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—— Abstract

The SUBSET FEEDBACK VERTEX SET problem generalizes the classical FEEDBACK VERTEX SET
problem and asks, for a given undirected graph G = (V, E), a set S C V, and an integer k,
whether there exists a set X of at most k vertices such that no cycle in G — X contains a vertex
of S. It was independently shown by Cygan et al. (ICALP 11, SIDMA ’13) and Kawarabayashi
and Kobayashi (JCTB ’12) that SUBSET FEEDBACK VERTEX SET is fixed-parameter tractable for
parameter k. Cygan et al. asked whether the problem also admits a polynomial kernelization.

We answer the question of Cygan et al. positively by giving a randomized polynomial ker-
nelization for the equivalent version where S is a set of edges. In a first step we show that
EDGE SUBSET FEEDBACK VERTEX SET has a randomized polynomial kernel parameterized by
|S| + k with O(|S|?k) vertices. For this we use the matroid-based tools of Kratsch and Wahl-
strom (FOCS ’12). Next we present a preprocessing that reduces the given instance (G, S, k) to
an equivalent instance (G’,S’, k') where the size of S’ is bounded by O(k*). These two results
lead to a polynomial kernel for SUBSET FEEDBACK VERTEX SET with O(k%) vertices.
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1 Introduction

In the SUBSET FEEDBACK VERTEX SET (SUBSET FVS) problem we are given an undirected
graph G = (V, E), a set of vertices S C V, and an integer k, and have to determine whether
there is a set X of at most k vertices that intersects all cycles that contain at least one vertex
of S. Clearly, because we can choose S = V, this is a generalization of the well-studied
FEEDBACK VERTEX SET (FVS) problem where, given G and k, we have to determine whether
some set X of at most k vertices intersects all cycles in G. FEEDBACK VERTEX SET has been
extensively studied in parameterized complexity: It is known to be fixed-parameter tractable
(FPT) with parameter k, i.e., solvable in time f(k) - |V|¢, and after a series of improvements
the fastest known algorithms take deterministic time O*(3.619%) [11] and randomized time
O*(3%) [2]. Tt is also known to admit a polynomial kernelization [1], i.e., there is an efficient
algorithm that reduces any instance (G, k) of FVS to an equivalent instance of size polynomial
in k; the best known kernelization creates an equivalent instance with O(k?) vertices [19)].
In 2011, Cygan et al. [3] and Kawarabayashi and Kobayashi [10] independently showed
that SUBSET Fvs is FPT. The algorithm of Cygan et al. runs in time 2°(*102k)nOM) "while
the one of Kawarabayashi and Kobayashi runs in time O(f(k) - n?m). Wahlstrom [21] then
gave the first single-exponential algorithm with running time 4% - n®M); an algorithm with
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subexponential dependence on k is ruled out under the Exponential-Time Hypothesis (e.g.,
because SUBSET FVS generalizes VERTEX COVER). More recently, Lokshtanov et al. [13] gave
algorithms with deterministic time 2°(*1°8%) . (n +m) and randomized time O(25.6* - (n+m)).

Cygan et al. [3] ask whether the SUBSET FVvS problem also admits a polynomial ker-
nelization and suggest that the matroid-based tools of Kratsch and Wahlstrém [12] could
be applicable. The latter work uses representative sets of independent sets in matroids to
obtain, amongst others, polynomial kernels for s-MULTIWAY CUT and DELETABLE TERMINAL
MULTIWAY CUT (DTMWC) with O(kT1) and O(k?) vertices, respectively. In MULTIWAY CUT
we are given a graph G = (V, E), a set T C V of terminals, and an integer k¥ and have to
determine whether deletion of at most k£ non-terminal vertices separates all terminals. In
$-MULTIWAY CUT the terminal set has size at most s, and in DTMWC we are also allowed to
delete terminals (which is essentially the same as restricting terminals to be degree one).

Interestingly, Cygan et al. [3] also provide a polynomial-time reduction from MULTIWAY
CUT to SUBSET FVS that does not change the parameter value and, hence, is known to imply
that SUBSET FVS is at least as hard as MULTIWAY CUT regarding existence of polynomial
kernels. Accordingly, MULTIWAY CUT would be the natural next target problem for attempting
to find a polynomial kernelization (after s-MULTIWAY CUT and DELETABLE TERMINAL
MULTIWAY CUT). It appears, however, that the reduction of Cygan et al. is from DELETABLE
TERMINAL MULTIWAY CUT rather than from the more general MULTIWAY CUT, and it is not
obvious whether similar ideas could yield a reduction from MULTIWAY CUT to SUBSET FVS.

We apply the matroid-based tools of Kratsch and Wahlstrom [12] and develop a randomized
polynomial kernelization that reduces instances (G, S, k) of SUBSET FVS to equivalent instances
with at most O(k®) vertices; this is our main result. Like Cygan et al. [3] we also work
on EDGE SUBSET FVS where S is a set of edges of G and X needs to intersect all cycles
that contain at least one edge of S; EDGE SUBSET FVS and SUBSET FVS are equivalent [3].
The result is obtained in two parts. In the first part (Section 3) we establish a randomized
polynomial kernelization for EDGE SUBSET FVS parameterized by |S| + k that reduces to
equivalent instances with at most O(|S|?k) vertices. Note that nontrivial instances have
k < | S| since one could otherwise remove S by deleting one endpoint of each edge in S. Thus,
parameter |S| suffices, but O(|S|?k) gives a tighter overall bound than O(|S|?).

