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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15472 Programming
with “Big Code”. “Big Code” is a term used to refer to the increasing availability of the millions
of programs found in open source repositories such as GitHub, BitBucket, and others.

With this availability, an opportunity appears in developing new kinds of statistical program-
ming tools that learn and leverage the effort that went into building, debugging and testing
the programs in “Big Code” in order to solve various important and interesting programming
challenges.

Developing such statistical tools however requires deep expertise across multiple areas of com-
puter science including machine learning, natural language processing, programming languages
and software engineering. Because of its highly inter-disciplinary nature, the seminar involved
top experts from these fields who have worked on or are interested in the area.

The seminar was successful in familiarizing the participants with recent developments in
the area, bringing new understanding to different communities and outlining future research
directions.
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The main objective of the seminar was to bring together several research communities
which have so far been working separately on the emerging topic of “Big Code” and to
foster a new community around the topic. Over the last 4–5 years there have been several
developments and interesting results involving “Big Code” all spanning a wide range of fields
and conferences: the seminar brought these communities together and enabled them to
interact for the first time.
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The program was structured as a series of talks interspersed with discussion. Almost all
of seminar participants gave a talk on their latest research. Even though the initial plan was
to include special discussion sessions, each talk triggered so much discussion, both during
the talk itself, and also after, that there was no need for specific discussion slots. We believe
the seminar was successful in setting the right atmosphere for open ended discussion and
obtained the desired affect of triggering much organic interaction.

Only the last day (morning) included a short wrap-up discussion session focusing on
the future of the area, defining common data sets and future challenges the community can
address. That discussion is summarized in the working group report.

The seminar was highly inter-disciplinary involving experts from programming languages,
software engineering, machine learning and natural language processing. Further, it brought
together research groups from Europe, Asia and U.S., all working on the topic of “Big Code”,
and raised awareness and familiarity with what different research groups are working on.

The talks and discussions spanned several topics including: the kinds of statistical
methods used (e.g., n-gram models, recurrent neural networks, graphical models, probabilistic
grammars, etc), new programming applications that can benefit from these models (e.g., code
completion, code search, code similarity, translating natural language to code, etc), and the
interaction between these. Some of the presentations were more of an introductory/overview
nature while others focused on the more technical aspects of particular programming tools
and machine learning models.

After two days of presentations and discussions, we used the last day of the seminar
(before lunch) to summarize the discussions and to outline a future research direction. A
suggestion enthusiastically embraced by everyone was to create a web site which lists the
current data sets, challenges, tools and research groups working on the topic. The view was
that this will not only enable existing groups to compare their tools on common problems
and data sets but will also make it much easier for other research groups and graduate
students to get into the area and to start contributing. It also serves as a useful instrument
for raising awareness about the topic:

We have now created this web site and have made it available here: http://learnbigcode.
github.io/.

In a short time, several groups have started contributing by uploading links to tools, data
sets and challenges.

Overall, the seminar was successful both in terms of stimulating new and fruitful interac-
tion between research communities that were working in the area but were separated so far,
but also in setting a common agenda moving forward. Due to the high interest and feedback
from this seminar, we anticipate that in a year or two from now, we will be ready to propose
a larger seminar on the topic.
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3 Overview of Talks

3.1 Miltos Allamanis
Miltos Allamanis (University of Edinburgh, GB) and Charles Sutton (University of Edinburgh,
GB)

License Creative Commons BY 3.0 Unported license
© Miltos Allamanis and Charles Sutton

We briefly discuss recent work on mining code idioms from codebases. A code idiom is a
syntactic code fragment that recurs frequently across software projects and has a single
semantic purpose. Although, we know that developers write idiomatic code it is not clear
why idioms arise in source code. In this talk, I discuss potential reasons for the prevalence of
idiomatic code among developers.

