
It’s All a Matter of Degree: Using Degree
Information to Optimize Multiway Joins
Manas R. Joglekar1 and Christopher M. Ré2

1 Department of Computer Science, Stanford University, Stanford, CA, USA
manasrj@stanford.edu

2 Department of Computer Science, Stanford University, Stanford, CA, USA
chrismre@stanford.edu

Abstract
We optimize multiway equijoins on relational tables using degree information. We give a new
bound that uses degree information to more tightly bound the maximum output size of a query.
On real data, our bound on the number of triangles in a social network can be up to 95 times
tighter than existing worst case bounds. We show that using only a constant amount of degree
information, we are able to obtain join algorithms with a running time that has a smaller exponent
than existing algorithms – for any database instance. We also show that this degree information
can be obtained in nearly linear time, which yields asymptotically faster algorithms in the serial
setting and lower communication algorithms in the MapReduce setting.

In the serial setting, the data complexity of join processing can be expressed as a function
O(INx + OUT) in terms of input size IN and output size OUT in which x depends on the query.
An upper bound for x is given by fractional hypertreewidth. We are interested in situations in
which we can get algorithms for which x is strictly smaller than the fractional hypertreewidth. We
say that a join can be processed in subquadratic time if x < 2. Building on the AYZ algorithm for
processing cycle joins in quadratic time, for a restricted class of joins which we call 1-series-parallel
graphs, we obtain a complete decision procedure for identifying subquadratic solvability (subject
to the 3-SUM problem requiring quadratic time). Our 3-SUM based quadratic lower bound is
tight, making it the only known tight bound for joins that does not require any assumption
about the matrix multiplication exponent ω. We also give a MapReduce algorithm that meets
our improved communication bound and handles essentially optimal parallelism.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Joins, Degree, MapReduce

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.11

1 Introduction

We study query evaluation for natural join queries. Traditional database systems process
joins in a pairwise fashion (two tables at a time), but recently a new breed of multiway join
algorithms have been developed that satisfy stronger runtime guarantees. In the sequential
setting, worst-case-optimal sequential algorithms such as NPRR [16,17] or LFTJ [18] process
the join in runtime that is upper bounded by the largest possible output size, a stronger
guarantee than what traditional optimizers provide. In MapReduce settings1, the Shares
algorithm [2,13] processes multiway joins with optimal communication complexity on skew

1 A description of Background material including MapReduce, as well as proofs of all our results, can be
found in the full version of the paper [12]

© Manas R. Joglekar and Christopher M. Ré;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

Table 1 Triangle bounds on various social networks.

Network MO Bound AGM Bound AGM
MO

Twitter 225M 3764M 17
Epinions 33M 362M 11
LiveJournal 6128M 573062M 95

free data. However, traditional database systems have developed sophisticated techniques to
improve query performance. One popular technique used by commercial database systems is
to collect “statistics”: auxiliary information about data, such as relation sizes, histograms,
and counts of distinct different attribute values. Using this information helps the system
better estimate the size of a join’s output and the runtimes of different query plans, and
make better choices of plans. Motivated by the use of statistics in query processing, we
consider how statistics can improve the new breed of multiway join algorithms in sequential
and parallel settings.

We consider the first natural choice for such statistics about the data: the degree. The
degree of a value in a table is the number of rows in which that value occurs in that table.
We describe a simple preprocessing technique to facilitate the use of degree information, and
demonstrate its value through three applications: i) An improved output size bound ii) An
improved sequential join algorithm iii) An improved MapReduce join algorithm. Each of
these applications has an improved exponent relative to their corresponding state-of-the-art
versions [5, 8, 16,18].

Our key technique is what we call degree-uniformization. Assume for the moment that
we know the degree of each value in each relation, we then partition each relation by degree
of each of its attributes. In particular, we assign each degree to a bucket using a parameter
L: we create one bucket for degrees in [1, L), one for degrees in [L,L2), and so on. We then
place each tuple in every relation into a partition based on the degree buckets for each of
its attribute values. The join problem then naturally splits into smaller join problems; each
smaller problem consisting of a join using one partition from each relation. Let IN denote
the input size, if we set L = INc for some constant c, say 1

4 , the number of smaller joins we
process will be exponential in the number of relations – but constant with respect to the
data size IN. Intuitively, the benefit of joining partitions separately is that each partition
will have more information about the input and will have reduced skew. We show that by
setting L appropriately this scheme allows us to get tighter AGM-like bounds.

Now we consider a concrete example. Suppose we have a d-regular graph with N edges;
the number of triangles in the graph is bounded by min(Nd, N

2

d) by our degree-based bound
and by N3/2 by the AGM bound. In the worst case, d =

√
N and our bound matches the

AGM bound. But for other degrees, we do much better; better even than simply “summing”
the AGM bounds over each combination of partitions. Table 1 compares our bound (MO)
with the AGM bound for the triangle join on social networks from the SNAP datasets [14].
‘M’ in the table stands for millions. The last column shows the ratio of the AGM bound to
our bound; our bound is tighter by a factor of 11x to 95x. We could not compare the bounds
on the Facebook network, but if the number of friends per user is ≤ 5000, our bound is at
least 450x tighter than the AGM bound.

We further use degree uniformization as a tool to develop algorithms that satisfy stronger
runtime and communication guarantees. Degree uniformization allows us to get runtimes with
a better exponent than existing algorithms, while requiring only linear time preprocessing on
the data. We demonstrate our idea in both the serial and parallel (MapReduce) setting, and
we now describe each in turn.

M.R. Joglekar and C.M. Ré 11:3

Serial Join Algorithms: We use our degree-uniformization to derive new cases in which one
can obtain subquadratic algorithms for join processing. More precisely, let IN denote the size
of the input, and OUT denote the size of the output. Then the runtime of an algorithm on a
query Q can be written as O(INx + OUT) for some x. Note that x ≥ 1 for all algorithms
and queries in this model as we must read the input to answer the query. If the query is
α-acyclic, Yannakakis’ algorithm [19] achieves x = 1. If the query has fractional hypertree
width (fhw), a recent generalization of tree width [10], equal to 2, then we can achieve x = 2
using a combination of algorithms like NPRR and LFTJ with Yannakakis’ algorithm. In this
work, we focus on cases for which x < 2, which we call subquadratic algorithms. Subquadratic
algorithms are interesting creatures in their own right, but they may provide tools to attack
the common case in join processing in which OUT is smaller than IN.

