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Abstract
This report documents the talks and discussions at the Dagstuhl Seminar 15211 “Theory of
Evolutionary Algorithms”. This seminar, now in its 8th edition, is the main meeting point
of the highly active theory of randomized search heuristics subcommunities in Australia, Asia,
North America, and Europe. Topics intensively discussed include rigorous runtime analysis
and computational complexity theory for randomised search heuristics, information geometry of
randomised search, and synergies between the theory of evolutionary algorithms and theories of
natural evolution.
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Evolutionary algorithms (EAs) are randomized search and optimization methods applicable
to problems that may be non-continuous, multi-modal, noisy, multi-objective or dynamic.
They have successfully been applied to a wide range of real-world applications and have
demonstrated impressive performance in benchmarks for derivative-free optimization. The
seminar was devoted to the theory underlying evolutionary algorithms and related methods,
in order to gain a better understanding of their properties and to develop new powerful
methods in a principled way. The highly international, interdisciplinary seminar brought
together leading experts and young researchers in the field. The 45 participants came from
13 different countries, spread over 4 continents. Many additional researchers had expressed
their interest to also attend the seminar, but could unfortunately not be considered.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Theory of Evolutionary Algorithms, Dagstuhl Reports, Vol. 5, Issue 5, pp. 57–91
Editors: Benjamin Doerr, Nikolaus Hansen, Christian Igel, and Lothar Thiele

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/15211
http://dx.doi.org/10.4230/DagRep.5.5.57
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de


58 15211 – Theory of Evolutionary Algorithms

Topics

The following report covers all important streams of research in the theory of evolutionary
algorithms with a focus on three topics of particular current interest:
Runtime and complexity. Rigorous runtime and analysis and computational complexity

theory have become the most important tools in the theory of discrete evolutionary
algorithms. The Dagstuhl seminar series “Theory of Evolutionary Algorithms” has
sparked this development. The drastic increase in new results, new methods, and young
researchers entering this field, but also the major unsolved problems naturally lead to
keeping this a focus topic.

Information geometry. Using concepts from information geometry in evolutionary algorithms
is one of the most promising new theoretical direction in evolutionary computing. The
seminar provided a unique opportunity to discuss perspectives and limitations of this
approach.

Natural evolution. Evolutionary computing is rooted in theories of natural evolution, and
many early approaches to understand basic properties of evolutionary algorithms were
inspired by biological evolution theory. Still, today these two research fields are almost
completely separated. We invited experts from evolution biology to help better under-
standing the relations between both fields. We are particularly happy that we succeeded
in bringing together researchers from evolution biology and computer science in a way
that was stimulating and productive.

Organization

The seminar had three types of organized presentation and discussion formats to stimulate
the free discussions among the participants. There were 20–30 minutes talks on current
topics followed by discussions. These included a talk on potential industrial collaborations.
In addition, we had a few longer talks, which combined recent work with an overview
over the state-of-the-art in a certain domain: Thomas Jansen spoke on “Understanding
Randomised Search Heuristics”, Nick Barton on “Limits to Adaptation”, Yann Olivier
introduced “Information-geometric Optimization”, and Timo Kötzing presented a talk on
“Stochastic Fitness Functions and Drift”. Furthermore, we continued with having “breakout
sessions” for longer, parallel group discussions on timely, specialized topics. These were
introduced in the last seminar on “Theory of Evolutionary Algorithms”. This time, these
session were even more productive than previously, both because the organizers and the
participants were more used to this format of interaction. The talks and breakout sessions
are summarized in Section 4 of this report.

We would like to thank the Dagstuhl team and the attendees for making seminar 15211 a
great success and a pleasure to organize.

Benjamin Doerr (École Polytechnique – Palaiseau, FR)
Nikolaus Hansen (INRIA Saclay – Île-de-France – Orsay, FR)
Christian Igel (University of Copenhagen, DK)
Lothar Thiele (ETH Zürich, CH)
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3 Overview of Talks

3.1 Spectral Landscape Theory: Some Color from Infinite Population
Analysis

Lee Altenberg (Konrad Lorenz Institute for Evolution & Cognitio, AT)

License Creative Commons BY 3.0 Unported license
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To obtain analytical results on runtimes of evolutionary algorithms, tractability has required
the use of very simple landscapes. Is there any hope of obtaining results for arbitrary
landscapes? There may perhaps be some relevance from models of evolutionary dynamics
with infinite populations where powerful spectral methods have been able to provide a
variety of results for arbitrary landscapes. Karlin (1982) proved two theorems that systems
which combine growth and state transitions exhibit smaller aggregate growth with increased
rates of transition. These theorems have been extended to infinite dimensional spaces, and
multiple independent transition events (Altenberg, 2011, 2012). Their application has been
used to show that dispersal should reduce standing genetic variation, that self-adaptation
in stationary populations should favor lowered mutation and crossover rates (Feldman’s
“Reduction Principle”), and that the fitness of a quasispecies decreases with increasing
mutation rates up to m=1/2. In evolutionary computation, different representations and
operators result in transmission matrices with different spectral properties. To illustrate, I
show eight different ways to connect 64 genotypes by mutation, ranging from a simple path,
to symbol sequences of length 6, 4, 3, and 2, to the complete graph, and show how the spectral
gap of the associated mutation matrix increases for this series. Spectral landscape theory
(Weinberger 1991, Stadler 1992) has produced a variety of results based on the relationships
of 1) fitnesses to the 2) mutational eigenvalues and 3) mutational eigenvectors. Here I present
new results showing that the asymptotic rate of growth of a quasispecies is an increasing
function of the eigenvalues of its mutation matrix. In addition, a lower bound is found which
increases with the alignment between fitnesses and the eigenvectors with largest eigenvalues.
A principal open question most relevant to evolutionary computation is how the spectral gap
of the quasispecies, which determines its rate of convergence from an initial state, depends
on these three properties: fitnesses, mutational eigenvalues, and mutational eigenvectors.

References
1 Altenberg L(2011) An evolutionary reduction principle for mutation rates at multiple loci.

Bulletin of Mathematical Biology 73:1227–1270.
2 Altenberg L (2012) Resolvent positive linear operators exhibit the reduction phenomenon.

Proceedings of the National Academy of Sciences U.S.A. 109:3705–3710.
3 Feldman MW (1972) Selection for linkage modification: I. Random mating populations.

Theoretical Population Biology 3:324–346.
4 Karlin S (1982) in Evolutionary Biology, eds Hecht MK, Wallace B, Prance GT (Plenum

Publishing Corporation, New York) Vol. 14, pp 61–204.
5 Stadler PF(1992) Correlation in landscapes of combinatorial optimization problems. Euro-

physics Letters 20:479–482.
6 Weinberger ED(1991) Fourier and Taylor series on fitness landscapes. Biological Cybernet-

ics 65:321–330.
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3.2 Limits to Adaptation
Nick Barton (IST Austria – Klosterneuburg, AT)
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What limits the effectiveness of selection? We have a good theoretical understanding of
simple forms of selection, which is used both to optimise animal breeding, and to explain
the prevalence of sex and recombination. This theory carries over directly to evolutionary
computation. Complex “fitness landscapes” are less well understood, but nevertheless, there
are some general results that constrain the rate at which selection can accumulate information.

3.3 Fitness Information and Optimal Control of Mutation Rate
Roman V. Belavkin (Middlesex University, GB)

License Creative Commons BY 3.0 Unported license
© Roman V. Belavkin

Main reference R.V. Belavkin, “Dynamics of Information and Optimal Control of Mutation in Evolutionary
Systems,” in A. Sorokin, R. Murphey, M.T. Thai, P.M. Pardalos (Eds.), “Dynamics of Information
Systems: Mathematical Foundations,” Springer Proceedings in Mathematics & Statistics, Vol. 20,
pp. 3–21, Springer, 2012.

URL http://dx.doi.org/10.1007/978-1-4614-3906-6_1

We consider genetic algorithms (GAs) as Markov chains, and then pose the problem of
optimal control of their parameters. We give several formulations of this problem depending
on additional constraints, such as time horizon and information constraints. In particular,
we study the problem of optimal control of the mutation rate parameter. We show that
solutions to the optimal control problems are control functions that can be derived from
transition probabilities between level sets of the fitness function. Using our combinatorial
result about the intersection of spheres in a Hamming space, we derive closed-form expressions
for transition probabilities in the idealised case, when fitness is monotonic with respect to
Hamming distance to an optimum [1]. The optimal mutation rate control functions are
presented for several problems. We also discuss how these solutions can be applied to fitness
functions that are only weakly monotonic. We also discuss the recent discovery of the
mutation rate control in bacteria [2].

References
1 Belavkin, R.V. (2012). Dynamics of Information and Optimal Control of Mutation in

Evolutionary Systems. In Sorokin, A.; Murphey, R.; Thai, M.T.; Pardalos, P.M. (Eds.)
Dynamics of Information Systems: Mathematical Foundations. Springer Proceedings in
Mathematics & Statistics, Vol. 20, pp 3–21. Springer.

