What's Decidable about Availability Languages?

Parosh Aziz Abdulla!, Mohamed Faouzi Atig!, Roland Meyer?, and
Mehdi Seyed Salehi?®

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed_faouzi.atig}@it.uu.se

2 University of Kaiserslautern, Kaiserslautern, Germany
meyer@cs.uni-kl.de

3 Sharif University of Technology, Tehran, Iran
seyedsalehi@ce.sharif.edu

——— Abstract

We study here the algorithmic analysis of systems modeled in terms of availability languages. Our
first main result is a positive answer to the emptiness problem: it is decidable whether a given
availability language contains a word. The key idea is an inductive construction that replaces
availability languages with Parikh-equivalent regular languages. As a second contribution, we
solve the intersection problem modulo bounded languages: given availability languages and a
bounded language, it is decidable whether the intersection of the former contains a word from
the bounded language. We show that the problem is NP-complete. The idea is to reduce
to satisfiability of existential Presburger arithmetic. Since the (general) intersection problem
for availability languages is known to be undecidable, our results characterize the decidability
border for this model. Our last contribution is a study of the containment problem between
regular and availability languages. We show that safety verification, i.e., checking containment of
an availability language in a regular language, is decidable. The containment problem of regular
languages in availability languages is proven undecidable.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.4 Mathematical Logic
and Formal Languages

Keywords and phrases Availability, formal languages, emptiness, decidability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.192

1 Introduction

Availability is an important concept in the dependability analysis of unreliable reactive
systems. In such systems, components may fail for some time and recover later. In other
words, the system may be available for a certain amount of time during the observation
period. The property of interest for us in such systems is (interval) availability which specifies
the proportion of the time in which the system is available for use.

Availability for continuous systems has been extensively studied in the literature [4, 16].
Studying availability over a discrete domain, however, is quite new, but it can be useful. With
appropriate approximations, it should be possible to model the availability characteristics
of a system. With a discrete domain at hand, one may hope for automated analyses. This
paper can be understood as providing evidence for the latter claim.

Regular availability erpressions have been introduced in [11] as a model for discrete
availability aspects. Availability expressions extend regular expressions by an additional
operator. This so-called occurrence constraint associates a positive or negative availability

© Parosh Aziz Abdulla, Mohamed Faouzi Atig, Roland Meyer, and Mehdi Seyed Salehi;
Bv licensed under Creative Commons License CC-BY

35th TARCS Annual Conf. Foundations of Software Technology Theoretical Computer Science (FSTTCS 2015).

Editors: Prahladh Harsha and G. Ramalingam; pp. 192-205

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.192
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi

with the symbols of the alphabet and poses requirements on the accumulated availability of
words. To give an example, the availability expression

((up + down)™ V') gup—# down>0

requires a system uptime of at least 50%. To achieve this, the semantics evaluates the
occurrence constraint #up — #down > 0 every time the execution meets a symbol v'.

Algorithmic analysis looks at system models from a language-theoretic point of view.

Here, availability expressions are interesting because their language class is incomparable
with basic classes like context-free languages. Therefore, language-specific properties like
emptiness or intersection are non-trivial for them.

The earlier work [11] proved the undecidability of checking whether the intersection of
two availability languages is empty or not. The emptiness problem itself, however, remained
open. Emptiness may be considered the key problem in algorithmic verification: correctness

requirements are typically stated as £, C Lo and then rephrased as £ = () with £ = £, N Ls.

The first contribution of this article is a positive answer to the emptiness problem of regular
availability languages. We provide an algorithm that takes an availability expression rae and
decides whether the associated language L£(rae) is empty.

Technically, we show that availability languages have regular approximations that are
exact with respect to emptiness. More precisely, given rae we construct a regular expression
reg with the same Parikh image [14]: II(L(rae)) = II(L(reg)). The idea is to proceed by
induction on the structure of availability expressions. In the base case, we directly construct
a one-counter automaton M that captures the language of an expression (reg)cs:-. (Here,
cstr is an occurrence constraint as in the above example.) With Parikh’s result, we then
obtain a regular language that is Parikh-equivalent with £(M). In the induction step, we
apply this result to iteratively replace availability expressions by regular expressions. This
leads to an algorithm for solving the emptiness problem with a non-elementary complexity.
This is due to the exponential blow-up encountered, at each induction step, when computing
the Parikh image of a one-counter automaton.

Our second contribution is a refined study of the (undecidable) intersection problem.
Rather than inspecting the full intersection L£(rae;) N L(raez), we restrict the search to

.- This under-approximate verification
technique is also known as pattern-based verification [6], and generalizes the popular idea of
bounded countext switching [15]. Our finding is that the problem is only NP-complete.

words from a given bounded expression bl = wj ... w

Technically, we give a reduction to satisfiability of existential Presburger arithmetic [17].
We first rewrite L(rae;) N L(raez) N L(b]) as (L(raer) N L(b])) N (L(raez) N L(b])), a trick
due to Ginsburg and Spanier [9]. Then we show how to capture the latter intersection by a
formula 3%.1(Z) A p2(Z) with & = 21, ..., 2., Intuitively, the task of ¢ with k= 1,2 is to
count the occurrences of w; to wy, in the intersection L(raey) N L(bl).