Our work builds on the classical AYZ algorithm [4], which derives subquadratic algorithms
for cycles using degree information. This is a better result than the one achieved by the
fhw result since the fhw value of length ≥ 4 cycles is already = 2. This result is specific to
cycles, raising the question: “Which joins are solvable in subquadratic time?” Technically,
the AYZ algorithm makes use of properties of cycles in their result and of “heavy and light”
nodes (high degree and low degree, respectively). We show that degree-uniformization is a
generalization of this method, and that it allows us to derive subquadratic algorithms for
a larger family of joins. We devise a procedure to upper bound the processing time of a
join, and an algorithm to match this upper bound. Our procedure improves the runtime
exponent x relative to existing work, for a large family of joins. Moreover, for a class of
graphs that we call 1-series-parallel graphs,2 we completely resolve the subquadratic question
in the following sense: For each 1-series-parallel graph, we can either solve it in subquadratic
time, or we show that it cannot be solved subquadratically unless the 3-SUM problem [6]
can be solved in subquadratic time. Note that 1-series-parallel graphs have fhw equal to 2.
Hence, they can all be solved in quadratic time using existing algorithms; making our 3-SUM
based lower bound tight. There is a known 3-SUM based lower bound of N 4

3 on triangle join
processing, which only has a matching upper bound under the assumption that the matrix
multiplication exponent ω = 2. In contrast, our quadratic lower bound can be matched by
existing algorithms without any assumptions on ω. To our knowledge, this makes it the only
known tight bound on join processing time for small output sizes.

We also recover our sequential join results within the well-known GHD framework [10].
We do this using a novel notion of width, which we call m-width, that is no larger than fhw,
and sometimes smaller than submodular width [12,15]. While we resolve the subquadratic
problem on 1-series-parallel graphs, the general subquadratic problem remains open. In
the full version [12], we show that known notions of widths, such as submodular width and
m-width do not fully characterize subquadratically solvable joins.

Joins on MapReduce: Degree information can also be used to improve the efficiency of
joins on MapReduce. Previous work by Beame et al. [8] uses knowledge of heavy hitters
(values with high degree) to improve parallel join processing on skewed data. It allows a
limited range of parallelism (number of processors p ≤

√
IN), but subject to that achieves

optimal communication for 1-round MapReduce algorithms. We use degree information
to allow all levels of parallelism (p ≥ 1) while processing the join. We also obtain an
improved degree-based upper bound on output size that can be significantly better than the

2 A 1-series-parallel graph consists of a source vertex s, a target vertex t, and a set of paths of any length
from s to t, which do not share any nodes other than s and t.

ICDT 2016

11:4 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

AGM bound even on simple queries. Our improved parallel algorithm takes three rounds of
MapReduce, matches our improved bound, and out-performs the optimal 1-round algorithm
in several cases. As an example, our improved bound lets us correctly upper bound the output
of a sparse triangle join (where each value has degree O(1)) by IN instead of IN

3
2 as suggested

by the AGM bound. Moreover, we can process the join at maximum levels of parallelism
(with each processor handling only O(1) tuples) at a total communication cost of O(IN);
in contrast to previous work which requires θ(IN

3
2) communication. Furthermore, previous

work [8] uses edge packings to bound the communication cost of processing a join. Edge
packings have the paradoxical property that adding information on the size of subrelations
by adding the subrelations into the join can make the communication cost larger. As an
example suppose a join has a relation R, with an attribute A in its schema. Adding πA(R) to
the set of relations to be joined does not change the join output. However, adding a weight
term for subrelation πA(R) in the edge packing linear program increases its communication
cost bound. In contrast, if we add πA(R) into the join, our degree based bound does not
increase, and will in fact decrease if |πA(R)| is small enough.

Computing Degree Information: In some cases, degree information is not available before-
hand or is out of date. In such a case, we show a simple way to compute the degrees of all
values in time linear in the input size. Moreover, the degree computation procedure can be
fully parallelized in MapReduce. Even after including the complexity of computing degrees,
our algorithms outperform state of the art join algorithms.

Our paper is structured as follows:
In Section 2, we describe related work.
In Section 3, we describe a process called degree-uniformization, which mitigates skew.
We show the MO bound on join output size that strengthens the exponent in the AGM
bound, and describe a method to compute the degrees of all attributes in all relations.
In Section 4, we present DARTS, our sequential algorithm that achieves tighter runtime
exponents than state-of-the-art. We use DARTs to process several joins in subquadratic
time. Then we establish a quadratic runtime lower bound for a certain class of queries
modulo the 3-SUM problem. Finally we recover the results of DARTS within the familiar
GHD framework, using a novel notion of width (m-width) that is tighter than fhw.
In Section 5, we present another bound with a tighter exponent than AGM (the DBP
bound), and a tunable parallel algorithm whose communication cost at maximum paral-
lelism equals the input size plus the DBP bound. The algorithm’s guarantees work on all
inputs independent of skew.

2 Related Work

We divide related work into four broad categories.

New join algorithms and implementation: The AGM bound [5] is tight on the output
size of a multiway join in terms of the query structure and sizes of relations in the query.
Several existing join algorithms, such as NPRR [16], LFTJ [18], and Generic Join [17], have
worst case runtime equal to this bound. However, there exist instances of relations where the
output size is significantly smaller than the worst-case output size (given by the AGM bound),
and the above algorithms can have a higher cost than the output size. We demonstrate
a bound on output size that has a tighter exponent than the AGM bound by taking into
account information on degrees of values, and match it with a parallelizable algorithm.

M.R. Joglekar and C.M. Ré 11:5

On α-acyclic queries, Yannakakis’ algorithm [19] is instance optimal up to a constant
multiplicative factor. That is, its cost is O(IN + OUT) where IN is the input size. For
cyclic queries, we can combine Yannakakis’ algorithm with the worst-case optimal algorithms
like NPRR to get a better performance than that of NPRR alone. This is done using
Generalized Hypertree decompositions (GHDS) [9,10] of the query to answer the query in
time O(INfhw + OUT) where fhw is a measure of cyclicity of the query. A query is α-acyclic
if and only if its fhw is one. Our work allows us to obtain a tighter runtime exponent than
fhw by dealing with values of different degrees separately.

Parallel join algorithms: The Shares [2] algorithm is the optimal one round algorithm for
skew free databases, matching the lower bound of Beame et al. [7]. But its communication
cost can be much worse than optimal when skew is present. Beame’s work [8] deals with skew
and is optimal among 1-round algorithms when skew is present. The GYM [1] algorithm
shows that allowing log(n) rounds of MapReduce instead of just one round can significantly
reduce cost. Allowing n rounds can reduce it even further. Our work shows that merely going
from one to three rounds can by itself significantly improve on existing 1-round algorithms.
Our parallel algorithm can be incorporated into Step 1 of GYM as well, thereby reducing its
communication cost.

