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Preface

The 19th International Conference on Database Theory (ICDT 2016) was held in Bordeaux,
France, March 15–18, 2016. Originally biennial, the ICDT conference has been held annually
and jointly with EDBT (“Extending Database Technology”) since 2009.

The proceedings of ICDT 2016 include an overview of a keynote by Floris Geerts (Uni-
versity of Antwerp), an overview of a keynote by Yufei Tao (University of Queensland),
a paper by David P. Woodruff (IBM Almaden) based on his invited lecture, a laudation
concerning the ICDT 2016 Test of Time Award, and 19 research papers that were selected
by the Program Committee from 41 submissions.

Out of the 19 accepted papers, the Program Committee selected the paper Beyond
Well-Designed SPARQL by Mark Kaminski and Egor V. Kostylev for the ICDT 2016 Best
Paper Award. Furthermore, the Program Committee selected the paper A Framework for
Estimating Stream Expression Cardinalities by Anirban Dasgupta, Kevin Lang, Lee Rhodes,
and Justin Thaler for the ICDT 2016 Best Newcomer Award. The Test of Time Award for
ICDT 2016 is given to the paper Conjunctive Query Containment Revisited by Chandra
Chekuri and Anand Rajaraman, which originally appeared in the proceedings of ICDT 1997.
Warmest congratulations to the authors of these award winning papers!

I thank all authors who submitted papers to ICDT 2016. I would also like to thank all
members of the Program Committee, and the external reviewers, for the enormous amount
of work they have done. The Program Committee carried out extensive discussions during
the electronic PC meetings, before and after rebuttal. I am very grateful to Foto Afrati,
Claire David, and Georg Gottlob for their efforts and expertise in selecting the paper for the
Test of Time Award. I thank Andrei Voronkov for his EasyChair system, which made it easy
to manage and coordinate the discussion.

I thank the ICDT Council members for their help in selecting the Program Committee
and in particular the Council Chair Thomas Schwentick for his continuous advice on a
wide variety of matters concerning ICDT. Special thanks also go to Thomas Zeume, the
Proceedings Chair of ICDT 2016. I thank last year’s PC Chair Marcelo Arenas and last
year’s Proceedings Chair Martín Ugarte for sharing their knowledge and experience which
substantially helped us in producing the proceedings. Finally, I thank many colleagues
involved in the organisation of the conference for fruitful collaboration, in particular, Sofian
Maabout (EDBT/ICDT 2016 Conference Chair).

Wim Martens
January 2016
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The ICDT 2016 Test of Time Award
Announcement
Foto N. Afrati1, Claire David2, and Georg Gottlob3

1 National Technical Universtity of Athens, Athens, Greece
afrati@softlab.ece.ntua.gr

2 Université Paris-Est Marne-la-Vallée, Marne-la-Vallée, France
Claire.David@u-pem.fr

3 University of Oxford, Oxford, UK
georg.gottlob@cs.ox.ac.uk

Abstract
We describe the 2016 ICDT Test of Time Award which is awarded to Chandra Chekuri and
Anand Rajaraman for their 1997 ICDT paper on “Conjunctive Query Containment Revisited”.

1998 ACM Subject Classification H.2.3 [Database Management] Languages

Keywords and phrases conjunctive query, treewidth, NP-hardness, rewriting

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.1

1 The ICDT 2016 Test of Time Award

In 2013, the International Conference on Database Theory (ICDT) began awarding the ICDT
Test of Time (ToT) Award, with the goal of recognizing one paper, or a small number of
papers, presented at earlier ICDT conferences that have best met the “test of time”. In
2016, the award recognizes a paper selected from the proceedings of the ICDT 1995 & 1997
conferences, that has had the highest impact in terms of research, methodology, conceptual
contribution, or transfer to practice over the past decade. The award was presented during
the EDBT/ICDT 2016 Joint Conference, March 15–18, 2016 in Bordeaux, France.

The 2016 Test of Time Award Committee, consisting of Foto N. Afrati, Claire David,
and Georg Gottlob (chair), has chosen the following contribution for the 2016 ICDT Test of
Time Award:1

Conjunctive Query Containment Revisited
by Chandra Chekuri and Anand Rajaraman
6th International Conference on Database Theory (ICDT 1997)

The paper is available here: http://dx.doi.org/10.1007/3-540-62222-5_36.

2 Contribution

This landmark paper made highly significant contributions to the problems of conjunctive
query containment and optimization. While it was known that these NP-hard problems
are tractable in case of acyclic queries, Chekuri and Rajaraman observed that the most

1 Full citation is given in [1].

© Foto N. Afrati, Claire David, and Georg Gottlob;
licensed under Creative Commons License CC-BY
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1:2 The ICDT 2016 Test of Time Award Announcement

commonly encountered queries, while not necessarily acyclic, are in some sense nearly acyclic
and still lend themselves to polynomial-time containment and minimization algorithms. To
make this precise, they introduced the concept of query width, which is based on the notion
of query decomposition combining treewidth-like decomposition techniques with set covering
methods. In particular, the class of acyclic queries coincides with the class of queries having
query width 1. They showed that the problems of query-containment and query minimization
are tractable for classes of queries whose query width is bounded by some constant k in case
a query decomposition of width ≤ k is given.

The paper contains a number of further important results on (i) the relationship between
the query width of a query and the treewidth of its incidence graph, (ii) the hardness of
approximating query minimization, and (iii) rewriting and answering queries of bounded
query width in presence of views.

This highly cited paper, whose full version has appeared in Theoretical Computer Sci-
ence [2], had a major impact on subsequent work in Database Theory and Artificial Intelligence
(in particular, constraint satisfaction). Its pioneering use of hypergraph-based rather than
graph-based decomposition techniques marked the beginning of a still ongoing series of invest-
igations that have led to the definition of further, successively more general decomposition
techniques, rooted in the very idea of query decomposition.

Foto N. Afrati Claire David Georg Gottlob

The ICDT Test of Time Award Committee for 2016

References
1 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. In

Proc. of the 6th International Conference on Database Theory (ICDT’97), Delphi, Greece,
January 8–10, 1997, volume 1186 of Lecture Notes in Computer Science, pages 56–70.
Springer, 1997. doi:10.1007/3-540-62222-5_36.

2 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theor.
Comput. Sci., 239(2):211–229, 2000. doi:10.1016/S0304-3975(99)00220-0.
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Scale Independence: Using Small Data to Answer
Queries on Big Data
Floris Geerts

Department of Mathematics & Computer Science, University of Antwerp, Belgium
floris.geerts@uantwerpen.be

Abstract
Large datasets introduce challenges to the scalability of query answering. Given a query Q and a
dataset D, it is often prohibitively costly to compute the query answers Q(D) when D is big. To
this end, one may want to use heuristics, “quick and dirty” algorithms which return approximate
answers. However, in many applications it is a must to find exact query answers. So, how can
we efficiently compute Q(D) when D is big or when we only have limited resources?

One idea is to find a small subset DQ of D such that Q(DQ) = Q(D) where the size of DQ is
independent of the size of the underlying dataset D. Intuitively, when such a DQ can be found
for a query Q, the query is said to be scale independent [1, 2, 9]. Indeed, for answering such
queries the size of the underlying database does not matter, i.e., query processing is independent
of the scale of the database.

In this talk, I will survey various formalisms that enable large classes of queries to be scale
independent. These formalisms primarily rely on the availability of access constraints, a com-
bination of indexes and cardinality constraints, on the data [8, 9]. We will take a closer look at
how, in the presence of such constraints, queries can often be compiled into efficient query plans
that access a bounded amount data [6, 8], and how these techniques relate to query processing
in the presence of access patterns [3, 4, 7]. Finally, we illustrate that scale independent queries
are quite common in practice and that they indeed can be efficiently answered on big datasets
when access constraints are present [5, 6].

1998 ACM Subject Classification H.2.4 [Database Management] Systems – Query Processing,
H.2.3 [Database Management] Languages – Query Languages, H.2.2 [Database Management]
Physical Design – Access methods

Keywords and phrases Scale independence, Access constraints, Query processing

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.2

Category Invited Talk

References
1 Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin, and

David A. Patterson. PIQL: Success-tolerant query processing in the cloud. PVLDB,
5(3):181–192, 2011.

2 Michael Armbrust, Eric Liang, Tim Kraska, Armando Fox, Michael J. Franklin, and
David A. Patterson. Generalized scale independence through incremental precomputation.
In Proc SIGMOD 2013, pages 625–636, 2013.

3 Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. Querying with access patterns
and integrity constraints. PVLDB, 8(6):690–701, 2015.

4 Michael Benedikt, Balder ten Cate, and Efthymia Tsamoura. Generating low-cost plans
from proofs. In Proc. PODS 2014, pages 200–211, 2014.
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Top-k Indexes Made Small and Sweet
Yufei Tao

University of Queensland, Brisbane, Queensland, Australia
taoyf@itee.uq.edu.au

Abstract
Top-k queries have become extremely popular in the database community. Such a query, which
is issued on a set of elements each carrying a real-valued weight, returns the k elements with the
highest weights among all the elements that satisfy a predicate. As usual, an index structure is
necessary to answer a query substantially faster than accessing the whole input set.

The existing research on top-k queries can be classified in two categories. The first one, which
is system-oriented, aims to devise indexes that are simple to understand and easy to implement.
These indexes, typically designed with heuristics, are reasonably fast in practical applications,
but do not necessarily offer strong performance guarantees – in other words, they are small but
not sweet. The other category, which is theory-oriented, aims to develop indexes that promise
attractive bounds on the space consumption and query overhead (sometimes also update cost).
These indexes, unfortunately, are often excessively sophisticated in the adopted techniques, and
are rarely applied in practice – they are sweet but not small.

This talk will discuss the progress of an on-going project that strives to take down the barrier
between the two categories, by crafting a framework for acquiring simple top-k indexes with
excellent performance guarantees – namely, small and sweet. This is achieved with reductions
that produce top-k indexes automatically from the existing data structures for conventional
reporting queries on unweighted elements (i.e., finding all elements satisfying a predicate), and/or
the existing data structures on top-1 queries. Our reductions promise nearly no performance
deterioration with respect to those existing structures, are general enough to be applicable to
a huge variety of top-k problems, and work in both the external memory model and the RAM
model.

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Data Structures, Top-k, External Memory, RAM, Reductions

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.3
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Abstract
An old and fundamental problem in databases and data streams is that of finding the heavy
hitters, also known as the top-k, most popular items, frequent items, elephants, or iceberg queries.
There are several variants of this problem, which quantify what it means for an item to be frequent,
including what are known as the `1-heavy hitters and `2-heavy hitters. There are a number of
algorithmic solutions for these problems, starting with the work of Misra and Gries, as well as
the CountMin and CountSketch data structures, among others.

In this paper (accompanying an invited talk) we cover several recent results developed in this
area, which improve upon the classical solutions to these problems. In particular, we develop
new algorithms for finding `1-heavy hitters and `2-heavy hitters, with significantly less memory
required than what was known, and which are optimal in a number of parameter regimes.
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mining, C.2.3 [Computer-Communication Networks]: Network Operations – Network monitoring,
F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical Algorithms and Problems
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1 The Heavy Hitters Problem

A well-studied problem in databases and data streams is that of finding the heavy hitters,
also known as the top-k, most popular items, frequent items, elephants, or iceberg quries.
These can be used for flow identification at IP routers [20], in association rules and frequent
itemsets [1, 44, 47, 25, 24], and for iceberg queries and iceberg datacubes [21, 6, 23]. We
refer the reader to the survey [16], which presents an overview of known algorithms for this
problem, from both theoretical and practical standpoints.

There are various different flavors of guarantees for the heavy hitters problem. We start
with what is known as the `1-guarantee:

I Definition 1 (`1-(ε, φ)-Heavy Hitters Problem). In the (ε, φ)-Heavy Hitters Problem, we
are given parameters 0 < ε < 1 and 2ε ≤ φ ≤ 1, as well as a stream a1, . . . , am of items
aj ∈ {1, 2, . . . , n}. Let fi denote the number of occurrences of item i, i.e., its frequency. The
algorithm should make one pass over the stream and at the end of the stream output a
set S ⊆ {1, 2, . . . , n} for which if fi ≥ φm, then i ∈ S, while if fi ≤ (φ − ε)m, then i /∈ S.
Further, for each item i ∈ S, the algorithm should output an estimate f̃i of the frequency fi
which satisfies |fi − f̃i| ≤ εm.

We are interested in algorithms which use as little space (i.e., memory) in bits as possible
to solve the `1-(ε, φ)-Heavy Hitters Problem. We allow the algorithm to be randomized and
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4:2 New Algorithms for Heavy Hitters in Data Streams

to succeed with probability at least 1− δ, for 0 < δ < 1. We do not make any assumption on
the ordering of the stream a1, . . . , am. This is desirable, as often in applications one cannot
assume a best-case or even a random order. We will assume m is known in advance, though
many of the algorithms below (including ours) can deal with unknown m. We note that while
the problem still makes sense for any φ > ε, it is well-known that an Ω(n) space lower bound
exists when φ is very close to ε, e.g., if φ = ε+ 1/n. Indeed, this follows via a reduction from
communication complexity, which is a standard method for proving lower bounds in data
streams. In particular, a reduction from the so-called INDEX problem is readily apparent -
we refer the reader to [32] for more details of the communication problem (see, e.g., [43] for
a recent survey discussing the INDEX problem).

The first algorithm for the `1-(ε, φ)-Heavy Hitters Problem was given by Misra and Gries
[38], who achieved O(ε−1 logn) bits of space for any φ > 2ε. This algorithm was rediscovered
by Demaine et al. [18], and again by Karp et al. [31]. Other than these algorithms, which are
deterministic, there are a number of randomized algorithms, such as the CountSketch [13],
Count-Min sketch [17], sticky sampling [34], lossy counting [34], space-saving [36], sample
and hold [20], multi-stage bloom filters [11], and sketch-guided sampling [33]. Berinde et al.
[5] show that using O(kε−1 log(mn)) bits of space, one can achieve the stronger guarantee of
reporting, for each item i ∈ S, f̃i with |f̃i − fi| ≤ ε

kF
res(k)
1 , where F res(k)

1 < m denotes the
sum of frequencies of items in {1, 2, . . . , n} excluding the frequencies of the k most frequent
items. This is particularly useful when there are only a few large frequencies, since then the
error ε

kF
res(k)
1 will depend only on the remaining small frequencies.

While the `1-heavy hitters have a number of applications, there is also a sometimes
stronger notion known as the `2-heavy hitters, which we now define.

I Definition 2 (`2-(ε, φ)-Heavy Hitters Problem). In the (ε, φ)-Heavy Hitters Problem, we
are given parameters 0 < ε < 1 and 2ε ≤ φ ≤ 1, as well as a stream a1, . . . , am of items
aj ∈ {1, 2, . . . , n}. Let fi denote the number of occurrences of item i, i.e., its frequency.
Let F2 =

∑n
i=1 f

2
i . The algorithm should make one pass over the stream and at the end

of the stream output a set S ⊆ {1, 2, . . . , n} for which if f2
i ≥ φF2, then i ∈ S, while if

f2
i ≤ (φ− ε)F2, then i /∈ S. Further, for each item i ∈ S, the algorithm should output an
estimate f̃i of the frequency fi which satisfies |fi − f̃i| ≤ ε

√
F2.

One of the algorithms for `1-heavy hitters mentioned above, the CountSketch [14], refined
in [46], actually solves the `2-(ε, φ)-Heavy Hitters Problem. Notice that this guarantee can
be significantly stronger than the aforementioned `1-guarantee that fi ≥ εm. Indeed, if
fi ≥ φm, then f2

i ≥ φ2m2 ≥ φ2F2. So, an algorithm for finding the `2-heavy hitters, with φ
replaced by φ2, will find all items satisfying the `1-guarantee with parameter φ. On the other
hand, given a stream of n distinct items in which fi∗ =

√
n for an i∗ ∈ [n] = {1, 2, 3, . . . , n},

yet fi = 1 for all i 6= i∗, an algorithm satisfying the `2-heavy hitters guarantee will identify
item i with constant φ, but an algorithm which only has the `1-guarantee would need to set
φ = 1/

√
n, therefore using Ω(

√
n) bits of space. In fact, `2-heavy hitters are in some sense

the best one can hope for with a small amount of space in a data stream, as it is known for
p > 2 that finding those i for which fpi ≥ φFp requires n1−2/p bits of space even for constant
φ [4, 12].

The `2-heavy hitter algorithms of [14, 46] have broad applications in compressed sensing
[22, 42, 37] and numerical linear algebra [15, 35, 40, 9], and are often used as a subroutine in
other data stream algorithms, such as `p-sampling [39, 3, 29], cascaded aggregates [28], and
frequency moments [27, 8].

Given the many applications of heavy hitters, it is natural to ask what the best space
complexity for them is. For simplicity of presentation, we make the common assumption
that the stream length m is polynomially related to the universe size n.
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It is clear that for constant ε and φ, that there is an Ω(logn) bit lower bound, as this is
just the number of bits needed to specify the identity of the heavy hitter.

For constant ε, given the aforementioned results, this is actually tight for the `1-(ε, φ)-
Heavy Hitters Problem. The main focus then, for the `1-(ε, φ)-Heavy Hitters Problem is on
obtaining tight bounds as a function of ε and φ.

On the other hand, for the `2-(ε, φ)-Heavy Hitters Problem, even for constant ε and φ,
the best previous algorithms of [14] and the followup [46] achieve Θ(log2 n) bits of space. It
is known that if one allows deletions in the stream, in addition to insertions, then Θ(log2 n)
bits of space is optimal [19, 29]. However, in many cases we just have a stream of insertions,
such as in the model studied in the seminal paper of Alon, Matias, and Szegedy [2]. Thus,
for the `2-(ε, φ)-Heavy Hitters Problem, our focus will be on the regime of constant ε and φ
and on understanding the dependence on n.

There are a number of other desirable properties one would want out of a heavy hitters
algorithm. For instance, one is often also interested in minimizing the update time and
reporting time of such algorithms. Here, the update time is defined to be the time the
algorithm needs to update its data structure when processing a stream insertion. The
reporting time is the time the algorithm needs to report the answer after having processed
the stream. In this article we will focus primarily on the space complexity.

2 Our Recent Results

In several recent works [10, 7], together with coauthors we significantly improve known
algorithms for finding both `1-heavy hitters as well as `2-heavy hitters. For many settings of
parameters, our algorithms are optimal.

2.1 `1-Heavy Hitters
In joint work with Bhattacharyya and Dey [7], we improve upon the basic algorithm of Misra
and Gries [38] for the `1-(ε, φ)-Heavy Hitters Problem, the latter achieving O(ε−1 logn) bits
of space for any φ ≥ 2ε. We now describe the algorithm of [7].

We first recall the algorithm of Misra and Gries. That algorithm initializes a table of
1/ε+ 1 pairs of (v, c) to (⊥, 0), where v is an element in the universe {1, 2, . . . , n} ∪⊥, and c
is a non-negative integer. When receiving a new stream insertion ai, the algorithm checks if
v = ai for some (v, c) pair in the table. If so, it replaces (v, c) with (v, c+ 1). Otherwise, if
there is a (v, c) in the table with v = ⊥, then the algorithm replaces that (v, c) pair with
(ai, 1). If neither of the previous two cases hold, the algorithm takes each (v, c) pair in the
table, and replaces it with (v, c− 1). If c− 1 = 0, then the corresponding v is replaced with
⊥.

Note that the algorithm, as described in the previous paragraph, naturally can be
implemented using O(ε−1 logn) bits of space (recall we assume the stream length m and the
universe size n are polynomially related, so logm = Θ(logn)). Moreover, a nice property is
that the algorithm is deterministic.

For the correctness, note that if an item i occurs fi ≥ 2εm times, then it will appear in
the table at the end of the stream. Indeed, notice that for each occurrence of i in the stream,
if it is not included in the table via the operation of replacing a pair (i, c) with (i, c+ 1) for
some value of c, or replacing a pair (⊥, 0) with (i, 1), then this means that there were at least
1/ε+ 1 stream updates that were removed from the table upon seeing this occurrence of i,
since each counter c for each (v, c) pair in the table is decremented by 1. We can therefore
charge those stream updates to this occurrence of i. Moreover, if (i, c) is in the table for
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4:4 New Algorithms for Heavy Hitters in Data Streams

some value of c and is replaced with (i, c− 1) or (⊥, 0), this means we can charge at least
1/ε stream updates to items not equal to i to this occurrence of i. Since we are charging
distinct stream updates for each occurrence of i, we have the relationship that fi · (1/ε) ≤ m,
which is a contradiction to fi ≥ 2εm. Therefore, i will occur in a pair in the table at the
end of the stream. The same analysis in fact implies that at most εm occurrences of i will
not be accounted for in the table at the end of the stream, which means that for the (i, c)
pair in the table, we have fi ≥ c ≥ fi − εm. This latter guarantee enables us to solve the
`1-(ε, φ)-Heavy Hitters Problem for any φ ≥ 2ε.

One shortcoming of the algorithm above is that if φ is much larger than ε, say φ is
constant, then the above algorithm still requires O(ε−1 logn) bits of space, that is, it is
insensitive to the value of φ. Consider for instance, the case when ε = 1/ logn and φ = 1/10,
so one wants a very high accuracy estimate to each of the item frequencies for items occurring
at least 10% of the time. The above algorithm would use O(log2 n) bits of space for this
problem. In this case, the only known lower bound is Ω(logn) bits, which just follows from
the need to return the identities of the heavy hitters. Is it possible to improve this O(log2 n)
bits of space upper bound?

This is precisely what we show in [7]. Here we sketch how to achieve a bound of
O((1/φ) logn + (1/ε) log(1/ε)) bits of space and refer to [7] for further optimizations as
well as extensions to related problems. Note that this translates to a space bound of
O(logn log logn) bits for the above setting of parameters.

The first observation is that if we randomly sample r = Θ(1/ε2) stream updates, then with
probability 99%, simultaneously for every universe item i, if we let f̂i denote its frequency
among the samples, and fi its frequency in the original stream, then we have∣∣∣∣∣ f̂ir − fi

m

∣∣∣∣∣ ≤ ε

2 .

This follows by Chebyshev’s inequality and a union bound. Indeed, consider a given i ∈ [n]
with frequency fi and suppose we sample each of its occurrences pairwise-independently with
probability r/m, for a parameter r. Recall that pairwise independence here implies that
any single occurrence is sampled with probability r/m and any two occurrences are jointly
sampled with probability exactly r2/m2, though we do not impose any constraints on the
joint distribution of any three or more samples. Also, a pairwise independent hash function
can be represented with only O(logn) bits of space. Then the expected number E[f̂i] of
sampled occurrences is fi · r/m and the variance Var[f̂i] is fi · r/m(1− r/m) ≤ fir/m (here
we use pairwise independence to conclude the same variance bound as if the samples were
fully independent). Applying Chebyshev’s inequality,

Pr
[∣∣∣f̂i −E[f̂i]

∣∣∣ ≥ rε

2

]
≤ Var[f̂i]

(rε/2)2 ≤
4fir
mr2ε2

.

Setting r = C
ε2 for a constant C > 0 makes this probability at most 4fi

Cm . By the union
bound, if we sample each element in the stream independently with probability r

m , then the
probability there exists an i for which |f̂i −E[f̂i]| ≥ rε

2 is at most
∑n
i=1

4fi

Cm ≤
4
C , which for

C ≥ 400 is at most 1
100 , as desired.

After sampling so that the stream length is reduced to O(1/ε2), it follows that the
number of distinct items in the stream is also O(1/ε2), and therefore if we hash the item
identifiers to a universe of size O(1/ε4), by standard arguments with probability 99% the
items will be perfectly hashed, that is, there will be no collisions. This follows even with a
pairwise-independent hash function h. The high level idea then is to run the algorithm of
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Misra and Gries, but the pairs (v, c) correspond to the hashed item identity and the count in
the sampled stream, respectively. Notice that it takes only O(log(1/ε)) bits to represent such
pairs and so the algorithm of Misra and Gries would take O(ε−1 log(1/ε)) bits of space.

However, we still want to return the actual item identifiers! To do this, we maintain
a parallel data structure containing actual item identifiers in [n], but the data structure
only contains O(1/φ) items. In particular, these item identities correspond to the items v
for which (h(v), c) is stored in the algorithm of Misra and Gries, for which the c values are
largest. Namely, the items with top 1/φ c-values have their actual identities stored. This can
be maintained under stream insertions since given a new stream update, one has the actual
identity in hand, and therefore can appropriately update the identities of the items with top
O(1/φ) counts. Moreover, when we subtract one from all counters in the algorithm of Misra
and Gries, the only thing that changes in the top O(1/φ) identities is that some of them
may now have zero frequency, and so can be thrown out. Thus, we can always maintain the
actual top O(1/φ) identities in the original (before hashing) universe.

We refer the reader to [7] for more details, optimizations, and extensions to related
problems.

2.2 `2-Heavy Hitters
In joint work with Braverman, Chestnut, and Ivkin [10], we improve upon the CountSketch
data structure [14] for the `2-(ε, φ)-Heavy Hitters Problem. To illustrate the algorithm of [10],
we consider ε and φ to be constants in what follows, and further, we suppose there is only a
single i∗ ∈ [n] for which f2

i∗ ≥ φF2 and there is no i for which (φ− ε)F2 ≤ f2
i < φF2. It is

not hard to reduce to this case by first hashing into O(1) buckets (recall φ, ε are constants
for this discussion), since the O(1/φ) heavy hitters will go to separate buckets with large
constant probability (if, say, we have Ω(1/φ2) buckets). Thus, we focus on this case. In this
case the CountSketch algorithm would use Θ(log2 n) bits of space, whereas in [10] we achieve
O(logn log logn) bits of space, nearly matching the trivial Ω(logn) bit lower bound.

We first explain the CountSketch data structure. The idea is to assign each item i ∈ [n]
a random sign σ(i) ∈ {−1, 1}. We also randomly partition [n] into B buckets via a hash
function h and maintain a counter cj =

∑
i|h(i)=j σ(i) · fi in the j-th bucket. Then, to

estimate any given frequency fi, we estimate it as σ(i) · ch(i). Note that E[σ(i) · ch(i)] =
E[σ(i)2fi +

∑
j 6=i,h(j)=h(i) fjσ(j)σ(i)] = fi, using that E[σ(i)σ(j)] = 0 for i 6= j. Moreover,

by computing the variance and applying Chebyshev’s inequality, one has that

|σ(i) · ch(i) − fi| = O(
√
F2/B)

with probability at least 9/10. The intuitive explanation is that due to the random sign
combination of remaining items in the same hash bucket as i, the absolute value of this linear
combination concentrates to the Euclidean norm of the frequency vector of these items. The
idea then is to repeat this independently O(logn) times in parallel. Then we estimate fi
by taking the median of the estimates across each of the O(logn) repetitions. By Chernoff
bounds, we have that with probability 1 − 1/n2, say, the resulting estimate is within an
additive O(

√
F2/B) of the true frequency fi. This then holds for every i ∈ [n] simultaneously

by a union bound, at which point one can then find the `2-heavy hitters, if say, one sets
B = Θ(1/ε2).

Notice that it is easy to maintain the CountSketch data structure in a data stream since
we just need to hash the new item i to the appropriate bucket and add σ(i) to the counter
in that bucket, once for each of the O(logn) repetitions. The total space complexity of
the CountSketch algorithm is O(B · log2 n), where the “B” is the number of hash buckets,

ICDT 2016



4:6 New Algorithms for Heavy Hitters in Data Streams

one logn factor is to store the counter in each bucket, and the other logn factor is for the
number of repetitions. For constant ε and B = Θ(1/ε2) this gives O(log2 n) bits of space. It
is also not hard to see that the CountSketch data structure can be maintained in a stream
with deletions as well as insertions, since given a deletion to item i, this just corresponds
to subtracting σ(i) from the bucket i hashes to in each repetition. Moreover, as mentioned
earlier, this O(log2 n) space bound is optimal for streams with deletions.

To give some intuition for our new algorithm, let i∗ ∈ [n] be the identity of the single
`2-heavy hitter that we wish to find. Suppose first that fi∗ ≥

√
n logn and that fi ∈ {0, 1}

for all i ∈ [n] \ {i∗}. For the moment, we are also going to ignore the issue of storing random
bits, so assume we can store poly(n) random bits for free (which can be indexed into using
O(logn) bits of space). We will later sketch how to remove this assumption. As in the
CountSketch algorithm, we again assign a random sign σ(i) to each item i ∈ [n]. Suppose
we randomly partition [n] into two buckets using a hash function h : [n] → {1, 2}, and
correspondingly maintain two counters c1 =

∑
i|h(i)=1 σ(i) · fi and c2 =

∑
i|h(i)=2 σ(i) · fi.

Suppose for discussion that h(i∗) = 1. A natural question is what the values c1 and c2 look
like as we see more updates in the stream.

Consider the values c1 − σ(i∗) · fi∗ and c2. Then, since all frequencies other than i∗ are
assumed to be 0 or 1, and since the signs σ(j) are independent, these two quantities evolve
as random walks starting at 0 and incrementing by +1 with probability 1/2, and by −1 with
probability 1/2, at each step of the walk. By standard theory of random walks (e.g., Levy’s
theorem), there is a constant C > 0 so that with probability at least 9/10, simultaneously
at all times during the stream we have that |c1 − σ(i∗) · fi∗ | and |c2| are upper bounded by
C
√
n. The constant of 9/10, like typical constants in this paper, is somewhat arbitrary. This

suggests the following approach to learning i∗: at some point in the stream we will have that
fi∗ > 2C

√
n, and at that point |c1| > C

√
n, but then we know that i∗ occurs in the first

bucket. This is assuming that the above event holds for the random walks. Since we split [n]
randomly into two pieces, this gives us 1 bit of information about the identity of i∗. If we
were to repeat this O(logn) times in parallel, we would get exactly the CountSketch data
structure, which would use Θ(log2 n) bits of space. Instead, we get much better space by
repeating Θ(logn) times sequentially!

To repeat this sequentially, we simply wait until either |c1| or |c2| exceeds Cn1/2, at
which point we learn one bit of information about i∗. Then, we reset the two counters to
0 and perform the procedure again. Assuming fi∗ = Ω(

√
n logn), we will have Ω(logn)

repetitions of this procedure, each one succeeding independently with probability 9/10. By
Chernoff bounds, there will only be a single index i ∈ [n] which match a 2/3 fraction of these
repetitions, and necessarily i = i∗.

2.2.1 Gaussian Processes
In general we do not have fi∗ = Ω(

√
n logn), nor do we have that fi ∈ {0, 1} for all

i ∈ [n] \ {i∗}. We fix both problems using the theory of Gaussian processes.

I Definition 3. A Gaussian process is a collection {Xt}t∈T of random variables, for an
index set T , for which every finite linear combination of the random variables is Gaussian.

We assume E[Xt] = 0 for all t, as this will suffice for our application. It then follows that the
Gaussian process is entirely determined by its covariances E[XsXt]. This fact is related to
the fact that a Gaussian distribution is determined by its mean and covariance. The distance
function d(s, t) = (E[(Xs−Xt)2])1/2 is then a pseudo-metric on T (the only property it lacks
of a metric is that d(s, t) may equal 0 if s 6= t).
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The connection to data streams is the following. Suppose we replace the signs σ(i) with
standard normal random variables g(i) in our counters above, and consider a counter c at
time t, denoted c(t), of the form

∑
i g(i) · fi(t). Here fi(t) is the frequency of item i after

processing t stream insertions. The main point is that c(t) is a Gaussian process! Indeed,
any linear combination of the c(t) values for different t is again Gaussian since the sum of
normal random variables is again a normal random variable.

The reason we wish to make such a connection to Gaussian processes is the following
powerful inequality called the “chaining inequality”.

I Theorem 4 (Talagrand [45]). Let {Xt}t∈T be a Gaussian process and let T0 ⊆ T1 ⊆ T2 ⊆
· · · ⊆ T be such that |T0| = 1 and |Ti| ≤ 22i for i ≥ 1. Then,

E
[
sup
t∈T

Xt

]
≤ O(1) · sup

t∈T

∑
i≥0

2i/2d(t, Ti),

where d(t, Ti) = mins∈Ti d(t, s).

We wish to apply Theorem 4 to the problem of finding `2-heavy hitters. Let F2(t) be the
value of the second moment F2 after seeing t stream insertions. We now describe how to
choose the sets Ti in order to apply the chaining inequality; the intuition is that we recursively
partition the stream based on its F2 value.

Let at be the first stream update for which F2(m)/2 ≤ F2(t). Then T0 = {t}. We then
let Ti be the set of 22i times t1, t2, . . . , t22i in the stream for which tj is the first point in the
stream for which j · F2(m)/22i ≤ F2(tj). Then, we have created a nested sequence of subsets
T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ T with |T0| = 1 and |Ti| ≤ 22i for i ≥ 1.

We are now in position to apply Theorem 4. A straightforward computation based on
our recursive partitioning of the stream around where F2 changes (see [10] for details) shows
that for any stream position t and set Ti we have created,

d(t, Ti) =
(

E[min
s∈Ti

|c(t)− c(s)|2]
)1/2

= O

(
F2

22i

)1/2
.

Applying Theorem 4, we have

E[sup
t∈T

Xt] ≤ O(1) sup
t∈T

∑
i≥0

2i/2
(
F2

22i

)1/2
= O(F 1/2

2 ).

This is exactly the same bound that the theory for random walks gave us earlier! (recall in
that case

∑
i 6=i∗ f

2
i < n).

Using Gaussian processes has therefore allowed us to remove our earlier assumption
that fi ∈ {0, 1} for all i ∈ [n] \ {i∗}. The same random walk based algorithm will now
work; however, we still need to assume the fi∗ = Ω(

√
F2 logn) in order to learn logn bits

of information to identify i∗, as before. This is not satisfactory, as an `2-heavy hitter only
satisfies fi = Ω(

√
F2) (recall we have assumed φ and ε are constants), which is weaker than

the fi∗ = Ω(
√
F2 logn) that the above analysis requires.

2.2.2 Amplification
To remove the assumption that fi∗ = Ω(

√
F2 logn), our work [10] designs what we call

an “amplification” procedure. This involves for j = 1, 2, . . . , O(log logn), independently
choosing a pairwise independent hash function hj : [n] → {1, 2}. For each j, we as before
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4:8 New Algorithms for Heavy Hitters in Data Streams

maintain two counters cj1 =
∑
i|hj(i)=1 gj(i) · fi and c

j
2 =

∑
i|hj(i)=2 gj(i) · fi, where the gj(i)

are independent standard normal random variables.
Applying the chaining inequality to each of the O(log logn) counters created, we have

that with large constant probability, in a constant fraction of the O(log logn) pairs, both
counters cj1 and cj2 will be bounded by O(

√
F2) in magnitude. It follows that if fi∗ ≥ C

√
F2

for a sufficiently large constant C > 0 (which we can assume by first hashing the universe
into O(1) buckets before the streaming algorithm begins), then in say, a 9/10 fraction of
pairs j, the counter cjk, k ∈ {1, 2}, of larger magnitude will contain i∗. Moreover, by Chernoff
bounds, only a 1

logc n fraction of other i ∈ [n] will hash to the larger counter in at least a
9/10 fraction of such pairs, where c > 0 is a constant that can be made arbitrarily large by
increasing the constant in the number O(log logn) of pairs of counters created. Now the idea
is to effectively run our previous algorithm only on items which hash to the heavier counter
in at least a 9/10 fraction of pairs. By definition, this will contain i∗, and now the expected
second moment of the other items for which we run the algorithm on will be F2/ logc n,
which effectively makes fi∗ = Ω(

√
F2 logn), where F2 is now measured with respect to the

items for which we run the algorithm on. Now we can sequentially learn O(logn) bits of
information about i∗ in our algorithm, as before.

One thing to note about this approach is that after seeing a sufficiently large number of
insertions of i∗, i.e., Θ(

√
F2) such insertions, then most of the pairs of counters will have

the property that the larger counter (in absolute value) stays larger forever. This is due to
the chaining inequality. This can be used to fix the itemset for which we run the algorithm
on. In fact, this is precisely why this does not result in a 2-pass algorithm, which one might
expect since one does not know the itemset to run our algorithm on in advance. However, we
always run the algorithm on whichever current itemset agrees with at least a 9/10 fraction of
the larger counters, and just accept the fact that in the beginning of the stream the bits we
learn about i∗ are nonsense; however, after enough updates to i∗ have occurred in the stream
then the counters “fix” themselves in the sense that the larger counter does not change. At
this point the bits we learn about i∗ in our algorithm are the actual bits that we desire. At
the end of the stream, we only look at a suffix of these bits to figure out i∗, thereby ignoring
the nonsensical bits at the beginning of the stream. We refer the reader to [10] for more
details.

2.2.3 Derandomization
The final piece of the algorithm is to account for the randomness used by the algorithm. We
need to derandomize the counters, which use the theory of Gaussian processes to argue their
correctness. We also cannot afford to maintain all of the hash functions that were used to
learn specific bits of i∗ (which we need ad the end of the stream to figure out what i∗ is).

To derandomize the Gaussian processes, we use a derandomized Johnson Lindenstrauss
transform of Kane, Meka, and Nelson [30]. The rough idea is to first apply a Johnson-
Lindenstrauss transform to the frequency vectors for which we take inner products with
independent Gaussian random variables in our counters. This will reduce the dimension from
n to O(logn), for which we can then afford to take an inner product with fully independent
Gaussian random variables. The nice thing about Johnson-Lindenstrauss transforms is that
they preserve all the covariances up to a constant factor in our specific Gaussian process,
and therefore we can use Slepian’s Lemma (see [10] for details) to argue that the Gaussian
process is roughly the same as before, since it is entirely determined by its covariances. Here
the derandomized Johnson-Lindenstrauss transform of [30] can be represented using only
O(logn log logn) bits of space. Also, instead of using Gaussian random variables, which
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require truncation, we can directly use sign random variables (+1 with probability 1/2, −1
with probability 1/2), which results in what are called Bernoulli processes, together with
a comparison theorem for Bernoulli processes and Gaussian processes. This enables us to
avoid arguments about truncating Gaussians.

To derandomize the hash functions, we use Nisan’s pseudorandom generator in a similar
way that Indyk uses it for derandomizing his algorithms for norm estimation [41, 26]. Please
see [10] for further details.

3 Conclusions

We presented new algorithms for finding `1-heavy hitters and `2-heavy hitters in a data
stream. We refer the reader to the original papers [10, 7] for further details. As these
algorithms are inspired from applications in practice, it is very interesting to see how the
improved theoretical algorithms perform in practice. In ongoing work we are testing these
algorithms in practice on real datasets.

Another interesting aspect is that the technique of using Gaussian processes in the `2-
heavy hitters algorithm has led to a number of other improvements to data stream algorithms,
including for example the ability to estimate the second moment F2 at all times in a stream
of insertions. Previously, given a stream of length n and a universe of size n, to estimate F2
at all points in a stream up to a constant factor would require Θ(log2 n) bits of space, since
it takes Θ(logn log(1/δ)) bits to estimate it at a single point with failure probability δ, and
one needs to union bound over n stream positions. Using Gaussian processes, we achieve
only O(logn log logn) bits of space for this task. It would be interesting to see if Gaussian
processes are useful for other problems in data streams.

Obtaining simultaneously optimal update time, reporting time, and space in all parameter
regimes is also a very important goal.
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Abstract
SPARQL is the standard query language for RDF data. The distinctive feature of SPARQL is the
OPTIONAL operator, which allows for partial answers when complete answers are not available
due to lack of information. However, optional matching is computationally expensive – query
answering is PSPACE-complete. The well-designed fragment of SPARQL achieves much better
computational properties by restricting the use of optional matching – query answering becomes
coNP-complete. However, well-designed SPARQL captures far from all real-life queries – in fact,
only about half of the queries over DBpedia that use OPTIONAL are well-designed.

In the present paper, we study queries outside of well-designed SPARQL. We introduce the
class of weakly well-designed queries that subsumes well-designed queries and includes most com-
mon meaningful non-well-designed queries: our analysis shows that the new fragment captures
about 99% of DBpedia queries with OPTIONAL. At the same time, query answering for weakly
well-designed SPARQL remains coNP-complete, and our fragment is in a certain sense maximal
for this complexity. We show that the fragment’s expressive power is strictly in-between well-
designed and full SPARQL. Finally, we provide an intuitive normal form for weakly well-designed
queries and study the complexity of containment and equivalence.
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1 Introduction

The Resource Description Framework (RDF) [29, 17, 21] is the W3C standard for representing
linked data on the Web. RDF models information in terms of labeled graphs consisting of
triples of resource identifiers (IRIs). The first and last IRIs in such a triple, called subject
and object, represent entity resources, while the middle IRI, called predicate, represents a
relation between the two entities.

SPARQL [35, 20] is the default query language for RDF graphs. First standardised
in 2008 [35], SPARQL is now recognised as a key technology for the Semantic Web. This is
witnessed by a recently adopted new version of the standard, SPARQL 1.1 [20], as well as by
active development of SPARQL query engines in academia and the industry, for instance, as
part of the systems AllegroGraph [1], Apache Jena [2], Sesame [3], or OpenLink Virtuoso [4].

In recent years, SPARQL has been subject to a substantial amount of theoretical research,
based on the foundational work by Pérez et al. [30, 31]. In particular, we now know much
about evaluation [36, 28, 6, 32, 25, 23, 7, 22], optimisation [27, 33, 16, 15, 12, 24], federation
[14, 13], expressive power [5, 34, 25, 39], and provenance tracking [18, 19] for queries from
various fragments and extensions of SPARQL. These studies have had a great impact in the
community, in fact influencing the evolution of SPARQL as a standard.

A distinctive feature of SPARQL as compared to SQL is the OPTIONAL operator
(abbreviated as OPT in this paper). This operator was introduced to “not reject (solutions)
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(P1, rdf:type, foaf:person)
(P2, rdf:type, foaf:person)
(P1, foaf:name, Ana)

?i ?n
P1 Ana

P2

(P1, rdf:type, foaf:person)
(P2, rdf:type, foaf:person)
(P1, v_card:name, Anastasia)

?i ?n
P1 Anastasia

P2

(a) (b) (c) (d)

Figure 1 (a) Graph G; (b) answers to query (1) over G; (c) graph G′; and (d) answers over G′.

because some part of the query pattern does not match” [35]. For instance, consider the
SPARQL query

SELECT ?i, ?n WHERE (?i, rdf:type, foaf:person) OPT (?i, foaf:name, ?n), (1)

which retrieves all person IDs from the graph together with their names; names, however, are
optional – if the graph does not contain information about the name of a person, the person
ID is still retrieved but the variable ?n is left undefined in the answer. For instance, query (1)
has two answers over the graph G in Figure 1(a), where the second answer is partial (see
Figure 1(b)). However, if we extend G with a triple supplying a name for P2, the second
answer will include this name.

The OPT operator accounts in a natural way for the open world assumption and the
fundamental incompleteness of the Web. However, evaluating queries that use OPT is
computationally expensive – Pérez et al. [31] showed PSPACE-completeness of SPARQL
query evaluation, and Schmidt et al. [36] refined this result by proving PSPACE-hardness
even for queries using no operators besides OPT. This is not surprising given that SPARQL
queries are equivalent in expressive power to first-order logic queries, and translations in
both directions can be done in polynomial time [5, 34, 25].

This spurred a search for restrictions on the use of OPT that would ensure lower complexity
of query evaluation. It was also recognised that queries that are difficult to evaluate are often
unintuive. For instance, they may produce less specified answers (i.e., answers with fewer
bound variables) as the graph over which they are evaluated grows larger.

Perez et al. [31] introduced the well-designed fragment of SPARQL queries by imposing
a syntactic restriction on the use of variables in OPT-expressions. Roughly speaking, each
variable in the optional (i.e., right) argument of an OPT-expression should either appear in the
mandatory (i.e., left) argument or be globally fresh for the query, i.e., appear nowhere outside
of the argument. Well-designed queries have lower complexity of query evaluation – the
problem is coNP-complete (provided all the variables in the query are selected). Moreover,
such queries have a more intuitive behaviour than arbitrary SPARQL queries; in particular,
they enjoy the monotonicity property that we observed for query (1): each partial answer
over a graph can potentially be extended to undefined variables if the graph is completed
with the missing information, and the more information we have the more specified are
the answers. Well-designed queries can be efficiently transformed to an intuitive normal
form allowing for a transparent graphical representation of queries as trees [27, 33]. Hence,
many recent studies concentrate partially [27, 25, 23, 37, 38] or entirely [33] on well-designed
queries.

Such a success of well-designed queries may lead to the impression that non-well-designed
SPARQL queries are just a useless side effect of the early specification. But is this impression
justified by the use of SPARQL in practice? To answer this question, a comprehensive analysis
of real-life queries is required. We are aware of two works that analyse the distribution
of operators in SPARQL queries asked over DBpedia [32, 9]. Both studies show that
OPT is used in a non-negligible amount of practical queries. However, only Picalausa and
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Vansummeren [32] go further and analyse how many of these queries are well-designed; and
the result is quite interesting – well-designed queries make up only about half of all queries
with OPT. In other words, well-designed queries are common, but by far not exclusive.

The main goal of this paper is to investigate SPARQL queries beyond the well-designed
fragment. We wanted to see if the well-designedness condition could be extended so as to
include most practical queries while preserving good computational properties. The main
result of our study is very positive – we identified a new fragment of SPARQL queries, called
weakly well-designed queries, that covers about 99% of queries over DBpedia and has the
same complexity of query evaluation as the well-designed fragment. We also show that our
fragment is in a sense maximal for this complexity.

We next describe our results and techniques in more detail. Our first step was to identify
most typical real-life queries that are not well-designed. We analysed the USEWOD2013 [10]
and USEWOD2014 [11] query logs for DBpedia 3.8 and 3.9 and found two interesting types
of non-well-designed queries. The first type is exemplified by the following query:

SELECT ?i, ?n WHERE
((?i, rdf:type, foaf:person) OPT (?i, foaf:name, ?n)) OPT (?i, v_card:name, ?n). (2)

This query is clearly not well-designed because variable ?n, binding the name of a person,
appears in two different unrelated optional parts. Let us analyse answers to this query over
different graphs. On graph G in Figure 1(a) the result is exactly the same as for query (1),
shown in Figure 1(b), simply because the IRI v_card:name is not present in G, and so
cannot be matched against the second optional part of the query. Similarly, on graph G′ in
Figure 1(c), where the source of the name and the name itself are different, the result is as
in Figure 1(d). In this case, the first optional part in the query does not match anything
in the graph so the variable ?n is left unbound at this point; then the second optional
is matched, and the variable is assigned with the name from v_card. More interestingly,
query (2) evaluated over the graph G∪G′ once again yields the result in Figure 1(b). Indeed,
in this case, the first optional part has a match again and ?n is assigned the value Ana; then,
this variable is already bound and there is no match for the second optional part that agrees
with this value, meaning that the alternative v_card name is disregarded by the query. To
summarise, query (2) is once again looking for person IDs and, optionally, their names. Now,
however, names are collected from two different sources, foaf and v_card, where the first
source is given preference over the second (maybe because it is considered more reliable or
more informative, or for some other reason). In other words, if we know the foaf name of a
person, it is returned as part of the answer regardless of his v_card name; however, if there
is no foaf name, then the v_card name is also acceptable and should be returned; variable
?n is left unbound only if the name cannot be extracted from either source.

Of course, preference patterns encountered in real-life queries are often more complex.
Still, in most cases they do not increase the complexity of query evaluation.

Our second example query is as follows:

SELECT ?i, ?n WHERE ((?i, rdf:type, foaf:person) OPT (?i, foaf:name, ?n))
FILTER (¬bound(?n) ∨ ¬(?n = Ana)). (3)

The query uses FILTER, a standard SPARQL operator that admits only answers conforming
to a specified constraint. Again, this query is not well-designed because the FILTER constraint
mentions the variable ?n, which occurs in the optional part of the query but not in the
mandatory part. However, the intention of the query is quite clear: it searches for people
whose names are not known to be Ana, including people whose names are unknown.
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This use of FILTER is in fact very common in real-life queries. Moreover, it is intuitive as
long as FILTER is essentially the outermost operator in the query, as it is in our example. In
all such cases, however, FILTER cannot lead to an increase in complexity.

Having isolated these typical uses of non-well-designedness, we identify a new fragment
of SPARQL that (a) includes all queries of the above two types, (b) subsumes well-designed
queries, and (c) has the same complexity of query evaluation as well-designed queries. We
call such queries weakly well-designed. They are the maximal fragment without structural
restrictions on conjunctive blocks and filter conditions that has the above properties. Our
analysis shows that about 99% of DBpedia queries with OPT are weakly well-designed.

Besides low complexity of query evaluation, we establish a few more useful properties
of weakly well-designed queries, which are summarised in the following outline of the
paper. After introducing the syntax and semantics of SPARQL in Section 2, we formally
define our new fragment in Section 3. In Section 4, we show that, similarly to the well-
designed case, weakly well-designed queries can be transformed to an intuitive normal form,
which allows for a natural graphical representation as constraint pattern trees. Using this
representation, in Section 5, we formally show that the step from well-designed to weakly
well-designed queries does not increase complexity of query evaluation; minimal relaxations
of weak well-designedness, however, already lead to a complexity jump. In Section 6, we
compare the expressive power of our fragment (and its extensions with additional operators)
with well-designed queries and unrestricted SPARQL queries; in particular, we show that
the expressivity of weakly well-designed queries lies strictly in-between well-designed and
unrestricted queries. In Section 7, we study static analysis problems for weakly well-designed
queries and establish Πp

2-completeness of equivalence, containment, and subsumption. Finally,
in Section 8, we detail our analysis of DBpedia logs.

2 SPARQL Query Language

We begin by formally introducing the syntax and semantics of SPARQL that we adopt
in this paper. Our formal setup mostly follows [31], which has some differences from the
W3C specification [35, 20]; in particular, we use two-placed OPT and two-valued FILTER
(conditional OPT and errors in FILTER evaluation as in the standard are expressible in our
formalisation [5]), and adopt set semantics, leaving multiset answers for future work.

RDF Graphs. An RDF graph is a labeled graph where nodes can also serve as edge labels.
Formally, let I be a set of IRIs. Then an RDF triple is a tuple (s, p, o) from I× I× I, where
s is called subject, p predicate, and o object. An RDF graph is a finite set of RDF triples.

SPARQL Syntax. Let X be an infinite set {?x, ?y, . . .} of variables, disjoint from I. Filter
constraints are conditions of the form
>, ?x = u, ?x =?y, or bound(?x) for ?x, ?y in X and u ∈ I (atomic constraints),
¬R1, R1 ∧R2, or R1 ∨R2 for filter constraints R1 and R2.

A basic pattern is a set of triples from (I ∪X)× (I ∪X)× (I ∪X). Then, SPARQL (graph)
patterns P are defined by the grammar

P ::= B | (P AND P ) | (P OPT P ) | (P UNION P ) | (P FILTERR),

where B ranges over basic patterns and R over filter constraints. Additionally, we require
all filter constraints to be safe, that is, vars(R) ⊆ vars(P ) for every pattern (P FILTER R),
where vars(S) is the set of all variables in S (which can be pattern, constraint, etc.) When
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needed, we distinguish between patterns by their top-level operator (e.g., OPT-pattern or
FILTER-pattern). The set of all triples in basic patterns of a pattern P is denoted triples(P ).

We write U for the set of all patterns. We also distinguish the fragment P of U that
consists of all UNION-free patterns, i.e., patterns that do not use the UNION operator.

Projection is realised in SPARQL by means of queries with select result form, or queries
for short, which are expressions of the form

SELECT X WHERE P, (4)

where X is a set of variables and P is a graph pattern. We write S for the set of all queries.
Note that every pattern P can be seen as a query of the form (4) where X = vars(P ).

Hence, all definitions that refer to “queries” implicitly extend to patterns in the obvious way.

SPARQL Semantics. The semantics of graph patterns is defined in terms of mappings,
that is, partial functions from variables to IRIs. The domain dom(µ) of a mapping µ is the
set of variables on which µ is defined. Two mappings µ1 and µ2 are compatible (written
µ1 ∼ µ2) if µ1(?x) = µ2(?x) for all variables ?x ∈ dom(µ1) ∩ dom(µ2). If µ1 ∼ µ2, then
µ1 ∪ µ2 constitutes a mapping that coincides with µ1 on dom(µ1) and with µ2 on dom(µ2).
Given two sets of mappings Ω1 and Ω2, we define their join, union and difference as follows:

Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1 ∼ µ2},
Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},
Ω1 \ Ω2 = {µ1 | µ1 ∈ Ω1, µ1 6∼ µ2 for all µ2 ∈ Ω2}.

Based on these, the left outer join operation is defined as Ω1 on Ω2 = (Ω1 on Ω2) ∪ (Ω1 \ Ω2).
Given a graph G, the evaluation JP KG of a graph pattern P over G is defined as follows:
1. if B is a basic pattern, then JBKG = {µ : vars(B)→ I | µ(B) ⊆ G};
2. J(P1 AND P2)KG = JP1KG on JP2KG;
3. J(P1 OPT P2)KG = JP1KG on JP2KG;
4. J(P1 UNION P2)KG = JP1KG ∪ JP2KG;
5. J(P ′ FILTERR)KG = {µ | µ ∈ JP ′KG and µ |= R},

where µ satisfies a filter constraint R, denoted by µ |= R, if one of the following holds:
R is >;
R is ?x = u, ?x ∈ dom(µ), and µ(?x) = u;
R is ?x = ?y, {?x, ?y} ⊆ dom(µ), and µ(?x) = µ(?y);
R is bound(?x) and ?x ∈ dom(µ);
R is a Boolean combination of filter constraints evaluating to true under the usual
interpretation of ¬,∧, and ∨.

Let µ|X be the projection of a mapping µ to variables X, that is, µ|X(?x) = µ(?x) if
?x ∈ X and µ|X(?x) is undefined if ?x /∈ X. The evaluation JQKG of a query Q of the
form (4) is the set of all mappings µ|X such that µ ∈ JP KG.

Finally, a solution to a query (or pattern) Q over G is a mapping µ such that µ ∈ JQKG.

3 Weakly Well-Designed Patterns

We begin by recalling the notion of well-designed patterns and then formulate our generalisa-
tion. For now, we focus on the AND-OPT-FILTER fragment P , leaving the operators UNION
and SELECT for later sections.
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Note that a given pattern can occur more than once within a larger pattern. In what
follows we will sometimes need to distinguish between a (sub-)pattern P as a possibly
repeated building block of another pattern P ′ and its occurrences in P ′, that is, unique
subtrees in the parse tree. Then, the left (right) argument of an occurrence i is the subtree
rooted in the left (right) child of the root of i in the parse tree, and an occurrence i is inside
an occurrence j if the root of i is a successor of the root of j.

I Definition 1 (Pérez et al. [31]). A pattern P from P is well-designed (or wd-pattern,
for short) if for every occurrence i of an OPT-pattern P1 OPT P2 in P the variables from
vars(P2) \ vars(P1) occur in P only inside (the labels of) i.

We write Pwd for the fragment of wd-patterns. Such patterns comply with the basic
intuition for optional matching in SPARQL: ”do not reject (solutions) because some part
of the query pattern does not match” [20]; indeed, our canonical use case (1) is clearly
well-designed. Evaluation of wd-patterns, that is, checking if µ ∈ JP KG for a mapping µ,
graph G and pattern P ∈ Pwd, is coNP-complete, as opposed to PSPACE-complete for
P [31, 36]. The high complexity of unrestricted patterns is partially due to the fact that
unrestricted combinations of OPT and FILTER allow to express nesting of the difference
operator MINUS with semantics JP1 MINUS P2KG = JP1KG \ JP2KG (for non-empty P1 and
P2):

P1 MINUS P2 ≡ (P1 OPT (P2 AND (?x, ?y, ?z))) FILTER ¬bound(?x). (5)

This property is well-known [5, 31], and has been usually considered the main source of
non-well-designed patterns in practice. We challenge this claim by answering differently the
question on the prevalent structure of real-life queries beyond the well-designed fragment.
This question is not just of theoretical interest: as previous studies [32] show (and our
analysis confirms), about half of queries with OPT asked over DBpedia are not well-designed.

Next we discuss two sources of non-well-designedness in patterns as revealed by the
example queries (2) and (3) in the introduction – one based on OPT and another on FILTER.

Source 1. There are two substantially different ways of nesting the OPT operator in
patterns:

P1 OPT (P2 OPT P3), (Opt-R) (P1 OPT P2) OPT P3. (Opt-L)

Non-well-designed nesting of type (Opt-R) is responsible for the PSPACE-hardness of query
evaluation [31, 36]. Moreover, such nesting is not very intuitive. On the contrary, as we saw
in the introduction, non-well-designed nesting of type (Opt-L) can be used for prioritising
some parts of patterns to others, and is indeed used in real life. As we will see later, nesting
of type (Opt-L) cannot lead to high complexity of evaluation.

Source 2. Well-designedness can be violated by using “dangerous” variables from the right
side of OPT in filter constraints. In particular, patterns of the form (P1 OPT P2) FILTERR
with R using a variable from vars(P2) \ vars(P1) are not well-designed, but rather frequent
in practice. However, such patterns almost never occur inside the right argument of other
OPT-patterns. We will see that if we restrict the usage of such filters to the “top level”, we
preserve the good computational properties of wd-patterns.

Motivated by these observations, we considerably generalise the notion of wd-patterns to
allow for useful queries like (2) and (3) while retaining important properties of such patterns.
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We start with two auxiliary notions. Given a pattern P , an occurrence i1 in P dominates
another occurrence i2 if there exists an occurrence j of an OPT-pattern such that i1 is
inside the left argument of j and i2 is inside the right argument. An occurrence i of a
FILTER-pattern P ′ FILTERR in P is top-level if there is no occurrence j of an OPT-pattern
such that i is inside the right argument of j.

I Definition 2. A pattern P ∈ P is weakly well-designed (wwd-pattern) if, for each occur-
rence i of an OPT-subpattern P1 OPTP2, the variables in vars(P2) \ vars(P1) appear outside i
only in

subpatterns whose occurrences are dominated by i, and
constraints of top-level occurrences of FILTER-patterns.

We write Pwwd for the fragment of wwd-patterns. They extend wd-patterns by allowing
variables from the right argument of an OPT-subpattern that are not “guarded” by the left
argument to appear in certain positions outside of the subpattern. Note that the patterns of
queries (4) and (3) are wwd-patterns. Also, patterns which allow only for OPT nesting of
type (Opt-L) are always weakly well-designed, same as the pattern in the right hand side of
(5), which expresses MINUS. However, patterns that have subpatterns of the latter form in
the right argument of OPT are not weakly well-designed. Next we give a few more examples.

I Example 3. Consider the following patterns:

((?x, a, a) OPT ((?x, b, ?y) OPT (?y, c, ?z))) OPT (?x, d, ?z), (6)
((?x, a, a) OPT (?x, d, ?z)) OPT ((?x, b, ?y) OPT (?y, c, ?z)), (7)
(((?u, f, ?v) OPT (?u, g, ?w)) FILTER ?v 6= ?w) OPT (?u, h, ?s), (8)
(?u, h, ?s) OPT (((?u, f, ?v) OPT (?u, g, ?w)) FILTER ?v 6= ?w). (9)

Pattern (6) is not well-designed because of variable ?z, but is weakly well-designed since the
occurrence of (?y, c, ?z) dominates (?x, d, ?z). However, the similar pattern (7) is not weakly
well-designed because the occurrence of the inner OPT-pattern with the second occurrence of
?z does not dominate the first. Pattern (8) is weakly well-designed since the FILTER-pattern
is top-level (we write ?x 6= ?y for ¬(?x = ?y)), but pattern (9) is not, because of variable ?w
in a non-top-level FILTER.

I Proposition 4. Checking whether a pattern P belongs to the fragment Pwwd can be done
in time O(|P |2), where |P | is the length of the string representation of P .

4 OPT-FILTER-Normal Form and Constraint Pattern Trees

One of the key properties of wd-patterns is that they can always be converted to a so-called
OPT-normal form, in which all AND- and FILTER-subpatterns are OPT-free [31]. Also,
FILTER-free patterns in OPT-normal form can be naturally represented as trees [27, 33],
which gives a good intuition for the evaluation and optimisation of such patterns. In this
section, we show that these notions can be generalised to wwd-patterns.

I Definition 5. A pattern P ∈ P is in OPT-FILTER-normal form (or OF-normal form for
short) if it adheres to the grammar

P ::= F | (P FILTERR) | (P OPTS), S ::= F | (SOPTS), F ::= (B FILTERR),

where B ranges over basic patterns and R over filter constraints.
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OPT

B1 OPT

B2 B3

vs.

(a)

B1

B2

B3

OPT

OPT

B1 B2

B3 vs.

(b)

B1

B2 B3

Figure 2 Parse trees vs. constraint pattern trees for patterns (a) B1 OPT (B2 OPTB3) and (b)
(B1 OPTB2) OPTB3, with B1, B2, and B3 basic patterns.

In other words, the parse tree of a pattern in OF-normal form can be stratified as follows:
1. (occurrences of) basic patterns as the bottom layer,
2. a FILTER on top of each basic pattern as the middle layer,
3. a combination of OPT and FILTER as the top layer;
moreover, each occurrence of a FILTER-pattern in the top layer is top-level. Note that our
normal form is AND-free: all conjunctions are expressed via basic patterns.

I Example 6. None of the four patterns in Example 3 are in OF-normal form. However, the
first three of them can be easily normalised by replacing each triple t with t>, where P> is
an abbreviation of P FILTER> for a pattern P . Also, compare the pattern

(((?x, a, a)> OPT (?x, b, ?y)>) OPT ((?x, b, ?z)> OPT (?z, c, ?u)>)) FILTER ?u 6= ?x, (10)

which is in OF-normal form, with the very similar pattern

(((?x, a, a)> OPT (?x, b, ?u)>) OPT ((?x, b, ?z)> OPT (?z, c, ?u)>) FILTER ?u 6= ?z),

which is not, because the outer FILTER is in the right argument of the outermost OPT.

As shown by Letelier et al. [27], FILTER-free patterns in OPT-normal form can be
represented by means of so-called pattern trees. We next show that this representation can
be naturally extended to patterns in OF-normal form.

Let P be a pattern in OF-normal form. The constraint pattern tree (CPT) T (P ) of P is
the directed ordered labelled rooted tree recursively constructed as follows (in this definition
we abuse notation and confuse patterns and their occurrences; strictly speaking, we create a
fresh sub-tree for each occurrence, so the resulting object is indeed always a tree):
1. if B is a basic pattern then T (B FILTERR) is a single node v labelled by the pair (B,R);
2. if P ′ is not a basic pattern then T (P ′ FILTER R) is obtained by adding a special node

labelled by R as the last child of the root of T (P ′);
3. T (P1 OPT P2) is the tree obtained from T (P1) and T (P2) by adding the root of T (P2)

as the last child of the root of T (P1).

By definition, there is a one-to-one correspondence between patterns in OF-normal form
and CPTs. Hence, such trees can be seen as a convenient representation of patterns in
OF-normal form.

Unlike parse trees, which represent the syntactic shape of patterns, CPTs show the
semantic structure of OPT and FILTER nesting. Figure 2 shows how OPT nestings of
types (Opt-R) and (Opt-L) are represented in both formats. Note that CPTs treat different
FILTER-subpatterns differently: if the filter is over a basic pattern, the constraint of the
FILTER is paired with this pattern; however, if the filter is over an OPT-subpattern, then
the constraint is represented by a separate special node. Moreover, since in the second case
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({(?x, a, a)},>)

({(?x, b, ?y)},>) ({(?x, b, ?z)},>)

({(?z, c, ?u)},>)

?u 6= ?x

(a)

({(?x, a, a)},>)

({(?x, b, ?y)},>)

({(?x, b, ?z)},>) ({(?x, b, ?z), (?z, c, ?u)},>)

?u 6= ?x

(b)

Figure 3 Constraint pattern trees of (a) (((?x, a, a)> OPT (?x, b, ?y)>) OPT ((?x, b, ?z)> OPT
(?z, c, ?u)>)) FILTER ?u 6= ?x (i.e., pattern (10)) and (b) equivalent pattern in “flat” form (13).

the FILTER-pattern must be top-level, special nodes can only occur in CPTs as children of
the root. For instance, the CPT of the example pattern (10) is given in Figure 3(a).

Each wwd-pattern can be converted to OF-normal form and hence can be represented
by a CPT. To prove this statement we make use of a number of equivalences. Formally, a
pattern P1 is equivalent to a pattern P2 (written P1 ≡ P2) if JP1KG = JP2KG holds for any
graph G. There are several equivalences, such as associativity and commutativity of AND,
as well as filter decompositions, such as P FILTER (R1 ∧R2) ≡ (P FILTER R1) FILTER R2,
which hold for all patterns (see [36] for an extensive list). Moreover, the key equivalences
used in [31] for normalising wd-patterns can easily be adapted to serve our needs.

I Proposition 7. Let P1, P2, P3 be patterns and R a filter constraint such that vars(P2) ∩
vars(P3) ⊆ vars(P1) and vars(P2) ∩ vars(R) ⊆ vars(P1). Then the following equivalences hold:

(P1 OPT P2) AND P3 ≡ (P1 AND P3) OPT P2,

(P1 OPT P2) FILTERR ≡ (P1 FILTERR) OPT P2.

Since all the equivalences preserve weak well-designedness, we obtain the desired result.

I Proposition 8. Each wwd-pattern P is equivalent to a wwd-pattern in OF-normal form of
size O(|P |).

Relying on this proposition, in the rest of the paper we silently assume that all wwd-
patterns are in OF-normal form and hence can be represented by CPTs.

We next transfer the notion of weak well-designedness to CPTs. Let ≺ be the strict
topological sorting of the nodes in T (P ), computed by a depth first search traversal visiting
the children of a node according to their ordering (i.e., v ≺ u holds if v is visited before u).

I Proposition 9. A pattern P in OF-normal form is weakly well-designed if and only if,
for each edge (v, u) in its CPT T (P ), every variable ?x ∈ vars(u) \ vars(v) occurs only in
nodes w such that v ≺ w. The pattern is well-designed if and only if for every variable ?x in
P the set of all nodes v in T (P ) with ?x ∈ vars(v) is connected.

Note that if a pattern is FILTER-free, its OF-normal form coincides with the OPT-normal
form in [31] (modulo tautological filters), and its CPT is the pattern tree from [27, 33]. In
fact, the second part of Proposition 9 generalises an observation from [27] to the case with
filters. An important difference to pattern trees is that in our case the order of children of a
node is semantically relevant since wwd-patterns do not satisfy the equivalence

(P1 OPT P2) OPT P3 ≡ (P1 OPT P3) OPT P2. (11)

This equivalence, established in [30], holds whenever (vars(P2) ∩ vars(P3)) ⊆ vars(P1), which
is always the case for wd-patterns but not for wwd-patterns, as can be seen on query (2).
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We conclude this section with a property that is unique to wwd-patterns: each wwd-
pattern is equivalent to a pattern whose corresponding CPT has depth one.

I Definition 10. A pattern in P is in depth-one normal form if it has the structure

(· · · ((B op1 S1) op2 S2) · · · ) opn Sn, (12)

where B is a basic pattern and each opi Si, 1 ≤ i ≤ n, is either OPT (Bi FILTER Ri) with
Bi a basic pattern and Ri a filter constraint, or just FILTERRi.

To show that each wwd-pattern can be brought to this form we use another equivalence.

I Proposition 11. For patterns P1, P2, P3 with vars(P1) ∩ vars(P3) ⊆ vars(P2) it holds that

P1 OPT (P2 OPT P3) ≡ (P1 OPT P2) OPT (P2 AND P3). (13)

Applied from left to right, equivalence (13) preserves weak well-designedness (but not
well-designedness). Each such application transforms a weakly well-designed OPT nesting of
type (Opt-R) to a nesting of type (Opt-L), decreasing the depth of the CPT.

I Corollary 12. Every wwd-pattern is equivalent to a wwd-pattern in depth-one normal form.

For instance, pattern (10) is equivalent to the pattern

((((?x, a, a)>OPT(?x, b, ?y)>)OPT(?x, b, ?z)>)OPT{(?x, b, ?z), (?z, c, ?u)}>)FILTER ?u 6= ?x,

represented by the CPT in Figure 3(b). Such “flat” patterns are attractive in practice because
of their regular structure. However, “flattening” a pattern can incur an exponential blowup
in size. Hence, in the rest of the paper we consider arbitrary wwd-patterns in OF-normal
form rather than restricting our attention to depth-one-normal patterns.

5 Evaluation of wwd-Patterns

In this section, we look at the query answering problem for wwd-patterns and their extensions
with union and projection. We show that in all three cases, complexity remains the same as
for wd-patterns. To obtain these results, we develop several new techniques.

Formally, we look at the following decision problem for a given SPARQL fragment L.

Eval(L) Input: Graph G, query Q ∈ L, and mapping µ
Question: Does µ belong to JQKG?

It is known that Eval(U) for general patterns U is PSPACE-complete [31], and the result
easily propagates to queries with projection (i.e., S) [27]. For wd-patterns, the evaluation
problem is coNP-complete, and can be solved by exploiting the following idea [27].

Suppose we are given a wd-pattern P in OPT-normal form (for simplicity, suppose P is
FILTER-free), a graph G, and a mapping µ. First, we look for a subtree of T (P ) that includes
the root of T (P ), contains precisely the variables in dom(µ), and “matches” G under µ (i.e.,
images of all its triples under µ are contained in G). This is doable in polynomial time. If
such a subtree does not exist, then µ cannot be a solution. Otherwise, the subtree witnesses
that µ is a part of a solution to P . Finally, to verify that µ is a complete solution, we need
to check that the subtree is maximal, that is, cannot be extended to any more nodes in T (P )
with a match in G. There are linearly many such nodes to check, and each check can be
performed in coNP. So, the overall algorithm runs in coNP.
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Inspired by this idea, we next show that the low evaluation complexity of wd-patterns
transfers to wwd-patterns by developing a coNP algorithm for Eval(Pwwd).

Let P be a wwd-pattern in OF-normal form. An r-subtree of T (P ) is a subtree containing
the root of T (P ) and all its special children. Every r-subtree is also a CPT representing a
wwd-pattern that can be obtained from P by dropping the right arguments of some OPT-
subpatterns (i.e., a pattern P ′ with P ′ E P in the notation of [31]). A child of an r-subtree
T (P ′) of T (P ) is a node in T (P ) that is not contained in T (P ′) but whose parent is.

I Definition 13. A mapping µ is a potential partial solution (or pp-solution for short)
to a wwd-pattern P over a graph G if there is an r-subtree T (P ′) of T (P ) such that
dom(µ) = vars(P ′), µ(triples(P ′)) ⊆ G, and µ |= R for the constraint R of any ordinary node
in T (P ′).

A pp-solution µ to P over G can be witnessed by several r-subtrees. However, the union of
such r-subtrees is also a witness. Hence, there exists a unique maximal witnessing r-subtree,
denoted T (Pµ), with Pµ being the corresponding wwd-pattern.

Potential partial solutions generalise “partial solutions” as defined in [31] for wd-patterns.
There, every “partial solution” is either a solution or can be extended to one. This is not the
case for wwd-patterns. While every solution is clearly a pp-solution, not every pp-solution
can be extended to a real one. Real solutions may not just extend pp-solutions by assigning
previously undefined variables but can also override variable bindings established in some
node v of T (Pµ) by extending T (Pµ) to a child that precedes v according to the order ≺.

An additional complication is the presence of non-well-designed top-level filters. Note that
pp-solutions are only required to satisfy the constraints of ordinary nodes in the corresponding
CPT, thus ignoring top-level filters. Indeed, requiring pp-solutions to satisfy constraints of
top-level filters would be too strong since real solutions do not generally satisfy this property,
as demonstrated by the following example.

I Example 14. Consider the graph G = {(1, a, 1), (3, a, 3)} and wwd-pattern

P = (((?x, a, 1) OPT (?y, a, 2)) FILTER ¬bound(?y)) OPT (?y, a, 3).

The mapping µ = {?x 7→ 1, ?y 7→ 3} is a solution to P over G, but µ 6|= ¬bound(?y).

We now present a characterisation of solutions for wwd-patterns in terms of pp-solutions
that (a)takes into account that not every pp-solution can be extended to a real solution and
(b) ensures correct treatment of non-well-designed top-level filters. For this we need some
more notation. Given a wwd-pattern P , a node v in T (P ), a graph G, and a pp-solution µ
to P over G, let µ|v be the projection µ|X of µ to the set X of all variables appearing in
nodes u of T (Pµ) such that u ≺ v. A mapping µ1 is subsumed by a mapping µ2 (written
µ1 v µ2) if µ1 ∼ µ2 and dom(µ1) ⊆ dom(µ2) (this notion is from [31, 8]).

I Lemma 15. A mapping µ is a solution to a wwd-pattern P over a graph G if and only
if
1. µ is a pp-solution to P over G;
2. for any child v of T (Pµ) labelled with (B,R) there is no µ′ such that µ|v v µ′, µ′ |= R,

and µ′(B) ⊆ G;
3. µ|s |= R for any special node s in T (P ) labelled with R.

Intuitively, a pp-solution µ needs to satisfy two conditions to be a real solution to a
wwd-pattern P . First, µ|v (as opposed to µ for wd-patterns) must be non-extendable to v for
any child v of T (Pµ). Indeed, if such an extension exists, then it is either possible to provide
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bindings for some variables that are undefined in µ, or some variables from dom(µ) can be
assigned different values of higher “priority” than the corresponding values in µ. Second,
every top-level filter R labelling a node s needs to be satisfied by µ|s, which is precisely the
part of µ bound by the subpattern of P that is paired with R in the FILTER-pattern.

Checking whether a mapping µ satisfies this characterisation is feasible in coNP: testing
whether µ is a pp-solution takes polynomial time, same as computing the maximal witnessing
tree T (Pµ); to check that (the relevant part of) T (Pµ) is not extendable to any of its children
we need to consider linearly many children, and each check is in coNP; finally, the checks
for top-level filters are again polynomial. Hence, we obtain the following theorem, where the
hardness part follows from the coNP-hardness for wd-patterns [31].

I Theorem 16. Eval(Pwwd) is coNP-complete.

Pérez et al. [31] extended wd-patterns to UNION by considering unions of wd-patterns,
that is, patterns of the form P1 UNION . . . UNION Pn with all Pi ∈ Pwd. We denote the
resulting fragment by Uwd. This syntactic restriction on the use of UNION in Uwd is motivated
by the fact that any pattern in U can be equivalently expressed as a union of UNION-free
patterns [31]. We denote the fragment of all queries over patterns in Uwd as Swd. Similarly,
we write Uwwd for unions of wwd-patterns and Swwd for queries over unions of wwd-patterns.

Analogously to the well-designed case, Theorem 16 extends to fragments Uwwd and Swwd.

I Corollary 17. Eval(Uwwd) is coNP-complete and Eval(Swwd) is Σp2-complete.

The coNP-algorithm for Uwwd is obtained simply by applying the algorithm for Pwwd to
each pattern in the union. Hardness for Swwd follows from the hardness of the well-designed
case [27], while for membership we just guess the values of the existential variables and then
call a coNP-oracle for Uwwd on the resulting mapping and the normalised body of the query.

Hence, the complexity of evaluation for wwd-patterns is the same as for wd-patterns. We
next show that wwd-patterns are, in a certain sense, a maximal extension of wd-patterns that
preserves coNP evaluation complexity (under the usual complexity-theoretic assumptions).

There are two possible minimal relaxations of weak well-designedness that allow for basic
patterns and filter constraints of arbitrary shape. We show that both lead to Πp

2-hardness.
The first such relaxation is to allow for at least some non-well-designed OPT-nesting

of type (Opt-R). However, even a minimal extension of this sort increases complexity. To
see this, consider the fragment Popt-r of patterns of the form B1 OPT (B2 OPTB3), where
B1, B2 and B3 are basic patterns. Intuitively, Popt-r allows for the most simple form of
non-well-designed nesting of type (Opt-R).

The other syntactic relaxation is to allow for some non-well-designed non-top-level filters.
However, while requiring special nodes to be children of the root may look somewhat ad-
hoc, it cannot be substantially relaxed. Consider the fragment Pfilter-2 of patterns of the
form B1 OPT ((B2 OPTB3) FILTER R), where B1, B2 and B3 are basic patterns such that
vars(B3)∩ vars(B1) ⊆ vars(B2), and R is a filter constraint. Intuitively, Pfilter-2 allows for the
simplest form of “second-level” filters.

I Proposition 18. The problems Eval(Popt-r) and Eval(Pfilter-2) are Πp
2-complete.

Proposition 18 implies that Pwwd is a maximal fragment of P that does not impose
structural restrictions on basic patterns or filter constraints and has a coNP evaluation
algorithm (assuming coNP 6= Πp

2). Hence, going beyond wwd-patterns while preserving
good computational properties requires more refined restrictions, as done, for example, in [27,
Section 4].
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6 Expressivity of wwd-Patterns and their Extensions

In this section, we analyse the expressive power of our fragments. Formally, a language L1
has the same expressive power as a language L2 (written L1 ∼ L2) if for every query Q2 in
L2 there is a query Q1 in L1 such that Q2 ≡ Q1 and vice versa; L1 is strictly more expressive
than L2 (written L2 < L1) if the property holds in the forward but not in the backward
direction. We begin by establishing Pwd < Pwwd < P. Then we proceed to unions, showing
that Uwd < Uwwd < U . Finally, we establish Swwd ∼ S, i.e., wwd-patterns with union and
projection have the full expressive power of SPARQL (whereas it is known that Swd < S [31],
which then implies Swd < Swwd).

Following [31, 8], a set of mappings Ω1 is subsumed by a set of mappings Ω2 (written
Ω1 v Ω2) if for every µ1 ∈ Ω1 there exists a mapping µ2 ∈ Ω2 such that µ1 v µ2. A query
Q is weakly monotone if JQKG1 v JQKG2 for any two graphs G1 and G2 with G1 ⊆ G2, and
a fragment L is weakly monotone if it contains only weakly monotone queries. Arenas and
Pérez [8] showed that, unlike P , the fragment Pwd is weakly monotone, and hence Pwd < P .

I Example 19 (Pérez et al. [31]). Consider the non-well-designed pattern

P = (?x, a, 1) OPT ((?y, a, 2) OPT (?x, a, 3))

as well as graphs G1 = {(1, a, 1), (2, a, 2)} and G2 = G1 ∪ {(3, a, 3)}. Then µ1 = {?x 7→
1, ?y 7→ 2} is the only mapping in JP KG1 while µ2 = {?x 7→ 1} is the only mapping in JP KG2 .
Hence JP KG1 6v JP KG2 , meaning P is not weakly monotone.

Analogously, we show that Pwd < Pwwd by observing that Pwwd is not weakly monotone.
Indeed, the pattern in example query (2) violates weak monotonicity: if a graph G contains
the triple (P1, v_card:name, Anastasia) but no triple of the form (P1, foaf:name, u) for any
IRI u, then extending G with (P1, foaf:name, Ana), that is, adding more reliable information
about the name of P1, does not extend the original solution {?i 7→ P1, ?n 7→ Anastasia} but
modifies it by overriding the value of ?n. Since Pwd ⊆ Pwwd, we conclude that Pwd < Pwwd.

To distinguish Pwwd from P we need a different property.

I Definition 20. A query Q is non-reducing if for any two graphs G1, G2 such that G1 ⊆ G2
and any mapping µ1 ∈ JQKG1 there is no µ2 ∈ JQKG2 such that µ2 @ µ1 (i.e., µ2 v µ1 and
µ2 6= µ1). A fragment L is non-reducing if it contains only non-reducing queries.

Intuitively, for a non-reducing query extending a graph cannot result in a previously
bound answer variable becoming unbound. Weakly monotone queries are non-reducing but
not vice versa. Moreover, it is easily seen that wwd-patterns are non-reducing.

This property is not generally satisfied by patterns that are not weakly well-designed. For
instance, consider again pattern P , graphs G1, G2, and mappings µ1, µ2 from Example 19.
Pattern P is not non-reducing since µ1 ∈ JP KG1 and µ2 ∈ JP KG2 but µ2 @ µ1.

I Theorem 21. It holds that Pwd < Pwwd < P.

We next compare Uwwd to Uwd and U , and Swwd to Swd and S (note that neither UNION
nor projection via SELECT can be expressed by means of the other operators [37], so adding
either construct makes each fragment strictly more expressive). It is easily seen that Uwd and
Swd inherit weak monotonicity from Pwd [31, 27], and hence Uwd < Uwwd and Swd < Swwd.
Non-reducibility, however, propagates neither to unions nor to projection.
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I Example 22. Consider the following Uwd-pattern with G1, G2 and µ1, µ2 from Example 19:

P = ((?x, a, 1) OPT (?y, a, 2)) UNION (?x, a, 1).

We have µ1 ∈ JP KG1 and µ2 ∈ JP KG2 but µ2 @ µ1, which is due to the fact that µ2 is already
contained in JP KG1 along with µ1. This is only possible in the presence of UNION since all
mappings in the evaluation of a UNION-free pattern are mutually non-subsuming [31].

Thus, to account for UNION, we introduce the following, more delicate property.

I Definition 23. A query Q is extension-witnessing (e-witnessing) if for any two graphs
G1 ⊆ G2 and mapping µ ∈ JQKG2 such that µ /∈ JQKG1 there is a triple t in Q such that
vars(t) ⊆ dom(µ) and µ(t) ∈ G2 \G1. A fragment is e-witnessing if so are all of its queries.

Informally, a query Q is e-witnessing if whenever an extension of a graph leads to a new
answer, this answer is justified by a triple pattern in Q which maps to the extension. Unions
of wwd-patterns can be shown e-witnessing. On the other hand, U is not e-witnessing, as can
be seen on the pattern and graphs in Example 19. Hence, we obtain the following theorem.

I Theorem 24. It holds that Uwd < Uwwd < U .

In contrast, queries over unions of wwd-patterns are as expressive as full SPARQL.

I Theorem 25. It holds that Swwd ∼ S.

As a consequence, every SPARQL query can be rewritten to a query over a union of “flat”
patterns in depth-one normal form (Definition 10), albeit at the expense of a worst-case
exponential blow-up in size.

7 Static Analysis of wwd-Patterns

In this section, we look at the general static analysis problems of query equivalence, contain-
ment, and subsumption. Formally, equivalence for a language L is defined as follows.

Equivalence(L) Input: Queries Q and Q′ from L
Question: Is Q ≡ Q′?

This problem is commonly generalised to Containment(L), in which one checks whether Q
is contained in Q′, that is, whether JQKG ⊆ JQ′KG holds for every graph G. We have Q ≡ Q′

if and only if Q and Q′ contain each other. Furthermore, Letelier et al. [27] proposed the
problem Subsumption(L), where one checks whether Q is subsumed by Q′, that is, whether
JQKG v JQ′KG holds for every G.

These problems have been studied for FILTER-free wd-patterns in [27, 33], establishing
NP-completeness of equivalence and containment, and Πp

2-completeness of subsumption.
Moreover, all three problems are Πp

2-complete for unions of FILTER-free wd-patterns, and
undecidable for fragments with projection. Finally, from the results in [38] it follows that
containment and subsumption are undecidable for U . On the other hand, nothing seems to
be known so far for well-designed patterns with FILTER.

We next show that equivalence, containment, and subsumption are all Πp
2-complete for

Pwwd and Uwwd (whereas Swwd is undecidable by the results in [33]). The upper bound for
containment follows from a small counterexample property: if P 6⊆ P ′ for some P and P ′

from Uwwd, then there is a witnessing mapping of size O(|P |+ |P ′|). Given this property, a
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Table 1 Structure of query patterns in DBpedia logs.

DBpedia 3.8 DBpedia 3.9
unique fraction fraction unique fraction fraction

patterns of total of OPT patterns of total of OPT
total 7 014 249 100% 27 854 100%

patterns with OPT 742 002 10.58% 100% 1 639 5.83% 100%
unions of wd-patterns 238 995 3.41% 32.32% 972 3.49% 59.31%

unions of wwd-patterns 736 051 10.49% 99.19% 1 620 5.82% 98.84%

Πp
2 algorithm for containment is straightforward – we guess a mapping µ and a graph G of

linear size, check that µ /∈ JP ′KG, and then call a coNP oracle for checking µ ∈ JP KG. As a
corollary, Equivalence(Uwwd) is also in Πp

2. The argument for subsumption is analogous.
Hardness of subsumption and equivalence is established by a reduction from ∀∃3SAT,

while containment is Πp
2-hard by the results in [33].

I Theorem 26. Problems Equivalence(L), Containment(L) and Subsumption(L) are
Πp

2-complete for any L∈{Pwwd,Uwwd}.

Hence, for UNION- and FILTER-free patterns the step from well-designed to weakly well-
designed OPT incurs a complexity jump for containment and equivalence. However, for the
fragments with UNION or projection complexity remains the same in all three cases. As far
as we are aware, these are the first decidability results on query equivalence and related
problems for SPARQL fragments with OPT and FILTER.

8 Analysis of DBpedia Logs

In this section, we present a preliminary analysis of query logs over DBpedia, which suggests
that the step from wd- to wwd-patterns makes a dramatic difference in real life: while only
about half of the queries with OPT have well-designed patterns, almost all of these patterns
fall into the weakly well-designed fragment.

DBpedia [26] is a project providing access to RDF data extracted from Wikipedia via a
SPARQL endpoint. DBpedia query logs are well suited for analysing the structure of real-life
SPARQL queries as they contain a large amount of general-purpose knowledge base queries,
generated both manually and automatically. DBpedia query logs have been analysed by
Picalausa and Vansummeren [32], who reported that, over a period in 2010, about 46.38% of a
total of 1344K distinct DBpedia queries used OPT. However, only 47.80% of the queries with
OPT had well-designed patterns. Another analysis of DBpedia logs from the USEWOD2011
data set performed by Arias Gallego et al. [9] concluded that 16.61% of about 5166K queries
contain OPT; however, detailed structure of queries was not analysed.

