
Parallel-Correctness and Containment for
Conjunctive Queries with Union and Negation
Gaetano Geck1, Bas Ketsman∗2, Frank Neven3, and
Thomas Schwentick4

1 TU Dortmund University, Dortmund, Germany
2 Hasselt University, Hasselt, Belgium; and

Transnational University of Limburg, Belgium/The Netherlands
3 Hasselt University, Hasselt, Belgium; and

Transnational University of Limburg, Belgium/The Netherlands
4 TU Dortmund University, Dortmund, Germany

Abstract
Single-round multiway join algorithms first reshuffle data over many servers and then evaluate
the query at hand in a parallel and communication-free way. A key question is whether a given
distribution policy for the reshuffle is adequate for computing a given query, also referred to as
parallel-correctness. This paper extends the study of the complexity of parallel-correctness and its
constituents, parallel-soundness and parallel-completeness, to unions of conjunctive queries with
and without negation. As a by-product it is shown that the containment problem for conjunctive
queries with negation is coNEXPTIME-complete.

1998 ACM Subject Classification H.2.3 Query Languages, H.2.4 Distributed databases

Keywords and phrases Conjunctive queries, distributed evaluation

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.9

1 Introduction

Motivated by recent in-memory systems like Spark [7] and Shark [21], Koutris and Suciu
introduced the massively parallel communication model (MPC) [15] where computation
proceeds in a sequence of parallel steps each followed by global synchronisation of all servers.
Of particular interest in the MPC model are queries that can be evaluated in one round of
communication [9]. In its most naïve setting, a query Q is evaluated by reshuffling the data
over many servers, according to some distribution policy, and then computing Q at each
server in a parallel but communication-free manner. A notable family of distribution policies
is formed within the Hypercube algorithm [3, 9, 11]. A property of Hypercube distributions
is that for any instance I, the central execution of Q(I) always equals the union of the
evaluations of Q at every computing node (or server). The latter guarantees the correctness
of the distributed evaluation for any conjunctive query by the Hypercube algorithm.

Ameloot et al. [4] introduced a general framework for reasoning about one-round evaluation
algorithms under arbitrary distribution policies. They introduced parallel-correctness as a
property of a query w.r.t. a distribution policy which states that central execution always
equals distributed execution, that is, equals the union of the evaluations of the query at each
server under the given distribution policy. One of the main results of [4] is that deciding

∗ PhD Fellow of the Research Foundation – Flanders (FWO).

© Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Parallel-Correctness and Containment for CQs with Union and Negation

parallel-correctness for conjunctive queries (CQs) is ΠP
2 -complete under arbitrary distribution

policies. The upper bound follows rather directly from a semantical characterisation of
parallel-correctness in terms of properties of minimal valuations. Specifically, it was shown
that a conjunctive query is parallel-correct w.r.t. a distribution policy, if the distribution
policy sends for every minimal valuation its required facts to at least one node.

As union and negation are fundamental operators, we extend in this paper the study
of parallel-correctness to unions of conjunctive queries (UCQ), conjunctive queries with
negation (CQ¬) and unions of conjunctive queries with negation (UCQ¬). In fact, we
study two additional but related notions: parallel-soundness and parallel-completeness.
While parallel-correctness implies equivalence between centralised and distributed execution,
parallel-soundness (respectively, parallel-completeness) requires that distributed execution
is contained in (respectively, contains) centralised execution. Of course, parallel-soundness
and parallel-completeness together are equivalent to parallel-correctness. Furthermore, since
all monotone queries are parallel-sound, on this class parallel-correctness is equivalent to
parallel-completeness.

We start by investigating parallel-correctness for UCQ. Interestingly, for a UCQ to be
parallel-correct under a certain distribution policy it is not required that every disjunct is
parallel-correct. We extend the characterisation for parallel-correctness in terms of minimal
valuations for CQs to UCQs and thereby obtain membership in ΠP

2 . The matching lower
bound follows, of course, from the lower bound for CQs [4].

Next, we study parallel-correctness for (unions of) conjunctive queries with negation.
Sadly, when negation comes into play, parallel-correctness can no longer be characterised in
terms of properties of valuations. Instead our algorithms are based on counter-examples of
exponential size, yielding coNEXPTIME upper bounds. It turns out that this is optimal,
though, as our corresponding lower bounds show. The proof of the lower bounds comes along
an unexpected route: we exhibit a reduction from query containment for CQ¬ to parallel-
correctness of CQ¬ (and its two variants) and show that query containment for CQ¬ is
coNEXPTIME-complete. This is considerably different from what we thought was folklore
knowledge of the community. Indeed, the Πp

2-completeness result for query containment for
CQ¬ mentioned in [19] only seems to hold for fixed database schemas (or a fixed arity bound,
for that matter). We note that Mugnier et al. [17] provide a Πp

2 upper bound proof for CQ¬

containment and explicitly mention that it holds under the assumption that the arity of
predicates is bounded by a constant. Altogether, parallel-correctness (and its variants) for
(unions of) conjunctive queries with negation is thus complete for coNEXPTIME.

Finally, a natural question is how the high complexity of parallel-correctness in the presence
of negation can be lowered. We identify two cases in which the complexity drops. More
specifically, the complexity decreases from coNEXPTIME to Πp

2 if the database schema is
fixed or the arity of relations is bounded, and to coNP for unions of full conjunctive queries
with negation. In the latter case, we again employ a reduction from containment of full
conjunctive queries (with negation) and obtain novel results on the containment problem in
this setting as well. All upper bounds hold for queries with inequalities.

Outline. This paper is further organised as follows. In Section 2, we discuss related work.
In Section 3, we introduce the necessary definitions. We address parallel-correctness for
unions of conjunctive queries in Section 4. We consider containment of conjunctive queries
with negation in Section 5 and parallel-correctness together with its variants in Section 6.
We discuss the restriction to full conjunctive queries in Section 7. We conclude in Section 8.
Missing proof details can be found in the full version of this paper [14].

G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:3

2 Related work

As mentioned in the introduction, Koutris and Suciu introduced the massively parallel
communication model (MPC) [15]. A key property is that computation proceeds in a
sequence of parallel steps, each followed by global synchronisation of all computing nodes.
In this model, evaluation of conjunctive queries [8, 15] and skyline queries [2] has been
considered. Beame, Koutris and Suciu [9] proved a matching upper and lower bound for the
amount of communication needed to compute a full conjunctive query without self-joins in
one communication round. The upper bound is provided by a randomised algorithm called
Hypercube which uses a technique that can be traced back to Ganguly, Silberschatz, and
Tsur [13] and is described in the context of map-reduce by Afrati and Ullman [3].

Ameloot et al. [4] introduced a general framework for reasoning about one-round evaluation
algorithms under arbitrary distribution policies. They introduced the notion of parallel-
correctness and proved its associated decision problem to be Πp

2-complete for conjunctive
queries. In addition, towards optimisation in MPC, they considered parallel-correctness
transfer. Here, parallel-correctness transfers from Q to Q′ when Q′ is parallel-correct under
every distribution policy for which Q is parallel-correct. The associated decision problem
for conjunctive queries is shown to be Πp

3-complete. In addition, some restricted cases (e.g.,
transferability under Hypercube distributions), are shown to be NP-complete.

