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Abstract
In PODS 2003, Babcock, Datar, Motwani and O’Callaghan [4] gave the first streaming solution
for the k-median problem on sliding windows using O( kτ4W

2τ log2 W ) space, with a O(2O(1/τ))
approximation factor, where W is the window size and τ ∈ (0, 1

2 ) is a user-specified parameter.
They left as an open question whether it is possible to improve this to polylogarithmic space.
Despite much progress on clustering and sliding windows, this question has remained open for
more than a decade.

In this paper, we partially answer the main open question posed by Babcock, Datar, Mot-
wani and O’Callaghan. We present an algorithm yielding an exponential improvement in space
compared to the previous result given in Babcock, et al. In particular, we give the first polyloga-
rithmic space (α, β)-approximation for metric k-median clustering in the sliding window model,
where α and β are constants, under the assumption, also made by Babcock et al., that the op-
timal k-median cost on any given window is bounded by a polynomial in the window size. We
justify this assumption by showing that when the cost is exponential in the window size, no sub-
linear space approximation is possible. Our main technical contribution is a simple but elegant
extension of smooth functions as introduced by Braverman and Ostrovsky [9], which allows us to
apply well-known techniques for solving problems in the sliding window model to functions that
are not smooth, such as the k-median cost.
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1 Introduction

Throughout the sciences, clustering plays a crucial role in data exploration and analysis. In
the typical setting, we are presented with a set of data points that we wish to partition into
some number of groups, called clusters, in such a way that some notion of within-cluster
similarity is large and, optionally, between-cluster similarity is small. The data in question
can then be well-represented by selecting one point from each cluster, typically called cluster
centers. Commonly-used objectives for measuring the goodness of a clustering (and a selection
of cluster centers) include k-means, k-centers and k-medians [3]. Most such objectives give
rise to clustering problems that are known to be NP-hard (see, for example, [30] and citations
therein). These problems have a rich history in computer science and engineering. Clustering
problems date back at least as far as 1857 [35], and a number of clustering algorithms are
well-known outside the theory community, most notably Lloyd’s algorithm [32].

In the last 15 years, as data sets have come to outgrow the available memory on most
machines, the streaming model of computation has emerged as a popular area of algorithmic
research. In this model, computation must be performed using memory of size sublinear
in the input, and (typically) using at a single pass over the data [2, 33]. Several clustering
problems have been addressed in the streaming model, including k-median [25, 13, 27, 24],
k-means [14, 23] and facility location [19].

While the streaming model is a sensible one for many applications, it is less suitable for
some applications in domains such as network monitoring and social media [15, 17, 16, 34],
where observations that have arrived more recently are in some sense more important to
the computation being performed than are older observations. For example, when tracking
topics in social media, a researcher may wish to have topics decay over time. The sliding
window model, a variation on the streaming model, was developed to better capture these
situations [20, 8, 11, 7, 10]. In this model, data arrives in a stream, and the goal is to
maintain a computation only on the most recent elements. The sliding window model has
received renewed attention in recent years [9, 18, 5], but no theoretical results for clustering
in the sliding window model have been published since 2003 [4]. This most recent result gives
a solution to the k-median clustering problem, which has been comparatively well-studied
by streaming algorithm researchers. Recent years have seen impressive results yielding
polylogarithmic space solutions in both the insertion-only streaming model [13, 27] and the
insertion-deletion model [28, 24, 29], but to date the question of whether or not analogous
results hold in the sliding window model remained open. In particular, the following question
by Babcock et al. [4] has remained open for more than a decade:

“Whether it is possible to maintain approximately optimal medians in polylogarithmic
space (as Charikar et al. [13] do in the stream model without sliding windows), rather than
polynomial space, is an open problem.”

1.1 Our Contribution
In the current work, we partially answer the question posed by Babcock, et al. [4] in
the affirmative. Specifically, we give the first polylogarithmic space (α, β)-approximation
algorithm for k-median clustering in the sliding window model under the assumption that
the optimal k-median cost is is at most polynomial in the window size. We note that this
boundedness assumption is also made by Babcock, et al. (see Lemma 5 of [4]). We justify this
assumption by showing that when the optimal k-median cost is exponential in the window
size, no sublinear space approximation is possible. This is in contrast to the insert-only
model, where no such boundedness assumption is necessary [13, 27].
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1.2 Related Work
k-median clustering of points in arbitrary metric spaces is relatively well-studied in the
insertion-only streaming model. Guha, Mishra, Motwani and O’Callaghan [25] were the
first to propose an insertion-only streaming algorithm for the k-median problem. They
gave a 2O(1/ε)-approximation streaming algorithm that uses O(nε) space, where ε < 1.
Later, Charikar, O’Callaghan, and Panigrahy [13] exponentially improved this algorithm
by developing a constant factor approximation (insertion-only) streaming algorithm using
O(k·log2 n) space. Their approach, somewhat similarly to [25], operates in phases, maintaining
a set of O(k logn) candidate centers with the invariant that at any time during the algorithm,
the candidate centers yield a suitably low clustering cost. Once the entire stream has been
observed, an offline k-median clustering of this (weighted) collection of candidate centers is
used as the solution for the whole stream.

