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—— Abstract

The quantitative verification of Probabilistic Automata (PA) is undecidable in general. Unary
PA are a simpler model where the choice of action is fixed. Still, the quantitative verification
problem is open and known to be as hard as Skolem’s problem, a problem on linear recurrence
sequences, whose decidability is open for at least 40 years. In this paper, we approach this
problem by studying the languages generated by unary PAs (as defined below), whose regularity
would entail the decidability of quantitative verification.

Given an initial distribution, we represent the trajectory of a unary PA over time as an
infinite word over a finite alphabet, where the nt” letter represents a probability range after
n steps. We extend this to a language of trajectories (a set of words), one trajectory for each
initial distribution from a (possibly infinite) set. We show that if the eigenvalues of the transition
matrix associated with the unary PA are all distinct positive real numbers, then the language
is effectively regular. Further, we show that this result is at the boundary of regularity, as non-
regular languages can be generated when the restrictions are even slightly relaxed. The regular
representation of the language allows us to reason about more general properties, e.g., robustness
of a regular property in a neighbourhood around a given distribution.
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1 Introduction

Markov decision processes (MDPs for short) are a standard model for describing probabilistic
systems with nondeterminism. The system or controller has a strategy according to which
it chooses an action at every step, which is then performed according to a probability
distribution defined over the set of possible resultant states. The usual question is whether
some property (e.g. reaching a set of Goal states) can be achieved with probability at least
some threshold ~.

In many interesting settings, the controller cannot observe the state in which it operates
or only has partial information regarding the state (Partially Observable MDPs, POMDPs).
Probabilistic automata (PAs for short) [21, 20] form the subclass of POMDPs where the
controller cannot observe anything. The problem of whether there is a strategy to reach Goal
with probability at least a threshold 7 (also called a cut-point) is already undecidable [5].
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Even approximating this probability has been shown undecidable in PAs [13]. In fact,
deciding whether there exists a sequence of strategies with probability arbitrarily close to
v =1 is already undecidable [9], and only very restricted subclasses are known to ensure
decidability [8, 7].

A line of work, which we follow, is to consider unary PAs [6, 22], where the alphabet has
a single letter. That is, there is a unique strategy, and the model is essentially a Markov
chain. Surprisingly, the ‘simple’ problem of whether there exists a finite number of steps
after which the probability to be in Goal is higher than the threshold v € (0,1) is open
and has recently been shown [3] to be as hard as the so-called Skolem’s problem, which is a
long-standing open problem on linear recurrence sequences [14, 12, 16]. One way to tackle
the problem is to approximate it, asking whether for all ¢ there exists a number of steps
n. after which the probability to be in Goal is at least v — €. The decidability and precise
complexity of this problem has been explored in [6]. A more general approximation scheme,
valid for much more general questions which can be expressed in some LTL logic, has also
been tackled by generating a regular language of approzimated behaviors [1].

In this paper, we study classes for which the language of ezact behaviors is (w-)regular,
allowing for the exact resolution of any regular question (e. g. checking any LTLz formula
[1, 2]). We define the trajectory from a given initial distribution as an (infinite) word over
the alphabet {4, B}. The n'" letter of a trajectory being A (for Above, respectively, B for
Below) represents that after n steps the probability to be in Goal is greater than or equal to
(respectively lesser than) the threshold «. Further, we consider the language of a unary PA
as the set of trajectories (words) ranging over a (possibly infinite) set of initial distributions.
Thus, we can answer questions such as: does there exist a trajectory from the set of initial
distributions satisfying a regular property or do all trajectories satisfy it. We can also tackle
more complicated questions such as robustness wrt. a given initial distribution d;,;:: does a
regular property hold for all initial distributions “around” §;,¢-

As motivation, consider a population of yeast under osmotic stress [15]. The stress level
of the population can be studied through a protein which can be marked (by a chemical
reagent). For the sake of illustration, consider the following simplistic model of a Markov
Chain Myeqs¢ with the protein being in 3 different discrete states (namely the concentration of
the protein being high (state 1), medium (state 2) and low (state 3)). The transition matrix,
also denoted Myeqst, gives the proportion of yeast moving from one protein concentration
level to another one, in one time step (say, 15 seconds):

08 0.1 02
Myeast = [ 0.1 0.8 0.1
0.1 01 07

For instance, 20% of the yeast with low protein concentration will have high protein concen-
tration at the next time step. The marker can be observed optically when the concentration
of the protein is high. We know that the original proportion of yeast in state 1 is 1/3 (by
counting the marked yeast population), but we are unsure of the mix between low and
medium. The initial set of distributions is thus Initye.s; = {(1/3,2,2/3 — ) | 0 < x < 2/3}.
The language of My.qs+ Will tell us how the population evolves wrt the number of marked
yeast being above or below the threshold yyeqst = 5/12, depending on the initial distribution
in Inityecqst. Now, suppose an experiment with yeasts reveals that there are at first less than
5/12 of marked yeast (i.e. with high concentration of proteins), then more than 5/12 of
marked yeast, and eventually less than 5/12 of marked yeasts. That is, the trajectory is B
for a while, then A for a while, then it stabilises at B. Let us call this property as (Pyeqst)



S. Akshay, B. Genest, B. Karelovic, and N. Vyas

Table 1 A summary of the results in this paper.

