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—— Abstract

Schema mappings have been extensively studied in the context of data exchange and data in-
tegration, where they have turned out to be the right level of abstraction for formalizing data
inter-operability tasks. Up to now and for the most part, schema mappings have been studied
as static objects, in the sense that each time the focus has been on a single schema mapping of
interest or, in the case of composition, on a pair of schema mappings of interest.

In this paper, we adopt a dynamic viewpoint and embark on a study of sequences of schema
mappings and of the limiting behavior of such sequences. To this effect, we first introduce a
natural notion of distance on sets of finite target instances that expresses how “close” two sets
of target instances are as regards the certain answers of conjunctive queries on these sets. Using
this notion of distance, we investigate pointwise limits and uniform limits of sequences of schema
mappings, as well as the companion notions of pointwise Cauchy and uniformly Cauchy sequences
of schema mappings. We obtain a number of results about the limits of sequences of GAV schema
mappings and the limits of sequences of LAV schema mappings that reveal striking differences
between these two classes of schema mappings. We also consider the completion of the metric
space of sets of target instances and obtain concrete representations of limits of sequences of
schema mappings in terms of generalized schema mappings, i.e., schema mappings with infinite
target instances as solutions to (finite) source instances.
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1 Introduction

Schema mappings have been extensively studied in the context of data exchange and data
integration, where they have turned out to be the right level of abstraction for formalizing
data inter-operability tasks (see the surveys [11, 12] and the monograph [1]). Up to now and
for the most part, schema mappings have been studied as static objects, in the sense that
each time the focus has been on a single schema mapping or on a finite and, typically, small
number of schema mappings. In the case of data exchange [6], a single schema mapping is
used to specify the relationship between a source schema and a target schema. In the case of
operators on schema mappings [3], such as the composition operator [14, 8], a fixed number
of schema mappings is used as input (e.g., two schema mappings in the case of composition)
and return another schema mapping as output. Even the case of schema-mapping evolution
[9] entails a finite (but potentially large) number of schema mappings.
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In this paper, we adopt a dynamic viewpoint and embark on a systematic investigation of
sequences of schema mappings and of the limiting behavior of such sequences. The original
motivation came from the earlier work [2, 5, 7, 10, 14] on schema-mapping optimization
and the study of various notions of equivalence between schema mappings that, intuitively,
stipulate that two schema mappings cannot be distinguished using conjunctive queries (CQ-
equivalence) or conjunctive queries with at most n variables (CQ,-equivalence), for some
fixed n > 1. In particular, in [5] and, implicitly, in [14], it was shown that, given an SO-tgd
(second-order tuple-generating dependency) o and a positive integer n, one can construct a
GLAV schema mapping that is CQ,,-equivalent to o. Informally, this means that a given SO
tgd can be “approximated” by GLAV schema mappings up to any fixed level of precision,
even though an SO tgd is a formula of second-order logic that may not be logically equivalent
to any formula of first-order logic and, in particular, to any GLAV schema mapping. A
more dynamic interpretation is that, given an SO-tgd o, one can obtain a sequence of GLAV
schema mappings (M, )ns>1, whose “limit” is o.

Summary of Results. Our contributions are both conceptual and technical. At the con-
ceptual level, we develop a framework for studying sequences of schema mappings by first
introducing a natural notion of distance dist on the powerset P (Inst(T)) of the set Inst(T)
of finite instances over a schema T. Intuitively, this notion of distance expresses how “close”
two sets of finite T-instances are as regards the certain answers of conjunctive queries on these
sets. The pair (P(Inst(T)), dist) is a pseudometric space, which means that the distance
function dist is symmetric and obeys the triangle inequality, but different sets of finite target
instances may have distance zero; however, two such sets have distance zero if and only
if they are CQ-equivalent, i.e., every conjunctive query has the same certain answers on
these two sets. Thus, we will also work with the metric space obtained by considering the
CQ-equivalence classes of members of P(Inst(T)), and will use the same notation for it.

Sequences of functions from some set to a metric space occupy a central place in the study
of metric spaces (see, e.g., [18]). In particular, there are natural notions of a pointwise limit
and of a uniform limit of a sequence (f,)n»1 of functions from some set to a metric space;
moreover, there are companion notions of a pointwise Cauchy and of a uniformly Cauchy
sequence of such functions. We now describe briefly how these notions can be applied to
sequences of schema mappings. In its most general formulation, a schema mapping M over a
source schema S and a target schema T is a set of pairs (I, J), where I is a finite S-instance
and J is a finite T-instance. It follows that a schema mapping M can be also be viewed as a
function f from the set Inst(S) of all finite S-instances to the powerset P(Inst(T)) of the
set of all finite T-instances, where f(I)={J:(I,J) e M}. This way, a sequence (M, )n>1
of schema mappings over a source schema S and a target schema T can be viewed as a
sequence of functions from Inst(S) to the (pseudo)metric space (P(Inst(T)),dist).

After the conceptual framework has been laid out, we study in depth the limiting behavior
of sequences of GAV mappings and the convergence of sequences of LAV mappings. We
establish a number of technical results that reveal rather dramatic and perhaps unanticipated
differences between GAV schema mappings and LAV schema mappings.

For sequences of GAV mappings, we point out that every uniformly Cauchy sequence of
GAV mappings is eventually constant, hence it has a GAV mapping as uniform limit. We
also show that every pointwise Cauchy sequence of GAV mappings has a pointwise limit, but
it need not have a uniform limit; moreover, there are pointwise Cauchy sequences of GAV
mappings such that no GAV mapping is their pointwise limit. This raises the question as to
when a sequence of GAV mapping has a GAV mapping as a pointwise limit. We prove that



P. G. Kolaitis, R. Pichler, E. Sallinger, and V. Savenkov

a sequence of GAV mappings has a GAV mapping as a pointwise limit if and only if it has a
pointwise limit that allows for CQ-rewriting!.

For sequences of LAV mappings, we show that the notions of uniform limit and pointwise
limit coincide; moreover, the same holds true for the notions of uniformly Cauchy and
pointwise Cauchy sequences. However, there are uniformly Cauchy sequences of LAV
mappings that have no uniform limit. We also establish that a uniformly Cauchy sequence of
LAV mappings has a LAV mapping as a uniform limit if and only if it has a uniform limit that
admits universal solutions. The aforementioned results lift to sequences of premise-bounded
sequences of GLAV mappings, i.e., sequences of GLAV mappings for which there is a k> 1
such that, for every mapping in the sequence, the left-hand side of every GLAV constraint
has at most k source atoms (LAV mappings have k = 1).

In terms of techniques, we use systematically the structural characterizations of schema-
mapping languages established in [19], thus creating a link with a different line of research.

