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Abstract
We study the problem of searching for a hidden target in an environment that is modeled by
an edge-weighted graph. Most of the previous work on this problem considers the pathwise cost
formulation, in which the cost incurred by the searcher is the overall time to locate the target,
assuming that the searcher moves at unit speed. More recent work introduced the setting of
expanding search in which the searcher incurs cost only upon visiting previously unexplored areas
of the graph. Such a paradigm is useful in modeling problems in which the cost of re-exploration
is negligible (such as coal mining).

In our work we study algorithmic and computational issues of expanding search, for a variety
of search environments including general graphs, trees and star-like graphs. In particular, we
rely on the deterministic and randomized search ratio as the performance measures of search
strategies, which were originally introduced by Koutsoupias and Papadimitriou [ICALP 1996]
in the context of pathwise search. The search ratio is essentially the best competitive ratio
among all possible strategies. Our main objective is to explore how the transition from pathwise
to expanding search affects the competitive analysis, which has applications to optimization
problems beyond the strict boundaries of search problems.
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1 Introduction

Searching for a hidden target is a common task in everyday life and a significant computational
problem with important applications. The game-theoretic approach to searching considers
the search environment (e.g., a network represented by an undirected, edge-weighted graph),
and defines a game between two players: the Hider, for whom a pure strategy is a hiding
point in the environment; and the Searcher, for whom a pure strategy is some choice of how
to navigate through the environment. We assume that the Searcher is initially located to a
starting point called the root, that the Hider is static, and that the environment (e.g., the
search graph) is fully known to the Searcher. Note that unlike the setting of pursuit-evasion
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9:2 The Expanding Search Ratio of a Graph

games, we assume that the Searcher has no knowledge of the Hider’s position. In a zero-sum
game formulation of the general search problem, given a pure strategy S of the Searcher
and a pure strategy H of the Hider, we define the cost function c(S,H) as the total effort
incurred by the Searcher in locating the Hider. Since the game is zero-sum, this cost also
represents the gain of the Hider. A strategy for the Searcher may be evaluated by calculating
the highest cost c(S) = supH c(S,H) paid to locate a Hider at point H, and we define the
minimax value of the game as the smallest value infS c(S) that this cost can attain. The
extension to games where the players may use randomized (or mixed) strategies follows the
standard game-theoretic framework.

This simple, yet inclusive formulation has provided the mathematical framework for a
study of several variants of search games (the textbooks [22, 4, 2] provide a comprehensive
summary of important developments in the field over the past three decades). This is due to
the versatility in defining the cost (i.e., payoff) function, which makes the game-theoretic
framework applicable to many settings. For instance, in much previous work, the cost function
is defined as the search time T (S,H), that is the time taken for the Searcher following a
strategy S to find a target located at a point H. An alternative way of defining the cost
function, which we will use in this paper, is the so-called normalized search time, defined
formally as T̂ (S,H) = T (S,H)/d(H), where d(H) is the minimum time for the Searcher to
reach H, assuming this point is known to him. This concept of the normalized search time
is very useful when searching in unbounded domains, in which T (S,H) can be arbitrarily
large. Moreover, this cost formulation is equally applicable to bounded domains (e.g., finite
graphs). In particular, it gives rise to the competitive ratio measure, also called search ratio
in this context, which was first addressed by Koutsoupias and Papadimitriou [29]. The name
itself is a reference to the well-known competitive analysis of online algorithms, since the
position of the Hider is unknown to the Searcher and the normalization parameter d(H) can
be seen as the “optimal” cost for locating the Hider assuming full information.

Another aspect of the cost function is related to when the searcher incurs cost, which
may vary according to the setting at hand. The usual search paradigm when seeking a target
on a network is what we now call pathwise search, in which the Searcher follows a continuous,
unit-speed path until the target is reached. Very recently, Alpern and Lidbetter [5] introduced
a new search paradigm termed expanding search, in which, informally, the Searcher may
restart the search at any time from any previously reached point. As a concrete application,
[5] mentions the problem of mining for coal: here, digging into a new site is far more costly
than moving through an area that has already been dug.

In [5] expanding search games were studied assuming non-normalized measures. In this
paper, we study the competitive ratio of expanding search, which, following earlier work
of Koutsoupias and Papadimitriou [29] on pathwise search we refer to as the search ratio;
namely, we assume the normalized measure as defined earlier.

Related work

Following Gal’s formalization of network search games [21] in the framework of pathwise
search with un-normalized search time, the problem has had considerable attention, for
example [35, 34, 23, 16, 1, 10, 11]. Expanding search was introduced in [5] in the setting in
which the payoff is the total (un-normalized) cost of finding the Hider. Among other results,
[5] solved the game in the case that the network is either a tree, or 2-edge-connected. This
model was extended in [30] to a setting in which the Searcher must locate multiple hidden
objects.