The k-median clustering in the geometric setting where points are taken from a d-
dimensional Euclidean space Rd is also well-studied in the insertion-only streaming model.
In particular, Har-Peled and Mazumdar [27] used (strong) coresets to obtain a (1 + ε)-
approximation algorithm for k-median and k-means problems in the insertion-only streaming
model. Roughly speaking, a strong (k, ε)-coreset for k-median is a weighted subset S of P ,
so that for any set of k centers in Rd, the weighted sum of distances from points in S to the
nearest centers is approximately the same as (differs by a factor of (1± ε) from) the sum of
distances from points in P to the nearest centers. Their coreset was of size O(kε−d logn).
In the streaming model of computation they implemented their coreset (using the famous
Merge-and-Reduce approach [6, 1]) using O(kε−d log2d+2 n) space. Later, Har-Peled and
Kushal [26] showed that one can construct (k, ε)-coresets for k-median with size independent
of n, namely of size O(k2ε−d). However, in the streaming model, the implementation of the
new coreset (once again, using the Merge-and-Reduce approach) does not give a significant
improvement in space usage. Very recently, Feldman, Fiat, and Sharir [22] extended this
type of coreset for linear centers or facilities where facilities can be lines or flats.

For high-dimensional spaces, Chen [14] proposed a (k, ε)-coreset of size O(k2dε−2 log2 n).
in the insertion-only streaming model using O(k2dε−2 log8 n) space. Chen’s coreset works
for general metric spaces as well, where he developed a technique that produces a coreset
of size O(kε−2 logn(k logn + log(1/δ))) with probability of success 1 − δ. If we plug the
very recent 2.661-approximation algorithm for the k-median problem due to Byrka, Pensyl,
Rybicki, Srinivasan, and Trinh [12] into Chen’s (k, ε)-coreset construction, we obtain an
O(k2ε−2 log(1/δ) log9 n)-space 5.322-approximation algorithm in the insertion-only streaming
model with probability of success 1− δ for 0 < δ < 1.

To the best of our knowledge, there is no insertion-deletion streaming algorithm for
k-median or k-means clustering when points are from an arbitrary metric space. However, for
geometric k-median and k-means clustering, Frahling and Sohler [24] showed that they can
maintain a (k, ε)-coreset of sizeO(kε−d−2 logn) using a different coreset construction (than [27,
26]) for data streams with insertions and deletions. This model of data streams with insertions
and deletions for geometric problems was introduced by Indyk [28] and is known as dynamic
geometric data streams. Frahling and Sohler’s algorithm uses O(k2ε−2d−4 log7 n) space for the
k-median problem. They further showed that similar coresets exists for the geometric versions
of Max-Cut, maximum weighted matching, maximum travelling salesperson, maximum
spanning tree, and average distance problems, which in turn give O(ε−2d−4 log7 n)-space
streaming algorithms for these problems in data streams with insertions and deletions.

In contrast to the insertion-only streaming model and dynamic geometric streaming
model, little work has been done on the k-median problem in the sliding window model,
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Table 1 Known results for k-median problem in data streams. Note that the current work as
well as the first algorithm of [4] give bicriteria solutions to the k-median problem, while the other
results in this table return precisely k centers.

Reference Metric space Stream model Approx. Centers Space
[25] General Insertion-only 2O(1/τ) k O(nτ )
[13] General Insertion-only O(1) k O(k log2 n)
[14]+[12] General Insertion-only 5.322 k O(k2ε−2 log(1/δ) log9 n)
[27] Euclidean Insertion-only (1 + ε) k O(kε−d log2d+2 n)
[14] Euclidean Insertion-only (1 + ε) k O(k2dε−2 log8 n)
[24] Euclidean Insertion-deletion (1 + ε) k O(k2ε−2d−4 log7 n)
[4] General Sliding Windows 2O(1/τ) 2k O(kτ−4W 2τ log2 W )
[4] General Sliding Windows 2O(1/τ) k O(kτ−4W 2τ log2 W )
This work General Sliding Windows 35 2k O(k2ε−3 log(1/δ) log10 W )

where we wish to produce a solution only on the most recent W elements in the data stream.
The result given in [4] is, to our knowledge, the only previously existing solution in this
model. The algorithm given in [4] finds an O(2O( 1

τ ))-approximation to the k-median problem
in the sliding window model for 0 < τ < 1

2 using 2k-centers and requires memory of size
O( kτ4W

2τ log2 W ). With an additional step, they reduce the number of centers from 2k to k
using the same space and with the same approximation ratio. We leave as an open problem
whether a similar approach can be applied to our algorithm, which produces a bicriteria
solution with between k and 2k centers.

Table 1 summarizes the known results for clustering problems in various streaming models.

Outline

Section 2 establishes notation and background for the remainder of the paper. Section 3
presents our main result. Section 4 proves a lower bound on the space required to find an
approximate k-median solution when the optimal cost is exponential in the window size.

