
Ideal Decompositions for Vector Addition Systems
Jérôme Leroux1 and Sylvain Schmitz2

1 LaBRI, Univ. Bordeaux & CNRS, France
leroux@labri.fr

2 LSV, ENS Cachan & CNRS & INRIA, Université Paris-Saclay, France
schmitz@lsv.ens-cachan.fr

Abstract
Vector addition systems, or equivalently Petri nets, are one of the most popular formal models
for the representation and the analysis of parallel processes. Many problems for vector addition
systems are known to be decidable thanks to the theory of well-structured transition systems.
Indeed, vector addition systems with configurations equipped with the classical point-wise order-
ing are well-structured transition systems. Based on this observation, problems like coverability
or termination can be proven decidable.

However, the theory of well-structured transition systems does not explain the decidability
of the reachability problem. In this presentation, we show that runs of vector addition systems
can also be equipped with a well quasi-order. This observation provides a unified understanding
of the data structures involved in solving many problems for vector addition systems, including
the central reachability problem.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Petri net, ideal, well-quasi-order, reachability, verification

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.1

Category Invited Talk

1 Introduction

Vector Addition Systems and Well-Structured Transition Systems. Vector addition sys-
tems with states (VASS), or equivalently Petri nets, find a wide range of applications in the
modelling of concurrent, chemical, biological, or business processes. They are defined as
tuples V = 〈Q, d, T 〉 where Q is a finite set of states, d is a dimension in N, and T is a finite
set of transitions in Q× Zd ×Q (Figure 1 displays an example). A VASS gives rise to an
infinite transition system over the set of configurations Confs def= Q× Nd by allowing a step
(q,u) t−→ (q′,u + a) for all u ∈ Nd and t = (q,a, q′) ∈ T such that u + a ≥ 0. Many problems
are decidable for VASS, notably
reachability: given V and two configurations c and c′ in Confs, can c reach c′ in a finite

number of steps, noted c→∗ c′?
coverability: given the same inputs, does there exist c′′ w c′ such that c →∗ c′′? Here we

use the product ordering, i.e. we require c′ = (q,u′) and c′′ = (q,u′′) where u′(i) ≥ u′′(i)
for all 1 ≤ i ≤ d.

These two decision problems form the algorithmic core of many decidability results – spanning
from the verification of asynchronous programs [20] to the decidability of data logics [4, 12, 8]
(see the references in [48] for more applications).

Vector addition systems are an instance of a more general class of systems with good
algorithmic properties called (strict) well-structured transition systems (WSTS), and as

© Jérôme Leroux and Sylvain Schmitz;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 1; pp. 1:1–1:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Ideal Decompositions for Vector Addition Systems

q0 q1

t1 : (1, 1,−1)

t2 : (−1, 0, 1)

t3 : (1, 0, 0)

t5 : (0, 0, 0)

t4 : (0,−1, 0)

Figure 1 A 3-dimensional VASS (from [48]).

a result several problems are decidable using generic algorithms, including coverability,
termination, and boundedness [1, 19]. These algorithms all rely on the existence of a well-
quasi-order (wqo) on the set of configurations – here the product ordering v over Confs –,
which is ‘compatible’ with the transition relation defined by the system at hand.

Ideals and Complete WSTS. The theory of WSTS alone does however not account for
the decidability of several other problems on VASS, like place boundedness, which asks
whether the reachable valuations of an input subset K ⊆ {1, . . . , d} of the components are
bounded. The classical algorithm for this last problem relies instead on the fact that the set
of configurations that might be covered starting from some initial configuration c, i.e. the
cover (also called the coverability set)

Cover(c) def= {(q,u) ∈ Confs | ∃u′ ≥ u . c→∗ (q,u′)} = ↓{c′ ∈ Confs | c→∗ c′} (1)

is downwards-closed and computable thanks to a coverability tree construction first defined
by Karp and Miller [28]. The construction proceeds forwards from c and explores the tree
of reachable configurations, but employs acceleration to ensure finiteness (see Section 3 for
details). Due to acceleration, the nodes of this tree are labelled by ‘extended configurations’
in Q× (N∪{ω})d, where an ω value reflects a component that might become arbitrarily large
in reachable configurations; the cover is then exactly the union of the downward closures ↓c
when c ranges over the labels in the tree.

The ingredients required to carry out such a construction in general have been identified
by Finkel and Goubault-Larrecq [17, 18] with complete WSTS. This framework relies on the
existence of
1. an acceleration procedure along finite traces of the system, and of
2. some means to finitely represent downwards-closed sets of configurations. Finkel and

Goubault-Larrecq advocate for this the use of ideals, which provide canonical finite
decompositions for downwards-closed subsets of a wqo (see Section 2). Finkel and
Goubault-Larrecq also provide a range of effective representations for ideals; for instance,
the ideals of (Confs,v) are exactly the sets ↓c for c ∈ Q× (N ∪ {ω})d employed in Karp
and Miller’s construction.

Based on these two ingredients, the framework of Finkel and Goubault-Larrecq provides
a generic procedure to compute a finite representation of the cover – without any general
guarantee of termination: the cover is not always computable, e.g. for VASS extended
with transfer operations (which are also strict WSTS) the place boundedness problem is
undecidable [15].

