
Verification of Evolving Graph-structured Data
under Expressive Path Constraints
Diego Calvanese1, Magdalena Ortiz2, and Mantas Šimkus2

1 Free University of Bozen-Bolzano, Bozen, Italy
2 TU Wien, Viena, Austria

Abstract
Integrity constraints play a central role in databases and, among other applications, are funda-
mental for preserving data integrity when databases evolve as a result of operations manipulating
the data. In this context, an important task is that of static verification, which consists in de-
ciding whether a given set of constraints is preserved after the execution of a given sequence of
operations, for every possible database satisfying the initial constraints. In this paper, we con-
sider constraints over graph-structured data formulated in an expressive Description Logic (DL)
that allows for regular expressions over binary relations and their inverses, generalizing many
of the well-known path constraint languages proposed for semi-structured data in the last two
decades. In this setting, we study the problem of static verification, for operations expressed in
a simple yet flexible language built from additions and deletions of complex DL expressions. We
establish undecidability of the general setting, and identify suitable restricted fragments for which
we obtain tight complexity results, building on techniques developed in our previous work for
simpler DLs. As a by-product, we obtain new (un)decidability results for the implication problem
of path constraints, and improve previous upper bounds on the complexity of the problem.

1998 ACM Subject Classification H.2 [Database Management] General

Keywords and phrases Path constraints, Description Logics, Graph databases, Static verification

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.15

1 Introduction

Integrity constraints play a central role in databases and, among many other applications,
are fundamental for preserving data integrity when databases evolve as a result of operations
manipulating the data [1, 23, 6]. A fundamental problem in this context is static verification:
given a set of integrity constraints, and a sequence of operations that describe changes
on databases (over the same schema), the goal is to verify whether the constraints are
preserved by the operations, that is, they are satisfied after their application, for every
database that initially satisfies the constraints. This allows one to establish the acceptability
of sequences of operations, which guarantees that applications maintain data integrity at
runtime, independently of the specific database states that may be reached. However,
static verification is very hard, and identifying sufficiently expressive languages for integrity
constraints and data operations that allow for decidable verification is challenging.

In this paper, we consider graph-structured data (GSD), that is, relational data that
contains unary and binary relations only, and thus admits a natural representation as a
labeled graph. This data model is well suited for those settings where the data does not
comply to a fixed schema, and the topology of the data relations is central. The GSD model
became important already two decades ago due to the close relationship with semi-structured
data [2, 13]. In the last decade it has gained renewed interest due to its relevance in the

© Diego Calvanese, Magdalena Ortiz, and Mantas Šimkus;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Verification of Evolving GSD under Expressive Path Constraints

Semantic Web and a diverse range of areas, including social networks, life-sciences, and
program analysis, see e.g., [5, 36] and references therein. The study of query languages
for GSD has been the focus of extensive research efforts in the database community over
the last decade, based on the common consensus that GSD requires navigational query
languages that allow, as minimal required functionality, to extract nodes that are connected
by paths complying with a given regular language [36, 30]. The exploration of constraints
for this data model is somehow more limited, partly due to the fact that even simple
formalisms for constraining relations between regular paths result in undecidability of basic
inference problems. Indeed, early proposals for path constraint languages are still viewed as
adequate [3, 14, 16, 26, 17], but their wider adoption is hindered by the fact their implication
problem is only known to be decidable under very strong restrictions. Recently there has been
much interest in the study of containment for expressive query languages for GSD [27, 20].
In this basic form of static analysis, queries can be seen as expressing constraints over GSD,
but also here inference turns out to be undecidable unless severe restrictions are imposed.
For example, containment of Graph-XPath queries, a variation of XPath advocated for
querying GSD, is undecidable in general, and has been shown decidable only when restricted
to the so-called path-positive fragment [27]. In this paper we show undecidability for a path
constraint language that is significantly more restricted than Graph-XPath, and even than
the path constraints in [14], and improve the previous undecidability results that required to
express paths that return to the initial point [14, 27].

We advocate an expressive Description Logic (DL) as constraint language for GSD. DLs
are a family of languages tailored for representing structured knowledge, and for supporting
inference over it [8]. They formalize domain knowledge by describing complex classes of
objects, called concepts, and binary relations between them, called roles. Most DLs can be
seen as (syntactic variants of) decidable fragments of classical first-order (FO) logic, or its
extension with transitive closure. Different DLs provide different expressive means to describe
knowledge, with the computational complexity of inference varying accordingly. DLs are the
basis of state-of-the-art ontology languages for sharing domain conceptualizations [9], and
they are naturally suited for describing data sources. They have been applied for the static
analysis of traditional data models, such as UML class diagrams [10] and Entity Relationship
schemata [7]. In the paradigm of ontology based data access [34, 28], which has gained great
importance in the last decade, DL ontologies are used to describe possibly heterogeneous data
sources, facilitating their management, and leveraging domain knowledge to improve access
to them. Query answering and containment in this setting has been extensively studied, for
a range of DLs and query languages [11, 15, 33].

In this paper we show that DLs are adequate also as constraint languages for GSD. We
focus on the expressive DL ZOI, also known as ALCOIbSelfreg [18], which features regular
expressions over binary relations and their inverses, and allows for using them to impose
complex relations between concepts and roles. ZOI can express the full path-positive
fragment of Graph-XPath, and supports additional features that allow it to express even
richer constraints on GSD. We also show that well-known path constraint languages proposed
for GSD in the past [3, 14] can be naturally expressed in (variations of) ZOI. Moreover, we
can leverage results from the DL community to generalize and improve previous upper bounds
on the complexity of the implication problem for decidable fragments of path constraints.
This requires, however, to lift existing algorithms and complexity results for reasoning in
ZOI to finite structures, since in the setting of verification of evolving GSD we are interested
in finite data instances, and so far this DL had been studied over unrestricted, possibly
infinite, models only [18]. This transfer of results to the finite setting is fortunately possible

D. Calvanese, M. Ortiz, and M. Šimkus 15:3

since ZOI enjoys finite model property (FMP), as we are able to prove. This is a crucial
stepping stone for our results, and an interesting contribution on its own right. Indeed,
while the FMP has been long known for the closely related converse PDL [24, 21], ZOI has
several further features. In particular, it allows for Boolean combinations of roles that make
standard filtration techniques not directly applicable, and call for more subtle arguments
that borrow ideas from FMP proofs for the two-variable fragment of first-order logic [32, 25].

For expressing operations on GSD we use the action language proposed in [4], that allows
for the (possibly conditional) composition of basic operations that add or delete from a
predicate the objects selected by a complex DL concept or role.1 The undecidability of
general path constraint implication implies that static verification becomes undecidable when
if complex roles are allowed in actions. However, we regain decidability by restricting the
roles in the action to be simple roles that allow for union, intersection, and difference of
possibly inverse roles, but disallow composition and the Kleene star. Under these restrictions,
we can rely on the techniques of [4] to reduce static verification in the presence of ZOI
constraints to satisfiability of ZOI KBs, obtaining a tight ExpTime upper bound for the
former.

The paper is organized as follows. In Section 2 we introduce the DL ZOI, and establish
the finite model property for it. Section 3 is devoted to path constraint languages. We
tighten the undecidability of path constraint implication shown in [14]. We also generalize
the decidability in [3] to a richer class, and improve the upper bound from 2ExpSpace
to ExpTime by reducing the problem to reasoning in ZOI. Section 4 studies the static
verification of ZOI constraints over GSD, for actions expressed in the language proposed
in [4]. We show that the problem is undecidable if arbitrary ZOI roles occur in actions, and
impose suitable restrictions to obtain ExpTime decidability using the techniques of [4].

2 Expressive DLs for Expressing Constraints over GSD

In this paper, we formalize GSD as relational structures, which we call instances, over a
unary and binary relational signature. We propose to use the rich DL ZOI, also known
as ALCOIbSelfreg [18], to express constraints over graph structured data. This is natural as,
like other DLs, ZOI is defined over a relational vocabulary that contains unary and binary
predicates only (respectively called concept names and role names in DL jargon) and the
structures over which is interpreted are precisely GSD instances. A distinguishing feature of
ZOI, which makes it especially adequate for describing GSD, is that it can express relations
between objects by allowing for complex roles defined using regular expressions.

