
Counting Euler Tours in Undirected Bounded
Treewidth Graphs
Nikhil Balaji1,3, Samir Datta1, and Venkatesh Ganesan2

1 Chennai Mathematical Institute, Chennai, India
{nikhil,sdatta}@cmi.ac.in

2 Birla Institute of Technology and Science – Pilani, India
venkatesh920@gmail.com

3 Indian Institute of Technology, Bombay, India
nbalaji@cse.iitb.ac.in

Abstract
We show that counting Euler tours in undirected bounded tree-width graphs is tractable even
in parallel - by proving a #SAC1 ⊆ NC2 ⊆ P upper bound. This is in stark contrast to #P-
completeness of the same problem in general graphs.

Our main technical contribution is to show how (an instance of) dynamic programming on
bounded clique-width graphs can be performed efficiently in parallel. Thus we show that the
sequential result of Espelage, Gurski and Wanke [16] for efficiently computing Hamiltonian paths
in bounded clique-width graphs can be adapted in the parallel setting to count the number of
Hamiltonian paths which in turn is a tool for counting the number of Euler tours in bounded
tree-width graphs. Our technique also yields parallel algorithms for counting longest paths and
bipartite perfect matchings in bounded-clique width graphs.

While establishing that counting Euler tours in bounded tree-width graphs can be computed
by non-uniform monotone arithmetic circuits of polynomial degree (which characterize #SAC1)
is relatively easy, establishing a uniform #SAC1 bound needs a careful use of polynomial inter-
polation.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, G.2.2 Graph Theory

Keywords and phrases Euler Tours, Bounded Treewidth, Bounded clique-width, Hamiltonian
cycles, Parallel algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.246

1 Introduction

An Euler tour of a graph is a closed walk on the graph that traverses every edge in the graph
exactly once. Given a graph, deciding if there is an Euler tour of the graph is quite simple.
Indeed, the famous Königsberg bridge problem that founded graph theory is a question about
the existence of an Euler tour using each of these bridges exactly once. Euler settled this
question in the negative and in the process gave a necessary and sufficient condition for a
graph to be Eulerian (A connected graph is Eulerian if and only if all the vertices are of
even degree). This gives a simple algorithm to check if a graph is Eulerian.

An equally natural question is to ask for the number of distinct Euler tours in a graph. For
the case of directed graphs, the BEST theorem due to De Bruijn, Ehrenfest, Smith and Tutte
gives an exact formula that gives the number of Euler tours in a directed graph [1, 25] which
yields a polynomial time algorithm via a determinant computation. For undirected graphs,

© Nikhil Balaji, Samir Datta, and Venkatesh Ganesan;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 246–260

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.246
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. Balaji, S. Datta, and V. Ganesan 247

no such closed form expression is known and the computational problem is #P-complete [8].
In fact, the problem is #P-complete even when restricted to 4-regular planar graphs [18]. So
exactly computing the number of Euler tours is not in polynomial time unless #P = P.

In this paper, we are concerned with the problem of counting Euler tours on graphs of
bounded treewidth. Many problems which are NP-hard for general graphs, can be solved in
polynomial time on bounded treewidth graphs. Indeed, a result of Courcelle [11] asserts that
any graph property that is expressible in Monadic Second Order logic (with edge quantifiers)
can be solved in linear time on bounded treewidth graphs. Elberfeld et al. [15] adapt the
theorem of Courcelle in the parallel setting and prove a L bound. However, Eulerianity
is provably not MSO -expressible [14] and hence the approaches mentioned above are not
directly applicable in our context.

Our strategy to count Euler tours is as follows: Given a bounded treewidth graph G, we
count the number of Euler tours of G by counting the number of Hamiltonian tours of the
line graph of G, L(G). In general, there is no bijection between these two quantities, but
we show that G can be modified to obtain G′ (tw(G′) ≤ tw(G) + 3) such that G, G′ have
the same number of Eulerian tours, which equals the number of Hamiltonian tours of L(G′).
Henceforth, we will be primarily interested in line graphs of bounded treewidth graphs. It is
known that such graphs are of bounded clique-width [24]

We base our proof on a proof that the decision version of Hamiltonicity is polynomial
time computable in bounded clique-width graphs [16]. We prove that this algorithm can be
parallelised and extended to the counting version. Next, we show that for line graphs of
bounded tree-width graphs which form the family of interest, the clique-width expression
can be inferred from the corresponding tree decomposition. The tree decomposition itself is
obtainable by the L-version of Bodlaender’s theorem [15].

Our main tool in establishing a uniform NC-bound for counting Hamiltonian cycles
on bounded clique-width graphs hinges on polynomial interpolation. While polynomial
interpolation has been used successfully to compute various graph polynomials [23], our
use is somewhat indirect and subtle: it is used by the uniformity machine to populate a
table whose entries do not depend on the input bounded clique-width expression but only
the number of vertices in the corresponding graph and the clique-width. We then build a
monotone arithmetic circuit that uses the clique-width expression of the graph and entries
from this table to count the number of Hamiltonian cycles in the clique-width bounded graph.
We then observe that since the number of distinct Hamiltonian tours of a graph is at most
exponential in the number of vertices of the graph, and the circuit is monotone, the formal
degree of the circuit must be a polynomial in the size of the input graph. This allows us to
use a result from circuit complexity [2] to yield an upper bound of #SAC1 on the complexity
of counting Euler tours on bounded treewidth graphs.