2 Krasovec, R., Belavkin, R.V., Aston, J., Channon, A., Aston, E., Rash, B., Kadirvel, M.,
Forbes, S., Knight, C. (2014). Mutation-rate-plasticity in rifampicin resistance depends on
Escherichia coli cell-cell interactions. Nature Communications, Vol. 5, No. 3742.
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3.4 Information Geometric Optimization in RN : Open Problems and
Misconceptions

Hans-Georg Beyer (Fachhochschule Vorarlberg, AT)
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Main reference H.-G. Beyer, “Convergence Analysis of Evolutionary Algorithms That are Based on the Paradigm
of Information Geometry, Evolutionary Computation,” 22(4):679–709, 2014.

URL http://dx.doi.org/10.1162/EVCO_a_00132

After a short introduction into the philosophy and theory of Information Geometric Optimiz-
ation (IGO) in real-valued search spaces, the dynamical theory of IGO on quadratic model
functions will be reviewed. Recent results regarding the dynamics of the IGO flow [1] will be
extended to provide convergence results for finite time steps in the case of expected value
maximization. It will be shown that even in that case, the natural gradient definition leads
to a disappointingly slow sublinear convergence order obeying an 1/t law. In order to get a
faster approach (i.e., linear convergence order) to the optimizer one needs utility functionals
that localize the IGO flow in time, such as local standardization of the sampling induced
fitness values or truncation selection (i.e., local quantile based selection). Regarding the
case of truncation selection, a special example will be considered where the fitness normality
assumption [1] does not hold (therefore, the normality assumption is not the reason for
the dynamical behaviors observed). The numerical solution of the resulting IGO ODE will
be compared with the corresponding Evolution Strategy (ES). It will be shown that the
classical mutation scale-invariance often observed in ES does not hold for a correctly working
IGO algorithm unless one is willing to sacrifice the natural gradient definition and uses
different time-step sizes for the mean and the covariance matrix update, respectively, thus
departing from the IGO flow. The presentation will especially focus on open problems and
misconceptions and is intended to initiate a vivid discussions regarding the concept of the
natural gradient, information geometric optimization and its relation to Evolution Strategies.

References
1 H.-G. Beyer. Convergence Analysis of Evolutionary Algorithms That are Based on the

Paradigm of Information Geometry.Evolutionary Computation, 22(4):679–709, 2014. DOI
10.1162/EVCO_a_00132.

3.5 Selection of Auxiliary Objectives with Reinforcement Learning:
Overview of Theoretical Results

Arina Buzdalova (ITMO University – St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
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Efficiency of evolutionary algorithms may be enhanced by multi-objectivization [1, 2]. One
of the corresponding approaches is to dynamically select auxiliary objectives from some
predefined set during one run of evolutionary algorithm (EA) [3]. Dynamic selection of
objectives is needed when it is efficient to optimize different objectives at different stages
of optimization. It was proposed to use reinforcement learning (RL) for dynamic selection
of auxiliary objectives. The corresponding approach was called EA+RL [4]. This approach
was shown to be efficient during experimental studies. However, there is need for theoretical
understanding of the underlying mechanisms that enable EA+RL to work efficiently. In this
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overview, recent theoretical results are considered [4, 5, 6]. Efficiency of EA+RL is evaluated
on some easy problems using runtime analysis. Some insights on proper design choices when
implementing EA+RL are described as well. Based on the considered results, we propose
directions for future improvement of dynamic selection of auxiliary objectives in evolutionary
algorithms.

References
1 J. D. Knowles, R. A. Watson, D. W. Corne. Reducing Local Optima in Single-Objective

Problems by Multi-objectivization. In Proc. of the 1st Int’l Conf. on Evolutionary Multi-
Criterion Optimization EMO’01, Springer, 2001, pp. 269–283.

2 C. Segura, C. A. C. Coello, G. Miranda, C. Léon.Using multi-objective evolutionary al-
gorithms for single-objective optimization. 4OR, Vol. 3, No. 11, 2013, pp. 201–228.

3 Mikkel T. Jensen. Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for
Single-Objective Optimisation: Evolutionary Computation Combinatorial Optimization.
Journal of Mathematical Modelling and Algorithms, Vol. 3, No 4, 2004, p. 323–347.

4 M. Buzdalov, A. Buzdalova, A. Shalyto. A First Step towards the Runtime Analysis of
Evolutionary Algorithm Adjusted with Reinforcement Learning. In Proc. of the Int’l Conf.
on Machine Learning and Applications, Vol. 1, IEEE CS, 2013,pp. 203–208.

5 M. Buzdalov, A. Buzdalova. OneMax Helps Optimizing XdivK: Theoretical Runtime Ana-
lysis for RLS and EA+RL. In Proc. of Genetic and Evolutionary Computation Conf. Com-
panion, ACM, 2014, pp. 201–202.

6 D. Antipov, M. Buzdalov, B. Doerr. Runtime Analysis of(1+1) Evolutionary Algorithm
Controlled with Q-learning using Greedy Exploration Strategy on OneMax+ZeroMax Prob-
lem. Evolutionary Computation in Combinatorial Optimization, LNCS, 2015, Vol. 9026,
pp. 160-1-72.

3.6 The Unrestricted Black-Box Complexity of Jump Functions
Maxim Buzdalov (ITMO University – St. Petersburg, RU)
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Joint work of Buzdalov, Maxim; Doerr, Benjamin; Kever, Mikhail
Main reference M. Buzdalov, M. Kever, B. Doerr, “Upper and Lower Bounds on Unrestricted Black-Box

Complexity of Jumpn,`,” in Proc. of the 15th Europ. Conf. on Evolutionary Computation in
Combinatorial Optimization (EvoCOP’15), LNCS, Vol. 9026, pp. 209–221, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-16468-7_18

We analyse the unrestricted black-box complexity of the Jump function class. For upper
bounds, we present three algorithms for small, medium and extreme jump sizes. We prove
a matrix lower bound theorem which is capable of giving better lower bounds than the
classic information theory approach. Using this theorem, we prove lower bounds for Jump
separately for odd and even values of the bit string length. For several cases, notably for
extreme jump sizes, lower and upper bounds coincide apart from lower order terms. Here is
the complete list of proven upper bounds on Jumpn,`:

for ` < n/2−
√
n log2 n:

2n(1+o(1))
log2 n , where o(1) is measured when n→∞;

for n/2−
√
n log2 n ≤ ` <

⌊
n
2
⌋
− 1: n(1+o(1))

log2(n−2`) , where o(1) is measured when n− 2`→∞;
for ` =

⌊
n
2
⌋
− 1: n+ Θ(

√
n).

The proven lower bounds are:
for even n:

⌊
log n−2`+2

2

(
1 + 2n−1 (n−2`)2

n−2`−1

)⌋
− 2

n−2` ≥
n

log2
n−2`+2

2
− 1;

for odd n:
⌊
log n−2`+1

2

(
1 + 2n−2(n− 2`− 1)

)⌋
− 2

n−2`−1 ≥
n−1

log2
n−2`+1

2
− 1.
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3.7 Understanding Simple Asynchronous Evolutionary Algorithms
Kenneth A. De Jong (George Mason University – Fairfax, US)

License Creative Commons BY 3.0 Unported license
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Joint work of De Jong, Kenneth A.; Scott, Eric
Main reference E. Scott, K.A. De Jong, “Understanding Simple Asynchronous Evolutionary Algorithms”, in Proc.

of the 2015 ACM Conf. on Foundations of Genetic Algorithms XIII (FOGA’15), pp. 85–98, ACM,
2015.

URL http://dx.doi.org/10.1145/2725494.2725509

When the cost of fitness evaluations is very high, parallel EAs are used to reduce the “wall
clock” time required for an evolutionary run. In the case that there is high variance in the cost
of these long running fitness evaluations, there can be a significant amount of multi-processor
idle time when using synchronous parallel EAs. A simple asynchronous version is introduced
that reduces idle time to zero, and analyzed it in several respects: 1) Does it have a built-in
bias for individuals with faster running evaluation times? 2) For a fixed budget, how much
improvement in wall clock time is obtained? 3) Is there also a speedup in finding better
solutions faster?

3.8 Analyzing Self-Adjusting Parameter Choices in Discrete Search
Spaces

Carola Doerr (CNRS and UPMC – Paris, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Doerr Benjamin; Doerr, Carola
Main reference B. Doerr, C. Doerr, “Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th

Rule in Discrete Settings,” in Proc. of the 2015 Annual Conf. on Genetic and Evolutionary
Computation (GECCO’15), pp. 1335–1342, ACM 2015; pre-print available as arXiv:1504.03212v1
[cs.NE], 2015.