I Definition 1 (ZOI syntax). We consider fixed, countably infinite sets NC of concept names,
NR of role names, and NI of individual names. We assume that the set NC contains the
special concepts > (top) and ⊥ (bottom), while NR contains the top (universal) role T and
the bottom (empty) role B. We define (ZOI) atomic concepts B, concepts C, C ′, atomic
roles P , simple roles S, S′, and roles R, R′, where a, b ∈ NI, A ∈ NC, r ∈ NR, and r 6= T,
according to the following syntax:

B −→ A | {a}
C,C′ −→ B | ¬C | C u C′ | C t C′ |

∀R.C | ∃R.C | ∃S.Self

P −→ r | r− | {(a, b)}
S, S′ −→ P | S ∩ S′ | S ∪ S′ | S \ S′
R,R′ −→ T | ε | id(C) | S | R ∪R′ |

R ◦R′ | R∗

We call ZOI expressions {a} nominal concepts, and {(a, b)} nominal roles. J

1 In our setting, updates are performed data that is viewed as complete, and DL constraints are not used
to infer new knowledge. Thus we do not run in the expressiveness issues considered e.g., in [31, 19].

ICDT 2016

15:4 Verification of Evolving GSD under Expressive Path Constraints

We use ZOI concepts and roles to define a general form of knowledge bases, in which we
allow for Boolean combinations of intensional and extensional level statements.

I Definition 2 (ZOI knowledge bases). A concept inclusion is an expression of the form
C vC ′, where C, C ′ are arbitrary concepts, and a role inclusion is an expression of the form
SvS′, where S, S′ are simple roles. An assertion is an expression of the form C(a), S(a, a′),
or a 6= a′, where C is a concept, S a simple role, and {a, a′} ⊆ NI. Then, (ZOI) knowledge
bases (KBs) are defined inductively as follows:

(i) every inclusion and every assertion is a KB;
(ii) if K, K′ are KBs, so are K ∧ K′, K ∨ K′, and ¬̇K. J

The semantics of ZOI is based on standard relational structures. An instance (or
interpretation) I = (∆I , ·I) consists of a non-empty domain ∆I and an interpretation
function ·I that maps each individual a ∈ NI to an element aI ∈ ∆I , each concept name
A ∈ NC to a set AI ⊆ ∆I , and each role name r ∈ NR to a set rI ⊆ ∆I ×∆I , in such a way
that >I = ∆I , ⊥I = ∅, TI = ∆I ×∆I , and BI = ∅. The function ·I is inductively extended
to all ZOI concepts and roles as follows:

{a}I = {aI}
(¬C)I = ∆I \ CI

(C u C′)I = CI ∩ C′I
(C t C′)I = CI ∪ C′I

(∀R.C)I = {x | ∀y.(x, y) ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI}

(∃S.Self)I = {x | (x, x) ∈ SI}

{(a, b)}I = {(aI , bI)}
(r−)I = {(y, x) | (x, y) ∈ rI}

(S \ S′)I = SI \ S′I
(S ∩ S′)I = SI ∩ S′I
(R ∪R′)I = RI ∪R′I
(R ◦R′)I = RI ◦R′I

(R∗)I = (RI)∗
(id(C))I = {(x, x) | x ∈ CI}

(ε)I = {(x, x) | x ∈ ∆I}
where ∩, ∪, and \ are overloaded to denote also the standard set-theoretic operations, ◦ to
denote composition, and ·∗ to denote the reflexive transitive closure of a binary relation.

I satisfies the inclusion E v E′ if EI ⊆ E′I , the assertions A(a) if aI ∈ AI , S(a, b) if
(aI , bI) ∈ SI , and a 6= b if aI 6= bI . Satisfaction is extended in the usual way to KBs, which
are Boolean combinations of inclusions and assertions. When I satisfies K, we also say that
I is a model of K, and denote it with I |= K.

As basic reasoning task we consider KB satisfiability, which consists in deciding, given a
KB K, whether K admits a model. Other standard reasoning tasks, like concept (resp., role)
satisfiability, that is, deciding whether there exists an interpretation where the extension of a
given concept (resp., role) is not empty, can be reduced to KB satisfiability.

I Remark. The roles ε and {(a, b)}, which are not usually included in ZOI, are just syntactic
sugar. Indeed, ε has the same meaning as id(>) and captures the identity relation. Nominal
roles {(a, b)} can be easily simulated in K by replacing each occurrence of {(a, b)} by a fresh
role name rab, and conjunctively adding to K the KB rab(a, b)∧(∃rab.>v{a})∧(>v∀ra,b.{b}).
This ensures that rIab = {(aI , bI)} in every model of the modified KB.

I Example 3. As a running example, we consider the following self-explanatory instance
IUni. For simplicity, in the examples we interpret individuals as themselves (i.e., we make
the standard name assumption).

D. Calvanese, M. Ortiz, and M. Šimkus 15:5

DeptI = {CS_Dept}
ProgramI = {BSc_CSci,MSc_CompLogic,MSc_Bioinformatics}

CourseI = {DataStruct:CS202,FoundDBs:CS327,DLs:CS451}
partOfI = {(DLs:CS451,mod_KR)}

offersI = {(CS_Dept,BSc_CompSci), (CS_Dept,MSc_CompLogic),
(CS_Dept,MSc_Bioinformatics){(CS_Dept,DataStruct:CS202),
(CS_Dept,FoundDBs:CS327), (CS_Dept,DLs:CS451)}

requiresI = {(BSc_CSci,DataStruct:CS202), (MSc_CompLogic,FoundDBs:CS327),
(MSc_CompLogic,mod_KR), (MSc_Bioinformatics,DLs:CS451)}

Consider the KB KUni defined as the conjunction of the following ZOI constraints: φ1 says
that the domain of ‘offers’ are the departments, and φ2 says that its range is the union of
programs and courses. Similarly, φ3 and φ4 restrict the domain of ’requires’ to programs,
and its range to courses other entities that comprise courses, like modules. Finally φ5 says
that every course that is required (directly, or because it is part of a required module) must
be offered.

φ1 = ∃offers.>v Dept φ2 = >v ∀offers.(Program t Course)
φ3 = ∃requires.>v Program φ4 = >v ∀requires.(∃partOf−∗.Course)
φ5 = Course u ∃(partOf∗ ◦ requires−).>v ∃offers−.>

Note that all these constraints are satisfied by our instance, that is, IUni |= KUni.

We note that ZOI is closely related to path-positive Graph-XPath (abbreviated GX-
Pathpath-posreg) introduced in [30]. By viewing arc labels as role names, node formulas in
GXPathpath-posreg can be written as ZOI concepts, and GXPathpath-posreg path formulas as ZOI
roles. Additionally ZOI extends GXPathpath-posreg with other features, such as Boolean com-
binations of node and path labels (i.e., Boolean concepts and roles), nominals, and concepts
of the form ∃S.Self.

In [18], a tree-automata based algorithm for checking satisfiability of ZOI concepts is
provided, and by using a variant of internalization [35], this is exploited to check satisfiability
of ZOI KBs constituted by a conjunction of (positive) assertions and inclusions. It is easy
to extend internalization also to ZOI KBs of the more general form considered here, and
thus reduce satisfiability of a ZOI KB to satisfiability of a ZOI concept. The proof is given
in the extended version of the paper.

I Theorem 4. Given a ZOI KB K, one can construct in linear time a ZOI concept CK
such that K is satisfiable if and only if CK is so.

From this result and the ExpTime upper bound for concept satisfiability given in [18], it
follows immediately that satisfiability of ZOI KBs is decidable in single exponential time.
This is worst-case optimal, since the problem is ExpTime-hard even for significantly simpler
DLs like ALC [8].

I Theorem 5 ([18]). Checking satisfiability of ZOI KBs is an ExpTime-complete problem.

ICDT 2016

15:6 Verification of Evolving GSD under Expressive Path Constraints

Finite Model Reasoning in ZOI. In the setting of GSD we are usually interested in finite
instances. In the DL literature, however, finite model reasoning has received significantly less
attention than reasoning with respect to unrestricted models. To our knowledge, finite model
reasoning for ZOI has not been addressed so far. However, as we show in the following,
ZOI enjoys the finite model property, which states that every satisfiable KB admits a
model whose domain is finite. In line with what has been done for other logics that cannot
express functionality, keys, or number restrictions, we can show this through a filtration
argument [24, 21]. However, due to the presence of both transitive closure over roles and
role intersection and difference, the proof is more involved than for logics that involve none
or only one of the two kinds of constructs.

We say a KB K is finitely satisfiable if it admits a finite model, i.e., a model with a finite
domain. The proof of the following result is given in the extended version of the paper.

I Theorem 6. Let K be a ZOI KB. Then K is satisfiable if and only if K is finitely
satisfiable.