Our techniques also yield a parallel upper bound on the problems of counting longest
paths/cycles and counting bipartite matchings in bounded clique-width graphs. These are
well known problems (and #P-complete in general graphs) but their (counting) complexity
has not been investigated in bounded clique-width graphs. While [13] studies the problem of
counting longest paths and perfect matchings in bounded tree-width DAGs, we improve the
results by resolving the problems for bounded clique-width graphs at the cost of replacing
the L bound by a #SAC1 bound where we know that L ⊆ #SAC1 ⊆ NC2 ⊆ P 1.

1 Note that #SAC1 is a function class and when we say #SAC1 ⊆ NC2, what we actually mean is that
any bit of the #SAC1 function family of interest is computable by a NC2 circuit family

FSTTCS 2015

248 Counting Euler Tours in Undirected Bounded Treewidth Graphs

1.1 Previous Work
Chebolu, Cryan, Martin have given a polynomial time algorithm for counting Euler tours in
undirected series-parallel graphs [9] and they have claimed to extend it to a polynomial time
algorithm [10] for the counting Euler tours in bounded tree-width graphs. We would like to
point out that the only incomplete, unrefereed manuscript available publicly [10] sketches
an algorithm that does dynamic programming directly on the tree-decomposition. Since we
show how to obtain the line graph of the bounded tree-width graph efficiently in parallel and
then work on this bounded clique-width graph - our approach is fundamentally different from
that of [9, 10]. Another difference is that their algorithm is not designed to be parallelisable.

Also notice that in a precursor to this paper [4], using totally different techniques (basically
applications of the Logspace version of Courcelle’s theorem [15]) it was claimed that the
number of Euler tours in bounded tree-width directed and undirected graphs can be counted
in Logspace but the approach had a serious flaw in the undirected version. Later versions [5, 6]
of the paper claim the result only for directed graphs. This work proves a slightly weaker
version of the result - the upper bound being #SAC1 rather than Logspace.

Given that counting Hamiltonian cycles on bounded clique-width graphs will suffice for our
purposes, one result that is directly relevant is that of Flarup and Lyaudet [17]: They study
the expressive power of Perfect Matching and Hamiltonian polynomials of graphs of bounded
clique-width and show that they can simulate arithmetic polynomials, and are themselves
contained in VP. This yields a GapSAC1 bound (implicit) for counting Hamiltonian cycles in
bounded clique-width graphs right away. There are two aspects in which the work of [17]
differs from our work: Firstly, even though their techniques are also inspired from [16] like
ours, they work with a slightly different notion of clique-width namelyW −m−clique-width2.
Secondly, in the case of counting Euler tours, from a straight-forward application of [17]
the best upper bound that can be obtained from the circuit families constructed in [17] is
non-uniform GapSAC1, whereas we get an upper bound of Logspace-uniform3 #SAC1.

There is some similarity that this work bears with that of Makowsky et al. [23], in that
both involve polynomial interpolation to count witnesses for a graph theory problem. The
similarity is somewhat superficial because we use interpolation to obtain numbers independent
of the input graph while they interpolate to compute a graph polynomial that crucially
depends on the graph. The choice of graph theory problems is also quite different. In
particular, [23] does not address the Hamiltonian cycle problem.

1.2 Our Results
This is the main theorem of this work:

I Theorem 1. #Hamiltonian Cycles (or Paths) for bounded clique-width graphs is in #SAC1.
Consequently, #Euler Tours for bounded tree-width graphs is also in #SAC1.

As a bonus we also get the following:

I Theorem 2. The following counts can be obtained in #SAC1 for bounded clique-width
graphs (given a bounded clique-width expression for the graph):

2 These are weighted versions of clique-width and are used to produce weighted graphs. [17] motivate
this variant of clique-width by observing that since Kn has clique-width 2, most graph polynomials are
VNP-complete for bounded clique-width graphs.

3 In an earlier version of this paper, we had erroneously claimed a GapL upper bound for counting Euler
tours. As pointed out to us by Ramprasad Saptharishi, there is a rather serious gap with this approach.

N. Balaji, S. Datta, and V. Ganesan 249

1. #Hamiltonian Cycles
2. #Longest Paths/Cycles
3. #Cycle Covers
4. #Perfect Matchings (for bipartite graphs)

1.3 Overview of Algorithm
Every Euler tour in a graph yields a Hamiltonian cycle in its line graph. Though this map is
not bijective we show that we can make it so by altering the input graph slightly. It is well
known [20] that the line graphs of bounded tree-width graphs have bounded clique-width. We
show how to obtain a bounded clique-width decomposition for the line graph of a bounded
tree-width graph in Logspace using the Logspace version of Courcelle’s Theorem [15] by
first obtaining a bounded tree-width decomposition via a Logspace version of Bodlaender’s
theorem [15].

Our main algorithm replaces the sequential procedure from [16] to decide if a bounded
clique-width graph has a Hamiltonian path. Instead, it computes the number of Hamiltonian
cycles. The procedure uses elementary counting coupled with polynomial interpolation to
compute some matrices which are independent of the input graph depending only on its size.
The matrices are then combined with vectors maintaining counts, along the structure tree of
the clique-decomposition. A degree bound for the monotone arithmetic circuit then suffices
to prove the #SAC1 bound.

1.4 Organization
The rest of the paper is organized as follows: In Section 2, we introduce some definitions
and results that will be helpful in understanding the rest of the paper. Section 3 shows
how to obtain a clique-width expression for the line graph of a bounded treewidth graph
in Logspace. Section 4 presents a #SAC1 implementation of our algorithm to count the
number of Hamiltonian tours in graphs of bounded clique-width. We conclude with some
unresolved questions related to this work in Section 5.