The competitive ratio of pathwise search was studied in [29], who showed that the problem
of computing the optimal search ratio in a given undirected graph is NP-complete (and
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MAX-SNP hard to approximate). They also gave a search strategy based on repeated
executions of DFS traversals that achieves a constant approximation of the (deterministic)
competitive ratio. Similar results can be obtained concerning the randomized competitive
ratio (assuming that the Searcher randomizes over its strategy space). Connections between
graph searching and other classic optimization problems such as the Traveling Salesman
problem and the Minimum Latency problem were shown in [8]. The setting in which the
search graph is revealed as the search progresses was studied in [18].

A specific search environment that has attracted considerable attention in the search
literature is the star-like environment. More specifically, in the unbounded variant, the
search domain consists of a set of infinite lines which have a common intersection point
(the root of the Searcher); this problem is also known as ray searching. Ray searching is a
natural generalization of the well-known linear search problem [13, 12] (informally called
the “cow-path problem”). Optimal strategies were initially given by Gal [20] as well as by
Baeza-Yates et al. [9] and Jaillet and Stafford [24]. Other related work includes the study
of randomization [36], [27], multi-Searcher strategies [32], searching with turn cost [17], the
variant in which some probabilistic information on target placement is known [24], [25], and
the related problem of designing hybrid algorithms [26].

Bounded star search, namely the setting in which distance of the target from the root
is bounded was studied in [31, 15]. New performance measures were introduced in [28, 33].
The problem of locating a certain number among the many Hiders was studied in [7].

It must be emphasized that star search has applications that are not confined to locating
a target (which explains its significance and popularity). Some concrete applications include
drilling for oil in a number of different locations [33], as well as the design of algorithms that
return acceptable solutions even if interrupted during their execution [14, 6].

Contribution

In this work we study expanding search by means of competitive analysis, assuming a variety
of search graphs such as stars, trees, and general edge-weighted, undirected graphs. Our
main motivation is to explore how the transition from pathwise to expanding search affects
the deterministic and the randomized search ratios. As in [5], we address both the discrete
and the continuous settings. In the discrete setting, the Hider can hide only on the vertices
of the graph. In contrast, in the continuous setting the search space is a network with arcs,
and the Hider can hide anywhere across an arc.

We begin in Section 2 with the definitions of the (expanding) search ratio and randomized
search ratio, both in the continuous and discrete settings. In Section 3 we give a simple
optimal algorithm for the deterministic search ratio in the continuous setting, and show
that this is also a 2-approximation of the randomized search ratio. In the discrete setting,
we show that the problem of finding the optimal (deterministic) search ratio is NP-hard
(using a substantially more complicated reduction than for pathwise search in [29]). Applying
well-known iterative deepening techniques, we obtain a 4 ln(4) ≈ 5.55 approximation.

Our main technical results, presented in Section 4, apply to the discrete setting where
the search graph is a star. Here, it is easy to show that an optimal deterministic search
strategy searches the edges of the star in non-decreasing order of length. This strategy
is also a 2-approximation of the randomized search ratio. We thus turn our attention
to obtaining a better randomized search strategy. More precisely, we give a randomized
strategy that approximates the randomized search ratio within a factor of 5/4, representing a
significant improvement over the afore-mentioned 2-approximation. Improved approximations
via randomization are usually not easy to achieve (see, e.g. [29]). Our result confirms the
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intuitive expectation that randomization has significant benefits. Moreover, using game-
theoretic techniques we show a tight bound on the randomized search ratio of any n-edge
star graph; namely, we show it is at most (n+ 1)/2, with equality if and only if all the edges
have the same length. We accomplish this by analyzing an explicit randomized strategy.

As argued earlier, star-search problems have applications that transcend searching. This
is indeed the case in expanding search. Consider the following problem: we are given a
collection of n boxes, among which only one contains a prize. We can open a box i at cost
di. We seek a (randomized) strategy for locating the prize, and the randomized search ratio
of the strategy is the total expected cost of all opened boxes, divided by the cost of the box
that holds the prize. This problem is equivalent to the problem of finding the (randomized)
search ratio of a star graph.

Lastly, we show in Section 5 that the principle of searching vertices in non-decreasing
order of their distance from the root extends from stars to trees and unweighted graphs,
and gives the optimal deterministic search ratio and a 2-approximation for the optimal
randomized search ratio.

Since our main objective is to study the algorithmic and computational impact of re-
exploration due to the transition from pathwise search to expanding search, it is important
to compare our results to the best-known bounds in the context of pathwise search (and,
specifically, in the discrete model). More precisely, for unweighted graphs, [29] gives asymp-
totic approximations of the deterministic and randomized search ratios equal to 6 and 8.98,
respectively, but its techniques appear to be applicable also to general graphs, at the expense
of somewhat larger, but constant approximations. Furthermore, [29] notes that the problems
of computing the search ratios of trees are “surprisingly hard”. In contrast, for expanding
search of unweighted graphs and (weighted) trees we obtain optimal algorithms and a 2-
approximation of the deterministic and randomized search ratios, respectively. Going beyond
the threshold of 2 requires more sophisticated strategies even for simple environments such as
a star. For general graphs, we note that our 5.55 approximation is strict, and not asymptotic.
As a last observation, we note that the pathwise and expanding search algorithms appear to
depend crucially on the approximability of TSP and the Steiner Tree problem, respectively.