The Reachability Problem. The decidability of the reachability problem for VASS is a
famous result, first proven by Mayr [40] in 1981 after years of attempts and partial solutions,
notably by Sacerdote and Tenney [46]. Mayr’s algorithm and proof have since been clarified

J. Leroux and S. Schmitz 1:3

and refined by Kosaraju [29] and Lambert [30]; we call the resulting algorithm the KLMST
algorithm after its inventors. Put succinctly, this algorithm performs successive refinements on
a finite set of structures (called respectively ‘regular constraint graphs’ by Mayr, ‘generalised
VASS’ by Kosaraju, and ‘marked graph-transition sequences’ by Lambert), until a condition
is fulfilled (called respectively ‘consistent marking’, ‘θ condition’, and ‘perfectness’); at this
point the algorithm terminates and can answer whether reachability holds depending on
whether the resulting set is empty.

These results have at first sight little to do with WSTS, for which reachability is often
undecidable (the case of transfer VASS is again an example). Nevertheless, a recent insight into
the algorithm of Mayr, Kosaraju, and Lambert is that they compute an ideal decomposition
for the set of runs from source to target configuration. More precisely, we show in [37]
that the data structures manipulated in the KLMST algorithm are representations for run
ideals, and that the result of the computation is exactly the ideal decomposition of the
downward-closure of the set of runs (see Section 4).

Overview of the Talk. To sum up, ideals provide the data structures involved in both
Karp and Miller’s coverability tree algorithm, which computes the ideal decomposition of
the cover using configuration ideals (Section 3), and
the KLMST algorithm, which computes the ideal decomposition of the downward-closure
of the set of runs using run ideals (Section 4).

The purpose of this talk is to present wqo ideals (Section 2) and overview their algorithmic
applications through the coverability and KLMST procedures. We believe that the ideal
point of view on those two classical algorithms could guide the principled development
of algorithms for VASS extensions and other WSTS – in particular when the decidability
status of the reachability problem is open, as for unordered data Petri nets [32], branching
VASS (e.g. [47]), and pushdown VASS [31, 38]. We shall only provide the basic definitions
and main statements here, but we provide pointers to the relevant literature for the interested
reader.

2 Ideals for Well-Quasi-Orders

Quasi-Orders. A quasi-order (qo) (X,≤X) combines a support set X with a transitive
reflexive relation ≤X ⊆ X × X. Given a set S, its downward-closure is ↓S def= {x ∈ X |
∃s ∈ S . x ≤X s}; when S is a singleton {s} we write more simply ↓s. A set D ⊆ X is
downwards-closed (also called initial) if ↓D = D.

Well-Quasi-Orders. A well-quasi-order (wqo) [23] is a qo with the descending chain property:
all the chains D0) D1) · · · of downwards-closed subsets Dj ⊆ X are finite. Equivalently,
it has the finite basis property: any subset S ⊆ X has a finite number of minimal elements.
For instance,
finite sets: any finite set Σ equipped with equality forms a wqo (Σ,=): its downwards-closed

subsets are singletons {x} for x ∈ Σ, and its chains are of length one;
natural numbers: the set of natural numbers (N,≤) is a wqo: its downwards-closed subsets

are either N itself or of the form ↓n for n ∈ N, and any chain (N)) ↓n0) ↓n1) · · ·
corresponds to a decreasing sequence n0 > n1 > · · · and is therefore finite;

Cartesian products: if (X,≤X) and (Y,≤Y) are wqos, then their Cartesian product X × Y
equipped with the product ordering ≤X×Y is also a wqo (X,≤X) × (Y,≤Y) def= (X ×

STACS 2016

1:4 Ideal Decompositions for Vector Addition Systems

Y,≤X×Y), where (x, y) ≤X×Y (x′, y′) if and only if x ≤X x′ and y ≤Y y′ – this allows to
prove Dickson’s Lemma [14], which states that (Nd,≤) is a wqo when ordered pointwise –;

finite sequences: if (X,≤X) is a wqo, then the set X∗ of finite sequences over X (sometimes
also noted X<ω) equipped with the embedding ordering ≤X∗ is also a wqo (X,≤X)∗ def=
(X∗,≤X∗), where x0, . . . , xm−1 ≤X∗ x′0, . . . , x′n−1 if and only if there exists a monotone
injective function f from {0, . . . ,m − 1} to {0, . . . , n − 1} such that xj ≤X x′f(j) for
all j ∈ {0, . . . ,m − 1} – this allows to prove Higman’s Lemma [23], which states that
(Σ∗,≤Σ∗) for a finite alphabet (Σ,=) is a wqo when ordered by subword embedding.

In the following, we will use these basic examples to construct wqos of VASS configurations
(in Section 3) and of VASS runs (in Section 4).

Ideals. Let (X,≤X) be a wqo. An ideal I of X is a non-empty, downwards-closed, and
(up-)directed subset of X; this last condition enforces that, if x, x′ are in I, then there exists
y ∈ I that dominates both: x ≤X y and x′ ≤X y.