At high level, this part is similar to the polynomial kernelization for DELETABLE TERMINAL
MULTIWAY CcUT. We show that certain solutions X, later called dominant solutions, allow
particular path packings in the underlying graph G. For DTMWC this is achieved by a fairly
simple replacement argument for solutions X that are not sufficiently well connected to
connected components of G — X. For EDGE SUBSET FVS the endpoints T' = V(5) of edges
in S can be regarded as terminals, but this gives a different separation property: Solutions
X need not generate many connected components in G — X since only S-cycles need to be
prevented, and components may contain many vertices of 7. Rather, in G — X there must
be a tree-like (or forest-like) structure with components without S-edges playing the role of
nodes and with edges given by S. Nevertheless, using the tree-like structure, a replacement
argument can be found, implying that dominant solutions must create many components
in (G — X) — S containing vertices of T' and be well connected to them. This allows to set
up a gammoid on G — S with sources T and apply, as in [12], a result of Lovasz [14] on
representative sets in (linear) matroids that is then guaranteed to generate a superset of X.
Randomization is only needed to generate a matrix representation for the gammoid.

In the second part (Section 4) we give a (deterministic) polynomial-time preprocessing that,
given an instance (G, S, k) of EDGE SUBSET FVS, returns an equivalent instance (G’, 5", k')
with k' < k and |S’| € O(k*). Together with the randomized kernelization from the first part
this implies the claimed randomized kernelization to O(k®) vertices.
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A reduction of the number of S-edges is also a crucial ingredient in the FPT algorithm for
EDGE SUBSET FVS by Cygan et al. [3]. They achieve |S| € O(k?), but it is in a slightly more
favorable setting: Using iterative compression, it suffices to solve the task of finding a solution
X' of size k when given a solution X of size k + 1. (This is well known in parameterized
complexity, and we prefer not to repeat it here.) Considering some unknown solution X’ of
size k, one can guess the intersection D of X’ with X, by trying all O(2¥*+1) possibilities. For
the correct guess D = X’ N X the remaining problem is to find for (G — D, S\ D,k —|D|) a
solution Z’ of size at most k — | D| that is disjoint from Z = X \ D, since Z’ = X'\ D would
be such a solution; here S\ D denotes the set of edges in S with no endpoint in D. Cygan et
al. make the nice observation that the guessing also allows to assume that there is no other
solution X’ with an even larger intersection with X.

In contrast, we cannot afford to run iterative compression for a kernelization to get a
starting solution of size k + 1 and, as is common, we have to start with an approximate
solution Z, which can be assumed to be of size at most 8k using an 8-approximation algorithm
of Even et al. [6]. The idea of guessing the intersection of an optimal solution with Z is
infeasible regarding both time and the number of created instances. Thus, while several
structures like z-flowers or disjoint x,y-paths containing S-edges appear in both approaches,
many things have to be handled differently. For example, having k + 2 disjoint x,y-paths
containing S-edges for z,y € Z implies that one of x and y must be in every solution of
size k; Cygan et al. can stop here because the solution would not be disjoint from Z; we
need to instead store the information about x and y to later detect S-edges that can be
safely removed. Like Cygan et al., we also use Gallai’s A-path Theorem but we avoid the
2-expansion lemma by using the properties of a blocking set of size at most 2k differently.
Moreover, we observe that z-flowers can be found by solving a matroid parity instance on an
appropriate gammoid; this can be done in deterministic polynomial time using a specialized
matroid parity algorithm by Tong et al. [20].

Proofs omitted in this extended abstract can be found in Hols and Kratsch [9].

2 Preliminaries

We use standard graph notation, mostly following Diestel [5]. All graphs are undirected
and may contain multi-edges and loops; accordingly, they may contain cycles of length one
and two (formed by loops and multi-edges, respectively.) An edge e € E is called a bridge
if (V, E'\ {e}) has more connected components than G. For a set X C V| let G[X] denote
the subgraph of G induced by X and let Ng(X) denote the neighborhood of X in G, i.e.,
Ng(X) ={veV\X|JueX: {u,v} € E}. Given two sets X,Y C V, by E(X,Y) we
denote the set of edges that have one endpoint in X and one endpoint in Y. For aset B/ C E
of edges let V(E’) be the set of vertices that are incident with at least one edge in E’. For
X CV and F C E we shorthand G — X for G[V \ X] and G — F for (V(G),E(G)\ F); if
X = {«} then we may also write G — z instead of G — {«}. Note that the graph (G—X)—F
is the same graph as the graph (G — F') — X and we will drop the parentheses.

For A C V a path with endpoints in A and internal vertices not in A is called an A-path.

The following theorem about A-paths was already used by Cygan et al. [3] for SUBSET Fvs
and in the quadratic kernelization for FEEDBACK VERTEX SET by Thomassé [19].

» Theorem 1 (Gallai [8]). Let A CV and k € N. If the mazimum number of vertez-disjoint
A-paths is strictly less than k + 1, then there exists a set B CV of at most 2k vertices that
intersect every A-path.
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In particular it is possible to find either (k + 1)-disjoint A-paths or a set B that intersects
all A-paths in polynomial time. This follows from Schrijver’s proof of Gallai’s theorem [18].

Let (G, S, k) be an instance of the EDGE SUBSET FVS problem. We call a cycle C' an S-
cycle, if at least one edge of S is contained in C. Let  be a vertex of V. A set {C1,Cy, ..., Ci}
of S-cycles that contain z is called an z-flower of order ¢, if the sets of vertices C; \ {z} are
pairwise disjoint. Note that if there exists a z-flower of order at least k + 1, then the vertex
x must be in every solution for (G, S, k), if one exists. A set B C V' \ {z} of size ¢ is called
an x-blocker of size t, if each S-cycle through = also contains at least one vertex of B.