URL http://dx.doi.org/10.1145/2739480.2754684
URL http://arxiv.org/abs/1504.03212v1

While evolutionary algorithms are known to be very successful for a broad range of applica-
tions, the algorithm designer is often left with many algorithmic choices, for example, the
size of the population, the mutation rates, and the crossover rates of the algorithm. These
parameters are known to have a crucial influence on the optimization time, and thus need
to be chosen carefully, a task that often requires substantial efforts. Moreover, the optimal
parameters can change during the optimization process. It is therefore of great interest
to design mechanisms that dynamically choose best-possible parameters. An example for
such an update mechanism is the one-fifth success rule for step-size adaption in evolution-
ary strategies. While in continuous domains this principle is well understood also from
a mathematical point of view, no comparable theory is available for problems in discrete
domains. In this work we show that the one-fifth success rule can be effective also in discrete
settings. We regard the (1 + (λ, λ)) GA proposed in [1]. We prove that if its population
size is chosen according to the one-fifth success rule then the expected optimization time on
OneMax is linear. This is better than what any static population size λ can achieve and is
asymptotically optimal also among all adaptive parameter choices.
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3.9 On the Proportion of Fit Individuals in the Population of A
Mutation-Based Genetic Algorithm

Anton V. Eremeev (Sobolev Institute of Mathematics – Omsk, RU)
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Springer, 2000.
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In this talk, a fitness-level model of non-elitist mutation-only genetic algorithm (GA) with
tournament selection is considered. The model provides upper and lower bounds for the
expected proportion of the individuals with fitness above given thresholds. In the case of
GA with bit-flip mutation and OneMax fitness function, the lower bounds are tight when
population size equals one, while the upper bounds are asymptotically tight when population
size tends to infinity. The lower bounds on expected proportions of sufficiently fit individuals
may be obtained from the probability distribution of an appropriate generalized random
walk. This approach yields polynomial upper bounds on the run-time of the Iterated version
of the GA on 2-SAT problem and on a family of symmetric set cover problems proposed
by E. Balas. The research is supported by Russian Foundation for Basic Research grant
15-01-00785.

3.10 Lyapunov Stability Analysis of a Derandomized Self-Adaptive
(1, 2)-ES

Carlos M. Fonseca (University of Coimbra, PT)
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Joint work of Wanner, Elizabeth F.; Fonseca, Carlos M.; Cardoso, Rodrigo T. N.; Takahashi, Ricardo H. C.;

The convergence of a simple derandomized self-adaptive (1, 2)-ES is investigated on the class
of strictly unimodal functions of one variable that are symmetric about the optimum. Using
the theoretical framework proposed by Semenov and Terkel [1], not only can a stability
region for the self-adaptation parameters be analytically determined, but also upper bounds
on the rate of convergence can be established, allowing appropriate values for the self-
adaptation parameters to be obtained numerically. Simulation results are in agreement with
the theoretical conclusions.

Acknowledgment. The authors acknowledge Brazilian agencies CAPES, CNPq and
FAPEMIG, the Portuguese agency FCT, and the iCIS project (CENTRO-07-ST24-FEDER-
002003), which is co-financed by QREN in the scope of the Mais Centro Program and
European Union’s FEDER, for financial support.
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3.11 Probabilistic Analysis of the (1+1)-Evolutionary Algorithm
Hsien-Kuei Hwang (Academica Sinica – Taipei, TW)
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We give a detailed analysis of the cost used by the (1 + 1)-evolutionary algorithm. The
problem has been approached in the evolutionary algorithm literature under various views,
formulation and degree of rigor. Our asymptotic approximations for the mean and the
variance represent the strongest of their kind. The approach we develop is also applicable to
characterize the limit laws and is based on asymptotic resolution of the underlying recurrence.
While most approximations have their simple formal nature, we elaborate on the delicate
error analysis required for rigorous justifications. Our main results state that on the fitness
function OneMax, the cost used by (1 + 1)-EA follows asymptotically a double-exponential
distribution with mean and variance of order n logn and n2, respectively. On the other
hand, if the fitness function is changed to LeadingOnes, then the cost satisfies a central limit
theorem with quadratic mean and cubic variance. These results are not new but our methods
of proof are not only rigorous but provide stronger asymptotic approximations.

3.12 Understanding Randomised Search Heuristics
Thomas Jansen (Aberystwyth University, GB)
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Joint work of Corus, Dogan; He, Jun; Jansen, Thomas; Oliveto, Pietro S.; Sudholt, Dirk; Zarges, Christine
Main reference D. Corus, J. He, T. Jansen, P. S. Oliveto, D. Sudholt, C. Zarges, “On Easiest Functions for Somatic

Contiguous Hypermutations And Standard Bit Mutations,” in Proc. of the 2015 Annual Conf. on
Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1399–1406, AMC, 2015..

URL http://dx.doi.org/10.1145/2739480.2754799

Different theoretical perspectives can help us understand different aspects of randomised
search heuristics like evolutionary algorithms, artificial immune systems and others. One
particularly successful theoretical perspective is run time analysis. Recently, He, Chen and
Yao have described a way of identifying and constructing easiest and hardest functions (which
imply smallest and longest expected run time, respectively) for elitist randomised search
heuristics that have population size one. We use this idea to investigate the easiest function
of the (1 + 1) CHM, a variant of the (1 + 1) EA where the standard bit mutations from the
(1 + 1) EA are replaced with somatic contiguous hypermutations from the B-Cell algorithm,
a popular artificial immune system for optimisation. An easiest function for the (1 + 1) CHM
is an asymptotically hardest function for the (1 + 1) EA. Motivated by their very different
strengths and weaknesses we consider hybrid algorithms that combine both algorithms by
applying one of the two mutation operators with fixed probability. We prove that these
hybrids are efficient on easiest functions of their components. We also discuss that easiest
functions for such hybrids are more difficult to find than one might believe. We conclude
with a number of open questions that could yield additional insight into the performance of
hybrid heuristics.
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3.13 Open Problems in Industry
Daniel Johannsen (SAP Innovation Center – Potsdam, DE)
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SAP is one of the world’s leading companies in the market of enterprise resource planning
systems. Two focus areas in SAP’s research strategy are Future of Knowledge Work and
Personalized Medicine. Each of these areas is estimated to target a multi-trillion USD market
by 2025. In the area of Future of Knowledge Work, the main challenge is to measure the
business value of intangible assets of an organization such as employee skills and knowledge.
Progress in this area is expected to be driven by self-adaptive and self-learning applications
relying on algorithmic techniques such as evolutionary optimization and machine learning.
Because of their versatility, the same techniques are also promising for the fundamentally
different area of Personalized Medicine. We present six specific research challenges posed by
different SAP business units. For each of these, SAP aims to establish long-term research
collaborations with academic partners.

3.14 Stochastic Fitness Functions and Drift
Timo Kötzing (Hasso-Plattner-Institut – Potsdam, DE)
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Joint work of Gießen, Christian; Friedrich, Tobias; Kötzing, Timo; Krejca, Martin; Sutton, Andrew

In this talk we will see the powerful method of drift analysis as a tool to analyze random
processes. The two main drift theorems are the additive and the multiplicative drift theorem,
which we will apply in exemplary cases both from continuous and and discrete optimization.
In the second part of the talk we will survey the current work on stochastic fitness functions.
We will particularly discuss the disruptiveness of mutation operators and recent positive
results on crossover operators.

3.15 Does the Natural Gradient Save Us?
Oswin Krause (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
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Recently, optimizing the expectation of an objective function over some probability distri-
bution by following the natural gradient of the distribution parameters became a popular
approach to describe and implement Evolutionary Strategies. In this framework, samples are
drawn from the distribution to estimate the gradient which is multiplied by the inverse of
the Fisher Information Matrix to form the natural gradient. The natural gradient is usually
argued to be superior to the “vanilla” gradient as it is independent of the parameterisation
and because the direction of the natural gradient better reflects the actual change of the
distribution. The freedom of parameterisation is especially regarded as beneficial as it fits to
the notion of black-box optimization. In this talk, we show that the natural gradient is not
necessarily unique and that we have a degree of freedom to change it, even without changing
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the expectation or its gradient, challenging the idea of a black-box metric. This spotlight
talk is designed to spark interesting discussions regarding the use of the natural gradient in
black-box optimization.

3.16 Level-based Analysis of Genetic Algorithms and Other Search
Processes

Per Kristian Lehre (University of Nottingham, GB)
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and Other Search Processes,” in Proc. of the 13th Int’l Conf. on Parallel Problem Solving from
Nature (PPSN’14), LNCS, Vol. 8672, pp. 912–921, Springer, 2014.

