
Efficient Enumeration of Solutions Produced by
Closure Operations
Arnaud Mary1 and Yann Strozecki2

1 Université Lyon 1; CNRS, UMR5558, LBBE / INRIA – ERABLE, France
2 Université de Versailles Saint-Quentin-en-Yvelines, DAVID laboratory, France

Abstract
In this paper we address the problem of generating all elements obtained by the saturation of
an initial set by some operations. More precisely, we prove that we can generate the closure
by polymorphisms of a boolean relation with a polynomial delay. Therefore we can compute
with polynomial delay the closure of a family of sets by any set of “set operations” (e.g. by
union, intersection, difference, symmetric difference. . .). To do so, we prove that for any set of
operations F , one can decide in polynomial time whether an element belongs to the closure by
F of a family of sets. When the relation is over a domain larger than two elements, we prove
that our generic enumeration method fails, since the associated decision problem is NP-hard.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases enumeration, set saturation, polynomial delay, Post’s lattice

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.52

1 Introduction

In enumeration we are interested in listing a set of elements, which can be of exponential
cardinality in the size of the input. The complexity of enumeration problems is thus measured
in terms of the input size and output size. The enumeration algorithms with a complexity
polynomial in both the input and output are called output polynomial or total polynomial
time. Another, more precise notion of complexity, is the delay which measures the time
between the production of two consecutive solutions. We are especially interested in problems
solvable with a delay polynomial in the input size, which are considered as the tractable
problems in enumeration complexity. For instance, the maximal independent sets of a graph
can be enumerated with polynomial delay [7].

If we allow the delay to grow during the algorithm, we obtain incremental delay algorithms:
the first k solutions can be enumerated in a time polynomial in k and in the size of the input.
Many problems which can be solved with an incremental delay have the following form: given
a set of elements and a polynomial time function acting on tuples of elements, produce the
closure of the set by the function. For instance, the best algorithm to generate all circuits of
a matroid is in incremental delay because it uses some closure property of the circuits [8].

In this article, we try to understand when saturation problems which are natural incre-
mental delay problems can be in fact solved by a polynomial delay algorithm. To tackle this
question we need to restrict the saturation operation. In this article, an element will be a
vector over some finite set and we ask the saturation operation to act coefficient-wise and
in the same way on each coefficient. We prove that, when the vector is over the boolean
domain, every possible saturation can be computed in polynomial delay. To do that we
study a decision version of our problem, denoted by ClosureF : given a vector v and a set

© Arnaud Mary and Yann Strozecki;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 52; pp. 52:1–52:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Efficient Enumeration of Solutions Produced by Closure Operations

of vectors S decide whether v belongs to the closure of S by the operations of F . We prove
ClosureF ∈ P for all sets of operations F over the boolean domain.

When the domain is boolean, the problem can be reformulated in term of set systems or
hypergraphs. It is equivalent to generating the smallest hypergraph which contains a given
hypergraph and which is closed by some operations. We show how to efficiently compute the
closure of a hypergraph by any family of set operations (any operation that is the composition
of unions, intersections and complementations) on the hyperedges. This extends known
methods such as the closure of a hypergraph by union, by union and intersection or the
generation of the cycles of a graph by computing the closure of the fundamental cycles by
symmetric difference. In general, knowing how to compute a closure may serve as a good tool
to design other enumeration algorithms. One only has to express an enumeration problem as
the closure of some sufficiently small and easy to compute set of elements and then to apply
the algorithms presented in this article.

The closure computation is also related to constraint satisfaction problems (CSP). Indeed,
the set of vectors can be seen as a relation R and the problem of generating its closure by
some operation f is equivalent to the computation of the smallest relation R′ containing
R such that f is a polymorphism of R′. There are several works on enumeration in the
context of CSP, which deal with enumerating solutions of a CSP in polynomial delay [5, 3].
The simplest such result [5] states that in the boolean case, there is a polynomial delay
algorithm if and only if the constraint language is Horn, anti-Horn, bijunctive or affine. Our
work is completely unrelated to these results, since we are not interested in the solutions of
CSPs but only in generating the closure of relations. However, we use tools from CSPs such
as the Post’s lattice [10], used by Schaefer in his seminal paper [13], and the Baker-Pixley
theorem [2].

The main theorem of this article settles the complexity of a whole family of decision
problems and implies, quite surprisingly, that the backtrack search is enough to obtain a
polynomial delay algorithm to enumerate the closure of boolean vectors under any fixed set
of binary operations. For all these enumeration problems, compared to the naive saturation
algorithm, our method has a better time complexity (even from a practical point of view)
and a better space complexity (polynomial rather than exponential). Moreover, besides the
generic enumeration algorithm, we try to give for each closure rule an algorithm with the best
possible complexity. In doing so, we illustrate several classical methods used to enumerate
objects such as amortized backtrack search, hill climbing, Gray code . . .