2 Preliminaries

Continuous setting

We begin by defining an expanding search on a connected network Q with root O, as
introduced in [5]. The network Q consists of nodes and edges, and Q is endowed with
Lebesgue measure corresponding to length. The measure of a subset A of Q is denoted by
λ(A). Let µ = λ(Q) be the total measure of Q.

I Definition 1. An expanding search on a network Q with root O is a family of connected
subsets S(t) ⊂ Q (for 0 ≤ t ≤ µ) satisfying: (i) S(0) = O; (ii) S(t) ⊂ S(t′) for all t ≤ t′; and
(iii) λ(S(t)) = t for all t.

Since we will only consider expanding searches in this paper, we refer to a given expanding
search as a search strategy. For a point H ∈ Q we write d(H) for the length of the
shortest path from O to H. For a given expanding search S of Q and a point H ∈ Q, let
T (S,H) = min{t : H ∈ S(t)} be the search time of H under S. For H 6= O, let T̂ (S,H) be
the ratio T (S,H)/d(H) of the search time of H to the distance of H from the root. We refer
to T̂ (S,H) as the normalized search time.
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I Definition 2. The (deterministic) search ratio σS = σS(Q) of a search strategy S for
a network Q is given by σS(Q) = supH∈Q−{O} T̂ (S,H). The (deterministic) search ratio,
σ = σ(Q) of Q is given by σ(Q) = infS σS(Q), where the infimum is taken over all search
strategies S. If σS = σ we say that S is optimal.

We will also consider randomized search strategies: that is, search strategies that are
chosen according to some probability distribution. We denote randomized strategies by lower
case letters, and for such a strategy s and point H ∈ Q we denote the expected search time
by T (s,H) and the expected normalized search time by T̂ (s,H) = T (s,H)/d(H).

I Definition 3. The randomized search ratio ρs = ρs(Q) of a randomized search strategy
s for a network Q is given by ρs(Q) = supH∈Q−{O} T̂ (s,H). The randomized search ratio,
ρ = ρ(Q) of Q is given by ρ(Q) = infs ρs(Q),, where the infimum is taken over all possible
randomized search strategies s. If ρs = ρ we say that s is optimal.

We can view the randomized search ratio of a network as the value of the following
zero-sum game Γ(Q,O). A strategy S for the Searcher is a search strategy as described above
and a strategy H for the Hider is a point on Q. The payoff of the game is the normalized
search time T̂ (S,H). For mixed (randomized) strategies s and h of the Searcher and Hider,
respectively, the expected payoff is denoted by T̂ (s, h).

In [5] the authors considered a similar zero-sum game in which the player’s strategy sets
are the same but the payoff is the unnormalized search time T (S,H). They showed that the
strategy sets are compact with respect to the uniform Hausdorff metric and that T (S,H) is
lower semicontinuous in S for fixed H. Since d(H) is a constant for fixed H, it follows that
T̂ (S,H) = T (S,H)/d(H) is also lower semicontinuous in S for fixed H, and by the Minimax
Theorem of Alpern and Gal [3], we have the following theorem.

I Theorem 4. Let Q be a network with root O. The game Γ(Q,O) has a value V , which is
equal to the randomized search ratio ρ(Q). The Searcher has an optimal mixed strategy (with
search ratio ρ(Q)) and the Hider has ε-optimal mixed strategies.

Theorem 4 allows us to find lower bounds for the randomized search ratio, since for any
mixed Hider strategy h, we have ρ(Q) ≥ infS T̂ (S, h).

Discrete setting

In the discrete setting the search environment consists of an undirected, edge-weighted
graph G = (E ,V), with |V| = n, and a distinguished root vertex O ∈ V; moreover, the
Hider is always located on some vertex of G. The weight or length of edge e, denoted by
λ(e), represents the time required to search that edge (we assume, via normalization, that
λ(e) ≥ 1)). We will call a graph of unit edge weights unweighted.

A search strategy on G is a sequence of edges, starting from the root, chosen so that the
set of edges that have been searched is a connected, increasing set. More precisely:

I Definition 5. An expanding search S on a graph G is a sequence of edges e1, . . . , en−1
such that every prefix {e1, . . . , ek}, k = 1, . . . , n− 1 is a subtree of G rooted at O.

For a given vertex v ∈ V and a given search strategy S = (e1, . . . , en−1), denote by Sv
the first prefix {e1, . . . , ek} that covers v. The search time, T (S, v) of v is the total time∑
e∈Sv

λ(e) taken to search all the edges before v is discovered. Let d(v) denote the length of
the shortest path from O to v, which is the minimum time for the Searcher to discover v. For
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v 6= O the normalized search time is denoted by T̂ (S, v) = T (S, v)/d(v). The deterministic
and randomized search ratios are then defined along the lines of Definitions 2 and 3.