3.2 Loop-Invariant Synthesis using Techniques from Constraint
Programming

Jason Breck (University of Wisconsin – Madison, US)

License Creative Commons BY 3.0 Unported license
© Jason Breck

In this talk, I describe a loop invariant synthesis technique inspired by constraint programming.
In particular, the technique uses an abstract domain from constraint programming: the
abstract domain consists of sets of boxes, where a box is a collection of interval constraints,
one for each program variable. The technique synthesizes inductive loop invariants for
programs that manipulate real-valued variables. It works by iteratively splitting and deleting
boxes until the set of boxes becomes an inductive loop invariant, or a failure condition is
reached. I describe an extension to the technique that uses an abstract domain of octagons
instead of boxes. I also describe a series of experiments that test our technique on programs
taken from the literature on numeric loop invariant synthesis.

3.3 An overview of the Pliny project
Swarat Chaudhuri (Rice University – Houston, US) and Christopher M. Jermaine (Rice
University – Houston, US)
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Formal methods is the science of mechanized formal reasoning about complex systems. Data
mining is the science of extracting knowledge and insights from large volumes of data. In
this talk, I will describe Pliny, a Rice-led DARPA project that seeks to bridge these two
disciplines. The vision of Pliny is to develop a wide range of formal reasoning tools that
aim to make software more reliable, faster, and more easily programmed. The difference
between Pliny and existing formal methods approaches is that Pliny complements automated
logic-based analysis with statistical mining of “Big Code”, i.e., large corpora of open-source
software. The logical and statistical techniques are unified under a Bayesian framework
where logical techniques are guided by data-driven insights and data mining happens on
artifacts generated through automated reasoning.
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3.4 Studying the Naturalness of Software
Premkumar T. Devanbu (University of California – Davis, US)

License Creative Commons BY 3.0 Unported license
© Premkumar T. Devanbu

Natural languages have evolved to serve immediate, natural human purposes: survival,
nourishment, reproduction; while languages per se are rich in vocabulary and grammatical
flexibility, most human utterances are simple and repetitive, reflecting the origins of the
medium. At UC Davis, we discovered in 2011 that large software corpora show even
greater repetitive nature, despite the considerable power and flexibility of programming
languages. Since studies since then, we have studied this repetitive structure in detail, and
shown that the phenomenon persists (and indeed strengthens) even if differences between
programming language corpora and natural language corpora are accounted for. Thus,
although programming languages have much greater vocabulary (arising from variable names)
the vocabulary, when names are split, show an even greater degree of repetition. Likewise, the
simplicity of programming code is not just an artifact of simpler structure: when compared
on an equal basis (programming corpora without keywords and operators, language corpora
without function words) software in fact becomes even more repetitive. IN ongoing work,
we are finding that when software code is non-repetitive (or surprising), it is in fact much
likelier to be defective.

3.5 Doing Software Analytics Research – Incorporating Cross-Domain
Expertise

Shi Han (Microsoft Research – Beijing, CN)
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This talk introduces four selected research projects in the past six years at the Software
Analytics group of Microsoft Research, demonstrating te importance and challenges of
incorporating cross-domain expertise for successful learning/mining tasks against software
artifects such as code or log.

StackMine – performance debugging in the large via mining millions of stack traces
DriverMine – comprehending OS performance issues in the software ecosystem scope
JSweeter – uncovering JavaScript performance code smells relevant to type mutation
Codeology – program understanding via mining big code

3.6 Can big code find errors?
Abram Hindle (University of Alberta – Edmonton, CA)

License Creative Commons BY 3.0 Unported license
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Syntax errors, misspellings, and misunderstandings are detriment to programmers everywhere.
But naturalness is here help, by treating software source code as natural language utterances
we can leverage tools used in the NLP domain to help debug software. Specifically in this
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work we demonstrate that smoothed n-gram models of source code tokens trained on a
large corpus of code can easily determine if code doesn’t belong: code that doesn’t belong,
code that is surprising to a model is usually code that contains syntax errors, misspellings,
or awkward semantics not usually employed. We evaluate this conjecture on code from 2
fundamentally different programming languages: Java and Python. We find that in both
cases asking a model trained on good source code, “does this potentially bad source code
surprise you?” allows us to identify syntax errors, misnamed identifiers, and even missing
code tokens. We find that in the case of Python, a dynamic language, that the lack of oracle
is a huge impediment, such that programmers may ship python code that seems to work but
actually contains syntax errors.