Matroids, gammoids, and representative sets. A matroid M = (U,Z) consists of a finite
set U and a family Z of subsets of U, called independent sets, fulfilling the following properties:
()P eZ (i) if X CY and Y € T then also X € Z; and (iii) if X,Y € Z with |X| < |Y| then
there exists y € Y\ X such that X U {y} € 7.

The rank of of a matroid M, denoted by r(M), is the size of the largest independent set
of the matroid M.

Let A be a matrix over an arbitrary field F'. Let U be the set of columns of A and let
7 be the family of all sets X C U of columns that are linearly independent over F. Then
M = (U,7) is a matroid, called the linear matroid or vector matroid of A, and we say that A
represents M. If M = (U,Z) is representable over some field, then it is also representable by
an (M) x |U| matrix; by Gaussian elimination we can always reduce a representing matrix
for M to one with r(M) many rows (cf. [15]). Let My = (U1,Z;1) and My = (U, Z3) be two
matroids with U; N Uy = (). The direct sum M; & M, is a matroid over U = U; U Us with
independent sets Z={X CU | X NU; € 71, X NU; € Ip}. If A} and Az represent the two
matroids over the same field F, then matrix A = diag(A;, As) represents My & M.

Let G = (V, E) be a graph that may have both directed and undirected edges and let
SCV. Aset T CV is linked to S if there exist |T'| vertex-disjoint paths from S to T". Thus
every vertex in 7' is endpoint of a different path from S. It holds that M = (U,Z), where
U C V and 7 contains all sets T C U that are linked to S in G, is a matroid [17]. The
matroid M is also called the gammoid on G with sources S and ground set U; if U = V then
M is also called a strict gammoid. Marx [15] gave a randomized polynomial-time procedure
for finding a matrix representation of a strict gammoid. The error probability can be made
exponentially small in the size of the graph. (This is the only source of randomness and error
in our kernelization.) A matrix representation for a gammoid for graph G = (V, E) with
ground set U C V and sources S can be obtained from one for the strict gammoid for G and
S by simply deleting columns corresponding to elements of V' \ U.

Let A, B be independent sets in a matroid. We say that A extends B if AN B = ) and
AU B is again an independent set. Note that from the independence of A U B follows the
independence of A and B due to the second matroid property.

» Definition 2. Let M = (U,Z) be a matroid, let A C Z, and let ¢ € N. A set A’ C A is
q-representative for A if for every independent set B of size at most g there is a set A € A
that extends B if and only if there is also a set A’ € A’ that extends B.

Observe that if A’ is g-representative for A and there exists a set A € A that uniquely
extends some given independent set I of size at most ¢, then this implies that A € A’.

The following theorem of Lovédsz [14] proves that for any linear matroid there exist
small representative sets. It was made algorithmic by Marx [15] and, thus, permits to find
representative sets in polynomial time when given a matrix representation of the matroid. A
faster algorithm for this task was developed recently by Fomin et al. [7].
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» Lemma 3 (Lovasz [14], Marx [15]). Let M be a linear matroid of rank q + p, and let
T =A{L,15,...,I:} be a collection of independent sets, each of size p. If |T| > (qy’), then
there is a set I € T such that T \ {I} is g-representative for T. Furthermore, given a

representation A of M, we can find such a set I in f(q,p) - (| Al|t)°D) time.

3 Randomized polynomial kernelization for parameter |S| + k

In this section we present a randomized polynomial kernelization for EDGE SUBSET FVS
parameterized by |S| + k. Because deletion of one endpoint of each edge in S always
constitutes a feasible solution, nontrivial instances have |S| > k. Thus, our kernelization also
works for parameter |S| alone. However, to achieve a better bound for EDGE SUBSET FVS
parameterized by k it is beneficial to give the size in terms of |S| and k rather than |S| alone.

We use representative sets of independent sets of matroids to obtain a kernel of size
O(|S|?k). Our approach is similar to the kernelization of DELETABLE TERMINAL MULTIWAY
cut(k) [12]. As in that paper we construct path packings such that certain vertices can be
shown to be in a representative set. Note that, unlike for multiway cut-type problems, a
solution X C V will not necessarily create many connected components. Rather, as used also

in the FPT algorithm of Cygan et al. [3], it creates a particular tree-like structure in G — X.

Nevertheless, endpoints of edges in S, denoted T' := V(S), will play the role of terminals
that need to be separated in a certain way; hence a vertex x in T is called a terminal. We
will focus on the graph G — S, i.e., with edges of S deleted, in which a solution X creates
a grouping of (not deleted) terminals into connected components. The structure of these
components will be crucial for a replacement argument (Lemma 5) that leads to the required
path packing; this constitutes one of the key arguments for our result.

The kernelization consists of four steps. In the first step we show that if an instance is
YES then there exists a solution X with a certain path packing from 7" to X. Then we define
an appropriate gammoid to find in a next step a representative set of size O(|S|?k) which is
(essentially) a superset of X using Lemma 3. Finally we explain how to reduce the graph G,
using the superset of the last step, to obtain an equivalent instance of EDGE SUBSET FVS.

Analyzing solutions. Let (G, S, k) be a yes-instance of EDGE SUBSET FVS (k+|S|). We say
that a solution X for (G, S, k) is dominant, if it has minimum size and contains a maximal
number of vertices from 7" among solutions of minimum size. The vertices in X NT" correspond
to endpoints of edges in S that we delete and the vertices in Xg = X \ T block all z-y paths
with {z,y} € So ={e € S| enX =0}, except the one that consists of the edge {z,y}. We
show that X is linked to T in a strong sense.

