, . . . , k} is a set of players, L is a collection of box-DFAs, the
objective of Player i ∈ K is given by means of a specification DFA Si, and, as in MCGs, the
latency function fB for a component B ∈ L maps the load on B to its cost with this load.
For i ∈ K, the set of strategies for Player i is the set of designs that are correct with respect
to Si. A CLG corresponds to an MCG with a slight difference that there might be infinitely
many correct designs. Consider a profile P = 〈D1, . . . ,Dk〉. For a component B ∈ L, we use
LB,i(P) to denote the number of times Player i uses B in P . Recall that each state in the
transducer Di is labeled by a component in L. We define LB,i(P) to be the number of states
in Di that are labeled with B. The rest of the definitions are as in MCGs.

We first show that every MCG can be translated to a CLG:

I Theorem 16. Consider a k-player MCG G. There is a CLG G′ between k players with
corresponding profiles. Formally, there is a one-to-one and onto function f from profiles
of G to profiles of G′ such that for every profiles P in G and Player i ∈ [k], we have that
costi(P) = costi(f(P)).

Proof. Consider an MCG 〈K,E, {Σi}i∈K , {fe}e∈E〉. Recall that Σi is the set of strategies for
Player i that consists of multisets over E. We construct a CLG with alphabet E∪

⋃
i∈K Σi. For

FSTTCS 2015

376 Congestion Games with Multisets of Resources and Applications in Synthesis

B0

e#
#

eC1

C1

...

eCm

Cm

Bacc Brej

B1

xi

#0
ixi

C̃jxi : xi ∈ Cj

B1

¬xi

#0
ixi#

1
i

C̃jxi : ¬xi ∈ Cj

Bl
xi

2 ≤ l ≤ m− 1

#l−1
i xi

C̃jxi : xi ∈ Cj

Bl
¬xi

2 ≤ l ≤ m− 1

xi#
l
i

C̃jxi : ¬xi ∈ Cj

Bm
xi

#m−1
i xi#

m
i

C̃jxi : xi ∈ Cj

Bm
¬xi

xi#
m
i

C̃jxi : ¬xi ∈ Cj

BCj ,xja

a ∈ {1, 2, 3}
b = (a mod 3) + 1
c = (b mod 3) + 1

xja

xjbC̃jxjb

xjcC̃jxjc

Figure 2 The components in the library L.

i ∈ K, the specification Si for Player i consists of |Σi| words. Every strategy s = {e1, . . . , en}
(allowing duplicates) in Σi contributes to L(S) the word s · e1 · e2 · . . . · en. We construct a
library L with |E|+

∑
i∈K |Σi| components of two types: a strategy component Bs for each

s ∈ Σi and a resource component Be for each e ∈ E. In addition, L contains the component
Bacc that is depicted in Figure 2. Intuitively, a correct design must choose one strategy
component Bs and then use the component Be the same number of times e appears in s. We
continue to describe the components. For s ∈ Σi, the component Bs relinquishes control only
if the letter s is read. It accepts every word in L(Si) that does not start with s. For e ∈ E,
the resource component Be has an initial state with an e-labeled transition to an exit state.
Finally, the latency function for the resource components coincides with latency functions of
the resources in the MCG, thus for e ∈ E, we have fBe = fe. The other latency functions
are f ≡ 0. In the full version we prove that there is a cost-preserving one-to-one and onto
correspondence between correct designs with respect to Si and strategies in Σi, implying the
existence of the required function between the profiles. J

Theorem 16 implies that the negative results we show for MCGs apply to CLGs:

I Corollary 17. There is a CLG with quadratic latency functions with no PNE; for CLGs with
affine latency functions, we have PoS(CLG) > 1.631; for d ∈ IN, the PoA in a two-player
singleton MCG with latency functions in Pd is at least Φd+1

d .