3.7 Mining and Understanding Software Enclaves
Suresh Jagannathan (Purdue University – West Lafayette, US)

License Creative Commons BY 3.0 Unported license
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The modern-day software ecosystem is a messy and chaotic one. Among other things, it
includes an intricate stack of sophisticated services and components, susceptible to frequent
(and often incompatible) upgrades and patches; emerging applications that operate over
large, unstructured, and noisy data; and, an ever-growing code base replete with latent
defects and redundancies. Devising novel techniques to tame this complexity, and improve
software resilience, trustworthiness, and expressivity in the process, is a common theme
actively being explored by several ongoing DARPA programs. This talk gives an overview of
one such effort – MUSE (Mining and Understanding Software Enclaves) –, which aims to
exploit predictive analytics over large software corpora to automatically repair and synthesize
programs. It seeks to realize this vision of “Big Code” by developing foundational advances
in programming language design, analysis, and implementation, and has as its overarching
goal, revolutionizing the way we think about software construction and reliability.

3.8 Learning to Search Large Code Bases
Christopher M. Jermaine (Rice University – Houston, US)
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In the Pliny project, our goal is to use a large code repository to help perform tasks such as
synthesis, bug finding, and repair. One of the key subtasks for each of these tasks is searching
a large database for all codes that are “close to” a query specification. Unfortunately, “close
to” is not defined a priori. We can extract features from code (including syntactic and
semantic information about the code) and we can define distance metrics over those features,
but we do not know beforehand which are going to be most useful for solving a given task. In
this talk, I will describe how we plan to use the question-answer posts from Stack Overflow
to help bootstrap the process of figuring out what features and metrics are potentially useful
to power search. We describe a model that is similar to Canonical Correlation Analysis,
and automatically chooses features and metrics that are useful for linking code to natural
language text. Our hypothesis is that those same features and metrics will be useful for
finding codes that are close to a query in a synthesis, debugging, or repair task.
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3.9 Big Code for Better Code
Sebastian Proksch (TU Darmstadt, DE)
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The goal of this talk was to stimulate discussion. Because of a very restricted time slot for
the presentation, the talk was very focussed on two points:
1. It introduced an extensible inference engine for recommender systems in software engin-

eering that is based on feature vectors generated from structural context. Researchers
can freely exchange the underlying pattern detection mechanisms and get a recommender
and the necessary evaluation pipeline for free.

2. State of the art evaluation of recommender systems in software engineering are typically
based on artificial evaluations. The talk stresses the fact that this does not provide any
insights about the perceived usefulness of a tool by the developer. To improve evaluations,
we collected real developer feedback by instrumenting the Visual Studio IDE and use this
as a ground truth for evaluation instead.

3.10 Language to Code: Learning Semantic Parsers for
If-This-Then-That Recipes

Christopher Quirk (Microsoft Corporation – Redmond, US)
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Using natural language to write programs is a touchstone problem for computational lin-
guistics. We present an approach that learns to map natural-language descriptions of simple
“if-then” rules to executable code. By training and testing on a large corpus of naturally-
occurring programs (called “recipes”) and their natural language descriptions, we demonstrate
the ability to effectively map language to code. We compare a number of semantic parsing
approaches on the highly noisy training data collected from ordinary users, and find that
loosely synchronous systems perform best.

