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—— Abstract

Probabilistic programming languages are used for developing statistical models, and they typic-
ally consist of two components: a specification of a stochastic process (the prior), and a specific-
ation of observations that restrict the probability space to a conditional subspace (the posterior).
Use cases of such formalisms include the development of algorithms in machine learning and ar-

tificial intelligence. We propose and investigate an extension of Datalog for specifying statistical
models, and establish a declarative probabilistic-programming paradigm over databases. Our
proposed extension provides convenient mechanisms to include common numerical probability
functions; in particular, conclusions of rules may contain values drawn from such functions. The
semantics of a program is a probability distribution over the possible outcomes of the input
database with respect to the program. Observations are naturally incorporated by means of
integrity constraints over the extensional and intensional relations. The resulting semantics is
robust under different chases and invariant to rewritings that preserve logical equivalence.
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1 Introduction

Languages for specifying general statistical models are commonly used in the development
of machine learning and artificial intelligence algorithms for tasks that involve inference
under uncertainty. A substantial effort has been made on developing such formalisms and
corresponding system implementations. An actively studied concept in that area is that
of Probabilistic Programming (PP) [20], where the idea is that the programming language
allows for specifying general random procedures, while the system executes the program not
in the standard programming sense, but rather by means of inference. Hence, a PP system
is built around a language and an (approximate) inference engine, which typically makes
use of Markov Chain Monte Carlo methods (e.g., the Metropolis-Hastings algorithm). The
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relevant inference tasks can be viewed as probability-aware aggregate operations over all
possible worlds, that is, possible outcomes of the program. Examples of such tasks include
finding the most likely possible world, or estimating the probability of an event. Recently,
DARPA initiated the project Probabilistic Programming for Advancing Machine Learning
(PPAML), aimed at advancing PP systems (with a focus on a specific collection of systems,
e.g., [40, 30, 32]) towards facilitating the development of algorithms and software that are
based on machine learning.

In probabilistic programming, a statistical model is typically phrased by means of two
components. The first component is a generative process that produces a random possible
world by straightforwardly following instructions with randomness, and in particular, sampling
from common numerical probability functions; this gives the prior distribution. The second
component allows to phrase constraints that the relevant possible worlds should satisfy, and,
semantically, transforms the prior distribution into the posterior distribution — the subspace
obtained by conditioning on the constraints.

As an example, in supervised text classification (e.g., spam detection) the goal is to
classify a text document into one of several known classes (e.g., spam/non-spam). Training
data consists of a collection of documents labeled with classes, and the goal of learning is
to build a model for predicting the classes of unseen documents. One common approach
to this task assumes a generative process that produces random parameters for every class,
and then uses these parameters to define a generator of random words in documents of the
corresponding class [33, 31]. The prior distribution thus generates parameters and documents
for each class, and the posterior is defined by the actual documents of the training data.
In unsupervised text classification the goal is to cluster a given set of documents, so that
different clusters correspond to different topics (not known in advance). Latent Dirichlet
Allocation [10] approaches this problem in a similar generative way as the above, with the
addition that each document is associated with a distribution over topics.

A Datalog program is a set of logical rules, interpreted in the context of a relational
database (where database relations are also called the extensional relations), that are used to
define additional relations (known as the intensional relations). Datalog has traditionally been
used as a database query language. In recent years, however, it has found new applications
in data integration, information extraction, networking, program analysis, security, cloud
computing, and enterprise software development [23]. In each of these applications, being
declarative, Datalog makes specifications easier to write (sometimes with orders-of-magnitude
fewer lines of code than imperative code, e.g., [28]), and to comprehend and maintain.

In this work, we extend Datalog with the ability to program statistical models. In par
with existing languages for PP, our proposed extension consists of two parts: a generative
Datalog program that specifies a prior probability space over (finite or infinite) sets of facts
that we call possible outcomes, and a definition of the posterior probability by means of
observations, which come in the form of ordinary logical constraints over the extensional and
intensional relations. We subscribe to the premise of the PP community (and PPAML in
particular) that this paradigm has the potential of substantially facilitating the development
of applications that involve machine learning for inferring missing or uncertain information.
Indeed, probabilistic variants are explored for the major programming languages, such as
C [37], Java [27], Scala [40], Scheme [30] and Python [38] (we discuss the relationship of this
work to related literature in Section 6). At LogicBlox, we are interested in extending our
Datalog-based LogiQL [22] with PP to enable and facilitate the development of predictive
analysis [6]. We believe that, once the semantics becomes clear, Datalog can offer a natural
and appealing basis for PP, since it has an inherent (and well studied) separation between
given data (EDB), generated data (IDB), and conditioning (constraints).
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The main challenge, when attempting to extend Datalog with probabilistic programming
constructs, is to retain the inherent features of Datalog. Specifically, the semantics of Datalog
does not depend on the order by which the rules are resolved (chased). Hence, it is safe to
provide a Datalog engine with the ability to decide on the chasing order that is estimated
to be more efficient. Another feature is invariance under logical equivalence: two Datalog
programs have the same semantics whenever their rules are equivalent when viewed as
theories in first-order logic. Hence, it is safe for a Datalog engine to rewrite a program, as
long as logical equivalence is preserved.

For example, consider an application where we want to predict the number of vis-
its of clients to some local service (e.g., a doctor’s office). For simplicity, suppose that we
have a schema with the following relations: LivesIn(person, city), WorksIn(person, employer),
LocatedIn(company, city), and AvgVisits(city, avg). The following rule provides an appealing
way to model the generation of a random number of visits for a person.

Visits(p, Poisson[\]) < LivesIn(p, ¢), AvgVisits(c, A) (1)

The conclusion of this rule involves sampling values from a parameterized probability
distribution. Next, suppose that we do not have all the addresses of persons, and we wish to
expand the simulation with employer cities. Then we might use the following additional rule.