Property of eigenvalues of Markov chain ‘ Regular language ‘ Ultimately periodic traj. ‘

Distinct, positive real numbers v (Thm.4) v (from below)
Distinct, roots of real numbers x (Thm.10) v (Prop.1)
Distinct x (from above) x ([2], Thm.3)

(note that this is a regular property). We are interested in checking whether our simplistic
model exhibits at least one trajectory with the property (Pyeqst), and if yes, the range of
initial values generating trajectories with this property.

Our contributions as depicted in table 1 are the following: if the eigenvalues of the
transition (row-stochastic) matrix associated with the unary PA are distinct roots of real
numbers, then any trajectory from a given initial distribution is ultimately periodic. This is
tight, in the sense that, there are examples of trajectories which are not ultimately periodic
even for unary PAs with 3 states [2, 22] (with some eigenvalue not root of any real number).
Our main result is that if, further, the eigenvalues are distinct positive real numbers, then the
language generated by a unary PA starting from a convex polytope of initial distributions is
effectively reqular. Surprisingly, this result is also tight: there exist unary PA with eigenvalues
being distinct roots of real numbers (starting from a convex initial set) which generate a
non-regular language, as we show in Section 6. Due to space constraints, we only present the
main ideas in this paper. Full proofs and details can be found in the technical report at [4].

The proof of our main regularity result is surprisingly hard to obtain. First, for each
trajectory p, one obtains easily a number of steps n, after which the trajectory is constant.
However, there is in general no bound on n, uniform over all p in the language. Thus, while
every trajectory is simple to describe, the language turns out to be in general much more
complex. We prove that the language does have a representation as a finite union of languages
of the form wA*A* B* A* B*A* - - . B* A¥ with a bounded number of alternations. Our method
computes effectively the language of Myeqst, as Myeqs: has positive real eigenvalues, answering
the question whether there exists an initial trajectory s.t. property (Pyeqst) holds.

2 Preliminaries and definitions

» Definition 1. A Probabilistic Automaton (PA) A is a tuple (@, X, (M, )sex, Goal), where
(@ is a finite set of states, 3 is a finite alphabet, Goal C @, and M, is the |Q| X |Q)| transition
stochastic matrix for each letter o € ¥. The PA is called unary PA (uPA for short) if |X| = 1.

For a unary PA A on alphabet {c}, there is a unique transition matrix M = M, of
@ x Q with value in [0, 1]. For all z € Q, we have >° o M(z,y) = 1. In other words, M is
the Markov chain on set of states () associated with A.

A distribution ¢ over @ is a function ¢ : @ — [0,1] such that 3 ., d(¢q) = 1. Given M as-
sociated with a uPA, we denote by M4 the distribution given by Md(q) = Zq’EQ 0(¢"YM(¢',q)
for all ¢ € Q. Notice that, considering 6 and MJ as row-vectors, this corresponds to per-
forming the matrix multiplication. That is, we consider M as a transformer of probabilities,
as in [11, 1]: (M0)(q) represents exactly the probability to be in g after applying M once,
knowing that the initial distribution is §. Inductively, (M™0)(q) represents the probability to
be in ¢ after applying n times M, knowing that the initial distribution is §. We now review
literature relating several problems on uPA with the Skolem’s problem, named after the
Skolem-Mahler-Lech Theorem [12],[14].

8:3
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2.1 Relation with the Skolem problem

We start by defining three basic problems which have been studied extensively in different
contexts. Given an initial distribution §; and a uPA A with Matrix M, target states Goal
and threshold ~:

Existence problem: Does there exist n € N such that the probability to be in Goal after n
iterations of M from do is v (i.e., Y- cqoa(M™00)(q) =7)?

Positivity problem: For all n € N is the probability to be in Goal after n iterations of M
from do at least v (i.e., D0 cqou(M™d0)(q) > 7)?

Ultimate Positivity problem: Does there exist n € N s.t., for all m > n, the probability to
be in Goal after m iterations of M from 4 is at least v (i.e., D cqou(M™d0)(q) = 7)?

Note that all these problems are defined from a fix initial distribution §y. These problems
for PAs are specific instances of problems over general recurrence sequences, that have been
extensively studied [16, 10]. It turns out that the existence for the special PA case is as hard
as the existence (Skolem) problem over general recurrence sequences as shown in [3].

» Theorem 2 ([3, 10]). For general unary PAs, the existence and positivity are as hard as
the Skolem’s problem.

