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—— Abstract

Data sets that have been collected from multiple sources or extracted from the web or often

highly incomplete and heterogeneous, which makes them hard to process and query. One way
to address this challenge is to use ontologies, which provide a way to assign a semantics to the
data, to enrich it with domain knowledge, and to provide an enriched and uniform vocabulary
for querying. The combination of a traditional database query with an ontology is called an
ontology-mediated query (OMQ). The aim of this talk is to survey fundamental properties of
OMQs such as their complexity, expressive power, descriptive strength, and rewritability into
traditional query languages such as SQL and Datalog. A central observation is that there is a
close and fruitful connection between OMQs and constraint satisfaction problems (CSPs) as well
as related fragments of monadic NP, which puts OMQs into a more general perspective and gives
raise to a number of interesting results.
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1 Description Logic and Ontologies

Description logics (DLs) are a widely known family of knowledge representation formalisms
that originated in the 1980s and are now popular as ontology languages; a slightly outdated
though still useful overview is given in the DL handbook [6]. From a logic perspective, DLs
are best viewed as decidable fragments of first-order logic (FO), some of which are variants of
modal logic while others are more closely related to Datalog-like rule languages. DLs come
with their own syntax, which involves using logical quantifier symbols in a non-standard
way (actually in the same way in which diamonds and boxes are used in modal logic). As
a basic example, we introduce the description logic ALC originating from [37].} Tts syntax
is defined in two steps. In the first step, one inductively defines a set of logical formulas
called concepts and in the second step, concepts are put into relation with each other in a
logical theory called a T'Box. We fix two sets of symbols beforehand. A set of concept names
which are denoted with A and B and correspond to monadic predicates in FO; and a set
of role names which are denoted with » and correspond to dyadic predicates. Predicates of

* This work was partially supported by the ERC Consolidator Grant 647289 (CODA). The material
surveyed in this text is mostly taken from [9], which is joint work with Meghyn Bienvenu, Balder ten
Cate, and Frank Wolter.

b ALC stands for Attributive concept Language with Complementation, a largely historic name.
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higher (or lower) arity are not included in most DLs. The following table lists the concept
constructors of ALC along with their FO translation:?

A = A(x) cCnD = C(x)AND(z) Ir.C = Fy(r(z,y) AC(y))
-C = -C(z) cCuD = C(x)VD(x) vr.C = VYy(r(z,y) — Cly))

where C and D range over (potentially compound) concepts. Note that every concept
translates into an equivalent FO formula with one free variable. As in modal logic (and unlike
in FO), monadic and dyadic predicates are used in a non-interchangeable way in the syntax.
In a sense, DLs have a strong focus on monadic predicates and on formulas with one free
variable while dyadic predicates only help to define such formulas. In fact, the connection to
CSPs discussed in Section 4 rests on that setup in an essential way. The focus on monadic
predicates came from application demands, where it is most important to describe classes
of objects with similar properties. As an example, let us assume that we want to capture
knowledge about the domain of traveling. We can use an ALC concept to describe the class
of hotels in Orléans that got a high rating or are close to the STACS2016 venue:

Hotel M Jlocation.Orleans M (Jranking.High L JcloseTo.UniversityCampus).

While concepts are used to describe classes such as the one above, TBoxes interrelate
these classes and in this way formalize the knowledge of an application domain and give a
semantics to the predicate symbols used. In ALC, a TBox is simply a finite set of concept
inclusions C T D, where both C' and D are ALC concepts. While concepts translate into FO
formulas with one free variable, a concept inclusion C C D translates into the FO sentence
Vz (C(x) — D(z)) and a TBox translates into the conjunction of (the FO translations) of
the concept inclusions contained in it. For example, the following ALC TBox describes some
basic knowledge about the traveling domain:

Airlline C BudgetAirline LI RegularAirline
BudgetAirline C —RegularAirline
AirTicket C dissuedBy.Airline
AirTicket M JdissuedBy.BudgetAirline C —Jclass.Business

The above TBox is typical for a DL TBox in that it mainly concentrates on describing
properties of classes important for the application domain such as Airline and AirTicket. This
is again the focus on monadic predicates mentioned above.