Visits(p, Poisson[\]) +— WorksIn(p, e), LocatedIn(e, ¢), AvgVisits(c, A) (2)

Now, it is not clear how to interpret the semantics of Rules (1) and (2) in a manner that retains
the declarative nature of Datalog. If, for a person p, the right sides of both rules are true,
should both rules “fire” (i.e., should we sample the Poisson distribution twice)? And if p works
in more than one company, should we have one sample per company? And if p lives in one city
but works in another, which rule should fire? If only one rule fires, then the semantics becomes
dependent on the chase order. To answer these questions, we need to properly define what it
means for the head of a rule to be satisfied when it involves randomness such as Poisson[}].
Furthermore, consider the following (standard) rewriting of the above program.

PersonCity(p, ¢) < LivesIn(p, c)
PersonCity(p, ¢) < WorksIn(p, e), LocatedIn(e, c)
Visits(p, Poisson[\]) < PersonCity(p, ¢), AvgVisits(c, \)

As a conjunction of first-order sentences, the rewritten program is equivalent to the previous
one; we would therefore like the two programs to have the same semantics. In rule-based
languages with a factor-based semantics, such as Markov Logic Networks [15] or Probabilistic
Soft Logic [11], the above rewriting may change the semantics dramatically.

We introduce PPDL, a purely declarative probabilistic programming language based
on Datalog. The generative component of a PPDL program consists of rules extended
with constructs to refer to conventional parameterized numerical probability functions (e.g.,
Poisson, geometrical, etc.). Specifically, these mechanisms allow sampling values from the
given parameterized distributions in the conclusion of a rule (and if desired, use these values
as parameters of other distributions). In this paper, our focus is on discrete numerical
distributions (the framework we introduce admits a natural generalization to continuous
distributions, such as Gaussian or Pareto, but we defer the details of this to future work).
Semantically, a PPDL program associates to each input instance I a probability distribution
over possible outcomes. In the case where all the possible outcomes are finite, we get a discrete
probability distribution, and the probability of a possible outcome can be defined immediately
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from its content. But in general, a possible outcome can be infinite, and moreover, the set of
all possible outcomes can be uncountable. Hence, in the general case we obtain a probability
measure space. We define a natural notion of a probabilistic chase where existential variables
are produced by invoking the corresponding numerical distributions. We define a measure
space based on a chase, and prove that this definition is robust, in the sense that the same
probability measure is obtained no matter which chase order is used.

A short version of this paper has appeared in the 2015 Alberto Mendelzon International
Workshop [47].

2 Preliminaries

In this section we give basic notation and definitions that we use throughout the paper.

Schemas and instances. A (relational) schema is a collection S of relation symbols, where
each relation symbol R is associated with an arity, denoted arity(R), which is a natural
number. An attribute of a relation symbol R is any number in {1,. .., arity(R)}. For simplicity,
we consider here only databases over real numbers; our examples may involve strings, which
we assume are translatable into real numbers. A fact over a schema S is an expression of the
form R(cq,...,c,) where R is an n-ary relation in S and ¢y, ..., ¢, € R. An instance I over
S is a finite set of facts over S. We denote by R! the set of all tuples (ci,...,c,) such that
R(ci,...,cn) €1

Datalog programs. PPDL extends Datalog without the use of existential quantifiers. How-
ever, we will make use of existential rules indirectly in the definition of the semantics. For
this reason, we review here Datalog as well as existential Datalog. Formally, an existential
Datalog program, or Datalog® program, is a triple D = (£,Z,0) where: (1) £ is a schema,
called the extensional database (EDB) schema, (2) Z is a schema, called the intensional
database (IDB) schema, disjoint from &, and (3) © is a finite set of Datalog” rules, that is,
first-order formulas of the form Vx| (Iyv(x,y)) + ¢(x) | where ¢(x) is a conjunction of
atomic formulas over £ UZ and v(x,y) is an atomic formula over Z, such that each variable
in x occurs in ¢. Here, by an atomic formula (or, atom) we mean an expression of the form
R(t1,...,t,) where R is an n-ary relation and ¢, ..., t, are either constants (i.e., numbers)
or variables. For readability’s sake, we omit the universal quantifier and the parentheses
around the conclusion (left-hand side), and write simply Jy¢(x,y) < ¢(x). Datalog is
the fragment of Datalog? where the conclusion of each rule is an atomic formula without
existential quantifiers.

Let D = (£,Z,0) be a Datalog® program. An input instance for D is an instance I over
E. A solution of I w.r.t. D is a possibly infinite set F of facts over £UZ, such that I C F and
F satisfies all rules in © (viewed as first-order sentences). A minimal solution of I (w.r.t. D)
is a solution F' of I such that no proper subset of F' is a solution of I. The set of all, finite
and infinite, minimal solutions of I w.r.t. D is denoted by min-solp(I), and the set of all
finite minimal solutions is denoted by min-solfy(I). It is a well known fact that, if D is a
Datalog program (that is, without existential quantifiers), then every input instance I has a
unique minimal solution, which is finite, and therefore min—solﬁpn (I) = min-solp(I).

Probability spaces. We separately consider discrete and continuous probability spaces. We
initially focus on the discrete case; there, a probability space is a pair (Q, ), where § is
a finite or countably infinite set, called the sample space, and m : Q@ — [0, 1] is such that



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

Y oca m(0) = 1. If (2, 7) is a probability space, then 7 is a probability distribution over Q.

We say that 7 is a numerical probability distribution if 2 C R. In this work we focus on
discrete numerical distributions.

A parameterized probability distribution is a function § : Q x R — [0,1], such that
5(-,p) : Q — [0,1] is a probability distribution for all p € R¥. We use pardim(4) to denote

the parameter dimension k. For presentation’s sake, we may write d(o|p) instead of (o, p).

Moreover, we denote the (non-parameterized) distribution §(-|p) by d[p]. An example of a
parameterized distribution is Flip(:|p), where € is {0,1}, and for a parameter p € [0, 1] we
have Flip(1|p) = p and Flip(0|p) = 1 — p. Another example is Poisson(-|\), where Q = N, and
for a parameter \ € (0,00) we have Poisson(z|\) = A\®e~*/z!. In Section 7 we discuss the
extension of our framework to models that have a variable number of parameters, and to
continuous distributions.