I Remark 18. We note that the positive results for CLGs with linear latency functions,
namely existence of PNE and PoS(CLG) ≤ 2, do not follow immediately from Theorem 3,
as its proof relies on the fact that an MCG has only finitely many profiles. Since the strategy
space of a player might have infinitely many strategies, a CLG might have infinitely many
profiles. In order to show that CLGs with linear latency functions have a PNE we need
Lemma 19 below, which implies that even in games with infinitely many profiles, there is a
best response dynamics that only traverses profiles with “small” designs. Such a traversal is
guaranteed to reach a PNE as there are only finitely many such profiles. J

Computational complexity. We turn to study two computational problems for CLGs:
finding a best-response and deciding the existence of a PNE. We show that the succinctness
of the representation of the objectives of the players in CLGs makes these problems much
harder than for MCGs. Our upper bounds rely on the following lemma. The lemma is
proven in [4] for cost-sharing games, and the considerations in the proof there applies also
for congestion games.

G. Avni, O. Kupferman, and T. Tamir 377

I Lemma 19. Consider a library L, a specification S, and a correct design D. There is
a correct design D′ with at most |S| · |L| states, where |L| is the number of states in the
components of L, such that for every component B ∈ L, the number of times D′ uses B is at
most the number of times D uses B.

We start with the best-response problem (BR problem, for short): Given an MCG G
between k players, a profile P , an index i ∈ K, and µ ∈ IR, decide whether Player i has a
strategy S′i such that costi(P [i← S′i]) ≤ µ.

I Theorem 20. The BR problem for MCGs is in P. For CLGs it is NP-complete, and
NP-hardness holds already for games with one player and linear latency functions.

Proof. Showing that the BR problem is in P for MCGs follows easily from the fact the set
of strategies for Player i is given implicitly and calculating the cost for a player in a profile
can be done in polynomial time.

The upper bound for CLGs follows from Lemma 19, which implies an upper bound on
the size of the cheapest correct designs. Since checking whether a design is correct and
calculating its cost can both be done in polynomial time, membership in NP follows.

We continue to the lower bound. We describe the intuition of the reduction and the
formal definition along with the correctness proof can be found in the full version. Given
a 3SAT formula ϕ with clauses C1, . . . , Cm and variables x1, . . . , xn, we construct a library
L and a specification S such that there is a design D that costs at most µ = nm+m iff ϕ
is satisfiable. The library L consists of an initial component B0, variable components Bjxi

and Bj¬xi
for j ∈ [m] and i ∈ [n], clause components BCj ,xjk

for j ∈ [m] and k ∈ {1, 2, 3},
and component Bacc and Brej . The components of the library are depicted in Figure 2. The
latency function of the variable components is the identity function f(x) = x, thus using such
a component once costs 1. The latency functions of the other components is the constant
function f ≡ 0, thus using such components any number of times is free.

Intuitively, a correct design corresponds to an assignment to the variable and must use
nm variable components as follows. For i ∈ [n], either use all the components B1

xi
, . . . ,Bmxi

or all the components B1
¬xi

, . . . ,Bm¬xi
with a single use each. Thus, a correct design implies

an assignment η : {x1, . . . , xn} → {T, F}. Choosing B1
xi
, . . . ,Bmxi

corresponds to η(xi) = F

and choosing B1
¬xi

, . . . ,Bm¬xi
corresponds to η(xi) = T .

Additionally, in order to verify that a correct design corresponds to a satisfying assignment,
it must use m clause components and m more variable components as follows. Consider
a correct design D, and let η : {x1, . . . , xn} → {T, F} be the corresponding assignment as
described above. For every j ∈ [m], D must use a clause component BCj ,xi

, where recall
that the clause Cj includes a literal ` ∈ {xi,¬xi}. Using the component BCj ,xi

requires D to
use a variable component Bt`, for some t ∈ [m]. So, a correct design uses a total of nm+m

components with identity latency. If η(`) = F , then Bt` is already in use and a second use
will cost more than 1, implying that the design costs more than nm+m. J

The next problem we study is deciding the existence of a PNE. As we show in The-
orem 4, the problem is NP-complete for MCGs. As we show below, the succinctness of the
representation makes this problem harder for CLGs.

I Theorem 21. The ∃PNE problem for CLGs is ΣP2 -complete.