The key property of wqo ideals we are going to use is that they provide finite decompos-
itions for downwards-closed sets. This was first shown by Bonnet [5], and rediscovered in
the context of complete WSTS (and generalised for Noetherian topologies) by Finkel and
Goubault-Larrecq [17]:

I Fact 1 (Canonical Ideal Decompositions). Every downward-closed set over a wqo is the
union of a unique finite family of incomparable (for the inclusion) ideals.

Ideal Representations. Combined with the descending chain property, Fact 1 provides an
abstract template for algorithms computing descending chains D0) D1) · · · of downwards-
closed sets: this must terminate when working over a wqo, and furthermore each Dj can be
represented as a finite set of ideals. The missing element here is how to effectively represent
those ideals.

Depending on the wqo at hand, suitable finite representations have been devised in the
literature [26, 27, 2]; see [18] for a rather inclusive algebra of such representations. For the
basic wqos introduced earlier, this yields:
finite sets: an ideal of (Σ,=) is a singleton {x} for x ∈ Σ; it can be represented by the

element x itself with JxKΣ
def= {x} as associated ideal.

natural numbers: an ideal of (N,≤) is either N itself or a downwards-closed set ↓n for n ∈ N.
They can be represented as elements x of N] {ω} with JxKN

def= ↓x as associated ideal,
where we let ↓ω = N.

Cartesian products: an ideal of X × Y is simply the product of an ideal from X with an
ideal from Y ; hence we can use pairs of representations with Jx, yKX×Y

def= JxKX × JyKY .
finite sequences: an ideal of X∗ is a product P ⊆ X∗, i.e. a finite concatenation A1 ·A2 · · ·An

of atoms Aj ⊆ X∗, where the latter are either equal to I ∪ {ε} for some ideal I of X
(where ε denotes the empty sequence), or to D∗ for a downwards-closed subset D of X [27].
Products can therefore be represented as simple regular expressions with abstract syntax

p ::= a1 · a2 · · · an , a ::= z + ε | (z1 + · · ·+ zm)∗ (2)

where z, z1, . . . , zm range over ideal representations for X. The associated ideal is defined
through the usual semantics for regular expressions:

Jz + εKX∗
def= JzKX ∪ {ε} ,

J(z1 + · · ·+ zm)∗KX∗
def= (Jz1KX ∪ · · · ∪ JzmKX)∗ ,

Ja1 · a2 · · · anKX∗
def= Ja1KX∗ · Ja2KX∗ · · · JanKX∗ .

J. Leroux and S. Schmitz 1:5

Those representations come with algorithms to perform the typically required operations [21],
e.g. to check whether JzKX ⊆ Jz′KX , or to compute the canonical ideal decomposition of
JzKX ∩ Jz′KX or X \ ↑x for any x ∈ X and representations z, z′.

3 Configuration-Based WQO

Observe that the cover defined in Equation (1) is downwards-closed for v; it follows that it
can be decomposed as a finite union of ideals. In particular, covers can be finitely represented
by finite sets of extended configurations, each of them denoting an ideal included in the
coverability set. The algorithm of Karp and Miller [28] computes such a representation. We
present here in more detail the reasoning leading to this result.

Ordering Configurations. The configurations of a VASS are equipped with the product
ordering v:

(Confs,v) def= (Q,=)× (N,≤)d . (3)

Rephrased in a more explicit way, (q,v) v (q′,v′) if, and only if, q = q′ and v(i) ≤ v′(i) for
every 1 ≤ i ≤ d.

Representing Configuration Ideals. Notice that (Confs,v) is a wqo as a Cartesian product
of wqos, and ideals have the following form where x ∈ (N ∪ {ω})d:

J(q,x)KConfs = {q} × {v ∈ Nd | v ≤ x} . (4)

Such a pair (q,x) is called an extended configuration and is used as a representation for
configuration ideals.

Extended Steps. The Karp and Miller algorithm is based on an extension of the step
relation t−→ over extended configurations, defined by (p,x) t−→ (q,y) if, and only if, t = (p,a, q)
is a transition in T for some action a, and for every 1 ≤ i ≤ d:

y(i) =
{

x(i) + a(i) if x(i) ∈ N ,

ω otherwise.
(5)

Coverability Tree Construction. The Karp and Miller algorithm is computing a tree as
follows. Nodes are labelled by extended configurations. Initially, the tree is reduced to a root
node labelled by the initial configuration.

A leaf labelled by c is said to be covered if there exists an ancestor labelled by c′ such
that c v c′. Otherwise the node is said to be uncovered. A leaf labelled by c is said to be live
if c t−→ c′ for some transition t in T and some extended configuration c′.

The tree is updated as follows. While there exists a live uncovered leaf, we pick one such
leaf n. Assume that c = (p,x) is the label of n. If there exists an ancestor labelled by (p,y)
such that y ≤ x and y(i) < x(i) < ω for some i, we pick such an ancestor and we add a
child to n labelled by (p, z) where z is defined as follows for i ∈ {1, . . . , d}:

z(i) def=
{

x(i) if y(i) = x(i) ,
ω if y(i) < x(i) .

(6)

STACS 2016

1:6 Ideal Decompositions for Vector Addition Systems

q0, 1, 0, 1

q0, 2, 1, 0

q0, 1, 1, 1

q0, 1, ω, 1

...
...