We considered query logs over DBpedia 3.8 from USEWOD2013 [10] and DBpedia 3.9
logs from USEWOD2014 [11]. The DBpedia 3.8 set is a random selection of almost 12M
queries from 2012 while the DBpedia 3.9 set contains only 253K queries, from 2013 and
beginning of 2014. We removed syntactically incorrect queries as well as queries outside
of S (in particular, queries using operators specific to SPARQL 1.1). Also, we rewrote the
patterns of the remaining queries to unions of UNION-free patterns as proposed in [31] and
eliminated duplicates, which left us with just over 7M queries over DBpedia 3.8 and 28K
queries over DBpedia 3.9 (the decrease from 253K to 28K for DBpedia 3.9 is mostly due
to duplicate elimination – with duplicates, we still have 197K queries). Finally, we isolated
queries involving OPT and counted how many of their patterns were in Uwwd and in Uwd.
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The results are given in Table 1. They confirm that a non-negligible number of DBpedia
queries use OPT; the exact fraction, however, varies considerably between the logs. In both
cases, however, by far not all queries with OPT are well-designed (only 32% for DBpedia 3.8
and 59% for DBpedia 3.9), which is consistent with the results in [32]. On the other hand,
almost all of the patterns with OPT (around 99% in both cases) are weakly well-designed,
which we consider as the main practical justification for wwd-patterns.

9 Conclusion and Future Work

In this paper, we introduced a new fragment of SPARQL patterns called weakly well-
designed patterns. This fragment extends the widely studied well-designed fragment by
allowing variables from the optional side of an OPT-subpattern that are not “guarded” by
the mandatory side to occur in certain positions outside of the subpattern. We showed that
queries with wwd-patterns enjoy the same low complexity of evaluation as well-designed
queries but cover almost all real-life queries. Moreover, our fragment is the maximal coNP
fragment that does not impose structural restrictions on basic patterns and filter conditions.
We studied the expressive power of the fragment and the complexity of its query optimisation
problems.

For future work, we want to extend wwd-patterns to allow for non-top-level occurrences
of UNION and projection. Also, we want to take into account features of SPARQL 1.1 [20]
such as GRAPH, NOT EXISTS and property paths. Finally, we would like to implement our
ideas in a prototype and compare its performance with existing SPARQL engines.
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Abstract
Given m distributed data streams A1, . . . , Am, we consider the problem of estimating the number
of unique identifiers in streams defined by set expressions over A1, . . . , Am. We identify a broad
class of algorithms for solving this problem, and show that the estimators output by any algorithm
in this class are perfectly unbiased and satisfy strong variance bounds. Our analysis unifies and
generalizes a variety of earlier results in the literature. To demonstrate its generality, we describe
several novel sampling algorithms in our class, and show that they achieve a novel tradeoff
between accuracy, space usage, update speed, and applicability.
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1 Introduction

Consider an internet company that monitors the traffic flowing over its network by placing a
sensor at each ingress and egress point. Because the volume of traffic is large, each sensor
stores only a small sample of the observed traffic, using some simple sampling procedure.
At some later point, the company decides that it wishes to estimate the number of unique
users who satisfy a certain property P and have communicated over its network. We refer to
this as the DistinctOnSubPopulationP problem, or DistinctP for short. How can the
company combine the samples computed by each sensor, in order to accurately estimate the
answer to this query?

In the case that P is the trivial property that is satisfied by all users, the answer to
the query is simply the number of DistinctElements in the traffic stream, or Distinct
for short. The problem of designing streaming algorithms and sampling procedures for
estimating DistinctElements has been the subject of intense study. In general, however,
P may be significantly more complicated than the trivial property, and may not be known
until query time. For example, the company may want to estimate the number of (unique)
men in a certain age range, from a specified country, who accessed a certain set of websites
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during a designated time period, while excluding IP addresses belonging to a designated
blacklist. This more general setting, where P is a nontrivial ad hoc property, has received
somewhat less attention than the basic Distinct problem.

In this paper, our goal is to identify a simple method for combining the samples from
each sensor, so that the following holds. As long as each sensor is using a sampling procedure
that satisfies a certain mild technical condition, then for any property P , the combining
procedure outputs an estimate for the DistinctP problem that is unbiased. Moreover, its
variance should be bounded by that of the individual sensors’ sampling procedures.1

For reasons that will become clear later, we refer to our proposed combining procedure as
the Theta-Sketch Framework, and we refer to the mild technical condition that each sampling
procedure must satisfy to guarantee unbiasedness as 1-Goodness. If the sampling procedures
satisfy an additional property that we refer to as monotonicity, then the variance of the
estimate output by the combining procedure is guaranteed to satisfy the desired variance
bound. The Theta-Sketch Framework, and our analysis of it, unifies and generalizes a variety
of results in the literature (see Section 2.5 for details).

The Importance of Generality. As we will see, there is a huge array of sampling procedures
that the sensors could use. Each procedure comes with a unique tradeoff between accuracy,
space requirements, update speed, and simplicity. Moreover, some of these procedures come
with additional desirable properties, while others do not. We would like to support as many
sampling procedures as possible, because the best one to use in any given given setting will
depend on the relative importance of each resource in that setting.

Handling Set Expressions. The scenario described above can be modeled as follows. Each
sensor observes a stream of identifiers Aj from a data universe of size n, and the goal is to
estimate the number of distinct identifiers that satisfy property P in the combined stream
U = ∪jAj . In full generality, we may wish to handle more complicated set expressions applied
to the constituent streams, other than set-union. For example, we may have m streams
of identifiers A1, . . . , Am, and wish to estimate the number of distinct identifiers satisfying
property P that appear in all streams. The Theta-Sketch Framework can be naturally
extended to provide estimates for such queries. Our analysis applies to any sequence of
set operations on the Aj ’s, but we restrict our attention to set-union and set-intersection
throughout the paper for simplicity.

2 Preliminaries, Background, and Contributions

2.1 Notation and Assumptions
Streams and Set Operations. Throughout, A denotes a stream of identifiers from a data
universe [n] := {1, . . . , n}. We view any property P on identifiers as a subset of [n], and
let nP,A := DistinctP (A) denote the number of distinct identifiers that appear in A and
satisfy P . For brevity, we let nA denote Distinct(A). When working in a multi-stream
setting, A1, . . . , Am denote m streams of identifiers from [n], U := ∪mj=1Aj will denote the
concatenation of the m input streams, while I := ∩mj=1Aj denotes the set of identifiers that

1 More precisely, we are interested in showing that the variance of the returned estimate is at most that
of the (hypothetical) estimator obtained by running each individual sensor’s sampling algorithm on
the concatenated stream A1 ◦ · · · ◦Am. We refer to the latter estimator as “hypothetical” because it is
typically infeasible to materialize the concatenated stream in distributed environments.
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appear at least once in all m streams. Because we are interested only in distinct counts, it
does not matter for definitional purposes whether we view U and I as sets, or as multisets.
For any property P : [n]→ {0, 1}, nP,U := DistinctP (U) and nP,I := DistinctP (I), while
nU := Distinct(U) and nI := Distinct(I).

Hash Functions. For simplicity and clarity, and following prior work (e.g. [4, 5]), we assume
throughout that the sketching and sampling algorithms make use of a perfectly random hash
function h mapping the data universe [n] to the open interval (0, 1). That is, for each x ∈ [n],
h(x) is a uniform random number in (0, 1). Given a subset of hash values S computed
from a stream A, and a property P ⊆ [n], P (S) denotes the subset of hash values in S

whose corresponding identifiers in [n] satisfy P . Finally, given a stream A, the notation XnA

refers to the set of hash values obtained by mapping a hash function h over the nA distinct
identifiers in A.

2.2 Prior Art: Sketching Procedures for Distinct Queries
There is a sizeable literature on streaming algorithms for estimating the number of distinct
elements in a single data stream. Some, but not all, of these algorithms can be modified to
solve the DistinctP problem for general properties P . Depending on which functionality is
required, systems based on HyperLogLog Sketches, K’th Minimum Value (KMV) Sketches,
and Adaptive Sampling represent the state of the art for practical systems [11].2 For clarity
of exposition, and due to space constraints, we defer a more thorough overview of these
algorithms to the full version of the paper [6]. Here, we briefly review the main concepts and
relevant properties of each.

HLL: HyperLogLog Sketches. HLL is a sketching algorithm for the vanilla Distinct
problem. Its accuracy per bit is superior to the KMV and Adaptive Sampling algorithms
described below. However, unlike KMV and Adaptive Sampling, it is not known how to
extend the HLL sketch to estimate nP,A for general properties P (unless, of course, P is
known prior to stream processing).

KMV: K’th Minimum Value Sketches. The KMV sketching procedure for estimating
Distinct(A) works as follows. While processing an input stream A, KMV keeps track of
the set S of the k smallest unique hashed values of stream elements. The update time of a
heap-based implementation of KMV is O(log k). The KMV estimator for Distinct(A) is:
KMVA = k/mk+1, where mk+1 denotes the k+1st smallest unique hash value.3 It has been
proved by [4], [10], and others, that E(KMVA) = nA, and σ2(KMVA) = n2

A−k nA

k−1 <
n2

A

k−1 .

Duffield et al. [7] proposed to change the heap-based implementation of the KMV sketching
algorithm to an implementation based on quickselect [12]. This reduces the sketch update
cost from O(log k) to amortized O(1). However, this O(1) hides a larger constant than
competing methods. At the cost of storing the sampled identifiers, and not just their hash
values, the KMV sketching procedure can be extended to estimate nP,A for any property
P ⊆ [n].

2 Algorithms with better asymptotic bit-complexity are known [13], but they do not match the practical
performance of the algorithms discussed here.

3 Some works use the estimate k/mk, e.g. [3]. We use k/mk+1 because it is unbiased, and for consistency
with the work of Cohen and Kaplan [5] described below.
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Adaptive Sampling. Adaptive Sampling maintains a sampling level i ≥ 0, and the set S of
all hash values less than 2−i; whenever |S| exceeds a pre-specified size limit, i is incremented
and S is scanned discarding any hash value that is now too big. Because a simple scan
is cheaper than running quickselect, an implementation of this scheme is typically faster
than KMV. The estimator of nA is AdaptA = |S|/2−i. It has been proved by [8] that this
estimator is unbiased, and that σ2(AdaptA) ≈ 1.44(n2

A/(k − 1)), where the approximation
sign hides oscillations caused by the periodic culling of S. Like KMV, Adaptive Sampling
can be extended to estimate nP,A for any property P . Although the stream processing speed
of Adaptive Sampling is excellent, the fact that its accuracy oscillates as nA increases is a
shortcoming.

HLL for set operations on streams. HLL can be directly adapted to handle set-union. For
set-intersection, the relevant adaptation uses the inclusion/exclusion principle. However,
the variance of this estimate is approximately a factor of nU/nI worse than the variance
achieved by the multiKMV algorithm described below. When nI � nU , this penalty factor
overwhelms HLL’s fundamentally good accuracy per bit.

KMV for set operations on streams. Given streams A1, . . . , Am, let Sj denote the KMV
sketch computed from stream Aj . A trivial way to use these sketches to estimate the number
of distinct items nU in the union stream U is to let M ′U denote the (k + 1)st smallest value
in the union of the sketches, and let S′U = {x ∈ ∪jSj : x < M ′U}. Then S′U is identical to
the sketch that would have been obtained by running KMV directly on the concatenated
stream A1 ◦ . . . , Am, and hence KMVP,U := k/M ′U is an unbiased estimator for nU , by the
same analysis as in the single-stream setting. We refer to this procedure as the “non-growing
union rule.”

Intuitively, the non-growing union rule does not use all of the information available
to it. The sets Sj contain up to k ·M distinct samples in total, but S′U ignores all but
the k smallest samples. With this in mind, Cohen and Kaplan [5] proposed the following
adaptation of KMV to handle unions of multiple streams. We denote their algorithm by
multiKMV, and also refer to it as the “growing union rule”. Define MU = minmj=1 Mj , and
SU = {x ∈ ∪jSj : x < MU}. Then nU is estimated by multiKMVU := |SU |/MU , and nP,U
is estimated by multiKMVP,U := |P (SU )|/MU .

At first glance, it may seem obvious that the growing union rule yields an estimator that
is “at least as good” as the non-growing union, since the growing union rule makes use of at
least as many samples as the non-growing rule. However, it is by no means trivial to prove
that multiKMVP,U is unbiased, nor that its variance is dominated by that of the non-growing
union rule. Nonetheless, [5] managed to prove this: they showed that multiKMVP,U is
unbiased and has variance that is dominated by the variance of KMVP,U :

σ2(multiKMVP,U ) ≤σ2(KMVP,U ). (1)

As observed in [5], multiKMV can be adapted in a similar manner to handle set-intersections
(see Section 3.7 for details).

Adaptive Sampling for set operations on streams. Adaptive Sampling can handle set
unions and intersections with a similar “growing union rule”. Specifically, let MU :=
minmj=1(2−i)j . Here, (2−i)j denotes the threshold for discarding hash values that was
computed by the jth Adaptive Sampling sketch. We refer to this algorithm as multiAdapt.
[9] proved epsilon-delta bounds on the error of multiAdaptP,U , but did not derive expressions
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for mean or variance. However, multiAdapt and multiKMV are both special cases of our
Theta-Sketch Framework, and in Section 3 we will prove (apparently for the first time) that
multiAdaptP,U is unbiased, and satisfies strong variance bounds. These results have the
following two advantages over the epsilon-delta bounds of [9]. First, proving unbiasedness is
crucial for obtaining estimators for distinct counts over subpopulations: these estimators are
analyzed as a sum of a huge number of per-item estimates (see Theorem 11 for details), and
biases add up. Second, variance bounds enable derivation of confidence intervals that an
epsilon-delta guarantee cannot provide, unless the guarantee holds for many values of delta
simultaneously.

2.3 Overview of the Theta-Sketch Framework
In this overview, we describe the Theta-Sketch Framework in the multi-stream setting
where the goal is to output nP,U , where U = ∪mj=1Aj (we define the framework formally in
Section 2.4). That is, the goal is to identify a very large class of sampling algorithms that
can run on each constituent stream Aj , as well as a “universal” method for combining the
samples from each Aj to obtain a good estimator for nP,U . We clarify that the Theta-Sketch
Framework, and our analysis of it, yields unbiased estimators that are interesting even in the
single-stream case, where m = 1.

We begin by noting the striking similarities between the multiKMV and multiAdapt
algorithms outlined in Section 2.2. In both cases, a sketch can be viewed as pair (θ, S) where
θ is a certain threshold that depends on the stream, and S is a set of hash values which
are all strictly less than θ. In this view, both schemes use the same estimator |S|/θ, and
also the same growing union rule for combining samples from multiple streams. The only
difference lies in their respective rules for mapping streams to thresholds θ. The Theta-Sketch
Framework formalizes this pattern of similarities and differences.

The assumed form of the single-stream sampling algorithms. The Theta-Sketch Frame-
work demands that each constituent stream Aj be processed by a sampling algorithm sampj
of the following form. While processing Aj , sampj evaluates a “threshold choosing function”
(TCF) T (j)(Aj). The final state of sampj must be of the form (θj := T (j)(Aj), S), where
S is the set of all hash values strictly less than θj that were observed while processing Aj .
If we want to estimate nP,U for non-trivial properties P , then sampj must also store the
corresponding identifier that hashed to each value in S. Note that the framework itself does
not specify the threshold-choosing functions T (j). Rather, any specification of the TCFs T (j)

defines a particular instantiation of the framework.
I Remark. It might appear from Algorithm 1 that for any TCF T (j), the function sampj [T (j)]
makes two passes over the input stream: one to compute θj , and another to compute Sj .
However, in all of the instantiations we consider, both operations can be performed in a
single pass.

The universal combining rule. Given the states (θj := T (j)(Aj), Sj) of each of the m
sampling algorithms when run on the streams A1, . . . , Am, define θU := minmj=1 θj , and SU :=
{x ∈ ∪jSj : x < θU} (see the function ThetaUnion in Algorithm 1). Then nU is estimated by
n̂U := |SU |/θU , and nP,U as n̂P,U := |P (SU )|/θU (see the function EstimateOnSubPopulation
in Algorithm 1).

The analysis. Our analysis shows that, so long as each threshold-choosing function T (j)

satisfies a mild technical condition that we call 1-Goodness, then n̂P,U is unbiased. We also
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Algorithm 1 Theta Sketch Framework for estimating nP,U . The framework is parameterized by
choice of TCF’s T (j)(k,Aj ,h), one for each input stream.

1: Definition: Function sampj [T (j)](k, Aj , h)
2: θj ← T(j)(k,Aj , h)
3: Sj ← {(x ∈ h(Aj)) < θj}.
4: return (θj , Sj).

5: Definition: Function ThetaUnion(Theta Sketches {(θj , Sj)})
6: θU ← min{θj}.
7: SU ← {(x ∈ (∪Sj)) < θU}.
8: return (θU , SU ).

9: Definition: Function EstimateOnSubPopulation(Theta Sketch (θ, S) produced from stream A,
Property P mapping identifiers to {0, 1})
10: return n̂A,P := |P (S)|

θ .

show that if each T (j) satisfies a certain additional condition that we call monotonicity, then
n̂P,U satisfies strong variance bounds (analogous to the bound of Equation (1) for KMV).
Our analysis is arguably surprising, because 1-Goodness does not imply certain properties
that have traditionally been considered important, such as permutation invariance, or S
being a uniform random sample of the hashed unique items of the input stream.

Applicability. To demonstrate the generality of our analysis, we identify several valid
instantiations of the Theta-Sketch Framework. First, we show that the TCF’s used in KMV
and Adaptive Sampling both satisfy 1-Goodness and monotonicity, implying that multiKMV
and multiAdapt are both unbiased and satisfy the aforementioned variance bounds. For
multiKMV, this is a reproof of Cohen and Kaplan’s results [5], but for multiAdapt the
results are new. Second, we identify a variant of KMV that we call pKMV, which is useful
in multi-stream settings where the lengths of constituent streams are highly skewed. We
show that pKMV satisfies both 1-Goodness and monotonicity. Third, we introduce a new
sampling procedure that we call the Alpha Algorithm. Unlike earlier algorithms, the Alpha
Algorithm’s final state actually depends on the stream order, yet we show that it satisfies
1-Goodness, and hence is unbiased in both the single- and multi-stream settings. We also
establish variance bounds on the Alpha Algorithm in the single-stream setting. We show
experimentally that the Alpha Algorithm, in both the single- and multi-stream settings,
achieves a novel tradeoff between accuracy, space usage, update speed, and applicability.

Unlike KMV and Adaptive Sampling, the Alpha Algorithm does not satisfy monotonicity
in general. In fact, we have identified contrived examples in the multi-stream setting on
which the aforementioned variance bounds are (weakly) violated. The Alpha Algorithm
does, however, satisfy monotonicity under the promise that the A1, . . . , Am are pairwise
disjoint, implying variance bounds in this case. Our experiments suggest that, in practice,
the normalized variance in the multi-stream setting is not much larger than in the pairwise
disjoint case.

Deployment of Algorithms. Within Yahoo, the pKMV and Alpha algorithms are used
widely. In particular, stream cardinalities in Yahoo empirically satisfy a power law, with
some very large streams and many short ones, and pKMV is an attractive option for such
settings. We have released an optimized open-source implementation of our algorithms at
http://datasketches.github.io/.

http://datasketches.github.io/
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2.4 Formal Definition of Theta-Sketch Framework

The Theta-Sketch Framework is defined as follows. This definition is specific to the multi-
stream setting where the goal is to output nP,U , where U = ∪mj=1Aj is the union of constituent
streams A1, . . . , Am.

I Definition 1. The Theta-Sketch Framework consists of the following components:
The data type (θ, S), where 0 < θ ≤ 1 is a threshold, and S is the set of all unique
hashed stream items 0 ≤ x < 1 that are less than θ. We will generically use the term
“theta-sketch” to refer to an instance of this data type.
The universal “combining function” ThetaUnion(), defined in Algorithm 1, that takes
as input a collection of theta-sketches (purportedly obtained by running samp[T ]() on
constituent streams A1, . . . , Am), and returns a single theta-sketch (purportedly of the
union stream U = ∪mi=1Ai).
The function EstimateOnSubPopulation(), defined in Algorithm 1, that takes as input a
theta-sketch (θ, S) (purportedly obtained from some stream A) and a property P ⊆ [n]
and returns an estimate of n̂P,A.

Any instantiation of the Theta-Sketch Framework must specify a “threshold choosing function”
(TCF), denoted T (k,A, h), that maps a target sketch size, a stream, and a hash function h
to a threshold θ. Any TCF T implies a “base” sampling procedure samp[T ]() that maps a
target size, a stream A, and a hash function to a theta-sketch using the pseudocode shown in
Algorithm 1. One can obtain an estimate n̂P,A for nP,A by feeding the resulting theta-sketch
into EstimateOnSubPopulation().

Given constituent streams A1, . . . , Am, the instantiation obtains an estimate n̂P,U of nP,U
by running samp[T ]() on each constituent stream Aj , feeding the resulting theta-sketches
to ThetaUnion() to obtain a “combined” theta-sketch for U = ∪mi=1Ai, and then running
EstimateOnSubPopulation() on this combined sketch.

I Remark. Definition 1 assumes for simplicity that the same TCF T is used in the base
sampling algorithms run on each of the constituent streams. However, all of our results that
depend only on 1-Goodness (e.g. unbiasedness of estimates and non-correlation of “per-item
estimates”) hold even if different 1-Good TCF’s are used on each stream, and even if different
values of k are employed.

2.5 Summary of Contributions

In summary, our contributions are: (1) Formulating the Theta-Sketch Framework. (2) Identi-
fying a mild technical condition (1-Goodness) on TCF’s ensuring that the framework’s
estimators are unbiased. (3) Identifying an additional mild technical condition (monotonicity)
ensuring that the framework’s estimators come with strong variance bounds analogous to
Equation (1). (4) Introducing the pKMV Algorithm, a novel variant of multiKMV that
can be useful in industrial big-data systems. (5) Proving that multiKMV, multiAdapt, and
pKMV all satisfy 1-Goodness and monotonicity, implying unbiasedness and variance bounds
for each. (6) Introducing the Alpha Algorithm, and proving that it satisfies 1-Goodness
(thus implying unbiasedness), but not monotonicity. We also derive quantitative bounds
on the Alpha Algorithm’s variance in the single-stream setting, and present experimental
evidence that it provides a novel tradeoff between accuracy, space usage, update speed, and
applicability in both the single-stream and multi-stream settings.
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3 Analysis of the Theta-Sketch Framework

Section Outline. Section 3.1 shows that KMV and Adaptive Sampling are both instan-
tiations of the Theta-Sketch Framework. Section 3.2 defines 1-Goodness. Section 3.3
proves that the TCF’s that instantiate behavior identical to KMV and Adapt both satisfy
1-Goodness. Section 3.4 proves that if a framework instantiation’s TCF satisfies 1-Goodness,
then so does the TCF that is implicitly applied to the union stream via the composition
of the instantiation’s base algorithm and the function ThetaUnion(). Section 3.5 proves
that the estimator n̂P,A for nP,A returned by EstimateOnSubPopulation() is unbiased when
applied to any theta-sketch produced by a TCF satisfying 1-Goodness. Section 3.6 defines
monotonicity and shows that 1-Goodness and monotonicity together imply variance bounds
on n̂P,U . Section 3.7 explains how to tweak the Theta-Sketch Framework to handle set
intersections and other set operations on streams.

3.1 Example Instantiations
Define mk+1 to be the k+1st smallest unique hash value in h(A) (the hashed version of the
input stream). The following is an easy observation.

I Observation 2. When the Theta-Sketch Framework is instantiated with the TCF
T (k,A, h) = mk+1, the resulting instantiation is equivalent to the multiKMV algorithm
outlined in Section 2.2.

Let β be any real value in (0, 1). For any z, define βi(z) to be the largest value of βi (with i
a non-negative integer) that is less than z.

I Observation 3. When the Theta-Sketch Framework is instantiated with the TCF
T (k,A, h) = βi(mk+1) the resulting instantiation is equivalent to multiAdapt, which combines
Adaptive Sampling with a growing union rule (cf. Section 2.2).4

3.2 Definition of 1-Goodness
The following circularity is a main source of technical difficulty in analyzing theta sketches:
for any given identifier ` in a stream A, whether its hashed value x` = h(`) will end up
in a sketch’s sample set S depends on a comparison of x` versus a threshold T (XnA) that
depends on x` itself. Adapting a technique from [5], we partially break this circularity by
analyzing the following infinite family of projections of a given threshold choosing function
T (XnA).

I Definition 4 (Definition of Fix-All-But-One Projection). Let T be a threshold choosing
function. Let ` be one of the nA unique identifiers in a stream A. Let XnA

−` be a fixed
assignment of hash values to all unique identifiers in A except for `. Then the fix-all-but-
one projection T`[XnA

−` ](x`) : (0, 1) → (0, 1] of T is the function that maps values of x` to
theta-sketch thresholds via the definition T`[XnA

−` ](x`) = T (XnA), where XnA is the obvious
combination of XnA

−` and x`.

[5] analyzed similar projections under the assumption that the base algorithm is specifically
(a weighted version of) KMV; we will instead impose the weaker condition that every
fix-all-but-one projection satisfies 1-Goodness, defined below.5

4 Section 2.2 assumed that the parameter β was set to the most common value: 1/2.
5 We chose the name 1-Goodness due to the reference to Fix-All-But-One Projections.
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I Definition 5 (Definition of 1-Goodness for Univariate Functions). A function f(x) : (0, 1)→
(0, 1] satisfies 1-Goodness iff there exists a fixed threshold F such that:

If x < F, then f(x) = F. (2)
If x ≥ F, then f(x) ≤ x. (3)

I Condition 6 (Definition of 1-Goodness for TCF’s). A TCF T (XnA) satisfies 1-Goodness
iff for every stream A containing nA unique identifiers, every label ` ∈ A, and every fixed
assignment XnA

−` of hash values to the identifiers in A\ `, the fix-all-but-one projection
T`[XnA

−` ](x`) satisfies Definition 5.

3.3 TCF’s of multiKMV and multiAdapt Both Satisfy 1-Goodness

The following two easy theorems show that the Threshold Choosing Functions used respect-
ively in KMV and in Adaptive Sampling both satisfy the 1-Goodness condition.

I Theorem 7. If T (XnA) = mk+1, then every fix-all-but-one projection T`[XnA

−` ](x`) of T
satisfies 1-Goodness.

Proof. Let T`[XnA

−` ](x`) be any specific fix-all-but-one-projection of T (XnA) = mk+1. We
will exhibit the fixed value F`[XnA

−` ] that causes (2) and (3) to be true for this projection. Let
a and b respectively be the k’th and (k+1)st smallest hash values in XnA

−` . Then Subconditions
(2) and (3) hold for F`[XnA

−` ] = a. There are three cases:
Case (x` < a < b) : In this case, T`[XnA

−` ](x`) = T (XnA) = mk+1 = a. Since x` <
(F`[XnA

−` ] = a), (2) holds because (T`[XnA

−` ](x`) = a) = F`[XnA

−` ], and (3) holds vacuously.
Case (a < x` < b) : In this case, T`[XnA

−` ](x`) = T (XnA) = mk+1 = x`. Since x` ≥
(F`[XnA

−` ] = a), (3) holds because (T`[XnA

−` ](x`) = x`) ≤ x`, and (2) holds vacuously.
Case (a < b < x`) : In this case, T`[XnA

−` ](x`) = T (XnA) = mk+1 = b. Since x` ≥
(F`[XnA

−` ] = a), (3) holds because (T`[XnA

−` ](x`) = b) < x`, and (2) holds vacuously.
J

I Theorem 8. If T (XnA) = βi(mk+1), then every fix-all-but-one projection T`[XnA

−` ](x`) of
T satisfies 1-Goodness.

Proof. Let T`[XnA

−` ](x`) be any specific fix-all-but-one-projection of T (XnA) = βi(mk+1). We
will exhibit the fixed value F`[XnA

−` ] that causes (2) and (3) to be true for this projection. Let
a and b respectively be the k’th and (k+1)st smallest hash values in XnA

−` . Then Subconditions
(2) and (3) hold for F`[XnA

−` ] = βi(a). There are four cases:
Case (x` < βi(a) < a < b) : mk+1 = a, so T`[XnA

−` ](x`) = βi(a). Since x` < F`[XnA

−` ] =
βi(a), (2) holds because (T`[XnA

−` ](x`) = βi(a)) = F`[XnA

−` ], and (3) holds vacuously.
Case (βi(a) < x` < a < b) : mk+1 = a, so T`[XnA

−` ](x`) = βi(a). Since x` ≥ F`[XnA

−` ] =
βi(a), (3) holds because (T`[XnA

−` ](x`) = βi(a)) < x`, and (2) holds vacuously.
Case (βi(a) < a < x` < b) : mk+1 = x`, so T`[XnA

−` ](x`) = βi(x`). Since x` ≥ F`[XnA

−` ] =
βi(a), (3) holds because (T`[XnA

−` ](x`) = βi(x`)) < x`, and (2) holds vacuously.
Case βi(a) < a < b < x`) : mk+1 = b, so T`[XnA

−` ](x`) = βi(b). Since x` ≥ F`[XnA

−` ] =
βi(a), (3) holds because (T`[XnA

−` ](x`) = βi(b)) < b < x`, and (2) holds vacuously.
J
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3.4 1-Goodness Is Preserved by the Function ThetaUnion()
Next, we show that if a framework instantiation’s TCF T satisfies 1-Goodness, then so
does the TCF TU that is implicitly being used by the theta-sketch construction algorithm
defined by the composition of the instantiation’s base sampling algorithms and the function
ThetaUnion(). We begin by formally extending the definition of a fix-all-but-one projection
to cover the degenerate case where the label ` isn’t actually a member of the given stream A.

I Definition 9. Let A be a stream containing nA identifiers. Let ` be a label that is not a
member of A. Let the notation XnA

−` refer to an assignment of hash value to all identifiers in
A. For any hash value x` of the non-member label `, define the value of the “fix-all-but-one”
projection T`[XnA

−` ](x`) to be the constant T (XnA

−` ).

I Theorem 10. If the threshold choosing functions T (j)(XnAj ) of the base algorithms used
to create sketches of m streams Aj all satisfy Condition 6, then so does the TCF:

TU (XnU ) = min
j
{T (j)(XnAj )} (4)

that is implicitly applied to the union stream via the composition of those base algorithms
and the procedure ThetaUnion().

Proof. Let TU
` [XnU

−` ](x`) be any specific fix-all-but-one projection of the threshold choosing
function TU (XnU ) defined by Equation (4). We will exhibit the fixed value FU [XnU

−` ] that
causes (2) and (3) to be true for TU

` [XnU

−` ](x`).
The projection TU

` [XnU

−` ](x`) is specified by a label ` ∈ (AU = ∪jAj), and a set XnU

−`
of fixed hash values for the identifiers in AU\`. For each j, those fixed hash values XnU

−`
induce a set X

nAj

−` of fixed hash values for the identifiers in Aj \`. The combination of `
and X

nAj

−` then specifies a projection T(j)
` [X

nAj

−` ](x`) of T (j)(Xj). Now, if ` ∈ Aj , this is a
fix-all-but-one projection according to the original Definition 4, and according to the current
theorem’s pre-condition, this projection must satisfy 1-Goodness for univariate functions.
On the other hand, if ` 6∈ Aj , this is a fix-all-but-one projection according to the extended
Definition 9, and is therefore a constant function, and therefore satisfies 1-Goodness. Because
the projection T(j)

` [X
nAj

−` ](x`) satisfies 1-Goodness either way, there must exist a fixed value
F j [X

nAj

−` ] such that Subconditions (2) and (3) are true for T(j)
` [X

nAj

−` ](x`).
We now show that the value FU

` [XnU

−` ] := minj(Fj
`[X

nAj

−` ]) causes Subconditions (2) and
(3) to be true for the projection TU

` [XnU

−` ](x`), thus proving that this projection satisfies
1-Goodness.

To show: x` < FU
` [XnU

−` ] implies TU
` [XnU

−` ](x`) = FU
` [XnU

−` ]. The condition x` < FU
` [XnU

−` ]
implies that for all j, x` < Fj

`[X
nAj

−` ]. Then, for all j, T(j)
` [X

nAj

−` ](x`) = Fj
`[X

nAj

−` ] by
Subcondition (2) for the various T(j)

` [X
nAj

−` ](x`). Therefore, FU
` [XnU

−` ] = minj(Fj
`[X

nAj

−` ]) =
minj(T(j)

` [X
nAj

−` ](x`)) = TU
` [XnU

−` ](x`), where the last step is by Eqn (4). This establishes
Subcondition (2) for the projection TU

` [XnU

−` ](x`).

To show: x` ≥ FU
` [XnU

−` ] implies x` ≥ TU
` [XnU

−` ](x`). Because x` is greater than or equal
to FU

` [XnU

−` ] = minj(Fj
`[X

nAj

−` ]), there exists a j such that x` ≥ Fj
`[X

nAj

−` ]. By Subcondition
(3) for this T(j)

` [X
nAj

−` ](x`), we have x` ≥ T(j)
` [X

nAj

−` ](x`). By Eqn (4), we then have x` ≥
TU
` [XnU

−` ](x`), thus establishing Subcondition (3) for TU
` [XnU

−` ](x`).
Finally, because the above argument applies to every projection TU

` [XnU

−` ](x`) of TU (XnU ),
we have proved the desired result that TU (XnU ) satisfies Condition 6. J
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3.5 Unbiasedness of EstimateOnSubPopulation()
We now show that 1-Goodness of a TCF implies that the corresponding instantiation of the
Theta-Sketch Framework provides unbiased estimates of the number of unique identifiers on
a stream or on the union of multiple streams.

I Theorem 11. Let A be a stream containing nA unique identifiers, and let P be a property
evaluating to 1 on an arbitrary subset of the identifiers. Let h denote a random hash function.
Let T be a threshold choosing function that satisfies Condition 6. Let (θ, SA) denote a sketch
of A created by samp[T ](k,A, h), and as usual let P (SA) denote the subset of hash values in
SA whose corresponding identifiers satisfy P . Then Eh (n̂P,A) := Eh

(
|P (SA)|

θ

)
= nP,A.

Theorems 10 and 11 together imply that, in the multi-stream setting, the estimate n̂P,U
for nP,U output by the Theta-Sketch Framework is unbiased, assuming the base sampling
schemes sampj() each use a TCF T (j) satisfying 1-Goodness.

Proof. Let A be a stream, and let T be a Threshold Choosing Function that satisfies 1-
Goodness. Fix any ` ∈ A. For any assignment XnA of hash values to identifiers in A, define
the “per-identifier estimate” V` as follows:

V`(XnA) = S`(XnA)
T (XnA) where S`(XnA) =

{
1 if x` < T (XnA)
0 otherwise. (5)

Because T satisfies 1-Goodness, there exists a fixed threshold F (XnA

−` ) for which it is a
straightforward exercise to verify that:

V`(XnA) =
{

1/F (XnA

−` ) if x` < F (XnA

−` )
0 otherwise. (6)

Now, conditioning on XnA

−` and taking the expectation with respect to x`:

E(V`|XnA

−` ) =
∫ 1

0
V`[XnA ](x`)dx` = F (XnA

−` ) · 1
F (XnA

−` ) = 1. (7)

Since Equation (7) establishes that E(V`) = 1 when conditioned on each XnA

−` , we also have
E(V`) = 1 when the expectation is taken over all XnA . By linearity of expectation, we
conclude that E(n̂P,A) =

∑
`∈A:P (`)=1 E(V`) = nP,A. J

3.6 1-Goodness and Monotonicity Imply Variance Bound
As usual, let U = ∪mi=1Ai be the union of m data streams. Our goal in this section is to
identify conditions on a threshold choosing function which guarantee the following: whenever
the Theta-Sketch Framework is instantiated with a TCF T satisfying the conditions, then for
any property P ⊆ [n], the variance σ2(n̂P,U ) of the estimator obtained from the Theta-Sketch
Framework is bounded above by the variance of the estimator obtained by running samp[T ]()
on the stream A∗ := A1 ◦A2 ◦ · · · ◦Am obtained by concatenating A1, . . . , Am.

It is easy to see that 1-Goodness alone is not sufficient to ensure such a variance bound.
Consider, for example, a TCF T that runs KMV on a stream A unless it determines that
nA ≥ C, for some fixed value C, at which point it sets θ to 1 (thereby causing samp[T ]() to
sample all elements from A). Note that such a base sampling algorithm is not implementable
by a sublinear space streaming algorithm, but T nonetheless satisfies 1-Goodness. It is
easy to see that such a base sampling algorithm will fail to satisfy our desired comparative

ICDT 2016



6:12 A Framework for Estimating Stream Expression Cardinalities

variance result when run on constituent streams A1, . . . , Am satisfying nAi < C for all i, and
nU > C. In this case, the variance of n̂U will be positive, while the variance of the estimator
obtained by running samp[T ] directly on A∗ will be 0.

Thus, for our comparative variance result to hold, we assume that T satisfies both
1-Goodness and the following additional monotonicity condition.

I Condition 12 (Monotonicity Condition). Let A0, A1, A2 be any three streams, and let
A∗ := A0 ◦A1 ◦A2 denote their concatenation. Fix any hash function h and parameter k.
Let θ = T (k,A1, h), and θ′ = T (k,A∗, h). Then θ′ ≤ θ.

I Theorem 13. Suppose that the Theta-Sketch Framework is instantiated with a TCF T

that satisfies Condition 6 (1-Goodness), as well as Condition 12 (monotonicity). Fix a
property P , and let A1, . . .Am, be m input streams. Let U = ∪Aj denote the union of the
distinct labels in the input streams. Let A∗ = A1 ◦ A2 ◦ . . . ◦ Am denote the concatenation
of the input streams. Let (θ∗, S∗) = samp[T ](k,A∗, h), and let n̂A∗P,A∗ denote the estimate of
nP,A∗ = nP,U obtained by evaluating EstimateOnSubPopulation((θ∗, S∗), P ). Let (θU , SU ) =
ThetaUnion({(θj , Sj)}), and let n̂UP,U denote the estimate of nP,U = nP,A∗ obtained by
evaluating EstimateOnSubPopulation((θU , SU ), P ). Then, with the randomness being over
the choice of hash function h, σ2(n̂UP,U ) ≤ σ2(n̂A∗P,A∗).

The proof of Theorem 13 is rather involved, and is deferred to the full version of the paper.

On the applicability of Theorem 13. It is easy to see that Condition 12 holds for any TCF
that is (1) order-insensitive and (2) has the property that adding another distinct item to the
stream cannot increase the resulting threshold θ. The TCF T used in multiKMV (namely,
T (k,A, h) = mk+1), satisfies these properties, as does the TCF used in Adaptive Sampling.
Since we already showed that both of these TCF’s satisfy 1-Goodness, Theorem 13 applies
to multiKMV and multiAdapt. In Section 4, we introduce the pKMV algorithm, which is
useful in multi-stream settings where the distribution of stream lengths is highly skewed, and
we show that Theorem 13 applies to this algorithm as well.

In Section 5, we introduce the Alpha Algorithm and show that it satisfies 1-Goodness.
While the Alpha Algorithm does not satisfy monotonicity in general, it does under the promise
that A1, . . . , Am are pairwise disjoint; Theorem 13 applies in this case. Our experiments
(deferred to the full version of the paper) suggest that, in practice, the normalized variance
in the multi-stream setting is not much larger than in the pairwise disjoint case.

3.7 Handling Set Intersections
The Theta-Sketch Framework can be tweaked in a natural way to handle set intersection and
other set operations, just as was the case for multiKMV. Specifically, define θU = minmj=1 θj ,
and SI = {(x ∈ ∩jSj) < θU}. The estimator for nP,I is n̂P,I := |P (SI)|/θU .

It is not difficult to see that n̂P,I is exactly equal to n̂P ′,U , where P ′ is the property
that evaluates to 1 on an identifier if and only if the identifier satisfies P and is also in I.
Since the latter estimator was already shown to be unbiased with variance bounded as per
Theorem 13, n̂P,I satisfies the same properties.

4 The pKMV Variant of KMV

Motivation. An internet company involved in online advertising typically faces some version
of the following problem: there is a huge stream of events representing visits of users to
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web pages, and a huge number of relevant “profiles”, each defined by the combination of
a predicate on users and a predicate on web pages. On behalf of advertisers, the internet
company must keep track of the count of distinct users who generate events that match each
profile. The distribution (over profiles) of these counts typically is highly skewed and covers
a huge dynamic range, from hundreds of millions down to just a few.

Because the summed cardinalities of all profiles is huge, the brute force technique (of
maintaining, for each profile, a hash table of distinct user ids) would use an impractical
amount of space. A more sophisticated approach would be to run multiKMV, treating each
profile as separate stream Ai. This effectively replaces each hash table in the brute force
approach with a KMV sketch. The problem with multiKMV in this setting is that, while
KMV does avoid storing the entire data stream for streams containing more than k distinct
identifiers, KMV produces no space savings for streams shorter than k. Because the vast
majority of profiles contain only a few users, replacing the hash tables in the brute force
approach by KMV sketches might still use an impractical amount of space.

On the other hand, fixed-threshold sampling with θ = p for a suitable sampling rate p,
would always result in an expected factor 1/p saving in space, relative to storing the entire
input stream. However, this method may result in too large a sample rate for long streams
(i.e., for profiles satisfied by many users), also resulting in an impractical amount of space.

The pKMV algorithm. In this scenario, the hybrid Threshold Choosing Function T (k,A, h)
= min(mk+1, p) can be a useful compromise, as it ensures that even short streams get
downsampled by a factor of p, while long streams produce at most k samples. While it is
possible to prove that this TCF satisfies 1-Goodness via a direct case analysis, the property
can also be established by an easier argument: Consider a hypothetical computation in which
the ThetaUnion procedure is used to combine two sketches of the same input stream: one
constructed by KMV with parameter k, and one constructed by fixed-threshold sampling
with parameter p. Clearly, this computation outputs θ = min(mk+1, p). Also, since KMV
and fixed-threshold sampling both satisfy 1-Goodness, and ThetaUnion preserves 1-Goodness
(cf. Theorem 11), T also satisfies 1-Goodness.

It is easy to see that Condition 12 applies to T (k,A, h) = min(mk+1, p) as well. Indeed,
T is clearly order-insensitive, so it suffices to show that adding an additional identifier to
the stream cannot increase the resulting threshold. Since p never changes, the only way
that adding another distinct item to the stream could increase the threshold would be by
increasing mk+1. However, that cannot happen.

5 Alpha Algorithm

5.1 Motivation and Comparison to Prior Art

Section 3’s theoretical results are strong because they cover such a wide class of base sampling
algorithms. In fact, 1-Goodness even covers base algorithms that lack certain traditional
properties such as invariance to permutations of the input, and uniform random sampling
of the input. We are now going to take advantage of these strong theoretical results for
the Theta Sketch Framework by devising a novel base sampling algorithm that lacks those
traditional properties, but still satisfies 1-Goodness. Our main purpose for describing our
Alpha Algorithm in detail is to exhibit the generality of the Theta-Sketch Framework.
Nonetheless the Alpha Algorithm does have the following advantages relative to HLL, KMV,
and Adaptive Sampling.
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Advantages over HLL. Unlike HLL, the Alpha Algorithm provides unbiased estimates
for DistinctP queries for non-trivial predicates P . Also, when instantiating the Theta-
Sketch Framework via the Alpha Algorithm in the multi-stream setting, the error behavior
scales better than HLL for general set operations (cf. Section 2.2). Finally, because the
Alpha Algorithm computes a sample, its output is human-interpretable and amenable to
post-processing.

Advantages over KMV. Implementations of KMV must either use a heap data structure
or quickselect [12] to give quick access to the k+1st smallest unique hash value seen so far.
The heap-based implementation yields O(log k) update time, and quickselect, while achieving
O(1) update time, hides a large constant factor in the Big-Oh notation (cf. Section 2.2).
The Alpha Algorithm avoids the need for a heap or quickselect, yielding superior practical
performance.

Advantages over Adaptive Sampling. The accuracy of Adaptive Sampling oscillates as nA
increases. The Alpha Algorithm avoids this behavior.

The remainder of this section provides a detailed analysis of the Alpha Algorithm. In
particular, we show that it satisfies 1-Goodness, and we give quantitative bounds on its
variance in the single-stream setting. The full version of the paper describes experiments
showing that, in both the single- and multi-stream settings, the Alpha Algorithm achieves a
novel tradeoff between accuracy, space usage, update speed, and applicability.

5.2 AlphaTCF
Algorithm 2 describes the threshold choosing function AlphaTCF. AlphaTCF can be viewed
as a tightly interleaved combination of two different processes. One process uses the set D to
remove duplicate items from the raw input stream; the other process uses a technique similar
to Approximate Counting [14] to estimate the number of items in the de-duped stream
created by the first process. In addition, the second process maintains and frequently reduces
a threshold θ = αi that is used by the first process to identify hash values that cannot be
members of S, and therefore don’t need to be placed in the de-duping set D. If the set D
is implemented using a standard dynamically-resized hash table, then well-known results
imply that the amortized cost6 of processing each stream element is O(1), and the space
occupied by the hash table is O(|D|). However, there is a simple optimized implementation
of the Alpha Algorithm, based on Cuckoo Hashing, that implicitly, and at zero cost, deletes
all members of D that are not less than θ, and therefore are not members of S (see the full
version of the paper for details). This does not affect correctness, because those deleted
members will not be needed for future de-duping tests of hash values that will all be less than
θ. Furthermore, in Theorem 15 below, it is proved that |S| is tightly concentrated around k.
Hence, the space usage of this optimized implementation is O(k) with probability 1− o(1).

5.3 AlphaTCF Satisfies 1-Goodness
We will now prove that AlphaTCF satisfies 1-Goodness, thus implying unbiasedness.

I Theorem 14. If T (XnA) = AlphaTCF, then every fix-all-but-one projection T`[XnA

−` ](x`)
of T (XnA) satisfies 1-Goodness.

6 Recent theoretical results imply that the update time can be made worst-case O(1) [1, 2].
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Algorithm 2 The Alpha Algorithm’s Threshold Choosing Function
1: Function AlphaTCF (target size k, stream A, hash function h)
2: α← k/(k + 1).
3: prefix(h(A))← shortest prefix of h(A) containing exactly k unique hash values.
4: suffix(h(A))← the corresponding suffix.
5: D ← the set of unique hash values in prefix(h(A)).
6: i← 0.
7: for all x ∈ suffix(h(A)) do
8: if x < αi then
9: if x 6∈ D then
10: i← i+ 1.
11: D ← D ∪ {x}.
12: end if
13: end if
14: end for
15: return θ ← αi.

Proof. Fix the number of distinct identifiers nA in A. Consider any identifier ` appearing
in the stream, and let x = h(`) be its hash value. Fix the hash values of all other elements
of the sequence of values XnA

−` . We need to exhibit a threshold F such that x < F implies
T`[XnA

−` ](x`)(x) = F and x ≥ F implies T`[XnA

−` ](x) ≤ x.
First, if x lies in one of the first k + 1 positions in the stream, then T`[XnA

−` ](x) is a
constant independent of x; in this case, F can be set to that constant.

Now for the main case, suppose that ` does not lie in one of the first k + 1 positions of
the stream. Consider a subdivision of the hashed stream into the initial segment preceding
x = h(`), then x itself, then the final segment that follows x. Because all hash values besides
x are fixed in XnA

−` , during the initial segment, there is a specific number a of times that θ
is decreased. When x is processed, θ is decreased either zero or one times, depending on
whether x < αa. Then, during the final segment, θ will be decreased a certain number of
additional times, where this number depends on whether x < αa. Let b denote the number of
additional times θ is decreased if x < αa, and c the number of additional times θ is decreased
otherwise. This analysis is summarized in the following table:

Rule Condition on x Final value of θ
L x < αa αa+b+1

G x ≥ αa αa+c+0

We prove the theorem using the threshold F = αa+b+1. We note that F = αa+b+1 < αa,
so F and αa divide the range of x into three disjoint intervals, creating three cases that need
to be considered.

Case 1: x < F < αa. In this case, because x < F , we need to show that T`[XnA

−` ](x) = F .
By Rule L, T`[XnA

−` ](x) = αa+b+1 = F .
Case 2: F ≤ x < αa. Because x ≥ F , we need to show that T`[XnA

−` ](x) ≤ x. By Rule L,
T`[XnA

−` ](x) = αa+b+1 = F ≤ x.
Case 3: F < αa ≤ x. Because x ≥ F , we need to show that T`[XnA

−` ](x) ≤ x. By Rule G,
T`[XnA

−` ](x) = αa+c+0 ≤ αa ≤ x. J

5.4 Analysis of Alpha Algorithm on Single Streams
The following two theorems show that the Alpha Algorithm’s space usage and single-stream
estimation accuracy are quite similar to those of KMV. That means that it is safe to use the
Alpha Algorithm as a drop-in replacement for KMV in a sketching-based big-data system,
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which then allows the system to benefit from the Alpha Algorithm’s low update cost. See
the experiments in the full version of the paper for an empirical comparison of these costs.

Random Variables. When Line 15 of Algorithm 2 is reached after processing a randomly
hashed stream, the program variable i is governed by a random variable I. Similarly, when
Line 3 of Algorithm 1 is subsequently reached, the cardinality of the set S is governed by
a random variable S. The following two theorems characterize the distributions of S and
of the Theta Sketch Framework’s estimator S/(αI). Specifically, Theorem 15 shows that
the number of elements sampled by the Alpha Algorithm is tightly concentrated around
k, and hence its space usage is concentrated around that of KMV. Theorem 16 shows that
the variance of the estimate returned by the Alpha Algorithm is very close to that of KMV.
Their proofs are deferred to the full version of the paper.

I Theorem 15. Let S denote the cardinality of the set S computed by the Alpha Algorithm’s
Threshold Choosing Function (Algorithm 2). Then:

E(S) = k. (8)

σ2(S) < k

2 + 1
4 . (9)

I Theorem 16. Let S denote the cardinality of the set S computed by the Alpha Algorithm’s
Threshold Choosing Function (Algorithm 2). Then:

σ2(S/(αI)) =(2k + 1)n2
A − (k2 + k)(2nA − 1)− nA

2k2 (10)

<
n2
A

k − 1
2
. (11)

5.5 Variance of the Alpha Algorithm in the Multi-Stream Setting

The Alpha Algorithm does not satisfy monotonicity (Condition 12) in general, so Theorem 13
does not immediately imply variance bounds in the multi-stream setting. In fact, we have
identified contrived examples in the multi-stream setting on which the variance of the
Theta-Sketch Framework when instantiated with the TCF of the Alpha Algorithm is slightly
larger than the hypothetical estimator obtained by running the Alpha Algorithm on the
concatenated stream A1 ◦ . . . Am (the worst-case setting appears to be when A1 . . . Am are
all permutations of each other).

However, we show in this section that the Alpha Algorithm does satisfy monotonicity
under the promise that all constituent streams are pairwise disjoint. This implies the
variance guarantees of Theorem 13 do apply to the Alpha Algorithm under the promise that
A1, . . . , Am are pairwise disjoint. Our experiments suggest that, in practice, the normalized
variance of the Alpha Algorithm in the multi-stream setting is not much larger than in the
pairwise disjoint case.

I Theorem 17. The TCF computed by the Alpha Algorithm satisfies Condition 12 under
the promise that the streams A1, A2, A3 appearing in Condition 12 are pairwise disjoint.

Proof. Due to space constraints, the proof is deferred to the full version of the paper. J
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Abstract
Probabilistic programming languages are used for developing statistical models, and they typic-
ally consist of two components: a specification of a stochastic process (the prior), and a specific-
ation of observations that restrict the probability space to a conditional subspace (the posterior).
Use cases of such formalisms include the development of algorithms in machine learning and ar-
tificial intelligence. We propose and investigate an extension of Datalog for specifying statistical
models, and establish a declarative probabilistic-programming paradigm over databases. Our
proposed extension provides convenient mechanisms to include common numerical probability
functions; in particular, conclusions of rules may contain values drawn from such functions. The
semantics of a program is a probability distribution over the possible outcomes of the input
database with respect to the program. Observations are naturally incorporated by means of
integrity constraints over the extensional and intensional relations. The resulting semantics is
robust under different chases and invariant to rewritings that preserve logical equivalence.
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1 Introduction

Languages for specifying general statistical models are commonly used in the development
of machine learning and artificial intelligence algorithms for tasks that involve inference
under uncertainty. A substantial effort has been made on developing such formalisms and
corresponding system implementations. An actively studied concept in that area is that
of Probabilistic Programming (PP) [20], where the idea is that the programming language
allows for specifying general random procedures, while the system executes the program not
in the standard programming sense, but rather by means of inference. Hence, a PP system
is built around a language and an (approximate) inference engine, which typically makes
use of Markov Chain Monte Carlo methods (e.g., the Metropolis-Hastings algorithm). The
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7:2 Declarative Probabilistic Programming with Datalog

relevant inference tasks can be viewed as probability-aware aggregate operations over all
possible worlds, that is, possible outcomes of the program. Examples of such tasks include
finding the most likely possible world, or estimating the probability of an event. Recently,
DARPA initiated the project Probabilistic Programming for Advancing Machine Learning
(PPAML), aimed at advancing PP systems (with a focus on a specific collection of systems,
e.g., [40, 30, 32]) towards facilitating the development of algorithms and software that are
based on machine learning.

In probabilistic programming, a statistical model is typically phrased by means of two
components. The first component is a generative process that produces a random possible
world by straightforwardly following instructions with randomness, and in particular, sampling
from common numerical probability functions; this gives the prior distribution. The second
component allows to phrase constraints that the relevant possible worlds should satisfy, and,
semantically, transforms the prior distribution into the posterior distribution – the subspace
obtained by conditioning on the constraints.

As an example, in supervised text classification (e.g., spam detection) the goal is to
classify a text document into one of several known classes (e.g., spam/non-spam). Training
data consists of a collection of documents labeled with classes, and the goal of learning is
to build a model for predicting the classes of unseen documents. One common approach
to this task assumes a generative process that produces random parameters for every class,
and then uses these parameters to define a generator of random words in documents of the
corresponding class [33, 31]. The prior distribution thus generates parameters and documents
for each class, and the posterior is defined by the actual documents of the training data.
In unsupervised text classification the goal is to cluster a given set of documents, so that
different clusters correspond to different topics (not known in advance). Latent Dirichlet
Allocation [10] approaches this problem in a similar generative way as the above, with the
addition that each document is associated with a distribution over topics.

A Datalog program is a set of logical rules, interpreted in the context of a relational
database (where database relations are also called the extensional relations), that are used to
define additional relations (known as the intensional relations). Datalog has traditionally been
used as a database query language. In recent years, however, it has found new applications
in data integration, information extraction, networking, program analysis, security, cloud
computing, and enterprise software development [23]. In each of these applications, being
declarative, Datalog makes specifications easier to write (sometimes with orders-of-magnitude
fewer lines of code than imperative code, e.g., [28]), and to comprehend and maintain.

In this work, we extend Datalog with the ability to program statistical models. In par
with existing languages for PP, our proposed extension consists of two parts: a generative
Datalog program that specifies a prior probability space over (finite or infinite) sets of facts
that we call possible outcomes, and a definition of the posterior probability by means of
observations, which come in the form of ordinary logical constraints over the extensional and
intensional relations. We subscribe to the premise of the PP community (and PPAML in
particular) that this paradigm has the potential of substantially facilitating the development
of applications that involve machine learning for inferring missing or uncertain information.
Indeed, probabilistic variants are explored for the major programming languages, such as
C [37], Java [27], Scala [40], Scheme [30] and Python [38] (we discuss the relationship of this
work to related literature in Section 6). At LogicBlox, we are interested in extending our
Datalog-based LogiQL [22] with PP to enable and facilitate the development of predictive
analysis [6]. We believe that, once the semantics becomes clear, Datalog can offer a natural
and appealing basis for PP, since it has an inherent (and well studied) separation between
given data (EDB), generated data (IDB), and conditioning (constraints).
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The main challenge, when attempting to extend Datalog with probabilistic programming
constructs, is to retain the inherent features of Datalog. Specifically, the semantics of Datalog
does not depend on the order by which the rules are resolved (chased). Hence, it is safe to
provide a Datalog engine with the ability to decide on the chasing order that is estimated
to be more efficient. Another feature is invariance under logical equivalence: two Datalog
programs have the same semantics whenever their rules are equivalent when viewed as
theories in first-order logic. Hence, it is safe for a Datalog engine to rewrite a program, as
long as logical equivalence is preserved.

For example, consider an application where we want to predict the number of vis-
its of clients to some local service (e.g., a doctor’s office). For simplicity, suppose that we
have a schema with the following relations: LivesIn(person, city), WorksIn(person, employer),
LocatedIn(company, city), and AvgVisits(city, avg). The following rule provides an appealing
way to model the generation of a random number of visits for a person.

Visits(p,Poisson[λ])← LivesIn(p, c),AvgVisits(c, λ) (1)

The conclusion of this rule involves sampling values from a parameterized probability
distribution. Next, suppose that we do not have all the addresses of persons, and we wish to
expand the simulation with employer cities. Then we might use the following additional rule.

Visits(p,Poisson[λ])←WorksIn(p, e),LocatedIn(e, c),AvgVisits(c, λ) (2)

Now, it is not clear how to interpret the semantics of Rules (1) and (2) in a manner that retains
the declarative nature of Datalog. If, for a person p, the right sides of both rules are true,
should both rules “fire” (i.e., should we sample the Poisson distribution twice)? And if p works
in more than one company, should we have one sample per company? And if p lives in one city
but works in another, which rule should fire? If only one rule fires, then the semantics becomes
dependent on the chase order. To answer these questions, we need to properly define what it
means for the head of a rule to be satisfied when it involves randomness such as Poisson[λ].

Furthermore, consider the following (standard) rewriting of the above program.

PersonCity(p, c)← LivesIn(p, c)
PersonCity(p, c)←WorksIn(p, e),LocatedIn(e, c)

Visits(p,Poisson[λ])← PersonCity(p, c),AvgVisits(c, λ)

As a conjunction of first-order sentences, the rewritten program is equivalent to the previous
one; we would therefore like the two programs to have the same semantics. In rule-based
languages with a factor-based semantics, such as Markov Logic Networks [15] or Probabilistic
Soft Logic [11], the above rewriting may change the semantics dramatically.

We introduce PPDL, a purely declarative probabilistic programming language based
on Datalog. The generative component of a PPDL program consists of rules extended
with constructs to refer to conventional parameterized numerical probability functions (e.g.,
Poisson, geometrical, etc.). Specifically, these mechanisms allow sampling values from the
given parameterized distributions in the conclusion of a rule (and if desired, use these values
as parameters of other distributions). In this paper, our focus is on discrete numerical
distributions (the framework we introduce admits a natural generalization to continuous
distributions, such as Gaussian or Pareto, but we defer the details of this to future work).
Semantically, a PPDL program associates to each input instance I a probability distribution
over possible outcomes. In the case where all the possible outcomes are finite, we get a discrete
probability distribution, and the probability of a possible outcome can be defined immediately
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7:4 Declarative Probabilistic Programming with Datalog

from its content. But in general, a possible outcome can be infinite, and moreover, the set of
all possible outcomes can be uncountable. Hence, in the general case we obtain a probability
measure space. We define a natural notion of a probabilistic chase where existential variables
are produced by invoking the corresponding numerical distributions. We define a measure
space based on a chase, and prove that this definition is robust, in the sense that the same
probability measure is obtained no matter which chase order is used.

A short version of this paper has appeared in the 2015 Alberto Mendelzon International
Workshop [47].

2 Preliminaries

In this section we give basic notation and definitions that we use throughout the paper.

Schemas and instances. A (relational) schema is a collection S of relation symbols, where
each relation symbol R is associated with an arity, denoted arity(R), which is a natural
number. An attribute of a relation symbol R is any number in {1, . . . , arity(R)}. For simplicity,
we consider here only databases over real numbers; our examples may involve strings, which
we assume are translatable into real numbers. A fact over a schema S is an expression of the
form R(c1, . . . , cn) where R is an n-ary relation in S and c1, . . . , cn ∈ R. An instance I over
S is a finite set of facts over S. We denote by RI the set of all tuples (c1, . . . , cn) such that
R(c1, . . . , cn) ∈ I.

Datalog programs. PPDL extends Datalog without the use of existential quantifiers. How-
ever, we will make use of existential rules indirectly in the definition of the semantics. For
this reason, we review here Datalog as well as existential Datalog. Formally, an existential
Datalog program, or Datalog∃ program, is a triple D = (E , I,Θ) where: (1) E is a schema,
called the extensional database (EDB) schema, (2) I is a schema, called the intensional
database (IDB) schema, disjoint from E , and (3) Θ is a finite set of Datalog∃ rules, that is,
first-order formulas of the form ∀x

[
(∃yψ(x,y)) ← ϕ(x)

]
where ϕ(x) is a conjunction of

atomic formulas over E ∪ I and ψ(x,y) is an atomic formula over I, such that each variable
in x occurs in ϕ. Here, by an atomic formula (or, atom) we mean an expression of the form
R(t1, . . . , tn) where R is an n-ary relation and t1, . . . , tn are either constants (i.e., numbers)
or variables. For readability’s sake, we omit the universal quantifier and the parentheses
around the conclusion (left-hand side), and write simply ∃yψ(x,y) ← ϕ(x). Datalog is
the fragment of Datalog∃ where the conclusion of each rule is an atomic formula without
existential quantifiers.

Let D = (E , I,Θ) be a Datalog∃ program. An input instance for D is an instance I over
E . A solution of I w.r.t. D is a possibly infinite set F of facts over E ∪I, such that I ⊆ F and
F satisfies all rules in Θ (viewed as first-order sentences). A minimal solution of I (w.r.t. D)
is a solution F of I such that no proper subset of F is a solution of I. The set of all, finite
and infinite, minimal solutions of I w.r.t. D is denoted by min-solD(I), and the set of all
finite minimal solutions is denoted by min-solfin

D (I). It is a well known fact that, if D is a
Datalog program (that is, without existential quantifiers), then every input instance I has a
unique minimal solution, which is finite, and therefore min-solfin

D (I) = min-solD(I).

Probability spaces. We separately consider discrete and continuous probability spaces. We
initially focus on the discrete case; there, a probability space is a pair (Ω, π), where Ω is
a finite or countably infinite set, called the sample space, and π : Ω → [0, 1] is such that



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena 7:5

∑
o∈Ω π(o) = 1. If (Ω, π) is a probability space, then π is a probability distribution over Ω.

We say that π is a numerical probability distribution if Ω ⊆ R. In this work we focus on
discrete numerical distributions.

A parameterized probability distribution is a function δ : Ω × Rk → [0, 1], such that
δ(·,p) : Ω→ [0, 1] is a probability distribution for all p ∈ Rk. We use pardim(δ) to denote
the parameter dimension k. For presentation’s sake, we may write δ(o|p) instead of δ(o,p).
Moreover, we denote the (non-parameterized) distribution δ(·|p) by δ[p]. An example of a
parameterized distribution is Flip(·|p), where Ω is {0, 1}, and for a parameter p ∈ [0, 1] we
have Flip(1|p) = p and Flip(0|p) = 1− p. Another example is Poisson(·|λ), where Ω = N, and
for a parameter λ ∈ (0,∞) we have Poisson(x|λ) = λxe−λ/x!. In Section 7 we discuss the
extension of our framework to models that have a variable number of parameters, and to
continuous distributions.

Let Ω be a set. A σ-algebra over Ω is a collection F of subsets of Ω, such that F contains
Ω and is closed under complement and countable unions. (Implied properties include that
F contains the empty set, and that F is closed under countable intersections.) If F ′ is a
nonempty collection of subsets of Ω, then the closure of F ′ under complement and countable
unions is a σ-algebra, and it is said to be generated by F ′. A probability measure space
is a triple (Ω,F , π), where: (1) Ω is a set, called the sample space, (2) F is a σ-algebra
over Ω, and (3) π : F → [0, 1], called a probability measure, is such that π(Ω) = 1, and
π(∪E) =

∑
e∈E π(e) for every countable set E of pairwise-disjoint elements of F .

3 Generative Datalog

A Datalog program without existential quantifiers specifies how to obtain a minimal solution
from an input instance by producing the set of inferred IDB facts. In this section we
present generative Datalog programs, which specify how to infer a distribution over possible
outcomes given an input instance. In Section 5 we will complement generative programs with
constraints to establish the PPDL framework.

3.1 Syntax

The syntax of a generative Datalog program is defined as follows.

I Definition 1 (GDatalog[∆]). Let ∆ be a finite set of parameterized numerical distributions.
1. A ∆-term is a term of the form δ[[p1, . . . , pk]] where δ ∈ ∆ is a parameterized distribution

with pardim(δ) = ` ≤ k, and each pi (i = 1, . . . , k) is a variable or a constant. To improve
readability, we will use a semicolon to separate the first ` arguments (corresponding to
the distribution parameters) from the optional other arguments (which we will call the
event signature), as in δ[[p; q]]. When the event signature is empty (i.e., when k = `), we
write δ[[p; ]].1

2. A ∆-atom in a schema S is an atomic formula R(t1, . . . , tn) with R ∈ S an n-ary relation,
such that exactly one term ti (i = 1, . . . , n) is a ∆-term and the other terms tj are
variables and/or constants.2

1 Intuitively, δ[[p; q]] denotes a sample from the distribution δ(·|p) where different samples are drawn for
different values of the event signature q (cf. Example 2).

2 The restriction to at most one ∆-term per atom is only for presentational purposes, cf Section 3.5.
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House
id city

NP1 Napa
NP2 Napa
YC1 Yucaipa

Business
id city

NP3 Napa
YC1 Yucaipa

City
name burglaryrate
Napa 0.03

Yucaipa 0.01

AlarmOn
unit
NP1
YC1
YC2

Figure 1 Input instance I of the burglar example.

1. Earthquake(c,Flip[[0.01; Earthquake, c]]) ← City(c, r)
2. Unit(h, c) ← House(h, c)
3. Unit(b, c) ← Business(b, c)
4. Burglary(x, c,Flip[[r; Burglary, x, c]]) ← Unit(x, c) , City(c, r)
5. Trig(x,Flip[[0.6; Trig, x]]) ← Unit(x, c) , Earthquake(c, 1)
6. Trig(x,Flip[[0.9; Trig, x]]) ← Burglary(x, c, 1)
7. Alarm(x) ← Trig(x, 1)

Figure 2 GDatalog[∆] program G for the burglar example.

3. A GDatalog[∆] rule over a pair of disjoint schemas E and I is a first-order sentence of
the form ∀x(ψ(x) ← φ(x)) where φ(x) is a conjunction of atoms in E ∪ I and ψ(x) is
either an atom in I or a ∆-atom in I.

4. A GDatalog[∆] program is a triple G = (E , I,Θ), where E and I are disjoint schemas and
Θ is a finite set of GDatalog[∆] rules over E and I.

I Example 2. Our example is based on the burglar example of Pearl [39] that has been
frequently used to illustrate probabilistic programming (e.g., [36]). Consider the EDB schema
E consisting of the following relations: House(h, c) represents houses h and their location
cities c, Business(b, c) represents businesses b and their location cities c, City(c, r) represents
cities c and their associated burglary rates r, and AlarmOn(x) represents units (houses or
businesses) x where the alarm is on. Figure 1 shows an instance I over this schema. Now
consider the GDatalog[∆] program G = (E , I,Θ) of Figure 2.

Here, ∆ consists of only one distribution, namely Flip. The first rule in Figure 2, intuitively,
states that, for every fact of the form City(c, r), there must be a fact Earthquake(c, y) where
y is drawn from the Flip (Bernoulli) distribution with the parameter 0.01. Moreover, the
additional arguments Earthquake and c given after the semicolon (where Earthquake is a
constant) enforce that different samples are drawn from the distribution for different cities
(even if they have the same burglary rate), and that we never use the same sample as in
Rules 5 and 6. Similarly, the presence of the additional argument x in Rule 4 enforces that a
different sample is drawn for a different unit, instead of sampling only once per city.

I Example 3. The program of Figure 3 models virus dissemination among computers of
email users. For simplicity, we identify each user with a distinct computer. Every message
has a probability of passing a virus, if the virus is active on the source. If a message passes
the virus, then the recipient has the virus (but it is not necessarily active, e.g., since the
computer has the proper defence). And every user has a probability of having the virus
active on her computer, in case she has the virus. Our program has the following EDBs:

Message(m, s, t) contains message identifiers m sent from the user s to the user t.
VirusSource(x) contains the users who are known to be virus sources.
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1. PassVirus(m,Flip[[0.1;m]]) ← Message(m, s, t), ActiveVirus(s, 1)
2. HasVirus(t) ← PassVirus(m, 1), Message(m, s, t)
3. ActiveVirus(x,Flip[[0.5;x]]) ← HasVirus(x)
4. ActiveVirus(x, 1) ← VirusSource(x)

PassVirus,1 PassVirus,2

ActiveVirus,1 ActiveVirus,2

HasVirus,1
∗

Figure 3 Program and dependency graph for the virus-dissemination example.

1. Earthquake(c,Flip[0.01]) ← City(c, r)
2. Unit(h, c) ← House(h, c)
3. Unit(b, c) ← Business(b, c)
4. Burglary(x, c,Flip[r]) ← Unit(x, c) , City(c, r)
5. Trig(x,Flip[0.6]) ← Unit(x, c) , Earthquake(c, 1)
6. Trig(x,Flip[0.9]) ← Burglary(x, c, 1)
7. Alarm(x) ← Trig(x, 1)

Figure 4 Burglar program from Figure 2 modified to use syntactic sugar.

In addition, the following IDBs are used.
PassVirus(m, b) determines whether a message m passes a virus (b = 1) or not (b = 0).
HasVirus(x, b) determines whether user x has the virus (b = 1) or not (b = 0).
ActiveVirus(x, b) determines whether user x has the virus active (b = 1) or not (b = 0).

The dependency graph depicted in Figure 3 will be used later on, in Section 3.4, when we
further analyse this program.

Syntactic sugar. The syntax of GDatalog[∆], as defined above, requires us to always make
explicit the arguments that determine when different samples are taken from a distribu-
tion (cf. the argument c after the semicolon in Rule 1 of Figure 2, and the arguments
x, c after the semicolon in Rule 4 of the same program). To enable a more succinct nota-
tion, we use the following convention: consider a ∆-atom R(t1, . . . , tn) in which the i-th
argument, ti, is a ∆-term. Then ti may be written using the simpler notation δ[p], in
which case it is understood to be a shorthand for δ[[p; q]] where q is the sequence of terms
r, i, t1, . . . , ti−1, ti+1, . . . , tn. Here, r is a constant uniquely associated to the relation R.
Thus, for example, Earthquake(c,Flip[0.01]) ← City(c, r) is taken to be a shorthand for
Earthquake(c,Flip[[0.01; Earthquake, 2, c]]) ← City(c, r). Using this syntactic sugar, the pro-
gram in Figure 2 can be rewritten in a notationally less verbose way, cf. Figure 4. Note,
however, that the shorthand notation is less explicit as to describing when two rules involve
the same sample vs. different samples from the same probability distribution.

3.2 Possible Outcomes
A GDatalog[∆] program G = (E , I,Θ) is associated with a corresponding Datalog∃ program
Ĝ = (E , I∆,Θ∆). The possible outcomes of an input instance I w.r.t. G will then be minimal
solutions of I w.r.t. Ĝ. Next, we describe I∆ and Θ∆.

The schema I∆ extends I with the following additional relation symbols: for each δ ∈ ∆
with pardim(δ) = k and for each n ≥ 0, we have a (k + n+ 1)-ary relation symbol Resultδn.
These relation symbols Resultδn are called the distributional relation symbols of I∆, and the
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1a. ∃y ResultFlip
2 (0.01,Earthquake, c, y) ← City(c, r)

1b. Earthquake(c, y) ← City(c, r),ResultFlip
2 (0.01,Earthquake, c, y)

2. Unit(h, c) ← House(h, c)
3. Unit(b, c) ← Business(b, c)
4a. ∃y ResultFlip

3 (r,Burglary, x, c, y) ← Unit(x, c) , City(c, r)
4b. Burglary(x, c, y) ← Unit(x, c) , City(c, r),ResultFlip

3 (r,Burglary, x, c, y)
5a. ∃yResultFlip

2 (0.6,Trig, x, y) ← Unit(x, c) , Earthquake(c, 1)
5b. Trig(x, y) ← Unit(x, c) , Earthquake(c, 1),ResultFlip

2 (0.6,Trig, y, x)
6a. ∃yResultFlip

2 (0.9,Trig, x, y) ← Burglary(x, c, 1)
6b. Trig(x, y) ← Burglary(x, c, 1),ResultFlip

2 (0.9,Trig, x, y)
7. Alarm(x) ← Trig(x, 1)

Figure 5 The Datalog∃ program Ĝ for the GDatalog[∆] program G of Figure 2.

other relation symbols of I∆ (namely, those of I) are referred to as the ordinary relation
symbols. Intuitively, a fact in Resultδn represents the result of a particular sample drawn
from δ (where k is the number of parameters of δ and n is the number of optional arguments
that form the event signature).

The set Θ∆ contains all Datalog rules from Θ that have no ∆-terms. In addition, for every
rule of the form ψ(x)← φ(x) in Θ, where ψ contains a ∆-term of the form δ[[p; q]] with n = |q|,
Θ∆ contains the rules ∃yResultδn(p,q, y)← φ(x) and ψ′(x, y)← φ(x),Resultδn(p,q, y), where
ψ′ is obtained from ψ by replacing δ[[p; q]] by y.

A possible outcome is defined as follows.

I Definition 4 (Possible Outcome). Let I be an input instance for a GDatalog[∆] program G.
A possible outcome for I w.r.t. G is a minimal solution F of I w.r.t. Ĝ, such that δ(b|p) > 0
for every distributional fact Resultδn(p,q, b) ∈ F .
We denote the set of all possible outcomes of I w.r.t. G by ΩG(I), and we denote the set of
all finite possible outcomes by Ωfin

G (I).

I Example 5. The GDatalog[∆] program G given in Example 2 gives rise to the Datalog∃
program Ĝ of Figure 5. For instance, Rule 6 of Figure 2 is replaced with Rules 6a and 6b
of Figure 5. An example of a possible outcome for the input instance I is the instance
consisting of the relations in Figure 6 (ignoring the “pr(f)” columns for now), together with
the relations of I itself.

3.3 Probabilistic Semantics
The semantics of a GDatalog[∆] program is a function that maps every input instance I to
a probability distribution over ΩG(I). We now make this precise. For a distributional fact f
of the form Resultδn(p,q, a), the probability of f , denoted pr(f), is defined to be δ(a|p). For
an ordinary (non-distributional) fact f , we define pr(f) = 1. For a finite set F of facts, we
denote by P(F ) the product of the probabilities of all the facts in F :3

P(F ) def=
∏
f∈F

pr(f)

3 The product reflects the law of total probability and does not assume that different random choices are
independent (and indeed, correlation is clear in the examples throughout the paper).
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ResultFlip
2

p att1 att2 result pr(f)
0.01 Earthquake Napa 1 0.01
0.01 Earthquake Yucaipa 0 0.99
0.9 Trig NP1 1 0.9
0.9 Trig NP3 0 0.1
0.6 Trig NP1 1 0.6
0.6 Trig NP2 1 0.6
0.6 Trig NP3 0 0.4

Unit
id city

NP1 Napa
NP2 Napa
NP3 Napa
YC1 Yucaipa

Earthquake
city eq

Napa 1
Yucaipa 0

Alarm
unit
NP1
NP2

ResultFlip
3

p att1 att2 att3 result pr(f)
0.03 Burglary NP1 Napa 1 0.03
0.03 Burglary NP2 Napa 0 0.97
0.03 Burglary NP3 Napa 1 0.03
0.01 Burglary YC1 Yucaipa 0 0.99

Burglary
unit city draw
NP1 Napa 1
NP2 Napa 0
NP3 Napa 1
YC1 Yucaipa 0

Trig
unit Trig
NP1 1
NP3 0
NP2 1
NP3 0

Figure 6 A possible outcome for the input instance I in the burglar example.

I Example 6 (continued). Let J be the instance that consists of all of the relations in
Figures 1 and 6. As we already remarked, J is a possible outcome of I w.r.t. G. For
convenience, in the case of distributional relations, we have indicated the probability of each
fact next to the corresponding row. P(J) is the product of all of the numbers in the columns
titled “pr(f),” that is, 0.01× 0.99× 0.9× · · · × 0.99.

One can easily come up with examples where possible outcomes are infinite, and in
fact, the space ΩG(I) of all possible outcomes is uncountable. Hence, we need to consider
probability spaces over uncountable domains; those are defined by means of measure spaces.

Let G be a GDatalog[∆] program, and let I be an input for G. We say that a finite
sequence f = (f1, . . . , fn) of facts is a derivation (w.r.t. I) if for all i = 1, . . . , n, the fact fi is
the result of applying some rule of G that is not satisfied in I ∪ {f1, . . . , fi−1} (in the case of
applying a rule with a ∆-atom in the head, choosing a value randomly). If f1, . . . , fn is a
derivation, then the set {f1, . . . , fn} is a derivation set. Hence, a finite set F of facts is a
derivation set if and only if I ∪ F is an intermediate instance in some chase tree.

Let G be a GDatalog[∆] program, I be an input for G, and F be a set of facts. We denote
by ΩF⊆

G (I) the set of all possible outcomes J ⊆ ΩG(I) such that F ⊆ J . The following
theorem states how we determine the probability space defined by a GDatalog[∆] program.

I Theorem 7. Let G be a GDatalog[∆] program, and let I be an input for G. There
exists a unique probability measure space (Ω,F , π), denoted µG,I , that satisfies all of the
following.
1. Ω = ΩG(I);
2. (Ω,F) is the σ-algebra generated from the sets of the form ΩF⊆G (I) where F is finite;
3. π(ΩF⊆G (I)) = P(F ) for every derivation set F .
Moreover, if J is a finite possible outcome, then π({J}) is equal to P(J).

Theorem 7 provides us with a semantics for GDatalog[∆] programs: the semantics of a
GDatalog[∆] program G is a map from input instances I to probability measure spaces µG,I
over possible outcomes (as uniquely determined by Theorem 7). The proof of Theorem 7 is
by means of the chase procedure, which we discuss in the next section. A direct corollary of
the theorem applies to the important case where all possible outcomes are finite (and the
probability space may be infinite, but necessarily discrete).
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I Corollary 8. Let G be a GDatalog[∆] program, and I an input instance for G, such
that ΩG(I) = Ωfin

G (I). Then P is a discrete probability function over ΩG(I); that is,∑
J∈ΩG(I) P(J) = 1.

3.4 Finiteness and Weak Acyclicity
Corollary 8 applies only when all solutions are finite, that is, ΩG(I) = Ωfin

G (I). We now
present the notion of weak acyclicity for a GDatalog[∆] program, as a natural syntactic
condition that guarantees finiteness of all possible outcomes (for all input instances). This
draws on the notion of weak acyclicity for Datalog∃ [18]. Consider any GDatalog[∆] program
G = (E , I,Θ). A position of I is a pair (R, i) where R ∈ I and i is an attribute of R. The
dependency graph of G is the directed graph that has the positions of I as the nodes, and the
following edges:

A normal edge (R, i) → (S, j) whenever there is a rule ψ(x) ← ϕ(x) and a variable x
occurring at position (R, i) in ϕ(x), and at position (S, j) in ψ(x).
A special edge (R, i)→∗ (S, j) whenever there is a rule of the form

S(t1, . . . , tj−1, δ[[p; q]], tj+1, . . . , tn)← ϕ(x)

and a variable x occurring at position (R, i) in ϕ(x) as well as in p or q.
We say that G is weakly acyclic if no cycle in its dependency graph contains a special edge.

I Theorem 9. If a GDatalog[∆] program G is weakly acyclic, then ΩG(I) = Ωfin
G (I) for all

input instances I.

I Example 10. The burglar example program in Figure 2 is easily seen to be weakly acyclic
(indeed, every non-recursive GDatalog[∆] program is weakly-acyclic). In the case of the
virus-dissemination example, the dependency graph in Figure 3 shows that, although this
program features recursion, it is weakly acyclic as well.

3.5 Discussion
We conclude this section with some comments. First, we note that the restriction of a
conclusion of a rule to include a single ∆-term significantly simplifies the presentation, but
does not reduce the expressive power. In particular, we could simulate multiple ∆-terms in
the conclusion using a collection of predicates and rules. For example, if one wishes to have
conclusion where a person gets both a random height and a random weight (possibly with
shared parameters), then she can do so by deriving PersonHeight(p, h) and PersonWeight(p, w)
separately, and using the rule PersonHW(p, h, w)← PersonHeight(p, h),PersonWeight(p, w).
We also highlight the fact that our framework can easily simulate the probabilistic database
model of independent tuples [46] with probabilities mentioned in the database. The framework
can also simulate Bayesian networks, given relations that store the conditional probability
tables, using the appropriate numerical distributions (e.g., Flip for the case of Boolean random
variables). In addition, we note that a disjunctive Datalog rule [16], where the conclusion
can be a disjunction of atoms, can be simulated by our model (with probabilities ignored): If
the conclusion has n disjuncts, then we construct a distributional rule with a probability
distribution over {1, . . . , n}, and additional n deterministic rules corresponding to the atoms.

4 Chasing Generative Programs

The chase [29, 3] is a classic technique used for reasoning about database integrity constraints
such as tuple-generating dependencies. This technique can be equivalently viewed as a
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tableaux-style proof system for ∀∗∃∗-Horn sentences. In the special case of full tuple-
generating dependencies, which are syntactically isomorphic to Datalog rules, the chase is
closely related to (a tuple-at-a-time version of) the naive bottom-up evaluation strategy for
Datalog program (cf. [2]). We now present a suitable variant of the chase for generative
Datalog programs, and use it in order to construct the probability space of Theorem 7.

We note that, although the notions and results could arguably be phrased in terms
of a probabilistic extension of the bottom-up Datalog evaluation strategy, the fact that a
GDatalog[∆] rule can create new values makes it more convenient to phrase them in terms
of a suitable adaptation of the chase procedure.

Throughout this section, we fix a GDatalog[∆] program G = (E , I,Θ) and its associated
Datalog∃ program Ĝ = (E , I∆,Θ∆). We first define the notions of chase step and chase tree.

Chase step. Consider an instance J , a rule τ ∈ Θ∆ of the form ψ(x)← ϕ(x), and a tuple
a such that ϕ(a) is satisfied in J but ψ(a) is not satisfied in J . If ψ(x) is a distributional
atom of the form ∃yResultδi (p,q, y), then ψ being “not satisfied” is interpreted in the logical
sense (regardless of probabilities): there is no y such that (p,q, y) is in Resultδi . In that case,
let J be the set of all instances Jb obtained by extending J with ψ(a) for a specific value b of
the existential variable y, such that δ(b|p) > 0. Furthermore, let π be the discrete probability
distribution over J that assigns to Jb the probability δ(b|p). If ψ(x) is an ordinary atom
without existential quantifiers, J is simply defined as {J ′}, where J ′ extends J with the fact
ψ(a), and π(J ′) = 1. We say that J τ(a)−−−→ (J , π) is a valid chase step.

Chase tree. Let I be an input instance for G. A chase tree for I w.r.t. G is a possibly
infinite tree, whose nodes are labeled by instances over E ∪ I, and whose edges are labeled
by real numbers, such that:
1. The root is labeled by I;
2. For each non-leaf node labeled J , if J is the set of labels of the children of the node,

and if π is the map assigning to each J ′ ∈ J the label of the edge from J to J ′, then
J

τ(a)−−−→ (J , π) is a valid chase step for some rule τ ∈ Θ∆ and tuple a.
3. For each leaf node labeled J , there does not exist a valid chase step of the form J

τ(a)−−−→
(J , π). In other words, the tree cannot be extended to a larger chase tree.

We denote by L(v) the label (instance) of the node v. Each L(v) is said to be an
intermediate instance w.r.t. the chase tree. Consider a GDatalog[∆] program G and an input
I for G. A maximal path of a chase tree T is a path P that starts with the root, and either
ends in a leaf or is infinite. Observe that the labels (instances) along a maximal path form a
chain (w.r.t. the set-containment partial order). A maximal path P of a chase tree is fair
if whenever the premise of a rule is satisfied by some tuple in some intermediate instance
on P , then the conclusion of the rule is satisfied for the same tuple in some intermediate
instance on P . A chase tree T is fair (or has the fairness property) if every maximal path is
fair. Note that finite chase trees are fair. We restrict attention to fair chase trees. Fairness
is a classic notion in the study of infinite computations;4 moreover, fair chase trees can be
constructed, for example, by maintaining a queue of “active rule firings.”

Let G be a GDatalog[∆] program, I be an input for G, and T be a chase tree. We denote
by paths(T ) the set of maximal paths of T . (Note that paths(T ) may be uncountably infinite.)
For P ∈ paths(T ), we denote by ∪P the union of the (chain of) labels L(v) along P .

4 Cf. any textbook on term rewriting systems or lambda calculus.
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I Theorem 11. Let G be a GDatalog[∆] program, I an input for G, and T a fair chase tree.
The mapping P → ∪P is a bijection between paths(T ) and ΩG(I).