We will view the randomized search ratio ρ through the lens of a zero-sum game between
a Searcher and a Hider. Unlike the continuous setting, the game is finite. The Searcher’s
pure strategy set, S is the set of search strategies and the Hider’s pure strategy set is the set
V −O of non-root vertices of G. For a Hider strategy v ∈ V and a Searcher strategy S ∈ S,
the payoff of the game is T̂ (S, v), which the Hider wants to maximize and the Searcher wants
to minimize. By the standard minimax theorem for zero-sum games, the value of the game
is equal to the randomized search ratio and an optimal randomized search strategy is an
optimal strategy for the Searcher in the game. A mixed strategy for the Hider is a probability
distribution h over the vertices of G, and for mixed strategies h and s of the Hider and
Searcher respectively, we write T (s, h) and T̂ (s, h) for the corresponding expected search
time and expected normalized search time.

3 General graphs

3.1 Continuous setting
The optimal deterministic search ratio is simple to compute in the continuous case, using a
“uniformly-expanding”, BFS strategy. For any r ≥ 0, we denote the closed disc of radius r
around O by D(r) = {x ∈ Q : d(x) ≤ r}. Consider the real function f : R+ → R given by
f(r) = λ(D(r)), so f(r) is the measure of the set of points at distance no more than r from
the root. The function f is strictly increasing so has an inverse g. The interpretation is that
g(t) is the unique radius r for which D(r) has measure t.

For a network Q with root O, consider the expanding search S∗ defined by S∗(t) =
D(g(t)). Thus, S∗(t) is an expanding disc of radius g(t). It is easy to verify that S∗ is
indeed an expanding search. First we note that S∗(t) is connected, since D(r) is always
connected. It also trivially satisfies (i) and (ii) from Definition 1, and (iii) is also satisfied
since λ(S∗(t)) = λ(D(g(t))) = f(g(t)) = t.

It is very easy to see that S∗ can be implemented in polynomial time. We will show that
S∗ is optimal. First note that the search time of a point H ∈ Q under S∗ is the unique time
t such that S∗(t) = D(d(H)), so T (S∗, H) = λ(D(d(H))) = f(d(H)). Hence

σS∗ = sup
H∈Q−{O}

f(d(H))
d(H) = sup

r>0

f(r)
r

= 1
inft>0

g(t)
t

. (1)

I Theorem 6. The search ratio σ of a network Q with root O is given by σ = supr>0
f(r)
r .,

for f defined as above. Therefore, the expanding search S∗ is optimal.

We further show that the randomized search ratio is always at least half of the search
ratio, which implies that S∗ is a 2-approximation of the optimal randomized search strategy.

I Proposition 7. For a network Q with root O, the randomized search ratio ρ satisfies
σ/2 ≤ ρ ≤ σ. Furthermore, the bounds are tight.

3.2 Discrete setting
In this section we show that the problem of computing the (deterministic) search ratio is
NP-hard. We also give a search strategy that achieves a 4 ln(4) ≈ 5.55 approximation ratio.

For a given graph G, suppose that S is a search strategy which searches the edges in the
order e1, . . . , en−1. For a subgraph H of G, denote by λ(H) the sum of all the lengths λ(e)
of edges e in H.
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Figure 1 A schematic view of the graph G used in the reduction of Theorem 8.
.

I Theorem 8. Given a graph G with root O and a constant R ≥ 0, it is NP-Complete to
decide whether σ(G) ≤ R.

Proof. The proof is based on a reduction from 3-SAT. Given a 3-SAT instance consisting of
n variables and m clauses with m ≥ n, we construct an instance of our problem.

We construct the graph G consisting of vertices O,P , a vertex Cj for every clause
(the clause vertices), vertices Xi (the variable vertices) and vertices X0

i , X
1
i (the literal

vertices) for every variable. For every i = 1, . . . , n there are unit length edges of the form
(Xi, X

0
i ), (Xi, X

1
i ), (P,X0

i ), (P,X1
i ). For every variable xi appearing positively in the j-th

clause there is an edge (Cj , X1
i ) of length 2 and for every variable xi appearing negatively in

the j-th clause there is an edge (Cj , X0
i ) of length 2. For every j = 1, . . . ,m there is an edge

(O,Cj) of length 3 and for every i = 1, . . . , n there is an edge (O,Xi) of length 3. Finally,
there is an edge (O,P ) of length 3. We fix R = 1 + 2

3 (n+m). The construction is shown in
Figure 1.

Note that the vertices can be partitioned according to their distance from O. In particular,
vertex P , as well as variable and clause vertices have distances 3, whereas literal vertices
have distance 4.

We must show that there exists a boolean assignment to the variables satisfying all clauses
if and only if the search ratio of G is at most R.