1.1 Organization of the Paper
In Sec. 2, we define enumeration complexity, our problem and the backtrack search. In Sec. 3,
we use Post’s lattice, restricted through suitable reductions between clones, to determine
the complexity of ClosureF for all sets of binary operations F . It turns out that there
are only a few types of closure operations: the monotone operations (Sec. 3.1), the addition
over F2 (Sec. 3.2), the set of all operations (Sec. 3.3), two infinite hierarchies related to the
majority function (Sec. 3.4) and the limit cases of the previous hierarchies (Sec. 3.5). Finally,
in Sec. 4, we give polynomial delay algorithms for three classes of closure operation over any
finite domain and prove that the method we use in the boolean case fails.

2 Preliminaries

Given n ∈ N, [n] denotes the set {1, ..., n}. For a set D and a vector v ∈ Dn, we denote by
vi the ith coordinate of v. Let i, j ∈ [n], we denote by vi,j the vector (vi, vj). More generally,

A. Mary and Y. Strozecki 52:3

for a subset I = {i1, ..., ik} of [n] with i1 < ... < ik we denote by vI the vector (vi1 , ..., vik
).

If S is a set of vectors we denote by SI the set {vI | v ∈ S}. The characteristic vector v of a
subset E of [n] is the vector in {0, 1}n such that vi = 1 if and only if i ∈ X.

2.1 Complexity
In this section, we recall basic definitions about enumeration problems and their complexity,
for further details and examples see [14].

Let Σ be some finite alphabet. An enumeration problem is a function A from Σ∗ to
P(Σ∗). That is to each input word, A associates a set of words. An algorithm which solves
the enumeration problem A takes any input word w and produces the set A(w) word by
word and without redundancies. We always require the sets A(w) to be finite. We may also
ask A(w) to contain only words of polynomial size in the size of w and that one can test
whether an element belongs to A(w) in polynomial time. If those two conditions hold, the
problem is in the class EnumP which is the counterpart of NP for enumeration. Because of
this relationship to NP, we often call solutions the elements we enumerate.

The delay is the time between the productions of two consecutive solutions. It also
includes the time to find the first solution and the time to detect that no further solution
exists. Usually we want to bound the delay of an algorithm for all pairs of consecutive
solutions and for all inputs of the same size. If this delay is polynomial in the size of the
input, then we say that the algorithm is in polynomial delay and the problem is in the class
DelayP. We also require that the time to find the first solution and the time to detect that
no further solution exists is polynomial. If the delay is polynomial in the input and the
number of already generated solutions, we say that the algorithm is in incremental delay
and the problem is in the class IncP. By definition we have DelayP ⊂ IncP. Moreover
(DelayP∩EnumP) 6= (IncP∩EnumP) modulo the exponential time hypothesis [4]. Note that
in an enumeration algorithm we allow a polynomial precomputation step, usually to set up
data structures, which is not taken into account in the delay. This is why we can have a
delay smaller than the size of the input.

We now explain a very classical and natural enumeration method called the Backtrack
Search (sometimes also called the flashlight method) used in many previous articles [11, 15].
We represent the solutions we want to enumerate as vectors of size n and coefficients in D.
In practice solutions are often subsets of [n] which means that D = {0, 1} and the vector is
the characteristic vector of the subset.

The enumeration algorithm is a depth first traversal of a tree whose nodes are partial
solutions. The nodes of the tree will be all vectors v of size l, for all l ≤ n, such that v = w[l]
and w is a solution. The children of the node v will be the vectors of size l + 1, which
restricted to [l] are equal to v. The leaves of this tree are the solutions of our problem,
therefore a depth first traversal will visit all leaves and yield all solutions. We want an
enumeration algorithm with a delay polynomial in n. Since a branch of the tree is of size
n, we need to be able to find the children of a node in a time polynomial in n to obtain a
polynomial delay. The delay also depends linearly on |D|, but in the rest of the paper |D|
will be constant. Therefore the problem is reduced to the following decision problem: given
v of size l is there w a solution such that v = w[l] ? This problem is called the extension
problem associated to the enumeration problem.

I Proposition 1. Given an enumeration problem A, such that for all w, A(w) can be seen
as vectors of size n with coefficients in D, with n and |D| polynomially related to |w|. If the
extension problem associated to A is in P, then A is in DelayP.

STACS 2016

52:4 Efficient Enumeration of Solutions Produced by Closure Operations

2.2 Closure of Families by Set Operations

We fix D a finite domain. Given a t-ary operation f (a function from Dt to D), f can be
naturally extended to a t-ary operation over vectors of the same size. For a t-uples of vectors
of size n v1, . . . vt, f will then act coefficient-wise, that is for all i ≤ n, f(v1, . . . , vt)i =
f(v1

i , . . . , v
t
i).

I Definition 2. Let F be a finite set of operations over D. Let S be a set of vectors of size
n over D. Let F i(S) = {f(v1, . . . , vt) | v1, . . . , vt ∈ F i−1(S) and f ∈ F} and F0(S) = S.
The closure of S by F is ClF (S) = ∪iF i(S).

Remark that ClF (S) is also the smallest set which contains S and which is closed by the
operations of F . The set ClF (S) is invariant under the operations of F : these operations
are called polymorphisms of the set ClF (S), a notion which comes from universal algebra.