Chase measure. Let G be a GDatalog[∆] program, let I be an input for G, and let T be
a chase tree. Our goal is to define a probability measure over ΩG(I). Given Theorem 11, we
can do that by defining a probability measure over paths(T ). A random path in paths(T ) can
be viewed as a Markov chain that is defined by a random walk over T , starting from the root.
A measure space for such a Markov chain is defined by means of cylindrification [7]. Let v
be a node of T . The v-cylinder of T , denoted CTv , is the subset of paths(T ) that consists
of all the maximal paths that contain v. A cylinder of T is a subset of paths(T ) that forms
a v-cylinder for some node v. We denote by C(T ) the set of all the cylinders of T .

Recall that L(v) is a finite set of facts, and observe that P(L(v)) is the product of the
probabilities along the path from the root to v. The following theorem is a special case of a
classic result on Markov chains (cf. [7]).

I Theorem 12. Let G be a GDatalog[∆] program, let I be an input for G, and let T be
a chase tree. There exists a unique probability measure (Ω,F , π) that satisfies all of the
following.
1. Ω = paths(T ).
2. (Ω,F) is the σ-algebra generated from C(T ).
3. π(CTv ) = P(L(v)) for all nodes v of T .

Theorems 11 and 12 suggest the following definition.

I Definition 13 (Chase Probability Measure). Let G be a GDatalog[∆] program, let I be an
input for G, let T be a chase tree, and let (Ω,F , π) be the probability measure of Theorem 12.
The probability measure µT over ΩG(I) is the one obtained from (Ω,F , π) by replacing every
maximal path P with the possible outcome ∪P .

The following theorem states that the probability measure space represented by a chase
tree is independent of the specific chase tree of choice.

I Theorem 14. Let G be a GDatalog[∆] program, let I be an input for G, and let T and T ′
be two fair chase trees. Then µT = µT ′ .

5 Probabilistic-Programming Datalog

To complete our framework, we define probabilistic-programming Datalog, PPDL for short,
wherein a program augments a generative Datalog program with constraints; these constraints
unify the traditional integrity constraints of databases and the traditional observations of
probabilistic programming.

I Definition 15 (PPDL[∆]). Let ∆ be a finite set of parameterized numerical distributions.
A PPDL[∆] program is a quadruple (E , I,Θ,Φ), where (E , I,Θ) is a GDatalog[∆] program
and Φ is a finite set of logical constraints over E ∪ I.5

I Example 16. Consider again Example 2. Suppose that we have the EDB relations
ObservedHAlarm and ObservedBAlarm that represent observed home and business alarms,
respectively. We obtain from the program in the example a PPDL[∆]-program by adding
the following constraints:

5 We will address the choice of constraint language, and its algorithmic impact, in future work.
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1. ObservedHAlarm(h)→ Alarm(h)
2. ObservedBAlarm(b)→ Alarm(b)
We use right (in contrast to left) arrows to distinguish constraints from ordinary Datalog
rules. Note that a possible outcome J of an input instance I satisfies these constraints if J
contains Alarm(x) for all x ∈ ObservedHAlarmI ∪ObservedBAlarmI .

A PPDL[∆] program defines the posterior distribution over its GDatalog[∆] program,
conditioned on the satisfaction of the constraints. A formal definition follows.

Let P = (E , I,Θ,Φ) be a PPDL[∆] program, and let G be the GDatalog[∆] program
(E , I,Θ). An input instance for P is an input instance I for G. We say that I is a legal input
instance if {J ∈ ΩG(I) | J |= Φ} is a measurable set in the probability space µG,I , and its
measure is nonzero. Intuitively, I is legal if it is consistent with the observations (i.e., with
the constraints in Φ), given G. The semantics of a PPDL[∆] program is defined as follows.

I Definition 17. Let P = (E , I,Θ,Φ) be a PPDL[∆] program, G the GDatalog[∆] program
(E , I,Θ), I a legal input instance for P, and µG,I = (ΩG(I),FG , πG). The probability space
defined by P and I, denoted µP,I , is the triple (ΩP(I),FP , πP) where:
1. ΩP(I) = {J ∈ ΩG(I) | J |= Φ}
2. FP = {S ∩ ΩP(I) | S ∈ FG}
3. πP(S) = πG(S)/πG(ΩP(I)) for every S ∈ FP .
In other words, µP,I is µG,I conditioned on Φ.

I Example 18. Continuing Example 16, the semantics of this program is the posterior
probability distribution that is obtained from the prior of Example 2, by conditioning on the
fact that Alarm(x) holds for all x ∈ ObservedHAlarmI ∪ObservedBAlarmI . Similarly, using
an additional constraint we can express the condition that an alarm is off unless observed.
One can ask various natural queries over this probability space of possible outcomes, such as
the probability of the fact Earthquake(Napa, 1).

We note that when G is weakly acyclic, the event defined by Φ is measurable (since in
that case the probability space is discrete) and the definition of legality boils down to the
existence of a possible outcome.

5.1 Invariance under First-Order Equivalence
PPDL[∆] programs are fully declarative in a strong sense: syntactically their rules and
constraints can be viewed as first-order theories. Moreover, whenever two PPDL[∆] programs,
viewed in this way, are logically equivalent, then they are equivalent as PPDL[∆] programs,
in the sense that they give rise to the same set of possible outcomes and the same probability
distribution over possible outcomes.

Formally, we say that two PPDL[∆] programs, P1 = (E , I,Θ1,Φ1) and P2 = (E , I,Θ2,Φ2),
are semantically equivalent if, for all input instances I, the probability spaces µP1,I and µP2,I

coincide. Syntactically, the rules and constraints of a PPDL[∆] program can be viewed as a
finite first-order theory over a signature consisting of relation symbols, constant symbols, and
function symbols (here, if the same name of a function name is used with different numbers
of arguments, such as Flip in Figure 2, we treat them as distinct function symbols). We say
that P1 and P2 are FO-equivalent if, viewed as first-order theories, Θ1 is logically equivalent
to Θ2 (i.e., the two theories have the same models) and likewise for Φ1 and Φ2. We have the
following theorems.

I Theorem 19. If two PPDL[∆] programs are FO-equivalent, then they are semantically
equivalent (but not necessarily vice versa).
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I Theorem 20. First-order equivalence is decidable for weakly acyclic GDatalog[∆] programs.
Semantic equivalence is undecidable for weakly acyclic GDatalog[∆] programs (in fact, even
for ∆ = ∅).

6 Related Work

Our contribution is a marriage between probabilistic programming and the declarative spe-
cification of Datalog. The key features of our approach are the ability to express probabilistic
models concisely and declaratively in a Datalog extension with probability distributions as
first-class citizens. Existing formalisms that associate a probabilistic interpretation with logic
are either not declarative (at least in the Datalog sense) or depart from the probabilistic
programming paradigm (e.g., by lacking the support for numerical probability distributions).
We next discuss representative related formalisms and contrast them with our work. They can
be classified into three broad categories: (1) imperative specifications over logical structures,
(2) logic over probabilistic databases, and (3) indirect specifications over the Herbrand base.
(Some of these formalisms belong to more than one category.)

The first category includes imperative probabilistic programming languages [42]. We also
include in this category declarative specifications of Bayesian networks, such as BLOG [32]
and P-log [8]. Although declarative in nature, these languages inherently assume a form
of acyclicity that allows the rules to be executed serially. Here we are able to avoid such
an assumption since our approach is based on the minimal solutions of an existential
Datalog program. The program in Figure 3, for example, uses recursion (as is typically
the case for probabilistic models in social network analysis). In particular, it is not clear
how this program can be phrased by translation into a Bayesian network. BLOG can
express probability distributions over logical structures, via generative stochastic models that
can draw values at random from numerical distributions, and condition values of program
variables on observations. In contrast with closed-universe languages such as SQL and logic
programs, BLOG considers open-universe probability models that allow for uncertainty about
the existence and identity of objects.

The formalisms in the second category view the generative part of the specification of a
statistical model as a two-step process. In the first step, facts are randomly generated by a
mechanism external to the program. In the second step, a logic program, such as Prolog [26]
or Datalog [1], is evaluated over the resulting random structure. This approach has been
taken by PRISM [44], the Independent Choice Logic [41], and to a large extent by probabilistic
databases [46] and their semistructured counterparts [25]. We focus on a formalism that
completely defines the statistical model, without referring to external processes. As an
important example, in PPDL one can sample from distributions that have parameters that
by themselves are randomly generated using the program. This is the common practice in
Bayesian machine learning (e.g., logistic regression), but it is not clear how it can be done
within approaches of the second category.

One step beyond the second category and closer to our work is taken by uncertainty-
aware query languages for probabilistic data such as TriQL [48], I-SQL, and world-set
algebra [4, 5]. The latter two are natural analogs to SQL and relational algebra for the
case of incomplete information and probabilistic data [4]. They feature constructs such
as repair-key, choice-of, possible, and group-worlds-by that can construct possible
worlds representing all repairs of a relation w.r.t. key constraints, close the possible worlds
by unioning or intersecting them, or group the worlds into sets with the same results to
sub-queries. World-set algebra has been extended to (world-set) Datalog, fixpoint, and
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while-languages [14] to define Markov chains. While such languages cannot explicitly specify
probability distributions, they may simulate a specific categorical distribution indirectly
using non-trivial programs with specialized language constructs like repair-key on input
tuples with weights representing samples from the distribution.

MCDB [24] and SimSQL [12] propose SQL extensions (with for-loops and probability
distributions) coupled with Monte Carlo simulations and parallel database techniques for
stochastic analytics in the database. Their formalism does not involve the semantic challenges
that we have faced in this paper. Although being based on SQL, these extensions do not
offer a truly declarative means to specify probabilistic models, and end up being more similar
to the imperative languages mentioned under the first category.

Formalisms in the third category use rule weighting as indirect specifications of probability
spaces over the Herbrand base, which is the set of all the facts that can be obtained using the
predicate symbols and the constants of the database. This category includes Markov Logic
Networks (MLNs) [15, 34], where the logical rules are used as a compact and intuitive way of
defining factors. In other words, the probability of a possible world is the product of all the
numbers (factors) that are associated with the grounded rules that the world satisfies. This
approach is applied in DeepDive [35], where a database is used for storing relational data
and extracted text, and database queries are used for defining the factors of a factor graph.
We view this approach as indirect since a rule does not determine directly the distribution of
values. Moreover, the semantics of rules is such that the addition of a rule that is logically
equivalent to (or implied by, or indeed equal to) an existing rule changes the semantics and
thus the probability distribution. A similar approach is taken by Probabilistic Soft Logic [11],
where in each possible world every fact is associated with a degree of truth.

Further formalisms in this category are probabilistic Datalog [19], probabilistic Datalog+/-
[21], and probabilistic logic programming (ProbLog) [26]. There, every rule is associated
with a probability. For ProbLog, the semantics is not declarative as the rules follow a
certain evaluation order; for probabilistic Datalog, the semantics is purely declarative. Both
semantics are different from ours and that of the other formalisms mentioned thus far. A
Datalog rule is interpreted as a rule over a probability distribution over possible worlds, and
it states that, for a given grounding of the rule, the marginal probability of being true is as
stated in the rule. Probabilistic Datalog+/- uses MLNs as the underlying semantics. Besides
our support for numerical probability distributions, our formalism is used for defining a single
probability space, which is in par with the standard practice in probabilistic programming.

As discussed earlier, GDatalog[∆] allows for recursion, and the semantics is captured by
(possibly infinite) Markov chains. Related formalisms are that of Probabilistic Context-Free
Grammars (PCFG) and the more general Recursive Markov Chains (RMC) [17], where
the probabilistic specification is by means of a finite set of transition graphs that can call
one another (in the sense of method calls) in a possibly recursive fashion. In the database
literature, PCFGs and RMCs are used in the context of probabilistic XML [13, 9]. These
formalisms do not involve numerical distributions. In future work, we plan to study their
relative expressive power compared to restrictions of our framework.

7 Concluding Remarks

We proposed and investigated a declarative framework for specifying statistical models in
the context of a database, based on a conservative extension of Datalog with numerical
distributions. The framework differs from existing probabilistic programming languages not
only due to the tight integration with a database, but also because of its fully declarative
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rule-based language: the interpretation of a program is independent of transformations
(such as reordering or duplication of rules) that preserve the first-order semantics. This
was achieved by treating a GDatalog[∆] program as a Datalog program with existentially
quantified variables in the conclusion of rules, and applying a suitable variant of the chase.

This paper opens various important directions for future work. One direction is to
establish tractable conditions that guarantee that a given input is legal. Also, an interesting
problem is to detect conditions under which the chase is a self conjugate [43], that is, the
probability space µP,I is captured by a chase procedure without backtracking.

Our ultimate goal is to develop a full-fledged PP system based on the declarative
specification language that we proposed here. In this work we focused on the foundations
and robustness of the specification language. As in other PP languages, inference, such as
computing the marginal probability of an IDB fact, is a challenging aspect, and we plan to
investigate the application of common approaches such as sampling-based and lifted-inference
techniques. We believe that the declarative nature of PPDL can lead to identifying interesting
fragments that admit tractable complexity due to specialized techniques, just as is the case
for Datalog evaluation in databases.

Practical applications will require further extensions to the language. We plan to support
continuous probability distributions (e.g., continuous uniform, Pareto, and Gaussian), which
are often used in statistical models. Syntactically, this extension is straightforward: we
just need to include these distributions in ∆. Likewise, extending the probabilistic chase
is also straightforward. More challenging is the semantic analysis, and, in particular, the
definition of the probability space induced by the chase. We also plan to extend PPDL to
support distributions that take a variable (and unbounded) number of parameters. A simple
example is the categorical distribution where a single member of a finite domain of items is
to be selected, each item with its own probability; in this case we can adopt the repair-key
operation of the world-set algebra [4, 5]. Finally, we plan to add support for multivariate
distributions, which are distributions with a support in Rk for k > 1 (where, again, k can be
variable and unbounded). Examples of popular such distributions are multinomial, Dirichlet,
and multivariate Gaussian distribution.

At LogicBlox, we are working on extending LogiQL with PPDL. An interesting syntactic
and semantic challenge is that a program should contain rules of two kinds: probabilistic
programming (i.e., PPDL rules) and inference over probabilistic programs (e.g., find the
most likely execution). The latter rules involve the major challenge of efficient inference
over PPDL. Towards that, our efforts fall in three different directions. First, we implement
samplers of random executions. Second, we translate programs of restricted fragments into
external statistical solvers (e.g., Bayesian Network libraries and sequential Monte Carlo [45]).
Third, we are looking into fragments where we can apply exact and efficient (lifted) inference.
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Abstract
In this paper, we study the communication complexity for the problem of computing a conjunctive
query on a large database in a parallel setting with p servers. In contrast to previous work, where
upper and lower bounds on the communication were specified for particular structures of data
(either data without skew, or data with specific types of skew), in this work we focus on worst-case
analysis of the communication cost. The goal is to find worst-case optimal parallel algorithms,
similar to the work of [17] for sequential algorithms.

We first show that for a single round we can obtain an optimal worst-case algorithm. The
optimal load for a conjunctive query q when all relations have size equal to M is O(M/p1/ψ∗),
where ψ∗ is a new query-related quantity called the edge quasi-packing number, which is different
from both the edge packing number and edge cover number of the query hypergraph. For
multiple rounds, we present algorithms that are optimal for several classes of queries. Finally,
we show a surprising connection to the external memory model, which allows us to translate
parallel algorithms to external memory algorithms. This technique allows us to recover (within
a polylogarithmic factor) several recent results on the I/O complexity for computing join queries,
and also obtain optimal algorithms for other classes of queries.
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1 Introduction

The last decade has seen the development and widespread use of massively parallel systems
that perform data analytics tasks over big data: examples of such systems are MapReduce [7],
Dremel [16], Spark [21] and Myria [10]. In contrast to traditional database systems, where the
computational complexity is dominated by the disk access time, the data now typically fits in
main memory, and the dominant cost becomes that of communicating data and synchronizing
among the servers in the cluster.

In this paper, we present a worst-case analysis of algorithms for processing of conjunctive
queries (multiway join queries) on such massively parallel systems. Our analysis is based
on the Massively Parallel Computation model, or MPC [4, 5]. MPC is a theoretical model
where the computational complexity of an algorithm is characterized by both the number of
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8:2 Worst-Case Optimal Algorithms for Parallel Query Processing

rounds (so the number of synchronization barriers) and the maximum amount of data, or
maximum load, that each processor receives at every round.

The focus of our analysis on worst-case behavior of algorithms is a fundamentally different
approach from previous work, where optimality of a parallel algorithm was defined for a
specific input, or a specific family of inputs. Here we obtain upper bounds on the load of the
algorithm across all possible types of input data. To give a concrete example, consider the
simple join between two binary relations R and S of size M in bits (and m tuples), denoted
q(x, y, z) = R(x, z), S(y, z), and suppose that the number of servers is p. In the case where
there is no data skew (which means in our case that the frequency of each value of the z
variable in both R and S is at most m/p), it has been shown in [5] that the join can be
computed in a single round with load Õ(M/p) (where the notation Õ hides a polylogarithmic
factor depending on p), by simply hashing each tuple according to the value of the z variable.
However, if the z variable is heavily skewed both in R and S (and in particular if there
exists a single value of z), computing the query becomes equivalent to computing a cartesian
product, for which we need Ω(M/p1/2) load. In this scenario, although for certain instances
we can obtain better guarantees for the load, the heavily skewed instance is a worst-case
input, in the sense that the lower bound Ω(M/p1/2) specifies the worst possible load that
we may encounter. Our goal is to design algorithms for single or multiple rounds that are
optimal with respect to such worst-case inputs and never incur larger load for any input.

Related Work. Algorithms for joins in the MPC model were previously analyzed in [4, 5].
In [4], the authors presented algorithms for one and multiple rounds on input data without
skew (in particular when each value appears exactly once in each relation, which is a called a
matching database). In [5], the authors showed that the HyperCube (HC) algorithm, first
presented by Afrati and Ullman [2], can optimally compute any conjunctive query for a single
round on data without skew. The work in [5] also presents one-round algorithms and lower
bounds for skewed data but the upper and lower bounds do not necessarily coincide.

Several other computation models have been proposed in order to understand the power
of MapReduce and related massively parallel programming paradigms [8, 13, 15, 1]. All these
models identify the number of communication steps/rounds as a main complexity parameter,
but differ in their treatment of the communication. Previous work [20, 14] has also focused
on computing various graph problems in message-passing parallel models. In contrast to this
work, where we focus on algorithms that require a constant number of rounds, the authors
consider algorithms that need a large number of rounds.

Our setting and worst-case analysis can be viewed as the analogous version of the work
of Ngo et al. [17] on worst-case optimal algorithms for multiway join processing. As we will
show later, the worst-case instances for a given query q are different for the two settings
in the case of one round, but coincide for all the families of queries we examine when we
consider multiple rounds.

Our Contributions. We first present in Section 3 tight upper and lower bounds for the
worst-case load of one-round algorithms for any full conjunctive query q without self-joins.1
The optimal algorithm uses a different parametrization (share allocation) of the HyperCube
algorithm for different parts of the input data, according to the values that are skewed. In

1 The restriction to queries without self-joins is not limiting, since we can extend our result to queries
with self-joins (by losing a constant factor) by treating copies of a relation as distinct relations. The
parallel complexity for queries with projections is however an open question.
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the case where all relation sizes are equal to M , the algorithm achieves an optimal load
Õ(M/p1/ψ∗(q)), where ψ∗(q) is the edge quasi-packing number of the query q. An edge
quasi-packing is an edge packing on any vertex-induced projection of the query hypergraph
(in which we shrink hyperedges when we remove vertices).

In Section 4, we show that for any full conjunctive query q, any algorithm with a constant
number of rounds requires a load of Ω(M/p1/ρ∗), where ρ∗ is the edge cover number. We
then present optimal (within a polylogarithmic factor) multi-round algorithms for several
classes of join queries. Our analysis shows that some queries (such as the star query Tk) can
be optimally computed using the optimal single-round algorithm from Section 3. However,
other classes of queries, such as the cycle query Ck for k 6= 4, the line query Lk, or the
Loomis-Whitney join LWk require 2 or more rounds to achieve the optimal load. For example,
we present an algorithm for the full query (or clique) Kk that uses k − 1 rounds to achieve
the optimal load (although it is open whether only 2 rounds are sufficient).

Finally, in Section 5 we present a surprising application of our results in the setting of
external memory algorithms. In this setting, the input data does not fit into main memory,
and the dominant cost of an algorithm is the I/O complexity: reading the data from the disk
into the memory and writing data on the disk. In particular, we show that we can simulate
an MPC algorithm in the external memory setting, and obtain almost-optimal (within a
polylogarithmic factor) external memory algorithms for computing triangle queries; the same
technique can be easily applied to other classes of queries.

2 Background

In this section, we introduce the MPC model and present the necessary terminology and
technical tools that we will use later in the paper.

2.1 The MPC Model

We first review the Massively Parallel Computation model (MPC), which allows us to analyze
the performance of algorithms in parallel environments. In the MPC model, computation is
performed by p servers, or processors, connected by a complete network of private channels.
The computation proceeds in steps, or rounds, where each round consists of two distinct
phases. In the communication phase, the servers exchange data, each by communicating with
all other servers. In the computation phase, each server performs only local computation.

The input data of size M bits is initially uniformly partitioned among the p servers, that
is, each server stores M/p bits of data. At the end of the execution, the output must be
present in the union of the output of the p processors.

The execution of a parallel algorithm in the MPC model is captured by two parameters.
The first parameter is the number of rounds r that the algorithm requires. The second
parameter is the maximum load L, which measures the maximum amount of data (in bits)
received by any server during any round.

All the input data will be distributed during some round, since we need to perform some
computation on it. Thus, at least one server will receive at least data of size M/p. On the
other hand, the maximum load will never exceed M , since any problem can be trivially
solved in one round by simply sending the entire data to server 1, which can then compute
the answer locally. Our typical loads will be of the form M/p1−ε, for some parameter ε
(0 ≤ ε < 1) that depends on the query. For a similar reason, we do not allow the number of
rounds to reach r = p, because any problem can be trivially solved in p rounds by sending
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M/p bits of data at each round to server 1, until this server accumulates the entire data. In
this paper we only consider the case r = O(1).

2.2 Conjunctive Queries
In this paper we focus on a particular class of problems for the MPC model, namely computing
answers to conjunctive queries over a database. We fix an input vocabulary S1, . . . , S`, where
each relation Sj has a fixed arity aj ; we denote a =

∑`
j=1 aj . The input data consists of one

relation instance for each symbol.
We consider full conjunctive queries (CQs) without self-joins, denoted as follows:

q(x1, . . . , xk) = S1(. . . ), . . . , S`(. . . ) .

The query is full, meaning that every variable in the body appears in the head (for example
q(x) = S(x, y) is not full), and without self-joins, meaning that each relation name Sj appears
only once (for example q(x, y, z) = S(x, y), S(y, z) has a self-join). We use vars(Sj) to denote
the set of variables in the atom Sj , and vars(q) to denote the set of variables in all atoms of q.
Further, k and ` denote the number of variables and atoms in q respectively. The hypergraph
of a conjunctive query q is defined by introducing one node for each variable in the body
and one hyperedge for each set of variables that occur in a single atom.

The fractional edge packing associates a non-negative weight uj to each atom Sj such that
for every variable xi, the sum of the weights for the atoms that contain xi does not exceed 1.
We let pk(q) denote the set of all fractional edge packings for q. The fractional covering number
τ∗ is the maximum sum of weights over all possible edge packings, τ∗(q) = maxu∈pk(q)

∑
j uj .

The fractional edge cover associates a non-negative weight wj to each atom Sj , such that
for every variable xi, the sum of the weights of the atoms that contain xi is at least 1. The
fractional edge cover number ρ∗ is the minimum sum of weights over all possible fractional
edge covers. The notion of the fractional edge cover has been used in the literature [3, 17] to
provide lower bounds on the worst-case output size of a query (and consequently the running
time of join processing algorithms).

For any x ⊆ vars(q), we define the residual query qx as the query obtained from q

by removing all variables x, and decreasing the arity of each relation accordingly (if the
arity becomes zero we simply remove the relation). For example, for the triangle query
q(x, y, z) = R(x, y), S(y, z), T (z, x), the residual query q{x} is q{x}(y, z) = R(y), S(y, z), T (z).
Similarly, q{x,y}(z) = S(z), T (z). Observe that every fractional edge packing of q is also a
fractional edge packing of any residual query qx, but the converse is not true in general.

We now define the fractional edge quasi-packing to be any edge packing of a residual query
qx of q, where the atoms that have only variables in x get a weight of 0. Denote by pk+(q)
the set of all edge quasi-packings. It is straightforward to see that pk(q) ⊆ pk+(q); in other
words, any packing is a quasi-packing as well. The converse is not true, since for example
(1, 1, 0) is a quasi-packing for the triangle query, but not a packing. The edge quasi-packing
number ψ∗ is the maximum sum of weights over all edge quasi-packings:

ψ∗(q) = max
u∈pk+(q)

∑
j

uj = max
x⊆vars(q)

max
u∈pk(qx)

∑
j

uj .

2.3 Previous Results
Suppose that we are given a full CQ q, and input such that relation Sj has size Mj in bits
(we use mj for the number of tuples). Let M = (M1, . . . ,M`) be the vector of the relation
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sizes. For a given fractional edge packing u ∈ pk(q), we define as in [5]:

L(u,M, p) =
(∏`

j=1 M
uj

j

p

)1/
∑`

j=1
uj

(1)

Let us also define L(q)(M, p) = maxu∈pk(q) L(u,M, p). In our previous work [5], we
showed that any algorithm that computes q in a single round with p servers must have
load L ≥ L(q)(M, p). The instances used to prove this lower bound is the class of matching
databases, which are instances where each value appears exactly once in the attribute of each
relation. Hence, the above lower bound is not necessarily tight; indeed, as we will see in the
next section, careful choice of skewed input instances can lead to a stronger lower bound.

The HyperCube algorithm. To compute conjunctive queries in the MPC model, we use
the basic primitive of the HyperCube (HC) algorithm. The algorithm was first introduced by
Afrati and Ullman [2], and was later called the shares algorithm; we use the name HC to
refer to the algorithm with a particular choice of shares. The HC algorithm initially assigns
to each variable xi a share pi, such that

∏k
i=1 pi = p. Each server is then represented by

a distinct point y ∈ P, where P = [p1] × · · · × [pk]; in other words, servers are mapped
into a k-dimensional hypercube. The HC algorithm then uses k independently chosen hash
functions hi : {1, . . . , n} → {1, . . . , pi} (where n is the domain size) and sends each tuple t of
relation Sj to all servers in the destination subcube of t:

D(t) = {y ∈ P | ∀xi ∈ vars(Sj) : hi(t[xi]) = yi}

where t[xi] denotes the value of tuple t at the position of the variable xi. After the tuples
are received, each server locally computes q for the subset of the input that it has received.

If the input data has no skew, the above vanilla version of the HC algorithm is optimal
for a single round. The lemma below presents the specific conditions that define skew, and
will be frequently used throughout the paper.

I Lemma 1 (Load Analysis for HC [5]). Let p = (p1, . . . , pk) be the optimal shares of the HC
algorithm. Suppose that for every relation Sj and every tuple t over the attributes U ⊆ [aj ]
we have that the frequency of t in relation Sj is mSj (t) ≤ mj/

∏
i∈U pi. Then with high

probability the maximum load per server is Õ(L(q)(M, p)).

3 One-Round Algorithms

In this section, we present tight upper and lower bounds for the worst-case load of one-round
algorithms that compute conjunctive queries. Thus, we identify the database instances for
which the behavior in a parallel setting is the worst possible. Surprisingly, these instances are
often different from the ones that provide a worst-case running time in a non-parallel setting.

As an example, consider the triangle query C3 = R(x, y), S(y, z), T (z, x), where all
relations have m tuples (and M in bits). It is known from [3] that the class of inputs that
will give a worst-case output size, and hence a worst-case running time, is one where each
relation is a

√
m×

√
m fully bipartite graph. In this case, the output has m3/2 tuples. The

load needed to compute C3 on this input in a single round is Ω(M/p2/3), and can be achieved
by using the HyperCube algorithm [4] with shares p1/3 for each variable. Now, consider the
instance where relations R, T have a single value at variable x, which participates in all the
m tuples in R and T ; S is a matching relation with m tuples. In this case, the output has m
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tuples (and so M bits), and thus is smaller than the worst-case output. However, as we will
see next, we can show that any one-round algorithm that computes the triangle query for
the above input structure requires Ω(M/p1/2) maximum load.

3.1 An Optimal Algorithm
We present here a worst-case optimal one-step algorithm that computes a conjunctive query
q. Recall that the HC algorithm achieves an optimal load on data without skew [5]. In
the presence of skew, we will distinguish different cases, and for each case we will apply a
different parametrization of the HC algorithm, using different shares.

We say that a value h in relation Sj is a heavy hitter in Sj if the frequency of this
particular value in Sj , denoted mSj

(h), is at least mj/p, where mj is the number of tuples
in the relation. Given an output tuple t, we say that t is heavy at variable xi if the value
t[xi] is a heavy hitter in at least one of the atoms that include variable xi.

We can now classify each tuple t in the output depending on the positions where t is
heavy. In particular, for any x ⊆ vars(q), let q[x](I) denote the subset of the output that
includes only the output tuples that are heavy at exactly the variables in x. Observe that
the case q[∅](I) denotes the case where the tuples are light at all variables; we know from
an application of Lemma 1 that this case can be handled by the standard HC algorithm.
For each of the remaining 2k − 1 possible sets x ⊆ vars(q), we will run a different variation
of the HC algorithm with different shares, which will allow us to compute q[x](I) with the
appropriate load. Our algorithm will compute all the partial answers in parallel for each
x ⊆ vars(q), and thus requires only a single round.

The key idea is to apply the HC algorithm by giving a non-trivial share only to the
variables that are not in x; in other words, every variable in x gets a share of 1. In particular,
we will assign to the remaining variables the shares we would assign if we would execute the
HC algorithm for the residual query qx. We will thus choose the shares by assigning pi = pei

for each xi ∈ x and solving the following linear program:

minimize λ

subject to
∑
i:xi /∈x

−ei ≥ −1

∀j s.t. Sj ∈ atoms(qx) :
∑

i:xi∈vars(Sj)\x

ei + λ ≥ µj

∀i s.t. xi /∈ x :ei ≥ 0, λ ≥ 0 (2)

For each variable xi ∈ x, we set ei = 0 and thus the share is pi = 1. We next present the
analysis of the load for the above algorithm.

I Theorem 2. Any full conjunctive query q with input relation sizes M can be computed in
the MPC model in a single round using p servers with maximum load

L = Õ

(
max

x⊆vars(q)
L(qx)(M, p)

)
.

Proof. Let us fix a set of variables x ⊆ vars(q); we will show that the load of the algorithm
that computes q[x](I) is Õ(L(qx)(M, p)). The upper bound then follows from the fact that
we are running in parallel algorithms for all partial answers.

Indeed, let us consider how each relation Sj is distributed using the shares assigned. We
distinguish two cases. If an atom Sj contains variables that are only in x, then the whole
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relation will be broadcast to all the p servers. However, observe that the part of Sj that
contributes to q[x](I) is of size at most paj , where aj is the arity of the relation.

Otherwise, we will show that for every tuple J of values over variables v ⊆ vars(Sj), we
have that the frequency of J is at most mj/

∏
i:xi∈v pi. Indeed, if v contains only variables

from x, then by construction
∏
i:xi∈v pi = 1; we observe then that the frequency is always

at most mj . If v contains some variable xi ∈ v \ x, then the tuple J contains at position
xi a value that appears at most mj/p times in relation Sj , and since

∏
i:xi∈v pi ≤ p the

claim holds. We can now apply Lemma 1 to obtain that for relation Sj , the load will be
Õ(Mj/(

∏
i:xi∈vars(Sj)\x pi)). Summing over all atoms in the residual query qx, and assuming

that mj � p (and in particular that paj is always much smaller than the load), we obtain
that the load will be Õ(maxj:Sj∈atoms(qx) Mj/(

∏
i:xi∈vars(Sj)\x pi)), which by an LP duality

argument is equal to Õ(L(qx)(M, p)). J

When all relation sizes are equal, that is, M1 = M2 = · · · = M` = M , the formula for
the maximum load becomes Õ(M/p1/ψ∗(q)), where ψ∗(q) is the edge quasi-packing number,
which we have defined as ψ∗(q) = maxx⊆vars(q) maxu∈pk(qx)

∑
j uj . We will discuss about the

quantity ψ∗(q) in detail in Section 3.3. We will see next how the above algorithm applies to
the triangle query C3.

I Example 3. We will describe first how the algorithm works when each relation has size M
(and m tuples). There are three different share allocations, for each choice of heavy variables
(all other cases are symmetrical).
x = ∅ : we consider only tuples with values of frequency ≤ m/p. The HC algorithm will

assign a share of p1/3 to each variable, and the maximum load will be Õ(M/p2/3).
x = {x} : the tuples have a heavy hitter value at variable x, either in relation R or T or in

both. The algorithm will give a share of 1 to x, and shares of p1/2 to y and z. The load
will be Õ(M/p1/2).

x = {x, y} : both x and y are heavy. In this case we broadcast the relation R(x, y), which
will have size at most p2, and assign a share of p to z. The load will be Õ(M/p).

Notice finally that the case where x = {x, y, z} can be handled by broadcasting all
necessary information. The load of the algorithm is the maximum of the above quantities,
thus Õ(M/p1/2). When the size vector is M = (M1,M2,M3), the load achieved becomes
Õ(L), where: L = max

{
M1
p ,

M2
p ,

M3
p ,
√

M1M2
p ,

√
M2M3
p ,

√
M1M3
p

}
.

3.2 Lower Bounds
We present here a worst-case lower bound for the load of one-step algorithms for computing
conjunctive queries in the MPC model, when the information known is the cardinality
statistics M = (M1, . . . ,M`). The lower bound matches the upper bound in the previous
section, hence proving that the one-round algorithm is worst-case optimal. We give a self-
contained proof of the result in the full version of this paper, but many of the techniques
used can be found in previous work [4, 5], where we proved lower bounds for skew-free data
and for input data with known information about the heavy hitters.

I Theorem 4. Fix cardinality statistics M for a full conjunctive query q. Consider any
deterministic MPC algorithm that runs in one communication round on p servers and has
maximum load L in bits. Then, for any x ⊆ vars(q), there exists a family of (random)
instances for which the load L will be:

L ≥ min
j

1
4aj
· L(qx)(M, p) .
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Since aj ≥ 1, Theorem 4 implies that for any query q there exists a family of instances such
that any one-round algorithm that computes q must have load Ω(maxx⊆vars(q) L

(qx)(M, p)).

3.3 Discussion
We present here several examples for the load of the one-round algorithm for various classes
of queries, and also discuss the edge quasi-packing number ψ∗(q) and its connection with
other query-related quantities.

Recall that we showed that when all relation sizes are equal to M , the load achieved is of
the form Õ(M/p1/ψ∗(q)), where ψ∗(q) is the quantity that maximizes the sum of the weights
of the edge quasi-packing. ψ∗(q) is in general different from both the fractional covering
number τ∗(q), and from the fractional edge cover number ρ∗(q). Indeed, for the triangle
query C3 we have that ρ∗(C3) = τ∗(C3) = 3/2, while ψ∗(C3) = 2. Here we should remind
the reader that τ∗ describes the load for one-round algorithms on data without skew, which
is O(M/p1/τ∗(q)). Also, ρ∗ characterizes the maximum possible output of a query q, which is
Mρ∗(q). We can show the following relation between the three quantities:

I Lemma 5. For every conjunctive query q, ψ∗(q) ≥ max{τ∗(q), ρ∗(q)}.

Proof. Since any edge packing is also an edge quasi-packing, it is straightforward to see that
τ∗(q) ≤ ψ∗(q) for every query q.

To show that ρ∗(q) ≤ ψ∗(q), consider the optimal (minimum) edge cover u; we will show
that this is also an edge quasi-packing. First, observe that for every atom Sj , there must
exist at least one variable x ∈ vars(Sj) such that

∑
j:x∈vars(Sj) uj = 1. Indeed, suppose that

for every variable in Sj we have that the sum of the weights strictly exceeds 1; then, we can
obtain a better edge cover by slightly decreasing uj , which is a contradiction.

Now, let x be the set of variables such that their cover in u strictly exceeds 1, and
consider the residual query qx. By our previous claim, every relation in q is still present in
qx, since every relation includes a variable with cover exactly one. Further, for every variable
x ∈ vars(qx) we have

∑
j:x∈vars(Sj) uj = 1, and hence u ∈ pk(qx). J

In Table 1 we have computed the quantities τ∗, ρ∗, ψ∗ for several classes of queries of
interest: the star query Tk, the spiked star query SPk, the cycle query Ck, the line query Lk,
the Loomis-Whitney join LWk, the generalized semi-join query Wk and the clique (or full)
query Kk. We next present some of these queries in more detail.

I Example 6. Consider the star query Tk, which generalizes the simple join between relations.
As we can see, the optimal edge packing cannot be more than 1, since every relation includes
the variable z. To obtain the maximum edge quasi-packing, we simply consider the residual
query qz that removes the common variable z: then, we can pack each relation with weight
one, thus achieving a sum of k. Notice that this is an example which shows that τ∗ and ψ∗
cannot be within a constant factor.

I Example 7. Consider the full/clique query Kk, which includes all possible binary relations
among the k variables. Here the optimal edge packing is achieved by assigning a weight of
1/(k − 1) to each relation; the corresponding share allocation for the HC algorithm assigns
an equal share of p1/k to each variable. For the optimal edge quasi-packing, consider the
residual query (Kk)x1 , and notice that it includes (k − 1) unary relations, one for each of
x2, . . . , xk. Hence, we can obtain an edge packing by assigning a weight of 1 to each, which
shows that ψ∗(Kk) = k.
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Table 1 Computing the optimal edge packing τ∗, edge cover ρ∗ and edge quasi-packing ψ∗ for
several classes of conjunctive queries.

conjunctive query τ∗ ρ∗ ψ∗

Tk =
∧k

j=1 Sj(z, xj) 1 k k

SPk =
∧k

i=1 Ri(z, xi), Si(xi, yi) k k + 1 k + 1

Ck =
∧k

j=1 Sj(xj , x(j mod k)+1) k/2 k/2 d2(k − 1)/3e

Lk =
∧k

j=1 Sj(xj−1, xj) dk/2e d(k + 1)/2e d2k/3e

LWk =
∧

I⊆[k],|I|=k−1 SI(x̄I) k/(k − 1) k/(k − 1) 2

Wk = R(x1, . . . , xk)
∧k

j=1 Sj(xj) k 1 k

Kk =
∧

1≤i<j≤k
Si,j(xi, xj) k/2 k/2 k

I Example 8. Consider the cycle query Ck. The optimal edge packing assigns a weight of
1/2 to each edge; the corresponding share allocation for the HC algorithm gives an equal
share of p1/k to each variable.

To find the best x for the optimal edge quasi-packing, we will pick every third variable:
x1, x4, . . . . This creates bk/3c copies of the query S1(x1), S2(x1, x2), S3(x2), which has an
edge packing of size 2 (assign weight 1 to S1, S3). If k = 3m or k = 3m+ 1, these copies cover
the whole query. If k = 3m+ 2, we can add one more edge with weight 1 to the packing.

4 Multi-round Algorithms

In this section, we present algorithms for multi-round computation of several conjunctive
queries in the case where the relation sizes are all equal to M . We also prove a lower bound
that proves that they are (almost) optimal.

4.1 Multi-round Lower Bound
We prove here a general lower bound for any algorithm that computes conjunctive queries
using a constant number of rounds. Observe that the lower bound is expressed in terms of
number of tuples (and not bits); our upper bounds will be expressed in terms of bits, and
thus will be a log(n) factor away from the lower bound, where n is the domain size.

I Theorem 9. Let q be a conjunctive query. Then, there exists a family of instances where
relations have the same size M in bits (and m in tuples) such that every algorithm that
computes q with p servers using a constant number of rounds requires load Ω(m/p1/ρ∗(q)).

Proof. In order to prove the lower bound, we will use a family of instances that give the
maximum possible output when every input relation has at most m tuples, which is mρ∗(q)

(see [3]). We also know how we can construct such a worst-case instance: for each variable
xi we assign an integer ni (which corresponds to the domain size of the variable), and we
define each relation as the cartesian product of the domains of the variables it includes:
×i:xi∈vars(Sj)[ni]. The output size then will be

∏
i ni = mρ∗(q) (using a LP duality argument).

We now define the following random instance I as input for the query q: for each relation
Sj , we choose each tuple from the full cartesian product of the domains independently at
random with probability 1/2. It is straightforward to see that the expected size of the output
is E[|q(I)|] = (1/2)β

∏
i ni, where β is the maximum number of relations where any variable
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occurs (and thus a constant depending on the query). Using Chernoff’s bound we can claim
an even stronger result: the output size will be Θ(mρ∗(q)) with high probability (the failure
probability is exponentially small in m).

Now, assume that algorithm A computes q with load L (in bits) in r rounds. Then, each
server receives at most L′ = r · L bits. Fix some server and let msg be the whole sequence
of bits received by this server during the computation; hence, |msg| ≤ L′. We will next
compute how many tuples from Sj are known by the server, denoted Kmsg(Sj). W.l.o.g. we
can assume that all L′ bits of msg contain information from relation Sj .

We will show that the probability of the event Kmsg(Sj) > (1 + δ)L′ is exponentially
small on δ. Let mj =

∏
i:xi∈vars(Sj) ni ≤ m. Observe first that the total number of message

configurations of size L′ is at most 2L′ . Also, since the size of the full cartesian product is
mj , msg can encode at most 2mj−(1+δ)L′ relations Sj (if mj < (1 + δ)L′, then trivially the
probability of the event is zero, and Sj will have "few" tuples). It follows that

P (Kmsg > (1 + δ)L′) < 2L
′
· 2mj−(1+δ)L′ · (1/2)mj = (1/2)δL

′
.

So far we have shown that with high probability each server knows at most L′ tuples from
each relation Sj , and further that the total number of output tuples is Θ(mρ∗(q)). However,
if a server knows L′ tuples from each relation, using the AGM bound from [3], it can output
at most (rL)ρ∗(q) tuples. The result follows by summing over the output of all p servers, and
using the fact that the algorithm has only a constant number of rounds. J

The theorem implies that whenever ψ∗(q) = ρ∗(q) the one-round algorithm is essentially
worst-case optimal, and using more rounds will not result in an algorithm with better load.
As a result, and following our discussion in the previous section, the classes of queries Tk
and SPk can be optimally computed in a single round. This may seem counterintuitive, but
recall that we study worst-case optimal algorithms; there may be instances where using more
rounds is desirable, but our goal is to match the load for the worst such instance.

We will next present algorithms that match (within a logarithmic factor) the above lower
bound using strictly more than one round. We start with the algorithm for the triangle
query C3, in order to demonstrate our novel technique and prove a key result (Lemma 10)
that we will use later in the section.

4.2 Warmup: Computing Triangles in 2 Rounds
The main component of the algorithm that computes triangles is a parallel algorithm that
computes the join S1(x, z), S2(y, z) in a single round, for the case where skew appears
exclusively in one of the two relations. If the relations have size M1,M2 respectively, then we
have shown that the load can be as large as

√
M1M2/p. However, in the case of one-sided

skew, we can compute the join with maximum load only Õ(max{M1,M2}/p).

I Lemma 10. Let q = S1(x, z), S2(y, z), and let m1 and m2 be the relation sizes (in tuples)
of S1, S2 respectively. Let m = max{m1,m2}. If the degree of every value of the variable z
in S1, mS1(z), is at most m/p, then we can compute q in a single round with p servers and
load (in bits) Õ(M/p), where M = 2m log(n) (n is the domain size).

Proof. We say that a value h is a heavy hitter in S2 if the degree of h in S2 is mS2(h) > m/p.
By our assumption, there are no heavy hitters in relation S1.

For the values h that are not heavy hitters in S2, we can compute the join by applying
the standard HC algorithm (which is a hash-join that assigns a share of p to z); the load
analysis of Lemma 1 will give us a load of Õ(M/p) with high probability.
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For every heavy hitter h, the algorithm computes the subquery q[h/z] = S1(x, h), S2(y, h),
which is equivalent to computing the residual query qz = S′1(x), S′2(y), where S′1(x) = S1(x, h)
and S′2(y) = S2(y, h). We know that |S′2| = mS2(h) and |S′1| ≤ m/p by our assumption. The
algorithm now allocates ph = dp ·mS2(h)/me exclusive servers to compute q[h/z] for each
heavy hitter h. To compute q[h/z] with ph servers, we simply use the simple broadcast join
that assigns a share of p to variable x and 1 to y. A simple analysis will give us that the
load (in tuples) for each heavy hitter h is

Õ

(
|S′2|
ph

+ |S′1|
)

= Õ

(
mS2(h)

p ·mS2(h)/m +m/p)
)

= Õ(m/p) .

Finally, observe that the total number of servers we need is
∑
h ph ≤ 2p, hence we have used

an appropriate amount of the available p servers. J

Thus, we can optimally compute joins in a single round in the presence of one-sided skew.
We can apply Lemma 10 to obtain a useful corollary for the semi-join query q = R(z), S(y, z).
Indeed, notice that we can extend R to a binary relation R′(x, z), where x is a dummy
variable that takes a single value; then, the semi-join becomes essentially a join, where R′
has no skew, since the degree of z in R′ will be always one. Consequently:

I Corollary 11. Consider the semi-join query q = R(z), S(y, z), and let M1 and M2 be the
relation sizes of R,S respectively in bits. Then we can compute q in a single round with p
servers and load Õ(max{M1,M2}/p).

We now outline the algorithm for computing triangles using two rounds. The central idea
in the algorithm is to identify the values that create skew in the computation, and spread
this computation into more rounds.

I Theorem 12. The triangle query C3 = S1(x1, x2), S2(x2, x3), S3(x3, x1) on input with sizes
M1 = M2 = M3 = M can be computed by an MPC algorithm in 2 rounds with Õ(M/p2/3)
load, under any input data distribution.

Proof. We say that a value h is heavy if for some relation Sj , we have mj(h) > m/p1/3. We
first compute the answers for the tuples that are not heavy at any variable. Indeed, if for
every value we have that the degree is at most m/p1/3, then the load analysis (Lemma 1)
tells us that we can compute the output in a single round with load Õ(M/p2/3) using the
HC algorithm that allocates a share of p1/3 to each variable.

Thus, it remains to output the tuples for which at least one variable has a heavy value.
Without loss of generality, consider the case where variable x1 has heavy values and observe
that there are at most 2p1/3 such heavy values for x1 (p1/3 for S1 and p1/3 for S3). For
each heavy value h, we assign an exclusive set of p′ = p2/3 servers to compute the query
q[h/x1] = S1(h, x2), S2(x2, x3), S3(x3, x1), which is equivalent to computing the residual
query q′ = S′1(x2), S2(x2, x3), S′3(x3).

To compute q′ with p′ servers, we use 2 rounds. In the first round, we compute in parallel
the semi-join queries S12(x2, x3) = S′1(x2), S2(x2, x3) and S23(x2, x3) = S2(x2, x3), S′3(x3).
Since |S′1| ≤ m and |S′2| ≤ m, we can apply Corollary 11 for semi-join computation to
obtain that we can achieve this computation with load (in tuples) Õ(m/p′) = Õ(m/p2/3).
Observe that the intermediate relations S12, S23 have size at most m. In the second round,
we simply perform the intersection of the relations S12, S23; this can be achieved with tuple
load O(m/p′) = O(m/p2/3).2 J

2 Observe that the load for computing the intersection of two or more relations does not have any
additional logarithmic factors.
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Notice that the 2-round algorithm achieves a better load than the 1-round algorithm in
the worst-case scenario. Indeed, in the previous section we proved that there exist instances
for which we can not achieve load better than O(M/p1/2) in a single round. By using an
additional round, we can beat this bound and achieve a better load. This confirms our
intuition that with more rounds we can reduce the maximum load. Moreover, observe that
the load achieved matches the multi-round lower bound (within a polylogarithmic factor).

4.3 Computing General CQs
We now generalize the ideas of the above example, and extend our results to several standard
classes of conjunctive queries. Throughout this section, we assume that all relations have the
same size M in bits (and m in tuples). We present in detail optimal multiround algorithms
for odd and even cycles, which both achieve a maximum load of Õ(M/p2/k) for Ck. The
algorithm uses as a component an optimal algorithm that computes the line query Lk.
I Lemma 13. The line query Lk = S1(x0, x1), S2(x1, x2), . . . , Sk(xk−1, xk) can be computed
by an MPC algorithm with a constant number of rounds and load Õ(M/p1/d(k+1)/2e).

We then briefly present our algorithmic results for Loomis-Whitney joins and Clique
queries; the detailed proofs of the desired load are in the full version of this paper.

4.3.1 Odd Cycles
We will first show how we can compute any odd cycle Ck; the algorithm is a generalization
of the method for computing triangle queries presented as a warmup example.

We say that a value h is heavy for variable xi if for relation Si−1 or Si, we have
mi(h) > m/p1/k or mi−1(h) > m/p1/k. We first compute the answers for the tuples that are
not heavy at any position. Lemma 1 implies that we can compute the output in a single
round with load Õ(M/p2/k), by applying the vanilla HC algorithm for cycles, where each
variable has equal share p1/k.

We next compute the tuples that are heavy at variable x1 (we similarly do this for every
variable xi); observe that there are at most 2p1/k such values. For each such heavy value
h, we will assign an exclusive number of p′ = p1−1/k servers, such that the total number
of servers we use is (2p1/k) · p′ = Θ(p), and using these servers we will compute the query
q[h/x1] = S1(h, x2), . . . , Sk(xk, h), which amounts to computing the residual query q′ = qx1 :

q′ = S′1(x2), S2(x2, x3), . . . , Sk−1(xk−1, xk), S′k(xk) .

To compute q′ with p′ servers we need two rounds of computation. In the first round, we
compute in parallel the two semi-joins

S1,2(x2, x3) = S′1(x2), S2(x2, x3), Sk,k−1(xk−1, xk) = Sk−1(xk−1, xk), S′k(xk)

which can be achieved with tuple load Õ(m/p′) = Õ(m/p1−1/k), since |S′1| ≤ m and |S′k| ≤ m
(by applying Corollary 11). Since for any k ≥ 3 we have 1− 1/k ≥ 2/k, the load for the first
round will be Õ(M/p2/k). For the second round, we compute the query

q′′ = S1,2(x2, x3), S3(x3, x4), . . . , Sk−1(xk−1, xk), Sk,k−1(xk−1, xk)

which is equivalent to computing the line query Lk−2, where each relation has size at most m;
we know from Lemma 13 that we can compute such a query with tuple load Õ(m/p′1/d(k−1)/2e)
using multiple rounds. For the final step of the proof, recall that p′ = p1−1/k. Then:

k − 1
k
· 1
d(k − 1)/2e = k − 1

k
· 2
k − 1 = 2/k .

Thus, the load for the second round will be Õ(M/p2/k) as well.
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4.3.2 Even Cycles
For even length cycles, our previous argument does not work, and we have to use a different
approach. We say that a value h is δ-heavy, for some δ ∈ [0, 1], if the degree of h is at least
m/pδ in some relation. We distinguish two different cases:
1. Suppose that there exist two variables xi, xi′ such that (i− i′) is an odd number, xi is

δ-heavy, xi′ is δ′-heavy, and δ + δ′ ≤ 2/k. Observe that there are at most pδ+δ′ ≤ p2/k

such pairs of heavy values: for each such pair, we assign p′ = p1−2/k explicit servers to
compute the residual query q′ = (Ck)xi,xj in two rounds. We now consider two subcases.
If i′ = i+1, then xi, xi′ belong in the same relation Si. Then, by performing the semi-join
computations in the first round, we reduce the computation of the next rounds to the
residual query Lk−3, which requires tuple load Õ(m/p′1/d(k−2)/2e) = Õ(m/p2/k), since k is
even. Otherwise, if xi, xi′ are not in the same relation, we still do the semi-joins in the first
round, and then notice that in the subsequent rounds we need to compute the cartesian
product of two line queries, Lα, Lβ , where α + β = k − 4 and both are odd numbers.
To perform this cartesian product, we will split the p′ servers into a p(α+1)/k × p(β+1)/k

grid, and within each row/column compute the line queries. Then, the tuple load will be
Õ(m/p((α+1)/k)·(1/d(α+1)/2e)) = Õ(m/p((β+1)/k)·(1/d(β+1)/2e)) = Õ(m/p2/k).

2. Otherwise, define δeven as the largest number in [0, 1] such that for every even variable the
frequency is at most m/pδeven . Similarly define δodd. Since we do not fall in the previous
case, it must be that δeven + δodd ≥ 2/k. W.l.o.g. assume that δeven ≥ δodd. Then,
consider the HC algorithm with the following share allocation: for odd variables assign
po = pδodd , and for even variables assign pe = p2/k−δodd . Since the odd variables have
degree at most m/pδodd , there are no skewed values there. As for the even variables, their
degree is at most m/pδeven ≤ m/p2/k−δodd = m/pe. Hence, the tuple load achieved will
be Õ(m/(pope) = Õ(m/p2/k). In the case where pe is ill-defined because δodd > 2/k, we
also have that δeven > 2/k and in this case we can just apply the standard HC algorithm
that assigns a share of p1/k to every variable.

4.3.3 Other Conjunctive Queries
For the Loomis-Whitney (LW) join, the algorithmic idea is the same as the one we used for
even cycles (notice that LW3 is the triangle query C3).

I Lemma 14. The LW join LWk = S1(x2, . . . , xk), S2(x1, x3, . . . , xk), . . . , Sk(x1, . . . , xk−1)
can be computed by an MPC algorithm in 2 rounds with load Õ(M/p1−1/k).

For the clique queries, we have the following result:

I Lemma 15. The clique query Kk =
∧

1≤i<j≤k Si,j(xi, xj) can be computed by an MPC
algorithm in k − 1 rounds with load Õ(M/p2/k) for any k ≥ 3.

Finally, we show an almost optimal algorithm for queries q that contain an atom which
includes all the variables in the body of q.

I Lemma 16. Let q be a query that contains an atom R, such that vars(R) = vars(q). Then,
q can be computed by an MPC algorithm with Õ(M/p) load.

Notice that the generalized semi-join query Wk satisfies the property of the above lemma,
and hence we can compute Wk with load Õ(M/p) using two rounds (while using one round
the load is Ω(M/p1/k)).
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5 Applications to the External Memory Model

In the external memory model, we model computation in the setting where the input data
does not fit into main memory, and the dominant cost is reading the data from the disk into
the memory and writing data on the disk.

Formally, we have an external memory (disk) of unbounded size, and an internal memory
(main memory) that consists of W words.3 The processor can only use data stored in the
internal memory to perform computation, and data can be moved between the two memories
in blocks of B consecutive words. The I/O complexity of an algorithm is the number of
input/output blocks that are moved during the algorithm, both from the internal memory to
the external one, and vice versa.

The external memory model has been recently used in the context of databases to analyze
algorithms for large datasets that do not fit in the main memory, with the main application
being triangle listing [6, 12, 18, 11]. In this setting, the input is an undirected graph, and
the goal is to list all triangles in the graph. In [18] and [11], the authors consider the
related problem of triangle enumeration, where instead of listing triangles (and hence writing
them to the external memory), for each triangle in the output we call an emit() function.
The best result comes from [11], where the authors design a deterministic algorithm that
enumerates triangles in O(|E|3/2/(

√
WB)) I/Os, where E is the number of edges in the graph.

The authors in [11] actually consider a more general class of join problems, the so-called
Loomis-Whitney enumeration. In [19], the author presents external memory algorithms for
enumerating subgraph patterns in graphs other than triangles.

The problem we consider in the context of external memory algorithms is a generalization
of triangle enumeration. Given a full conjunctive query q, we want to enumerate all possible
tuples in the output, by calling the emit() function for each tuple in the output of query q.
We assume that each tuple in the input can be represented by a single word.

5.1 Simulating an MPC Algorithm

We will show how a parallel algorithm in the tuple-based MPC model can help us construct
an external memory algorithm. The tuple-based MPC model is a restriction of the MPC
model, where only tuples from subqueries of q can be communicated, and moreover the
communication can take a very specific form: each tuple t during round k is sent to a set of
servers D(t, k), where D depends only on the data statistics that are initially available to
the algorithm. Such statistical information is the size of the relations, or information about
the heavy hitters in the data.4 All of the algorithms that we have presented so far in the
previous sections satisfy the above assumption.

The idea behind the construction is that the distribution of the data to the servers can
be used to decide which input data will be loaded into memory; hence, the load L will
correspond to the size of the internal memory W . Similarities between hash-join algorithms
used for parallel processing and the variants of hash-join used for out-of-core processing have
been already known, where the common theme is to create partitions and then process them
one at a time. Here we generalize this idea to the processing of any conjunctive query in

3 The size of the main memory is typically denoted by M , but we use W to distinguish from the relation
size in the previous sections.

4 Even if this information is not available initially to the algorithm, we can easily obtain it by performing
a single pass over the input data, which will cost O(|I|/B) I/Os.
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a rigorous way. We should also note that previous work [9] has studied the simulation of
MapReduce algorithms on a parallel external memory model.

Let A be a tuple-based MPC algorithm that computes query q over input I using r
rounds with load L(I, p). We show next how to construct an external memory algorithm B
based on the algorithm A.

Simulation. The external memory algorithm B simulates the computation of algorithm A
during each of the r rounds: round k, for k = 1, . . . , r simulates the total computation of
the p servers during round k of A. We pick a parameter p for the number of servers that we
show how to compute later. The algorithm will store tuples of the form (t, s) to denote that
tuple t resides in server s.

To initialize B, we first assign the input data to the p servers (we can do this in any
arbitrary way, as long as the data is equally distributed). More precisely, we read each tuple
t of the input relations and then produce a tuple (t, s), where s = 1, . . . , p in a round-robin
fashion, such that in the end each server is assigned |I|/B data items. To achieve this, we
load each relation in chunks of size B in the memory. After the initialization, the algorithm
B, for each round k = 1, . . . , r, performs the following steps:
1. All tuples, which will be of the form (t, s), are sorted according to the attribute s.
2. All tuples are loaded in memory in chunks of size W , in the order by which they were

sorted in the external memory. If we choose p such that r ·L(I, p) ≤W , we can fit in the
internal memory all the tuples of any server s at round k. 5 Hence, we first read into the
internal memory the tuples for server 1, then server 2, and so on. For each server s, we
replicate in the internal memory the execution of algorithm A in server s at round k.

3. For each tuple t in server s (including the ones that are newly produced), we compute
the tuples {(t, s′) | s′ ∈ D(t, k)}, and we write them into the external memory in blocks
of size B.

In other words, writing to the internal and external memory simulates the communication
step, where data is exchanged between servers. The algorithm B produces the correct result,
since by the choice of p we guarantee that we can load enough data in the memory to simulate
the local computation of A at each server. Observe that we do not need to write the final
result back to the external memory, since at the end of the last round we can just call emit()
for each tuple in the output.

Let us now identify the choice for p; recall that we must make sure that r · L(I, p) ≤W .
Hence, we must choose po such that po = minp{L(I, p) ≤W/r}. We next analyze the I/O
cost of algorithm B for this choice of po.

Analysis. The initialization I/O cost for the algorithm is |I|/B. To analyze the cost for a
given round k = 1, . . . , r, we will measure first the size of the data that will be sorted and
then loaded into memory at round k. For this, observe that at every round of algorithm
B, the total amount of data that is communicated is at most po · L(I, po). Hence, the total
amount of data that will be loaded into memory will be at most k · po ·L(I, po) ≤ poW , from
our definition of po.

For the first step that requires sorting the data, we will not use a sorting algorithm,
but instead we will partition the data into p parts, and then concatenate the parts (this is

5 The quantity L(I, p) measures the maximum amount of data received during any round. Since data is
not destroyed, over r rounds a server can receive as much as r · L(I, p) data. All of this data must fit
into the memory of size W , since the decisions of each server depend on all the data received.
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possible only if po is smaller than the memory W , i.e. it must be po ≤W ). We can do this
with a cost of O(poW/B) I/Os. The second step of loading the tuples into memory has a
cost of poW/B, since we are loading the data using chunks of size B; we can do this since
the data has been sorted according to the destination server. As for the third step of writing
the data into the external memory, observe that the total number of tuples written will be
equal to the number of tuples communicated to the servers at round k + 1, which will be at
most poL(I, po) ≤ poW/r. Hence, the I/O cost will be poW/(rB).

Summing the I/O cost of all three steps over r rounds, we obtain that the I/O cost of
the constructed algorithm B will be:

O

(
|I|
B

+
r∑

k=1

(
poW

B
+ poW

rB

))
= O

(
|I|
B

+ rpoW

B

)
We have thus proved the following theorem:

I Theorem 17. Let A be a tuple-based MPC algorithm that computes query q over input I
using r rounds with load L(I, p). For internal memory size W , let po = minp{L(I, p) ≤W/r}.
If W ≥ po, then there exists an external memory algorithm B that computes q over the same
input I with I/O cost:

O

(
|I|
B

+ rpoW

B

)
.

We can simplify the above I/O cost further in the context of computing conjunctive
queries. In all of our algorithms we used a constant number of rounds r, and the load is
typically L(I, p) ≥ |I|/p. Then, we can rewrite the I/O cost as O (poW/B).

We can apply Theorem 17 to any of the optimal multi-round algorithms we presented in
the previous sections, and obtain state-of-the-art external memory algorithms for several
classes of conjunctive queries. We show next an application for the case of query C3.

I Example 18. We presented a 2-round algorithm that computes triangles for any input
data with load (in tuples) L = Õ(m/p3/2), in the case where all relations have size m. By
applying Theorem 17, we obtain an external memory algorithm that computes triangles with
Õ(m3/2/(BW 1/2)) I/O cost for any W ≥ m2/5. Notice that this cost matches the I/O cost
for triangle computation from [18] up to polylogarithmic factors.

6 Conclusion

In this work, we present the first worst-case analysis for parallel algorithms that compute
conjunctive queries, using the MPC model as the theoretical framework for the analysis. We
also show an interesting connection with the external memory computation model, which
allows us to translate many of the techniques from the parallel setting to obtain algorithms
for conjunctive queries with (almost) optimal I/O cost.

The central remaining open question is to design worst-case optimal algorithms for
multiple rounds for any conjunctive query. We also plan to investigate further the connection
between the parallel setting and external memory setting. It is an interesting question
whether our techniques can lead to optimal external memory algorithms for any conjunctive
query, and also whether we can achieve a reverse simulation of external memory algorithms
in the MPC model.

Acknowledgements. We would like to thank Ke Yi for pointing out an error in the compu-
tation of the edge quasi-packing of the query Lk.
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Abstract
Single-round multiway join algorithms first reshuffle data over many servers and then evaluate
the query at hand in a parallel and communication-free way. A key question is whether a given
distribution policy for the reshuffle is adequate for computing a given query, also referred to as
parallel-correctness. This paper extends the study of the complexity of parallel-correctness and its
constituents, parallel-soundness and parallel-completeness, to unions of conjunctive queries with
and without negation. As a by-product it is shown that the containment problem for conjunctive
queries with negation is coNEXPTIME-complete.
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1 Introduction

Motivated by recent in-memory systems like Spark [7] and Shark [21], Koutris and Suciu
introduced the massively parallel communication model (MPC) [15] where computation
proceeds in a sequence of parallel steps each followed by global synchronisation of all servers.
Of particular interest in the MPC model are queries that can be evaluated in one round of
communication [9]. In its most naïve setting, a query Q is evaluated by reshuffling the data
over many servers, according to some distribution policy, and then computing Q at each
server in a parallel but communication-free manner. A notable family of distribution policies
is formed within the Hypercube algorithm [3, 9, 11]. A property of Hypercube distributions
is that for any instance I, the central execution of Q(I) always equals the union of the
evaluations of Q at every computing node (or server). The latter guarantees the correctness
of the distributed evaluation for any conjunctive query by the Hypercube algorithm.

Ameloot et al. [4] introduced a general framework for reasoning about one-round evaluation
algorithms under arbitrary distribution policies. They introduced parallel-correctness as a
property of a query w.r.t. a distribution policy which states that central execution always
equals distributed execution, that is, equals the union of the evaluations of the query at each
server under the given distribution policy. One of the main results of [4] is that deciding
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parallel-correctness for conjunctive queries (CQs) is ΠP
2 -complete under arbitrary distribution

policies. The upper bound follows rather directly from a semantical characterisation of
parallel-correctness in terms of properties of minimal valuations. Specifically, it was shown
that a conjunctive query is parallel-correct w.r.t. a distribution policy, if the distribution
policy sends for every minimal valuation its required facts to at least one node.

As union and negation are fundamental operators, we extend in this paper the study
of parallel-correctness to unions of conjunctive queries (UCQ), conjunctive queries with
negation (CQ¬) and unions of conjunctive queries with negation (UCQ¬). In fact, we
study two additional but related notions: parallel-soundness and parallel-completeness.
While parallel-correctness implies equivalence between centralised and distributed execution,
parallel-soundness (respectively, parallel-completeness) requires that distributed execution
is contained in (respectively, contains) centralised execution. Of course, parallel-soundness
and parallel-completeness together are equivalent to parallel-correctness. Furthermore, since
all monotone queries are parallel-sound, on this class parallel-correctness is equivalent to
parallel-completeness.

We start by investigating parallel-correctness for UCQ. Interestingly, for a UCQ to be
parallel-correct under a certain distribution policy it is not required that every disjunct is
parallel-correct. We extend the characterisation for parallel-correctness in terms of minimal
valuations for CQs to UCQs and thereby obtain membership in ΠP

2 . The matching lower
bound follows, of course, from the lower bound for CQs [4].

Next, we study parallel-correctness for (unions of) conjunctive queries with negation.
Sadly, when negation comes into play, parallel-correctness can no longer be characterised in
terms of properties of valuations. Instead our algorithms are based on counter-examples of
exponential size, yielding coNEXPTIME upper bounds. It turns out that this is optimal,
though, as our corresponding lower bounds show. The proof of the lower bounds comes along
an unexpected route: we exhibit a reduction from query containment for CQ¬ to parallel-
correctness of CQ¬ (and its two variants) and show that query containment for CQ¬ is
coNEXPTIME-complete. This is considerably different from what we thought was folklore
knowledge of the community. Indeed, the Πp

2-completeness result for query containment for
CQ¬ mentioned in [19] only seems to hold for fixed database schemas (or a fixed arity bound,
for that matter). We note that Mugnier et al. [17] provide a Πp

2 upper bound proof for CQ¬

containment and explicitly mention that it holds under the assumption that the arity of
predicates is bounded by a constant. Altogether, parallel-correctness (and its variants) for
(unions of) conjunctive queries with negation is thus complete for coNEXPTIME.

Finally, a natural question is how the high complexity of parallel-correctness in the presence
of negation can be lowered. We identify two cases in which the complexity drops. More
specifically, the complexity decreases from coNEXPTIME to Πp

2 if the database schema is
fixed or the arity of relations is bounded, and to coNP for unions of full conjunctive queries
with negation. In the latter case, we again employ a reduction from containment of full
conjunctive queries (with negation) and obtain novel results on the containment problem in
this setting as well. All upper bounds hold for queries with inequalities.

Outline. This paper is further organised as follows. In Section 2, we discuss related work.
In Section 3, we introduce the necessary definitions. We address parallel-correctness for
unions of conjunctive queries in Section 4. We consider containment of conjunctive queries
with negation in Section 5 and parallel-correctness together with its variants in Section 6.
We discuss the restriction to full conjunctive queries in Section 7. We conclude in Section 8.
Missing proof details can be found in the full version of this paper [14].
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2 Related work

As mentioned in the introduction, Koutris and Suciu introduced the massively parallel
communication model (MPC) [15]. A key property is that computation proceeds in a
sequence of parallel steps, each followed by global synchronisation of all computing nodes.
In this model, evaluation of conjunctive queries [8, 15] and skyline queries [2] has been
considered. Beame, Koutris and Suciu [9] proved a matching upper and lower bound for the
amount of communication needed to compute a full conjunctive query without self-joins in
one communication round. The upper bound is provided by a randomised algorithm called
Hypercube which uses a technique that can be traced back to Ganguly, Silberschatz, and
Tsur [13] and is described in the context of map-reduce by Afrati and Ullman [3].

Ameloot et al. [4] introduced a general framework for reasoning about one-round evaluation
algorithms under arbitrary distribution policies. They introduced the notion of parallel-
correctness and proved its associated decision problem to be Πp

2-complete for conjunctive
queries. In addition, towards optimisation in MPC, they considered parallel-correctness
transfer. Here, parallel-correctness transfers from Q to Q′ when Q′ is parallel-correct under
every distribution policy for which Q is parallel-correct. The associated decision problem
for conjunctive queries is shown to be Πp

3-complete. In addition, some restricted cases (e.g.,
transferability under Hypercube distributions), are shown to be NP-complete.

Our definition of a distribution policy is borrowed from Ameloot et al. [5] (but already
surfaces in the work of Zinn et al. [22]), where distribution policies are used to define the class of
policy-aware transducer networks. The work by Ameloot et al. [6, 5] relates coordination-free
computation with definability in variants of Datalog. One-round communication algorithms
in MPC can be seen as very restrictive coordination-free computation.

The complexity of query containment for conjunctive queries is proved to be NP-complete
by Chandra and Merlin [10]. Levy and Sagiv provide a test for query containment of
conjunctive queries with negation [16] that involves exploring an exponential number of
possible counter-example instances. In the context of information integration, Ullman [19]
gives a comprehensive overview of query containment (with and without negation) and states
the complexity of query containment for CQ¬ to be Πp

2-complete. As mentioned in the
introduction, the latter apparently only holds when the database schema is fixed or the arity
of relations is considered to be bounded. A proof for the Πp

2-lowerbound is given by Farré et
al. [12]. Based on [16], Wei and Lausen [20] study a method for testing containment that
exploits containment mappings for the positive parts of queries, and additionally provide a
characterisation for UCQ¬ containment.

3 Definitions

3.1 Queries and instances
We assume an infinite set dom of data values that can be represented by strings over some
fixed alphabet. By domn we denote the set of data values represented by strings of length
at most n. A database schema D is a finite set of relation names R, each with some arity
ar(R). We also write R(k) as a shorthand to denote that R is a relation of arity k. We call
R(t) a fact when R is a relation name and t a tuple over dom of appropriate arity. We say
that a fact R(t) is over a database schema D if R ∈ D. For a subset U ⊆ dom we write
facts(D, U) for the set of possible facts over schema D and U and by facts(D) we denote
facts(D,dom). A (database) instance I over D is a finite set of facts over D. By adom(I)
we denote the set of data values occurring in I. A query Q over input schema D1 and output

ICDT 2016
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schema D2 is a generic mapping from instances over D1 to instances over D2. Genericity
means that for every permutation π of dom and every instance I, Q(π(I)) = π(Q(I)). We
say that Q is contained in Q′, denoted Q ⊆ Q′ iff for all instances I, Q(I) ⊆ Q′(I).

3.2 Unions of conjunctive queries with negation

Let var be an infinite set of variables, disjoint from dom. An atom over schema D is of the
form R(x), where R is a relation name from D and x = (x1, . . . , xk) is a tuple of variables
in var with k = ar(R). A conjunctive query Q with negation and inequalities over input
schema D is an expression of the form

T (x)← R1(y1), . . . , Rm(ym),¬S1(z1), . . . ,¬Sn(zn), β1, . . . , βp

where all Ri(yi) and Si(zj) are atoms over D, every βi is an inequality of the form s 6= s′ where
s, s′ are distinct variables occurring in some yi or zj , and T (x) is an atom for which T 6∈ D.
Additionally, for safety, we require that every variable in x occurs in some yi and that every
variable occurring in a negated atom has to occur in a positive atom as well (safe negation). We
refer to the head atom T (x) as headQ, to the set {R1(y1), . . . , Rm(ym), S1(z1), . . . , Sn(zn)}
as bodyQ, and to the set {β1, . . . , βp} as ineqQ. Specifically, we refer to {R1(y1), . . . , Rm(ym)}
as the positive atoms in Q, denoted posQ, and to {S1(z1), . . . , Sn(zn)} as the negated atoms
of Q, denoted negQ. We denote by vars(Q) the set of all variables occurring in Q. We refer
to the class of conjunctive queries with negation and inequalities by CQ¬,6=, its restriction to
queries without inequalities, without negated atoms, and without both by CQ¬, CQ6=, and
CQ, respectively. As a shorthand we refer to queries from CQ¬,6= as CQ¬,6=s and similarly
for the other classes.

A pre-valuation for a CQ¬, 6= Q is a total function V : vars(Q)→ dom, which naturally
extends to atoms and sets of atoms. It is consistent for Q, if V (posQ) ∩ V (negQ) = ∅, and
V (s) 6= V (s′), for every inequality s 6= s′ of Q, in which case it is called a valuation. Of course,
for a conjunctive query without negated atoms and without inequalities, every pre-valuation
is also a valuation. We refer to V (posQ) as the facts required by V , and to V (negQ) as the
facts prohibited by V .

A valuation V satisfies Q on instance I if all facts required by V are in I while no fact
prohibited by V is in I, that is, if V (posQ) ⊆ I and V (negQ)∩ I = ∅. In that case, V derives
the fact V (headQ). The result of Q on instance I, denoted Q(I), is defined as the set of
facts that can be derived by satisfying valuations for Q on I.

A union of conjunctive queries with negation and inequalities is a finite union of CQ¬,6=s.
That is, Q is of the form

⋃n
i=1Qi where all subqueries Q1, . . . ,Qn have the same relation

name in their head atoms. We assume disjoint variable sets among different disjuncts in Q.
That is, vars(Qi) ∩ vars(Qj) = ∅ for i 6= j and, in particular, vars(headQi) 6= vars(headQj ).
By varmax(Q) we denote the maximum number of variables that occurs in any disjunct
of Q. By UCQ¬,6= we denote the class of unions of conjunctive queries with negation and
inequalities and its fragments are denoted correspondingly.

A CQ¬,6= is called full if all of its variables occur in its head. A UCQ¬,6= is full if all its
subqueries are full.

The result of Q on instance I is Q(I) =
⋃n
i=1Qi(I). Accordingly, a mapping from

variables to data values is a valuation for a UCQ¬,6= Q if it is a valuation for one of its
subqueries.
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3.3 Networks, data distribution, and policies
A network N is a nonempty finite set of values from dom, which we call (computing) nodes
(or servers). A distribution policy P = (U, rfactsP ) for a database schema D and a network N
consists of a universe U and a total function rfactsP that maps each node of N to a set of facts
from facts(D, U). A node κ is responsible for fact f (under policy P ) if f ∈ rfactsP (κ). As
a shorthand (and slight abuse of notation), we denote the set of nodes κ that are responsible
for some given fact f by P (f). For a distribution policy P and an instance I over D, let
loc-instP ,I denote the function that maps each κ ∈ N to I ∩ rfactsP (κ), that is, the set of
facts in I for which κ is responsible. We sometimes refer to a given instance I as the global
instance and to loc-instP ,I(κ) as the local instance at node κ.

We note that for some facts from facts(D, U) there are no responsible nodes. This gives
our framework some additional flexibility. However, it does not affect our results: in the
lower bound proofs we only use distributions for which all facts from facts(D, U) have some
responsible nodes. Each distribution policy implicitly induces a network and each query
implicitly defines a database (sub-) schema. Therefore, we often omit the explicit notation
for networks and schemas.

Given some policy P that is defined over a network N , the result [Q,P ](I) of the
distributed evaluation of a query Q on an instance I in one round is defined as the union of
the results of the query evaluated on each node’s local instance. Formally,

[Q,P ](I) def=
⋃
κ∈N
Q
(
loc-instP ,I(κ)

)
.

In the decision problem for parallel correctness (to be formalised later), the input consists of
a query Q and a distribution policy P . However, it is not obvious how distribution policies
should be specified. In principle, they could be defined in an arbitrary fashion, but it is
reasonable to assume that given a potential fact f , a node κ and a policy P , it is not too
hard to find out whether κ is responsible for f under P .

For UCQ 6=s, which are monotone, our complexity results are remarkably robust with
respect to the choice of the representation of distribution policies. In fact, the complexity
results coincide for the two extreme possible choices that we consider in this article. In the
first case, distribution policies are specified by an explicit list of tuple-node-pairs, whereas
in the second case the test whether a given node is responsible for a given tuple can be
carried out by a non-deterministic polynomial-time algorithm. However, we do require that
some bound n on the length of strings that represent node names and data values is given.
Without such a restriction, no upper complexity bounds would be possible as nodes with
names of super-polynomial length in the size of the input would not be accessible.

Considering queries with negated atoms, however, these two settings (seem to) differ,
complexity-wise. The reason is that testing parallel-correctness in this setting requires counter
examples of size exponential in the size of the query which can not be succinctly represented
by policies in Pfin. We therefore introduce the class Prule allowing for a more economic rule
based description of policies. In particular, in Prule, the universe U of a policy is explicitly
enumerated and the responsibilities are defined by simple constraints (described below). The
latter representation enjoys the same complexity properties as the full NP-test based case.

Now we give more precise definitions of classes of policies and their representations
as inputs of algorithmic problems. As said before, policies P = (U, rfactsP ) from Pfin
are specified by an explicit enumeration of U and of all pairs (κ,f) where κ ∈ P (f). A
policy P = (U, rfactsP ) from Prule is given by an explicit enumeration of U and a list of
rules of the form ρ = (A, κ), where A is an atom with variables and/or constants from U ,
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9:6 Parallel-Correctness and Containment for CQs with Union and Negation

and a network node κ. The semantics of such a rule is as follows: for every substitution
µ : var ∪ dom→ dom that maps variables to values from U and leaves constants from U

unchanged, the node κ is responsible for the fact µ(A). A rule is a fact rule if its atom does
not contain any variables, that is, A = R(a1, . . . , an), where a1, . . . , an ∈ U . In particular,
Pfin ⊆ Prule.

I Example 1. Let distribution policy P over schema {Rel(3)} and network {κ1, κ2} be
given by U = {1, . . . , 10} and the rules

(
Rel(1, x, x), κ1

)
,
(
Rel(2, x, y), κ2

)
. On global in-

stance I = {Rel(1, 7, 7), Rel(1, 7, 8), Rel(2, 9, 8), Rel(2, 9, 9)}, policy P induces local instances
loc-instP ,I(κ1) = {Rel(1, 7, 7)} and loc-instP ,I(κ2) = {Rel(2, 9, 8), Rel(2, 9, 9)}. �

The most general classes of policies allow to specify policies by means of a ‘test algorithm’
with time bound `k, where ` is the length of the input and k some constant. Such an
algorithm decides, for an input consisting of a node κ and fact f , whether κ is responsible for
f .1 A policy P = (U, rfactsP ) from Pknpoly is specified by a pair (n,AP ), where n is a natural
number in unary representation and AP is a non-deterministic algorithm.2 The universe
U of P is the set of all data values that can be represented by strings of length at most n
(for some given fixed alphabet) and the underlying network consists of all nodes which are
represented by strings of length at most n, that is, N = domn. A node κ is responsible
for a fact f if AP , on input (κ,f), has an accepting run of at most |(κ,f)|k steps. Clearly,
each policy of Pfin can be described in P2

npoly. Let Pnpoly denote the set3 {Pknpoly | k ≥ 2} of
distribution policies and by P the set {Pfin,Prule} ∪Pnpoly.

3.4 Parallel-correctness, soundness, and completeness
In this paper, we mainly consider the one-round evaluation algorithm for a query Q that first
distributes (reshuffles) the data over the computing nodes according to P , then evaluates Q
in a parallel step at every computing node, and finally outputs all facts that are obtained
in this way.4 As formalised next, the one-round evaluation algorithm is correct (sound,
complete) if the query Q is parallel-correct (parallel-sound, parallel-complete) under P .

I Definition 2. Let Q be a query, I an instance, and P a distribution policy.
Q is parallel-sound on I under P if Q(I) ⊇ [Q,P ](I).
Q is parallel-complete on I under P if Q(I) ⊆ [Q,P ](I); and,
Q is parallel-correct on I under P if Q(I) = [Q,P ](I), that is, if it is parallel-sound and
parallel-complete.

I Definition 3. A query Q is parallel-correct (respectively, parallel-sound and parallel-
complete) under distribution policy P = (U, rfactsP ), if Q is parallel-correct (respectively,
parallel-sound and parallel-complete) on all instances I ⊆ facts(D, U).

In [4], parallel-correctness is characterised in terms of minimal valuations as defined next:

I Definition 4. Let Q be a CQ. A valuation V for Q is minimal for Q if there exists no
valuation V ′ for Q such that V (headQ) = V ′(headQ) and V ′(bodyQ) ( V (bodyQ).

1 We note that it is important that for each class of policies there is a fixed k that bounds the exponent
in the test algorithm as otherwise we could not expect a polynomial bound for all policies of that class.

2 For concreteness, say, a non-deterministic Turing machine.
3 Since ‘linear time’ is a subtle notion, we rather not consider P1

npoly.
4 We note that, since P is defined on the granularity of a fact, the reshuffling does not depend on the

current distribution of the data and can be done in parallel as well.
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The following lemma is key in obtaining the Πp
2 upper bound on the complexity of testing

parallel-correctness for conjunctive queries:

I Lemma 5 (Characterisation of parallel-correctness for CQs [4]). A CQ Q is parallel-correct
under distribution policy P = (U, rfactsP ) if and only if the following holds:

For every minimal valuation V for Q over U , there is a node κ ∈ N such that
V (bodyQ) ⊆ rfactsP (κ). (C1 )

I Remark 6. Informally, condition (C1) states that there is a node in the network where all
facts required for V meet.

3.5 Algorithmic problems
We consider the following decision problems for various sub-classes C and C′ of UCQ¬,6= and
classes P of distribution policies from {Pfin,Prule} ∪Pnpoly.

Containment(C, C′):
Input: Q ∈ C and Q′ ∈ C′
Question: Is Q ⊆ Q′?

Parallel-Sound(C,P):
Input: Q ∈ C, P ∈ P
Question: Is Q parallel-sound under P ?

Parallel-Complete(C,P):
Input: Q ∈ C, P ∈ P
Question: Is Q parallel-complete under P ?

Parallel-Correct(C,P):
Input: Q ∈ C, P ∈ P
Question: Is Q parallel-correct under P ?

4 Parallel-correctness: unions of conjunctive queries

Parallel-correctness of unions of conjunctive queries (without negation) reduces to parallel-
completeness for the simple reason that these queries are monotone and therefore parallel-
sound for every distribution policy. We show below that parallel-completeness remains in Πp

2.
Hardness already follows from Πp

2-hardness of Parallel-Correct(CQ,Pfin) [4].
As a UCQ is parallel-complete under a policy P when all its disjuncts are, it might be

tempting to assume that this condition is also necessary. However, as the following example
illustrates, this is not the case.

I Example 7. Let Q = Q1 ∪Q2, where Q1 and Q2 are the following CQs:

Q1 : H(x, x) ← R(x, x),
Q2 : H(y, z) ← R(y, z), S(y, z).

Further, let P be the policy over network {κ1, κ2} that maps facts R(a, a) to node κ1, for
all a ∈ dom, and all other R-facts and all S-facts to node κ2.

We argue that Q is parallel-complete under P on all instances. Indeed, assume H(a, b) ∈
Q(I) for some instance I and a, b ∈ dom. If a 6= b, only the valuation {y 7→ a, z 7→ b} can de-
rive H(a, b). This means that {R(a, b), S(a, b)} ⊆ I. Furthermore, {R(a, b), S(a, b)} ⊆
rfactsP (κ2). Hence, H(a, b) ∈ Q(loc-instP ,I(κ2)). If a = b, then R(a, a) ∈ I. So,
R(a, a) ∈ rfactsP (κ1) and H(a, a) ∈ Q(loc-instP ,I(κ1)). On the other hand, Q2 is not
parallel-complete under P on instance I = {R(0, 0), S(0, 0)}. Indeed, H(0, 0) ∈ Q2(I) but
Q2
(
loc-instP ,I(κ1)

)
= Q2

(
{R(0, 0)}

)
= ∅ and Q2

(
loc-instP ,I(κ2)

)
= Q2

(
{S(0, 0)}

)
= ∅. �
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9:8 Parallel-Correctness and Containment for CQs with Union and Negation

We recall from Section 3.2 that disjuncts in unions of conjunctive queries use disjoint
variable sets and a valuation for Q is a valuation for exactly one disjunct. As formalised next,
the notion of minimality for valuations given in Definition 4 naturally extends to UCQ 6=.

I Definition 8. Let Q =
⋃n
i=1Qi be a UCQ 6=. A valuation Vi for Qi, with i ∈ {1, . . . , n}, is

minimal for Q, if for no j ∈ {1, . . . , n} there is a valuation Vj for Qj , such that Vj(headQj
) =

Vi(headQi) and Vj(bodyQj
) ( Vi(bodyQi

).

I Example 9. Consider a simple UCQ 6= Q = Q1 ∪Q2 where Q1,Q2 ∈ CQ 6= are as follows:

Q1 : H(u, v) ← R(u, v), R(v, u), R(u, u),
Q2 : H(x, y) ← R(x, y), R(y, z), y 6= z.