2 Preliminaries

We will begin by introducing some notation and basic definitions. We first define the metric
k-median clustering problems. Later we will define the sliding window model, smooth
functions, and smooth histograms. Finally, we will illustrate with an example that the
k-median clustering is not smooth (and in fact, neither are many other clustering problems),
but fortunately, we show we can compute k-median approximately in the sliding windows
model, if we relax the constraint of returning exactly k centers.

2.1 Metric and Geometric k-Median Problems
Let (X,dist) be a metric space where X is a set of points and dist : X ×X → R is a distance
function defined over the points of X. Let dist(p,Q) = minq∈Q dist(p, q) denote the distance
between a point p ∈ X and a set Q ⊆ X.

Let P ⊆ X be a subset of points. We define ρP = minp,q∈P,p6=q dist(p, q) as the minimum
distance between two distinct points in a set P .
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I Definition 2.1 (Metric k-median). Let P ⊆ X be a set of n points in a metric space (X, d)
and let k ∈ N be a natural number. Suppose C = {c1, . . . , ck} is a set of k centers. The
clustering of point set P using C is the partitioning of P such that a point p ∈ P is in cluster
Ci if ci ∈ C is the nearest center to p in C, that is point p is assigned to its nearest center
ci ∈ C. The cost of k-median clustering by C is COST(P,C) =

∑
p∈P dist(p, C). The metric

k-median problem is to find a set C ⊂ P of k centers that minimizes the cost COST(P,C),
that is

COST(P,C) =
∑
p∈P

dist(p, C) = min
C′⊂P :|C′|=k

COST(P,C ′) = min
C′⊂P :|C′|=k

∑
p∈P

dist(p, C ′),

where dist(p, C) = minc∈C dist(p, c) and dist(p, C ′) = minc∈C′ dist(p, c)

We define OPT(P, k) = minC′⊂P :|C′|=k COST(P,C ′) to be the minimum k-median cost
of P . Since the metric k-median problem is known to be NP-hard [30], we will focus on
approximation algorithms.

I Definition 2.2 ((α, β)-approximation algorithm). We say an algorithm A is an (α, β)-
approximation algorithm for the k-median problem on point set P ⊂ X if A(P, k) returns
a set C ⊂ P of at most β · k centers whose cost is α-approximation of OPT(P, k), that is,
COST(P,C) ≤ α · OPT(P, k).

2.2 Sliding Windows Model
Let (X, d) be a metric space. Let P = {p1, p2, · · · , pn} ⊆ X be a point set of size |P | = n. In
the insertion-only streaming model [2, 27, 13], we think of a (mostly adversarial) permutation
{p′1, p′2, · · · , p′n} of point set P given in a streaming fashion and the goal is to compute a
function f exactly or approximately at the end of the stream using sublinear space in n, i.e,
o(n). Here we say point p′t is revealed at time t.

The sliding windows model [20] is a generalization of the insertion-only streaming model
in which we seek to compute a function f over only the W most recent elements of the
stream. Given a current time t of the stream, we consider a window W of size W consisting
of points that are inserted in the interval [max(t −W, 1), · · · , t]. Here we still assume W
is large enough that we cannot store all of window W in memory, for example W = Ω(n);
otherwise computing function f over window W will be trivial. A point p in the current
window W is called active, and expired, otherwise.

2.3 Smooth Function and Smooth Histogram
Braverman and Ostrovsky [9] introduced smooth histograms as an effective method to compute
smooth functions in the sliding windows model. A smooth function is defined as follows.

I Definition 2.3 ((ε, ε′)-smooth function [9]). Let f be a function, 0 < ε, ε′ < 1, and c

be a constant number. We say f is a (ε, ε′)-smooth function if function f is non-negative
(i.e., f(A) ≥ 0), non-decreasing (i.e., for A ⊆ B, f(A) ≤ f(B)), and polynomially bounded
f(A) ≤ O(|A|c) such that

f(B) ≥ (1− ε) · f(A ∪B) implies f(B ∪ C) ≥ (1− ε′) · f(A ∪B ∪ C) .

Interestingly, many functions are smooth. For instance, sum, count, min, diameter, Lp-norms,
frequency moments and the length of the longest subsequence are all smooth functions.
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We define [a] = {1, 2, 3, · · · a} and [a, b] = {a, a + 1, a + 2, · · · b} for a ≤ b and a, b ∈ N.
When there is no danger of confusion, we denote the set of points {pa, pa+1, . . . , pb} as simply
[a, b]. For example, we denote f({pa, pa+1, . . . , pb}) by f([a, b]).

To maintain a smooth function f on sliding windows, Braverman and Ostrovsky [9]
proposed a data structure that they called smooth histograms which is defined as follows.