2 Preliminaries

I Definition 3 (Line Graph). For an undirected graph G = (V,E), the line graph of G
denoted L(G) = (LV , LE) is the graph where LV = E and (ei, ej) ∈ LE if and only if there
exists a vertex v ∈ V such that both ei and ej are incident on v.

I Definition 4 (Treewidth). Given an undirected graph G = (VG, EG) a tree decomposition
of G is a tree T = (VT , ET)(the vertices in VT ⊆ 2VG are called bags), such that
1. Every vertex v ∈ VG is present in at least one bag, i.e., ∪X∈VTX = VG.
2. If v ∈ VG is present in bags Xi, Xj ∈ VT , then v is present in every bag Xk in the unique

path between Xi and Xj in the tree T .
3. For every edge (u, v) ∈ EG, there is a bag Xr ∈ VT such that u, v ∈ Xr.
The width of a tree decomposition is maxX∈VT (|X| − 1). The treewidth of a graph is the
minimum width over all possible tree decomposition of the graph.

I Definition 5 (NLC-width). Let k be a positive integer. The class NLCk of labeled graphs
G = (V,E, labG) where labG : V → [k], is recursively defined as follows:
1. The single vertex graph labeled by a label a, •a for a ∈ [k] is in NLCk.

FSTTCS 2015

250 Counting Euler Tours in Undirected Bounded Treewidth Graphs

2. Let G = (VG, EG, labG) ∈ NLCk and H = (VH , EH , labH) ∈ NLCk be two vertex-disjoint
labeled graphs and S ⊆ [k]2, then G×S H = (V ′, E′, lab′) ∈ NLCk, where V ′ = VG ∪ VH
and

E′ = EG ∪ EH ∪ {(u, v)|u ∈ VG, v ∈ VH , (labG(u), labH(v)) ∈ S}

and for all u ∈ V ′,

lab′(u) =
{
labG(u), if u ∈ VG
labH(u), if u ∈ VH

3. Let G = (VG, EG, lab) ∈ NLCk and R : [k] → [k] be a function, then ◦R(G) :=
(VG, EG, lab′) defined by lab′(u) = R(lab(u)) for all u ∈ VG is in NLCk.

The NLC-width4 of a labeled graph G is the least integer k such that G ∈ NLCk. An
expression Y built with •a,×S , ◦R, for integers a ∈ [k], S ∈ [k]2 and R : [k]→ [k] is called a
NLC-width k expression. The graph defined by expression Y is denoted by val(Y).

I Definition 6 (Clique Width). Let k be a positive integer. The class CWk of labeled graphs
G = (V,E, labG) where labG : V → [k] is recursively defined as follows:
1. The single vertex graph labeled by a label a, •a for a ∈ [k] is in CWk.
2. Let G = (VG, EG, labG) ∈ CWk and H = (VH , EH , labH) ∈ CWk be two vertex-disjoint

labeled graphs. Then G ⊕ H = (V ′, E′, lab′) ∈ CWk, where V ′ = VG ∪ VH and E′ =
EG ∪ EH and for all u ∈ V ′

lab′(u) =
{
labG(u), if u ∈ VG
labH(u), if u ∈ VH

3. Let a, b be distinct positive integers and G = (VG, EG, lab) ∈ CWk be a labeled graph.
Then,
(a) ρa→b(G) := (VG, EG, lab′) ∈ CWk where for all u ∈ VG

lab′(u) =
{
labG(u), if labG(u) 6= a

b, if labG(u) = a

(b) ηa,b(G) := (VG, E′, labG) ∈ CWk where,

E′ = EG ∪ {(u, v)|u, v ∈ VG, lab(u) = a, lab(v) = b}

The clique-width of a labeled graph G is the least integer k such that G ∈ CWk. An
expression X built with •a,⊕, ρa→b, ηa,b for integers a, b ∈ [k] is called a clique-width k

expression. By val(X), we denote the graph defined by expression X.

I Definition 7 (Chordal graph, Chordal completion). A graph is said to be chordal if every
cycle with at least 4 vertices always contains a chord. A chordal completion of a graph G is
a chordal graph with the same vertex set as G which contains all edges of G.

I Definition 8 (Perfect Elimination Ordering, Elimination Tree [19]). Let G = (V,E) be a
graph and o = (v1, v2, . . . , vn) be an ordering of the vertices of G. Let N−(G, o, i) and

4 NLC stands for Node Label Controlled, has its origins in graph grammars, was defined by Wanke [28].

N. Balaji, S. Datta, and V. Ganesan 251

N+(G, o, i) for i = 1, . . . , n be the set of neighbors vj of vertex vi with j < i and j > i

respectively.

N−(G, o, i) = {vj |(vi, vj) ∈ E and j < i}
N+(G, o, i) = {vj |(vi, vj) ∈ E and j > i}

The vertex order o is said to be a Perfect Elimination Ordering (PEO) if for all i ∈ [n],
N+(G, o, i) induces a complete subgraph of G. The structure of G can then be characterized
by a tree T (G, o) = (VT , ET) defined as follows:

VT = V

ET = {(vi, vj) ∈ E|i < j and ∀j′, i < j′ < j, (vi, vj′) /∈ E}

Such a T (G, o) is called the Elimination Tree associated with the graph G.

For more information on Chordal graphs and PEO, we refer the reader to Golumbic’s
book [19].