3 Path Constraints

We define a language for path constraints inspired by [3, 14, 26] and closely related to ZOI.

I Definition 7 (Path constraints). A path constraint ϕ has the form [Rp](R` ⊆ Rr), where
Rp, R`, and Rr are arbitrary ZOI roles. The role Rp is called prefix of ϕ, while the roles
R` and Rr are respectively called the left tail and the right tail of ϕ. If Rp = ε, we call ϕ a
prefix-empty constraint2, and write it simply as R` ⊆ Rr. J

This definition generalizes the well-known path constraint languages from [3, 14]. A
complex role R built from the symbols in NR ∪ {ε} using ◦ , ∪, and ∗ is called a (one-way)
regular path role, and if additionally it does not contain ∪ or ∗ then it is called a (one-way)
word role. A one-way regular path constraint (called simply path constraint in [3]) is a
prefix-empty constraint where R` and Rr are one-way regular path roles. If, in addition, R`
and Rr are one-way word roles, the path constraint is called a word constraint in [3]. The
language of path constraints in [14] allows for non-empty prefixes, but restricts the left tail to
be a one-way word role, and the right tail to be either a one-way word role (in the so-called
forward constraints), or an inverted one-way word role (in backward constraints), which is a
sequence of concatenated inverses of role names (that is, r−1 ◦ · · · ◦ r−n with n ≥ 0).3

Now we define the semantics of path constraints and their fundamental reasoning problem,
namely implication of path constraints, both in its finite and in its unrestricted variants.

In the semantics of early path constraint languages [3, 14], every instance has a distin-
guished root object at which the constraints are enforced. We introduce a minor variation of
this semantics, which we call pointed semantics, where rather than a fixed name for the root
node, we allow for any individual name to be used as its identifier. Later works advocated
what we call the global semantics [22, 26], in which constraints are enforced at every point
in the model, rather than at just one. We note that the global semantics is in general
computationally more costly, and causes undecidability of the implication problem for some
fragments that are decidable under the pointed semantics [3, 14]. We discuss below how both

2 Prefix-empty constraints were called simple in [14]. We use a different name to avoid confusion with the
simple roles of Definition 1.

3 We note that [14] uses a different syntax with explicit variables.

D. Calvanese, M. Ortiz, and M. Šimkus 15:7

semantics can be naturally captured in DLs, and provide decidability and undecidability
results for both of them.

I Definition 8 (Pointed and rooted semantics, implication problem). Let ϕ = [Rp](R` ⊆ Rr)
be a path constraint. For an interpretation I, we let ϕI be the set of objects d ∈ ∆I such
that for each d′, d′′ ∈ ∆I , if (d, d′) ∈ RIp and (d′, d′′) ∈ RI` , then (d′, d′′) ∈ RIr .

A pointed instance is a pair I, a of an instance I and an individual a. We call I, a a
pointed model of ϕ, and write I, a |= ϕ if aI ∈ ϕI . Similarly, we write I, a |= Γ for a set Γ
of constraints, if I, a |= ϕ for each ϕ ∈ Γ. We write Γ, a |= ϕ if I, a |= ϕ for every pointed
model I, a of Γ, and write Γ, a |=fin ϕ if I, a |= ϕ for every finite pointed model I, a of Γ.
The (finite) pointed implication problem consists in deciding, given an individual a, a set Γ
of path constraints, and a path constraint ϕ, whether Γ, a |=(fin) ϕ.

Let ϕ = [Rp](R` ⊆ Rr) be a path constraint. We call I a global model of ϕ, and write
I |= ϕ if ϕI = ∆I . We write I |= Γ for a set Γ of constraints, if I |= ϕ for each ϕ ∈ Γ. We
write Γ |= ϕ if I |= ϕ for every I with I |= Γ, and write Γ |=fin ϕ if I |= ϕ for every finite I
with I |= Γ. The (finite) global implication problem consists in deciding, given a set Γ of
path constraints and a path constraint ϕ, whether Γ |=(fin) ϕ. J

I Example 9. Consider the constraint ϕ1 = R1 ⊆ R2, where
R1 = id(Dept) ◦ partOf−∗ ◦ offers ◦ requires− ◦ partOf−∗

R2 = id(Dept) ◦ partOf−∗ ◦ offers
Intuitively, (a node interpreting) a department satisfies ϕ1 if every course required by a
program offered by (a suborganization of) the department is offered by (a suborganization
of) the same department. With the rooted semantics, we can enforce the constraint for some
specific departments. For example, we may require it for computer science, and our example
instance satisfies it: IUni,CS_Dept |= ϕ1. With the global semantics, the constraint would
apply to all departments, but we can easily modify it so that it applies only to the desired
departments, e.g., (id(CS_dept) ·R1) ⊆ R2.

To illustrate the use of prefixes, suppose that the policy expressed by ϕ1 is enforced not at
the department level, but at the higher faculty/school level. For example, suppose that the
School of Science and Engineering requires that all departments offer within their department
every mandatory course in their programs (while other schools may allow for mandatory
courses that are offered by different departments). This is captured by the constraint with
non-empty prefix ϕ1 = [id(School_SciEng) ◦ hasDepartment](R1 ⊆ R2).

Expressing Path Constraints in ZOI with Role Difference. To express path constraints,
we extend ZOI with difference R \R′ of arbitrary roles, resulting in the logic we call ZOI\.

I Definition 10. ZOI\ roles are defined analogously to ZOI roles, except that for complex
roles we have R,R′ −→ T | id(C) | S | R ∪R′ | R ◦R′ | R \R′ | R∗.
The syntax and semantics of ZOI\ concepts, assertions, axioms, and knowledge bases are
defined as for ZOI, but allowing for ZOI\ roles in the place of ZOI roles. J

Entailment of path constraints defined above can be reduced to reasoning in ZOI\:

I Lemma 11. For a path constraint ϕ = [Rp](R` ⊆ Rr), let Cϕ = ∀Rp.(∀(R` \Rr).⊥). Then,
for every instance I, we have that ϕI = CIϕ . Consequently, for a set Γ of path constraints, a

ICDT 2016

15:8 Verification of Evolving GSD under Expressive Path Constraints

path constraint ϕ, and a ∈ NI, we have:

Γ, a |= ϕ iff
(d

γ∈Γ Cγ u ¬Cϕ
)
(a) is unsatisfiable,

Γ, a |=fin ϕ iff
(d

γ∈Γ Cγ u ¬Cϕ
)
(a) is finitely unsatisfiable,

Γ |= ϕ iff
∧
γ∈Γ(>v Cγ) ∧ ¬̇(>v Cϕ) is unsatisfiable,

Γ |=fin ϕ iff
∧
γ∈Γ(>v Cγ) ∧ ¬̇(>v Cϕ) is finitely unsatisfiable.

We will see that, unfortunately, both implication of path constraints and reasoning in
ZOI\ are undecidable. Before moving to these negative results, though, we point out that
the lemma above implies that the upper bounds for reasoning in plain ZOI extend to the
implication of path constraints γ where only simple ZOI roles occur. Since in this case the
resulting Cγ is a ZOI concept, from Lemma 11 and theorem 5 we get:

I Corollary 12. Let Γ be a set of path constraints and ϕ a path constraint such that, for
each γ = [Rp](R` ⊆ Rr) ∈ Γ∪{ϕ}, Rp, R` and Rr are all simple ZOI roles. Then Γ, a |= ϕ,
Γ, a |=fin ϕ, Γ |= ϕ, and Γ |=fin ϕ are all decidable in ExpTime.

Undecidability of Path Constraint Implication. Unfortunately, both the finite and the
unrestricted implication problems are undecidable in rather restricted settings. The following
result was established already several years ago:4

I Theorem 13 ([14]). Assume that every instance has a distinguished root element o, and
that there is some ao ∈ NI such that aIo = o in every I. The problem of checking whether
Γ, ao |= ϕ and whether Γ, ao |=fin ϕ are undecidable, even when ϕ and all constraints in Γ
satisfy one of the following two restrictions:

All prefixes, left tails, and right tails are one-way word roles (that is, only forward
constraints according to [14] are allowed).
All prefixes and left tails are one-way word roles different from ε, and each right tail is a
one-way word role or an inverted one-way word role, and is different from ε.

We strengthen this result, showing undecidability when both restrictions apply: only
one-way word roles of length one or two are allowed. Our proof encodes a Turing rather than
a two-register machine as in [14], and we believe some readers may find it simpler.