Using Database Statistics: The cycle detection algorithm by Alon, Yuster and Zwick [4] can
improve on the fhw bound by using degree information in a sequential setting. Specifically,
the fhw of a cycle is two but the AYZ algorithm [4] can process a cycle join in time
O(IN2−ε + OUT) where ε > 0 is a function of the cycle length. We generalize this, obtaining
subquadratic runtime for a larger family of graphs, and develop a general procedure for
upper bounding the cost of a join by dealing with different degree values separately.

Beame et al.’s work [8] also uses degree information for parallel join processing. Specifically,
it assumes that all heavy hitters (values with high degree) and their degrees are known
beforehand, and processes them separately to get optimal 1-round results. Their work uses
edge packings to bound the cost of their algorithm. Edge packings have the counterintuitive
property that adding more constraints, or more information on subrelation sizes, can worsen
the edge packing cost. This suggests that edge packings alone do not provide the right
framework for taking degree information into account. Our work remedies this, and the
performance of our algorithm improves when more constraints are added. In addition, Beame
et al. [8] assume that M > p2 where M is relation size and p is the number of processors.
Thus, their algorithm cannot be maximally parallelized. In contrast, our algorithm can work
at all levels of parallelism, ranging from one in which each processor gets only O(1) tuples to
one in which a single processor does all the processing.

Degree Uniformization: The partitioning technique of Alon et al. [3] is similar to our
degree-uniformization technique, but has stronger guarantees at a higher cost. It splits a
relation into ‘parts’ where the maximum degree of any attribute set A in each part P is
within a constant factor of the average degree of A in P . In contrast, degree-uniformization
lets us upper bound the maximum degree of A in P in absolute terms, but not relative to
the average degree of A in P .

Marx’s work [15] uses a stronger partitioning technique to fully characterize the fixed-
parameter tractability of joins in terms of the submodular width of their hypergraphs. Marx
achieves degree-uniformity within all small projections of the output, while we only achieve
uniform degrees within relations. Marx’s preprocessing is expensive; the technique as written

ICDT 2016

11:6 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

in Section 4 of his paper [15] takes time Ω(IN2c) where c is the submodular width of the join
hypergraph. This preprocessing is potentially more expensive than the join processing itself.
Our algorithms run in time O(INMW) with MW < c for several joins. Marx did not attempt
to minimize this exponent, as his application was concerned with fixed parameter tractability.
We were unable to find an easy way to achieve O(INc) runtime for Marx’s technique.

3 Degree Uniformization

We describe our algorithms for degree-uniformization and counting, as well as our improved
output size bound. Section 3.1 introduces our notation. Section 3.2 gives a high-level overview
of our join algorithms. Then, we describe the degree-uniformization which is a key step in our
algorithms. In Section 3.3, we describe the MO bound, an upper bound on join output size
that has a tighter exponent than the AGM bound. We provide realistic examples in which
the MO bound is much tighter than the AGM bound. Finally, in Section 3.4 we describe a
linear time algorithm for computing degrees.

3.1 Preliminaries and Notation
Throughout the paper we consider a multiway join. Let R be the set of relations in the join
and A be the set of all attributes in those relations’ schemas. For any relation R, we let attr(R)
denote the set of attributes in the schema of R. We wish to process the join onR∈R R, defined
as the set of tuples t such that ∀R ∈ R : πattr(R)(t) ∈ R. |R| denotes the number of tuples in
relation R. For any set of attributes A ⊆ A, a value in attribute set A is defined as a tuple
from

⋃
R∈R:A⊆attr(R) πA(R). For any A ⊆ attr(R), the degree of a value v in A in relation R

is given by the number of times v occurs in R i.e. deg(v,R,A) = | {t ∈ R | πA(t) = v} |. For
all values v of A in R, we must have deg(v,R,A) ≥ 1.

In Section 4, we denote a join query with a hypergraph G; the vertices in the graph
correspond to attributes and the hyperedges to relations. We use R(X1, X2, . . . , Xk) to
denote a relation R having schema (X1, X2, . . . , Xk). IN denotes the input size i.e. sum
of sizes of input relations, while OUT denotes the output size. Our output size bounds,
computation costs, and communication costs will be expressed using O notation which hides
polylogarithmic factors i.e. logc(IN), for some c not dependent on number of tuples IN (but
possibly dependent on the number of relations/attributes). All ensuing logarithms in the
paper, unless otherwise specified, will be to the base IN.

AGM Bound: Consider the following linear program:

I Linear Program 1.

Minimize
∑
R∈R

wR log(|R|) such that ∀a ∈ A :
∑

R∈R:a∈attr(R)

wR ≥ 1

A valid assignment of weights wR to relation R in the linear program is called a fractional
cover. If ρ∗ is the minimum value of the objective function, then the AGM bound on the
join output size is given by INρ∗. In general, for any set of relations R, we use AGM(R) to
denote the AGM bound on onR∈R R.

3.2 Degree Uniformization
We describe our high level join procedure in Algorithm 1. In Step 1, we compute the degree of
each value in each attribute set A, in each relation R. If the degrees are available beforehand,

M.R. Joglekar and C.M. Ré 11:7

Algorithm 1: High level join algorithm
Input: Set of relations R, Bucket range parameter L
Output: onR∈R R

1. Compute deg(v,R,A) for each R ∈ R, A ⊆ attr(R), v ∈ πA(R)
2. Compute the set of all L-degree configurations CL
foreach c ∈ CL do

3.1. Compute partition R(c) of each relation R
3.2. Compute R(c) = {R(c) | R ∈ R}
4. Compute join Jc =onR∈R(c) R

5. return
⋃
c∈CL

Jc

due to being maintained by the database, then we can skip this step. We further describe
this step in Section 3.4.

Steps 2, 3 together constitute degree-uniformization. In these steps, we partition each
relation R by degree. In particular, we assign each value in a relation to a bucket based
on its degree: with one bucket for degrees in [1, L), one for degrees in [L,L2), and so on.
Then we process the join using one partition from each relation, for all possible combinations
of partitions. Each such combination is referred to as a degree configuration. We use c to
denote any individual degree configuration, CL to denote the set of all degree configurations,
R(c) to denote the part of relation R being joined in configuration c, and R(c) to denote
{R(c) | R ∈ R}. Step 2 consists of enumerating all degree configurations, and Step 3 consists
of finding the partition of each relation corresponding to each degree configuration.

In Step 4, we compute Jc =onR∈R(c) R for each degree configuration c. Section 4 describes
how to perform Step 4 in a sequential setting, while Section 5 describes it for a MapReduce
setting. Step 5 combines the join outputs for each c to get the final output.

Steps 1, 2, 3 and 5 can be performed efficiently in MapReduce as well as sequential
settings; thus the cost of Algorithm 1 is determined by Step 4. Step 4 is carried out differently
in sequential and MapReduce settings. Its cost in the sequential setting is lower than the
cost in a MapReduce setting. Steps 1, 2, and 3 have a cost of O(IN), while Step 5 has cost
O(OUT). Since reading the input and output always has a cost of O(IN + OUT), the only
extra costs we incur are in Step 4 when we actually process the join. Costs for Step 4 will be
described in Sections 4 and 5.