Let € be a set. A o-algebra over () is a collection F of subsets of €2, such that F contains
Q and is closed under complement and countable unions. (Implied properties include that
F contains the empty set, and that F is closed under countable intersections.) If F' is a
nonempty collection of subsets of Q, then the closure of ' under complement and countable
unions is a c-algebra, and it is said to be generated by F'. A probability measure space
is a triple (2, F,m), where: (1) Q is a set, called the sample space, (2) F is a o-algebra
over Q, and (8) m : F — [0,1], called a probability measure, is such that 7(2) = 1, and
T(UE) = > .ce m(e) for every countable set £ of pairwise-disjoint elements of F.

3 Generative Datalog

A Datalog program without existential quantifiers specifies how to obtain a minimal solution
from an input instance by producing the set of inferred IDB facts. In this section we
present generative Datalog programs, which specify how to infer a distribution over possible
outcomes given an input instance. In Section 5 we will complement generative programs with
constraints to establish the PPDL framework.

3.1 Syntax

The syntax of a generative Datalog program is defined as follows.

» Definition 1 (GDatalog[A]). Let A be a finite set of parameterized numerical distributions.

1. A A-term is a term of the form d[p1,...,px] where 6 € A is a parameterized distribution
with pardim(§) = £ < k, and each p; (i = 1,...,k) is a variable or a constant. To improve
readability, we will use a semicolon to separate the first £ arguments (corresponding to
the distribution parameters) from the optional other arguments (which we will call the
event signature), as in 6[p; q]. When the event signature is empty (i.e., when k = ¢), we
write §[p;].!

2. A A-atom in a schema § is an atomic formula R(ty,...,t,) with R € S an n-ary relation,
such that exactly one term t; (¢ = 1,...,n) is a A-term and the other terms t; are
variables and/or constants.?

! Intuitively, 5[p; q] denotes a sample from the distribution §(:|p) where different samples are drawn for
different values of the event signature q (cf. Example 2).
2 The restriction to at most one A-term per atom is only for presentational purposes, cf Section 3.5.
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House Business City AlarmOn
id city id city name burglaryrate unit
NP1 Napa NP3 Napa Napa 0.03 NP1
NP2 Napa YC1l VYucaipa Yucaipa 0.01 YC1
YC1l VYucaipa YC2

Figure 1 Input instance I of the burglar example.

Earthquake(c, Flip[0.01; Earthquake, c]) <+ City(c,7)
Unit(h,c) < House(h,c)

Unit(b,c¢) < Business(b, ¢)

Burglary(zx, ¢, Flip[r; Burglary, z,c]) <« Unit(z,c), City(c,r)
Trig(x, Flip[0.6; Trig,z]) <+ Unit(z, ¢), Earthquake(c, 1)
Trig(x, Flip[0.9; Trig,z]) + Burglary(x,c, 1)

Alarm(z) « Trig(z,1)

Nogogkrwbn=

Figure 2 GDatalog[A] program G for the burglar example.

3. A GDatalog|A] rule over a pair of disjoint schemas £ and 7 is a first-order sentence of
the form Vx (¢ (x) < ¢(x)) where ¢(x) is a conjunction of atoms in £ UZ and (x) is
either an atom in 7 or a A-atom in Z.

4. A GDatalog[A] program is a triple G = (£,Z,0), where £ and Z are disjoint schemas and
© is a finite set of GDatalog[A] rules over £ and Z.

» Example 2. Our example is based on the burglar example of Pearl [39] that has been
frequently used to illustrate probabilistic programming (e.g., [36]). Consider the EDB schema
& consisting of the following relations: House(h, ¢) represents houses h and their location
cities ¢, Business(b, ¢) represents businesses b and their location cities ¢, City(c, r) represents
cities ¢ and their associated burglary rates r, and AlarmOn(z) represents units (houses or
businesses) « where the alarm is on. Figure 1 shows an instance I over this schema. Now
consider the GDatalog[A] program G = (£,Z,0) of Figure 2.

Here, A consists of only one distribution, namely Flip. The first rule in Figure 2, intuitively,
states that, for every fact of the form City(c,r), there must be a fact Earthquake(c, y) where
y is drawn from the Flip (Bernoulli) distribution with the parameter 0.01. Moreover, the
additional arguments Earthquake and ¢ given after the semicolon (where Earthquake is a
constant) enforce that different samples are drawn from the distribution for different cities
(even if they have the same burglary rate), and that we never use the same sample as in
Rules 5 and 6. Similarly, the presence of the additional argument = in Rule 4 enforces that a
different sample is drawn for a different unit, instead of sampling only once per city.

» Example 3. The program of Figure 3 models virus dissemination among computers of

email users. For simplicity, we identify each user with a distinct computer. Every message

has a probability of passing a virus, if the virus is active on the source. If a message passes

the virus, then the recipient has the virus (but it is not necessarily active, e.g., since the

computer has the proper defence). And every user has a probability of having the virus

active on her computer, in case she has the virus. Our program has the following EDBs:
Message(m, s,t) contains message identifiers m sent from the user s to the user ¢.
VirusSource(z) contains the users who are known to be virus sources.
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PassVirus,1 PassVirus,2

1. PassVirus(m, Flip[0.1;m]) < Message(m, s,t), ActiveVirus(s, 1)

2. HasVirus(t) <« PassVirus(m, 1), Message(m, s, t) ActiveVirus,1 ActiveVirus,2
3. ActiveVirus(z, Flip[0.5; z]) < HasVirus(z) \ al

4 HasVirus,1

ActiveVirus(z,1) < VirusSource(x)

Figure 3 Program and dependency graph for the virus-dissemination example.

Earthquake(c, Flip[0.01]) <« City(c,r)
Unit(h,c) < House(h,c)

Unit(b,c) < Business(b, ¢)

Burglary(z, ¢, Flip[r]) < Unit(z,c), City(c,r)
Trig(x, Flip[0.6]) < Unit(z, c¢), Earthquake(c, 1)
Trig(x, Flip[0.9]) < Burglary(z,c,1)

Alarm(z) « Trig(z,1)

Nogogkrwbn=

Figure 4 Burglar program from Figure 2 modified to use syntactic sugar.