URL http://link.springer.com/chapter/10.1007/978-3-319-10762-2_90

We describe a very general technique for proving upper bounds on the expected optimisation
time of a broad class of non-elitist population-based optimisation processes, ranging from
simple (µ,λ) EAs to more complex genetic algorithms (GAs), and estimation of distribution
algorithms (EDAs) applied in uncertain environments.
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3.17 Information Geometry of the Gaussian Distribution in View of
Stochastic Optimization: Inverse Covariance Parameterization

Luigi Malago (Shinshu University, JP)
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(FOGA’15), pp. 150–162, ACM, 2015; pre-print available as hal-01108986, 2015.
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We study the optimization of a continuous function by its stochastic relaxation, i.e., the
optimization of the expected value of the function itself with respect to a density in a
statistical model. In particular we focus on gradient descent techniques applied to the
multivariate Gaussian distribution for the optimization of functions defined over continuous
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domains. In the talk we present a parameterization for Gaussian distribution given by the
mean and inverse covariance matrix based on the natural parameterization of the exponential
family. We describe the advantages of this parameterization in the computation of natural
gradient when a sub-model, based on conditional independence assumptions among variables,
is employed in the relaxation. The use of restricted models instead of the full covariance
plays an important role in the large scale setting, in particular when the interaction pattern
between variables in the objective function is sparse. In the talk we will refer to standard
results in the literature of the graphical models and in particular of Markov random fields.
Based on a joint work with Giovanni Pistone, from Collegio Carlo Alberto.

3.18 On the Runtime of Randomized Local Search and Simple
Evolutionary Algorithms for Dynamic Makespan Scheduling

Frank Neumann (University of Adelaide, AU)
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arXiv:1504.06363v1 [cs.DS], 2015.
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Evolutionary algorithms have been frequently used for dynamic optimization problems. With
this paper, we contribute to the theoretical understanding of this research area. We present
the first computational complexity analysis of evolutionary algorithms for a dynamic variant
of a classical combinatorial optimization problem, namely makespan scheduling. We study
the model of a strong adversary which is allowed to change one job at regular intervals.
Furthermore, we investigate the setting of random changes. Our results show that randomized
local search and a simple evolutionary algorithm are very effective in dynamically tracking
changes made to the problem instance.

3.19 Information-Geometric Optimization
Yann Ollivier (University Paris Sud, FR)
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In this talk I gave an introduction to information-geometric optimization (IGO). I started
with how gradient descent is quite unsatisfactory due to great sensitivity to problem encoding
(e.g., scaling of each coordinate). Moving to the space of probability distributions over
the original search space can help, by evolving a probability distribution in an intrinsic,
coordinate-independent way. I presented the IGO-ML (maximum likelihood) family of
algorithms, which update a probability distribution based on sampling and increasing the
log-likelihood of the best sampled points, similarly to the cross-entropy method but modified
as to obtain coordinate-invariance. This applies both to discrete and continuous search
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spaces, and recovers known algorithms from basic principles, such as PBIL (starting with
Bernoulli distributions on the hypercube) and CMA-ES (starting with Gaussian distributions).
Interestingly, IGO-ML has a guarantee of improvement for finite learning rates, as opposed
to usual gradient descents for which such a guarantee requires infinitesimal steps. Moreover,
from its information-geometric construction, IGO-ML has a guarantee of minimal change
in diversity, which could help for multimodal optimization, as is confirmed by preliminary
experiments.

3.20 Neutrality in Fitness Landscapes
Peter F. Stadler (Universität Leipzig, DE)

License Creative Commons BY 3.0 Unported license
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Consider a fitness landscapes (X, f). For simplicity we take the configuration space X as
a graph, and f as real-valued function on the vertices. Concepts such as adaptive walks,
gradients, etc. are well-defined in an obvious way whenever f is injective. Local failures of
injectivity, i.e., the presence of adjacent points in X with the same values are usually referred
to as neutrality. Degeneracies and neutrality come in at least two different flavors: (1)
Degeneracy may be a consequence of coarse grained “increments” in the fitness function itself
as in the case of NK models or spin glass models with small integer coefficients. (2) Degeneracy
may also arise from intrinsic symmetries in the structure of the of the cost function, as
in the case of short-range spin glasses. The consequence of neutrality, and possibly more
general types of degeneracies is very poorly understood in general and both positive and
negative effects of optimization have been reported: In the case of RNA landscapes, neutral
networks seem to improve adaptability and search space exploration. Work by van Nimwegen
& Crutchfield a decade ago, on the other hand described “entropic barriers”. Furthermore,
ruggedness and neutrality are in principle independent properties and can be tuned in random
landscape models independently of each other.

3.21 First Steps Towards a Runtime Comparison of Natural and
Artificial Evolution

Dirk Sudholt (University of Sheffield, GB)
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arXiv:1504.06260v2 [cs.NE], 2015.
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Evolutionary algorithms (EAs) form a popular optimisation paradigm inspired by natural
evolution. In recent years the field of evolutionary computation has developed a rigorous
analytical theory to analyse their runtime on many illustrative problems. Here we apply
this theory to a simple model of natural evolution. In the Strong Selection Weak Mutation
(SSWM) evolutionary regime the time between occurrence of new mutations is much longer
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than the time it takes for a new beneficial mutation to take over the population. In this
situation, the population only contains copies of one genotype and evolution can be modelled
as a (1+1)-type process where the probability of accepting a new genotype (improvements
or worsenings) depends on the change in fitness. We present an initial runtime analysis of
SSWM, quantifying its performance for various parameters and investigating differences to
the (1+1) EA. We show that SSWM can have a moderate advantage over the (1+1) EA at
crossing fitness valleys and study an example where SSWM outperforms the (1+1) EA by
taking advantage of information on the fitness gradient.

3.22 The Potential of the Swarm’s Potential: Convergence, Stopping,
Runtime, Stagnation

Rolf Wanka (Universität Erlangen-Nürnberg, DE)
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After a short introduction into the continuous search heuristic “Particle Swarm Optimization”
(PSO), the notion of the “potential” of the swarm is presented. The multifarious applications
are shown: It can be shown that PSO in the 1-dimensional case converges towards a local
optimum almost surely. As in theD-dimensional case (D > 1) the potential can be distributed
unevenly among the dimensions, the movement equation is slightly changed to incorporate
the potential. This can also be used to measure how often this rescue trick has to be used, in
order to recognize that (presumably) the swarm is close to an optimum solution. Additionally,
the potential can be used to define a measure of closeness to optimality such that, with the
help of drift theory, a 1-dimensional runtime analysis can be performed. Finally, it can be
explained in terms of the potential why sometimes the number of particles does not suffice
to find a local optimum.
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3.23 Population Size vs. Mutation Strength for the (1+λ) EA on
OneMax

Carsten Witt (Technical University of Denmark – Lyngby, DK)
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The (1+λ) EA with mutation probability c/n, where c > 0 is an arbitrary constant, is studied
for the classical OneMax function. Its expected optimization time is analyzed exactly (up
to lower order terms) as a function of c and λ. It turns out that 1/n is the only optimal
mutation probability if λ = o(lnn ln lnn/ln ln lnn), which is the cut-off point for linear
speed-up. However, if λ is above this cut-off point then the standard mutation probability
1/n is no longer the only optimal choice. Instead, the expected number of generations is (up
to lower order terms) independent of c, irrespectively of it being less than 1 or greater. The
results are obtained by a careful study of order statistics of the binomial distribution and
variable drift theorems for upper and lower bounds.

4 Working Groups

4.1 Constrained Blackbox Optimization Benchmarking
Organized by Dimo Brockhoff (INRIA and University of Lille 1, FR)

Participants: Youhei Akimoto, Dirk Arnold, Anne Auger, Hans-Georg Beyer, Dimo Brock-
hoff, Carlos Fonseca, Nikolaus Hansen.

4.1.1 Summary

The breakout session on constrained blackbox optimization benchmarking was one among
several breakout sessions held during the Dagstuhl seminar 15211 “Theory of Evolutionary
Algorithms”. Its main focus was to bring forward an extension of the well-established
Blackbox Optimization Benchmarking exercise (BBOB) and its underlying Comparing
Continuous Optimizers (Coco) platform towards constrained problems. The discussion
covered in particular the concrete topics of designing constrained benchmark functions,
performance assessment in the constrained case, and practical issues of benchmarking
constrained blackbox optimization algorithms. This summary is expected to serve as a
reference and the starting point to eventually provide an extension of the Coco platform
towards constrained optimization to the research community.

4.1.2 Overview

The constrained blackbox optimization benchmarking breakout session took place in the
evening (8:30pm–10:30pm) of the first day of the Dagstuhl seminar (May 18, 2015) and was
attended by Youhei Akimoto, Dirk Arnold, Anne Auger, Hans-Georg Beyer, Dimo Brockhoff,
Nikolaus Hansen, and Carlos Fonseca.
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The breakout session started with a brief summary of known benchmarking exercises, the
participants were aware of and used in their previous research (Sec. 4.1.3). Here, we will give
a slightly extended overview of the state of the art in constrained optimization benchmarking.
Later on, the discussion covered the topics of designing new benchmark functions, the interface
between the test problem and the optimization algorithm (Sec. 4.1.4), and general aspects of
performance assessment in the constrained case (Sec. 4.1.5). Throughout the discussion and
this summary, we thereby assume the following constrained numerical optimization problem
to be solved:

min
x∈Rn

f(x)

subject to gi(x) ≥ 0 for all 1 ≤ i ≤ m

in which we call f the objective function (with continuous domain) and the gi’s are called
constraint functions.

