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Abstract
For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can be parti-
tioned into r independent sets and ` cliques. This brings us to the following natural parameterized
questions: Vertex (r, `)-Partization and Edge (r, `)-Partization. An input to these prob-
lems consist of a graph G and a positive integer k and the objective is to decide whether there
exists a set S ⊆ V (G) (S ⊆ E(G)) such that the deletion of S from G results in an (r, `)-graph.
These problems generalize well studied problems such as Odd Cycle Transversal, Edge
Odd Cycle Transversal, Split Vertex Deletion and Split Edge Deletion. We do
not hope to get parameterized algorithms for either Vertex (r, `)-Partization or Edge (r, `)-
Partization when either of r or ` is at least 3 as the recognition problem itself is NP-complete.
This leaves the case of r, ` ∈ {1, 2}. We almost complete the parameterized complexity dichotomy
for these problems by obtaining the following results:
1. We show that Vertex (r, `)-Partization is fixed parameter tractable (FPT) for r, ` ∈ {1, 2}.

Then we design an O(
√

log n)-factor approximation algorithms for these problems. These
approximation algorithms are then utilized to design polynomial sized randomized Turing
kernels for these problems.

2. Edge (r, `)-Partization is FPT when (r, `) ∈ {(1, 2), (2, 1)}. However, the parameterized
complexity of Edge (2, 2)-Partization remains open.

For our approximation algorithms and thus for Turing kernels we use an interesting finite forbid-
den induced graph characterization, for a class of graphs known as (r, `)-split graphs, properly
containing the class of (r, `)-graphs. This approach to obtain approximation algorithms could be
of an independent interest.
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1 Introduction

For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can be
partitioned into r independent sets and ` cliques. Although the problem has an abstract
setting, some special cases are well known graph classes and have been widely studied. For
example, (2, 0)- and (1, 1)-graphs correspond to bipartite graphs and split graphs respectively.
A (3, 0)-graph is a 3-colourable graph. Already, we get a hint of an interesting dichotomy
for this graph class, even with respect to recognition algorithms. Throughout the paper we
will use m and n to denote the number of edges and the number of vertices, respectively,
in the input graph G. It is well known that we can recognize (2, 0)- and (1, 1)-graphs in
O(m + n) time. In fact, one can show that recognizing whether a graph G is an (r, `)-graph,
when r, ` ≤ 2, can be done in polynomial time [2, 9]. On the other hand, when either r ≥ 3
or ` ≥ 3, the recognition problem is as hard as the celebrated 3-colouring problem, which
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is NP-complete [12]. These problems are also studied when the input is restricted to be a
chordal graph, in which case we can get polynomial time recognition algorithms for every r

and ` [10].
The topic of this paper is to design recognition algorithms for almost (r, `)-graphs

in the realm of parameterized algorithms. In particular, we study the following natural
parameterized questions on (r, `)-graphs: Vertex (r, `)-Partization and Edge (r, `)-
Partization.

Vertex (r, `)-Partization Parameter: k

Input: A graph G and a positive integer k

Question: Is there a vertex subset S ⊆ V (G) of size at most k such that G − S is an
(r, `)-graph?

Edge (r, `)-Partization Parameter: k

Input: A graph G and a positive integer k

Question: Is there an edge subset F ⊆ E(G) of size at most k such that G − F is an
(r, `)-graph?
These problems generalize some of the most well studied problems in parameterized

complexity, such as Vertex Cover, Odd Cycle Transversal (OCT), Edge Odd Cycle
Transversal (EOCT), Split Vertex Deletion (SVD) and Split Edge Deletion
(SED). Vertex Cover, in particular, has been extensively studied in the parameterized
complexity, and the current fastest algorithm runs in time 1.2738knO(1) and has a kernel with
2k vertices [4]. The parameterized complexity of OCT was a well known open problem for a
long time. In 2003, in a breakthrough paper, Reed et al. [25] showed that OCT is FPT by
developing an algorithm for the problem running in time O(3kmn). In fact, this was the first
time that the iterative compression technique was used. However, the algorithm for OCT
had seen no further improvements in the last 9 years, though several reinterpretations of the
algorithm have been published [16, 22]. Only recently, Lokshtanov et al. [21] obtained a faster
algorithm for the problem running in time 2.3146knO(1) using a branching algorithm based
on linear programming. Guo et al. [14] designed an algorithm for EOCT running in time
2knO(1). There is another theme of research in parameterized complexity, where the objective
is to minimize the dependence of n at the cost of a slow growing function of k. A well known
open problem, in the area, is whether OCT admits a linear time parameterized algorithms.
Only recently, the first linear time FPT algorithms for OCT on general graphs were obtained,
both of which run in time O(4kkO(1)(m+n)) [24, 17]. Kratsch and Wahlström [19] obtained a
randomized polynomial kernel for OCT and EOCT. Ghosh et al. [13] studied SVD and SED
and designed algorithms with running time 2knO(1) and 2O(

√
k log k)nO(1). They also gave the

best known polynomial kernel for these problems. Later, Cygan and Pilipczuk [7] designed
an algorithm for SVD running in time 1.2738k+o(k)nO(1). Krithika and Narayanaswamy [20]
studied Vertex (r, `)-Partization problems on perfect graphs, and among several results
they obtain (r + 1)knO(1) algorithm for Vertex (r, 0)-Partization on perfect graphs.

