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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15431 “Genomic
Privacy”. The current rise of personalized medicine is based on increasing affordability and
availability of individual genome sequencing. Impressive recent advances in genome sequencing
have ushered a variety of revolutionary applications in modern healthcare and epidemiology. In
particular, better understanding of the human genome as well as its relationship to diseases
and response to treatments promise improvements in preventive and personalized healthcare.
However, because of the human genome’s highly sensitive nature, this progress raises important
privacy and ethical concerns, which simply cannot be ignored. A digitized genome represents
one of the most sensitive types of human (personal) identification data. Even worse, a genome
contains information about its owner’s close relatives. The Dagstuhl seminar 15431 brought
together computer scientists, bioinformaticians, geneticists and ethical experts to discuss the key
security and privacy challenges imposed by the storage of large volumes of genetic data.
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This report documents the program and the outcomes of Dagstuhl Seminar 15431 “Genomic
Privacy”. The current rise of personalized medicine is based on increasing affordability
and availability of individual genome sequencing. Impressive recent advances in genome
sequencing have ushered a variety of revolutionary applications in modern healthcare and
epidemiology. In particular, better understanding of the human genome as well as its
relationship to diseases and response to treatments promise improvements in preventive and
personalized healthcare.

At the same time, human genetics has become a “big data” science. For roughly a decade,
specific tests for Single Nucleotide Polymorphisms (SNPs), e.g., markers corresponding to
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specific diseases, have been well established. Furthermore, research in pharmaco-genomics,
which currently relies on SNPs, has helped improve drug treatment for cancer and cardiac
patients. The methodology of genotyping, which takes into account hundreds to thousands of
variations in positions in the genome, has tremendously increased the amount of data acquired
during diagnosis. Personalized genotyping has become commercially available from several
sources (such as 23andMe). Full genome sequencing and genome-wide association studies
are moving towards full deployment in clinical practice. In 2000, the cost of sequencing one
human genome was US$2.5 billion. Today, the price of US$200 for genome sequencing is
approaching reality. Considering the benefits for (public) health and potential cost savings,
widespread acquisition, storage, and usage of personal genomes is guaranteed to happen
soon.

However, because of the human genome’s highly sensitive nature, this progress raises
important privacy and ethical concerns, which simply cannot be ignored. A digitized genome
represents one of the most sensitive types of human (personal) identification data. Even worse,
a genome contains information about its owner’s close relatives. Furthermore, correlations
with individual data sets from so-called “omics-technologies” pose even bigger threats on
privacy. Leakage of personal genomic information can lead a wide variety of attacks, many
of which are not yet fully understood. Whether accidentally or intentionally revealed, a
digitized genome cannot be revoked or modified. Consequently, secrecy of personal genomic
data is of paramount importance. Furthermore, genomic data, unlike other types of highly
sensitive information (even national secrets), does not lose its sensitivity over time. Even
worse, the mechanisms available to interpret genomic data improve over time, which means
that it is unclear at the moment how much sensitive information a genome encodes and
which consequences a genomic data breach has. Furthermore, it is likely that genomic data
will not only be used personally to support medical treatments; great promise lies in its
use in large-scale genetic studies for personalized medicine as well as common ancestry and
genetic compatibility tests. Therefore, simply encrypting genomic data at rest is not a viable
option and new ways of protection need to be devised.

The second Dagstuhl Seminar on Genomic Pricacy concentrated on the following topics:
Technical solutions for genomic privacy: the participants discussed technical solutions to
enable genomic data privacy, even in the presence of untrusted computing environments,
and investigated technical protection techniques that can be used for this purpose.
Integration of genomic and physiological data: For medical purposes, genomic data often
needs to be correlated with clinical and physiological data. For example, clinical studies
may require finding correlations between physiological data reported during hospital stays
and genomic information. So far, most technical solutions for the protection of genomic
data focused on securely storing DNA data itself, but did not discuss the complex problem
of combining it with physiological data.
Protection of sensitive data within large-scale genome-wide association studies: Although
large-scale genomic studies offer many advantages for medical research, they pose many
privacy problems. Most prior technical solutions focus on protection of a single human
genome and do not scale multitudes of genomes. It remains a challenge to devise scalable
techniques.
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3 Overview of Talks