As an illustration, assume that D = {0, 1} and that F = {∨}. Then the elements of S can
be seen as subsets of [n] (each vector of size n is the characteristic vector of a subset of [n]) and
Closure{∨}(S) is the closure by union of all sets in S. Let S = {{1, 2, 4}, {2, 3}, {1, 3}} then
Cl{∨}(S) = {{1, 2, 4}, {1, 2, 3, 4}, {2, 3}, {1, 3}, {1, 2, 3}}. Remark that Cl{∨}(S) is indeed
closed by union, that is ∨ is a polymorphism of Cl{∨}(S).

The problem we try to solve in this article, for all sets of operations F over D, is
EnumClosureF : given a set of vectors S compute ClF (S). We will always denote the
size of the vectors of S by n and the cardinality of S by m. We introduce two related
decision problems. First, the extension problem associated to a set of operations F , is
the problem ExtClosureF : given S a set of vectors of size n, and a vector v of size
l ≤ n, is there a vector v′ ∈ ClF (S) such that v = v′[l]. Second, the closure problem,
denoted by ClosureF , is a restricted version of the extension problem where v is of size n.
Remark that ExtClosureF can be reduced in linear time to ClosureF by transforming
the instance (S, v) of ExtClosureF with v of size l into the instance (S[l], v) of ClosureF .
By combining the previous remark and Proposition 1, we have the following proposition.

I Proposition 3. If ClosureF ∈ P then EnumClosureF ∈ DelayP.

We have introduced an infinite family of problems, whose complexity we want to determine.
Several families of operations may produce the same closure. To deal with that, we need to
introduce the notion of functional clone.

I Definition 4. Let F be a finite set of operations over D, the functional clone generated by
F , denoted by < F >, is the set of operations obtained by any composition of the operations
of F and of the projections πn

k : Dn → D defined by πn
k (x1, . . . , xn) = xk.

This notion is useful, because two sets of functions which generate the same clone applied
to the same set produce the same closure. Therefore to prove our main theorem, we need to
consider all clones rather than all sets of functions.

I Lemma 5. For all set of operations F and all set of vectors S, ClF (S) = Cl<F>(S).

The number of clones over D is infinite even when D is the boolean domain (of size 2).
However, in this case the clones form a countable lattice, called Post’s lattice [10]. Moreover
there is a finite number of well described clones plus a few very regular infinite families of
clones.

A. Mary and Y. Strozecki 52:5

Clone Base
I2 ∅
L2 x + y + z

L0 x + y

E2 ∧
S10 x ∧ (y ∨ z)
Sk

10 T hk+1
k , x ∧ (y ∨ z)

S12 x ∧ (y → z)
Sk

12 T hk+1
k , x ∧ (y → z)

D2 maj

D1 maj, x + y + z

M2 ∨, ∧
R2 x ? y : z

R0 ∨, +
I2

L2

L0

E2

S10

S12

S3
12

S2
12

S3
10

S2
10

D2

D1

M2

R

R0

Sec. 3.3

Sec. 3.4

Sec. 3.5

Sec. 3.1

Sec. 3.2

Figure 1 The reduced Post’s lattice, the edges represent inclusions of clones.

3 The Boolean Domain

In this part we will prove our main theorem on the complexity of ClosureF , when the
domain is boolean. An instance of one such problem, denoted by S, will be equivalently seen
as a set of vectors of size n or a set of subsets of [n].

I Theorem 6. Let F be any fixed finite set of operations over the boolean domain, then
ClosureF ∈ P and EnumClosureF ∈ DelayP.

To prove our main theorem, we will prove that ClosureF ∈ P, for each clone F in
Post’s lattice. We first show that for certain F the problem ClosureF can be reduced to
ClosureG where G is a simpler clone obtained from F . This helps to reduce the number of
cases we need to consider.

To an operation f we can associate its dual f defined by f(s1, . . . , st) = ¬f(¬s1, . . . ,¬st).
If F is a set of operations, F is the set of duals of operation in F . We denote by 0 and 1 the
constant functions which always return 0 and 1. By a slight abuse of notation, we will also
denote by 0 the all zero vector and by 1 the all one vector.

I Proposition 7. The following problems can be polynomially reduced to ClosureF :
1. ClosureF∪{0}, ClosureF∪{1}, ClosureF∪{0,1}
2. ClosureF
3. ClosureF∪{¬} when F = F

For a modern presentation of all boolean clones, their bases and the Post’s lattice see [12].
In Fig. 1, we represent only the clones such that any clone of Post’s lattice can be reduced to
one of those using Proposition 7. We have already explained how our main theorem need
only to be proved for all clones rather than all sets of functions. By Proposition 7, it is
enough to prove it for all clones of Fig. 1, as we now do in the rest of this section.

STACS 2016

52:6 Efficient Enumeration of Solutions Produced by Closure Operations

3.1 Conjunction
We first study one of the simplest clones: E2 =< ∧ >. We give an elementary proof that
ClosureE2 ∈ P, then we explain how to obtain a good delay for EnumClosureE2 . For a
binary vector v, let us denote by 0(v) (resp. 1(v)) the set of indices i for which vi = 0 (resp.
vi = 1).

I Proposition 8. ClosureE2 ∈ P.