The metric space (P(Inst(T)),dist) is incomplete, i.e., there are Cauchy sequences of
elements of P(Inst(T)) that have no limit in P(Inst(T)). It is well known that every
incomplete metric space (X, d) has a completion, which means that it can be embedded into
a complete metric space (X*,d*) so that X is a dense subset of X*. Moreover, pointwise
(respectively, uniformly) Cauchy sequences of functions on X have pointwise (respectively,
uniform) limits that take values in X*. The construction of X* from X involves equivalence
classes of Cauchy sequences of elements of X, thus, in general, the members of X* do not
have a concrete representation. In the last part of the paper, we show that the members
of P(Inst(T))* can be represented by suitably constructed infinite T-instances. As a
consequence of this, the pointwise (respectively, uniform) limits of Cauchy sequences of
schema mappings can be represented by generalized schema mappings, i.e., schema mappings
that allow for infinite target instances as solutions to finite source instances.

2 Preliminaries

This section contains a minimum amount of the necessary background material.

Schemas, Instances, and Conjunctive Queries. A schema R is a finite sequence (R, ...,
Ry) of relation symbols, where each R; has a fixed arity. An instance I over R, or an
R-instance, is a sequence (R{ ey Ri), where each RZ-I is a finite relation of the same arity
as R;. We will often use R; to denote both the relation symbol and the relation Rf that
interprets it. The active domain of an instance I is the set of all values occurring in the
relations of I. A fact of an instance I (over R) is an expression R!(ay,...,a,,) (or simply
Ri(v1,...,vm)), where R; is a relation symbol of R and (ay,...,a,) € R

A conjunctive query is a first-order formula of the form 3z6(x,z), where 6(x,z) is a
conjunction of atomic formulas R;(v1, ..., v, ) and each v; is one of the variables in x and z.
A boolean conjunctive query is a conjunctive query with no free variables. We write CQ for
the class of all conjunctive queries over some schema. For every n > 1, we let CQ,, denote
the class of all conjunctive queries with at most n variables. We also let CQq denote the
singleton consisting of a trivially true query.

Schema Mappings, Universal Solutions, Certain Answers. Motivated by the terminology
in data exchange [6], we typically work with two schemas, a source schema S and a target

1 Allowing for CQ-rewriting means that the certain answers of every conjunctive query over the target
schema is definable by a union of conjunctive queries over the source schema - see [19].
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schema T with no relation symbols in common. We refer to S-instances as source instances,
and to T-instances as target instances. We assume the presence of two kinds of values in
instances, namely constants and (labeled) nulls. We also assume that the active domains of
source instances consists of constants; the active domains of target instances may contain
both constants and nulls.

A schema mapping M between a source schema S and a target schema T is a set of pairs
(I,J), where I is source instance and J a target instance. A schema mapping is often (but
not always) given as a triple M = (S, T, X), where ¥ is a set of formulas in some suitable
logical formalism such that (I,J) € M if and only if Tu J E X.

Let M be a fixed schema mapping. In data exchange, the main problem is, given a source
instance I, to find a solution for I w.r.t. M, that is, a target instance J such that (I,J) € M
(or determine that no solution exists). We use the notation Sol(I, M) ={J | (I,J) e M} to
denote the set of all solutions for I w.r.t. M. In data integration, the main problem is to
compute the certain answers of queries [12]. Specifically, given a query g over the target
schema and a source instance I, the certain answers of ¢ on I w.r.t. M is the set

cert(q, I, M) =({q(J) | J € Sol(I, M)} .

On the face of it, the definition of certain answers may entail computing an intersection
of infinitely many sets. One of the main findings in [6] is that there is a notion of a “good”
solution in data exchange, called universal solution, that can also be used to compute the
certain answers of conjunctive queries in a much more direct way.

Let J; and Jo be two target instances. A function h is a homomorphism from Jy to Js if
the following hold: (i) for every constant ¢, we have that h(c) = ¢; and (ii) for every relation
symbol R in R and every tuple (ay,...,a,) € R’*, we have that (h(ay),...,h(a,)) € R’2.
We write J; - Jo to denote that there is a homomorphism from J; to J5. We say that J; is
homomorphically equivalent to Jo, written J; < Jo, if J;1 = Js and Jo - J7.

Let I be a source instance. A universal solution for I w.r.t. M is a solution J such that
for every solution J’ € Sol(I, M), we have that J — J’. Intuitively, a universal solution for I
is a “most general” solution for I. We write UnivSol(7, M) to denote the set of all universal
solutions for I w.r.t. M (universal solutions need not always exist). As shown in [6], if ¢ is a
conjunctive query, I is a source instance, and J is a universal solution for I w.r.t. M, then
cert(q, I, M) = q(J),, where ¢(.J), is the set of all null-free tuples in g(.J).

Structural Properties of Schema Mappings. We now present a number of structural
properties that a schema mapping may or may not possess. These properties were investigated
in their own right in [19], where they were used to obtain characterizations of schema-mapping
languages that will be of great interest to us in this paper. Let M be a schema mapping.
M allows for CQ-rewriting if for every target conjunctive query g, there exists a union ¢’ of
source conjunctive queries such that cert(I, M, q) = ¢'(I), for every source instance I.

M admits universal solutions if for every source instance I, there is a universal solution for
I w.r.t. M. We write univ(l, M) to denote some such universal solution.

M is closed under target homomorphisms if (I,J) € M and J — J' imply that (I,J") € M.
M is closed under unions if (I1,J1) € M and (I2,J2) € M imply that (I; U Iz, J; U Jo) € M.
M is closed under target intersections if Jy € Sol(I, M) and Jo € Sol(I, M) imply that
(J1 N J2) € SO'(I,M)

M is n-modular if whenever (I,.J) ¢ M, there is a subinstance I’ ¢ I with at most n elements
in its active domain such that (I’,J) ¢ M (“small counterexample”).



P. G. Kolaitis, R. Pichler, E. Sallinger, and V. Savenkov

Schema Mapping Languages. A GLAV (global-and-local-as-view) constraint is a first-order
formula of the form Vx(p(x) — Jyy(x,y)), where ¢(x) is a conjunction of atoms over the
source schema S, each variable in x occurs in at least one atom in ¢(x), and (x,y) is
a conjunction of atoms over the target schema T with variables in x and y. We refer to
p(x) as the left-hand side, or premise, and Iy (x,y) as the right-hand side, or conclusion
of the constraint. Another name for GLAV constraints is source-to-target tuple-generating
dependencies or, in short, s-t tgds.