3.11 Learning Programs from Noisy Data
Veselin Raychev (ETH Zürich, CH) and Martin T. Vechev (ETH Zürich, CH)
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We present a novel technique for constructing statistical code completion systems. These are
systems trained on massive datasets of open source programs, also known as “Big Code”. The
key idea is to introduce a domain specific language (DSL) over trees and to learn functions in
that DSL directly from the dataset. These learned functions then condition the predictions
made by the system. This is a flexible and powerful technique which generalizes several
existing works as we no longer need to decide a priori on what the prediction should be
conditioned. As a result, our code completion system surpasses the prediction capabilities of
existing, hard-wired systems.
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3.12 Clio:Digital Code Assistant for the Big Code Era
Armando Solar-Lezama (MIT – Cambridge, US)
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The talk describes our efforts in leveraging information from big code in order to support
synthesis tasks. The first part of the talk first provides a brief overview of our DemoMatch
effort which allows user to demonstrate the use of a framework on an existing application
and then generates the code necessary to use the framework in that way. The second part of
the talk describes a tool called Swapper that automatically generates formula simplification
routines to be used inside solvers. Swapper takes as input a corpus of formulas from synthesis
problems and produces simplifiers tailored to those formulas. Automatic generation of such
simplifiers is a first step towards automatic generation of domain specialized solvers.

3.13 Statistical Analysis of Program Text
Charles Sutton (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
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Billions of lines of source code have been written, many of which are freely available on the
Internet. This code contains a wealth of implicit knowledge about how to write software
that is easy to read, avoids common bugs, and uses popular libraries effectively.

We want to extract this implicit knowledge by analyzing source code text. To do this,
we employ the same tools from machine learning and natural language processing that have
been applied successfully to natural language text. After all, source code is also a means of
human communication.

We present three new software engineering tools inspired by this insight, that learn local
coding conventions (naming and formatting), syntactic idioms in code, and API patterns.

3.14 Graph-structured Neural Networks for Program Verification
Daniel Tarlow (Microsoft Research UK – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
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An open problem in program verification is to verify properties of computer programs
that manipulate memory on the heap. A key challenge is to find loop invariants – formal
descriptions of the data structures that are instantiated – which are used as input to a
proof procedure that verifies the program. We describe a machine learning-based approach,
where we execute the program and then learn to map the state of heap memory (represented
as a labelled directed graph) to a logical description of the instantiated data structures.
In the process of working on this problem, we developed a new general purpose neural
network architecture that is suitable for learning mappings from graph-structured inputs and
sequential outputs. We describe this model and speculate that it could be generally useful
for a range of problems that arise in the space of “big code”.
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3.15 Learning from Big Code
Martin T. Vechev (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
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An overview presentation covering the recent research advancements on the topic of “Big
Code” at ETH Zürich. The presentation covers several probabilistic models and how they
are used (e.g., recurrent networks, CRFs, etc), for instance, JSNice. The talk also discusses
various open questions and challenges that the community can explore further.

3.16 Estimating Types in Binaries using Predictive Modeling
Eran Yahav (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Eran Yahav

Reverse engineering is an important tool in mitigating vulnerabilities in binaries. As a lot
of software is developed in object-oriented languages, reverse engineering of object-oriented
code is of critical importance. One of the major hurdles in reverse engineering binaries
compiled from object-oriented code is the use of dynamic dispatch. In the absence of debug
information, any dynamic dispatch may seem to jump to many possible targets, posing a
significant challenge to a reverse engineer trying to track the program flow.

We present a novel technique that allows us to statically determine the likely targets of
virtual function calls. Our technique uses object tracelets – statically constructed sequences
of operations performed on an object – to capture potential runtime behaviors of the object.
Our analysis automatically pre-labels some of the object tracelets by relying on instances
where the type of an object is known. The resulting type-labeled tracelets are then used to
train a statistical language model (SLM) for each type. We then use the resulting ensemble
of SLMs over unlabeled tracelets to generate a ranking of their most likely types, from which
we deduce the likely targets of dynamic dispatches. We have implemented our technique
and evaluated it over real-world C++ binaries. Our evaluation shows that when there are
multiple alternative targets, our approach can drastically reduce the number of targets that
have to be considered by a reverse engineer.