» Lemma 4. Let X be a dominant solution for (G,S,k) and x any vertex in the set
Xo=X\T. There exist | X|+ 2 paths from T to X in G — S that are vertex-disjoint except
for three paths ending in vertex x. Moreover, the paths can be chosen in such a way that
each connected component of G — X — S is intersected by at most one path.

We use Hall’s Theorem and the lemma below to prove this. For this purpose we consider
two graphs G — X and G — X — 5. We call a connected component K of G— X — S interesting
if it contains a terminal, i.e., f TNV (K) = (T\ X)NV(K) # 0, and we say that x € X sees
a connected component K if z is adjacent to a vertex of K in G. We extend this definition

by saying that Y C X sees an interesting component K if at least one vertex y € Y sees K.

» Lemma 5. If X is a dominant solution then every nonempty set Y C Xy sees at least
|Y| + 2 interesting components of G — X — S.
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Proof. Assume for contradiction that there exists a nonempty set Y C X, that sees at most
|Y| + 1 interesting components of G — X — S. Let C denote the set of connected components
of G — X, let C; C C denote the set of interesting components seen by Y, and let C, C C
denote the other components seen by Y. We will show that there is an alternative solution
X' = (X \Y)UY’ that is smaller than X or that contains more vertices of T, contradicting
the choice of X as a dominant solution. Let us consider the graphs G — X and G — (X \ Y.

We study the structure of G — (X \ Y) to find a set Y’ that intersects all S-cycles in
G — (X\Y). Accordingly we are interested in the structure that is induced by the S-edges in
G —(X\Y). To study them we define, for any subgraph G — Z of G, the S-component graph
Hz which has a vertex for each connected component of G — Z — S and for every S-edge e
an edge between two (not necessary different) vertices which correspond to the connected
components that contain the endpoints of e; note that H; can have parallel edges and loops.
We say that G — Z is an S-forest if the S-component graph Hy is a forest. Observe that a
set Z is a solution if and only if G — Z is an S-forest. Note that vertices that correspond to
components without terminals in G — Z are isolated in Hz because they are not incident
with S-edges; e.g., this is true in Hx for non-interesting components of G — X — S.

To construct an alternative solution X’ we compare the S-component graphs of G — X
and G — (X \Y); let C’ denote the set of connected components of G — (X \Y) - S. A
component in C’ either fully contains some components in C; U C, and additionally it may
contain vertices of Y or it is equal to a connected component in C: This follows from the fact
that we only delete the subset X \'Y of X from G — S instead of X. However, in G — (X \Y)
the set of S-edges incident with components in C’ is the same as the set of S-edges incident
with C in G — X, because Y C Xy = X \ T and hence there are no additional vertices of
T,ie,T\X =T\ (X\Y). Altogether, Hx\y is obtained from Hx by merging vertices
in Hx whose corresponding connected components are connected in G — (X \Y) — S. In
general, G — (X \ V) will not be an S-forest: The merging of vertices may lead to loops
(from S-edges with both ends in the same component) and longer cycles in Hx\y.

We will see that deleting at most |Y| edges of S, i.e., deleting a set Y’ of at most |Y|
endpoints of S-edges, will suffice for G — ((X \Y)UY”) to be an S-forest, making (X \Y)UY’
a valid solution. To see this consider an arbitrary connected component C* in G — (X \Y)
whose corresponding connected component in Hx\y is not cycle-free. Note that C is a union
of connected components in C’ that are connected by S-edges. Therefore C™ must contain
connected components in C that are seen by Y. Let C},...C% € C; and C},...C% € C, be
the connected components in C that are contained in C and that are seen by Y.

In G — X the connected component C* may decompose into several separate connected
components because we additionally delete the vertices of Y. Since Y sees only components
in C; UC, the set C* decomposes into at most a + b separate components by deleting Y.
Recall that components in C, are isolated in G — X and contain no vertices of T and, thus,
they do not contribute any S-edges to C*. It remains to consider the components C}, ..., C?
that are contained in C'T.

The connected components C}, ... C% are part of at least one connected component in
G — X. Thus, they correspond to a subforest F' of Hx and not deleting Y corresponds to
merging a vertices in this forest into d > 1 new vertices; let F’ be the connected subgraph in
H x\y that results from F by this operation. If the subforest F' consists of ¢ vertices and, thus,
at most c—1 S-edges then we obtain c—a+d vertices that are connected by at most c—1 edges
for F'. Tt therefore suffices to delete at most (¢c—1)— ((c—a+d)—1) =a—d < a—1 S-edges,
i.e., to delete one endpoint of each of at most a — 1 S-edges, to obtain a forest-structure
in F'. (We cannot delete just any a — 1 edges but we can keep any ¢ —a + d — 1 S-edges
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spanning the ¢ — a + d components and delete the at most a — 1 remaining S-edges.)

Overall, we get that a connected component C* in G — (X \ Y) that fully contains a
interesting components from C; requires at most a — 1 vertex deletions of endpoints of S-edges
to obtain an S-forest. Since Y sees at most |Y| + 1 such components, the worst case is
achieved by a single component CT containing all |[Y| + 1 interesting components in C;; this
still costs at most (|[Y|+ 1) — 1 = |Y| vertex deletions, as claimed.

Let Y/ contain all the endpoints of S-edges that we delete to get an S-forest. We know
that |Y'| <|Y] and thus |[(X \ Y) UY’| < |X]|. Moreover, by the initial considerations, we

know that X’ = (X \ Y)UY"’ is a feasible solution as G — X’ has the required S-forest.