The actual challenge in the proof is to construct ;. We again proceed by induction. To
invoke the hypothesis, we guess the part bl' = w; ... wj of the bounded expression bl that
will be traversed when raey passes through a top-level constraint (rae’) s;. To our surprise,
parts of length one (i = j) were difficult to handle and needed an auxiliary construction.
Such a part may be traversed multiple times. Hence, representing it by a Presburger formula
would lead to non-linearity. We show how to compute a finite automaton that captures the
language £(bl')NL((rae’)). Here, we need visibility arguments and study the boundedness
behavior of the one-counter automata representing availability languages.

Our last contribution is a study of the containment problem between regular languages
and availability languages. First, we show the decidability of L(rae) C L(reg). Note that

193

FSTTCS 2015

194

What's Decidable about Availability Languages?

this inclusion is a common formulation of safety verification problems. The proof is by a
reduction to the emptiness problem of the language L£(rae) N L(reg). As key argument, we
establish closure of the class of availability languages under regular intersection. Second, we
show the undecidability of checking whether a regular language is included in an availability

language. The proof is by a reduction from the halting problem for two-counter automata
(which is known to be undecidable [13]).

Related Work. We already discussed the relation of our results to availability analysis. We
now concentrate on the related work in formal languages and verification. The work [11]
introduced regular availability expressions and proposed a corresponding automaton model
that captures availability languages in an operational rather than a declarative way. Moreover,
it gave a synthesis algorithm that determines a most liberal implementation of an availability
requirement. The final result was the undecidability of intersection emptiness. We focus
here on algorithmic problems of the latter form, and obtain positive results. We show
the decidability of emptiness, NP-completeness of a restricted intersection problem, and
decidability of safety verification. We believe that these positive results, in particular the low
complexity of the intersection problem modulo bounded languages, should motivate further
studies of availability languages. It should also be noted that we generalize the model [11]
towards stronger occurrence constraints.

Availability expressions introduce occurrence constraints to influence the use of symbols.
With this numeric aspect, Parikh images [14] proved to be a valuable tool in the manipulation
of availability languages. There are other language-theoretic models that employ Parikh
images [12, 3, 2, 1, 18]. In all these models (variants of so-called Parikh automata and
Presburger regular expressions), the final acceptance of a word depends on the number
of occurrences of letters. What is different in our model is that we admit intermediary
occurrence checks. These checks can be used as guards to influence the future system behavior,
as opposed to post-mortem acceptance checks. There is no bound on the number of such
intermediary measurements so that there is no immediate reduction to the aforementioned
models.

Concerning bounded languages, Ganty et al. [8] showed how to construct from a context-
free language a context-free bounded language with the same Parikh image. Also in the
context-free setting, Esparza and Ganty proposed the intersection problem modulo bounded
languages [6], a work that inspired our second contribution. Hague and Lin generalized this
result to pushdown automata with reversal-bounded counters [10]. Our underlying model is
regular rather than context free but admits an unbounded number of checks on the counters.

Weighted languages form another line of related work [5]. The idea is to let an automaton
manipulate weights from a semi-ring. Actually, weighted automata admit very general
semi-rings while we focus on the occurrence of letters. In contrast, our occurrence constraints
can influence the system behavior while weighted automata only provide an analysis.

2 Availability Languages

Regular availability expressions extend regular expressions by occurrence constraints on the
letters. The model was introduced in [11] and is presented here in a generalized form. The
idea of occurrence constraints is to require a specified ratio on the occurrence of letters. For
example, the word w = aab has more letters a than b, which means the occurrence constraint
#a — #b > 0 holds. To be more precise, the occurrence constraint is checked at the places
marked by a distinguished symbol v'. It does not need to hold throughout the word. With

P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi

this, the availability expression (a*b*v')uq—#p>0 denotes the language {a"b™ | n > m}.

Throughout the paper, we assume an underlying finite alphabet A.
An occurrence constraint cstr takes the form

t+> ka-#a>0 witht,k, € Z. (1)
acA

The set of reqular availability expressions is defined as follows:
rae z= a1 &1 01 v 1| rae+ rae | rae.rae 1| rae* | (rae) sy -

Here, a € A, v ¢ A is the distinguished symbol, and cstr is defined as above. We use reg
to indicate that an availability expression actually is a regular expression, which means it
does not contain v' nor cstr. The depth of an availability expression is the nesting depth
of occurrence constraints (rae).st-. An occurrence constraint (rae) st is top-level in rae’
if it is not covered by another (—) s in the syntax tree of rae’. The syntactic size of an
availability expression rae is denoted by |rae|. The definition is as expected, every piece of
syntax contributes to it.

The semantics of availability expressions is in terms of finite words, L£(rae) C (AU {v'})*,
and defined inductively as follows:

(a) := {a} L) :={} L(e) :={e}
(@) :=0 L(raey + raes) := L(raey) U L(raes) L(rae*) := L(rae)*
L(raey.raey) = L(raey).L(raes) L(raecsyy) = L(rae) st

L
L

To define the semantics of occurrence constraints, £(rae) s, we need Parikh images and
projections. The Parikh image of a word w over A U{v'} is a function II(w) : A — N that

returns for every a € A the number of occurrences of a in w, in symbols II(w)(a) := |wl,.