Our definition of a distribution policy is borrowed from Ameloot et al. [5] (but already
surfaces in the work of Zinn et al. [22]), where distribution policies are used to define the class of
policy-aware transducer networks. The work by Ameloot et al. [6, 5] relates coordination-free
computation with definability in variants of Datalog. One-round communication algorithms
in MPC can be seen as very restrictive coordination-free computation.

The complexity of query containment for conjunctive queries is proved to be NP-complete
by Chandra and Merlin [10]. Levy and Sagiv provide a test for query containment of
conjunctive queries with negation [16] that involves exploring an exponential number of
possible counter-example instances. In the context of information integration, Ullman [19]
gives a comprehensive overview of query containment (with and without negation) and states
the complexity of query containment for CQ¬ to be Πp

2-complete. As mentioned in the
introduction, the latter apparently only holds when the database schema is fixed or the arity
of relations is considered to be bounded. A proof for the Πp

2-lowerbound is given by Farré et
al. [12]. Based on [16], Wei and Lausen [20] study a method for testing containment that
exploits containment mappings for the positive parts of queries, and additionally provide a
characterisation for UCQ¬ containment.

3 Definitions

3.1 Queries and instances
We assume an infinite set dom of data values that can be represented by strings over some
fixed alphabet. By domn we denote the set of data values represented by strings of length
at most n. A database schema D is a finite set of relation names R, each with some arity
ar(R). We also write R(k) as a shorthand to denote that R is a relation of arity k. We call
R(t) a fact when R is a relation name and t a tuple over dom of appropriate arity. We say
that a fact R(t) is over a database schema D if R ∈ D. For a subset U ⊆ dom we write
facts(D, U) for the set of possible facts over schema D and U and by facts(D) we denote
facts(D,dom). A (database) instance I over D is a finite set of facts over D. By adom(I)
we denote the set of data values occurring in I. A query Q over input schema D1 and output

ICDT 2016

9:4 Parallel-Correctness and Containment for CQs with Union and Negation

schema D2 is a generic mapping from instances over D1 to instances over D2. Genericity
means that for every permutation π of dom and every instance I, Q(π(I)) = π(Q(I)). We
say that Q is contained in Q′, denoted Q ⊆ Q′ iff for all instances I, Q(I) ⊆ Q′(I).

3.2 Unions of conjunctive queries with negation

Let var be an infinite set of variables, disjoint from dom. An atom over schema D is of the
form R(x), where R is a relation name from D and x = (x1, . . . , xk) is a tuple of variables
in var with k = ar(R). A conjunctive query Q with negation and inequalities over input
schema D is an expression of the form

T (x)← R1(y1), . . . , Rm(ym),¬S1(z1), . . . ,¬Sn(zn), β1, . . . , βp

where all Ri(yi) and Si(zj) are atoms over D, every βi is an inequality of the form s 6= s′ where
s, s′ are distinct variables occurring in some yi or zj , and T (x) is an atom for which T 6∈ D.
Additionally, for safety, we require that every variable in x occurs in some yi and that every
variable occurring in a negated atom has to occur in a positive atom as well (safe negation). We
refer to the head atom T (x) as headQ, to the set {R1(y1), . . . , Rm(ym), S1(z1), . . . , Sn(zn)}
as bodyQ, and to the set {β1, . . . , βp} as ineqQ. Specifically, we refer to {R1(y1), . . . , Rm(ym)}
as the positive atoms in Q, denoted posQ, and to {S1(z1), . . . , Sn(zn)} as the negated atoms
of Q, denoted negQ. We denote by vars(Q) the set of all variables occurring in Q. We refer
to the class of conjunctive queries with negation and inequalities by CQ¬,6=, its restriction to
queries without inequalities, without negated atoms, and without both by CQ¬, CQ6=, and
CQ, respectively. As a shorthand we refer to queries from CQ¬,6= as CQ¬,6=s and similarly
for the other classes.

A pre-valuation for a CQ¬, 6= Q is a total function V : vars(Q)→ dom, which naturally
extends to atoms and sets of atoms. It is consistent for Q, if V (posQ) ∩ V (negQ) = ∅, and
V (s) 6= V (s′), for every inequality s 6= s′ of Q, in which case it is called a valuation. Of course,
for a conjunctive query without negated atoms and without inequalities, every pre-valuation
is also a valuation. We refer to V (posQ) as the facts required by V , and to V (negQ) as the
facts prohibited by V .

A valuation V satisfies Q on instance I if all facts required by V are in I while no fact
prohibited by V is in I, that is, if V (posQ) ⊆ I and V (negQ)∩ I = ∅. In that case, V derives
the fact V (headQ). The result of Q on instance I, denoted Q(I), is defined as the set of
facts that can be derived by satisfying valuations for Q on I.

A union of conjunctive queries with negation and inequalities is a finite union of CQ¬,6=s.
That is, Q is of the form

⋃n
i=1Qi where all subqueries Q1, . . . ,Qn have the same relation

name in their head atoms. We assume disjoint variable sets among different disjuncts in Q.
That is, vars(Qi) ∩ vars(Qj) = ∅ for i 6= j and, in particular, vars(headQi) 6= vars(headQj).
By varmax(Q) we denote the maximum number of variables that occurs in any disjunct
of Q. By UCQ¬,6= we denote the class of unions of conjunctive queries with negation and
inequalities and its fragments are denoted correspondingly.

A CQ¬,6= is called full if all of its variables occur in its head. A UCQ¬,6= is full if all its
subqueries are full.

The result of Q on instance I is Q(I) =
⋃n
i=1Qi(I). Accordingly, a mapping from

variables to data values is a valuation for a UCQ¬,6= Q if it is a valuation for one of its
subqueries.

G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:5

3.3 Networks, data distribution, and policies
A network N is a nonempty finite set of values from dom, which we call (computing) nodes
(or servers). A distribution policy P = (U, rfactsP) for a database schema D and a network N
consists of a universe U and a total function rfactsP that maps each node of N to a set of facts
from facts(D, U). A node κ is responsible for fact f (under policy P) if f ∈ rfactsP (κ). As
a shorthand (and slight abuse of notation), we denote the set of nodes κ that are responsible
for some given fact f by P (f). For a distribution policy P and an instance I over D, let
loc-instP ,I denote the function that maps each κ ∈ N to I ∩ rfactsP (κ), that is, the set of
facts in I for which κ is responsible. We sometimes refer to a given instance I as the global
instance and to loc-instP ,I(κ) as the local instance at node κ.

We note that for some facts from facts(D, U) there are no responsible nodes. This gives
our framework some additional flexibility. However, it does not affect our results: in the
lower bound proofs we only use distributions for which all facts from facts(D, U) have some
responsible nodes. Each distribution policy implicitly induces a network and each query
implicitly defines a database (sub-) schema. Therefore, we often omit the explicit notation
for networks and schemas.

Given some policy P that is defined over a network N , the result [Q,P](I) of the
distributed evaluation of a query Q on an instance I in one round is defined as the union of
the results of the query evaluated on each node’s local instance. Formally,

[Q,P](I) def=
⋃
κ∈N
Q
(
loc-instP ,I(κ)

)
.