...

q1, 3, 1, 0

q1, 3, 0, 0 q0, 3, 1, 0

...

q0, 0, 0, 2

q0, 1, 1, 1

q0, 1, ω, 1

...
...

...

q1, 2, 0, 1

q0, 2, 0, 1

q0, ω, 0, 1

...
...

...

t1

t2

ω

t1 t2 t3

t3

t4 t5

ω

t2

t1

ω

t1 t2 t3

t3

t5

ω

t1 t2 t3

Figure 2 A prefix of the tree computed by the Karp and Miller algorithm on the VASS of Figure 1
from the initial configuration (q0, 1, 0, 1).

This operation, called acceleration, introduces new ω’s on components which intuitively can
be increased to arbitrary large values. Otherwise, if there does not exist such an ancestor,
for each transition t such that c t−→ c′ for some extended configuration c′, we add a child to n
labelled by c′.

Ideal Decomposition using the Coverability Tree. The termination of the previous con-
struction relies on the fact that (Confs,v) is a wqo. As shown by Karp and Miller [28],

I Theorem 2. The Karp and Miller algorithm terminates and it produces a tree satisfying:

Cover(c) =
⋃

c′ label of a node
Jc′KConfs .

In particular, by keeping only the maximal labels of the tree, we obtain the unique
decomposition of the coverability set into maximal ideals.

I Corollary 3. The canonical ideal decomposition of the coverability set is effectively com-
putable.

I Example 4. A prefix of the tree computed by the algorithm of Karp and Miller on the
3-dimensional VASS of Figure 1 from the initial configuration (q0, 1, 0, 1) is depicted in
Figure 2. Edges of the tree that introduce ωs using (6) are labelled by ‘ω.’ The other ones
are labelled by transitions satisfying the extended step relation. Note that the coverability
set for this example is quite simple, as it is equal to:

Jq0, ω, ω, ωKConfs ∪ Jq1, ω, ω, ωKConfs . (7)

In other words, any configuration can be covered in this VASS. This is not so immediate
however, as ωs are introduced very progressively in the coverability tree started in Figure 2.

Applications. The decomposition of the coverability set into maximal ideals provides a
simple algorithm for deciding the coverability problem, since the latter reduces to finding
an ideal of the decomposition that contains a given configuration. The decomposition also
provides a way to decide many other problems like the place boundedness problem, that
takes as input a set K ⊆ {1, . . . , d} and asks whether there exists a bound m ∈ N such
that every configuration (q,v) reachable from the initial configurations satisfies v(k) ≤ m
for every k ∈ K. This problem reduces to checking that the extended configurations (q,x)
denoting the ideals of the coverability set satisfy x(k) ∈ N for every k ∈ K.

J. Leroux and S. Schmitz 1:7

Notes on Complexity. From the unique decomposition of the coverability set into maximal
ideals, we define the size of the coverability set as the sum of the size of the extended
configurations denoting these ideals (with numbers encoded in binary). Since there exists a
family of initialised VASS with finite but Ackermannian-sized reachability sets [7], the size of
the cover is at least Ackermannian in the worst case. This lower bound is tight, because the
Karp and Miller algorithm terminates in at most an Ackermannian number of steps [16].

The algorithm of Karp and Miller is therefore optimal for computing the ideal decompos-
ition of the coverability set. This does not entail that it is optimal for all the problems it
can help solving. For instance, on the one hand, the place boundedness problem mentioned
earlier can be solved in exponential space [3, 11]. On the other hand, the finite containment
problem, which asks given two VASS with finite reachability sets whether the reachability set
of the first is included into that of the second, is complete for Ackermannian time [41, 42].

4 Run-Based WQO

Let us denote the set of runs from a source configuration c to a target configuration c′ in an
input VASS by Runs(c, c′). We denote by ↓Runs(c, c′) the downward closure of the set of
runs inside a wqo (PreRuns,E) defined next in Equation (9), the VASS reachability problem
can then be recast as asking whether the downward closed set ↓Runs(c, c′) is empty. Since
this set is downwards-closed, it can be decomposed into a finite union of ideals, which is
computed by the KLMST algorithm. Let us proceed again through the main steps of this
result.

Ordering Runs. The set of runs can be partially ordered by introducing the weaker notion
of preruns. A prerun is a triple ρ = (c, w, c′) where c and c′ are two configurations and w is
a word over the alphabet PreSteps = Confs × T × Confs. The configurations c and c′ are
called respectively the source and target of ρ. The set of preruns is denoted by PreRuns.
Presteps and preruns are well-quasi-ordered as follows:

(PreSteps,�) def= (Confs,v)× (T,=)× (Confs,v) (8)

(PreRuns,E) def= (Confs,v)× (PreSteps,�)∗ × (Confs,v) (9)

A prestep e = (c, t, c′) is called a step if it satisfies the step relation c t−→ c′. A prerun
(c, w, c′) is called a run if w satisfies:

either w = ε is the empty sequence and then c = c′,
or w = (c1, t1, c′1) · · · (ck, tk, c′k) is a sequence of steps such that c = c1, c′ = c′k, and
cj+1 = c′j for all 1 ≤ j < k.