Let I' C AU {v'} and let w be a word over AU {v'}. The projection of w to I', denoted
by 7r(w), is the result of removing all symbols outside I" from w. Using these concepts,
operator L.s, checks that each prefix ending in v* satisfies the occurrence constraint, and
projects the remaining words to A:

Lestr = {ma(w) | we L, }

cstr

Ll ={wel|t+ Z ko - II(wq)(a) > 0 for all wy.v .wy = w} .
a€A

Availability languages are incomparable with context-free languages [11]. For example, the
language {a™b"c" | n € N} can be generated by the regular availability expression

((((@™b* "V)14 #ta—#b>0Y) 14#b—#a>0V)1+Hc—H#a>0V)1+Ha—#e>0

reverse

but it is not a context-free language. The language of words w.w in turn cannot be

represented by a regular availability expression.

3 Emptiness

The emptiness problem for availability languages consists in checking, for a given regular
availability expression rae, whether £(rae) = §. Our first main result is the decidability of
the emptiness problem. The solution is inductive. We first discuss the emptiness problem for

195

FSTTCS 2015

196

What's Decidable about Availability Languages?

(reg) estr- Via one-counter automaton, we show how to obtain a Parikh-equivalent regular
expression. Then we use this result to turn a general availability expression rae into a
Parikh-equivalent regular expression reg: II(L(rae)) = II(L(reg)). With this correspondence,
the two languages have the same emptiness status: L(rae) = 0 iff L(reg) = 0.

3.1 One-Counter Automata

We use a variant of one-counter automata (1CM) with counters over the integers Z rather
than the natural numbers N. A 1CM is a non-deterministic finite state automaton equipped
with a counter that can be incremented, decremented, and compared to zero. Formally, the
automaton is a 5-tuple M = (Q, A, A, s, F') where @ is a finite set of states with initial state
s € @ and final states F' C Q. The transitions in A C @ x (AU{e}) x Op x Q are labelled by
a letter from A and equipped with an operation from Op := {> 0,< 0} U {add(m) | m € Z}.
For the semantics, we define labelled transitions between configurations from @ x Z. The
automaton accepts a word w € A* if there is a sequence of configurations that is labelled by
w and ends in a final state. The language L£(M) is the set of all words accepted by M.

A 1CM M over the integers can be compiled down to a language-equivalent 1CM My
over the natural numbers. To adjust the semantics, over the naturals an addition add(—m),
m € N, is enabled only if the resulting counter value stays at least zero. The idea of the
translaton is to duplicate each control state. So state ¢ in M yields ¢4 and g_ in My. In
q+, the counter value represents a positive value in the original automaton. In q_, the
value represents the corresponding negative value in the original automaton. Clearly, a
transition > 0 from ¢ will be copied to ¢4 and will be removed from ¢_. A transition <0
from ¢ will be copied to g4. In ¢_, we have the transition without a condition (represented
by add(0)). Consider a decrement (g, a,add(—m),q¢’), m € N. Besides the corresponding
transitions at ¢y and q_, every pair x,y € N so that + y = m yields a transition sequence
(q+,a,add(—x),p)(p,e,< 0,p")(p', &, add(y), ¢"_) where p,p’ are two intermediary states used
only in the simulation of the decrement transition. The construction is similar for increments.

The 1CM My in turn can be understood as pushdown automata with two stack symbols.
One of them is used to mark the bottom of the stack, the other represents the counter value.
As a consequence of the two constructions, the languages of 1CM over Z are context free.
With Parikh’s theorem, we can construct a regular language with the same Parikh image.
A simple construction which takes a context-free language and returns a Parikh-equivalent
finite automaton has been proposed in [7]. We summarize the argumentation.

» Lemma 3.1. Given a 1CM M, one can construct reg with TL(L(M)) = TI(L(reg)).

1CM (over Z and over N) are effectively closed under regular intersection and projection.
» Lemma 3.2. Given 1CM M and reg, we can construct M’ with L(M') = L(M) N L(reg).
Given T' C A, we can construct M' with L(M') = «r(L(M)).

3.2 From Availability to Regular Expressions

To check emptiness of (reg)cstr, we first construct a 1CM

M that accepts words over A U {v'} only based on the a, add(ky)
constraint cstr. With the notation from the previous

T B} Y €,add(t)
section, it accepts all w € (AU {v'})* such that {w}’,, = v, >0

{w}. Assume cstr takes the Form (1). Automaton M,
depicted to the right, has two states s and f, the former
being initial and the latter being final, respectively. There is an e-labelled transition from s

P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi

to f with operation add(¢). The transition initializes the counter with constant ¢ from the

constraint. For every letter a € A, we have a loop at state f that adds coefficient k, € Z.

Moreover, for v we have a loop at f with check > 0.

» Lemma 3.3. Let w € (AU{Vv'})*. Then w € L(M) if and only if {w}Y,, = {w}.

cstr

To take the regular expression reg into account, we use closure under regular intersection.