In addition, the following IDBs are used.
PassVirus(m, b) determines whether a message m passes a virus (b = 1) or not (b = 0).
HasVirus(z, b) determines whether user x has the virus (b = 1) or not (b = 0).
ActiveVirus(z, b) determines whether user = has the virus active (b = 1) or not (b = 0).
The dependency graph depicted in Figure 3 will be used later on, in Section 3.4, when we
further analyse this program.

Syntactic sugar. The syntax of GDatalog[A], as defined above, requires us to always make
explicit the arguments that determine when different samples are taken from a distribu-
tion (cf. the argument c¢ after the semicolon in Rule 1 of Figure 2, and the arguments
x, c after the semicolon in Rule 4 of the same program). To enable a more succinct nota-
tion, we use the following convention: consider a A-atom R(t1,...,t,) in which the i-th
argument, t;, is a A-term. Then ¢; may be written using the simpler notation 4[p], in
which case it is understood to be a shorthand for §[p; q] where q is the sequence of terms
ryi,t1,...,ti—1,ti+1,...,tn. Here, r is a constant uniquely associated to the relation R.
Thus, for example, Earthquake(c, Flip[0.01]) <« City(c,r) is taken to be a shorthand for
Earthquake(c, Flip[0.01; Earthquake, 2, ¢]) « City(c,r). Using this syntactic sugar, the pro-
gram in Figure 2 can be rewritten in a notationally less verbose way, cf. Figure 4. Note,
however, that the shorthand notation is less explicit as to describing when two rules involve
the same sample vs. different samples from the same probability distribution.

3.2 Possible Outcomes

A GDatalog[A] program G = (£,Z, ©) is associated with a corresponding Datalog® program
G = (,I7,0%). The possible outcomes of an input instance I w.r.t. G will then be minimal
solutions of T w.r.t. G. Next, we describe 72 and 602.

The schema 72 extends Z with the following additional relation symbols: for each § € A
with pardim(8) = k and for each n > 0, we have a (k 4+ n 4 1)-ary relation symbol Result?.
These relation symbols Resultfb are called the distributional relation symbols of 7%, and the
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la. Jy Resultg“p(().OLEarthquake,c,y) + City(c,r)

1b. Earthquake(c,y) <« City(c,r),Resultg"p(O.()l,Earthquake,c,y)

2. Unit(h,c) < House(h,c)

3. Unit(b,c¢) ¢ Business(b,c)

4a. Jy Resultg“p(nBurglary,:r,c, y) < Unit(z,c), City(c,r)

4b. Burglary(z,c,y) < Unit(z,c), City(c,r),Resultglip(r,Burglaryw,c, Y)
5a. HyResultg“p(O.G,Trig,x,y) < Unit(z, ¢), Earthquake(c, 1)

5b. Trig(x,y) « Unit(z,c), Earthquake(c, 1), Result}™ (0.6, Trig, y, )
6a. HyResultgnp(O.Q,Trig,x,y) < Burglary(z,c, 1)

6b. Trig(x,y) <« Burglary(:z:,c,1),Resultg“p(O.Q,Trig,x,y)

7. Alarm(z) + Trig(z, 1)

Figure 5 The Datalog® program G for the GDatalog[A] program G of Figure 2.

other relation symbols of Z2 (namely, those of Z) are referred to as the ordinary relation
symbols. Intuitively, a fact in Resulti represents the result of a particular sample drawn
from & (where k is the number of parameters of § and n is the number of optional arguments
that form the event signature).

The set ©2 contains all Datalog rules from © that have no A-terms. In addition, for every
rule of the form 1 (x) < ¢(x) in ©, where ¢ contains a A-term of the form ¢[p; q] withn = |q|,
©2 contains the rules IyResult® (p, q,y) < ¢(x) and ¢/ (x,y) + ¢(x), Result’ (p, q,y), where
' is obtained from 1 by replacing 6[p;q] by v.

A possible outcome is defined as follows.

» Definition 4 (Possible Outcome). Let I be an input instance for a GDatalog[A] program G.
A possible outcome for I w.r.t. G is a minimal solution F of I w.r.t. G, such that §(b|p) > 0
for every distributional fact Resulti(p, q,b) € F.

We denote the set of all possible outcomes of I w.r.t. G by Qg(I), and we denote the set of
all finite possible outcomes by Q" (I).

» Example 5. The GDatalog[A] program G given in Example 2 gives rise to the Datalog?
program G of Figure 5. For instance, Rule 6 of Figure 2 is replaced with Rules 6a and 6b
of Figure 5. An example of a possible outcome for the input instance I is the instance
consisting of the relations in Figure 6 (ignoring the “pr(f)” columns for now), together with
the relations of I itself.

3.3 Probabilistic Semantics

The semantics of a GDatalog[A] program is a function that maps every input instance I to
a probability distribution over Qg (I). We now make this precise. For a distributional fact f
of the form Resulti (p, q, a), the probability of f, denoted pr(f), is defined to be §(a|p). For
an ordinary (non-distributional) fact f, we define pr(f) = 1. For a finite set F' of facts, we
denote by P(F) the product of the probabilities of all the facts in F:3

P(F) = [ pr(s)

fer

3 The product reflects the law of total probability and does not assume that different random choices are
independent (and indeed, correlation is clear in the examples throughout the paper).
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Resulth™ Unit Earthquake Alarm

D atty atts result  pr(f) id city city eq unit
0.01 Earthquake Napa 1 0.01 NP1 Napa Napa 1 NP1
0.01 Earthquake Yucaipa 0 0.99 NP2 Napa Yucaipa O NP2
0.9 Trig NP1 1 0.9 NP3 Napa
0.9 Trig NP3 0 0.1 YC1l VYucaipa
0.6 Trig NP1 1 0.6
0.6 Trig NP2 1 0.6

0.6 Trig NP3 0 0.4

Result}™ Burglary Trig

D atty atts atts result  pr(f) unit city draw unit  Trig
0.03 Burglary NP1 Napa 1 0.03 NP1 Napa 1 NP1 1
0.03 Burglary NP2 Napa 0 0.97 NP2 Napa 0 NP3 0
0.03 Burglary NP3 Napa 1 0.03 NP3 Napa 1 NP2 1
0.01 Burglary YC1 Yucaipa 0 0.99 YC1l Yucaipa 0 NP3 0

Figure 6 A possible outcome for the input instance I in the burglar example.