The positivity result comes from the interreducibility of Skolem’s problem and the
positivity problem for general recurrence sequences [10]. The decidability of Skolem has
been open for 40 years, and it has been shown that solving positivity, ultimate positivity or
existence for general uPAs even for a small number of states (<50, depending on the problem
considered) would entail major breakthroughs in diophantine approximations [18].

2.2 Simple unary PAs

In order to obtain decidability, we will consider restrictions over the matrix M associated
with the uPA. The first restriction, fairly standard, is that M has distinct eigenvalues, which
makes M diagonalizable.

» Definition 3. A stochastic matrix is simple if all its eigenvalues are distinct. A uPA is
simple if its associated transition matrix is.

Some decidability results [19, 17] have been proved in the case of distinct eigenvalues for
variants of the Skolem, which implies the following for simple uPAs:

» Theorem 4.
For simple unary PAs, ultimate positivity is decidable [19].
For simple unary PAs with at most 9 states, positivity is decidable [17].

We will consider the simple uPA restriction. Notice that the decidability restrictions in
Theorem 4 for these two closely related problems have led to two different papers [17],[19]
in the same conference, using different techniques. As we want to answer in a uniform
way any regular question (subsuming among others the above three problems and regular
properties such as (Pyeqst)) for uPAs of all sizes, we will later impose more restrictions. We
start with the simple well-known observation that a simple unary PA has a unique stationary
distribution.



S. Akshay, B. Genest, B. Karelovic, and N. Vyas

» Lemma 5. Let M be a simple stochastic matriz. Then there exists a unique distribution
6stat such that M(;stat = 6stat-

Proof. We give a sketch of proof here. We will later get an analytical explanation of this
result. We have M¢ = ¢ iff (M —Id)0 = 0. As M is diagonalizable and 1 is a eigenvalue of M
of multiplicity 1, we have Ker(M — Id) is of dimension 1. The intersection of distributions
and of Ker(M — Id) is of dimension 0, that is, it is a single point. <

As usual with PAs, we consider the probability to be in the set of states Goal, that
is quGoal(Mné)(q). We consider only one threshold -, for simplicity. In fact, the case
of multiple thresholds reduces to this case, since the behavior is non-trivial for only one

threshold, namely vqsq¢ = quGoal Ostat(q) (see [4] for details).

2.3 Trajectories and ultimate periodicity

We want to know whether the n'” distribution M™§ of the trajectory starting in distribution
6 € Init is above the hyperplane defined by > c 5o Tq = 7, L.€., whether -, [M"6](q) >

7. We will write ps(n) = A (Above) for 3 coul

» Definition 6. The trajectory ps = pop1--- € {A, B}* from a distribution ¢ is the infinite
word with p, = ps(n) for all n € N.

We write the eigenvalues of M as po, ..., pr with ||p;|| > ||p;]| for all i < j. Notice that
k 4+ 1 = |Q| the number of states (as the uPA is simple). It is a standard result that all
eigenvalues of Markov chains have modulus at most 1, and at least one eigenvalue is 1. We fix
po = 1. Now, as M is simple, it is also diagonalizable. Thus, there exists a;(d) € C (see [4]
for further details) such that:

k
ps(n) = Aiff > a;(d)p; > (1)
1=0

In the following, we denote us(n) = Zf:o a;(0)p? for all n € N. If ps is (effectively) ultimately
periodic (i.e, of the form uv“), every (omega) regular property, such as existence, positivity
and ultimate positivity is decidable (and are in fact easy to check). Unfortunately, this is
not always the case, even for small simple unary PAs.

» Theorem 7. [2] There exists an initial distribution &g and simple unary PA A with 3
states, and coefficients and threshold in Q, such that ps, is not ultimately periodic.

Proof Sketch. The unary PA is given by: Goal = {1} is the first state, v = % and the
associated matrix My and initial distribution Jq are:

06 0.1 0.3 :
My=103 06 0.1] anddy= [ 1
0.1 0.3 0.6 1

The reason the trajectory is not ultimately periodic follows from the fact that the eigenvalues
of My are 1, rpe’® and rge "% with ro = v/19/10 and 6y = cos~1(4/1/19). <

An easy way to obtain ultimately periodic trajectories is to restrict to eigenvalues v which
are roots of real numbers, that is, there exists n € N\ {0} with v™ € R.

M™6](q) > 7, and ps(n) = B (Below) else.

8:5
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» Proposition 8. Let A be a simple unary PA with eigenvalues (p;)i<m all roots of real
numbers. Then ps is ultimately periodic for all distributions 6. The (ultimate) period of ps
can be chosen as any m € N\ {0} such that p[* is a positive real number for all i < m.

Now, for a finite state (Biichi) automaton B over the alphabet {A, B}, the membership
problem, of whether a given single trajectory ps € L(B), is decidable. As it is easy to obtain
a (small) automaton B for each of the existence, positivity and ultimate positivity problem
such that this problem is true iff ps € £(B), we obtain:

» Proposition 9. Let A be a simple unary PA with eigenvalues all roots of real numbers.
Let 6y be a distribution. Then the existence, positivity and ultimate positivity problems from
initial distribution 6y are decidable.