So given reg and M above, we compute M’ with £L(M') = L(M) N L(reg). To remove symbol
V', we project L(M') to A. This yields the language of (reg) cstr-

» Lemma 3.4. 7o (L(M')) = L((reg) cstr)-

By closure under projection, L((reg).s;r) is again a one-counter language. With

Lemma 3.1, the language can be represented by a regular language, up to Parikh-equivalence.

» Proposition 3.5. One can construct reg’ with TI(L((reg) cstr)) = (L (reg’)).

For the general case, consider rae and focus on an occurrence constraint of maximal depth.

By maximality, it has the shape (reg)cst-. We apply Proposition 3.5 to construct a regular
language reg’ with the same Parikh image, II(L(reg’)) = II(L((reg)cstr)). We now replace
(reg) cstr by reg’ within rae, resulting in rae’. The languages of rae and rae’ still coincide, up
to Parikh-equivalence:

H(L(rae’)) = II(L(rae)).

The reason is that the Parikh image of £((reg)cst) keeps the number of symbols (but may
not retain their order), and this is what is needed to evaluate further occurrence constraints
in rae. We repeat the procedure inductively on rae’. Eventually, we have eliminated all
occurrence constraints and hence arrived at a regular expression.

» Theorem 3.6. One can construct reg with TI(L(rae)) = TI(L(reg)). Hence, the emptiness
problem for availability languages is decidable.

Observe that the procedure has a non-elementary complexity. This is due to the exponential
blow-up encountered, at each induction step, when computing the Parikh image of a 1CM.

4 Intersection Modulo Bounded Languages

The intersection problem L(rae;) N L(raes) # () is known to be undecidable, already for two
availability expressions [11]. We now show that the problem remains decidable, actually
only NP-complete, if we require the words in the intersection to belong to the language
of a bounded expression of the form bl = w7} ... w},. To be precise, we study the following
problem that we will refer to as IBL, intersection modulo bounded languages: Given rae; to
rae, and bl, is (), L(rae;) N L(bl) # 0 ? Our second main result is as follows.

» Theorem 4.1. IBL is NP-complete for availability expressions of fixed depth.

We explain the proof approach and elaborate on the side condition. The approach is inspired

by Ginsburg and Spanier’s [9] and has also been used in [6]. We first rewrite the intersection:

n

(()L(rae:)) N L(bD) = () (L(rae;) N L(bl)) . (2)

=1 i=1

197

FSTTCS 2015

198

What's Decidable about Availability Languages?

Let bl = wy...w},. Our technical contribution (Proposition 4.8) is then to compute in

polynomial time an existential Presburger formula o;(x1, ..., 2,,) that captures the words
in an intersection £(rae;) N L£(bl) as follows: wt* ... wkm € L(rae;) N L(bl) if and only
if (ki1,...,km) = ;. Intuitively, the Presburger formula counts how often each word in the

bounded expression occurs. With this, the intersection between the languages L(rae;) N L(bl)
on the right-hand side of Equation (2) is represented by the intersection of the solution spaces
of the corresponding formulas ;. Indeed, there is a word in the intersection if and only if
there are coefficients k; to k,, on which all formulas agree. This is equivalent to satisfiability
of 31 ... 3wy : A\l @i(®1,...,%m). Since the formulas are computable in polynomial time
(Proposition 4.8) and satisfiability of existential Presburger is in NP [17], we obtain an upper
bound for IBL.

For the polynomial-time computability to hold, we have to assume the depth of the
availability expressions given as input to be bounded from above by a constant. The need
for a fixed depth comes with the proof approach. We construct the Presburger formulas
by an induction on the depth of availability expressions. Each step in this induction is
polynomial-time computable. The composition of the polynomials, however, only stays
polynomial if we assume it to be fixed.

For the lower bound, NP-hardness already holds in the case of regular rather than
availability languages, a single letter alphabet, and a fixed pattern, due to [6].

4.1 Bounded Languages and Presburger Arithmetic

In the literature, bounded languages are defined as (potentially non-regular) subsets of

wi ...w),. As there is no risk of confusion, we decided to adopt the terminology. For
our proofs, we will have to deal with leading and trailing words. So we will also refer to
bl = wo.wy ... w), . wm+1 as a bounded expression. The length of bl is the number of starred
words, m € N. A part of bl is a language u.w; ... wjJ

w;—1 or w;, and v a prefix of w; or w;i1. Alternatively, u.v may form an infix of some w;

2w with 1 <4 <5 <m, u a suffix of

and the iterated part is missing.

Presburger arithmetic is the first-order logic of the natural numbers with addition but
without multiplication. Given a formula p(z1,...,z,) with free variables 1 to z,,, we use
S(y) for the solution space: the set of valuations (ki,...,k,) that satisfy the formula. We
are interested in the existential fragment of Presburger, denoted by dPA and defined by

t o= 011121t +1t p u=ti=ta 1 t1 >t 1 p1Apa 1 1 Ve | T .

A result by Verma, Seidl, and Schwentick shows how to capture the Parikh images of
context-free languages by existential Presburger.

» Proposition 4.2 ([19]). Given a context-free grammar G, one can compute in linear time
an APA formula ¢ satisfying S(p) = II(L(G)).