For the easy direction of the proof, consider a boolean assignment b ∈ {0, 1}n to the
variables satisfying all clauses. We will show that there is a search strategy with search ratio
at most R. First we construct a tree H covering all distance 3 vertices with total length
3R. The tree consists of the edge (O,P ), the edges (P,Xbi

i ), (Xi, X
bi
i ) for every i = 1, . . . , n,

and for every clause Cj an edge from Cj to the literal vertex corresponding to a literal
satisfying the clause. We denote the tree constructed from b by Hb. The total length of
Hb is 3 + 2n+ 2m which is exactly 3R by the choice of R. To turn the tree into a search
strategy S we order the edges from H by increasing distance from 0. This sequence S is
completed in arbitrary order with the remaining edges of the form (Xi, X

0
i ) and (Xi, X

1
i ).

We have ρS(P ) = 1, ρS(Cj) ≤ 3R/3, ρS(Xi) ≤ 3R/3 and ρ(Xx
i ) ≤ (3R+ n)/4 ≤ R for every

i, j, which shows that the search ratio of G is at most R.
For the hard direction, assume that there is a search strategy with search ratio at most R.

Let H be its shortest prefix covering all distance 3 vertices. By the definition of the search
ratio we know that λ(H) ≤ 3R. Through a sequence of transformations we turn H into a
tree of the form Hb with λ(Hb) ≤ λ(H). This will show that b is a satisfying assignment for
the formula and complete the proof of the theorem.

STACS 2016



9:8 The Expanding Search Ratio of a Graph

If (O,P ) does not belong to H we add it. This must create a cycle, containing an edge of
the form (O, v) with v 6= P . Now we remove this edge, and obtain a tree of the same
length.
If there is an edge (O,Cj) in H for some j, then we replace this edge by the edges
(Cj , v), (v, P ), where v is a vertex corresponding to a literal from the j-th clause. Some
of the added edges might already have been present. The result is a tree of no greater
length.
If there is an edge of the form (O,Xi) in H for some i, then we replace this edge by the
edges (Xi, X

0
i ), (X0

i , P ). Again, the result is a tree with of no greater length.
At this stage we know that O is only connected to P in the tree.
If there is a vertex Cj connected to several vertices v1, . . . , vk for k ≥ 2, then we remove the
edges (Cj , v1), . . . , (Cj , vk). Hence, the tree now contains k components, each containing
some distinct vertex vi, and only one of them also containing P . Without loss of generality
suppose that v1 and P are in the same component. Then we add (Cj , v1) back to H
and add for each vertex vi (i = 2, . . . , k), a length 2 path to P , going through any literal
vertex to which vi is connected. This way we maintain a tree, and do not increase its
length (it might even decrease if some of the added edges were already present).
At this stage we know that every Cj vertex is adjacent to exact one length 2 edge. Also
for every i = 1, . . . , n, among the vertices {Xi, X

0
i , X

1
i , P} there are at least two edges,

one adjacent to Xi and one adjacent to P . The last edge is necessary since otherwise
there would be no connection from the vertices {Xi, X

0
i , X

1
i } to P , since by the previous

point we know that such a path could not go through a clause vertex. Let k be the total
number of additional edges that could exist among the vertex sets {Xi, X

0
i , X

1
i , P} over

all i = 1, . . . , n. Then the total length of H is 3 + 2m+ 2n+ k, which by assumption is
at most 3R. By the choice of R we have equality and thus k = 0. This shows that H is a
tree of the form Hb for some b ∈ {0, 1}n, which a satisfying assignment. J

Using an approach similar to the doubling heuristic of [29], we obtain a constant-
approximation algorithm. It is worth pointing out that the algorithm doubles the radius,
and explores the resulting graph by computing a Steiner tree of the corresponding vertex set
(in contrast to pathwise search, in which the resulting graph is simply explored depth-first).

I Theorem 9. There is a polynomial-time search algorithm that approximates σ(G) within
a factor of 4 ln(4) + ε < 5.55.

4 Star search

In this section we consider problems related to the search ratio and randomized search ratio
of a star graph in the discrete setting. Note that, unlike the generalizations of the cow-path
problem [19], our star environment in finite and discrete. Suppose that G is a star graph
consisting of n edges e1, . . . , en of lengths d1, . . . , dn with each ei incident to the root, O
and to a vertex vi. We assume without loss of generality that 1 = d1 ≤ d2 · · · ≤ dn. An
expanding search of such a graph corresponds simply to a permutation of edges (or vertices).

Computing the optimal deterministic search ratio is relatively simple; in particular, it
suffices to search the edges in non-decreasing order of length.

I Proposition 10. The deterministic search ratio of a star graph G is

σ(G) = max
j≤n

∑
i≤j di

dj
. (2)

In addition, searching the vertices in the order v1, v2, . . . , vn is an optimal strategy.
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4.1 Randomized approximation of the randomized search ratio
We now turn to the randomized search ratio, ρ = ρ(G) of the star G. Here, the Hider’s pure
strategy set is the set {v1, . . . , vn} of n leaves and the Searcher’s pure strategy set is the set
of orderings of the edges. We start with a lower bound for ρ which helps us obtain optimal
randomized stategies for 2-edge stars (but is inefficient for general stars). For j = 1, . . . , n,
let µj =

∑j
i=1 di be the total length of the first j edges and let Dj =

∑j
i=1 d

2
i be the sum of

the squares of the lengths of the first j edges.