Proof. Let S be a set of Boolean vectors. If we apply ∧ to a couple of vectors in S it
produces the intersection of two vectors when seen as sets. Since the intersection operation
is associative and commutative, ClE2(S) is the set of arbitrary intersections of elements of
S. Let v be a vector and let S1 be the set {w ∈ S | w1(v) = 1}. Assume now that v can
be obtained as an intersection of elements v1, . . . , vt, those elements must be in S1 because
of the monotonicity of the intersection for the inclusion. On the other hand, by definition
of S1, v will always be smaller than or equal to ∩w∈S1w. Therefore, v ∈ ClE2(S) if and
only if v = ∩w∈S1w. This intersection can be computed in time O(mn) which concludes the
proof. J

By Proposition 1, we can turn the algorithm for ClosureE2 into an enumeration algorithm
for EnumClosureE2 with delay O(mn2). We explain in the next proposition how to reduce
this delay to O(mn), which is the best known complexity for this problem.

I Proposition 9. There is an algorithm solving EnumClosureE2 with a delay O(mn).

Proof. We use the backtrack search described in Proposition 1 but we maintain data
structures which allow us to decide ClosureE2 quickly. Let S be the input set of m vectors
of size n. During the traversal of the tree we update the partial solution p, represented by
an array of size n which stores whether pi = 1, pi = 0 or is yet undefined.

A vector v of S is compatible with the partial solution if 1p ⊆ 1v. We maintain an array
COMP indexed by the sets of S, which stores whether each vector of S is compatible or not
with the current partial solution. Finally we update an array COUNT , such that COUNT [i]
is the number of compatible vectors v ∈ S such that vi = 0. Remark that a partial solution
p can be extended into a vector of ClE2(S) if and only if for all i ∈ 0p COUNT [i] > 0, the
solution is then the intersection of all compatible vectors.

At each step of the traversal, we select an index i such that pi is undefined and we set
first pi = 0 then pi = 1. When we set pi = 0, there is no change to do in COUNT and
COMP and we can check whether this extended partial solution is correct by checking
if COUNT [i] > 0 in constant time. When we set pi = 1, we need to update COMP by
removing from it every vector v such that vi = 0. Each time we remove such a vector v,
we decrement COUNT [j] for all j such that vj = 0. If there is a j such that COUNT [j] is
decremented to 0 then the extension of p by pi = 1 is not possible.

When we traverse a whole branch of the tree of partial solutions during the backtrack
search, we will set pi = 1 for each i at most once and then we need to remove each vector
from COMP at most once. Therefore the total number of operations we do to maintain
COMP and COUNT is O(mn) and so is the delay. J

The problem EnumClosureE2 is related to several interesting enumeration problems
such as listing the solutions of a DNF formula. There is an intriguing open question on its
complexity: can we have a delay sublinear in m or only dependent on n, that is a delay
polynomial in the size of the solutions? For all other clones, in contrast, we give enumeration
algorithms with a delay polynomial in the size of the solutions.

A. Mary and Y. Strozecki 52:7

3.2 Algebraic Operations
We first deal with the clone L0 =< + > where + is the boolean addition. Note that ClL0(S)
is the vector space generated by the vectors in S. Seen as an operation on sets, + is the
symmetric difference of the two sets.

I Proposition 10. ClosureL0 ∈ P.

Proof. Let S be the set of input vectors, let v be a vector and let A be the matrix whose
rows are the elements of S. The vector v is in ClL0(S) if and only if there is a solution over
F2 to Ax = v. Solving a linear system over F2 can be done in polynomial time which proves
the proposition. J

The previous proposition yields a polynomial delay algorithm by applying Proposition 1.
One can get a better delay, by computing in polynomial time a maximal free family M of
S, which is a basis of ClL0(S). The basis M is a succinct representation of ClL0(S). One
can generate all elements of ClL0(S) by going over all possible subsets of elements of M
and summing them. The subsets can be enumerated in constant time by using Gray code
enumeration (see [9]). The sum can be done in time n by adding a single vector since two
consecutive sets differ by a single element in the Gray code order. Therefore we have, after
the polynomial time computation of M , an enumeration in delay O(n).

With some care, we can extend this result to the clone L2 generated by the sum modulo
two of three elements.

I Proposition 11. ClosureL2 ∈ P.

Proof. First remark that any vector in ClL2(S) is the sum of an odd number of vectors in S.
In other words v ∈ ClL2(S) if and only if there is a vector x such that Ax = v and that the
Hamming weight of x is odd. One can compute a basis B of the vector space of the solutions
to the equation Ax = v. If all elements of B have Hamming weight even, then their sums
also have Hamming weight even. Therefore v ∈ ClL2(S) if and only if there is an element in
B with odd Hamming weight, which can be decided in polynomial time. J

3.3 Conjunction and Disjunction
In this subsection, we deal with the largest possible clones of our reduced Post lattice:
M2 =< ∧,∨ >, R2 =< x ? y : z > and R0 =< ∨,+ >.

I Proposition 12. ClosureM2 ∈ P.