Valuation V2
def= {x 7→ 0, y 7→ 0, z 7→ 1} is not minimal for Q because valuation V1

def=
{u 7→ 0, v 7→ 0} derives the same fact H(0, 0) requiring only {R(0, 0)} ( {R(0, 0), R(0, 1)}.
Similarly, valuationW1

def= {u 7→ 0, v 7→ 1}, requiring {R(0, 1), R(1, 0), R(0, 0)}, is not minimal
for Q because valuation W2

def= {x 7→ 0, y 7→ 1, z 7→ 0} only requires {R(0, 1), R(1, 0)}. �

The notion of minimality leads to basically the same simple characterisation of parallel-
completeness:

I Lemma 10. A UCQ 6= Q is parallel-correct under distribution policy P = (U, rfactsP ) if
and only if the following holds:

For every minimal valuation V for Q over U , there is a node κ ∈ N such that
V (bodyQ) ⊆ rfactsP (κ). (C1 ′)

Proof. (If) Assume (C1′) holds. Because of monotonicity, we only need to show that
Q(I) ⊆

⋃
κ∈N Q(loc-instP ,I(κ)) for every instance I. To this end, let f be an arbitrary fact

that is derived by some valuation V for Q on I. Then, there is also a minimal valuation
V ′ that is satisfying on I and which derives f . Because of (C1′), there is a node κ ∈ N
where all facts required by V ′ meet (cf. Remark 6). Hence, f ∈

⋃
κ∈N Q(loc-instP ,I(κ)), i.e.

query Q is parallel-correct under policy P .
(Only if) For a proof by contraposition, suppose that there is a minimal valuation V ′ for Q for
which the required facts do not meet under P . Consider the input instance I = V ′(bodyQ).
By definition of minimality, there is no valuation that agrees on the head variables and is
satisfying for Q on a strict subset of V ′(bodyQ). Therefore, V ′(headQ) is in Q(I) but it is
not derived on any node and thus query Q is not parallel-complete under policy P . J

The characterisation in Lemma 10, in turn, can be used to prove a Πp
2 upper bound.

I Lemma 11. Parallel-Correct(UCQ6=,P) is in Πp
2, for every P ∈ P.

Proof. It suffices to show that the complement of Parallel-Complete(UCQ 6=,Pknpoly) is
in Σp2 for arbitrary k ≥ 2. Let P = (n, T ) be a policy from Pknpoly. We have to consider only
instances whose data values can be represented by strings of length n over networks whose
nodes can be represented by strings of length n.

By Lemma 10, a query Q is not parallel-correct under distribution policy P if and only if
there exists a minimal valuation V that satisfies Q on some instance I with adom(I) ⊆ domn

such that no node in domn is responsible for all facts from V (bodyQ).
First, the algorithm non-deterministically guesses a valuation V , which can be represented

by a string in length polynomial in Q and n. Subsequently, it checks for all valuations V ′,
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all nodes κ, and all strings x of polynomial length whether V ′ contradicts minimality of V
(in which case the algorithm rejects the input) and, by use of algorithm T , whether node κ is
not responsible for at least one fact from V (bodyQ) (if so, the algorithm continues, otherwise
it rejects). All tests can be done in polynomial time. J

From [4] we know the following result.

I Theorem 12 ([4]). Parallel-Correct(CQ,Pfin) is Πp
2-complete.

Together with Lemma 11 we get the following result.

I Theorem 13. Parallel-Correct(UCQ6=,P) is Πp
2-complete, for every P ∈ P.

5 Containment of CQ¬ and UCQ¬

In this section, we establish the complexity of containment for CQ¬ and UCQ¬. We need
these results to establish lower bounds on parallel-correctness and its constituents in the next
section. Whereas containment for CQ has been intensively studied in the literature, the
analogous problems for CQ¬ and UCQ¬ have hardly been addressed and seem to belong to
folklore. In fact, we only found a reference of a complexity result for containment of CQ¬ in
[19], where a Πp

2-algorithm for the problem is given, based on observations in [16], and the
existence of a matching lower bound is mentioned. However, as we show below, although
the problem is indeed in Πp

2 for queries defined over a fixed schema (or when the arity of
relations is bounded), it is coNEXPTIME-complete in the general case.

We first show the lower bounds. They actually already hold for Boolean queries. We
show that Containment(BCQ¬,UBCQ¬) is coNEXPTIME-hard by a reduction from
the succinct 3-colorability problem and afterwards that Containment(BCQ¬,UBCQ¬)
can be reduced to Containment(BCQ¬,BCQ¬). Here, BCQ¬ and UBCQ¬ denote the
class of Boolean CQ¬s and unions of Boolean CQ¬s, respectively. Together this establishes
that Containment(BCQ¬,BCQ¬) and therefore also Containment(CQ¬,CQ¬) are
coNEXPTIME-hard.

I Proposition 14. Containment(BCQ¬,UBCQ¬) is coNEXPTIME-hard.

Proof. The proof is by a reduction from the succinct 3-colorability problem, which asks,
whether a graph G, which is implicitly given by a circuit with binary AND- and OR- and
unary NEG-gates, is 3-colorable. The latter problem is known to be NEXPTIME-complete
[18]. We say that a circuit C, with 2` Boolean inputs, describes a graph G = (N,E), when
N = {0, 1}`, and there is an edge (n1, n2) ∈ N2 if and only if C outputs true on input n1n2.

Let C be an input for the succinct 3-colorability problem with 2` Boolean inputs. We
construct queries Q1 and Q2 such that Q1 6⊆ Q2 if and only if the graph described by C is
3-colorable.

Both queries are over schema D, which consists of relation names DomainValues(3),
Bool(1), And(3), Or(3), Neg(2), and Label(`+1). Intuitively, satisfaction of Q1 will guarantee
that there is a tuple (a0, a1, a2) with three different values in relation DomainValues. We
will use, for some such tuple, a0, a1, a2 as colors and a0, a1 as truth values. We will often
assume without loss of generality that (a0, a1, a2) = (0, 1, 2). In particular, for such a tuple,
a0 is interpreted as false while a1 is interpreted as true. The unary relation Bool will be
forced by Q1 to contain at least a0 and a1.

Relations And, Or, and Neg are intended to represent the respective logical functions.
The first two attributes represent input values, and the last attribute represents the output.
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9:10 Parallel-Correctness and Containment for CQs with Union and Negation

Again, Q1 will guarantee that at least all triples of Boolean values that are consistent with
the semantics of AND, OR, and NEG are present in these relations. Tuples in relation Label
represent nodes together with their respective color (one can think of the representation of a
node by `-ary addresses over a ternary alphabet).
We define query Q1 as follows:

T ()←DomainValues(w0, w1, w2),¬DomainValues(w1, w0, w2),
¬DomainValues(w2, w1, w0),¬DomainValues(w0, w2, w1),
Bool(w0), Bool(w1), Neg(w1, w0), Neg(w0, w1),
And(w0, w0, w0), And(w0, w1, w0), And(w1, w0, w0), And(w1, w1, w1),
Or(w0, w0, w0), Or(w0, w1, w1), Or(w1, w0, w1), Or(w1, w1, w1).

It is easy to see that Q1 enforces the conditions mentioned above.
In the following, we denote sequences x1, . . . , x` of ` variables by x.

We define Q2 as the union of the queries Q1
2 and Q2

2, where subquery Q1
2 is defined as:

T ()←Bool(x1), Bool(x2), . . . , Bool(x`), DomainValues(yr, yg, yb),
¬Label(x, yr),¬Label(x, yg),¬Label(x, yb).

Intuitively, Q1
2 can be satisfied in a database if for some node, represented by x, there is no

color.
Subquery Q2

2 deals with the correctness of a coloring and uses a set circuit of atoms
that is intended to check whether for two nodes u and v, represented by y and z, respectively,
there is an edge between u and v.

To this end, circuit uses the variables y1, . . . , y`, z1, . . . , z`, representing the input and,
at the same time, the 2` input gates of C, and an additional variable ui, for each gate of
C, with the exception of the output gate. The output gate is represented by variable w1.
For each AND-gate represented by variable v1 with incoming edges from gates represented
by variables u1 and u2, circuit contains an atom And(u1, u2, v1). Likewise for OR- and
NEG-gates.

Subquery Q2
2 is defined as:

T ()←DomainValues(w0, w1, w2),circuit, Label(y, u), Label(z, u).

Intuitively, Q2
2 returns true when two nodes, witnessed to be adjacent by the circuit, have

the same color.
Correctness of the reductions can be shown rather straightforwardly, as is done in the

full version of this paper [14]. J

Next, we provide the above mentioned reduction.

I Proposition 15. Containment(BCQ¬,UBCQ¬) ≤p Containment(BCQ¬,BCQ¬) .

Proof. Let Q1 be in BCQ¬ and Q2 =
⋃m
i=1Qi2 be in UBCQ¬ over some database schema

D. Recall our assumption, that each disjunct is defined over a disjoint set of variables. Next,
we construct CQs Q′1 and Q′2 such that Q′1 ⊆ Q′2 if and only if, Q1 ⊆ Q2.

We explain the intuition behind the reduction by means of an example. To this end, let
Q1 be H() ← A(x, y) and let Q2 be the Q1

2 ∪ Q2
2, where Q1

2 is H() ← A(u1, v1), B(u1, v1)



G. Geck, B. Ketsman, F. Neven, and T. Schwentick 9:11

and Q2
2 is H()← A(u2, v2),¬B(u2, v2), both formulated over the schema D = {A(2), B(2)}.

The query Q′2 takes the following form:

H()← Active(x0, x1; `1, `2), α(`1,Q1
2)︸ ︷︷ ︸

Q′
2,1

, α(`2,Q2
2)︸ ︷︷ ︸

Q′
2,2

,

where α(w,Q) denotes the modification of the body of Q by replacing every atom R(x) by
R′(w,x). Both queries are defined over the schema D′ = {A′(3), B′(3), Active(4)}. Notice
that Q′2 contains a concatenation of the disjuncts of Q2. In addition, relations A and B are
extended with a new first column with the purpose of labelling tuples. This labelling allows
to encode two (or even more) instances over D by one instance over D′. Specifically, bodyQ′

1
(not shown) is constructed in such a way that when there is a satisfying valuation for Q′1
there are two different data values, say 0 and 1. So, an instance I over D can be encoded as
I0 = {A′(0, a, b) | A(a, b) ∈ I} ∪ {B′(0, a, b) | B(a, b) ∈ I} or as I1 = {A′(1, a, b) | A(a, b) ∈
I} ∪ {B′(1, a, b) | B(a, b) ∈ I}. In addition, when there is a satisfying valuation for Q′1, there
is an instance I2 on which every disjunct of Q2 is true, and there is an instance I1 on which
Q1 is true. So, both Q′2,1 and Q′2,2 evaluate to true on I0

2 when `1 and `2 are interpreted by
label 0. However, for Q1 to be contained in Q2, we need that at least one of the disjuncts
Q′2,1 or Q′2,2 evaluates to true over I1

1 , that is, when its labelling variable is interpreted as 1.
Atom Active(x0, x1; `1, `2) will ensure that x0 and x1 correspond with the values 0 and 1,
and that at least one of the labelling variables `1 or `2 is equal to 1. In other words, Active
chooses which disjunct to activate over I1. So, at least one disjunct of Q2 evaluates to true
on the instance I1 on which Q1 is satisfied.

The reduction is explained in more detail in the full version of this paper [14]. J

Combining Propositions 14 and 15 we get the following corollary:

I Corollary 16. Containment(CQ¬,CQ¬) is coNEXPTIME-hard.

The corresponding upper bounds hold also in the presence of inequalities and are shown
by small model (i.e., counter-example) properties. To this end, we make use of a restricted
monotonicity property of UCQ¬,6=s which was already observed in Proposition 2.4 of [1]. For
an instance I and a set D of data values we denote by I|D the restriction of I to facts that
only use values from D.

I Lemma 17 ([1]). For Q ∈ UCQ¬,6=, I an instance with a compatible schema, and D a
set of data values, it holds that Q(I|D) ⊆ Q(I).

Proof. Let f ∈ Q(I|D) via a valuation V for a disjunct Qi of Q. Thus, V (posQi
) ⊆ I|D ⊆ I.

By definition, every variable x of Qi occurs in a positive atom and therefore V (x) ∈ D. Thus,
V (negQi

) ∩ I = V (negQi
) ∩ I|D = ∅ and f ∈ Q(I) as claimed. J

Now we can establish the following small model property for testing containment.

I Lemma 18. Let Q1,Q2 ∈ UCQ¬, 6=. If there is an instance I, where Q1(I) 6⊆ Q2(I), then
there is also an instance J ⊆ I, where Q1(J) 6⊆ Q2(J), and |adom(J)| ≤ varmax(Q1 ).

Proof. Let I be as in the lemma and let f be a fact with f ∈ Q1(I) and f 6∈ Q2(I). Let V
be a valuation that derives f via some disjunct Qi1 of Q1.

Let D def= adom(V (posQi
1
)) and J def= I|D the set of all facts in I using only values from

adom(V (posQi
)). By definition, |adom(J)| ≤ varmax(Q1 ). Clearly, V is still a satisfying

valuation for Qi1 over J . However, by Lemma 17, f 6∈ Q2(J) = Q2(I|D). J
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The upper bounds follow easily from Lemma 18.

I Proposition 19. The following upper bounds hold:
1. Containment(UCQ¬,6=,UCQ¬,6=) is in coNEXPTIME.
2. For every k, containment of UCQ¬,6=-queries over schemas with arity bound k is in Πp

2.

Proof. In both cases, we consider the complement of Containment(UCQ¬, 6=,UCQ¬,6=).
Let m def= varmax(Q1 ).
1. A NEXPTIME algorithm, on input Q1,Q2, can simply guess an instance J with a

domain of at most m elements and a fact f , and verifies that f ∈ Q1(J) but f 6∈ Q2(J).
For the latter tests, it can simply cycle, in exponential time, to all valuations over J for
Q1 and Q2.

2. For a fixed arity bound, the minimal counter-example J is of size at most mk. It can thus
be guessed in polynomial time. That f ∈ Q1(J) can be verified non-deterministically.
That f 6∈ Q2(J) can be verified by a universal computation in polynomial time. J

A claim of a Πp
2 upper bound for containment of CQs with negation can be found in [19].

It was not made clear there, that this claim assumes bounded arity of the schema. That the
containment problem is Πp

2-complete for schemas of bounded arity has been explicitly shown
in [17]. Clearly, Proposition 19.2 follows directly and 19.1 is only a variation of it. From
Proposition 19 and Corollary 16 the main result of this section immediately follows.

I Theorem 20. Containment(BCQ¬,BCQ¬) and Containment(UCQ¬, 6=,UCQ¬,6=)
are coNEXPTIME-complete.

Of course, the theorem also holds for all classes C of queries with BCQ¬ ⊆ C ⊆ UCQ¬,6=.

6 Parallel-correctness: unions of conjunctive queries with negation

As mentioned in Section 4, for conjunctive queries without negation parallel-soundness
always holds and thus parallel-correctness and parallel-completeness coincide, thanks to
monotonicity. For queries with negation the situation is different. Distributed evaluation can
be complete but not sound, or vice versa. For this reason, we have to distinguish all three
problems separately: correctness, soundness, and completeness. However, the complexity is
the same in all three cases.

Our results show a second, more crucial difference. Whereas parallel completeness for CQs
without negation could be characterised in terms of valuations, that is, objects of polynomial
size, our algorithms for CQs with negation involve counter-examples of exponential size (if
the arity of schemas is not bounded) and the coNEXPTIME lower bound results indicate
that this is unavoidable. We illustrate the observation that counter-examples might need an
exponential number of tuples by the following example.

I Example 21. Let Q be the following conjunctive query with negation:

H() ← Bool(w0, w0), Bool(w1, w1), Bool(x1, x1), . . . , Bool(xn, xn),
¬Bool(w0, w1),¬Rel(x1, . . . , xn).

Let P be the policy defined over universe U = {0, 1} and two-node network {κ1, κ2}, which
distributes all facts except Rel(0, . . . , 0) to node κ1 and only fact Rel(0, . . . , 0) to node κ2.

Query Q is not parallel-sound under policy P , but the smallest counter-example I is of
exponential size as we argue next. Indeed, let I def= {Bool(0, 0), Bool(1, 1)}∪{Rel(a1, . . . , an) |
(a1, . . . , an) ∈ {0, 1}n}. Furthermore, let valuation V map variables w1 and w0 to 1 and 0,
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respectively, and map xi to 0, for every i ∈ {1, . . . , n}. Then, valuation V satisfies Q on
instance loc-instP ,I(κ1) = I \ {Rel(0, . . . , 0)} because neither Bool(0, 1) nor Rel(0, . . . , 0) is
contained in the local instance. Furthermore, there is no satisfying valuation W for Q on
the global instance I because W would have to map each xi to either 0 or 1 implying that
W
(
Rel(x1, . . . , xn)

)
∈ I.

However, there is no smaller instance: let I∗ be some instance over universe U that
has a locally satisfying valuation V . The combination of atoms Bool(w0, w0), Bool(w1, w1),
and ¬Bool(w0, w1) in query Q then implies existence of both facts Bool(0, 0) and Bool(1, 1)
because variables w0 and w1 cannot be mapped onto the same data value.

Assume that fact Rel(a1, . . . , an), for some (a1, . . . , an) ∈ {0, 1}n is missing from I∗. Then
the valuation W that maps w0 7→ 0, w1 7→ 1 and xi 7→ ai, for every i ∈ {1, . . . , n}, satisfies
Q also globally, on instance I∗, and can therefore be no example against parallel-soundness,
which contradicts our choice of I∗. Thus, Rel(a1, . . . , an) ∈ I∗, for every (a1, . . . , an) ∈
{0, 1}n. We therefore have I ⊆ I∗ and, in particular, instance I∗ contains at least as many
facts as instance I. �

The results of this section are summarised in the following theorem:

I Theorem 22. For every class P ∈ {Prule} ∪Pnpoly of distribution policies, the following
problems are coNEXPTIME-complete.

Parallel-Sound(UCQ¬,P)
Parallel-Complete(UCQ¬,P)
Parallel-Correct(UCQ¬,P)

Theorem 22 follow from Propositions 23 and 25 below. It also holds for UCQ¬, 6=. It is easy
to show that, when restricted to schemas with some fixed (but sufficiently large, for hardness)
arity bound, all these problems are Πp

2-complete.

6.1 Upper bounds
In this section, we show the upper bounds of Theorem 22, summarised in the following
proposition.

I Proposition 23. Parallel-Sound(UCQ¬,6=,P), Parallel-Complete(UCQ¬,6=,P),
and Parallel-Correct(UCQ¬,6=,P) are in coNEXPTIME, for every class P ∈ P of
distribution policies. If the arity of schemas is bounded by some fixed number, these problems
are in Πp

2.

Proof. As already indicated above, the proof relies on a bound on the size of a smallest
counter-example. More specifically, we first show the following claim.

I Claim 24. Let Q ∈ UCQ¬,6= and let P be an arbitrary distribution policy. Then the
following statements hold:
1. If Q is not parallel-complete under P , then there is an instance J over a domain with at

most varmax(Q) elements such that Q is not parallel-complete on J under P .
2. If Q is not parallel-sound under P , then there is an instance J over a domain with at

most varmax(Q) elements such that Q is not parallel-sound on J under P .
Towards (1) let us assume that Q is not parallel-complete on some instance I under P .
Let V be a valuation of a disjunct Qi of Q that derives a fact f globally that is not
derived on any node of the network. Let D def= adom(V (posQi

)) and J
def= I|D. Clearly,

|D| ≤ varmax(Q) and V still derives f globally on instance J via Qi. On the other hand,
for every node κ, Q

(
loc-instP ,J(κ)

)
= Q

(
loc-instP ,I(κ)|D

)
⊆ Q

(
loc-instP ,I(κ)

)
, thanks to
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Lemma 17. Therefore f is not derived on κ, and thus J witnesses the lack of parallel-
completeness of Q under P .

The proof of (2) is completely analogous. Given a counter-example I and a valuation V
that derives a fact f on some node κ via Qi, for which f is not derived globally, we define
D

def= I|adom(V (posQi
)) and show that J def= I|D is the desired counter-example.

An algorithm that tests the complement of parallel-completeness non-deterministically is
described in the full version of this paper [14]. J

6.2 Lower bounds
The lower bounds stated in Theorem 22 follow from a polynomial time reduction from
problem Containment(BCQ¬,BCQ¬), for which we showed coNEXPTIME-hardness in
Section 5.
I Proposition 25. Parallel-Complete(CQ¬,Prule), Parallel-Sound(CQ¬,Prule),
and Parallel-Correct(CQ¬,Prule) are coNEXPTIME-hard.
Proof. Interestingly, all three results are shown by the same reduction from decision problem
Containment(BCQ¬,BCQ¬).

The basic idea for this reduction is very simple: it combines both queries Q1,Q2 ∈ BCQ¬

of the given containment instance into a single query Q ∈ BCQ¬ and infers an appropriate
distribution policy P . To emulate separate derivation for both queries in the combined
query, an activation mechanism is used that resembles the proof of Proposition 15. In this
fashion, the two queries can be evaluated over different subsets of the considered instance by
annotating both the facts in the instance as well as the atoms of the query.

We next describe the reduction in detail. Let thus Q1,Q2 ∈ BCQ¬ be queries over some
schema D and let m def= max

{
varmax(Q1 ), varmax(Q2 )

}
. Without loss of generality, we

assume the variable sets of Q1 and Q2 to be disjoint. We will also assume in the following that
both Q1 and Q2 are satisfiable. This is the case (for Q1) if and only if posQ1 ∩negQ1 = ∅ and
can therefore be easily tested in polynomial time. If one of the test fails, some appropriate
constant instance of Parallel-Complete(CQ¬,Prule) or one of the other problem variants,
respectively, can be computed.

We define a (Boolean) query Q ∈ BCQ¬ and a policy P ∈ Prule over domain {1, . . . ,m}
that can be computed from Q1 and Q2 in polynomial time. The schema for Q is D′ def=
{R′(k+1) | R(k) ∈ D}. That is, each relation name R of D occurs as R′ in D′ with an arity
incremented by one. Additionally, Q uses relation names Type, Start1, Start2, and Stop,
which we assume not to occur in schema D. Besides the variables of Q1 and Q2, query Q
uses variables `1, `2, t.

We use the function α, defined in the proof of Proposition 15, which adds its first
parameter as first component to every tuple in its second parameter and translates relation
names R into R′. In Proposition 15, the first parameter was always a variable and the
second a set of atoms, but we use α also for a data value as first and a set of facts as second
parameter in the obvious way. We write α−1

a for the function mapping sets of facts over
D′ to sets of facts over D, by selecting, from a set of facts, all facts with first parameter a,
deleting this parameter and replacing each name R′ by R. Finally, πa(I) def= α

(
a, α−1

a (I)
)
is

the restriction of I to all facts with a in their first component.
The combined query Q has headQ

def= H() and body

bodyQ
def= α(`1, bodyQ1) ∪ α(`2, bodyQ2)
∪ {Type(t), Start1(`1), Start2(`1), Start2(`2)}︸ ︷︷ ︸

A

∪{¬Stop(`1),¬Stop(`2)}︸ ︷︷ ︸
A¬

.
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Policy P is defined over universe U def= {1, . . . ,m}, schema D′ ∪{Type, Start1, Start2, Stop}
and network N def= {κ1, . . . , κm, σ1, . . . , σm, ρ}. Facts are distributed as follows:

Every node κi is responsible for the facts Type(1), Start1(i), Start2(i), Stop(i), and all
facts from facts(D′, U).
Every node σi is responsible for the facts Type(2), Start1(i), Stop(i), all Start2-facts,
and all facts from facts(D′, U).
Finally, node ρ is responsible for facts Type(3), . . . , Type(m), and all facts over other
relation names.

It is easy to see that P can be expressed by a polynomial number of rules and that Q and P

can be computed in polynomial time. In the full version of this paper [14], we show that the
described function is indeed the desired reduction. J

7 Full conjunctive queries

In this section, we focus attention on full conjunctive queries, in an attempt to lower the
complexity of testing parallel-correctness. Requiring queries to be full is a very natural
restriction which is known to have practical benefits. For example, the Hypercube algorithm,
which describes an optimal way to compute CQs in a setting very similar to ours, completely
ignores projections when shuffling data, and only applies them when computing the query
locally. The latter is possible because correctness for the full-variant of a query is in a sense
more strict than correctness for the query itself.

Formally, a (union of) conjunctive queries is called full if all variables of the body also
occur in the head. We denote by FCQ¬,6= and UFCQ¬,6= the class of full CQ¬, 6= and full
UCQ¬,6= queries, respectively, and likewise for other fragments.

The presentation is similar to that of Section 5 and 6. First, we establish the complexity
of query containment. Then, we show that containment reduces to parallel-correctness (and
variants). Finally, we obtain matching upper bounds.

The following theorem shows that unlike for general conjunctive queries the complexity
of deciding containment for FCQ¬ and UFCQ¬ do not coincide.

I Theorem 26.
1. Containment(FCQ¬,FCQ¬) is in P;
2. Containment(FCQ¬,UFCQ¬) is coNP-complete; and
3. Containment(UFCQ¬,UFCQ¬) is coNP-complete.
All these results also hold for queries with inequalities.

As one can reduce from Containment(FCQ¬,UFCQ¬) to parallel-soundness, com-
pleteness, and correctness, we obtain the following hardness results:

I Proposition 27. Parallel-Sound(UFCQ¬,P), Parallel-Complete(UFCQ¬,P),
and Parallel-Correct(UFCQ¬,P) are coNP-hard, for every P ∈ {Prule} ∪Pnpoly.

The following theorem determines the complexity for the upper bounds:

I Theorem 28. The following problems are coNP-complete:
1. Parallel-Sound(UFCQ¬,Prule);
2. Parallel-Complete(UFCQ¬,Prule);
3. Parallel-Correct(UFCQ¬,Prule).
The result also holds for queries with inequalities.
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8 Discussion

In this paper, we continued the study of parallel-correctness initiated by Ameloot et al. [4] as a
framework for reasoning about one-round evaluation algorithms for conjunctive queries under
arbitrary distribution policies. Specifically, we considered the case with union and negation.
While parallel-correctness for unions of conjunctive queries can be tested by examining
properties of single valuations, just like in the union-free case, the latter no longer holds true
when negation is present. Consequently, we obtained that deciding parallel-correctness for
unions of conjunctive queries remains in Πp

2, while the analog problem in the presence of
negation is hard for coNEXPTIME. Since conjunctive queries with negation are no longer
monotone, we considered the related problems of parallel-completeness and parallel-soundness
as well and obtained the same bounds. Interestingly, when negation is present, containment
of conjunctive queries can be reduced to parallel-correctness (and its variants) allowing the
transfer of lower bounds. We prove that containment for conjunctive queries with negation
is hard for coNEXPTIME, which, to the best of our knowledge, is a novel result. In an
attempt to lower complexity, we show that parallel-correctness for unions of full conjunctive
queries with negation is coNP-complete.

There are quite a number of directions towards future work. While parallel-correctness
for first-order logic is undecidable, it would be interesting to determine the exact frontier
for decidability. As the considered problem is a static analysis problem that relates to the
size of the queries and not to the size of the instances (at least in the setting of Prule),
exponential lower bounds do not necessarily exclude practical application. It could still
be interesting to identify settings that would make parallel-correctness tractable. Possibly
independent of tractability considerations, such settings could incorporate bag semantics,
integrity constraints, or specific classes (and representations) of distribution policies. We
also plan to consider evaluation algorithms that use knowledge about the distribution policy
to compute better query results, locally. Another direction for future work is to investigate
transferability of parallel-correctness for conjunctive queries as defined in [4] in the presence
of union and negation.
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Abstract
We formalize and study a declaratively specified collaborative access control mechanism for data
dissemination in a distributed environment. Data dissemination is specified using distributed
datalog. Access control is also defined by datalog-style rules, at the relation level for extensional
relations, and at the tuple level for intensional ones, based on the derivation of tuples. The model
also includes a mechanism for “declassifying” data, that allows circumventing overly restrictive
access control. We consider the complexity of determining whether a peer is allowed to access
a given fact, and address the problem of achieving the goal of disseminating certain information
under some access control policy. We also investigate the problem of information leakage, which
occurs when a peer is able to infer facts to which the peer is not allowed access by the policy.
Finally, we consider access control extended to facts equipped with provenance information,
motivated by the many applications where such information is required. We provide semantics
for access control with provenance, and establish the complexity of determining whether a peer
may access a given fact together with its provenance. This work is motivated by the access
control of the Webdamlog system, whose core features it formalizes.
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1 Introduction

The personal data and favorite applications of Web users are typically distributed across many
heterogeneous devices and systems. In [19], a novel collaborative access control mechanism for
a distributed setting is introduced in the context of the language Webdamlog, a datalog-style
language designed for autonomous peers [3, 2]. The experimental results of [19] indicate
that the proposed mechanism is practically feasible, and deserves in-depth investigation. In
the present paper, we provide for the first time formal grounding for the mechanism of [19]
and answer basic questions about the semantics, expressiveness, and computational cost of
such a mechanism. In the formal development, we build upon distributed datalog [16, 20],
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which abstracts the core of Webdamlog, while ignoring certain features, such as updates and
delegation.

In this investigation, as in Webdamlog, access control is collaborative in the following
sense. The system provides the means to specify and infer access rights on disseminated
information, thus enabling peers to collectively enforce access control. The system is agnostic
as to how peers are motivated or coerced into conforming to the access control policy. This
can be achieved in various ways, from economic incentives to legal means (see, e.g., [28]),
possibly relying on techniques such as encryption or watermarking (see, e.g., [5]). We do not
address these aspects here.

The access control of [19] that we formalize and study here works as follows. First,
each peer specifies which other peers may access each of its extensional relations using
access-control-list rules. This provides in a standard manner an initial coarse-grained
(relation-at-a-time) access control, enforced locally by each peer. Next, facts can be derived
among peers using application rules. Access control is extended to such facts based on their
provenance: to see a propagated fact, a peer must have access to the extensional relations
used by the various peers in producing the fact. This enables controlling access to data
disseminated throughout the entire network, at a fine-grain (i.e., tuple) level. This capability
is a main distinguishing feature of Webdamlog’s access control model. The access control
also includes a hide mechanism that allows circumventing overly restrictive access control on
some disseminated facts, thus achieving a controlled form of “declassification” for selected
peers.

Access control in distributed datalog raises a variety of novel semantic, expressiveness
and complexity issues. How complex is it to check whether a peer has the right to access a
propagated fact? What are the appropriate complexity measures in this distributed setting?
Does the access control mechanism prevent leakage of unauthorized information? What
does it mean to extend access control to facts equipped with their provenance? Is there an
additional cost? These are some of the fundamental questions we study, described in more
detail next.

While the experimental results of [19] suggest that the computational cost of the proposed
mechanism is modest, we show formally that its complexity is reasonable. Specifically, we
prove that the data complexity of determining whether a peer can access a given fact is
ptime-complete (with and without hide).

We next consider the problem of information leakage, which occurs when a peer is able
to infer some facts to which the peer is not allowed access by the policy. We show that, while
undecidable in general, information leakage can be tested for certain restricted classes of
policies and is guaranteed not to occur for more restricted classes.

One of the challenges of access control is the intrinsic tension between access restrictions
and desired exchange of information. We consider the issue of achieving the goal of dis-
seminating certain information under some access control policy. The goal is specified as a
distributed datalog program. We show that it is undecidable whether a goal can be achieved
without declassification (i.e., without hide). We study the issue of finding a policy without
hide that achieves a maximum subset of the specified goal. While any goal can be achieved
by extensive use of hide, we show, more interestingly, how this can be done with minimal
declassification.

In many applications, it is important for inferred facts to come with provenance informa-
tion, i.e., with traces of their derivation. We demonstrate that adding such a requirement has
surprising negative effects on the complexity. For this, we introduce an intermediate measure
between data and combined complexity, called locally-bounded combined complexity that
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allows making finer distinctions than the classical measures in our context. The intuition is
that the peers are seen as part of the data and not of the schema, which is more in the spirit
of a Web setting. We show that the locally bounded complexity of query answering increases
from ptime-complete to pspace-complete when it is required that the query answer carries
provenance information.

The organization is as follows. Section 2 recalls the distributed datalog language [3]. In
Section 3, we formalize the core aspects of the access control mechanism of [19], establish
the complexity of answering queries under access control. Information leakage is studied in
Section 4. The issue of achieving some dissemination goal under a particular access control
policy is the topic of Section 5. Access control in the presence of provenance is investigated
in Section 6. Finally, we discuss related work and conclude.

2 Distributed Datalog

In this preliminary section, we formally define a variant of distributed datalog, which captures
the core of Webdamlog [3].

The language. We assume infinite disjoint sets Ext of extensional relation symbols, Int of
intensional relation symbols, P of peers (e.g. p, q), Dp of pure data values (e.g., a, b), and
V of variables (e.g., x, y,X, Y ). For relations, we use symbols such as R,S, T . The set D
of constants is P ∪ Dp ∪ Ext ∪ Int. A schema is a mapping σ whose domain dom(σ) is a
finite subset of P , that associates to each p a finite set σ(p) of relation symbols in Int ∪ Ext,
with associated arities. Let σ be a schema, p ∈ dom(σ). A relation R in σ(p) is denoted
by R@p, and its arity by arity(R@p). We denote ext(p) = σ(p) ∩ Ext, int(p) = σ(p) ∩ Int,
ext(σ) = ∪p∈dom(σ)ext(p), and int(σ) = ∪p∈dom(σ)int(p). An instance I over σ is a mapping
associating to each relation schema R@p a finite relation over D of the same arity. For a tuple
ā in I(R@p), the expression R@p(ā) is called a (p-)fact in R@p. An extensional instance
is one that is empty on int(σ). Observe that R@p and R@q, for distinct p, q, are distinct
relations with no a priori semantic connection, and possibly different arities. Note also that
an expression R@p(a1, ..., ak) for R, p, a1, ..., ak in D is a fact for a schema σ if: p is a peer
in dom(σ), R is a relation schema in σ(p), and arity(R@p) = k. Note that relations may
contain pure data values, peers, as well as relation symbols. Finally, (U)CQ denotes (unions)
of conjunctive queries (see [6]).

I Definition 1 (distributed datalog). A d-datalog program P over schema σ is a finite set of
rules of the form

Z0@z(x̄0) :– R1@p(x̄1), · · ·Rk@p(x̄k) where
p ∈ dom(σ), k ≥ 0, and for every i ≥ 1, Ri is in σ(p) and x̄i is a vector of variables and
constants in D of the proper arity;
z ∈ dom(σ) ∪ V, Z0 ∈ Int ∪ V; and
each variable occurring in the head appears in x̄i for some i ≥ 1.

Note that the relation or peer names in the head may be variables. Note also that all
the relations in the body of a rule come from the same peer. Although we define a global
d-datalog program, one should think of each peer p as having its separate program consisting
of all the rules whose bodies use relations at p.

I Example 2. Consider the rules:
Album@Alice(x) :– Album@Bob(x)
Album@z(x) :– Album@Bob(x), F riend@Bob(z)
Z@z(x) :– Album@Bob(x), F riendPhotos@Bob(Z, z)
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Bob uses the first rule to publish his photos in Alice’s album, and the second to publish his
photos in all of his friends’ albums (peer variable z). In the last rule, different names can be
used for the relations where the friends keep their photos (variable Z for a relation name).

A d-datalog program defines the meaning of intensional relations from given extensional
relations. The semantics is in the spirit of the datalog semantics. More precisely:

I Definition 3 (Semantics). Let P be a d-datalog program over some schema σ. The
immediate consequence operator ΓP on instances over σ is defined as follows. Let I be an
instance over σ.

Consider a rule Z0@z(x̄0) :– R1@p(x̄1), · · ·Rk@p(x̄k) of P . An instantiation of the rule
in I is a mapping ν from its variables to the active domain (the set of values occurring in P ,
I, or dom(σ)), extended with the identity on constants, such that:

for each i ≥ 1, Ri@p(ν(x̄i)) ∈ I; and
ν(Z0)@ν(z)(ν(x̄0)) is a fact for schema σ.

ΓP (I) is obtained by adding to I all facts ν(Z0)@ν(z)(ν(x̄0)) where ν is an instantiation
in I of some rule Z0@z(x̄0) :– R1@p(x̄1), · · ·Rk@p(x̄k) of P . Note that ΓP is monotonic.
The semantics of P for an extensional instance I, denoted P (I), is the mapping associating
to each extensional instance I the projection on the intensional relations of P of the least
fixpoint of ΓP containing I.

Observe that a rule may “attempt” to derive an improper fact, for which ν(z) is not in
dom(σ), or ν(Z0) is not a relation in σ(ν(z)), or the arity is incorrect. In such cases, the fact
is simply not derived.
I Remark. Consider a rule with variable peer or relation name. Suppose for instance that
both are variables. A head-instantiation ν of that rule for a schema σ is a mapping over
Z0, z such that ν(z) is a peer of σ, ν(Z0) an intensional relation of σ(ν(z)), and arity(ν(Z0))
= |x̄0|. One can define similarly the notion of head-instantiation for a rule with only a
variable peer or only a variable relation name. It is easy to see that the program obtained by
replacing each rule by all its head-instantiations has the same semantics as the original. So
if the set of peers is fixed (known in advance), one can assume that, for each rule, the name
of the relation and the peer in the head are constants.

3 The access control model

In this section, we formalize the core aspects of the access control mechanism of [19]. The
focus here is on the read privilege; we will ignore the grant privilege (allowing a peer to
define permissions on another peer’s relations) and the write privilege (allowing a peer
to push data to another peer’s relations), see [19]. We also provide in this section basic
expressiveness and complexity results on access control.

The extensional relations at a given peer are owned by the peer. The peer can give read
privilege on these extensional relations to other peers. This is specified at each peer p using
an intensional relation acl@p (for access control list) of arity 2. A fact acl@p(R, q) states
that peer q is allowed to read the extensional relation R@p.

In the following, we assume that for each peer p, acl ∈ int(p) and arity(acl@p) = 2. For
instance, a rule “acl@p(R, z) :– Likes@p(z)” can be used in a program to grant access to
relation R@p to all the peers z that are in relation Likes@p.

A d-datalog program P with access control (denoted d-datalogac) over some schema σ is
a finite set of d-datalog rules Z0@z(x̄0) :– R1@p(x̄1), · · ·Rk@p(x̄k), where R1, ..., Rk are not
acl and the rules are of one of the following two kinds:
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Application rule: Z0 is not acl; and
Access control rule: The rule head is acl@p(Z, z) for some terms Z, z.

Given a program P , the set of application rules forms the application program of P ,
denoted Papp, and the set of access control rules forms the (access control) policy of P ,
denoted Ppol . Facts of the form acl@p(R, q) are called access control facts, and the others are
called application facts. It should be noted that no such distinction is made in Webdamlog.
We distinguish here between access control and application rules to be able to formally
compare access control policies.

The meaning of an access control policy Ppol for a given extensional instance I is clear in
the absence of intensional relations: use the access rules to compute at each peer the set of
peers allowed to read its extensional relations. This yields relation-at-a-time, coarse-grained
access control to the extensional relations. For intensional relations, we use tuple-level
fine-grained access control. Intuitively, an intensional fact can be read by a peer p if it can
be derived by some application of a rule from tuples that p is already allowed to access.
Then, for a d-datalogac program P , Papp and Ppol may interact recursively: the derivation
of an intensional fact may yield some new permission for an extensional relation, which, in
turn, may enable the derivation of a new intensional fact, and so on. The fine-grained access
control at the tuple level is illustrated in an example.

I Example 4. Consider the program P :

Ppol acl@Bob(Album, z) :– friends@Bob(z);
acl@Bob(Tagged, z) :– friends@Bob(z);

Papp Album@z(x) :– Album@Bob(x),Tagged@Bob(x, z);

The access control rules allow Bob’s friends access to his Album and Tagged relations. The
application rule transfers to a given person the photos in which he/she is tagged. Consider
a photo α with tagging Sue, assuming she is a friend of Bob. Then the picture α belongs
(intensionally) to Sue’s album. A friend of Bob who will ask to see Sue’s album will see the
photo α.

With standard access control, peers are only be able to control access to their local data.
With the proposed mechanism, they further control the dissemination of their data. In other
words, they can control what other peers should do with their data. This is achieved by
propagating, together with data, permissions via application rules, based on provenance
information about derived facts. A tuple derived by some instantiation of an application
rule is accessible by a peer if that peer has access to each tuple in the body of the rule.

The semantics. To define the semantics of programs, we associate with each peer p in
dom(σ) and each relation R@p, R 6= acl, a relation R̂@p of arity arity(R) + 1. Intuitively,
R̂@p(x̄, q) says that peer q is allowed access to the fact R@p(x̄). The semantics is defined
using a d-datalog program. We describe next the construction of that program.

I Definition 5 (P̂ construction). The semantics of a d-datalogac program P over some schema
σ for an extensional instance I over σ is defined using a d-datalog program P̂ (without
access control) defined as follows. Its schema consists of: (i) the extensional and intensional
relations of σ; and (ii) intensional relations {R̂@p | R@p ∈ σ(p), R 6= acl}.

The rules of P̂ are as follows: for a tuple x̄ of distinct variables,
1. R̂@p(x̄, p) :– R@p(x̄) for each peer p in σ and each R ∈ ext(p) (each peer can read its

own extensional relations);
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2. R̂@p(x̄, z) :– acl@p(R, z), R@p(x̄) for each peer p in σ and each R ∈ ext(p) (each peer z
entitled to read R@p can read all of its tuples);

3. for each rule acl@p(Z, z) :– R1@p(x̄1), · · ·Rk@p(x̄k) in Ppol ,
a rule acl@p(Z, z) :– R̂1@p(x̄1, p), · · · , R̂k@p(x̄k, p);

4. for each rule Z0@z(x̄0) :– R1@p(x̄1), · · · , Rk@p(x̄k) in Papp and for each intensional
relation R0 6= acl occurring in σ, a rule1
R̂0@z(x̄0, y) :– Z0 = R0, R̂1@p(x̄1, y), · · · , R̂k@p(x̄k, y), R̂1@p(x̄1, z), · · · , R̂k@p(x̄k, z)

5. A rule R@p(x̄) :– R̂@p(x̄, p) for each p ∈ dom(σ) and R ∈ int(p) (R̂@p defines the local
facts visible at p).

The fourth item requires that both z (the next reader) and y (potential future readers)
may access the facts in the body of the rule, in order be allowed to see the fact derived by
the rule. The third item is the analog for acl. Note that (3.) is simpler than (4.) because
the relation acl is only defined locally.

Clearly, the size of P̂ is linear in P and the image of σ. Moreover, it is independent of
the data, i.e. dom(σ) and I. Using P̂ , we define two semantics for P : state semantics, and
visibility semantics.

State semantics. State semantics provides for each peer the local intensional facts inferred
by taking into account the combined effect of the access control rules and the application
rules. More precisely, the state semantics of a d-datalogac program P over schema σ is a
mapping [P ] associating to each extensional instance I over σ the set of facts

[P ](I) = {R@p(ā) ∈ P̂ (I) | p ∈ dom(σ), R ∈ int(p)} .

One can easily verify by induction that [P ](I) ⊆ P (I). (Recall that P (I) is the access-
control-free semantics). The inclusion may be strict because the derivation of a fact at a
peer p may be blocked because p does not have access to some data.

Visibility semantics. This semantics captures more broadly the facts at all peers that a
given peer is allowed to see. Indeed, in addition to their local state provided by [P ], peers
also have permission to see facts residing at other peers. The facts that they are allowed to
see are specified by the relations R̂@q(−, p) defined by the program P̂ . We say that such a
fact is visible by a peer p. For each p, we denote by [P ]Vp the mapping associating to each
instance I over ext(σ) the set of facts {R@q(ū) | R̂@q(ū, p) ∈ P̂ (I)}. We refer to [P ]Vp as the
visibility semantics for peer p. Clearly, for each p, [P ]Vp (I) and [P ](I) agree on int(p).

Intuitively, if a fact R@q(ā) is visible by p, then p can access it by querying the re-
lation R@q. More precisely, let P ′ be the program obtained by adding to P a rule
temp@p(ū) :– R@q(ū) for some new relation temp@p and vector ū of distinct variables.
Then temp@p(ā) ∈ [P ′](I) iff R@q(ā) ∈ [P ]Vp (I), i.e. R@q(ā) is visible by p. Thus, visibility
semantics can be reduced to state semantics by the addition of such rules.

In addition to state and visibility semantics, we consider in Section 4 the facts that a
peer may infer from the visible ones, possibly circumventing the access control policy. We
will refer to this as implicit visibility.

1 Strictly speaking, equalities Z = R0 are not allowed in d-datalog, but these can be easily simulated by
substituting the variable by the constant everywhere in the rule.
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Hiding access restrictions. The above access control mechanism may be too constraining
in some situations. We next consider means of relaxing it. To do so, we introduce a hide
annotation that can be attached to atoms in rule bodies, e.g., [hide R@q(x̄)]. Intuitively,
such an annotation lifts access restrictions on R@q(x̄) by “hiding its provenance”.

We illustrate this feature with an example.

I Example 6. Consider the two rules:
Album@z(x) :– Album@Bob(x), friend@Bob(z)
Album@z(x) :– Album@Bob(x), [ hide friend@Bob(z)]

The first rule is used by Bob to publish his photos in all of his friends albums. Suppose Sue
is a friend. Will the photos in Album@Bob be transferred to Album@Sue? Yes, but only
if Sue has read privileges on both Album@Bob and friends@Bob. However, it may be the
case that Bob wishes to keep his list of friends private, but still let his friends see his album
pictures. He can do this by “hiding” the access restrictions on friends@Bob as in the second
rule. Intuitively, Bob is in effect reducing the protection level of the friend relation, in some
sense “declassifying” it.

In the example, Bob declassifies his own extensional relation. As we will see, “hide” also
allows a peer to declassify information received from other peers, thus overriding their access
control restrictions. In the actual Webdamlog system [19], doing so requires the peer to have
grant privilege on that piece of information. As previously mentioned, for simplicity we do
not consider explicitly the grant mechanism here.

For further illustration, we show how the hide mechanism can be used to simulate
accessing a relation with binding patterns [24].

I Example 7. Suppose that peer p wishes to export an extensional binary relation R with
binding pattern bf . The intuition is that one cannot obtain the entire relation, but if one
provides bindings for the first column, peer p will provide the corresponding values in the
second column. This is done as follows:

Seed@p(x) :– S@q(x)
Q@q(x, y) :– Seed@p(x), [ hide R@p(x, y) ]

Suppose the access control policy is such that p has read privilege on S@q, but q has no read
privilege on R@p. Observe that Seed@p is a copy of S@q, and Q@q is the join of Seed@p
and R@p. Peer q cannot see R@p. But if q provides some values for the first column of R@p
(in relation S@q), then q will obtain in Q@q the corresponding values for the second column
of R@p.

Programs with hide are defined as follows.

I Definition 8. A d-datalogac program with hide (denoted h-d-datalogac) over some schema
σ consists of: (i) a d-datalogac program P = Papp∪Ppol ; and (ii) a function h (called the hide
function) whose domain h is the set Papp of rules2, such that for each rule r, h(r) is a strict
subset of the atoms in the body of r. The pair (Ppol , h) forms the policy of the program.

As in Example 6, the function h is represented using annotations. More precisely, in each
rule, the atoms in h(r) are annotated with the keyword hide. For instance, the rule r that is
A :– B1, . . . B5 with h(r) = {B2, B4} is denoted: A :– B1, [hide B2], B3, [hide B4], B5.

We next consider how hide annotations modify the semantics of access control. The
semantics for h-d-datalogac programs is obtained by replacing item (4) of Definition 5 with:

2 Because of the way we define access control rules, hide annotations would have no effect on them.
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4’. for each application rule Z0@z(x̄0) :– R1@p(x̄1), · · · , Rk@p(x̄k) of Papp, for each inten-
sional relation R0 6= acl occurring in σ, and some new variable y, the rule R̂0@z(x̄0, y) :–
Z0 = R0, R̂1@p(x̄1, y1), · · · R̂k@p(x̄k, yk), R̂1@p(x̄1, q1), · · · R̂k@p(x̄k, qk) where for each
i, if Ri@p(x̄i) is not hidden in the rule, yi = y and qi = z; and if it is hidden, yi = qi = p.

Note that this imposes that both y (a potential future reader) and z (the site that will
host the fact) can read the facts in the body of the rule that are not annotated by hide, in
order for the reader to be allowed to see the fact derived by the rule. For a h-d-datalogac
program P , we denote by [P ] the state semantics of P as defined by the above program.

The next result, namely Proposition 10, shows that the use of hide extends the expressive
power of d-datalogac relative to state semantics. (One can obtain a similar result for visibility
semantics.) This is illustrated by the following example.

I Example 9. Consider a peer p that has a binary extensional relation R@p. Suppose we
wish to specify that peer q sees from R@p exactly the tuples of the form (x, 0), and no other
peer sees anything from R@p. As a first attempt, one might use an intensional relation
Rexport and the rule: Rexport@q(x, 0):- R@p(x, 0).

However, either acl@p(R, q) holds, so R@p is entirely visible to q; or not, and Rexport@q
is empty. Considering hide, assume the existence of some extensional fact okq@p() that only
q can read. Then there is a solution: Rexport@q(x, 0) :– okq@p(), [hide R@p(x, 0)].

I Proposition 10. There is a h-d-datalogac program P over schema σ for which there is no
d-datalogac program P̄ such that, for every extensional instance I over σ, [P ](I) = [P̄ ](I).

Thus, the hide construct strictly increases the expressivity of the language. In fact, we
will show in Section 5 that h-d-datalogac is in some sense expressively complete.

The complexity of access control. We consider throughout the paper the complexity of
various problems related to access control. Typically, three kinds of complexity are considered
in databases: data, query, and combined complexity. In d-datalogac, the distinction between
data and schema/program is less clear. For instance, the set of peers affects both the schema
and the data. If there are many peers, the global program may be large, even if each peer
has a small program. To capture this situation, we consider a measure assuming that the size
of the program at each peer is bounded. This gives rise to a novel notion of complexity that
we call locally-bounded combined complexity. More precisely, for a decision problem whose
input is an extensional instance I and a d-datalogac program P over some schema σ:

The combined complexity is computed as a function of |I|, |P |, and σ.
The data complexity is computed as a function of |I| only (σ and P are fixed).
The locally-bounded combined complexity is computed as a function of |I| and |dom(σ)|,
assuming some fixed bound on the size of the program at each peer (so |P | is linear in
the number of peers).

We begin by establishing the complexity of checking the visibility of a fact.

I Theorem 11. Let σ be a schema, I an extensional instance, and P a h-d-datalogac program
over σ. Determining whether a fact is in [P ]Vp (I) for some peer p has ptime-complete data
and locally-bounded combined complexity, and exptime-complete combined complexity,

While the data and the locally-bounded combined complexities are the same in this case,
we will see later that the two differ in other settings, allowing to draw finer distinctions than
the classical notions.
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Static analysis of policies. To conclude this section, we briefly discuss the issue of comparing
policies relative to a given application program, based on the visible facts they allow.
This leads to the notion of a policy being more relaxed than another. By reduction from
containment of datalog programs, one can show that this is undecidable for given policies
and application program. As for datalog containment, one can consider restrictions for which
the policy comparison can be performed, e.g., “frontier-guarded” rules [8]. As an alternative
to comparing policies, one can consider applying syntactic transformations to a given policy
in order to relax or tighten it. For example, augmenting the hide function of a program, or
adding rules to Ppol , always results in a more relaxed policy. Due to space limitations, we do
not further consider these issues here.

4 Implicit visibility

The purpose of access control is to analyse the ability of peers to see unauthorized information.
As discussed in Section 3, a peer can access information by examining its own state or by
querying relations of other peers. But can a peer infer more information beyond what is
allowed according to the policy? We capture this using the notion of implicit visibility
(i-visibility) that we formalize next. For this, we use the auxiliary notion of “visibility
instance”. For a program P over σ and a peer p, we say that an instance Ip over σ is a
visibility instance of p if there is some instance J over ext(σ) for which Ip = [P ]Vp (J). Now
we define:

I Definition 12. Let P be a d-datalogac program over some schema σ, p a peer and Ip a
visibility instance for p. A fact R@q(ū) (for some q,R) is i(mplicitly)-visible at p given Ip, if
for each instance J over ext(σ) such that [P ]Vp (J) = Ip, R@q(ū) ∈ J ∪ [P ](J).

It turns out that facts beyond [P ]Vp (J) may be i-visible at peer p. To see how such
information “leakage” can occur, suppose that we have a rule acl@q(R, p) :– Q@q(p), where
Q@q is an extensional relation. If peer p sees some fact in R@q, it can infer that it has access
to R@q, so that Q@q(p) holds, although the policy may not allow p to see Q@q. This may
in turn provide additional information on other relations. Before exploring this formally, we
introduce some restrictions of policies.

I Definition 13. Let σ be a schema and P = Ppol ∪ Papp a d-datalog program.
The policy of P is static iff for each rule of Ppol , its body is empty;
The policy of P is simple iff for each rule of Ppol , the atoms in its body are extensional;
The policy of P is local for Papp iff for each peer p and rule of Ppol at p, the atoms in its
body are either extensional, or intensional but not depending on non-local relations.

We can show that with static policy, no leakage can occur.

I Proposition 14. Let P be a d-datalogac program over σ with static policy. For each peer p
and instance I over ext(σ), the set of i-visible facts at p is precisely [P ]Vp (I).

In contrast to the above, when Ppol contains arbitrary rules, i-visibility provides additional
information, and is in fact undecidable.

I Theorem 15. It is undecidable, given a d-datalogac program P over σ, a visibility instance Ip
for p, and a fact R@q(ū), whether R@q(ū) is i-visible at p given Ip. Moreover, undecidability
holds even for programs with local access policies.
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The above undecidability result uses the fact that the acl relations are defined by datalog
programs. We next show that i-visibility becomes decidable if recursion is disallowed in the
definition of acl relations. The problem can be reduced to computing certain answers to
datalog queries using exact UCQ views, which is known to be in co-NP [4]. However, using
the fact that the views we use are particular UCQs, we can show that the complexity goes
down to ptime.

I Theorem 16. The i-visibility problem for d-datalogac programs with simple policies is
decidable in ptime (data complexity).

The i-visibility problem with hide. We now turn to the problem of i-visibility for d-datalogac
programs with hide. The notions of visibility and i-visibility are adapted to this setting in
the natural way. We first illustrate the fact that hide can lead to non-trivial i-visibility of
facts, even when the acl policy is static.

I Example 17. Consider the following h-d-datalogac program P where Ppol consists of the
rule acl@q(Q, p):- and Papp of the rules:

R1@p(X) :– Q@q(), [ hide R@q(X,Y )];
R2@p(Y ) :– Q@q(), [ hide R@q(X,Y )].

Consider the p-visibility instance {R1@q(a), R2@q(b)}. Note that p does not have access to
R@q. However, it is clear that R@q(a, b) is i-visible at p.

The following result shows that i-visibility is undecidable for h-d-datalogac programs even
for static policies (when, by Proposition 14, no leakage occurs in the absence of hide). The
proof is by reduction from finding certain answers to identity queries using exact datalog
views, known to be undecidable [4].

I Theorem 18. It is undecidable, given a h-d-datalogac program P over σ with static policy,
in which hide is applied only to extensional relations, a peer p, a p-visibility instance Ip, and
an extensional fact R@q(ā), whether R@q(ā) is i-visible at p given Ip.

Testing information leakage. The previous result concerned i-visibility for a given instance.
We finally consider the problem of testing whether a d-datalogac program has information
leakage beyond that provided by the access control policy for some instance (the static
analysis analog).

I Definition 19. A d-datalogac program P leaks information at p if for some p-visibility
instance Ip there exists some fact R@q(ā) 6∈ Ip that is i-visible at p given Ip.

We show that one cannot generally decide whether a program leaks information. However,
one can do so for programs with simple policies. The undecidability is proved using a
reduction from datalog program containment. The 2exptime algorithm for simple policies is
by reduction to an exponential set of inclusions of datalog programs into UCQs.

I Theorem 20.
1. It is undecidable, given a d-datalogac program P and a peer p, whether P leaks information

at p.
2. The problem is 2exptime-complete if P has a simple acl policy.
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5 Achieving dissemination goals

We next consider the problem of achieving a specific data dissemination goal among peers,
when a particular access control policy is imposed. The goal is specified by a d-datalog
program. Clearly, a given goal may violate the policy, so it may be impossible to achieve it.
We study the problem of determining whether achieving a goal is possible, and if not, how
one might maximize what can be achieved. We then consider the issue of relaxing the access
control policy in order to achieve the goal, using the hide mechanism. Not surprisingly, it is
always possible to achieve a goal using hide. More interestingly, we will show how to do so
while minimizing its use. But first, we consider what can be done without hide.

Strict adherence to the policy. Consider a policy Ppol and a goal d-datalog program P .
We wish to know whether there is a d-datalog program Papp such that (i) Papp uses the
relations of P and possibly additional intensional relations, and (ii) for each extensional
instance I, [(Ppol ∪ Papp)](I) and P (I) agree on the intensional relations of P . In this case,
we say that Papp simulates P under policy Ppol . We will see that it is generally impossible to
find such a Papp without hide, and present restrictions on the policies that make it possible.
When such a simulation does not exist, we will attempt to find a program that is as close as
possible to the goal.

The next example illustrates how a policy may prevent achieving a goal even in the
simplest setting. The example is more complicated than needed because we will also use it
to illustrate finding a “maximum” simulation.

I Example 21. Consider the following policy and goal program:

Ppol acl@p(R1, r) :– ; P R@q(x) :– R1@p(x);
acl@p(R2, r) :– ; R@q(x) :– R2@p(x);
acl@p(R1, q) :– ; R@r(x) :-R@q(x)

The d-datalog P does not simulate P under Ppol because q is not allowed to see the relation
R2@p and therefore the relation R@q does not hold tuples from R2@p under the policy Ppol .
In such cases, we can try to find a program that is, in some sense, maximally achieves the
goal. This is a nontrivial issue. In this example, a maximum application program is:

Papp : R@q(x) :– R1@p(x); R@r(x) :– R@q(x); R@r(x) :– R2@p(x).

Note that [(Ppol ∪ Papp)] ⊆ P but [(Ppol ∪ P )] ⊂ [(Ppol ∪ Papp)] (as mappings).

The first result states that one cannot decide whether a program can be simulated under
a particular policy.

I Theorem 22. It is undecidable, given a policy Ppol and a goal d-datalog program P , whether
there exists a d-datalog program Papp without hide such that Papp simulates P under Ppol.
This holds even if Ppol is static.

If such a simulation is not possible, can we find a “maximum simulation”? Let P be
a d-datalog program over some schema σ and Ppol a policy program over σ. A d-datalog
program Papp without hide is a maximum simulation of P under Ppol iff
1. [(Ppol ∪ Papp)] ⊆ P , and
2. for each P ′

app such that [(Ppol ∪ P ′
app)] ⊆ P , [(Ppol ∪ P ′

app)] ⊆ [(Ppol ∪ Papp)].
The question of whether a maximum simulation always exists remains open. Moreover, there
does not exist an algorithm building a maximum simulation, if such exists.
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I Theorem 23. There is no algorithm that computes, given a d-datalog program P and a
policy Ppol, a maximum simulation without hide Papp of P under Ppol, whenever such a
maximum simulation exists. This holds even for local policies.

While it is not known whether a maximum simulation always exists, we present informally
a plausible candidate for a maximum simulation of P under Ppol and explore its potential.
The program, denoted by mac(Ppol , P ), is based on a simple idea: each peer collects all the
extensional tuples that peer is allowed to see under Ppol , and then simulates P locally.

I Definition 24. Let P be a d-datalog program over some schema σ and Ppol a policy over
the relations in σ. The program Papp = mac(Ppol , P ) is constructed as follows:
1. For all peers p, q, p 6= q and each (extensional or intensional) relation R@q, Papp has an

intensional relation R_q@p of the same arity as R@q. These relations allow p to perform
a simulation of P with the data that p has access to.

2. For all peers p, q, p 6= q, and each extensional relation R@q, Papp has rules copying R@q
into R_q@p, if acl@q(R, p) holds.

3. Finally, for each peer p, Papp has rules that simulate P locally with the data that p has
access to.

Observe how mac(Ppol , P ) interacts with Ppol . During the computation, some peer p
may use rules in Ppol to derive a new fact acl@p(R, q). This results in copying R@p into
R_p@q which may lead to the derivations of more facts at p.

Note the connection between mac(Ppol , P ) and P itself. By definition, [(Ppol ∪ P )] ⊆
[(Ppol ∪ mac(P, Ppol))]. However, the inclusion may be strict. For instance, P may try to
transfer a fact from p to q via a peer r that is not allowed to see this fact whereas it is
possible to send this fact directly (with a different rule) without violating access rights.

It turns out, surprisingly, that mac(Ppol , P ) is not always a maximum simulation of P
under Ppol , and it is in fact undecidable whether mac(Ppol , P ) is a maximum simulation
for some given (Ppol and P , even for local policies. However, mac(Ppol , P ) is a maximum
simulation if Ppol is static.

I Theorem 25. Let Ppol be a local policy and P a d-datalog goal program over σ. (i) It is
undecidable whether the program mac(P, Ppol) is a maximum simulation of P under Ppol.
(ii) If Ppol is static, then mac(P, Ppol) is a maximum simulation of P under Ppol.

Besides ensuring the existence of a maximal simulation, a simple policy is of interest for
another reason: it guarantees that, if there exists some application program simulating P
under Ppol , then P itself simulates P under that policy (details omitted).

Declassifying information. Let us now consider the issue of achieving a goal at the cost of
declassifying information, in other words using the hide construct. There is an immediate
solution that would consist in modifying every rule of the goal program P by hiding the
entire body. The goal would be satisfied, but in a brutal way: each derived fact would be
visible to all peers.

It is possible to realize the goal in a much more controlled way as illustrated by Example 9.
In that exemple, special relations of the form okq@p are used to limit as much as possible
the visibility of data. The example suggests the following mild technical assumptions: (†)
for all distinct peers p, q ∈ dom(σ), (1) σ contains a 0-ary extensional relation okq@p, and
(2) extensional instances of σ are assumed to contain the fact okq@p().

We next show that (†) is sufficient to guarantee that the hide construct allows achieving
any goal program by declassifying no more information than necessary.
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I Theorem 26. Let σ satisfy (†.1). For each policy Ppol and a d-datalog goal program P over
σ, there exists an application Papp with hide over the same σ such that, for each extensional
instance I satisfying (†.2), Papp simulates P under Ppol; and on input I, a fact R@p(u) is
visible at q 6= p for (Ppol ∪ Papp) iff it is visible at q for (Ppol ∪ P ).

6 Accessing provenance

We considered so far the inference of individual facts using d-datalogac rules, subject to an
access control policy. In many applications, it is essential for inferred facts to be accompanied
by provenance information. In this section, we extend our approach to access control to
cover provenance. We adopt a simple model of provenance of a fact, consisting of derivation
trees tracing the application of the rules at different peers that participated in the inference
of the fact. To simplify the presentation, we ignore hide. The definition of provenance can
be easily adapted to the presence of hide (a hide annotation in a rule results in truncating
the corresponding portion of the proof tree) and the complexity results continue to hold.

Consider a d-datalogac program P over schema σ. Let I be an extensional instance over
σ, and R@p(ā) a fact in Papp(I). A provenance tree for R@p(ā) is a derivation tree for
R@p(ā) using Papp and I. Intuitively, we are interested in passing provenance information
from peer to peer, so that a peer p not only knows that some fact R@p(u) holds, but can
also know how R@p(u) has been derived.

I Example 27. Consider a schema σ with peers {p0, p1, p2, p3, p4}, 0-ary extensional
relations (propositions), R@p0, R@p1, and 0-ary intensional relations S@p2, S@p3, S@p4.
Let I = {R@p0, R@p1}. Consider the following application program:

Papp S@p2 :– R@p0; S@p2 :– R@p1; S@p3 :– S@p2; S@p4 :– S@p3.

Note that S@p4 ∈ Papp(I) and has two provenance trees (linear in this case):
S@p4 ← S@p3 ← S@p2 ← R@p1 S@p4 ← S@p3 ← S@p2 ← R@p0

Suppose we have the following access control rules in addition to Papp:
Ppol : acl@p0(R, p2) :– ; acl@p0(R, p4) :– ; acl@p1(R, p3) :– ; acl@p1(R, p4) :– .

Consider again the two provenance trees of S@p4 ∈ Papp(I). Neither satisfies the access
control policy defined by Ppol . Indeed, the first tree violates the policy because p2 does not
have access to R@p1. The second also violates the policy, because p3 does not have access to
R@p0. If we add the access control rule: acl@p0(R, p3) :– then the second provenance tree
satisfies the access control policy.

Note the difference between visibility of a fact A by a peer p and visibility of its provenance.
In order for A to be visible by p, it suffices for each fact involved in its derivation to be visible
by the corresponding intermediate peer, based on its own access permissions, independently
derived. In other words, peers may justify their permissions by derivations independent of
each other and of the actual derivation of A. Visibility of provenance imposes a stronger
condition, as it requires each intermediate peer to have access to the entire history of the
partial derivation of p. As seen in the example, a fact A may itself be visible by p but not
have any provenance tree visible by p. More formally we have:

I Definition 28 (Provenance access control). Let P be a d-datalogac program over some
schema σ and I an extensional instance over σ. A fact F has visible provenance if there exists
a provenance tree T of F such that: For each internal node R@p(ā) in T and extensional
fact E@q(c̄) occurring in the subtree rooted at R@p(ā), we have that acl@q(E, p) ∈ [P ](I).
For given P and I, [P ]prov(I) denotes the set of facts that have visible provenance.
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It is clear that visible provenance implies visibility. More precisely, one can show that for
each P , σ, and each extensional instance I, [P ]prov(I) ⊆ [P ](I), but Example 27 shows the
converse does not hold. We next show that, although the definition of provenance visibility is
proof-theoretic, one can simulate it using a d-datalog program. However, unlike the program
P̂ constructed earlier, the program simulating provenance visibility is exponential in the
number of peers.

I Proposition 29. Let P be a d-datalogac program over some schema σ. There exists a d-
datalog program (without access control) P prov of size exponential in dom(σ) (and polynomial
in σ and P if dom(σ) is fixed) with the same extensional relations as σ, such that for each
extensional instance I, [P ]prov(I) and P prov(I) agree on the intensional relations of σ.

The program P prov (in the proof of the previous result) uses constants to denote sets
of peers. An alternative would consist in using an extension of d-datalog with nesting, in
the style of extensions of datalog with nesting [6]. (Such a nested datalog is used in the
implementation in [19].)

The d-datalog program P prov is exponential in the set dom(σ) of peers. Is it possible to
avoid the exponential blowup? The following complexity result implies a negative answer
(subject to usual assumptions). Consider the problem of deciding, given an extensional
instance I and a program P , whether a fact is in [P ]prov(I). Recall from Theorem 11 that
the complexity of checking visibility of a fact has exptime-complete combined complexity,
and ptime-complete data and locally-bounded combined complexity. Now we have:

I Theorem 30. Let σ be a schema, I an extensional instance, and P a d-datalogac pro-
gram over σ. Determining whether a fact is in [P ]prov(I) has exptime-complete combined
complexity, ptime-complete data complexity and pspace-complete locally-bounded combined
complexity.

Theorems 11 and 30 show that provenance visibility has the same combined and data
complexity as the standard semantics, but different locally-bounded combined complexity.
As a corollary, the exponential blowup in Proposition 29 cannot be avoided (unless ptime
= pspace). This highlights the usefulness of this complexity measure in making finer
distinctions than the classical ones.

7 Related work

Database security and access control have been studied in depth (e.g., see [10]) since the
earliest works on System R [26] and Ingres [27].

Controlling access to intensional facts in deductive languages is related to managing
virtual views in SQL, which is handled differently among various database systems. When
an authorized user accesses a view, it is usually evaluated with the privileges of the defining
user (“definer’s rights”). Some systems (e.g. mySQL) allow the creator of a view to specify
that later access to the view will be with respect to the privileges of the invoker of the view
(“invoker’s rights”). This is similar in spirit to our approach.

The access control model we have described is fine-grained, unlike the SQL standard.
Lefevre et al [18] propose a fine-grained access control model for implementing personal
privacy policies in a relational database. They use query modification to enforce their policies,
as we do, but their policy model and implementation are oriented towards a centralized
database system. A commercial example of fine-grained access control is Oracle’s Virtual
Private Database (VPD), which supports access control at the level of tuples or cells. VPD
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allows an administrator to associate an external function with a relation and automatically
modifies queries to restrict access by tuple or cell. Alternative semantics for fine-grained
access control have been investigated thoroughly [18, 25, 29]. Rizvi et al. [25] distinguish
between Truman and Non-Truman models (the expression is motivated by the movie The
Truman Show where the hero is unaware that he lives in an artificial environment). Query
answers in our system follow the Truman paradigm: queries are not rejected because of lack
of privilege but the user’s privileges limit the answers that are returned.

Fine-grained access control is also studied in [13], where predicate-based specification of
authorization is supported. The inference of sensitive data from exposed data (that we study
here under the name of i-visibility) is related to a notion studied in [30].

Our model of access control shares some features with the model of reflective database
access control (RDBAC) in which access policies can be specified in terms of data contained
in any part of the database. Olson et al. [21] formalize RDBAC using a version of datalog
with updates [11] but their model does not include distribution, delegation, or the use of
provenance. In Cassandra [17], access rights are specified using a language based on datalog
with constraints. The language supports complex specifications based on “user roles”. On
the other hand, fine-grained access control is not considered.

The use of provenance as a basis for access control was first noted in the context of
provenance semirings [15, 7]. A security semiring can contain tuple-level security annotations
and define the rules by which they are propagated to query results. Another example of
provenance-based access control is the work of Park et al. [23] in which access decisions are
based on a transactional form of provenance.

The emergence of social networks and other Web 2.0 applications has led to new forms of
access control. In online social networks, the distinguishing feature is that access control
policy is expressed in terms of network relationships amongst members [12, 14], and this is
one of the motivations of the model we presented. However, the model is intended to support
the diverse requirements of access control in a variety of distributed applications.

The Webdamlog language was first described in [3] as a version of distributed datalog in
which peers exchange not only facts, but also rules. Expressiveness and semantic issues were
formally investigated, but access control was not considered. As already mentioned, we build
here on the Webdamlog access control mechanism of [19]. Its main novelty is the specification
of the access rights on an inferred tuple based on the access rights on the tuples used to derive
it. The full access control mechanism of [19] is richer than the one described here, notably
using also grant and write privileges. They present an open-source implementation (with
Bud [9] inside), and an experimental evaluation showing that the computational cost of
access control is modest. In the Webdam project context, cryptographic techniques for
enforcing access control in a distributed manner (and detecting security violations) have been
considered in [5]. The techniques proposed there can be combined with those presented here.

Security in distributed systems has primarily focused on issues of remote authentication,
authorization, and protection of data and distributed trust; such issues are outside the scope
of our present work [1, 22].

8 Conclusion

We presented a first formal study of provenance-based access control in distributed datalog
inspired by the collaborative access control mechanism of [19]. The results highlight the
subtle interplay between declarative distributed computation, coarse-grained and fine-grained
access control. Starting from coarse-grained access control on local extensional relations,
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distributed datalog computation yields fine-grained access control on derived facts based
on their provenance. We also considered access control on tuples equipped with explicit
provenance. We briefly studied the problem of information leakage, occurring when peers
can infer unauthorized information from authorized data. We established the complexity of
access control, as well as of various analysis tasks, such as detecting information leakage,
comparing access policies, or the ability to achieve specified goals under a given policy. A
challenging aspect of the framework is the fluid boundary of schema, data, and program,
that has an impact on both semantics and complexity. For example, this led us to define a
new complexity measure, locally-bounded combined complexity, that can make more subtle
distinctions than classical data and query complexity.

In this first investigation, we have ignored some important aspects of the Webdamlog
system presented in [19]. In Webdamlog, “nonlocal rules” allow dynamic deployment of rules
from one peer to another. Most of the results presented here extend to non-local rules. We
also ignored here the grant and write privileges of Webdamlog. These raise new subtle
issues, notably when access control updates are considered. Finally, delegation in Webdamlog
allows peers to assign tasks to other peers. The access control of delegation is supported in
Webdamlog by a mechanism called “sandboxing” that also raises interesting issues. These
are left for future research.
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greg project ANR-14-CE25-0017 (Pierre Bourhis) and of the U.S. National Science Foundation
under award IIS-1422375 (Victor Vianu).
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Abstract
We optimize multiway equijoins on relational tables using degree information. We give a new
bound that uses degree information to more tightly bound the maximum output size of a query.
On real data, our bound on the number of triangles in a social network can be up to 95 times
tighter than existing worst case bounds. We show that using only a constant amount of degree
information, we are able to obtain join algorithms with a running time that has a smaller exponent
than existing algorithms – for any database instance. We also show that this degree information
can be obtained in nearly linear time, which yields asymptotically faster algorithms in the serial
setting and lower communication algorithms in the MapReduce setting.

In the serial setting, the data complexity of join processing can be expressed as a function
O(INx + OUT) in terms of input size IN and output size OUT in which x depends on the query.
An upper bound for x is given by fractional hypertreewidth. We are interested in situations in
which we can get algorithms for which x is strictly smaller than the fractional hypertreewidth. We
say that a join can be processed in subquadratic time if x < 2. Building on the AYZ algorithm for
processing cycle joins in quadratic time, for a restricted class of joins which we call 1-series-parallel
graphs, we obtain a complete decision procedure for identifying subquadratic solvability (subject
to the 3-SUM problem requiring quadratic time). Our 3-SUM based quadratic lower bound is
tight, making it the only known tight bound for joins that does not require any assumption
about the matrix multiplication exponent ω. We also give a MapReduce algorithm that meets
our improved communication bound and handles essentially optimal parallelism.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity
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1 Introduction

We study query evaluation for natural join queries. Traditional database systems process
joins in a pairwise fashion (two tables at a time), but recently a new breed of multiway join
algorithms have been developed that satisfy stronger runtime guarantees. In the sequential
setting, worst-case-optimal sequential algorithms such as NPRR [16,17] or LFTJ [18] process
the join in runtime that is upper bounded by the largest possible output size, a stronger
guarantee than what traditional optimizers provide. In MapReduce settings1, the Shares
algorithm [2,13] processes multiway joins with optimal communication complexity on skew

1 A description of Background material including MapReduce, as well as proofs of all our results, can be
found in the full version of the paper [12]
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Table 1 Triangle bounds on various social networks.

Network MO Bound AGM Bound AGM
MO

Twitter 225M 3764M 17
Epinions 33M 362M 11
LiveJournal 6128M 573062M 95

free data. However, traditional database systems have developed sophisticated techniques to
improve query performance. One popular technique used by commercial database systems is
to collect “statistics”: auxiliary information about data, such as relation sizes, histograms,
and counts of distinct different attribute values. Using this information helps the system
better estimate the size of a join’s output and the runtimes of different query plans, and
make better choices of plans. Motivated by the use of statistics in query processing, we
consider how statistics can improve the new breed of multiway join algorithms in sequential
and parallel settings.

We consider the first natural choice for such statistics about the data: the degree. The
degree of a value in a table is the number of rows in which that value occurs in that table.
We describe a simple preprocessing technique to facilitate the use of degree information, and
demonstrate its value through three applications: i) An improved output size bound ii) An
improved sequential join algorithm iii) An improved MapReduce join algorithm. Each of
these applications has an improved exponent relative to their corresponding state-of-the-art
versions [5, 8, 16,18].

Our key technique is what we call degree-uniformization. Assume for the moment that
we know the degree of each value in each relation, we then partition each relation by degree
of each of its attributes. In particular, we assign each degree to a bucket using a parameter
L: we create one bucket for degrees in [1, L), one for degrees in [L,L2), and so on. We then
place each tuple in every relation into a partition based on the degree buckets for each of
its attribute values. The join problem then naturally splits into smaller join problems; each
smaller problem consisting of a join using one partition from each relation. Let IN denote
the input size, if we set L = INc for some constant c, say 1

4 , the number of smaller joins we
process will be exponential in the number of relations – but constant with respect to the
data size IN. Intuitively, the benefit of joining partitions separately is that each partition
will have more information about the input and will have reduced skew. We show that by
setting L appropriately this scheme allows us to get tighter AGM-like bounds.

Now we consider a concrete example. Suppose we have a d-regular graph with N edges;
the number of triangles in the graph is bounded by min(Nd, N

2

d ) by our degree-based bound
and by N3/2 by the AGM bound. In the worst case, d =

√
N and our bound matches the

AGM bound. But for other degrees, we do much better; better even than simply “summing”
the AGM bounds over each combination of partitions. Table 1 compares our bound (MO)
with the AGM bound for the triangle join on social networks from the SNAP datasets [14].
‘M’ in the table stands for millions. The last column shows the ratio of the AGM bound to
our bound; our bound is tighter by a factor of 11x to 95x. We could not compare the bounds
on the Facebook network, but if the number of friends per user is ≤ 5000, our bound is at
least 450x tighter than the AGM bound.

We further use degree uniformization as a tool to develop algorithms that satisfy stronger
runtime and communication guarantees. Degree uniformization allows us to get runtimes with
a better exponent than existing algorithms, while requiring only linear time preprocessing on
the data. We demonstrate our idea in both the serial and parallel (MapReduce) setting, and
we now describe each in turn.
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Serial Join Algorithms: We use our degree-uniformization to derive new cases in which one
can obtain subquadratic algorithms for join processing. More precisely, let IN denote the size
of the input, and OUT denote the size of the output. Then the runtime of an algorithm on a
query Q can be written as O(INx + OUT) for some x. Note that x ≥ 1 for all algorithms
and queries in this model as we must read the input to answer the query. If the query is
α-acyclic, Yannakakis’ algorithm [19] achieves x = 1. If the query has fractional hypertree
width (fhw), a recent generalization of tree width [10], equal to 2, then we can achieve x = 2
using a combination of algorithms like NPRR and LFTJ with Yannakakis’ algorithm. In this
work, we focus on cases for which x < 2, which we call subquadratic algorithms. Subquadratic
algorithms are interesting creatures in their own right, but they may provide tools to attack
the common case in join processing in which OUT is smaller than IN.

Our work builds on the classical AYZ algorithm [4], which derives subquadratic algorithms
for cycles using degree information. This is a better result than the one achieved by the
fhw result since the fhw value of length ≥ 4 cycles is already = 2. This result is specific to
cycles, raising the question: “Which joins are solvable in subquadratic time?” Technically,
the AYZ algorithm makes use of properties of cycles in their result and of “heavy and light”
nodes (high degree and low degree, respectively). We show that degree-uniformization is a
generalization of this method, and that it allows us to derive subquadratic algorithms for
a larger family of joins. We devise a procedure to upper bound the processing time of a
join, and an algorithm to match this upper bound. Our procedure improves the runtime
exponent x relative to existing work, for a large family of joins. Moreover, for a class of
graphs that we call 1-series-parallel graphs,2 we completely resolve the subquadratic question
in the following sense: For each 1-series-parallel graph, we can either solve it in subquadratic
time, or we show that it cannot be solved subquadratically unless the 3-SUM problem [6]
can be solved in subquadratic time. Note that 1-series-parallel graphs have fhw equal to 2.
Hence, they can all be solved in quadratic time using existing algorithms; making our 3-SUM
based lower bound tight. There is a known 3-SUM based lower bound of N 4

3 on triangle join
processing, which only has a matching upper bound under the assumption that the matrix
multiplication exponent ω = 2. In contrast, our quadratic lower bound can be matched by
existing algorithms without any assumptions on ω. To our knowledge, this makes it the only
known tight bound on join processing time for small output sizes.

We also recover our sequential join results within the well-known GHD framework [10].
We do this using a novel notion of width, which we call m-width, that is no larger than fhw,
and sometimes smaller than submodular width [12,15]. While we resolve the subquadratic
problem on 1-series-parallel graphs, the general subquadratic problem remains open. In
the full version [12], we show that known notions of widths, such as submodular width and
m-width do not fully characterize subquadratically solvable joins.

Joins on MapReduce: Degree information can also be used to improve the efficiency of
joins on MapReduce. Previous work by Beame et al. [8] uses knowledge of heavy hitters
(values with high degree) to improve parallel join processing on skewed data. It allows a
limited range of parallelism (number of processors p ≤

√
IN), but subject to that achieves

optimal communication for 1-round MapReduce algorithms. We use degree information
to allow all levels of parallelism (p ≥ 1) while processing the join. We also obtain an
improved degree-based upper bound on output size that can be significantly better than the

2 A 1-series-parallel graph consists of a source vertex s, a target vertex t, and a set of paths of any length
from s to t, which do not share any nodes other than s and t.
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AGM bound even on simple queries. Our improved parallel algorithm takes three rounds of
MapReduce, matches our improved bound, and out-performs the optimal 1-round algorithm
in several cases. As an example, our improved bound lets us correctly upper bound the output
of a sparse triangle join (where each value has degree O(1)) by IN instead of IN

3
2 as suggested

by the AGM bound. Moreover, we can process the join at maximum levels of parallelism
(with each processor handling only O(1) tuples) at a total communication cost of O(IN);
in contrast to previous work which requires θ(IN

3
2 ) communication. Furthermore, previous

work [8] uses edge packings to bound the communication cost of processing a join. Edge
packings have the paradoxical property that adding information on the size of subrelations
by adding the subrelations into the join can make the communication cost larger. As an
example suppose a join has a relation R, with an attribute A in its schema. Adding πA(R) to
the set of relations to be joined does not change the join output. However, adding a weight
term for subrelation πA(R) in the edge packing linear program increases its communication
cost bound. In contrast, if we add πA(R) into the join, our degree based bound does not
increase, and will in fact decrease if |πA(R)| is small enough.

Computing Degree Information: In some cases, degree information is not available before-
hand or is out of date. In such a case, we show a simple way to compute the degrees of all
values in time linear in the input size. Moreover, the degree computation procedure can be
fully parallelized in MapReduce. Even after including the complexity of computing degrees,
our algorithms outperform state of the art join algorithms.

Our paper is structured as follows:
In Section 2, we describe related work.
In Section 3, we describe a process called degree-uniformization, which mitigates skew.
We show the MO bound on join output size that strengthens the exponent in the AGM
bound, and describe a method to compute the degrees of all attributes in all relations.
In Section 4, we present DARTS, our sequential algorithm that achieves tighter runtime
exponents than state-of-the-art. We use DARTs to process several joins in subquadratic
time. Then we establish a quadratic runtime lower bound for a certain class of queries
modulo the 3-SUM problem. Finally we recover the results of DARTS within the familiar
GHD framework, using a novel notion of width (m-width) that is tighter than fhw.
In Section 5, we present another bound with a tighter exponent than AGM (the DBP
bound), and a tunable parallel algorithm whose communication cost at maximum paral-
lelism equals the input size plus the DBP bound. The algorithm’s guarantees work on all
inputs independent of skew.

2 Related Work

We divide related work into four broad categories.

New join algorithms and implementation: The AGM bound [5] is tight on the output
size of a multiway join in terms of the query structure and sizes of relations in the query.
Several existing join algorithms, such as NPRR [16], LFTJ [18], and Generic Join [17], have
worst case runtime equal to this bound. However, there exist instances of relations where the
output size is significantly smaller than the worst-case output size (given by the AGM bound),
and the above algorithms can have a higher cost than the output size. We demonstrate
a bound on output size that has a tighter exponent than the AGM bound by taking into
account information on degrees of values, and match it with a parallelizable algorithm.
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On α-acyclic queries, Yannakakis’ algorithm [19] is instance optimal up to a constant
multiplicative factor. That is, its cost is O(IN + OUT) where IN is the input size. For
cyclic queries, we can combine Yannakakis’ algorithm with the worst-case optimal algorithms
like NPRR to get a better performance than that of NPRR alone. This is done using
Generalized Hypertree decompositions (GHDS) [9,10] of the query to answer the query in
time O(INfhw + OUT) where fhw is a measure of cyclicity of the query. A query is α-acyclic
if and only if its fhw is one. Our work allows us to obtain a tighter runtime exponent than
fhw by dealing with values of different degrees separately.

Parallel join algorithms: The Shares [2] algorithm is the optimal one round algorithm for
skew free databases, matching the lower bound of Beame et al. [7]. But its communication
cost can be much worse than optimal when skew is present. Beame’s work [8] deals with skew
and is optimal among 1-round algorithms when skew is present. The GYM [1] algorithm
shows that allowing log(n) rounds of MapReduce instead of just one round can significantly
reduce cost. Allowing n rounds can reduce it even further. Our work shows that merely going
from one to three rounds can by itself significantly improve on existing 1-round algorithms.
Our parallel algorithm can be incorporated into Step 1 of GYM as well, thereby reducing its
communication cost.

Using Database Statistics: The cycle detection algorithm by Alon, Yuster and Zwick [4] can
improve on the fhw bound by using degree information in a sequential setting. Specifically,
the fhw of a cycle is two but the AYZ algorithm [4] can process a cycle join in time
O(IN2−ε + OUT) where ε > 0 is a function of the cycle length. We generalize this, obtaining
subquadratic runtime for a larger family of graphs, and develop a general procedure for
upper bounding the cost of a join by dealing with different degree values separately.

Beame et al.’s work [8] also uses degree information for parallel join processing. Specifically,
it assumes that all heavy hitters (values with high degree) and their degrees are known
beforehand, and processes them separately to get optimal 1-round results. Their work uses
edge packings to bound the cost of their algorithm. Edge packings have the counterintuitive
property that adding more constraints, or more information on subrelation sizes, can worsen
the edge packing cost. This suggests that edge packings alone do not provide the right
framework for taking degree information into account. Our work remedies this, and the
performance of our algorithm improves when more constraints are added. In addition, Beame
et al. [8] assume that M > p2 where M is relation size and p is the number of processors.
Thus, their algorithm cannot be maximally parallelized. In contrast, our algorithm can work
at all levels of parallelism, ranging from one in which each processor gets only O(1) tuples to
one in which a single processor does all the processing.