If |Y'| < |Y], including the case that Y’ = 0, then |X’| < |X| as Y # 0; this contradicts
optimality of X (required for being a dominant solution). If [Y’| = |Y| then Y’ # () and X’
is an optimal solution that contains more vertices of T 2 Y”, contradicting the choice of X
as a dominant solution. Thus, every nonempty set Y must see at least |Y| + 2 connected
components, as claimed. <

Lemma 4 can now be obtained via Hall’s Theorem; the proof is similar to the one for
DELETABLE TERMINAL MULTIWAY CUT [12].

Setting up the gammoid. The gammoid M that we use is the direct sum of two gammoids
M; and Ms. To construct gammoid M; we define a graph G = (V4, E7) that is obtained
from G — S by adding two so called sink-only copies v’ and v” for every vertex v € V. A
sink-only copy of a vertex v is a vertex v’ (or v”) that has a directed edge (u,v’) for each
edge {u, v}; these were already used in previous work [12]. Note that adding sink-only copies
of vertices does not affect the possible path packings to other vertices since they can only be
endpoints of paths; however, they are convenient to capture multiple vertex-disjoint paths
that, intuitively, end in the same vertex. Matroid M; is defined as the gammoid on G; with
sources T' = V(S) and ground set V1 = {v,v',v” | v € V'}; note that the sink-only copies of
vertices in T are not sources of M;. The rank of matroid M; is |T|, because the set of all
trivial paths is independent and at most |T'| vertices can be linked to T

Matroid M, is the gammoid on the directed graph Ga = Ky, ,, = (SQUV, E5) with sources
Sy and ground set V = {0 | v € V}; the edges in F are directed from Sy to V. In other
words, gammoid Ms is a uniform matroid and a (deterministic) matrix representation could
also be obtained by using a Vandermonde matrix. The rank of M is k = |S2| as no more

than |Sa| vertices can be linked to Sy and every set of at most k vertices of V is linked to Ss.

For the application of Lemma 3 we will use the matroid M = M; & Ms, which has
rank |T| 4+ k. Representations A; and Ay for both M; and Ms can be computed by a
randomized polynomial-time algorithm with exponentially small error chance [15]; hence we
get a representation for M by diag(A;, As), i.e., the block-diagonal matrix with blocks Ay
and A;. We may assume that A; has |T'| rows and Ay has k rows (cf. [15]).

Applying the representative set lemma. Let 7 := {{v/,v”,9} | v € V'}. For clarity, by
the above notation, this means that v/,v” € V; and © € V for each v € V. Let T be
obtained by applying Lemma 3 to 7 using the above matrix representation for M; we have
|T"] € O((|T|+k)3) = O(|S|?). We will see later that we can find a (|T|+k — 3)-representative
set of size O(|S|*k) by a careful look at the proof of Lemma 3, using the fact that M is the
direct sum of two gammoids and that all sets {v’,v”, 9} in 7 have two elements from the
first and one element from the second gammoid; a similar argument for getting a smaller
representative set was already used by Kratsch and Wahlstrom [12].
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We will prove that for each dominant solution X we have {z',z”,2} € T’ for each
x € Xo = X \T. To this end, we show that for each such set {z’,2”,%} there exists an
independent set I of size at most |T'| + k — 3 such that {2/, 2", 2} uniquely extends I among
triplets in 7. Thus, {2’,2”, 2} must be in every (|T'| + k — 3)-representative set 7' of T.

» Lemma 6. Let X be a dominant solution for (G,S,k) and let T = V(S). For all
x € Xo =X \T there exists an independent set I of size at most |T|+ k — 3 in M such that
{a', 2", &} uniquely extends I.

We know now that for every vertex x € V' \ T that is a vertex in a dominant solution
the set {«/,2”,2} is in every (|T| + k — 3)-representative set 7. If we define V(7") = {v |
{v/,v"”,0} € T’} then this implies that Xo C V(7”) for each dominant solution X. Thus,
every dominant solution X is contained in V(77) UT.

Shrinking the input graph to O(|V (T’) U T|) vertices. In the previous parts we have
shown that if there exists a solution for (G, S, k), then there exists a solution that is
completely contained in W := V(7’) UT. Using this we can make all vertices in V' \ W
undeletable. We achieve this by applying the so-called torso operation to vertex set W in G;
let G’ = torso(G,W). By definition of torso(G, W), the resulting graph G’ has vertex set W
and is derived from G[W] by making each pair {u,v} C W adjacent if there is a u,v-path in
G with internal vertices from V' \ W. Note that we do not create double edges or loops in G’
and that all edges of S are preserved in G’ because T'C W. (The same can be achieved by
iteratively selecting a vertex v € V' '\ W, making its neighbors a clique, and deleting v.)

» Lemma 7. (G', S, k) has a solution if and only if (G, S, k) has a solution.

It follows from Lemma 7 that (G’, S, k) is an equivalent instance and the graph of this
instance contains at most |W| vertices. The correctness of Lemma 7 follows from the fact
that the torso operation preserves the separators that are contained in W (cf. [16]).

So far we have a kernelization that creates an equivalent instance (G’, S, k) such that
G’ has |W| vertices. As mentioned above, Lemma 3 guarantees that |W| € O(|S|?) and
this implies a polynomial kernel for EDGE SUBSET FVS parameterized by |S|. If we use the
fact that the gammoid M is the direct sum of two gammoids M; and M,, and that all sets
{v/,v",0} € T contain exactly two elements of M; and one element of M, then we can
prove that |W| € O(|S|?k), this is an improvement for all nontrivial instances with k& < |S/.

» Lemma 8. Let M = M; @ My be the gammoid of rank |T| + k as defined above and
T ={L,1Is,...,1I:} be the set of independent sets of M that we use for the kernelization. Let
A be represented by diag(Ay, As) as above. If |T| > (|72“|) . (lf), then there exists a set [ € T
such that T\ {I} is (|T| + k — 3)-representative for T .