I Example 5. Consider again the 3-dimensional VASS of Figure 1. It has a sequence of
steps from c = (q0, 1, 0, 1) to c′ = (q1, 2, 2, 1)

(q0, 1, 0, 1) t1−→ (q0, 2, 1, 0) t2−→ (q0, 1, 1, 1) t1−→ (q0, 2, 2, 0) t2−→ (q0, 1, 2, 1) t3−→ (q1, 2, 2, 1) ,

which we see as a run (c, w, c′) in Runs(c, c′) with

w = ((q0, 1, 0, 1), t1, (q0, 2, 1, 0)) ((q0, 2, 1, 0), t2, (q0, 1, 1, 1)) ((q0, 1, 1, 1), t1, (q0, 2, 2, 0))
((q0, 2, 2, 0), t2, (q0, 1, 2, 1)) ((q0, 1, 2, 1), t3, (q1, 2, 2, 1)) .

This is just one example of a run witnessing reachability; observe that any sequence of
transitions in

{t1t2, t2t1}n+2t3t
n
4 (10)

for n ≥ 0 would similarly do.

STACS 2016

1:8 Ideal Decompositions for Vector Addition Systems

Representing Prerun Ideals. Notice that ideals of (PreSteps,�) have the following form,
where e = (c, t, c′) is an extended prestep, i.e. c, c′ are extended configurations, and t ∈ T :

JeKPreSteps = JcKConfs × {t} × Jc′KConfs . (11)

It follows that ideals of (PreRuns,E) have the following form, where p is a regular expression
denoting a product over extended steps as defined in Equation (2) and c, c′ are extended
configurations:

Jc, p, c′KPreRuns = JcKConfs × JpKPreSteps∗ × Jc′KConfs . (12)

Let us instantiate (2) in this case:

p ::= a1 · · · an , a ::= e+ ε | E∗

where e ranges over extended presteps and E over finite sets of extended presteps, with
semantics JE∗KPreStep∗

def=
(⋃

e∈EJeKPreSteps
)∗. An observation we will use next is that such

a set E can be seen as a finite directed graph with extended configurations c as vertices,
connected by edges labelled by transitions t in T .

Run Ideals. In [37] we show that the maximal ideals of the decomposition of ↓Runs(c, c′)
satisfy some additional properties. More precisely, thanks to the finite basis property of
(PreRuns,E), Runs(c, c′) has a finite number of minimal elements B and we can write

↓Runs(c, c′) = ↓
(⋃
ρ∈B
{ρ′ ∈ Runs(c, c′) | ρE ρ′}

)
=
⋃
ρ∈B
↓{ρ′ ∈ Runs(c, c′) | ρE ρ′} . (13)

This means we can focus on ideals of the form

↓{ρ′ ∈ Runs(c, c′) | ρE ρ′} (14)

for some run ρ in Runs(c, c′). Using the fact that (Runs(c, c′),E) has the amalgamation
property – i.e. if ρ E ρ1 and ρ E ρ2 for some runs ρ1, ρ2 ∈ Runs(c, c′), then there exists a
run ρ3 ∈ Runs(c, c′) with ρ1 E ρ3 and ρ2 E ρ3 – we see that the set in (14) is directed and
therefore an ideal.

When considering the representation (c, p, c′) for an ideal defined by (14), we then observed
in [37] that it has a specific form, which is essentially a syntactic variant of the generalised
VASS of Kosaraju [29] and marked graph-transition sequences of Lambert [30]: its product
expression p is of the form

p ::= E∗0 · (e1 + ε) · E∗1 · · · (ek + ε) · E∗k , (15)

i.e. it intersperses extended presteps ej and finite sets of extended presteps Ej . Additionally,
all these extended presteps e = (c1, t, c2) satisfy the extended step relation c1

t−→ c2, and
the graphs defined by the sets Ej are strongly connected.

Finally, the representation of an ideal like (14) satisfies furthermore a (decidable) adherence
condition corresponding to the θ condition introduced by Kosaraju [29], or the perfectness
condition introduced by Lambert [30]. The point here is that we have now a semantics, in
terms of ideals, associated with these syntactic representations and conditions.

J. Leroux and S. Schmitz 1:9

q0, 1, ω, 1

q0, 2, ω, 0

q0, 0, ω, 2

q0, 1, 0, 1 q0, 1, ω, 1 q1, 2, ω, 1 q1, 2, ω, 1 q1, 2, 2, 1

t1 : (1, 1,−1)t2 : (−1, 0, 1)

t2 : (−1, 0, 1) t1 : (1, 1,−1)

t3 : (1, 0, 0)

t4 : (0,−1, 0)

Figure 3 The unique maximal ideal of ↓Runs(c, c′) for the VASS of Figure 1.

Ideal Decomposition using the KLMST Algorithm. Entering the details of the KLMST
algorithm would be too long for the purposes of this presentation. We refer to the nice
expositions of Müller [43] and Reutenauer [45] for details and examples. The main point
here is that the unique decomposition of ↓Runs(c, c′) into maximal ideals is precisely what
the KLMST algorithm is computing.