Proof. The upper bound is easy and follows from Lemma 19.
For the lower bound we show a reduction from the complement of not all equal ∀∃

3SAT (NAE, for short), which is known to be ΣP
2 -complete [16]. An input to NAE is a

FSTTCS 2015

378 Congestion Games with Multisets of Resources and Applications in Synthesis

3CNF formula ϕ over variables x1, . . . , xn, y1, . . . , yn. It is in NAE if for every assignment
η : {x1, . . . , xn} → {T, F} there is an assignment ρ : {y1, . . . , yn} → {T, F} such that every
clause in ϕ has a literal that gets value truth and a literal that gets value false (in η or
ρ, according to whether the variable is an x or a y variable). We say that such a pair of
assignments 〈η, ρ〉 is legal for ϕ.

Given a 3CNF formula ϕ, we construct a CLG G with three players such that ϕ ∈ NAE iff
G does not have a PNE. We describe the intuition of the reduction. The details can be found
in the full version. There is a one-to-one correspondence between Player 3 correct designs
and assignments to the variables {x1, . . . , xn}. For an assignment η : {x1, . . . , xn} → {T, F}
we refer to the corresponding correct design by Dη. Consider a legal pair of assignments
〈η, ρ〉, and assume Player 3 chooses the design Dη. Similarly to the proof of Theorem 20,
the library contains variable components with identity latency function. We construct the
library and the players’ objectives so that there is a correct design Dρ for Player 1 that uses
mn+2m variable components each with load 1 iff 〈η, ρ〉 is a legal pair for ϕ. More technically,
both Dη and Dρ use mn variable components that correspond to the variables x1, . . . , xn
and y1, . . . , yn, respectively. For every j ∈ [m], assuming the j-th clause is `1j ∨ `2j ∨ `3j , the
design Dρ must use two additional variable components Bt1`a

j
and Bt2

`b
j

, for a 6= b ∈ {1, 2, 3}
and t1, t2 ∈ [m], which corresponds to η or ρ assigning value true to `aj and value false to `bj .

Player 1 has an additional correct design DALL in which he does not share any com-
ponents regardless of the other players’ choices. Player 2 has two possible designs DA
and DB. Assume Player 3 chooses a design Dη. We describe the interaction between
Player 1 and Player 2. We define the library and the players’ objectives so that when
Player 1 chooses some design Dρ, Player 2 prefers DB over DA, thus cost2(〈Dρ,DA,Dη〉) >
cost2(〈Dρ,DB ,Dη〉). When Player 2 plays DB , Player 1 prefers DALL over every design Dρ,
thus cost1(〈Dρ,DB ,Dη〉) > cost1(〈DALL,DB ,Dη〉). When Player 1 chooses DALL, Player 2
prefers DA over DB, thus cost2(〈DALL,DB ,Dη〉) > cost2(〈Dη,DA,Dη〉). Finally, when
Player 2 chooses DA, Player 1 prefers the design Dρ iff the pair 〈η, ρ〉 is legal for ϕ, thus
cost1(〈DALL,DA,Dη〉) > cost1(〈Dρ,DA, Dη〉), for a legal pair 〈η, ρ〉.

Thus, if ϕ ∈ NAE, then for every assignment η, there is an assignment ρ such that 〈η, ρ〉
is a legal pair. Then, assuming Player 3 chooses a design Dη, Player 1 prefers either choosing
DALL or Dρ over every other design, where 〈η, ρ〉 is a legal pair. By the above, there is no
PNE in the game. If ϕ /∈ NAE, then there is an assignment η such that for every assignment
ρ, the pair 〈η, ρ〉 is illegal. Then, the profile 〈DALL,DA,Dη〉 is a PNE, and we are done. J

References
1 H. Ackermann and A. Skopalik. Complexity of pure Nash equilibria in player-specific

network congestion games. Internet Mathematics, 5(4):321–515, 2008.
2 S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Exact price of anarchy

for polynomial congestion games. SIAM J. Comput., 40(5):1211–1233, 2011.
3 E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden.