» Example 6 (continued). Let J be the instance that consists of all of the relations in
Figures 1 and 6. As we already remarked, J is a possible outcome of I w.r.t. G. For
convenience, in the case of distributional relations, we have indicated the probability of each
fact next to the corresponding row. P(.J) is the product of all of the numbers in the columns
titled “pr(f),” that is, 0.01 x 0.99 x 0.9 x - -+ x 0.99.

One can easily come up with examples where possible outcomes are infinite, and in
fact, the space Qg(I) of all possible outcomes is uncountable. Hence, we need to consider
probability spaces over uncountable domains; those are defined by means of measure spaces.

Let G be a GDatalog[A] program, and let I be an input for G. We say that a finite
sequence f = (f1,..., fn) of facts is a derivation (w.r.t. I) if for all 4 = 1,... n, the fact f; is
the result of applying some rule of G that is not satisfied in 7 U {f1,..., fi—1} (in the case of
applying a rule with a A-atom in the head, choosing a value randomly). If f1,..., f, is a
derivation, then the set {f1,..., fn} is a derivation set. Hence, a finite set F' of facts is a
derivation set if and only if I U F' is an intermediate instance in some chase tree.

Let G be a GDatalog[A] program, I be an input for G, and F be a set of facts. We denote
by Qgg(I) the set of all possible outcomes J C Qg(I) such that FF C J. The following

theorem states how we determine the probability space defined by a GDatalog[A] program.

» Theorem 7. Let G be a GDatalog[A] program, and let I be an input for G. There
exists a unique probability measure space (2, F,m), denoted ug,r, that satisfies all of the
following.

1. Q= Qg(I);

2. (Q, F) is the o-algebra generated from the sets of the form Qgg(l) where F is finite;

3. W(Qgg(l)) = P(F) for every derivation set F.

Moreover, if J is a finite possible outcome, then w({J}) is equal to P(J).

Theorem 7 provides us with a semantics for GDatalog[A] programs: the semantics of a
GDatalog[A] program G is a map from input instances I to probability measure spaces pig
over possible outcomes (as uniquely determined by Theorem 7). The proof of Theorem 7 is
by means of the chase procedure, which we discuss in the next section. A direct corollary of
the theorem applies to the important case where all possible outcomes are finite (and the
probability space may be infinite, but necessarily discrete).

7:9

ICDT 2016



7:10

Declarative Probabilistic Programming with Datalog

» Corollary 8. Let G be a GDatalog|A] program, and I an input instance for G, such
that Qg(I) = Qfn(I). Then P is a discrete probability function over Qg(I); that is,

ZJGQQ([) P(J) == 1.

3.4 Finiteness and Weak Acyclicity

Corollary 8 applies only when all solutions are finite, that is, Qg(I) = Qfgi“ (I). We now
present the notion of weak acyclicity for a GDatalog[A] program, as a natural syntactic
condition that guarantees finiteness of all possible outcomes (for all input instances). This
draws on the notion of weak acyclicity for Datalog? [18]. Consider any GDatalog[A] program
G =(€,Z,0). A position of T is a pair (R,i) where R € 7 and ¢ is an attribute of R. The
dependency graph of G is the directed graph that has the positions of Z as the nodes, and the
following edges:

A normal edge (R,i) — (S,j) whenever there is a rule 1(x) + ¢(x) and a variable z

occurring at position (R, 1) in ¢(x), and at position (S, j) in 1(x).

A special edge (R,i) —* (S, j) whenever there is a rule of the form

S(tla oo 7tj7176[[p;q]]7tj+15 s 7tn) <~ SD(X)

and a variable  occurring at position (R, %) in ¢(x) as well as in p or q.
We say that G is weakly acyclic if no cycle in its dependency graph contains a special edge.

» Theorem 9. If a GDatalog[A] program G is weakly acyclic, then Qg(I) = Qfgi“(I) for all
input instances I.

» Example 10. The burglar example program in Figure 2 is easily seen to be weakly acyclic
(indeed, every non-recursive GDatalog[A] program is weakly-acyclic). In the case of the
virus-dissemination example, the dependency graph in Figure 3 shows that, although this
program features recursion, it is weakly acyclic as well.

3.5 Discussion

We conclude this section with some comments. First, we note that the restriction of a
conclusion of a rule to include a single A-term significantly simplifies the presentation, but
does not reduce the expressive power. In particular, we could simulate multiple A-terms in
the conclusion using a collection of predicates and rules. For example, if one wishes to have
conclusion where a person gets both a random height and a random weight (possibly with
shared parameters), then she can do so by deriving PersonHeight(p, h) and PersonWeight(p, w)
separately, and using the rule PersonHW (p, h, w) < PersonHeight(p, h), PersonWeight(p, w).
We also highlight the fact that our framework can easily simulate the probabilistic database
model of independent tuples [46] with probabilities mentioned in the database. The framework
can also simulate Bayesian networks, given relations that store the conditional probability
tables, using the appropriate numerical distributions (e.g., Flip for the case of Boolean random
variables). In addition, we note that a disjunctive Datalog rule [16], where the conclusion
can be a disjunction of atoms, can be simulated by our model (with probabilities ignored): If
the conclusion has n disjuncts, then we construct a distributional rule with a probability
distribution over {1,...,n}, and additional n deterministic rules corresponding to the atoms.