I Definition 9 (Cycle Cover). A cycle cover C of G = (V,E) is a set of vertex-disjoint cycles
that cover the vertices of G. I.e., C = {C1, C2, . . . , Ck}, where V (Ci) = {ci1 , . . . , cir(i)} ⊆ V
such that (ci1 , ci2), (ci2 , ci3), . . ., (cir(i)−1 , cir(i)), (cir(i) , ci1) ∈ E(Ci) ⊆ E and]ki=1V (Ci) = V .
The least numbered vertex hi ∈ V (Ci), is called the head of the cycle.

I Definition 10 (#SAC1). #SAC1 is the class of functions from {0, 1}n to nonnegative
integers computed by polynomial-size logarithmic-depth, semi unbounded arithmetic circuits5,
using + (unbounded fan-in) and × gates (fan-in 2) and the constants 0 and 1.

For further background on circuit complexity, we refer the reader to [27].

I Proposition 11 ([2, 26]). Any function f : {0, 1}n → R, where R is a semi-ring, computed
by arithmetic circuits of size s and degree d can be computed by semi-unbounded arithmetic
circuits of size poly(s, d) and depth O(log d). In particular, all functions computed by
polynomial sized circuits of polynomial degree are exactly those in #SAC1.

I Fact 12 (Kronecker substitution [12]). Let P (x1, x2, . . . , xn) be a multivariate polynomial of
degree d. We replace every occurence of variable xi by xd

i . This yields an unique univariate
polynomial Q(x) of degree at most dO(n) such that P can be efficiently recovered from the
knowledge of coefficients of Q. When the number of variables is a constant, the degree of the
multivariate polynomial and the univariate polynomial are polynomially related.

3 From Euler Tours to Hamiltonian cycles

It is possible to construct a graph G such that G has no Eulerian tours, but L(G) has a
Hamiltonian cycle6. Proposition 13 gives necessary and sufficient conditions for when a line
graph of a given graph is Hamiltonian.

I Proposition 13 ([21]). L(G) is Hamiltonian if and only if G has a closed trail that contains
at least one end point of every edge.

5 Note that such circuits have degree that is at most a polynomial in the number of input variables.
6 Indeed, there is a 2-connected graph – K4 with one of the edges removed – which is non-Eulerian but
its line graph is Hamiltonian.

FSTTCS 2015

252 Counting Euler Tours in Undirected Bounded Treewidth Graphs

Given a graph G, we want to construct a graph G′ such that every closed trail in G′ that
contains at least one end point of every edge is exactly an Eulerian tour of G′. The following
Lemma guarantees exactly this:

I Lemma 14. Given an undirected graph G, construct a graph G′ = (V ′, E′) from G as
follows: Replace every edge e = (u, v) of G by path of length three. Then G and G′ have
the same number of Eulerian tours and the Eulerian tours of G′ are in bijection with the
Hamiltonian tours of L(G′).

Notice that G is a minor of G′, and the tree decomposition of G′ can be obtained from
that of G by locally adding to each bag containing an edge e of G, the extra vertices and
edges of the path of length three. Hence, the following is immediate:

I Proposition 15. G has bounded treewidth iff G′ has bounded treewidth.

I Proposition 16 ([20]). If G is of treewidth k, then L(G) has clique-width f(k) = 2k + 2.

I Proposition 17 ([15]). Given a bounded treewidth graph G, a balanced tree decomposition7
of G is obtainable in L.

We first need the Perfect Elimination Ordering(PEO) of the vertices of the graph. It
is known that a graph has a PEO if and only if it is chordal. Since we can do a chordal
completion of a bounded treewidth graph (while preserving treewidth), such an ordering of
the vertices always exists. Recently Arvind et al. gave a Logspace procedure for obtaining a
PEO in k-trees (which are maximal treewidth-k graphs). We adapt this for graphs that are
chordal completions of bounded treewidth graphs:

I Lemma 18 (Adapted from [3]). Given a balanced tree decomposition of a bounded treewidth
graph G, a Perfect Elimination Ordering and the corresponding elimination tree of a chordal
completion of G, which is a balanced binary tree of depth O(logn), can be computed in L.

I Lemma 19 (Adapted from [20]). Given the tree decomposition of a graph G along with a
elimination tree, the clique-width expression X of L(G) is obtainable in L. The parse tree of
this clique-width expression has height at most O(logn)

We show in the subsequent Lemma that the method in [20] is amenable to a Logspace
implementation when provided with a PEO of the vertices of the graph.

I Lemma 20 (Adapted from [20]). The NLC-width of the line graph L(G) of a graph G of
treewidth k is at most k + 2 and such a NLC-width expression is obtainable in L.

Gurski and Wanke [20] observe that it is sufficient to look at G that are k-trees here because
the line graph of every subgraph of G then is an induced subgraph of the line graph of G
and the class NLCk is closed under taking induced subgraphs for every k ≥ 1 (See Theorem
4 in [20]). Our method involves dealing with bounded treewidth graphs that are chordal,
which are a strict superclass of k-trees and we observe that the property mentioned above
still holds in this case.

I Proposition 21. Given a graph G of NLC-width at most k by an NLC-width expression
Y , we can obtain the clique-width expression X of G, where |X| ≤ 2k + 2 in L.

7 A tree decomposition of a graph is said to be balanced if the tree underlying the decomposition is
balanced

N. Balaji, S. Datta, and V. Ganesan 253

To sum up, these are the main preprocessing steps:

1. Obtain a balanced binary tree decomposition of the input treewidth k graph G in Logspace
via Proposition 17 [15].

2. Obtain the tree decomposition of G′ (as required by Proposition 13 and specified by
Lemma 14) from the tree decomposition of G.