The name TBox stems from the area of knowledge representation and DLs where,
historically, it stands for “terminological box”. In more modern terms, TBoxes are often
called ontologies [25]. Omntologies have applications in data access as described in more
detail in Section 2 and are also used to produce standardized vocabularies. The latter
is particularly important in genetics and biology where the terminology is very extensive
and in medicine where there is a need to establish a standardized vocabuary for data
exchange and accounting. Several hundred ontologies from the biomedical domain have
been collected in the BioPortal maintained by the National Centre for Biomedical Ontology,
see http://www.bioontology.org/. In these areas, ontologies often aim to be of general
purpose and can contain up to several hundred thousand classes, as in the case of the
SNOMED CT healthcare ontology which is developed and maintained by the International
Health Terminology Standards Development Organisation [38]. In contrast, ontologies used

2 The translation is actually into the two-variable guarded fragment of FO.
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for data access are often custom tailored towards a particular application and tend to be
smaller in size. Ontologies also play an important role in the semantic web, which has led
to their standardization as the OWL family of web ontology languages by the World Wide
Web committee (W3C). The first version of the OWL recommendation has been released in
2004, followed by the OWL 2 recommendation in 2012 [34]. OWL 2 is a collection of five
languages, four of which are DLs. It comes with a variety of more “web friendly” syntaxes
based, e.g., on XML and RDF. A large collection of tools for OWL ontologies is available
including ontology editors, APIs, logical reasoners, and so on.

From a theoretical perspective, bisimulation is an important tool to understand the
expressive power of the description logic ALC. In fact, ALC concepts are a notational variant
of formulas in the modal logic K: simply replace “M” with “A”, “U” with “V”, “3r.” with
Or, and “Vr.” with OJ,, and read concept names as propositional letters. ALC concepts thus
inherit the well-known relation between K and bisimulation, manifested e.g. in van Benthem’s
theorem [22]. TBoxes add a “global” flavour in the sense that the FO translation of concept
inclusions universally quantifies over all elements of the universe. This gives raise to the
following variation of van Benthem’s theorem, which precisely characterizes the expressive
power of ALC TBoxes within FO.

We refer to FO without function symbols and constants and with only monadic and
dyadic predicates, which we identify with concept and role names, respectively. We say that
a relational structure 2l is globally bisimilar to a relational structure As if for every d; in the
universe of 2y, there is a ds in the universe of 25 such that there is a bisimulation between
2, and A5 that related dy with da, and vice versa. Further, we say that an FO sentence ¢ is
invariant under global bisimulation if for all relational structures 21,2l such that 2, = ¢
and 2y is globally bisimilar to 2y, we have s | .

» Theorem 1 ([29]). An FO sentence ¢ is equivalent to an ALC TBox iff ¢ is preserved
under global bisimulation and under disjoint union.

The description logic ALC presented here is a bit too simple and inexpressive to be useful
in many applications. In fact, the languages of the OWL 2 family include a wealth of
additional expressive means, selected such that satisfiability (and several other relevant
reasoning problems) are still decidable, but the expressive power is more satisfactory. In the
literature, a large number of decription logics have been considered that balance expressive
power and computational complexity in different ways. Although many of them do not admit
characterizations as clean as Theorem 1, there are often intimiate relationships with suitably
modified notions of bisimulation [29]. It should also be mentioned that several widely-used
DLs such as ££, DL-Lite, and their extensions do not include negation, disjunction, and
universal quantification [5, 17]. Rather than to modal logic, these languages are more closely
related to Datalog and its extension with existential quantification in the rule heads, known
as tuple-generating dependencies, existential rules, and Datalog® [14, 33].

2  Ontology-Mediated Queries

Using DL ontologies for data access is a very active branch of research, see for example
[8, 16, 26] for some recent surveys. In DLs, data is commonly stored in a so-called ABox
(another historical name, standing for “assertional Box”), which is simply a finite set of
ground facts of the form A(a) and r(a,b) called assertions, where a, b are FO constants. Note
that also ABoxes use only unary and dyadic predicates. This is appropriate for example for
web data represented in RDF [35]. It is less appropriate for data that stems from traditional
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database systems, whose schemas often use relations of high arity; schema mappings have been
proposed as a workaround, see [16]. The data stored in an ABox is considered (potentially)
incomplete, that is, additional assertions except those explicitly stated in the ABox might be
true. This is reflected in the semantics of query answering. Before giving details, we first
introduce some relevant query languages.