The price of stability for network design with fair cost allocation. SIAM J. Comput.,
38(4):1602–1623, 2008.

4 G. Avni and O. Kupferman. Synthesis from component libraries with costs. In Proc. 25th
CONCUR, LNCS 8704, pages 156–172. Springer, 2014.

5 G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular objectives.
In Proc. 17th FoSSaCS, LNCS 8412, pages 119–133. Springer, 2014.

6 B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow. SIAM J.
Comput., 42(1):160–177, 2013.

G. Avni, O. Kupferman, and T. Tamir 379

7 N. Basilico, N. Gatti, and F. Amigoni. Leader-follower strategies for robotic patrolling in
environments with arbitrary topologies. In Proc. 8th AAMAS, 2009.

8 K. Bhawalkar, M. Gairing, and T. Roughgarden. Weighted congestion games: Price of
anarchy, universal worst-case examples, and tightness. In ESA (2), pages 17–28, 2010.

9 V. Bilò. A unifying tool for bounding the quality of non-cooperative solutions in weighted
congestion games. In WAOA, pages 215–228, 2012.

10 I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and L. Moscardelli. Tight
bounds for selfish and greedy load balancing. Algorithmica, 61(3):606–637, 2011.

11 G. Christodoulou and M. Gairing. Price of stability in polynomial congestion games. In
Proc. 40th ICALP, pages 496–507, 2013.

12 G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of correlated
equilibria of linear congestion games. In ESA, pages 59–70, 2005.

13 N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for linear
temporal logic. In Proc. 11th CAV, LNCS 1633, pages 249–260. Springer, 1999.

14 J. Dunkel and A.S. Schulz. On the complexity of pure-strategy nash equilibria in congestion
and local-effect games. Mathematics of Operations Research, 33(4):851–868, 2008.

15 C. Dwork and M. Naor. Pricing via processing, or, combatting junk mail. In Proc. CRYPTO,
pages 139–177, 2009.

16 T. Eiter and G. Gottlob Note on the complexity of some eigenvector problems. Technical
Report CD-TR 95/89, Christian Doppler Laboratory for Expert Systems, TU Vienna, 1995.

17 D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. Theoretical Com-
puter Science, 348(2-3):226–239, 2005.

18 D. Fotakis, S. Kontogiannis, and P. Spirakis. Symmetry in Network Congestion Games:
Pure Equilibria and Anarchy Cost. In Proc. WAOA, pages 161-175, 2005.

19 A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure Nash equilibria.
In Proc. 36th STOC, pages 604–612, 2004.

20 M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. Freeman and Co., 1979.

21 T. Harks and M. Klimm. On the existence of pure Nash equilibria in weighted congestion
games. Math. Oper. Res., 37(3):419–436, 2012.

22 E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science Review,
3(2):65–69, 2009.

23 Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT, 15(5-6):603–618,
2013.

24 C. Meyers. Network flow problems and congestion games: complexity and approximation
results. PhD thesis, MIT, 2006.

25 I. Milchtaich. Congestion games with player-specific payoff functions. Games and Economic
Behavior, 13(1):111–124, 1996.

26 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190,
1989.

27 M.G. Reed, P.F. Syverson, and D.M. Goldschlag. Anonymous connections and onion rout-
ing. IEEE J. on Selected Areas in Communication, 1998. Issue on Copyright and Privacy
Protection.

28 R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International
Journal of Game Theory, 2:65–67, 1973.

29 T. Roughgarden and E. Tardos. How bad is selfish routing? JACM, 49(2):236–259, 2002.
30 L. Tran-Thanh, M. Polukarov, A. C. Chapman, A. Rogers, and N. R. Jennings. On the

existence of pure strategy nash equilibria in integer-splittable weighted congestion games.
In SAGT, pages 236–253, 2011.

FSTTCS 2015

	Introduction
	Preliminaries
	Existence of a Pure Nash Equilibrium
	Equilibrium Inefficiency in MCGs
	The Price of Stability
	The Price of Anarchy

	Synthesis from Component Libraries