In the decision problem for parallel correctness (to be formalised later), the input consists of
a query Q and a distribution policy P . However, it is not obvious how distribution policies
should be specified. In principle, they could be defined in an arbitrary fashion, but it is
reasonable to assume that given a potential fact f , a node κ and a policy P , it is not too
hard to find out whether κ is responsible for f under P .

For UCQ 6=s, which are monotone, our complexity results are remarkably robust with
respect to the choice of the representation of distribution policies. In fact, the complexity
results coincide for the two extreme possible choices that we consider in this article. In the
first case, distribution policies are specified by an explicit list of tuple-node-pairs, whereas
in the second case the test whether a given node is responsible for a given tuple can be
carried out by a non-deterministic polynomial-time algorithm. However, we do require that
some bound n on the length of strings that represent node names and data values is given.
Without such a restriction, no upper complexity bounds would be possible as nodes with
names of super-polynomial length in the size of the input would not be accessible.

Considering queries with negated atoms, however, these two settings (seem to) differ,
complexity-wise. The reason is that testing parallel-correctness in this setting requires counter
examples of size exponential in the size of the query which can not be succinctly represented
by policies in Pfin. We therefore introduce the class Prule allowing for a more economic rule
based description of policies. In particular, in Prule, the universe U of a policy is explicitly
enumerated and the responsibilities are defined by simple constraints (described below). The
latter representation enjoys the same complexity properties as the full NP-test based case.

Now we give more precise definitions of classes of policies and their representations
as inputs of algorithmic problems. As said before, policies P = (U, rfactsP) from Pfin
are specified by an explicit enumeration of U and of all pairs (κ,f) where κ ∈ P (f). A
policy P = (U, rfactsP) from Prule is given by an explicit enumeration of U and a list of
rules of the form ρ = (A, κ), where A is an atom with variables and/or constants from U ,

ICDT 2016

9:6 Parallel-Correctness and Containment for CQs with Union and Negation

and a network node κ. The semantics of such a rule is as follows: for every substitution
µ : var ∪ dom→ dom that maps variables to values from U and leaves constants from U

unchanged, the node κ is responsible for the fact µ(A). A rule is a fact rule if its atom does
not contain any variables, that is, A = R(a1, . . . , an), where a1, . . . , an ∈ U . In particular,
Pfin ⊆ Prule.

I Example 1. Let distribution policy P over schema {Rel(3)} and network {κ1, κ2} be
given by U = {1, . . . , 10} and the rules

(
Rel(1, x, x), κ1

)
,
(
Rel(2, x, y), κ2

)
. On global in-

stance I = {Rel(1, 7, 7), Rel(1, 7, 8), Rel(2, 9, 8), Rel(2, 9, 9)}, policy P induces local instances
loc-instP ,I(κ1) = {Rel(1, 7, 7)} and loc-instP ,I(κ2) = {Rel(2, 9, 8), Rel(2, 9, 9)}. �

The most general classes of policies allow to specify policies by means of a ‘test algorithm’
with time bound `k, where ` is the length of the input and k some constant. Such an
algorithm decides, for an input consisting of a node κ and fact f , whether κ is responsible for
f .1 A policy P = (U, rfactsP) from Pknpoly is specified by a pair (n,AP), where n is a natural
number in unary representation and AP is a non-deterministic algorithm.2 The universe
U of P is the set of all data values that can be represented by strings of length at most n
(for some given fixed alphabet) and the underlying network consists of all nodes which are
represented by strings of length at most n, that is, N = domn. A node κ is responsible
for a fact f if AP , on input (κ,f), has an accepting run of at most |(κ,f)|k steps. Clearly,
each policy of Pfin can be described in P2

npoly. Let Pnpoly denote the set3 {Pknpoly | k ≥ 2} of
distribution policies and by P the set {Pfin,Prule} ∪Pnpoly.

3.4 Parallel-correctness, soundness, and completeness
In this paper, we mainly consider the one-round evaluation algorithm for a query Q that first
distributes (reshuffles) the data over the computing nodes according to P , then evaluates Q
in a parallel step at every computing node, and finally outputs all facts that are obtained
in this way.4 As formalised next, the one-round evaluation algorithm is correct (sound,
complete) if the query Q is parallel-correct (parallel-sound, parallel-complete) under P .

I Definition 2. Let Q be a query, I an instance, and P a distribution policy.
Q is parallel-sound on I under P if Q(I) ⊇ [Q,P](I).
Q is parallel-complete on I under P if Q(I) ⊆ [Q,P](I); and,
Q is parallel-correct on I under P if Q(I) = [Q,P](I), that is, if it is parallel-sound and
parallel-complete.

I Definition 3. A query Q is parallel-correct (respectively, parallel-sound and parallel-
complete) under distribution policy P = (U, rfactsP), if Q is parallel-correct (respectively,
parallel-sound and parallel-complete) on all instances I ⊆ facts(D, U).

In [4], parallel-correctness is characterised in terms of minimal valuations as defined next:

I Definition 4. Let Q be a CQ. A valuation V for Q is minimal for Q if there exists no
valuation V ′ for Q such that V (headQ) = V ′(headQ) and V ′(bodyQ) (V (bodyQ).

1 We note that it is important that for each class of policies there is a fixed k that bounds the exponent
in the test algorithm as otherwise we could not expect a polynomial bound for all policies of that class.

2 For concreteness, say, a non-deterministic Turing machine.
3 Since ‘linear time’ is a subtle notion, we rather not consider P1

npoly.
4 We note that, since P is defined on the granularity of a fact, the reshuffling does not depend on the

current distribution of the data and can be done in parallel as well.

G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:7

The following lemma is key in obtaining the Πp
2 upper bound on the complexity of testing

parallel-correctness for conjunctive queries:

I Lemma 5 (Characterisation of parallel-correctness for CQs [4]). A CQ Q is parallel-correct
under distribution policy P = (U, rfactsP) if and only if the following holds:

For every minimal valuation V for Q over U , there is a node κ ∈ N such that
V (bodyQ) ⊆ rfactsP (κ). (C1)

I Remark 6. Informally, condition (C1) states that there is a node in the network where all
facts required for V meet.

3.5 Algorithmic problems
We consider the following decision problems for various sub-classes C and C′ of UCQ¬,6= and
classes P of distribution policies from {Pfin,Prule} ∪Pnpoly.

Containment(C, C′):
Input: Q ∈ C and Q′ ∈ C′
Question: Is Q ⊆ Q′?

Parallel-Sound(C,P):
Input: Q ∈ C, P ∈ P
Question: Is Q parallel-sound under P ?

Parallel-Complete(C,P):
Input: Q ∈ C, P ∈ P
Question: Is Q parallel-complete under P ?

Parallel-Correct(C,P):
Input: Q ∈ C, P ∈ P
Question: Is Q parallel-correct under P ?