3. Perform a chordal completion of G′ by adding edges to every bag.
4. Obtain a PEO tree of G′ of height O(logn), where every vertex has at most k children

via Lemma 18.
5. Construct a NLC width (k + 2) expression for L(G′) via Lemma 20
6. From the NLC width (k + 2) expression, construct a clique-width (2k + 2) expression for

L(G′) via Proposition 21 (The surplus edges added during the chordal completion are
removed at this step).

The proofs of Lemma 14, 18, 19, 20 and Proposition 21 can be found in the full version
of the paper [7].

4 The #SAC1 upper bound

Let X be the clique-width k expression for a labeled graph G = (V,E, lab) such that G
is val(X) and let |V | = n. Let G be of clique-width k. Hence by Definition 6, G can be
constructed from the graph with n isolated labeled vertices, using at most k labels. Notice
that X can be viewed as a tree (we will refer to this as the parse tree of the clique-width
expression) with the n isolated labeled vertices at the leaves and every internal node is
labeled with one of the operations o = {•i,⊕, ηi,j , ρi→j : i, j ∈ [k] ∧ i 6= j} To each internal
vertex of the tree, we can associate a graph (possibly disconnected) which is a subgraph of
G, and at the root of the tree, we get G itself. The size of the tree is polynomial in n and
k. Our objective in this section will be to count the number of Hamiltonian cycles in G,
when provided with the clique-width expression X. We will count along the parse tree of the
clique-width expression.

To this end, we call a subset of edges E′ ⊆ E path-cycle covers, if in the subgraph G′ =
(V,E′, lab) every vertex in G′ has degree at most 2. To every such G′, we associate a multiset
M consisting of multisets 〈lab(v1), lab(vr)〉 one each for every path/cycle p = v1, . . . , vr,
r ≥ 1, in G′, where v1, vr have degree at most 1 in G′ if they exist (p being a cycle otherwise).
Let F (X) be the set of all multisets M for all such subsets E′ ⊆ E.

Let K be the set of all possible labels of the end points, in the labeled graph produced at
the output of each node in the parse tree. We refer to elements of K as types. Note that
every M consists of at most |K| distinct types and F (X) has at most (n+ 1)|K| distinct
multisets each with at most n multisets of size 2. Here K = K0] K1] K2 is the set of
distinct types where K2 accounts for types of the form 〈i, j〉 (for i 6= j) corresponds to paths
whose end points are i and j; K0 for the empty type 〈〉 = ∅ corresponds to a cycle; K1 for
types of the form 〈i, i〉 which could be either paths whose end points are both labeled i, or
isolated vertices with the label i. Observe that, |K2| =

(
k
2
)
, K1 = 2k and K0 = 1, where we

distinguish between the cases of single isolated vertex of label i and multiple vertex paths
with end points labeled i for technical reasons, leading to the extra factor of 2. Our notation
is consistent with [16] in all cases except for the empty type, since in [16] cycles are not
permitted.

FSTTCS 2015

254 Counting Euler Tours in Undirected Bounded Treewidth Graphs

Our objective is to count the number of path-cycle covers, #X[M], corresponding to a
multiset M in the graph val(X). In particular,∑

i,j∈[K]

#X[Mi,j]

where Mi,j = 〈〈i, j〉〉 is a multiset containing a single type 〈i, j〉, yields the number of
Hamiltonian paths with end points coloured i, j in val(X). We denote by #X the vector
indexed by M and hence has (n+ 1)K entries where #X[M] (where M ∈ [0, n]K) stores
the count of the number of path/cycle covers of type specified by M in the graph val(X).
Let Co be a (n+ 1)K × (n+ 1)K matrix which for each pair of multisets M,M ′ denotes the
number of ways to form M ′ from M under an operation o ∈ {ηi,j , ρi→j : i, j ∈ [k] ∧ i 6= j}.
Co is defined uniquely for the two kinds of operations η, ρ and is independent of the input
graph val(X).

Then the following is an easy consequence of the definitions:

I Proposition 22. The value of #X is given by:
1. if X = •i then if M = 〈〈i, i〉〉 then #X[M] = 1; else #X[M] = 0.
2. else if X = X1 ⊕X2 then

#X[M] =
∑

M ′∈[0,n]K :M ′⊆M

#X1[M ′]#X2[M \M ′]

3. else if X = ρi→j(X1) then (Cρi→j)T#X1
4. else X = ηi,j(X1) then (Cηi,j)T#X1

Proof. The first item is immediate. For the second, notice that each multiset of types M in
the disjoint union of two graphs is formed by picking multisets M ′,M ′′ from the two graphs
respectively and taking their multi-union. Thus the number of distinct ways to form M is
obtained by considering all possible decompositions of M into sets M ′,M ′′ one from each
graph. Since, this is a decomposition M ′′ = M \M ′, the correctness of the second item
follows.

For the third and the fourth items, notice that we have a matrix C such that C[M,M ′]
is the number of ways to convert a multiset M to a multiset M ′. Thus the number of ways
to form M ′ is to take the product of #X[M]C[M,M ′] and add up the products over all M .
This is the stated form in matrix notation. J

Proposition 22 enables us to prove the #SAC1 upper bound:

I Lemma 23. For a bounded clique-width expression X, for every multiset of types, M , the
value #X[M] of the number of path-cycle covers at any node along the parse tree of the
clique-width expression can be computed in #SAC0 where the inputs to the #SAC0 circuit
are entries of the matrix Co for o ∈ {•i,⊕, ηi,j , ρi→j : i, j ∈ [k] ∧ i 6= j}. The number of
path-cycle covers in the input graph can hence be counted in #SAC1.