4.2 NP Upper Bound

Our goal is to construct an FPA formula for L((rae)cst) N L(b1). Roughly, the approach is to
represent the intersection by a 1CM and then obtain the IPA formula with Proposition 4.2.
More precisely, the construction is by induction on the depth of availability expressions, and
the challenge is to handle the top-level occurrence constraints (rae’) sy within (rae) sy To
invoke the hypothesis, the idea is to precompute the intersection of (rae’) s, with parts bl’
of the bounded language bl. This, however, requires care. We will have to treat parts of

P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi 199

length at most one and parts of length at least two substantially different. As a result, we
will have to invoke different hypotheses. We explain the difficulties.

For parts of length at most one, the intersection £((rae’)sv) N L(b') may be entered
several times. Indeed, bl’ may be u.w}.v with u a suffix of w; and v a prefix of w;. If we
only had a Presburger formula to represent the intersection, re-entering the intersection
would lead to a non-linear constraint. Instead, we show (in a separate induction, leading
to Proposition 4.3) how to compute a finite automaton representing the intersection. This
automaton can then be plugged into the overall 1CM construction.

For parts bl' = v.w} ... w?

J
L((rae')cstr) N L(b'), simply because j > i. This allows us to represent the intersection

by an JPA formula, which we obtain by a simple invocation of the induction hypothesis.
We incorporate this formula into the IPA formula for the overall construction. Note that
the intersection with a bounded language of length at least two is not necessarily a regular
language. This means the automaton trick for length at most one does not work.

v of length at least two, we cannot re-enter an intersection

4.2.1 Automata for Length at most One

In the following, we show how to construct, in polynomial time, a finite state automaton
recognizing the intersection of an availability expression and a part of a bounded expression
of length at most one.

» Proposition 4.3. Consider availability expressions of fized depth. Given such an expression
(rae)cstr and a bounded language bl = wi.w*.wa, one can compute in polynomial time an
NFA A with L(A) = L((rae)cstr) N L(bI).

The rest of this section is devoted to the proof of Proposition 4.3 which is done by induction
on the depth of the availability expression.

Base Case. We first prove the base case when the availability expression is actually a
regular expression (see Lemma 4.4).

» Lemma 4.4. Given (reg)cstr and bl = wy.w*.wsy, one can compute in polynomial time an
NFA A with L(A) = L((reg) cstr) N L(bI).

To prove Lemma 4.4, we first construct a 1CM for the intersection of the languages and in a
second step compile this automaton down to a finite automaton. In Section 3, we have shown
how to turn (7eg) st into a 1CM with the same language. Since 1CM are closed under regular
intersection, we can also determine M = (Q, A, A, s, F') with L(M) = L((reg) cstr) N L(bI).
Note that the construction of M works in polynomial time. To turn M into a finite automaton,
the key observation is that M satisfies the following property referred to as (Bound). There
is a constant b € N so that

(Bound-U) once we exceed b in a configuration, the counter will never drop below zero,
(Bound-L) once we fall below —b, the counter will not increase above zero again.

For the formalization, we focus on (Bound-U), (Bound-L) is similar:

Y(g,c) € Q X Z with (s,0) =* (¢,¢) and ¢ > b:
V(¢) € Q x Z with (¢,¢) =" (¢',¢'): ¢ >0.

The following, lemma shows that indeed the 1ICM M satisfies the property (Bound) .

» Lemma 4.5. M satisfies (Bound) with b € N of size polynomial in |rae|+]bl|.

FSTTCS 2015

200

What's Decidable about Availability Languages?

We defer the proof of Lemma 4.5 for a moment and show that property (Bound) implies
Lemma 4.4: the correspondingly bounded 1CM accept regular languages. The reason is that
we only have to track the counter value precisely as long as it stays in the interval [—b, b].
Once this range is left, (Bound-L) and (Bound-U) indicate how to evaluate guards.

» Lemma 4.6. Assume 1CM M satisfies (Bound) with b € N. There is an NFA A of size
polynomial in |M|+b with L(A) = L(M).

To prove Lemma 4.5, recall that L(M) = L(bl) N L((reg) cstrr) with bl = wy.w*.we and cstr
of the Form (1). The main observation is that M is a visibly 1CM in the following sense. A
letter a € A always has the effect of adding the coefficient k, € Z to the counter, independent
of the transition. This means no matter which transition sequence the automaton takes
to process the word w in bl = w;.w*.ws, the effect on the counter is always constant. We
refer to it as effect(w) € Z. Note that the effect is homomorphic, effect(w.v) = effect(w) +
effect(v). We then do a case distinction according to whether w has a positive or a negative
effect. Assume effect(w) > 0. We define the constant b € N to be |t|+maz{|effect(w)]]
u an infix of w,.wp where w, € {wy,w} and wy € {w, wa}}.

For (Bound-L), we show that the counter never drops below —b and hence the property
trivially holds. For (Bound-U), we consider a configuration with counter value ¢ > b and
argue that the value stays above zero in every continuation of the transition sequence.