4 Parallel-correctness: unions of conjunctive queries

Parallel-correctness of unions of conjunctive queries (without negation) reduces to parallel-
completeness for the simple reason that these queries are monotone and therefore parallel-
sound for every distribution policy. We show below that parallel-completeness remains in Πp

2.
Hardness already follows from Πp

2-hardness of Parallel-Correct(CQ,Pfin) [4].
As a UCQ is parallel-complete under a policy P when all its disjuncts are, it might be

tempting to assume that this condition is also necessary. However, as the following example
illustrates, this is not the case.

I Example 7. Let Q = Q1 ∪Q2, where Q1 and Q2 are the following CQs:

Q1 : H(x, x) ← R(x, x),
Q2 : H(y, z) ← R(y, z), S(y, z).

Further, let P be the policy over network {κ1, κ2} that maps facts R(a, a) to node κ1, for
all a ∈ dom, and all other R-facts and all S-facts to node κ2.

We argue that Q is parallel-complete under P on all instances. Indeed, assume H(a, b) ∈
Q(I) for some instance I and a, b ∈ dom. If a 6= b, only the valuation {y 7→ a, z 7→ b} can de-
rive H(a, b). This means that {R(a, b), S(a, b)} ⊆ I. Furthermore, {R(a, b), S(a, b)} ⊆
rfactsP (κ2). Hence, H(a, b) ∈ Q(loc-instP ,I(κ2)). If a = b, then R(a, a) ∈ I. So,
R(a, a) ∈ rfactsP (κ1) and H(a, a) ∈ Q(loc-instP ,I(κ1)). On the other hand, Q2 is not
parallel-complete under P on instance I = {R(0, 0), S(0, 0)}. Indeed, H(0, 0) ∈ Q2(I) but
Q2
(
loc-instP ,I(κ1)

)
= Q2

(
{R(0, 0)}

)
= ∅ and Q2

(
loc-instP ,I(κ2)

)
= Q2

(
{S(0, 0)}

)
= ∅. �

ICDT 2016

9:8 Parallel-Correctness and Containment for CQs with Union and Negation

We recall from Section 3.2 that disjuncts in unions of conjunctive queries use disjoint
variable sets and a valuation for Q is a valuation for exactly one disjunct. As formalised next,
the notion of minimality for valuations given in Definition 4 naturally extends to UCQ 6=.

I Definition 8. Let Q =
⋃n
i=1Qi be a UCQ 6=. A valuation Vi for Qi, with i ∈ {1, . . . , n}, is

minimal for Q, if for no j ∈ {1, . . . , n} there is a valuation Vj for Qj , such that Vj(headQj
) =

Vi(headQi) and Vj(bodyQj
) (Vi(bodyQi

).

I Example 9. Consider a simple UCQ 6= Q = Q1 ∪Q2 where Q1,Q2 ∈ CQ 6= are as follows:

Q1 : H(u, v) ← R(u, v), R(v, u), R(u, u),
Q2 : H(x, y) ← R(x, y), R(y, z), y 6= z.

Valuation V2
def= {x 7→ 0, y 7→ 0, z 7→ 1} is not minimal for Q because valuation V1

def=
{u 7→ 0, v 7→ 0} derives the same fact H(0, 0) requiring only {R(0, 0)} ({R(0, 0), R(0, 1)}.
Similarly, valuationW1

def= {u 7→ 0, v 7→ 1}, requiring {R(0, 1), R(1, 0), R(0, 0)}, is not minimal
for Q because valuation W2

def= {x 7→ 0, y 7→ 1, z 7→ 0} only requires {R(0, 1), R(1, 0)}. �

The notion of minimality leads to basically the same simple characterisation of parallel-
completeness:

I Lemma 10. A UCQ 6= Q is parallel-correct under distribution policy P = (U, rfactsP) if
and only if the following holds:

For every minimal valuation V for Q over U , there is a node κ ∈ N such that
V (bodyQ) ⊆ rfactsP (κ). (C1 ′)

Proof. (If) Assume (C1′) holds. Because of monotonicity, we only need to show that
Q(I) ⊆

⋃
κ∈N Q(loc-instP ,I(κ)) for every instance I. To this end, let f be an arbitrary fact

that is derived by some valuation V for Q on I. Then, there is also a minimal valuation
V ′ that is satisfying on I and which derives f . Because of (C1′), there is a node κ ∈ N
where all facts required by V ′ meet (cf. Remark 6). Hence, f ∈

⋃
κ∈N Q(loc-instP ,I(κ)), i.e.

query Q is parallel-correct under policy P .
(Only if) For a proof by contraposition, suppose that there is a minimal valuation V ′ for Q for
which the required facts do not meet under P . Consider the input instance I = V ′(bodyQ).
By definition of minimality, there is no valuation that agrees on the head variables and is
satisfying for Q on a strict subset of V ′(bodyQ). Therefore, V ′(headQ) is in Q(I) but it is
not derived on any node and thus query Q is not parallel-complete under policy P . J

The characterisation in Lemma 10, in turn, can be used to prove a Πp
2 upper bound.

I Lemma 11. Parallel-Correct(UCQ6=,P) is in Πp
2, for every P ∈ P.

Proof. It suffices to show that the complement of Parallel-Complete(UCQ 6=,Pknpoly) is
in Σp2 for arbitrary k ≥ 2. Let P = (n, T) be a policy from Pknpoly. We have to consider only
instances whose data values can be represented by strings of length n over networks whose
nodes can be represented by strings of length n.

By Lemma 10, a query Q is not parallel-correct under distribution policy P if and only if
there exists a minimal valuation V that satisfies Q on some instance I with adom(I) ⊆ domn

such that no node in domn is responsible for all facts from V (bodyQ).
First, the algorithm non-deterministically guesses a valuation V , which can be represented

by a string in length polynomial in Q and n. Subsequently, it checks for all valuations V ′,

G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:9

all nodes κ, and all strings x of polynomial length whether V ′ contradicts minimality of V
(in which case the algorithm rejects the input) and, by use of algorithm T , whether node κ is
not responsible for at least one fact from V (bodyQ) (if so, the algorithm continues, otherwise
it rejects). All tests can be done in polynomial time. J

From [4] we know the following result.

I Theorem 12 ([4]). Parallel-Correct(CQ,Pfin) is Πp
2-complete.

Together with Lemma 11 we get the following result.

I Theorem 13. Parallel-Correct(UCQ6=,P) is Πp
2-complete, for every P ∈ P.

5 Containment of CQ¬ and UCQ¬

In this section, we establish the complexity of containment for CQ¬ and UCQ¬. We need
these results to establish lower bounds on parallel-correctness and its constituents in the next
section. Whereas containment for CQ has been intensively studied in the literature, the
analogous problems for CQ¬ and UCQ¬ have hardly been addressed and seem to belong to
folklore. In fact, we only found a reference of a complexity result for containment of CQ¬ in
[19], where a Πp

2-algorithm for the problem is given, based on observations in [16], and the
existence of a matching lower bound is mentioned. However, as we show below, although
the problem is indeed in Πp

2 for queries defined over a fixed schema (or when the arity of
relations is bounded), it is coNEXPTIME-complete in the general case.