Note that Propositions 8 and 9 hold even when the matrix associated with the PA is
diagonalizable, but not necessarily simple.

3 Language of a unary PA

Using automata-based methods allows us to consider more complex problems, where the
initial distribution is not fixed. We define the set Init of initial distributions as a convex
polytope, that is the convex hull of a finite number of distributions.

» Definition 10. The language of a unary PA A wrt. the set of initial distributions Init is
L(Init, A) = {ps | € Init} C {A, B}“.

Note that A and B, and the language, depend on the threshold 7. As we assumed this
threshold value to be fixed, the language only depends on A and Init. As A is often clear
from the context, we will often write £(Init) instead of L(Init, A). For the yeast example
M = Myeqst, we have eigenvalues 1;0.7; 0.6:

5/12 5/12 5/12 5/12 5/12 5/12
M-l 13 ) =1(13]);Mm-|-5/12)|=07[-5/12]; M- o |=06[ o0
1/4 1/4 0 0 —5/12 —5/12

We can decompose two initial distributions 61,2 € Inityeqs; on the eigenvector basis:

1/3 5/12 5/12 5/12 1/3 5/12 5/12
1 2 1

Va =13 | +c|=5/12) -2 0 |; [13)=[13]--{ o0

5/12 1/4 0 ~5/12 1/3 1/4 —5/12

Projecting on the first component, we have ps, (n) = A iff %0.7” — %0.6" > 0, that is
ps, = B*A“. Also, ps,(n) = A iff —£0.6" > 0, that is ps, = B“. With the techniques
developed in the following, we can prove more generally that, for all n € N, we can find an €
st., 8 =(1/3 1/3—e 1/3+€)T has trajectory ps = B"A*, and that £(Inityeqst) = B*AYUBY.
Thus, property (Pyeqst), from Introduction, does not hold for every initial distribution.

In general, if £(Init, A) is regular, then any regular question will be decidable. For
instance, if £(Init, A) is regular, then it is decidable whether there exists g € Init such that
the existence problem is true for A, §g. One can also ask whether for a given convex polytope
@, some property (such as positivity) expressed e.g. with LT Lz [1] is true. Taking ¢ in the
interior of @, this corresponds to checking the robustness of the property around 6.

Clearly, simple PA A does not ensure the regularity of £(Init, A) because of Theorem 7
(by choosing Init = {0p} which is a convex polytope). Surprisingly, restricting eigenvalues to
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p=(1/3,0,2/3)

s=(1/3,1/3,0)

Figure 1 Breaking into convex polytopes with constant signs.

be distinct and roots of real numbers does not ensure regularity either (see Section 6). In
the following, we thus take a stronger restriction: we assume that the eigenvalues of M are
distinct and positive real numbers. That is, po =1 > p1 > -+ > pp > 0 with k + 1 = |Q| the
number of states. From Proposition 8, we obtain as corollary that for all §y, we have either
ps, = WA or ps, = wB* for w a finite word of {A, B}*:

» Corollary 11. Let M be a simple (or just diagonalizable) stochastic matriz with positive
real eigenvalues. Then every trajectory ps, is ultimately constant.

However, the language £(Inityecast, Myecast) shows that L£(Init, A) is not always of the simple

form ey, wAY UU, e, wB®, for Wa, Wp two finite sets of finite words over {4, B}*.

Nevertheless, in the next two sections, we succeed in proving the regularity of L£(Init, A),
which is our main result:

» Theorem 12. Let A be a unary PA with distinct positive real eigenvalues, and Init be a
convex polytope of (initial) distributions. Then, L(Init, A) is effectively regular.

Note that the hypotheses of Theorem 12 are decidable for A with rational coefficients.

Indeed, it suffices to use linear algebra to compute the eigenvalues and vectors, and check
whether their complex part is null. Further the proof carries through even when the matrix
of A is diagonalizable (though we tackle just the simple case here). We also show that this

result is tight, i.e., relaxing the hypothesis any further leads to non-regularity (see Section 6).

3.1 Partition of the set Init of initial distributions

Recall that we write us(n) := Zf:o a;(6)p}, where a;(d) are given by Equation (1) from the
previous section. Because the eigenvalues are real numbers, a;(J) is a real number for every i
and 0. Notice that a; is a linear function in 0, that is, a;(«dy + 82) = @a;(61) + Ba;(d2). The
trajectory ps depends crucially on the sign of ag(d), and if ag(d) = 0, on the sign of a1 (9),
etc. First, let L; = {6 | ap(0) = -+ = a;(d) = 0}. This is a vector space (i.e., it is in R¥
and contains the space of distributions over @), as for any vy, vs € RF we have vy, € L;
implies that any linear combination ad; + 8d2 € L; (since a;(v) is linear in v, and the kernel
of a linear function is a vector space).