A conjunctive query (CQ) takes the form ¢ = Ix p(x,y) with x,y tuples of variables and
¢ a conjunction of atoms of the form A(x) and r(x,y) that uses only variables from xUy. The
variables in x are called answer variables, the arity of g is the length of x, and ¢ is Boolean
if it has arity zero. A union of conjunctive queries (UCQ) takes the form ¢; V - -V g where
q1,- -, qr are CQs with the same answer variables. An atomic query (AQ) is a conjunctive
query of the form A(z) and a Boolean atomic query (BAQ) is a conjunctive query of the
form 3z A(x).

As an example, consider the ABox

AirTicket(offerl2) class(offer12,j6) BusinessClass(j6),

the TBox given above, and the query ¢ = Jy Ticket(x) A issuedBy(z,y) A RegularAirline(y)
asking to return all tickets issued by a regular airline. The domain knowledge in the TBox
adds additional facts to the data such as that the ticket named offerl2 is issued by some
airline, and that this airline cannot be a budget airline, thus must be a regular airline, which
allows to return offerl2 as an answer to the query.

A (finite or infinite) set of assertions can be viewed as a relational structure in an obvious
way. A relational structure 2( is a model of an ABox A if it can be obtained from A4 by
extending it with additional assertions, possibly involving additional constants. 2 is a model
of a TBox 7 is it satisfies (the FO translations of) all concept inclusions in 7. A tuple of
constants a is an answer to a query ¢ in 20 if 2 = g[a] in the standard sense of FO logic.
Moreover, a is a certain answer to ¢ in an ABox A given a TBox 7 if a is an answer to ¢ in
all models of A and 7. In the above example, offerl2 is a certain answer.

An ontology mediated query (OMQ) is a triple (7,3, q) where T is a TBox, ¥ a data
signature (that is, a set of concept and role names that can occur in the ABox), and ¢ an
actual query such as a CQ or an AQ. Note that 7 might introduce symbols that do not occur
in the data, in this way enriching the vocabulary available for formulating the query ¢. An
OMQ (7,3, q) is Boolean if g is. We use (£, Q) to denote the OMQ language which consists
of all OMQs (T, %, q) with T formulated in the DL £ and ¢ formulated in the query language
Q. The most common choices for @ are AQs, CQs, and UCQs, giving raise for example to
the OMQ languages (ALC, AQ) and (ALC,CQ). BAQs are somewhat less common, but, as
we will see, constitute very natural cases when establishing the connection between OMQs
and CSPs.

Given the exposition above, it is natural to ask in which way adding an ontology to a
database query affects the complexity of query answering, and how the expressive power
of OMQs relates to the expressive power of more standard database query languages. For
simplicity, we will mostly concentrate on Boolean OMQs. As in the case of conventional
databases, there are several complexity measures that one might study. In particular,
combined complexity considers both the ABox and the OMQ as an input while data
complexity assumes the OMQ to be fixed and considers only the ABox to be the input. Since
OMQs tend to be small compared to the actual data,? data complexity is often viewed as the

3 Very large ontologies such as SNOMED CT clearly constitute an exception and suggest other complexity
measures such as treating both the ABox and the TBox as an input, but not the actual query.
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more natural measure. It is not hard to see that there are OMQs that are CONP-complete
in data complexity. For example, the following OMQ encodes non-3-colorability:

T={TCRUGUB, RU3IPRCD, GUIFGLCD, BUIrBL D}

Y ={r}
g = 3z D(x).

Here, T is an abbreviation for a tautology such as ALI—A and the concept name D signals a
defect. Recall that, without ontologies, the data complexity of FO queries such as CQs and
UCQs is extremely low, namely in ACy. By adding ontologies, we have thus transitioned
from highly efficient to intractable. This seems unacceptable, but rarely causes unsolvable
problems in practice because real-world ontologies do not encode combinatorial problems
such as 3-colorability. But how to separate the tractable cases from the intractable ones in a
theoretically clean way? A brute-force way is to replace ALC with a very restricted ontology
language such as the DLs ££ and DL-Lite mentioned above, resulting in PTIME-completeness
in data complexity. While this is acceptable for some applications, it is unacceptable for
others where negation and disjunction are needed for proper modeling, though typically in a
harmless way. It is tempting but seems impossible to charaterize what “harmless” means in a
syntactic way. To achieve maximum flexibility and to circumvent syntactic characterizations,
a non-uniform approach was advocated in [30] whose aim is to classify the exact complexity
of every OMQ within a given OMQ language.