3.1 Privacy in the Genomic Era
Erman Ayday (Bilkent University – Ankara, TR)

License Creative Commons BY 3.0 Unported license
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Genome sequencing technology has advanced at a rapid pace and it is now possible to
generate highly-detailed genotypes inexpensively. The collection and analysis of such data
has the potential to support various applications, including personalized medical services.
While the benefits of the genomics revolution are trumpeted by the biomedical community,
the increased availability of such data has major implications for personal privacy; notably
because the genome has certain essential features, which include (but are not limited to) (i)
an association with certain diseases, (ii) identification capability (e.g., forensics), and (iii)
revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the
likelihood that genome data will be made available in less regulated environments, such as the
Internet and for-profit companies. The problem of genome data privacy thus resides at the
crossroads of computer science, medicine, and public policy. While the computer scientists
have addressed data privacy for various data types, there has been less attention dedicated to
genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for
the computer science community. In doing so, we address some of the (sometimes erroneous)
beliefs of this field and we report on a survey we conducted about genome data privacy with
biomedical specialists. Then, after characterizing the genome privacy problem, we review
the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating
such attacks, as well as contextualizing these attacks from the perspective of medicine and
public policy. This paper concludes with an enumeration of the challenges for genome data
privacy and presents a framework to systematize the analysis of threats and the design of
countermeasures as the field moves forward.

3.2 Efficient Server-Aided Secure Two-Party Function Evaluation with
Applications to Genomic Computation

Marina Blanton (University of Notre Dame, US)
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Computation based on genomic data is becoming increasingly popular today, be it for medical
or other purposes such as ancestry or paternity testing. Non-medical uses of genomic data in
a computation often take place in a server-mediated setting where the server offers the ability
for joint genomic testing between the users. Undeniably, genomic data is highly sensitive,
and there is an urgent need to protect it, especially when it is used in computation for what
we call as recreational non-health-related purposes. Towards this goal, in this work we put
forward a framework for server-aided secure two-party computation with the security model
motivated by genomic applications. One particular security setting that we treat in this work
provides stronger security guarantees with respect to malicious users than the traditional
malicious model. In particular, we incorporate certified inputs into secure computation based
on garbled circuit evaluation to guarantee that a malicious user is unable to modify her
inputs in order to learn unauthorized information about the other user’s data.
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3.3 Privacy-preserving bioinformatics with general-purpose SMC
Dan Bogdanov (Cybernetica AS – Tartu, EE)
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Research has given us a range of privacy technologies. From simple, yet not provably secure,
technologies like pseudonymization to full encrypted processing with homomorphic crypto-
graphy or garbled circuits. Other technologies hide privacy by adding noise – anonymization
and differential privacy are the main examples.

Each such technology has different trust, deployment and performance guarantees that are
not immediately clear without a risk-benefit analysis. For example, statistical anonymization
can often be defeated by linking with auxiliary information. Some homomorphic encryption
schemes do not allow data to be collected from multiple owners and linear secret sharing
leads to the best-performing programmable secure computing schemes.

Our work has focused on implementing a range of genomic analyses using secure multi-
party computation based on secret sharing. We build our work on the Sharemind framework
that supports integer, fixed point, floating point and boolean arithmetic and is easily
programmable using the SecreC programming language.

After successfully demonstrating secure genome-wide association studies on Affymetrix
microarray data with 500K SNP locations on 1000 patients we started developing a full
statistical analysis system.

The Rmind privacy-preserving statistical tool is designed to mimic the popular R statistical
tool. Rmind supports filtering, a range of statistical tests and also allows for corrections
when many parallel tests are performed simultaneously. Rmind performs all operations using
special data-independent algorithms that do not leak private inputs through the running
time. Combining this with a secure computing environment gives us unparalleled privacy
guarantees. Most recently, in 2015, we were able to add Principal Component Analysis to
the list of operations supported on Sharemind.