Degree Uniformization: The partitioning technique of Alon et al. [3] is similar to our
degree-uniformization technique, but has stronger guarantees at a higher cost. It splits a
relation into ‘parts’ where the maximum degree of any attribute set A in each part P is
within a constant factor of the average degree of A in P . In contrast, degree-uniformization
lets us upper bound the maximum degree of A in P in absolute terms, but not relative to
the average degree of A in P .

Marx’s work [15] uses a stronger partitioning technique to fully characterize the fixed-
parameter tractability of joins in terms of the submodular width of their hypergraphs. Marx
achieves degree-uniformity within all small projections of the output, while we only achieve
uniform degrees within relations. Marx’s preprocessing is expensive; the technique as written
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in Section 4 of his paper [15] takes time Ω(IN2c) where c is the submodular width of the join
hypergraph. This preprocessing is potentially more expensive than the join processing itself.
Our algorithms run in time O(INMW) with MW < c for several joins. Marx did not attempt
to minimize this exponent, as his application was concerned with fixed parameter tractability.
We were unable to find an easy way to achieve O(INc) runtime for Marx’s technique.

3 Degree Uniformization

We describe our algorithms for degree-uniformization and counting, as well as our improved
output size bound. Section 3.1 introduces our notation. Section 3.2 gives a high-level overview
of our join algorithms. Then, we describe the degree-uniformization which is a key step in our
algorithms. In Section 3.3, we describe the MO bound, an upper bound on join output size
that has a tighter exponent than the AGM bound. We provide realistic examples in which
the MO bound is much tighter than the AGM bound. Finally, in Section 3.4 we describe a
linear time algorithm for computing degrees.

3.1 Preliminaries and Notation
Throughout the paper we consider a multiway join. Let R be the set of relations in the join
and A be the set of all attributes in those relations’ schemas. For any relation R, we let attr(R)
denote the set of attributes in the schema of R. We wish to process the join onR∈R R, defined
as the set of tuples t such that ∀R ∈ R : πattr(R)(t) ∈ R. |R| denotes the number of tuples in
relation R. For any set of attributes A ⊆ A, a value in attribute set A is defined as a tuple
from

⋃
R∈R:A⊆attr(R) πA(R). For any A ⊆ attr(R), the degree of a value v in A in relation R

is given by the number of times v occurs in R i.e. deg(v,R,A) = | {t ∈ R | πA(t) = v} |. For
all values v of A in R, we must have deg(v,R,A) ≥ 1.

In Section 4, we denote a join query with a hypergraph G; the vertices in the graph
correspond to attributes and the hyperedges to relations. We use R(X1, X2, . . . , Xk) to
denote a relation R having schema (X1, X2, . . . , Xk). IN denotes the input size i.e. sum
of sizes of input relations, while OUT denotes the output size. Our output size bounds,
computation costs, and communication costs will be expressed using O notation which hides
polylogarithmic factors i.e. logc(IN), for some c not dependent on number of tuples IN (but
possibly dependent on the number of relations/attributes). All ensuing logarithms in the
paper, unless otherwise specified, will be to the base IN.

AGM Bound: Consider the following linear program:

I Linear Program 1.

Minimize
∑
R∈R

wR log(|R|) such that ∀a ∈ A :
∑

R∈R:a∈attr(R)

wR ≥ 1

A valid assignment of weights wR to relation R in the linear program is called a fractional
cover. If ρ∗ is the minimum value of the objective function, then the AGM bound on the
join output size is given by INρ∗. In general, for any set of relations R, we use AGM(R) to
denote the AGM bound on onR∈R R.

3.2 Degree Uniformization
We describe our high level join procedure in Algorithm 1. In Step 1, we compute the degree of
each value in each attribute set A, in each relation R. If the degrees are available beforehand,



M.R. Joglekar and C.M. Ré 11:7

Algorithm 1: High level join algorithm
Input: Set of relations R, Bucket range parameter L
Output: onR∈R R

1. Compute deg(v,R,A) for each R ∈ R, A ⊆ attr(R), v ∈ πA(R)
2. Compute the set of all L-degree configurations CL
foreach c ∈ CL do

3.1. Compute partition R(c) of each relation R
3.2. Compute R(c) = {R(c) | R ∈ R}
4. Compute join Jc =onR∈R(c) R

5. return
⋃
c∈CL

Jc

due to being maintained by the database, then we can skip this step. We further describe
this step in Section 3.4.

Steps 2, 3 together constitute degree-uniformization. In these steps, we partition each
relation R by degree. In particular, we assign each value in a relation to a bucket based
on its degree: with one bucket for degrees in [1, L), one for degrees in [L,L2), and so on.
Then we process the join using one partition from each relation, for all possible combinations
of partitions. Each such combination is referred to as a degree configuration. We use c to
denote any individual degree configuration, CL to denote the set of all degree configurations,
R(c) to denote the part of relation R being joined in configuration c, and R(c) to denote
{R(c) | R ∈ R}. Step 2 consists of enumerating all degree configurations, and Step 3 consists
of finding the partition of each relation corresponding to each degree configuration.

In Step 4, we compute Jc =onR∈R(c) R for each degree configuration c. Section 4 describes
how to perform Step 4 in a sequential setting, while Section 5 describes it for a MapReduce
setting. Step 5 combines the join outputs for each c to get the final output.

Steps 1, 2, 3 and 5 can be performed efficiently in MapReduce as well as sequential
settings; thus the cost of Algorithm 1 is determined by Step 4. Step 4 is carried out differently
in sequential and MapReduce settings. Its cost in the sequential setting is lower than the
cost in a MapReduce setting. Steps 1, 2, and 3 have a cost of O(IN), while Step 5 has cost
O(OUT). Since reading the input and output always has a cost of O(IN + OUT), the only
extra costs we incur are in Step 4 when we actually process the join. Costs for Step 4 will be
described in Sections 4 and 5.

Degree-uniformization: Now we describe degree-uniformization in detail. We pick a value
for a parameter L which we call ‘bucket range’, and define buckets Bl = [Ll, Ll+1) for all
l ∈ N. Let B = {B0, B1, . . . , }. For any two buckets Bi, Bj ∈ B, we say Bi ≤ Bj iff i ≤ j. A
degree configuration specifies a unique bucket for each relation and set of attributes in that
relation. Formally:

I Definition 1. Given a parameter L, we define a degree configuration c to be a function
that maps each pair (R,A) with R ∈ R, A ⊆ attr(R) to a unique bucket in B denoted c(R,A),
such that

∀R,A,A′ : A′ ⊆ A ⊆ attr(R)⇒ c(R,A) ≤ c(R,A′)

∀R : c(R, attr(R)) = B0 and c(R, ∅) = BblogL(|R|)c

I Example 2. If a join has relations R1(X,Y ), R2(Y ), then a possible configuration is
(R1, ∅) 7→ B3, (R1, {X}) 7→ B1, (R1, {Y }) 7→ B2, (R1, {X,Y }) 7→ B0, (R2, ∅) 7→ B1,
(R2, {Y }) 7→ B0.
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I Definition 3. Given a degree configuration c for a given L, and a relation R ∈ R, we
define R(c) to be the set of tuples in R that have degrees consistent with c. Specifically:

R(c) = {t ∈ R | ∀A ⊆ attr(R) : deg(πA(t), R,A) ∈ c(R,A)} .

We define CL to be the set of all degree configurations with parameter L.

I Example 4. For a tuple (a, b) ∈ R, where L2 ≤ |R| < L3, with the degree of a in B1, and
that of b in B2, the tuple would be in R(c) if c(R, ∅) = B2, c(R, {A}) = B1, c(R, {B}) =
B2, c(R, {A,B}) = B0. On the other hand, it would not be in R(c) if c(R, {A}) = B0, even
if we had c(R, {A,B}) = B0, c(R, {B}) = B2.

A degree configuration also bounds degrees of values in sub-relations, as stated below:

I Lemma 5. For all R ∈ R, A′ ⊆ A ⊂ attr(R), L > 1, c ∈ CL, v ∈ πA′(R), j ≥ i ≥ 0:

c(R,A) = Bi ∧ c(R,A′) = Bj ⇒ deg(v, πA(R(c)), A′) ≤ Lj+1−i .

Choosing L: The optimal value of parameter L depends on our application. L has three
effects : (i) For the DBP/MO bounds (Sections 3.3, 5) and sequential algorithm (Section 4),
the error in output size estimates is exponential in L (with the exponent depending only on
the number of attributes) (ii) The load per processor for the parallel algorithm (Section 5)
is O(L) (iii) the number of rounds for the parallel algorithm is logL(IN). As a result, we
choose a small L(= 2) for the sequential algorithm and DBP/MO bounds, and a larger L
(= load capacity = INγ for some γ < 1) for the parallel algorithm.

3.3 Beyond AGM: The MO Bound
We now use degree-uniformization to tighten our upper bound on join output size.

IDefinition 6. LetR be a set of relations, with attributes inA. For each R ∈ R, A ⊆ attr(R),
let dR,A = maxv∈πA(R)deg(v,R,A). If A = ∅ then dR,∅ = |R|. And for any A ⊆ B ⊆ attr(R),
let d(A,B,R) denote log(dπB(R),A). Then consider the following linear program for L.

I Linear Program 2.

Maximize sA s. t. (i) s∅ = 0 (ii) ∀A,B s.t. A ⊆ B : sA ≤ sB
(iii) ∀A,B,E,R s.t. R ∈ R, E ⊆ A, A ⊆ B ⊆ attr(R) : sB∪E ≤ sA∪E + d(A,B,R)

We define mA to be the maximum objective value of the above program.

I Proposition 7. The output size onR∈R R is in O(INmA).

Intuitively, for any A ⊆ A, sA stands for possible values of log(|πA(onR∈R R)|). This explains
the first two constraints (projecting onto the empty set gives size 1, and the projection size
over A is monotone in A). For the third constraint, we use the fact that each value in A
has at most INd(A,B,R) values in B, thus each tuple in πA∪E(onR∈R R) can give us at most
INd(A,B,R) tuples in πB∪E(onR∈R R). The linear program attempts to maximize the total
output size (INsA) while still satisfying the constraints.

We now define the MO bound.

I Definition 8. Let MO(R) denote the value mA for any join query consisting of relations
R. Then the MO bound is given by

∑
c∈C2

INMO(R(c)).
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I Theorem 9. The MO bound is in O(AGM(R)).

The constant in the O() notation depends on the number of attributes in the query, but not
on the number of tuples. This result is proved in two steps. Theorem 26 states that the DBP
bound (introduced in Section 5) is smaller than the AGM bound, while Theorem 23 implies
that the MO bound is smaller than the DBP bound times a constant.

I Example 10. Let L = 2 for this example. Consider a triangle join R(X,Y ) on S(Y,Z) on
T (Z,X). Let |R| = |S| = |T | = N . The AGM bound on this is N3/2. Let the degree of each
value x in X in both R and T be h. For different values of h we will find an upper bound on
m{X,Y,Z} and hence on the output size.

Case 1. h <
√
N : Then s{X} ≤ s∅ + d(∅, {X}, R) = log(N/h). Thus, s{X,Y } ≤

s{X} + d({X}, {X,Y }, R) ≤ log(N/h) + log(h) = log(N). Finally, s{X,Y,Z} ≤ s{X,Y }
+ d({X}, {X,Z}, T ) ≤ log(N) + log(h). Thus the MO bound is ≤ Nh < N3/2.

Case 2. h >
√
N : Since there can be at most N/h distinct X values, we have

d({Y }, {X,Y }, R) ≤ log(N/h)). More if the degree of Y in S in a degree configuration
is g, then s{Y,Z} ≤ s{Y } + d({Y }, {Y,Z}, S) ≤ log(N/g) + log(g) = log(N). Finally,
s{X,Y,Z} ≤ s{Y,Z} + d({Y }, {X,Y }, R) ≤ log(N) + log(N/h) = log(N2/h) < N3/2.

The MO bound has a strictly smaller exponent than AGM unless h ≈
√
N . Computing

the AGM bound individually over each degree configuration does not help us do better, as
the above example can have all tuples in a single degree configuration.

I Example 11. Consider a matching database [7], where each attribute has the same domain
of size N , and each relation is a matching. Thus each value has degree 1, and d(A,B,R)
equals 0 when A 6= ∅ and 1 if A = ∅. The MO bound on such a database trivially equals N ,
which can have an unboundedly smaller exponent than the AGM bound.

The full version similarly compares the DBP and AGM bounds, showing that DBP (and
hence MO) has a strictly smaller exponent than AGM for ‘almost all’ degrees.

3.4 Degree Computation
If we do not know degrees in advance we can compute them on the fly, as stated below:

I Lemma 12. Given a relation R, A ⊆ attr(R), and L > 1, we can find deg(v,R,A) for
each v ∈ πA(R) in a MapReduce setting, with O(|R|) total communication, in O(logL(|R|))
MapReduce rounds, and at O(L) load per processor. In a sequential setting, we can compute
degrees in time O(|R|).

To perform degree-uniformization, we compute degrees for all relations R, and all A ⊆ attr(R).
The number of such (R,A) pairs is exponential in the number and size of relations, but is
still constant with respect to the input size IN.

4 Sequential Join Processing

We present our results on sequential join processing. Section 4.1 describes our problem
setting. In Section 4.2 we present our sequential join algorithm, DARTS (for Degree-based
Attribute-Relation Transforms). DARTS handles queries consisting of a join followed by
a projection. A join alone is simply a join followed by projection onto all attributes. We

ICDT 2016



11:10 It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

pre-process the input by performing degree-uniformization, and then run DARTS on each
degree configuration. DARTS works by performing a sequence of transforms on the join
problem; each transform reduces the problem to smaller problems with fewer attributes or
relations. We describe each of the transforms in turn. We then show that DARTS can be
used to recover (while potentially improving on) known join results such as those of the
NPRR algorithm, Yannakakis’ algorithm, the fhw algorithm, and the AYZ algorithm.

In Section 4.3, we apply DARTS to the subquadratic joins problem; presenting cases in
which we can go beyond existing results in terms of the runtime exponent. For a family of
joins called 1-series-parallel graphs, we obtain a full dichotomy for the subquadratic joins
problem. That is, for each 1-series-parallel graph, we can either show that DARTS processes
its join in subquadratic time, or that no algorithm can process it in subquadratic time modulo
the 3-SUM problem. Note that 1-series-parallel graphs have treewidth 2, making them easily
solvable in quadratic time. Thus, our 3-SUM based quadratic lower bound on some of the
graphs is tight making it, to our knowledge, the only tight bound for join processing time
with small output sizes. In contrast, there is a N 4

3 lower bound (using 3-SUM) for triangle
joins, but its matching upper bound depends on the additional assumption that the matrix
multiplication exponent equals two.

In Section 4.4, we show that most results of the DARTS algorithms can be recovered
using the well known framework of Generalized Hypertree Decompositions (GHDs), along
with a novel notion of width we call m-width. m-width is no larger than fhw, and sometimes
smaller than submodular width [12].

4.1 Setting

In this section, we focus on a sequential join processing setting. We are especially interested
in the subquadratic joins problem stated below:

I Problem 1. For any graph G, we let each node in the graph represent an attribute and
each edge represent a relation of size N . Then we want to know, for what graphs G can we
process a join over the relations in subquadratic time, i.e. O(N2−ε + OUT) for some ε > 0?

Performing a join in subquadratic time is especially important when we have large datasets
being joined, and the output size is significantly smaller than the worst case output size.
Note that we define subquadratic to be a poly(N) factor smaller than N2, so for instance a
N2

logN algorithm is not subquadratic by our definition.
As an example, if a join query is α-acyclic, then Yannakakis’ algorithm can answer it in

time O(N + OUT), which is subquadratic. More generally, if the fractional hypertree width
(fhw) of a query is ρ∗, the join can be processed in time O(Nρ∗ + OUT) using a combination
of the NPRR and Yannakakis’ algorithms. The fhw of an α-acyclic query is one. For any
graph with fhw < 2, we can process its join in subquadratic time. The AYZ algorithm allows
us to process joins over length n cycles in time O(N2− 1

1+d n
2 e + OUT), even though cycles of

length ≥ 4 have fhw = 2. To the best of our knowledge, this is the only previous result that
can process a join with fhw ≥ 2 in subquadratic time.

The DARTS algorithm is applicable to any join-project problem and not just those with
equal relation sizes like in Problem 1. Applying DARTS to Problem 1 lets us process several
joins in subquadratic time despite having fhw ≥ 2. Section 4.4 recovers the subquadratic
runtimes of DARTS using GHDs that have m-width < 2.
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4.2 The DARTS algorithm
We now describe the DARTS algorithm. The problem that DARTS solves is more general
than a join. It takes as input a set of relations R, and a set of attributes O (which stands
for Output), and computes πO onR∈R R. When O = A, the problem reduces to just a
join. We first pre-process the inputs by performing degree-uniformization. Then each degree
configuration is processed separately by DARTS. The L parameter for degree-uniformization
is set to be very small (O(1)). The total computation time is the sum of the computation
times over all degree configurations. Let G = (c,R(c),O). That is, G specifies the query
relations, output attributes, and degrees for each attribute set in each relation according
to the degree configuration. We let cG,RG,OG denote to degree configuration of G, the
relations in G, and the output attributes of G. We define two notions of runtime complexity
for the join-project problem on G:

I Definition 13. Q(G) is the smallest value such that a join-projection with query structure,
degrees, and output attributes given by those in G can be processed in time O(Q(G) + OUT).
P (G) is the smallest value such that a join-projection with query structure, degrees, and
output attributes given by those in G can be processed in time O(P (G)).

I Example 14. As an example of the difference between P and Q, consider a chain join
G with relations R1(X1, X2), R2(X2, X3), R3(X3, X4), and O = {X1, X2, X3, X4}. All
relations have size N , and the degree of each attribute in each relation is

√
N . Then P (G)

would be N2, the worst case size of the output (where all attributes have
√
N values and

each relation is a full cartesian product). Q(G) on the other hand would be N because the
join is α-acyclic, and Yannakakis’ algorithm lets us process the join in time O(N + OUT).

4.2.1 Heavy, Light and Split
The DARTS algorithm performs a series of transforms on G, each of which reduces it to a
smaller problem. In each step, it chooses one of three types of transforms, which we call
Heavy, Light and Split. Each transform takes as input G itself and either an attribute or a
set of attributes in the relations of G. Then it reduces the join-project problem on G to a
simpler problem via a procedure. This reduction gives us a bound on P (G) and/or Q(G) in
terms of the P and Q values of simpler problems. We describe each of these transforms in
turn, along with their input, procedure, and bound.

Heavy

Input: G, An attribute X
Procedure: Let RX = {R ∈ R(c) | X ∈ attr(R)}. Then we compute the values of x ∈ X

that lie in all relations in RX i.e. vals(X) =
⋂
R∈RX

πXR. Then for each x ∈ vals(X),
we marginalize on x. That is, we solve the reduced problem:

Jx = πO\{X}
(
onR∈(R(c)\RX ) R onR∈RX

(πA\{X}σX=xR)
)
.

Our final output is
⋃
x∈vals(X)(πOx) × Jx. For each relation R ∈ RX , let dR be the

maximum value in bucket c(R, {X}). So |vals(X)| ≤ minR∈RX

|R|
dR

. Secondly, in each
reduced problem Jx, the size of each reduced relation πA\{X}σX=xR for R ∈ RX reduces
to at most dR. Let G′ denote the reduced relations, degrees, and output attributes for
Jx. This gives us:

Bound: Q(G) ≤
(

minR∈RX

|R|
dR

)
Q(G′), P (G) ≤

(
minR∈RX

|R|
dR

)
P (G′)
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Light

Input: G, An attribute set X
Procedure: The light transform reduces the number of relations in G. Define RX =
{R ∈ R(c) | attr(R) ⊆ X}. We compute RX =onR∈R(c) πXR. This subjoin is computed
using a sequential version of the parallel technique in Section 5. Hence it takes time equal
to the DBP bound on that join. Then we delete relations in RX from G, and add RX
into RG. The degrees for attributes in RX can be computed in terms of degrees in the
relations from RX . As long as |RX | > 1, this gives us a reduced problem G′. O stays
unchanged for the reduced problem. The size of relation RX can be upper bounded using
the DBP bound as well. Let DBP(G,X) denote this bound.

Bound: Q(G) ≤ DBP(G,X) +Q(G′), P (G) ≤ DBP(G,X) + P (G′)

Split

Input: G, An articulation set S of attributes [11] such that there are joins G1, G2 whose
attribute sets have no attribute outside S in common, and RG ⊆ RG1 ∪ RG2 . Also, S
satisfies either (i) S ⊆ O, or (ii) O ⊆

⋃
R∈RG2

attr(R).
Procedure: We compute RS = πS

(
onR∈RG1

R
)
. This takes time P (G′1), where G′1 is like

G1 but with OG′
1

= S. Let J2 =
(
onR∈RG2

R
)
on RS . If O ⊆

⋃
R∈RG2

attr(R), then we
compute and output πOJ2, and we are done. This step costs P (G2). Otherwise, S ⊆ O.
We compute O2 = πOJ2. Each tuple in O2 has a matching output tuple for G. Then
we set RS = RS ∩ πSO2 and compute O1 = πO(onR∈RG1

R on RS). Then for each tuple
t ∈ RS , we take each pair of matching tuples t1 ∈ O1, t2 ∈ O2 and output t1 on t2. Let
G′′1 be like G1, but with OG′′

1
= O ∩

(⋃
R∈RG1

attr(R)
)
, and G′′2 be defined similarly.

This gives us:
Bound: If S ⊆ O, then Q(G) ≤ P (G′1) + Q(G′′1) + Q(G′′2). If O ⊆

⋃
R∈RG2

attr(R), then
P (G) ≤ P (G′1) + P (G2).

4.2.2 Combining the Transforms
Once we know the transforms, the DARTS algorithm is quite straightforward. It considers
all possible sequences of transforms that can be used to solve the problem, and picks the one
that gives the smallest upper bound on Q(G). The number of such transform sequences is
exponential in the number of attributes and relations, but constant with respect to data size.
The P and Q values of various Gs can be computed recursively given a degree configuration.
The G′ obtained in each recursive step itself specifies a degree configuration, over a smaller
problem. The degrees in G′ can be computed in terms of degrees in G. Note that in some
cases, we do not have cost bounds available e.g. we do not have a P bound for the Split
transform when S ⊆ O. This is a part of the DARTS algorithm. DARTS only considers
performing a transform when it can upper bound the resulting cost.

We show that DARTS can be used to recover existing results on sequential joins.

I Proposition 15. If we compute the join using a single Light transform, our total cost is ≤
the AGM bound, thus recovering the result of the NPRR algorithm [16].

I Proposition 16. If we successively apply the Split transform on an α-acyclic join, with
G1 being an ear of the join in each step, then the total cost of our algorithm becomes
O(IN + OUT), recovering the result of Yannakakis’ algorithm [19].
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I Proposition 17. If a query has fractional hypertree width equal to fhw, then using a
combination of Split and Light transforms, we can bound the cost of running DARTS by
O(INfhw + OUT), recovering the fractional hypertree width result.

I Proposition 18. A cycle join of length n with all relations having size N , can be processed
by DARTS in time O(N2− 1

1+d n
2 e + OUT), recovering the result of the AYZ algorithm [4].

In the next subsection, we present a few of the cases in which we can go beyond existing
results. Since we are primarily interested in joins, the output attribute set O below is always
assumed to be A.

4.3 Subquadratic Joins
Now we consider applications of DARTS to the subquadratic joins problem. Analyzing a
run of DARTS on a join graph allows us to obtain a subquadratic runtime upper bound in
several cases. We now define a set of graphs for which we have a complete decision procedure
to determine if they can be solved in subquadratic time modulo the 3-SUM problem.

1-series-parallel graphs

I Definition 19. A 1-series-parallel graph is one that consists of :
A source node XS

A sink node XT

Any number of paths, of arbitrary length, from XS to XT , having no other nodes in
common with each other

Equivalently, a 1-series-parallel graph is a series parallel graph that can be obtained using any
number of series transforms (which creates paths) followed by exactly one parallel transform,
which joins the paths at the endpoints. A cycle is a special case of a 1-series-parallel graph.

I Theorem 20. For 1-series-parallel graphs, the following decision procedure determines
whether or not the join over that graph can be processed in sub-quadratic time:
1. If there is a direct edge (path of length one) between XS and XT , then the join can be

processed in sub-quadratic time. Else:
2. Remove all paths of length two between XS and XT , as they do not affect the sub-quadratic

solvability of the join problem. Then
3. If the remaining number of paths (obviously all having length ≥ 3) is ≥ 3, then the join

cannot be processed in subquadratic time (modulo 3-SUM). If the number of remaining
paths is < 3, then the graph can be solved in sub-quadratic time.

Theorem 20 establishes the decision procedure for subquadratic solvability of 1-series-
parallel graphs. The full version gives an example of a subquadratic solution for a specific
1-series-parallel graph, namely K2,n, followed by an example on the general bipartite graph
Km,n. In both these examples, DARTS achieves a better runtime exponent than previously
known algorithms. We now make three statements that together imply Theorem 20 (formally
stated and proved in the full version).

If we have a 1-series-parallel graph, which has a direct edge from XS to XT (i.e. a path
of length 1), then a join on that graph can be processed in subquadratic time.
Suppose we have a 1-series-parallel graph G, which does not have a direct edge from XS

to XT , but has a vertex XU such that there is an edge from XS to XU and from XU to
XT (i.e. a path of length 2 from XS to XT ). Let G′ be the graph obtained by deleting
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the vertex XU and edges XSXU and XUXT . Then the join on G can be processed in
subquadratic time if and only if that on G′ can be processed in subquadratic time.
Let G be any 1-series-parallel graph which does not have an edge from XS to XT , but has
≥ 3 paths of length at ≥ 3 each, from XS to XT . Then a join over G can be processed in
subquadratic time only if the 3-SUM problem can be solved in subquadratic time.

4.4 A new notion of width (m-width)
We demonstrate a way to formulate the DARTS algorithm for joins in terms of GHDs.

For each A ∈ A, we define mA similarly to how we defined mA in Section 3.3. Specifically,
for each A, we use the same constraints as in linear program 2, but the objective is set
to Maximize sA instead of Maximize sA. mA is then defined as the value of this objective
function. We let Prog(A) denote the above linear program for finding mA. Then the size
|πA(onR∈R R)| must be bounded by INmA for all A ⊆ A. Moreover, for any GHD D = (T , χ)
of query R, we can define MW(D,R) to be maxt∈T (mχ(t)). And MW(R) is simply the
minimum value of MW(D,R) over all GHDs D. Thus we have:

I Definition 21. The m-width of a join query onR∈R R (possibly with non-uniform degrees),
is given by maxc∈C2 MW(R(c)).

I Theorem 22. A query with m-width MW can be answered in time O(INMW + OUT).

This theorem lets us recover all our subquadratic joins results as well. That is, for the
1-series-parallel graphs that have a subquadratic join algorithm (as per Theorem 20), we can
construct a GHD that has m-width less than 2.

The MO bound is tighter than the DBP bound (and consequently, the AGM bound, as
stated in Theorem 9 earlier).

I Theorem 23. For any join query R, and any degree configuration c ∈ C2, MO(R(c)) ≤
DBP(R(c), 2) + |C| log(2), where C is the cover used in the DBP bound.

Note that since logarithms are to the base IN, the |C| log(2) term is negligible even though
it goes in the exponent of the bound i.e. its exponent is a constant. Theorems 22 and 23 let
us recover all the results of the DARTS algorithm.

The theorems also imply that our new notion of width (m-width) is tighter than fhw.
The full version [12] compares m-width to submodular width (which, barring m-width, is
the tightest known notion of width applicable to general joins), showing examples where
m-width is tighter than submodular width. But we do not know in general if m-width is
tighter than submodular width.

The full version also shows that while m-width < 2 implies subquadratic solvability, the
converse is not true; we show an example join which has m-width and submodular width
= 2 but can be solved in subquadratic time. Thus known notions of width do not fully
characterize subquadratically solvable graphs.

5 Parallel Join Processing

Like in sequential settings, degree-uniformization can be applied in a MapReduce setting.
We first present the DBP bound, which is a bound on output size that is tighter than AGM
bound (but not tighter than MO), and characterizes the complexity of our parallel algorithm.
Then we present a 3-round MapReduce algorithm whose cost equals the DBP bound at the
highest level of parallelism.
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The DBP Bound

We start by defining a quantity called the Degree-based packing (DBP).

I Definition 24. Let R be a set of relations, with attributes in A. Let C denote a cover i.e.
a set of pairs (R,A) such that R ∈ R, A ⊆ attr(R), and

⋃
(R,A)∈C A = A. Let L > 1. Then,

consider the following linear program for C,L.

I Linear Program 3.

Minimize
∑
a∈A

va such that ∀(R,A) ∈ C, ∀A′ ⊆ A :
∑
a∈A′

va ≥ log
(
dπA(R),A\A′

L

)

If OC,L is the maximum objective value of the above program, then we define DBP(R, L) to
be minC OC,L where the minimum is taken over all covers C.

I Proposition 25. Let L > 1 be a constant. Then the output size of onR∈R R is in
O(INDBP(R,L)).

We implicitly prove this result by providing a parallel algorithm whose complexity equals the
output size bound at the maximum parallelism level. We can now define the DBP bound.
We arbitrarily set L = 2 for this definition (choosing another constant value only changes
the bound by a constant factor). Thus, we define the DBP bound to be

∑
c∈C2

INDBP(R(c),2).
As a simple corollary, the output size of the join is ≤ the DBP bound.

I Theorem 26. For each degree configuration c ∈ CL, INDBP(R(c),L) ≤ AGM(R(c)).

We prove this theorem using a sequence of linear program transformations, starting with
the AGM bound, and ending with the DBP bound, which each transformation decreasing
the objective function value. The key transform is the fifth one, where we switch from a
cover-based program to a packing-based program. We show in the full version that the DBP
bound has a strictly better exponent than AGM for ‘almost all’ degrees.

Parallel Join Algorithm

We present our parallel 3-round join algorithm. The algorithm works at all levels of parallelism
specified by load level L. Its communication cost matches the DBP bound when L = O(1).
We formally state the result, and then provide an example of its performance.

I Theorem 27. For any value of L, we can process a join in O(logL(IN)) rounds (three
rounds if degrees are already known) with load O(L) per processor and a communication cost
of O(IN + OUT + maxc∈CL

L · INDBP(R(c),L)).

We briefly sketch the algorithm here, and provide the full proof in the full version. We start
by performing degree uniformization. Now consider any configuration c. We solve Linear
Program 3 over all covers. Let C be the optimal cover, and va the values in the optimal
solution to Linear Program 3 with cover C. We join on(R,A)∈C πA(R) using the Shares
algorithm with share INva for attribute a. Finally, we semijoin relations not in C with the
result. The following lemma gives us our required communication cost and load bounds.

I Lemma 28. The shares algorithm, where each attribute a has share INva , where va is from
the solution to Linear Program 3, has a load of O(L) per processor with high probability, and
a communication cost of O(maxc∈CL

L · INDBP(R(c),L)).
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I Example 29. Consider the sparse triangle join, with R = {R1(X,Y ), R2(Y,Z), R3(Z,X)}.
Each relation has size N , and each value has degree O(1). When the load level is L < N ,
the join requires DBP(R, L) = N

L processors. Equivalently, when we have p processors, the
load per processor is N

p , which means it decreases as fast as possible as a function of p.
In contrast the vanilla shares algorithm allocates a share of p 1

3 to each attribute, and the
load per processor is Np− 2

3 . Current state of the art work [8] has a load of Np− 2
3 as well.

We further explore and generalize this example in the full version, where we also show an
example where our parallel algorithm operating at maximum parallelism still has lower total
cost than existing state-of-the-art sequential algorithms.

6 Conclusion and Future Work

We demonstrated that using degree information for a join can let us tighten the exponent of
our output size bound. We presented a parallel algorithm that works at all levels of parallelism,
and whose communication cost matches a tightened bound at the maximum parallelism level.
We proposed the question of deciding which joins can be processed in subquadratic time,
and made some progress towards answering it. We showed a tight quadratic lower bound for
a family of joins, making it the only known tight bound that makes no assumptions about
the matrix multiplication exponent. We presented an improved sequential algorithm, namely
DARTS, that generalizes several known join algorithms, while outperforming them in several
cases. We recovered the results of DARTS in the GHD framework, using a novel notion of
width that is tighter than fhw and sometimes tighter than submodular width as well.

We presented several cases in which DARTS outperforms existing algorithms, in the
context of subquadratic joins. However, it is likely that DARTS outperforms existing
algorithms on joins having higher treewidths as well. A fuller exploration of the improved
upper bounds achieved by DARTS is left to future work. The full version shows a join that
can be performed in subquadratic time despite its m-width/submodular width being = 2.
Thus the problem of precisely characterizing which joins can be performed in subquadratic
time remains open. Moreover, we focused entirely on using degree information for join
processing; using other kinds of information stored by databases to improve join processing
is a promising direction for future work.
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Abstract
Filtering a set of items, based on a set of properties that can be verified by humans, is a common
application of CrowdSourcing. When the workers are error-prone, each item is presented to
multiple users, to limit the probability of misclassification. Since the Crowd is a relatively
expensive resource, minimizing the number of questions per item may naturally result in big
savings. Several algorithms to address this minimization problem have been presented in the
CrowdScreen framework by Parameswaran et al. However, those algorithms do not scale well and
therefore cannot be used in scenarios where high accuracy is required in spite of high user error
rates. The goal of this paper is thus to devise algorithms that can cope with such situations. To
achieve this, we provide new theoretical insights to the problem, then use them to develop a new
efficient algorithm. We also propose novel optimizations for the algorithms of CrowdScreen that
improve their scalability. We complement our theoretical study by an experimental evaluation of
the algorithms on a large set of synthetic parameters as well as real-life crowdsourcing scenarios,
demonstrating the advantages of our solution.
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1 Introduction

CrowdSourcing for Filtering

Building upon a flourishing ecosystem of CrowdSourcing platforms, a new kind of database
systems such as CrowdDB and Qurk endeavors to exploit human inputs to extract or process
information [20, 8]. Queries in these systems rely on a small set of basic operators to elicit
missing information from the crowd. This triggered a new line of research devoted to the
optimization of such basic operations as Joins, Ordering, Aggregates, Selection, etc., in a
CrowdSourcing environment [19, 18]. In this paper we focus on the Selection operation, i.e.,
using the crowd to filter the items satisfying some specific property.

As an example, assume we are sensitive to gluten and would like to know which food
items, out of a given list or a menu, may be problematic for us. Scanning food recipes and
labels could give information on each individual item, but this is a time consuming job, and
the results may be incorrect, e.g. due to some ignored factors such as cross-contamination
issues. Asking the Crowd about their knowledge/experience with the product may provide an
alternative solution to the problem. However, contributors will sometimes provide erroneous
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answers, so that multiple answers must be gathered in order to ascertain that a product is
gluten-free. But how many people need to be asked? Let us assume that (1) the probability
that each category of food contains the ingredients, and (2) the error rates among the answers
(false positives and false negatives rates) are prior knowledge – we will briefly discuss this
assumption later. For example, suppose that some category of dishes, e.g. cereal, contains
gluten with probability 0.5, and suppose the probability of false positives and false negatives
are both 0.4. How can we decide with an average precision of 90% whether or not a given
cereal contains some gluten, and how many answers will be required for that?

A simple solution is to fix in advance some budget m for answers, and then decide that
our dish contains (resp. does not contain) gluten as soon as we get more than m/2 positive
(negative) answers. For our parameters, one can easily check that a budget of m = 41 answers
is required to obtain 90% precision with this strategy. Naturally, we do not always have
to use the full budget – as soon as 21 positive (or negative) answers are obtained we can
stop and make a decision with the required precision. We will thus ask between 21 and
41 questions and, on average, about 34 questions (we omit the exact computation). Note
however that a smaller average number of questions can be used if we employ a more efficient
strategy, known in the literature as a sequential test [23], and adapt dynamically the budget
as answers are received. We can for instance show that on average only 23 answers are
sufficient to reach a decision if we use the following strategy which also guarantees an average
precision of 90%:

claim there is gluten as soon as the number of positive answers exceeds the number of
negative answers by 6
claim there is none when negative answers exceed positive answers by 6
use majority vote in the absence of conclusion after 51 questions

More generally, the challenge that we try to address in this paper is devising tests that
minimize the expected number of answers required from the crowd for deciding whether a
given object satisfies a selection criteria, while guaranteeing that the average error stays
below the required threshold.

The CrowdScreen Framework

The problem of minimizing the number of questions needed to classify items accurately clearly
predates CrowdSourcing and we discuss related work in the conclusion. Yet, CrowdSourcing
scenarios may be particular in the sense that errors on specific items are typically tolerated
as long as a good accuracy is guaranteed on average over the whole set of items [22].

To study the optimization of filtering, we adopt in this paper a simple and general model
by Parameswaran et al. [22], whose purpose is to compute optimal querying strategies. They
define a (deterministic) strategy as a function mapping the number of positive and negative
answers received from the users to a decision in {Pass, Fail, Cont}. A Pass (resp. Fail)
decision signifies we stop asking questions and accept the object in question as satisfying
the filter (resp. reject the object), and Cont stands for asking additional questions. They
also consider probabilistic strategies that map each point to both a probability to stop
asking questions and the decision (Pass or Fail) in case the strategy terminates at this
point. Questions to the Crowd are considered expensive and therefore the maximal number
of questions allotted to the strategy is bounded by some fixed budget. The selectivity of
the filter and the error rates of the answers, as previously mentioned, are considered prior
knowledge in the model. A problem instance thus consists of a budget bound, a maximal
bound on the expected error authorized for the strategy, and those prior probabilities.
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Several algorithms and heuristics have been introduced in [22] to compute deterministic
and probabilistic strategies. While these algorithms are efficient for very small budgets
(up to 14 questions per item), larger sample sizes were hardly considered. In fact, the
presented algorithms are not a good fit for larger budget as they either have high complexity
(exponential, or polynomial but with high degree), or suffer from numeric instability, hence
do not always return a strategy meeting the error constraint.

The restriction to small budgets may be justified by the assumption that CrowdSourcing
applications typically use little redundancy. Yet 14 questions are not sufficient to filter items
with a high precision when the error rates are high: our motivating example for instance
requires more than 40 questions, and the original works about sequential tests in statistical
testing [23, 2] generally consider budgets featuring hundreds or thousands of answers. The
goal of this paper is thus to devise algorithms that scale well for large budgets.

Contributions

Our contributions are three-fold. First, we provide new theoretical insights to the problem.
We then devise efficient algorithms based on these insights. We also propose optimizations
of algorithms in [22] to improve their scalability.

Specifically, we first show, in Section 2, that key properties of the problem derive from
well-known results on the likelihood ratio (to be formally defined). We exploit these in
Section 3 to devise a scalable algorithm: AdaptSprt inspired from the popular SPRT [23].
We then revisit, in Section 4, the heuristics from [22]. In particular, we show that their
method that enumerates all (ladder-shaped) strategies has complexity O(22m), and we present
optimizations extending the range of budgets for which this enumeration is tractable by a
factor u 1.5. We similarly show that the shrink heuristic from [22], which computes slightly
suboptimal deterministic strategies, can be optimized to run in O(m4) instead of O(m5), and
further establish, in Section 5, connections between deterministic and probabilistic strategies.
In particular we show that an optimal probabilistic strategy can be computed through a
minor modification to the shrink strategy, as an alternative to the linear programming
approach that was considered there (and which we show to suffer from numeric instability).
For space constraints we defer some of the proofs to the technical report [11]. Finally, to
complement our theoretical study we briefly illustrate (with more details in the technical
report) the practical advantages and limitations of our solutions by a set of experiments on
(1) a large set of synthetic parameters and (2) a small real-life scenario.

2 Preliminaries

We first list definitions and notations, as well as general properties we use to devise efficient
strategies. The formal introduction below follows [22] and we diverge afterwards.

2.1 Definitions
We wish to harness the wisdom of the crowd to determine, for each object O of a large
dataset D, whether the object has property V (V = 1) or not (V = 0). We thus ask users in
the crowd if they believe the object has the property. To compensate for possible mistakes,
we query multiple users until we have gathered enough evidence to reach a pass/fail decision
about O. The selectivity ratio s (percentage of objects in D having property V ) and the
users’ error rates are assumed prior knowledge. We thus define the error rates e0 and e1 < 0.5
as the probability of a user error, given that V = 0 and V = 1 respectively. We briefly discuss
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12:4 Filtering With the Crowd: CrowdScreen Revisited

in the conclusion how these values can be estimated. Finally, we consider that each question
has a unit cost, and specify a budget constraint m; the maximal number of questions we are
allowed to ask before reaching a decision on item O.

Strategies

The sequence of answers received when classifying an item can be visualized as a walk on a
discrete 2-dimensional grid where the x and y axes represent the number of negative and
positive answers received. The current state of the sequence is the point (x, y) matching the
number of positive and negative answers received. The transitions between states match
the answers provided by the users: if a negative answer is received in state (x, y), the state
moves to (x + 1, y). If a positive answer is received instead, the state moves to (x, y + 1).
For each point on the grid we define Pstop(x, y) as the probability that the walk terminates
upon reaching point (x, y). When terminating, a claim on the value of V is returned: Pass
(V = 1) or Fail (V = 0).

A strategy is defined by the function Pstop(x, y) mapping each point to the probability of
terminating when reaching point (x, y). In a probabilistic strategy Pstop(x, y) is taken over
the interval [0, 1], whereas in a deterministic strategy Pstop(x, y) must be either 0 or 1. Point
(x, y) is a continuing point if Pstop(x, y) = 0, a terminating point if Pstop(x, y) = 1, and a
probabilistic point otherwise. An optimal choice betweeb Pass or Fail in case we stop can
easily be computed from x, y and the input parameters, using a well-known property of the
likelihood ratio recalled in Section 2.2 (the choice does not depend on the strategy). A point
in which the decision is Pass is an accepting point and a point in which the decision is Fail
is a rejecting point. The cost of a given strategy is the expected number of answers needed in
order to reach a decision, while the error of the strategy is the probability that the strategy
reaches a wrong decision. We formalize this next.

Strategy and Grid characteristics

We compute the cost and error of a strategy as mentioned in [22]. Intuitively, our equations
first count paths leading to (x, y) according to the strategy, then multiply the result (Path)
by the probability (S0, S1) that answers follow any single such path. Let Si(x, y) be the
probability that by the time we have asked x+ y queries we receive (in any specific order) x
negative answers and y positive answers and have V = i. We then have:

S0(x, y) = (1− s)× (1− e0)x × ey0 (1)
S1(x, y) = s× ex1 × (1− e1)y (2)

Let Path(x, y) denote the weighted number of paths (i.e., sequences of answers) that
consist of y positive and x negative answers, each path being weighted by (1−p) where p is the
probability (depending on the path and the strategy) to stop along the path before reaching
point (x, y). We partition these paths into two groups: Path(x, y) = tPath(x, y) +cPath(x, y)
with tPath(x, y) = Pstop(x, y) × Path(x, y). Thus, tPath(x, y) and cPath(x, y) respectively
count the paths that terminate and continue after reaching point (x, y). We observe that the
strategy Pstop uniquely determines the values of tPath and cPath, and reciprocally. A point
(x, y) is reachable if Path(x, y) > 0.

I Example 1. The running example illustrates the definitions along the paper with error
rates e0 = .25 and e1 = .2, threshold τ = .0075, budget m = 15, and selectivity s = .8.
Figure 1 pictures the strategies returned for those parameters by the algorithms investigated
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SPRT 6.94 0.008
AdaptSprt 7.748 0.00741
ladder 7.59 0.00749
shrink 7.73 0.00748
linear 7.56 0.0075

Figure 1 Strategies returned for e0 = .25, e1 = .2, τ = .0075, m = 15, and s = .8.

in this paper: unreachable, accepting, rejecting, and continuing points are represented as
white, blue (with a checkmark), red (with cross), and green squares respectively. Probabilistic
points are circles, with similar colors (and marks). Other signs in the figure will be discussed
later on.

We further define gi(x, y) as the probability that V = i and the point (x, y) is ever
reached for i = 0, 1. This value is computed as: gi(x, y) = Path(x, y)×Si(x, y). Let Err(x, y)
denote the probability of error when making a decision at point (x, y) (we detail in the next
section how to calculate Err(x, y)). The probability that we reach (x, y) and stop there is∑

(x,y)(g0(x, y) + g1(x, y))× Pstop(x, y). The cost of a strategy is therefore:

C =
∑
(x,y)

(g0(x, y) + g1(x, y))× Pstop(x, y)× (x+ y)

and the error of the strategy is:

E =
∑
(x,y)

(g0(x, y) + g1(x, y))× Pstop(x, y)× Err(x, y)

The Problem Definition

The error threshold τ fixes the maximal error a strategy is allowed. A strategy is feasible if it
satisfies the budget and error constraints m and τ , and optimal if it has minimal cost among
feasible strategies. Our objective is to find the optimal strategy, given the priors e0, e1, s and
the constraints m and τ .

Optimal Stopping Problem
Input: selectivity s, error threshold τ , error rates e0, e1 and budget m
Question: find a feasible strategy that minimizes C

The strategies (and grids) that we consider satisfy certain constraints, enumerated below.
The objective is to minimize the cost C under the following constraints:
1. There is exactly one path going through the origin : cPath(0, 0) + tPath(0, 0) = 1
2. Conservation of paths: the weighted number of paths reaching point (x, y) is equal to

the number of paths that continue through its predecessors (x − 1, y) and (x, y − 1):
Path(x, y) = cPath(x− 1, y) + cPath(x, y − 1)

3. All strategies are limited to m queries: ∀(x, y), x+ y = m =⇒ cPath(x, y) = 0
4. The error rate of the strategy is at most τ :

E =
∑

(x,y):x+y≤m

tPath(x, y)×min(S0(x, y), S1(x, y)) ≤ τ

Up till now, the introduction followed the definitions and equations of [22], but the
remainder of this section presents useful properties of strategies from a different perspective.
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2.2 General Framework
The probability that V = i given that (x, y) has been reached is given by: gi(x, y)/(g0(x, y) +
g1(x, y)) = 1/(1 + (g(1−i)(x, y)/gi(x, y))), where gi(x, y), as previously defined, is the prob-
ability that V = i and point (x,y) is reached for i = 0, 1. The error committed when making
a decision at (x, y) is therefore:

Err(x, y) =
{

1
1+g1(x,y)/g0(x,y) if the decision at (x, y) is Pass

1
1+g0(x,y)/g1(x,y) if the decision at (x, y) is Fail

(3)

To minimize error, a strategy should therefore opt for Pass if g1(x, y)/g0(x, y) > 1, and
Fail if g1(x, y)/g0(x, y) < 1. The decision has no impact on error when g1(x, y) = g0(x, y).
We henceforth assume that all strategies adopt this decision rule since it minimizes error
and has no impact on the cost. The decision to accept or reject thus only depends on the
value of the likelihood ratio g1(x, y)/g0(x, y), which can be computed from x, y, and the
parameters independently from the strategy. The following equation further details the
location of accepting and rejecting points, and as such refines the property presented as the
path principle in [22]:

log g1(x, y)
g0(x, y) = log

(
s

1− s ×
(

e1

1− e0

)x
×
(

1− e1

e0

)y)
= log s

1− s + x log
(

e1

1− e0

)
+ y log

(
1− e1

e0

)
I Remark. The contour lines for the likelihood ratio (i.e., the set of points with likelihood
ratio g1(x, y)/g0(x, y) = c for some constant c) form a straight line on the grid, and all
contour lines are parallel. Furthermore e0, e1 < 1/2 so the ratio increases strictly with y and
decreases with x.
We call the line (g1(x, y)/g0(x, y)) = 1 the decision line. Points above this line satisfy
1 < g1(x, y)/g0(x, y) and are therefore accepting, while points below the line are rejecting.

I Example 2. For the running example with e0 = .25, e1 = .2, τ = .0075, m = 15 and
s = .8, the decision line has equation: y = − log(.2/.75)

log(.8/.25)x−
log(4)

log(.8/.25) u 1.11× x− 2. This line
is depicted in grey on all the grids in Figure 1.

2.3 Simple Optimizations
Before presenting the algorithms we describe three basic optimizations that they all employ.
The first is borrowed from [22] and the other two are new.

Ladder Strategies

Parameswaran et al. [22] prove that under reasonable assumptions, all optimal strategies
have a particular shape. They define a ladder strategy as a strategy whose terminating points
can be partitioned into two converging sequences: the upper ladder and the lower ladder.
The points of an upper ladder are given by a non-decreasing mapping from x to y whereas
the lower ladder is a non-decreasing mapping from y to x. Furthermore, the points of the
upper ladder stay above the decision line, whereas those of the lower ladder stay below. For
example, all deterministic strategies represented in Figure 1 (i.e., a,b,c, and d) are ladder
strategies. It has been conjectured in [22] that any optimal strategy is a ladder strategy. We
adopt this conjecture and focus in this paper on ladder strategies.
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Pruning the Grid

Let (xdec, ydec) denote the point at which the decision line and x+ y = m+ 1 intersect, i.e.,
the unique point such that x+ y = m+ 1, (x− 1, y) is accepting and (x, y− 1) rejecting. All
points with x = xdec or y = ydec are terminating in any optimal strategy, since all points
reachable from (x, y) return the same decision (e.g., Pass) so that continuing asking questions
from (x, y) is pointless.
I Example 3. In the running example, the budget bounds x+ y by 15, so that (xdec, ydec) =
(8, 8). All strategies presented in Figure 1 are therefore restricted to x, y ≤ 8.

Deciding Feasibility

A problem instance admits a feasible strategy (strategy meeting the error and budget
constraints) if and only if the rectangular strategy σrect(xdec, ydec) with terminating points
only along x = xdec and y = ydec is feasible. Point (xdec, ydec) is obtained in constant time
as the intersection of two lines: the decision line and the line x + y = m. The error of
σrect(xdec, ydec) can thus be computed as B(e0; ydec, xdec)+B(e1;xdec, ydec), where B denotes
the incomplete beta function [7], incorporated in standard numeric libraries. One can thus
decide feasibility in constant time for all practical purposes, and we therefore only consider
feasible problems from now on.

3 Likelihood Ratio Test

The first solution we introduce is based on the Sequential Probability Ratio Test (SPRT),
defined by Wald [23] in the context of quality control. As it may return strategies with
unbounded budgets, we also consider its truncated variant which limits the budget but may
exceed the error constraint. We finally propose an adapted version of SPRT to accommodate
both budget and error constraints.

3.1 SPRT: Definition and Boundaries
General SPRT: Infinite Budget

The SPRT strategy defined by Wald [23] is the strategy that continues asking questions until
the likelihood ratio (defined in Section 2.2) leaves interval ]α, β[, where α and β depend on
the error we are willing to tolerate under V = 0 and V = 1. To continue asking questions
until reaching a point with Err(x, y) ≤ τ , we thus set α = τ

1−τ , β = 1−τ
τ . The error in each

decision point (hence the overall error of the strategy) is bounded by τ . As a corollary of
Remark 2.2, grid points where Err(x, y) > τ are bound by two parallel lines, so the continuing
points of the SPRT strategy are the points located between these SPRT lines, characterized
in the following Proposition:
I Proposition 4. A point (x, y) satisfies Err(x, y) ≤ τ if and only if g1(x, y)/g0(x, y) /∈
] 1−τ
τ , τ

1−τ [. Furthermore, the points with Err(x, y) ≤ τ are either the points above the line:
log
( 1−τ

τ ×
1−s
s

)
≤ x log

(
e1

1−e0

)
+y log

(
1−e1
e0

)
(accepting points) or the points below the line:

log
(

τ
1−τ ×

1−s
s

)
≥ x log

(
e1

1−e0

)
+ y log

(
1−e1
e0

)
(rejecting points). We note that both lines

have identical slopes and are therefore parallel.
I Example 5. In the running example, the equations of the SPRT lines are approximately
1.11× x− 2± 4.2. To facilitate the comparison of strategies, the SPRT lines are represented
in blue and red on every plot of Figure 1.
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12:8 Filtering With the Crowd: CrowdScreen Revisited

As shown by Wald [23], this property allows to approximate in constant time the expected
cost of the SPRT. Even though an arbitrary number of questions may be needed to reach a
decision, the expected cost is typically small [23].

Limitations

Although SPRT is optimal when the budget for questions is unlimited [23], it yields unbounded
strategies which may issue an arbitrary (possibly infinite) number of questions, and is thereby
not suitable for our limited budget.

Truncated SPRT

To limit the maximum number of questions, Wald also introduces the truncated SPRT,
similar to SPRT, except that all points with x + y = m are terminating to guarantee a
decision is reached after at most m questions. Obviously, we then prune the strategy along
the lines y = ydec and x = xdec as detailed in Section 2.3.

I Example 6. Figure 1(a) represents the truncated SPRT strategy for the running example
with brown dots around the truncation points. Its error; 0.008, exceeds τ , because the
truncation includes some decision points with Err(x, y) > τ . To compensate for this
additional error, any feasible strategy must therefore include points further from the SPRT
lines.

The truncated SPRT provides a strategy within constant time, since one only needs to
compute the likelihood ratio r of the current point (x, y) to decide whether to continue
r ∈] τ

1−τ ,
1−τ
τ [, accept (r ≥ 1−τ

τ ) or reject (r ≤ τ
1−τ ]).

But the error of the strategy may be larger than τ since the truncation points have error
larger than τ . In some instances, the truncated SPRT still returns a feasible strategy, e.g.
when some decision points along the SPRT lines have an error slightly less than τ , thus
compensating for the additional error caused by the truncation. But feasibility is not always
guaranteed, and therefore the truncated SPRT cannot be trusted to solve our problem.

3.2 Adapting the SPRT Threshold
As SPRT cannot be trusted to provide feasible strategies, we propose a new adaptation of
the SPRT strategy, called AdaptSprt, which preserves the simplicity of the SPRT approach
but always returns a feasible solution.

Intuitively, the AdaptSprt algorithm computes the best strategy whose terminating points
form two lines, parallel and equidistant to the decision line, plus truncation points along
x = xdec and y = ydec. In other words, AdaptSprt starts from initial strategy σrect(xdec, ydec)
and turns the points further from the decision line into terminating points, as long as the
error of the strategy remains below the authorized threshold. This guarantees that a feasible
strategy will always be returned when there is one. For efficiency, we use binary search to
determine which points can be turned into terminating points.

Algorithm AdaptSprt can be defined more formally in terms of the likelihood ratio. For
all η > 0 let ση be the strategy that continues asking questions on all points (x, y), x ≤
xdec, y ≤ ydec where the likelihood ratio belongs to ]1/η, η[. AdaptSprt computes the maximal
threshold η for which ση is feasible. Algorithm 1 details the steps in AdaptSprt. We first build
in O(m2 logm) a list of all points (x, y) with x < xdec and y < ydec, ordered by increasing
likelihood ratio r (lines 1,2 of Algorithm 1). The continuing points of the AdaptSprt strategy
will be the first i points from the list, for some index i. As the error (resp. the cost) increases
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Algorithm 1: AdaptSprt (e0, e1, τ,m, s)
1 for all x, y, compute r(x, y) = g1(x, y)/g0(x, y)
2 L← points (x, y) ordered by increasing r(x, y)
3 Compute i0 = min{i | EvalErr(i, L) < τ}
4 return r(L(i0))

procedure EvalErr(i : int, L : point list)
5 for j in {0, . . . , i− 1}
6 Pstop(L(j))← 0
7 for j in {i+ 1, . . . }
8 Pstop(L(j))← 1
9 Compute and return the error of strategy Pstop

(resp. decreases) with i, the optimal strategy of this form is obtained by computing the
minimal i that gives a feasible strategy. The strategy corresponding to index i is evaluated
by procedure EvalErr in O(m2), and we can use binary search to compute the minimal
index within log(m2) iterations. Hence an overall complexity of O(m2 log(m)).

To represent the AdaptSprt strategy, the value r of the likelihood ratio of the ith point
is sufficient: when asking queries we can calculate in constant time whether a point has
likelihood ratio between 1/r and r, and thus reconstruct the grid on the fly. We can also
compute the strategy Pstop from the list and the index i, as shown in procedure EvalErr
from Algorithm 1 if a grid representation is preferred.

I Proposition 7. The (time) complexity of AdaptSprt is O(m2 log(m)).

I Example 8. Figure 1(b) presents the AdaptSprt strategy for the running example, with
termination lines represented as dashed lines. The truncation of the SPRT raises the error
substantially above τ , so that AdaptSprt must adopt a likelihood ratio threshold η much
larger than (1− τ)/τ to compensate for the truncation. The dashed lines are thus almost
one question beyond those of SPRT.

4 Deterministic Algorithms

We next investigate the scalability of algorithms proposed by Parameswaran et al. [22] for
computing strategies. Specifically, we analyze the complexity of these algorithms and present
optimizations that drastically reduce the running time of the algorithms compared to the
more naïve versions presented in [22], thereby allowing to support larger budgets.

4.1 Enumeration of Ladder Strategies
The most naïve approach to compute an optimal strategy is to enumerate and evaluate
all possible strategies. This naïve approach has complexity O(m2 × 2m2/2) and is thus
intractable.1 Parameswaran et al. [22] therefore proposed the ladder algorithm which limits
the search to ladder strategies, as explained in Section 2.3. They report running times that
are reasonable for small values of m (m ≤ 14), but grow exponentially and become unfeasible

1 A bound of m2 × 2m was improperly claimed in [22] for the naïve enumeration of grids but it is clear
from their proof that the actual bound is O(m2 × 2m2/2)[21]
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as m gets larger. We first establish a tight exponential bound for the complexity of ladder,
and then introduce optimizations offering much shorter running time in practice, in spite of
a similar worse case exponential complexity.

Asymptotic Analysis

We prove that the complexity of ladder is essentially O(22m). Our exponential bound bears
witness to the efficiency of the ladder algorithm relative to the enumeration of all possible
(not necessarily ladder-shaped) strategies. For this we can easily show the following lower
bound:

I Lemma 9. The number of possible upper and lower ladders can be roughly bounded by
O(2m/

√
m). Hence, there are O(22m/m) deterministic ladder strategies.

This is an overapproximation, yet a fairly accurate one: we show in the technical report [11]
that for s = 0.5, e0 = e1, the number of ladder strategies is Ω(22m/m3).

Enumeration with Incremental Evaluation

We detail in Algorithm 2 an optimized implementation that computes the cost and error of
every ladder strategy incrementally, in overall O(22m). We first discuss our representation of
a ladder strategy and then explain our optimizations.

As mentioned in Section 2.3, a ladder strategy consists of two distinct sequences of points:
the upper ladder and the lower ladder. Each ladder is represented as an array with size xdec

storing integers from −1 up to ydec. Array up and down represent respectively the upper and
lower ladder: down(i) and up(i) record respectively the lowest and highest reachable points
on column i according to the strategy.

I Example 10. Figure 1(c) represents the optimal ladder strategy for our input parameters:
up = [5, 5, 6, 7, 8, 8, 8, 8] and down = [−1, . . . ,−1, 0, 1]. None of the other algorithms depicted
returns the optimal strategy on that instance, although the performances are quite similar.

We adapt an old technique (see [14, Algorithm P]) to iterate over all upper ladders in
increasing lexicographic order, and enumerate for each one the lower ladders in decreasing
order. As a result, arrays representing successive strategies generally differ on the last few
columns only, which reduces the amount of work required to evaluate a strategy.

Two simple optimizations allow us to speedup the enumeration: (1) we evaluate in-
crementally the cost and error of strategies, and (2) we skip some strategies that cannot
contribute an optimal solution. For this, we store two arrays errorTill and costTill, where
errorTill(i) records the partial sum of E restricted to the points with x ≤ i, and similarly
with costTill for C. We update errorTill, costTill, and Path from one strategy to the
next (line 7 of Algorithm 2). The iterator down.next() returns (−1, []) if down is already
the minimal ladder, and otherwise returns the greatest possible ladder down′ smaller than
down, together with the smallest index i in which down and down′ differ. To skip hopeless
candidates, we set down(j) to down(i) for all j > i when the error up to column i exceeds
the threshold, or the cost up to column i exceeds the cost of the best strategy encountered
so far (line 13 in Algorithm 2).

I Example 11. When experimenting on the running example, more than half the strategies
were skipped in line 13, and the average index i was 5.5. Some 16 points were visited per
strategy, on average, when updating arrays and matrix in line 7, instead of u 56 without
incremental evaluation.
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Algorithm 2: ladder (e0, e1, τ,m, s)
1 errorTill, costTill← [0, 0, . . . , 0]
2 BestCost← m+ 1
3 BestStrategy← Null
4 for up in upperladders
5 down← maximal lowerladder; i← 0
6 while i ≥ 0
7 Update errorTill, costTill, Path
8 if (errorTill[m] < τ and
9 costTill[m] < BestCost[m] )

10 BestCost← costTill[m]
11 BestStrategy← (up, down)
12 if (errorTill[i] > τ)
13 skip ladders until down(i) is modified
14 else (i, down)← down.next()
15 return BestStrategy

We show in the technical report [11] that the average number of cells updated on line 7
is m. As a consequence, Algorithm 2 has complexity O(22m/m)×O(m).

I Proposition 12. Algorithm 2 runs in O(22m).

We have thus proved that an optimal ladder can be obtained in O(22m), and the number
of possible ladders strategies is exponential. This does not preclude the existence of faster
algorithms, and we leave lower bounds on the complexity of the problem for future research.

4.2 Shrink
Another interesting heuristic-based algorithm introduced by Parameswaran et al. [22] is
shrink. The strategies returned by this heuristic are not necessarily optimal, but are hardly
worse than the optimal ladder strategy in practice, while the running time is much improved.
A naïve implementation following [22] has complexity O(m5) and therefore, does not scale
well for large values of m. We next show how shrink can be run in O(m4).

We recall the shrink heuristic from [22] in Algorithm 3. This algorithm starts with
the initial strategy σtriangle(m) having terminating points along the line x + y = m. At
each iteration, for each terminating point (x, y) on the grid, we check if the solution would
remain feasible if we were to turn one of the neighboring points (x− 1, y), (x, y − 1) into a
terminating point. For all feasible point we calculate the change in cost ∆C and error ∆E
that would result from shrinking the point. We then shrink the point with the largest ratio
−∆C

∆E and repeat this step until no more points can be shrunk. We thus use ratio −∆C
∆E in

order to maximize the cost removed from the strategy while minimizing the additional error.

I Example 13. In Figure 1(d), we shade points that were turned into terminating points
along the successive iterations of shrink, with darker points corresponding to later iterations2.
The first point is thus (0, 7), followed by (1, 7), (0, 6), . . . , (6, 1), and (5, 0).

2 Terminating points with x = 8 or y = 8 are particular in that they were not shrinked but were
terminating from the beginning. We color them in dark red and blue.
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Algorithm 3: shrink (e0, e1, τ,m, s)
1 Compute S0, S1, xdec, ydec

2 for all x, y:

Pstop(x, y)←
{

1 if x+ y = m,

0 otherwise
3 Compute Path, ∆Cost and ∆Err
4 Error← ∆Err(0, 0)
5 S ← {(x,y) along the boundary |

Error+Path(x, y)×∆Err(x, y) < τ}
6 while S 6= ∅
7 (x0, y0)← point of S maximizing −∆Cost(x,y)

∆Err(x,y)
8 Pstop(x0, y0)← 1
9 for all x, y: update Path, ∆Cost, ∆Err

10 update S
11 return Pstop

Algorithm shrink from [22] is polynomial, but still pretty slow. We next present new
equations for the ratios together with a pruning optimization, that make it run faster.

4.2.1 Computing Cost/Error Ratios Efficiently
A major source of inefficiency in the above shrink implementation is the calculation of
the Cost/Error ratio in each iteration. The naïve implementation of shrink computes the
Cost/Error ratio separately for each terminating point on the grid, by evaluating the cost
and error of the shrunken strategy. As there are Ω(m) terminating points this requires Ω(m3)
operations per iteration. We introduce new equations that help compute ∆Cost(x, y) and
∆Err(x, y) for all points (x, y), with overall complexity O(m2). Algorithm shrink was initially
designed to compute deterministic strategies, but in Section 5 we extend it to probabilistic
strategies, so we present all equations in a general probabilistic setting.

Impact of Modifying the Probability to Stop

Let us denote by CostImpact(x, y) and ErrorImpact(x, y) the average contributions to cost
and error of one single path through (x, y) (and possibly stopping at (x, y)). We then have:

CostImpact(x, y) = Pstop(x, y) ∗X + (1− Pstop(x, y)) ∗ Y
ErrorImpact(x, y) = Pstop(x, y) ∗ Z + (1− Pstop(x, y)) ∗ T

where X, Y , Z and T are defined as

X = (S0(x, y) + S1(x, y)) ∗ (x+ y) Y = CostImpact(x+ 1, y) + CostImpact(x, y + 1)
Z = min(S0(x, y), S1(x, y)) T = ErrorImpact(x+ 1, y) + ErrorImpact(x, y + 1)

Intuitively, X and Z are the contribution to the overall cost and error from any sequence
of x negative answers and y positive answers, whereas Y and T are inductively defined as
the contribution to cost and error of a path traversing the node. To compute the impact of
modifying the strategy at (x, y) in terms of these expressions, let E, E′ and C, C ′ denote
the cost and error of the strategy before and after adding δ ∈ [−1, 1] to Pstop(x, y). Then
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E′ − E = δ × Path(x, y)×∆Err and C ′ − C = δ × Path(x, y)×∆Cost where

∆Cost = X − Y and ∆Err = Z − T (4)

We observe in these equations that the Cost/Error ratio is independent of δ and Path(x, y),
and is given by γ(x, y) = (T −Z)/(X −Y ). CostImpact and ErrorImpact can be computed
recursively in O(m2) over the whole grid, starting from point (xdec, ydec). We have thus proved
that ∆Err and ∆Cost can be computed at all points in overall O(m2) according to Equations 4.
Furthermore, Path can also be computed in O(m2) according to the preliminaries, so that
each iteration of shrink takes time O(m2). In addition, there are at most O(m2) such
iterations, since the number of iterations is at most the number of squares on the grid.
Therefore, our implementation of shrink runs in O(m4).

I Proposition 14. With our optimizations, the shrink algorithm runs in O(m4).

Note however that the actual number of iterations is proportional to the number of points
removed from the grid so the running time is quadratic when few points are removed.

4.2.2 Minimizing Shrink Iterations

To further speed up the computation we show how the pruning optimization described in
subsection 2.3 can spare about half the iterations. Specifically, we prune the initial strategy
σtriangle(m) into σrect(xdec, ydec). To justify this move, we show in the technical report [11]
that the points that are pruned are anyway the first points eliminated by shrink.

I Proposition 15. The first iterations of shrink from the initial strategy σtriangle(m) elim-
inate the points with x > xdec or y > ydec until the strategy σrect(xdec, ydec) is considered.
Consequently the solutions returned by shrink from initial strategy σtriangle(m) and from
σrect(xdec, ydec) are identical.

I Remark. Another heuristic, symmetric to shrink, was introduced in [22]. This growth
heuristic starts with the initial strategy asking 0 questions: all points are initially terminating,
and then iteratively turns terminating points into continuing points. Heuristic growth did
not always return a feasible strategy, but we show in the technical report [11] that adopting
a better initial strategy wipes off the problem. The performances of growth and shrink are
fairly similar, so we do not detail the heuristic further in this paper.

5 Randomized strategies

Previous sections focus on deterministic strategies, for which we have no optimal scalable
algorithm. But if we search instead for probabilistic strategies, our optimization problem
becomes continuous, and the constraints presented in Section 2.1 are all linear. We can
thus use linear programming to compute an optimal solution in Ptime [22]. How are the
probabilistic and deterministic strategies related? In particular, can we compute reasonably
good deterministic strategies from probabilistic ones?

In this section we first prove that an optimal probabilistic strategy has essentially a single
probabilistic point (point where Pstop differs from 0 and 1). Continuing at this point thus
provides a deterministic strategy. Conversely, we show that a minor modification to the
shrink algorithm allows to compute an optimal probabilistic strategy.

ICDT 2016
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5.1 Randomization is Limited
We prove in the technical report [11] that in any optimal strategy the Cost/Error ratio
is the same in all probabilistic points, and this ratio is not greater than the ratio of any
terminating point nor smaller than the ratio of any continuing point. We also prove that the
probability of terminating can be transferred from a point to any point with higher ratio
without increasing error and cost, and exploit this property to prove the following result:

I Proposition 16. There exists an optimal probabilistic strategy with a single probabilistic
point. Furthermore, in any optimal strategy the probabilistic points maximize the ratio γ
among non-terminating points.

By turning the unique probabilistic point of such a strategy into a continuing point, one thus
obtains a deterministic strategy with error less than τ and with slightly larger cost.

I Example 17. Figure 1(e) represents an optimal probabilistic strategy, with a single
probabilistic point, at (0, 4), where the probability of terminating is Pstop(0, 4) u 0.623. If
we set Pstop(0, 4) to 0, the cost rises to u 7.789.

The linear programming techniques mentioned above are very efficient for small values of
m, and have polynomial complexity in theory. In practice, however, our experiments with
common linear solvers show that they may be rather slow or inaccurate, returning poor
strategies even for moderately large budgets. We therefore propose an alternative efficient
algorithm based on shrink to compute optimal probabilistic strategies.

5.2 Shrink for Randomized Strategies
Algorithm shrink as defined in [22] returns a deterministic, not necessarily optimal, strategy,
but it can easily be adapted to compute an optimal randomized strategy by replacing lines 5,
6, and 8 with respectively:

line 5: S ← {(x, y) | (x,y) is reachable}
line 6: while S 6= ∅ and Error < τ

line 8: Pstop(x0, y0)← min(1, τ−Error
Path(x,y)×∆Err(x,y) )

This new algorithm shrinkp still computes the point with the maximal ratio, but adapts
the probability of terminating at this point so as not to exceed error τ , instead of restricting
the maximum to points on which one can terminate without exceeding error τ . It turns out
that shrinkp returns an optimal strategy (we leave the proof for the technical report [11]):

I Proposition 18. The probabilistic strategy returned by shrinkp is optimal, and has a
single probabilistic point.

This result sheds a new light on the shrink algorithm, but it can also be used to leverage
the running time of shrink and the linear program, since shrink and shrinkp coincide at
any step until the last iteration of shrink as we discuss in the technical report [11].

6 Experimental evaluation

Synthetic and real-crowd experiments: quality of the strategies

To complement the theoretical study we conducted experiments on a large set of synthetic
parameters. Due to space constraints we only present a small sample of our experiments
here and leave details for the technical report [11]. Those experiments show that some linear
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question s e0 e1

Q1 photos from Australia .18 .25 .36
Q2 photos from Greece or Cyprus .26 .27 .32
Q3 dishes containing dairy .17 .11 .27
Q4 dishes containing onions .54 .38 .27
Q5 dishes containing garlic .62 .44 .48
Q6 dishes containing eggs .19 .22 .57 0

5

cost

Q1 Q2 Q3 Q4

: AdaptSprt
: ladder: linear : shrink : rect

: expected value

Figure 2 Question parameters(left) and average cost per item (right, with m = 12, τ = .1).
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Figure 3 For e0 = .2, e1 = .25, τ= .05, s= .6: cost, and sensitivity (only for shrink with m=15).

program solvers become unreliable for budgets beyond m = 30 questions, while ladder
times out around m = 20 and shrink and AdaptSprt manage hundreds of questions. The
expected cost of strategies matches theoretical expectations with AdaptSprt slightly worse
than shrink and ladder, themselves a bit more expensive than the optimal probabilistic
strategies. The experiments on a real crowd with budgets up to m = 40 exhibit similar
patterns. Figure 2 depicts the quality of strategies obtained when asking the crowd to
detect (a) the presence of an ingredient in some recipe or (b) the location of a photograph.
Experiments were run with a pool of 100 workers on the AskIt [4] crowdsourcing game
platform, developed in our lab.

The error rates, summarized in Figure 2, are relatively high because answers were rarely
obvious. For question 6 in particular, e1 was above .5 which means the users more often
than not missed the presence of eggs in the dishes. We focus our analysis on questions with
reasonable error rates (Q1 to Q4).

Sensitivity of the model

Applying our algorithms on a real crowd raised new issues such as the adequacy of the model
considered. Our algorithms indeed assume the crowd behaves as a random oracle according
to error parameters known beforehand. Our synthetic experiment in Figure 3 measures the
sensitivity of a strategy computed by shrink to input parameters: it shows the expected
error and cost when the strategy is executed on an oracle with error parameters diverging
from their assumed values. A related issue is the relevance of approximating workers as
a random oracle with uniform error over tasks: a threshold effect appears when we try to
request arbitrarily high accuracy: when τ is set to a very small values, adding workers did
not always provide in practice additional information to complete the most difficult tasks
with enough accuracy.

7 Conclusion and Related work

This paper investigates the optimization of queries that filter data using humans. We provided
new theoretical insights into the problem, and so designed two novel algorithms – AdaptSprt
and shrinkp – that overcome the scalability issues of previous proposals. We also optimized

ICDT 2016
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algorithms ladder and shrink from [22], and evaluated thoroughly all algorithms. Our
results show that AdaptSprt is the only algorithm which performs well for all budgets, while
ladder performs marginally better for small budgets, but is still extremely slow with larger
ones (even when optimized), whereas for moderate budgets our optimized shrink works well.
With regard to probabilistic strategies, the results show shrinkp to have superior reliability,
compared to the previous proposals that rely on linear solvers. In summary, our results show
that AdaptSprt and shrinkp both scale well for large budgets. Although cost wise shrinkp
is optimal, the actual difference of cost is negligible while the running time of AdaptSprt is
superior.

We already discussed extensively the CrowdScreen framework [22] revisited in this paper.
Parameswaran et al. have reviewed in [22] the connections with the related fields in machine
learning and statistics, and we thus do not repeat this here and only briefly survey two
directions of related work: sequential testing, and classifying with the Crowd.

Sequential tests have been used in numerous fields since their introduction by Wald [23]:
quality control, clinical research, acoustic detection, econometrics, etc. Numerous variants
have been considered for computing efficient tests, depending on the number of categories
tested to which an object may belong; the cost function to be optimized; the form of the
strategy boundary [2] and budget constraint [9]; or on whether questions are issued one at a
time or in batches [15]. To the best of our knowledge, however, the problem of efficiently
computing the optimal test, in the sense studied here, has not yet been addressed. Closest
to our work is the system of [10] considering the profit/penalty of correct/wrong answers in
a multi-question scenario. Extending our work into such settings is left for future work.

The optimal strategy depends on the query selectivity and the estimated users error.
Experiments in [17] stress that classifier performance improves a lot with a proper choice of
prior error rates. In practice, the nature of error can be estimated by asking questions to the
crowd on a small test set for which the correct answer is already known. Online methods to
calculate error rates are discussed in [16], [5], [25] where the error rates are tuned based on
comparison of the strategy’s decision and the users’ answers. One goal of our framework is to
avoid any kind of computation online by fixing the filtering strategies beforehand. Adapting
strategies according to online error computation is left for further research.

Classification problems with heterogeneous workers and data have been considered in
particular in the machine learning literature, exploiting a wide range of techniques from multi-
armed bandit problems [1] to singular value decomposition [13], Bayesian learning [24] and
variational inference in graphical models [17]. Users and tasks with diverging characteristics
raise the challenge of selecting tasks and users to make the most of the budget. For example,
Karger et al. [13] propose an algorithm to assign questions to heterogeneous workers with
optimal tradeoff between redundancy and accuracy. Empirical models have also been proposed
to improve the accuracy of classification by identifying annotation patterns (inherent difficulty
of images, groups of users with similar behaviors) [24, 17]. Incorporating some of these ideas
in our work is a challenging future work.

Our results focus on binary filters that classify items in two disjoint sets, but can easily
be adapted to classify items among n classes, though complexity increases exponentially
with n. Devising optimizations to improve performance in this setting is thus a future
challenge. Furthermore, processing several filters simultaneously may allow to exploit
correlations between filters, or to select dynamically the questions that would be most
informative [4, 6, 12].

Finally, empirical studies show that batching tasks may have positive impact on Crowd-
Sourcing efficiency [19]. Similarly, pre-recruiting schemes [3], that allow to obtain answers
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from the workers within seconds, may help to exploit the full benefit of sequential testing
without increasing latency. Devising optimization strategies with batches is challenging.

Acknowledgements. The authors are very thankful to A. Parameswaran for helpful discus-
sions. This work has been partially funded by the European Research Council under the
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Abstract
We study streaming algorithms for partitioning integer sequences and trees. In the case of trees,
we suppose that the input tree is provided by a stream consisting of a depth-first-traversal of the
input tree. This captures the problem of partitioning XML streams, among other problems.

We show that both problems admit deterministic (1+ε)-approximation streaming algorithms,
where a single pass is sufficient for integer sequences and two passes are required for trees. The
space complexity for partitioning integer sequences is O( 1

ε p log(nm)) and for partitioning trees
is O( 1

ε p
2 log(nm)), where n is the length of the input stream, m is the maximal weight of an

element in the stream, and p is the number of partitions to be created.
Furthermore, for the problem of partitioning integer sequences, we show that computing an

optimal solution in one pass requires Ω(n) space, and computing a (1 + ε)-approximation in one
pass requires Ω( 1

ε logn) space, rendering our algorithm tight for instances with p,m ∈ O(1).
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1 Introduction

Partitioning Massive Data Sets. Data partitioning is a widely employed technique for
processing massive data sets. The input data is partitioned into (not necessarily disjoint)
subsets of much smaller sizes which are then distributed to different computational units.
Parallel or distributed algorithms are then executed on the partitioned data.

The data partitioning step can be a difficult task in itself, especially if the data sets
considered are massive. Some partitioning problems are NP-hard (some are even hard to
approximate [3]), while others are more amenable. However, in the context of massive data
sets, it is not clear whether even the more amenable problems can be solved efficiently.

In this paper, we are therefore interested in how well big data sets can be partitioned
by massive data set algorithms. We focus on streaming algorithms, and we consider the
problems of partitioning integer sequences and partitioning trees. Streaming algorithms use
a small random access memory which is usually only of poly-logarithmic size in the input.
They scan the entire data from left to right sequentially in passes and therefore make optimal
use of data locality.

Partitioning Integer Sequences. Let X ∈ {0, . . . ,m}n be a sequence of integers of length
n, for an integer m. Given an integer parameter p, the goal is to partition X into p contiguous
blocks so as to minimize the maximum weight (sum of elements) of a block. In other words,
we have to find p−1 separators s1, . . . , sp−1 with 1 = s0 ≤ s1 ≤ · · · ≤ sp−1 ≤ sp = n+1 such
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Figure 1 Left: A weighted tree t. The small numbers next to the nodes denote their IDs. The
trace of a depth-first-traversal of t is 241223314122113312, where we ambiguously write w for (‘d’, w)
and w for (‘u’, w). Right: Partitioning of t into three parts with bottleneck value 7. A streaming
algorithm should output the IDs of the root nodes of the created partitions. Here, these are 1, 3, 6.

that max
{∑sj+1−1

i=sj Xi

∣∣∣ j ∈ {0, . . . , p− 1}
}

is minimized. We will abbreviate this problem
as Part.

This partitioning problem appears in many applications, especially in the context of load
balancing, and has been extensively studied both from a theoretical [6, 9, 11, 20, 21, 13, 10]
and a practical perspective [22, 25]. One example application is the decomposition of large
computational meshes along space-filling curves [26, 15, 4] in parallel scientific computing,
where multi-dimensional grid elements are ordered with respect to a traversal along a space-
filling curve, giving rise to the one-dimensional problem of partitioning integer sequences. Very
efficient exact algorithms for this problem exist, for example the O(n logn) time algorithm of
Khanna et al. [13], the O(n+ p1+ε) time algorithm of Han et al. [10], and a highly non-trivial
optimal O(n) time algorithm of Frederickson [9].

Partitioning Trees. The problem of partitioning integer sequences is extended to trees as
follows: Given a rooted unranked node-weighted tree t with weights taken from the set
U = {0, . . . ,m} for an integer m, and an integer p, the goal is to partition t into p subtrees
t1, . . . , tp by removing p− 1 edges so as to minimize the maximum weight of a subtree. If
we are allowed random access to the input, this problem can also be solved optimally by
an O(n) time algorithm by Frederickson [9]. Classical applications of this problem include
paging and overlaying [24]. More importantly, this problem also captures the problem of
partitioning XML documents (see further below), which is the main motivation of this work.

In the case of integer sequences, we assume that the input stream for our streaming
algorithm is the integer sequence X itself. In the case of trees, since we target XML
documents, we assume that the input stream constitutes the trace of a depth-first-traversal of
the input tree t. More precisely, the input stream is the following trace X ∈ ({‘d’, ‘u’}×U)2n

of a depth-first-traversal of t (‘d’ stands for down-step and ‘u’ stands for up-step): If a
node with weight w ∈ U is visited top-down (bottom-up) at step i then Xi = (‘d’, w) (resp.
Xi = (‘u’, w)). We also say that a node v of the input tree t has ID i if it is the ith node
that is visited by the depth-first-traversal. The trace X is fed into our streaming algorithm,
and we require that the algorithm outputs the IDs of the root nodes of the p partitions (or
subtrees). We will denote this problem by Tree. In Figure 1, we give an example tree
illustrating the trace of a depth-first-traversal as well as a partitioning of the example tree.

Partitioning XML Documents and Other Applications. The traces of depth-first-traversals
of trees constitute a Dyck language, and, vice versa, every word of a Dyck language can
be seen as the concatenation of traces obtained from depth-first-traversals of the trees of a
forest. Dyck languages are languages of well-parenthesized expressions, and algorithms that
process Dyck languages such as [29, 19] and our work therefore have potential applications
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in all areas where those types of expressions appear. These include arithmetic expressions,
the sequence of CALL and RETURN instructions of the traces of program executions, and XML
documents, which are probably the most relevant application for the database community.
An XML document can be seen as the trace of a depth-first-traversal of its underlying
document tree.

Partitioning XML documents is for instance widely used in the area of parallel XML
databases and for the parallel evaluation of queries such as XPath, where the term XML frag-
mentation is usually employed [7]. In this context, additional constraints on the partitioning
other than load balancing are often imposed in order to avoid data dependencies between
different partitions, however, achieving good load balancing is crucial for any performant
solution. Kim and Kang [14] study the setting where an XML document is fragmented
and the resulting partitions are streamed to mobile client devices, which then distributively
evaluate a query. They underline the importance of small partitions by pointing out that:
“No matter how efficient a fragmentation method is, it is useless and impractical unless the
size of every resulting fragment is less than that of the buffer allocated for receiving the
fragments at the client devices.” Thus, our work can be seen as a first step towards streaming
XML fragmentation. Further potential applications of the tree partitioning problem include
the parallel validation of XML documents with respect to local validity schemata such as
DTDs [16] and similar problems that require only local knowledge of an XML document.

Starting Point: Parametric Search. Many previous works tackle Part and Tree using
parametric search [9, 10, 13]. For both problems, given a value B, there is an algorithm that
computes a partitioning in linear time with bottleneck value at most B if such a partitioning
exists. If there is no such partitioning, then the algorithm fails. Such an algorithm can be
regarded as a feasibility tester: Given a value B, it checks whether the bottleneck value of
an optimal partitioning B∗ is larger than B (B is not feasible) or smaller than/equal to B
(B is feasible). A trivial range for B∗ is {0, 1, . . . ,mn}1 since the input consists of n integers
or tree nodes of maximal weight m. Thus, via a binary search, running the feasibility tester
O(log(mn)) times, an exact algorithm with runtime O(n log(mn)) can be obtained.

For an integer sequence X, a value B can be tested by traversing X from left to right,
setting up partitions of maximal sizes at most B. If at most p partitions are created, then
B passes the test, otherwise it fails. This tester, denoted Probe in the literature, can be
implemented as a one-pass streaming algorithm with O(p log(n) + log(mn)) space2. Hence,
using the previous binary search, a O(log(mn)) passes, O(p log(n) + log(mn)) space exact
streaming algorithm for Part can be obtained. For Tree, a linear time feasibility tester
also exists [9], however, it appears impossible to implement it space efficiently as a one-pass
streaming algorithm.

Probe can also be used to obtain a one-pass streaming algorithm with approximation
factor (1 + ε) (meaning that a partitioning with bottleneck value at most by a factor (1 + ε)
larger than the optimal bottleneck value is computed): In one pass, we run multiple copies of
Probe testing values (1+ ε)i, for all integers i with 0 ≤ i ≤ log(mn)

log(1+ε) = O( log(mn)
ε ), in parallel,

and we return the partitioning with the smallest feasible bottleneck value. We observe that
only O( log p

ε ) copies of Probe are active at any moment during the processing of the stream:

1 A slightly better upper bound for B∗ is dmnp e+ m, however, this does not change our arguments and
only complicates the presentation.

2 O(p log(n)) for storing p− 1 partition boundaries, and O(log(mn)) for accumulating the weight of the
current partition.
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Let B′ be the smallest bottleneck value that has not yet been declared infeasible by a copy
of Probe. Then, the total weight of the prefix of the stream seen so far is at most pB′,
and hence the copies of Probe testing values larger than pB′ have not yet set their first
partition boundaries. Thus, it is not necessary to explicitly execute them yet. Using this
observation, the following result can be obtained:

I Fact 1. There is a one-pass (1 + ε)-approximation streaming algorithm for Part with
space O( log p

ε · (p log(n) + log(mn))).

We regard this algorithm as a baseline against which we will compare our results. Its
main weakness is its update time 3: Since Θ( log p

ε ) copies of Probe have to be updated, the
worst-case and amortized update time is Θ( log p

ε ). Furthermore, the log p factor in the space
complexity of the algorithm seems unnatural. In this paper, we will show that, using a very
different technique, both weaknesses can be overcome.