4.1.3 State-of-the-Art Benchmarking

The state of the art in benchmarking numerical optimization algorithms on constrained
problems centers around a few benchmark suites. Probably the most common benchmark
suites in the context of blackbox optimization are related to the CUTE/CUTEr/CUTEst
[1, 3, 4] framework and the competitions and special sessions organized at CEC 2006 [6] and
CEC 2010 [7]. At CEC in 2008, 2010, 2015, additional competitions were held which covered
bound constrained problems.1

The latest CUTEst benchmark suite provides a general interface to more than 1000 test
functions (specified in the Standard Input Format (SIF)). About 300 of them are constrained
and scalable in the number of variables. Their constraints range from bound constraints
over linear and quadratic constraints to general non-linear constraints. Both problems with
inequality and equality constraints are present and the objective and constraint functions
are separately callable. If available, derivatives are provided as well as known bounds on
objectives and constraints. Besides implementations of the problems’ objective and constraint
functions and interfaces to several commonly used numerical optimization algorithms such
as BOBYQA, Direct Search, or NEWUOA, the CUTE/CUTEr/CUTEst framework does
not prescribe or provide facilities for performance assessment.

The latest CEC 2010 benchmark suite of constrained problems evolved from the earlier
CEC 2006 testbed. It now contains 18 problems overall with a variety of constraint difficulties
(bound constraints, inequality constraints, equality constraints). The objective functions
are thereby often simple (e.g., the maximum over the variables; one third of the functions
are separable) and the constraints can be relatively difficult (there are for example 18
equality constraints but only 21 inequality constraints present). Equality constraints are
transformed into inequality constraints with a precision of ε = 10−4 by changing gi(x) = 0
into |gi(x)| − ε ≤ 0. The number of resulting inequality constraints per problem ranges from
one to four. Regarding the performance assessment of optimization algorithms, the CEC
2010 competition prescribes to report statistics about the objective function values and the
number of constraint violations over 25 algorithm runs at three predefined budgets in two
dimensions (10-D and 30-D). Constraint function evaluations are thereby to be counted as
any other objective function evaluation. Source code for the performance assessment or the
creation of LaTeX tables is not provided.

1 See http://www3.ntu.edu.sg/home/epnsugan/index_files/cec-benchmarking.htm for further details.
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There are several other constrained benchmark functions, e.g., in the GLOBAL Library,
the Hock/Schittkowski problems, Mittelmann’s collection of AMPL problems, or in the
COPS library, which, however, have not been discussed during the breakout session. For
a more detailed list, we refer the interested reader to the web page of Arnold Neumeier at
http://www.mat.univie.ac.at/~neum/glopt/test.html#test_constr.

All mentioned test suites and benchmarking exercises for constrained optimization have
in common that they only provide implementations of the test functions and a rudimentary
description of how to assess performance of algorithms (e.g., prescribed budgets of function
evaluations at which the objective function values and constraint violations are supposed to
be reported). Two exceptions are the (independently developed) frameworks PAVER2 [2]
and optimizationBenchmarking.org [8], which are not specifically designed for constrained
problems. Both frameworks allow to read in data from algorithm runs (in a standardized
format) and to display the data in tables and data/performance profiles. The former
framework, in addition, allows to detect inconsistencies in the data by running pre-defined
tests. None of the available frameworks, however, allow for a “fully automated” benchmarking
in which all the tedious and recurring steps of data acquisition, processing, and visualization
are provided to the user.

As to unconstrained optimization, however, the state-of-the-art in automated algorithm
benchmarking is more developed. A recent effort towards the goal of automated benchmarking
is the Comparing Continuous Optimizers platform (Coco, see coco.gforge.inria.fr) and the
corresponding Blackbox Optimization Benchmarking testbed and workshop series (BBOB,
see the same link). The Coco platform currently offers two testbeds: one with 24 noiseless
and one with 30 noisy test functions – all of them are unconstrained. The performance
assessment is based on the well-established concept of target-based run lengths where the
expected running time (ERT) to reach a certain target precision of the objective function is
used as main performance criterion. The Coco platform is available in five different languages
(C/C++, python, MATLAB/Octave, Java, and R). Algorithms, written in any of the provided
languages, can be easily plugged to Coco by calling a generic objective function which both
provides the function evaluation and collects the data for the performance assessment itself.
A postprocessing script, written in python, then allows to display various plots and tables
about the algorithm performance automatically up to the compilation of pre-prepared LaTeX
templates.

Six BBOB workshops and special sessions have been organized around the Coco platform
so far and the data sets of about 150 algorithm variants are available online. They can also
all be used easily within the Coco postprocessing to compare the performance of algorithms
and algorithm variants, see for example [5].

The participants of the breakout session had no doubt that a constrained BBOB testbed
with the automated data gathering, performance assessment, and plotting functionality of the
Coco platform will trigger a new interest in constrained blackbox optimization – especially
in the communities of numerical blackbox optimizers and evolutionary computation. The
resulting open access collection of easily comparable algorithm data will furthermore, as in
the unconstrained BBOB case, allow eventually for recommendations on which algorithms to
use for certain problem classes.

4.1.4 Benchmark Functions

In terms of the definition of a benchmark function suite, all participants quickly agreed on
the following essential points:

15211

http://www.mat.univie.ac.at/~neum/glopt/test.html#test_constr
coco.gforge.inria.fr


76 15211 – Theory of Evolutionary Algorithms

Functions shall be scalable with the search space dimension.
Constraints in practice are often linear and/or of a blackbox type.
There exist functions for which knowing the constraint function(s) g(x) is crucial to
find the optimum quickly (for example when the objective function’s optimum lies in a
very small basin of attraction but the constraint function(s) give(s) hints towards the
optimum.
The extension of the Coco platform should not distinguish between finding the feasible
region and optimizing within it. An algorithm for constrained blackbox optimization
should be able to do both simultaneously.

The discussion then focused on the general aspects of defining a concrete set of benchmark
functions, especially with respect to which objective and constraint functions should be used
when extending the BBOB testbed to the constrained case.

Given that already the sphere function with a single linear constraint seems difficult for
many common evolutionary algorithms, the participants agreed on aiming to have three
main function groups/testbeds in an initial constrained blackbox optimization exercise:

linear orthogonal constrained problems (which includes the special case of bound con-
straints)
problems with linear constraints which are not orthogonal
problems with true blackbox constraints (some of the already established test problems
of the BBOB testbed could be used as constraints)

Related to the previous topic was a discussion about the concrete interface between
the constrained testbed and the optimization algorithm. In the cases of linear constraints,
the breakout session’s participants could imagine to allow the algorithm knowledge about
the constraints’ normal vectors and a support vector. Another option, working in all three
above cases, is to expose all values gi(x) directly. The third option is to provide only a
binary response about feasibility/infeasibility of a search point – even if this setting might
be too restrictive for some search algorithms. In all cases, allowing the algorithm to make
recommendations about its best estimate of the optimum seems to make sense like in the
noisy case. A recommended point will thereby replace the last evaluated point for the
performance assessment.

Though the discussion stayed focused around the mentioned topics and several concrete
assumptions have been fixed throughout the breakout session, some important questions
remain open: Probably the most important ones are related to the usage of the optimum in the
performance assessment: in general, we do not always know the optimum analytically when
using arbitrary constraint functions – even if we know the optimum of the (unconstrained)
objective function. One open question is then, for example, how to use “the best function
value known so far” as a reference in the performance assessment: it raises the question of
how to approximate the best known value well and how to deal with potentially improving
values over time. Note here that the constrained CEC benchmarks, mentioned earlier, report
the best known value so far. However, the approach is not based on target-based run lengths
as in the BBOB/Coco framework for which a good knowledge of the optimal function value
seems more critical. Another open question is the relation between certain assumptions on
the objective and constraint functions and existence guarantees of analytical descriptions of
the optima.

As the first step towards a general constrained blackbox optimization benchmarking
exercise, the participants finally thought that a first test suite should be defined, which
does not include all existing BBOB functions but simpler ones for which the optima are
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known also in the constrained case. This should be feasible under regularity and convexity
assumptions.

4.1.5 Performance Assessment

The main difference between benchmarking unconstrained and constrained optimization
algorithms is the way how the information about sampled infeasible solutions are used in
the performance measures. Inherently, assessing performance in the constrained case can
be defined as a multiobjective problem, with a trade off between the minimization of the
objective function f and the minimization of the m constraint violations.

To not complicate the performance evaluation, the participants agreed that looking only
at feasible search points in the performance measures seems to make sense as a first step
when generalizing the Coco platform. This allows to use the same standard performance
measures such as the expected running time (ERT) to hit a certain f -value target precision
as in the unconstrained case. However, the number of used constraint evaluations should
also be taken into account in addition to the number of function evaluations: in practice,
an algorithm for constrained optimization might not even evaluate the objective function
if the evaluation of the constraint functions already renders a search point infeasible. This
is especially the case if both the objective and (some of) the constraint functions are of a
blackbox type and expensive to compute.