4 Chasing Generative Programs

The chase [29, 3] is a classic technique used for reasoning about database integrity constraints
such as tuple-generating dependencies. This technique can be equivalently viewed as a
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tableaux-style proof system for V*3*-Horn sentences. In the special case of full tuple-
generating dependencies, which are syntactically isomorphic to Datalog rules, the chase is
closely related to (a tuple-at-a-time version of) the naive bottom-up evaluation strategy for
Datalog program (cf. [2]). We now present a suitable variant of the chase for generative
Datalog programs, and use it in order to construct the probability space of Theorem 7.

We note that, although the notions and results could arguably be phrased in terms
of a probabilistic extension of the bottom-up Datalog evaluation strategy, the fact that a
GDatalog[A] rule can create new values makes it more convenient to phrase them in terms
of a suitable adaptation of the chase procedure.

Throughout this section, we fix a GDatalog[A] program G = (£,Z,0) and its associated
Datalog® program G= (£,7%,0%). We first define the notions of chase step and chase tree.

Chase step. Consider an instance J, a rule 7 € ©4 of the form 1 (x) + ¢(x), and a tuple
a such that p(a) is satisfied in J but (a) is not satisfied in J. If 1)(x) is a distributional
atom of the form EIyResult;S (P, q,y), then ¥ being “not satisfied” is interpreted in the logical
sense (regardless of probabilities): there is no y such that (p,q,y) is in Resultf. In that case,
let J be the set of all instances J, obtained by extending J with (a) for a specific value b of
the existential variable y, such that §(b|p) > 0. Furthermore, let 7 be the discrete probability
distribution over J that assigns to Jj, the probability §(b|p). If ¢(x) is an ordinary atom
without existential quantifiers, [J is simply defined as {J'}, where J’ extends J with the fact

Y(a), and w(J') = 1. We say that J @), (J,m) is a valid chase step.

Chase tree. Let I be an input instance for G. A chase tree for I w.r.t. G is a possibly

infinite tree, whose nodes are labeled by instances over £ UZ, and whose edges are labeled

by real numbers, such that:

1. The root is labeled by I;

2. For each non-leaf node labeled J, if J is the set of labels of the children of the node,
and if 7 is the map assigning to each J' € J the label of the edge from J to J', then

J (a)
)

3. For each leaf node labeled J, there does not exist a valid chase step of the form J &
(T, ). In other words, the tree cannot be extended to a larger chase tree.

(J,m) is a valid chase step for some rule 7 € ©* and tuple a.

We denote by L(v) the label (instance) of the node v. Each L(v) is said to be an
intermediate instance w.r.t. the chase tree. Consider a GDatalog[A] program G and an input
I for G. A maximal path of a chase tree T is a path P that starts with the root, and either
ends in a leaf or is infinite. Observe that the labels (instances) along a maximal path form a
chain (w.r.t. the set-containment partial order). A maximal path P of a chase tree is fair
if whenever the premise of a rule is satisfied by some tuple in some intermediate instance
on P, then the conclusion of the rule is satisfied for the same tuple in some intermediate
instance on P. A chase tree T' is fair (or has the fairness property) if every maximal path is
fair. Note that finite chase trees are fair. We restrict attention to fair chase trees. Fairness

4 moreover, fair chase trees can be

is a classic notion in the study of infinite computations;
constructed, for example, by maintaining a queue of “active rule firings.”

Let G be a GDatalog[A] program, I be an input for G, and T be a chase tree. We denote
by paths(T') the set of maximal paths of T. (Note that paths(T) may be uncountably infinite.)

For P € paths(T'), we denote by UP the union of the (chain of) labels L(v) along P.

4t any textbook on term rewriting systems or lambda calculus.
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» Theorem 11. Let G be a GDatalog|A] program, I an input for G, and T a fair chase tree.
The mapping P — UP is a bijection between paths(T) and Qg(I).

Chase measure. Let G be a GDatalog[A] program, let I be an input for G, and let T' be
a chase tree. Our goal is to define a probability measure over Qg (I). Given Theorem 11, we
can do that by defining a probability measure over paths(T'). A random path in paths(T) can
be viewed as a Markov chain that is defined by a random walk over T', starting from the root.
A measure space for such a Markov chain is defined by means of cylindrification [7]. Let v
be a node of T. The v-cylinder of T, denoted CI', is the subset of paths(T) that consists
of all the maximal paths that contain v. A cylinder of T is a subset of paths(T) that forms
a v-cylinder for some node v. We denote by C(T') the set of all the cylinders of T'.

Recall that L(v) is a finite set of facts, and observe that P(L(v)) is the product of the
probabilities along the path from the root to v. The following theorem is a special case of a
classic result on Markov chains (cf. [7]).

» Theorem 12. Let G be a GDatalog[A] program, let I be an input for G, and let T be
a chase tree. There exists a unique probability measure (Q, F,m) that satisfies all of the
following.

1. Q = paths(T).

2. (Q,F) is the o-algebra generated from C(T).

3. 7(CT) = P(L(v)) for all nodes v of T

Theorems 11 and 12 suggest the following definition.

» Definition 13 (Chase Probability Measure). Let G be a GDatalog[A] program, let I be an
input for G, let T be a chase tree, and let (2, F, ) be the probability measure of Theorem 12.
The probability measure ur over Qg(I) is the one obtained from (2, F, ) by replacing every
maximal path P with the possible outcome UP.

The following theorem states that the probability measure space represented by a chase
tree is independent of the specific chase tree of choice.

» Theorem 14. Let G be a GDatalog[A] program, let I be an input for G, and let T and T’
be two fair chase trees. Then ur = pug.

5 Probabilistic-Programming Datalog

To complete our framework, we define probabilistic-programming Datalog, PPDL for short,
wherein a program augments a generative Datalog program with constraints; these constraints
unify the traditional integrity constraints of databases and the traditional observations of
probabilistic programming.