A LAV (local-as-view) constraint is a GLAV constraint whose left-hand side is a single
atom over the source, while a GAV (global-as-view) constraint is a GLAV constraint whose
right-hand side is a single atom over the target (in particular, the right-hand side contains
no existential quantifiers). For example, Vz,y(E(z,y) - 32(F(z,2) A F(z,y))) is a LAV
constraint, and Vz,y, 2(E(x,2) A E(2,y) - F(x,y)) is a GAV constraint.

A GLAV (global-and-local-as=view) mapping is a schema mapping M = (S, T,X) such
that 3 is a finite set of GLAV constraints. The notions of a LAV mapping and of a GAV
mapping are defined analogously.

Every GLAV mapping M admits universal solutions [6]; furthermore, given a source
instance I, a canonical universal solution chase(I, M) can be produced via the oblivious
chase procedure as follows: whenever the antecedent of an s-t tgd in M becomes true, fresh
null values are introduced and facts involving these nulls are added to chase(I, M), so that
the conclusion of the s-t tgd becomes true. Every GLAV mapping is also known to allow for
CQ-rewriting and to be n-modular, for some n > 1. Moreover, every LAV mapping is closed
under unions, while every GAV mapping is closed under target intersections.

Second-Order tgds, or SO tgds, were introduced in [8] and were shown to be exactly the
constraints needed to express the composition of a finite number of GLAV mappings. Instead
of giving the precise definition of an SO tgd, we illustrate this notion with an example from
[8]. The formula 3f(Ve(Emp(e) — Mgr(e, f(e))) AVe(Emp(e) A (e = f(e)) - SelfMgr(e)))
expresses the property that every employee has a manager, and if an employee is the manager
of himself/herself, then this employee is a self-manager. The above formula is an SO tgd
that is not logically equivalent to any (finite or infinite) set of GLAV constraints [8].

Every SO tgd allows for CQ-rewriting and admits universal solutions; however, an SO
tgd may not be closed under target homomorphisms and there may not exist any n > 1 such
that the SO tgd is n-modular (see [8, 19]).

Pseudometric Spaces and Metric Spaces. A pscudometric space is a pair (X, d), where X
is a set and d is a function from X x X to the set R* of non-negative real numbers with the
following properties: (i) d(x,x) =0, for every z in X; (ii) d(x,y) = d(y, ), for every x and y
in X; (iii) d(=,y) < d(x,z) + d(y, z), for every x, y, z in X (triangle inequality). A metric
space is a pseudometric space (X, d) such that if d(x,y) = 0, then z = y. It is easy to see
that if (X, d) is a pseudometric space, then the relation Ry = {(z,y) € X x X | d(z,y) = 0}
is an equivalence relation on X. From this, it follows that every pseudometric space (X, d)
gives rise to a metric space (X , Ef), where X is the set of equivalence classes of elements of X
modulo the equivalence relation Rq and d([x],[y]) = d(z, ).

A sequence of elements x1,x2,... of X converges to an element x of X, denoted by

lim z, =z, if for every € > 0, there is an integer ng such that d(z,,z) <e, for every n > ng.

n—o00

We say that x is the limit of this sequence (the limit is unique if (X, d) is a metric space). A
sequence x1,Ts,... of elements of X is Cauchy if for every € > 0, there is an integer ng such
that d(zp,zn) <e, for every n,n’ > ng.

Using the triangle inequality, it is easy to see that if a sequence of elements in a
(pseudo)metric space has a limit, then the sequence is Cauchy. The converse, however, does
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not hold for arbitrary (pseudo)metric spaces. A (pseudo)metric space (X,d) is complete if
every Cauchy sequence of elements of X has a limit in X; otherwise, it is incomplete.

It is well known that every incomplete (pseudo)metric space (X,d) can be embedded into
a complete (pseudo)metric space (X*,d*), called the completion of (X, d), in such a way that
X is a dense subset of X~ i.e., every member of X* is the limit of a sequence of members of
X. The members of X* are equivalence classes of Cauchy sequences of X, where two Cauchy
sequences xi, sz, ... and y1,Ys,... of elements of X are equivalent if T}grolo d(xpn,yn) =0, while

the distance function d* is defined as d*([z1, 22, ...],[y1,Y2,...]) = lim d(z,,y,). The proof

of correctness of this construction can be found in [18] or any other book on metric spaces.
As a concrete example, the metric space of the real numbers is the completion of the
metric space of the rational numbers (both with the standard distance).

3 Metric Space of Target Instances

To study the limits of sequences of schema mappings, we first introduce a pseudometric
space of sets of target instances. By considering schema mappings as functions that map
each source instance to the set of its solutions, we can view sequences of schema mappings as
sequences of functions. The (pointwise or uniform) limit of a sequence of schema mappings is
then simply defined in the standard way as the limit of a sequence of functions taking values
in a pseudometric space. Moreover, by passing to the associated metric space of equivalence
classes of sets of target instances, we ensure the uniqueness of the limit. If T is a schema, we
write Inst(T) for the set of all finite instances of T. We also write P(Inst(T)) for the power
set of Inst(T). The notion of distance on P(Inst(T)) that we are about to introduce is
heavily based on the notion of the certain answers to conjunctive queries and on the idea that
two members J and J’ of P(Inst(T)) are “close” to each other if only “big” conjunctive
queries can yield different certain answers on J and J'.

» Definition 1. Let ¢ be a query over a schema T and let J be a member of P(Inst(T)).
The certain answers of g over J are defined as cert(q,J) = N{q(J) | J € T}.

We say that two sets of instances J and J' in P(Inst(T)) are CQ-equivalent, denoted
J =cq J', if cert(q, J) = cert(q, J") for all conjunctive queries q.

We say that J and J' are CQ,,-equivalent, denoted J =cq, J', if cert(q, J) = cert(q, J")
for all conjunctive queries ¢ with at most n variables (i.e., for all ¢ in CQ,.) <

» Definition 2. Let J and J' be two sets of instances in P(Inst(T)). The similarity
sim(J,J") and the distance dist(J,J’) between J and J' are defined as follows:
sim(J,J") =max{k|J =cq, J'};
dist(7,J") = 275m(7TT), p

It is easy to verify that the pair (P(Inst(T)),dist) is a pseudometric space; in fact, dist
is an ultrametric distance function, that is, dist(J,J") < max{dist(J,J"),dist(J",J")}
holds for all 7, J', J" in P(Inst(T)). Moreover, dist(J,J’) =0 if and only if J and J’
are CQ-equivalent. It is important to note that the pseudo-metric space (P (Inst(T)), dist) is
incomplete, i.e., there exist Cauchy sequences of elements of P(Inst(T)) that do not have a
limit in P(Inst(T)). We first give an example of a sequence that has a limit in P(Inst(T)).