We will divide the space of distributions into a finite set H of convex polytopes H € H
to keep the sign of each a; constant on each polytope. Each H € H satisfies that for all
e,f € H, for all i < k, we have a;(e),a;(f) do not have different signs (either one is 0, or
both are positive or both are negative). This can be done since a;(v) is continuous (as it is
linear). This is pictorially represented in the left of Figure 1. For instance, we divide Ingtyeqst

8:7
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into three polytopes: {(1/3,4,2/3 —y) |y <1/3} and {(1/3,v,2/3 —y) | 1/3 <y < 5/12}
and {(1/3,4,2/3 —y) | y > 5/12} as for § = (1/3,1/3,1/3) we have ag(d) =1, a1(§) =0
(and a(6) = —1/5) and for § = (1/3,5/12,1/4) we have ao(d) = 1, a1(6) = —1/5, a2(d) = 0.

In general, we can assume that each of H € H is the convex hull of k + 2 points (else
we divide further: this can be done as the space has dimension k + 1). Consider the right
part of Figure 1. Let Init be the convex hull of points e, f, g, h (in three dimensions) and
ap(z) = 0 and as(x) > 0 for all z € {e, f, g, h,t}. Hence the sign of each trajectory ultimately
depends upon aq(z). In the example, a;(g) = a1(h) = 0 while aq(e) > 0 > a1(f). Then there
is a point ¢ between e and f for which a1 () = 0 (in fact, t = |a1(f)|/(Ja1(e)| + |a1(f)])e +
lat (e)|/(Jar(e)] + a1 (f)])f). We have Ly N Init is the convex hull of h,g,t. We break Init
into two convex polytopes, the convex hull of h, g,t, e and the convex hull of h, g,t, f.

Let H € H. We let P be the finite set of (at most k + 2) extremities of H. In particular,
H is the convex hull of P. Now it suffices to show that the language L(H) (taking H as the
initial set of distributions) of each of these convex polytopes H is regular to prove that the
language L(Init) = gy £(H) is regular.

3.2 High level description of the proof

The proof of the regularity of the language £(H) starting from the convex polytope H is
performed as follows. We first prove that there exists a ;4. such that the ultimate language
(after Ny,qq steps) of H is effectively regular using analytical techniques.

» Definition 13. Given N,,.., the ultimate language from a convex polytope H is defined
as LNmer (H) = {v | Fw € {A, B}Nmas wv € L(H)}.

In the next section (Corollary 18), we show that this ultimate language Ez’t"” (H) is
regular, of the form A*B* ... B*A¥Y U A*B* ... A*B¥ with a bounded number of switches
between A and B’s. However, while for each prefix w € {A, B}Vmas the set H,, of initial
distributions in H whose trajectory starts with w is a convex polytope; the language L£(H,,)
from H,, can be complex to represent. It is not in general w[,fx’t"” (H), but a strict subset.

In Section 5 (Lemma 21), we prove that the language L(H') associated with some carefully
defined convex polytope H' C H is a regular language, of the form J,, vy wA'A*B* . ..
B*AY UwA*A*B*--- A*BY for a finite set W. Further, removing H' from H gives rise to
a finite number of convex polytopes with a smaller number of “sign-changes”, as formally
defined in the next section. Hence we can apply the arguments inductively (requiring
potentially to change the N,,,, considered). Finally, the union of these languages gives the

desired regularity characterization for L(H).

4 Ultimate Language

4.1 Limited number of switches

We first show that the ultimate language £ (H) is included into A*B*A*--- A*B* U
A*B*A* ... B*AY for some N,,q. € N, with a limited number of switches between A and B
depending on properties of the set P of extremities of H.

We start by considering the generalisation of a sequence us to a function over positive
reals, and we will abuse the notation us to denote both the sequence and the real function.

» Definition 14. A function of type k& € N is a function of the form u : Ryg — R, with
k

u(x) = Zajpf, where pg > - -+ > pg > 0.
3=0
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Now, let u : R>9 — R be a continuous function. We can associate with function u the
(infinite) word L(u) € {A, B}¥, L(u) = (aga; ...), where for all n € N, a, is defined as
an, = A if u(n) > 0 and a,, = B otherwise. We have easily that ps = L(us). Knowing the
zeros of us and its sign before and after the zeros, defines uniquely the trajectory ps.

For example, let u be such that it has four zeros: u(N —0.04) = u(N+10.3) = u(N+20) =
u(N 4 35) = 0 for some integer N. Assume that u(0) < 0,u(N + 1) > 0,u(N + 11) <
0,u(N + 30) < 0 and u(N + 40) > 0. Thus, by continuity of u, u is strictly negative on
[0, N — 1], strictly positive on [N, N + 10], non-positive on [N + 11, N + 34] and non-negative
on [N + 35,00). Thus the associated trajectory ps = BY A1 B4 A,

Hence, it is important to analyze the zeros of functions us. If the number of zeros is
bounded, then the number of alternations between A’s and B’s in any trajectory ps from
d € H will be bounded. In fact, it is a standard result (which we do not use hence do
not reprove here) that every type k function u has at most k zeros. We now show a more
precise bound on the number of zeros. Namely, for the convex hull H' of a finite set P’ of
distributions in H, the number of alternations between A’s and B’s in H' is limited by the
number of alternations of the sign of the dominant coefficients of the distributions in P’.