We first show the lower bounds. They actually already hold for Boolean queries. We
show that Containment(BCQ¬,UBCQ¬) is coNEXPTIME-hard by a reduction from
the succinct 3-colorability problem and afterwards that Containment(BCQ¬,UBCQ¬)
can be reduced to Containment(BCQ¬,BCQ¬). Here, BCQ¬ and UBCQ¬ denote the
class of Boolean CQ¬s and unions of Boolean CQ¬s, respectively. Together this establishes
that Containment(BCQ¬,BCQ¬) and therefore also Containment(CQ¬,CQ¬) are
coNEXPTIME-hard.

I Proposition 14. Containment(BCQ¬,UBCQ¬) is coNEXPTIME-hard.

Proof. The proof is by a reduction from the succinct 3-colorability problem, which asks,
whether a graph G, which is implicitly given by a circuit with binary AND- and OR- and
unary NEG-gates, is 3-colorable. The latter problem is known to be NEXPTIME-complete
[18]. We say that a circuit C, with 2` Boolean inputs, describes a graph G = (N,E), when
N = {0, 1}`, and there is an edge (n1, n2) ∈ N2 if and only if C outputs true on input n1n2.

Let C be an input for the succinct 3-colorability problem with 2` Boolean inputs. We
construct queries Q1 and Q2 such that Q1 6⊆ Q2 if and only if the graph described by C is
3-colorable.

Both queries are over schema D, which consists of relation names DomainValues(3),
Bool(1), And(3), Or(3), Neg(2), and Label(`+1). Intuitively, satisfaction of Q1 will guarantee
that there is a tuple (a0, a1, a2) with three different values in relation DomainValues. We
will use, for some such tuple, a0, a1, a2 as colors and a0, a1 as truth values. We will often
assume without loss of generality that (a0, a1, a2) = (0, 1, 2). In particular, for such a tuple,
a0 is interpreted as false while a1 is interpreted as true. The unary relation Bool will be
forced by Q1 to contain at least a0 and a1.

Relations And, Or, and Neg are intended to represent the respective logical functions.
The first two attributes represent input values, and the last attribute represents the output.

ICDT 2016

9:10 Parallel-Correctness and Containment for CQs with Union and Negation

Again, Q1 will guarantee that at least all triples of Boolean values that are consistent with
the semantics of AND, OR, and NEG are present in these relations. Tuples in relation Label
represent nodes together with their respective color (one can think of the representation of a
node by `-ary addresses over a ternary alphabet).
We define query Q1 as follows:

T ()←DomainValues(w0, w1, w2),¬DomainValues(w1, w0, w2),
¬DomainValues(w2, w1, w0),¬DomainValues(w0, w2, w1),
Bool(w0), Bool(w1), Neg(w1, w0), Neg(w0, w1),
And(w0, w0, w0), And(w0, w1, w0), And(w1, w0, w0), And(w1, w1, w1),
Or(w0, w0, w0), Or(w0, w1, w1), Or(w1, w0, w1), Or(w1, w1, w1).

It is easy to see that Q1 enforces the conditions mentioned above.
In the following, we denote sequences x1, . . . , x` of ` variables by x.

We define Q2 as the union of the queries Q1
2 and Q2

2, where subquery Q1
2 is defined as:

T ()←Bool(x1), Bool(x2), . . . , Bool(x`), DomainValues(yr, yg, yb),
¬Label(x, yr),¬Label(x, yg),¬Label(x, yb).

Intuitively, Q1
2 can be satisfied in a database if for some node, represented by x, there is no

color.
Subquery Q2

2 deals with the correctness of a coloring and uses a set circuit of atoms
that is intended to check whether for two nodes u and v, represented by y and z, respectively,
there is an edge between u and v.

To this end, circuit uses the variables y1, . . . , y`, z1, . . . , z`, representing the input and,
at the same time, the 2` input gates of C, and an additional variable ui, for each gate of
C, with the exception of the output gate. The output gate is represented by variable w1.
For each AND-gate represented by variable v1 with incoming edges from gates represented
by variables u1 and u2, circuit contains an atom And(u1, u2, v1). Likewise for OR- and
NEG-gates.

Subquery Q2
2 is defined as:

T ()←DomainValues(w0, w1, w2),circuit, Label(y, u), Label(z, u).

Intuitively, Q2
2 returns true when two nodes, witnessed to be adjacent by the circuit, have

the same color.
Correctness of the reductions can be shown rather straightforwardly, as is done in the

full version of this paper [14]. J

Next, we provide the above mentioned reduction.

I Proposition 15. Containment(BCQ¬,UBCQ¬) ≤p Containment(BCQ¬,BCQ¬) .

Proof. Let Q1 be in BCQ¬ and Q2 =
⋃m
i=1Qi2 be in UBCQ¬ over some database schema

D. Recall our assumption, that each disjunct is defined over a disjoint set of variables. Next,
we construct CQs Q′1 and Q′2 such that Q′1 ⊆ Q′2 if and only if, Q1 ⊆ Q2.

We explain the intuition behind the reduction by means of an example. To this end, let
Q1 be H() ← A(x, y) and let Q2 be the Q1

2 ∪ Q2
2, where Q1

2 is H() ← A(u1, v1), B(u1, v1)

G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:11

and Q2
2 is H()← A(u2, v2),¬B(u2, v2), both formulated over the schema D = {A(2), B(2)}.

The query Q′2 takes the following form:

H()← Active(x0, x1; `1, `2), α(`1,Q1
2)︸ ︷︷ ︸

Q′
2,1

, α(`2,Q2
2)︸ ︷︷ ︸

Q′
2,2

,

where α(w,Q) denotes the modification of the body of Q by replacing every atom R(x) by
R′(w,x). Both queries are defined over the schema D′ = {A′(3), B′(3), Active(4)}. Notice
that Q′2 contains a concatenation of the disjuncts of Q2. In addition, relations A and B are
extended with a new first column with the purpose of labelling tuples. This labelling allows
to encode two (or even more) instances over D by one instance over D′. Specifically, bodyQ′

1
(not shown) is constructed in such a way that when there is a satisfying valuation for Q′1
there are two different data values, say 0 and 1. So, an instance I over D can be encoded as
I0 = {A′(0, a, b) | A(a, b) ∈ I} ∪ {B′(0, a, b) | B(a, b) ∈ I} or as I1 = {A′(1, a, b) | A(a, b) ∈
I} ∪ {B′(1, a, b) | B(a, b) ∈ I}. In addition, when there is a satisfying valuation for Q′1, there
is an instance I2 on which every disjunct of Q2 is true, and there is an instance I1 on which
Q1 is true. So, both Q′2,1 and Q′2,2 evaluate to true on I0

2 when `1 and `2 are interpreted by
label 0. However, for Q1 to be contained in Q2, we need that at least one of the disjuncts
Q′2,1 or Q′2,2 evaluates to true over I1

1 , that is, when its labelling variable is interpreted as 1.
Atom Active(x0, x1; `1, `2) will ensure that x0 and x1 correspond with the values 0 and 1,
and that at least one of the labelling variables `1 or `2 is equal to 1. In other words, Active
chooses which disjunct to activate over I1. So, at least one disjunct of Q2 evaluates to true
on the instance I1 on which Q1 is satisfied.

The reduction is explained in more detail in the full version of this paper [14]. J

Combining Propositions 14 and 15 we get the following corollary:

I Corollary 16. Containment(CQ¬,CQ¬) is coNEXPTIME-hard.