I Theorem 6 (Decomposition Theorem [37]). The KLMST algorithm computes an ideal
decomposition of ↓Runs(c, c′).

Again, by keeping only the maximal ideals in this decomposition, we obtain the unique
decomposition of ↓Runs(c, c′) into maximal ideals.

I Corollary 7. The canonical ideal decomposition of ↓Runs(c, c′) is effectively computable.

I Example 8. Let us come back to the 3-dimensional VASS of Figure 1 and let c = (q0, 1, 0, 1)
and c′ = (q1, 2, 2, 1). The ideal decomposition of ↓Runs(c, c′) contains a unique ideal depicted
in Figure 3 (see [48] for more details on how this ideal is computed by the KLMST algorithm).
This ideal has the following form:

Jc, E∗0 · (e1 + ε) · E∗1 , c′KPreRuns (16)

where E0 contains four edges denoting the yellow strongly connected graph, E1 contains
one edge denoting the violet strongly connected graph, and e1 = ((q0, 1, ω, 1), t3, (q1, 2, ω, 1))
links these two graphs. This matches the set of runs found earlier in Equation (10); one
should contrast this with the very simple ideal decomposition of Cover found in (7).

Applications. Theorem 6 entails the decidability of the reachability problem: Runs(c, c′)
is empty if and only if its downward-closure is. It also allows to prove the completeness of
acceleration techniques for computing Presburger definable reachability sets [35].

In the case of labelled VASS where we additionally label transitions in T by finite sequences
over a finite alphabet Σ, this also provides a way of constructing the downward-closure of
the language between c and c′, which was already shown to be computable by Habermehl et
al. [22] and Zetsche [50].

Notes on Complexity. The decomposition of Runs(c, c′) into maximal ideals provides a
way to associate to this set a size (with numbers encoded in binary). From a complexity
point of view, the already mentioned construction of Cardoza et al. [7] shows that, in the
worst case, the size of Runs(c, c′) can be Ackermannian, i.e. is in Fω(Ω(n)) for an input
of size n (using the fast-growing functions (Fα)α of Löb and Wainer [39]). We exhibit in

STACS 2016

1:10 Ideal Decompositions for Vector Addition Systems

[37] the first upper bound for that size by proving a worst case complexity in Fω3(p(n)) for
an Ackermannian function p. This gap between Fω(Ω(n)) and Fω3(p(n)) seems difficult to
tighten, and the exact complexity is still open. Again, the Ackermannian lower bound on the
size of the ideal decomposition does not entail such a gigantic lower bound on the problems
it helps solving; in particular, the reachability problem could very well be much simpler, as
the best known lower bound is in exponential space [7].

5 Conclusion

As we have seen in this short presentation, wqo ideals provide abstract foundations for both
the coverability tree construction of Karp and Miller [28] and the KLMST algorithm of
Mayr [40], Kosaraju [29], and Lambert [30]. On both accounts, these algorithms compute the
canonical ideal decomposition of a downwards-closed set, namely the cover for the coverability
tree and the downward-closure of the set of runs for the KLMST algorithm.

This abstract viewpoint on those two algorithms makes them easier to extend to more
general classes of systems. In fact, the coverability tree construction has already been extended
to unordered data Petri nets [24], branching VASS [49, 25], and pushdown VASS [36]. In
each of these cases however, the decidability of the reachability problem is currently open.

Those are not the only algorithmic applications of wqo ideals. For instance, Lazić and
Schmitz [33] revisit the usual backward coverability algorithm for WSTS [1, 19] using ideals,
and employ it to derive in a uniform manner several known complexity upper bounds on
the coverability problem, which were initially based on an approach due to Rackoff [44]:
for VASS [6], alternating VASS [9], and branching VASS [13, 34]. Another example is the
use of ideal decompositions of formal languages by Zetsche [50], employed for instance by
Czerwiński et al. [10] to prove the decidability of separation by piecewise testable languages.

References

1 P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of programs
with well quasi-ordered domains. Inform. and Comput., 160(1–2):109–127, 2000.

2 Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt Jonsson.
Using forward reachability analysis for verification of lossy channel systems. Form. Methods
in Syst. Des., 25(1):39–65, 2004. doi:10.1023/B:FORM.0000033962.51898.1a.

3 Michel Blockelet and Sylvain Schmitz. Model-checking coverability graphs of vector ad-
dition systems. In MFCS 2011, volume 6907 of LNCS, pages 108–119. Springer, 2011.
doi:10.1007/978-3-642-22993-0_13.

4 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Logic, 12(4):1–26, 2011. doi:
10.1145/1970398.1970403.

5 Robert Bonnet. On the cardinality of the set of initial intervals of a partially ordered set.
In Infinite and finite sets: to Paul Erdős on his 60th birthday, Vol. 1, Coll. Math. Soc.
János Bolyai, pages 189–198. North-Holland, 1975.

6 Laura Bozzelli and Pierre Ganty. Complexity analysis of the backward coverability al-
gorithm for VASS. In Giorgio Delzanno and Igor Potapov, editors, Proc. RP 2011, volume
6945 of LNCS, pages 96–109. Springer, 2011. doi:10.1007/978-3-642-24288-5_10.