I Theorem 14. The problems of checking whether Γ, a |= ϕ and whether Γ, a |=fin ϕ, given
Γ, a, and ϕ are undecidable. This holds even when ϕ is of the form r1 ⊆ r2 and Γ contains
only constraints of the following forms, where {r, r1, r2, r3} ⊆ NR:

r1 ◦ r2 ⊆ r3 r1 ⊆ r2 ◦ r3 [r](r1 ◦ r2 ⊆ r3) [r](r1 ⊆ r2 ◦ r3)

Proof. As in [14] we employ the notion of conservative reduction classes to simultaneously
deal with general and finite implication. In addition, we see deciding Γ, a |= ϕM as checking
unsatisfiability of the first order formula that corresponds to Γ and the negation of ϕM. The
same is true for finite implication. Let FO denote the set of FO formulae, X be a recursive
subset of FO, and let f : FO → X be a recursive function such that:

if β ∈ FO is unsatisfiable, then f(β) is unsatisfiable, and
if β ∈ FO has a finite model, then f(β) has a finite model.

4 In fact, the authors of [14] show that implication is r.e. complete, and finite implication co-r.e. complete.

D. Calvanese, M. Ortiz, and M. Šimkus 15:9

Then X is a conservative reduction class and thus satisfiability of formulae in X is co-r.e.-
complete and finite satisfiability r.e.-complete [12]. It is well known that for a first-order
formula β we can build a procedure that takes no input and terminates iff β is unsatisfiable
or has a finite model. Thus to show the undecidability of general and finite implication,
it suffices to show how the computation of such a procedure can be simulated using path
constraints. We consider a deterministic Turing Machine (TM) M with state set Q and
alphabet Σ. We assume thatM has two designated states q1

fin and q2
fin. We build Γ and ϕM

such that the following conditions are satisfied:
1. IfM reaches q1

fin starting from the empty string as input, then ΓM, a |= ϕM.
2. IfM reaches q2

fin starting from the empty string as input, then there exists a finite I such
that I, a |= ΓM and I, a 6|= ϕM.

We assume that M starts at the initial tape position, and never moves to the left of it.
Moreover, the tape is initially empty, that is, it only contains the blank symbol ␣. The
transition function ofM is of the form δ : Q× Σ→ Σ×Q× {R,L}, with the usual reading,
where R and L stand for right and left, respectively. The initial state of M is qini.

The constraint ϕM takes the form uini ⊆ uhalt where uini and uhalt are two role names.
We define the set ΓM next. Intuitively, the idea of the reduction is the following. Assume
an arbitrary pointed structure I, a and let o denote aI . Whenever there is some o′ ∈ ∆I
such that (o, o′) ∈ uIini, the constraints in ΓM will ensure that if I, a |= ΓM, then I contains
a (possibly infinite) structure that represents the computation ofM, and that (o, o′) ∈ uIini
whenever the computation halts.

To provide an intuitive description of how this structure is enforced, we will use the term
r-arc to refer to a pairs (d, d′) ∈ rI for a role name r. Now we describe the constraints in
ΓM, which ensure that from the initial arc uini we build a full computation ofM. We use
role names of the form tq,σ and fq,σ for each q ∈ Q ∪ {#} and each σ ∈ Σ ∪ {␣}. Each of
these symbols stands for a tape position containing the symbol σ. The marker # indicates
that the head of M is not on the current position, while q ∈ Q indicates that the head
is on the current position and M is in state q. The symbols fq,σ are used to distinguish
the right-most tape position, while regular ‘inner’ positions are represented by symbols tq,σ.
The first two constraints are prefix-empty and use the auxiliary role uaux. They ensure that
whenever there is an uini arc, there exists also an arc labeled fqini,␣, indicating thatM is in
state qini, the current tape position contains the symbol ␣, and the current tape position is
the right-most one that has been visited so far:

uini ⊆ uaux ◦uout (1)
uaux ⊆ uin ◦ fqini,␣ (2)

Note that there is an uin arc from o to the beginning of fqini,␣, and an uout arc from its end to
o′. For the initial and final points of this fqini,␣ arc, and of all the arcs r that our construction
will generate below in order to simulate the runs ofM, we want the role name uin to connect
o to the point, and uout to connect the point to o′. We ensure this by adding the following
constraints:

(uin ◦ r ⊆ uin) for every r ∈ NR \ {uini, uhalt, uin, uout, uaux, } occurring in ΓM (3)
[uin](r ◦uout ⊆ uout) for every r ∈ NR \ {uini, uhalt, uin, uout, uaux, } occurring in ΓM (4)

Note that there is a pair of these constraints for every role name occurring in the rest of the
proof, except for the u roles that do not have a direct correspondence with the configurations
ofM. With these axioms, the initial and final points of the fqini,␣ arc are both reachable

ICDT 2016

15:10 Verification of Evolving GSD under Expressive Path Constraints

uin

fqini,␣

uout
uini

uaux uin

fqini,␣

uout

uini

u in uout

Creating the arc fqini,␣ for the first tape position Connecting the new arc to the spy-points
(constraints (1) and (2)) (constraints (3) and (4) for r = fqini,␣)

Figure 1 Model of ΓM and uini(o, o′) representing the initial configuration ofM.

from o, and both reach o′. The same holds for any other arc implied by the constraints below.
The intended model of the constraints we have described so far is depicted in Figure 1.

Now we give the constraints that ensure that the computation ofM is correctly simulated.
The core idea is that (the initial and final points of the arc representing) each tape position
will be linked via an n role (for next configuration) to (the initial and final points of an arc
representing) the same tape position in the following configuration. Differently subindexed n
roles and auxiliary ‘diagonal’ d roles are used to propagate information between configurations.

The first group handles the case where the machine is at the right-most visited tape
position (that is, there is a symbol fqσ), and executes a transition that moves to the right:

[uin](fqσ ⊆ d�#σ′ ◦nfq′) for each δ(q, σ) = (q′, σ′,R) (5)
[uin](nfq ⊆ fq␣ ◦ df) for each q ∈ Q (6)

After the tape contents have been updated at the current position, and the automaton has
changed to the new state and moved right to a new final tape position, it is only left to go
leftwards propagating to the next configuration the remaining tape contents. This is ensured
by the following axioms:

[uin](tqσ ◦n� ⊆ d�qσ) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (7)
[uin](d�qσ ⊆ n� ◦ tqσ) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (8)

The next group handles also the case where the machine is currently at the right-most visited
tape position indicated by fqσ, but this time it executes a transition that moves to the left:

[uin](fqσ ⊆ d�q′f#σ′ ◦nf) for each δ(q, σ) = (q′, σ′,L) (9)
[uin](d�qf#σ ⊆ n�q ◦ f#σ) for each q ∈ Q, σ ∈ Σ ∪ {␣} (10)
[uin](t#σ ◦n�q ⊆ d�qσ) for each q ∈ Q, σ ∈ Σ ∪ {␣} (11)

We recall that constraints (7) and (8) already ensure that the remaining tape contents are
properly propagated. Next we handle transitions to the right, from a non-final tape position:

[uin](tqσ ⊆ d�#σ′ ◦nq′�) for each δ(q, σ) = (q′, σ′,R) (12)
[uin](nq� ◦ t#σ ⊆ dqσ�) for each q ∈ Q, σ ∈ Σ ∪ {␣} (13)

Additionally to the contents to the left, which have been taken care of, we also need to
propagate tape contents to the right of the current position. We use constraints analogous
to (7) and (8):

[uin](n�tqσ ⊆ dqσ�) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (14)
[uin](dqσ� ⊆ tqσn�) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (15)

D. Calvanese, M. Ortiz, and M. Šimkus 15:11D. Calvanese, M. Ortiz, M. äimkus 11

t#‡i t#‡j fq‡

n� n� nfqÕ

d�#
‡

i

· · ·

d�#
‡

j

d�#
‡ Õ

df

t#‡j t#‡Õ fqÕ�

t#‡k t#‡i t#‡j fq‡

n� n� n�qÕ nf

d�#
‡
k· · ·

d�#
‡
i

d�q Õ
‡
j

d�q Õf#
‡ Õ

t#‡i
tqÕ‡j f#‡Õ

”(q,‡) = (qÕ,‡Õ,R), final tape position ”(q,‡) = (qÕ,‡Õ,L), final tape position

t#‡i tq‡ t#‡j t#‡k

n� nqÕ� n� n� · · ·

d�#
‡
i

· · ·

d�#
‡ Õ d qÕ

‡ j�

d#
‡ k�

t#‡i t#‡Õ tqÕ‡j t#‡k

t#‡i t#‡j tq‡ t#‡k

n� n�qÕ n� n� · · ·

d�#
‡
i

· · ·

d�q Õ
‡
j

d�q Õ#
‡ Õ d#

‡ k�

t#‡i
tqÕ‡j t#‡Õ t#‡k

”(q,‡) = (qÕ,‡Õ,R), non-final tape position ”(q,‡) = (qÕ,‡Õ,L), non-final tape position

Figure 2 Parts of models of �M and uini(o, oÕ) representing the transitions of M.