The proof of Lemma 23 can be found in the full version of the paper [7]. We now turn to
the proof of our main Theorem 1

Proof. (of Theorem 1) To count Euler tours on bounded treewidth graphs, we can count
Hamiltonian cycles in the line graph (via Lemma 14). Here we need to compute the quantity
#X[〈∅〉] (since the empty multiset represents a cycle, the path-cycle cover consisting of a
single cycle must be a Hamiltonian cycle itself). This follows from Lemma 23. J

N. Balaji, S. Datta, and V. Ganesan 255

Proof. (of Theorem 2) Hamiltonian cycles can be counted in #SAC1 by Lemma 23. Longest
Cycles (Paths) can be counted by considering multisets which consist of a single cycle
(respectively, path) and the minimum number of isolated vertices respectively. To see this
observe that for every cycle (respectively, path) C in the graph there is a multiset consisting
of a single empty type (respectively, non-empty type) and |V (G)| − |V (C)| isolated vertices
respectively.

Counting cycle covers is equally simple. We just need to add up the counts for multisets
consisting only of empty types. This, is of course because an empty type represents a cycle.

Perfect Matchings in bipartite graphs can therefore be counted by counting the cycle
covers in a biadjacency matrix. J

4.1 Computing Cρi→j
and Cηi,j

It is easy to compute Cρi→j by the following,

I Proposition 24. C(ρi→j) is a {0, 1}-matrix such that the entry corresponding to M1,M2
is equal to 1 iff ρi→j(M1) = M2 (it is 0 otherwise).

LetW~α(t′) denote the number of ways to form one path/cycle of type t′ ∈ K, given a multiset
of paths/cycles consisting of ~α(t) paths/cycles for every type t ∈ K.

Next, we show how to compute Cηi,j :

I Lemma 25. There is a Logspace Turing machine that takes input W~α(t′) for every
~α ∈ [0, n]|K|, t′ ∈ K and outputs the entries of the matrix Cηi,j .

Proof. We show that each entry can be computed in DLOGTIME-uniform TC0 which is
contained in L (see e.g. Vollmer [27]). Our main tool in this lemma is an application of
polynomial interpolation.

Notice that the rows/columns of the matrix C are indexed by multisets of types. Here a
type is an element from K. Therefore any such multiset can be described by a vector ~α of
length |K|. Here each entry of the vector represents the number of paths/cycles with that
type inside the multiset.

In the following we will consistently make use of the notation, ~z~a to denote:
∏
i∈I z

ai
i ,

where I is the index set for both ~z,~a.
We have the following:

I Lemma 26. C[M,M ′] is the coefficient of ~x~c′~y~c in the following polynomial p~c′,~c(~x, ~y):

∏
t,t′∈K

∏
~α∈[0,n]|K|

∑
~d~α

(
W~α(t′)xt′yα(t)

t′

)d~α(t′)

To fix the notation we reiterate (items 1, 2, 3, 4 were defined previously and we introduce
some new notation in items 5, 6, 7, 8, 9):
1. K is the set of types, where |K| =

(
k
2
)

+ 2k + 1.
2. t, t′ ∈ K are types in the input, output multiset (respectively M,M ′).
3. A allocation, α(t) ∈ [0, n] is the number of path-cycle covers of type t ∈ K.
4. ~α ∈ [0, n]|K| is a possible allocation vector indexed by K in which each entry is α(t).
5. d~α(t′) ∈ [0, n] is the number of paths of type t′ formed from each allocation of type ~α.
6. ~d~α ∈ [0, n]|K| is a vector indexed by K in which each entry is one of d~α(t′).
7. W~α(t′) is the number of ways to form a single path/cycle of type t′ from an allocation

vector ~α.

FSTTCS 2015

256 Counting Euler Tours in Undirected Bounded Treewidth Graphs

8. ~W~α is the vector indexed by K in which each entry is one of W~α(t′).
9. ~c, ~c′ ∈ [0, n]|K| are vectors indicating number of paths/cycles in M,M ′ respectively.
To see that Lemma 25 follows from Lemma 26 we use Kronecker substitution (see Fact 12) to
convert the multivariate polynomial p~c′,~c(~x, ~y) with 2|K| variables to a univariate polynomial.
Then we use Lagrange interpolation to find the coefficient of an arbitrary term - in particular,
the term corresponding to ~x~c′~y~c in TC0 (see e.g. Corollary 6.5 in [22]). J

Proof. (of Lemma 26) Consider the following expression:∑
~d∈D

∏
t′∈K

∏
~α∈[0,n]|K|

W~α(t′)d~α(t′) (1)

where the sum is taken over D ⊆ [0, n]|K| consisting of all ~d’s satisfying:

∀t′,
∑

~α∈[0,n]|K|
d~α(t′) = c′(t′) (2)

∀t,
∑

~α∈[0,n]|K|

∑
t′∈K

α(t)d~α(t′) = c(t) (3)

I Claim 27. C[M,M ′] equals Expression (1).

Proof. (of Claim) The Condition 2 above asserts that the number of paths/cycles of type
t′ present in M ′ equals the sum over all ~α of the number of paths/cycles of type t′ using
resources described by ~α; the Condition 3 is essentially a conservation of resource equation
for every type t saying that all the resources present in M are used one way or the other in
M ′.