The corresponding upper bounds hold also in the presence of inequalities and are shown
by small model (i.e., counter-example) properties. To this end, we make use of a restricted
monotonicity property of UCQ¬,6=s which was already observed in Proposition 2.4 of [1]. For
an instance I and a set D of data values we denote by I|D the restriction of I to facts that
only use values from D.

I Lemma 17 ([1]). For Q ∈ UCQ¬,6=, I an instance with a compatible schema, and D a
set of data values, it holds that Q(I|D) ⊆ Q(I).

Proof. Let f ∈ Q(I|D) via a valuation V for a disjunct Qi of Q. Thus, V (posQi
) ⊆ I|D ⊆ I.

By definition, every variable x of Qi occurs in a positive atom and therefore V (x) ∈ D. Thus,
V (negQi

) ∩ I = V (negQi
) ∩ I|D = ∅ and f ∈ Q(I) as claimed. J

Now we can establish the following small model property for testing containment.

I Lemma 18. Let Q1,Q2 ∈ UCQ¬, 6=. If there is an instance I, where Q1(I) 6⊆ Q2(I), then
there is also an instance J ⊆ I, where Q1(J) 6⊆ Q2(J), and |adom(J)| ≤ varmax(Q1).

Proof. Let I be as in the lemma and let f be a fact with f ∈ Q1(I) and f 6∈ Q2(I). Let V
be a valuation that derives f via some disjunct Qi1 of Q1.

Let D def= adom(V (posQi
1
)) and J def= I|D the set of all facts in I using only values from

adom(V (posQi
)). By definition, |adom(J)| ≤ varmax(Q1). Clearly, V is still a satisfying

valuation for Qi1 over J . However, by Lemma 17, f 6∈ Q2(J) = Q2(I|D). J

ICDT 2016

9:12 Parallel-Correctness and Containment for CQs with Union and Negation

The upper bounds follow easily from Lemma 18.

I Proposition 19. The following upper bounds hold:
1. Containment(UCQ¬,6=,UCQ¬,6=) is in coNEXPTIME.
2. For every k, containment of UCQ¬,6=-queries over schemas with arity bound k is in Πp

2.

Proof. In both cases, we consider the complement of Containment(UCQ¬, 6=,UCQ¬,6=).
Let m def= varmax(Q1).
1. A NEXPTIME algorithm, on input Q1,Q2, can simply guess an instance J with a

domain of at most m elements and a fact f , and verifies that f ∈ Q1(J) but f 6∈ Q2(J).
For the latter tests, it can simply cycle, in exponential time, to all valuations over J for
Q1 and Q2.

2. For a fixed arity bound, the minimal counter-example J is of size at most mk. It can thus
be guessed in polynomial time. That f ∈ Q1(J) can be verified non-deterministically.
That f 6∈ Q2(J) can be verified by a universal computation in polynomial time. J

A claim of a Πp
2 upper bound for containment of CQs with negation can be found in [19].

It was not made clear there, that this claim assumes bounded arity of the schema. That the
containment problem is Πp

2-complete for schemas of bounded arity has been explicitly shown
in [17]. Clearly, Proposition 19.2 follows directly and 19.1 is only a variation of it. From
Proposition 19 and Corollary 16 the main result of this section immediately follows.

I Theorem 20. Containment(BCQ¬,BCQ¬) and Containment(UCQ¬, 6=,UCQ¬,6=)
are coNEXPTIME-complete.

Of course, the theorem also holds for all classes C of queries with BCQ¬ ⊆ C ⊆ UCQ¬,6=.

6 Parallel-correctness: unions of conjunctive queries with negation

As mentioned in Section 4, for conjunctive queries without negation parallel-soundness
always holds and thus parallel-correctness and parallel-completeness coincide, thanks to
monotonicity. For queries with negation the situation is different. Distributed evaluation can
be complete but not sound, or vice versa. For this reason, we have to distinguish all three
problems separately: correctness, soundness, and completeness. However, the complexity is
the same in all three cases.

Our results show a second, more crucial difference. Whereas parallel completeness for CQs
without negation could be characterised in terms of valuations, that is, objects of polynomial
size, our algorithms for CQs with negation involve counter-examples of exponential size (if
the arity of schemas is not bounded) and the coNEXPTIME lower bound results indicate
that this is unavoidable. We illustrate the observation that counter-examples might need an
exponential number of tuples by the following example.

I Example 21. Let Q be the following conjunctive query with negation:

H() ← Bool(w0, w0), Bool(w1, w1), Bool(x1, x1), . . . , Bool(xn, xn),
¬Bool(w0, w1),¬Rel(x1, . . . , xn).

Let P be the policy defined over universe U = {0, 1} and two-node network {κ1, κ2}, which
distributes all facts except Rel(0, . . . , 0) to node κ1 and only fact Rel(0, . . . , 0) to node κ2.

Query Q is not parallel-sound under policy P , but the smallest counter-example I is of
exponential size as we argue next. Indeed, let I def= {Bool(0, 0), Bool(1, 1)}∪{Rel(a1, . . . , an) |
(a1, . . . , an) ∈ {0, 1}n}. Furthermore, let valuation V map variables w1 and w0 to 1 and 0,

G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:13

respectively, and map xi to 0, for every i ∈ {1, . . . , n}. Then, valuation V satisfies Q on
instance loc-instP ,I(κ1) = I \ {Rel(0, . . . , 0)} because neither Bool(0, 1) nor Rel(0, . . . , 0) is
contained in the local instance. Furthermore, there is no satisfying valuation W for Q on
the global instance I because W would have to map each xi to either 0 or 1 implying that
W
(
Rel(x1, . . . , xn)

)
∈ I.

However, there is no smaller instance: let I∗ be some instance over universe U that
has a locally satisfying valuation V . The combination of atoms Bool(w0, w0), Bool(w1, w1),
and ¬Bool(w0, w1) in query Q then implies existence of both facts Bool(0, 0) and Bool(1, 1)
because variables w0 and w1 cannot be mapped onto the same data value.

Assume that fact Rel(a1, . . . , an), for some (a1, . . . , an) ∈ {0, 1}n is missing from I∗. Then
the valuation W that maps w0 7→ 0, w1 7→ 1 and xi 7→ ai, for every i ∈ {1, . . . , n}, satisfies
Q also globally, on instance I∗, and can therefore be no example against parallel-soundness,
which contradicts our choice of I∗. Thus, Rel(a1, . . . , an) ∈ I∗, for every (a1, . . . , an) ∈
{0, 1}n. We therefore have I ⊆ I∗ and, in particular, instance I∗ contains at least as many
facts as instance I. �

The results of this section are summarised in the following theorem:

I Theorem 22. For every class P ∈ {Prule} ∪Pnpoly of distribution policies, the following
problems are coNEXPTIME-complete.

Parallel-Sound(UCQ¬,P)
Parallel-Complete(UCQ¬,P)
Parallel-Correct(UCQ¬,P)

Theorem 22 follow from Propositions 23 and 25 below. It also holds for UCQ¬, 6=. It is easy
to show that, when restricted to schemas with some fixed (but sufficiently large, for hardness)
arity bound, all these problems are Πp

2-complete.