3 Constraint Satisfaction Problems and MMSNP

There is an interesting connection between OMQs and constraint satisfaction problems
(CSP) which puts OMQs into a more general perspective and allows to obtain a number
of interesting results regarding their expressive power and (non-uniform) complexity. This
connection also extends in a very natural way to the logical generalization MMSNP of CSPs
introduced in a seminal paper of Feder and Vardi [19], and it provides new motivation for
studying this logic. In this section, we briefly introduce CSPs and MMSNP.

There are various equivalent definitions of CSPs [36]. We choose here to define them
in terms of homomorphisms between relational structures. A template is a finite relational
structure in some signature ¥; in contrast to the previous sections, the arity of predicates is
unrestricted. Each template T defines the class of finite relational E-structures CSP(T") =
{S8| S — T} where S — T means that there is a homomorphism from S to T'. The constraint
satisfaction problem for template T is to decide, given a finite relational Y-structure S,
whether S € CSP(T). It is easy to see that every CSP is in NP and that there are CSPs
that are NP-complete. An example is CSP(K3) where K3 is the 3-clique and ¥ contains
only a single dyadic predicate r which represents edges in graphs; note that an undirected
graph S is in CSP(K(3) if and only if S is 3-colorable. Additional NP-complete problems
that can be presented as CSPs include 3-satisfiability and integer programming on finite
domains. Other NP-complete problems such as Hamilton cycle cannot be presented as CSPs
because the class of their “yes”-instances is not closed under homomorphic pre-images. Of
course, there are also CSPs of lower complexity such as CSP(K3), which is 2-colorability and
thus PTIME-complete.

Feder and Vardi have asked for a complete classification of the complexity of all CSPs, in
particular for a precise delineation of the CSPs that can be solved in PTIME from those that
are NP-complete [19]. They have conjectured that a transparent such delineation is possible
and that there is a dichotomy between PTIME and NP for CSPs, that is, that every CSP is
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in PTIME or NP-hard, unlike the NP-intermediate problems whose existence is established
by Ladner’s theorem [27]. While the general case is still open, a lot of progress has been
made and the dichotomy conjecture has been confirmed for special cases such as undirected
graphs [24] and for oriented cycles [18]. To connect the dichotomy question with the field of
descriptive complexity, Feder and Vardi identified a fragment of monadic NP called MMSNP
(for “monotone monadic strict NP”) that corresponds rather closely to CSPs. A sentence of
MMSNP takes the form

X5 - 3AX Ve - Vo, @

where ¢ is a quantifier- and equality-free FO formula in which every atom R(x) with
R ¢ {Xy,...,X,} occurs only with negative polarity. For example, CSP(K3) is equivalent
to the MMSNP formula

dR3IG dBVx Vs (R(.’L‘l) G(.%‘l) \/B(xl))/\
(

V
—(R(z1) Ar(z1,22) A R(z2)) A
—(G(z1) Ar(z1,22) A G(x2)) A
—(B(x1) Ar(zy, z2) A B(x2))

where r is again the dyadic edge relation in input graphs. While MMSNP is more expressive
than CSP (with non-monochromatic triangle? being a witnessing problem), a main result of
Feder and Vardi shows that there is a dichotomy between PTIME and NP for CSPs if and
only if there is such a dichotomy for MMSNP. Thus, MMSNP can be viewed as a well-behaved
extension of CSPs. There are several seemingly minor generalizations of MMSNP which
destroy this property and result in non-dichotomy.