Let P, P ′ be path-cycle covers represented by M,M ′ respectively such that we can obtain
P ′ from P , i.e., P ′ is one possible path-cycle cover that can be obtained by an ηi,j operation
on P . This transformation is described by a unique ~d. Then the pair contributes precisely
one to C[M,M ′]. On the other hand {P, P ′} satisfies (2),(3) so contributes exactly one to the
summand corresponding to the unique ~d in Expression 1. Since the pair P, P ′ corresponds
to a unique ~d and contributes exactly one, the remaining summands would evaluate to zero.
This can be explained by observing that for all ~d′ 6= ~d, the number of paths of type t in ~d′ is
not equal to the corresponding number in ~d for atleast one t. Hence, they would contribute
nothing to pair P, P ′. J

To complete the proof notice that the coefficient of ~x~c′~y~c is precisely expression 1 under
the conditions 2, 3. Now, we explain the reasoning behind expression 1. We have d~α(t′)
paths of type t′, each of which can be formed in W~α(t′) ways. Note that each of these d~α(t′)
paths are formed from different ~α (though the values of each of these d~α(t′) vectors ~α is the
same, they are inherently different as they are composed of mutually exclusive vertex sets)
and we consider each valid set of d~α(t′) vectors ~α, exactly once. Hence, we multiply with
W~α(t′)d~α(t′) to get the final count. J

4.2 Calculation of W~α(t′)
W~α(t′) denotes the number of ways to form exactly one type t′ ∈ K in M ′ given a multiset
of types consisting of ~α(t) types for every type t ∈ K in M . For simplicity of notation,
let t = 〈i, j〉 ∈ K be a type and let β(i) = α(〈i, i〉) + α(=0)(〈i, i〉) be the total number of
multisets of type 〈i, i〉, where α(〈i, i〉) (respectively α(=0)(〈i, i〉)) denote paths (respectively
single nodes) labeled 〈i, i〉 in ~α. Note that this distinction is not necessary for types where
the end points have different labels.

N. Balaji, S. Datta, and V. Ganesan 257

I Lemma 28. For an operation ηi0,j0 in the clique-width expression and for any type
t′ = 〈i, j〉, W~α(t′) is given by

W~α(〈i, j〉) = [[〈i, j〉]]~αW~α

where,

W~α =
(
α(〈i0, j0〉) + β(i0) + β(j0)

α(〈i0, j0〉)

)
α(〈i0, j0〉)!β(i0)!β(j0)!2α(〈i0,i0〉)+α(〈j0,j0〉)

and, [[〈i, j〉]]~α is given by 8, 9

[[〈a, b〉]]~α = [[β(a) = β(b)]]
[[〈a, a〉(=0)]]~α = [[α(=0)

a,a = 1 ∧ α(〈a, b〉) = 0]]
[[〈a, a〉]]~α = [[β(a) = β(b) + 1]]
[[〈i, a〉]]~α = [[(α(〈i, a〉) = 1 ∧ β(a) = β(b)) ∨ (α(〈i, b〉) = 1 ∧ β(a) = β(b) + 1)]]
[[〈i, j〉]]~α = [[(α(〈i, a〉) = 1 ∧ α(〈a, j〉) = 1 ∧ β(a) = β(b) + 1) ∨ (α(〈i, a〉) = 1 ∧ α(〈b, j〉) =
1 ∧ β(a) = β(b))]]
[[〈i, i〉]]~α = [[(α(〈i, a〉) = 2∧β(a) = β(b) + 1)∨ (α(〈i, a〉) = 1∧α(〈i, b〉) = 1∧β(a) = β(b))]]
[[〈∅〉]]~α = [[β(a) = β(b)]]

where, {a, b} = {i0, j0} in some order.

Proof. (of Lemma 28) Let’s look at W~α(〈a, a〉) in detail. The W~α(t) for all the other types t
are computed similarly. Type 〈a, a〉 can be formed from the alternating sequence of types
〈a, a〉, 〈b, b〉, 〈a, a〉 . . . 〈a, a〉 interleaved with some (possibly zero) 〈a, b〉 types. Thus, the
equality β(a) = β(b)+1 should hold while α(〈a, b〉) can be any arbitrary non-negative integer.
When α(〈a, b〉) = 0, the condition α(〈a, a〉) ≥ 1 ∨ α(〈a, a〉)(=0) > 1 should hold to ensure
that we are not considering the type (〈a, a〉)(=0).

The number of ways of interspersing α(〈a, b〉) types among β(a) + β(b) types is(
α(〈a, b〉) + β(a) + β(b)

α(〈a, b〉)

)
We can do this for all permutations of the 〈a, b〉, 〈a, a〉 and 〈b, b〉 types hence we multiply by:
α(〈a, b〉)!β(a)!β(b)!. Finally, we can flip the orientation of paths of types 〈a, a〉 and 〈b, b〉 as
they are equivalent respectively to their flipped orientations. Note that single nodes cannot
be flipped. The proof is therefore completed by multiplying with: 2α(〈a,a〉)+α(〈b,b〉). Lastly, a
boundary case occurs when α(〈a, b〉) = 0 where every path can be flipped. Here, it is easy
to see that in considering every permutation of types while accounting for flips, we end up
counting each path twice (including its reverse). Hence, in this case we divide by 2. J

5 Conclusion and Open Ends

Can the #SAC1 bound be improved, to say, GapL or Logspace?
How far can the Euler tour result be extended? To bounded clique-width graphs? Chordal
graphs?
Can the determinant of bounded clique-width adjacency matrices be computed in better
than #SAC1? (it is known to be L-hard even for bounded tree-width graphs from [6]).

8 In this section, the notation [[S]] represents the Boolean value of the statement S. [[t]]~α represents a
Boolean valued normalizing factor associated with the type t under the allocation vector ~α.

9 We adopt a convention in which types t′ (other than the type 〈i0, j0〉) not explicitly included in the
expressions have an allocation αt′ equalling zero.