I Definition 2.4 (Smooth histogram [9]). Let 0 < ε, ε′ < 1 and α > 0. Let f be an
(ε, ε′)-smooth function. Suppose there exists an insertion-only streaming algorithm A that
calculates an α-approximation f ′ of f . The smooth histogram is a data structure consisting
of an increasing set of indices XN = [x1, x2, · · · , xt = N ] and t instances A1,A2, · · · ,At of
A such that
1. px1 is expired and px2 is active or x1 = 0.
2. For 1 < i < t− 1 one of the following holds

a. xi+1 = xi + 1 and f ′([xi+1, N ]) ≤ (1− ε′)f ′([xi, N ]),
b. f ′([xi+1, N ]) ≥ (1− ε)f ′([xi, N ]) and if i ∈ [t− 2], f ′([xi+2, N ]) ≤ (1− ε′)f ′([xi, N ]).

3. Ai = A([xi, N ]) maintains f ′([xi, N ]).

Observe that the first two elements of sequence XN always sandwiches the current
window W of size W , that is, x1 ≤ N −W ≤ x2. Braverman and Ostrovsky [9] used this
observation to show that either f ′([x1, N ]) or f ′([x2, N ]) is a reasonably good approximation
of f ′([N−W,N ]). In particular, using smooth histograms, they proved the following theorem.

I Theorem 2.5. [9] Let 0 < ε, ε′ < 1 and α, β > 0. Let f be an (ε, ε′)-smooth function. Sup-
pose there exists an insertion-only streaming algorithm A that calculates an α-approximation
f ′ of f using g(α) space and h(α) update time. Then, there exists a sliding window algorithm
B that maintains (1 ± (α + ε))-approximation f ′′ of f using O(β−1 · logn · (g(α) + logn))
space and O(β−1 · logn · h(α)) update time.

2.4 k-median is not a smooth function
Unfortunately, it is simple to see that many clustering functions are not smooth. Here we
give a simple example showing that the k-median cost is not a smooth function.

I Lemma 2.6. k-median clustering is not a smooth function.

Proof. We give a counterexample showing that k-median clustering is not a smooth function.
Assume that we have points p, q, r ∈ X and k = 2. Then OPT({p, q}, k) = 0 and OPT({q}, k) =
0, but OPT({q, r}, k) = 0 and OPT({p, q, r}, k) = min(dist(p, q), dist(p, r), dist(q, r)) which
can be arbitrarily large. J

However, the following lemma shows that we can compute k-median approximately in
the sliding windows model if we relax the constraint of returning exactly k centers.

I Lemma 2.7. Let A,B,C ⊂ X be three point sets. Let λ > 1 be a parameter. Then,

OPT(B, k) ≥ 1
λ
· OPT(A ∪B, k)

implies

OPT(B ∪ C, k) ≥ 1
(λ+ 1) · OPT(A ∪B ∪ C, 2k) .
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Proof. We bound the optimal 2k-median cost of the set A ∪B ∪ C as follows. First of all,
the optimal 2k-median cost of A ∪B ∪ C is upper-bounded by the optimal k-median cost of
A plus the optimal k-median cost of B ∪ C

OPT(A ∪B ∪ C, 2k) ≤ OPT(A, k) + OPT(B ∪ C, k) ,

as otherwise we can always replace the 2k optimal centers of A ∪ B ∪ C by the k optimal
centers of A and the k optimal centers of B ∪ C contradicting the minimum cost of the 2k
optimal centers A ∪B ∪ C. Now we have,

OPT(A ∪B ∪ C, 2k) ≤ OPT(A, k) + OPT(B ∪ C, k) ≤ OPT(A ∪B, k) + OPT(B ∪ C, k)
≤ λ · OPT(B, k) + OPT(B ∪ C, k)
≤ λ · OPT(B ∪ C, k) + OPT(B ∪ C, k) = (λ+ 1)OPT(B ∪ C, k),

which completes the proof. J

3 (α, β)-approximation for k-median problem on sliding windows

Here we state our main result.

I Theorem 3.1. Let α > 1 be a constant, λ = (1 + ε) and k ∈ N be a parameter. Let W
be the size of the sliding window. Suppose the optimal k-median cost of a point set P ⊂ X
is polynomially bounded, that is OPT(P, k) = |P |O(c) · ρP for sufficiently large constant c,
where ρP is the minimum distance between two distinct points in P . Suppose there exists
an insertion-only streaming algorithm A(P, k) that maintains an α-approximation set of k
centers for P using g(α) space and h(α) update time. Then there is an [α(α(1 + ε) + 1), 2]-
approximation sliding windows algorithm that uses O(g(α) · ε−1 · log(W · ρP )) space and has
O(h(α) · ε−1 · log(W · ρP )) update time.

Overview of Algorithm 1 (k-median)

Suppose our stream is S = [p1, p2, p3, · · · , pN , · · · , pn] and we are interested to maintain a
k-median clustering of a window W of W most recent points in stream S. We maintain an
ordered list xi ∈ X = [x1, x2, · · · , xt] of t = O(ε−1 · log(n · ρP )) indices for xi ∈ {1, · · · , N}.
Denote by A([i, j], k) an instance of algorithm A run on points {pi, pi+1, · · · , pj}. For every
index xi we run two instances of insertion-only streaming algorithm A(P, k). One instance is
A([xi, N ], k) that maintains a set Ci,k of k centers for the point set {pxi , pxi+1,··· ,pN }. The
other instance is A([xi, N ], 2k), which maintains a set Ci,2k of 2k centers for the point set
{pxi , pxi+1,··· ,pN }.