We believe that by making Sharemind support different deployment models through the
use of various secure computing protocols, we can further expand its usability in privacy-
preserving personalized medicine.

3.4 Genomic privacy in research and medicine: a view from the
trenches

Jacques Fellay (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
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There is a need to reconcile technical and theoretical development in genomic privacy with the
reality of the research and medical worlds. Using concrete examples, I will describe current
applications of genomics, at the crossroad between academic research and personalized
medicine.
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3.5 GenoGuard: Protecting Genomic Data Against Brute-Force
Attacks

Zhicong Huang (EPFL – Lausanne, CH)
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Secure storage of genomic data is of great and increasing importance. The prevalent use of
passwords to generate encryption keys poses an especially serious problem when applied to
genetic data. Weak passwords can jeopardize genetic data in the short term, but given the
multidecade lifespan of genetic data, even the use of strong passwords with conventional
encryption can lead to compromise. We present a tool, called GenoGuard, for providing strong
protection for genomic data both today and in the long term. We prove that decryption under
any key will yield a plausible genome sequence, and that GenoGuard offers an information-
theoretic security guarantee against message recovery attacks. We also explore attacks that
use side information. Finally, we present an efficient and parallelized software implementation
of GenoGuard.

3.6 Efficient privacy-preserving deterrence of inference attacks on
genomic data

Florian Kerschbaum (SAP SE – Karlsruhe, DE)
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Many methods are known to privately query, analyze and compare genomic data. However,
as has been shown by Goodrich in the Mastermind attack, repeated queries leak sufficient
information in the result in order to quickly infer the secret genomic data. In this talk I will
present a method that can deter such attacks in an efficient and secure manner using fuzzy
commitments and zero-knowledge proofs.

3.7 Reality check – Implementing personalized therapies based on
genomic data in a clinical setting

Oliver Kohlbacher (Universität Tübingen, DE)
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Personalized immunotherapies based on epitope-based vaccines are an exciting strategy
for personalized cancer treatment. The integration of different types of high-throughput
data (exome, transcriptome, proteome, HLA ligandome) poses a number of interesting
research problems. Implementing this into a clinical setting, however, results in several
regulatory, organisational, and legal issues that we will discuss in the context of the iVac
project implemented for personalized cancer immunotherapy at the university hospital in
Tübingen.
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3.8 Challenges faced by Hospitals using NGS for Diagnostics
Adam Molyneaux (Sophia Genetics SA – Lausanne, CH)
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The presentation will talk about the practical problems faced by hospitals in using NGS as a
diagnostic tool, explaining how Sophia set out to help them, where we are now and where
we think we need to go in the future.

3.9 Controlled Functional Encryption
Muhammad Naveed (University of Illinois – Urbana-Champaign, US)
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U.S. Department of Health & Human Services reports that health records of more than
39 million individuals have been breached from hospitals and other healthcare institutions.
Therefore, a patient may worry about the privacy of her sensitive health data, and may
want healthcare providers to learn only limited information, e.g., result of a particular test.
In general, a patient may want healthcare providers to only learn information allowed by
the patient specified policy. Such privacy concerns are not limited to healthcare domain.
Existing cryptographic techniques do not provide realistic solution to this problem. For
example, secure computation would require each patient, or an agent of the patient, to run
a computationally intensive program on her computer for each computation. Functional
encryption can solve the problem, but it is extremely inefficient and is based on untested
cryptographic hardness assumptions.

In this work, we propose a new cryptographic model called “Controlled Functional
Encryption (C-FE)” that allows us to construct realistic and efficient constructions. As in
functional encryption, C-FE allows a user (client) to learn only certain functions of encrypted
data, using keys obtained from an authority. However, we allow (and require) the client to
send a fresh key request to the authority every time it wants to evaluate a function on a
ciphertext. We propose two C-FE constructions: one for inner-product functionality and
other for any polynomial-time computable functionality. The former is based on careful
combination of CCA2 secure public-key encryption with secret sharing, while later is based
on careful combination CCA2 secure public-key encryption with Yao’s garbled circuit. Our
main contributions in this work include developing and formally defining the notion of C-FE;
designing efficient and practical constructions of C- FE schemes achieving these definitions for
specific and general classes of functions; and evaluating the performance of our constructions
on various application scenarios.