Our Results and Methods. The instance of a parameterized problem is a pair containing
the actual problem instance of size n and a positive integer called a parameter, usually
represented as k. The problem is said to be in FPT if there exists an algorithm that solves
the problem in f(k)nO(1) time, where f is a computable function. An algorithm with such a
running time is called an FPT algorithm. Readers are requested to refer [11] for more details.
We do not hope to get FPT algorithms for either Vertex (r, `)-Partization or Edge
(r, `)-Partization when either of r or ` is at least 3 as the recognition problem itself is
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r, ` Problem Name FPT Kernel
(1, 0) Vertex Cover 1.2738k Poly
(0, 1) Vertex Cover on G 1.2738k Poly
(1, 1) SVD 1.2738k+o(k) Poly
(2, 0) OCT 2.3146k Randomized Poly
(0, 2) OCT on G 2.3146k Randomized Poly

(2, 1), (1, 2),
(2, 2)

Vertex (2, 1)-partization
Vertex (1, 2)-partization
Vertex (2, 2)-partization

3.3146k Randomized
Turing Poly

Figure 1 Summary of known and new results for the family of Vertex (r, `)-Partization
problems. New results are highlighted in green (last row).

r, ` Problem Name FPT Kernel
(1, 0) Recognizable in polynomial time.
(0, 1) Recognizable in polynomial time.
(1, 1) SED 2O(

√
k log k) Poly

(2, 0) EOCT 2k Randomized Poly
(0, 2) Recognizable in polynomial time.
(2, 1) Edge (2, 1)-partization 2k+o(k) Open
(1, 2) Edge (1, 2)-partization FPT Open
(2, 2) Edge (2, 2)-partization Open

Figure 2 Summary of known and new results for the family of Edge (r, `)-Partization problems.
New results are highlighted in green.

NP-complete. This leaves the case of r, ` ∈ {0, 1, 2}. We almost complete the parameterized
complexity dichotomy for these problems by either obtaining new results or using the existing
results. We refer to Figures 1 and 2 for a summary of new and old results. Due to paucity of
space, some proofs have had to be omitted from the paper. However, all such results (marked
with a ?) have their complete proofs in the full version.1

For both Vertex (r, `)-Partization and Edge (r, `)-Partization, the only new cases
for which we need to design new parameterized algorithms to complete the dichotomy is
when r, ` ∈ {1, 2}. Apart from the algorithmic results indicated in the Figures 1 and 2, we
also obtain the following results. When r, ` ∈ {1, 2}, we obtain an O(

√
log n)-approximation

for these special cases. Finally, we obtain randomized Turing kernels for Vertex (r, `)-
Partization using this approximation algorithms. In other words, we give a polynomial time
algorithm that produces polynomially many instances, nO(1) of Vertex (r, `)-Partization
of size kO(1) such that with very high probability (G, k) is a YES instance of Vertex
(r, `)-Partization if and only if one of the polynomially many instances of Vertex (r, `)-
Partization of size kO(1) is a YES instance. The question of existence of polynomial
kernels for these special cases as well as for Edge (r, `)-Partization is open. Even the
parameterized complexity of Edge (2, 2)-Partization remains open.

1 We would like to mention that one of our results, namely, 3.3146knO(1) time FPT algorithm for Vertex
(2, 2)-Partization (and hence for Vertex (1, 2)-Partization and Vertex (2, 1)-Partization) were
independently and simultaneously obtained by Baste et al. (http://arxiv.org/abs/1504.05515).

http://arxiv.org/abs/1504.05515
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Our methods. Most of the FPT algorithms are based on the iterative compression technique
and use an algorithm for either OCT or EOCT as a subroutine. One of the algorithms
also uses methods developed in [23]. To arrive at the approximation algorithm, we needed
to take a detour. We start by looking at a slightly larger class of graphs called (r, `)-split
graphs. A graph G is an (r, `)-split graph if its vertex set can be partitioned into V1 and V2
such that the size of a largest clique in G[V1] is bounded by r and the size of the largest
independent set in G[V2] is bounded by `. Such a bipartition for the graph G is called as
(r, `)-split partition. The notion of (r, `)-split graphs was introduced in [15]. For any fixed r

and `, there is a finite forbidden set Fr,` for (r, `)-split graphs [15]. That is, a graph G is a
(r, `)-split graph if and only if G does not contain any graph H ∈ Fr,` as an induced subgraph.
The size of the largest forbidden graph is bounded by f(r, `), f being a function given in
[15]. Since the class (r, `)-graphs is a sub class of (r, `)-split graphs, each graph in Fr,` will
not appear as an induced subgraph in any (r, `)-graph. For our approximation algorithm
we first make the given graph (r, `)-split graph by removing the induced subgraphs that are
isomorphic to some graph in Fr,`. Once we have (r, `)-split graph, we generate a (r, `)-split
partition (V1, V2) of G. Then we observe that for r, ` ∈ {1, 2} the problem reduces to finding
an approximate solution to Odd Cycle Transversal in G[V1] and G[V2]. Finally, we use
the known O(

√
log n)-approximation algorithm for Odd Cycle Transversal [1] to obtain

a O(
√

log n)-approximation algorithm for our problems. The Turing kernel for Vertex
(r, `)-Partization, when r, ` ∈ {1, 2}, uses the approximation algorithm and depends on the
randomized kernelization algorithm for Odd Cycle Transversal [19].