» Example 3. Let T be a schema consisting of a single binary relation and let C,,, be the

undirected cycle of length m, for m > 1. Consider the sequence ({Cay+1})n>1 of singletons

each containing a cycle of odd size. It is not hard to verify that lim ({Copny1})ns1 = {C2}. <
n—oo
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In contrast, there are Cauchy sequences of element of P(Inst(T)) that have no limit.

» Proposition 4. Let T be a schema consisting of a single binary relation and let K, be the
clique of size n, for n>1. The sequence ({K,})ns1 of singletons each containing a clique of
different size is Cauchy, but has no limit in P(Inst(T)).

Proof. The sequence ({K,})n>1 is Cauchy because if m > n, then K,, and K, satisfy the

same first-order sentences with n variables. To show that this sequence has no limit in

P(Inst(T)), assume that there is a set J of finite instances over T such that lim {K,} = 7.
n—o00

We distinguish two cases. If J = @, then cert(q, J) = true, for every conjunctive query gq.
In contrast, cert(IzE(x,x),{K,}) = false, for every n > 2. If J + @, consider a member J
of J. Let m be the biggest integer such that J contains a clique of size m, and let 3K, .1
be the conjunctive query asserting that there is a clique of size m + 1. We now have that
cert(IK 41, T ) = false, while cert(IK 41, {K,}) = true, for every n > m + 1. <

Since ({K,})n>1 is a Cauchy sequence, it has a limit in the completion of
(P(Inst(T)),dist). A concrete representation of this limit is the singleton { Ko }, where Ko
is the infinite clique. In Section 6, we will examine the completion of (P (Inst(T)), dist)
more closely.

The following definitions are perfectly meaningful for every pseudometric space (X, d) and
for every sequence of functions taking values in X. For concreteness, we give the definitions
for sequences of functions taking values in P(Inst(T)).

» Definition 5. Let A be a set, let (f,,)n>1 be a sequence of functions from A to P(Inst(T)),
and let f be a function from A to P(Inst(T)).

P
We say that (fn)ns1 converges pointwise to f, denoted as lim f, = f, if for every element
n—oo
z € A, we have that lim f,(z) = f(2).
n—00

We say that (fn)ns1 converges uniformly to f, denoted as 117;11 fn=f, if for every € > 0,
there exists an integer ng > 1 such that for every integer TZL;);LO and for every element
x € A, we have dist(f,(z), f(x)) <e.

We say that (fn)ns1 is pointwise Cauchy, if for every element z € A, the sequence
(fn(x))ns1 is Cauchy.

We say that (fn)ns1 is uniformly Cauchy, if for every e > 0, there exists an integer
no > 1 such that for all integers n,n’ > ng and for every element x € A, we have

dist(frn (), fur(x)) <e. <

Clearly, if (f,,)n>1 converges pointwise (resp., uniformly), then ( f,,)n>1 is pointwise (resp.,
uniformly) Cauchy. The converse is not in general true for arbitrary (pseudo)metric spaces;
in particular, it is not true for the pseudometric space (P (Inst(T)), dist).

We now bring schema mappings into the picture. Every schema mapping M over a source
schema S and a target schema T can be identified with a function f:Inst(S) — P(Inst(T)),
where f(I) =Sol(I, M) (recall that Sol(I, M) is the set of all solutions of I w.r.t. M, i.e.,
the set of all finite T instances J such that (I,J) € M). Thus, a sequence (M, )n»1 of
schema mappings over a source schema S and target schema T can be viewed as a sequence
of functions from Inst(S) to P(Inst(T)). Therefore, we can talk about a sequence of schema
mappings being pointwise Cauchy and uniformly Cauchy if the sequence of the associated
functions has these properties. Similarly, we say that a sequence of schema mappings has a
pointwise limit (resp., a uniform limit) if the sequence of the associated functions converges
pointwise (resp., converges uniformly) to a schema mapping.

19:7
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The preceding notion of convergence of a sequence of schema mappings allows us to draw
a connection to earlier work on schema mapping optimization [5, 7]. Here, we are considering
CQ-equivalence and CQ,-equivalence of sets of instances. In previous works, these notions of
equivalence have been mainly applied to schema mappings (see, e.g., [5, 7, 14]). Specifically,
two schema mappings M, M’ are CQ-equivalent (resp., CQ,,-equivalent) if for every target
conjunctive query ¢ (resp., every target conjunctive query ¢ in CQ,) and every source
instance I, we have that cert(q, I, M) = cert(q, I, M’). In this case, we write M =cq M’
(resp., M =cq, M'). The notion of CQ,-equivalence has been studied in the context of
schema mapping optimization [5, 7]. Below we discuss its relationship to the convergence of
schema mappings.

» Proposition 6. Consider a sequence (M, )ns1 of schema mappings and a schema mapping

u
M. Then lim M,, = M if and only if for every integer k > 1, there is an integer ng > 1 such

n—o00

that for all integers n > ng, we have that M,, =cq, M. q

Intuitively, the preceding proposition states that it takes bigger and bigger conjunctive
queries to distinguish the members of a sequence (M,,),»1 from its uniform limit.

Although never explicitly introduced, the notion of uniform convergence was implicit
in [5], where it was shown that for every SO tgd o and for every n > 1, there is a GLAV

u
mapping M, such that o =cq, M,,. From this, it is easy to see that lim M, = o. Thus, we

n—oo

have the following result.

» Theorem 7 (implicit in [5]). Every SO tgd is a uniform limit of a sequence of GLAV
mappings.

There are SO tgds that are not CQ-equivalent to any GLAV mapping [7]. Thus, the point
of Theorem 7 is that SO tgds can be “approximated” up to any level of CQg-equivalence by
GLAV mappings, which are syntactically simpler and generally more well-behaved.

As stated earlier, (P(Inst(T)), dist) is a pseudometric space since it cannot distinguish
CQ-equivalent sets of instances. Consequently, the limit of a sequence of sets of instances and
the (uniform or pointwise) limit of a sequence of mappings need not be unique. However, the
limit is unique up to CQ-equivalence and, as described in Section 2, there is an associated
metric space (P (Inst(T)), dist) obtained by considering the equivalence classes of P(Inst(T))
modulo the equivalence relation Rgisi, where (J,J’) € Raist if and only if dist(7,J’) =0
(i.e., if and only if J =cq J').

In subsequent sections, we will work with the metric space (P(Inst(T)),dist). Morcover,
we will be interested in schema mappings modulo CQ-equivalence, which means that from
now on we will view schema mappings as functions from source instances to equivalence
classes of sets of target instances modulo CQ-equivalence. However, for notational simplicity,
we will work each time with representatives of the equivalence classes. By a slight abuse of
notation, we will write (P(Inst(T)),dist), instead of (P(Inst(T)),dist). Likewise, we will
not explicitly distinguish between a schema mapping M and the equivalence class of schema
mappings that are CQ-equivalent to M.