1. M reaches q1
fin i� �M, a |= ÏM.

Suppose M reaches q1
fin. Assume an arbitrary I, a such that I, a |= �M, and assume

there is an arbitrary d œ �I such that (aI , d) œ uIini. Since I, a |= �M and M reaches
q1
fin, then (aI , d) œ uIhalt follows. This implies I, a |= ÏM and hence �, a |= ÏM. For the

converse, assume �, a ”|= ÏM. That is, there exists some I, a such that I, a |= �M but
I, a ”|= ÏM. That is, there is d œ �I such that (aI , d) œ uIini but (aI , d) ”œ uIhalt. Since
I, a |= �M, by constraints (3), (4), (21), and (23) we have (aI , d) ”œ uIhalt, and I cannot
contain any arcs of the form tq1

fin‡ or fq1
fin‡, which means that the computation of M does

not reach the state q1
fin.

2. If M reaches q2
fin, then there exists a finite I such that I, a |= �M and I, a ”|= ÏM.

Suppose that there is a computation of M that reaches q2
fin. Then this computation does

not reach q1
fin. Moreover, there is some I, a that simulates this computation, that is, such

that (aI , d) œ uIini and I, a |= �M. Since M does not reach q1
fin, we can assume there

are no arcs tq1
fin‡ or fq1

fin‡ in I, and since the only constraints that imply uhalt are (21)
and (23), we can assume uIhalt = ÿ. Hence we have I, a |= �M with (aI , d) œ uIini but
uIhalt = ÿ as desired.

This concludes the proof of Theorem 14. J

The same proof that we gave for the pointed semantics of path constraints applies also
to the global semantics, even if we further restrict the constraints to be prefix-empty.

I Theorem 15. The problems of deciding � |= Ï and � |=fin Ï given � and Ï are undecidable,
even when Ï is of the form r1 ™ r2 and � contains only constraints of the forms r1 ¶ r2 ™ r3
and r1 ™ r2 ¶ r3, for {r1, r2, r3} ™ NR.

Proof. It su�ces to observe that in the proof of Theorem 14, all constrains [Rp](R¸ ™ Rr)
with Rp ”= Á have Rp = uin, and the only role of the prefix is to ensure that R¸ ™ Rr fires
at all nodes, and not only at a. Under global semantics, this prefix is unnecessary and we
can replace each constraint [Rp](R¸ ™ Rr) simply by R¸ ™ Rr. J

We formulated Theorems 14 and 15 for path constraint implication, but we could just
as well formulate them for the problem of deciding whether a fact r1(a, b) and a set of
constraints � that are satisfied (at a with the pointed semantics for the prefixed version, or
everywhere for the prefix-empty version) imply the existence of a pair of objects in r2, which
need not be a, b (note that in this case we don’t need constraint (23)). Our negative results

ICDT’16

Figure 2 Parts of models of ΓM and uini(o, o′) representing the transitions ofM.

When we propagate to the right, we need to ensure that the final position tqσ is also copied
to the next configuration:

[uin](n� ◦ fqσ ⊆ dqσf) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (16)
[uin](dqσf ⊆ fqσ ◦nf) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (17)

Finally we handle transitions to the left from a non-final tape position:

[uin](tqσ ⊆ d�q′#σ′ ◦n�) for each δ(q, σ) = (q′, σ′,L) (18)
[uin](d�q#σ ⊆ n�q ◦ t#σ) for each q ∈ Q, σ ∈ Σ ∪ {␣} (19)
[uin](t#σ ◦n�q ⊆ d�qσ) for each q ∈ Q, σ ∈ Σ ∪ {␣} (20)

Figure 2 illustrates how the constraints simulate the transitions ofM. For readability, the
uin arcs to and uout arcs from every node are omitted.

An interpretation that is a model of the transitions we have presented correctly executes
a computation ofM. It is only left to enforce the special role uhalt to hold between o and
o′ iff the computation halts in q1

fin. We first ensure that if an arc tq1
fin,σ

or fq1
fin,σ

for some
σ ∈ Σ ∪ {␣} was generated (that is, q1

fin was reached in the computation), an uhalt arc is
created; note that ifM halts in q2

fin nothing enforces uhalt and there will be a model of the
constraints where ϕM does not hold. Then we ensure that if there is an uhalt arc anywhere,
then there is such an arc between o and o′. This is easy to do, exploiting the fact that all
points are reachable via uini from o, and reach o′ via uin:

uin ◦ tq1
finσ
⊆ uhalt for each σ ∈ Σ ∪ {␣} (21)

uin ◦ fq1
finσ
⊆ uhalt for each σ ∈ Σ ∪ {␣} (22)

uhalt ◦uout ⊆ uhalt (23)

Let ΓM contain the constraints (1) – (23). We show that the reduction is as desired:
1. M reaches q1

fin iff ΓM, a |= ϕM.
Suppose M reaches q1

fin. Assume an arbitrary I, a such that I, a |= ΓM, and assume
there is an arbitrary d ∈ ∆I such that (aI , d) ∈ uIini. Since I, a |= ΓM andM reaches
q1

fin, then (aI , d) ∈ uIhalt follows. This implies I, a |= ϕM and hence Γ, a |= ϕM. For the
converse, assume Γ, a 6|= ϕM. That is, there exists some I, a such that I, a |= ΓM but
I, a 6|= ϕM. That is, there is d ∈ ∆I such that (aI , d) ∈ uIini but (aI , d) 6∈ uIhalt. Since
I, a |= ΓM, by constraints (3), (4), (21), and (23) we have (aI , d) 6∈ uIhalt, and I cannot

ICDT 2016

15:12 Verification of Evolving GSD under Expressive Path Constraints

contain any arcs of the form tq1
finσ

or fq1
finσ

, which means that the computation ofM does
not reach the state q1

fin.
2. IfM reaches q2

fin, then there exists a finite I such that I, a |= ΓM and I, a 6|= ϕM.
Suppose that there is a computation ofM that reaches q2

fin. Then this computation does
not reach q1

fin. Moreover, there is some I, a that simulates this computation, that is, such
that (aI , d) ∈ uIini and I, a |= ΓM. Since M does not reach q1

fin, we can assume there
are no arcs tq1

finσ
or fq1

finσ
in I, and since the only constraints that imply uhalt are (21)

and (23), we can assume uIhalt = ∅. Hence we have I, a |= ΓM with (aI , d) ∈ uIini but
uIhalt = ∅ as desired.

This concludes the proof of Theorem 14. J

The same proof that we gave for the pointed semantics of path constraints applies also to
the global semantics, even if we further restrict the constraints to be prefix-empty.

I Theorem 15. The problems of deciding Γ |= ϕ and Γ |=fin ϕ given Γ and ϕ are undecidable,
even when ϕ is of the form r1 ⊆ r2 and Γ contains only constraints of the forms r1 ◦ r2 ⊆ r3
and r1 ⊆ r2 ◦ r3, for {r1, r2, r3} ⊆ NR.

Proof. It suffices to observe that in the proof of Theorem 14, all constrains [Rp](R` ⊆ Rr)
with Rp 6= ε have Rp = uin, and the only role of the prefix is to ensure that R` ⊆ Rr fires at
all nodes, and not only at a. Under global semantics, this prefix is unnecessary and we can
replace each constraint [Rp](R` ⊆ Rr) simply by R` ⊆ Rr. J

We formulated Theorems 14 and 15 for path constraint implication, but we could just
as well formulate them for the problem of deciding whether a fact r1(a, b) and a set of
constraints Γ that are satisfied (at a with the pointed semantics for the prefixed version, or
everywhere for the prefix-empty version) imply the existence of a pair of objects in r2, which
need not be a, b (note that in this case we don’t need constraint (23)). Our negative results
also apply to other languages that can express Γ. For instance, the prefix-empty version of Γ
can be expressed in the following restricted class of tuple generating dependencies:

r1(x, y), r2(y, z)→ r3(x, z) r1(x, z)→ ∃y.r2(x, y), r3(y, z)

Hence we obtain a proof of undecidability of (finite) entailment of a query ∃x, y. r′(x, y),
from one single fact r(a, b) in the presence of dependencies in this restricted class.