Our constructions are based on efficient cryptographic primitives and perform very well
in practical applications. On a laptop, with Intel Core i7 processor and 8GB RAM, our
construction takes 1.28s and consumes 132KB bandwidth for a 1,000 SNP disease marker in
personalized medicine application. In genomic patient similarity application, comparing two
4-million SNP profiles costs $0.0143, takes 4 minutes and consumes 53.77MB bandwidth.
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3.10 Engineering data privacy – The ARX data anonymization tool
Fabian Prasser (TU München – Klinikum Rechts der Isar, DE)
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One of the main focuses of the seminar are privacy problems that arise from the combination
and correlation of genomic and clinical data. While privacy for genomic data does pose
significant challenges, problems with privacy of clinical data must not be underestimated.
While a plethora of methods have been proposed for dealing with many aspects of de-
identifying such data, only few (prototypical) implementations are available. Actually, the
complexity of implementing privacy technologies is an often overlooked challenge.

In this talk we will present the open source anonymization tool ARX, which has been
carefully engineered to support multiple privacy technologies for relational datasets. Our tool
bridges the gap between different scientific disciplines by integrating methods developed and
used by the statistics community with data anonymization techniques developed by computer
scientists. ARX has been designed from the ground up to ensure scalability and it is able to
process very large datasets on commodity hardware. The software implements a large set of
privacy models: (1) syntactic privacy models, such as k-anonymity, l-diversity, t-closeness
and d-presence, (2) statistical models for re-identification risks, and (3) differential privacy.
Moreover, it supports multiple risk models and more than ten different methods for evaluating
data utility, including loss, precision, non-uniform entropy and KL divergence. Data can
be transformed automatically, semi-automatically and manually using a complex method
that integrates global recoding, local recoding, categorization, generalization, suppression,
microaggregation and top/bottom-coding. All methods are accessible via a comprehensive
cross-platform graphical user interface.

Our talk will contribute to the overall seminar topic by comprising an overview of the
possibilities and limitations of modern anonymization tools. We will also discuss challenges
and possible further developments.

3.11 On a Novel Privacy-Preserving Framework for Both Personalized
Medicine and Genetic Association Studies

Jean-Louis Raisaro (EPFL – Lausanne, CH)
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So far, several efforts have been undertaken for protecting genomic data and still enabling its
functionality. We can put them in two distinct categories: (i) approaches for private clinical
genomics, and (ii) approaches for privacy-preserving genetic research. Yet, a main limitation
of these approaches is that they restrict the private use of the data only to a single specific
purpose, thus significantly slowing down the deployment of privacy-enhancing technologies
in a real operational setting. In this work, we address this limitation by proposing a new
privacy-preserving framework that is flexible enough to enable for both personalized medicine
and genetic association studies on encrypted patients’ data. Based on our previous research
on private disease risk tests, we extend the previously proposed system model proposed in
order to support also privacy-preserving replication and fine-mapping genetic association
studies under the assumption of an honest-but-curious adversary. In particular, patients’ data
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are stored encrypted on a centralized storage and processing unit (SPU), and the different
healthcare stakeholders, or medical units (MU), can only obtain the study end-result without
ever seeing the actual data.

3.12 Applying Homomorphic Encryption for Practical Genomic Privacy
Kurt Rohloff (NJIT – Newark, US)
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This talk outlines a lattice encryption scheme that provides Proxy Re-Encryption (PRE)
capabilities with Homomorphic Encryption (HE). We identify several high-level use cases for
a mixed PRE and HE capability. We discuss early and implementation and experimental
results.