4 Limits of Sequences of GAV Mappings

Our goal in this section is to analyze sequences of GAV mappings. To this effect, we first
investigate the existence of limits of such sequences and then examine the definability of
limits. As discussed in Section 3, if a sequence (M,,),>1 of schema mappings has a pointwise
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(resp., uniform) limit, then the sequence is pointwise (resp., uniformly) Cauchy. The next
result asserts that the converse holds for sequences of GAV mappings.

» Theorem 8. Let (My,)ns1 be a sequence of GAV mappings.
If (My)ns1 is pointwise Cauchy, then it has a pointwise limit.
If (My)ns1 is uniformly Cauchy, then it is eventually constant and thus has a GAV
schema mapping as a uniform limit.

Proof Sketch. For showing the first claim, assume that (M, ),s1 is a pointwise Cauchy
sequence of schema mappings and let I be a source instance. For each n > 1, consider the uni-
versal solution chase(I, M,,) for I w.r.t. M,, obtained by using the oblivious chase procedure.
Since each M,, is a GAV schema mapping, we have that chase(I, M,,) contains no nulls. It
can be shown that there exists some my s.t. for all n > mj, we have that chase(I, M) =
chase(I, M,,,). In other words, the sequence (chase(I, M,,))n>1 is eventually constant (does
not oscillate). Then the schema mapping M = {(I, chase(I, M,,,)) | I is a source instance}
is a pointwise limit of the sequence (M,,)ns1-

For showing the second claim, assume that (M,,),»1 is a uniformly Cauchy sequence of
GAV mappings. We claim that (M,,),»1 is eventually constant, i.e., there is some m such
that for all n > m, M,, =cq M, holds. Towards a contradiction, assume that for every m
there exists an ¢ > m such that M;#cqM,,. That is, for some source instance I, it is the case
that chase(I, M,,) # chase(I, M;). Since neither chase(I, M,,) nor chase(I, M,) contain
nulls, they can be distinguished using atomic queries from CQy, where k is the maximum
relation arity of the target schema. Since this is the case for an arbitrarily large m, it follows
that (M,,)ns1 is not a uniformly Cauchy sequence, a contradiction. <

Next, we point out that even simple sequences of GAV schema mappings may have no
uniform limit.

» Proposition 9. There exists a sequence of GAV mappings that has a pointwise limit but
no uniform limit.

Proof. For every n > 2, let 3K, be the boolean conjunctive query asserting that there is a
clique of size n, i.e., 3K, is the expression 3x1,... Ty NAis; (E(xi,25) A E(xj,2;)).

Let (My,)ns>1 be the sequence of GAV mappings, where M, is specified by the constraint
Va(P(x) A3IK,11 — P'(x)). Intuitively, M,, is a “copy” schema mapping, but the copying
action is triggered only if E contains a clique of size n + 1. One can show that the GAV
schema mapping M = {VaVy(P(z) A E(y,y) —» P'(x))} is a pointwise limit of (M,,)ns1, but
that this pointwise limit is not a uniform limit of (M,,),>1 and thus no uniform limit of
(M) ns1 exists.

To see that M is a pointwise limit of (M,,),»1, note that for source instances with a
self-loop E(a,a) for some a, M is indistinguishable from every element M; € (M,,)n»1. For
source instances without such a self-loop, M coincides with all members of (M,,),»1 with
an index exceeding the size of the maximal clique in 1.

Now towards a contradiction assume that M is also a uniform limit. Then, there must
be an ng such that for all n > ng, the equivalence M,, =cq, M holds. However, taking n = ng
and a source instance I = K, U{P(c)}, one can observe that a target CQ; query g = 3z P'(z)
witnesses M,#cq, M, since I contains no self-loop and thus UnivSol(I, M) = {&}. |

Proposition 9 and Theorem 8 imply that the sequence of GAV mappings in the proof of
Proposition 9 is an example of a pointwise Cauchy sequence that is not uniformly Cauchy.
More importantly, Theorem 8 gives rise to the following natural question concerning the
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definability of limits: if a sequence of GAV mappings has a pointwise limit, does it have a
GAYV mapping as such a limit? We answer this question in the negative: even the much
richer language of SO tgds cannot express pointwise limits of sequences of GAV mappings.

» Proposition 10. There is a pointwise Cauchy sequence of GAV schema mappings such
that no SO tgd is a pointwise limit of that sequence.

Proof Idea. For every n > 1, let P,(z,y) be the conjunctive query expressing the property
“there is an E-path of length n from z to y”, and let M,, be the GAV mapping specified by
the set {Vz,y(Pi(x,y) = F(x,y)) |1 <i<n}. The schema mapping

M* ={(I,J) | F’ contains the transitive closure TC(I) of E'}

is a pointwise limit of the sequence (M,,),>1. However, note that M™* is not CQ-equivalent
to any schema mapping M’ that allows for CQ-rewriting: if it were, then there would exist
a union ¢ of conjunctive queries over the source such that, for every source instance I,
cert(F(z,y),I, M*) = TC(I) = cert(F(x,y),I, M") = g(I). Consequently, the transitive
closure of I would be first-order definable over the source, which is not the case. Since every
SO tgd allows for CQ-rewriting, no SO tgd is a pointwise limit of the sequence (M, )n>1. <

We have just seen that there are sequences of GAV mappings that have a pointwise
limit, but no such limit is definable by a GAV mapping. This raises the question of finding
necessary and sufficient conditions guaranteeing that a sequence of GAV mappings has a
GAV mapping as a pointwise limit. The next result provides an answer to this question.

» Theorem 11. Let (M,,)ns1 be a pointwise Cauchy sequence of GAV mappings. The
following statements are equivalent:

1. (My)ns1 has a GAV mapping as a pointwise limit.

2. (Myp)ns1 has a pointwise limit that allows for CQ-rewriting.

Proof Idea. Let (M,,),>1 be a pointwise Cauchy sequence of schema mappings. As seen
in the proof sketch of Theorem 8, for every source instance I, there is a positive integer
my, such that for all n > m; the equality chase(I, M,,,) = chase(I, M,,) holds for the
respective elements M,,, and M, of (M,)n>1. Moreover, the schema mapping M =
{(1,chase(I, M,,,) | I is a source instance} is a pointwise limit of (M, )n>1, and so is the
CQ-equivalent mapping M* = {(I,J) | chase(I, M,,,) € J}. The result we seek is an
immediate consequence of the fact that the following four statements are equivalent:

(a) (My)ns1 has a GAV mapping as a pointwise limit.