We note that the undecidability of path constraint implication shows the undecidability
of (finite) satisfiability in ZOI\. In fact, it shows the undecidability of (finite) satisfiability
of a complex ZOI\ role id(∀R.⊥) ◦ (r1 \ r2), where R is a union of roles of the forms

(r1 ◦ r2) \ r3 r1 \ (r2 ◦ r3) r ◦ ((r1 ◦ r2) \ r3) r ◦ (r1 \ (r2 ◦ r3)) (24)

Undecidability also applies to the (finite) entailment of r2(a, b) from (id(∀R.⊥) ◦ r1)(a, b). If
we use a set K of inclusions of the form >v∀R` \Rr.⊥ (where each R` and Rr is the concat-
enation of at most two role names) to enforce prefix-empty constraints to hold everywhere,
we get undecidability of testing whether the KB K ∧ {r1(a, b)} (finitely) entails r2(a, b).

We remark that the constraints in the proof above can also be written in GXPathreg, the
extension of GXPathpath-posreg that allows for negation (and hence, intersection and difference)
of path formulas. Hence Theorem 14 implies the undecidability of the (finite) implication of
two GXPathreg formulas ψ1 and ψ2, even when ψ2 is restricted to a role name r2 and ψ1 is a
formula of the form [¬〈ξ〉] ◦ r1 for r1 a role name and ξ a union of roles of the forms in (24)
above. Note that this result is tighter that the one in [27], whose proof heavily uses ε.

D. Calvanese, M. Ortiz, and M. Šimkus 15:13

Improving the Upper bound for Prefix-empty Constraints. We have seen that under
global semantics, or with non-empty prefixes, there is no hope for decidability of path
constraint implication. However, prefix-empty constraints under the pointed semantics are
expressible in plain ZOI without using role difference, using a nominal to denote the point
at which the constraint is evaluated. Hence we can reduce their (finite) implication problem
to (finite) KB satisfiability in ZOI. This implies decidability and an ExpTime upper bound,
thus significantly improving the previous 2ExpSpace bound shown in [3] for the subclass of
prefix-empty one-way regular path constraints.

I Theorem 16. Let Γ be a set of prefix-empty path constraints, ϕ a prefix-empty path
constraint, and a ∈ NI. Then we can obtain a set of ZOI of axioms TΓ and a concept Cϕ
such that Γ |= ϕ iff {TΓ} ∧ ¬Cϕ is unsatisfiable. Moreover, TΓ and Cϕ can be constructed in
linear time and the size of TΓ and Cϕ are both linear, in the combined sizes of Γ and ϕ.

Proof. For each γ = R` ⊆ Rr ∈ Γ ∪ ϕ, let Tγ be the axiom {a} v ∀R`.∃inv(Rr).{a} where
inv(Rr) is the inverted Rr defined as follows, where r ∈ NR and R, R′ denote arbitrary roles:

inv(r) = r− inv(r−) = r inv({(a, b)}) = {(b, a)}
inv(id(C)) = id(C) inv(R ∩R′) = inv(R) ∩ inv(R′) inv(R ∪R′) = inv(R) ∪ inv(R′)

inv(R∗) = (inv(R))∗ inv(R \R′) = inv(R) \ inv(R′) inv(R ◦R′) = inv(R′) ◦ inv(R)

and inv(ε) = ε. It is easy to see that (d, d′) ∈ RI iff (d′, d) ∈ inv(R)I for every d, d′ ∈ ∆I .
It is then a straightforward consequence of the semantics of ZOI and of γ, that for every
pointed instance I, a we have I, a |= γ if and only if I |= Tγ . Hence it easily follows that
Γ |= ϕ if and only if (

⋃
γ∈Γ Tγ) ∧ ¬Tϕ is unsatisfiable. J

From this reduction and Theorem 5 we get:

I Corollary 17. The unrestricted and the finite pointed implication problems for prefix-empty
path constraints are decidable in ExpTime.

We can combine this result and Corollary 12, obtaining that entailment is decidable in
ExpTime whenever all constraints are prefix-empty or involve only simple roles. Although
this is a strong restriction, it still allows for fairly non-trivial constraints. Apart from
capturing these relevant decidable subclasses of path constraints, ZOI can also express many
other natural constraints, some of which are not easily expressible as path constraints. For
example, φ5 in Example 3 does not directly correspond to a path constraint. ZOI provides
flexible means to express quite involved expressions, for example, that a course required in
an undergraduate program must be taught by a faculty member that is a member of an
institute, or a suborganization of it:

Course u ∃requires−.UndergradProg v ∃teaches−.
(
∃(memberOf ◦ partOf∗).Inst

)
.

To conclude this section, we remark that both the pointed and the global semantics are
directly supported within ZOI: the logic has a global semantics, but we can use nominals to
ensure that any assertion or inclusion only ‘fires’ at the interpretation of a given individual.

4 Verification of Evolving Graph Structured Data

We have advocated the use of ZOI as a constraint language for GSD. We define a language
for manipulating GSD and show that it is possible to effectively reason about the preservation
of ZOI constraints when data instances evolve as a result of operations in this language.

ICDT 2016

15:14 Verification of Evolving GSD under Expressive Path Constraints

Updating Graph Structured Data. The basic operations in our manipulation language
allow to insert or delete individuals from extensions of concepts, and pairs of individuals
from extensions of roles. The candidates for additions and deletions are instances of complex
concepts and roles in ZOI. The language allows, in particular, to select one object and add
it to or remove it from a concept name, using a nominal {a}. It similarly allows to add or
remove pairs of objects to/from role names using a nominal role {(a, b)}. Moreover, we can
add to or delete from some role or concept the answers to query expressed as a complex
concept or role (in the latter case, a so-called regular path query). We also allow for variables
in the place of individuals, to have a more natural manipulation language with parameters
that can be instantiated with different values. Finally, these basic actions can be combined
into complex ones using composition and conditional actions.

The language we define next is like the one in [4], but there basic actions use concepts and
roles in a different DL called ALCHOIQbr, instead of ZOI. ALCHOIQbr does not allow
for regular expressions as roles, hence it cannot express path queries and path constraints.
On the other hand, it supports number restrictions, which are not allowed in ZOI. We note
that the language in [4] allows roles of the form R|C (or inv(R)|C), which stand for the pairs
of objects in R whose first (resp., second) component is an instance of C. Such roles are
expressible in ZOI using R ◦ id(C).

I Definition 18 (Action language). In what follows, additionally to NI, NC and NR, we
consider a countably infinite set NV of variables, disjoint from the other sets. We use ZOIV
concepts, roles, and KBs, which are defined as for ZOI, but allowing for variables in the
place of individuals, that is, atomic concepts take the forms A and {t}, and atomic roles the
forms r, r− and {(t, t′)}, where t, t′ ∈ NV ∪ NI, A ∈ NC, r ∈ NR \ {T}.

Basics action β and (complex) actions α are defined by the following grammar:

β −→ (A⊕C) | (A	C) | (r⊕R) | (r	R) α −→ ε | β ·α | (K ?αJαK) ·α

with A a concept name, C an arbitrary ZOIV concept, r a role name, R an arbitrary ZOIV
role, and K an arbitrary ZOIV KB. The symbol ε denotes the empty action.

We call a concept, role, KB or an action ground if it has no variables. A substitution is a
function σ from NV to NI. For a concept, role, KB or an action γ, we use σ(γ) to denote the
result of replacing in γ every occurrence of a variable x by the individual σ(x). An action α′
is called a ground instance of an action α if α′ = σ(α) for some substitution σ. J

Intuitively, an application of an action (A ⊕ C) on an instance I is the addition of
the content of CI to AI . Similarly, (A 	 C) removes the content of CI from AI . The
two operations can also be performed on roles. Composition stands for successive action
execution, and a conditional action K ?α1Jα2K expresses that α1 is executed if the instance is
a model of K, and α2 is executed otherwise. If α2 = ε then we have an action with a simple
pre-condition as in classical planning languages, and we write it as K ?α1, omitting α2.

To formally define the semantics of actions, we introduce the notion of instance update.

I Definition 19 (Instance update, semantics of actions). Assume an instance I and let E
be a concept or role name. If E is a concept, let W ⊆ ∆I , otherwise, if E is a role, let
W ⊆ ∆I ×∆I . Then, I ⊕EW (resp., I 	EW) denotes the instance I ′ such that ∆I′ = ∆I ,
EI
′ = EI ∪W (resp., EI′ = EI \W), and EI

′
1 = EI1 , for all symbols E1 6= E. Given a

D. Calvanese, M. Ortiz, and M. Šimkus 15:15

ground action α, we define a mapping Sα from instances to instances as follows:
Sε(I) = I

S(K ?α1Jα2K) ·α(I) =
{
Sα1 ·α(I), if I |= K,
Sα2 ·α(I), if I 6|= K.