Proof. Let S be a vector set and for all i ∈ [n], let Xi := {v ∈ S | vi = 1}. We will show that
a vector u belongs to ClM2(S) if and only if u =

∨
i∈1(u)

∧
v∈Xi

v. Clearly, if u =
∨

i∈1(u)

∧
v∈Xi

v

then u ∈ ClM2(S).
Assume first that there exists i ∈ 1(u) such that Xi = ∅ i.e. for all v ∈ S, vi = 0. Then

clearly, for all w ∈ ClM2(S), wi = 0 and then u /∈ ClM2(S). Assume now that Xi 6= ∅ for all
i ∈ 1(u) and assume that u 6= t :=

∨
i∈1(u)

∧
v∈Xi

v. So there exists j ∈ 0(u) such that tj = 1.

Thus, there exists i ∈ 1(u) such that for all v ∈ Xi, vj = 1. We have that for all v ∈ S,
vi = 1 =⇒ vj = 1. Let us show that this property is preserved by both operations ∧ and
∨ and then that this property holds for all w ∈ ClM2(S). Assume that the property holds
for a set F . Let a, b ∈ F and let v := a ∧ b. If vi = 1, we have ai = 1 and bi = 1 and then
aj = 1 and bj = 1. We conclude that vj = aj ∧ bj = 1. Assume now that v = a ∨ b and

STACS 2016

52:8 Efficient Enumeration of Solutions Produced by Closure Operations

that vi = 1. Then either ai = 1 or bi = 1, say w.l.o.g. that ai = 1. Then aj = 1 and we
have vj = aj ∨ bj = 1. We have shown that the property is preserved by both operations,
therefore u cannot belong to ClM2(S) since ui = 1 and uj = 0. J

We can decide ClosureM2 in time O(mn2) therefore by applying Proposition 1, we get an
enumeration algorithm with delay O(mn3). We can precompute the n vectors xi =

∧
v∈Xi

v

and generate their unions in delay O(n2) thanks to Proposition 9. We can do better by using
the inclusion structure of the xi to obtain a O(n) delay.

I Proposition 13. EnumClosureM2 can be solved with delay O(n).

If we consider EnumClosureM2∪{¬}(S), it is very easy to enumerate. Let Xi = {v | v ∈
S, vi = 1} ∪ {¬v | v ∈ S, vi = 0} and let xi =

∧
v∈Xi

v. The set ClM2∪{¬}(S) is in fact
a boolean algebra, whose atoms are the xi. Indeed, either xi

i,j = xj
i,j and they are equal

or 1xi ∩ 1xj = ∅. If A = {xi | i ∈ [n]}, two distinct unions of elements in A produce
distinct elements. Hence by enumerating all possible subsets of A with a Gray code, we
can generate ClM2∪{¬}(S) with a delay O(n) (even O(1) when always equal coefficients are
grouped together).

The closures by the clones R2 and R0 are equal to the closure by M2 ∪ {¬} up to some
coefficients which are fixed to 0 or 1, thus they are as easy to enumerate.

I Proposition 14. The problems ClosureR2 , ClosureR0 can be reduced to ClosureM2

in polynomial time.

3.4 Majority and Threshold
An operation f is a near unanimity of arity k if it satisfies f(x1, x2, . . . , xk) = x for each
k-tuple with at most one element different from x. The threshold function of arity k, denoted
by Thk

k−1, is defined by Thk
k−1(x1, . . . , xk) = 1 if and only if at least k − 1 of the elements

x1, . . . , xk are equal to one. It is the smallest near unanimity operation over the booleans.
The threshold function Th3

2 is the majority operation over three booleans that we denote
by maj and the clone it generates is D2. We first give a characterization of ClD2(S) which
helps prove that ClosureD2 ∈ P . The characterization is a particular case of a universal
algebra theorem that we then use to compute the closure by any clone which contains a
threshold function.

I Lemma 15. Let S be a vector set. A vector v belongs to ClD2(S) if and only if for all
i, j ∈ [n], i 6= j, there exists x ∈ S such that xi,j = vi,j.

Proof. (=⇒) Given a, b ∈ {0, 1} and i, j ∈ [n], i 6= j, we first show that if for all v ∈ S, vi 6= a

or vj 6= b then for all u ∈ ClD2(S), vi 6= a or vj 6= b. It is sufficient to prove that this property
is preserved by applying maj to a vector set i.e. that if S has this property, then maj(S)
has also this property. Let x, y, z ∈ S, v := maj(x, y, z), and assume for contradiction that
vi,j = (a, b). Since vi = a, there are at least two vectors among {x, y, z} that are equal
to a at index i. Without loss of generality, let x and y be these two vectors. Since for all
u ∈ S, ui 6= a or uj 6= b, we have xj 6= b and yj 6= b and then vj 6= b which contradicts the
assumption. We conclude that if v ∈ ClD2(S), then for all i, j ∈ [n], there exists u ∈ S with
vi,j = ui,j .
(⇐=) Let k ≤ n and let a1, ..., ak ∈ {0, 1}. We will show by induction on k, that if for all
i, j ≤ k there exists v ∈ S with vi = ai and vj = aj , then there exists u ∈ ClD2(S) with
u1 = a1, u2 = a2, ..., uk = ak. The assertion is true for k = 2. Assume it is true for k − 1,