(b) (My)ns1 has a pointwise limit that allows for CQ-rewriting.

(c) M allows for CQ-rewriting.

(d) M~ is logically equivalent to a GAV mapping.

The proof uses Theorem 3.2 in [19], which asserts that a schema mapping is logically equivalent
to a GAV schema mapping if and only if it allows for CQ-rewriting, admits universal solutions,
and is closed under both target homomorphisms and target intersections. <

» Corollary 12. Let (My)ns1 be a pointwise Cauchy sequence of GAV mappings. The
following statements are equivalent:

1. (Mp)ns1 has a GAV mapping as a pointwise limit.

2. (My)ns1 has an SO tgd as a pointwise limit.

Proposition 10 and Theorem 11 yield a fairly complete picture of the definability of
pointwise limits of GAV mappings. Specifically, there are two mutually exclusive possibilities:
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1. No pointwise limit allows for CQ-rewriting and no GAV mapping is a pointwise limit.

2. Every pointwise limit admits CQ-rewriting and there is a GAV mapping that is a pointwise
limit. Moreover, this happens precisely when the schema mapping M™ in the proof of
Theorem 11 allows for CQ-rewriting or, equivalently, when M™ is logically equivalent to
a GAV mapping.

5 Limits of Sequences of LAV Mappings

In this section, we investigate the existence and definability of limits of sequences of LAV
mappings. In fact, we will consider a much broader class of GLAV mappings than LAV,
which we call premise-bounded GLAV mappings. LAV mappings are the special case of this
class when the premise bound is equal to one.

» Definition 13. Let (M,,),>1 be a sequence of GLAV mappings. We say that (M,,),»1 is
premise-bounded if there exists an integer k such that for every element M,, of (M, )ns1,
the premise of every constraint in M, has at most k atoms.

Unlike the case of GAV mappings, the notions of pointwise Cauchy and uniformly Cauchy
sequences of premise-bounded GLAV mappings coincide. Moreover, the same holds true for
the notions of pointwise limit and uniform limit of sequences of such schema mappings.

» Theorem 14. Let (M,,)ns1 be a sequence of premise-bounded GLAV mappings.
1. The sequence (My)ns1 is pointwise Cauchy if and only if it is uniformly Cauchy.
2. The sequence (My)ns1 has a pointwise limit if and only if it has a uniform limit.

The following two propositions further demarcate the differences between GAV and
premise-bounded mappings. In fact, these differences are already witnessed by sequences
of LAV mappings. The first difference concerns the existence of limits of uniformly Cauchy
sequences. In contrast to the GAV case, uniformly Cauchy sequences of LAV mappings may
have no uniform limit; in fact, they may not even have a pointwise limit.

» Proposition 15. There exists a uniformly Cauchy sequence of LAV mappings that has no
pointwise limit; in particular, it has no uniform limit either.

Proof Idea. For every n > 1, let M,, be the LAV mapping specified by the constraint
Va,y(E(x,y) - 3K,+1), where, as earlier, 3K,,,1 is the boolean conjunctive query asserting
that there is a clique of size n + 1. Using an argument similar to the one in the proof of
Proposition 4, it can be shown that the sequence (M,,),>1 has no pointwise limit. |

The next difference is the definability of uniform limits. In Section 4, we saw that if
a sequence of GAV mappings has a uniform limit, then it is eventually constant, hence it
has a GAV mapping as a uniform limit. This property need not hold for sequences of LAV
mappings (hence, it need not hold for sequences of premise-bounded schema mappings).

» Proposition 16. There exists a sequence (M )ns1 of LAV mappings that has a uniform
limit, but no uniform limit of (M )ns1 admits universal solutions. In particular, no SO tgd
is a uniform limit of the sequence (M, )ns1-

Proof Idea. For every n > 1, let M,, be the LAV mapping specified by the constraint
Va(V(z) - 3P,), where 3P, is a boolean CQ asking for a path of length n in the target
instance. We argue that the mapping M = {(@,2)} u {(I,C%) | I non-empty and k > 1} is
the uniform limit of (M,,),>1, and that M does not admit universal solutions. <
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By Theorem 7, every SO tgd is the uniform limit of a sequence of GLAV mappings.
Proposition 16 implies that the converse is false, even for sequences of LAV mappings.

In the previous section, we showed that a sequence of GAV mappings has a GAV mapping
as a pointwise limit if and only if it has a pointwise limit that allows for CQ-rewriting. Is
there some structural property that characterizes when a sequence of premise-bounded GLAV
mappings has a GLAV mapping as a pointwise limit (which, for premise-bounded mappings,
is the same as a uniform limit)? We will show that the property of admitting universal
solutions is the key to this question. Specifically, we have the following result.

» Theorem 17. Let (M, )1 be a premise-bounded sequence of GLAV mappings. The
following statements are equivalent.

1. (My)ns1 has a GLAV mapping M as a uniform limit.

2. (My)ns1 has a uniform limit that admits universal solutions.

Moreover, if (My,)ns1 is a sequence of LAV mappings, then (M, )n>1 has a LAV mapping
as a uniform limit if and only (M, )ns1 has a uniform limit that admits universal solutions.

Proof (Hint). The direction (1) = (2) is obvious. For the direction (2) = (1), we start with
the case when (M,,),»1 is a sequence of LAV mappings. As stepping stones to the proof,
the following lemmas can be used, which are of interest in their own right.

» Lemma 18. If M is the uniform limit of a sequence (My,)n>1 of schema mappings each
of which allows for CQ-rewriting, then also M allows for CQ-rewriting.

» Lemma 19. Let M be a uniform limit of a sequence (My)ns1 of LAV mappings. If M
admits universal solutions, then it is closed under unions.

Assume that M is a uniform limit of a sequence (M, )n>1 of LAV mappings and that M
admits universal solutions. Since the notion of limit is based on CQ-equivalence, we may
assume w.l.o.g. that M is closed under target homomorphisms. Then M has the following
properties: M admits universal solutions; M allows for CQ-rewriting (Lemma 18); M is
closed under target homomorphisms; M is closed under unions (by Lemma 19). From
Theorem 3.1 in [19], it follows that M is logically equivalent to a LAV mapping.

For the case when (M, ),»1 is a sequence of premise-bounded GLAV mappings (but not
necessarily LAV mappings), we apply yet another structural characterization theorem from
[19], namely Theorem 3.9, which asserts that if a schema mapping allows for CQ-rewriting,
admits universal solutions, is closed under target homomorphisms, and is n-modular, for
some fixed n, then it is logically equivalent to a GLAV mapping. Using machinery similar to
the one used for the closure under unions in Lemma 19, it can be shown that the uniform
limit M of the sequence (M,,)ns1 is n-modular for some fixed n > 1. The other structural
properties are handled as in the case of a sequence of LAV mappings. |

We conclude this section with a conjecture concerning uniform limits of arbitrary sequences
of GLAV mappings.