FSTTCS 2015

258 Counting Euler Tours in Undirected Bounded Treewidth Graphs

Acknowledgements. We would like to thank K. Narayan Kumar, Aniket Mane, M. Praveen
and Prakash Saivasan for illuminating discussions regarding this paper. We would like to
thank Eric Allender, Vikraman Arvind, Nutan Limaye, Meena Mahajan, Pierre McKenzie,
Partha Mukhopadhyay, Ramprasad Saptharishi, Srikanth Srinivasan and V.Vinay for reading
a follow-up work that resulted from this paper and for their comments, from which we
discovered an error in a previous version of this paper.Thanks are also due to anonymous
referees for several comments that helped improve the content and presentation of the paper.
This work is partially funded by a grant from the Infosys Foundation.

N. Balaji, S. Datta, and V. Ganesan 259

References
1 van T. Aardenne-Ehrenfest and N.G. de Bruijn. Circuits and trees in oriented linear graphs.

Simon Stevin: Wis-en Natuurkundig Tijdschrift, 28:203, 1951.
2 Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-commutative arithmetic

circuits: Depth reduction and size lower bounds. Theor. Comput. Sci., 209(1-2):47–86,
1998.

3 Vikraman Arvind, Bireswar Das, Johannes Köbler, and Sebastian Kuhnert. The isomorph-
ism problem for k-trees is complete for logspace. Information and Computation, 217:1–11,
2012.

4 Nikhil Balaji and Samir Datta. Tree-width and logspace: Determinants and counting Euler
tours. CoRR, abs/1312.7468, 2013.

5 Nikhil Balaji and Samir Datta. Bounded treewidth and space-efficient linear algebra. CoRR,
abs/1412.2470, 2014.

6 Nikhil Balaji and Samir Datta. Bounded treewidth and space-efficient linear algebra. In
Theory and Applications of Models of Computation, pages 297–308. Springer, 2015.

7 Nikhil Balaji, Samir Datta, and Venkatesh Ganesan. Counting Euler tours in undirected
bounded treewidth graphs. arXiv:1510.04035v1 [cs.CC], 2015. http://arxiv.org/abs/
1510.04035v1.

8 Graham Brightwell and Peter Winkler. Counting Eulerian circuits is #p-complete. In
ALENEX/ANALCO, pages 259–262, 2005.

9 Prasad Chebolu, Mary Cryan, and Russell Martin. Exact counting of Euler tours for
generalized series-parallel graphs. J. Discrete Algorithms, 10:110–122, 2012.

10 Prasad Chebolu, Mary Cryan, and Russell Martin. Exact counting of Euler tours for graphs
of bounded treewidth. CoRR, abs/1310.0185, 2013.

11 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Information and computation, 85(1):12–75, 1990.

12 David Cox, John Little, and Donal O’shea. Ideals, varieties, and algorithms, volume 3.
Springer, 1992.

13 B. Das, S. Datta, and P. Nimbhorkar. Log-space algorithms for paths and matchings in
k-trees. Theory Comput. Syst., 53(4):669–689, 2013.

14 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathemat-
ical Logic. Springer, 1995.

15 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of
Bodlaender and Courcelle. In FOCS, pages 143–152, 2010.

16 Wolfgang Espelage, Frank Gurski, and Egon Wanke. How to solve NP-hard graph problems
on clique-width bounded graphs in polynomial time. In WG, pages 117–128. Springer, 2001.

17 Uffe Flarup and Laurent Lyaudet. On the expressive power of permanents and perfect
matchings of matrices of bounded pathwidth/cliquewidth. Theory of Computing Systems,
46(4):761–791, 2010.

18 Qi Ge and Daniel Štefankovič. The complexity of counting Eulerian tours in 4-regular
graphs. Algorithmica, 63(3):588–601, 2012.

19 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier,
2004.

20 Frank Gurski and EgonWanke. Line graphs of bounded clique-width. Discrete Mathematics,
307(22):2734–2754, 2007.

21 Frank Harary and C St JA Nash-Williams. On Eulerian and Hamiltonian graphs and line
graphs. Canadian Mathematical Bulletin, 8:701–709, 1965.

22 W. Hesse, E. Allender, and D.A.M. Barrington. Uniform constant-depth threshold circuits
for division and iterated multiplication. Journal of Computer and System Sciences, 65:695–
716, 2002.

FSTTCS 2015

http://arxiv.org/abs/1510.04035v1
http://arxiv.org/abs/1510.04035v1

260 Counting Euler Tours in Undirected Bounded Treewidth Graphs

23 J. A. Makowsky, U. Rotics, I. Averbouch, and B. Godlin. Computing graph polynomials
on graphs of bounded clique-width. In WG, pages 191–204, 2006.

24 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J.
Comb. Theory, Ser. B, 96(4):514–528, 2006.

25 WT Tutte and CAB Smith. On unicursal paths in a network of degree 4. The American
Mathematical Monthly, 48(4):233–237, 1941.

26 V. Vinay. Counting auxiliary pushdown automata. In Structure in Complexity Theory,
pages 270–284, 1991.

27 Heribert Vollmer. Introduction to circuit complexity – a uniform approach. Texts in theor-
etical computer science. Springer, 1999.

28 Egon Wanke. k-nlc graphs and polynomial algorithms. Discrete Applied Mathematics,
54(2):251–266, 1994.

	Introduction
	Previous Work
	Our Results
	Overview of Algorithm
	Organization

	Preliminaries
	From Euler Tours to Hamiltonian cycles
	The count-SAC1 upper bound
	Computing and
	Calculation of

	Conclusion and Open Ends