2 Preliminaries

We use standard notations from graph theory([8]) throughout this paper. The vertex set and
edge set of a graph G are denoted as V (G) and E(G) respectively. The complement of the
graph G is denoted by G and has V (G′) = V (G) and

(
V (G)

2
)
− E(G) as its edge set. Here,(

V (G)
2

)
denotes the family of two sized subsets of V (G). The neighbourhood of a vertex v

is represented as NG(v), or, when the context of the graph is clear, simply as N(v). An
induced subgraph of G on the vertex set V ′ ⊆ V is written as G[V ′]. An induced subgraph
of G on the edge set E′ ⊆ E is written as G[E′]. For a vertex subset V ′ ⊆ V , G[V − V ′] is
also denoted as G − V ′. Similarly, for an edge set E′ ⊆ E, G − E′ denotes the subgraph
G′ = (V, E \ E′).

The Ramsey number for a given pair of positive integers (a, b) is the minimum number
such that any graph with the Ramsey number of vertices either has an independent set of
size a or a clique of size b. The Ramsey number for (a, b) is denoted by R(a, b).

We have already seen what (r, `)-graphs are. Below, is a formal definition of the graph
class as well as some related definitions.

I Definition 1. (r, `)-graph A graph G is an (r, `)-graph if its vertex set can be partitioned
into r independent sets and ` cliques. We call such a partition of V (G) an (r, `)-partition.
An IC-partition, of an (r, `)-graph G, is a partition (V1, V2) of V (G) such that G[V1] can be
partitioned into r independent sets and G[V2] can be partitioned into ` cliques.

For fixed r, ` ≥ 0, the class of (r, `)-graphs is closed under induced subgraphs. The following
observation is useful in the understanding of the algorithms presented in the paper

I Observation 2 (?). 2 Let P = (PI , PC) and P ′ = (P ′I , P ′C) be two IC-partitions of an
(r, `)-graph G. Then |PI ∩ P ′C | ≤ r` and |P ′I ∩ PC | ≤ r`.

2 Proofs of results marked with ? can be found in the full version.
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3 Vertex Deletion to (r, `)-graphs

In this section we first show that Vertex (2, 2)-Partization is in FPT, using iterative
compression. Then we explain how to reduce Vertex (2, 1)-Partization and Vertex
(1, 2)-Partization to Vertex (2, 2)-Partization. Our algorithm for Vertex (2, 2)-
Partization combines the iterative compression technique with a polynomial bound on the
number of IC-partitions of a (2, 2)-graph. The following Lemma tells about an algorithm to
recognize whether a graph is a (2, 2)-graph and also about an algorithm to compute all such
IC-partitions. These results were shown in several papers [2, 9].

I Lemma 3. Given a graph G on n vertices and m edges we can recognize whether G is a
(2, 2)-graph in O((n + m)2) time. Also, a (2, 2)-graph can have at most n8 IC-partitions and
all the IC-partitions can be enumerated in O(n8) time.

For a graph G, we say S ⊆ V (G) is a (2, 2)-vertex deletion set, if G− S is a (2, 2)-graph.
Now we describe the iterative compression technique and its application to the Vertex
(2, 2)-Partization problem.

Iterative Compression for Vertex (2, 2)-Partizipation. Let (G, k) be an input instance
of Vertex (2, 2)-Partization and let V (G) = {v1, . . . , vn}. We define, for every 1 ≤
i ≤ |V (G)|, the vertex set Vi = {v1, . . . , vi}. Denote G[Vi] as Gi. We iterate through the
instances (Gi, k) starting from i = k + 5. Given the ith instances and a known (2, 2)-vertex
deletion set S′i of size at most k + 1, our objective is to obtain a (2, 2)-vertex deletion set Si

of size at most k. The formal definition of this compression problem is as follows.

Vertex (2, 2)-Partization Compression Parameter: k

Input: A graph G and a k + 1 sized vertex subset S′ ⊆ V (G) such that G − S′ is a
(2, 2)-graph
Output: A vertex subset S ⊆ V (G) of size at most k such that G− S is a (2, 2)-graph

We reduce the Vertex (2, 2)-Partization problem to n−k−4 instances of the Vertex
(2, 2)-Partization Compression problem in the following manner. When i = k + 5, the set
Vk+1 is a (2, 2)-vertex deletion set of size at most k + 1 for Gk+5. Let Ii = (Gi, S′i, k) be the
ith instance of Vertex (2, 2)-Partization Compression. If Si−1 is a k-sized solution for
Ii, then Si−1 ∪ {vi} is a (k + 1)-sized (2, 2)-vertex deletion set for Gi. Hence, we start the
iteration with the instance Ik+5 = (Gk+5, Vk+1, k) and try to obtain a (2, 2)-vertex deletion
set of size at most k. If such a solution Sk+5 exists, we set S′k+5 = Sk+5 ∪ {vk+6} and ask of
a k-sized solution for the instance Ik+6, and so on. If, during any iteration, the corresponding
instance does not have a (2, 2)-vertex deletion set of size at most k, it implies that the original
instance (G, k) is a NO instance for Vertex (2, 2)-Partization. If the input instance (G, k)
is a YES instance, then Sn is a k-sized (2, 2)-vertex deletion set for G, where n = |V (G)|.
Since there are at most n iterations, the total time taken by the algorithm to solve Vertex
(2, 2)-Partization is at most n times the time taken to solve Vertex (2, 2)-Partization
Compression. The above explained template for doing iterative compression will be used
for approximation algorithms as well as for parameterized algorithms for edge versions of
these problems.

The following Lemma shows that Vertex (2, 2)-Partization Compression is in FPT.
The arguments above imply that Vertex (2, 2)-Partization is also in FPT.