I Lemma 11. For each k = 1, . . . , n, consider the Hider strategy which chooses a vertex vj,
where j ≤ k with probability pj = d2

j/Dk. Then for any pure Searcher strategy S, we have

ρS ≥ T̂ (S, p) = 1
2

(
1 + µ2

k

Dk

)
. (3)

Let πk = 1
2

(
1 + µ2

k

Dk

)
be the right-hand side of (3). A natural question is whether the

randomized search ratio for star graphs is exactly πn. For instance, it is easy to see that
if the star only has two edges, this is the indeed the case and the bound helps us obtain
optimal randomized strategies. However, it is not true in general that the randomized search
ratio of an n-edge star is πn, even for n = 3.

An immediate consequence of (3) is that the pure search strategy that simply searches
all the edges in the order e1, . . . , en is a 2-approximation of the optimal strategy. However,
this relies on a search strategy that is deterministic, so a reasonable question is whether it
is possible to obtain a better approximation using a randomized search strategy. This is
indeed the case, as we shall give a search strategy that has approximation ratio 5/4. The idea
behind the strategy is to randomize between edges of similar size; moreover, this partition is
also determined at random.

For the purpose of the analysis, let t be the smallest integer such that the longest edge
has length less than 2t. Consider the partition of the edges into subsets A1,A2, . . . ,At where
the set Ai consists of all edges of lengths d with 2i−1 ≤ d < 2i, i ∈ N+.

Before we define formally our strategy, we observe that the strategy s that randomizes
uniformly between all edges in each of the Ai successively is not efficient. For example,
consider the star with edges lengths d1 = 1, d2 = · · · = dn−1 = 2 − ε, dn = 2. We have
T̂ (s, vn) ≈ n, whereas the strategy that searches v1 first before randomizing uniformly
between the remaining edges has a randomized search ratio of approximately n/2.

I Definition 12 (Randomized deepening strategy). For each i = 1, . . . , t choose some xi
uniformly at random between 2i−1 and 2i and let x0 = 1 and xt+1 = 2t. For i = 0, . . . , t, let
Bi be the set of edges with length in the interval [xi, xi+1). The randomized deepening
strategy, s randomizes uniformly between all the edges in each Bi in the order B0, . . . ,Bt.

Let αi be the measure of the edges in ∪j≤iAj and let α̂i be the measure of the edges in
Ai. Let ki be the sum of the squares of the lengths of the edges in ∪j≤iAj and let k̂i be the
sum of the squares of all the lengths of the edges in Ai. We start with two simple lemmas
which will help us bound the expected search time of a vertex.

I Lemma 13. The expected measure of the edges in Ai with length less than xi is 2α̂i−k̂i/2i−1.

I Claim 14. For any i = 1, . . . , k we have 2i−1α̂i ≤ k̂i ≤ 2iα̂i.

I Theorem 15. The approximation ratio of the randomized deepening strategy s, as defined
in Definition 12 is 5/4. Namely, ρs ≤ (5/4)ρ.
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Proof. Consider a vertex v at distance d from O. We calculate the expected search time
T (s, v) of v. To simplify the analysis, we scale the length of all the edges in the star so that
2 ≤ d < 4 and e ∈ A2. This means that the shortest edge v1 of the star may now have length
less than 1, and we write A0 for the set of edges with length less than 1.

Let T1, T2, T3 be the expected time spent searching edges in A1,A2,A3, respectively,
before reaching v. So T (s, v) = α0 + T1 + T2 + T3.

To calculate the expected time T1, observe that if x2 is less than d (which happens with
probability (d − 2)/2) then the time is T1 = α̂1. If x2 is at least d (which happens with
probability (4− d)/2) then the expected time spent searching A1 is the sum of the expected
measure of the edges in A1 with length less than x1 and half the expected measure of the edges
in A1 with length at least x1. By Lemma 13, this is (2α̂1−k̂1)+(1/2)(k̂1−α̂1) = 3α̂1/2−k̂1/2.
Hence T1 =

(
d−2

2
)
α̂1 +

( 4−d
2
)

(3α̂1/2− k̂1/2) =
(
2− d

4
)
α̂1 −

(
1− d

4
)
k̂1.

To calculate T3, observe that if x2 is greater than d then no arcs in A3 are searched
before e. Otherwise, if x2 is no greater than d (which happens with probability (d− 2)/2),
the expected time spent searching A3 is half of the expected measure of the edges in A3 with
length less than x3. So by Lemma 13, T3 =

(
d−2

2
)

(α̂3 − k̂3/8) =
(
d
2 − 1

)
α̂3 −

(
d
16 −

1
8
)
k̂3.