7 E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponential space complete problems
for Petri nets and commutative semigroups: Preliminary report. In Proc. STOC’76, pages
50–54. ACM, 1976. doi:10.1145/800113.803630.

http://dx.doi.org/10.1023/B:FORM.0000033962.51898.1a
http://dx.doi.org/10.1007/978-3-642-22993-0_13
http://dx.doi.org/10.1145/1970398.1970403
http://dx.doi.org/10.1145/1970398.1970403
http://dx.doi.org/10.1007/978-3-642-24288-5_10
http://dx.doi.org/10.1145/800113.803630

J. Leroux and S. Schmitz 1:11

8 Thomas Colcombet and Amaldev Manuel. Generalized data automata and fixpoint logic.
In Proc. FSTTCS 2014, volume 29 of LIPIcs, pages 267–278. LZI, 2014. doi:10.4230/
LIPIcs.FSTTCS.2014.267.

9 Jean-Baptiste Courtois and Sylvain Schmitz. Alternating vector addition systems with
states. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Proc.
MFCS 2014, volume 8634 of LNCS, pages 220–231. Springer, 2014. doi:10.1007/
978-3-662-44522-8_19.

10 Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and Georg Zetzsche.
A characterization for decidable separability by piecewise testable languages. Preprint,
2015. Extended abstract published in Proc. FCT 2015. URL: http://arxiv.org/abs/
1410.1042.

11 Stéphane Demri. On selective unboundedness of VASS. Journal of Computer and System
Sciences, 79(5):689–713, 2013. doi:10.1016/j.jcss.2013.01.014.

12 Stéphane Demri, Diego Figueira, and M. Praveen. Reasoning about data repetitions with
counter systems. In Proc. LICS 2013, pages 33–42. IEEE Press, 2013. doi:10.1109/LICS.
2013.8.

13 StéPhane Demri, Marcin Jurdziński, Oded Lachish, and Ranko Lazić. The covering and
boundedness problems for branching vector addition systems. Journal of Computer and
System Sciences, 79(1):23–38, 2013.

14 Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. Amer. J. of Math., 35(4):413–422, 1913. doi:10.2307/
2370405.

15 Catherine Dufourd, Philippe Schnoebelen, and Petr Jančar. Boundedness of reset P/T
nets. In Proc. ICALP’99, volume 1644 of LNCS, pages 301–310, 1999. doi:10.1007/
3-540-48523-6_27.

16 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackerman-
nian and primitive-recursive bounds with Dickson’s Lemma. In Proc. LICS 2011, pages
269–278. IEEE Press, 2011. doi:10.1109/LICS.2011.39.

17 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I: Completions.
In Proc. STACS 2009, volume 3 of LIPIcs, pages 433–444. LZI, 2009. doi:10.4230/LIPIcs.
STACS.2009.1844.

18 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part II: Complete
WSTS. Logic. Meth. in Comput. Sci., 8(3:28):1–35, 2012. doi:10.2168/LMCS-8(3:28)
2012.

19 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1–2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

20 Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs.
ACM Trans. Prog. Lang. Sys., 34(1):1–48, 2012. doi:10.1145/2160910.2160915.

21 Jean Goubault-Larrecq, Prateek Karandikar, K. Narayan Kumar, and Philippe
Schnoebelen. The ideal approach to computing closed subsets in well-quasi-orderings. In
preparation, 2016.

22 Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri net
languages. In Proc. ICALP 2010, volume 6199 of LNCS, pages 466–477. Springer, 2010.
doi:10.1007/978-3-642-14162-1_39.

23 Graham Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.,
3(2):326–336, 1952. doi:10.1112/plms/s3-2.1.326.

24 Piotr Hofman, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, Sylvain Schmitz, and Patrick
Totzke. Coverability trees for Petri nets with unordered data. In Proc. FoSSaCS 2016,
LNCS. Springer, 2016. To appear.

STACS 2016

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.267
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.267
http://dx.doi.org/10.1007/978-3-662-44522-8_19
http://dx.doi.org/10.1007/978-3-662-44522-8_19
http://arxiv.org/abs/1410.1042
http://arxiv.org/abs/1410.1042
http://dx.doi.org/10.1016/j.jcss.2013.01.014
http://dx.doi.org/10.1109/LICS.2013.8
http://dx.doi.org/10.1109/LICS.2013.8
http://dx.doi.org/10.2307/2370405
http://dx.doi.org/10.2307/2370405
http://dx.doi.org/10.1007/3-540-48523-6_27
http://dx.doi.org/10.1007/3-540-48523-6_27
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1145/2160910.2160915
http://dx.doi.org/10.1007/978-3-642-14162-1_39
http://dx.doi.org/10.1112/plms/s3-2.1.326

1:12 Ideal Decompositions for Vector Addition Systems

25 Paulin Jacobé de Naurois. Coverability in a non functional extension of BVASS. Preprint,
2014. Presented at CiE 2013. URL: https://hal.archives-ouvertes.fr/hal-00947136.

26 Pierre Jullien. Contribution à l’étude des types d’ordres dispersés. Thèse de doctorat,
Université de Marseille, 1969.