6.1 Upper bounds
In this section, we show the upper bounds of Theorem 22, summarised in the following
proposition.

I Proposition 23. Parallel-Sound(UCQ¬,6=,P), Parallel-Complete(UCQ¬,6=,P),
and Parallel-Correct(UCQ¬,6=,P) are in coNEXPTIME, for every class P ∈ P of
distribution policies. If the arity of schemas is bounded by some fixed number, these problems
are in Πp

2.

Proof. As already indicated above, the proof relies on a bound on the size of a smallest
counter-example. More specifically, we first show the following claim.

I Claim 24. Let Q ∈ UCQ¬,6= and let P be an arbitrary distribution policy. Then the
following statements hold:
1. If Q is not parallel-complete under P , then there is an instance J over a domain with at

most varmax(Q) elements such that Q is not parallel-complete on J under P .
2. If Q is not parallel-sound under P , then there is an instance J over a domain with at

most varmax(Q) elements such that Q is not parallel-sound on J under P .
Towards (1) let us assume that Q is not parallel-complete on some instance I under P .
Let V be a valuation of a disjunct Qi of Q that derives a fact f globally that is not
derived on any node of the network. Let D def= adom(V (posQi

)) and J
def= I|D. Clearly,

|D| ≤ varmax(Q) and V still derives f globally on instance J via Qi. On the other hand,
for every node κ, Q

(
loc-instP ,J(κ)

)
= Q

(
loc-instP ,I(κ)|D

)
⊆ Q

(
loc-instP ,I(κ)

)
, thanks to

ICDT 2016

9:14 Parallel-Correctness and Containment for CQs with Union and Negation

Lemma 17. Therefore f is not derived on κ, and thus J witnesses the lack of parallel-
completeness of Q under P .

The proof of (2) is completely analogous. Given a counter-example I and a valuation V
that derives a fact f on some node κ via Qi, for which f is not derived globally, we define
D

def= I|adom(V (posQi
)) and show that J def= I|D is the desired counter-example.

An algorithm that tests the complement of parallel-completeness non-deterministically is
described in the full version of this paper [14]. J

6.2 Lower bounds
The lower bounds stated in Theorem 22 follow from a polynomial time reduction from
problem Containment(BCQ¬,BCQ¬), for which we showed coNEXPTIME-hardness in
Section 5.
I Proposition 25. Parallel-Complete(CQ¬,Prule), Parallel-Sound(CQ¬,Prule),
and Parallel-Correct(CQ¬,Prule) are coNEXPTIME-hard.
Proof. Interestingly, all three results are shown by the same reduction from decision problem
Containment(BCQ¬,BCQ¬).

The basic idea for this reduction is very simple: it combines both queries Q1,Q2 ∈ BCQ¬

of the given containment instance into a single query Q ∈ BCQ¬ and infers an appropriate
distribution policy P . To emulate separate derivation for both queries in the combined
query, an activation mechanism is used that resembles the proof of Proposition 15. In this
fashion, the two queries can be evaluated over different subsets of the considered instance by
annotating both the facts in the instance as well as the atoms of the query.

We next describe the reduction in detail. Let thus Q1,Q2 ∈ BCQ¬ be queries over some
schema D and let m def= max

{
varmax(Q1), varmax(Q2)

}
. Without loss of generality, we

assume the variable sets of Q1 and Q2 to be disjoint. We will also assume in the following that
both Q1 and Q2 are satisfiable. This is the case (for Q1) if and only if posQ1 ∩negQ1 = ∅ and
can therefore be easily tested in polynomial time. If one of the test fails, some appropriate
constant instance of Parallel-Complete(CQ¬,Prule) or one of the other problem variants,
respectively, can be computed.

We define a (Boolean) query Q ∈ BCQ¬ and a policy P ∈ Prule over domain {1, . . . ,m}
that can be computed from Q1 and Q2 in polynomial time. The schema for Q is D′ def=
{R′(k+1) | R(k) ∈ D}. That is, each relation name R of D occurs as R′ in D′ with an arity
incremented by one. Additionally, Q uses relation names Type, Start1, Start2, and Stop,
which we assume not to occur in schema D. Besides the variables of Q1 and Q2, query Q
uses variables `1, `2, t.

We use the function α, defined in the proof of Proposition 15, which adds its first
parameter as first component to every tuple in its second parameter and translates relation
names R into R′. In Proposition 15, the first parameter was always a variable and the
second a set of atoms, but we use α also for a data value as first and a set of facts as second
parameter in the obvious way. We write α−1

a for the function mapping sets of facts over
D′ to sets of facts over D, by selecting, from a set of facts, all facts with first parameter a,
deleting this parameter and replacing each name R′ by R. Finally, πa(I) def= α

(
a, α−1

a (I)
)
is

the restriction of I to all facts with a in their first component.
The combined query Q has headQ

def= H() and body

bodyQ
def= α(`1, bodyQ1) ∪ α(`2, bodyQ2)
∪ {Type(t), Start1(`1), Start2(`1), Start2(`2)}︸ ︷︷ ︸

A

∪{¬Stop(`1),¬Stop(`2)}︸ ︷︷ ︸
A¬

.

G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:15

Policy P is defined over universe U def= {1, . . . ,m}, schema D′ ∪{Type, Start1, Start2, Stop}
and network N def= {κ1, . . . , κm, σ1, . . . , σm, ρ}. Facts are distributed as follows:

Every node κi is responsible for the facts Type(1), Start1(i), Start2(i), Stop(i), and all
facts from facts(D′, U).
Every node σi is responsible for the facts Type(2), Start1(i), Stop(i), all Start2-facts,
and all facts from facts(D′, U).
Finally, node ρ is responsible for facts Type(3), . . . , Type(m), and all facts over other
relation names.

It is easy to see that P can be expressed by a polynomial number of rules and that Q and P

can be computed in polynomial time. In the full version of this paper [14], we show that the
described function is indeed the desired reduction. J

7 Full conjunctive queries

In this section, we focus attention on full conjunctive queries, in an attempt to lower the
complexity of testing parallel-correctness. Requiring queries to be full is a very natural
restriction which is known to have practical benefits. For example, the Hypercube algorithm,
which describes an optimal way to compute CQs in a setting very similar to ours, completely
ignores projections when shuffling data, and only applies them when computing the query
locally. The latter is possible because correctness for the full-variant of a query is in a sense
more strict than correctness for the query itself.

Formally, a (union of) conjunctive queries is called full if all variables of the body also
occur in the head. We denote by FCQ¬,6= and UFCQ¬,6= the class of full CQ¬, 6= and full
UCQ¬,6= queries, respectively, and likewise for other fragments.

The presentation is similar to that of Section 5 and 6. First, we establish the complexity
of query containment. Then, we show that containment reduces to parallel-correctness (and
variants). Finally, we obtain matching upper bounds.

The following theorem shows that unlike for general conjunctive queries the complexity
of deciding containment for FCQ¬ and UFCQ¬ do not coincide.