I Lemma 4 (?). Vertex (2, 2)-Partization Compression can be solved deterministically
in time 3.3146k|V (G)|O(1).
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Proof. (Proof sketch) We design an algorithm for Vertex (2, 2)-Partization Compression.
Let (G, S′) be the instance of the problem and let (P ′I , P ′C) be an IC-partition of G − S′.
Let S be a hypothetical solution of size k for the problem, which the algorithm suppose to
compute. Let (PI , PC) be an IC-partition of G− S. The algorithm first guesses a partition
(Y, N) of S′ such that Y = S′ ∩ S and N = S′ − S. After this guess, the objective is
to compute a set Z of size at most k′ = k − |Y | such that G − (Z ∪ Y ) is a (2, 2)-graph.
Also note that since N is not part of the solution S, G[N ] is a (2, 2)-graph. Consider the
two IC-partitions (PI − (S ∪ S′), PC − (S ∪ S′)) and (P ′I − (S ∪ S′), P ′C − (S ∪ S′)) of the
(2, 2)-graph G − (S ∪ S′). By Observation 2 we know that the cardinality of each of the
set (PI ∩ P ′C)− (S ∪ S′) and (PC ∩ P ′I)− (S ∪ S′) are bounded by 4. So now the algorithm
guesses the set VI = (PI ∩ P ′C) − (S ∪ S′) and VC = (PC ∩ P ′I) − (S ∪ S′), each of them
having size at most 4. After the guess of VI and VC , any vertex in P ′C − VI either belongs to
PC or belongs to the hypothetical solution S. Similarly any vertex in P ′I − VC either belongs
to PI or belongs to the hypothetical solution S. By Lemma 3 we know that the number
of IC-partitions of G[N ] is at most O(k8) and these partitions can be enumerate in time
O(k8) . The algorithm now guesses an IC-partition (NI , NC) of G[N ] such that NI ⊆ PI and
NC ⊆ PC . Now consider the partition (A, B) = ((P ′I ∪NI ∪ VI)− VC , (P ′C ∪NC ∪ VC)− VI).
Any vertex v ∈ A either belongs to PI or belongs to the hypothetical solution S and any
any vertex v ∈ B either belongs to PC or belongs to the solution S. So the objective is
to find two sets U ⊆ A and W ⊆ B such that G[A− U ] is a bipartite graph, G[B −W ] is
the complement of a bipartite graph and |U |+ |W | ≤ k′. As a consequence, the algorithm
guesses the sizes k1 of U and k2 of W . Then the problem reduced to finding an odd cycle
transversal(OCT) of size k1 for G[A] and an OCT of size k2 for the complement of the graph
G[B]. Hence, our algorithm runs the current best algorithm for Odd Cycle Transversal,
presented in [21] for finding an OCT U of size k1 in G[A] and for finding an OCT W of size
k2 in the complement of G[B]. This completes the algorithm and it leads to the mentioned
running time in the lemma. The running time analysis can be found in the full version. J

Lemma 4 and the discussions preceding it imply the following theorem.

I Theorem 5. Vertex (2, 2)-Partization can be solved in time 3.3146k|V (G)|O(1).

Vertex (2, 1)-Partization: The Vertex (2, 1)-Partization problem can be reduced to
Vertex (2, 2)-Partization. Suppose we are given a graph G, where |V (G)| = n. We
construct a graph G′ = G ] Ĉ, where Ĉ is a clique on n + 3 new vertices. That is, G′ is the
disjoint union of G and Ĉ. The next lemma relates the graphs G and G′.

I Lemma 6 (?). For any integer t ≤ n, (G, t) is a YES instance of Vertex (2, 1)-
Partization if and only if (G′, t) is a YES instance of Vertex (2, 2)-Partization. Here
G′ = G ] Ĉ such that Ĉ is a clique on n + 3 new vertices that are independent from G.

Now if we are given an instance (G, k) of Vertex (2, 1)-Partization, Lemma 6 tells us
that it is enough to solve Vertex (2, 2)-Partization on (G′, k). Notice that solving the
Vertex (1, 2)-Partization problem on an input instance (G, k) is equivalent to finding a
Vertex (1, 2)-Partization on (G, k), where G is the complement graph of G. Thus, we
get the following as a corollary of Theorem 5.

I Corollary 7. Vertex (1, 2)-Partization and Vertex (2, 1)-Partization have FPT
algorithms that run in 3.3146knO(1) time.
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4 Approximation algorithm for Vertex (r, `)-Partization

In this section we give a polynomial time approximation algorithm for Vertex (2, 2)-
Partization. That is, we design an algorithm for Vertex (2, 2)-Partization, which takes
an instance (G, k), runs in polynomial time and outputs either a solution of size O(k3/2) or
concludes that (G, k) is a NO instance. Since the reduction from Vertex (2, 1)-Partization
to Vertex (2, 2)-Partization, given in Lemma 6, is an approximation preserving reduction,
we can get a similar approximate algorithm for Vertex (2, 1)-Partization. Similarly, since
Vertex (1, 2)-Partization on a graph is equivalent to Vertex (2, 1)-Partization in the
complement graph, we can get an approximation algorithm for Vertex (1, 2)-Partization.
The approximation algorithm we discuss in this section, is useful for obtaining Turing kernels
for Vertex (r, `)-Partization, when 1 ≤ r, ` ≤ 2. Finally, we design a factor O(

√
log n)

approximation algorithms for these problems.
We know that (r, `)-graphs is a subclass of (r, `)-split graphs (See Introduction for

definition). Now we give a polynomial time algorithm which takes a graph G as input and
outputs an (r, `)-split partition if G is an (r, `)-split graph. We design such an algorithm
using iterative compression. Essentially we show that the following problem, (r, `)-split
partition Compression, can be solved in polynomial time.