Results and Techniques. In many areas of computer science, a common technique for
dealing with large objects is to replace them with smaller ones that capture important prop-
erties of the initial object sufficiently well. Examples include kernelization [18], approximate
distance oracles [27, 23], and graph sparsification [5]. In recent years, this technique has
proved useful for data streaming algorithms, e.g., [8, 1, 2, 12], and we follow this line here.

Our algorithms for Part and Tree compute much smaller instances from the problem
instance described in the input stream, so that a (1 + ε)-approximate partitioning can be
deduced from an exact partitioning of the small instances. Our contribution is two-fold:
First, we identify the right properties that guarantee that the smaller objects still capture
(1 + ε)-approximate partitionings of the original instance. In the case of Part, we prove that
a small instance of size O(pε ) is sufficient, and for Tree, an instance of size O(p

2

ε ) suffices.
Note that, in both cases, the size is independent of n. Second, we prove that the small
objects with the right properties can be computed space efficiently in the streaming model.
Then, in a post-processing step, we use exact algorithms for partitioning the small instances.

This technique leads to the following algorithmic results:
A deterministic one-pass (1 + ε)-approximation streaming algorithm for Part with
space O(p log(mn)/ε), worst case update time O(1), and post-processing time O(p/ε)
(Theorem 7).
A deterministic two-pass (1 + ε)-approximation streaming algorithm for Tree with
space O(p2 log(mn)/ε), worst case update time O(1) and post-processing time O(p2/ε)
(Theorem 15).

Note that our algorithm for Part improves on the space complexity and the update time of
the algorithm described in Fact 1. Last, we complement our algorithms with lower bounds
for Part obtained through results in communication complexity:

Via a reduction to the one-way two-party communication problem Index, we show that
computing an exact solution for Part in one pass requires Ω(n) space (Theorem 18).
Via a more involved combinatorial argument, we show that algorithms that compute a
(1 + ε)-approximation for Part require space Ω(log(n)/ε) (Theorem 20).

The latter lower bound shows that our algorithm for Part is best possible for p,m ∈ O(1),
and, in particular, that the 1

ε factor in the space complexity is unavoidable for one-pass
algorithms.

3 The time between two consecutive read operations on the stream
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Outline. We consider Part in Sec. 3 and Tree in Sec. 4. Our lower bounds are given
in Sec. 5, and we conclude in Sec. 6. Due to space restrictions, the proofs of lemmas and
theorems marked by (*) are omitted.

2 Notations and Definitions

Streaming Algorithms. Generally, we denote the input stream for our streaming algorithms
by X = X[1], X[2], . . . . In the case of integer sequences, the length of X is n, and in the
case of trees, the length is 2n, since each of the n nodes of the input tree is visited twice
by a depth-first-traversal. A streaming algorithm that processes X reads the elements of X
sequentially one-by-one in passes. Streaming algorithms are defined as follows:

I Definition 1 (Streaming algorithm). An algorithm A is a p(n)-pass deterministic/random-
ized streaming algorithm with memory s(n), update time t(n), amortized update time a(n),
and post-processing time t′(n), if for every input stream X of length n:
1. A performs at most p(n) passes over the input stream X,
2. A maintains a random access memory of size s(n),
3. A has worst case running time t(n) between two consecutive read operations,
4. A has average running time a(n) between two consecutive read operations,
5. A has running time t′(n) between the last read operation and the output of the result.
If A is randomized then A has access to an infinite number of independent random coin
flips, and it outputs a correct solution with probability at least 2/3.

The algorithms presented in this paper are deterministic, however, we include randomized
algorithms in Definition 1 since our lower bounds also hold for randomized algorithms.
Furthermore, we suppose that reading an element from the input stream takes O(1) time.

Notations for Sequences. For an array X, we denote the ith element by either X[i] or Xi.
For i ≤ j, the array consisting of X[i], X[i+ 1], . . . , X[j] is denoted by X[i, j].

Notations for Trees. Let t be an unranked rooted tree on n nodes. We denote by rt(t) the
root of t. For any node v ∈ t, we denote by street(v) the subtree of t rooted at v. For two
nodes x, y ∈ t, let lcat(x, y) denote the lowest common ancestor of x and y in t, and for a
subset of nodes U ⊆ t, let lcat(U) denote the lowest common ancestor of all nodes of U in
t (if U = {u} then lcat(U) = u). Given a node v ∈ t, we denote its ID, i.e., the position
of v with respect to a depth-first-traversal of t, by Idt(v). Given an ID i, we denote its
corresponding node in t by nodet(i). With this notation, we have nodet(Idt(v)) = v.

3 Algorithm For Partitioning Sequences

The main idea of our algorithm is the computation of a coarse version Y of the input stream
X. Intuitively, a coarse version is obtained from X by repeatedly merging subsequent integers
into a single element whose weight is the sum of the merged elements. If the coarse version
Y fulfills certain properties, it can be shown that, from an optimal partitioning of Y , a
(1 + ε)-approximation to the optimal partitioning of X can be obtained.

In Subsec. 3.1, we define coarse versions. Then, in Subsec. 3.2, we show how an appropriate
coarse version Y can be computed in one pass. In a post-processing step, the coarse version
Y is partitioned optimally, giving a (1 + ε)-approximation to the optimal partitioning of X.
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3.1 Coarse Version
We now define a c-coarse version of X, and we prove that an optimal partitioning of Y
provides an approximate partitioning of X.

I Definition 2 (c-coarse version). Let m,m′, n, n′ ∈ N. Let X ∈ {0, . . . ,m}n and Y ∈
{0, . . . ,m′}n′ be integer sequences. Then Y is a c-coarse version of X if n′ ≤ n and there is
a mapping f : {1, . . . , n} → {1, . . . , n′}, denoted the coarsening function, such that:
1. f is surjective and increasing,
2. For every 1 ≤ i′ ≤ n′ :

∑
i∈f−1(i′) X[i] = Y [i′],

3. For every 1 ≤ i′ ≤ n′ : Y [i′] ≤ X[min f−1(i′)] + c.
Suppose that X = 1 3 2 1 1 5. Then, 4 4 5 is a 3-coarse version of X where the grouping of the
elements of X has been done as follows: 1 3 |2 1 1 |5. In order to fulfill Item 3 of the previous
definition, the bold elements of the previous grouping have to be mapped to elements in the
3-coarse version that are larger by at most 3.

Lemma 3 shows that an optimal partitioning of a c-coarse version has a bottleneck
value that is at most by the additive term c larger than the bottleneck value of an optimal
partitioning of the initial sequence.

I Lemma 3. Let m,m′, n, n′ ∈ N. Let X ∈ {0, . . . ,m}n be an integer sequence and let
Y ∈ {0, . . . ,m′}n′ be a c-coarse version of X with coarsening function f , for a parameter c.
Let B∗ be the bottleneck value of an optimal partitioning of X into p parts. Let s′0, s′1, . . . , s′p
be the separators of an optimal partitioning of Y into p parts and let B′∗ be the bottleneck
value. Then:
1. The separators s0, s1, . . . , sp−1, n+ 1 with si = min f−1(s′i) for i = 0, . . . , p− 1 induce a

partitioning of X with bottleneck value B′∗,
2. B′∗ ≤ B∗ + c.

Proof. Concerning Item 1, it follows from Item 2 of Definition 2 that the weight of the
partition induced by separators s′i and s′i+1 in Y equals the weight of the partition induced
by separators si and si+1 in X, for every i. Therefore, the bottleneck value is also the same.

Concerning Item 2, consider an optimal partitioning of X into p parts with bottleneck
value B∗, and let s∗0, . . . , s∗p denote the separators of this partitioning. We will argue that,
given the s∗i , we can compute a partitioning of Y with separators s̃i with bottleneck value at
most B∗ + c. Since the optimal partitioning of Y with separators s′0, s′1, . . . , s′p is at least as
good, the result follows.

We define s̃p = n′ + 1, and for i = 0, . . . p − 1, let s̃i = min {j : min f−1(j) ≥ s∗i }, i.e.,
partition i in Y starts with the first element whose pre-image starts in partition i in X.

Now we argue that for any i, the weight of partition i in Y is at most the weight of
partition i in X plus c. This then proves Item 2, as this property also holds for the bottleneck
partition. We have:

s̃i+1−1∑
j=s̃i

Y [j] =

s̃i+1−2∑
j=s̃i

Y [j]

+ Y [s̃i+1 − 1] ≤

max f−1(s̃i+1−2)∑
j=min f−1(s̃i)

X[j]

+

+
(
X[min f−1(s̃i+1 − 1)] + c

)
=

min f−1(s̃i+1−1)∑
j=min f−1(s̃i)

X[j]

+ c ≤

s∗i+1−1∑
j=s∗

i

X[j]

+ c.

For the first inequality, we used Item 2 of Definition 2 to rewrite the sum, and Item 3 of
Definition 2 in order to bound Y [s̃i+1 − 1]. For the second inequality, we extended the
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Algorithm 1 Computation of coarse version
Require: Number of partitions p, parameter ε for (1 + ε)-approximation
1: s← 4dpε e {Size of array Y }
2: Y ← (Yi1, Yi2)i array of integer tuples of length s, initially all tuples are (0, 0)
3: while input stream not empty do
4: k ← (arg min1≤i≤s{Yi1 = 0})− 1
5: x1 . . . xs−k ← next s− k integers from input stream, if fewer than s− k integers are

left then interpret the missing ones as 0s
6: ∀i ∈ {1, . . . , s− k} : Y [k + i]← (xi, 0) {Append the xi to Y }
7: S ←

∑s
i=1 Yi1 + Yi2 {Weight of Y , equals weight of input stream seen so far}

8: Y ← CProbe(Y, bSε/pc)
9: end while
10: Y ′ ← integer array of length s with ∀1 ≤ i ≤ s : Y ′[i] = Yi1 + Yi2
11: return Y ′

Algorithm 2 CProbe(Y, c)
Require: Y = (Yi1, Yi2)i array of integer tuples of length s, integer c
1: Z ← (Zi1, Zi2)i array of integer tuples of length s
2: j ← 1 {current element in Z}
3: Zj ← Y1
4: for i = 2 . . . s do
5: if Zj2 + Yi1 + Yi2 ≤ c then
6: Zj2 ← Zj2 + Yi1 + Yi2
7: else
8: j ← j + 1, Zj ← Yi
9: end if
10: end for
11: return Z

sum using the observations s∗i ≤ min f−1(s̃i), and s∗i+1 − 1 ≥ min f−1(s̃i+1 − 1). These
observations follow from the definition of s̃i. J

We conclude that in order to obtain a (1 + ε)-approximation, a (Sε/p)-coarse version of X
with S =

∑n
i=1 X[i] is required.

I Corollary 4. Let Y be a (Sε/p)-coarse version of X where S =
∑n
i=1 X[i], for some ε > 0.

An optimal partitioning of Y allows us to obtain a (1 + ε)-approximation to Part on X.

Proof. Let B∗ be the bottleneck value of an optimal partitioning of X. Clearly, B∗ ≥ S/p.
By Lemma 3, we obtain the approximation factor: B∗+Sε/p

B∗ = 1+ Sε/p
B∗ ≤ 1+ Sε/p

S/p = 1+ε. J

3.2 Computing Coarse Versions
Algorithm. Our algorithm for computing a (Sε/p)-coarse version of the input stream X with
S =

∑n
i=1 X[i] is depicted in Algorithm 1. It uses the subroutine CProbe (CoarseProbe)

which is depicted in Algorithm 2. CProbe is similar in spirit to the Probe algorithm
mentioned in the introduction and hence carries a similar name.

Representation of the Coarse Version. Algorithm 1 operates on an array Y = (Yi1, Yi2)i of
length s = 4dpε e consisting of tuples of integers. Throughout the algorithm, Y will represent
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13:8 Streaming Partitioning of Sequences and Trees

a (Sε/p)-coarse version of the already seen prefix of the input integer sequence X, where S
is the total weight of the already seen prefix. The coarse version can be explicitly computed
from Y as in Line 10 of the algorithm: Replace every tuple (Yi1, Yi2) by the sum Yi1 + Yi2.

The first element Yi1 of every non-zero tuple (Yi1, Yi2) will always equal a value X[j], for
some j, and Yi2 will always equal

∑j′

l=j+1 X[l], for some j′ ≥ j. Such a tuple corresponds
to the merging of the elements X[j], . . . , X[j′] into a single element in the coarse version.
We store the first element X[j] and the remaining elements

∑j′

l=j+1 X[l] separately as Yi1
and Yi2 in order to be able to guarantee that the crucial Item 3 of Definition 2 of a c-coarse
version is fulfilled, namely, Yi2 ≤ c, for some c.

Description of the Algorithm. In the first iteration of the while-loop, Y is filled with
the first s integers of the input stream so that Y = (X1, 0), (X2, 0), . . . , (Xs, 0). CProbe
is then invoked on Y and parameter bSε/pc, where S is the current total weight of Y ,
i.e., S =

∑s
i=1 Yi1 + Yi2 (or, equivalently, the weight of the prefix of the input stream

seen so far). CProbe(Y, c) computes an array of tuples Z = (Zi1, Zi2)i representing a
c-coarse version of Y . It greedily merges adjacent tuples (Yi1, Yi2), . . . , (Yj1, Yj2) into a tuple
(Zk1, Zk2) = (Yi1, Yi2 +

∑j
l=i+1 Yl1 + Yl2) for some k, where j is the largest value such that

Zk2 does not exceed c. Note that the first parameter Zk1 takes the value of Yi1 unaltered.
This guarantees that, throughout the algorithm, the first parameter of any non-zero tuple
(Yi1, Yi2) always equals a value of the input stream X[j], for some j.

We will prove in Lemma 5 that the length of the output sequence Z of CProbe is at most
3p/ε+1. Since Y is of length 4dp/εe, in the next iteration of the while-loop of Algorithm 1, at
least p/ε− 1 new elements from the input stream are added to Y , which guarantees progress
in every iteration of the while-loop. The process continues until the entire input stream has
been processed.

Analysis. In the following, we will denote the input stream by X ∈ {1, . . . ,m}n. For
simplicity, we assume that X[i]  0, for all i, which is not a restriction since 0s in the input
stream could simply be skipped by the algorithm.

I Lemma 5. Consider the state of variable Y of Algorithm 1 at the beginning of iteration w
of the while-loop, for any w ≥ 1. Suppose that the prefix X[1, q] of the input stream has been
processed up until this point. Furthermore, let k be the largest j such that Y [j] 6= (0, 0), and
let S =

∑
i Yi1 + Yi2. Then:

1. k ≤ 3p
ε + 1,

2. Yi2 ≤ Sε/p for every 1 ≤ i ≤ s,
3. If w ≥ 2, then there are integers 1 = t1 < t2 < · · · < tk < tk+1 = q + 1 so that

Y [1, k] =
(
X[t1],

t2−1∑
l=t1+1

X[l]
)
,

(
X[t2],

t3−1∑
l=t2+1

X[l]
)
, . . . ,

(
X[tk],

tk+1−1∑
l=tk+1

X[l]
)
.

Proof. We prove the statement by induction. Consider the first iteration. Then, all tuples
of Y are (0, 0) and X[1, q] is an empty sequence, and the lemma is trivially true.

Now, suppose that the lemma is true in iteration w ≥ 1. We will prove that it also holds
in iteration w + 1.

Let q′ = q + (s− k − 1). Then, Y [k + 1, s] = X[q + 1, q′] after Line 6 of the algorithm
(if q′ > n then suppose that a sequence of 0s follows the input stream). Let S′ be the
total weight of Y after the execution of Line 6 of the algorithm. Clearly, Item 3 is still
fulfilled after appending elements of X to Y in Line 6. The left-to-right processing of Y
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in CProbe guarantees that only consecutive elements are merged and that the order of
Y stays intact. Furthermore, the first parameters of the tuples are copied (in Lines 3 and
8) and are therefore never changed, proving Item 3. The if-statement in Line 5 guarantees
that merged elements do not exceed the value of c = bS′ε/pc, thus ensuring Item 2. Let
k′ be the largest index such that Y [k′] 6= (0, 0), after the run of CProbe. To prove
Item 1, notice that after the run of CProbe, for any (Yi1, Yi2), (Yi+1,1, Yi+1,2), we have
Yi2 + Yi+1,1 + Yi+1,2 > bS′ε/pc, since otherwise (Yi+1,1, Yi+1,2) would have been added to
Yi2 in the algorithm. Thus, S′ =

∑k′

i=1 Yi1 + Yi2 >
k′−1

2 · bS′ε/pc, which implies

k′ < 1 + 2S′p
S′ε− p

= 1 + 2p
ε

+ 2p2

ε(S′ε− p) ≤ 1 + 2p
ε

+ 2p2

ε(d4pε eε− p)
< 1 + 3p

ε
,

where we used S′ ≥ 4dpε e, since this quantity equals the length of Y , and all first elements of
the tuples of Y are at least 1. J

I Lemma 6. Algorithm 1 is a deterministic one-pass streaming algorithm that computes
a (Sε/p)-coarse version of the input stream X ∈ {1, . . . ,m}n using space O(p log(mn)/ε),
where S =

∑
iX[i]. It can be implemented with worst case update time O(1).

Proof. The structural properties (2) and (3) of Lemma 5 guarantee that the returned
integer sequence Y ′ is a (Sε/p)-coarse version of the input stream X and thus establish
correctness of the algorithm. Property 1 ensures that the algorithm makes progress in every
iteration: Since at most 3p

ε + 1 tuples of Y are different from (0, 0), in every iteration at least
s− ( 3p

ε + 1) ≥ p
ε − 1 integers from the input sequence are consumed.

Note that the algorithm as it is implemented in Algorithm 1 has amortized update time
O(1). Indeed, in every iteration of the while-loop, Θ(pε ) integers from the input stream are
consumed, and the runtime of one iteration is O(pε ). Using the following standard trick, we
go from amortized update time to worst case update time: While executing the algorithm,
we simultaneously read integers from the input stream into a buffer of size Θ(s) one at a
time every O(1) operations. Then, instead of consuming integers from the input stream in
Line 5 of the algorithm, we consume the integers from the buffer. J

Using Lemma 6, we compute a (Sε/p)-coarse version of the input stream, and we split it
optimally in a post-processing step. This yields our main result of this section.

I Theorem 7. There is a deterministic one-pass (1 + ε)-approximation streaming algorithm
for Part with space O(p log(mn)/ε), worst case update time O(1), and O(p/ε) post-processing
time.

Proof. First, we will use Algorithm 1 in order to compute a coarse version of the input
stream X. Let Y be the generated output which, according to Lemma 6, is a (Sε/p)-coarse
version of X. Then, we partition Y optimally using the exact linear time algorithm of
Frederickson [9]. Following Lemma 3, we compute a (1 + ε)-approximation to an optimal
partitioning of X.

Note that in order to deduce a partitioning of X from a partitioning of Y , it is required
that every Y [j] know the value min f−1(j), where f is the coarsening function. This can be
ensured by annotating the elements of the stream X[i] by its position in the stream i, and
forwarding those annotations to Y . J
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u1 u1

u3 u3

u4 u4

u2 u5 u2 u5

Figure 2 Left: An example tree. The highlighted nodes constitute set U of Definition 8. Set L of
Definition 8 consists of the nodes within boxes. Note that the root node u1 is by definition in B,
however, it is also in L since lcat(u3, u4) = u1. Right: The structure tree ST(U).

4 Algorithm for Partitioning Trees

We now present our algorithm for Tree. Our algorithm computes a coarse structure tree,
i.e., a tree with much fewer nodes than the input tree t that captures the structure of t
well enough so that an optimal partitioning of the structure tree allows us to obtain a
(1 + ε)-approximation for Tree on t. In Subsec. 4.1, we define structure trees and we
prove that an optimal partitioning of an appropriate structure tree approximates an optimal
partitioning of t within a factor of 1 + ε. This result is the most technical contribution of this
paper. Then, in Subsec. 4.2, we argue that an appropriate structure tree can be computed
with O(p

2

ε log(mn)) space in the streaming model.

4.1 Structure Trees
Let t denote the weighted input tree that is described by the input stream X. Let the weight
function of t be ω so that ω(v) denotes the weight of node v ∈ t, and let ω(t′) :=

∑
v∈t′ ω(v),

for a subtree t′ ⊆ t. Our definition of structure trees is as follows:

I Definition 8 (Structure Tree). Let U = {u1, . . . , uk} ⊆ t be a set of breakpoints (nodes)
ordered with respect to a depth-first-traversal of t, and suppose that rt(t) ∈ U (which implies
that u1 = rt(t)). Let L = {lcat(ui, ui+1) | 1 ≤ i ≤ k − 1}. Then the structure tree ST(U) of t
with respect to U is a weighted tree with weight function ω′ on vertex set U ∪ L such that
there is an edge between x, y ∈ U ∪ L iff among the nodes U ∪ L, y is the lowest ancestor of
x in t. For a node x ∈ U ∪ L, let D(x) ⊆ t denote the set of nodes such that x is the lowest
ancestor among the nodes U ∪ L. Then, we define ω′(x) =

∑
y∈D(x) ω(y).

Definition 8 is illustrated in Figure 2. An immediate consequence of the definition of a
structure tree is that for every node v ∈ ST(U), the weight of the subtree rooted at v in
ST(U) is the same as the weight of the subtree rooted at v in t. Consider a partitioning
S of ST(U) (i.e., the roots of the subtrees induced by the partitioning). Since the weight
of streeST(U)(v) of any node v ∈ ST(U) is the same in tree t, clearly the bottleneck value
of a partitioning S of ST(U) equals the bottleneck value of the partitioning S applied on t.
This observation is similar to Item 1 of Lemma 3 for sequences, and is summarized in the
following fact.

I Fact 2. Let S be a partitioning of ST(U) with bottleneck value B. Then, S is also a
partitioning of t with bottleneck value B.

Choosing Good Breakpoints. The set of breakpoints U on which the structure tree ST(U)
is built determines how well ST(U) represents the input tree t and thus how well a partitioning



C. Konrad 13:11

of ST(U) approximates a partitioning of t. We will choose set U according to the following
definition, which establishes a bridge between trees and integer sequences:

I Definition 9 (c-coarse Structure Tree). Let V = {v1, . . . , vn} denote the nodes of the input
tree t ordered with respect to a depth-first-traversal of t. Let X ′[i] = ω(vi). For U ⊆ V we
say that ST(U) is a c-coarse structure tree of t if there exists a c-coarse version Y of X ′ of
length n′ ≤ n and coarsening function f such that vi ∈ U iff ∃1 ≤ i′ ≤ n′ : min f−1(i′) = i.

Consider the example tree in Figure 2. Then, we have X ′ = 2 4 1 2 3 2 3 2 1 2 1 3 2 3. A 5-coarse
version of X ′ is 7 7 6 7 3 where X ′ has been grouped as follows: 2 4 1 |2 3 2 |3 2 1 2 |1 3 2 |3.
The numbers in bold are the first nodes of each block, and they correspond to the weights of
those nodes of t that are put into set U . The structure tree in Figure 2 is built on this set U
and is therefore a 5-coarse structure tree.

In the case of integer sequences, we showed that a coarse version of the input stream of size
O(p/ε) is sufficient to obtain a (1 + ε)-approximation. We will see that the more complicated
structure of trees requires a coarse version of size Θ(p2/ε) for a (1 + ε)-approximation.
Intuitively, this is due to the fact that, in the case of integer sequences, a partition is only
adjacent to two other partitions. In the case of trees, a partition may be adjacent to p− 1
other partitions. Hence, partition boundaries must be chosen more carefully, and a better
resolution for our coarse object is required.

The main result of this Subsec., Lemma 10, states that, given a c-coarse structure tree
ST(U), an optimal partitioning of ST(U) provides a partitioning of the original tree t such
that the size of a partition increases at most by the additive term 2(p− 1)c. This is similar
to Item 2 of Lemma 3 for integer sequences.

I Lemma 10. Let U be such that ST(U) is a c-coarse structure tree of t. Consider an
optimal partitioning S′ of ST(U) into p parts. Consider the partitioning of t induced by S′
and let B′ denote the bottleneck value. Furthermore, let B∗ denote the bottleneck value of an
optimal partitioning of t. Then: B′ ≤ B∗ + 2(p− 1)c.

Proof. Let S∗ denote an optimal partitioning of t with bottleneck value B∗, let t1, . . . , tp
denote the subtrees produced by S∗, and suppose that S∗ is such that none of the subtrees
ti are empty (it is easy to see that there always is such a partitioning). Then, S∗ =
{rt(t1), . . . , rt(tp)}. Denote by Ui ⊆ U the subset of nodes of U that are also contained in
ti. Given S∗, we construct a partitioning S̃ = {s̃1, . . . , s̃p} of ST(B) with bottleneck value
B̃ ≤ B∗ + 2(p− 1)c. Since the optimal partitioning S′ of ST(B) is at least as good, Fact 2
then implies the result.

Definition of S̃. For each partition ti, we define a vertex s̃i of the partitioning S̃. Ideally,
for every i, we would like to set s̃i = rt(ti), however, we can only do that if rt(ti) ∈ ST(U).
If this is not the case, we select a nearby node contained in ti that is also included in ST (U),
or, if the weight of ti is not significant enough, we do not select any node, giving an empty
partition. The definition of s̃i is as follows:
1. If rt(ti) ∈ ST(U) : Let s̃i = rt(ti).
2. If rt(ti) /∈ ST(U) and ω(ti) ≤ 2c : Let s̃i = ⊥ (indicating that s̃i is unused).
3. If rt(ti) /∈ ST(U) and w(ti) > 2c : We define s̃i = lcat(Bi).

For this to be a valid assignment, we will show in Lemma 12 that Bi is non-empty and in
Lemma 13 that lcat(Bi) ∈ ST(B). We will prove in Lemma 14 that s̃i = lcat(Bi) is in a
sense close to rt(ti) by showing the following inequality on which we base our analysis:
ω(street(s̃i)) ≥ ω(street(rt(ti)))− 2c.
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Bounding B̃. We will now prove that the bottleneck value B̃ of the partitioning given
by S̃ is at most B∗ + 2(p − 1)c. To see this, let t̃1, . . . , t̃p denote the subtrees induced by
the partitioning S̃ such that rt(t̃i) = s̃i (if s̃i = ⊥ then let t̃i = ⊥). We will prove that
w(t̃i) ≤ ω(ti) + 2(p− 1)c, for every t̃i 6= ⊥, which then implies the result.

Now consider one partition t̃i with t̃i 6= ⊥. Let

J = {j : rt(tj) is connected to a leaf of ti in t},

and let J⊥ ⊆ J be those indices j such that s̃j = ⊥. Then:

ω(ti) = ω(street(rt(ti)))−
∑
j∈J

ω(street(rt(tj)))

≥ ω(street(s̃i)))−
∑
j∈J⊥

ω(street(rt(tj)))−
∑

j∈J\J⊥

ω(street(rt(tj))), (1)

where we used ω(street(rt(ti))) ≥ ω(street(s̃i))) since s̃i is contained in ti. Then, due to
Item 2 of the previous case distinction, we have ω(street(rt(tj))) ≤ 2c for every j ∈ J⊥,
and, for every j ∈ J \ J⊥, according to Items 1 and 3 of our case distinction, we have
street(rt(tj))− street(s̃j) ≤ 2c. Thus:

ω(ti) ≥ . . . ≥ ω(street(s̃i)))− |J⊥|2c−
∑

j∈J\J⊥

(ω(street(s̃j)) + 2c)

= ω(street(s̃i)))−

 ∑
j∈J\J⊥

ω(street(s̃j))

− |J⊥|2c− |J \ J⊥|2c
≥ ω(t̃i)− |J |2c ≥ ω(t̃i)− (p− 1)2c,

where we used ω(t̃i) ≤ ω(street(s̃i)))−
(∑

j∈J\J⊥ ω(street(s̃j))
)
and |J | ≤ p− 1. The result

follows. J

I Corollary 11. Let U be such that ST(U) is a Sε/(2p2)-coarse structure tree where S = ω(t)
for some ε > 0. Then, an optimal partitioning of ST(U) into p parts provides a (1 + ε)-
approximation to Tree on t.

Proof. Let B′ be the bottleneck value of an optimal partitioning P ′ of ST(U), and let B∗
be the bottleneck value of an optimal partitioning of t. Then, by Fact 2, P ′ induces a
partitioning of t with bottleneck value B′. Next, by Lemma 10, we have B′ ≤ B∗+ 2(p− 1)c,
where c = ε/(2p2). Furthermore, notice that B∗ ≥ S/p. Thus, we obtain the approximation
ratio: B′

B ≤
B∗+2(p−1)·Sε/(2p2)

B∗ < 1 + Sε
pB∗ ≤ 1 + ε. J

Auxiliary Lemmas Used in the Proof of Lemma 10. We now present the technical lemmas
that have been used in the proof of Lemma 10.

In Lemma 12, we show that for every subtree street(v) of weight at least c, for some node
v, at least one node of street(v) is contained in every c-coarse structure tree.

I Lemma 12 (*). Let U be such that ST(U) is a c-coarse structure tree of t. Let v ∈ t be
any node so that ω(street(v)) > c. Then, U ∩ street(v) 6= ∅.

Lemma 13 is a simple structural property of trees.

I Lemma 13. Let U = {u1, u2 . . . } ⊆ t be a subset of nodes of a tree of size at least two,
ordered with respect to a depth-first-traversal. Then, there is an index 1 ≤ i ≤ |U | − 1 such
that lca(ui, ui+1) = lca(U).
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Proof. Let Ui = {u1, . . . , ui}. We prove by induction on i that the statement is true for all
sets Ui. Suppose that i = 2. Then trivially lca(u1, u2) = lca(U2). Now suppose that the
statement is true for i and let x denote the lca(uj , uj+1) for the value of j with 1 ≤ j ≤ i− 1
so that x = lca(Ui). If ui+1 ∈ street(x) then clearly x is also the lowest-common-ancestor of
Ui+1. Suppose now that ui+1 /∈ street(x). Let y = lca(ui, ui+1). Then clearly x ∈ street(y)
and hence Ui ⊆ street(y). Therefore, y is an ancestor of every node of Ui+1. It is also the
lowest-common-ancestor of all nodes Ui+1 as it is defined as lca(ui, ui+1). J

Given a subtree street(v) of weight at least c, for some node v, we show in Lemma 14
that the lowest-common-ancestor x of the nodes U ′ = U ∩ street(v) of a c-coarse structure
tree ST(U) is in a sense close to v, i.e., ω(street(x)) + 2c ≥ ω(street(v)).

I Lemma 14 (*). Let U be so that ST(U) is a c-coarse structure tree of t. Let v ∈ t be any
node such that ω(street(v)) > c, and let U ′ = U ∩ street(v). Furthermore, let x = lca(U ′).
Then: ω(street(x)) + 2c ≥ ω(street(v)).

4.2 Computing Structure Trees
Algorithm. We use the first and the second pass to compute the IDs of the nodes B ∪ L
with B = {b1, . . . , bk} (we assume that they are ordered w.r.t. a depth-first-traversal of t) so
that ST(B) is a Sε/(2p2)-coarse structure tree of t and L = {lca(bi, bi+1) | 1 ≤ i ≤ k − 1}.
Then, in the third pass, we establish ST(B).

1st pass. Consider the subsequence of down-steps Xd of the input stream X and let X ′
denote the sequence of weights that constitute the second parameters of the tuples of Xd.
Compute a ( Sε2p2 )-coarse version of X ′ by running the algorithm for partitioning integer
sequences on X ′4. Annotate every breakpoint of B created by the algorithm with the ID of
the node that lead to its creation. This guarantees access to the IDs of the nodes B.

2nd pass. Concerning the nodes in L, we make use of the following observation: Let bi, bi+1
be two nodes for which breakpoints are stored and bi+1 /∈ street(bi). Let di be the minimal
depth of a down-step between the down-step describing bi and the down-step describing bi+1.
Then x = lcat(bi, bi+1) has depth di − 1. In the first pass, while simultaneously running
the algorithm for partitioning integer sequences, we compute this depth (by keeping track
of the minimal depth between any two nodes stored as first elements of two consecutive
tuples in variable Y in Algorithm 1). Then, the down-step of node x, and hence the ID of x,
can be identified in a second pass as the down-step at depth di − 1 that appears before the
down-step of bi, but is closest to the down-step bi in the input stream.

3rd pass. Let I = {i1, i2, . . . } be the IDs of the nodes B ∪L and suppose that ij ≤ ij+1 for
every 1 ≤ j < |I|. We describe how to build the structure tree inductively. Suppose that it is
correctly built up to the node with ID ij , that is, it is the correct structure tree of the subtree
of t induced by all nodes with ID at most ij . The substream Xj = (’d’, wj), . . . , (’d’, wj+1),
where wj and wj+1 are the weights of the nodes nodet(ij) and nodet(ij+1), respectively,
allows us to determine the relationship between nodet(ij) and nodet(ij+1). If nodet(ij+1)

4 Algorithm 1 computes a (Sεp )-coarse version. In order to compute a ( Sε2p2 )-coarse version instead,
CProbe has to be invoked with parameter b Sε2p2 c in Line 8, and s should be set to 8d p

2

ε e in Line 1.
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is in the subtree of nodet(ij), then we add an edge from nodet(ij) to nodet(ij+1) in ST(B).
Otherwise, we consider the minimum depth dj of a down-step in the substream Xj . We
deduce that x = lcat(nodet(ij), nodet(ij+1)) is at depth dj − 1. Node x has already been
added to ST(B), and, by its depth, we can identify it and connect it to nodet(ij+1) in ST(B).
Concerning updating the weights ω′, for every down-step (‘d’, w) in the stream, we add the
weight w to the closest ancestor c in the current ST(B) of the node that is described by the
current down-step.

Post-processing. We can therefore establish ST(B) in three passes. As a post-processing
step, we use an optimal linear time partitioning algorithm by Frederickson [9] in order to
partition ST(B). From the resulting partitioning, according to Corollary 11, we deduce a
(1 + ε)-approximation to the partitioning of t. All steps other from running the algorithm of
Theorem 7 can be implemented with O(1) update time.

Furthermore, it can be seen that the second and the third passes can be merged into a
single pass (not explicitly described here), leading to a two-pass algorithm.

I Theorem 15. There is a det. two-pass (1+ε)-approximation streaming algorithm for Tree
with space O(p

2

ε log(mn)), worst case update time O(1), and post-processing time O(p2/ε).

5 Lower Bounds for Partitioning Integer Sequences

5.1 A Linear Space Lower Bound for Exact Algorithms
In this section, we show that any possibly randomized exact streaming algorithm for Part
that performs one pass over the input requires Ω(n) space. We show this by a reduction
from the Index problem in one-way two-party communication complexity.

I Definition 16 (Index Problem). Let S = (S1, . . . , SN ) where S ∈ {0, 1}N , and let
I ∈ {1, . . . , N}. Alice is given S, Bob is given I. Alice sends message M to Bob and, upon
reception, Bob outputs SI .

We consider a version of Index where the index I is chosen from the set {dN/2e, . . . , N}
uniformly at random. It is well-known [17] that the one-way randomized communication
complexity of Index is Ω(N), and the modification in the input distribution restricting
the index I to be chosen from the set {dN/2e, . . . , N} clearly changes the communication
complexity only by a constant factor.

I Lemma 17 (Hardness of the Index Problem). If S is chosen uniformly at random from
{0, 1}N , I is chosen uniformly at random from the set {dN/2e, . . . , N}, and the failure
probability of the protocol is at most 1/3, then ES |M | = Ω(N).

Reduction. Given a streaming algorithm ALG that solves Part on a stream of length at
most 3n using space s, we specify a protocol for an arbitrary instance (S, I) of Index with
|S| = n, such that the message size is at most s.

Remember that Alice holds S ∈ {0, 1}N and Bob holds I ≥ dN/2e. Our protocol is the
following: Alice generates the sequence Y ∈ {1, 3}2N such that Yi = 2 · Si/2 + 1 for even i,
and Yi = 4− Yi+1 for odd i. Bob generates the sequence Z = 4 . . . 4︸ ︷︷ ︸

2I−N−1

2.

Alice runs ALG on sequence Y with number of partitions p = 2. Once Y is entirely
processed, she sends the resulting memory state of ALG to Bob. Bob continues running
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ALG on Alice’s final memory state and feeds the sequence Z into ALG. The message size of
the protocol equals the space usage of ALG after processing Y . Note that ALG outputs the
separator s1 that separates the two partitions. If s1 is even then Bob outputs 0, and if s1 is
odd then Bob outputs 1.

We prove that the above protocol is correct, which immediately yields the result.

I Theorem 18. Any possibly randomized one-pass streaming algorithm for Part with error
probability at most 1/3 requires space Ω(n).

Proof. First observe that
∑
i Yi+

∑
i Zi = 4 ·N + (2I−N −1) ·4 + 2 = 8I−2. Let s∗1 denote

the optimal split position. Suppose that a perfect balancing is achieved and the optimal
bottleneck value is 4I − 1. Since for all i = 1, . . . , N we have Y2i−1 + Y2i = 4, this can only
be achieved if s∗1 is even and Ys∗1 = 1 which implies that Ss∗1/2 = SI = 1. Suppose now that
a perfect balancing cannot be achieved. This can only happen if s∗1 is odd and Ys∗1−1 = 3
which implies that S(s∗1−1)/2 = SI = 3. Thus, the protocol is correct in both cases, and ALG
can be used to solve Index. Lemma 17 implies the result. J

5.2 Ω(1
ε

logn) Space Lower Bound for Approximation Algorithms

We prove now an Ω( 1
ε logn) space lower bound for one-pass algorithms for Part that compute

a (1 + ε)-approximation. We prove this lower bound in the one-way two-party communication
setting for instances of Part with m = 1 and p = 2. Alice is given a sequence Y ∈ {0, 1}n
and Bob is given a sequence Z ∈ {0, 1}n, and they have to split the sequence X = Y ◦Z into
two parts. Alice sends a message to Bob, and, upon reception, Bob outputs the separator.

Input Distribution. Let t be an integer that is to be determined later. Alice’s input and
Bob’s input are independent from each other and they are constructed as follows:

Alice’s input Y is a sequence of length n with 2(t−1) leading 1s, followed by an arbitrary
sequence of length n− 3t+ 2 with elements from {0, 11} (11 is a pair of ones), where the
number of 11s is exactly t. Denote by Y the set of all such sequences. Then Y is chosen
uniformly at random from Y. Clearly, the weight of Y is 4t− 2, and |Y| =

(
n−3t+2

t

)
.

Bob’s input Z is a sequence of length n with the first 4(i − 1) elements 1, and the
remaining elements 0, for some i ∈ {1, 2, . . . , t}. Denote all such sequences as Z. Then Z
is chosen uniformly at random from Z. Observe that the weight of Z varies from 0 to
4(t− 1), and |Z| = t.

Note that an optimal partitioning of any Y ◦Z instance splits one of the 11s in the second
part of Alice’s input.

Example: Let t = 2, n = 10, and p = 2. Suppose that Alice holds Y = 11 00110110.
Bob’s possible inputs are Z1 = 0000000000 and Z2 = 1111000000 of weight 0 and 4,
respectively. The optimal partitioning of Y ◦ Z1 is 11 001 | 10110 0 . . . 0 and of Y ◦ Z2 is
11 001101 | 10 11110 . . . 0.

We give a lower bound on the communication complexity of any possibly randomized
communication protocol that solves instances of Y × Z exactly.

I Lemma 19. Any randomized one-way two-party protocol with error at most δ > 0 that

solves Part on instances of Y × Z has communication complexity at least log
(

(n−3t+2
t )

8( t
4δt)n4δt

)
.
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Proof. Let P be a randomized protocol as in the statement of the lemma. Then, by Yao’s
Lemma [28], there is a deterministic protocol Q with distributional error at most δ that
has the same communication complexity. We prove a lower bound on the communication
complexity of Q.

Denote by M1, . . . ,Mk the possible messages from Alice to Bob, and let Yi ⊆ Y
denote the set of inputs that Alice maps to message Mi. Note that for a fixed in-
put for Bob, the protocol Q outputs the same result for all inputs in Yi. Let pi =
PrY←Yi,Z←Z [Q errs on (Y,Z)]. Since the distributional error of the protocol is δ, or, in

other words, PrY←Y,Z←Z [Q errs on (Y, Z)] ≤ δ, we obtain
∑

i
pi|Yi|
|Y| ≤ δ. Let i ∈ {1, . . . , l}

be the indices for which pi ≤ 2δ. Then by the Markov Inequality,
∑l
i=1 |Yi| ≥

1
2 |Y|.

We bound |Yi| from above for all i ∈ {1, . . . , l}. First, note that for a particular input
Z ∈ Z, the output of Q on (Y, Z) is the same for all Y ∈ Yi. Denote by Yji the subset of Yi
such that for each Y j ∈ Yji : PrZ←Z [Q errs on (Y j , Z)] = j

t , or, in other words, there are
j inputs of Bob such that the protocol fails on Y j , and, for the remaining t − j inputs of
Bob, the protocol succeeds. Consider the set Y0

i , i.e., for each Y ∈ Y0
i , the protocol succeeds

on any input of Bob. This determines all positions of the pairs of 1s in Alice’s input, and,
therefore, there is only a single such element and we obtain |Y0

i | ≤ 1. Similarly, we obtain
|Yji | ≤

(
t
j

)
nj , since the protocol errs on at most j inputs of Bob, therefore the position of

t− j pairs of 1s is fixed and only j pairs of 1s may differ (we allow them to have an arbitrary
position in Y which is a very rough but sufficient estimate).

We apply the Markov Inequality again: For at least half of the elements of Yi, the
protocol errs with probability at most 4δ. Therefore, 1

2 |Yi| ≤
∑
j≤4δt |Y

j
i | ≤

∑
j≤4δt

(
t
j

)
nj ≤

2
(
t

4δt
)
n4δt, and thus |Yi| ≤ 4

(
t

4δt
)
n4δt. This then implies l ≥ |Y|

8( t
4δt)n4δt = (n−3t+2

t )
8( t

4δt)n4δt . Since the
protocol sends at least l different messages, the communication complexity of the protocol is
at least log(l), which implies the result. J

We make t small enough so that a solution to any instance of Y × Z that is a (1 + ε)-
approximation actually solves the instance exactly. This idea leads to the following theorem:

I Theorem 20. Any randomized one-way two-party communication protocol with error at
most δ > 0 (δ sufficiently small) that computes a (1+ ε)-approximation ( 1

ε = O(n1−γ) for any
γ > 0) to Part on instances of Y × Z has communication complexity at least Ω

( 1
ε logn

)
.

Proof. We choose t small enough that a solution to any instance of Y × Z that is a (1 + ε)-
approximation actually solves the instance exactly. Remark again that the weight of Y is
4t − 2 and the weight of Z is 4(i − 1). Since the total weight is even, there is always a
partitioning with weight 2t− 1 + 2(i− 1). Therefore, any partitioning that does not achieve
an optimal balancing has an approximation factor of at least 2t−1+2(i−1)+1

2t−1+2(i−1) , and we wish to
choose t such that this approximation factor is worse than a (1+ ε) approximation. Therefore,
we have to choose t small enough such that for any i ∈ {1, 2, . . . , t}: 1

2t−1+2(i−1) > ε, which
implies that t < 1

4ε + 3
4 . We choose t = 1

4ε and plug this value into the communication lower
bound from Lemma 19. Using standard bounds on binomial coefficients:

Ω
(

log
( (

n−3t+2
t

)
8
(
t

4δt
)
n4δt

))
= Ω

log

(4ε(n− 3
4ε + 2)

) 1
4ε

8nδ/ε
(
e

4δ
)δ/ε


= Ω

(
1
4ε log(4εn− 3 + 8ε)− δ

ε
log(ne4δ )

)
= Ω

(
1
4ε log(4εn)− δ

ε
log(ne4δ )

)
= Ω(

(
1
ε

logn
)
,

for a sufficiently small but constant δ, and ε = O(n1−γ) for any γ > 0. The result follows. J
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6 Conclusion

In this paper, we initiated the study of the problems of partitioning integer sequences
and partitioning trees in the streaming model. We showed that, for both problems, smaller
versions of the input instances can be computed in a streaming fashion and still capture (1+ε)-
approximate partitionings of the original instances. For integer sequences, the small instances
are of size O(pε ), and for trees, the small instances are of size O(p

2

ε ), both independent of the
length of the input stream. Furthermore, for the problem of partitioning integer sequences,
we provided space lower bounds obtained through communication complexity.

It remains to be investigated whether the sizes of the small instances for trees can be
reduced to O(pε ). Furthermore, we conjecture that the number of passes of our algorithm for
Tree can be reduced from two to one.

Acknowledgements. The author thanks László Kozma for many valuable ideas and helpful
discussions, and an anonymous reviewer for improving the baseline algorithm stated in Fact 1.
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Abstract
Graph databases in many applications – semantic web, transport or biological networks among
others – are not only large, but also frequently modified. Evaluating graph queries in this dynamic
context is a challenging task, as those queries often combine first-order and navigational features.

Motivated by recent results on maintaining dynamic reachability, we study the dynamic
evaluation of traditional query languages for graphs in the descriptive complexity framework.
Our focus is on maintaining regular path queries, and extensions thereof, by first-order formulas.
In particular we are interested in path queries defined by non-regular languages and in extended
conjunctive regular path queries (which allow to compare labels of paths based on word relations).
Further we study the closely related problems of maintaining distances in graphs and reachability
in product graphs.

In this preliminary study we obtain upper bounds for those problems in restricted settings,
such as undirected and acyclic graphs, or under insertions only, and negative results regard-
ing quantifier-free update formulas. In addition we point out interesting directions for further
research.
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1 Introduction

Graph databases are important in applications in which the topology of data is as important as
the data itself. Intuitively, a graph database represents objects (by nodes), and relationships
between those objects (often modeled by labeled edges – see [1] for a survey on graph database
models). The last years have witnessed an increasing interest in graph databases, due to
the uprise of applications that need to manage and query massive and highly-connected
data, as for example the semantic web, social networks or biological networks. In most of
these applications, databases are not only large, but also highly dynamic. Data is frequently
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inserted and deleted, and hence so is its network structure. The goal of this work is to
explore how query languages for graph databases can be evaluated in this dynamic context.

Many query languages for graph databases combine traditional first-order features with
navigational ones. Already basic languages (such as regular path queries, see e.g. [21, 2])
allow to test the existence of paths satisfying constraints on their labels (e.g. adherence to a
regular expression in regular path queries). Computing the answers to this kind of queries
on large, highly dynamic graphs is a big challenge. It is conceivable, though, for answers to
a query before and after small modifications to be closely related. Thus a reasonable hope
is to be able to update the answer to a query in a more efficient way than recomputing it
from scratch after each modification. Even more so if we allow to store extra auxiliary data
that might ease the updating task. To what extent this is possible, and in which precise
conditions, is the subject of dynamic computational complexity.

Here we are interested in studying the dynamic complexity of query languages for graph
databases from a descriptive approach. In the dynamic descriptive complexity setting,
proposed independently by Dong, Su and Topor [9, 8] and by Patnaik and Immerman [16], a
dynamic program maintains auxiliary relations with the intention to help answering a query
over a (relational) database subject to small modifications (insertions or deletions of tuples).
When a modification occurs, the query answers and every auxiliary relation are updated
by first-order formulas (or, equivalently, by core SQL queries) evaluated over the current
database and the available auxiliary data. Such programs benefit therefore from being both
highly parallelizable (due to the close connection of first-order logic and small depth boolean
circuits) and readily implementable in standard relational database engines. The class of
queries maintainable by first-order update formulas is called DynFO.

Query languages for graphs have, so far, not been studied systematically in the dynamic
descriptive complexity setting. Very likely the main reason is that until recently it was not
even known whether reachability in directed graphs could be maintained by first-order update
formulas. That this indeed is possible was shown in [6], with the immediate consequence
that all fixed (conjunctions of) regular path queries can also be maintained. Thus regular
path queries can be evaluated in a highly parallel fashion in dynamic graph databases.

Motivated by this result we study the dynamic maintainability of more expressive query
languages.

I Goal. Gain a better understanding of the limits of maintaining graph query languages in
the dynamic context.

Our focus is on regular path queries and extensions thereof – non-regular path queries
and extended conjunctive regular path queries (short: ECRPQs).

Some previous work on non-regular path queries has been done. Weber and Schwentick
exhibited a context-free path query (the Dyck language D2) that can be maintained in
DynFO on acyclic graphs [20]. Also, for the simple class of path-shaped graph databases,
formal language results can be transferred. Already Patnaik and Immerman pointed out that
regular languages can be maintained in DynFO [16]. Later, Gelade et al. systematically
studied the dynamic complexity of formal languages [11]. They showed, among other results,
that regular languages can be maintained by quantifier-free update formulas, and that all
context-free languages can be maintained in DynFO.

The second extension of regular path queries to be studied here are extended conjunctive
regular path queries. In previous work it has been noticed that conjunctions of regular
path queries (CRPQs) fall short in expressive power for modern applications of graph
databases [4]. A feature commonly demanded by these applications is the comparison of
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labels of paths defined by CRPQs based on relations of words (e.g. prefix, length constraints,
fixed edit-distance). ECRPQs have been introduced to fulfill this requirement [4], that is,
they generalize CRPQs by allowing to test whether multiple labels of paths adhere to given
regular relations. Two basic properties expressible by ECRPQs are whether two pairs of
nodes are connected by paths of the same length and if so, whether also paths with the same
label sequence exist. In general, maintaining the result of ECRPQs seems to be a difficult
task. In this article we therefore explore the maintenance of ECRPQs in restricted settings.

Finally, there is also a close connection between the evaluation of graph queries and the
reachability problem in unlabeled and labeled product graphs. We discuss this connection
(see Section 2), and exploit it in several of our results.

Contributions. First we study path queries and show that
all regular path queries can be maintained by quantifier-free formulas when only insertions
are allowed,
all context-free path queries can be maintained by first-order formulas on acyclic graphs,
and
there are non-context-free path queries maintainable by first-order formulas on undirected
and acyclic graphs, as well as on general graphs under insertions only.

As a first step towards maintaining ECRPQs we explore for which graph classes the
lengths of paths between nodes can be maintained. We exhibit dynamic programs for
maintaining all distances for undirected and acyclic graphs, as well as for directed graphs
when only insertions are allowed. It remains open, whether distances can be maintained in
DynFO for general directed graphs, but we show that quantifier-free update formulas do
not suffice.

The techniques used to maintain all distances can be used to maintain variants of ECRPQs
in restricted settings. Denote the extension of a class of queries by linear constraints on the
number of occurrences of symbols on paths by +LC. This extension was introduced and
studied in [4]. We show that

all CRPQ+LCs can be maintained by first-order formulas when only insertions are allowed,
and
all ECRPQ+LCs can be maintained by first-order formulas on acyclic graphs.

An immediate consequence of our results for distances is that reachability can be main-
tained in products of (unlabeled) graphs for those restrictions. By using the dynamic program
for maintaining the rank of matrices from [6], we extend this result to more general graph
products. Furthermore we show that pairs of nodes connected by paths with the same label
sequence can be maintained in acyclic graphs using first-order update formulas.

Related work. The maintenance of problems has also been studied from an algorithmic
point of view. A good starting point for readers interested in upper bounds for dynamic
algorithms is [18, 7]; a good starting point for lower bound techniques is the survey by
Miltersen on cell probe complexity [14]. The upper bounds for reachability obtained in [18, 7]
immediately transfer to dynamic algorithmic evaluation of regular path queries (using the
reduction exhibited in [6]).

Outline. The dynamic setting and the basic graph query languages are introduced in
Section 2. There we also discuss the connection between query evaluation and reachability
in product graphs. Section 3 contains the results on maintaining graph queries. Our results
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for maintaining distances and ECRPQs are presented in Section 4. In Section 5 some of
the results for maintaining graph queries are transferred to reachability in graph products,
and we also provide results for reachability in generalized graph products. We conclude in
Section 6. Due to the space limit we omit some proofs or give only proof sketches in the
body of this paper. Complete proofs can be found in the full version [15].

2 Preliminaries

In this section we introduce the dynamic complexity framework as well as the graph query
languages used in this article.

Dynamic complexity framework. In this work we use the dynamic complexity framework
as introduced by Patnaik and Immerman [16]. The following introduction of the framework
is borrowed from previous work [25].

Intuitively, the goal of a dynamic program is to keep the result of a given query Q up to
date while the database to be queried (the input database) is subject to tuple insertions and
deletions. To this end the dynamic program stores auxiliary relations (the auxiliary database)
with the aim that one of those relations always (that is, after every possible sequence of
modifications), stores the result of Q for the current input structure. Whenever a tuple is
inserted into or deleted from the input structure, each auxiliary relation is updated by the
dynamic program by evaluating a specified first-order formula.

We make this more precise now. A dynamic instance of a query Q is a pair (D, α), where
D is a database over some finite domain D and α is a sequence of modifications to D. Here,
a modification is either an insertion of a tuple over D into a relation of D or a deletion of a
tuple from a relation of D. The result of Q for (D, α) is the relation that is obtained by first
applying the modifications from α to D and then evaluating Q on the resulting database.
We use the Greek letters α and β to denote modifications as well as modification sequences.
The database resulting from applying a modification α to a database D is denoted by α(D).
The result α(D) of applying a sequence of modifications α def= α1 . . . αm to a database D is
defined by α(D) def= αm(. . . (α1(D)) . . .).

Dynamic programs, to be defined next, consist of an initialization mechanism and an
update program. The former yields, for every (input) database D, an initial state with initial
auxiliary data. The latter defines how the new state of the dynamic program is obtained
from the current state when applying a modification.

A dynamic schema is a tuple (τin, τaux) where τin and τaux are the schemas of the input
database and the auxiliary database, respectively. While τin may contain constants, we do
not allow constants in τaux in the basic setting. We always let τ def= τin ∪ τaux.

I Definition 1 (Update program). An update program P over a dynamic schema (τin, τaux)
is a set of first-order formulas (called update formulas in the following) that contains, for
every relation symbol R in τaux and every δ ∈ {insS ,delS} with S ∈ τin, an update formula
φRδ (x̄; ȳ) over the schema τ where x̄ and ȳ have the same arity as S and R, respectively.

A program state S over dynamic schema (τin, τaux) is a structure (D, I,A) where D is
a finite domain, I is a database over the input schema (the current database) and A is a
database over the auxiliary schema (the auxiliary database).

The semantics of update programs is as follows. Let P be an update program, S =
(D, I,A) be a program state and α = δ(ā) a modification where ā is a tuple over D and
δ ∈ {insS ,delS} for some S ∈ τin. If P is in state S then the application of α yields the
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new state Pα(S) def= (D,α(I),A′) where, in A′, a relation symbol R ∈ τaux is interpreted by
{b̄ | S |= φRδ (ā; b̄)}. The effect Pα(S) of applying a modification sequence α def= α1 . . . αm to
a state S is the state Pαm

(. . . (Pα1(S)) . . .).

I Definition 2 (Dynamic program). A dynamic program is a triple (P, Init, Q), where
P is an update program over some dynamic schema (τin, τaux),
Init is a mapping that maps τin-databases to τaux-databases, and
Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a query Q if, for every dynamic instance
(D, α), the query result Q(α(D)) coincides with the content of Q in the state S = Pα(SInit(D))
where SInit(D) is the initial state for D, that is, SInit(D) def= (D,D, Init(D)).

The following example due to [16] shows how the transitive closure of an acyclic graph
subject to edge insertions and deletions can be maintained in this set-up. The basic technique
of this example will be crucial in some of the later proofs.

I Example 3. Consider an acyclic graph G subject to edge insertions and deletions. In the
following, our goal is to maintain the transitive closure of G using a dynamic program with
first-order update formulas. It turns out that if the graph is guaranteed to remain acyclic,
then it is sufficient to store the current transitive closure relation in an auxiliary relation T .
We follow the argument from [16].

When an edge (u, v) is inserted into G the following very simple rule updates T : there is
a path from x to y after inserting (u, v) if (1) there was already a path from x to y before the
insertion, or (2) there were paths from x to u and from v to y before the insertion. This rule
can be easily specified by a first-order update formula that defines the updated transitive
closure relation1: φTinsE

(u, v;x, y) def= T (x, y) ∨
(
T (x, u) ∧ T (v, y)

)
.

Deletions are slightly more involved. There is a path ρ from x to y after deleting an edge
(u, v) if there was a path from x to y before the deletion and (1) there was no such path via
(u, v), or (2) there is an edge (z, z′) on ρ such that u can be reached from z but not from z′.
If there is still a path ρ from x to y, such an edge (z, z′) must exist, as otherwise u would
be reachable from y, contradicting acyclicity. This rule can be described by a first-order
formula:

φTdelE
(u, v;x, y) def= T (x, y) ∧

((
¬T (x, u) ∨ ¬T (v, y)

)
∨ ∃z∃z′(

T (x, z) ∧ E(z, z′) ∧ (z 6= u ∨ z′ 6= v) ∧ T (z′, y) ∧ T (z, u) ∧ ¬T (z′, u)
))

J

A word on the initial input and auxiliary databases is due. As default we use the original
setting of Patnaik and Immerman, where the input database is empty at the beginning, and
the auxiliary relations are initialized by first-order formulas evaluated on the initial input
database. When we use a different initialization setting we state it explicitly. In the literature
several other settings have been investigated and we refer to [25, 23] for a detailed discussion.

The class of queries that can be maintained by first-order update formulas in the setting of
Patnaik and Immerman is called2 DynFO. Restricting update formulas to be quantifier-free
yields the class DynProp.

1 For simplicity we use the same names for elements and variables.
2 In [25, 24, 22] the class DynFO comes with an arbitrary initialization, yet there the focus is on lower

bounds.
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When showing that a particular query is in DynFO we often assume that arithmetic on
the domain is available from initialization time, that is, we assume the presence of relations
≤,+,× that are interpreted as a linear order – allowing to identify elements with numbers –,
addition and multiplication on the domain. From a DynFO program that relies on built-in
arithmetic, a program without built-in arithmetic can be constructed for all queries studied
here by using a technique from [6].

I Proposition 4 ([6, Theorem 4]). Every domain-independent query Q that can be maintained
in DynFO with built-in arithmetic can also be maintained in DynFO.

Here, a query is domain-independent if its result does not change when elements are added
to the domain.

Constructing a DynFO program for a specific query Q can be a tedious task. Such
a construction can often be simplified by reducing Q to a query Q′ for which a dynamic
program has already been obtained. Such a reduction needs to be consistent with first order
logic and its use in this dynamic context. A suitable kind of reductions are bounded first-order
reductions. Intuitively, a query Q reduces to a query Q′ via a bounded first-order reduction if
a modification of an instance of Q induces constantly many, first-order definable modifications
in a instance of Q′. Note that if Q can be reduced to Q′ via a bounded first-order reduction,
then first-order update formulas for a modification of an instance for Q can be obtained
by composing the first-order update formulas for the corresponding (first-order definable)
modications of the instance of Q′. We refer to [16] and [12] for a detailed exposition to
bounded first-order reductions.

In this article we study dynamic programs for queries on (labeled) graphs. For most of
our dynamic programs the precise encoding of graphs is not important. If the input to a
query is a single Σ-labeled graph G = (V,E) then it can, for example, be encoded by binary
relations Eσ that store all σ-labeled edges, for all σ ∈ Σ. Similarly for constantly many
graphs. Some of our results are for input databases that contain more than constantly many
graphs. Those can be encoded in higher arity relations in a straightforward way. For example,
linearly many graphs can be stored in ternary relations Eσ containing a tuple (g, u, v) if
graph g contains a σ-labeled edge (u, v).

Graph databases and query languages. We review basic definitions of graph databases in
order to fix notations and introduce the query languages used in this work.

A graph database over an alphabet Σ is a finite Σ-labeled graph G = (V,E) where V is a
finite set of nodes and E is a set of labeled edges (u, σ, v) ⊆ V × Σ× V . Here σ is called the
label of edge (u, σ, v). Given a Σ-labeled graph G = (V,E) and a symbol σ ∈ Σ, we denote
by Gσ the projection of G onto its σ-labeled edges, that is, the graph Gσ has the edge set
{(u, v) | (u, σ, v) ∈ E}. We say that a Σ-labeled graph G is acyclic if the graph ∪σ∈ΣGσ is
acyclic, and undirected, if for each σ ∈ Σ the graph Gσ is undirected.

A path ρ in G from v0 to vm is a sequence of edges (v0, σ1, v1), . . . , (vm−1, σm, vm) of G,
for some length m ≥ 0. The label of ρ, denoted by λ(ρ), is the word σ1 · · ·σm ∈ Σ∗. Paths of
length zero are labeled by the empty string ε. For a formal language L ⊆ Σ∗, we say that ρ
is an L-path if λ(ρ) ∈ L.

The basic building block of many graph query languages are regular path queries (short:
RPQs). An RPQ selects all pairs of nodes in a Σ-labeled graph that are connected by an
L-path, for a a given regular language L ⊆ Σ∗. Here we are interested in two extensions of
regular path queries. One of them are path queries defined by non-regular languages, namely
context-free and non-context-free languages.
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The second extension to be studied, extended conjunctive regular path queries (short:
ECRPQs), allows to define multiple paths and to compare their labels based on relations
on words. In the following we give a short introduction to ECRPQs and refer to [4] for a
detailed study.

In ECRPQs, paths are compared by regular relations. A k-ary regular relation R over
alphabet Σ is defined by a finite state automaton A that synchronously reads k words over
Σ ∪⊥, with ⊥ /∈ Σ . The ⊥ symbol is a padding symbol that may only occur at the end of a
word, and therefore allows for processing words of different length. More formally A reads
words over the alphabet (Σ ∪ ⊥)k, and a k-tuple of words is in R if its corresponding string
over (Σ ∪ ⊥)k is accepted by A.

An ECRPQ is of the form Q(~z)←−
∧

1≤i≤m(xi, πi, yi),
∧

1≤j≤tRj(~ωj) where
each Rj is a regular relation over Σ (specified by some finite state automaton),
~x = (x1, ..., xm), ~y = (y1, ..., ym) and ~z are tuples of node variables such that the variables
in ~z occur in ~x or ~y, and
~π = (π1, ..., πm) and ~ω1, ..., ~ωt are distinct tuples of path variables such that all variables
in each ~ωj occur in ~π.

In general both node and path variables can occur in the head of an ECRPQ. Here we
focus on ECRPQs with heads containing node variables only.

The semantics of ECRPQs is defined in a natural way. For an ECRPQ Q of the above
form, a Σ-labeled graph G = (V,E), and mappings ν from node variables to nodes and µ
from path variables to paths, we write (G, ν, µ) |= Q if

µ(πi) is a path in G from ν(xi) to ν(yi) for 1 ≤ i ≤ m, and
the tuple (λ(µ(πj1)), ..., λ(µ(πjk

))) belongs to the relation Rj for each ~ωj = (πj1 , ..., πjk
).

The result of Q evaluated on G is defined by Q(G) def= {ν(~z) : (G, ν, µ) |= Q}.

Product Graphs and Graph Query Languages. There is a strong connection between the
evaluation problem for many graph query languages and the reachability query for products
of labeled graphs. For example, the evaluation of a regular path query L on a labeled graph
G can be reduced to reachability in the product graph A × G where A is a finite state
automaton for L. Product graphs also help for the evaluation of fragments of ECRPQs
as well. We will exploit this connection at several places and therefore present some basic
properties of product graphs next.

The product graph
∏
iGi of m Σ-labeled graphs Gi = (Vi, Ei), 1 ≤ i ≤ m, has nodes∏

i Vi and an edge (~x, ~y) between two nodes ~x = (x1, ..., xm) and ~y = (y1, ..., ym) if there is a
symbol σ ∈ Σ such that (xi, σ, yi) ∈ Ei for each 1 ≤ i ≤ m. The graphs Gi are called factors
of the graph product. Graph products for unlabeled graphs are defined analogously. The
following well known property characterizes reachability in (labeled) product graphs.

I Fact 5. Let (Gi)1≤i≤m be graphs (Σ-labeled graphs) with Gi = (Vi, Ei) and let ~x =
(x1, . . . , xm), ~y = (y1, . . . , ym) be two pairs of nodes of

∏
iGi. Then ~y is reachable from

~x in
∏
iGi if and only if there are paths ρi from xi to yi in Gi with |ρi| ≤ |

∏
i Vi|, for

i ∈ {1, . . . ,m}, and |ρi| = |ρj | (λ(ρi) = λ(ρj) respectively) for all i, j ∈ {1, . . . ,m}. J

The preceding fact can be used in the dynamic context as well, i.e. it is compatible with
bounded first-order reductions. More precisely, reachability in products of unlabeled graphs
can be inferred from all distances in the factors. We say that all distances up to nc, for
c ∈ N, are computed by a dynamic program if, for a graph G with n nodes and arithmetic
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on the domain3, it maintains a relation D that contains all tuples (x, y, `) such that there is
a path from x to y of length `, for 0 ≤ ` ≤ nc.

I Proposition 6. The following problems are equivalent under bounded first-order reductions
with built-in arithmetic:
1. Maintaining all distances up to n2.
2. Maintaining reachability in the product of two graphs (both of them subject to modifica-

tions).
3. Maintaining reachability in the product of two graphs, one of them a fixed path.

A similar equivalence can be established for problems related to reachability in products
of Σ-labeled graphs:

I Proposition 7. The following problems are equivalent under bounded first-order reduc-
tions:
1. Maintaining the existence of equally labeled paths between two pairs of nodes.
2. Maintaining reachability in the product of two Σ-labeled graphs.
3. Maintaining reachability in the product of two Σ-labeled graphs, one of them undirected.
4. Maintaining the palindrome path query on Σ-labeled graphs.

3 Dynamic Path Queries

Path queries, as mentioned in the introduction, have almost not been studied in dynamic
complexity before. Until recently not even the simple query induced by the language L(a∗)
was known to be in DynFO. Yet as an immediate consequence of the dynamic first-order
update program for reachability exhibited in [6], all fixed regular path queries (and, since
DynFO is closed under conjunctions, also conjunctions of them) can be maintained by
first-order update formulas.

In this section we continue the exploration of the dynamic maintainability of path queries.
We show that under insertions quantifier-free update formulas are sufficient to maintain
(fixed) regular path queries, and that more expressive path queries can be maintained for
restricted classes of graphs and constrained modifications.

I Theorem 8. When only insertions are allowed then every regular path query can be
maintained by quantifier-free update formulas.

We conjecture that quantifier-free update formulas do not suffice to maintain RPQs under
both insertions and deletions. This would imply that reachability can be maintained without
quantifiers which seems to be very unlikely. A first step towards verifying this conjecture
was done in [25] where it was shown that reachability cannot be maintained with binary
quantifier-free programs.

Proof sketch (of Theorem 8). Let L be a regular path query and let A = (Q,Σ, δ, s, F ) be
a DFA with L = L(A). The dynamic program uses a binary relation symbol Rp,q for every
pair of states (p, q) ∈ Q2, as well as a binary designated query symbol R. The idea is that
for a labeled graph G, the relation Rp,q contains all tuples (x, y) ∈ V 2 such that A, for some
labeled path ρ from x to y, can read ρ by starting in state p and ending in state q.

3 We note that from the arithmetic on the domain, arithmetic upto nc can be defined using first-order
formulas.
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The update formulas for the relations Rp,q are slightly more involved than the formulas
for maintaining reachability under insertions. This is because A might reach a state q
from a state p only by reading a labeled path from x to y that contains one or more loops.
The crucial observation is, however, that for deciding whether (x, y) is in Rp,q it suffices to
consider paths that contain the node x at most |Q| times (as paths that contain x more than
|Q| times can be shortened). This can be checked by quantifier-free update formulas. J

Capturing non-regular path queries by first-order update formulas seems to be significantly
harder than capturing CRPQs. We provide only some preliminary results for restricted
classes of graphs and modifications.

When all distances for all pairs of nodes can be maintained for a restricted class of graphs,
then also non-regular and even non-contextfree path queries can be maintained (e.g. the
language {anbncn | n ∈ N}). Later in Theorem 11 and Theorem 12 we show that distances
can be kept up-to-date on acyclic and undirected graphs, as well as on directed graphs under
insertions. This implies the following result.

I Theorem 9.
1. There is a non-context-free path query that can be maintained in DynFO on acyclic and

undirected Σ-labeled graphs.
2. There is a non-context-free path query that can be maintained in DynFO when only

insertions are allowed.

On acyclic graphs, all context-free path queries can be maintained. It is known that
context-free languages are in DynFO [11] and that the Dyck language with two types of
parentheses can be maintained on acyclic graphs [20]. Generalizing the techniques used for
those two results yields the following theorem.

I Theorem 10. All context-free path queries can be maintained in DynFO on acyclic graphs.

To prove Theorem 10, we fix a context-free language L and a grammar G = (V,Σ, S, P )
for L. We assume, without loss of generality, that G is in Chomsky normal form, that is, it
has only rules of the form X → Y Z and X → σ. Furthermore, if ε ∈ L then S → ε ∈ P and
no right-hand side of a rule contains S. We write Z ⇒∗ w if w ∈ (Σ ∪ V )∗ can be derived
from Z ∈ V using rules of G.

The dynamic program maintaining L on acyclic graphs uses (2k + 2)-ary relation sym-
bols RX→Y1,...,Yk

, for k ∈ {1, 2, 3}. The intention is that for an input graph database G,
the relation RX→Y1,...,Yk

contains a tuple (x1, y1, . . . , xk+1, yk+1) if and only if there are
strings s1, . . . , sk+1 ∈ Σ∗ such that X ⇒∗ s1Y1s2 · · · skYksk+1 and there is an si-path ρi from
xi to yi in G. The paths ρi are called witnesses for (x1, y1, . . . , xk+1, yk+1) ∈ RX→Y1,...,Yk

.
In a first step we prove that every relation RX→Y1,...,Yk

is first-order definable from the
relations RX→Y , so it actually suffices to only maintain these relations. This proof can be
found in the full version of this paper.

Proof idea (of Theorem 10. Let L be an arbitrary context-free language and let G =
(V,Σ, S, P ) be a grammar for L in Chomsky normal form. We provide a DynFO-program
P with designated binary query symbol Q that maintains L on acyclic graphs. The input
schema is {Eσ | σ ∈ Σ} and the auxiliary schema is τaux = {RX→Y | X,Y ∈ V } ∪ {T}. The
intention of the auxiliary relation symbols RX→Y has already been explained above; the
relation symbol T shall store the transitive closure of the input graph (where the input graph
is the union of all Eσ).
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As already stated above, the query relation Q is first-order definable from the rela-
tions RX→Y , as a tuple (x, y) is in the query relation if and only if x = y and ε ∈ L, or there
is a τ -labeled edge (z1, z2) such that (x, z1, z2, y) ∈ RS→U for some U ∈ V with U → τ .

It remains to present update formulas for each RX→Y . After inserting a σ-edge (u, v),
a tuple (x1, y1, x2, y2) is contained in RX→Y if there are two witness paths ρ1 and ρ2 such
that (1) ρ1 and ρ2 have already been witnesses before the insertion, or (2) only ρ1 uses the
new σ-edge, or (3) only ρ2 uses the new σ-edge, or (4) both ρ1 and ρ2 use the new σ-edge.
In case (2) the path ρ1 can be split into a path from x1 to u, the edge (u, v) and a path from
v to y1. Similarly in the other cases and for ρ2. This can be expressed using the first-order
formulas defining RX→Y1,...,Yk

.
After deleting a σ-edge (u, v) a tuple (x1, y1, x2, y2) is in RX→Y if it still has witness

paths ρ1 and ρ2 from x1 to y1 and from x2 to y2, respectively. The update formula for
RX→Y verifies that such witness paths exist. Therefore, similar to Example 3, the formula
distinguishes for each i ∈ {1, 2} whether (1) there was no path from xi to yi via (u, v) before
deleting the σ-edge (u, v), or (2) there was a path from xi to yi via (u, v).

In case (1) all paths present from xi to yi before the deletion of the σ-edge (u, v) are also
present after the deletion. In particular the set of possible witnesses ρi remains the same.
For case (2), the update formula has to check that there is still a witness path ρi. Such a
path ρi has the options (a) to still use the edge (u, v) but for a τ 6= σ, and (b) to not use the
edge (u, v) at all.

Whether some witness path uses (u, v) can be checked using the relation T . Existence
of alternative witness paths can be verified similar to Example 3 with the relations T and
RX→Y1,...,Yk

. The complete update formulas can be found in the full version. J

4 Dynamic Extended Conjunctive Regular Path Queries

In this section we explore the maintainability of ECRPQs. In contrast to path queries,
ECRPQs allow for testing properties of tuples of paths between pairs of nodes. Comparing
the length of two paths is one of the simplest such properties and is therefore studied first.
Afterwards we extend some of the techniques developed for maintaining the lengths of paths
to ECRPQs.

4.1 Maintaining Distances
Maintaining all distances in arbitrary graphs is one of the big challenges of dynamic complexity.
Recall that for maintaining all distances up to nc a dynamic program has to update, for a
graph G, a relation D that contains all tuples (x, y, `) such that there is a path from x to y
of length ` in G, for 0 ≤ ` ≤ nc.

The recent dynamic algorithm for maintaining reachability (see [6]) does, unfortunately,
not offer hints at how to maintain distances. A dynamic upper bound for distances is
provided by Hesse’s DynTC0-program for reachability [13]. The program actually maintains
the number of different paths of length ` between every pair of nodes, for any length ` up to
the size of the graph, and thus all distances for all pairs of nodes. The program can be easily
modified to compute all distances up to fixed polynomials.

Here we present preliminary results for maintaining all distances with first-order formulas
for restricted modifications as well as for restricted classes of graphs. Furthermore we show
that distances cannot be maintained with quantifier-free update formulas.

The shortest distance between every pair of nodes can be easily maintained in DynFO
when edges can only be inserted; basically because shortest paths do not contain loops.
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Maintaining all distances for all pairs of nodes under insertions requires some work.

I Theorem 11. All distances up to p(n) can be maintained in DynFO under insertions for
every fixed polynomial p(n).

Proof. We describe how to maintain distances up to n; the generalization to distances up to
p(n) is straightforward and sketched at the end of the proof. The idea is to maintain a 4-ary
relation A that contains a tuple (x, y, t, `) if there are t (not necessarily distinct) paths from
x to y such that the sum of their lengths is `.

There is a path of length ` from node x to node y if and only if (x, y, 1, `) holds. For
maintaining this information, we need the full relation: a path from x to y can use a newly
inserted edge (u, v) several times if cycles are present. Also, the path can use an arbitrary
combination of cycles including that edge, and each cycle can be used arbitrarily often.

When inserting an edge (u, v) the updated relation A is defined by the following formula:

φAinsE
(u, v;x, y, t, `) def= ∃t−∃t+∃t	∃`−∃`+1∃`+2∃`	(

A(x, y, t−, `−) ∧A(x, u, t+, `+1) ∧A(v, y, t+, `+2) ∧A(v, u, t	, `	)

∧ (t+ = 0→ t	 = 0) ∧ t− + t+ = t ∧ `− + `+1 + `+2 + `	 + t+ + t	 = `
)

If there are t paths with total length ` from x to y after the edge (u, v) is inserted, these
paths can be divided into t− paths that do not use the new edge (u, v), with a total length
of `−, and t+ paths that use the edge (u, v). Each one of these t+ paths is composed of (i)
one path from x to u that does not use (u, v), (ii) the edge (u, v), (iii) possibly some cycles
from v back to v created by combining an old path from v to u and the new edge (u, v), and
(iv) one path from v to y that does not use (u, v).

Without considering the cycles in v that use (u, v), in total there are t+ paths from x

to u (with total length `+1), t+ paths from v to y (with total length `+2) and t+ times the
new edge (u, v). So these paths have total length `+1 + `+2 + t+. Additionally, let t	 be the
number of times the edge (u, v) is used in cycles from v to v in all t+ paths together. These
cycles can be obtained from t	 paths from v to u of total length l	 and t	 times the new
edge (u, v). So in total, the t+ paths have a total length of `+1 + `+2 + t+ + `	 + t	.

For maintaining distances upto p(n), numbers of this magnitude are encoded by tuples of
elements. Arithmetic upto p(n) can be easily defined in a first-order fashion from the built-in
arithmetic upto n. The above construction then translates in a straightforward way. J

Next we show that all distances for all pairs of nodes in undirected and acyclic graphs can
be updated using first-order update formulas. For undirected graphs this slightly extends a
result by Grädel and Siebertz [12] that the shortest distance can be maintained for undirected
paths. For acyclic graphs the maintenance of all distances is a straight-forward extension of
the dynamic program for maintaining reachability shown in Example 3.

I Theorem 12. All distances up to p(n) can be maintained in DynFO for every fixed
polynomial p(n) for (a) undirected graphs, and (b) acyclic graphs.

The proof can be found in the full version.
In the rest of this subsection we discuss why distance information cannot be maintained

by quantifier-free update formulas. So far the goal, when maintaining distances, was to store
tuples (a, b, `) in some relation if there is a path from a to b of length `, where the length
` referred to the built-in arithmetic. It can be easily seen that maintaining distances in
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this fashion is not possible with quantifier-free formulas (basically because a quantifier-free
formula only has access to the numbers represented by the modified nodes).

Another way of maintaining distance information is to store a 4-relation that contains a
tuple (a1, a2, b1, b2) if and only if there are paths from a1 to a2 and from b1 to b2 of equal
length. We show that this relation cannot be maintained by quantifier-free programs.

Denote by Equal-Length-Paths the query on (unlabeled) graphs that selects all tuples
(a1, a2, b1, b2) such that there are paths from a1 to a2 and from b1 to b2 of equal length.

I Theorem 13. The query Equal-Length-Paths cannot be maintained by quantifier-free
update formulas, even when the auxiliary relations can be initialized arbitrarily. In particular,
ECRPQs and reachability in product graphs cannot be maintained in this setting either.

Intuitively this is not very surprising. It is well known that non-regular languages and
therefore, in particular, the language {anbn | n ∈ N} cannot be maintained by a quantifier-free
program [11]. Thus maintaining whether two isolated paths have the same length should not
be possible either. Technical issues arise from the fact that the query Equal-Length-Paths
is over graphs, not strings. Yet the techniques used for proving lower bounds for languages
can be adapted, see the full paper for details.

4.2 Maintaining ECRPQs
Here we study the maintenance of ECRPQs and provide results in restricted settings. First
we show that answers to an ECRPQ can be maintained in DynFO on acyclic graphs. Even
more, answers to the following extension of ECRPQs introduced in [4] can still be maintained.
An ECRPQ with linear constraints on the number of occurrences of symbols on paths over
an alphabet Σ = {σ1, ..., σk} is of the form

Q(~z)←−
∧

1≤i≤m
(xi, πi, yi),

∧
1≤j≤t

Rj(~ωj), A~̀≥ ~b

where A ∈ Zh×(km) for some h ∈ N, ~b ∈ Zh, and ~̀ = (`1,1, ...`1,k, ..., `m,1, ..., `m,k). The
semantics extends the semantics of ECRPQs as follows: for each 1 ≤ i ≤ m and 1 ≤ j ≤ k,
the variable `i,j is interpreted as the number of occurrences of the symbol σj in the path πi.
The last clause of the query Q is true if A~̀≥ ~b under this interpretation.

I Theorem 14. Every ECRPQ with linear constraints on the number of occurrences of
symbols is maintainable in DynFO on acyclic graphs.

Proof. Let Σ = {σ1, ..., σk}. We show how to maintain the answer of an ECRPQ Q with
linear constraints with only one regular relation R on an acyclic Σ-labeled graph G = (V,E).
Thus Q is of the form:

Q(~z)←−
∧

1≤i≤m
(xi, πi, yi), R(π1, . . . , πm), A~̀≥ ~b

An arbitrary ECRPQ with linear constraints can be rewritten in this form by using closure
properties of regular relations.

In a first step we reduce this problem to a structurally simpler one: the problem of
maintaining Q on a Σ-labeled graph consisting of m disjoint acyclic graphs G1, . . . , Gm,
restricted in such a way that solutions may only map the variables xi, yi to nodes in Gi, for
each 1 ≤ i ≤ m. The simple reduction from the original problem copies the queried graph m
times. As m is a constant, this is a bounded first order reduction.
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Let A = (Q, (Σ ∪ ⊥)m, δ, s, F ) be a finite automaton with padding symbol ⊥ 6∈ Σ
that recognizes the m-ary regular relation R. The idea is to maintain (2m + km)-ary
auxiliary relations Rp,q for all p, q ∈ Q intended to store a tuple (~x, ~y, ~̀1, . . . , ~̀m) with
~x = (x1, . . . , xm), ~y = (y1, . . . , ym) and ~̀

i = (`i,1, . . . , `i,k) if and only if the state q is
reachable from the state p in A by reading a tuple of words (λ(ρ1), . . . , λ(ρm)), where for
each 1 ≤ i ≤ m, ρi is a path in Gi from xi to yi, and `i,1, . . . , `i,k are the number of
occurrences of the symbols σ1, . . . , σk in the label sequence of ρi.

We show how to express the query relation Q by these relations. To this end observe
that the (fixed) linear inequality system A~̀≥ ~b can be defined by a (m× k)-ary first-order
formula ψA,~b(~̀1, . . . , ~̀m) that uses the built-in arithmetic.

The query relation Q is then defined by the following formula:

ϕ(~z) def= ∃~v ∃~̀1 · · · ∃~̀m
∨
f∈F

Rs,f (~x, ~y, ~̀1, . . . , ~̀m) ∧ ψA,~b(~̀1, . . . , ~̀m)

Here the existentially quantified variables ~v correspond to variables of Q that do not occur
in the head of the query, and all xi and yi occur in either ~z or ~v.

The update formulas for the relations Rp,q are similar in spirit to those for reachability
in acyclic graphs used in Example 3. They are described in detail in the full paper. J

It remains open whether the answer relation of ECRPQs can be maintained on general
graphs, even when only insertions are allowed. Yet when the rational relations are restricted
to be unary, the ECRPQs can be maintained under insertions. More formally, a CRPQ with
linear constraints on the number of occurrences of symbols over Σ = {σ1, . . . , σk} is of the
form

Q(~z)←−
∧

1≤i≤m
(xi, πi, yi),

∧
1≤j≤m

Lj(πj), A~̀≥ ~b

where Lj is a unary rational relation (that is, a regular language), and A, ~b and ~̀ are as in
the definition of ECRPQs with linear constraints.

I Theorem 15. Every CRPQ with linear constraints on the number of occurrences of symbols
is maintainable in DynFO under insertions.

Proof. Let Σ = {σ1, . . . , σk} and Q be a CRPQ over Σ with linear constraints on the number
of occurrences of symbols as above. Further let Aj = (Qj ,Σ, δj , sj , Fj), 1 ≤ j ≤ m, be finite
state automata for the regular languages Lj occurring in Q.

We exhibit a DynFO-program with built-in arithmetic for maintaining Q on general
graphs under insertions. The necessity for built-in arithmetic can be removed by Proposition 4.

The idea is similar to the proof of the previous Theorem 14. We maintain (k + 2)-ary
auxiliary relations Rjp,q for each j ∈ {1, . . . ,m} and all p, q ∈ Qj with the intention that
Rjp,q stores a tuple (x, y, `1, . . . , `k) if and only if the state q is reachable from state p in the
automaton Aj by reading the label of a path ρ between x and y in G such that `1, . . . , `k
are the number of occurrences of σ1, . . . , σk in ρ.

Before sketching how to maintain the relations Rjp,q, we show how they can be used to
express the answer of Q. As in the proof of Theorem 14 the (fixed) linear inequality system
A~̀≥ ~b can be defined by a (m× k)-ary first-order formula ψA,~b(`1,1, . . . , `m,k) that uses the
built-in arithmetic. Then a tuple ~u of nodes in G is in the answer of Q if and only if the
following formula holds:

ϕ(~z) def= ∃~v ∃`1,1, . . . , `m,k,
∧

1≤j≤m

 ∨
f∈Fj

Rjsj ,f
(xj , yj , `j,1, . . . , `j,k)

∧ψA,~b(`1,1, . . . , `m,k) .
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Here the existentially quantified variables ~v correspond to variables of Q that do not occur
in the head of the query, and all xj and yj occur in either ~v or ~z.

A small technical issue arises from the fact that it is not obvious why the length of paths
ρ1, . . . , ρm witnessing that a tuple of nodes ~u is in the answer of Q is polynomially bounded.
This, however, is necessary for being able to quantify the length `1,1, . . . , `m,k and to use the
built-in arithmetic for computations. Fortunately the length of (shortest) witness paths can
be bounded by a fixed polynomial in the size of the active domain. This has been shown
even for ECRPQs with such linear constraints in [4, Lemma 8.6].

Now we show how to maintain the relations Rjp,q. The following notion is useful. A relation
R stores the Parikh distances of a Σ-labeled graph if it contains a tuple (x, y, `1, . . . `k) if and
only if there is a path ρ between x and y such that its label λ(ρi) contains `i occurrences of
the symbol σi for each 1 ≤ i ≤ m. We observe that the relations Rjp,q can be defined from
the Parikh distance relations of the product graphs G×Aj . Since the automata Aj are fixed,
a modification of G yields a bounded number of first-order definable modifications to G×Aj .

Thus in order to maintain Rjp,q, it suffices to be able to maintain the Parikh distance
relation of a Σ-labeled graph under insertions. However, the dynamic program for maintaining
distances under insertions from Theorem 11 can be easily generalized to maintain Parikh
distances. J

We remark that already boolean ECRPQs cannot be maintained under insertions in
DynProp due to lower bounds for non-regular languages [11], and boolean CRPQs with
k + 2 existentially quantified node variables cannot be maintained in DynProp with k-ary
relations due to a lower bound for the k-clique query [24].