Since it is important to know how the algorithm performs over time, in such a case, we
need to know how the algorithm performance scales with the number of objective function
evaluations and constraint function evaluations. We therefore suggest to have the axes in
standard BBOB/Coco plots which are related to time (such as in the data profiles) as well as
the definition of the expected running time to be defined according to either the number of
objective function evaluations, the number of constraint function evaluations, or according to
the sum of both. On the other hand, there might be cases, where both the computation of the
objective function and the computation of the constraint functions are by themselves cheap
but rely on some (joint) computations which are expensive (e.g., a numerical simulation). In
this case, it seems reasonable to measure the search costs by the max of f -calls and g-calls,
i.e., the number of the expensive simulations. All in all, we can expect that good algorithms
for one case might not at all perform well in other cases. This is another good reason for
pursuing the benchmarking efforts of the Coco framework to find out quantitative results. In
order to do so, the benchmark suite might want to potentially offer the information about
which objective function/constraint function combination is expensive to evaluate to the
algorithms.

4.1.6 Conclusion

The breakout session on constrained blackbox optimization benchmarking covered the topics
of designing new benchmark functions, the interface between the test problem and the
optimization algorithm, and general fundamental aspects of performance assessment in the
context of an extension of the well-established BBOB/Coco platform towards constrained
optimization problems.

Beside making progress towards the concrete definition of a new constrained blackbox
optimization benchmarking testbed based on the BBOB/Coco benchmarking exercise, the
breakout session’s discussion resulted in several new research questions – both of theoretical
and practical nature. The breakout session has been very fruitful and has seen a lively and
efficient discussion – as such, breakout sessions should therefore be kept in the program of
future editions of the Dagstuhl seminar series.
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4.2 Bridging the Gap Between Experiments and Theory Using
Feature-Based Run-Time Analysis

Organized by Frank Neumann (University of Adelaide, AU) and Heike Trautmann (Uni-
versität Münster, DE)

Feature-based analysis has been used to explore the performance of evolutionary algorithms
based on features of given instances. Experimental studies show that problem instances may
be classified as easy or difficult for a given EA based on instance features. Such classifications
can be used for algorithm selection and/or parameter configuration. The goal of this breakout
session was to discuss how mathematical analyses can contribute to this experimentally
driven research area. A natural candidate is the runtime analysis of EAs taking into account
problem features but any theoretical approach that supports these experimental investigations
is highly welcome.

The session started with a brief introduction on feature-based analysis such that parti-
cipants who were not familiar with this area could contribute to the discussion. The breakout
session was targeted as a brainstorm session which should discuss approaches that may be
applicable and there was the goal to identify some concrete problems that can become a
topic of new research work.

optimizationbenchmarking.org
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The following challenges for a theoretical/mathematical analysis have been identified:
for NP-hard problems: features will never capture all information about the problem
which are the most important (ideally deterministic) features?
features interact in practice

As a consequence, we think that an analysis should start using a single feature combined
with a simple algorithm concept.

The break-out group identified the following topics for future research:
start with classical polynomially solvable combinatorial problems
examine structural instance features and influence on algorithm performance
use empirical results in order to get hints to important features
either runtime estimation directly or configuration of the algorithm to optimize runtime
candidate problems: shortest path, spanning trees, matchings, graph colouring, k-Sat,
finding subgraphs, knapsack, modified versions of OneMax

More specifically:
Graph Colouring: Runtime (Phase transition) based on the density of the graph
k-Sat: probability of failure based on ratio of variables and clauses
knapsack: runtime based on profits and weights

Candidate algorithms for the investigations of these problems are simple algorithms
such as the (1+1)-EA and the (1+λ)-EA. Based on the features, it would be interesting
to optimize important parameters such as the mutation probability or offspring population
size. It is highly recommended that the theoretical investigations utilize empirical studies for
validating the alignment of theoretical findings with practical observations.

4.3 Bringing together Evolutionary Computation and Population
Genetics

Organized by Tobias Friedrich (Hasso-Plattner-Institut, Potsdam, DE)

Participants: Lee Altenberg, Nick Barton, Arina Buzdalova, Carlos M. Fonseca, Tobias
Friedrich, Kenneth A. De Jong, Joshua D. Knowles, William B. Langdon, Per Kristian Lehre,
Jonathan L. Shapiro, Dirk Sudholt, Peter F. Stadler.

One of the three themes of this Dagstuhl meeting was “theory of natural evolution”. The
meeting was joined not only by computer scientists working in evolutionary computation,
but also by a number theoretical biologists and other related fields.

At the beginning of evolutionary computation, a lot of inspiration was drawn from
biology. However, we discussed that for example the infinite population of Michael Vose is not
considered useful for real GAs. It was argued that also in theoretical biology simplified models
are essential. Some operators like crossover are very interesting for both communities. The
differences often come from the different aims (explaining nature vs. optimization). There are
still surprisingly many similarities. Another joint aspect are island models. Even evolutionary
algorithms which appear to be rather different from nature, like genetic programming, have
similar features: The common problem of bloat in genetic programming is also well known
for genes in nature.
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4.4 Theory in Multimodal Optimisation
Organized by Christine Zarges (University of Birmingham, GB)

Participants: Hans-Georg Beyer, Carola Doerr, Tobias Glasmachers, Thomas Jansen, Oswin
Krause, Pietro S. Oliveto, Günter Rudolph, Christine Zarges.

4.4.1 Summary

The main aim of this breakout session was to discuss potential routes for theoretical research
in multimodal optimisation and how theory could help to promote this important application
area. The discussion centered around three different aspects: the goal of multimodal
optimisation, benchmark functions for theory and the evaluation and comparison of different
algorithms. Given the composition of the group, aspects relevant for both discrete and
continuous domains were discussed.

4.4.2 What is the goal of Multimodal Optimisation?

There has been some discussion about the appropriateness of the termmultimodal optimisation
and what it incorporates. Multimodal optimisation is concerned with problems that have a
number of different local and global optima. However, there are different optimisation goals
one could be interested in. On one hand, one can take a global perspective and consider
the goal of finding a single optimum of the given problem. For this case there are already a
couple of theoretical results available, in particular in the context of pseudo-Boolean and
combinatorial optimisation. On the other hand, one could be interested in finding several
different optima, either in a simultaneous or sequential fashion. It was agreed that this latter
perspective should be called multi-local optimisation. Different evaluation criteria in the
context of multi-local optimisation are discussed in Section 4.4.4.

4.4.3 How does an appropriate benchmark look like?

In the context of discrete optimisation some analysis has been performed on the TwoMax
function, which can be defined as follows:

TwoMax : {0, 1}n → R with
TwoMax(x) = max(|x|0, |x|1),

where |x|0 and |x|1 denote the number of zeros and ones in x, respectively. This function has
two global optima and different algorithms including diversity preserving mechanisms have
been considered in its context. However, it has been agreed that a good benchmark function
should have a much larger number of optima. After some discussion, we came up with a
generalisation of the TwoMax function, which we call k-Max. The function has k different
optima which can be selected randomly or purposefully. All optima have two parameters:
slope (ai > 0) and offset (bi > 0). All other search points have a fitness value depending on
the distance to the closest optimum such that each search point is in the basin of attraction
of its closest optimum. k-Max can formally be defined as follows:

k-Max : {0, 1}n → R with

k-Max(x) = n−
(
ai ·H

(
x, x(i)

)
+ bi

)
with i = argminj∈{1,...,k}H

(
x, x(j)

)
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where H(x, x(i)) denotes the Hamming distance of search point x to optimum x(i). It is
noted that this function exhibits a similar ‘constructive pattern’ (namely random locations
of local optima and scaling) as Shekel’s foxholes in continuous optimisation.

4.4.4 How should different algorithms be compared?

Based on the k-Max function, several algorithms were discussed. As usual algorithms can
be compared under a runtime (How long does your algorithm need to achieve a given goal?)
or fixed budget (Given a fixed budget, how well can your algorithm perform?) perspective.
However, with respect to the evaluation of algorithms in a multimodal context there are
other important aspects to consider:

How many optima did the algorithm find?
What quality do the optima have?
What is the distribution of the optima?

A crucial insight is that there is not a single solution to the problem of algorithm evaluation
since an appropriate metric depends on the concrete application at hand. The group agreed
that evaluation criteria are an important question for future research. For some of these
criteria and for several optimisation problems, the state-of-the-art technique in real-world
optimisation challenges are (random or deterministic) restarts. The group agreed that it is
an interesting unsolved question to classify problems for which population-based algorithms
are superior to such restart strategies.

4.5 Theory of Genetic Programming
Organized by Pietro S. Oliveto (University of Sheffield, GB)

Participants: Lee Altenberg, Maxim Buzdalov, Arina Buzdalova, Benjamin Doerr, Thomas
Jansen, Timo Kötzing, William B. Langdon, Alberto Moraglio, Frank Neumann, Pietro S.
Oliveto, Dirk Sudholt, Carsten Witt, Christine Zarges.