» Conjecture 20. The following statements are equivalent for a sequence (M )pns1 of GLAV
mappings.

1. (My)ns1 has an SO tgd as a uniform limit.

2. (My)ns1 has a uniform limit that admits universal solutions.
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It is not hard to show that the preceding conjecture is implied by a conjecture in [2]
to the effect that the language of plain? SO-tgds can be characterized by the following
three properties: allowing for CQ-rewriting, admitting universal solutions, and closure under
target homomorphisms. It appears, however, that the technical tools needed to resolve the
conjecture in [2] are not available at present.

6 Metric Space Completion and Generalized Schema Mappings

Let T be a schema containing a binary relation symbol. By Proposition 4, the metric
space (P(Inst(T)),dist) is not complete, i.e., there are Cauchy sequences of elements of
P(Inst(T)) that have no limit in P(Inst(T)). Let (P(Inst(T))*,dist*) be the completion
of (P(Inst(T)),dist). As described in Section 2, the elements of P(Inst(T))* are the
equivalence classes of Cauchy sequences of elements of P(Inst(T)), where two Cauchy
sequences 71,7, ... and J1,Js,... are equivalent if 7}1_{1;10 dist(Z,, J,) = 0. Clearly, this is a

rather abstract description of P(Inst(T))*. The main result of this section reveals that the
elements of P(Inst(T))* can be represented by suitably constructed infinite T-instances. In
turn, this result and basic results about complete metric spaces imply that the (pointwise or
uniform) limits of a Cauchy sequence of schema mappings can be represented by a generalized
schema mapping, that is, a schema mapping in which infinite solutions are allowed.

Let ¢ be a conjunctive query with k free variables and let a be a k-tuple of constants.

We write g(a) to denote the instance K obtained by (i) substituting the free variables of ¢
by the respective elements of a; (ii) replacing the existential variables of g by fresh distinct
labeled nulls; and (iii) treating the resulting body atoms of ¢ as facts of the instance K.

We write J; u J; to denote the disjoint union of two instances J; and Jo, that is, the
instance obtained as a union of J; and J; with all labeled nulls renamed apart. If X is a set
of instances, we write [ X to denote the disjoint union of all members of X. Note that we
do not necessarily assume X to be finite; thus, - X may be an infinite instance.

We are now ready to state the main result of this section and sketch its proof.

» Theorem 21. Let (Jn)n>1 be a Cauchy sequence of elements of P(Inst(T)). Then the
limit of the sequence (Jp,)ns1 is the singleton T-instance set J*, where

J" = {U{q(a) | ¢ € CQ and there is an integer p such that a € cert(q, J;), for every i > p}}

Proof (Sketch). We have to show that (J,)n»1 — J*, which means that for every integer
m > 1 there exists an integer ng > 1 such that J, =cq,, J*, for all n > ng.

By definition, J* is a singleton; we write J to denote the single element of 7. The first
crucial observation is that the set D of constants occurring in J is finite. To show this, we
consider single-atom conjunctive queries, that is, queries of the form 3y R(x,y), where R is
a relation symbol in the target schema T. Clearly, every single-atom query has at most k
variables, where k is the maximum arity of the relation symbols in T.

Since the sequence (J,)n>1 is Cauchy, there exists an integer py such that J; =cq, Jps>
for all 4 > pg. This implies that the certain answers to single-atom conjunctive queries become
fixed in (J,)n»>1 starting from some integer py that depends only on the schema T. By
definition, the certain answers hold in every instance in J), ; moreover, every instance in
Jp,, 1s finite. Hence, the set D’ of the certain answers to single-atom conjunctive queries

2 A plain SO tgd is an SO tgd that contains no nested terms and no equalities. Every SO tgd is known
to be CQ-equivalent to a plain one [2].
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that eventually hold in (J,)n»>1 is finite. To complete the proof of the finiteness, we show
that the set D of constants occurring in the instance .J is contained in D’. To see this,
recall that J is composed of the bodies of conjunctive queries g(a) such that a € cert(q, Jy),
for all sufficiently large n. Fix such a conjunctive query ¢ with r atoms and consider its
decomposition to single-atom queries ¢;(a;), ..., ¢-(a,), where g; has the i-th atom of ¢ as its
body and a; contains the constants of a occurring in this atom. Observe that a € cert(q, J)
implies a; € cert(q;, J), for every set J of instances. Consequently, the inclusion D ¢ D’
holds, and thus D must be finite.

Now, given m, we need to provide ng such that for all n > ng, we have that J,, =cq,, J~
holds. In other words, ng has to big enough to ensure the equality cert(q, J,,) = cert(q, J*) for
every conjunctive query g € CQ,,. In order to guarantee the inclusion cert(q, J,,) € cert(q, J*),
it suffices to choose ng greater than the index ni, starting from which all certain answers to
CQ,, queries become fixed in (7, )ns>1- Such an index n; exists since the sequence (Jy, )n>1 18
Cauchy. To ensure cert(q, J*) < cert(q, J), we analyze the values of ¢ in the limit instance
J (recall that J* is a singleton {J}). By the definition of J*, atoms witnessing that J = g(b)
stem from the bodies of conjunctive queries g1(ay),...,qe(ae). All these conjunctive queries
hold in (J,)n>1 starting from some index. Inspecting finitely many conjunctive queries in
CQ,, and all possible certain answers to them, one can choose ng large enough to ensure
that cert(q, J*) ¢ cert(q, J,) as well. <

In their recent monograph [15], Nesetiil and Ossona de Mendez considered a notion of
distance between instances, as well as sequences of instances and their limits. However, they
considered a different setting and followed a different approach: first, they did not distinguish
two classes of domain elements (constants and nulls) and, second, they heavily relied on
a quasi-order on instances based on homomorphisms. The limit of a Cauchy sequence of
instances is obtained in [15] via the concept of ideal completion. If (Jp,)ns1 is a Cauchy
sequence of elements of P(Inst(T)) such that all target instances appearing in this sequence
contain only nulls (and no constants), then our description of the limit J* can be shown
to be equivalent in the one in [15]; moreover, in this case, only boolean conjunctive queries
contribute to the disjoint unions defining the limit.

We now recall two basic results about complete metric spaces.