Degree-uniformization: Now we describe degree-uniformization in detail. We pick a value
for a parameter L which we call ‘bucket range’, and define buckets Bl = [Ll, Ll+1) for all
l ∈ N. Let B = {B0, B1, . . . , }. For any two buckets Bi, Bj ∈ B, we say Bi ≤ Bj iff i ≤ j. A
degree configuration specifies a unique bucket for each relation and set of attributes in that
relation. Formally:

I Definition 1. Given a parameter L, we define a degree configuration c to be a function
that maps each pair (R,A) with R ∈ R, A ⊆ attr(R) to a unique bucket in B denoted c(R,A),
such that

∀R,A,A′ : A′ ⊆ A ⊆ attr(R)⇒ c(R,A) ≤ c(R,A′)

∀R : c(R, attr(R)) = B0 and c(R, ∅) = BblogL(|R|)c

I Example 2. If a join has relations R1(X,Y), R2(Y), then a possible configuration is
(R1, ∅) 7→ B3, (R1, {X}) 7→ B1, (R1, {Y }) 7→ B2, (R1, {X,Y }) 7→ B0, (R2, ∅) 7→ B1,
(R2, {Y }) 7→ B0.

ICDT 2016

11:8 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

I Definition 3. Given a degree configuration c for a given L, and a relation R ∈ R, we
define R(c) to be the set of tuples in R that have degrees consistent with c. Specifically:

R(c) = {t ∈ R | ∀A ⊆ attr(R) : deg(πA(t), R,A) ∈ c(R,A)} .

We define CL to be the set of all degree configurations with parameter L.

I Example 4. For a tuple (a, b) ∈ R, where L2 ≤ |R| < L3, with the degree of a in B1, and
that of b in B2, the tuple would be in R(c) if c(R, ∅) = B2, c(R, {A}) = B1, c(R, {B}) =
B2, c(R, {A,B}) = B0. On the other hand, it would not be in R(c) if c(R, {A}) = B0, even
if we had c(R, {A,B}) = B0, c(R, {B}) = B2.

A degree configuration also bounds degrees of values in sub-relations, as stated below:

I Lemma 5. For all R ∈ R, A′ ⊆ A ⊂ attr(R), L > 1, c ∈ CL, v ∈ πA′(R), j ≥ i ≥ 0:

c(R,A) = Bi ∧ c(R,A′) = Bj ⇒ deg(v, πA(R(c)), A′) ≤ Lj+1−i .

Choosing L: The optimal value of parameter L depends on our application. L has three
effects : (i) For the DBP/MO bounds (Sections 3.3, 5) and sequential algorithm (Section 4),
the error in output size estimates is exponential in L (with the exponent depending only on
the number of attributes) (ii) The load per processor for the parallel algorithm (Section 5)
is O(L) (iii) the number of rounds for the parallel algorithm is logL(IN). As a result, we
choose a small L(= 2) for the sequential algorithm and DBP/MO bounds, and a larger L
(= load capacity = INγ for some γ < 1) for the parallel algorithm.

3.3 Beyond AGM: The MO Bound
We now use degree-uniformization to tighten our upper bound on join output size.

IDefinition 6. LetR be a set of relations, with attributes inA. For each R ∈ R, A ⊆ attr(R),
let dR,A = maxv∈πA(R)deg(v,R,A). If A = ∅ then dR,∅ = |R|. And for any A ⊆ B ⊆ attr(R),
let d(A,B,R) denote log(dπB(R),A). Then consider the following linear program for L.

I Linear Program 2.

Maximize sA s. t. (i) s∅ = 0 (ii) ∀A,B s.t. A ⊆ B : sA ≤ sB
(iii) ∀A,B,E,R s.t. R ∈ R, E ⊆ A, A ⊆ B ⊆ attr(R) : sB∪E ≤ sA∪E + d(A,B,R)

We define mA to be the maximum objective value of the above program.

I Proposition 7. The output size onR∈R R is in O(INmA).

Intuitively, for any A ⊆ A, sA stands for possible values of log(|πA(onR∈R R)|). This explains
the first two constraints (projecting onto the empty set gives size 1, and the projection size
over A is monotone in A). For the third constraint, we use the fact that each value in A
has at most INd(A,B,R) values in B, thus each tuple in πA∪E(onR∈R R) can give us at most
INd(A,B,R) tuples in πB∪E(onR∈R R). The linear program attempts to maximize the total
output size (INsA) while still satisfying the constraints.

We now define the MO bound.

I Definition 8. Let MO(R) denote the value mA for any join query consisting of relations
R. Then the MO bound is given by

∑
c∈C2

INMO(R(c)).

M.R. Joglekar and C.M. Ré 11:9

I Theorem 9. The MO bound is in O(AGM(R)).

The constant in the O() notation depends on the number of attributes in the query, but not
on the number of tuples. This result is proved in two steps. Theorem 26 states that the DBP
bound (introduced in Section 5) is smaller than the AGM bound, while Theorem 23 implies
that the MO bound is smaller than the DBP bound times a constant.

I Example 10. Let L = 2 for this example. Consider a triangle join R(X,Y) on S(Y,Z) on
T (Z,X). Let |R| = |S| = |T | = N . The AGM bound on this is N3/2. Let the degree of each
value x in X in both R and T be h. For different values of h we will find an upper bound on
m{X,Y,Z} and hence on the output size.

Case 1. h <
√
N : Then s{X} ≤ s∅ + d(∅, {X}, R) = log(N/h). Thus, s{X,Y } ≤

s{X} + d({X}, {X,Y }, R) ≤ log(N/h) + log(h) = log(N). Finally, s{X,Y,Z} ≤ s{X,Y }
+ d({X}, {X,Z}, T) ≤ log(N) + log(h). Thus the MO bound is ≤ Nh < N3/2.

Case 2. h >
√
N : Since there can be at most N/h distinct X values, we have

d({Y }, {X,Y }, R) ≤ log(N/h)). More if the degree of Y in S in a degree configuration
is g, then s{Y,Z} ≤ s{Y } + d({Y }, {Y,Z}, S) ≤ log(N/g) + log(g) = log(N). Finally,
s{X,Y,Z} ≤ s{Y,Z} + d({Y }, {X,Y }, R) ≤ log(N) + log(N/h) = log(N2/h) < N3/2.

The MO bound has a strictly smaller exponent than AGM unless h ≈
√
N . Computing

the AGM bound individually over each degree configuration does not help us do better, as
the above example can have all tuples in a single degree configuration.