(r, `)-split partition Compression
Input: A graph G with V (G) = V ∪ {v} and an (r, `)-split partition (A, B) of G[V ]
Output: An (r, `)-split partition of G, if G is an (r, `)-split graph, and NO otherwise

Like in the case of the FPT algorithm for Vertex (2, 2)-Partization given in Section 3,
we can show that by running the algorithm for (r, `)-split partition Compression at
most n− 2 times we can get an algorithm which outputs an (r, `)-split partition of a given
(r, `)-split graph. Our algorithm for (r, `)-split partition Compression uses the following
simple lemma.

I Lemma 8 (?). Let G be an (r, `)-split graph. Let (A, B) and (A′, B′) are two (r, `)-split
partitions of G. Then |A∩B′| ≤ R(` + 1, r + 1)− 1 and |A′ ∩B| ≤ R(` + 1, r + 1)− 1, where
R(r + 1, ` + 1), is the Ramsey number.

Using Lemma 8, we show that (r, `)-split partition Compression can be solved in
polynomial time for any fixed constants r and `.

I Lemma 9 (?). For any fixed constants r and `, (r, `)-split partition Compression can
be solved in polynomial time.

By applying Lemma 9, at most n− 2 times, we can get the following lemma.

I Lemma 10. For any fixed constants r and `, there is an algorithm which takes a graph G

as input, runs in polynomial time, and decides whether G is an (r, `)-split graph. Furthermore,
if G is an (r, `)-split graph then the algorithm outputs an (r, `)-split partition (V1, V2) of G.

We know that any (r, `)-graph is also an (r, `)-split graph. The following lemma gives a
relation between an (r, `)-split partition and an IC-partition of a (r, `)-graph.

I Lemma 11 (?). Let G be an (r, `)-graph. Let (A, B) be an IC-partition of G and (A′, B′)
be an (r, `)-split partition of G. Then |A ∩B′| ≤ r` and |A′ ∩B| ≤ r`.

Before giving an approximation algorithm for Vertex (r, `)-Partization, we need
to mention about a polynomial time approximation algorithm for Odd Cycle Trans-
versal and finite forbidden characterization of (r, `)-graphs. Using the FPT algorithm
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for OCT [19], and an O(
√

log n)-approximation algorithm for OCT [1], one can prove the
following proposition.

I Proposition 12 ([19]). There is a polynomial time algorithm which takes a graph G and
an integer k as input and outputs either an OCT of G of size at most O(k3/2) or concludes
that there is no OCT of size k for G.

For any fixed r and `, there is a finite forbidden set Fr,` for (r, `)-split graphs [15]. That is, a
graph G is an (r, `)-split graph if and only if G does not contain any graph H ∈ Fr,` as an
induced subgraph. The size of the largest forbidden graph is bounded by f(r, `), f being a
function given in [15]. Since f(2, 2) is a constant, it is possible to compute the forbidden
set Fr,` in polynomial time: The forbidden graphs are of size at most f(2, 2). Since the
class (r, `)-graphs is a sub class of (r, `)-split graphs, each graph in Fr,` will not appear as
an induced subgraph in any (r, `)-graph. Now we are ready to design a polynomial time
approximation algorithm for Vertex (2, 2)-Partization.

I Theorem 13. There is an algorithm which takes a graph G and an integer k as input,
runs in polynomial time and outputs either a set S of size O(k3/2) such that G − S is a
(2, 2)-graph or concludes that (G, k) is a NO instance of Vertex (2, 2)-Partization.

Proof. The algorithm first finds a maximal set T of vertex disjoint subgraphs of G such
that each subgraph in T is isomorphic to a graph in F2,2. If |T | > k, then clearly (G, k) is a
NO instance of Vertex (2, 2)-Partization. So the algorithm will output NO if |T | > k.
Now consider the graph G′ = G− V (T ). Here, V (T ) denotes the set of vertices appearing in
graphs in T . Since T is a maximal set of vertex disjoint subgraphs in G which are isomorphic
to a graphs in F2,2 we have that G′ is a (2, 2)-split graph.