» Proposition 22. Let (Y,d) be a complete metric space and let (fn)n>1 be a sequence of
function from a set X to Y.
If (fu)n>1 is a pointwise Cauchy sequence, then (frn)n»1 has a pointwise limit f: X - Y,
where f(x) = 7%1_1}120 fn(x), for every x € X.
If (fn)ns1 is a uniformly Cauchy sequence, then (fn)ns1 has a uniform limit. Moreover,
the pointwise limit f: X =Y of (fn)ns1 is also the uniform limit of (frn)ns1-

The proof of the first part of Proposition 22 is immediate from the definitions; the proof
of the second part can be found in any standard book on metric spaces (see, e.g., Proposition
3.6.6 in [18]). Note that the second part of Proposition 22 is known as the Cauchy criterion.

We are now ready to obtain concrete representations of the (pointwise or uniform) limits
of Cauchy sequences of schema mappings.

» Definition 23. Let S, T be two schemas. A generalized schema mapping is a set M of
pairs (I,J) such that I is a finite S-instance and J is a possibly infinite T-instance.

» Corollary 24. Let (M,,)ns1 be a sequence of schema mappings. Consider the generalized
schema mapping M = {(1,J) | J =W{q(a) | € CQ and Ip Vi >p a e cert(q,I, M;)}}
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If (My)ns1 is a pointwise Cauchy sequence, then the schema mapping M is the pointwise
limit of (Mp)ns1-
If (My)ns1 is a uniformly Cauchy sequence, then the schema mapping M is the uniform

limit of (My,)ns1-

Proof. The first part follows from Theorem 21 and the definition of pointwise convergence.

The second part follows from the first part and Proposition 22. <

Finally, we consider (pointwise or uniformly) Cauchy sequences of schema mappings
admitting universal solutions and obtain a different representation of their limits.

» Corollary 25. Let (My,)ns1 be a pointwise Cauchy sequence of schema mappings over a

source schema S and a target schema T, each admitting universal solutions.

1. For every I € Inst(S), the sequence (UnivSol(I, M,,))ns1 is Cauchy, and hence it has a
limit 1i_I>£1°(UnivSo|(I,Mn)) in the complete metric space (P(Inst(T))*,dist").

2. The gnenemlized schema mapping M* = {(I,J) | I € Inst(S),J € JLI&(UhiVSOl(I,Mn))}

is a pointwise limit of (My)ns1. Moreover, if (My)ns1 is a uniformly Cauchy sequence,
then M* is its uniform limit.

7 Concluding Remarks

In this paper, we have embarked on a systematic study of the limiting behavior of sequences
of schema mappings using concepts and tools from metric spaces. For the important special
cases of GAV and LAV mappings, our main results are summarized in Figures 1 and 2.

In words, we have shown that, for GAV mappings, a pointwise Cauchy sequence need
not be uniformly Cauchy; moreover, the existence of a pointwise limit does not imply the
existence of a uniform limit. This cannot happen for LAV mappings. On the other side, a
uniformly Cauchy sequence of LAV mappings need not even have a pointwise limit, which
cannot happen for GAV mappings. We have also shown that structural properties of schema
mappings can be used to characterize when the limit of a pointwise Cauchy sequence of
GAV (or of LAV) mappings is equivalent to a GAV (or to a LAV) mapping. Finally, we have
shown that infinite target instances and generalized mappings (i.e., schema mappings where
target instances may be infinite) can be used to represent limits of Cauchy sequences of sets
of target instances and limits of Cauchy sequences of arbitrary schema mappings.

We believe that the work reported here has laid the foundation for several interesting lines
of subsequent investigations. We have seen that our results about sequences of LAV mappings
extend in a natural way to sequences of premise-bounded GLAV mappings; an analogous
extension of our results about sequences of GAV mappings to sequences of conclusion-bounded
GLAV mappings is left for future work. We have also seen that there are sequences of LAV
mappings for which no SO tgd is a uniform limit. Are there structural properties that
characterize when a sequence of GLAV mappings has an SO tgd as a pointwise limit? In
this vein, we have offered Conjecture 20. A related interesting open problem is whether
schema mappings with target constraints are powerful enough to express pointwise limits or
uniform limits of sequences of arbitrary GLAV schema mappings. We have some preliminary
evidence that this is plausible, but much more work remains to be done.

We believe that the work reported in this paper provides a new perspective on the study
of schema mappings by examining them from a dynamic viewpoint. As stated earlier, our
original motivation came from schema-mapping optimization and, in particular, from the idea
that “complex” schema mappings can be “approximated” by “simpler” ones. It remains to be
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pointwise Cauchy ﬁé» uniformly Cauchy
Thm. 8 Thm. 8

S L
pointwise limit exists 74» uniform limit exists

(GAV iff allows for CQ rewriting)  (always GAV)
Thm. 11 Thm. 8

Figure 1 Overall picture for GAV schema mappings.

pointwise Cauchy =—— uniformly Cauchy
Thm. 14
e et . Thm.
pointwise limit exists ! Z%miform limit exists

(LAV iff admits univ.sol.) (LAV iff admits univ.sol.)
Thm. 17 Thm. 17

Figure 2 Overall picture for LAV schema mappings.

seen whether the work reported here will lead to applications to schema-mapping optimization.
We believe, however, that the study of the limiting behavior of schema mappings via metric
spaces is interesting in its own right.

We also note there are several areas in theoretical computer science where the study of
limiting behavior of objects has produced results that were significant in their own right and
also had fruitful consequences. For example, starting with the work of Fagin [4], there has
been an extensive investigation of the asymptotic probabilities of logical properties and of 0-1
laws for various logics of interest in computer science. More recently, there has been a study
of profinite words, which has found applications to automata theory and to the satisfiability
problem for variants of monadic second-order logic (see, e.g., [17, 20]). Note that the profinite
words form the completion of a metric space on words in which the distance is based on the
size of the largest deterministic finite automaton needed to separate two words. Finally, as
mentioned in the previous section, there is a direct connection between graph limits in the
monograph [15] by Nesetfil and Ossona de Mendez and the completion of the metric space
(P(Inst(T)),d), which may merit further exploration. It should also be pointed out that,
motivated from the study of large-scale networks, there has been an extensive body of work
on a notion of graph limits arising from converging sequences of homomorphism densities;
a detailed account of this work is given in the monograph [13] by Lovész. In addition,
Nesetfil and Ossona de Mendez [16] developed a general framework for limits of graphs and
relational structures; in that framework, different fragments of first-order logic are used to
define different notions of limits arising from converging sequences of the frequencies that
first-order formulas in the fragment at hand are satisfied by an assignment (homomorphism
densities correspond to the fragment consisting of all quantifier-free conjunctive queries).
Homomorphisms, metric completions, and representations of limits of finite structures play a
central role in [13, 16]. The precise connections with the work reported here will have to be
worked out in a future investigation.
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