I Example 11. Consider a matching database [7], where each attribute has the same domain
of size N , and each relation is a matching. Thus each value has degree 1, and d(A,B,R)
equals 0 when A 6= ∅ and 1 if A = ∅. The MO bound on such a database trivially equals N ,
which can have an unboundedly smaller exponent than the AGM bound.

The full version similarly compares the DBP and AGM bounds, showing that DBP (and
hence MO) has a strictly smaller exponent than AGM for ‘almost all’ degrees.

3.4 Degree Computation
If we do not know degrees in advance we can compute them on the fly, as stated below:

I Lemma 12. Given a relation R, A ⊆ attr(R), and L > 1, we can find deg(v,R,A) for
each v ∈ πA(R) in a MapReduce setting, with O(|R|) total communication, in O(logL(|R|))
MapReduce rounds, and at O(L) load per processor. In a sequential setting, we can compute
degrees in time O(|R|).

To perform degree-uniformization, we compute degrees for all relations R, and all A ⊆ attr(R).
The number of such (R,A) pairs is exponential in the number and size of relations, but is
still constant with respect to the input size IN.

4 Sequential Join Processing

We present our results on sequential join processing. Section 4.1 describes our problem
setting. In Section 4.2 we present our sequential join algorithm, DARTS (for Degree-based
Attribute-Relation Transforms). DARTS handles queries consisting of a join followed by
a projection. A join alone is simply a join followed by projection onto all attributes. We

ICDT 2016

11:10 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

pre-process the input by performing degree-uniformization, and then run DARTS on each
degree configuration. DARTS works by performing a sequence of transforms on the join
problem; each transform reduces the problem to smaller problems with fewer attributes or
relations. We describe each of the transforms in turn. We then show that DARTS can be
used to recover (while potentially improving on) known join results such as those of the
NPRR algorithm, Yannakakis’ algorithm, the fhw algorithm, and the AYZ algorithm.

In Section 4.3, we apply DARTS to the subquadratic joins problem; presenting cases in
which we can go beyond existing results in terms of the runtime exponent. For a family of
joins called 1-series-parallel graphs, we obtain a full dichotomy for the subquadratic joins
problem. That is, for each 1-series-parallel graph, we can either show that DARTS processes
its join in subquadratic time, or that no algorithm can process it in subquadratic time modulo
the 3-SUM problem. Note that 1-series-parallel graphs have treewidth 2, making them easily
solvable in quadratic time. Thus, our 3-SUM based quadratic lower bound on some of the
graphs is tight making it, to our knowledge, the only tight bound for join processing time
with small output sizes. In contrast, there is a N 4

3 lower bound (using 3-SUM) for triangle
joins, but its matching upper bound depends on the additional assumption that the matrix
multiplication exponent equals two.

In Section 4.4, we show that most results of the DARTS algorithms can be recovered
using the well known framework of Generalized Hypertree Decompositions (GHDs), along
with a novel notion of width we call m-width. m-width is no larger than fhw, and sometimes
smaller than submodular width [12].

4.1 Setting

In this section, we focus on a sequential join processing setting. We are especially interested
in the subquadratic joins problem stated below:

I Problem 1. For any graph G, we let each node in the graph represent an attribute and
each edge represent a relation of size N . Then we want to know, for what graphs G can we
process a join over the relations in subquadratic time, i.e. O(N2−ε + OUT) for some ε > 0?

Performing a join in subquadratic time is especially important when we have large datasets
being joined, and the output size is significantly smaller than the worst case output size.
Note that we define subquadratic to be a poly(N) factor smaller than N2, so for instance a
N2

logN algorithm is not subquadratic by our definition.
As an example, if a join query is α-acyclic, then Yannakakis’ algorithm can answer it in

time O(N + OUT), which is subquadratic. More generally, if the fractional hypertree width
(fhw) of a query is ρ∗, the join can be processed in time O(Nρ∗ + OUT) using a combination
of the NPRR and Yannakakis’ algorithms. The fhw of an α-acyclic query is one. For any
graph with fhw < 2, we can process its join in subquadratic time. The AYZ algorithm allows
us to process joins over length n cycles in time O(N2− 1

1+d n
2 e + OUT), even though cycles of

length ≥ 4 have fhw = 2. To the best of our knowledge, this is the only previous result that
can process a join with fhw ≥ 2 in subquadratic time.

The DARTS algorithm is applicable to any join-project problem and not just those with
equal relation sizes like in Problem 1. Applying DARTS to Problem 1 lets us process several
joins in subquadratic time despite having fhw ≥ 2. Section 4.4 recovers the subquadratic
runtimes of DARTS using GHDs that have m-width < 2.

M.R. Joglekar and C.M. Ré 11:11

4.2 The DARTS algorithm
We now describe the DARTS algorithm. The problem that DARTS solves is more general
than a join. It takes as input a set of relations R, and a set of attributes O (which stands
for Output), and computes πO onR∈R R. When O = A, the problem reduces to just a
join. We first pre-process the inputs by performing degree-uniformization. Then each degree
configuration is processed separately by DARTS. The L parameter for degree-uniformization
is set to be very small (O(1)). The total computation time is the sum of the computation
times over all degree configurations. Let G = (c,R(c),O). That is, G specifies the query
relations, output attributes, and degrees for each attribute set in each relation according
to the degree configuration. We let cG,RG,OG denote to degree configuration of G, the
relations in G, and the output attributes of G. We define two notions of runtime complexity
for the join-project problem on G:

I Definition 13. Q(G) is the smallest value such that a join-projection with query structure,
degrees, and output attributes given by those in G can be processed in time O(Q(G) + OUT).
P (G) is the smallest value such that a join-projection with query structure, degrees, and
output attributes given by those in G can be processed in time O(P (G)).

I Example 14. As an example of the difference between P and Q, consider a chain join
G with relations R1(X1, X2), R2(X2, X3), R3(X3, X4), and O = {X1, X2, X3, X4}. All
relations have size N , and the degree of each attribute in each relation is

√
N . Then P (G)

would be N2, the worst case size of the output (where all attributes have
√
N values and

each relation is a full cartesian product). Q(G) on the other hand would be N because the
join is α-acyclic, and Yannakakis’ algorithm lets us process the join in time O(N + OUT).

4.2.1 Heavy, Light and Split
The DARTS algorithm performs a series of transforms on G, each of which reduces it to a
smaller problem. In each step, it chooses one of three types of transforms, which we call
Heavy, Light and Split. Each transform takes as input G itself and either an attribute or a
set of attributes in the relations of G. Then it reduces the join-project problem on G to a
simpler problem via a procedure. This reduction gives us a bound on P (G) and/or Q(G) in
terms of the P and Q values of simpler problems. We describe each of these transforms in
turn, along with their input, procedure, and bound.