Let 2 € N. Fori € {0,...,z}, let u'(x) := ahpt + aip? + - - + a}p}, with po > p1 > pe >
... > pg > 0, representing for instance the functions associated with the z + 1 extremities
of H'. We denote dom(u') the dominant coefficient of u?, that is the smallest integer

j with a} # 0. We reorder (u')icqo,....} such that dom(u’) < dom(u't!) for all i < z.

We denote sign__dom(u') € {+1,—1} as the sign of dom(u’). We will assume, as for H,

that for all 7,7, 7, a§» and aé-' have the same sign. We let Z(u®,--- u*) = |[{i < z—1|
sign__dom(u®) # sign__dom(u'*1)}|. That is, Z(u?,--- ,u?) is the number of switches of sign
between the dominant terms of u! and wt1. We have 0 < Z(uo7 .-+, u?) < z. Notice that
as for dom(u') = dom(u’), we have sign_ dom(u®) = sign_ dom(u’), Z(u®,--- ,u*) does not

depend upon the choice in the ordering of (ui)iE{O,...,z}’ We can now give a bound on the

number of zeros of functions which are convex combinations of u® - - - u?.

» Lemma 15. Let u®---u? be z+1 type k functions. There exists a Npyar € N such that for
all \; € 0,1) with Y-, A; = 1, denoting u(z) = Y_;_, \iu'(z), u(z) has at most Z(u®,--- ,u?)
zeros after Nyae. Further, if u(z) has exactly Z(u°,---  u®) zeros after Nz, then its sign
changes exactly Z(u®,--- ,u®) times (that is, no zero is a local mazimum/minimum,).

In other words, we show that u(z) behaves like a polynomial of degree Z(u®,--- ,u?) (as it
has Z(u®,--- ,u*) dominating terms), although it has degree k > Z(u°,--- ,u?*). In fact, we

prove that for ¢ = dom(u?), the coefficients aépf for all j > ¢ play a negligible role wrt. alp.

z

Let H € H, and P its finite set of extremal points. We can apply Lemma 15 to u?, ..., u?,
the functions associated with the points of P (in decreasing order of dominating coefficient),
and obtain a N,,,;. Now, since P is finite, the trajectories from P are ultimately constant,
hence there exists N, such that for all i <y, the trajectory of u’ is wA* or wB* for some
w € {A, B}Nv. We define Ny to be the maximum of N, and N,,4,. With this bound on the

number of zeros, we deduce the following inclusion for the ultimate language ng (H):

» Corollary 16. Let y = Z(u',...,u*). The ultimate language fo;’ (H)cCy---Cy_1CPU

Cy---Cp Gy for {C;,Cita} = {A,B} for all i < y; and Cy = A iff sign_dom(u) is
positive.

We can have 4 different sequences for Cy ---Cy_;Cy with {Cy, Ci11} = {A, B}, depending

on the first and last letters Cq, C,, (or equivalently, C,, and parity of y which determines Ct).

The proof of our main result on regularity of £L(H) will proceed by induction over the
switching-dimension Z(H) of H which we define as Z(H) = Z(u°,...,u*). Notice that
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we could define the switching dimension for any convex set (not necessarily a polytope)
whenever the sign of a;(d) does not change within the convex set. Finally, we also define
sign__dom(H) = sign__dom(uP).

4.2 Characterization of the Ultimate Language

We now show that the ultimate language of H is exactly Eivlf (H) = A*B*A*..- A*B* U
A*B*A* ... B*A¥, with at most Z(H) switches of signs. We will state the associated technical
Lemma 17 in the more general settings of “faces” as defined below, as it will be useful in the
next section. Let P be the finite set of extremal points of a H. We call (f°,..., f¥) C P
a face of H if Z(v°,... ,v¥) =y = Z(H) for the functions (v°,...,v¥) associated with the
extremal points (fY,..., f¥). Notice that denoting H’ the convex hull of F', we can choose
Ny = Ny (which is not the case for H' an arbitrary polytope included into H).

» Lemma 17. Given a face (f°,...,fY) C P of H with associated functions v', we have,
for all ny,ng,...,n, € N there exist \; € [0,1] with Y, \; = 1, such that denoting v(x) =
Y Avi(z), L(0) = wA™ B™ ... B A“ (for y even) for some prefiz w € {A, B}V#.