Upon arrival of a new point pN , we feed pN to instances A([xi, N ], k) and A([xi, N ], 2k)
for every xi ∈ X. We also instantiate two instances A([N,N ], k) and A([N,N ], 2k). We then
go through indices 1 ≤ i ≤ t− 2 and find the greatest j > i for which COST([xj , N ], Cj,k) ≥
1
λ · COST([xi, N ], Ci,k), and eliminate all indices xr and their instances A for i < r < j. We
then update the indices in sequence X accordingly. Finally, we find the smallest index i
whose pxi is expired and pxi+1 is active. For all r < i, we delete xr and its instances and
update the indices in sequence X. At the end, we return the center set Ci,2k of 2k centers
maintained by A([x1, N ], 2k) as our solution.
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Algorithm 1 k-median in Sliding Windows.
Input: A stream S = [p1, p2, p3, · · · , pN , · · · , pn] of points from a metric space (X,dist) and
the sliding window size W .
Output: A center set C1,2k of 2k centers that is an [α(α(1 + ε) + 1), 2]-approximation of
OPT(P, k).
Update Process, upon the arrival of new point pN :
1: for xi ∈ X = [x1, x2, · · · , xt] I (where xi ∈ {1, · · · , N}) do
2: Let Ci,k = A([xi, N ], k) be the set of k centers maintained by A([xi, N ], k), where

[xi, N ] = {pxi , pxi+1 , · · · , pN}.
3: Let Ci,2k = A([xi, N ], 2k) be the set of 2k centers maintained by A([xi, N ], 2k).
4: Let t = t+ 1, xt = N .
5: Let Ct,k = A([N,N ], k) and Ct,2k = A([N,N ], 2k), where [N,N ] contains only point pN .

6: for i = 1 to t− 2 do
7: Find the greatest j > i such that COST([xj , N ], Cj,k) ≥ 1

λ · COST([xi, N ], Ci,k).
8: For i < r < j, delete xr and center sets Cr,k and Cr,2k.
9: Update the indices in sequence X accordingly.
10: Let i be the smallest index such that pxi is expired and pxi+1 is active.
11: for r < i do
12: Delete xr and center sets Cr,k and Cr,2k.
13: Update the indices in sequence X.
Output Process:
1: Return C1,2k maintained by A([x1, N ], 2k).

Analysis

Next we prove Theorem 3.1. First we prove the approximation factor that we claim in this
theorem.

I Lemma 3.2. For assumptions of Theorem 3.1, Algorithm 1 maintains an [α(αλ+ 1), 2]-
approximation set of k centers for P in the sliding windows model, i.e.,

COST([x1, N
′], C1,2k) ≤ α(α · λ+ 1) · OPT(W, k) ,

where W is the current window of size W , that is the points in the interval [max(N ′ −
W, 1), N ′].

Proof. Let us fix the arrival of a new point pN from stream S = [p1, p2, p3, · · · , pN , · · · , pn].
From Lines (10) to (13) of Algorithm 1 we always have x1 ≤ N −W ≤ x2 where W is the
window size. Moreover, based on Lines (6) to (9), we have

COST([x2, N ], C2,k) ≥ 1
λ
· COST([x1, N ], C1,k) .

Since Algorithm A(P, k) is an insertion-only streaming algorithm that maintains a set of
k centers with an α-approximation guarantee of OPT(P, k), we have

OPT([x2, N ], k) ≤ COST([x2, N ], C2,k) ≤ α · OPT([x2, N ], k)

and
OPT([x1, N ], k) ≤ COST([x1, N ], C1,k) ≤ α · OPT([x1, N ], k) .
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Therefore,

αOPT([x2, N ], k) ≥ COST([x2, N ], C2,k) ≥ 1
λ
· COST([x1, N ], C1,k) ≥ 1

λ
· OPT([x1, N ], k),

which means
OPT([x2, N ], k) ≥ 1

α · λ
· OPT([x1, N ], k).

Imagine the arrival of a new point pN ′ from the stream

S = [p1, p2, p3, · · · , pN , · · · , pN ′ , · · · , pn]

for which x1 ≤ N ′−W ≤ x2 where N ′ > N . Denote our window by W = {pN ′−W , · · · , pN ′}
and let A = [x1, x2) = {px1 , px1+1, · · · , px2−1}, B = [x2, N ] = {px2 , px2+1, · · · , pN}, and
C = {pN+1, pN+2, · · · , pN ′}. Observe that A ∪B = [x1, N ] = {px1 , px1+1, · · · , pN} and

B ∪ C ⊆ W = {pN ′−W , · · · , pN ′} ⊆ A ∪B ∪ C = {px1 , · · · , pN ′}.