Heavy

Input: G, An attribute X
Procedure: Let RX = {R ∈ R(c) | X ∈ attr(R)}. Then we compute the values of x ∈ X

that lie in all relations in RX i.e. vals(X) =
⋂
R∈RX

πXR. Then for each x ∈ vals(X),
we marginalize on x. That is, we solve the reduced problem:

Jx = πO\{X}
(
onR∈(R(c)\RX) R onR∈RX

(πA\{X}σX=xR)
)
.

Our final output is
⋃
x∈vals(X)(πOx) × Jx. For each relation R ∈ RX , let dR be the

maximum value in bucket c(R, {X}). So |vals(X)| ≤ minR∈RX

|R|
dR

. Secondly, in each
reduced problem Jx, the size of each reduced relation πA\{X}σX=xR for R ∈ RX reduces
to at most dR. Let G′ denote the reduced relations, degrees, and output attributes for
Jx. This gives us:

Bound: Q(G) ≤
(

minR∈RX

|R|
dR

)
Q(G′), P (G) ≤

(
minR∈RX

|R|
dR

)
P (G′)

ICDT 2016

11:12 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

Light

Input: G, An attribute set X
Procedure: The light transform reduces the number of relations in G. Define RX =
{R ∈ R(c) | attr(R) ⊆ X}. We compute RX =onR∈R(c) πXR. This subjoin is computed
using a sequential version of the parallel technique in Section 5. Hence it takes time equal
to the DBP bound on that join. Then we delete relations in RX from G, and add RX
into RG. The degrees for attributes in RX can be computed in terms of degrees in the
relations from RX . As long as |RX | > 1, this gives us a reduced problem G′. O stays
unchanged for the reduced problem. The size of relation RX can be upper bounded using
the DBP bound as well. Let DBP(G,X) denote this bound.

Bound: Q(G) ≤ DBP(G,X) +Q(G′), P (G) ≤ DBP(G,X) + P (G′)

Split

Input: G, An articulation set S of attributes [11] such that there are joins G1, G2 whose
attribute sets have no attribute outside S in common, and RG ⊆ RG1 ∪ RG2 . Also, S
satisfies either (i) S ⊆ O, or (ii) O ⊆

⋃
R∈RG2

attr(R).
Procedure: We compute RS = πS

(
onR∈RG1

R
)
. This takes time P (G′1), where G′1 is like

G1 but with OG′
1

= S. Let J2 =
(
onR∈RG2

R
)
on RS . If O ⊆

⋃
R∈RG2

attr(R), then we
compute and output πOJ2, and we are done. This step costs P (G2). Otherwise, S ⊆ O.
We compute O2 = πOJ2. Each tuple in O2 has a matching output tuple for G. Then
we set RS = RS ∩ πSO2 and compute O1 = πO(onR∈RG1

R on RS). Then for each tuple
t ∈ RS , we take each pair of matching tuples t1 ∈ O1, t2 ∈ O2 and output t1 on t2. Let
G′′1 be like G1, but with OG′′

1
= O ∩

(⋃
R∈RG1

attr(R)
)
, and G′′2 be defined similarly.

This gives us:
Bound: If S ⊆ O, then Q(G) ≤ P (G′1) + Q(G′′1) + Q(G′′2). If O ⊆

⋃
R∈RG2

attr(R), then
P (G) ≤ P (G′1) + P (G2).

4.2.2 Combining the Transforms
Once we know the transforms, the DARTS algorithm is quite straightforward. It considers
all possible sequences of transforms that can be used to solve the problem, and picks the one
that gives the smallest upper bound on Q(G). The number of such transform sequences is
exponential in the number of attributes and relations, but constant with respect to data size.
The P and Q values of various Gs can be computed recursively given a degree configuration.
The G′ obtained in each recursive step itself specifies a degree configuration, over a smaller
problem. The degrees in G′ can be computed in terms of degrees in G. Note that in some
cases, we do not have cost bounds available e.g. we do not have a P bound for the Split
transform when S ⊆ O. This is a part of the DARTS algorithm. DARTS only considers
performing a transform when it can upper bound the resulting cost.

We show that DARTS can be used to recover existing results on sequential joins.

I Proposition 15. If we compute the join using a single Light transform, our total cost is ≤
the AGM bound, thus recovering the result of the NPRR algorithm [16].

I Proposition 16. If we successively apply the Split transform on an α-acyclic join, with
G1 being an ear of the join in each step, then the total cost of our algorithm becomes
O(IN + OUT), recovering the result of Yannakakis’ algorithm [19].

M.R. Joglekar and C.M. Ré 11:13

I Proposition 17. If a query has fractional hypertree width equal to fhw, then using a
combination of Split and Light transforms, we can bound the cost of running DARTS by
O(INfhw + OUT), recovering the fractional hypertree width result.

I Proposition 18. A cycle join of length n with all relations having size N , can be processed
by DARTS in time O(N2− 1

1+d n
2 e + OUT), recovering the result of the AYZ algorithm [4].

In the next subsection, we present a few of the cases in which we can go beyond existing
results. Since we are primarily interested in joins, the output attribute set O below is always
assumed to be A.

4.3 Subquadratic Joins
Now we consider applications of DARTS to the subquadratic joins problem. Analyzing a
run of DARTS on a join graph allows us to obtain a subquadratic runtime upper bound in
several cases. We now define a set of graphs for which we have a complete decision procedure
to determine if they can be solved in subquadratic time modulo the 3-SUM problem.

1-series-parallel graphs

I Definition 19. A 1-series-parallel graph is one that consists of :
A source node XS

A sink node XT

Any number of paths, of arbitrary length, from XS to XT , having no other nodes in
common with each other

Equivalently, a 1-series-parallel graph is a series parallel graph that can be obtained using any
number of series transforms (which creates paths) followed by exactly one parallel transform,
which joins the paths at the endpoints. A cycle is a special case of a 1-series-parallel graph.

I Theorem 20. For 1-series-parallel graphs, the following decision procedure determines
whether or not the join over that graph can be processed in sub-quadratic time:
1. If there is a direct edge (path of length one) between XS and XT , then the join can be

processed in sub-quadratic time. Else:
2. Remove all paths of length two between XS and XT , as they do not affect the sub-quadratic

solvability of the join problem. Then
3. If the remaining number of paths (obviously all having length ≥ 3) is ≥ 3, then the join

cannot be processed in subquadratic time (modulo 3-SUM). If the number of remaining
paths is < 3, then the graph can be solved in sub-quadratic time.

Theorem 20 establishes the decision procedure for subquadratic solvability of 1-series-
parallel graphs. The full version gives an example of a subquadratic solution for a specific
1-series-parallel graph, namely K2,n, followed by an example on the general bipartite graph
Km,n. In both these examples, DARTS achieves a better runtime exponent than previously
known algorithms. We now make three statements that together imply Theorem 20 (formally
stated and proved in the full version).