That is, for all nq,---n,, one can find a prefix w of size Ny and a point 0 in the convex hull
of el,---e¥, such that ps = wA™ B"2 ... B" A¥ (assuming the correct parity of y). Let H’
be the convex hull of f0,..., f¥. Hence Z(H') = Z(H). Then, the ultimate language of H’
(i.e., the language after prefixes of size Ny associated with y) contains A*B*... B*A“ with
y switches between A and B, which is the converse of Corollary 16. We can thus deduce the
following about the ultimate language:

» Corollary 18. L (H) = L) (H') = C{C5...CEAY UC;Cy ... C)_ B® with

ult ult

{Ci,Cita} ={A, B}.

Proof. We first prove the result for L% (H'). We can apply lemma 17 to H' and lemma

15 to H’. We obtain the first part of the union. Now, let H” C H’ be the convex hull of
el,---,eY (that is excluding €%). Each point 6 in H'\ H” has a trajectory which ends with
A% as dom(us) = dom(v'), and thus sign_dom(us) = sign__dom(v') by construction of H
(and H' C H). Thus the points with trajectory ending with B are in H”, and applying
lemma 15, we know that their ultimate trajectory has at most y — 1 switches. Applying
Lemma 17 to H”, we obtain the second hand of the union. Now, LN (H') C LN! (H), and

LYI(H) C C;C5...C A UCICy ... C;_1 B by Corollary 16. <

ult

However, we cannot immediately conclude that £L(H) is regular. Though N is finite,
computable and there are a finite number of prefixes w of size N, we need to show that
the subset of £ (H) appearing after a given w € {A, B}N# is (effectively) regular. This is
what we do formally in the following section.

5 Regularity of the Language

Let {€°, -+ ,e*} = P the extremal points of H. Let uP the function associated with each
e? € P. We denote y = Z(H) = Z((u”)p<.). We will show the regularity of £(H) using an
induction on Z(H).

For Z(H) = 0, the regularity of L(H) is trivial as all the dominant coefficients have
the same sign. Thus, by Corollary 16, the ultimate language is Li\;f (H) = A¥ and then
the language is L(H) = |J,,cy wA“; or the ultimate language is LY (H) = B* and the
language is L(H) = ey wBY, for a finite set of W C {A, B}V,
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For w € {A, B}V# | consider H,, = {§ € H | ps = wv}, i.e., the language of words which
begin with the prefix w. It is easy to see that H,, C H is a polytope. Hence Z(H,,) < Z(H).
Observe that L(H) = U,ea,py¥n L(Hw). To show the regularity of £L(H), we show the
regularity of £L(H,) for each of the finitely many w € {A, B}V#. For each w € {A, B}"N# |
we have two cases: either Z(H,,) < Z(H); then we apply the induction hypothesis and we
are done. Or else, Z(H,,) = Z(H) = y. In this case, the sketch of proof is as follows:

We show that there exists J such that for all « < y and all 57 > J, we have a point

h; in H,, with trajectory 'ZUO{CQCP) -+ C;_1C¢. This is shown by applying lemma 17

to each face (f°,..., fY) of H and then using convexity arguments and the fact that

Z(Hy,)=Z(H).

Subsequently, denoting H' the convex hull of Y - - hY, we will deduce that L(H') is a

regular language of the form wC{C;C3C5% ---Cr_,C¥,

Partitioning H,, \ H' into a finite set of polytopes, we obtain polytopes of lower switching-

dimensions, which have regular languages by induction.

We conclude since the finite union of these regular languages is a regular language, namely
L(H,y).

We now formalize the above proof sketch in a sequence of lemmas, whose details can be
found in [4]. For all faces F' of H, applying Lemma 17 gives for all j € N, a point g;(F) of
the convex hull of F' with trajectory w;C]CyCl - - - Cy, for some w; € {A, B}N". We now
prove that (g;) converges towards f¥, the point of F' with lowest dominant term.

» Lemma 19. For every face F = (f°,..., f¥) of H, (g;(F))jen converges towards fY as j
tends to infinity.

For all j, we consider F(y, j) the convex hull of {g;(F) | F' is a face of H}. Every point of
F(y, j) has trajectory w'C{C2Cs - - - Cy for some w’ € {4, B}N# | We then show by convexity
that Ho intersects F'(y,j), i.e., it has a point with trajectory w’C{C’gcg O

» Lemma 20. For w € {A, BYN# with Z(H,,) = Z(H), there exists J s.t. for all j > J,
F(y,j) N Hy # 0.

Similarly, for all ¢ < y we can define a polytope F(i,7). All the points in F(i,5) have
trajectory w'C?CyCs - -- C¥ for some w’ € {A, BYN#. We can find a J; and a point h;- € H,
with trajectory wC’beC'g <. C¥ for all i <y and all j > J;. Now, as the number of ¢ < y is
bounded, one can find such a J uniform over all ¢ <y (by taking maximum over all ).
Consider F'(J) the convex hull of F(0,J),...,F(y,J). By convexity, all the points in
F(J) have their n-th letters of trajectory as C; for all n € [Ng + 1--- Ny + J], since
this is true for all points of F(i,J). Hence, the language of H,, N F(J) is included into
wC{CyCs - - Cy U wC{CyCy - - Cy_1, because of the bound on the number of alternations
after Ny of trajectories from points of H (Lemma 15). We show now that we have equality.