3.17 App Mining
Andreas Zeller (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
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How do we know what makes behavior correct? In the absence of detailed specifications, one
alternative could be to analyze large bodies of existing software to determine which behaviors
are common and thus normal. We have mined thousands of popular Android apps from
the Google Play store to determine their normal behavior with respect to their API usage
and their information flows. After clustering apps by their description topics, we identify
outliers in each cluster with respect to their behavior. A “weather” app that sends messages
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thus becomes an anomaly; likewise, a “messaging” app would not be expected to access user
account data. The approach is very effective in identifying novel malware even if no malware
samples are given, and Google is currently adopting the approach for its store. In the long
run, we expect mined patterns of normal behavior to well complement explicit specifications.

3.18 A User-Guided Approach to Program Analysis
Xin Zhang (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 3.0 Unported license
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Program analysis tools often produce undesirable output due to various approximations.
We present an approach and a system Eugene that allows user feedback to guide such
approximations towards producing the desired output. We formulate the problem of user-
guided program analysis in terms of solving a combination of hard rules and soft rules: hard
rules capture soundness while soft rules capture degrees of approximations and preferences of
users. Our technique solves the rules using an off-the-shelf solver in a manner that is sound
(satisfies all hard rules), optimal (maximally satisfies soft rules), and scales to real-world
analyses and programs. We evaluate Eugene on two different analyses with labeled output
on a suite of seven Java programs of size 131–198 KLOC. We also report upon a user study
involving nine users who employ Eugene to guide an information-flow analysis on three Java
micro-benchmarks. In our experiments, Eugene significantly reduces misclassified reports
upon providing limited amounts of feedback

4 Working groups

4.1 Discussion on how to advance the research along this direction and
form a community around the topic

Martin T. Vechev (ETH Zürich, CH) and Veselin Raychev (ETH Zürich, CH)
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On the last day of the seminar, we dedicated an hour long discussion slot. We discussed
several of these questions:

Which tasks should we solve? It was observed that no two groups were solving the exact
same problem. To advance the area, the goal is to define a common set of tasks that we
believe are important as a community. One comment was the danger of focusing on a single
task may be limiting the research. The topic of task diversity came about and that there is
no need to try and be very diverse initially. An example of a possible task is: deobfuscation,
as there is also a baseline here.

What metrics should we use? Machine learning metrics sometimes make no sense here.
End user metrics do matter though. A point was made about algorithmic overfitting: the
Siemens benchmark suite for bug localization. Plenty of works that fine-tuned details for
these benchmarks, but irrelevant in general. NLP also has experience in overfitting to
datasets. A good example of a metric that advanced the area is machine translation with
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the BLEU score (before it, all papers did user studies). Ideally, new technique papers in the
area should not have to include user studies.

What is a good venue to publish the work? A comment was made that dataset papers
should appear, e.g., in EMNLP there is a notable dataset award in addition to a Best paper
award. Many good conferences are already accepting works in the area.

Are there expensive to obtain datasets? A question was whether we can agree on a
manually annotated dataset? Which datasets are the ones that are costly and we can share
the cost.

What will be important for actual programming tools? A comment was that we may
actually want to overfit if we solve the actual task requested by the user. Another comment
was that the particular datasets are good for our tasks, but useless for programming language
tasks. Most programs do not compile. Tasks should be evaluated on how much they save for
the user. Refactoring is called rarely, code completion all the time, but how much time is
spent/saved for the user?

What are good outcomes of the seminar? An idea was to create a web site where everyone
can upload their data set and post a challenge. It was suggested to go with Github and
pull requests as opposed to a pure Wiki. This site is now a reality and several groups have
already started uploading data sets and challenges:

http://learnbigcode.github.io/

15472
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