A. Mary and Y. Strozecki 52:9

and let a1, ..., ak ∈ {0, 1}. By induction hypothesis there exists a vector w ∈ ClD2(S) with
w1 = a1, ..., wk−1 = ak−1. By hypothesis, for all i ≤ k there exists vi ∈ S with vi

i = ai and
vi

k = ak. We then construct a sequence of vectors (ui)i≤k as follow. We let u1 = v1 and
for all 1 < i < k, ui = maj(w, ui−1, vi). We claim that u := uk−1 has the property sought
i.e. for all i ≤ k, ui = ai. First let prove that for all i < k and for all j ≤ i, ui

j = aj . It is
true for u1 by definition. Assume now that the property holds for ui−1, i < k. Then, by
construction, for all j ≤ i− 1, we have ui

j = aj since wj = aj and ui−1
j = aj . Furthermore,

we have ui
i = maj(wi, u

i−1
i , vi

i) = ai since wi = ai and vi = ai. We conclude that for all
i ≤ k − 1, ui = uk−1

i = ai.
We claim now that for all i < k, ui

k = ak. It is true for u1. Assume it is true for
ui−1, i < k. Then we have ui

k = maj(wk, u
i−1
k , vi

k) which is equal to ak since ui−1
k = ak by

induction and vi
k = ak by definition. We then have ui = ai for all i ≤ k which concludes the

proof. J

As an immediate consequence we get the following corollary and proposition.

I Corollary 16. ClosureD2 ∈ P.

Proof. Using Lemma 15, one decides whether a vector v is in ClD2(S), by considering every
pair of indices i, j and checking whether there is a vector w ∈ S such that vi,j = wi,j . The
complexity is in O(mn2). J

I Proposition 17. EnumClosureD2 can be solved in delay O(n2).

Proof. We do a backtrack search and we explain how to efficiently decide ClosureD2 during
the enumeration. We first precompute for each pair (i, j) all values (a, b) such that there
exists v ∈ S, vi,j = (a, b). When we want to decide whether the vector v of size l can be
extended into a solution, it is enough that it satisfies the condition of Lemma 15. Moreover,
we already know that v[l−1] satisfies the condition of Lemma 15. Hence we only have to
check that the values of vi,l for all i < l can be found in Si,l which can be done in time O(l).
The delay is the sum of the complexity of deciding ClosureD2 for each partial solution in a
branch: O(n2). J

It turns out that Lemma 15 is a particular case of a general theorem of universal algebra
which applies to all near unanimity terms. However we felt it was interesting to give the
lemma and its proof to get a sense of how the following theorem is proved.

I Theorem 18 (Baker-Pixley, adapted from [2]). Let F be a clone which contains a near
unanimity term of arity k, then v ∈ ClF (S) if and only if for all sets of indices I of size
k − 1, vI ∈ ClF (S)I .

This allows to settle the case of D1 =< maj, x+y+ z > and of the two infinite families of
clones of our restricted lattice Sk

10 =< Thk+1
k , x∧ (y∨z) > and Sk

12 =< Thk+1
k , x∧ (y → z) >.

I Corollary 19. If a clone F contains Thk+1
k then ClosureF is solvable in O(mnk). In

particular Closure(Sk
10), Closure(Sk

12) and Closure(D1) are in P.

We have proved that the complexity of any closure problem in one of our infinite families
is polynomial. Remark that we can use the method of Proposition 17 to obtain a delay O(nk)
for enumerating the elements of a set closed by a near unanimity function of arity k. Notice
that we could have applied Theorem 18 to the clones of Subsection 3.3 which all contain the
maj function. However, it was relevant to deal with them separately to obtain a different
algorithm with delay O(n) rather than O(n2).

STACS 2016

52:10 Efficient Enumeration of Solutions Produced by Closure Operations

Notice that the complexity of ClosureF is increasing with the smallest arity of a near
unanimity function in F . We should thus investigate the complexity of the uniform problem
when the clone is given as input. Let ClosureTreshold be the following problem: given a
set S of vectors and an integer k decide whether the vector 1 ∈ ClSk

10
(S). It is a restricted

version of the uniform problem, but it is already hard to solve because we can reduce the
Hitting Set problem to its complement.

I Theorem 20. ClosureTreshold is coNP-complete.

In fact, the result is even stronger because our reduction preserves the value k. We cannot
hope to get an FPT algorithm for ClosureTreshold parameterized by k since the Hitting Set
problem parameterized by the size of the hitting set is W[2]-complete [6]. It means that if we
want to significantly improve the delay of our enumeration algorithm for the clone Sk

10, we
should drop the backtrack search since it relies on solving ClosureSk

10
.

3.5 Limits of the Infinite Parts
Here we deal with the two cases left which are the limits of the two infinite hierarchies of
clones we have seen in the previous subsection. Let us begin with S12 =< x ∧ (y → z) >.

I Remark. Let S be a vector set and assume that there exists some i ∈ [n] such that for all
v ∈ S, vi = 1 (resp. vi = 0) then for all w ∈ ClS12(S) we have wi = 1 (resp. wi = 0). Then
we will assume in this section that for all i ∈ [n] there is at least a vector v in S with vi = 1
and a vector w with wi = 0.