4  Ontologies, CSP, and MMSNP

The examples given above might already suggest to the reader that there is a connection
between OMQs and CSPs. In fact, CSPs can be viewed as generalized coloring problems
and it is not hard to adapt the OMQ from Section 2 expressing non-3-colorability to any
CSP over a signature with only unary and dyadic predicates. Let T be a template over such
a signature 3. The OMQ Qr = (7,%, q) is defined by setting ¢ = 3z D(x) and including
the following concept inclusions in 7:

TEC Ay U---U A, when the universe of T is U = {dy,...,dy};

AqM B C D when d ¢ BT for all d € U and concept names A € ¥;

Ag, M3r.Ag, when (dy,dz) ¢ rT for all di,dy € U and role names r € X.
Note that Qr is formulated in the OMQ language (ALC, BAQ). It is equivalent to the
complement of T in the sense that for any finite X-structure (equivalently: 3-ABox) A, we
have A 4 T if and only if Qp is true on A. Conversely, it is possible to convert any OMQ @
from (ALC,BAQ) into a CSP whose complement is equivalent to Q. As the template, one
uses a structure that is similar to the structures emerging from filtration and type elimination
constructions for modal and description logics [10]. In particular, 1-types are used as elements
of the template, and this is sufficient only because of the essentially monadic nature of DLs.

We use coCSP to denote the class of complements of CSPs and likewise for coMMSNP.
The next result yields a strong connection between OMQs and the CSP world.

4 The class of all undirected graphs whose nodes can be colored black and white such that neither the
all-white triangle nor the all-black triangle admits a homormophism into the colored graph.
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» Theorem 2 ([9]). The following have the same expressive power:
1. (ALC, BAQ) and coCSP;
2. (ALC,UCQ) and coMMSNP.

Theorem 2 can be seen as clarifying the descriptive complexity of the fundamental OMQ
languages (ALC,BAQ) and (ALC,UCQ). It also has immediate consequences for non-
uniform data complexity: classifying the complexity of all OMQs from these OMQ languages
is equivalent to classifying the complexity of CSPs with only unary and dyadic predicates. It
is known that there is a dichotomy between PTIME and NP for such CSPs if and only if there
is such a dichotomy for unrestricted CSPs [19]. Consequently, the mentioned OMQ languages
have a dichotomy between PTIME and CONP if and only if the Feder-Vardi conjecture holds.
Other results from CSP research carry over as well. Before we proceed with harvesting the
fruits of Theorem 2, we give some remarks on extensions and variations of the theorem, all
substantiated in [9]:

the theorem also provides insight on the expressive power of OMQs from the perspective of
more traditional database query languages; in fact, coMMSNP can be seen as a notational
variant of monadic disjunctive Datalog, which thus has the same expressive power as
(ALC,UCQ);

ALC can be replaced with several other standard description logics such as ELU, ALCT
and SHZ, without invalidating the theorem;

there are some standard features of DLs whose addition to ALC breaks Theorem 2, for
example: (1) if ALC is extended with forms of counting such as funtional roles or number
restrictions, then the resulting class of OMQs provably has no dichotomy between PTIME
and CONP; (2) the extension of ALC with transitive roles increases the expressive power
beyond coCSP/coMMSNP, but it is not known whether the dichotomy holds or fails;

while the equivalences given in Theorem 2 are effective, there are substantial differences
in succinctness; whereas the translation from coCSP/coMMSNP to OMQs is polynomial,
the converse translation is exponential and must be superpolynomial unless EXPTIME
C coNP/poLy; for OMQs based on the mild extension ALCZ of ALC, only a double
exponential translation to coCSP/coMMSNP is known;

argueably, the practically most important query languages are AQs and CQs; OMQs

based on AQs correspond to a slightly generalized (and well-understood) form of CSPs

with multiple templates and a single constant symbol. There is indeed no known natural

counterpart to OMQs based on conjunctive queries on the CSP/MMSNP side.
An important and very active topic of OMQ research is to rewrite OMQs into equivalent
queries that are formulated in traditional database query languages, in this way enabling the
use of conventional database systems for efficient OMQ answering. Particularly important
target query languages include FO (aka SQL) and Datalog. Rewriting into these languages
is not always possible, witnessed for example by the OMQ from Section 2 that expresses
non-3-colorability, which can be expressed neither in FO nor in Datalog [1]. However, the
simple structure of real-world ontologies gives hope that rewriting will be possible in many
practically relevant cases, and there is experimental evidence supporting this hope [23, 39, 40].
Ideally, one would like to have an approach for rewritings OMQs that is complete in the
sense that it finds a (preferably small and simple) rewriting if there is one and otherwise
reports non-existance. For OMQ languages such as (ALC,AQ) and (ALC,UCQ), this is
non-trivial to attain. Interesting initial results can be carried over from the CSP world.