5 Maintaining Reachability in Product Graphs

In this final section we study the reachability query for product graphs. In addition to its
importance for the evaluation of fixed graph queries, reachability in graph products can
be used to maintain the result of regular path queries in combined complexity (i.e., when
the query is subject to modifications as well). Furthermore it is relevant in model checking,
where subsystems correspond to factors in product graphs (see, e.g., [3]).

The results for maintaining all distances obtained in the previous section immediately
transfer to reachability in simple graph products (see the discussion at the end of Section 2).
A small technical obstacle arises from the fact that the reachability query does not come
with built-in arithmetic, while the distance query studied so far does. However, this is not a
problem due to Proposition 4.

I Theorem 16. Let G be a class of graphs and m ∈ N. If all distances up to nm on G
can be maintained in DynFO with built-in arithmetic, then reachability in the product of m
G-graphs is maintainable in DynFO (without built-in arithmetic).

Shortest paths in products of acyclic and undirected graphs are of length at most n
and n2, respectively. For these two classes of graphs, reachability can therefore be maintained
in products of polynomially many factors using the program for all distances. More precisely,
this is doable for reachability between two specified nodes ~s and ~t as opposed to all pairs of
nodes (as there are exponentially many nodes in such product graphs).

For directed graphs, shortest paths in products of polynomially many graphs can be of
exponential length. For this reason, the approach to maintain reachability in such products
via distances fails. Even more, it is unlikely that there is a DynFO-program for this problem:
it could be used to decide reachability in the product of polynomially many graphs in PTime,
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which is NP-hard. This follows from a reduction from emptiness of intersections of unary
regular expressions which is known to be NP-hard [10].

I Corollary 17. Reachability can be maintained in DynFO in the product of
1. polynomially many undirected graphs,
2. polynomially many acyclic graphs, and
3. a constant number of directed graphs under insertions.

This follows immediately from Theorem 16, Theorem 12 and Theorem 11. Reachability in
products of an undirected and an acyclic graph and similar constellations can, of course, also
be maintained.

For labeled graph products, the following corollary follows immediately from the proof of
Theorem 14.

I Corollary 18. Reachability in products of constantly many acyclic Σ-labeled graphs can be
maintained in DynFO.

In the following we generalize Corollary 17 to a broader class of graph products. In
the product graphs considered so far, there is an edge from a node (x1, . . . , xm) to a node
(y1, . . . , ym) if there is an edge (xi, yi) in every factor Gi. This can be seen as a completely
synchronized traversal through the given graphs. The graph products to be introduced next
allow for more flexible, partially synchronized traversals.

Let (Gi)1≤i≤m be a sequence of graphs with Gi
def= (Vi, Ei), and let A def= (~a1, . . . ,~ak) be

a list of tuples from {0, 1}m, called transition rules. We often identify A with the matrix
that has the tuples ~ai as columns. The generalized graph product of (Gi)i with respect to A,
denoted

∏A
i Gi, has nodes V1 × · · · × Vm and edges (~x, ~y) defined by the first-order formula∨

~a∈A
~a=(a1,...,am)

∧
ai=0

xi = yi ∧
∧
ai=1

Ei(xi, yi) .

For example, the usual product of two graphs is defined by the transition rule {(1, 1)},
and the so called cartesian product is defined by the rules {(1, 0), (0, 1)}. We remark that
generalized graph products have also been called non-complete extended p-sums (see [19]).

I Theorem 19. Reachability in generalized product graphs is maintainable in DynFO under
modifications to factors and transitions rules4 for
1. a constant number of directed graphs under insertions and a constant number of transition

rules,
2. polynomially many acyclic graphs and a constant number of transition rules,
3. polynomially many undirected graphs and polynomially many transition rules.

Proof sketch. For (1) and (2), the key observation is that reachability in generalized graph
products can be reduced to finding a solution of small natural numbers to a linear equation
system. For proving (3), a characterization of reachability in generalized products of
undirected graphs from [19] as well as the dynamic program for maitaining the rank of a
matrix from [6] is used. Details can be found in the full paper. J

Observe that deciding reachability in generalized products of (1) polynomially many
graphs with constant many transition rules and of (2) polynomially many acyclic graphs

4 We permit single bit modifications to A, that is, modifying one bit of a transition rule at a time.
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with polynomially many transitions rules are NP-hard problems. More precisely, the first
generalizes reachability in the product of polynomially many graphs, which we already
discussed above. As for the second, notice that the problem of deciding the existence of a 0–1
solution of a linear equation A~x = ~1, which is known to be NP-hard even for a 0-1 matrix A
[5, Chapter 8], can be straightforwardly reduced to reachability in the generalized product of
acyclic graphs when polynomially many transition rules are allowed (by using the distance
and linear equations characterization used in the proof of Theorem 19). These problems are
thus unlikely to be maintainable in DynFO.

6 Conclusion

In this article we explored graph query languages in the dynamic descriptive complexity
framework introduced independently by Dong, Su and Topor, and Patnaik and Immerman.
Furthermore we investigated the strongly related question, under which conditions distances
in graphs as well as reachability in product graphs can be maintained. Our work is only a
first step towards a systematic understanding of graph queries in dynamic graph databases.
In the following we discuss some interesting directions for further research.

For several restricted classes of graphs we exhibited first-order update programs for
maintaining distances. We also showed that quantifier-free update formulas do not suffice. It
remains open, whether distances can be maintained for general graphs; we conjecture that
this is the case.

I Open problem 1. Exhibit a DynFO-program for maintaining distances.

As we have seen, reachability in products of labeled graphs is related to maintaining
fragments of the graph query language ECRPQ. While we showed that reachability can be
maintained in labeled products of acyclic graphs, this problem is already much harder for
products of undirected, labeled paths – not to mention arbitrary labeled graphs.

IOpen problem 2. Find dynamic DynFO-programs for maintaining reachability in products
of restricted classes of labeled graphs.

Another interesting direction is to exhibit dynamic programs for other, more expressive
query languages.

I Open problem 3. Identify further expressive query languages that can be maintained
dynamically.

A candidate query language to be studied are nested regular expressions (NREs) [17].
NREs allow to express queries with some branching capabilities. For example, the NRE
(a[b])∗ selects pairs of nodes that are connected by an a∗-labeled path such that every node on
this path has an outgoing edge with label b. This query can easily be maintained in DynFO,
as it is bounded first-order reducible to reachability. On the other hand, it is already unclear
whether the query (a[bc])∗ can be maintained in DynFO.
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Abstract
Integrity constraints play a central role in databases and, among other applications, are funda-
mental for preserving data integrity when databases evolve as a result of operations manipulating
the data. In this context, an important task is that of static verification, which consists in de-
ciding whether a given set of constraints is preserved after the execution of a given sequence of
operations, for every possible database satisfying the initial constraints. In this paper, we con-
sider constraints over graph-structured data formulated in an expressive Description Logic (DL)
that allows for regular expressions over binary relations and their inverses, generalizing many
of the well-known path constraint languages proposed for semi-structured data in the last two
decades. In this setting, we study the problem of static verification, for operations expressed in
a simple yet flexible language built from additions and deletions of complex DL expressions. We
establish undecidability of the general setting, and identify suitable restricted fragments for which
we obtain tight complexity results, building on techniques developed in our previous work for
simpler DLs. As a by-product, we obtain new (un)decidability results for the implication problem
of path constraints, and improve previous upper bounds on the complexity of the problem.
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1 Introduction

Integrity constraints play a central role in databases and, among many other applications,
are fundamental for preserving data integrity when databases evolve as a result of operations
manipulating the data [1, 23, 6]. A fundamental problem in this context is static verification:
given a set of integrity constraints, and a sequence of operations that describe changes
on databases (over the same schema), the goal is to verify whether the constraints are
preserved by the operations, that is, they are satisfied after their application, for every
database that initially satisfies the constraints. This allows one to establish the acceptability
of sequences of operations, which guarantees that applications maintain data integrity at
runtime, independently of the specific database states that may be reached. However,
static verification is very hard, and identifying sufficiently expressive languages for integrity
constraints and data operations that allow for decidable verification is challenging.

In this paper, we consider graph-structured data (GSD), that is, relational data that
contains unary and binary relations only, and thus admits a natural representation as a
labeled graph. This data model is well suited for those settings where the data does not
comply to a fixed schema, and the topology of the data relations is central. The GSD model
became important already two decades ago due to the close relationship with semi-structured
data [2, 13]. In the last decade it has gained renewed interest due to its relevance in the
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15:2 Verification of Evolving GSD under Expressive Path Constraints

Semantic Web and a diverse range of areas, including social networks, life-sciences, and
program analysis, see e.g., [5, 36] and references therein. The study of query languages
for GSD has been the focus of extensive research efforts in the database community over
the last decade, based on the common consensus that GSD requires navigational query
languages that allow, as minimal required functionality, to extract nodes that are connected
by paths complying with a given regular language [36, 30]. The exploration of constraints
for this data model is somehow more limited, partly due to the fact that even simple
formalisms for constraining relations between regular paths result in undecidability of basic
inference problems. Indeed, early proposals for path constraint languages are still viewed as
adequate [3, 14, 16, 26, 17], but their wider adoption is hindered by the fact their implication
problem is only known to be decidable under very strong restrictions. Recently there has been
much interest in the study of containment for expressive query languages for GSD [27, 20].
In this basic form of static analysis, queries can be seen as expressing constraints over GSD,
but also here inference turns out to be undecidable unless severe restrictions are imposed.
For example, containment of Graph-XPath queries, a variation of XPath advocated for
querying GSD, is undecidable in general, and has been shown decidable only when restricted
to the so-called path-positive fragment [27]. In this paper we show undecidability for a path
constraint language that is significantly more restricted than Graph-XPath, and even than
the path constraints in [14], and improve the previous undecidability results that required to
express paths that return to the initial point [14, 27].

We advocate an expressive Description Logic (DL) as constraint language for GSD. DLs
are a family of languages tailored for representing structured knowledge, and for supporting
inference over it [8]. They formalize domain knowledge by describing complex classes of
objects, called concepts, and binary relations between them, called roles. Most DLs can be
seen as (syntactic variants of) decidable fragments of classical first-order (FO) logic, or its
extension with transitive closure. Different DLs provide different expressive means to describe
knowledge, with the computational complexity of inference varying accordingly. DLs are the
basis of state-of-the-art ontology languages for sharing domain conceptualizations [9], and
they are naturally suited for describing data sources. They have been applied for the static
analysis of traditional data models, such as UML class diagrams [10] and Entity Relationship
schemata [7]. In the paradigm of ontology based data access [34, 28], which has gained great
importance in the last decade, DL ontologies are used to describe possibly heterogeneous data
sources, facilitating their management, and leveraging domain knowledge to improve access
to them. Query answering and containment in this setting has been extensively studied, for
a range of DLs and query languages [11, 15, 33].

In this paper we show that DLs are adequate also as constraint languages for GSD. We
focus on the expressive DL ZOI, also known as ALCOIbSelfreg [18], which features regular
expressions over binary relations and their inverses, and allows for using them to impose
complex relations between concepts and roles. ZOI can express the full path-positive
fragment of Graph-XPath, and supports additional features that allow it to express even
richer constraints on GSD. We also show that well-known path constraint languages proposed
for GSD in the past [3, 14] can be naturally expressed in (variations of) ZOI. Moreover, we
can leverage results from the DL community to generalize and improve previous upper bounds
on the complexity of the implication problem for decidable fragments of path constraints.
This requires, however, to lift existing algorithms and complexity results for reasoning in
ZOI to finite structures, since in the setting of verification of evolving GSD we are interested
in finite data instances, and so far this DL had been studied over unrestricted, possibly
infinite, models only [18]. This transfer of results to the finite setting is fortunately possible
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since ZOI enjoys finite model property (FMP), as we are able to prove. This is a crucial
stepping stone for our results, and an interesting contribution on its own right. Indeed,
while the FMP has been long known for the closely related converse PDL [24, 21], ZOI has
several further features. In particular, it allows for Boolean combinations of roles that make
standard filtration techniques not directly applicable, and call for more subtle arguments
that borrow ideas from FMP proofs for the two-variable fragment of first-order logic [32, 25].

For expressing operations on GSD we use the action language proposed in [4], that allows
for the (possibly conditional) composition of basic operations that add or delete from a
predicate the objects selected by a complex DL concept or role.1 The undecidability of
general path constraint implication implies that static verification becomes undecidable when
if complex roles are allowed in actions. However, we regain decidability by restricting the
roles in the action to be simple roles that allow for union, intersection, and difference of
possibly inverse roles, but disallow composition and the Kleene star. Under these restrictions,
we can rely on the techniques of [4] to reduce static verification in the presence of ZOI
constraints to satisfiability of ZOI KBs, obtaining a tight ExpTime upper bound for the
former.

The paper is organized as follows. In Section 2 we introduce the DL ZOI, and establish
the finite model property for it. Section 3 is devoted to path constraint languages. We
tighten the undecidability of path constraint implication shown in [14]. We also generalize
the decidability in [3] to a richer class, and improve the upper bound from 2ExpSpace
to ExpTime by reducing the problem to reasoning in ZOI. Section 4 studies the static
verification of ZOI constraints over GSD, for actions expressed in the language proposed
in [4]. We show that the problem is undecidable if arbitrary ZOI roles occur in actions, and
impose suitable restrictions to obtain ExpTime decidability using the techniques of [4].

2 Expressive DLs for Expressing Constraints over GSD

In this paper, we formalize GSD as relational structures, which we call instances, over a
unary and binary relational signature. We propose to use the rich DL ZOI, also known
as ALCOIbSelfreg [18], to express constraints over graph structured data. This is natural as,
like other DLs, ZOI is defined over a relational vocabulary that contains unary and binary
predicates only (respectively called concept names and role names in DL jargon) and the
structures over which is interpreted are precisely GSD instances. A distinguishing feature of
ZOI, which makes it especially adequate for describing GSD, is that it can express relations
between objects by allowing for complex roles defined using regular expressions.

I Definition 1 (ZOI syntax). We consider fixed, countably infinite sets NC of concept names,
NR of role names, and NI of individual names. We assume that the set NC contains the
special concepts > (top) and ⊥ (bottom), while NR contains the top (universal) role T and
the bottom (empty) role B. We define (ZOI) atomic concepts B, concepts C, C ′, atomic
roles P , simple roles S, S′, and roles R, R′, where a, b ∈ NI, A ∈ NC, r ∈ NR, and r 6= T,
according to the following syntax:

B −→ A | {a}
C,C′ −→ B | ¬C | C u C′ | C t C′ |

∀R.C | ∃R.C | ∃S.Self

P −→ r | r− | {(a, b)}
S, S′ −→ P | S ∩ S′ | S ∪ S′ | S \ S′
R,R′ −→ T | ε | id(C) | S | R ∪R′ |

R ◦R′ | R∗

We call ZOI expressions {a} nominal concepts, and {(a, b)} nominal roles. J

1 In our setting, updates are performed data that is viewed as complete, and DL constraints are not used
to infer new knowledge. Thus we do not run in the expressiveness issues considered e.g., in [31, 19].
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We use ZOI concepts and roles to define a general form of knowledge bases, in which we
allow for Boolean combinations of intensional and extensional level statements.

I Definition 2 (ZOI knowledge bases). A concept inclusion is an expression of the form
C vC ′, where C, C ′ are arbitrary concepts, and a role inclusion is an expression of the form
SvS′, where S, S′ are simple roles. An assertion is an expression of the form C(a), S(a, a′),
or a 6= a′, where C is a concept, S a simple role, and {a, a′} ⊆ NI. Then, (ZOI) knowledge
bases (KBs) are defined inductively as follows:

(i) every inclusion and every assertion is a KB;
(ii) if K, K′ are KBs, so are K ∧ K′, K ∨ K′, and ¬̇K. J

The semantics of ZOI is based on standard relational structures. An instance (or
interpretation) I = (∆I , ·I) consists of a non-empty domain ∆I and an interpretation
function ·I that maps each individual a ∈ NI to an element aI ∈ ∆I , each concept name
A ∈ NC to a set AI ⊆ ∆I , and each role name r ∈ NR to a set rI ⊆ ∆I ×∆I , in such a way
that >I = ∆I , ⊥I = ∅, TI = ∆I ×∆I , and BI = ∅. The function ·I is inductively extended
to all ZOI concepts and roles as follows:

{a}I = {aI}
(¬C)I = ∆I \ CI

(C u C′)I = CI ∩ C′I
(C t C′)I = CI ∪ C′I

(∀R.C)I = {x | ∀y.(x, y) ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI}

(∃S.Self)I = {x | (x, x) ∈ SI}

{(a, b)}I = {(aI , bI)}
(r−)I = {(y, x) | (x, y) ∈ rI}

(S \ S′)I = SI \ S′I
(S ∩ S′)I = SI ∩ S′I
(R ∪R′)I = RI ∪R′I
(R ◦R′)I = RI ◦R′I

(R∗)I = (RI)∗
(id(C))I = {(x, x) | x ∈ CI}

(ε)I = {(x, x) | x ∈ ∆I}
where ∩, ∪, and \ are overloaded to denote also the standard set-theoretic operations, ◦ to
denote composition, and ·∗ to denote the reflexive transitive closure of a binary relation.

I satisfies the inclusion E v E′ if EI ⊆ E′I , the assertions A(a) if aI ∈ AI , S(a, b) if
(aI , bI) ∈ SI , and a 6= b if aI 6= bI . Satisfaction is extended in the usual way to KBs, which
are Boolean combinations of inclusions and assertions. When I satisfies K, we also say that
I is a model of K, and denote it with I |= K.

As basic reasoning task we consider KB satisfiability, which consists in deciding, given a
KB K, whether K admits a model. Other standard reasoning tasks, like concept (resp., role)
satisfiability, that is, deciding whether there exists an interpretation where the extension of a
given concept (resp., role) is not empty, can be reduced to KB satisfiability.

I Remark. The roles ε and {(a, b)}, which are not usually included in ZOI, are just syntactic
sugar. Indeed, ε has the same meaning as id(>) and captures the identity relation. Nominal
roles {(a, b)} can be easily simulated in K by replacing each occurrence of {(a, b)} by a fresh
role name rab, and conjunctively adding to K the KB rab(a, b)∧(∃rab.>v{a})∧(>v∀ra,b.{b}).
This ensures that rIab = {(aI , bI)} in every model of the modified KB.

I Example 3. As a running example, we consider the following self-explanatory instance
IUni. For simplicity, in the examples we interpret individuals as themselves (i.e., we make
the standard name assumption).
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DeptI = {CS_Dept}
ProgramI = {BSc_CSci,MSc_CompLogic,MSc_Bioinformatics}

CourseI = {DataStruct:CS202,FoundDBs:CS327,DLs:CS451}
partOfI = {(DLs:CS451,mod_KR)}

offersI = {(CS_Dept,BSc_CompSci), (CS_Dept,MSc_CompLogic),
(CS_Dept,MSc_Bioinformatics){(CS_Dept,DataStruct:CS202),
(CS_Dept,FoundDBs:CS327), (CS_Dept,DLs:CS451)}

requiresI = {(BSc_CSci,DataStruct:CS202), (MSc_CompLogic,FoundDBs:CS327),
(MSc_CompLogic,mod_KR), (MSc_Bioinformatics,DLs:CS451)}

Consider the KB KUni defined as the conjunction of the following ZOI constraints: φ1 says
that the domain of ‘offers’ are the departments, and φ2 says that its range is the union of
programs and courses. Similarly, φ3 and φ4 restrict the domain of ’requires’ to programs,
and its range to courses other entities that comprise courses, like modules. Finally φ5 says
that every course that is required (directly, or because it is part of a required module) must
be offered.

φ1 = ∃offers.>v Dept φ2 = >v ∀offers.(Program t Course)
φ3 = ∃requires.>v Program φ4 = >v ∀requires.(∃partOf−∗.Course)
φ5 = Course u ∃(partOf∗ ◦ requires−).>v ∃offers−.>

Note that all these constraints are satisfied by our instance, that is, IUni |= KUni.

We note that ZOI is closely related to path-positive Graph-XPath (abbreviated GX-
Pathpath-posreg ) introduced in [30]. By viewing arc labels as role names, node formulas in
GXPathpath-posreg can be written as ZOI concepts, and GXPathpath-posreg path formulas as ZOI
roles. Additionally ZOI extends GXPathpath-posreg with other features, such as Boolean com-
binations of node and path labels (i.e., Boolean concepts and roles), nominals, and concepts
of the form ∃S.Self.

In [18], a tree-automata based algorithm for checking satisfiability of ZOI concepts is
provided, and by using a variant of internalization [35], this is exploited to check satisfiability
of ZOI KBs constituted by a conjunction of (positive) assertions and inclusions. It is easy
to extend internalization also to ZOI KBs of the more general form considered here, and
thus reduce satisfiability of a ZOI KB to satisfiability of a ZOI concept. The proof is given
in the extended version of the paper.

I Theorem 4. Given a ZOI KB K, one can construct in linear time a ZOI concept CK
such that K is satisfiable if and only if CK is so.

From this result and the ExpTime upper bound for concept satisfiability given in [18], it
follows immediately that satisfiability of ZOI KBs is decidable in single exponential time.
This is worst-case optimal, since the problem is ExpTime-hard even for significantly simpler
DLs like ALC [8].

I Theorem 5 ([18]). Checking satisfiability of ZOI KBs is an ExpTime-complete problem.

ICDT 2016
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Finite Model Reasoning in ZOI. In the setting of GSD we are usually interested in finite
instances. In the DL literature, however, finite model reasoning has received significantly less
attention than reasoning with respect to unrestricted models. To our knowledge, finite model
reasoning for ZOI has not been addressed so far. However, as we show in the following,
ZOI enjoys the finite model property, which states that every satisfiable KB admits a
model whose domain is finite. In line with what has been done for other logics that cannot
express functionality, keys, or number restrictions, we can show this through a filtration
argument [24, 21]. However, due to the presence of both transitive closure over roles and
role intersection and difference, the proof is more involved than for logics that involve none
or only one of the two kinds of constructs.

We say a KB K is finitely satisfiable if it admits a finite model, i.e., a model with a finite
domain. The proof of the following result is given in the extended version of the paper.

I Theorem 6. Let K be a ZOI KB. Then K is satisfiable if and only if K is finitely
satisfiable.

3 Path Constraints

We define a language for path constraints inspired by [3, 14, 26] and closely related to ZOI.

I Definition 7 (Path constraints). A path constraint ϕ has the form [Rp](R` ⊆ Rr), where
Rp, R`, and Rr are arbitrary ZOI roles. The role Rp is called prefix of ϕ, while the roles
R` and Rr are respectively called the left tail and the right tail of ϕ. If Rp = ε, we call ϕ a
prefix-empty constraint2, and write it simply as R` ⊆ Rr. J

This definition generalizes the well-known path constraint languages from [3, 14]. A
complex role R built from the symbols in NR ∪ {ε} using ◦ , ∪, and ∗ is called a (one-way)
regular path role, and if additionally it does not contain ∪ or ∗ then it is called a (one-way)
word role. A one-way regular path constraint (called simply path constraint in [3]) is a
prefix-empty constraint where R` and Rr are one-way regular path roles. If, in addition, R`
and Rr are one-way word roles, the path constraint is called a word constraint in [3]. The
language of path constraints in [14] allows for non-empty prefixes, but restricts the left tail to
be a one-way word role, and the right tail to be either a one-way word role (in the so-called
forward constraints), or an inverted one-way word role (in backward constraints), which is a
sequence of concatenated inverses of role names (that is, r−1 ◦ · · · ◦ r−n with n ≥ 0).3

Now we define the semantics of path constraints and their fundamental reasoning problem,
namely implication of path constraints, both in its finite and in its unrestricted variants.

In the semantics of early path constraint languages [3, 14], every instance has a distin-
guished root object at which the constraints are enforced. We introduce a minor variation of
this semantics, which we call pointed semantics, where rather than a fixed name for the root
node, we allow for any individual name to be used as its identifier. Later works advocated
what we call the global semantics [22, 26], in which constraints are enforced at every point
in the model, rather than at just one. We note that the global semantics is in general
computationally more costly, and causes undecidability of the implication problem for some
fragments that are decidable under the pointed semantics [3, 14]. We discuss below how both

2 Prefix-empty constraints were called simple in [14]. We use a different name to avoid confusion with the
simple roles of Definition 1.

3 We note that [14] uses a different syntax with explicit variables.
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semantics can be naturally captured in DLs, and provide decidability and undecidability
results for both of them.

I Definition 8 (Pointed and rooted semantics, implication problem). Let ϕ = [Rp](R` ⊆ Rr)
be a path constraint. For an interpretation I, we let ϕI be the set of objects d ∈ ∆I such
that for each d′, d′′ ∈ ∆I , if (d, d′) ∈ RIp and (d′, d′′) ∈ RI` , then (d′, d′′) ∈ RIr .

A pointed instance is a pair I, a of an instance I and an individual a. We call I, a a
pointed model of ϕ, and write I, a |= ϕ if aI ∈ ϕI . Similarly, we write I, a |= Γ for a set Γ
of constraints, if I, a |= ϕ for each ϕ ∈ Γ. We write Γ, a |= ϕ if I, a |= ϕ for every pointed
model I, a of Γ, and write Γ, a |=fin ϕ if I, a |= ϕ for every finite pointed model I, a of Γ.
The (finite) pointed implication problem consists in deciding, given an individual a, a set Γ
of path constraints, and a path constraint ϕ, whether Γ, a |=(fin) ϕ.

Let ϕ = [Rp](R` ⊆ Rr) be a path constraint. We call I a global model of ϕ, and write
I |= ϕ if ϕI = ∆I . We write I |= Γ for a set Γ of constraints, if I |= ϕ for each ϕ ∈ Γ. We
write Γ |= ϕ if I |= ϕ for every I with I |= Γ, and write Γ |=fin ϕ if I |= ϕ for every finite I
with I |= Γ. The (finite) global implication problem consists in deciding, given a set Γ of
path constraints and a path constraint ϕ, whether Γ |=(fin) ϕ. J

I Example 9. Consider the constraint ϕ1 = R1 ⊆ R2, where
R1 = id(Dept) ◦ partOf−∗ ◦ offers ◦ requires− ◦ partOf−∗

R2 = id(Dept) ◦ partOf−∗ ◦ offers
Intuitively, (a node interpreting) a department satisfies ϕ1 if every course required by a
program offered by (a suborganization of) the department is offered by (a suborganization
of) the same department. With the rooted semantics, we can enforce the constraint for some
specific departments. For example, we may require it for computer science, and our example
instance satisfies it: IUni,CS_Dept |= ϕ1. With the global semantics, the constraint would
apply to all departments, but we can easily modify it so that it applies only to the desired
departments, e.g., (id(CS_dept) ·R1) ⊆ R2.

To illustrate the use of prefixes, suppose that the policy expressed by ϕ1 is enforced not at
the department level, but at the higher faculty/school level. For example, suppose that the
School of Science and Engineering requires that all departments offer within their department
every mandatory course in their programs (while other schools may allow for mandatory
courses that are offered by different departments). This is captured by the constraint with
non-empty prefix ϕ1 = [id(School_SciEng) ◦ hasDepartment](R1 ⊆ R2).

Expressing Path Constraints in ZOI with Role Difference. To express path constraints,
we extend ZOI with difference R \R′ of arbitrary roles, resulting in the logic we call ZOI\.

I Definition 10. ZOI\ roles are defined analogously to ZOI roles, except that for complex
roles we have R,R′ −→ T | id(C) | S | R ∪R′ | R ◦R′ | R \R′ | R∗.
The syntax and semantics of ZOI\ concepts, assertions, axioms, and knowledge bases are
defined as for ZOI, but allowing for ZOI\ roles in the place of ZOI roles. J

Entailment of path constraints defined above can be reduced to reasoning in ZOI\:

I Lemma 11. For a path constraint ϕ = [Rp](R` ⊆ Rr), let Cϕ = ∀Rp.(∀(R` \Rr).⊥). Then,
for every instance I, we have that ϕI = CIϕ . Consequently, for a set Γ of path constraints, a
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path constraint ϕ, and a ∈ NI, we have:

Γ, a |= ϕ iff
(d

γ∈Γ Cγ u ¬Cϕ
)
(a) is unsatisfiable,

Γ, a |=fin ϕ iff
(d

γ∈Γ Cγ u ¬Cϕ
)
(a) is finitely unsatisfiable,

Γ |= ϕ iff
∧
γ∈Γ(>v Cγ) ∧ ¬̇(>v Cϕ) is unsatisfiable,

Γ |=fin ϕ iff
∧
γ∈Γ(>v Cγ) ∧ ¬̇(>v Cϕ) is finitely unsatisfiable.

We will see that, unfortunately, both implication of path constraints and reasoning in
ZOI\ are undecidable. Before moving to these negative results, though, we point out that
the lemma above implies that the upper bounds for reasoning in plain ZOI extend to the
implication of path constraints γ where only simple ZOI roles occur. Since in this case the
resulting Cγ is a ZOI concept, from Lemma 11 and theorem 5 we get:

I Corollary 12. Let Γ be a set of path constraints and ϕ a path constraint such that, for
each γ = [Rp](R` ⊆ Rr) ∈ Γ∪{ϕ}, Rp, R` and Rr are all simple ZOI roles. Then Γ, a |= ϕ,
Γ, a |=fin ϕ, Γ |= ϕ, and Γ |=fin ϕ are all decidable in ExpTime.

Undecidability of Path Constraint Implication. Unfortunately, both the finite and the
unrestricted implication problems are undecidable in rather restricted settings. The following
result was established already several years ago:4

I Theorem 13 ([14]). Assume that every instance has a distinguished root element o, and
that there is some ao ∈ NI such that aIo = o in every I. The problem of checking whether
Γ, ao |= ϕ and whether Γ, ao |=fin ϕ are undecidable, even when ϕ and all constraints in Γ
satisfy one of the following two restrictions:

All prefixes, left tails, and right tails are one-way word roles (that is, only forward
constraints according to [14] are allowed).
All prefixes and left tails are one-way word roles different from ε, and each right tail is a
one-way word role or an inverted one-way word role, and is different from ε.

We strengthen this result, showing undecidability when both restrictions apply: only
one-way word roles of length one or two are allowed. Our proof encodes a Turing rather than
a two-register machine as in [14], and we believe some readers may find it simpler.

I Theorem 14. The problems of checking whether Γ, a |= ϕ and whether Γ, a |=fin ϕ, given
Γ, a, and ϕ are undecidable. This holds even when ϕ is of the form r1 ⊆ r2 and Γ contains
only constraints of the following forms, where {r, r1, r2, r3} ⊆ NR:

r1 ◦ r2 ⊆ r3 r1 ⊆ r2 ◦ r3 [r](r1 ◦ r2 ⊆ r3) [r](r1 ⊆ r2 ◦ r3)

Proof. As in [14] we employ the notion of conservative reduction classes to simultaneously
deal with general and finite implication. In addition, we see deciding Γ, a |= ϕM as checking
unsatisfiability of the first order formula that corresponds to Γ and the negation of ϕM. The
same is true for finite implication. Let FO denote the set of FO formulae, X be a recursive
subset of FO, and let f : FO → X be a recursive function such that:

if β ∈ FO is unsatisfiable, then f(β) is unsatisfiable, and
if β ∈ FO has a finite model, then f(β) has a finite model.

4 In fact, the authors of [14] show that implication is r.e. complete, and finite implication co-r.e. complete.
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Then X is a conservative reduction class and thus satisfiability of formulae in X is co-r.e.-
complete and finite satisfiability r.e.-complete [12]. It is well known that for a first-order
formula β we can build a procedure that takes no input and terminates iff β is unsatisfiable
or has a finite model. Thus to show the undecidability of general and finite implication,
it suffices to show how the computation of such a procedure can be simulated using path
constraints. We consider a deterministic Turing Machine (TM) M with state set Q and
alphabet Σ. We assume thatM has two designated states q1

fin and q2
fin. We build Γ and ϕM

such that the following conditions are satisfied:
1. IfM reaches q1

fin starting from the empty string as input, then ΓM, a |= ϕM.
2. IfM reaches q2

fin starting from the empty string as input, then there exists a finite I such
that I, a |= ΓM and I, a 6|= ϕM.

We assume that M starts at the initial tape position, and never moves to the left of it.
Moreover, the tape is initially empty, that is, it only contains the blank symbol ␣. The
transition function ofM is of the form δ : Q× Σ→ Σ×Q× {R,L}, with the usual reading,
where R and L stand for right and left, respectively. The initial state of M is qini.

The constraint ϕM takes the form uini ⊆ uhalt where uini and uhalt are two role names.
We define the set ΓM next. Intuitively, the idea of the reduction is the following. Assume
an arbitrary pointed structure I, a and let o denote aI . Whenever there is some o′ ∈ ∆I
such that (o, o′) ∈ uIini, the constraints in ΓM will ensure that if I, a |= ΓM, then I contains
a (possibly infinite) structure that represents the computation ofM, and that (o, o′) ∈ uIini
whenever the computation halts.

To provide an intuitive description of how this structure is enforced, we will use the term
r-arc to refer to a pairs (d, d′) ∈ rI for a role name r. Now we describe the constraints in
ΓM, which ensure that from the initial arc uini we build a full computation ofM. We use
role names of the form tq,σ and fq,σ for each q ∈ Q ∪ {#} and each σ ∈ Σ ∪ {␣}. Each of
these symbols stands for a tape position containing the symbol σ. The marker # indicates
that the head of M is not on the current position, while q ∈ Q indicates that the head
is on the current position and M is in state q. The symbols fq,σ are used to distinguish
the right-most tape position, while regular ‘inner’ positions are represented by symbols tq,σ.
The first two constraints are prefix-empty and use the auxiliary role uaux. They ensure that
whenever there is an uini arc, there exists also an arc labeled fqini,␣, indicating thatM is in
state qini, the current tape position contains the symbol ␣, and the current tape position is
the right-most one that has been visited so far:

uini ⊆ uaux ◦uout (1)
uaux ⊆ uin ◦ fqini,␣ (2)

Note that there is an uin arc from o to the beginning of fqini,␣, and an uout arc from its end to
o′. For the initial and final points of this fqini,␣ arc, and of all the arcs r that our construction
will generate below in order to simulate the runs ofM, we want the role name uin to connect
o to the point, and uout to connect the point to o′. We ensure this by adding the following
constraints:

(uin ◦ r ⊆ uin) for every r ∈ NR \ {uini, uhalt, uin, uout, uaux, } occurring in ΓM (3)
[uin](r ◦uout ⊆ uout) for every r ∈ NR \ {uini, uhalt, uin, uout, uaux, } occurring in ΓM (4)

Note that there is a pair of these constraints for every role name occurring in the rest of the
proof, except for the u roles that do not have a direct correspondence with the configurations
ofM. With these axioms, the initial and final points of the fqini,␣ arc are both reachable
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uin

fqini,␣

uout
uini

uaux uin

fqini,␣

uout

uini

u in uout

Creating the arc fqini,␣ for the first tape position Connecting the new arc to the spy-points
(constraints (1) and (2)) (constraints (3) and (4) for r = fqini,␣)

Figure 1 Model of ΓM and uini(o, o′) representing the initial configuration ofM.

from o, and both reach o′. The same holds for any other arc implied by the constraints below.
The intended model of the constraints we have described so far is depicted in Figure 1.

Now we give the constraints that ensure that the computation ofM is correctly simulated.
The core idea is that (the initial and final points of the arc representing) each tape position
will be linked via an n role (for next configuration) to (the initial and final points of an arc
representing) the same tape position in the following configuration. Differently subindexed n
roles and auxiliary ‘diagonal’ d roles are used to propagate information between configurations.

The first group handles the case where the machine is at the right-most visited tape
position (that is, there is a symbol fqσ), and executes a transition that moves to the right:

[uin](fqσ ⊆ d�#σ′ ◦nfq′) for each δ(q, σ) = (q′, σ′,R) (5)
[uin](nfq ⊆ fq␣ ◦ df ) for each q ∈ Q (6)

After the tape contents have been updated at the current position, and the automaton has
changed to the new state and moved right to a new final tape position, it is only left to go
leftwards propagating to the next configuration the remaining tape contents. This is ensured
by the following axioms:

[uin](tqσ ◦n� ⊆ d�qσ) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (7)
[uin](d�qσ ⊆ n� ◦ tqσ) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (8)

The next group handles also the case where the machine is currently at the right-most visited
tape position indicated by fqσ, but this time it executes a transition that moves to the left:

[uin](fqσ ⊆ d�q′f#σ′ ◦nf ) for each δ(q, σ) = (q′, σ′,L) (9)
[uin](d�qf#σ ⊆ n�q ◦ f#σ) for each q ∈ Q, σ ∈ Σ ∪ {␣} (10)
[uin](t#σ ◦n�q ⊆ d�qσ) for each q ∈ Q, σ ∈ Σ ∪ {␣} (11)

We recall that constraints (7) and (8) already ensure that the remaining tape contents are
properly propagated. Next we handle transitions to the right, from a non-final tape position:

[uin](tqσ ⊆ d�#σ′ ◦nq′�) for each δ(q, σ) = (q′, σ′,R) (12)
[uin](nq� ◦ t#σ ⊆ dqσ�) for each q ∈ Q, σ ∈ Σ ∪ {␣} (13)

Additionally to the contents to the left, which have been taken care of, we also need to
propagate tape contents to the right of the current position. We use constraints analogous
to (7) and (8):

[uin](n�tqσ ⊆ dqσ�) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (14)
[uin](dqσ� ⊆ tqσn�) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (15)
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Figure 2 Parts of models of �M and uini(o, oÕ) representing the transitions of M.

1. M reaches q1
fin i� �M, a |= ÏM.

Suppose M reaches q1
fin. Assume an arbitrary I, a such that I, a |= �M, and assume

there is an arbitrary d œ �I such that (aI , d) œ uIini. Since I, a |= �M and M reaches
q1
fin, then (aI , d) œ uIhalt follows. This implies I, a |= ÏM and hence �, a |= ÏM. For the

converse, assume �, a ”|= ÏM. That is, there exists some I, a such that I, a |= �M but
I, a ”|= ÏM. That is, there is d œ �I such that (aI , d) œ uIini but (aI , d) ”œ uIhalt. Since
I, a |= �M, by constraints (3), (4), (21), and (23) we have (aI , d) ”œ uIhalt, and I cannot
contain any arcs of the form tq1

fin‡ or fq1
fin‡, which means that the computation of M does

not reach the state q1
fin.

2. If M reaches q2
fin, then there exists a finite I such that I, a |= �M and I, a ”|= ÏM.

Suppose that there is a computation of M that reaches q2
fin. Then this computation does

not reach q1
fin. Moreover, there is some I, a that simulates this computation, that is, such

that (aI , d) œ uIini and I, a |= �M. Since M does not reach q1
fin, we can assume there

are no arcs tq1
fin‡ or fq1

fin‡ in I, and since the only constraints that imply uhalt are (21)
and (23), we can assume uIhalt = ÿ. Hence we have I, a |= �M with (aI , d) œ uIini but
uIhalt = ÿ as desired.

This concludes the proof of Theorem 14. J

The same proof that we gave for the pointed semantics of path constraints applies also
to the global semantics, even if we further restrict the constraints to be prefix-empty.

I Theorem 15. The problems of deciding � |= Ï and � |=fin Ï given � and Ï are undecidable,
even when Ï is of the form r1 ™ r2 and � contains only constraints of the forms r1 ¶ r2 ™ r3
and r1 ™ r2 ¶ r3, for {r1, r2, r3} ™ NR.

Proof. It su�ces to observe that in the proof of Theorem 14, all constrains [Rp](R¸ ™ Rr)
with Rp ”= Á have Rp = uin, and the only role of the prefix is to ensure that R¸ ™ Rr fires
at all nodes, and not only at a. Under global semantics, this prefix is unnecessary and we
can replace each constraint [Rp](R¸ ™ Rr) simply by R¸ ™ Rr. J

We formulated Theorems 14 and 15 for path constraint implication, but we could just
as well formulate them for the problem of deciding whether a fact r1(a, b) and a set of
constraints � that are satisfied (at a with the pointed semantics for the prefixed version, or
everywhere for the prefix-empty version) imply the existence of a pair of objects in r2, which
need not be a, b (note that in this case we don’t need constraint (23)). Our negative results
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Figure 2 Parts of models of ΓM and uini(o, o′) representing the transitions ofM.

When we propagate to the right, we need to ensure that the final position tqσ is also copied
to the next configuration:

[uin](n� ◦ fqσ ⊆ dqσf ) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (16)
[uin](dqσf ⊆ fqσ ◦nf ) for each q ∈ Q ∪ {#}, σ ∈ Σ ∪ {␣} (17)

Finally we handle transitions to the left from a non-final tape position:

[uin](tqσ ⊆ d�q′#σ′ ◦n�) for each δ(q, σ) = (q′, σ′,L) (18)
[uin](d�q#σ ⊆ n�q ◦ t#σ) for each q ∈ Q, σ ∈ Σ ∪ {␣} (19)
[uin](t#σ ◦n�q ⊆ d�qσ) for each q ∈ Q, σ ∈ Σ ∪ {␣} (20)

Figure 2 illustrates how the constraints simulate the transitions ofM. For readability, the
uin arcs to and uout arcs from every node are omitted.

An interpretation that is a model of the transitions we have presented correctly executes
a computation ofM. It is only left to enforce the special role uhalt to hold between o and
o′ iff the computation halts in q1

fin. We first ensure that if an arc tq1
fin,σ

or fq1
fin,σ

for some
σ ∈ Σ ∪ {␣} was generated (that is, q1

fin was reached in the computation), an uhalt arc is
created; note that ifM halts in q2

fin nothing enforces uhalt and there will be a model of the
constraints where ϕM does not hold. Then we ensure that if there is an uhalt arc anywhere,
then there is such an arc between o and o′. This is easy to do, exploiting the fact that all
points are reachable via uini from o, and reach o′ via uin:

uin ◦ tq1
finσ
⊆ uhalt for each σ ∈ Σ ∪ {␣} (21)

uin ◦ fq1
finσ
⊆ uhalt for each σ ∈ Σ ∪ {␣} (22)

uhalt ◦uout ⊆ uhalt (23)

Let ΓM contain the constraints (1) – (23). We show that the reduction is as desired:
1. M reaches q1

fin iff ΓM, a |= ϕM.
Suppose M reaches q1

fin. Assume an arbitrary I, a such that I, a |= ΓM, and assume
there is an arbitrary d ∈ ∆I such that (aI , d) ∈ uIini. Since I, a |= ΓM andM reaches
q1

fin, then (aI , d) ∈ uIhalt follows. This implies I, a |= ϕM and hence Γ, a |= ϕM. For the
converse, assume Γ, a 6|= ϕM. That is, there exists some I, a such that I, a |= ΓM but
I, a 6|= ϕM. That is, there is d ∈ ∆I such that (aI , d) ∈ uIini but (aI , d) 6∈ uIhalt. Since
I, a |= ΓM, by constraints (3), (4), (21), and (23) we have (aI , d) 6∈ uIhalt, and I cannot
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contain any arcs of the form tq1
finσ

or fq1
finσ

, which means that the computation ofM does
not reach the state q1

fin.
2. IfM reaches q2

fin, then there exists a finite I such that I, a |= ΓM and I, a 6|= ϕM.
Suppose that there is a computation ofM that reaches q2

fin. Then this computation does
not reach q1

fin. Moreover, there is some I, a that simulates this computation, that is, such
that (aI , d) ∈ uIini and I, a |= ΓM. Since M does not reach q1

fin, we can assume there
are no arcs tq1

finσ
or fq1

finσ
in I, and since the only constraints that imply uhalt are (21)

and (23), we can assume uIhalt = ∅. Hence we have I, a |= ΓM with (aI , d) ∈ uIini but
uIhalt = ∅ as desired.

This concludes the proof of Theorem 14. J

The same proof that we gave for the pointed semantics of path constraints applies also to
the global semantics, even if we further restrict the constraints to be prefix-empty.

I Theorem 15. The problems of deciding Γ |= ϕ and Γ |=fin ϕ given Γ and ϕ are undecidable,
even when ϕ is of the form r1 ⊆ r2 and Γ contains only constraints of the forms r1 ◦ r2 ⊆ r3
and r1 ⊆ r2 ◦ r3, for {r1, r2, r3} ⊆ NR.

Proof. It suffices to observe that in the proof of Theorem 14, all constrains [Rp](R` ⊆ Rr)
with Rp 6= ε have Rp = uin, and the only role of the prefix is to ensure that R` ⊆ Rr fires at
all nodes, and not only at a. Under global semantics, this prefix is unnecessary and we can
replace each constraint [Rp](R` ⊆ Rr) simply by R` ⊆ Rr. J

We formulated Theorems 14 and 15 for path constraint implication, but we could just
as well formulate them for the problem of deciding whether a fact r1(a, b) and a set of
constraints Γ that are satisfied (at a with the pointed semantics for the prefixed version, or
everywhere for the prefix-empty version) imply the existence of a pair of objects in r2, which
need not be a, b (note that in this case we don’t need constraint (23)). Our negative results
also apply to other languages that can express Γ. For instance, the prefix-empty version of Γ
can be expressed in the following restricted class of tuple generating dependencies:

r1(x, y), r2(y, z)→ r3(x, z) r1(x, z)→ ∃y.r2(x, y), r3(y, z)

Hence we obtain a proof of undecidability of (finite) entailment of a query ∃x, y. r′(x, y),
from one single fact r(a, b) in the presence of dependencies in this restricted class.

We note that the undecidability of path constraint implication shows the undecidability
of (finite) satisfiability in ZOI\. In fact, it shows the undecidability of (finite) satisfiability
of a complex ZOI\ role id(∀R.⊥) ◦ (r1 \ r2), where R is a union of roles of the forms

(r1 ◦ r2) \ r3 r1 \ (r2 ◦ r3) r ◦ ((r1 ◦ r2) \ r3) r ◦ (r1 \ (r2 ◦ r3)) (24)

Undecidability also applies to the (finite) entailment of r2(a, b) from (id(∀R.⊥) ◦ r1)(a, b). If
we use a set K of inclusions of the form >v∀R` \Rr.⊥ (where each R` and Rr is the concat-
enation of at most two role names) to enforce prefix-empty constraints to hold everywhere,
we get undecidability of testing whether the KB K ∧ {r1(a, b)} (finitely) entails r2(a, b).

We remark that the constraints in the proof above can also be written in GXPathreg, the
extension of GXPathpath-posreg that allows for negation (and hence, intersection and difference)
of path formulas. Hence Theorem 14 implies the undecidability of the (finite) implication of
two GXPathreg formulas ψ1 and ψ2, even when ψ2 is restricted to a role name r2 and ψ1 is a
formula of the form [¬〈ξ〉] ◦ r1 for r1 a role name and ξ a union of roles of the forms in (24)
above. Note that this result is tighter that the one in [27], whose proof heavily uses ε.
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Improving the Upper bound for Prefix-empty Constraints. We have seen that under
global semantics, or with non-empty prefixes, there is no hope for decidability of path
constraint implication. However, prefix-empty constraints under the pointed semantics are
expressible in plain ZOI without using role difference, using a nominal to denote the point
at which the constraint is evaluated. Hence we can reduce their (finite) implication problem
to (finite) KB satisfiability in ZOI. This implies decidability and an ExpTime upper bound,
thus significantly improving the previous 2ExpSpace bound shown in [3] for the subclass of
prefix-empty one-way regular path constraints.

I Theorem 16. Let Γ be a set of prefix-empty path constraints, ϕ a prefix-empty path
constraint, and a ∈ NI. Then we can obtain a set of ZOI of axioms TΓ and a concept Cϕ
such that Γ |= ϕ iff {TΓ} ∧ ¬Cϕ is unsatisfiable. Moreover, TΓ and Cϕ can be constructed in
linear time and the size of TΓ and Cϕ are both linear, in the combined sizes of Γ and ϕ.

Proof. For each γ = R` ⊆ Rr ∈ Γ ∪ ϕ, let Tγ be the axiom {a} v ∀R`.∃inv(Rr).{a} where
inv(Rr) is the inverted Rr defined as follows, where r ∈ NR and R, R′ denote arbitrary roles:

inv(r) = r− inv(r−) = r inv({(a, b)}) = {(b, a)}
inv(id(C)) = id(C) inv(R ∩R′) = inv(R) ∩ inv(R′) inv(R ∪R′) = inv(R) ∪ inv(R′)

inv(R∗) = (inv(R))∗ inv(R \R′) = inv(R) \ inv(R′) inv(R ◦R′) = inv(R′) ◦ inv(R)

and inv(ε) = ε. It is easy to see that (d, d′) ∈ RI iff (d′, d) ∈ inv(R)I for every d, d′ ∈ ∆I .
It is then a straightforward consequence of the semantics of ZOI and of γ, that for every
pointed instance I, a we have I, a |= γ if and only if I |= Tγ . Hence it easily follows that
Γ |= ϕ if and only if (

⋃
γ∈Γ Tγ) ∧ ¬Tϕ is unsatisfiable. J

From this reduction and Theorem 5 we get:

I Corollary 17. The unrestricted and the finite pointed implication problems for prefix-empty
path constraints are decidable in ExpTime.

We can combine this result and Corollary 12, obtaining that entailment is decidable in
ExpTime whenever all constraints are prefix-empty or involve only simple roles. Although
this is a strong restriction, it still allows for fairly non-trivial constraints. Apart from
capturing these relevant decidable subclasses of path constraints, ZOI can also express many
other natural constraints, some of which are not easily expressible as path constraints. For
example, φ5 in Example 3 does not directly correspond to a path constraint. ZOI provides
flexible means to express quite involved expressions, for example, that a course required in
an undergraduate program must be taught by a faculty member that is a member of an
institute, or a suborganization of it:

Course u ∃requires−.UndergradProg v ∃teaches−.
(
∃(memberOf ◦ partOf∗).Inst

)
.

To conclude this section, we remark that both the pointed and the global semantics are
directly supported within ZOI: the logic has a global semantics, but we can use nominals to
ensure that any assertion or inclusion only ‘fires’ at the interpretation of a given individual.

4 Verification of Evolving Graph Structured Data

We have advocated the use of ZOI as a constraint language for GSD. We define a language
for manipulating GSD and show that it is possible to effectively reason about the preservation
of ZOI constraints when data instances evolve as a result of operations in this language.
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Updating Graph Structured Data. The basic operations in our manipulation language
allow to insert or delete individuals from extensions of concepts, and pairs of individuals
from extensions of roles. The candidates for additions and deletions are instances of complex
concepts and roles in ZOI. The language allows, in particular, to select one object and add
it to or remove it from a concept name, using a nominal {a}. It similarly allows to add or
remove pairs of objects to/from role names using a nominal role {(a, b)}. Moreover, we can
add to or delete from some role or concept the answers to query expressed as a complex
concept or role (in the latter case, a so-called regular path query). We also allow for variables
in the place of individuals, to have a more natural manipulation language with parameters
that can be instantiated with different values. Finally, these basic actions can be combined
into complex ones using composition and conditional actions.

The language we define next is like the one in [4], but there basic actions use concepts and
roles in a different DL called ALCHOIQbr, instead of ZOI. ALCHOIQbr does not allow
for regular expressions as roles, hence it cannot express path queries and path constraints.
On the other hand, it supports number restrictions, which are not allowed in ZOI. We note
that the language in [4] allows roles of the form R|C (or inv(R)|C), which stand for the pairs
of objects in R whose first (resp., second) component is an instance of C. Such roles are
expressible in ZOI using R ◦ id(C).

I Definition 18 (Action language). In what follows, additionally to NI, NC and NR, we
consider a countably infinite set NV of variables, disjoint from the other sets. We use ZOIV
concepts, roles, and KBs, which are defined as for ZOI, but allowing for variables in the
place of individuals, that is, atomic concepts take the forms A and {t}, and atomic roles the
forms r, r− and {(t, t′)}, where t, t′ ∈ NV ∪ NI, A ∈ NC, r ∈ NR \ {T}.

Basics action β and (complex) actions α are defined by the following grammar:

β −→ (A⊕C) | (A	C) | (r⊕R) | (r	R) α −→ ε | β ·α | (K ?αJαK) ·α

with A a concept name, C an arbitrary ZOIV concept, r a role name, R an arbitrary ZOIV
role, and K an arbitrary ZOIV KB. The symbol ε denotes the empty action.

We call a concept, role, KB or an action ground if it has no variables. A substitution is a
function σ from NV to NI. For a concept, role, KB or an action γ, we use σ(γ) to denote the
result of replacing in γ every occurrence of a variable x by the individual σ(x). An action α′
is called a ground instance of an action α if α′ = σ(α) for some substitution σ. J

Intuitively, an application of an action (A ⊕ C) on an instance I is the addition of
the content of CI to AI . Similarly, (A 	 C) removes the content of CI from AI . The
two operations can also be performed on roles. Composition stands for successive action
execution, and a conditional action K ?α1Jα2K expresses that α1 is executed if the instance is
a model of K, and α2 is executed otherwise. If α2 = ε then we have an action with a simple
pre-condition as in classical planning languages, and we write it as K ?α1, omitting α2.

To formally define the semantics of actions, we introduce the notion of instance update.

I Definition 19 (Instance update, semantics of actions). Assume an instance I and let E
be a concept or role name. If E is a concept, let W ⊆ ∆I , otherwise, if E is a role, let
W ⊆ ∆I ×∆I . Then, I ⊕EW (resp., I 	EW ) denotes the instance I ′ such that ∆I′ = ∆I ,
EI
′ = EI ∪W (resp., EI′ = EI \W ), and EI

′
1 = EI1 , for all symbols E1 6= E. Given a
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ground action α, we define a mapping Sα from instances to instances as follows:
Sε(I) = I

S(K ?α1Jα2K) ·α(I) =
{
Sα1 ·α(I), if I |= K,
Sα2 ·α(I), if I 6|= K.

S(A⊕C) ·α(I) = Sα(I ⊕A CI)
S(A	C) ·α(I) = Sα(I 	A CI)
S(p⊕r) ·α(I) = Sα(I ⊕r RI)
S(p	r) ·α(I) = Sα(I 	r RI) J

Note that we have not defined the semantics of actions with variables, i.e., for non-ground
actions. In our approach, all variables of an action are seen as parameters whose values are
given before execution by a substitution with actual individuals, i.e., by grounding.

I Example 20. Consider the next action with a free variable x, and its ground instance αdl :
RemoveCourse(x) =

(
Course	 {x}

)
·
(
requires	 (requires ◦ id({x}))

)
·
(
offers	 (offers ◦ id({x}))

)
·
(
partOf 	 (id({x}) ◦ partOf)

)
αdl =

(
Course	 {DLs:CS451}

)
·
(
requires	 (requires ◦ id({DLs:CS451}))

)
·
(
offers	 (offers ◦ id({DLs:CS451}))

)
·
(
partOf 	 (id({DLs:CS451}) ◦ partOf)

)
In Sαdl (IUni) we have the following changes, and the rest of the instance remains unchanged:

CourseI = {DataStruct:CS202,FoundDBs:CS327}
requiresI = {(BSc_CSci,DataStruct:CS202), (MSc_CompLogic,FoundDBs:CS327),

(MSc_CompLogic,mod_KR)}
offersI = {(CS_Dept,BSc_CSci), (CS_Dept,MSc_CompLogic),

(CS_Dept,MSc_Bioinformatics){(CS_Dept,DataStruct:CS202),
(CS_Dept,FoundDBs:CS327)}

partOfI = {}

The Static Verification Problem. We consider now the scenario where DL KBs are used
to impose integrity constraints on GSD. A basic reasoning problem for analyzing the effects
of actions in the presence of integrity constraints is static verification, which consists in
checking whether the execution of an action α always preserves the satisfaction of integrity
constraints given by a KB K.

I Definition 21 (The static verification problem). Let K be a KB. We say that an action α is
K-preserving if for every ground instance α′ of α and every finite interpretation I, we have
that I |= K implies Sα′(I) |= K. The static verification problem consists on deciding, given
an action α and a KB K, whether α is K-preserving. J

I Example 22. Recall the constraints KUni from Ex. 3, and the action αdl from Ex. 20.
Note that αdl is not KUni-preserving. In fact, this is witnessed by out instance IUni.
We saw that in Sαdl (IUni) we have (MSc_CompLogic,mod_KR) ∈ requiresI , but mod_KR 6∈
(∃partOf−∗.Course)I , that is, the mandatory KR module does not contain any courses, violating
φ4 = >v ∀requires.(∃partOf−∗.Course).

Our technique for static verification relies on a transformation TRα(K) that rewrites K
incorporating the effects of an action α. The technique is similar in spirit to regression in
reasoning about actions [29], and it can be seen as a way to compute the weakest precondition
of α and K. Intuitively, the models of TRα(K) are exactly the interpretations I such that
applying α on I leads to a model of K. In this way, we can effectively reduce reasoning about
changes in any database that satisfies a given K, to reasoning about a single KB.

I Definition 23. Given a ZOI KB K, we use KE←E′ to denote the KB that is obtained
from K by replacing every name E by the (possibly more complex) expression E′. Given a
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KB K and a ground action α, we define TRα(K) as follows.
TRε(K) = K

TR(A⊕C)·α(K) = (TRα(K))A←AtC
TR(A	C)·α(K) = (TRα(K))A←Au¬C

TR(r⊕R)·α(K) = (TRα(K))r←r∪R
TR(r	R)·α(K) = (TRα(K))r←r\R

TR(K1 ?α1Jα2K)·α(K) = (¬̇K1 ∨TRα1·α(K))∧
(K1 ∨TRα2·α(K)). J

Assume a ground action α and a ZOI KB K. Note that the transformation TRα(K) may
introduce role differences involving complex roles from α. Hence TRα(K) is a ZOI\ and
need not be a ZOI KB. Note also that the size of TRα(K) might be exponential in the size of
α. By employing the same argument as [4], we see that the transformation correctly captures
the effects of complex actions. In particular, for every interpretation I, we have Sα(I) |= K
iff I |= TRα(K). With the transformation TRα(K) above we have a reduction from static
verification to finite (un)satisfiability of ZOI\ KBs: an action α is not K-preserving iff
some finite model of K does not satisfy TRα∗(K), where α∗ is a ‘canonical’ grounding of α.
Formally, we have:

I Theorem 24 ([4]). For a (complex) action α and a KB K, the following are equivalent:
(i) The action α is not K-preserving.
(ii) K ∧ ¬̇TRα∗(K) is finitely satisfiable, where α∗ is obtained from α by replacing each

variable with a fresh individual name not occurring in α and K.

Undecidability of unrestricted static verification. The first and foremost consequence of
this reduction is that for the action language we have defined, the static verification problem
is undecidable, even if the input K is trivial, and the actions are quite restricted:

I Theorem 25. Deciding whether α is K-preserving is undecidable, even when K is a trivial
KB of the form r(a, b), and α is just a sequence of basic actions of the forms (r ⊕R) and
(r 	R), with R a sequence of one or two concatenated role names.

Proof. We provide a reduction from deciding Γ |=fin r1 ⊆ r2, where Γ contains only
constraints of the forms r1 ◦ r2 ⊆ r3 and r1 ⊆ r2 ◦ r3 for {r1, r2, r3} ⊆ NR. We have seen
above that this problem is undecidable. In particular, we construct an action α such that
Γ |=fin r1 ⊆ r2 iff α is r1(a, b)-preserving. Let R1

1 ⊆ R1
2, . . . , R

n
1 ⊆ Rn2 be an enumeration of

all constraints in Γ. For every 1 ≤ i ≤ n, let pi1 and pi2 be fresh role names. Then α is the
concatenation of the following actions in the given order:

(r1 	 r1) · (r1 ⊕ r2)
(p1

1 	 p1
1) · · · · · (pn1 	 pn1 ) · (p1

2 	 p1
2) · · · · · (pn2 	 pn2 )

(p1
1 ⊕R1

1) · · · · · (pn1 ⊕Rn1 ) · (p1
2 ⊕R1

2) · · · · · (pn2 ⊕Rn2 )
(p1

1 	 p1
2) · · · · · (pn1 	 pn2 ) · (r1 ⊕ p1

1) · · · · · (r1 ⊕ pn1 ).
Recall that α is not r1(a, b)-preserving iff r1(a, b) ∧ ¬TRα(r1(a, b)) is finitely satisfiable.
It’s not hard to see that TRα(r1(a, b)) = RΓ(a, b), where RΓ is equivalent to the role
r2 ∪ (R1

1 \ R1
2) ∪ · · · ∪ (Rn1 \ Rn2 ). Thus r1(a, b) ∧ ¬TRα(r1(a, b)) is finitely satisfiable iff

Γ 6|=fin r1 ⊆ r2. J

Unfortunately we cannot allow for complex roles in our actions, not even of the form
r ◦ r′, but we get positive results if we restrict actions to simple roles.

An undesired effect of disallowing complex roles in actions is that we cannot express r|C
as r ◦ id(C), and as our examples illustrate, this construct is quite useful. For nominals we
can, however, simulate r|{a} in ZOI. We use a special role name T|{a} with the intended
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semantics (T|{a})I = ∆I × {a}I , and write the simple role r ∩ T|{a} in the place of r|{a}.
The intended meaning of T|{a} is easily enforced by adding >v ∃T|{a}.a to any ZOI KB.

We call an action α role-restricted if in every basic action of the form (r ⊕R) or (r 	R),
we have that R is a simple ZOIV role that may use the special role names T|{a}.

Note αdl in Example 20 can be rewritten as a role-restricted action as follows:
α′dl =

(
Course	 {DLs:CS451}

)
·
(
requires	 (requires ∩ T|{DLs:CS451})

)
·(

offers	 (offers ∩ T|{DLs:CS451})
)
·
(
partOf 	 (partOf ∩ (T|−{DLs:CS451})

)
.

I Theorem 26. Deciding whether α is K-preserving for a given ZOI KB K and a role-
restricted α is ExpTime-complete.

Proof sketch. Since the union and the difference of simple roles are simple roles, it is not
hard to see that the result of iteratively replacing role names by simple roles involving
union and difference in a ZOI role results in a ZOI role. Hence, for any ZOI KB K
and a role-restricted action α, the KB TRα(K) is not only a ZOI\ KB but also a ZOI
KB (i.e., difference is applied to simple roles only). Then from the decidability of (finite)
satisfiability of ZOI it follows that checking whether α is K-preserving is decidable. For the
complexity upper bound, recall that the size of TRα(K) might be exponential in the size
of α. However, as argued in [4], there are only exponentially many conjunctive clauses in
disjunctive normal from of K ∧ ¬̇TRα∗(K), each with size polynomial in the size of α and K.
Thus from Theorems 5 and 24 we obtain the desired result. J

5 Conclusions and Outlook

The main goal of this work was to advocate the use of the DL ZOI to specify constraints over
graph structured data and to show the decidability of static verification in a rich language for
manipulating such data. Along the way, we have shown several undecidability and complexity
results that concern not only our setting, but also formalisms that were introduced in the 90s,
as well as recently introduced query languages for GSD like GXPathreg. In our future work
we aim at providing some support for identification constraints, which is clearly desirable
but naturally requires equality reasoning. This is challenging, as e.g., the decidability of
the extension of ZOI where some roles must be interpreted as partial functions is a long
standing open problem.
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Abstract
Organizations continuously accumulate data, often according to some business processes. If one
poses a query over such data for decision support, it is important to know whether the query
is stable, that is, whether the answers will stay the same or may change in the future because
business processes may add further data. We investigate query stability for conjunctive queries.
To this end, we define a formalism that combines an explicit representation of the control flow
of a process with a specification of how data is read and inserted into the database. We consider
different restrictions of the process model and the state of the system, such as negation in
conditions, cyclic executions, read access to written data, presence of pending process instances,
and the possibility to start fresh process instances. We identify for which restriction combinations
stability of conjunctive queries is decidable and provide encodings into variants of Datalog that
are optimal with respect to the worst-case complexity of the problem.
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1 Introduction

Data quality focuses on understanding how much data is fit for its intended use. This problem
has been investigated in database theory, considering aspects such as consistency, currency,
and completeness [8, 13, 23]. A question that these approaches consider only marginally is
where data originates and how it evolves.

Although in general a database may evolve in arbitrary ways, often data are generated
according to some business process, implemented in an information system that accesses the
DB. We believe that analyzing how business processes generate data allows one to gather
additional information on their fitness for use. In this work, we focus on a particular aspect
of data quality, that is the problem whether a business process that reads from and writes
into a database can affect the answer of a query or whether the answer will not change as a
result of the process. We refer to this problem as query stability.

For example, consider a student registration process at a university. The university
maintains a relation Active (course) with all active courses and a table Registered (student,
course) that records which students have been registered for which course. Suppose we have
a process model that does not allow processes to write into Active and which states that
before a student is registered for a course, there must be a check that the course is active.
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Consider the query Qagro that asks for all students registered for the MSc in Agronomics
(mscAgro). If mscAgro does not occur in Active, then no student can be registered and the
query is stable. Consider next the query Qcourses that asks for all courses for which some
student is registered. If for each active course there is at least one student registered, then
again the query is stable, otherwise, it is not stable because some student could register for a
so far empty active course.

In general, query results can be affected by the activities of processes in several ways.
Processes may store data from outside in the database, e.g., the application details submitted
by students are stored in the database. Processes may not proceed because data does not
satisfy a required condition, e.g., an applicant cannot register because his degree is not among
the recognized degrees. Processes may copy data from one part of a database to another one,
e.g., students who passed all exams are automatically registered for the next year. Processes
may interact with each other in that one process writes data that is read by another one,
e.g., the grades of entry exams stored by the student office are used by academic admission
committees. Finally, some activities depend on deadlines so that data cannot change before
or after a deadline.

Approach. Assessing query stability by leveraging on processes gives rise to several research
questions.
1. What is a good model to represent processes, data and the interplay among the two?
2. How can one reason on query stability in such a model and how feasible is that?
3. What characteristics of the model may complicate reasoning?

(1) Monotonic Data-Aware Business Process Model. Business processes are often spe-
cified in standardized languages, such as BPMN [22], and organizations rely on engines that
can run those processes (e.g., Bonita [7], Bizagi [16]). However, in these systems how the
data is manipulated by the process is implicit in the code. Current theory approaches either
focus on process modeling, representing the data in a limited way (like in Petri Nets [18]), or
adopt a data perspective, leaving the representation of the process flow implicit [6, 4, 11].
We introduce a formalism called Monotonic Data-aware Business Processes (MDBPs). In
MDBPs the process is represented as a graph. The interactions with an underlying database
are expressed by annotating the graph with information on which data is read from the
database and which is written into it. In MDBPs it is possible that several process instances
execute the process. New information (fresh data) can be brought into the process by starting
a fresh process instance (Section 2). MDBPs are monotonic in that data can only be inserted,
but not deleted or updated.

(2) Datalog Encodings. Existing approaches aim at the verification of general (e.g. tem-
poral) properties, for which reasoning is typically intractable [4, 10, 11]. In contrast, we
study a specific property, namely stability of conjunctive queries (Section 3), over processes
that only insert data. This allows us to map the problem to the one of query answering in
Datalog. The encoding generates all maximal representative extensions of the database that
can be produced in the process executions and checks if any new query answer is produced.
We prove that our approach is optimal w.r.t. worst case complexity in the size of the data,
query, process model and in the size of the entire input.

(3) MDBP Variants. When modeling processes and data, checking properties often becomes
highly complex or undecidable. While other approaches in database theory aim at exploring
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the frontiers of decidability by restricting the possibility to introduce fresh data, we adopt
a more bottom-up approach and focus on a simpler problem that can be approached by
established database techniques. To understand the sources of complexity of our reasoning
problem, we identify five restrictions of MDBPs:
(i) negation is (is not) allowed in process conditions;
(ii) the process can (cannot) start with pending instances;
(iii) a process can (cannot) have cycles;
(iv) a process can (cannot) read from relations that it can write;
(v) new instances can (cannot) start at any moment.
We investigate the stability problem for each combination of the restrictions above, called
variants (Sections 3–9).

Related work and conclusions end the paper (Sections 10, 11). A technical report, with
complete encodings and proofs can be found in [24].

A preliminary version of this paper was presented at the AMW workshop [21].

2 Monotonic Data-Aware Business Processes

Monotonic Data-aware Business Processes (MDBPs) are the formalism by which we represent
business processes and the way they manipulate data. We rely on this formalism to perform
reasoning on query stability.

Notation. We adopt standard notation from databases. In particular, we assume an infinite
set of relation symbols, an infinite set of constants dom as the domain of values, and the
positive rationals Q+ as the domain of timestamps. A schema is a finite set of relation
symbols. A database instance is a finite set of ground atoms, called facts, over a schema
and the domain domQ+ = dom ∪Q+.We use upper-case letters for variables, lower-case for
constants, and overline for tuples, e.g., c̄.

An MDBP is a pair B = 〈P, C〉, consisting of a process model P and a configuration C.
The process model defines how and under which conditions actions change data stored in the
configuration. The configuration is dynamic, consisting of
(i) a database,and
(ii) the process instances.

Process Model. The process model is a pair P = 〈N,L〉, comprising a directed multi-
graph N , the process net, and a labeling function L, defined on the edges of N .

The net N = 〈P, T 〉 consists of a set of vertices P , the places, and a multiset of edges
T , the transitions. A process instance traverses the net, starting from the distinguished
place start. The transitions emanating from a place represent alternative developments of an
instance.

A process instance has input data associated with it, which are represented by a fact
In(c̄, τ), where In is distinguished relation symbol, c̄ is a tuple of constants from domQ+ , and
τ ∈ Q+ is a time stamp that records when the process instance was started. We denote with
ΣB,In and ΣB the schemas of B with and without In, respectively.

The labeling function L assigns to every transition t ∈ T a pair L(t) = (Et,Wt). Here,
Et, the execution condition, is a Boolean query over ΣB,In and Wt, the writing rule, is a rule
R(ū)← Bt(ū) whose head is a relation of ΣB and whose body is a ΣB,In-query that has the
same arity as the head relation. Evaluating Wt over a ΣB,In-instance D results in the set of
facts Wt(D) = {R(c̄) | c̄ ∈ Bt(D)}. Intuitively, Et specifies in which state of the database
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which process instance can perform the transition t, and Wt specifies which new information
is (or can be) written into the database when performing t. In this paper we assume that Et

and Bt are conjunctive queries, possibly with negated atoms and inequality atoms with “<”
and “≤” involving timestamps. We assume inequalities to consist of one constant and one
variable, like X < 1st Sep. We introduce these restricted inequalities so that we can model
deadlines, without introducing an additional source of complexity for reasoning.

Configuration. This component models the dynamics of an MDBP. Formally, a configura-
tion is a triple 〈I,D, τ〉, consisting of a part I that captures the process instances, a database
instance D over ΣB, and a timestamp τ , the current time. The instance part, again, is a
triple I = 〈O,MIn,MP 〉, where O = {o1, ..., ok} is a set of objects, called process instances,
and MIn, MP are mappings, associating each o ∈ O with a fact MIn(o) = In(c̄, τ), its input
record, and a place MP (o) ∈ P , its current, respectively.

The input record is created when the instance starts and cannot be changed later on.
While the data of the input record may be different from the constants in the database,
they can be copied into the database by writing rules. A process instance can see the entire
database, but only its own input record.

For convenience, we also use the notation B = 〈P, I,D, τ〉, B = 〈P, I,D〉 (when τ is not
relevant), or B = 〈P,D〉 (for a process that is initially without running instances).

Execution of an MDBP. Let B = 〈P, C〉 be an MDBP, with current configuration C = 〈I,
D, τ〉. There are two kinds of atomic execution steps of an MDBP:
(i) the traversal of a transition by an instance and
(ii) the start of a new instance.

(i) Traversal of a transition. Consider an instance o ∈ O with record MIn(o) = In(c̄, τ ′),
currently at place MP (o) = q. Let t be a transition from q to p, with execution condition
Et. Then t is enabled for o, i.e., o can traverse t, if Et evaluates to true over the database
D∪{In(c̄, τ ′)}. LetWt : R(ū)← Bt(ū) be the writing rule of t. Then the effect of o traversing
t is the transition from C = 〈I,D, τ〉 to a new configuration C′ = 〈I ′,D′, τ〉, such that
(i) the set of instances O and the current time τ are the same;
(ii) the new database instance is D′ = D ∪Wt(D ∪ {In(c̄, τ ′)}), and
(iii) I = 〈O,MIn,MP 〉 is updated to I ′ = 〈O,MIn,M

′
P 〉 reflecting the change of place for

the instance o, that is M ′P (o) = p and M ′P (o′) = MP (o′) for all other instances o′.

(ii) Start of a new instance. Let o′ be a fresh instance and let In(c̄′, τ ′) be an In-fact
with τ ′ ≥ τ , the current time of C. The result of starting o′ with info c̄′ at time τ ′ is the
configuration C′ = 〈I ′,D, τ ′〉 where I ′ = 〈O′,M ′In,M

′
P 〉 such that

(i) the database instance is the same as in C,
(ii) the set of instances O′ = O ∪ {o′} is augmented by o′, and
(iii) the mappings M ′In and M ′P are extensions of MIn and MP , resp., obtained by defining

M ′In(o′) = In(c̄′, τ ′) and M ′P (o′) = start.
An execution Υ of B = 〈P, C〉 is a finite sequence of configurations C1, . . . , Cn

(i) starting with C (= C1), where
(ii) each Ci+1 is obtained from Ci by an atomic execution step.
We denote Υ also with C1  · · ·  Cn. We say that the execution Υ produces the facts
A1, . . . , An if the database of the last configuration Cn in Υ contains A1, . . . , An. Since at
each step a new instance can start, or an instance can write new data,
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Table 1 Computational complexity of query stability in MDBPs. The results in a row hold
for the class of MDBPs satisfying the defining restrictions and for the subclasses satisfying one or
more of the optional restrictions. The results for all decidable variants indicate matching lower and
upper bounds (except for AC0). The ∗ indicates that the results for rowo hold for all non-trivial
combinations of restrictions. All results for data, process, query and combined complexity of the
decidable variants hold already for singleton MDBPs. †Note that, in all fresh variants instance
complexity can be trivially decided in constant time (omitted in the table).

Defining
Restrictions

Optional
Restrictions Data Instance Process Query Combined Sect.

— fresh†,acyclic Undec. Undec. Undec. Undec. Undec. 4

closed — co-NP co-NP co-NExpTime ΠP
2 co-NExpTime 6

positive closed PTime co-NP ExpTime ΠP
2 ExpTime 5, 8

positive fresh†, acyclic PTime co-NP ExpTime ΠP
2 ExpTime 8

closed, acyclic positive in AC0 co-NP PSpace ΠP
2 PSpace 7

rowo ∗† in AC0 in AC0 co-NP ΠP
2 ΠP

2 9

(i) there are infinitely many possible executions, and
(ii) the database may grow in an unbounded way over time.

3 The Query Stability Problem

In this section, we define the problem of query stability in MDBPs with its variants.

I Definition 1 (Query Stability). Given B = 〈P, C〉 with database instance D, a query Q,
and a timestamp τ , we say that Q is stable in B until τ , if for every execution C  · · · C′
in B, where C′ has database D′ and timestamp τ ′ such that τ ′ < τ , it holds that

Q(D) = Q(D′).

If the query Q is stable until time point ∞, we say it is globally stable, or simply, stable.

The interesting question from an application view is: Given an MDBP B, a query Q, and
a timestamp τ , is Q stable in B until τ? Stability until a time-point τ can be reduced to
global stability. One can modify a given MDBP by adding a new start place and connecting
it to the old start place via a transition that is enabled only for instances with timestamp
smaller than τ . Then a query Q is globally stable in the resulting MDBP iff in the original
MDBP it is stable until τ .

To investigate sources of complexity and provide suitable encodings into Datalog, we
identify five restrictions on MDBPs.

I Definition 2 (Restriction on MDBPs and MDBP Executions). Let B be an MDBP.

Positive: B is positive if execution conditions and writing rules contain only positive atoms;
Fresh: B is fresh if its configuration does not contain any running instances;
Acyclic: B is acyclic if the process net is cycle-free;
Rowo: B is rowo (= read-only-write-only) if the schema Σ of B can be split into two

disjoint schemas: the reading schema Σr and the writing schema Σw, such that execution
conditions and queries in the writing rules range over Σr while the heads range over Σw;
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Closed: an execution of B is closed if it contains only transition traversals and no new
instances are started.

We will develop methods for stability checking in MDBPs for all combinations of those
five restrictions. For convenience, we will say that an MDBP B is closed if we consider only
closed executions of B. A singleton MDBP is a closed MDBP with a single instance in the
initial configuration.

Complexity Measures. The input for our decision problem are an MDBP B = 〈P, I,D〉,
consisting of a process model P , an instance part I, a database D and a timestamp τ , and a
query Q. The question is: Is Q globally stable in 〈P, I,D, τ〉? We refer to process, instance,
data, and query complexity if all parameters are fixed, except the process model, the instance
part, the database, or the query, respectively.

Roadmap. As a summary of our results, Table 1 presents the complexity of the possible
variants of query stability. Each section of the sequel will cover one row.

Datalog Notation. We assume familiarity with Datalog concepts such as least fixpoint and
stable model semantics, and query answering over Datalog programs under both semantics.
We consider Datalog programs that are recursive, non-recursive, positive, semipositive, with
negation, or with stratified negation [9]. We write Π ∪ D to denote a program where Π is a
set of rules and D is a set of facts.

4 Undecidable MDBPs

With negation in execution conditions and writing rules, we can create MDBPs that simulate
Turing machines (TMs). Consequently, in the general variant query stability is undecidable.

Due to lack of space we only provide an intuition. To show undecidability in data
complexity, we define a database schema that allows us to store a TM and we construct a
process model that simulates the executions of the stored TM. MDBPs cannot update facts
in the database. However, we can augment relations with an additional version argument
and simulate updates by adding new versions of facts. Exploiting negation in conditions
and rules we can then refer to the last version of a fact. To simulate the TM execution, the
process model uses fresh constants to model (i) an unbounded number of updates of the
TM configurations (= number of execution steps in the TM), and (ii) a potentially infinite
tape. The TM halts iff the process produces the predicate dummy. Undecidability in process
complexity follows from undecidability in data complexity, since a process can first write the
encoding of the TM into an initially empty database. Similarly, we obtain undecidability in
instance complexity using instances that write the encoding of the TM at the beginning. To
obtain undecidability in query complexity we extend the encoding for data complexity such
that the database encodes a universal TM and an input of the TM is encoded in the query.

I Theorem 3 (Undecidability). Query stability in MDBPs is undecidable in data, process
and query complexity. It is also undecidable in instance complexity except for fresh variants
for which it is constant. Undecidability already holds for acyclic MDBPs.

In our reduction it is the unbounded number of fresh instances that are causing writing
rules to be executed an unbounded number of times, so that neither cycles nor existing
instances are contributing to undecidability. In the sequel we study MDBPs that are positive,
closed, or rowo, and show that in all three variants stability is decidable.
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5 Positive Closed MDBPs

In cyclic positive MDBPs, executions can be arbitrarily long. Still, in the absence of fresh
instances, it is enough to consider executions of bounded length to check stability. Consider a
positive MDBP B = 〈P, C〉, possibly with cycles and disallowing fresh instances to start, with
c different constants, r relations, k running instances, m transitions and a as the maximal
arity of a relation in P. We observe:
(i) For each relation R in P there are up to carity(R) new R-facts that B can produce. Thus,
B can produce up to rca new facts in total.

(ii) It is sufficient to consider executions that produce at least one new fact each mk steps.
An execution that produces no new facts in mk steps has at least one instance that in
those mk steps visits the same place twice without producing a new fact; those steps
can be canceled without affecting the facts that are produced.

(iii) Hence, it is sufficient to consider executions of maximal length mkrca.

Among these finitely many executions, it is enough to consider those that produce a
maximal set of new facts. Since a process instance may have the choice among several
transitions, there may be several such maximal sets. We identify a class of executions in
positive closed MDBPs, called greedy executions, that produce all maximal sets.

Greedy Executions. Intuitively, in a greedy execution instances traverse all cycles in the
net in all possible ways and produce all that can be produced before leaving the cycle. To
formalize this idea we identify two kinds of execution steps: safe steps and critical steps.
A safe step is an execution step of an instance after which, given the current state of the
database, the instance can return to its original place. A critical step is an execution step
that is not safe. Based on this, we define greedy sequences and greedy executions. A greedy
sequence is a sequence of safe steps that produces the largest number of new facts possible.
A greedy execution is an execution where greedy sequences and critical steps alternate.

Let Υ be a greedy execution with i alternations of greedy sequences and critical steps.
In the following, we characterize which are the transitions that instances traverse in the
i + 1-th greedy sequence and then in the i + 1-th critical step. For a process instance o
and the database DΥ produced after Υ we define the enabled graph NΥ,o as the multigraph
whose vertices are the places of N (i.e., the process net of B) and edges those transitions
of N that are enabled for o given database DΥ. Let SCC (NΥ,o) denote the set of strongly
connected components (SCCs) of NΥ,o. Note that two different instances may have different
enabled graphs and thus different SCCs. For a place p, let Np

Υ,o be the SCC in SCC (NΥ,o)
that contains p. Suppose that o is at place p after Υ. Then in the next greedy sequence,
each instance o traverses the component Np

Υ,o in all possible ways until no new facts can be
produced, meaning that all instances traverse in an arbitrary order. Conversely, the next
critical step is an execution step where an instance o traverses a transition that is not part of
Np

Υ,o, and thus it leaves the current SCC. We observe that when performing safe transitions
new facts may be written and new transitions may become executable. This can make SCCs
of NΥ,o to grow and merge, enabling new safe steps. With slight abuse of notation we denote
such maximally expanded SCCs with NΥ,o, and with Np

Υ,o the maximal component that
contains p.

Properties of Greedy Executions. We identify three main properties of greedy executions.
A greedy execution is characterized by its critical steps, because an instance may have to
choose one among several possible critical steps. In contrast, how safe steps compose a
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greedy sequence is not important for stability because all greedy sequences produce the
same (maximal) set of facts.
A greedy execution in an MDBP with m transitions and k instances can have at most
mk critical steps. The reason is that an execution step can be critical only the first time
it is executed, and any time after that it will be a safe step.
Each execution can be transformed into a greedy execution such that if a query is instable
in the original version then it is instable also in the greedy version. In fact, an arbitrary
execution has at most mk critical steps. One can construct a greedy version starting
from those critical steps, such that the other steps are part of the greedy sequences.

I Lemma 4. For each closed execution Υ in a positive MDBP B that produces the set of
ground atoms W , there exists a greedy execution Υ′ in B that also produces W .

Therefore, to check stability it is enough to check stability over greedy executions. In the
following we define Datalog rules that compute facts produced by greedy executions.

Encoding into Datalog. Let B = 〈P, I,D〉 be a positive MDBP with m transitions and k
instances. Since critical steps uniquely characterize a greedy execution, we use a tuple of size
up to mk to encode them. For example, if in a greedy execution Υ at the first critical step
instance ol1 traverses transition th1 , in the second ol2 traverses th2 , and so on up to step i,
we encode this with the tuple

ω̄ = 〈ol1 , th1 , . . . , oli
, thi
〉.

Next, we define the relations used in the encoding.
(i) For each relation R in P we introduce relations Ri (for i up to mk) to store all R-facts

produced by an execution with i critical steps. Let Υ be the execution from above and
let 〈ol1 , th1 , . . . , oli , thi〉 be the tuple representing it. Then, a fact of relation Ri has the
form Ri(ol1 , th1 , . . . , oli

, thi
; s̄), and it holds iff Υ produces the fact R(s̄). Later on we

use ω̄ to represent the tuple 〈ol1 , th1 , . . . 〉. Facts of Ri are then represented as Ri(ω̄; s̄).
For convenience, we use a semicolon (;) instead of a comma (,) to separate encodings of
different types in the arguments.

(ii) To record the positions of instances after each critical step we introduce relations Statei

such that Statei(ω̄; p1, . . . , pk) encodes that after Υ is executed, instance o1 is at p1, o2
is at p2, and so on.

(iii) To store the SCCs of the enabled graph we introduce relations SCC i such that for a
process instance o and a place p, the transition t belongs to Np

Υ,o iff SCC i(ω̄; o, p, t) is
true.

(iv) To compute the relations SCCi, we first need to compute which places are reachable by
an instance o from place p. For that we introduce auxiliary relations Reachi such that in
the enabled graph NΥ,o instance o can reach place p′ from p iff Reachi(ω̄; o, p, p′) is true.

(v) Additionally, we introduce the auxiliary relation In0 that associates instances with their
In-records, that is In0(o; s̄) is true iff the instance o has input record In(s̄). With slight
abuse of notation, we use ω̄ to denote also the corresponding greedy closed execution Υ.
In the following we define a Datalog program that computes the predicates introduced

above for all possible greedy executions. The program uses stratified negation.

Initialization. For each relation R in P we introduce the initialization rule R0(X)← R(X)
to store what holds before any critical step is made. Then we add the fact rule State0(p1,

. . . , pk)← true if in the initial configuration o1 is at place p1, o2 at p2, and so on.
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Greedy Sequence: Traversal Rules. Next, we introduce rules that compute enabled graphs.
The relation Reachi contains the transitive closure of the enabled graph Nω̄,o for each o

and ω̄, encoding a greedy execution of length i. First, a transition t from q to be p gives rise
to an edge in the enabled graph Nω̄,o if instance o can traverse that t:

Reachi(W ;O, q, p)← Ei
t(W ;O).

Here, Ei
t(W ;O) is a shorthand for the condition obtained from Et by replacing In(s̄) with

In0(O; s̄) and by replacing each atom R(v̄) with Ri(W ; v̄). The tuple W consists of 2i many
distinct variables to match every critical execution with i steps. It ensures that only facts
produced by W are considered. The transitive closure is computed with the following rule:

Reachi(W ;O,P1, P3)← Reachi(W ;O,P1, P2),Reachi(W ;O,P2, P3).