The proof of Lemma 8 is similar to Marx [15, Lemma 4.2]. We additionally use the fact
that M is the direct sum of two gammoids to get that the vectors in the exterior algebra
which represent the sets in 7 span a space of smaller dimension. As mentioned above,
Marx [15] showed that one can find in randomized polynomial-time a matrix with r(M) rows
that represents a given gammoid M. We can make this proof algorithmic in the same way.
Combined with Lemma 8 it follows that we can find a (|7 + k& — 3)-representative subset 7’
of |T] of size at most (I7') - (%) € O(|S|?k). This implies a randomized polynomial kernel
with O(|S|?k) vertices for EDGE SUBSET FVS parameterized by |S| and k.

4 Reducing the size of S

We have seen that EDGE SUBSET FVSs parameterized by |S| and & has a polynomial kernel.
Now the goal is to reduce the size of the set S until |S| is polynomially bounded in k. This
will lead to a polynomial kernel of EDGE SUBSET FVS parameterized by k.
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To begin, we do some initial modifications to ensure that we can always find a solution of
size at most k that contains no vertex of the set V(S), if one exists. For this we first delete
all vertices v € V with the property that e = {v,v} € S is a loop in G and we decrease the
value k by one. Next we delete all remaining loops. We also reduce the number of edges
between two vertices v, w € V(G). If no edge that is incident to v and w is contained in the
set S, then we delete all except one edge. On the other hand, if at least one edge between v
and w is contained in S, then we delete all except two edges. One of these edges is contained
in S and the other not. In the next step we add for every edge e = {v,w} € S two new
vertices ve, t. to the graph, subdivide the edge e into three edges {v,v.}, {ve, we}, {we, w},
and edit S by replacing edge e by the edge {v.,w.} in S. If a solution X of EDGE SUBSET
FVS contains a vertex x. € V(.5), then we can instead add the vertex = to X and delete .
from X, because every cycle that contains vertex z. also contains vertex x; hence we can
always find an optimal solution that is disjoint from V(.5).

Let (G, S, k) be an instance of EDGE SUBSET FVS, such that G is a graph with the above
properties. Analogous to the paper of Cygan et al. [3] we consider a solution Z of the EDGE
SUBSET FVS, with the difference that our solution is an 8-approximation of the problem, to
reduce the size of S. Even et al. [6] show that there exists an 8-approximation algorithm
for SUBSET FVS. Since SUBSET FVS and EDGE SUBSET FVS are equivalent (cf. [3]), we can
compute in polynomial time an 8-approximation for EDGE SUBSET FVS and we can assume
that ZNV(S) =0. If | Z| > 8k, then we can stop immediately because no solution of size at
most k can exist. On the other hand, if |Z| < k, then Z is a solution and we are done.

The set Z is a feasible solution to EDGE SUBSET FVS on (G, S, |Z]|). This implies that
every edge e € S is a bridge in G — Z. In a next step we also remove all edges in S from
G — Z. Every connected component in G — Z — S contains no edge from S and, following
Cygan et al. [3], we call such a component a bubble. We denote the set of bubbles by Dy
and define a graph Hz = (D, Ep,) whose vertices are bubbles and with bubbles I and J
being adjacent, i.e., {I,J} € Ep,, if and only if the components I and J are connected by
an edge from S. The graph Hy is a forest, because Z is a solution for (G, S,|Z|) and a cycle
in Hz would give rise to an S-cycle in G — Z. Similarly, no two bubbles can be connected

by more than one edge of S. By V; we denote the vertices that are contained in bubble I.

Since |E(Vy,V;) N S| <1 for all I, J € Dy and equality holds if and only if {I,J} € Ep,,

we can associate an edge e = {I, J} € Fp, with the one edge eg = {vr,v;} in E(V;,V;)NS.

If we add the vertex set Z and all edges {z, I'} with the property that z € Z,I € Dz and
E(z,Vr) # 0 to the graph Hz we obtain a graph H} that contains S-cycles. Note that every
S-cycle must contain a vertex of the set Z. We partition the set of bubbles according to the
number of bubbles they are connected with.

» Definition 9. A bubble I € Dy is called (i) solitary, if degy,(I) = 0; (ii) leaf, if
degy, (I) = 1; and (iii) inner, if degy, (I) > 2. By D3, DY, D% we denote the corresponding
sets of of bubbles.

Let X C V' \ V(S) be a superset of Z. We define Hy, H;,Dx and Ep, analogously to
Hy,H} Dy and Ep,. Observe that the number of edges in S is at most |Dy \ D3|, because
Hy is a forest, any two bubbles are connected by at most one S-edge, and V(S) N Z = {).

So far our setup is essentially the same as the one used by Cygan et al. [3]. However,
instead of an 8-approximate solution they use the framework of iterative compression, which
provides a solution Z of size k + 1 and leaves them with the task of reducing the number
of S-edges for the problem of finding a solution Z* that is disjoint from Z. Moreover, it
suffices for them to consider the case that every feasible solution (if one exists) is disjoint
from Z. In this setting they are able to reduce to an equivalent instance (or find that some
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assumption was violated) with only O(k?) edges in S. Thus, while many relevant structures
like z-flowers or parallel z-y paths containing S-edges are the same, many things have to be
handled differently. In particular, if we find that at least one out of two vertices z,y € Z
must be in the solution then we cannot stop (using the maximality condition) but need to
continue and use this information in a more direct way.