4.5.1 Summary

The goal of Genetic Programming (GP) is to evolve computer programs i.e., executable
functions with desired functionality. While numerous successful applications of GP have been
reported, there is limited and fragmented theoretical understanding of the working principles
of GP. Compared to the theoretical analysis of genetic algorithms, the study of GP poses
several extra challenges, eg., tree representations of variable length. Some preliminary work
on the theory of GP has been undertaken by various participants of this Dagstuhl seminar.
The purpose of this breakout session was to discuss potential feasible and promising routes
to build a theoretical foundation of GP, taking advantage of the progresses in the runtime
analyses of evolutionary algorithms for function optimisation.

4.5.2 How to approach the theoretical analysis of GP?

The theoretical understanding of Evolutionary Algorithms (EAs) has grown considerably in
the past 20 years with the development of mathematical techniques that have allowed runtime
analyses of more and more sophisticated EAs for problems bearing increasing similarities
with those tackled in real-world applications. The achievement of such results has been
possible by gradually building upon techniques constructed through the analysis of extremely
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simplified EAs, such as the notorious (1+1) EA, for artificially constructed test problems
with particular characteristics. Popular examples of such problems are the Onemax and Trap
functions that have characteristics that make the optimisation respectively easy and hard for
EAs. Given the successful progress made over the years by the EA community, a promising
direction to build a theoretical foundation of GP would be to follow a similar route to that
taken by the field for the runtime analysis of EAs for function optimisation. The first steps
in following such a strategy would be to identify the analogues for GP of the (1+1) EA and
of useful test problems such as Onemax and Trap.

4.5.3 What should our GP algorithms evolve?

While the original motivation behind Genetic Programming (GP) was to introduce a tool that
would allow the evolution of computer programs (i.e., executable functions with a desired
functionality), GP techniques have also been used to address various kinds of other problems.
Apart from evolving functions depending on input/output relationships, other perspectives
have been to use GP to address problems that are typical to the field of machine learning
or to evolve designs with a particular behaviour. Also, several different ways to represent
a computer program have been proposed in the literature. Apart from the syntax trees
used in the original GP, various linear representations have been proposed in subclasses of
GP such as linear genetic programming or cartesian genetic programming. Since the use of
syntax trees is the most wide spread, it was agreed that it is sensible to consider this kind of
representation in the early foundational steps of GP theory.

Recent work concerning geometric semantic GP (GSGP), a non-standard form of GP,
was also considered. Here the search operators are designed to induce a Onemax fitness
landscape for any Boolean function, thus facilitating the obtainment of runtime analysis
results [5]. It was remarked though that GSGP, even if efficient in the training phase, cannot
possibly generalise well (at least on Boolean functions). Another research direction that was
proposed was the design of refined search operators for GSGP that are provably efficient in
the training phase and provably good at generalisation (in the PAC-learning sense) on some
PAC-learnable sub-classes of all Boolean functions.

4.5.4 Test problems for GP

Since the goal of GP is to evolve functions with a desired functionality, an essential char-
acteristic for a GP test problem is that the solution should be an executable function and
qualities of candidate solutions should depend on how well they map inputs to outputs.
Initial foundational steps should identify test problems that are particularly easy and partic-
ularly hard to evolve for a GP system. Such problems should have characteristics that will
facilitate the progressive development of mathematical techniques to allow the analysis of
more sophisticated algorithms for the same problems and of simple GP algorithms for more
complicated problems. Several GP benchmarks were considered including the Max problem,
even-n-parity, multiplexor problems [4], Royal trees [6, 7], tree-string problems [2] and K
landscapes [8].

A promising domain is that of Boolean functions, especially because they are often used
as benchmark problems in experimental GP research. Parity is well known to be a hard
problem in the evolvability and GP communities, while other Boolean functions such as
AND or ON (i.e., the Boolean function that always returns 1 as output) are known to be
easy. A desirable characteristic for easy problems might be the lack of epistasis – that the
change in fitness by flipping any bit is independent of the state of the bits at other loci, a
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characteristic present in the Onemax function. No final conclusions were made concerning
what the analogue of the Onemax test problem for GP is.

4.5.5 The Simple-GP Algorithm

Genetic Programming algorithms behave similarly to standard genetic algorithms (GAs)
in the sense that they both have high crossover rates and very small mutation rates. A
significant difference though is that GP trees vary in size and depth during the evolutionary
process while GA genotypes remain of fixed size during the entire evolution. Hence, while
the operators of a (1+1) GP may be simplified in a similar fashion to those of the (1+1) EA
and random local search, they should allow trees to shrink and grow in size. The operators
used in the few runtime analyses available in the literature [1, 3] (i.e., Insert, Substitute and
Delete) seem suitable for the purpose. In these works symptoms of bloat have appeared even
though no crossover was used.

4.5.6 Runtime Analysis

In order to determine how the computational resources depend on the size of the problem a
notion of scalability has to be decided. Several ways could be used to represent the size of
the problem. In some works the number of nodes in the optimal tree was used. The number
of input variables of the benchmark function seems to be the most general and appropriate
measure. Generalisation is an important issue to be considered in the analysis. The target
function may not necessarily be the exact function (i.e., one of the optimal solutions) but
one that approximates it nicely.
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4.6 Continuous Optimization: Fitness vs. Ranks
Organized by Oswin Krause (University of Copenhagen, DK)

The current state of the art of continuous evolutionary optimization is to perform steps
based on value comparisons and ranking of points, in contrast to of using the function values
directly. This strategy, also known as “function value free” optimization, is very successful in
practice as it gives invariance to monotone transformations of the objective function. This is
in contrast to other randomized search techniques like stochastic gradient descent.

During the session we focused on the issue of noise handling. We concluded that proper
ranking becomes hard once we are close to the optimum, especially when the noise is additive.
In this case, ranking will always introduce a bias into the gradient estimate, which can
(depending on the algorithm) slow down or prevent convergence to the optimum.

Therefore we discussed whether it is better to increase the population size or to reevaluate
points in order to decrease the bias. Algorithmically, there is a clear trade-off between
number of re-evaluations of an point and the number of steps taken, given a fixed budget
of function evaluations, and it is in general unclear whether the bias induced by noise will
prevent convergence or just slow it down (this depends on many aspects, e.g., how gradients
are used, whether the noise is additive or multiplicative or something else, etc). In contrast,
fitness-based algorithms (in contrast to rank-based, during the debate we borrowed the term
“fitness proportional selection” to make the distinction explicit, although this changed the
original meaning of the term) can easily be implemented to be unbiased and to converge
(see standard results on (stochastic) gradient descent, SGD), while the trade-offs are not so
important due to the fact that increasing the population size always decreases the noise on
the gradient estimate, and noise can also average out over multiple steps (e.g., in standard
SGD, due to the cooling schedule).

Still, removing ranks and working with plain fitness values in this case leads to a number
of new problems as we loose the invariance against monotone transformations. Thus the
algorithm needs to adapt to the curvature of the target function.

We discussed, whether there are useful transformations of the objective function other
than ranking, however the easily computable ones are inferior and also need to be estimated
from the noisy samples. It also has to be taken care that the transformation does not cause
the vector field to contain circles, which can prevent convergence.

4.7 Neutrality
Organized by Peter F. Stadler (Universität Leipzig, DE)

Neutrality is clearly still a poorly understood topic. In biological landscapes, neutrality
and redundancy does appear at sometimes extensive scales. It remains open under which
conditions neutrality, or more precisely neutral networks, are beneficial to the performanace
of (EC-type) optimization algorithms. While examples are known where this is the case –
using a non-uniform representation of phenotypes that favours good solutions, it is unclear
whether uniform representations, in which each phenotype is represented by the same number
of genotypes, can also have an advantage. Computational studies by Fonseca, for example,
suggest that this is at least hard to achieve. An related question in whether neutrality can
effectively be replaced by suitably expanded definitions of neighborhood. Conversely, there
are combinatorial optimization problems, such as certain scheduling problems, which do not
seem to have a essentially non-redundant or even non-neutral representations. So far, no
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convincing strategies to construct efficient EC-type algorithms for the class of problems seems
to available. A point made repeatedly is the distinction between redundancy (degeneracy) of
the fitness function and neutrality (i.e., local redundancy). This also related to the issue of
accessibility among the (phenotypic) representations. These can be effectively non-symmetric,
for instance in the case that the redundancy of the encoding is very different for different
phenotypes. To what extent this asymmetry is relevant to optimization algorithms remains
open. The importance of neutrality in continuous settings remains unclear.

4.8 Issues with Optimization for Machine Learning Using Variational
Inference

Organized by Yann Ollivier (CNRS and University Paris Sud, FR)

In this session we discussed specific technical problems that arise in some optimization
problems from machine learning. In machine learning, typical optimization problem require
finding the parameters of (probabilistic) models to best fit available data. However, there is
a risk of overfitting, namely, finding a parameter value that is too precise given the available
data. This is especially relevant in high dimension.