27 M. Kabil and M. Pouzet. Une extension d’un théorème de P. Jullien sur les âges de mots.
Theor. Inform. Appl., 26(5):449–482, 1992.

28 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

29 S. Rao Kosaraju. Decidability of reachability in vector addition systems. In Proc. STOC’82,
pages 267–281. ACM, 1982. doi:10.1145/800070.802201.

30 Jean-Luc Lambert. A structure to decide reachability in Petri nets. Theor. Comput. Sci.,
99(1):79–104, 1992. doi:10.1016/0304-3975(92)90173-D.

31 Ranko Lazić. The reachability problem for vector addition systems with a stack is not
elementary. Preprint, 2013. Presented at RP 2012. URL: http://arxiv.org/abs/1310.
1767.

32 Ranko Lazić, Tom Newcomb, Joël Ouaknine, A.W. Roscoe, and James Worrell. Nets with
tokens which carry data. Fund. Inform., 88(3):251–274, 2008.

33 Ranko Lazić and Sylvain Schmitz. The ideal view on Rackoff’s coverability technique.
In Proc. RP 2015, volume 9328 of LNCS, pages 1–13. Springer, 2015. doi:10.1007/
978-3-319-24537-9_8.

34 Ranko Lazić and Sylvain Schmitz. Non-elementary complexities for branching VASS,
MELL, and extensions. ACM Trans. Comput. Logic, 16(3), 2015. doi:10.1145/2733375.

35 Jérôme Leroux. Presburger vector addition systems. In Proc. LICS 2013, pages 23–32.
IEEE Press, 2013. doi:10.1109/LICS.2013.7.

36 Jérôme Leroux, M. Praveen, and Grégoire Sutre. Hyper-Ackermannian bounds for push-
down vector addition systems. In Proc. CSL-LICS 2014. ACM, 2014. doi:10.1145/
2603088.2603146.

37 Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems.
In Proc. LICS 2015, pages 56–67. IEEE Press, 2015. doi:10.1109/LICS.2015.16.

38 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the coverability problem for push-
down vector addition systems in one dimension. In Proc. ICALP 2015, volume 9135 of
LNCS, pages 324–336. Springer, 2015.

39 M.H. Löb and S.S. Wainer. Hierarchies of number-theoretic functions. I. Arch. Math. Logic,
13(1–2):39–51, 1970. doi:10.1007/BF01967649.

40 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proc.
STOC’81, pages 238–246. ACM, 1981. doi:10.1145/800076.802477.

41 E.W. Mayr and A.R. Meyer. The complexity of the finite containment problem for Petri
nets. Journal of the ACM, 28(3):561–576, 1981. doi:10.1145/322261.322271.

42 Kenneth McAloon. Petri nets and large finite sets. Theor. Comput. Sci., 32(1–2):173–183,
1984.

43 Horst Müller. The reachability problem for VAS. In Advances in Petri Nets 1984, volume
188 of LNCS, pages 376–391. Springer, 1985. doi:10.1007/3-540-15204-0_21.

44 Charles Rackoff. The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci., 6(2):223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

45 Christophe Reutenauer. The mathematics of Petri nets. Masson and Prentice, 1990.
46 George S. Sacerdote and Richard L. Tenney. The decidability of the reachability problem

for vector addition systems. In Proc. STOC’77, pages 61–76. ACM, 1977. doi:10.1145/
800105.803396.

47 Sylvain Schmitz. On the computational complexity of dominance links in grammatical
formalisms. In Proc. ACL 2010, pages 514–524. ACL Press, 2010.

https://hal.archives-ouvertes.fr/hal-00947136
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1016/0304-3975(92)90173-D
http://arxiv.org/abs/1310.1767
http://arxiv.org/abs/1310.1767
http://dx.doi.org/10.1007/978-3-319-24537-9_8
http://dx.doi.org/10.1007/978-3-319-24537-9_8
http://dx.doi.org/10.1145/2733375
http://dx.doi.org/10.1109/LICS.2013.7
http://dx.doi.org/10.1145/2603088.2603146
http://dx.doi.org/10.1145/2603088.2603146
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1145/322261.322271
http://dx.doi.org/10.1007/3-540-15204-0_21
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1145/800105.803396
http://dx.doi.org/10.1145/800105.803396

J. Leroux and S. Schmitz 1:13

48 Sylvain Schmitz. Automata column: The complexity of reachability in vector addition
systems. ACM SigLog News, 3(1), 2016. To appear.

49 Kumar Neeraj Verma and Jean Goubault-Larrecq. Karp-Miller trees for a branching
extension of VASS. Disc. Math. and Theor. Comput. Sci., 7(1):217–230, 2005. URL:
http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html.

50 Georg Zetzsche. An approach to computing downward closures. In Proc. ICALP 2015,
volume 9135 of LNCS, pages 440–451. Springer, 2015. doi:10.1007/978-3-662-47666-6_
35.

STACS 2016

http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html
http://dx.doi.org/10.1007/978-3-662-47666-6_35
http://dx.doi.org/10.1007/978-3-662-47666-6_35

	Introduction
	Ideals for Well-Quasi-Orders
	Configuration-Based WQO
	Run-Based WQO
	Conclusion