Now we use Lemma 2.7 which says if OPT(B, k) ≥ 1
λ · OPT(A ∪ B, k), we then have

OPT(B ∪ C, k) ≥ 1
(λ+1) · OPT(A ∪B ∪ C, 2k). We replace λ by αλ to obtain

OPT(B, k) = OPT([x2, N ], k) ≥ 1
α · λ

· OPT(A ∪B, k)

= 1
αλ

OPT([x1, N ], k) = 1
αλ

OPT({px1 , px1+1, . . . , pN}, k).

Therefore, we have

OPT(W, k) ≥ OPT(B ∪ C, k) = OPT([x2, N
′], k) = OPT({px2 , px2+1, · · · , pN ′}, k)

≥ 1
(α · λ+ 1) · OPT(A ∪B ∪ C, 2k) = 1

(α · λ+ 1) · OPT([x1, N
′], 2k)

= 1
α(α · λ+ 1) · COST([x1, N

′], C1,2k) ,

since A([x1, N
′], 2k) returns an α-approximation 2k-median center set C1,2k of point set

[x1, N
′], i.e.,

COST([x1, N
′], C1,2k) ≤ α · OPT([x1, N

′], 2k) .

Therefore, we have

COST([x1, N
′], C1,2k) ≤ (α(α · λ+ 1)) · OPT(W, k) ,

which proves the lemma. J

Next, we prove the space usage of Algorithm k-median.

I Lemma 3.3. For assumptions of Theorem 3.1, Algorithm 1 uses O(g(α) · ε−1 · log(W · ρP ))
space and has O(h(α) · ε−1 · log(W · ρP )) update time.

Proof. It is clear that the space is O(g(α) · t) and that time is O(h(α) · t), so it suffices to
prove that t = O(ε−1 log(W · ρP )).

As a loop invariant for Line 1 upon arrival of a new point, we will prove the bound t < t∗.
Since Line 4 is the only place where t is incremented, we will have that t ≤ t∗ throughout
the algorithm.
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In the previous iteration, the following invariant for all i ∈ [1, t− 2] is guaranteed after
execution of the loop beginning on Line 6:

COST([xi+2, N ], Ci+2,k) < 1
λ
· COST([xi, N ], Ci,k)

The previous inequality is guaranteed because if it were not true, then in Line 8, xi+1
would have been deleted.

Note that COST([xt−2, N ], Ct−2,k) > 0, for otherwise we conclude that OPT ([xt−2, N ]) =
OPT ([xt, N ]) = 0 so xt−1 would have been deleted. The value ρP is the minimum distance
between points in the metric space, so COST([xt−2, N ], Ct−2,k) ≥ ρP . By induction, we see
that:

COST([xt−2, N ], Ct−2,k) <
(

1
λ

) t−i
2 −1

· COST([xi, N ], Ci,k)

where i = 2, 3 depends on the parity of t (i.e. such that t - i is an even number). The bound
t−i

2 − 1 ≥ t/2− 3, and therefore:

λ(t/2)−3ρP < COST([xi, N ], Ci,k)

Next, we note by polynomial-boundedness that OPT ([xi, N ]) ≤WO(c) · ρP because Line 10
guarantees that x2 (and thus xi since i ≥ 2) is not expired and thus |[xi, N ]| ≤W . This is
the only place where polynomial-boundedness is used. Next, by the approximation-ratio of
the blackbox α-approximation, we have that COST([xi, N ], Ci,k) ≤ α ·OPT ([xi, N ]). Putting
these together, we have:

λ(t/2)−3ρP < COST([xi, N ], Ci,k) ≤ α ·OPT ([xi, N ]) ≤ α ·WO(c) · ρP

Algebraic manipulation yields that t < 6 + 2 logλ(WO(c) · ρP ). Setting λ = 1 + ε, we get that
t = O(ε−1 log(W · ρP )). J

Now we finish the proof of Theorem 3.1.

Proof. Proof of Theorem 3.1 We set λ = (1 + ε) and let t = O(ε−1 · log(W · ρP )). Using
Lemma 3.2, Algorithm 1 (k-median) maintains an [α(αλ + 1), 2]-approximation set of k
centers for P in the sliding windows model. For λ = (1 + ε), the approximation factor would
be α(α(1 + ε) + 1) which proves the theorem. J

Finally, we use the approximation algorithm of Theorem 3.1 to obtain the following result.

I Corollary 3.4. Let ε < 1/α2 and 0 < δ < 1. Assume for Algorithm A(P, k) in Theorem
3.1, we use the combination of algorithms [12] and [14] that guarantees 5.322-approximation
to the OPT(P, k) with probability 1 − δ and uses space O(k2ε−2 log9(n) · log(1/δ)). Then,
the sliding windows algorithm of Theorem 3.1 is an [35, 2]-approximation algorithm for the
k-median problem with probability 1− δ and uses O(k2ε−3 log10(n) · log(1/δ)) space.