I Theorem 21. Let S be a vector set, a vector v belongs to ClS12(S) if and only if
there exists w ∈ S such that 1(v) ⊆ 1(w)
for all (k, i) ∈ 1(v)× 0(v) there exists w ∈ S with wk,i = (0, 1) or wk,i = (1, 0)

Proof. Let us start by proving the following claim.
Claim: Let k, i ∈ [n]. Then there exists u ∈ ClS12(S) such that uk,i = (1, 0) if and only if
there exists v ∈ S such that vk,i = (1, 0) or vk,i = (0, 1).

Assume first that there exists v ∈ S such that vk,i = (0, 1). Let x ∈ S such that xk = 1
and y ∈ S such that yi = 0. Without loss of generality, such vectors exist by the assumption
of Remark 3.5. Then u := x∧ (v → y) has the sought property, i.e uk,i = (1, 0). Assume now
that for all v ∈ S, vk,i 6= (1, 0) and vk,i 6= (0, 1). We show that this property is preserved
by the application of x ∧ (y → z). For all v ∈ S, vk,i = (1, 1) or vk,i = (0, 0). Since the
function x∧ (y → z) acts coordinate-wise on the vectors, if we consider w = x∧ (y → z) with
x, y, z ∈ S we must have wi = wk. Therefore wk,i 6= (1, 0) and wk,i 6= (0, 1) which implies by
induction that there is no v with vk,i = (0, 1) and v ∈ ClS12(S). This completes the proof of
the claim and we now prove the theorem.
(⇐=) We can simulate w ∧ v with w ∧ (w → v). We will show that for all i ∈ 0(v) either
there exists a vector vi ∈ S such that 1(v) ⊆ 1(vi) and vi

i = 0 or we can construct it. Notice
that it is sufficient in order to prove that v ∈ ClS12(S) since we have v =

∧
i∈0(v) v

i. So let
i ∈ 0(v) and assume that for all w ∈ S such that 1(v) ⊆ 1(w) we have wi = 1. Let w be
such a vector and let 1(v) = {j1, j2, ..., jk}. We will construct a sequence of vectors (wl)l≤k

such that for all l ≤ k and for all r ≤ l, wl
jr

= 1 and wl
i = 0. Let w1 be the vector with

w1
j1

= 1 and w1
i = 0. By the claim, such a vector exists in ClS12(S). Now for all l ≤ k, let us

define wl := w ∧ (ul → wl−1) where ul is a vector such that ul
jl

= 0 and ul
i = 1 and there

is such a vector in ClS12(S) by the claim. Since by induction we have wl−1
i = 0, and since

ul
i = 1, we have (ul → wl−1)i = 0 and thus wl

i = 0. Now since ul
jl

= 0 and wjl
= 1 we have

A. Mary and Y. Strozecki 52:11

wl
jl

= 1. Finally, for all r < l, we have wjr and wl−1
jr

= 1. Hence wl
jr

= 1. We obtain that
1(v) ⊆ 1(wk) and wk

i = 0.
(=⇒) Let v ∈ ClS12(S). Notice that if v = x∧ (y → z), then 1(v) ⊆ 1(x). Thus, there exists
w ∈ S such that 1(v) ⊆ 1(w). Now, by the claim, for all k, i ∈ [n] such that vk,i = (1, 0)
there exists w ∈ S such that wk,i = (1, 0) or wk,i = (0, 1) which conclude the proof. J

I Corollary 22. ClosureS12 ∈ P.

Finally, we deal with the clone S10 =< x ∧ (y ∨ z) >. The characterization of ClS10(S)
and its proof are very similar to the one of ClS12(S).

I Theorem 23. Let S be a vector set, a vector v belongs to ClS10(S) if and only if
there exists w ∈ S such that 1(v) ⊆ 1(w)
for all (k, i) ∈ 1(v)× 0(v) there exists w ∈ S with wk,i = (1, 0)

I Corollary 24. ClosureS10 ∈ P.

4 Larger Domains

In this section, we try to extend some results of the boolean domain to larger domains.

4.1 Tractable Closure

The first tractable case is an extension of the clones of Subsection 3.4. Indeed using Th. 18,
we can get an equivalent to Corollary 19 and to Proposition 17 in any domain size.

I Corollary 25. If F contains a near unanimity operation, then ClosureF ∈ P .

I Proposition 26. If F contains a near unanimity term of arity k, then EnumClosureF
can be solved in delay O(nk−1).

The second tractable case is a generalization of Subsection 3.2.

I Proposition 27. Let f be a commutative group operation over D, then Closure<f> ∈ P .

Proof. We want to solve Closure<f>, given S a set of vectors and v a vector. Let A be
the matrix which have the elements of S as rows. The vector v is in Closure<f>(S) if
and only there is a vector x with coefficients in Z such that Ax = v. This equation is not
over a field so we cannot solve it directly. We apply a classical group theorem to the finite
commutative group (D, f), which states that D is a direct sum of cyclic groups D1, . . . , Dt

whose order is the power of a prime. The equation Ax = v can be seen as a set of equations
over fields: Aixi = vi, for i ≤ t, where Ai, xi and vi are the projection of A, x and v over Di.
We can easily reconstruct an x which have the projections xi on Di by the Chinese remainder
theorem. Therefore, deciding whether v ∈ Closure<f>(S) is equivalent to solving a set of
linear systems and hence is in polynomial time. J

One natural generalization would be to allow the function f to be non commutative. In
that case, we conjecture that Closure<f> is NP-hard.