3.13 Realizing differentially private genome-wide association studies
Sean Simmons (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
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The growing stockpiles of genomic data found in biomedical repositories and patient records
promise to be an invaluable resource for improving our understanding of human diseases. In
particular, there is interest in using this genomic data to perform genome wide association
studies (GWAS). Recent work, however, has shown that sharing this data–even when aggreg-
ated to produce p-values, regression coefficients, or other study statistics–may compromise
patient privacy.

One proposed solution is to use a privacy preserving technique known as differential
privacy. This approach, which works by slightly perturbing the data, protects patient
privacy while still allowing researchers access to their genomic data. Unfortunately, existing
differentially private GWAS techniques have limitations in terms of accuracy, computational
efficiency, and their ability to deal with heterogeneous populations. In this presentation I
will give an overview of recent work we have done to help overcome these bottlenecks, work
which moves privacy preserving GWAS closer to real world applicability.

3.14 Robust Traceability from Trace Amounts
Adam Davison Smith (Pennsylvania State University – University Park, US)

License Creative Commons BY 3.0 Unported license
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The privacy risks inherent in the release of a large number of summary statistics were
illustrated by Homer et al (PLoS Genetics, 2008), who considered the case of SNP allele
frequencies obtained in a genome-wide association study: Given the minor allele frequencies
from a case group of individuals diagnosed with a particular disease, together with the genomic
data of a single target individual and statistics from a sizable reference dataset independently
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drawn from the same population, an attacker can determine with high confidence whether or
not the target is in the case group.

In this work we describe and analyze a simple attack that succeeds even if the summary
statistics are significantly distorted, whether due to measurement error or noise intentionally
introduced to protect privacy. Our attack only requires that the vector of distorted summary
statistics is close to the vector of true marginals in `1 norm. Moreover, the reference pool
required by previous attacks can be replaced by a single sample drawn from the underlying
population. The new attack, which is not specific to genomics significantly generalizes recent
lower bounds on the noise needed to ensure differential privacy (Bun, Ullman, and Vadhan,
STOC 2014; Steinke and Ullman, 2015), obviating the need for the attacker to control the
exact distribution of the data. In particular, the attack shows that natural relaxations of
differential privacy (such as “Pufferfish”, “coupled-worlds privacy” and related notions) are
subject to the same lower bounds as full-strength differential privacy when many one-way
marginals are released.

3.15 e-Biobanking: architectural and algorithmic solutions for the
seamless, safe and secure storage and sharing of large biomedical
data

Paulo Jorge Veríssimo (University of Luxembourg, LU)
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The biomedical data lifecycle is changing dramatically, both due to factors like the general-
ization of physical sample collection, or the advent of NGs machines, and also due to the
pressure for data sharing in name of the progress of biomedical research. Both factors have
been inducing ad-hoc technical solutions, bolted on the classical lifecycle, such as use of
clouds and promotion of web access, which are bound to augment the threat surface in non-
negligible ways. We have been researching on avenues which preserve the desired functional
evolution, but satisfy the need for built-in, by-design privacy, integrity and availability of
such critical data. This talk reports advances toward new distributed systems architectures
and privacy-preserving algorithms which, if successful, may foster what we call e-biobanking
ecosystems, coalitions of stakeholders including hospitals, researchers, biobanks, or NGS
providers.

Drawing on recent results based on the cloud-of-clouds paradigm, we first show how
innovative distributed architectures may foster the advent of secure and dependable constel-
lations of private and public clouds belonging to diverse stakeholders, with separation of risk
and concerns, for example, making researchers able to perform operations on mix-criticality
data residing in public and private clouds. Secondly, we show how to prevent concrete
re-identification attacks on genomic data, leveraging on the above-mentioned architectural
framework. We propose a method that systematically detects privacy-sensitive DNA segments
coming directly from an input stream. Our method neutralizes threats related to recently
published attacks on genome privacy based on short tandem repeats, disease-related genes,
and genomic variations. The method can evolve automatically as new privacy-sensitive
sequences are identified. Furthermore, the detection machine easily fits the e-biobanking
model, by streamlining the cloud storage with the NGS production cycle by using Bloom
filters and scaling out to faster sequencing machines.
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3.16 The NIH Genome Privacy Challenges: Bringing Security
Technologies to Biomedical Users