Let f(x) be the measure of edges in A2 with length no greater than x. Then T2 =
d
2 +

∫ d
x=2(f(x) + 1

2 (α̂2 − f(x))) · 1
2dx+

∫ 4
x=d

1
2f(x) · 1

2dx = d
2 + 1

4 (d− 2) α̂2 +
∫ 4

2
1
4f(x)dx =

d
2 +
(
d
4 + 1

2
)
α̂2−

( 1
4
)
k̂2. Combining these and rearranging we get: T (s, v) = d

2 +
(
1− d

4
)

(k0−
α0) +

( 3
4 −

d
4
)

(2α1 − k1) +
( 3

8 −
d
16
)

(4α2 − k2) +
(
d
16 −

1
8
)

(8α3 − k3). The second of these
five terms is negative since d ≤ 4 and k0 ≤ α0 (by Claim 14).

Dividing by d, we obtain an expression for the randomized search ratio ρs of s:

ρs ≤
1
2 +

(
3
4d −

1
4

)
(2α1 − k1) +

(
3
8d −

1
16

)
(4α2 − k2) +

(
1
16 −

1
8d

)
(8α3 − k3).

Let ρ(1), ρ(2), ρ(3) denote the first, second and third terms in the above expression, respectively.
The following lemma bounds these terms with respect to ρ.

I Lemma 16. For ρ(1), ρ(2), ρ(3) defined as above we have 1/2+ρ(3)

ρ ≤ 2 − 4/d, and ρ(2)

ρ ≤
3/d− 1/2, and ρ(1)

ρ ≤ 3/(2d)− 1/2.

Using Lemma 16 we obtain ρs

ρ ≤
ρ(1)

ρ + ρ(2)

ρ + 1/2+ρ(3)

ρ ≤ (2−4/d)+(3/d−1/2)+(3/(2d)−1/2) =
1 + 1/(2d) ≤ 5/4 (with equality holding when d = 2). J

4.2 Tight bounds for the randomized search ratio of a star graph
We now consider how large the deterministic and randomized search ratios can be for a star

graph G with n edges. From (2), we have σ(G) = maxj≤n
∑

i≤j
di

dj
≤ maxj≤n jdj

dj
= n. This

upper bound is tight if and only if all edges have the same length. In this case it is very easy
to see that the randomized search ratio ρ is (n+ 1)/2, and the optimal search strategy is to
search the vertices in a uniformly random order. In contrast, it is not so easy to see that
(n+ 1)/2 is the largest value that the randomized search ratio can attain for any star graph
with n edges. We will show that this is indeed the case by inductively defining a particular
randomized search strategy whose randomized search ratio is bounded above by (n+ 1)/2.
We thus prove that the bound is tight.

For a given star graph G we inductively define a randomized search strategy sk on the
star graph Gk consisting of only the edges e1, . . . , ek with total length µk. Having defined
the strategy sk, we will define sk+1 as a randomized mix of two strategies, s+

k+1 and s−k+1.
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Table 1 Maximum value of T̂ (s, v).

Search Vertex, v
strategy, s vi for some i ≤ k vk+1

s+
k+1 ρsk µk/dk+1 + 1
s−

k+1 ρsk (1 + dk+1/µk) µk/(2dk+1) + 1 −Dk/(2µkdk+1)

I Definition 17. Suppose sk has been defined for some k = 1, . . . , n− 1. Let s+
k+1 and s−k+1

be randomized search strategies on Gk+1 defined by:
(i) s+

k+1: follow the strategy sk on Gk and then search edge ek+1.
(ii) s−k+1: choose a time t uniformly at random in [0, µk] and denote the edge that is being

searched at time t by e. Follow the strategy sk, but search edge ek+1 immediately before
searching e.

Before giving the precise definition of sk, we evaluate the normalized expected search
times T̂ (s+

k+1, vi) and T̂ (s−k+1, vi) in terms of ρsk
for the vertices vi with i = 1, . . . , k + 1.

First suppose i ≤ k. Then clearly T̂ (s+
k+1, vi) ≤ ρsk

(with equality for some i ≤ k). Under
s−k+1, with probability T (sk, vi)/µk edge ek+1 is searched before ei, so the expected search
time of vi is T (sk, vi) + (T (sk, vi)/µk)dk+1. Hence T̂ (s−k+1, vi) = T (sk,vi)+(T (sk,vi)/µk)dk+1

di
=

T̂ (sk, vi)(1 + dk+1/µk) ≤ ρsk
(1 + dk+1/µk). Now suppose i = k + 1. Under s+

k+1, the time
taken to find the Hider is µk + dk+1, so T̂ (s+

k+1, vk+1) = µk/dk+1 + 1. Under s−k+1, the
expected search time is µk/2 + dk+1 minus a random correction error which depends upon
which edge e is being searched under sk at the random time t chosen uniformly in [0, µk]. The
edge e is ei with probability di/µk, and in this case the expected value of the correction error
is di/2. Hence the expected value of this correction error is

∑k
i=1(di/µk) · (di/2) = Dk/(2µk).