» Lemma 21. The language of the convex hull of {hY,..., hY} is exactly
wC{C{C3Cs -+ C,_1Cy U wC{CyC3C5 -+ Cy_2Cy .
Hence the language of H, N F(J) is wC{Cy ---Cy UwCiCy---Cy_ ;.
Next, we note that the set Hy, \ F(J) may not be convex. However, one can partition
H, \ F(J) into a finite number of convex polytopes. Now, let G be a convex polytope in
H, \ F(J). We want to show that Z(G) < Z(H,) = Z(H) = y. Indeed, else, one could
apply Lemma 20 to G,, = G and for some J’ obtain F(i,5) N G # { for any j > J’, which
contradicts G being a convex set in Hy, \ F(J).
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Hence one can compute the language of every G inductively, and each of them is regular.
Finally, this leads to the regularity of £L(H,,) by finite union, and to the regularity of L£(H),
and again by finite union to the regularity of £(Indt). This concludes our proof of the main
regularity result, i.e., Theorem 12.

6 Non-regularity of the symbolic dynamics

In this section, we will prove that symbolic dynamics of uPA can produce non-regular
languages even when eigenvalues of the transition matrix are distinct roots of real numbers.
We prove this by constructing such a uPA and choosing the set of initial distributions carefully.
Consider a uPA A; with 7 states ¢1,...q7, Goal = {g7}, and the following transition matrix:

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
My=1|0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1 8r+3  343r  13+416r  942r 14dr  1—r

512 512 o4 128 ED) 16 7 |

where r = cos(m/8) = ¥ \/2§+2. Eigenvalues of M are 1, §e*/™/2, —Li37/4 and feTm/8,

which are distinct roots of real numbers. We choose v = ZqEGoal Ostat(q) = Ostat(qr) =
Wﬁ)s(%)) (for any other choice of v, the language is regular).

Let § be the initial distribution and M7{'6 be the distribution after n steps of M;. We
consider a basis of eigenvectors such that the eigenvector corresponding to eigenvalue 1 is
the stationary distribution and the remaining eigenvectors are normalized such that the 7t"
component (corresponding to the Goal state) of each of them is 1. This is possible as the

7t component of each eigenvector of M; is non-zero. Now, by eigenvalue decomposition:

K1 onin/2 | —nir/2 H2 n3in /4 —n3ir/4\ | #3  nTix/8 | —nTin/8
MP6(7) = po+ e e 4e + (e +e + e +e
1 ( ) Ho 2n( ) (2\/§)n 4n( )

where pg = v and § written in the eigenvector basis is (1, u1, g1, fi2, o, i3, f3)-

Consider the initial set of distributions Init to be the line segment (P1, P2) where
P1=(1,a,a,b,b,c,c) and P2 = (1,0,0,b,b, ¢, ) in the eigenvector basis, where a = %\7;),
b= 2%, c= m. These values are chosen so that pg dominates over the other terms
in the above equation, which ensures that P1 and P2 correspond to valid distributions in
the standard basis. Note that Init is the set of convex combinations of distributions P1 and

P2. Now, we can show our main theorem of this section.
» Theorem 22. L(Init, A1) is not regular.

Proof sketch. Let L = L(Init, A;). For z,y,z,k € N, we define L* = {w € 3¢ |

T,Y,z
Jw' € L, Vi € Nywy; 1)1, = Wai-1)41 Wh(i—1)4y = W3(i—1)+2> Wh(i—1)4> = W3(i-1)+3)-
That is, for every ajasas... € L, a4z0y0,0545054yCktz - € L’;Mz where x,y,z < k. It
is easy to see that if Lﬁyy,z is non-regular, so is L. Now we can show that Ly%, =
{(ABB)?*(AAB)v+9lmp2.u3)(BAB)Y(BAA)® : y > 0}. As the range of y is [1,00) and
g(p1, pi2, pi3) is a bounded function, hence L3% 4 is not regular. Thus, L is not regular which
completes the proof. <
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7 Conclusion

Though unary Probabilistic Automata (or Markov Chains) are a simple formalism, there are
still many basic problems, whose decidability is open and thought to be very hard. Indeed,
it is surprising yet significant that even after assuming strong hypotheses, their behaviors
cannot be described easily. In this paper, we proposed a class of unary probabilistic automata,
for which all properties of some logic, e.g. LT Lz are decidable even considering an infinite
set of initial distributions. This allows for instance to check for the robustness of the behavior
wrt. a given property (e.g. positivity) for behaviors around a given initial distribution.
Further, while we proved our results with respect to a single hyperplane (above is A, below is
B), we can generalize these to more general settings as well. Finally, we showed that relaxing
the assumptions immediately leads to non-regularity.
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