Proof. As we mentioned in Section 1.2, we can plug the very recent 2.661-approximation
algorithm for the k-median problem due to Byrka, Pensyl, Rybicki, Srinivasan, and Trinh [12]
into (k, ε)-coreset construction of Chen [14] to obtain O(k2ε−2 log9(n) · log(1/δ))-space 5.322-
approximation algorithm in the insertion-only streaming model with probability 1− δ for
0 < δ < 1. We use this algorithm as an α-approximation algorithm A in Theorem 3.1 and
set ε < 1/α2 to have the approximation factor of

α(α(1 + ε) + 1) = 5.322(5.322(1 + 1
(5.322)2 ) + 1) ≤ 35 . J
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4 Lower bound for k-Median Clustering on Sliding Windows

In this section, we show that without the assumption of polynomial-boundedness, no ran-
domized algorithm can approximate clustering in sub-linear space.

I Theorem 4.1. Every randomized α-approximation algorithm for 2-median on sliding
windows requires Ω(W )-storage.

This result will be proved by reduction from the COUNT problem, which we now define:

I Definition 4.2 (COUNT Problem). Given a Boolean stream p1p2p3 . . . (i.e for pi ∈ {0, 1})
and a positive integer W , the COUNT problem on sliding windows maintains the number
of elements equal to 1 in the most recent W elements.

The COUNT problem was explored by Datar, Gionis, Indyk, and Motwani [20], who
developed a (1 + ε)-estimator using O(ε−1 log2 n) space. They also gave a matching lower
bound of Ω(ε−1 log2 n) memory bits for any deterministic or randomized algorithm. In
Theorem 4.3, we give a simple Ω(W )-space lower bound for randomized algorithms that
compute COUNT exactly. The proof is included here for the sake of completeness.

I Theorem 4.3. Any randomized algorithm that exactly computes COUNT with probability
2/3 requires Ω(W )-space.

Proof. The INDEX problem in communication complexity [31] is the following problem.
Let Alice and Bob be two players. Alice has a vector A ∈ {0, 1}n with entries {ai}ni=1.
Bob has an index I ∈ [n]. Together they have to identify the value of aI using minimum
communication. It is well known [31] that the INDEX problem has a Ω(n) lower bound in
the one-way communication model, when Bob cannot send messages to Alice.

We provide the following simple reduction of the INDEX problem to the COUNT
problem. Suppose there is a randomized streaming algorithm X that solves the COUNT
problem w.p. 2/3 and uses w bits of memory. Alice computes X on windows of length n on
stream a1, a2, . . . , an and sends the memory of X to Bob. Bob continues the computation
on the stream of n zeros. Thus, the input that Alice and Bob collectively create is the
stream of length 2n with entries pi = ai for i ≤ n and pi = 0 for n < i ≤ 2n. Bob outputs
(cn+I−1 − cn+I) where cj =

∑j
l=j−n+1 pl is the number of ones in the j-th window. Indeed

cn+I−1 − cn+I =
n+I−1∑
l=I

pl −
n+I∑
l=I+1

pl = aI − aI+n = aI .

Thus, the INDEX problem can be solved using w bits, and thus we must have w = Ω(n). J

The reduction from COUNT to 2-median will work by using Algorithm 2 to transform a
stream of Boolean values into a stream of points in one-dimensional Euclidean space. The
transformation will depend on the approximation guarantee α of the 2-median algorithm.
Algorithm 2 will maintain a counter jN . It is clear that jN − jN−W+1 is the exact solution
of COUNT in the N th window. The current counter jN is known, but storing the entire
history back to jN−W+1 would require W bits (since the window slides, we must keep the
past W values). Instead, we use a 2-median approximation as a blackbox. The 2-median
algorithm will output a set of centers, and we will prove that the location of the right-most
center determines jN−W+1. Thus we reduce the COUNT problem to computing 2-median
approximately (to any degree of approximation, possibly dependent on W ).
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Figure 1 Example of Algorithm 2.

Algorithm 2 Streaming Transformation for an α-approximation.
ϕ← 4α
j1 ← 1
for N ∈ {1, . . . , n} do

if pN = 0 then
Write xN = 0
jN+1 ← jN

if pN = 1 then
Write xN = φ−jN

jN+1 ← jN + 1

For each N ≥ W , define iN := jN−W+1. Note that the N th window is completely
described by iN and jN (henceforth denoted i and j). This set is {ϕ−i, . . . , ϕ−j+1, 0, . . . , 0},
and we assume that k ≤ j − i < W . This assumption is valid since in the alternative
cases (i.e., when j − i ∈ {0, . . . , k − 1,W}), both COUNT and 2-median can be solved in
O(k logW )-space by keeping track of the indices of non-zero terms modulo W .

Before proving the desired reduction from COUNT to 2-median in Theorem 4.5, we
begin with a lemma that is essential to the argument.

I Lemma 4.4. The optimal cost for 2-median is strictly less than 2ϕ−i−1.