If we have a 1-series-parallel graph, which has a direct edge from XS to XT (i.e. a path
of length 1), then a join on that graph can be processed in subquadratic time.
Suppose we have a 1-series-parallel graph G, which does not have a direct edge from XS

to XT , but has a vertex XU such that there is an edge from XS to XU and from XU to
XT (i.e. a path of length 2 from XS to XT). Let G′ be the graph obtained by deleting

ICDT 2016

11:14 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

the vertex XU and edges XSXU and XUXT . Then the join on G can be processed in
subquadratic time if and only if that on G′ can be processed in subquadratic time.
Let G be any 1-series-parallel graph which does not have an edge from XS to XT , but has
≥ 3 paths of length at ≥ 3 each, from XS to XT . Then a join over G can be processed in
subquadratic time only if the 3-SUM problem can be solved in subquadratic time.

4.4 A new notion of width (m-width)
We demonstrate a way to formulate the DARTS algorithm for joins in terms of GHDs.

For each A ∈ A, we define mA similarly to how we defined mA in Section 3.3. Specifically,
for each A, we use the same constraints as in linear program 2, but the objective is set
to Maximize sA instead of Maximize sA. mA is then defined as the value of this objective
function. We let Prog(A) denote the above linear program for finding mA. Then the size
|πA(onR∈R R)| must be bounded by INmA for all A ⊆ A. Moreover, for any GHD D = (T , χ)
of query R, we can define MW(D,R) to be maxt∈T (mχ(t)). And MW(R) is simply the
minimum value of MW(D,R) over all GHDs D. Thus we have:

I Definition 21. The m-width of a join query onR∈R R (possibly with non-uniform degrees),
is given by maxc∈C2 MW(R(c)).

I Theorem 22. A query with m-width MW can be answered in time O(INMW + OUT).

This theorem lets us recover all our subquadratic joins results as well. That is, for the
1-series-parallel graphs that have a subquadratic join algorithm (as per Theorem 20), we can
construct a GHD that has m-width less than 2.

The MO bound is tighter than the DBP bound (and consequently, the AGM bound, as
stated in Theorem 9 earlier).

I Theorem 23. For any join query R, and any degree configuration c ∈ C2, MO(R(c)) ≤
DBP(R(c), 2) + |C| log(2), where C is the cover used in the DBP bound.

Note that since logarithms are to the base IN, the |C| log(2) term is negligible even though
it goes in the exponent of the bound i.e. its exponent is a constant. Theorems 22 and 23 let
us recover all the results of the DARTS algorithm.

The theorems also imply that our new notion of width (m-width) is tighter than fhw.
The full version [12] compares m-width to submodular width (which, barring m-width, is
the tightest known notion of width applicable to general joins), showing examples where
m-width is tighter than submodular width. But we do not know in general if m-width is
tighter than submodular width.

The full version also shows that while m-width < 2 implies subquadratic solvability, the
converse is not true; we show an example join which has m-width and submodular width
= 2 but can be solved in subquadratic time. Thus known notions of width do not fully
characterize subquadratically solvable graphs.

5 Parallel Join Processing

Like in sequential settings, degree-uniformization can be applied in a MapReduce setting.
We first present the DBP bound, which is a bound on output size that is tighter than AGM
bound (but not tighter than MO), and characterizes the complexity of our parallel algorithm.
Then we present a 3-round MapReduce algorithm whose cost equals the DBP bound at the
highest level of parallelism.

M.R. Joglekar and C.M. Ré 11:15

The DBP Bound

We start by defining a quantity called the Degree-based packing (DBP).

I Definition 24. Let R be a set of relations, with attributes in A. Let C denote a cover i.e.
a set of pairs (R,A) such that R ∈ R, A ⊆ attr(R), and

⋃
(R,A)∈C A = A. Let L > 1. Then,

consider the following linear program for C,L.

I Linear Program 3.

Minimize
∑
a∈A

va such that ∀(R,A) ∈ C, ∀A′ ⊆ A :
∑
a∈A′

va ≥ log
(
dπA(R),A\A′

L

)

If OC,L is the maximum objective value of the above program, then we define DBP(R, L) to
be minC OC,L where the minimum is taken over all covers C.

I Proposition 25. Let L > 1 be a constant. Then the output size of onR∈R R is in
O(INDBP(R,L)).

We implicitly prove this result by providing a parallel algorithm whose complexity equals the
output size bound at the maximum parallelism level. We can now define the DBP bound.
We arbitrarily set L = 2 for this definition (choosing another constant value only changes
the bound by a constant factor). Thus, we define the DBP bound to be

∑
c∈C2

INDBP(R(c),2).
As a simple corollary, the output size of the join is ≤ the DBP bound.

I Theorem 26. For each degree configuration c ∈ CL, INDBP(R(c),L) ≤ AGM(R(c)).

We prove this theorem using a sequence of linear program transformations, starting with
the AGM bound, and ending with the DBP bound, which each transformation decreasing
the objective function value. The key transform is the fifth one, where we switch from a
cover-based program to a packing-based program. We show in the full version that the DBP
bound has a strictly better exponent than AGM for ‘almost all’ degrees.

Parallel Join Algorithm

We present our parallel 3-round join algorithm. The algorithm works at all levels of parallelism
specified by load level L. Its communication cost matches the DBP bound when L = O(1).
We formally state the result, and then provide an example of its performance.

I Theorem 27. For any value of L, we can process a join in O(logL(IN)) rounds (three
rounds if degrees are already known) with load O(L) per processor and a communication cost
of O(IN + OUT + maxc∈CL

L · INDBP(R(c),L)).

We briefly sketch the algorithm here, and provide the full proof in the full version. We start
by performing degree uniformization. Now consider any configuration c. We solve Linear
Program 3 over all covers. Let C be the optimal cover, and va the values in the optimal
solution to Linear Program 3 with cover C. We join on(R,A)∈C πA(R) using the Shares
algorithm with share INva for attribute a. Finally, we semijoin relations not in C with the
result. The following lemma gives us our required communication cost and load bounds.

I Lemma 28. The shares algorithm, where each attribute a has share INva , where va is from
the solution to Linear Program 3, has a load of O(L) per processor with high probability, and
a communication cost of O(maxc∈CL

L · INDBP(R(c),L)).

ICDT 2016

11:16 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

I Example 29. Consider the sparse triangle join, with R = {R1(X,Y), R2(Y,Z), R3(Z,X)}.
Each relation has size N , and each value has degree O(1). When the load level is L < N ,
the join requires DBP(R, L) = N

L processors. Equivalently, when we have p processors, the
load per processor is N

p , which means it decreases as fast as possible as a function of p.
In contrast the vanilla shares algorithm allocates a share of p 1

3 to each attribute, and the
load per processor is Np− 2

3 . Current state of the art work [8] has a load of Np− 2
3 as well.