Induction step. Next, we show the induction step for the proof of Proposition 4.3. The
induction step is established using the following lemma:

» Lemma 4.7. Assume Proposition 4.3 holds for availability expressions of depth at most
n € N. Consider (rae) st of depth n+1 and bl = wy.w*.wy. One can compute in polynomial
time an NFA A with L(A) = L((rae)cstr) N L(DD).

Proof. The idea is to consider every part of the bounded expression w;.w*.ws that may
be traversed when (rae) s passes through a top-level occurrence constraint. For example,
L((rae) cstr)NL(bl) may traverse bl = u.w*.v while being in (rae’) .5, with u a suffix of w and
v a prefix of w. Each part bl’ is again a bounded expression of the form assumed by the lemma.
This means for each combination of top-level constraint (rae’) s+ and part bl’, we can apply
the hypothesis and compute a finite automaton A,qer) , v representing the intersection.
We now modify the given availability expression (rae)csy to (rde) g,
top-level constraint (rae’) g, with |J,, part of bl A(raer),,, pr- This replacement is sound and
complete in the sense that

L((rae)estr) NL(DI) = L((rde).z,) N L(DI) . (3)

Soundness holds by L(A(raer)..,,o0) = L((1a€")cstrr) N L(bI") € L((rae’)cstrr). Completeness
is because we consider every part of bl. The finite automaton of interest is constructed from
the right-hand side of Equation (3) by going through 1CM, as in Lemma 4.4. Note that
(rae) .z, indeed has the form (reg), .z, so that the argument from the base case applies.

To see that the construction is polynomial time, note that the number of parts of bl

by replacing every

cstr cstr

is quadratic. We avoid computing regular expressions for the automata A(ery ,, o0 but
directly incorporate them into the 1CM construction. |

4.2.2 Presburger for the General Case

With the previous automaton construction at hand, we are now prepared to address our
actual goal: computing an FPA formula that characterizes the intersection of a regular
availability language with a bounded language. Our main result is the following proposition:

P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi 201

» Proposition 4.8. Consider availability expressions of fived depth. Given such an expression
(rae)cstr and a bounded language bl = wo.wj ... wk wmi1, one can compute in polynomial
time an 3PA formula o(x1,...,2m) so that for all ki, ... Kk, € N:

(k1,... km) Ep if and only if wo.w’f1 ke Wimt1 € L((1ae) cstr) N L(BI).

m

The rest of this section is dedicated to the proof of Proposition 4.8. The proof is done by
induction on the depth of the availability expression.

Base Case. We first prove the base case when the availability expression is actually a
regular expression (see Lemma 4.9).

» Lemma 4.9. Given (reg)cstr and bl = wo.wi ... W} W1, one can compute in polynomial
time an 3PA formula o(x1,...,2m) as required.

We introduce fresh letters to the bounded language: bl' := wo.(w1.a1)* ... (Wp -G) * W1 1-
Now an occurrence of a; signals a full occurrence of w;. We compute the product with the
1CM for (reg)cstr and apply Proposition 4.2. It yields an JPA formula which, after existential
quantification of the variables for the original letters, is as required by Lemma 4.9.

Induction Step. Next, we show the induction step for the proof of Proposition 4.8. The
induction step is established using the following lemma.

» Lemma 4.10. Assume Proposition 4.8 holds for availability expressions of depth at most
n € N. Consider (rae)cstr of depth n+ 1 and bl = wo.w? ... w), wWpmi1. One can compute in
polynomial time an IPA formula ©(x1,...,2m) as required.

This is the proof where we need the two hypotheses: that we can compute a finite automaton
representing an intersection with a bounded language of length at most one, and that we
can construct an JPA formula characterizing an intersection with a bounded language of
length at least two. We shall assume m > 2, for otherwise we can apply Lemma 4.9 to the
automaton from Proposition 4.3.

Proof. We first define a modification of the given availability expression. It will involve
adding new letters that indicate the occurrence of an intersection with a bounded language
of length at least two. In a following step, we turn the bounded expression into a finite
automaton that takes the fresh letters into account. Then we determine the IJPA formula of
interest. The proof concludes with an estimation of the complexity.

Modifying the availability expression Consider every top-level constraint (rae’) sy. For
every part bl’ of the bounded language that has length at most one, we apply Proposition 4.3.
It yields a finite automaton Ay, , pr With language L((rae’)cstrr) N L(bl"). Moreover, for
every part bl’ of length at least two, we introduce a fresh letter f(raer,., . v We now replace
(ra€’) cstr by the regular language

U Ay U U e .er -

bl’ part of bl bl’ part of bl

of length <1 of length > 1
The modified availability expression is the result of all these replacements.

Turning the bounded expression into a finite automaton An occurrence of f(,4e) , , b1/
will represent an occurrence of £((rae’)) N L(bI'). The task of the automaton associated
with bl is to enforce that such an intersection is not traversed twice. The construction is

FSTTCS 2015

202

What's Decidable about Availability Languages?

. o Beraer) g bt -
l wo w1
Q M a ’ ©
aj

Figure 1 Tllustration of Ay;.

illustrated in Figure 1. First, we introduce fresh letters counting w; to w,,. This gives
wo-(w1.a1)* ... (Wi -G) * W1 When represented as a finite automaton, we have a state
qu for every prefix w of wg.wi.ay ... wy41. Consider the part bl' = u.wy ... wi.v with u a
suffix of w; = w.w and v a prefix of w; = v.v'. For every top-level availability constraint
(rae’)cstrr We add a transition labelled by f(rgery ., b from qug...uwr t0 Guy..n- Note that such
a transition can be taken only once. The result is Ay;.