Now our algorithm will find a set S ⊆ V (G′) of size bounded by O(k3/2) such that
G′ − S is a (2, 2)-graph. Since G′ is a subgraph of G, if (G, k) is a YES instance of Vertex
(2, 2)-Partization, then (G′, k) is also a YES instance. Let S∗ be an hypothetical solution
of the instance (G′, k) of Vertex (2, 2)-Partization and let (A, B) be an IC-partition
of G′ − S∗. Now our algorithm applies Lemma 10 on graph G′ and computes a (2, 2)-split
partition (A′, B′) of G′ in polynomial time. By Lemma 11, we know that |A ∩B′| ≤ 4 and
|A′ ∩B| ≤ 4. So the algorithm will guess the set U = A ∩B′ and W = A′ ∩B. The number
of possible guesses for U and W is bounded by n8. For the correct guess U and W , we know
that A = (A′ ∪ U) \ (W ∪ S∗) and B = (B′ ∪W ) \ (U ∪ S∗). Now consider the partition
(V1, V2) of V (G′), where V1 = (A′ ∪ U) \W and V2 = (B′ ∪W ) \ U . So for the correct guess
U and W , we know that each vertex in V1 either belongs to A or belongs to S∗ and each
vertex in V2 either belongs to B or belongs to S∗. Now to compute a solution for (G′, k), it is
enough to find an OCT S1 in G[V1] and an OCT S2 in the complement graph of G′[V2] such
that |S1|+ |S2| = k. Our algorithm applies Proposition 12 on G′[V1] and on the complement
graph of G′[V2]. If these algorithms output an OCT S1 and an OCT S2 for graphs G′[V1]
and G′[V2], then S1 ∪ S2 is of size bounded by O(k3/2) and G′ − (S1 ∪ S2) is a (2, 2)-graph.
Since G′ = G−V (T ) and G′− (S1 ∪S2) is a (2, 2)-graph, we have that G− (S1 ∪S2 ∪V (T ))
is a (2, 2)-graph. So our algorithm will output S1 ∪ S2 ∪ V (T ) as the required output. Since
|V (T )| ≤ k · f(2, 2), we have that |S1 ∪ S2 ∪ V (T )| = O(k3/2). If the algorithm mentioned in
Proposition 12 returns NO for all possible guesses of U and W , then our algorithm outputs
NO. It is easy to see that the number of steps in our algorithm is bounded by a polynomial
in |V (G)|. J

Using the arguments of Theorem 13, we can also design an approximation algorithm for
finding a minimum (2, 2)-vertex deletion set of a graph G. Let S be an optimum (2, 2)-vertex
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deletion set and (A, B) be the corresponding IC-partition of G′ = G−S. Let T be a maximal
set of vertex disjoint subgraphs of G, that are each isomorphic to a graph in F2,2. The number
of subgraphs in T is at most |S| and the number of vertices involved in these forbidden
subgraphs is at most f(2, 2)|S|. The remaining graph G′ is a (2, 2)-split graph and using
Lemma 10, we can find a (2, 2)-split partition (A′, B′) of G′. Let (Â, B̂) be the restriction of
(A, B) to G′. As argued above, at most 4 vertices from A′ could be part of B̂. Let this set of
4 vertices be called U . The rest either belong to Â or S. U ∪ (S ∩A′) is an OCT for A′, of
size at most 2|S ∩A′|. The algorithm of [1] returns an O(

√
log n)-approximate Odd Cycle

Transversal solution S1 for G[A′], which has to be of size at most 2|S ∩A′| · O(
√

log n).
There is a similar property on the vertices of B′. Applying the algorithm of [1], on G′[B′],
returns an O(

√
log n)-approximate Odd Cycle Transversal solution S2, which has to be

of size at most 2|S ∩B′| · O(
√

log n). Thus V (T ) ∪ S1 ∪ S2 is a (2, 2)-vertex deletion set of
G, with size at most (f(2, 2) +O(

√
log n)|S|. This together with Lemma 6 and discussion

after that lead to the following theorem.

I Theorem 14. Vertex (2, 1)-Partization, Vertex (1, 2)-Partization, and Vertex
(2, 2)-Partization admit polynomial time approximation algorithms with factor O(

√
log n).

5 Turing Kernels for Vertex Deletion to (r, `)-graphs

In this section, we give a randomized Turing kernel for Vertex (2, 2)-Partization (See
introduction for the definition). The equivalence in Lemma 6 ensures that there is a ran-
domized Turing kernel for Vertex (2, 1)-Partization. Since, Vertex (1, 2)-Partization
on an instance (G, k) is equivalent to Vertex (2, 1)-Partization on (G, k), a randomized
Turing kernel for Vertex (1, 2)-Partization follows.

We have seen in Section 3 that eventually the algorithm for Vertex (2, 2)-Partization
runs two instances of OCT. In this section we explain that we can use the kernelization of
OCT to get a Turing kernel for Vertex (2, 2)-Partization. A randomized polynomial
kernel for OCT was shown by Kratsch and Wahlström [18], using the concept of representative
family. They showed that it is possible to find kO(1) “relevant” vertices from the input graph
which contains the optimum solution. This leads to a randomized kernel for OCT. In fact,
the following lemma follows from the work of Kratsch and Wahlström. We give a proof for
the lemma in the full version.

I Lemma 15 (?). Let G be a graph and X be an OCT of G. There is a randomized
polynomial time algorithm which computes a set Z ⊆ V (G) of size O(|X|3) such that for any
Y ⊆ X, a minimum sized OCT, of G− Y , is fully contained in Z.

Now we are ready to explain our Turing kernel for Vertex (2, 2)-Partization using
Lemma 15. Given an instance (G, k) of Vertex (2, 2)-Partization, first we construct
|V (G)|O(1) many instances of a problem which is in NP and each of them have size bounded
by polynomial in k. Then, by using the Cook-Levin theorem [5], we can reduce each of these
intances to instances of Vertex (2, 2)-Partization and thus arrive at a Turing kernelization
for Vertex (2, 2)-Partization. We first run the polynomial time approximation algorithm
described in Theorem 13. If the approximation algorithm outputs NO, then the algorithm
will output a trivial NO instance of the problem. Otherwise let X be the solution returned by
the approximation algorithm on input (G, k). We know that the cardinality of X is bounded
by O(k3/2). Now we fix an IC-partition (PI , PC) of G−X. Let S be a hypothetical solution
of size at most k and (QI , QC) be an IC-partition of G− S. It follows from Observation 2
that |PI ∩QC | ≤ 4 and |QI ∩ PC | ≤ 4. This observation leads to the following lemma.
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I Lemma 16. (G, k) is a YES instance of Vertex (2, 2)-Partization if and only if there
exist VC ⊆ PI and VI ⊆ PC , each of cardinality at most 4 such that X ′ = X ∪ VC ∪ VI can
be partitioned into X ′I , X ′D, X ′C , with the following properties:
1. There is a set ZI ⊆ (PI \ VC) ∪X ′I such that ZI ∪X ′D ∪X ′C is an OCT for G[PI ∪X ′].