» Definition 15 (PPDL[A]). Let A be a finite set of parameterized numerical distributions.
A PPDL[A] program is a quadruple (£,Z,0, ®), where (£,Z,0) is a GDatalog[A] program
and @ is a finite set of logical constraints over £ UZ.5

» Example 16. Consider again Example 2. Suppose that we have the EDB relations
ObservedHAlarm and ObservedBAlarm that represent observed home and business alarms,
respectively. We obtain from the program in the example a PPDL[A]-program by adding
the following constraints:

5 We will address the choice of constraint language, and its algorithmic impact, in future work.
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1. ObservedHAlarm(h) — Alarm(h)

2. ObservedBAlarm(b) — Alarm(b)

We use right (in contrast to left) arrows to distinguish constraints from ordinary Datalog
rules. Note that a possible outcome J of an input instance I satisfies these constraints if J
contains Alarm(z) for all z € ObservedHAlarm’ U ObservedBAlarm’.

A PPDLI[A] program defines the posterior distribution over its GDatalog[A] program,
conditioned on the satisfaction of the constraints. A formal definition follows.

Let P = (£,Z,0,®) be a PPDL[A] program, and let G be the GDatalog[A] program
(£,Z,0). An input instance for P is an input instance I for G. We say that I is a legal input
instance if {J € Qg(I) | J = ®} is a measurable set in the probability space ug 1, and its
measure is nonzero. Intuitively, I is legal if it is consistent with the observations (i.e., with
the constraints in @), given G. The semantics of a PPDL[A] program is defined as follows.

» Definition 17. Let P = (£,Z,0,®) be a PPDL[A] program, G the GDatalog[A] program
(€,Z,0), I alegal input instance for P, and ug 1 = (Qg(I), Fg,ng). The probability space
defined by P and I, denoted pp 1, is the triple (Qp(I), Fp, mp) where:

L Qp(l)={J €Qg() | J = 2}

2. Fp={SNnQp()|S e Fg}

3. mp(S) =ng(S)/ng(Qp(I)) for every S € Fp.

In other words, up r is pug,r conditioned on ®.

» Example 18. Continuing Example 16, the semantics of this program is the posterior
probability distribution that is obtained from the prior of Example 2, by conditioning on the
fact that Alarm(z) holds for all z € ObservedHAlarm’ U ObservedBAlarm’. Similarly, using

an additional constraint we can express the condition that an alarm is off unless observed.

One can ask various natural queries over this probability space of possible outcomes, such as
the probability of the fact Earthquake(Napa, 1).

We note that when G is weakly acyclic, the event defined by ® is measurable (since in
that case the probability space is discrete) and the definition of legality boils down to the
existence of a possible outcome.

5.1 Invariance under First-Order Equivalence

PPDL[A] programs are fully declarative in a strong sense: syntactically their rules and
constraints can be viewed as first-order theories. Moreover, whenever two PPDL[A] programs,
viewed in this way, are logically equivalent, then they are equivalent as PPDL[A] programs,
in the sense that they give rise to the same set of possible outcomes and the same probability
distribution over possible outcomes.

Formally, we say that two PPDL[A] programs, P; = (£,Z,01,®;) and Py = (£,Z, 04, ®3),
are semantically equivalent if, for all input instances I, the probability spaces pup, r and pp, 1
coincide. Syntactically, the rules and constraints of a PPDL[A] program can be viewed as a
finite first-order theory over a signature consisting of relation symbols, constant symbols, and
function symbols (here, if the same name of a function name is used with different numbers
of arguments, such as Flip in Figure 2, we treat them as distinct function symbols). We say
that P; and Ps are FO-equivalent if, viewed as first-order theories, O is logically equivalent
to O3 (i.e., the two theories have the same models) and likewise for ®; and ®5. We have the
following theorems.

» Theorem 19. If two PPDL[A] programs are FO-equivalent, then they are semantically
equivalent (but not necessarily vice versa).
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» Theorem 20. First-order equivalence is decidable for weakly acyclic GDatalog[A] programs.
Semantic equivalence is undecidable for weakly acyclic GDatalog[A] programs (in fact, even

for A=10).

6 Related Work

Our contribution is a marriage between probabilistic programming and the declarative spe-
cification of Datalog. The key features of our approach are the ability to express probabilistic
models concisely and declaratively in a Datalog extension with probability distributions as
first-class citizens. Existing formalisms that associate a probabilistic interpretation with logic
are either not declarative (at least in the Datalog sense) or depart from the probabilistic
programming paradigm (e.g., by lacking the support for numerical probability distributions).
We next discuss representative related formalisms and contrast them with our work. They can
be classified into three broad categories: (1) imperative specifications over logical structures,
(2) logic over probabilistic databases, and (3) indirect specifications over the Herbrand base.
(Some of these formalisms belong to more than one category.)

The first category includes imperative probabilistic programming languages [42]. We also
include in this category declarative specifications of Bayesian networks, such as BLOG [32]
and P-log [8]. Although declarative in nature, these languages inherently assume a form
of acyclicity that allows the rules to be executed serially. Here we are able to avoid such
an assumption since our approach is based on the minimal solutions of an existential
Datalog program. The program in Figure 3, for example, uses recursion (as is typically
the case for probabilistic models in social network analysis). In particular, it is not clear
how this program can be phrased by translation into a Bayesian network. BLOG can
express probability distributions over logical structures, via generative stochastic models that
can draw values at random from numerical distributions, and condition values of program
variables on observations. In contrast with closed-universe languages such as SQL and logic
programs, BLOG considers open-universe probability models that allow for uncertainty about
the existence and identity of objects.

The formalisms in the second category view the generative part of the specification of a
statistical model as a two-step process. In the first step, facts are randomly generated by a
mechanism external to the program. In the second step, a logic program, such as Prolog [26]
or Datalog [1], is evaluated over the resulting random structure. This approach has been
taken by PRISM [44], the Independent Choice Logic [41], and to a large extent by probabilistic
databases [46] and their semistructured counterparts [25]. We focus on a formalism that
completely defines the statistical model, without referring to external processes. As an
important example, in PPDL one can sample from distributions that have parameters that
by themselves are randomly generated using the program. This is the common practice in
Bayesian machine learning (e.g., logistic regression), but it is not clear how it can be done
within approaches of the second category.