I Theorem 26.
1. Containment(FCQ¬,FCQ¬) is in P;
2. Containment(FCQ¬,UFCQ¬) is coNP-complete; and
3. Containment(UFCQ¬,UFCQ¬) is coNP-complete.
All these results also hold for queries with inequalities.

As one can reduce from Containment(FCQ¬,UFCQ¬) to parallel-soundness, com-
pleteness, and correctness, we obtain the following hardness results:

I Proposition 27. Parallel-Sound(UFCQ¬,P), Parallel-Complete(UFCQ¬,P),
and Parallel-Correct(UFCQ¬,P) are coNP-hard, for every P ∈ {Prule} ∪Pnpoly.

The following theorem determines the complexity for the upper bounds:

I Theorem 28. The following problems are coNP-complete:
1. Parallel-Sound(UFCQ¬,Prule);
2. Parallel-Complete(UFCQ¬,Prule);
3. Parallel-Correct(UFCQ¬,Prule).
The result also holds for queries with inequalities.

ICDT 2016

9:16 Parallel-Correctness and Containment for CQs with Union and Negation

8 Discussion

In this paper, we continued the study of parallel-correctness initiated by Ameloot et al. [4] as a
framework for reasoning about one-round evaluation algorithms for conjunctive queries under
arbitrary distribution policies. Specifically, we considered the case with union and negation.
While parallel-correctness for unions of conjunctive queries can be tested by examining
properties of single valuations, just like in the union-free case, the latter no longer holds true
when negation is present. Consequently, we obtained that deciding parallel-correctness for
unions of conjunctive queries remains in Πp

2, while the analog problem in the presence of
negation is hard for coNEXPTIME. Since conjunctive queries with negation are no longer
monotone, we considered the related problems of parallel-completeness and parallel-soundness
as well and obtained the same bounds. Interestingly, when negation is present, containment
of conjunctive queries can be reduced to parallel-correctness (and its variants) allowing the
transfer of lower bounds. We prove that containment for conjunctive queries with negation
is hard for coNEXPTIME, which, to the best of our knowledge, is a novel result. In an
attempt to lower complexity, we show that parallel-correctness for unions of full conjunctive
queries with negation is coNP-complete.

There are quite a number of directions towards future work. While parallel-correctness
for first-order logic is undecidable, it would be interesting to determine the exact frontier
for decidability. As the considered problem is a static analysis problem that relates to the
size of the queries and not to the size of the instances (at least in the setting of Prule),
exponential lower bounds do not necessarily exclude practical application. It could still
be interesting to identify settings that would make parallel-correctness tractable. Possibly
independent of tractability considerations, such settings could incorporate bag semantics,
integrity constraints, or specific classes (and representations) of distribution policies. We
also plan to consider evaluation algorithms that use knowledge about the distribution policy
to compute better query results, locally. Another direction for future work is to investigate
transferability of parallel-correctness for conjunctive queries as defined in [4] in the presence
of union and negation.

References
1 Foto N. Afrati, Stavros S. Cosmadakis, and Mihalis Yannakakis. On datalog vs. polynomial

time. J. Comput. Syst. Sci., 51(2):177–196, 1995. doi:10.1006/jcss.1995.1060.
2 Foto N. Afrati, Paraschos Koutris, Dan Suciu, and Jeffrey D. Ullman. Parallel skyline

queries. In International Conference on Database Theory (ICDT 2012), pages 274–284,
2012. doi:10.1145/2274576.2274605.

3 Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment. In
Extending Database Technology (EDBT 2010), pages 99–110, 2010. doi:10.1145/1739041.
1739056.

4 Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick.
Parallel-correctness and transferability for conjunctive queries. In Principles of Database
Systems (PODS 2015), pages 47–58. ACM, 2015.

5 Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn. Weaker forms of monoton-
icity for declarative networking: a more fine-grained answer to the CALM-conjecture. In
Principles of Database Systems (PODS 2014), pages 64–75, 2014.

6 Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. Relational transducers for
declarative networking. J. ACM, 60(2):15, 2013. doi:10.1145/2450142.2450151.

7 Apache spark. URL: http://spark.apache.org.

http://dx.doi.org/10.1006/jcss.1995.1060
http://dx.doi.org/10.1145/2274576.2274605
http://dx.doi.org/10.1145/1739041.1739056
http://dx.doi.org/10.1145/1739041.1739056
http://dx.doi.org/10.1145/2450142.2450151
http://spark.apache.org

G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:17

8 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In Principles of Database Systems (PODS 2013), pages 273–284, 2013.

9 Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In
Principles of Database Systems (PODS 2014), pages 212–223, 2014.

10 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Symposium on Theory of Computing (STOC 1979), pages 77–90,
1977.

11 Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to practice: Efficient
join query evaluation in a parallel database system. In ACM SIGMOD Conference, pages
63–78, 2015.

12 Carles Farré, Werner Nutt, Ernest Teniente, and Toni Urpí. Containment of conjunctive
queries over databases with null values. In International Conference on Database Theory
(ICDT 2007), pages 389–403, 2007. doi:10.1007/11965893_27.

13 Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. Parallel bottom-up processing
of datalog queries. J. Log. Program., 14(1&2):101–126, 1992.

14 Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. Parallel-correctness
and containment for conjunctive queries with union and negation. CoRR, abs/1512.06246,
2015. URL: http://arxiv.org/abs/1512.06246.

15 Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In Principles
of Database Systems (PODS 2011), pages 223–234, 2011.

16 Alon Y. Levy and Yehoshua Sagiv. Queries independent of updates. In International
Conference on Very Large Data Bases (VLDB 1993), pages 171–181, 1993.

17 Marie-Laure Mugnier, Geneviève Simonet, and Michaël Thomazo. On the complexity of
entailment in existential conjunctive first-order logic with atomic negation. Inf. Comput.,
215:8–31, 2012.

18 Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct representations
of graphs. Information and Control, 71(3):181–185, 1986. doi:10.1016/S0019-9958(86)
80009-2.

19 Jeffrey D. Ullman. Information integration using logical views. Theoretical Computer
Science, 239(2):189–210, 2000.

20 Fang Wei and Georg Lausen. Containment of conjunctive queries with safe negation. In
International Conference on Database Theory (ICDT 2003), pages 343–357, 2003.

21 Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Shark: SQL and rich analytics at scale. In ACM SIGMOD Conference, 2013.

22 Daniel Zinn, Todd J. Green, and Bertram Ludäscher. Win-move is cordination-free (some-
times). In International Conference on Database Theory (ICDT 2012), pages 99–113, 2012.

ICDT 2016

http://dx.doi.org/10.1007/11965893_27
http://arxiv.org/abs/1512.06246
http://dx.doi.org/10.1016/S0019-9958(86)80009-2
http://dx.doi.org/10.1016/S0019-9958(86)80009-2

	Introduction
	Related work
	Definitions
	Queries and instances
	Unions of conjunctive queries with negation
	Networks, data distribution, and policies
	Parallel-correctness, soundness, and completeness
	Algorithmic problems

	Parallel-correctness: unions of conjunctive queries
	Containment of CQ and UCQ
	Parallel-correctness: unions of conjunctive queries with negation
	Upper bounds
	Lower bounds

	Full conjunctive queries
	Discussion