Avoiding the overfitting problem can be done by working with a modified objective, in
which one is looking, not only for a single optimal parameter value, but for a whole region in
parameter space where performance is good. In the “variational inference” approach, one
works with probability distributions over the original parameter space, and the modified
objective is the average of the original objective under this distribution, minus the entropy of
the distribution. The latter term prevents collapsing to a single point. The whole modified
objective has an interpretation as a compressed length of the data.

This setting is very similar to ones appearing in evolutionary strategies such as CMA-ES
or NES. However, the specific form of the objective (an average of the original objective
function) makes it impossible to directly use these strategies; especially, rank reweighting
is impossible, which makes it technically much more difficult to update, e.g., a Gaussian
distribution in a stable way.

Moreover, in high dimension, it is tempting to include a model selection aspect such
as keeping or removing each individual component of the parameter, which puts a discrete
optimization problem on top of the continuous parameter search. Once more, one must deal
with an entropy term describing the information cost of selecting/deselecting components.

In the session we discussed possible approaches for these problems, but no fully satisfying
solution was found during the time of the session, so that more work is clearly needed.

4.9 Effects of Initialisation Process for Random Search Heuristics
Organized by Jonathan E. Rowe (University of Birmingham, GB)

It is known that in some situations (e.g., (1+1)EA on OneMax) that the exact method of
initialisation does not have a significant effect on the run time (in this case, at most affecting
low order terms). Empirically, however, it has been observed that for some problems the
initialisation makes a big difference. One example is Set Cover, where it seems better to
start with the empty set than with a random set. One reason for this is that a random set
is likely to be feasible (at least on typical benchmark problems). The initial choice then
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limits the area of the search space explored. Moreover, the fitness function gives no guidance
as to which are the best elements to exclude – all choices improve fitness by one. On the
other hand, the empty set is infeasible, and there will be selective pressure towards choosing
sets which reduce the constraint violation. It therefore seems that the dependancy on initial
conditions arises through asymmetries in the information the fitness function provides for
feasible and infeasible solutions. It would be an interesting research goal to analyse this
effect theoretically. A number of other examples were discussed where a similar effect might
be observed (e.g., TSP, Vertex Cover). One example where the analysis may be tractable
is Minimum Spanning Tree, since much is already known about the run-time – although
initialisation here is likely to only affect low order terms.

4.10 Theory to Practice in Evolutionary Computation
Organized by Joshua D. Knowles (University of Manchester, GB)

Participants: Dimo Brockhoff, Arina Buzdalova, Kenneth A. De Jong, Carlos M. Fonseca,
Tobias Friedrich, Hsien-Kuei Hwang, Joshua D. Knowles, W. B. Langdon, Frank Neumann,
Jonathan L. Shapiro.

Our question was: “How can we continue to bridge the gap between the practical application
of EAs and the Theory of EAs?” In practical applications, algorithms are designed and
tested to obtain maximum performance on complicated real-world optimization, learning
and control problems; in theoretical work, the algorithms and problems are often simple
in order to admit analysis and focus on core issues. Establishing a bridge from one end of
this spectrum to the other is a central challenge of the Theory field (see e.g. [12]) and a
core aim of the Theory of EAs series at Dagstuhl. In this breakout session we focused the
discussion more particularly on identifying what kinds of practice work make a good target
for theoretical analysis, and on the group’s personal experiences trying to bring practice and
theory closer together.

We began by noting that in the wider Dagstuhl meeting a continuing bridging activity is
apparent, and in diverse contexts. For example, we have seen rigorous theoretical work about
hybrid algorithms consisting of more than one base algorithm2 [11], use of auxiliary objective
functions with adaptive switching between them [1, 3], asynchronous EAs for handling
variability in the objective function latency [10], and several new analyses of sophisticated
algorithms based on information geometry [5, 15]. Thus, while theoretical tools are still
being sharpened in simpler settings, they are also, it seems, being used ‘in anger’ to obtain
new results of more practical import.

Joshua Knowles next presented joint work on evolutionary algorithms for problems
embedded in a resource-constrained context where evaluations of solutions are done by real
(e.g., physical / chemical) experiments. In this general setting, certain parts of the feasible
solution space are not available for some periods during the optimization run [2] because
resources specific to the solution are required for its evaluation and may be depleted (e.g.,
in a problem to optimize combinatory drug therapies [18], certain drugs may be used up).
Knowles suggested this sort of setting would be ripe for theoretical analysis because the
optimization function itself can be simple (e.g., OneMax and TwoMax have been used in
[2]), allowing a transfer of known results and techniques, yet, at the same time, empirical

2 Also referred to as Algorithm Portfolios in some works.
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results show that the effects of the resource constraints are interesting and can depend on a
number of factors. Thus there is plenty in the area to challenge existing theoretical tools.

This raises the question to what extent do practical problems help theory? We did not
reach a general answer to this but it was noted by Carlos Fonseca that sometimes practical
problems do reinvigorate interest in a latent theoretical result in the literature. He gave the
example that a known complexity bound for computing the hypervolume of the union of
axis-aligned polytopes from computational geometry [14, 16] had been improved ([8, 19, 9, 7])
as a direct result of interest in evolutionary algorithms using hypervolume computations for
assessing the population ‘fitness’ in multiobjective problems [13, 6, 4]. In general, however, it
can be hard to get theoreticians interested in a practical problem and they may be unwilling
to help even if they would be capable of doing so!

Kenneth A. De Jong made the point that it is crucial to find the right level of abstraction
in describing problems (to make them accessible and interesting to theory) – very much an
art rather than a science. Even this may not be enough to simulate immediate interest. Frank
Neumann related recent experience in presenting a new benchmark, the Traveling Thief
Problem (TTP) [17], which models an important aspect of many real-world problems that
they are composed of two or more different combinatorial optimization subproblems (each
of which may be relatively easy to solve in isolation). Even though TTP has this practical
relevance, it seems difficult, at the present time, to make progress on it from a theoretical
perspective and interest has not been piqued. Nevertheless, the existence of the challenge in
a well-defined form, with much unimportant detail abstracted away, will hopefully provide
impetus for theoretical attacks on it in time.

We concluded by confirming that the aim of bringing together theory and practice was
essential to the continuing development of evolutionary methods, and one that should be
pursued by practitioners as well as theorists. It is difficult to get the alignment to work – for
the practical problem to be one that is ripe and interesting for theory – but we must not
give up on this project. Indeed the only way to make this happen is to redouble our efforts
to engage with and include practitioners (be it industrial or academic) in theory meetings in
future.
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5 Seminar Schedule

Monday
9.00–10.00 Introduction

Thomas Jansen: Understanding Randomised Search Heuristics (Part I)
10.00–10.30 Coffee Break
10.30–12.00 Thomas Jansen: Understanding Randomised Search Heuristics (Part II)

Hsien-Kuei Hwang: Probabilistic analysis of the (1+1)-evolutionary algorithm
12.15–14.00 Lunch Break
14.00–15.30 Kenneth A. De Jong: Understanding Asynchronous Evolutionary Algorithms

Proposals for Breakout Sessions
15.30–16.00 Coffee Break
16.00–18.00 Timo Kötzing: Introduction to Drift Analysis and Stochastic Optimization

with Randomized Search Heuristics
Carsten Witt: Population Size vs. Mutation Strength for the (1+λ) EA on OneMax

20.30 Breakout Session Dimo Brockhoff: Benchmarking & Constraints
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Tuesday
9.00–10.00 Nick Barton: Limits to adaptation
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10.30–12.00 Peter F. Stadler: Neutrality in Fitness Landscapes

Dirk Sudholt: First Steps Towards a Runtime Comparison of Natural and Artificial Evolution
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Frank Neumann and Heike Trautmann: Bridging the Gap Between Experiments
and Theory Using Feature-Based Run-Time Analysis
Tobias Friedrich: Bringing together Evolutionary Computation and Population Genetics
Christine Zarges: Theory in Multimodal Optimisation
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16.00–18.00 Frank Neumann: On the Runtime of Randomized Local Search and Simple

Evolutionary Algorithms for Dynamic Makespan Scheduling
Carola Doerr: Analyzing Self-Adaptive Parameter Choices in Discrete Search Spaces
Maxim Buzdalov: The Unrestricted Black-Box Complexity of Jump Functions
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9.00–10.00 Yann Olivier: Information-geometric optimization with application to machine learning
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Oswin Krause: Does the natural gradient save us?
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16.30–18.00 Breakout Session II

Peter F. Stadler: Neutrality
Pietro S. Oliveto: Theory of Genetic Programming
Oswin Krause: Continuous Optimization: Fitness vs. Ranks
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Thursday
9.00–10.00 Arina Buzdalova: Selection of Auxiliary Objectives with Reinforcement Learning:

Overview of Theoretical Results
Carlos Fonseca: Lyapunov Stability Analysis of a Derandomized Self-Adaptive (1,2)-ES
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10.30–12.00 Anton Eremeev: On the proportion of fit individuals in the population

of a mutation-based genetic algorithm
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Rolf Wanka: The Potential of the Swarm’s Potential
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Luigi Malagó: Information Geometry of the Gaussian Distribution in View of
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