S(A⊕C) ·α(I) = Sα(I ⊕A CI)
S(A	C) ·α(I) = Sα(I 	A CI)
S(p⊕r) ·α(I) = Sα(I ⊕r RI)
S(p	r) ·α(I) = Sα(I 	r RI) J

Note that we have not defined the semantics of actions with variables, i.e., for non-ground
actions. In our approach, all variables of an action are seen as parameters whose values are
given before execution by a substitution with actual individuals, i.e., by grounding.

I Example 20. Consider the next action with a free variable x, and its ground instance αdl :
RemoveCourse(x) =

(
Course	 {x}

)
·
(
requires	 (requires ◦ id({x}))

)
·
(
offers	 (offers ◦ id({x}))

)
·
(
partOf 	 (id({x}) ◦ partOf)

)
αdl =

(
Course	 {DLs:CS451}

)
·
(
requires	 (requires ◦ id({DLs:CS451}))

)
·
(
offers	 (offers ◦ id({DLs:CS451}))

)
·
(
partOf 	 (id({DLs:CS451}) ◦ partOf)

)
In Sαdl (IUni) we have the following changes, and the rest of the instance remains unchanged:

CourseI = {DataStruct:CS202,FoundDBs:CS327}
requiresI = {(BSc_CSci,DataStruct:CS202), (MSc_CompLogic,FoundDBs:CS327),

(MSc_CompLogic,mod_KR)}
offersI = {(CS_Dept,BSc_CSci), (CS_Dept,MSc_CompLogic),

(CS_Dept,MSc_Bioinformatics){(CS_Dept,DataStruct:CS202),
(CS_Dept,FoundDBs:CS327)}

partOfI = {}

The Static Verification Problem. We consider now the scenario where DL KBs are used
to impose integrity constraints on GSD. A basic reasoning problem for analyzing the effects
of actions in the presence of integrity constraints is static verification, which consists in
checking whether the execution of an action α always preserves the satisfaction of integrity
constraints given by a KB K.

I Definition 21 (The static verification problem). Let K be a KB. We say that an action α is
K-preserving if for every ground instance α′ of α and every finite interpretation I, we have
that I |= K implies Sα′(I) |= K. The static verification problem consists on deciding, given
an action α and a KB K, whether α is K-preserving. J

I Example 22. Recall the constraints KUni from Ex. 3, and the action αdl from Ex. 20.
Note that αdl is not KUni-preserving. In fact, this is witnessed by out instance IUni.
We saw that in Sαdl (IUni) we have (MSc_CompLogic,mod_KR) ∈ requiresI , but mod_KR 6∈
(∃partOf−∗.Course)I , that is, the mandatory KR module does not contain any courses, violating
φ4 = >v ∀requires.(∃partOf−∗.Course).

Our technique for static verification relies on a transformation TRα(K) that rewrites K
incorporating the effects of an action α. The technique is similar in spirit to regression in
reasoning about actions [29], and it can be seen as a way to compute the weakest precondition
of α and K. Intuitively, the models of TRα(K) are exactly the interpretations I such that
applying α on I leads to a model of K. In this way, we can effectively reduce reasoning about
changes in any database that satisfies a given K, to reasoning about a single KB.

I Definition 23. Given a ZOI KB K, we use KE←E′ to denote the KB that is obtained
from K by replacing every name E by the (possibly more complex) expression E′. Given a

ICDT 2016

15:16 Verification of Evolving GSD under Expressive Path Constraints

KB K and a ground action α, we define TRα(K) as follows.
TRε(K) = K

TR(A⊕C)·α(K) = (TRα(K))A←AtC
TR(A	C)·α(K) = (TRα(K))A←Au¬C

TR(r⊕R)·α(K) = (TRα(K))r←r∪R
TR(r	R)·α(K) = (TRα(K))r←r\R

TR(K1 ?α1Jα2K)·α(K) = (¬̇K1 ∨TRα1·α(K))∧
(K1 ∨TRα2·α(K)). J

Assume a ground action α and a ZOI KB K. Note that the transformation TRα(K) may
introduce role differences involving complex roles from α. Hence TRα(K) is a ZOI\ and
need not be a ZOI KB. Note also that the size of TRα(K) might be exponential in the size of
α. By employing the same argument as [4], we see that the transformation correctly captures
the effects of complex actions. In particular, for every interpretation I, we have Sα(I) |= K
iff I |= TRα(K). With the transformation TRα(K) above we have a reduction from static
verification to finite (un)satisfiability of ZOI\ KBs: an action α is not K-preserving iff
some finite model of K does not satisfy TRα∗(K), where α∗ is a ‘canonical’ grounding of α.
Formally, we have:

I Theorem 24 ([4]). For a (complex) action α and a KB K, the following are equivalent:
(i) The action α is not K-preserving.
(ii) K ∧ ¬̇TRα∗(K) is finitely satisfiable, where α∗ is obtained from α by replacing each

variable with a fresh individual name not occurring in α and K.

Undecidability of unrestricted static verification. The first and foremost consequence of
this reduction is that for the action language we have defined, the static verification problem
is undecidable, even if the input K is trivial, and the actions are quite restricted:

I Theorem 25. Deciding whether α is K-preserving is undecidable, even when K is a trivial
KB of the form r(a, b), and α is just a sequence of basic actions of the forms (r ⊕R) and
(r 	R), with R a sequence of one or two concatenated role names.

Proof. We provide a reduction from deciding Γ |=fin r1 ⊆ r2, where Γ contains only
constraints of the forms r1 ◦ r2 ⊆ r3 and r1 ⊆ r2 ◦ r3 for {r1, r2, r3} ⊆ NR. We have seen
above that this problem is undecidable. In particular, we construct an action α such that
Γ |=fin r1 ⊆ r2 iff α is r1(a, b)-preserving. Let R1

1 ⊆ R1
2, . . . , R

n
1 ⊆ Rn2 be an enumeration of

all constraints in Γ. For every 1 ≤ i ≤ n, let pi1 and pi2 be fresh role names. Then α is the
concatenation of the following actions in the given order:

(r1 	 r1) · (r1 ⊕ r2)
(p1

1 	 p1
1) · · · · · (pn1 	 pn1) · (p1

2 	 p1
2) · · · · · (pn2 	 pn2)

(p1
1 ⊕R1

1) · · · · · (pn1 ⊕Rn1) · (p1
2 ⊕R1

2) · · · · · (pn2 ⊕Rn2)
(p1

1 	 p1
2) · · · · · (pn1 	 pn2) · (r1 ⊕ p1

1) · · · · · (r1 ⊕ pn1).
Recall that α is not r1(a, b)-preserving iff r1(a, b) ∧ ¬TRα(r1(a, b)) is finitely satisfiable.
It’s not hard to see that TRα(r1(a, b)) = RΓ(a, b), where RΓ is equivalent to the role
r2 ∪ (R1

1 \ R1
2) ∪ · · · ∪ (Rn1 \ Rn2). Thus r1(a, b) ∧ ¬TRα(r1(a, b)) is finitely satisfiable iff

Γ 6|=fin r1 ⊆ r2. J

Unfortunately we cannot allow for complex roles in our actions, not even of the form
r ◦ r′, but we get positive results if we restrict actions to simple roles.

An undesired effect of disallowing complex roles in actions is that we cannot express r|C
as r ◦ id(C), and as our examples illustrate, this construct is quite useful. For nominals we
can, however, simulate r|{a} in ZOI. We use a special role name T|{a} with the intended

D. Calvanese, M. Ortiz, and M. Šimkus 15:17

semantics (T|{a})I = ∆I × {a}I , and write the simple role r ∩ T|{a} in the place of r|{a}.
The intended meaning of T|{a} is easily enforced by adding >v ∃T|{a}.a to any ZOI KB.

We call an action α role-restricted if in every basic action of the form (r ⊕R) or (r 	R),
we have that R is a simple ZOIV role that may use the special role names T|{a}.

Note αdl in Example 20 can be rewritten as a role-restricted action as follows:
α′dl =

(
Course	 {DLs:CS451}

)
·
(
requires	 (requires ∩ T|{DLs:CS451})

)
·(

offers	 (offers ∩ T|{DLs:CS451})
)
·
(
partOf 	 (partOf ∩ (T|−{DLs:CS451})

)
.