One step beyond the second category and closer to our work is taken by uncertainty-
aware query languages for probabilistic data such as TriQL [48], I-SQL, and world-set
algebra [4, 5]. The latter two are natural analogs to SQL and relational algebra for the
case of incomplete information and probabilistic data [4]. They feature constructs such
as repair-key, choice-of, possible, and group-worlds-by that can construct possible
worlds representing all repairs of a relation w.r.t. key constraints, close the possible worlds
by unioning or intersecting them, or group the worlds into sets with the same results to
sub-queries. World-set algebra has been extended to (world-set) Datalog, fixpoint, and
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while-languages [14] to define Markov chains. While such languages cannot explicitly specify
probability distributions, they may simulate a specific categorical distribution indirectly
using non-trivial programs with specialized language constructs like repair-key on input
tuples with weights representing samples from the distribution.

MCDB [24] and SimSQL [12] propose SQL extensions (with for-loops and probability
distributions) coupled with Monte Carlo simulations and parallel database techniques for
stochastic analytics in the database. Their formalism does not involve the semantic challenges
that we have faced in this paper. Although being based on SQL, these extensions do not
offer a truly declarative means to specify probabilistic models, and end up being more similar
to the imperative languages mentioned under the first category.

Formalisms in the third category use rule weighting as indirect specifications of probability
spaces over the Herbrand base, which is the set of all the facts that can be obtained using the
predicate symbols and the constants of the database. This category includes Markov Logic
Networks (MLNs) [15, 34], where the logical rules are used as a compact and intuitive way of
defining factors. In other words, the probability of a possible world is the product of all the
numbers (factors) that are associated with the grounded rules that the world satisfies. This
approach is applied in DeepDive [35], where a database is used for storing relational data
and extracted text, and database queries are used for defining the factors of a factor graph.
We view this approach as indirect since a rule does not determine directly the distribution of
values. Moreover, the semantics of rules is such that the addition of a rule that is logically
equivalent to (or implied by, or indeed equal to) an existing rule changes the semantics and
thus the probability distribution. A similar approach is taken by Probabilistic Soft Logic [11],
where in each possible world every fact is associated with a degree of truth.

Further formalisms in this category are probabilistic Datalog [19], probabilistic Datalog+ /-
[21], and probabilistic logic programming (ProbLog) [26]. There, every rule is associated
with a probability. For ProbLog, the semantics is not declarative as the rules follow a
certain evaluation order; for probabilistic Datalog, the semantics is purely declarative. Both
semantics are different from ours and that of the other formalisms mentioned thus far. A
Datalog rule is interpreted as a rule over a probability distribution over possible worlds, and
it states that, for a given grounding of the rule, the marginal probability of being true is as
stated in the rule. Probabilistic Datalog+ /- uses MLNs as the underlying semantics. Besides
our support for numerical probability distributions, our formalism is used for defining a single
probability space, which is in par with the standard practice in probabilistic programming.

As discussed earlier, GDatalog[A] allows for recursion, and the semantics is captured by
(possibly infinite) Markov chains. Related formalisms are that of Probabilistic Context-Free
Grammars (PCFG) and the more general Recursive Markov Chains (RMC) [17], where
the probabilistic specification is by means of a finite set of transition graphs that can call
one another (in the sense of method calls) in a possibly recursive fashion. In the database
literature, PCFGs and RMCs are used in the context of probabilistic XML [13, 9]. These
formalisms do not involve numerical distributions. In future work, we plan to study their
relative expressive power compared to restrictions of our framework.

7 Concluding Remarks

We proposed and investigated a declarative framework for specifying statistical models in
the context of a database, based on a conservative extension of Datalog with numerical
distributions. The framework differs from existing probabilistic programming languages not
only due to the tight integration with a database, but also because of its fully declarative
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rule-based language: the interpretation of a program is independent of transformations
(such as reordering or duplication of rules) that preserve the first-order semantics. This
was achieved by treating a GDatalog[A] program as a Datalog program with existentially
quantified variables in the conclusion of rules, and applying a suitable variant of the chase.

This paper opens various important directions for future work. One direction is to
establish tractable conditions that guarantee that a given input is legal. Also, an interesting
problem is to detect conditions under which the chase is a self conjugate [43], that is, the
probability space pp 1 is captured by a chase procedure without backtracking.

Our ultimate goal is to develop a full-fledged PP system based on the declarative
specification language that we proposed here. In this work we focused on the foundations
and robustness of the specification language. As in other PP languages, inference, such as
computing the marginal probability of an IDB fact, is a challenging aspect, and we plan to
investigate the application of common approaches such as sampling-based and lifted-inference
techniques. We believe that the declarative nature of PPDL can lead to identifying interesting
fragments that admit tractable complexity due to specialized techniques, just as is the case
for Datalog evaluation in databases.

Practical applications will require further extensions to the language. We plan to support
continuous probability distributions (e.g., continuous uniform, Pareto, and Gaussian), which
are often used in statistical models. Syntactically, this extension is straightforward: we
just need to include these distributions in A. Likewise, extending the probabilistic chase
is also straightforward. More challenging is the semantic analysis, and, in particular, the
definition of the probability space induced by the chase. We also plan to extend PPDL to
support distributions that take a variable (and unbounded) number of parameters. A simple
example is the categorical distribution where a single member of a finite domain of items is
to be selected, each item with its own probability; in this case we can adopt the repair-key
operation of the world-set algebra [4, 5]. Finally, we plan to add support for multivariate
distributions, which are distributions with a support in R* for k > 1 (where, again, k can be
variable and unbounded). Examples of popular such distributions are multinomial, Dirichlet,
and multivariate Gaussian distribution.

At LogicBlox, we are working on extending LogiQL with PPDL. An interesting syntactic
and semantic challenge is that a program should contain rules of two kinds: probabilistic
programming (i.e., PPDL rules) and inference over probabilistic programs (e.g., find the
most likely execution). The latter rules involve the major challenge of efficient inference
over PPDL. Towards that, our efforts fall in three different directions. First, we implement
samplers of random executions. Second, we translate programs of restricted fragments into
external statistical solvers (e.g., Bayesian Network libraries and sequential Monte Carlo [45]).
Third, we are looking into fragments where we can apply exact and efficient (lifted) inference.
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