During the reduction we detect certain pairs {z, y} of different vertices with the property
that each solution of size at most k must contain at least one of the vertices (if one exists).
We store this fact as a pair-constraint. We keep and enforce this information in the final
instance, unless we decide earlier to delete x or y. By P we denote the set of pair-constraints
that we have found so far. We can interpret this set as a set of edges and by V(P) we denote
all vertices that are contained in a pair-constraint. Note that vertices from the set V(.S) are
never contained in a pair-constraint from P, because there always exists a solution that is
disjoint from V'(S). We need the set P to detect edges in S that may be safely deleted. To
this end, we generalize the EDGE SUBSET FVS problem by adding a set of pair-constraints P
to the input; we call this problem PAIR-CONSTRAINED EDGE SUBSET FVS.

PAIR-CONSTRAINED EDGE SUBSET FEEDBACK VERTEX SET Parameter: k
Input: An undirected graph G, a set S C F of edges, a set P of pair-constraints and
an integer k.

Question: Does there exist a set X C V of size at most k£ such that G — X contains no
S-cycle and such that for each pair-constraint {x,y} € P we have x € X or y € X?

Clearly, instances (G, S, k) of EDGE SUBSET FVS and (G, S, 0, k) of PAIR-CONSTRAINED EDGE
SUBSET FVS are equivalent. Our goal is to reduce the size of S by detecting S-edges that we
can delete from S without changing the outcome. This leads to the following definition:

» Definition 10. Let (G, S, P, k) be an instance of PAIR-CONSTRAINED EDGE SUBSET FVS.
We call an edge e € S irrelevant, if X C V(G) is a solution for (G, S, P, k) if and only if X
is a solution for (G, S\ {e}, P, k).

Note that if two different S-edges e and €’ are irrelevant in (G, S, P, k), then €’ is not
necessarily irrelevant in (G, S\ {e}, P, k). Also, we do not expect to find all irrelevant edges.

The reduction rules. We now present our reduction rules; we assume that always the
lowest numbered applicable rule is applied first. Correctness and efficiency of the overall
reduction process are deferred to the full version. Let (G, S,P = 0, k) be an instance for
PAIR-CONSTRAINED EDGE SUBSET FVS and let Z be an 8-approximation of this problem
with k& < |Z] < 8k that is disjoint from V(S). In the following the graphs G — Z, G — Z — S,
Hyz, and H}' are always defined with respect to the current instance (G, S, P, k) of PAIR-
CONSTRAINED EDGE SUBSET FVS. Note that Z C V and we delete a vertex from Z if we
delete the corresponding vertex in V.

Rule 1: If k < 0, or if £ = 0 and there exists an S-cycle, then reduce (G, S, P, k) to some
trivial false instance, i.e. G’ := ({z}, {e = {x,z}}), " :={e}, P’ =0 and k' := 0.

Rule 2: Delete all bridges and all connected components not containing any edge from S.

Rule 3: If edge e € S is a bridge in (V, E \ (S'\ {e})), then reduce to S’ = S\ {e}.

Rule 4: If vertex v € V(P) is contained in at least k + 1 pair-constraints of P, then we
reduce to G' =G —vand k' =k — 1.

Rule 5: If |P| > k2, then reduce (G, S, P, k) to some trivial false instance.

Rule 6: If there exists a z-flower of order k£ 4+ 1 in G for a vertex z € Z, then we reduce to
G :=G—-zand k¥ :=k— 1.
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Rules 2 and 3 ensure that each bubble I € Dy is adjacent to a vertex in Z in graph
H} and Rules 4 and 5 make sure that P remains small. For the next rules we need a
maximal matching M in Hyz that covers all inner bubbles D% in Hyz. Note that two adjacent
leaf bubbles I, I, form a Ky in Hyz, hence the edge {I1, 2} € Ep, is contained in every
maximal matching in Hz. We use this matching to detect pair-constraints in Z. To this
end we introduce the following definition: Let e = {I, J} be an edge in the matching M.
We say e sees the pair {z,y} of different vertices z,y € Z respectively the vertex x € Z, if
{I,z},{J.y} € E(H}) or {I,y},{J. 2} € E(H}) respectively {I,z},{J,z} € E(H}).

Rule 7: If at least (k + 2) edges in M see a pair {z,y} of different vertices in Z, then we
add {z,y} to the set of pair-constraints P.

Rule 8: If there exists an edge e € M such that e sees no single vertex z € Z and for every
pair {z,y} seen by e the pair {z,y} is a pair-constraint in P, then remove eg from S and
e from M. (Recall: If e = {I, J} € E(Hz), then eg is the unique edge in E(V;,V;) N S.)

The matching M is always recomputed if, through application of rules, it does no longer
cover every inner bubble or is not maximal when testing whether Rules 7 or 8 apply.

Let L = D, \ V(M) be the set of leaf bubbles that are not covered by M. Because
the matching covers at least all inner bubbles, we know that |S| < 2|M| + |L|. Therefore
we have to find a reduction rule that reduces the number of leaf bubbles in L. Every
leaf bubble in L is adjacent to an inner bubble in Hz, because M covers all leaf bubbles
that are not adjacent to an inner bubble. To bound the number of leaf bubbles in L we
define for each z € Z a graph G, with the help of the following two sets. The first one,
L, = NH; (2) N L, is the set of all leaf bubbles I that are adjacent to z in H. The other

Vi={veV|3Je Nyt (L.): v € Vj} consists of all vertices that are contained in an inner
bubble that is adjacent to a leaf bubble in L. Let V(G,) = {z} U L, UV} and

E(G:) = By (2 L) U{{I,w} | AT € L.,v € Vi,w € Vs {v,w} € S}U(E(GIVI])\ S).

In the graph G, each leaf bubble I € L, is a single vertex. We are not interested in
the internal structure of leaf bubbles in L., whereas we are interested in the structure of
the inner bubbles that are adjacent to the leaf bubbles in L,. Thus we add the connected

component that corresponds to an inner bubble which is adjacent to a bubble in L, to G,.