In other words, ZI is an OCT for G[PI ∪X ′I ].
2. There is a set ZC ⊆ (PC \ VI) ∪X ′C such that ZC ∪X ′D ∪X ′I is an OCT for G[PC ∪X ′].

In other words, ZC is an OCT for G[PC ∪X ′C ].
3. |ZI ∪ ZC ∪X ′D| ≤ k.

Proof. Suppose (G, k) is a YES instance of Vertex (2, 2)-Partization. Then there is
a k-sized solution Z such that G− Z is a (2, 2)-graph. Let (QI , QC) be an IC-partition of
G−Z. Let VC = PI ∩QC and VI = PC ∩QI . It follows from Observation 2 that |VI | ≤ 4 and
|VC | ≤ 4. Notice that any vertex in PI \VC either belongs to QI or to Z. Similarly, any vertex
in PC \VI either belongs to QC or to Z. Let X ′ = X ∪VI ∪VC . Now we define X ′I = X ′∩QI ,
X ′C = X ′∩QC and X ′D = X ′∩Z. Let ZI = Z∩PI and ZC = Z∩PC . Note that ZI ∩VC = ∅
and ZC ∩ VI = ∅. From the definition of X ′, VI and VC , it is clear that VI ⊆ X ′I and
VC ⊆ X ′C . Since VC ⊆ X ′I and VC ⊆ X ′C , we have that (PI ∪X ′) \ (ZI ∪X ′D ∪X ′C) = QI .
Also since, G[QI ] is a bipartite graph we have that (ZI ∪X ′D ∪X ′C) is an OCT of G[PI ∪X ′].
By similar arguments we can show that (ZC ∪X ′D ∪X ′I) is an OCT of G[PC ∪X ′]. Since
ZI ∪ ZC ∪X ′D = Z and |Z| = k, the set ZI ∪ ZC ∪X ′D satisfies condition 3 in the lemma.
This completes the proof of the forward direction.

Conversely, suppose there is a VC ⊆ PI and VI ⊆ PC , each of size at most 4 such that the
X ′ = X ∪ VI ∪ VC has a 3-partition (X ′I ∪X ′D ∪X ′C) with the properties mentioned in the
lemma. That is, there is an OCT ZI for the graph G[PI ∪X ′I ] and an OCT ZC for the graph
G[PC ∪X ′C ] such that |ZI ∪ZC ∪X ′D| ≤ k. Then we claim that Z = ZI ∪ZC ∪X ′D is a (2, 2)-
vertex deletion set of G. Consider the sets QI = (PI ∪X ′I)\ZI and QC = (PC ∪X ′C)\ZC . By
our assumption G[QI ] and G[QC ] are bipartite graphs. Also note that QI ∪QC ∪Z = V (G).
Hence Z is a (2, 2)-vertex deletion set of G and (QI , QC) is an IC-partition of G− Z. J

The Lemma 16 allows us to reduce an instance of Vertex (2, 2)-Partization to
polynomially many instances of a problem which is in NP. Consider the following problem.

Twin Odd Cycle Transversal (TOCT) Parameter: k

Input: Two graphs G1 and G2, terminals X ⊆ V (G1), Y ⊆ V (G2), a bijection Φ between
X and Y , and an integer k

Question: Is there a partition of X into three parts (X1, XD, X2) such that there is
an OCT Z1 ⊆ V (G1) \ (XD ∪ X2) for the graph G1 − (XD ∪ X2), an OCT Z2 ⊆
V (G2) \ (Φ(XD)∪Φ(X1)) for the graph G2− (Φ(XD)∪Φ(X1)) and |Z1 ∪XD ∪Z2| ≤ k?
Clearly the problem TOCT is in NP. Because of Lemma 16, for each VC ⊆ P1 and

VI ⊆ PC of cardinality at most 4, we construct an instance of TOCT, of size bounded by
a polynomial in k, using Lemma 15. After this, we fix a VI ⊆ PC and a VC ⊆ PI , each of
cardinality at most 4. Now let X ′ = X ∪ VI ∪ VC . Note that X ′ is a (2, 2)-vertex deletion
set of G and (PI \ VC , PC \ VI) is an IC-partition of G−X ′. The following observation is
derived from the fact that (PI \ VC , PC \ VI) is an IC-partition of G−X ′ and VI ∪ VC ⊆ X ′.

I Observation 17. The set X ′ is an OCT of G[PI ∪X ′] and also an OCT of G[PC ∪X ′].