Xiao Feng Wang (Indiana University – Bloomington, US)
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The growth of genome data and computational requirements overwhelm the capacity of
servers. Many institutions and NIH are considering the cloud computing service as a cost-
effective alternative to scale up research. Privacy and security are the major concerns when
deploying cloud-based data analysis tools. In the past few years, progress has been made
on secure data-dissemination and computation technologies but it is still not clear the gap
between what they can provide and what are expected in the biomedical community. In
the past two year, the genome privacy team at Indiana University works together with the
iDASH NCBC center organized two NIH-sponsored genome privacy competitions. In this
talk, I will provide information about these challenges and what we have learnt.

4 Working groups

4.1 Data sharing across domains
Emiliano De Cristofaro (University College London, GB)
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This working group focused on understanding the requirements and the objectives of genomic
data sharing in the research environment vis-a-vis the related privacy and security challenges
it poses. In particular, participants analyzed existing initiatives as researchers have already
developed protocols for exchanging DNA information across the web. Initiatives like the
Global Alliance and Matchmaker Exchange1 aim to make it easier for geneticists and
bioinformaticians to search, share, and retrieve genomic and epigenomic data that can
help them with their research as well as treatment experimentation across institutions.
However, while these projects put forward self-regulated codes of conduct and frameworks
guided by human rights principles, non-discrimination, and procedural fairness, ultimately,
their privacy practices boil down to reliance on volunteers’ informed consent as well as
ethical guidelines punishing misuse, intentional de-anonymization, or wide disclosure of
personally identifiable information. The working group concluded that closer collaborations
and exchanges need to take place so that privacy can be embedded from the outset in these
protocols. In particular, participants agreed that data minimization approaches should be
followed, without requiring the presence of fully-trust parties or shifting the liability of data
leaks on the researchers. To this end, solutions from cryptography and differential privacy
can offer viable promising opportunities but a number of research problems remain open
with respect to efficiency, scalability, resilience to errors, and the lack of off-the-shelf readily
available to non-cryptography experts.
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4.2 Architecture and middleware
Aniket Kate (Purdue University – West Lafayette, US)
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This working group focused on genomic data integrity issues and middleware architectures
to make genome processing system transparent to involved clientele. With its heterogeneous
nature, mixed criticality, and longevity and irrevocability issues, genomic data presents unique
challenges in terms of integrity, privacy and reliability. It is observed that we cannot ignore
arbitrary faults (e.g, memory bit-flips) and active attacks while designing privacy-preserving
solutions for genome privacy. Therefore, the working group called for novel middleware
genome data processing solutions that achieve scalability, availability, and performance along
with integrity and confidentiality requirements.

The group discussed distributed computing and cryptographic approaches to overcome
these challenges. A theme that emerged out of the discussion was to do data processing in a
secure manner in a distributed/outsourced environment rather than doing it in an insecure
and error-prone manner on the machines themselves locally. The group also discussed about
designing distributed encrypted file systems and indexing solutions for large-scale genome
data. From the cryptographic point of view, necessity of authenticated data structures and
verifiable computations for genomic data was considered. The group briefly explored the
possibility of using known cryptographic tools such as Merkle hash trees, watermarking,
erasure coding, and secret sharing, and then called for tailored integrity protection and
provenance solution for genomic data.

4.3 Inference Control
Muhammad Naveed (University of Illinois – Urbana-Champaign, US)
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Genomic data can be used to infer identity, disease, traits, and kinship. Inference is not a
static process and change over time; therefore, inference control procedures should similarly
change over time. Management of inference is a complex process, and common people may
not understand the all the implications. A neutral entity should provide guidance to the
users to decide whether they should donate their data and the type of consent they should
give. While inference risks can be reduced, it affects utility. Cryptographic methods cost
more and statistical measures add noise. Communicating just the risks to the participants
without discussing the potential benefits would be a disservice to the humanity. We have to
balance the critical tradeoff between risk and utility, for example, U.S. federal agencies use
RU-confidentiality curve to determine risk vs. utility tradeoffs.