Computing the 3PA formula The modification of the given availability expression
(rae) cstr is of the form (reg) sy We turn it into a 1CM and add loops to all states to guess
the occurrences of the fresh letters a; to a,,. Let the result be M. Since Ay is a finite
automaton and 1CM are closed under regular intersection, we can compute the product
M x Ap;. We turn this product into a context-free grammar and apply Proposition 4.2. This
gives us an IPA formula of the form (p, g, Z). The vectors of variables are as follows:

p has one variable p, for every letter a € A,
g has one variable y; for every word w; € {w1,..., wn},
Z has one variable z4 for each # = f(;4e) , p1rs (10€")csir top-level, and bl' of length > 2.

cstr

Let § refer to a pair of top-level occurrence constraint (rae’)qst and part of length at least
two bl' = uw.wy .. .wj.v. By the hypothesis, we can compute an IPA formula Yy (xi,. .., 25)

for L((rae’)cstr) N L(bl"). We modify the formula to ¢g(24, ahxh):

dz;. ..z, <Zﬂ0 A /\IiO) Vv

k=1

zg=1 A /\ xizO/\szmi—i—l/\ /\ xi:mk/\wﬁ(xi,...,xj)
k<iVk>j i<k<j

If 24 is zero, the transition in Ay, labelled by £ is not taken. This means the intersection
L((rae’)csir) N L(bl") does not contribute to the occurrences of wy to wy,. Therefore, we
require the fresh variables xi to be zero. If z; is not zero, it has to be one because the
f-labelled transition can be taken at most once. Since bl = u.w} .. -wj.v, the intersection
L((rae) eser) N L(b') still does not contribute to the occurrences of wy, with k < i or k > j.
For w; we have z; + 1 occurrences. The additional occurrence is for the suffix u. For wy
with i < k < j, we have precisely z; occurrences of w;. Note that we do not have to count
the half occurrence of v. Automaton Ap; will later see an a; signalling the occurrence of the
composed v.v" = wj.
With this, we can define the overall formula @(x1,...,2m,):

3 IE R Noi=wi+ D 2t A Aozl 2h) A 95,5, 2).
i=1 §

The formula sums up the occurrences of w; in a new free variable x;. These occurrences
are given by y; for the outer constraint and for the top-level occurrence constraints that are

P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi

intersected with a bounded language of length at most one. For the occurrences of w; in
an intersection with a bounded language of length at least two, we sum up the variables xg
Note that they are set to zero in case an intersection f is not taken. The remainder adds
the formulas 4 for the intersections § of top-level constraints with bounded languages of
length at least two, and also adds the formula i for the overall intersection. Existential
quantifiers hide all the auxiliary variables. We note that ¢4 as well as 1) are existential
Presburger formulas that may contain quantifiers. Since they are surrounded by conjunctions
and disjunctions, the scope of these quantifiers can be extruded without harm.

Time complexity of the construction The automata representing the intersections with
bounded languages of length at most one can be computed in polynomial time by Proposi-
tion 4.3. Similarly, the conversion of bl into A; can be computed in polynomial time. Indeed,
the number of top-level occurrence constraints is bounded by the size of the input. Moreover,

J
prefixes and suffixes. Altogether, there is a polynomial number of symbols that we add. As a

result, also the product of 1ICM and Ap; can be computed in polynomial time, and similar for
the Presburger formula v (p, 7,). It remains to add FPA formulas for a polynomial number
of intersections §. FEach such formula can be determined in polynomial time by the hypothesis
of the lemma. As a result, we have an overall polynomial time construction. <

there is at most a quadratic number of pairs w; ...w} and again a quadratic number of

One can optimize the construction by considering a more general notion of parts
Uwj....w;.V where U is the union of all suffixes of w; and w;_1 and V is the union
of all prefixes of w; and w;41. This does not change the overall complexity.

5 Containment

We study the problem of whether an availability language is contained in a regular language
and vice versa. For the former problem, we show that availability languages are closed under
regular intersection.

» Theorem 5.1. Given rae and reg, we can construct rae’ with L(rae’) = L(rae) N L(reg).
With Theorem 3.6, L(rae) C L(reg) is decidable.

For the proof, we represent the regular language by a finite automaton. Then we compute,
for each pair of entry and exit state, the intersection of the corresponding regular language
with the top-level occurrence constraints. This gives an inductive construction.

For the reverse inclusion, we show the undecidability by a reduction from the halting
problem for two-counter automata (2CM) [13]. 2CM are defined like the 1CM in Section 3
but use two counters. We can assume them to only add 1 or —1, and will use inc and dec,
instead. So the overall alphabet is A := {inc(7), dec(i), zero(4) | i = 1,2}.

The idea of the reduction is to understand a 2CM as a finite automaton. The automaton
only reflects the control-flow but does not take into account the semantics of counters. This
means the language is regular, let it be £(reg). We define an availability language L(rae)
that contains all words over A violating the semantics of two-counter automata. Together,

L(reg) C L(rae) iff L(reg) N L(rae) = 0.