So we have T̂ (s−k+1, vk+1) = µk/2+dk+1−Dk/(2µk)
dk+1

= µk/(2dk+1) + 1−Dk/(2µkdk+1).
To sum up, the expected search ratio for each combination of strategies can be bounded

above by the payoffs in Table 1. We can then proceed to define sn.

I Definition 18. Let s1 be the only strategy available on G1. Suppose sk has already been
defined on Gk for some k = 1, . . . , n− 1. The strategy sk+1 is an optimal mixture of s+

k+1
and s−k+1 in the zero-sum game with payoff matrix given by Table 1.

The search ratio of sn can be calculated iteratively, since the search ratio ρsk+1 of sk+1 is
the value of the game with payoff matrix given by Table 1, for each k = 1, . . . , n− 1. We use
this to show that ρsn ≤ (n+ 1)/2.

I Theorem 19. The randomized search ratio ρ of star network G with n edges is at most
(n+ 1)/2, with equality if and only if all the edges have the same length.

Proof. We have already pointed out that ρ = (n+ 1)/2 for the star whose edges all have the
same length. To show that ρ ≤ (n+ 1)/2 we use induction on the number of edges to show
that ρsn

≤ (n+ 1)/2. It is clear that for k = 1, we have ρsk
= 1 = (k + 1)/2, so assume that

ρ(sk) ≤ (k + 1)/2 for some k > 1 and we will show that ρk+1 ≤ (k + 2)/2 = k/2 + 1.
First observe that if dk+1 ≥ 2µk/k then the Searcher can ensure a payoff of no more than

k/2 + 1 in the game in Table 1 just by using strategy s+
k+1. This is because the payoff ρsk

against a vertex vi with i ≤ k is no more than (k+ 1)/2 by the induction hypothesis and the
payoff against vk+1 is µk/dk+1 + 1 ≤ k/2.

So assume that dk+1 ≤ 2µk/k, and note also that dk+1 ≥ µk/k, since the lengths of the
edges are non-decreasing and dk+1 must be at least the average length of edges e1, . . . , ek.
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Table 2 Upper bounds for T̂ (s, v).

Search Vertex, v
strategy, s vi for some i ≤ k vk+1

s+
k+1 (k + 1)/2 µk/dk+1 + 1
s−

k+1 (k + 1)(1 + dk+1/µk)/2 µk/(2dk+1) + 1 − µk/(2kdk+1)

By the induction hypothesis, ρsk
≤ (k+ 1)/2, so the value of the game with payoff matrix

given by Table 1 cannot decrease if we replace ρsk
with (k + 1)/2 in the table. The value

also does not decrease if we replace −Dk by the maximum value it can take, which is −µ2/k

(that is, its value when d1, . . . , dk are all equal). In summary, ρsk+1 is no more than the value
of the game given in Table 2.

By assumption, against strategy s+
k+1, the best response of the Hider (that is, the

highest payoff) is given by choosing vertex vk+1. We show that against strategy s−k+1,
the Hider’s best response is to choose a vertex vi with i ≤ k. This follows from writing
the difference, δ between the payoffs in entries (2, 1) and (2, 2) of Table 2 as δ = (k −

1) µk

2dk+1

((
k+1
k−1

)(
dk+1
µk

)2
+ dk+1

µk
− 1/k

)
. The quadratic in (dk+1/µk) inside the parentheses

is increasing for positive values of dk+1/µk, and when dk+1/µk = 1/k the quadratic is positive.
Since dk+1/µk ≥ 1/k, we must have δ ≥ 0.

Hence the Hider does not have a dominating strategy in the game in Table 2. It is also
clear that the Searcher does not have a dominating strategy, since it is better to search ek+1
last if and only if the Hider is at some vi with i ≤ k. Therefore the game in Table 2 has a
unique equilibrium in proper mixed strategies (that is, the players both play each of their
strategies with positive probability). The search ratio ρsk+1 of sk+1 is bounded above by the
value V of the game, which is easily verified to be V = k/2 + 1−

k
2 (dk+1/µk−1/k)2

(dk+1/µk)2+1/k . This is
clearly at most k/2 + 1, with equality if and only if dk+1/µk = k. Equality is only possible if
d1 = d2 = . . . = dk+1 = µk/k. J

5 Trees and unweighted graphs

We conclude with the cases in which the graph is either a tree or an unweighted graph (in
the discrete setting). If G is a graph with root O, for any r > 0 let Gr be the sub-graph of
G with vertex set Vr consisting of all the vertices in G of distance no more than r from the
root and with edge set Er consisting of all the edges in E adjacent to some vertex in Vr. The
following proposition generalizes Proposition 10.

I Proposition 20. Let G be a rooted graph and suppose that G is a tree or an unweighted
graph. Then the search ratio σ is given by σ = supr>0

λ(Gr)
r . An optimal search strategy is to

search the vertices in non-decreasing order of their distance from the root.

We also generalize Proposition 7 and make it applicable to the discrete setting:

I Proposition 21. The randomized search ratio of a tree or unweighted graph satisfies
σ/2 ≤ ρ ≤ σ.
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