Proof. Consider the center set {0, ϕ−i}. All points x < ϕ−i/2 will be assigned to the center
c = 0, and all points x > ϕ−i/2 will be assigned to the center c = ϕ−i. Since α ≥ 1, we have
that ϕ = 4α ≥ 4 > 2 and thus all points in the window except x = ϕ−i have the inequality
x ≤ ϕ−(i+1) < ϕ−i/2. This clustering assigns the point x = ϕ−i to the center c = ϕ−i and
assigns all other points to the center c = 0. The cost of this clustering is:

j∑
a=i+1

ϕ−a = ϕ−i − ϕ−j

ϕ− 1 <
ϕ−i

ϕ− 1

ϕ > 2 implies ϕ− 1 > ϕ/2, and thus this cost is strictly less than 2ϕ−i−1. The optimum
cost is bounded above by the cost of this clustering, i.e., OPT (P, 2) < 2ϕ−i−1. J

I Theorem 4.5. On sliding windows, any α-approximation of 2-median can be used to
compute the exact solution of COUNT.

Proof. We will run the α-approximation on the output of Algorithm 2 (with parameter
ϕ = 4α) and obtain a set of 2 centers for each window. We will show that the right-most
center is in the interval ( 1

2ϕ
−i, 3

2ϕ
−i). Because ϕ > 3, these intervals are disjoint for distinct

i, so the right-most center will identify a unique value of i. Since we have the counter j from
Algorithm 2, we may output j − i as the exact solution to COUNT in that window.
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All that remains to be shown is that the right-most center is in the desired interval.
By Lemma 4.4, we have that OPT (P, 2) < 2ϕ−i−1. Suppose that the right-most center
c2 is not assigned any points in the clustering. Then the cost (using only the left-most
center c1) is bounded below by the optimal cost of clustering the subset {0, ϕ−i}, so
COST (P, {c1}) ≥ OPT ({0, ϕ−i}, 1) = ϕ−i. The approximation guarantee implies that:

α ≥ COST (P, {c1})
OPT (P, 2) >

ϕ−i

2ϕ−i−1 = ϕ

2 = 2α

By this contradiction, we conclude that both centers are used in the clustering, and in
particular we conclude that the right-most point x = ϕ−i is assigned to the right-most center.

Suppose that the right-most center c2 /∈ ( 1
2ϕ
−i, 3

2ϕ
−i). Then the cost of clustering

the right-most point x = ϕ−i is at least 1
2ϕ
−i. This implies that COST (P, {c1, c2}) ≥

COST ({ϕ−i}, {c2}) ≥ 1
2ϕ
−i which leads to the following contradiction:

α ≥ COST (P, {c1, c2})
OPT (P, 2) >

ϕ−i/2
2ϕ−i−1 = ϕ

4 = α

Therefore the rightmost-center c2 is in the desired interval, and this completes the proof. J

The reduction of Theorem 4.5 together with the lower-bound of Theorem 4.3 implies
the linear-space lower bound for 2-median stated in Theorem 4.1. We now give Theorem
4.6 which generalizes the reduction in two ways: (1) the result will hold for k ≥ 2, and (2)
the result will hold for clustering f(x, c) = d(x, c)p for any p > 0. Theorem 4.5, pertaining
to 2-median, is the special case of k = 2 and p = 1. Notable special cases are k-median
(when p = 1) and k-mean (when p = 2). The proof is a straight-forward generalization of the
reduction for 2-median, which we briefly outline.

I Theorem 4.6. For k ≥ 2, every randomized α-approximation algorithm that clusters
f(x, c) = d(x, c)p for p > 0 on sliding windows requires Ω(W )-storage.

Proof. Run Algorithm 2 with ϕ = 2(2α)1/p. A straightforward modification of Lemma 4.4
when using the center-set {0, ϕ−i−(k−2), . . . , ϕ−i} now reads OPT (P, k) < 2ϕ(−i−k+1)p. Sup-
posing that only k− 1 centers were used in the clustering, the subset {0, ϕ−i−(k−2), . . . , ϕ−i}
shows that the cost is at least 2(ϕ−i−(k−2)/2)p. These establish a contradiction showing that
the right-most point ϕi must be assigned to the right-most center. We conclude by proving
that the right-most center lies in the interval ( 1

2ϕ
−i, 3

2ϕ
−i) since otherwise the cost would be

at least (ϕ−i/2)p, which again leads to the desired contradiction. J

Note that the transformed data was constructed in one-dimensional Euclidean space. This
shows that without polynomially-boundedness, it is impossible to perform sublinear-space
clustering on any Riemannian manifold, as shown in the next theorem.

I Theorem 4.7. Let d be the metric of a Riemannian manifold M . For k ≥ 2, every
randomized α-approximation algorithm that clusters f(x, c) = d(x, c)p for p > 0 on sliding
windows requires Ω(W )-storage.

Proof. For δ > 0, let γ : [0, δ]→M be a geodesic parameterized by arc-length [21]. The entire
construction of Theorem 4.6 lies in the interval [0, ϕ−1] ⊂ [0, 1], so we modify Algorithm 2
to output the points γ(δϕ−j). The proof then carries through without modification, since
d(γ(δϕ−i), γ(δϕ−j)) = δ|ϕ−i − ϕ−j | for all i, j ≥ 1. J
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