I Theorem 26. Deciding whether α is K-preserving for a given ZOI KB K and a role-
restricted α is ExpTime-complete.

Proof sketch. Since the union and the difference of simple roles are simple roles, it is not
hard to see that the result of iteratively replacing role names by simple roles involving
union and difference in a ZOI role results in a ZOI role. Hence, for any ZOI KB K
and a role-restricted action α, the KB TRα(K) is not only a ZOI\ KB but also a ZOI
KB (i.e., difference is applied to simple roles only). Then from the decidability of (finite)
satisfiability of ZOI it follows that checking whether α is K-preserving is decidable. For the
complexity upper bound, recall that the size of TRα(K) might be exponential in the size
of α. However, as argued in [4], there are only exponentially many conjunctive clauses in
disjunctive normal from of K ∧ ¬̇TRα∗(K), each with size polynomial in the size of α and K.
Thus from Theorems 5 and 24 we obtain the desired result. J

5 Conclusions and Outlook

The main goal of this work was to advocate the use of the DL ZOI to specify constraints over
graph structured data and to show the decidability of static verification in a rich language for
manipulating such data. Along the way, we have shown several undecidability and complexity
results that concern not only our setting, but also formalisms that were introduced in the 90s,
as well as recently introduced query languages for GSD like GXPathreg. In our future work
we aim at providing some support for identification constraints, which is clearly desirable
but naturally requires equality reasoning. This is challenging, as e.g., the decidability of
the extension of ZOI where some roles must be interpreted as partial functions is a long
standing open problem.

Acknowledgements. This work was supported by the EU IP project Optique (Scalable
End-user Access to Big Data), grant agreement n. FP7-318338, the Vienna Science and
Technology Fund project ICT12-15, and the Austrian Science Fund projects P25207 and T515.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison

Wesley Publ. Co., 1995.
2 Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L. Wiener.

The Lorel query language for semistructured data. Int. J. on Digital Libraries, 1(1):68–88,
1997.

3 Serge Abiteboul and Victor Vianu. Regular path queries with constraints. J. of Computer
and System Sciences, 58(3):428–452, 1999.

4 Shqiponja Ahmetaj, Diego Calvanese, Magdalena Ortiz, and Mantas Šimkus. Managing
change in Graph-structured Data using Description Logics. In Proc. of the 28th AAAI
Conf. on Artificial Intelligence (AAAI), pages 966–973. AAAI Press, 2014.

ICDT 2016

15:18 Verification of Evolving GSD under Expressive Path Constraints

5 Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Computing
Surveys, 40(1):1:1–1:39, 2008. doi:10.1145/1322432.1322433.

6 Marcelo Arenas, Wenfei Fan, and Leonid Libkin. On the complexity of verifying con-
sistency of XML specifications. SIAM J. on Computing, 38(3):841–880, 2008. doi:
10.1137/050646895.

7 Alessandro Artale, Diego Calvanese, Roman Kontchakov, Vladislav Ryzhikov, and Michael
Zakharyaschev. Reasoning over extended ER models. In Proc. of the 26th Int. Conf. on
Conceptual Modeling (ER), volume 4801 of Lecture Notes in Computer Science, pages 277–
292. Springer, 2007.

8 Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2003.

9 Jie Bao et al. OWL 2 Web Ontology Language document overview (second edition). W3C
Recommendation, World Wide Web Consortium, December 2012. URL: http://www.w3.
org/TR/owl2-overview/.

10 Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML class
diagrams. Artificial Intelligence, 168(1–2):70–118, 2005.

11 Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query answering with data-
tractable description logics. In Reasoning Web. Web Logic Rules – 11th Int. Summer School
Tutorial Lectures (RW), volume 9203 of Lecture Notes in Computer Science, pages 218–307.
Springer, 2015. doi:10.1007/978-3-319-21768-0_9.

12 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspect-
ives in Mathematical Logic. Springer, 1997.

13 Peter Buneman. Semistructured data. In Proc. of the 16th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS), pages 117–121, 1997.

14 Peter Buneman, Wenfei Fan, and Scott Weinstein. Path constraints in semistructured
databases. J. of Computer and System Sciences, 61(2):146–193, 2000. doi:10.1006/jcss.
2000.1710.

15 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Conjunctive query con-
tainment and answering under description logics constraints. ACM Trans. on Computa-
tional Logic, 9(3):22.1–22.31, 2008.

16 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Reas-
oning on regular path queries. SIGMOD Record, 32(4):83–92, 2003.

17 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-
based query processing: On the relationship between rewriting, answering and losslessness.
Theoretical Computer Science, 371(3):169–182, 2007.

18 Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries in express-
ive description logics with nominals. In Proc. of the 21st Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 714–720, 2009.

19 Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Dmitriy Zheleznyakov. Evolution
of DL-Lite knowledge bases. In Proc. of the 9th Int. Semantic Web Conf. (ISWC), volume
6496 of Lecture Notes in Computer Science, pages 112–128. Springer, 2010.

20 Diego Calvanese, Magdalena Ortiz, and Mantas Šimkus. Containment of regular path
queries under description logic constraints. In Proc. of the 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 805–812, 2011.

21 Giuseppe De Giacomo. Decidability of Class-Based Knowledge Representation Formalisms.
PhD thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,
1995.

http://dx.doi.org/10.1145/1322432.1322433
http://dx.doi.org/10.1137/050646895
http://dx.doi.org/10.1137/050646895
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1007/978-3-319-21768-0_9
http://dx.doi.org/10.1006/jcss.2000.1710
http://dx.doi.org/10.1006/jcss.2000.1710

D. Calvanese, M. Ortiz, and M. Šimkus 15:19

22 Alin Deutsch and Val Tannen. Optimization properties for classes of conjunctive regular
path queries. In Proc. of the 8th Int. Workshop on Database Programming Languages
(DBPL), volume 2397 of Lecture Notes in Computer Science, pages 21–39. Springer, 2001.

23 Wenfei Fan and Leonid Libkin. On XML integrity constraints in the presence of DTDs. J.
of the ACM, 49(3):368–406, 2002.

24 Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. of Computer and System Sciences, 18:194–211, 1979.

25 Erich Grädel and Martin Otto. On logics with two variables. Theoretical Computer Science,
224:73–113, 1999.

26 Gösta Grahne and Alex Thomo. Query containment and rewriting using views for regular
path queries under constraints. In Proc. of the 22nd ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS), pages 111–122, 2003.

27 Egor V. Kostylev, Juan L. Reutter, and Domagoj Vrgoc. Containment of data graph queries.
In Proc. of the 17th Int. Conf. on Database Theory (ICDT), pages 131–142. OpenProceed-
ings.org, 2014. doi:10.5441/002/icdt.2014.16.

28 Maurizio Lenzerini. Ontology-based data management. In Proc. of the 20th Int. Conf.
on Information and Knowledge Management (CIKM), pages 5–6, 2011. doi:10.1145/
2063576.2063582.

29 H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG: A logic program-
ming language for dynamic domains. J. of Logic Programming, 31:59–84, 1997.

30 Leonid Libkin, Wim Martens, and Domagoj Vrgoc. Querying graph databases with XPath.
In Proc. of the 16th Int. Conf. on Database Theory (ICDT), pages 129–140. ACMP, 2013.
doi:10.1145/2448496.2448513.

31 Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Updating description logic
ABoxes. In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR), pages 46–56, 2006.

32 Michael Mortimer. On languages with two variables. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 21:135–140, 1975.

33 Magdalena Ortiz. Ontology based query answering: The story so far. In Proc. of the 7th
Alberto Mendelzon Int. Workshop on Foundations of Data Management (AMW), volume
1087 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2013.

34 Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data Semantics, X:133–
173, 2008. doi:10.1007/978-3-540-77688-8_5.

35 Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In
Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 466–471, 1991.

36 Peter T. Wood. Query languages for graph databases. SIGMOD Record, 41(1):50–60, 2012.
doi:10.1145/2206869.2206879.

ICDT 2016

http://dx.doi.org/10.5441/002/icdt.2014.16
http://dx.doi.org/10.1145/2063576.2063582
http://dx.doi.org/10.1145/2063576.2063582
http://dx.doi.org/10.1145/2448496.2448513
http://ceur-ws.org/
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1145/2206869.2206879

	Introduction
	Expressive DLs for Expressing Constraints over GSD
	Path Constraints
	Verification of Evolving Graph Structured Data
	Conclusions and Outlook