It is known that FO-definability and Datalog-definability of coCSPs are decidable [28, 7,
21]. These results can be lifted to multi-template CSPs with a single constant symbol [9].
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Theorem 2 and its adaptation to (ALC, AQ) thus yields the upper bounds in the following
theorem; the lower bounds are established by reductions from a tiling problem.

» Theorem 3 ([9]). In (ALC, BAQ) and (ALC, AQ), FO-rewritability and Datalog-rewritability
are decidable and NEXPTIME-complete.

In principle, the techniques in [28] also allow the construction of concrete FO-rewritings,
and the result from [7] that Datalog-definability of coCSPs implies definability by Datalog
programs of width three together with the canonical Datalog programs constructed by
Feder and Vardi in [19] give a way to construct concrete Datalog-rewritings. However,
naively applying such approaches will hardly be practical. More insight into the shape and
construction of rewritings might be gained from the theory of obstructions, which have
received significant attention in the CSP world.

A set of relational structures I' is an obstruction set for a relational structure T' (all in
signature X) if for all finite X-structures S, we have S 4 T if and only if O — S for some
O € T'. Obstructions are important because if an OMQ @ is equivalent to the complement
of CSP(T') and T is an obstruction set of 7', then \/,.pqo is a (potentially infinitary)
rewriting of @ where go is the Boolean CQ whose graph is O. Therefore, the CSP result
that FO-definability of coCSP(T') implies the existence of finite set of finite tree-shaped
obstructions for T [4, 28] translates into the OMQ result that any FO-rewritable OMQ
has an FO-rewriting which is a UCQ that consists of tree-shaped CQs. Such results can
potentially be used to guide the design of algorithm that construct rewritings and to study the
succinctness of rewritings. Many other results about obstructions are available. For example,
Datalog-rewritability is related to the existence of (an infinite set of) obstructions of bounded
treewidth [19]. It is interesting to note that allowing answer variables in OMQs (which is
roughly the same as extending CSPs with constants) changes the shape of obstructions in
non-trivial ways, see [2, 9].

Theorem 3 only mentions atomic queries, but neither CQs nor UCQs. In fact, FO-
definability and Datalog-definability of the complements of MMSNP sentences does not seem
to have been studied in the CSP literature. We have recently observed that the problem is
harder than for CSPs.

» Theorem 4 ([13]). In (ALC,CQ) and in coMMSNP, FO-rewritability and Datalog-
rewritability are 2NEXPTIME-hard.

In very recent (and yet unpublished) work with Cristina Feier, we were able to show that FO-
rewritability and monadic Datalog rewritability are decidable for (ALC, CQ) and coMMSNP,
with a 2NEXPTIME upper bound.

5 Summary

The connection between OMQs and CSPs brings interesting new results and techniques
for OMQs. It also provides additional motivation for studying CSPs and underlines the
importance of MMSNP which, despite having been the subject of some very interesting
studiessuch as [32, 11, 12], has so far received much less attention than CSP. The motivation
provided by the OMQ connection does not even stop at MMSNP. Some natural OMQ
languages such as (GF, UCQ) with GF denoting the guarded fragment of FO have the same
expressive power as an extension of MMSNP known as MMSNPs or GMSNP. Intuititively, the
transition from MMSNP to GMSNP corresponds to replacing monadicity with guardedness,
which increases expressive power [9]. Very little is known about the computational properties
of this extended language.
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There are other classes of database problems that are potentially quite closely connected to

CSPs and related formalisms. In principle, it is interesting to consider the CSP connection for
all querying problems that are, implicitly or explicitly, based on a certain answers semantics.

One example is view-based query processing, for which a CSP connection has been established
in [15]. Another one is consistent query answering (CQA), where a query is answered over a
set of databases that emerges from repairing a given database which violates its integrity
constraints [3]. First observations on the connection between CSP and CQA have been made

in [20, 31].
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