We discussed what type of information would be a concern if it could be inferred from
genomic data. Identity is a major concern, for example, if an adversary can infer whether
an individual is in the case or control group of a genome-wide association study (GWAS).
Attribute disclosure was also discussed and whether it constitutes a privacy breach. As
attribute disclosure reveals information about population and no individual-level information,
considering it a privacy breach could be detrimental to science. Incidental findings are a
growing concern; that is, if a medical professional learns something about the patient that
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she did not ask for, whether the patient should be told or not. Physicians are also afraid of
being sued if they fail to properly adjust dosage based on genomic information.

Genomics is still in its infancy and rapidly growing; therefore, we do not know what
information or utility we require from genomic data. This makes addressing privacy concern
even more challenging. We discussed if a general and evolving framework for specifying
an inference of private data would be a reasonable approach. European Union agrees that
anonymous data is a myth, but what type of data would they still be comfortable with
releasing; after all, sharing of medical and genomic data is crucial for the development of
medicine and technologies for human health. One reasonable approach could be that data
owner (or data custodian) can ask people, whose data are being used, for what type of
purposes their data could be used and what type of information could be inferred from their
data. Another approach would be to specify necessary conditions that should be satisfied
before one can obtain data for a study, for example, keeping detailed record of who uses the
data and for what purpose. Such conditions could not be satisfied for public use summary
statistics.

Sharing of genomic data is crucial for our understanding of disease and human health.
The participants raised several points about sharing of genomic data, such as, can we
share single nucleotide polymorphism (SNP) without knowing knowledge and power of the
adversary? Or can we publish rare variants (e.g., occurring in a single person) in public
datasets? Risk assessment is important here. Commonly used risk assessment models are
geared towards worst-case adversaries. A challenge here is to develop reasonable risk models
against plausible adversaries. The first step in addressing this challenge is to determine what
risk is acceptable. For example, explaining the risk during the consent process such that the
participants understand the actual risk, developing a comprehensive set of precautions and
procedures data collectors should use, and respecting the right not to know. It looks like
that research community does not like inference control, but maybe it makes sense in other
contexts such as direct to consumer or legal contexts?

4.4 Usage models of genomic privacy
Kurt Rohloff (NJIT – Newark, US)
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The goal of the working group was to identify the stakeholders for genomic applications. We
commenced our analysis by identifying that storage and processing of genomic information
could occur at multiple levels. These stakeholders include data producers, who turn samples
into data, and sample owners, such as patients and cryobanks. The stakeholders also relate
the concept of a “genome owner” who could either be a sample owner, or a designated
representative, such as a physician.

The physician (or pathologist) is primarily responsible for consent. Once consent is
granted, the sequencing facility receives the sample and performs sequencing. Interpretation is
performed by a interpreter / bioninformatician. If there is a clinical motivation for sequencing,
then clinical geneticist could be engaged. Results could also be sent to researchers, such as
for population/public health studies. Results turned into text for the doctor about patient
and actionable information. Relevant attacks on this ownership chain include insider attacks,
such as by a network administrator. Data integrity is also perceived as an issue, either from
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adversaries, or from simple computing over large datasets where bit flips could happen that
would alter data.

A feasible research scenario involves multiple data controllers contributing data, such as
for collaboration projects which includes phenotypic data. A general question Is one of who
has data with property X. Requests made in this scenario include one of identifying who
has data in a specific format. A general approach, to improve performance, is to move the
algorithm to the data.

Another challenge is dealing with the scenario of when consent is revoked. Participants
need to be able to indicate to remove the data.

As an indication of scale, a participant would need to keep up to 4 million variants for a
specific individual over a set of 200 million known variants. Every single 4 or 5 million.
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