For a particular choice of VC ⊆ PI and VI ⊆ PC of cardinality at most 4, we construct an
instance of TOCT as follows. Let X ′ = X ∪ VI ∪ CC , where X is the approximate solution
of size bounded by O(k3/2). Let (PI , PC) be an IC-partition of G−X. Let G1 = G[PI ∪X ′]
and G2 = G[PC ∪X ′]. By Observation 17, X ′ is an OCT in graphs G1 and G2. Now we
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apply Lemma 15 and get a set of relevant vertices Z1 ⊆ V (G1) of size bounded by O(k9/2).
Next, we construct a graph G∗1 as follows: delete all the vertices V (G1) \ (X ′ ∪ Z1) from
G1. Add two length (three length) path between two vertices in V (G∗1), if there is an
even length (odd length) path between the corresponding vertices in G1 using only vertices
from V (G) \ (X ′ ∪ Z1). Similarly, we construct a graph G∗2 from G2. Now we output
H = (G1, G2, X ′, X ′, k) as the reduced instance of TOCT, with the bijection between X ′

and X ′ be the natural identity map. Since there are O(n4) choices for selecting VC and VI ,
our algorithm will output instances H1, H2, . . . Ht where t = O(n4) and the size of each Hi

is bounded by O(k9).
Using Lemmata 15 and 16 we can prove that in fact the above Turing reduction is

correct.

I Lemma 18 (?). (G, k) is a YES instance of Vertex (2, 2)-Partization if and only if
there exists i such that Hi is a YES instance of TOCT.

The problem TOCT is in NP and Vertex (2, 1)-Partization is NP-complete. Therefore,
by Cook-Levin theorem each instance Hi of TOCT can be reduced to an an instance of
Vertex (2, 2)-Partization in polynomial time. Also note that size of each instance Hi is
bounded by O(k9). Thus we have the following theorem.

I Theorem 19. There exists a randomized polynomial Turing kernel for Vertex (2, 2)-
Partization.

Since there is parameter preserving reduction from Vertex (2, 1)-Partization and
Vertex (1, 2)-Partization to Vertex (2, 2)-Partization, the following corollary is
derived from Theorem 19.

I Corollary 20. There exists a randomized polynomial Turing kernel for Vertex (2, 1)-
Partization and Vertex (1, 2)-Partization.

6 Edge Deletion to (r, `)-graphs

In this section we show that Edge (2, 1)-Partization and Edge (1, 2)-Partization are in
FPT.

6.1 Edge (2, 1)-Partization
In this subsection we show that Edge (2, 1)-Partization is in FPT, using iterative com-
pression. For Edge (2, 1)-Partization, the corresponding compression problem is defined
as follows.

Edge (2, 1)-Partization Compression Parameter: k

Input: A graph G with V (G) = V ∪ {v}, an integer k and an edge set S′ ⊆ E(G− {v}),
of size at most k, such that G[V ]− S′ is a (2, 1)-graph
Output: A subset S ⊆ E of size at most k such that G− S is a (2, 1)-graph

Similar to Vertex (2, 2)-Partization, we can show that Edge (2, 1)-Partization can
be solved, by running Edge (2, 1)-Partization Compression at most |V (G)| times, for an
input instance (G, k). The following lemma is useful for our purpose.

I Lemma 21 (?). Let G be a graph on n vertices, v ∈ V (G) and |E(G− {v})| ≤ k. Then
the number of cliques in G is bounded by 2O(

√
k)n and these cliques can be enumerated in

time 2O(
√

k)n.
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Next we show that Edge (2, 1)-Partization Compression is in FPT.

I Lemma 22 (?). Edge (2, 1)-Partization Compression is solved in time 2k+o(k)nO(1).

Thus, by using Lemma 22, we prove the following theorem.

I Theorem 23. Edge (2, 1)-Partization can be solved in time 2k+o(k)nO(1).

6.2 Edge (1, 2)-Partization
In this subsection we show that Edge (1, 2)-Partization is in FPT. Again we use the
iterative compression technique to solve the problem. For our algorithm, we need an algorithm
for a version of Odd Cycle Transversal. Let G be an hereditary graph class (hereditary
means that if G ∈ G, then every induced subgraph of G is in G as well) and G is decidable.
Then the problem G-Weighted Bipartition is defined as follows.

G-Weighted Bipartition Parameter: k + W

Input: A graph G, w : V (G)→ N+ and integers k and W

Output: An OCT O of G, of size at most k such that w(O) ≤W and G[O] ∈ G

Marx et al. [23] showed that the unweighted version of the problem, G-Bipartition can
be solved in FPT time. The proof by Marx et al., constructs an “equivalent graph” with
treewidth bounded by a function of k. The problem is then solved in the equivalent graph,
using Courcelle’s theorem [6] by expressing the problem as an MSO predicate. Since we can
express whether the weight of a subset of vertices is at most W using an MSO predicate of
length bounded by a function of W , the following theorem follows from the results of Marx
et al. [23].

I Theorem 24. If G is hereditary and decidable, then G-Weighted Bipartition is in
FPT.

Now we are ready to define compression version of the problem Edge (1, 2)-Partization
and prove that it is in FPT, which in turn will imply that non-compression version of the
problem is in FPT.

Edge (1, 2)-Partization Compression Parameter: k

Input: A Graph G with V (G) = V ∪ {v}, an integer k and an edge set S′ ⊆ E(G− v),
of size at most k, such that G[V ]− S′ is a (1, 2)-graph
Output: A subset S ⊆ E of size at most k such that G− S is a (1, 2)-graph

I Lemma 25 (?). Edge (1, 2)-Partization Compression is in FPT.

Thus by using Lemma 25, we get the following theorem.

I Theorem 26. Edge (1, 2)-Partization is in FPT.

7 Conclusion

In this paper we explored parameterized complexity of a family of partition problems,
namely Vertex (r, `)-Partization and Edge (r, `)-Partization. Whether there exists
a polynomial kernel for these problems remains an interesting open problem. Also, the
parameterized complexity of Edge (2, 2)-Partization remains unresolved.
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