Language L(reg) N L(rae) restricts the regular control-flow language to words respecting the
semantics of counters. This language is empty if and only if the 2CM does not halt.

» Theorem 5.2. L(req) C L(rae) is undecidable, even for rae of depth 1.

203

FSTTCS 2015

204

What's Decidable about Availability Languages?

Proof. It remains to define rae. The expression is a choice rae := rae; 4+ raes where rae;
reflects the bad behavior on counter 1, and similar for raes. There are two choices for bad
behavior: we decrement a counter below zero (see rae; 1) or a test for zero fails (see rae; 2):

raey := (A*.zero(1) + €).(raey 1 + raey 2).A*

A
rae1 1 := ((inc(1) +dec(1) +inc(2) + dec(2) + zero(2))*.v') 4dec(1)> #inc(1)
raey o := ((inc(1) + dec(1) +inc(2) + dec(2) + zero(2))*.v".zero(1)) sinc(1)> #dec(1)-

6 Concluding Remarks and Future Work

Availability languages extend regular languages by occurrence constraints on the letters [11].
The extension increases expressiveness and leads to a class of languages incomparable with
the context-free ones. In this paper, we contributed positive results to the algorithmic
analysis of availability languages. Our first result is the decidability of the emptiness problem
that was left open in [11]. Our solution is inductive and combines an explicit one-counter
automata construction with Parikh’s theorem. Our second result is NP-completeness of the
intersection problem modulo bounded languages. The idea is to reduce to satisfiability of
existential Presburger arithmetic. The reduction needs arguments about the boundedness
behavior of the one-counter automata representing availability languages. Finally, we study
regular containment. We obtain a positive result for safety verification £(rae) C L(reg) and
a negative result for the reverse inclusion £(reg) C L(rae).

For future work, we see practical as well as theoretical avenues. On the practical side,
we plan to study the use of availability languages in model checking. Although we have
shown safety verification to be decidable, the question remains how to check the inclusion
efficiently in practice. On the theoretical side, it should be beneficial to compare availability
languages with other models. It would be attractive to have a uniform understanding of
Parikh automata, Presburger languages, and availability languages. Extensions of monadic
second-order logic designed to capture availability requirements would also be interesting.
Finally, there is no omega-theory of availability.

—— References

1 M. Cadilhac, A. Finkel, and P. McKenzie. On the expressiveness of Parikh automata and
related models. arXiv:1101.1547 [cs], 2011.

2 M. Cadilhac, A. Finkel, and P. McKenzie. Affine Parikh automata. RAI 46(4):511-545,
2012.

3 M. Cadilhac, A. Finkel, and P. McKenzie. Bounded Parikh automata. International Journal
of Foundations of Computer Science, 23(8):1691-1709, 2012.

4 E. de Souza e Silva and H. R. Gail. Calculating availability and performability measures
of repairable computer systems using randomization. JACM, 36(1):171-193, 1989.

5 M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. EATCS
Monographs. Springer, 2009.

6 J. Esparza and P. Ganty. Complexity of pattern-based verification for multithreaded pro-
grams. In POPL, pages 499-510. ACM, 2011.

7 J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A simple and
direct automaton construction. IPL, 111(12):614-619, 2011.

8 P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations. FMSD,
40(2):206-231, 2012.

P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi

10

11

12

13

14

15

16

17

18

19

S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and languages. Pacific
Journal of Mathematic, 16(2):285-296, 1966.

M. Hague and A. W. Lin. Synchronisation- and reversal-bounded analysis of multithreaded
programs with counters. In CAV, volume 7358 of LNCS, pages 260-276. Springer, 2012.
J. Hoenicke, R. Meyer, and E.-R. Olderog. Kleene, Rabin, and Scott are available. In
CONCUR, number 6269 in LNCS, pages 462-477. Springer, 2010.

F. Klaedtke and H. RueB. Monadic second-order logics with cardinalities. In ICALP,
volume 2719 of LNCS, pages 681-696. Springer, 2003.

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

R. J. Parikh. On context-free languages. JACM, 13(4):570-581, 1966.

S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, volume 3440 of LNCS, pages 93—-107. Springer, 2005.

G. Rubino and B. Sericola. Interval availability distribution computation. In Fault- Tolerant
Computing, pages 48-55, 1993.

B. Scarpellini. Complexity of subcases of Presburger arithmetic. Transactions of the AMS,
284(1):203-218, 1984.

H. Seidl, T. Schwentick, and A. Muscholl. Numerical document queries. In PODS, pages
155-166. ACM, 2003.

K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn clauses.

In CADE, volume 3632 of LNCS, pages 337-352. Springer, 2005.

205

FSTTCS 2015

	Introduction
	Availability Languages
	Emptiness
	One-Counter Automata
	From Availability to Regular Expressions

	Intersection Modulo Bounded Languages
	Bounded Languages and Presburger Arithmetic
	NP Upper Bound
	Automata for Length at most One
	Presburger for the General Case

	Containment
	Concluding Remarks and Future Work