In order to apply the concept of flowers and blocking sets in G, an edge e € F(G,) is an
S-edge in G, if e = {I,w} with I € L, and w € V. Note that e is an edge in G, because
there exists an S-edge ¢’ = {v,w} in G with v € V7.

Since no previous rule is applicable and a z-flower in G, gives rise to a z-flower in G
of same order, one can show, using Gallai’s A-path Theorem, that there exists a z-blocker
B, C VI\V(S) of size at most 2k for every vertex z € Z in G.. Let B =J,., B. be the
union of all z-blockers B, of size at most 2k. Note that the set L is the union of all sets L,
with z € Z, because every leaf bubble is adjacent to a vertex in Z, i.e., L = J, ., L.

Because B C V. \ V(S) we know that L C D, 5; thus we can use Hzyp to bound the
number of leaf bubbles in L. Let I = {J € D% 5 | E(L,J) # 0} be the set of inner bubbles
in Hzyp that are adjacent to a leaf bubble in L. Clearly the number of edges between I and
L in Hyzyp equals the number |L|. Instead of again using a matching to reduce this number
we consider more carefully the properties of these edges (more details in full version). For this
we define the property of seeing a pair in a slightly different way. Let e = {I, J} be an edge
with I € I and J € L. We say that e = {I, J} with I € I and J € L sees the pair {z,y} of
different vertices x € ZU B and y € Z, if {I,z},{J,y} € E(H} ). Observe that a bubble

in L is never adjacent to a vertex in B in the graph Hzyp, because B C |J, ., VI \ V(S).
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Rule 9: If at least (k + 2) edges {I1,J1},...,{L;,Ji} withl >k +2, [, € I and J; € L for
1 <4 <l seea pair {z,y} of different vertices, such that x € ZU B is adjacent to I;,, y € Z
is adjacent to J; for all i € {1,...,1}, then we add {z,y} to the set of pair-constraints P.

Rule 10: If there exists an edge e = {I, J} with I € I and J € L such that e sees no single
vertex z € Z and for every pair {z,y} seen by e the pair {z,y} is a pair-constraint in P,
then remove eg from S, delete J from L and replace I by U J in I.

Note that if we delete an edge e = {I, J} from S by applying Rule 10, then the consequence
is that bubbles I and J are now merged into a single bubble.

If no reduction rule is applicable, then |M| € O(k?) and |L| € O(k*). (A proof of these
results is deferred to the full version.) As mentioned above, |S| = |D% |+ |D}| < 2|M|+|L| €
O(k*), because Hz is a forest, because there is at most one edge of S between any two
bubbles, and because V(S) N Z = ().

Finding an equivalent instance for Edge Subset Feedback Vertex Set. Up to now we can
only bound the number of edges in S for the PAIR-CONSTRAINED EDGE SUBSET FVS problem.
As mentioned above the instance (G, S, P = 0, k) for PAIR-CONSTRAINED EDGE SUBSET FVS
is equivalent to the instance (G, S, k) of EDGE SUBSET FVS. Therefore we only have to show
that we can find in polynomial time an instance of EDGE SUBSET FVS that is equivalent to
the instance (G, S, P, k) of PAIR-CONSTRAINED EDGE SUBSET FVS and has at most O(k*)
S-edges. Let {z,y} € P be a pair-constraint. If there are two edges between x and y of
which at least one is contained in S, then x or y must be in any solution, because zy is an
S-cycle. For this reason, the instance (G’, S’ = SUP, k) of EDGE SUBSET FVS is equivalent
to the instance (G, S, P, k) of PAIR-CONSTRAINED EDGE SUBSET FVS, where G’ is created
from G by adding one edge {z,y} between every two vertices z and y with {z,y} € P when
{z,y} ¢ E and by adding an edge {z,y} between x and y that is also contained in S’; hence
there are two edges between z and y with {z,y} € P in graph G’ and we add exactly one
edge between = and y to S’. Because we cannot apply Rule 4 or 5 to (G, S, P, k), we know
that |P| < k2. This leads to a bound of |S| + |P| € O(k?*) edges in S’ for the EDGE SUBSET
FVS problem after the reduction. Together with the kernel with O(]S|*k) vertices for EDGE
SUBSET FVS parameterized by |S| and k, we obtain a kernelized instance with O(k?) vertices
for EDGE SUBSET FVS parameterized by k.

Note that it is no problem that we use in Section 4 the existence of a solution disjoint
from V(S) and that we only preserve dominant solutions in Section 3, because the reduction
rules in Section 4 as well as the kernelization in Section 3 lead to equivalent instances and
because every instance has a dominant solution (if a solution exists).

5 Conclusions

We have shown that the SUBSET FVS problem has a randomized polynomial kernelization using
the matroid-based tools of Kratsch and Wahlstrom [12], positively answering the question of
Cygan et al. [3]. As in previous work [12] the error-probability can be made exponentially
small without increasing the kernel size. Nevertheless, it would of course be very interesting
whether the use of randomization and/or matroids can be avoided. Furthermore, there is
quite a gap between O(k?) vertices and a lower bound of size O(k?~¢) that is inherited from
VERTEX COVER [4], conditioned on non-collapse of the polynomial hierarchy.

Other open problems regarding existence of polynomial kernels, possibly amenable to the
matroid tools, are MULTIWAY CUT and DIRECTED FEEDBACK VERTEX SET (DFVS). There is
also a directed version of SUBSET FVS, called DIRECTED SUBSET FEEDBACK VERTEX SET,
but it generalizes DFVS, whose kernel status has remained open for quite some time now.
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