STACS 2016

52:12 Efficient Enumeration of Solutions Produced by Closure Operations

4.2 A Limit to the Backtrack Search
The last case we would like to extend is the clone generated by the conjunction. A natural
generalization is to fix an order on D and to study the complexity of Closure<f> with
f monotone. Let f be the function over D = {0, 1, 2} defined by f(x, y) = min(x + y, 2).
This function is clearly monotone for the usual order. However we can prove that EXACT-3-
COVER reduces to Closure<f>.

I Proposition 28. Closure<f> is NP-complete.

This hardness result implies that we cannot use the backtrack search to solve the associated
enumeration algorithm. However, if we allow a space proportional to the number of solutions,
we can still get a polynomial delay algorithm for associative functions, a property satisfied
by the function f of the last proposition. Remark that the space used can be exponential
while the backtrack search only requires a polynomial space.

I Proposition 29. If f is an associative function, then EnumClosure<f> ∈ DelayP.

Proof. Let S be an instance of EnumClosure<f>. Let G be the directed graph with
vertices Cl<f>(S) and from each v ∈ Cl<f>(S), there is an arc to f(v, s) for all s ∈ S. Since
f is associative, by definition of G, every vertex of Cl<f>(S) is accessible from a vertex in
S. Therefore we can do a depth-first traversal of the graph G to enumerate all solutions. A
step of the traversal is in polynomial time: from an element v we generate its neighborhood:
f(v, s) for s ∈ S. The computation of f(v, s) is in time O(n) and |S| = m. We must also
test whether the solution f(v, s) has already been generated. This can be done in time O(n)
by maintaining a self balanced search tree containing the generated solutions, since there are
at most |D|n solutions. In conclusion the delay of the enumeration algorithm is in O(mn)
thus polynomial. J

To obtain a polynomial space algorithm, we could try to use the reverse search method [1].
To do that, we want the graph G to be a directed acyclic graph, which is the case if we
require the function to be monotone. The monotonicity also ensures that the depth of G
is at most n(|D| − 1). However we also need to be able to compute for each element of G
a canonical ancestor in polynomial time and it does not seem to be easy even when f is
monotone. We leave the question of finding a good property of f which ensures the existence
of an easy to compute ancestor open for future research.

Acknowledgements. Authors have been partly supported by the ANR project Aggreg and
we thank the members of the project and Mamadou Kanté for interesting discussions about
enumeration. We also thank Florent Madelaine for his help with CSP and universal algebra.

References
1 David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathe-

matics, 65(1):21–46, 1996.
2 Kirby A Baker and Alden F Pixley. Polynomial interpolation and the chinese remainder

theorem for algebraic systems. Mathematische Zeitschrift, 143(2):165–174, 1975.
3 Andrei A Bulatov, Víctor Dalmau, Martin Grohe, and Dániel Marx. Enumerating homo-

morphisms. Journal of Computer and System Sciences, 78(2):638–650, 2012.
4 Florent Capelli, Arnaud Durand, and Yann Strozecki. A note on polynomial delay and

incremental delay, 2015. URL: http://www.prism.uvsq.fr/~ystr.

http://www.prism.uvsq.fr/~ystr

A. Mary and Y. Strozecki 52:13

5 Nadia Creignou and Jean-Jacques Hébrard. On generating all solutions of generalized
satisfiability problems. Informatique théorique et applications, 31(6):499–511, 1997.

6 Jörg Flum and Martin Grohe. Parameterized complexity theory, 2006.
7 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating all

maximal independent sets. Information Processing Letters, 27(3):119–123, 1988.
8 Leonid Khachiyan, Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa

Makino. On the complexity of some enumeration problems for matroids. SIAM Journal
on Discrete Mathematics, 19(4):966–984, 2005.

9 Donald E Knuth. Combinatorial Algorithms, Part 1, volume 4A of The Art of Computer
Programming, 2011.

10 Emil Leon Post. The two-valued iterative systems of mathematical logic. Princeton Univer-
sity Press, 1941.

11 Robert C Read and Robert E Tarjan. Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees. Networks, 5(3):237–252, 1975.

12 Steffen Reith and Heribert Vollmer. Optimal satisfiability for propositional calculi and
constraint satisfaction problems. Information and Computation, 186(1):1–19, 2003.

13 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth
annual ACM symposium on Theory of computing, pages 216–226. ACM, 1978.

14 Yann Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Université
Paris Diderot – Paris 7, 2010.

15 Yann Strozecki. On enumerating monomials and other combinatorial structures by polyno-
mial interpolation. Theory Comput. Syst., 53(4):532–568, 2013.

STACS 2016

	Introduction
	Organization of the Paper

	Preliminaries
	Complexity
	Closure of Families by Set Operations

	The Boolean Domain
	Conjunction
	Algebraic Operations
	Conjunction and Disjunction
	Majority and Threshold
	Limits of the Infinite Parts

	Larger Domains
	Tractable Closure
	A Limit to the Backtrack Search