We further explore and generalize this example in the full version, where we also show an
example where our parallel algorithm operating at maximum parallelism still has lower total
cost than existing state-of-the-art sequential algorithms.

6 Conclusion and Future Work

We demonstrated that using degree information for a join can let us tighten the exponent of
our output size bound. We presented a parallel algorithm that works at all levels of parallelism,
and whose communication cost matches a tightened bound at the maximum parallelism level.
We proposed the question of deciding which joins can be processed in subquadratic time,
and made some progress towards answering it. We showed a tight quadratic lower bound for
a family of joins, making it the only known tight bound that makes no assumptions about
the matrix multiplication exponent. We presented an improved sequential algorithm, namely
DARTS, that generalizes several known join algorithms, while outperforming them in several
cases. We recovered the results of DARTS in the GHD framework, using a novel notion of
width that is tighter than fhw and sometimes tighter than submodular width as well.

We presented several cases in which DARTS outperforms existing algorithms, in the
context of subquadratic joins. However, it is likely that DARTS outperforms existing
algorithms on joins having higher treewidths as well. A fuller exploration of the improved
upper bounds achieved by DARTS is left to future work. The full version shows a join that
can be performed in subquadratic time despite its m-width/submodular width being = 2.
Thus the problem of precisely characterizing which joins can be performed in subquadratic
time remains open. Moreover, we focused entirely on using degree information for join
processing; using other kinds of information stored by databases to improve join processing
is a promising direction for future work.

Acknowledgements. The authors would like to thank Atri Rudra for pointing out the
connection to submodular width. CR gratefully acknowledges the support of the Defense
Advanced Research Projects Agency (DARPA) XDATA Program under No. FA8750-12-2-
0335 and DEFT Program under No. FA8750-13-2-0039, DARPAs MEMEX program under
No. FA8750-14-2-0240, the National Science Foundation (NSF) under CAREER Award
No. IIS-1353606, Award No. CCF-1356918 and EarthCube Award under No. ACI-1343760,
the Office of Naval Research (ONR) under awards No. N000141210041 and No. N000141310129,
the Sloan Research Fellowship, the Moore Foundation Data Driven Investigator award, and
gifts from American Family Insurance, Google, Lightspeed Ventures, and Toshiba.

References

1 F. Afrati, M. Joglekar, C. Ré, S. Salihoglu, and J. Ullman. GYM: A multiround join
algorithm in mapreduce. CoRR, abs/1410.4156, 2014. URL: http://arxiv.org/abs/
1410.4156.

http://arxiv.org/abs/1410.4156
http://arxiv.org/abs/1410.4156

M.R. Joglekar and C.M. Ré 11:17

2 F. N. Afrati and J. D. Ullman. Optimizing Multiway Joins in a Map-Reduce Environment.
IEEE TKDE, 23, 2011.

3 N. Alon, I. Newman, A. Shen, G. Tardos, and N. Vereshchagin. Partitioning multi-
dimensional sets in a small number of “uniform” parts. Eur. J. Comb., 28, 2007.

4 N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles (extended ab-
stract). In Proceedings of the Second Annual European Symposium on Algorithms, ESA’94,
pages 354–364, London, UK, 1994. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?id=647904.739463.

5 A. Atserias, M. Grohe, and D. Marx. Size Bounds and Query Plans for Relational Joins.
SIAM J. Comput., 42, 2013.

6 Ilya Baran, ErikD. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3sum. In
F. Dehne, A. Lopez-Ortiz, and J. Sack, editors, Algorithms and Data Structures, volume
3608 of Lecture Notes in Computer Science, pages 409–421. Springer Berlin Heidelberg,
2005. doi:10.1007/11534273_36.

7 P. Beame, P. Koutris, and D. Suciu. Communication Steps for Parallel Query Processing.
In PODS, 2013.

8 P. Beame, P. Koutris, and D. Suciu. Skew in Parallel Query Processing. In PODS, 2014.
9 C. Chekuri and A. Rajaraman. Conjunctive Query Containment Revisited. TCS, 239, 2000.

10 G. Gottlob, M. Grohe, M. Nysret, S. Marko, and F. Scarcello. Hypertree Decompositions:
Structure, Algorithms, and Applications. In WG, 2005.

11 J. Gross, J. Yellen, and P. Zhang. Handbook of Graph Theory, Second Edition. Chapman
& Hall/CRC, 2nd edition, 2013.

12 M. Joglekar and C. Ré. It’s all a matter of degree: Using degree information to optimize
multiway joins. CoRR, abs/1508.01239, 2015. URL: http://arxiv.org/abs/1508.01239.

13 P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In Proceedings of
the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, PODS’11, pages 223–234, New York, NY, USA, 2011. ACM. doi:10.1145/1989284.
1989310.

14 J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection, June
2014. URL: http://snap.stanford.edu/data.

15 D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive quer-
ies. J. ACM, 60, 2013.

16 H. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms: [extended ab-
stract]. In Proceedings of the 31st Symposium on Principles of Database Systems, PODS’12,
pages 37–48, New York, NY, USA, 2012. ACM. doi:10.1145/2213556.2213565.

17 H. Ngo, C. Ré, and A. Rudra. Skew Strikes Back: New Developments in the Theory of
Join Algorithms. SIGMOD, 42, 2014.

18 T. Veldhuizen. Leapfrog triejoin: a worst-case optimal join algorithm. CoRR,
abs/1210.0481, 2012. URL: http://arxiv.org/abs/1210.0481.

19 M. Yannakakis. Algorithms for Acyclic Database Schemes. In VLDB, 1981.

ICDT 2016

http://dl.acm.org/citation.cfm?id=647904.739463
http://dl.acm.org/citation.cfm?id=647904.739463
http://dx.doi.org/10.1007/11534273_36
http://arxiv.org/abs/1508.01239
http://dx.doi.org/10.1145/1989284.1989310
http://dx.doi.org/10.1145/1989284.1989310
http://snap.stanford.edu/data
http://dx.doi.org/10.1145/2213556.2213565
http://arxiv.org/abs/1210.0481

	Introduction
	Related Work
	Degree Uniformization
	Preliminaries and Notation
	Degree Uniformization
	Beyond AGM: The MO Bound
	Degree Computation

	Sequential Join Processing
	Setting
	The DARTS algorithm
	Heavy, Light and Split
	Combining the Transforms

	Subquadratic Joins
	A new notion of width (m-width)

	Parallel Join Processing
	Conclusion and Future Work