Based on Reachi, SCC i is computed by including every transition t from q to p that an
instance can reach, traverse, and from where it can return to the current place:

SCC i(W ;O,P, t)← Reachi(W ;O,P, q), Ei
t(W ;O),Reachi(W ;O, p, P ).

Critical Steps: Traversal Rules. We now want to record how an instance makes a critical
step. An instance oj can traverse transition t from q to p at the critical step i+ 1 if
(i) oj is at some place in Nq

ω̄,oj
at step i,

(ii) it satisfies the execution condition Et,
(iii) and by traversing t it leaves the current SCC.
The following traversal rule captures this:

Statei+1(W, oj , t;P1, . . . , Pj−1, p, Pj+1, . . . , Pk)←
Statei(W ;P1, . . . , Pj−1, P, Pj+1, . . . , Pk),Reachi(W ; oj , P, q),Reachi(W ; oj , q, P ), (1)
Ei

t(W ; oj),¬SCC i(W ; oj , P, t). (2)

Here, the condition (i) is encoded in line (1), and (ii) and (iii) are encoded in line (2).

Generation Rules. A fact in Ri+1 may hold because
(i) it has been produced by the current greedy sequence or by the last critical step, or
(ii) by some of the previous sequences or steps.
Facts produced by previous sequences or steps are propagated with the copy rule: Ri+1(W,

O, T ;X) ← Statei+1(W,O, T ; ), Ri(W ;X), copying facts R(X) holding after W to all
extensions of W .

Then we compute the facts produced by the next greedy sequence. For each instance oj ,
being at some place pj after the last critical step in ω̄, and for each transition t that is in
N

pj

ω̄,oj
, with writing rule R(ū)← Bt(ū), we introduce the following greedy generation rule:

Ri(W ; ū)← Statei(W ; , . . . , , Pj , , . . . , ),SCC i(W ; oj , Pj , t), Bi
t(W ; oj ; ū),

where condition Bi
t(W ;O; ū) is obtained similarly as Ei

t(W ;O). In other words, all transitions
t that are in Npj

ω̄,oj
are fired simultaneously, and this is done for all instances.

The facts produced at the next critical step by traversing t, which has the writing
rule R(ū) ← Bt(ū), are generated with the critical generation rule: Ri+1(W,O, t; ū) ←
Statei+1(W,O, t; ), Bi

t(W ;O; ū).
Let Πpo,cl

P,I be the program encoding the positive closed B = 〈P, I,D〉 as described above.

I Lemma 5. Let ω̄ be a greedy execution in the positive closed B = 〈P, I,D〉 of length i and
R(s̄) be a fact. Then R(s̄) is produced by ω̄ iff Πpo,cl

P,I ∪ D |= Ri(ω̄; s̄).
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Test Program. We want to test the stability of Q(X)← R1(ū1), . . . , Rn(ūn). We collect
all potential Q-answers using the relation Q′. A new query answer may be produced by
an execution of any size i up to mk. Thus, for each execution of a size i from 0 to mk we
introduce the Q′-rule

Q′(X)← Ri
1(W ; ū1), . . . , Ri

n(W ; ūn). (3)

Then, if there is a new query answer, the test rule “Instable← Q′(X),¬Q(X)” fires the fact
Instable. Let Πtest

P,I,Q be the test program that contains Q, the Q′-rules, and the test rule.

I Theorem 6. Q is instable in the positive closed B iff Πpo,cl
P,I ∪ D ∪Πtest

P,I,Q |= Instable.

Data and Process Complexity. Since Πpo,cl
P,I ∪D∪Πtest

P,I,Q is a Datalog program with stratified
negation, for which reasoning is as complex as for positive Datalog, we obtain as upper
bounds ExpTime for process and combined complexity, and PTime for data complexity [9].
We show that these are also lower bounds, even for singleton MDBPs. This reduction can
also be adapted for acyclic fresh MDBPs, which we study in Section 8.

I Lemma 7. Stability is ExpTime-hard in process and PTime-hard in data complexity
for
(a) positive singleton MDBPs under closed executions, and
(b) positive acyclic fresh MDBPs.

Proof Sketch.
(a) We encode query answering over a Datalog program Π ∪ D into stability checking. Let

A be a fact. We construct a positive singleton MDBP 〈Ppo,cl
Π,A , I0,D〉, where there is a

transition for each rule and the single process cycles to produce the least fixed point
(LFP) of the program. In addition, the MDBP inserts the fact dummy if A is in the
LFP. Then test query Qtest ← dummy is stable in 〈Ppo,cl

Π,A , I0,D〉 iff Π ∪ D 6|= A.
(b) Analogous, letting fresh instances play the role of the cycling singleton instance.

J

Instance Complexity. Instance complexity turns out to be higher than data complexity.
Already for acyclic positive closed MDBPs it is co-NP-hard because
(i) process instances may non-deterministically choose a transition, which creates exponen-

tially many combinations, even in the acyclic variant; and
(ii) instances may interact by reading data written by other instances.

I Lemma 8. There exist a positive acyclic process model P0, a database D0, and a test query
Qtest with the following property: for every graph G one can construct an instance part IG

such that G is not 3-colorable iff Qtest is stable in 〈P0, IG,D0〉 under closed executions.

Clearly, Lemma 8 implies that checking stability for closed MDBPs is co-NP-hard in
instance complexity. According to Theorem 11 (Section 6), instance complexity is co-NP
for all closed MDBPs, which implies co-NP-completeness even for the acyclic variant.

Query Complexity. To analyze query complexity we first show how difficult it is to check
whether a query returns the same answer over a database and an extension of that database.

I Lemma 9 (Answer Difference). For every two fixed databases D ⊆ D′, checking whether a
given conjunctive query Q satisfies Q(D) = Q(D′) is in ΠP

2 in the query size. Conversely, there
exist databases D0 ⊆ D′0 such that checking for a conjunctive query Q whether Q(D0) = Q(D′0)
is ΠP

2 -hard in the query size.
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Proof Idea. The first claim holds since one can check Q(D) $ Q(D′) in NP using an
NP oracle. We show the second by reducing the 3-coloring extension problem for graphs [2].

J

Building upon Lemma 9, we can define an MDBP that starting from D0 produces D′0. In
fact, for such an MDBP it is enough to consider the simplest variants of rowo.
I Proposition 10. Checking stability is ΠP

2 -hard for
(a) positive fresh acyclic rowo MDBPs, and
(b) positive closed acyclic rowo singleton MDBPs.

Given B = 〈P, I,D〉, there are finitely many maximal extensions D′ of D that can be
produced by B. We can check stability of a query Q by finitely many checks whether
Q(D) = Q(D′). Since each such check is in ΠP

2 , according to Lemma 9, the entire check is in
ΠP

2 . Thus, stability is ΠP
2 -complete in query complexity.

6 Closed MDBPs

In the presence of negation, inserting new facts may disable transitions. During an execution, a
transition may switch many times between being enabled and disabled, and greedy executions
could have exponentially many critical steps. An encoding along the ideas of Section 5
would lead to a program of exponential size. This would give us an upper bound of double
exponential time for combined complexity. Instead, we establish a correspondence between
stability and brave query answering for Datalog with (unstratified) negation under stable
model semantics (SMS) [9]. Due to lack of space we only state the results.
I Theorem 11. For every closed MDBP B = 〈P, I,D〉 and every query Q one can construct
a Datalog program with negation Πcl

P , based on P, a database DI , based on D and I, and a
test program Πtest

Q , based on Q, such that the following holds:
Q is instable in B = 〈P, I,D〉 iff Πcl

P ∪ DI ∪Πtest
Q |=brave Instable.

Proof Idea. For the same reason as in the positive variant, it is sufficient to consider
executions of maximal length mkrca. Program Πcl

P contains two parts:
(i) a program that generates a linear order of size mkrca (with parameters m, k, r, c, a

defined as in Section 5), starting from an exponentially smaller order, that is used to
enumerate execution steps, and

(ii) a program that “guesses” an execution of size up to mkrca by selecting for each execution
step one instance and one transition, and that produces the facts that would be produced
by the guessed execution. Then each execution corresponds to one stable model. The
test program Πtest

Q checks if any of the guessed executions yields a new query answer.
J

In Theorem 11, the process is encoded in the program rules while data and instances are
encoded as facts. Since brave reasoning under SMS is NExpTime in program size and NP
in data size [9], we have that process and combined complexity are in co-NExpTime, and
data and instance complexity are in co-NP. From this and Lemma 8 it follows that instance
complexity is co-NP-complete. To show that stability is co-NExpTime-complete in process
and co-NP-complete in data complexity we encode brave reasoning into stability. Query
complexity is ΠP

2 -complete for the same reasons as in the positive variant.
I Theorem 12. For every Datalog program Π ∪ D, possibly with negation, and fact A, one
can construct a singleton MDBP 〈PΠ,A, I0,D〉 such that for the query Qtest ← dummy we
have: Π ∪D |=brave A iff Qtest is stable in 〈PΠ,A, I0,D〉 under closed executions.
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7 Acyclic Closed MDBPs

If a process net is cycle-free, all closed executions have finite length. More specifically, in
an acyclic MDBP with m transitions and k running instances, the maximal length of an
execution is mk. Based on this observation, we modify the encoding for the positive closed
variant in Section 5 so that it can cope with negation and exploit the absence of cycles.

For an acyclic MDBP, there cannot exist any greedy steps, which would stay in a strongly
connected component of the net. Therefore, we drop the encodings of greedy traversals and
the greedy generation rules. We keep the rules for critical steps, but drop the atoms of
relations Reachi and SCC i. In contrast to the positive closed variant, we may have negation
in the conditions Et and Bt. However, the modified Datalog program is non-recursive, since
each relation Ri and Statei is defined in terms of Rj ’s and Statej ’s where j < i.

Let Πac,cl
P,I be the program encoding an acyclic B = 〈P, I,D〉 as described above and let

Πtest
P,I,Q be the test program as in the cyclic variant.

I Theorem 13. Q is instable in the closed acyclic B iff Πac,cl
P,I ∪ D ∪Πtest

P,I,Q |= Instable.

Complexity. As upper bounds for combined and data complexity, the encoding gives us the
analogous bounds for non-recursive Datalog¬ programs, that is, PSpace in combined and
AC0 in data complexity [9]. Already in the positive variant, we inherit PSpace-hardness of
process complexity (and therefore also of combined complexity) from the program complexity
of non-recursive Datalog. We obtain matching lower bounds by a reverse encoding.

I Lemma 14. For every non-recursive Datalog program Π and every fact A, one can construct
a singleton acyclic positive MDBP 〈PΠ,A, C0〉 such that for the query Qtest ← dummy we
have: Π 6|= A iff Qtest is stable in 〈PΠ,A, C0〉 under closed executions.

We observe that for closed executions, the cycles increase the complexity, and moreover,
cause a split between variants with and without negation. Lemma 8 and Theorem 11 together
imply that instance complexity is co-NP-complete. Query complexity is ΠP

2 -complete for
the same reasons as in other closed variants.

8 Positive Fresh MDBPs

All decidable variants of MDBPs that we investigated until now were so because we allowed
only closed executions. In this and the next section we show that decidability can also be
guaranteed if conditions and rules are positive, or if relations are divided into read and write
relations (rowo). We look first at the case where initially there are no running instances.

When fresh instances start, their input can bring an arbitrary number of new constants
into the database. Thus, processes can produce arbitrarily many new facts. First we show
how infinitely many executions of a positive or rowo MDBP can be faithfully abstracted to
finitely many over a simplified process such that a query is stable over the original process iff
it is stable over the simplified one. For such simplified positive MDBPs, we show how to
encode stability checking into query answering in Datalog.

Abstraction Principle. Let B = 〈P, I,D, τB〉 be a positive or rowo MDBP and let Q be
a query that we want to check for stability. Based on B and Q we construct an MDBP
B′ = 〈P ′, I,D, τB〉 that has the same impact on the stability of Q but uses at most linearly
many fresh values from the domain.
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Let adom be the active domain of B and Q, that is the set of all constants appearing
in B and Q. Let τ1, . . . , τn be all timestamps including τB that appear in comparisons in
B such that τi < τi+1. We introduce n+ 1 many fresh timestamps τ ′0, . . . , τ ′n 6∈ adom such
that τ ′0 < τ1 < τ ′1 < · · · < τn < τ ′n. If there are no comparisons in B we introduce one fresh
timestamp τ ′0. Further, let a be a fresh value such that a 6∈ adom. Let adom∗ = adom ∪ {τ ′0,
. . . , τ ′n} ∪ {a} be the extended active domain.

Then, we introduce the discretization function δB : domQ+ → domQ+ that based on adom∗

“discretizes” domQ+ as follows: for each τ ∈ Q+

(i) δB(τ) = τ if τ = τi for some i;
(ii) δB(τ) = τ ′i if τi < τ < τi+1 for some i;
(iii) δB(τ) = τ ′0 if τ < τ1;
(iv) and δB(τ) = τ ′n if τn < τ ;
(v) and for c ∈ dom if c ∈ adom∗ then δB(c) = c; otherwise δB(c) = a.
If B has no comparisons then δB(τ) = τ ′0 for each τ . We extend δB to all syntactic objects
containing constants, including executions. Now, we define P ′ to be as P, except that we
add conditions on each outing transition from start such that only instances with values
from adom∗ can traverse, and instances with the timestamps greater or equal than τB.

I Proposition 15 (Abstraction). Let Υ = C  C1  · · ·  Cm be an execution in B that
produces a set of facts W , and let Υ′ = δBΥ = δBC  δBC1  · · · δBCm. Further, let Υ′′
be an execution in B′. Then the following holds:
(a) Υ′ is an execution in B′ that produces δBW ;
(b) Q(D) 6= Q(D ∪W ) iff Q(D) 6= Q(D ∪ δBW );
(c) Υ′′ is an execution in B.

In other words, each execution in B can be δB-abstracted and it will be an execution
in B′, and more importantly, an execution in B produces a new query answer if and only if
the δB-abstracted version produces a new query answer in B′.

Encoding into Datalog. Since B′ allows only finitely many new values in fresh instances,
there is a bound on the maximal extensions of D that can be produced. Moreover, since there
is no bound on the number of fresh instances that can start, there is only a single maximal
extension of D, say D′, that can result from B′. We now define the program Πpo,fr

P,Q ∪D whose
least fixpoint is exactly this D′.

First, we introduce the relations that we use in the encoding. To record which fresh
instances can reach a place p in P , we introduce for each p a relation Inp with the same arity
as In. That is, Inp(s̄) evaluates to true in the program iff an instance with the input record
In(s̄) can reach p. As in the closed variant, we use a primed version R′ for each relation R
to store R-facts produced by the process.

Now we define the rules. Initially, all relevant fresh instances (those with constants
from adom∗) sit at the start place. We encode this by the introduction rule: Instart(X1, . . . ,

Xn)← adom∗(X1), . . . , adom∗(Xn). Here, with slight abuse of notation, adom∗ represents a
unary relation that we initially instantiate with the constants from adom∗. Also initially, we
make a primed copy of each database fact, that is, for each relation R in P we define the
copy rule: R′(X)← R(X).

Then we encode instance traversals. For every transition t that goes from a place q to a
place p, we introduce a traversal rule that mimics how instances having reached q move on to
p, provided their input record satisfies the execution condition for t. Let Et = In(s̄), R1(s̄1),
. . . , Rl(s̄l), Gt be the execution condition for t, where Gt comprises the comparisons. We

ICDT 2016



16:14 Query Stability in Monotonic Data-Aware Business Processes

define the condition E′t(s̄) as Inq(s̄), R′1(s̄1), . . . , R′l(s̄l), Gt, obtained from Et by renaming the
In-atom and priming all database relations. Then, the traversal rule for t is: Inp(s̄)← E′t(s̄).
Here, E′t(s̄) is defined over the primed signature since a disabled transition may become
enabled as new facts are produced.

Which facts are produced by traversing t is captured by a generation rule. Let Wt :
R(ū)← Bt(ū) be the writing rule for t, with the query Bt(ū)← In(s̄′), R1(s̄′1), . . . , Rn(s̄′n),
Mt, whereMt comprises the comparisons. Define B′t(s̄′, ū)← Inq(s̄′), R′1(s̄′1), . . . , R′n(s̄′n),Mt.
The corresponding generation rule is R′(ū) ← E′t(s̄), B′t(s̄′, ū), s̄ = s̄′, which combines the
constraints on the instance record from Et and Wt.

Let Πpo,fr
P,Q be the program defined above, encoding the positive fresh B′ obtained from B.

The program is constructed in such a way that it computes exactly the atoms that are in the
maximal extension D′ of D produced by B′. Let R′(v̄) be a fact.

I Lemma 16. There is an execution in the positive fresh B producing R(v̄) iff
Πpo,fr
P,Q ∪ D |= R′(v̄).

Let Πtest
Q be defined like Πtest

P,I,Q in Section 5, except that there is only one rule for Q′,
obtained from (3) by replacing Ri

j with R′j . Then Proposition 15 and Lemma 16 imply:

I Theorem 17. Q is instable the positive fresh B iff Πpo,fr
P,Q ∪ D ∪Πtest

Q |= Instable.

Complexity. Since Πpo,fr
P,Q ∪D∪Πtest

Q is a program with stratified negation, stability checking
over positive fresh MDBPs is in ExpTime for process and combined complexity, and in
PTime for data complexity [9]. From Lemma 7 we know that these are also lower bounds for
the respective complexity measures. Query complexity is ΠP

2 -complete as usual, and instance
complexity is trivial for fresh processes.

Positive MDBPs. To reason about arbitrary positive MDBPs, we can combine the encoding
for the fresh variant (Πpo,fr

P,Q) from this section and the one for the closed variant from Section 5
(Πpo,cl
P,I ). The main idea is that to obtain maximal extensions, each greedy execution sequence

is augmented by also flooding the process with fresh instances. The complexities for the full
positive variant are inherited from the closed variant.

9 Read-Only-Write-Only MDBPs

In general MDBPs, processes can perform recursive inferences by writing into relations from
which they have read. It turns out that if relations are divided into read-only and write-only,
the complexity of stability reasoning drops significantly.

The main simplifications in this case are that
(i) one traversal per instance and transition suffices, since no additional fact can be produced

by a second traversal;
(ii) instead of analyzing entire executions, it is enough to record which paths an individual

process instance can take and which facts it produces, since instances cannot influence
each other.

As a consequence, the encoding program can be non-recursive and it is independent of the
instances in the process configuration. A complication arises, however, since the maximal
extensions of the original database D by the MDBP B are not explicitly represented by this
approach. They consist of unions of maximal extensions by each instance and are encoded
into the test query, which is part of the program.
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I Theorem 18. For every rowo MDBP B = 〈P, I,D〉 and query Q one can construct a
nonrecursive Datalog program Πro

P,Q, based on P and Q, and a database instance DI , based
on D and I, such that: Q is instable in B iff Πro

P,Q ∪ DI |= Instable.

From the theorem it follows that data and instance complexities are in AC0, except for
instance complexity in fresh variants, for which it is constant.

Process, Query and Combined Complexity. Since CQ evaluation can be encoded into an
execution condition, this gives us co-NP-hardness of stability in process complexity. We
also show that it is in co-NP. First we note that due to the absence of recursion, one can
check in NP whether a set of atoms is produced by a process instance.

I Proposition 19. Let B be a singleton rowo MDBP. One can decide in NP, whether for
given facts A1, . . . , Am, there is an execution in B that produces A1, . . . , Am.

Next, suppose that I, D and Q(v̄)← B1, . . . , Bm are a fixed instance part, database and
query. Given a process model P, we want to check that Q is instable in BP = 〈P, I,D〉.
Making use of the abstraction principle for fresh constants, we can guess in polynomial time
an instantiation B′1, . . . , B′n of the body of Q that returns an answer not in Q(D). Then we
verify that B′1, . . . , B′n are produced by BP . Such a verification is possible in NP according
to Proposition 19. We guess a partition of the set of facts B′1, . . . , B′n, guess one instance,
possibly fresh, for each component set of the partition, and verify that the component set is
produced by the instance. Since all verification steps were in NP, the whole check is in NP.

Query complexity is ΠP
2 -complete for the same reasons as in the general variant, and one

can show that this is also the upper-bound for the combined complexity.

10 Related Work

Traditional approaches for business process modeling focus on the set of activities to be
performed and the flow of their execution. These approaches are known as activity-centric. A
different perspective, mainly investigated in the context of databases, consists in identifying
the set of data (entities) to be represented and describes processes in terms of their possible
evolutions. These approaches are known as data-centric.

In the context of activity-centric processes, Petri Nets (PNs) have been used for the
representation, validation and verification of formal properties, such as absence of deadlock,
boundedness and reachability [26, 27]. In PNs and their variants, a token carries a limited
amount of information, which can be represented by associating to the token a set of variables,
like in colored PNs [18]. No database is considered in PNs.

Among data-centric approaches, Transducers [1, 25] were among the first formalisms
ascribing a central role to the data and how they are manipulated. These have been extended
to data driven web systems [11] to model the interaction of a user with a web site, which
are then extended in [10]. These frameworks express insertion and deletion rules using FO
formulas. The authors verify properties expressed as FO variants of LTL, CTL and CTL*
temporal formulas. The verification of these formulas results to be undecidable in the general
case. Decidability is obtained under certain restrictions on the input, yielding to ExpSpace
complexity for checking LTL formulas and co-NExpTime and ExpSpace for CTL and
CTL* resp., in the propositional case.

Data-Centric Dynamic Systems (DCDSs) [4] describe processes in terms of guarded FO
rules that evolve the database. The authors study the verification of temporal properties
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expressed in variants of µ-calculus (that subsumes CTL*-FO). They identify several undecid-
able classes and isolate decidable variants by assuming a bound on the size of the database
at each step or a bound on the number of constants at each run. In these cases verification
is ExpTime-complete in data complexity.

Overall, both frameworks are more general than MDBPs, since deletions and updates
of facts are also allowed. This is done by rebuilding the database after each execution step.
Further, our stability problem can be encoded as FO-CTL formula. However, our decidability
results for positive MDBPs are not captured by the decidable fragments of those approaches.
In addition, the authors of the work above investigate the borders of decidability, while we
focus on a simpler problem and study the sources of complexity. Concerning the process
representation, both approaches adopt a rule-based specification. This makes the control
flow more difficult to grasp, in contrast to activity-centric approaches where the control flow
has an explicit representation.

Artifact-centric approaches [17] use artifacts to model business relevant entities. In [6,
14, 15] the authors investigate the verification of properties of artifact-based processes such
as reachability, temporal constraints, and the existence of dead-end paths. However, none
of these approaches explicitly models an underlying database. Also, the authors focus on
finding suitable restrictions to achieve decidability, without a fine-grained complexity analysis
as in our case.

Approaches in [3] and [5], investigate the challenge of combining processes and data,
however, focusing on the problem of data provenance and of querying the process structure.

In [12, 20] the authors study the problem of determining if a query over views is inde-
pendent from a set of updates over the database. The authors do not consider a database
instance nor a process. Decidability in rowo MDBPs can be seen as a special case of those.

In summary, our approach to process modeling is closer to the activity-centric one but we
model manipulation of data like in the data-centric approaches. Also, having process instances
and MDBPs restrictions gives finer granularity compared to data-centric approaches.

11 Discussion and Conclusion

Discussion. An interesting question is how complex stability becomes if MDBPs are not
monotonic, i.e., if updates or deletions are allowed. In particular, for positive MDBPs we can
show the following. In acyclic positive closed MDBPs updates and deletions can be modeled
using negation in the rules, thus stability stays PSpace-complete. For the cyclic positive
closed variant, allowing updates or deletions is more powerful than allowing negation, and
stability jumps to ExpSpace-completeness. For positive MDBPs with updates or deletions
stability is undecidable.

In case the initial database is not known, our techniques can be still applied since an
arbitrary database can be produced by fresh instances starting from an empty database.

Contributions. Reasoning about data and processes can be relevant in decision support to
understand how processes affect query answers.
1. To model processes that manipulate data we adopt an explicit representation of the control

flow as in standard BP languages (e.g., BPMN). We specify how data is manipulated as
annotations on top of the control flow.

2. Our reasoning on stability can be offered as a reasoning service on top of the query
answering that reports on the reliability of an answer. Ideally, reasoning on stability
should not bring a significant overhead on query answering in practical scenarios. Existing
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work on processes and data [4] shows that verification of general temporal properties is
typically intractable already measured in the size of the data.

3. In order to identify tractable cases and sources of complexity we investigated different
variants of our problem, by considering negation in conditions, cyclic executions, read
access to written data, presence of pending process instances, and the possibility to start
fresh process instances.

4. Our aim is to deploy reasoning on stability to existing query answering platforms such as
SQL and ASP [19]. For this reason we established different encodings into suitable variants
of Datalog, that are needed to capture the different characteristics of the problem. For
each of them we showed that our encoding is optimal. In contrast to existing approaches,
which rely on model checking to verify properties, in our work we rely on established
database query languages.

Open Questions. In our present framework we cannot yet model process instances with
activities that are running in parallel. Currently, we are able to deal with it only in case
instances do not interact (like in rowo). Also, we do not know yet how to reason about
expressive queries, such as conjunctive queries with negated atoms, and first-order queries.
From an application point of view, stability of aggregate queries and aggregates in the process
rules are relevant. A further question is how to quantify instability, that is, in case a query
is not stable, how to compute the minimal/maximal number of possible new answers.
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Abstract
We examine document spanners, a formal framework for information extraction that was intro-
duced by Fagin et al. (PODS 2013). A document spanner is a function that maps an input string
to a relation over spans (intervals of positions of the string). We focus on document spanners that
are defined by regex formulas, which are basically regular expressions that map matched subex-
pressions to corresponding spans, and on core spanners, which extend the former by standard
algebraic operators and string equality selection.

First, we compare the expressive power of core spanners to three models – namely, patterns,
word equations, and a rich and natural subclass of extended regular expressions (regular expres-
sions with a repetition operator). These results are then used to analyze the complexity of query
evaluation and various aspects of static analysis of core spanners. Finally, we examine the rel-
ative succinctness of different kinds of representations of core spanners and relate this to the
simplification of core spanners that are extended with difference operators.
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1 Introduction

Information Extraction (IE) is the task of automatically extracting structured information
from texts. This paper examines document spanners, a formalization of the IE query language
AQL, which is used in IBM’s SystemT. Document spanners were introduced by Fagin et
al. [7] in order to allow the theoretical examination of AQL, and were also used in [6].

A span is an interval on positions of a string w, and a spanner is a function that maps w
to a relation over spans of w. A central topic of [7] and of the present paper are core
spanners. The primitive building blocks of core spanners are regex formulas, which are
regular expressions with variables. Each of these variables corresponds to a subexpression,
and whenever a regex formula α matches a string w, each variable is mapped to the span in w
that matches that subexpression. Hence, each match of α on w determines a tuple of spans;
and as there can be multiple matches of a regex formula to a string, this process creates a
relation over spans of w. Core spanners are then defined by extending regex formulas with
the relational operations projection, union, natural join, and string equality selection.

∗ Supported by Deutsche Forschungsgemeinschaft (DFG) under grant FR 3551/1-1.

© Dominik D. Freydenberger and Mario Holldack;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


17:2 Document Spanners: From Expressive Power to Decision Problems

One of the two main topics of the present paper is the examination of decision problems
for core spanners, in particular evaluation and static analysis. These results are mostly
derived from the other main topic, the examination of the expressive power of core spanners
in relation to three other models that use repetition operators, which act similar to the
spanners’ string equality selection.

The first of these models are patterns. A pattern is word that consists of variables and
terminals, and generates the language of all words that can be obtained by substitution of
the variables with arbitrary terminal words. For example, the pattern α = xxaby (where x
and y are variables, and a and b are terminals) generates the language of all words that have
a prefix that consists of a square, followed by the word ab. Although pattern languages have
a simple definition, various decision problems for them are surprisingly hard. For example,
their membership problem is NP-complete (cf. Jiang et al. [19]), and their inclusion problem
is undecidable (cf. Bremer and Freydenberger [3]). As we show that core spanners can
recognize pattern languages, this allows us to conclude that evaluation of core spanners is
NP-hard, and that spanner containment is undecidable.

The second model we consider are word equations, which are equations of the form α = β,
where α and β are patterns, which can be used to define word relations. We show that word
equations with regular constraints can express all relations that are expressible with core
spanners. By using an improved version of Makanin’s algorithm (cf. Diekert [5]), this allows
us to show that satisfiability and hierarchicality for core spanners can be decided in PSPACE.
Moreover, using coding techniques from word equations, we show that two common relations
from combinatorics on words can be selected with core spanners.

The third model are regexes (also called extended regular expressions in literature). These
are regular expressions that can use a repetition operator, that is available in most modern
implementations for regular expressions (see, e. g., Friedl [14]) and that allows the definition
of non-regular languages. For example, the regex x{Σ∗}&x&x generates all words www
with w ∈ Σ∗, as x{Σ∗} generates some word w which is stored in the variable x, and each
occurrence of &x repeats that w. As a consequence of this increase in expressive power,
many decision problems are harder for regexes than for their “classical” counterparts. In
particular, various problems of static analysis are undecidable (Freydenberger [11]).

But as shown by Fagin et al. [7], document spanners cannot define all languages that are
definable by regexes. Intuitively, the reason for this is that regexes can use their repetition
operators inside a Kleene star, which allows them to repeat an arbitrary word an unbounded
number of times, while core spanners have to express repetitions with variables and string
equality selections. Inspired by this observation, we introduce variable-star free (or vstar-
free) regexes as those regexes that neither define nor use variables inside a Kleene star.
We show that every vstar-free regex can be converted into an equivalent core spanner.
Since all undecidability results by Freydenberger [11] also apply to vstar-free regexes, these
undecidability results carry over to core spanners. This also has various consequences to the
minimization and the relative succinctness of classes of spanner representations, and to the
simplification of core spanners with difference operators. As a further contribution, we also
develop tools to prove inexpressibility for vstar-free regular expressions and for core spanners.

As we shall see, many of the observed lower bounds hold even for comparatively restricted
classes of core spanners (in particular, most of the results hold for spanners that do not use
join). Hence, the authors consider it reasonable to expect that these results can be easily
adapted to other information extraction languages that combine regular expressions with
capture variables and a string equality operator.

In addition to regex formulas, Fagin et al. [7] also consider two types of automata as basic
building blocks of spanner representations. While the present paper does not discuss these
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in detail, most of the results on spanner representations that are based on regex formulas
can be directly converted to the respective class of spanner representations that are based on
automata.

Related work. For an overview of related models, we refer to Fagin et al. [7]. In addition to
this, we highlight connections to models with similar properties. In [7], Fagin et al. showed
that there is a language that can be defined by regexes, but not by core spanners. Furthermore,
they compared the expressive power of core spanners and a variant of conjunctive regular
path queries (CRPQs), a graph querying language. Barceló et al. [1] introduced extended
CRPQs (ECRPQs), which can compare paths in the graph with regular relations. While
there is no direct connection between ECRPQs and core spanners, both models share the
basic idea of combining regular languages with a comparison operator that can express string
equality. As shown by Freydenberger and Schweikardt [13], ECRPQs have undecidability
results that are comparable to those in the present paper, and to those for regexes (cf.
Freydenberger [11]). Furthermore, Barceló and Muñoz [2] have used word equations with
regular constraints for variants of CRPQs.

Structure of the paper. In Section 2, we give definitions of regexes and of core spanners.
Section 3 compares the expressive power of core spanners to patterns, word equations, and
vstar-free regular expressions. The results from this section are then used in Section 4 to
examine the complexity of evaluation and static analysis of spanners. We also examine the
consequences of these results to the relative succinctness of different spanner representations.
Section 5 concludes the paper. Due to space reasons, all proofs were moved to an appendix
that is contained in the full version of the paper.

2 Preliminaries

Let N and N>0 be the sets of non-negative and positive integers, respectively. Let Σ be a
fixed finite alphabet of (terminal) symbols. Except when stated otherwise, we assume |Σ| ≥ 2.
We use ε to denote the empty word. For every word w ∈ Σ∗ and every a ∈ Σ, let |w| denote
the length of w, and |w|a the number of occurrences of a in w. A word x ∈ Σ∗ is a subword
of a word y ∈ Σ∗ if there exist u, v ∈ Σ∗ with y = uxv. A word x ∈ Σ∗ is a prefix of a word
y ∈ Σ∗ if there exists a v ∈ Σ∗ with y = xv, and a proper prefix if it is a prefix and x 6= y.
For every n ∈ N, an n-ary word relation (over Σ) is a subset of (Σ∗)n.

2.1 Regexes (Extended Regular Expressions)
This section introduces the syntax and semantics of regexes, which we shall also use for
spanners in Section 2.2. We begin with the syntax, which follows the definition from [7].

I Definition 1. We fix an infinite set X of variables and define the set M of meta symbols
as M := {ε, ∅, (, ), {, }, ·,∨, ∗,&}. Let Σ, X, and M be pairwise disjoint. The set of regexes
(extended regular expressions) is defined as follows:
1. The symbols ∅, ε, and every a ∈ Σ are regexes.
2. If α1 and α2 are regex, then (α1 · α2) (concatenation), (α1 ∨ α2) (disjunction), and (α∗1)

(Kleene star) are regexes.
3. For every x ∈ X and every regex α that contains neither x{· · · } nor &x as a subword,

x{α} is a regex (variable binding).
4. For every x ∈ X, &x is a regex (variable reference).

ICDT 2016



17:4 Document Spanners: From Expressive Power to Decision Problems

If a subword β of a regex α is a regex itself, we call β a subexpression (of α). The set of
all subexpressions of α is denoted by Sub (α), and the set of variables occurring in variable
bindings in a regex α is denoted by Vars (α). If a regex α contains neither variable references,
nor variable bindings, we call α a proper regular expression.

In other words, we use the term “proper” to distinguish those expressions that are usually
just called “regular expressions” from the more general extended regular expressions. We
use the notation α+ as a shorthand for α · α∗. Parentheses can be added freely. We may
also omit parentheses and the concatenation operator, where we assume ∗ and + are taking
precedence over concatenation, and concatenation precedes disjunction. Furthermore, we use
Σ as a shorthand for the regular expression

∨
a∈Σ a.

Before introducing the semantics of regexes formally, we give an intuitive explanation.
An expression of the form α = x{β} matches the same strings as β, but α additionally stores
the matched string in the variable x. Using a variable reference &x, this string can then be
repeated. For example, let α := (x{Σ∗} ·&x). The subexpression x{Σ∗} matches any string
w ∈ Σ∗ and stores this match in x. The following variable reference &x repeats the stored w.
Thus, α defines the (non-regular) copy-language {ww | w ∈ Σ∗}.

The following definition of the semantics of regexes is based on the semantics by Freyden-
berger [11], which is an adaption of the semantics from Câmpeanu et al. [4] (the former uses
variables, the latter backreferences). In comparison to [11], the case for Kleene star has been
changed, in order to make the definition compatible with the parse trees from Fagin et al. [7].

I Definition 2. Let γ be a regex over Σ and X. A γ-parse tree is a finite, directed, and
ordered tree Tγ . Its nodes are labeled with tuples of the form (w, γ′) ∈ (Σ∗ × Sub (γ)). The
root of every γ-parse tree Tγ is labeled with (w, γ), w ∈ Σ∗; and the following rules must
hold for each node v of Tγ :
1. If v is labeled (w, a) with a ∈ (Σ ∪ {ε}), then v is a leaf, and w = a.
2. If v is labeled (w, (β1 · β2)), then v has exactly one left child v1 and exactly one right

child v2 with respective labels (w1, β1) and (w2, β2), and w = w1w2.
3. If v is labeled (w, (β1 ∨ β2)), then v has a single child, labeled (w, β1) or (w, β2).
4. If v is labeled (w, β∗), then one of the following cases holds:

(a) w = ε, and v is a leaf, or
(b) w = w1w2 . . . wk for words w1, . . . , wk ∈ Σ+ (with k ≥ 1), and v has k children

v1, . . . , vk (ordered from left to right) that are labeled (w1, β), . . . , (wk, β).
3. If v is labeled (w, x{β}), then v has a single child, labeled (w, β).
4. If v is labeled (w,&x), let ≺ denote the post-order of the nodes of Tγ (that results from

a left-to-right, depth-first traversal). Then one of the following cases applies:
(a) If there is no node v′ with v′ ≺ v that is labeled (w′, x{β′}) ∈ Σ∗ × Sub (γ), then v

is a leaf, and w = ε.
(b) Otherwise, let v′ be the node with v′ ≺ v that is ≺-maximal among nodes labeled

(w′, x{β′}). Then v is a leaf, and w = w′.
If the root of a γ-parse tree Tγ is labeled (w, γ), we call Tγ a γ-parse tree for w. If the
context is clear, we omit γ and call Tγ a parse tree.

There is no parse tree for ∅, and references to unbound variables (i. e., variables that were
not assigned a value with a variable binding operator) default to ε. For an example of a
parse tree, see Figure 1.

We use parse trees to define the semantics of regexes:

I Definition 3. A regex γ recognizes the language L(γ) of all w ∈ Σ∗ for which there exists
a γ-parse tree Tγ with (w, γ) as root label.
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(abab,&x · (x{(a ∨ b)∗} ·&x))

(ε,&x) (abab, x{(a ∨ b)∗} ·&x)

(ab, x{(a ∨ b)∗})

(ab, (a ∨ b)∗)

(ab,&x)

(a, a ∨ b)

(a, a)

(b, a ∨ b)

(b, b)

Figure 1 The α-parse tree for w, where α := &x · (x{(a ∨ b)∗} ·&x) and w := abab.

I Example 4. Let α := x{Σ+} · (&x)+. Then L(α) = {wn | w ∈ Σ+, n ≥ 2}. Furthermore,
let β := x{Σ+} ·&x · x{Σ+} ·&x. Then L(β) = {x1x1x2x2 | x1, x2 ∈ Σ+}. Finally, for some
a ∈ Σ, let γ := x{aa+} · (&x)+. Then L(γ) = {an | n ≥ 2, n is not prime}.

2.2 Document Spanners
Let w := a1a2 · · · an be a word over Σ, with n ∈ N and a1, . . . , an ∈ Σ. A span of w is an
interval [i, j〉 with 1 ≤ i ≤ j ≤ n + 1 and i, j ∈ N. For each span [i, j〉 of w, we define a
subword w[i,j〉 := ai · · · aj−1. In other words, each span describes a subword of w by its
bounding indices. Two spans [i, j〉 and [i′, j′〉 of w are equal if and only if i = i′ and j = j′.
These spans overlap if i ≤ i′ < j or i′ ≤ i < j′, and are disjoint, otherwise. The span [i, j〉
contains the span [i′, j′〉 if i ≤ i′ ≤ j′ ≤ j. The set of all spans of w is denoted by Spans (w).

I Example 5. Let w := aabbcabaa. As |w| = 9, both [3, 3〉 and [5, 5〉 are spans of w, but
[10, 11〉 is not. As 3 6= 5, the first two spans are not equal, even though w[3,3〉 = w[5,5〉 = ε.
The whole word w is described by the span [1, 10〉.

I Definition 6. Let SVars be a fixed, infinite set of span variables, where Σ and SVars are
disjoint. Let V ⊂ SVars be a finite subset of SVars, and let w ∈ Σ∗. A (V,w)-tuple is a
function µ : V → Spans (w), that maps each variable in V to a span of w. If context allows,
we write w-tuple instead of (V,w)-tuple. A set of (V,w)-tuples is called a (V,w)-relation.

As V and Spans (w) are finite, every (V,w)-relation is finite by definition. Our next step is
the definition of spanners, which map words w to (V,w)-relations:

I Definition 7. Let V and Σ be alphabets of variables and symbols, respectively. A
(document) spanner is a function P that maps every word w ∈ Σ∗ to a (V,w)-relation P (w).
Let V be denoted by SVars (P ). A spanner P is n-ary if |SVars (P )| = n, and Boolean
if SVars (P ) = ∅. For all w ∈ Σ∗, we say P (w) = True and P (w) = False instead of
P (w) = {()} and P (w) = ∅, respectively. Let P be a spanner and w ∈ Σ∗. A w-tuple
µ ∈ P (w) is hierarchical if for all x, y ∈ SVars (P ) at least one of the following holds:
1. The span µ(x) contains µ(y),
2. the span µ(y) contains µ(x), or
3. the spans µ(x) and µ(y) are disjoint.

ICDT 2016
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A spanner P is hierarchical if, for every w ∈ Σ∗, every µ ∈ P (w) is hierarchical.
A spanner P is total on w if P (w) contains all w-tuples over SVars (P ). Let Y ⊂ SVars

be a finite set of variables. The universal spanner over Y is denoted by ΥY . It is the unique
spanner P ′ such that SVars (P ′) = Y and P ′ is total on every w ∈ Σ∗. Furthermore, a
spanner P is hierarchical total on w if P (w) is exactly the set of all hierarchical w-tuples
over SVars (P ); and the universal hierarchical spanner over a set Y is the unique spanner
ΥH
Y that is hierarchical total on every w ∈ Σ∗.
For two spanners P1 and P2, we write P1 ⊆ P2 if P1(w) ⊆ P2(w) for every w ∈ Σ∗, and

P1 = P2 if P1(w) = P2(w) for every w ∈ Σ∗.

Hence, a spanner can be understood as a function that maps a word w to a set of functions,
each of which assigns spans of w to the variables of the spanner. As Boolean spanners
are functions that map words to truth values, they can be interpreted as characteristic
functions of languages. For every Boolean spanner P , we define the language recognized
by P as L(P ) := {w ∈ Σ∗ | P (w) = True}. We extend this to arbitrary spanners P by
L(P ) := {w ∈ Σ∗ | P (w) 6= ∅}.

I Definition 8. A regex formula is a regex α over Σ and X := SVars such that α does not
contain any variable references, and for every β ∈ Sub (α) with β = γ∗, no subexpression of
γ may be a variable binding.

In other words, a regex formula is a proper regular expression that is extended with variable
binding operators, but these operators may not occur inside a Kleene star. We define
SVars (γ) := Vars (γ) for all regex formulas γ.

To define the semantics of regex formulas, we use the definition of parse trees for regexes,
see Definition 2. Intuitively, the goal of this definition is that, each occurrence of a variable x
in a γ-parse tree is matched to the corresponding span. Here, two problems can arise. Firstly,
a variable might not occur in the parse tree; for example, when matching the regex formula
(x{a} ∨ bb) to the word bb. Secondly, a variable might be defined too often, as e. g. in the
regex formula x{Σ+} · x{Σ+}. In order to avoid such problems, we introduce the notion of a
functional regex formula.

I Definition 9. Let γ be a regex formula. We call γ functional if for every w ∈ Σ∗ and every
γ-parse tree Tγ for w, each variable in SVars (γ) occurs in exactly one node label of Tγ . The
class of all functional regex formulas is denoted by RGX.

As shown in Proposition 3.5 in Fagin et al. [7], functionality has a straightforward syntactic
characterization: Basically, variables may not be redeclared, variables may not be used inside
of Kleene stars, and if variables are used in a disjunction, each side of a disjunction has to
contain exactly the same variables. Consider the following example:

I Example 10. The regex formula γ1 := (x{a} ∨ x{b}) is functional even though it contains
two occurrences of variable definitions for x. There are just two γ1-parse trees, both of
which only contain one node labeled (c, x{c}), where c ∈ {a, b}. As a trivial case, even
γ2 := x{∅} is functional (as no γ2-parse tree exists). Furthermore, the regex formulas
γ3 := x{(a∨ b)∗} · x{b+} and γ4 := a∗ ∨ x{b} are not functional. Finally, γ5 := x{a}∗ is not
a regex formula at all.

For functional regex formulas, we use parse trees to define the semantics:

I Definition 11. Let γ be a functional regex formula and let T be a γ-parse tree for a word
w ∈ Σ∗. For every node v of T , the subtree that is rooted at v naturally maps to a span p(v)
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of w. As γ is functional, for every x ∈ SVars (γ), exactly one node vx of T has a label that
contains x. We define µT : SVars (γ)→ Spans (w) by µT (x) := p(vx). Each γ ∈ RGX defines
a spanner JγK by JγK(w) := {µT | T is a γ-parse tree for w} for each w ∈ Σ∗.

I Example 12. Assume that a, b ∈ Σ. We define the regex formula

α := Σ∗ · x
{

a · y{Σ∗} · (z{a} ∨ z{b})
}
· Σ∗.

Let w := baaba. Then JαK(w) consists of the tuples ([2, 4〉, [3, 3〉, [3, 4〉), ([2, 5〉, [3, 4〉, [4, 5〉),
([2, 6〉, [3, 5〉, [5, 6〉), ([3, 5〉, [4, 4〉, [4, 5〉), ([3, 6〉, [4, 5〉, [5, 6〉).

For every w ∈ Σ∗, a spanner P defines a (V,w)-relation P (w). In order to construct more
sophisticated spanners, we introduce spanner operators.

I Definition 13. Let P, P1, P2 be spanners and let w ∈ Σ∗. The algebraic operators union,
projection, natural join and selection are defined as follows.
Union Two spanners P1 and P2 are union compatible if SVars (P1) = SVars (P2), and their

union (P1∪P2) is defined by SVars (P1 ∪ P2) := SVars (P1)∪SVars (P2) and (P1∪P2)(w) :=
P1(w) ∪ P2(w) for every w ∈ Σ∗.

Projection Let Y ⊆ SVars (P ). The projection πY P is defined by SVars (πY P ) := Y and
πY P (w) := P |Y (w) for all w ∈ Σ∗, where P |Y (w) is the restriction of all w-tuples in
P (w) to Y .

Natural join Let Vi := SVars (Pi) for i ∈ {1, 2}. The (natural) join (P1 ./ P2) of P1 and P2
is defined by SVars (P1 ./ P2) := SVars (P1)∪SVars (P2) and, for all w ∈ Σ∗, (P1 ./ P2)(w)
is the set of all (V1 ∪ V2, w)-tuples µ for which there exist (Vi, w)-tuples µi (i ∈ {1, 2})
with µ|V1

(w) = µ1(w) and µ|V2
(w) = µ2(w).

Selection Let R ∈ (Σ∗)k be a k-ary relation over Σ∗. The selection operator ζR is parame-
terized by k variables x1, . . . , xk ∈ SVars (P ), written as ζRx1,...,xk

. The selection ζRx1,...,xk
P

is defined by SVars
(
ζRx1,...,xk

P
)

:= SVars (P ) and, for all w ∈ Σ∗, ζRx1,...,xk
P (w) is the set

of all µ ∈ P (w) for which
(
wµ(x1), . . . , wµ(xk)

)
∈ R.

Like [7], we mostly consider the string equality selection operator ζ=. Hence, unless otherwise
noted, the term “selection” refers to selection by the n-ary string equality relation. Note
that unlike selection (which compares strings), join requires that the spans are identical.

Regarding the join of two spanners P1 and P2, P1 ./ P2 is equivalent to the intersection
P1 ∩ P2 if SVars (P1) = SVars (P2), and to the Cartesian Product P1 × P2 if SVars (P1) and
SVars (P2) are disjoint. Hence, if applicable, we write ∩ and × instead of ./.

For convenience, we may add and omit parentheses. We assume there is an order of
precedence with projection and selection ranking over join ranking over union, e.g. we may
write πY ζ=

x,yP1 ∪ P2 ./ P3 instead of (πY ζ=
x,yP1 ∪ (P2 ./ P3)), where projection and selection

are applied to P1, and the result is united with the join of P2 and P3.

I Example 14. Let P1 := ζ=
x,yJx{Σ∗} · y{Σ∗}K and P2 := ζ=

x,y,zJx{Σ∗} · y{Σ∗} · z{Σ∗}K.
Then L(P1) = {ww | w ∈ Σ∗}, and the variables x and y always refer to the span of the first
and second occurrence of w, respectively. Analogously, L(P2) = {www | w ∈ Σ∗} (and z
refers to the third occurrence of w). Assume that we want to construct a spanner for the
language {wn | w ∈ Σ∗, n ∈ {2, 3}}. As P1 and P2 are not union compatible, we cannot
simply define P1 ∪ P2. Union compatibility can be achieved by projecting P2 to the set of
common variables; i. e., π{x,y}P2.

I Definition 15. A spanner algebra is a finite set of spanner operators. If O is a spanner
algebra, then RGXO denotes the set of all spanner representations that can be constructed
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by (repeated) combination of the symbols for the operators from O with regex formulas from
RGX. For each spanner representation of the form oρ (or ρ1 o ρ2), where o ∈ O, we define
JoρK = oJρK (and Jρ1 oρ2K = Jρ1K o Jρ2K). Furthermore, JRGXOK is the closure of JRGXK under
the spanner operators in O.

We define L(ρ) := L(JρK) for every spanner representation ρ. Fagin et al. [7] refer to JRGXK as
the class of hierarchical regular spanners and to JRGX{π,∪,./}K as the class of regular spanners.
In addition to (hierarchical) regular spanners, Fagin et al. also introduced the so-called core
spanners, which are obtained by combining regex formulas with the four algebraic operators
projection, selection, union, and join – in other words, the class of core spanners is the class
JRGX{π,ζ

=,∪,./}K. Analogously, RGX{π,ζ
=,∪,./} is the class of core spanner representations.

3 Expressibility Results

3.1 Pattern Languages
We begin our examination of the expressive power of core spanners by comparing them to
one of the simplest mechanisms with repetition operators:

I Definition 16. Let X be an infinite variable alphabet that is disjoint from Σ. A pattern is a
word α ∈ (Σ∪X)+ that generates the language L(α) := {σ(α) | σ is a pattern substitution},
where a pattern substitution is a homomorphism σ : (Σ ∪X)∗ → Σ∗ with σ(a) = a for all
a ∈ Σ. We denote the set of all variables in α by Vars (α).

Intuitively, a pattern α generates exactly those words that can be obtained by replacing the
variables in α with terminal words homomorphically (i. e., multiple occurrences of the same
variable have to be replaced in the same way). This type of pattern languages is also called
erasing pattern language (cf. Jiang et al. [19]).

I Example 17. Let x, y ∈ X and a, b ∈ Σ. The patterns α := xx and β := xaybx generate
the languages L(α) = {ww | w ∈ Σ∗} and L(β) = {vawbv | v, w ∈ Σ∗}.

From every pattern α, we can straightforwardly construct a regex for L(α). A similar
observation holds for core spanners:

I Theorem 18. Given a pattern α, we can compute in polynomial time a ρα ∈ RGX{ζ
=}

such that L(ρα) = L(α).

I Example 19. Let x, y, z ∈ X, a, b ∈ Σ, and define the pattern α := xayybxzx. The
construction in the proof of Theorem 18 leads to the spanner representation ζ=

x1,x2,x3
ζ=
y1,y2

γ,
where γ = x1{Σ∗} · a · y1{Σ∗} · y2{Σ∗} · b · x2{Σ∗} · z1{Σ∗} · x3{Σ∗}.

While the construction in the proof of Theorem 18 is so easy that it might not seem noteworthy,
it will prove quite useful: In contrast to their simple definition, many canonical decision
problems for them are surprisingly hard. Via Theorem 18, the corresponding lower bounds
also apply to spanners, as we discuss in Sections 4.1 and 4.2.

3.2 Word Equations and Existential Concatenation Formulas
In this section, we introduce word equations, which are equations of patterns (cf. Definition 16)
and can be used to define languages and relations, cf. Karhumäki et al. [20]:
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I Definition 20. A word equation is a pair η = (ηL, ηR) of patterns ηL and ηR. A pattern
substitution σ is a solution of η if σ(ηL) = σ(ηR). We define Vars (η) := Vars (ηL)∪Vars (ηR).
For k ≥ 1, a relation R ⊆ (Σ∗)k is defined by a word equation η = (ηL, ηR) if there exist
variables x1, . . . , xk ∈ Vars (η) such that R = {(σ(x1), . . . , σ(xk)) | σ is a solution of η} .

We also write (ηL, ηR) as ηL = ηR. The following relations are well known examples of
relations that are definable by word equations:

I Definition 21. Over Σ∗, we define relations Rcom := {(x, y) | x, y ∈ {u}∗ for some u ∈ Σ∗}
and Rcyc := {(x, y) | x is a cyclic permutation of y}.

As shown in Lothaire [22], the relation Rcom is defined by the equation xy = yx, and Rcyc is
defined by the equation xz = zy.

Let R be a k-ary string relation, and let C be a class of spanners. We say that R is
selectable by C, if for every spanner P ∈ C and every sequence of variables ~x = (x1, . . . , xk)
with x1, . . . , xk ∈ SVars (P ), the spanner ζR~x P is also in C.

I Proposition 22. The relations Rcom and Rcyc are selectable by core spanners.

In particular, this means that we can add ζRcom and ζRcyc to core spanner representations,
without leaving the class JRGX{π,ζ

=,∪,./}K.

I Example 23. Define Limp := {wn | w ∈ Σ+, n ≥ 2} and ρ := ζRcom
x,y (x{Σ+}y{Σ+}).

Then L(ρ) = Limp.

This does not imply that Rcom can be used to select relations like Rpow := {(x, xn) | n ≥ 0}.
For example, if x := abab, (x, y) ∈ Rcom holds for all y ∈ {ab}∗. The authors conjecture
that Rpow is not selectable by core spanners.

Furthermore, the spanner that is constructed for Rcom in the proof of Proposition 22 is
more complicated than the corresponding word equation xy = yx. In fact, we constructed
both spanners not from the equations, but from a characterization of the solutions. This
appears to be necessary, due the fact that spanners need to relate their variables to an
input w, while word equations use their variables without such constrictions. We shall see in
Theorem 28 further down that, if this restriction is kept in mind, core spanners can be used
to simulate word equations.

Before we consider this topic further, we examine how word equations can simulate
spanners, as this shall provide useful insights on some question of static analysis in Section 4.2.
One drawback of word equations is that they are unable to express many comparatively
simple regular languages; like A∗ for any non-empty A ⊂ Σ∗ (cf. Karhumäki et al. [20]). In
order to overcome this problem, we consider the following extension:

I Definition 24. Let η = (ηL, ηR) be a word equation. A regular constraints function1 is a
function Cstr that maps each x ∈ Vars (η) to a regular language Cstr(x), where each of these
languages is defined by a nondeterministic finite automaton. A solution σ of η is a solution
of η under constraints Cstr if σ(x) ∈ Cstr(x) holds for every x ∈ Vars (η).

Hence, regular constraints restrict the possible substitutions of a variable x to a regular
language Cstr(x).

A syntactic extension of word equations are existential concatenation formulas, which
are obtained by extending word equations with ∨, ∧, and existential quantification over

1 While most existing literature uses the term rational constraints, we follow the terminology of [2].
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variables. For example, Rcyc is expressed by the formula ϕcyc(x, y) := ∃z : (xz = zy). Using
appropriate coding techniques, one can transform every existential concatenation formula
into an equivalent word equation (see Diekert [5]). In particular, this transformation is
possible in polynomial time.

Like word equations, these formulas can be further extended by adding regular constraints.
For each variable x and each nondeterministic finite automaton (NFA) A, the (regular)
constraint LA(x) is satisfied for a solution σ if σ(x) ∈ L(A). We call the resulting formulas
existential concatenation formulas with regular constraints, or ECreg-formulas.

I Example 25. Let A be an NFA with L(A) = {abia | i ≥ 1}, and define the ECreg-formula
ϕ(x, y) := ∃z : (LA(z) ∧ (∃z1, z2 : x = z1zz2) ∧ (∃z1, z2 : y = z1zz2)).

Then ϕ expresses the relation of all (x, y) that have a common subword z from L(A).

Using the same techniques as for formulas without constraints, ECreg-formulas can be
transformed into equivalent word equations with regular constraints, and this construction is
possible in polynomial time as well (cf. Diekert [5]). In order to express core spanners with
ECreg-formulas, we introduce the following definition:

I Definition 26. Let P be a core spanner with SVars (P ) = {x1, . . . , xn}, n ≥ 0, and
let ϕ(xw, xP1 , xC1 , . . . xPn , xCn ) be an ECreg-formula. We say that ϕ realizes P if, for all
w,wP1 , w

C
1 , . . . , w

P
n , w

C
n ∈ Σ∗, ϕ(w,wP1 , wC1 , . . . , wPn , wCn ) = True holds if and only if there is

a µ ∈ P (w) with wPk = w[1,ik〉 and wCk = w[ik,jk〉 for each 1 ≤ k ≤ n, where [ik, jk〉 = µ(xk).

This definition uses the fact that spans are always defined in relation to a word w. Note
that every span [i, j〉 ∈ Spans (w) is characterized by the words w[1,i〉 and w[i,j〉. Hence, if
µ ∈ JρK(w), the ECreg-formula models µ(xk) = [ik, jk〉 by mapping xw to w, xPk to w[1,ik〉,
and xCk to w[ik,jk〉. In the naming of the variables, C stands for content, and P for prefix.
This allows us to model spanners in ECreg-formulas:

I Theorem 27. Given ρ ∈ RGX{π,ζ
=,∪,./} with SVars (ρ) = {x1, . . . , xn}, n ≥ 0, we can

compute in polynomial time an ECreg-formula ϕρ(xw, xP1 , xC1 , . . . xPn , xCn ) that realizes JρK.

As we shall see in Section 4.2, this result allows us to find upper bounds on two problems
from the static analysis of spanners. We now examine how spanners can simulate word
equations (and, thereby, also ECreg-formulas). As discussed above, spanners need to relate
their variables to an input word. Hence, we only state the following result, which is a weaker
form of simulation than for the other direction:

I Theorem 28. Every word equation η = (ηL, ηR) with regular constraints Cstr can be
converted computably into a ρ ∈ RGX{ζ

=,./} with SVars (ρ) ⊆ Vars (η) such that for all
w ∈ Σ∗, there is a solution σ of η under constraints Cstr with w = σ(ηL) = σ(ηR) if and
only if there is a µ ∈ JρK(w) with σ(x) = wµ(x) for all x ∈ Vars (η).

While this form of simulation is weaker (as w has to be present), it still shows that the
constructed spanner is satisfiable if and only if the word equation (with constraints) is
satisfiable; and computed (V,w)-relation encodes solutions of the equation.

I Example 29. Let a, b ∈ Σ and define η := (xy, yx) with Cstr(x) = L(aab+), Cstr(y) = Σ+.
The construction from the proof of Theorem 28 results in ρ := ζ=

x,x2
ζ=
y,y2

(η̂L × η̂R), where
η̂L := x{aab+} · y{Σ+} and η̂R := y2{Σ+} · x2{aab+}.

The only reason that this construction is not necessarily possible in polynomial time is that
regular constraints are specified with NFAs, while core spanners use regular expressions,
which can lead to an exponential increase in the size.
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There is a similar construction that does not use the join operator: By adding new
variables z1, z2, we can construct ρ̂ := ζ=

x,x2
ζ=
y,y2

ζ=
z1,z2

(z1{η̂L}z2{η̂R}), which behaves almost
like ρ; the only difference that the solution is encoded in w = σ(ηL · ηR), instead of σ(ηL).

3.3 Regexes

As shown by Fagin et al. [7], there are languages that are recognized by regexes, but not by
core spanners. In order to prove this, [7] introduced the so-called “uniform-0-chunk”-language
Luzc: Assuming 0, 1 ∈ Σ, Luzc is defined as the language of all w = s1 · t · s2 · t · · · sn−1 · t · sn,
where n > 0, s1, . . . , sn ∈ {1}+, and t ∈ {0}+. Then L(αuzc) = Luzc holds for the regex
αuzc := 1+ · x{0∗} · (1+ ·&x)∗ · 1+, but no core spanner recognizes Luzc.

Considering that the syntax of regex formulas does not allow the use of variables inside a
Kleene star (or plus), this inexpressibility result might be considered expected, as αuzc uses
variable references inside of a Kleene plus. This raises the question whether regexes that
restrict variables in a similar manner can still recognize languages that core spanners cannot.
In order to examine this question, we define the following subclass of regexes:

I Definition 30. A regex α is variable star-free (short: vstar-free) if, for every β ∈ Sub (α)
with β = γ∗, no subexpression of γ is a variable binding or a variable reference. We denote
the class of all vstar-free regexes by vsfRX.

As we shall see in Theorem 36 below, every language that is recognized by a vstar-free regex
is also recognized by a core spanner. While this observation might be considered not very
surprising, its proof needs to deal with some technicalities. In particular, one needs to deal
with expressions like α := x{Σ∗} · (&x ∨&x&x). A conversion in the spirit of Theorem 18
would need to replace the &x with distinct variables and ensure equality with selections; but
as the disjunction contains subexpressions with distinct numbers of occurrences of &x, we
would not be able to ensure functionality of the resulting regex formula. We avoid these
problems by working with the following syntactically restricted class of vstar-free regexes:

I Definition 31. An α ∈ vsfRX is a regex path if, for every β ∈ Sub (α) with β = (γ1 ∨ γ2),
no subexpression of γ1 or γ2 is a variable binding or a variable reference. We denote the
class of all regex paths by RXP.

Intuitively, a regex path α ∈ RXP can be understood as a concatenation α = α1 · · ·αn, where
each αi is either a proper regular expression, a variable reference, or a variable binding of
the form αi = x{α̂}, where α̂ is also a regex path. By “multiplying out” disjunctions that
contain variables, we can convert every vstar-free regex into a disjunction of regex paths.

I Lemma 32. Given α ∈ vsfRX, we can compute α1, . . . , αn ∈ RXP with L(α) =
⋃n
i=1 L(αi).

I Example 33. Let α := x{Σ∗} · (&x∨ y{Σ∗}) · (&x∨&y). Multiplying out the disjunctions,
we obtain regex paths α1 = x{Σ∗} ·&x ·&x, α2 = x{Σ∗} · y{Σ∗} ·&x, α3 = x{Σ∗} ·&x ·&y,
and α4 = x{Σ∗} · y{Σ∗} ·&y. Then L(α) =

⋃4
i=1 L(αi).

This transformation process might result in an exponential number of regex paths; but as
efficiency is not of concern right now, this is not a problem. Each of these regex paths is
then transformed into a functional regex formula:

I Lemma 34. Given α ∈ RXP, we can be compute a ρ ∈ RGX{π,ζ
=} with L(ρ) = L(α).
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I Example 35. Consider the regex path α := &x · x{Σ∗ · y{Σ∗}} ·&x ·&y · y{Σ∗} ·&x ·&y.
The construction from the proof of Lemma 34 leads to the equivalent regex path γ :=
ε ·x{Σ∗ · y{Σ∗}} ·&x ·&y · ŷ{Σ∗} ·&x ·&ŷ, from which we derive the functional regex formula

δ := x {Σ∗y{Σ∗}}x1{Σ∗}y1{Σ∗}ŷ{Σ∗}x2{Σ∗}ŷ1{Σ∗},

which we use in the spanner representation ρ := π∅ζ
=
x,x1,x2

ζ=
y,y1

ζ=
ŷ,ŷ1

δ. Then L(α) = L(ρ).

As these spanner representations are Boolean, they are also union compatible. Hence, we
can now combine Lemma 32 and Lemma 34 to observe the following.

I Theorem 36. Given α ∈ vsfRX, we can compute a ρ ∈ RGX{π,ζ
=,∪} with L(ρ) = L(α).

In Section 4.2, we use Theorem 36 together with the undecidability results from [11] to obtain
multiple lower bounds for static analysis problems. Theorem 36 also raises the question
whether every language that is recognized by a core spanner is also recognized by a vstar-free
regular expression. As we have already seen in Example 23, it is possible to express the
language Limp := {wn | w ∈ Σ+, n ≥ 2} with core spanners. Hence, under certain conditions,
core spanners can simulate constructions like (&x)∗.

While Limp might seem to be an obvious witness that separates the classes of languages
that are recognized by core spanners and by vstar-free regexes, proving this appears to be
quite involved. Instead, we consider a related language, which allows us to use the following
tool:

I Definition 37. Let k ∈ N>0. We call a set A ⊆ Nk linear if there exist an r ≥ 0 and
m0, . . . ,mr ∈ Nk with A = {m0 +m1i1 +m2i2 + · · ·+mrir | i1, i2, . . . , ir ∈ N}. A set A ⊆ Nk
is semi-linear if it is a finite union of linear sets. Assume Σ is ordered; i. e., Σ = {a1, a2 . . . , ak}.
The Parikh map Ψ: Σ∗ → Nk is defined by Ψ(w) := (|w|a1 , |w|a2 , . . . , |w|ak

), and is extended
to languages by Ψ(L) := {Ψ(w) | w ∈ L}. We call L semi-linear if Ψ(L) is semi-linear.

According to Parikh’s Theorem [24], every context-free language is semi-linear. Moreover,
as shown by Ginsburg and Spanier [15], a set is semi-linear if and only if it is definable in
Presburger arithmetic. Building on this, we state the following:

I Theorem 38. For every α ∈ vsfRX, the language L(α) is semi-linear.

We use Theorem 38 to separate the classes of languages that are recognized by core spanners
and by vstar-free regexes:

I Lemma 39. Let Lnsl := {(abm)n | m,n ≥ 2} and ρ := ζRcom
x,y (x{abb+}y{Σ+}) for

Σ := {a, b}. Then Lnsl = L(ρ), but there is no α ∈ vsfRX with L(α) = Lnsl.

We do not need the join operator to define non-semi-linear languages: Consider the core
spanner representation ρ from Example 29 with L(ρ) = Lnsl. If we construct ρ̂ as explained
below that example, we obtain L(ρ̂) = {ww | w ∈ Lnsl}, which is also not semi-linear.

It is worth pointing out Lemma 39 does not resolve the open question from [7] whether
there is a language that is recognized by a core spanner, but not by a regex, as Theorem 38
only applies to vstar-free regexes. We have already seen languages that are not semi-linear,
but are recognized by regexes: The language Lnsl is recognized by αnsl := x{abb+}&x+; and
a similar approach is used for the following language (which we already met in Example 4):

I Example 40. Let Σ := {a}, and define the language Lnpr := {amn | m,n ≥ 2}. In other
words, Lnpr is the language of all words ai with i ≥ 4 such that i is not a prime number. Let
αnpr := x{aa+} · (&x)+. Then L(αnpr) = Lnpr.



D.D. Freydenberger and M. Holldack 17:13

While Lnsl and Lnpr are defined by very similar regexes, the latter cannot be recognized by
core spanners. In order to show this with a semi-linearity argument, we observe:

I Theorem 41. Let |Σ| = 1 and let P be a core spanner over Σ. Then L(P ) is semi-linear.

Apart from the observation that Lnpr from Example 40 is not recognized by core spanners,
Theorem 41 also allows us to conclude that on unary alphabets, core spanners recognize
exactly the class of regular languages (which, on unary alphabets, is identical to the class of
context-free languages).

4 Decision Problems

4.1 Spanner Evaluation
We first examine the combined complexity of the evaluation problem for core spanners, the
problem CSp-Eval: Given a ρ ∈ RGX{π,ζ

=,∪,./}, a w ∈ Σ∗, and a (SVars (ρ), w)-tuple µ, is
µ ∈ JρK(w)? In order to prove lower bounds for this problem, we consider the membership
problem for pattern languages: Given a pattern α and a word w, decide whether w ∈ L(α).
As shown by Jiang et al. [19], this problem is NP-complete. Due to Theorem 18, we observe
the following (the proof of NP-membership is straightforward).

I Theorem 42. CSp-Eval is NP-complete, even if restricted to RGX{π,ζ
=}.

The question arises whether there are natural restrictions to CSp-Eval that make this problem
tractable. It appears that any subclass of the core spanners that extends regular spanners
in a meaningful way while having a tractable evaluation problem can not be allowed to
recognize the full class of pattern languages.

For pattern languages, it was shown by Ibarra et al. [18] that bounding the number of
variables in the pattern leads to an algorithm for the membership problem with a running time
that is polynomial, although in O(nk) (where n is the length of the word w, and k the number
of variables). From a parameterized complexity point of view, this is usually not considered
satisfactory. In fact, it was first observed by Stephan et al. [26] that the membership problem
for pattern languages isW [1]-complete if the number of variable occurrences (not of variables)
is used as a parameter. As the number of variable occurrences in a pattern corresponds
to the number of variables in an equivalent spanner, this implies that using the number of
variables in a spanner as parameter leads to W [1]-hardness for this parameter of CSp-Eval.

Fernau and Schmid [9] and Fernau et al. [10] discuss various other potential restrictions
to pattern languages that still do not lead to tractability (among these a bound on the length
of the replacement of each variable, which corresponds to a bound on the length of spans).
On the other hand, Reidenbach and Schmid [25] and Fernau et al. [8] examine parameters for
patterns that make the membership problem tractable. While this does not directly translate
to spanners, the authors consider these directions promising for further research.

We also consider the data complexity of the evaluation problem for core spanners. For
every core spanner representation ρ over Σ, we define the decision problem CSp-Eval(ρ):
Given a w ∈ Σ∗ and a w-tuple µ, is µ ∈ JρK(w)? Using a slight variation of the proof of
Theorem 42, we obtain the following.

I Theorem 43. For every ρ ∈ RGX{π,ζ
=,∪,./}, CSp-Eval(ρ) is in NL.

4.2 Static Analysis
We consider the following common decision problems for core spanner representations, where
the input is ρ ∈ RGX{π,ζ

=,∪,./} or ρ1, ρ2 ∈ RGX{π,ζ
=,∪,./}:
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1. CSp-Sat: Is JρK(w) 6= ∅ for some w ∈ Σ∗?
2. CSp-Hierarchicality: Is JρK hierarchical?
3. CSp-Universality: Is JρK = ΥSVars(ρ)?
4. CSp-Equivalence: Is Jρ1K = Jρ2K?
5. CSp-Containment: Is Jρ1K ⊆ Jρ2K?
6. CSp-Regularity: Is JρK ∈ JRGX{π,∪,./}K?

We approach the first two of these problems by using Theorem 27 to convert core spanner
representations to ECreg-formulas, for which satisfiability is in PSPACE (cf. Diekert [5]).
Hence, we observe:

I Theorem 44. CSp-Sat is PSPACE-complete, even if restricted to RGX{ζ
=}.

For the lower bound, the proof of Theorem 44 uses the PSPACE-hardness of the intersection
emptiness problem for regular expressions. But even if the variables in the regex formulas
were only bound to Σ∗, it follows from Theorem 28 that this problem would still be at least
as hard as the satisfiability problem for word equations without constraints (cf. Diekert [5]).

Furthermore, it is possible to use ECreg-formulas to express a violation of the criteria for
hierarchicality. This allows us to state the following result:

I Theorem 45. CSp-Hierarchicality is PSPACE-complete, even if restricted to RGX{ζ
=,./}.

For the remaining problems, we use Theorem 36, and the fact that the undecidability results
from Freydenberger [11] also hold for vstar-free regexes:

I Theorem 46. CSp-Universality and CSp-Equivalence are not semi-decidable, and CSp-
Regularity is neither semi-decidable, nor co-semi-decidable. This holds even if the input is
restricted to RGX{π,ζ

=,∪}.

As the proof of Theorem 46 relies only on Boolean spanners, the decidability status of CSp-
Regularity does not change if the problem asks for hierarchical regularity (i. e., membership
in JRGXK) instead of regularity, as the two classes coincide for Boolean spanners. Likewise,
CSp-Universality remains not semi-decidable if one replaces ΥSVars(ρ) with ΥH

SVars(ρ).
In the construction from this proof, variables are only bound to a language a+. Hence,

the same undecidability results hold for spanners that use selections by equal length relation,
instead of the string equality relation. While the proof builds on regexes αX that use only a
single variable x, the resulting core spanners use an unbounded amount variables, as every
occurrence of a variable reference &x in a regex path is converted to a spanner variable xi.
But undecidability remains even if we bound the number of variables in the spanners, as the
αX can be modified to use only a bounded number of variable references (see Section 4.1
in [11]). Theorem 46 also implies that CSp-Containment is not semi-decidable. This holds
even for a more restricted class of spanners:

I Theorem 47. CSp-Containment is not semi-decidable, even if restricted to RGX{π,ζ
=}.

As shown by Bremer and Freydenberger [3], the inclusion problem for pattern languages
remains undecidable if the number of variables in the patterns is bounded. In fact, that proof
constructs patterns where even the number of variable occurrences is bounded. Therefore,
CSp-Containment is not semi-decidable even if restricted to representations from RGX{π,ζ

=}

with a bounded number of variables. It is a hard open question whether the equivalence
problem for pattern languages is decidable (cf. Ohlebusch and Ukkonen [23], Freydenberger
and Reidenbach [12]). Undecidability of this problem would imply undecidability of CSp-
Equivalence, even if restricted to representations from RGX{π,ζ

=}.
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4.2.1 Minimization and Relative Succinctness
In order to address the minimization of spanner representations, we first formalize the notion
of the size or complexity of a spanner representation. Even for proper regular expressions,
there are various different definitions of size, see e. g. Holzer and Kutrib [17], and there
might be convincing reasons to add additional weight to the number of variables or other
parameters. As we shall see, these distinctions do not affect the negative results that we
prove further down. Hence, instead of defining a single fixed notion of size, we use the
following general definition of complexity measures from Kutrib [21]:

I Definition 48. Let SR be a class of spanner representations. A complexity measure for SR
is a recursive function c : SR→ N such that for each Σ, the set of all ρ ∈ SR that represent
spanners over Σ can be computably enumerated in order of increasing c(ρ), and does not
contain infinitely many ρ ∈ SR with the same value c(ρ).

By recursive, we mean a function that is total and computable. Definition 48 is general
enough to include all notions of complexity that take into account that descriptions are
commonly encoded with a finite number of distinct symbols, and that it should be decidable
if a word over these symbols is a valid encoding from SR. Regardless of the chosen complexity
measure, computable minimization of core spanners is impossible:

I Theorem 49. Let c be a complexity measure for RGX{π,ζ
=,∪,./}. There is no algorithm that,

given a ρ ∈ RGX{π,ζ
=,∪,./}, computes an equivalent ρ̂ ∈ RGX{π,ζ

=,∪,./} that is c-minimal.

In addition to regex formulas, Fagin et al. [7] also define spanner representations that are
based on so-called vset- and vstk-automata (denoted by VAset and VAstk) and extended
with the same spanner operators; and they compare the expressive power of these spanner
representations to RGX{π,ζ

=,∪,./} and its subclasses. Without going into details, we note that
their equivalence proofs use computable conversions between the models. Hence, Theorem 49
also applies to those spanner representations from [7] that can express core spanners, like
VAstk

{π,ζ=,∪,./} and VAset
{π,ζ=,∪,./}, and it implies that an algorithm that converts from one

of these classes of representations to another cannot guarantee that its result is minimal.
Using a technique by Hartmanis [16], we can use the fact that CSp-Regularity is not co-semi-

decidable to compare the relative succinctness of regular and core spanner representations:

I Theorem 50. Let c1, c2 be complexity measures for RGX{π,∪,./} and RGX{π,ζ
=,∪,./},

respectively. For every recursive function f : N→ N, there exists a ρ ∈ RGX{π,ζ
=,∪,./} such

that JρK ∈ JRGX{π,∪,./}K, but c1(ρ̂) > f(c2(ρ)) holds for every ρ̂ ∈ RGX{π,∪,./} with Jρ̂K = JρK.

Hence, the blowup from RGX{π,ζ
=,∪,./} to RGX{π,∪,./} is not bounded by a recursive function.

As above, we can replace each of this classes with a class with the same expressive power;
for example, we can replace RGX{π,∪,./} with VAstk

{π,∪,./}, VAset, or VAset
{π,∪,./} (or, as the

proof uses Boolean spanners, RGX or VAstk, or any class between those).
We also consider the relative succinctness of representations of core spanners and

representations of their complements. For every spanner P , we define its complement
C(P ) := ΥSVars(P ) \ P , and its hierarchical complement CH(P ) := ΥH

SVars(P ) \ P .

I Theorem 51. Let c be a complexity measure for RGX{π,ζ
=,∪,./}. For every recursive

function f : N → N, there exists a ρ ∈ RGX{π,ζ
=,∪,./} such that C(JρK) ∈ JRGX{π,ζ

=,∪,./}K,
but c(ρ) > f(c(ρ̂)) holds for every ρ̂ ∈ RGX{π,ζ

=,∪,./} with Jρ̂K = C(JρK). This also holds if
we consider CH instead of C.
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In other words, there are core spanners where the (hierarchical) complement is also a core
spanner, but the blowup between their representations is not bounded by any recursive
function. Again, this holds for the other classes of representations as well.

This result has consequences to an open question of Fagin et al. One of the central tools
in [7] is the core-simplification-lemma, which states that every core spanner is definable by
an expression of the form πV SA, where A is a vset-automaton, V ⊆ SVars (A), and S is a
sequence of selections ζ=

x,y for x, y ∈ SVars (A).
In addition to core spanners, Fagin et al. also discuss adding a set difference operator \,

and ask “whether we can find a simple form, in the spirit of the core-simplification lemma,
when adding difference to the representation of core spanners”. It is a direct consequence of
Theorem 51 that such a simple representation, if it exists, cannot be obtained computably,
as reducing the number of difference operators can lead to a non-recursive blowup. While
this observation does not prove that such a simple form does not exist, it suggests that any
proof of its existence should be expected to be non-constructive.

5 Conclusions and Further Work

In Section 3, we have seen that core spanners can express languages that are defined by
patterns or by vstar-free regexes. We used this in Section 4 to derive various lower bounds on
decision problems, even for subclasses of core spanner representations. Note that in most of
the cases, these lower bounds do not require the join operator, and mostly rely on the string
equality selection. This can be interpreted as a sign that string equality (or repetition) is an
expensive operator, in particular as similar results have been observed for related models
(e. g., [1, 11, 13]).

On a more positive note, there is reason to hope that these connections can be beneficial
for spanners: There is recent work on restricted classes of pattern languages with an efficient
membership problem (e. g., [9, 25]), which could lead to subclasses of spanners that can be
evaluated more efficiently. Furthermore, as Theorems 27 and 28 show, core spanners and
word equations with regular constraints are closely related. Recent work on word equations
has also considered tasks like enumerating all solutions of an equation. The employed
compression techniques (cf. [5]) might also be used to improve the evaluation of core spanners.
In particular, the ECreg-formulas that are constructed in the proof of Theorem 27 have the
special property that there is a variable xw (for w), and for every solution σ and every
variable x, σ(x) is a subword of σ(xw). It remains to be seen whether this restriction leads
to favorable lower bounds.

Also note that conversion from vstar-free regular expressions to core spanner representa-
tions that is used for Theorem 36 can lead to an exponential increase in size. If this size
blowup cannot be avoided, allowing vstar-free regexes as primitive spanner representations
might be useful as syntactic sugar.

Finally, while we only mentioned this explicitly in Section 4.2.1, note that most of
the other results in this paper can also be directly converted to the appropriate spanner
representations that use vset- and vstk-automata from [7].

Acknowledgements. We thank Florin Manea for his suggestion to use word equations with
regular constraints, and Thomas Zeume for reporting a list of typos. We also thank the
anonymous reviewers for their feedback.
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Abstract
Provisioning is a technique for avoiding repeated expensive computations in what-if analysis.
Given a query, an analyst formulates k hypotheticals, each retaining some of the tuples of a
database instance, possibly overlapping, and she wishes to answer the query under scenarios,
where a scenario is defined by a subset of the hypotheticals that are “turned on”. We say that a
query admits compact provisioning if given any database instance and any k hypotheticals, one
can create a poly-size (in k) sketch that can then be used to answer the query under any of the
2k possible scenarios without accessing the original instance.

In this paper, we focus on provisioning complex queries that combine relational algebra
(the logical component), grouping, and statistics/analytics (the numerical component). We first
show that queries that compute quantiles or linear regression (as well as simpler queries that
compute count and sum/average of positive values) can be compactly provisioned to provide
(multiplicative) approximate answers to an arbitrary precision. In contrast, exact provisioning
for each of these statistics requires the sketch size to be exponential in k. We then establish
that for any complex query whose logical component is a positive relational algebra query, as
long as the numerical component can be compactly provisioned, the complex query itself can
be compactly provisioned. On the other hand, introducing negation or recursion in the logical
component again requires the sketch size to be exponential in k. While our positive results use
algorithms that do not access the original instance after a scenario is known, we prove our lower
bounds even for the case when, knowing the scenario, limited access to the instance is allowed.
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1 Introduction

“What if analysis” is a common technique for investigating the impact of decisions on outcomes
in science or business. It almost always involves a data analytics computation. Nowadays
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such a computation typically processes very large amounts of data and thus may be expensive
to perform, especially repeatedly. An analyst is interested in exploring the computational
impact of multiple scenarios that assume modifications of the input to the analysis problem.
Our general aim is to avoid repeating expensive computations for each scenario. For a given
problem, and starting from a given set of potential scenarios, we wish to perform just one
possibly expensive computation producing a small sketch (i.e., a compressed representation
of the input) such that the answer for any of the given scenarios can be derived rapidly from
the sketch, without accessing the original (typically very large) input. We say that the sketch
is “provisioned” to deal with the problem under any of the scenarios and following [13], we
call the whole approach provisioning. Again, the goal of provisioning is to allow an analyst to
efficiently explore a multitude of scenarios, using only the sketch and thus avoiding expensive
recomputations for each scenario.

In this paper, we apply the provisioning approach to queries that perform in-database
analytics [25]1. These are queries that combine logical components (relational algebra
and Datalog), grouping, and numerical components (e.g., aggregates, quantiles and linear
regression). Other analytics are discussed under further work.

Abstracting away any data integration/federation, we will assume that the inputs are
relational instances and that the scenarios are defined by a set of hypotheticals. We further
assume that each hypothetical indicates the fact that certain tuples of an input instance are
retained (other semantics for hypotheticals are discussed under further work).

A scenario consists of turning on/off each of the hypotheticals. Applying a scenario to
an input instance therefore means keeping only the tuples retained by at least one of the
hypotheticals that are turned on. Thus, a trivial sketch can be obtained by applying each
scenario to the input, solving the problem for each such modified input and collecting the
answers into the sketch. However, with k hypotheticals, there are exponentially (in k) many
scenarios. Hence, even with a moderate number of hypotheticals, the size of the sketch could
be enormous. Therefore, as part of the statement of our problem we will aim to provision a
query by an algorithm that maps each (large) input instance to a compact (essentially size
poly(k)) sketch.

I Example 1. Suppose a large retailer has many and diverse sales venues (e.g., its own
stores, its own web site, through multiple other stores, and through multiple other web
retailers). An analyst working for the retailer is interested in learning, for each product in,
say, “Electronics”, a regression model for the way in which the revenue from the product
depends on both a sales venue’s reputation (assume a numerical score) and a sales venue
commission (in %; 0% if own store). Moreover, the analyst wants to ignore products with
small sales volume unless they have a large MSRP (manufacturer’s suggested retail price).
Usually there is a large (possibly distributed/federated) database that captures enough
information to allow the computation of such an analytic query. For simplicity we assume in
this example that the revenue for each product ID and each sales venue is in one table and
thus we have the following query with a self-explanatory schema:

SELECT x.ProdID, LIN_REG(x.Revenue, z.Reputation, z.Commission) AS (B,A1,A2)
FROM RevenueByProductAndVenue x
INNER JOIN Products y ON x.ProdID=y.ProdID

1 In practice, the MADlib project [29] has been one of the pioneers for in-database analytics, primarily in
collaboration with Greenplum DB [21]. By now, major RDBMS products such as IBM DB2, MS SQL
Server, and Oracle DB already offer the ability to combine extensive analytics with SQL queries.
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INNER JOIN SalesVenues z ON x.VenueID=z.VenueID
WHERE y.ProdCategory="Electronics" AND (x.Volume>100 OR y.MSRP>1000)
GROUP BY x.ProdID

The syntax for treating linear regression as a multiple-column-aggregate is simplified for
illustration purposes in this example. Here the values under the attributes B,A1,A2 denote,
for each ProdID, the coefficients of the linear regression model that is learned, i.e., Revenue
= B + A1*Reputation + A2*Commission.

A desirable what-if analysis for this query may involve hypotheticals such as retaining
certain venue types, retaining certain venues with specific sales tax properties, retaining
certain product types (within the specified category, e.g., tablets), and many others. Each of
these hypotheticals can in fact be implemented as selections on one or more of the tables
in the query (assuming that the schema includes the appropriate information). However,
combining hypotheticals into scenarios is problematic. The hypotheticals overlap and thus
cannot be separated. With 10 (say) hypotheticals there will be 210 = 1024 (in practice
at least hundreds) of regression models of interest for each product. Performing a lengthy
computation for each one of these models is in total very onerous. Instead, we can provision
the what-if analysis of this query as the query in this example falls within the class covered
by our positive results.

Our results. Our goal is to characterize the feasibility of provisioning with sketches of
compact size (see Section 2 for a formal definition) for a practical class of complex queries
that consist of a logical component (relational algebra or Datalog), followed by a grouping
component, and then by a numerical component (aggregate/analytic) that is applied to each
group (a more detailed definition is given in Section 5).

The main challenge that we address, and the part where our main contribution lies, is
the design of compact provisioning schemes for numerical queries, specifically linear (`2)
regression and quantiles. Together with the usual count, sum and average, these are defined
in Section 4 as queries that take a set of numbers or of tuples as input and return a number or
a tuple of constant width as output. It turns out that if we expect exact answers, then none
of these queries can be compactly provisioned. However, we show that compact provisioning
schemes indeed exist for all of them if we relax the objective to computing near-exact answers
(see Section 2 for a formal definition). The following theorem summarizes our results for
numerical queries (see Section 4):

I Theorem 2 (Informal). The quantiles, linear (`2) regression, count, and sum/average (of
positive numbers) queries can be compactly provisioned to provide (multiplicative) approximate
answers to an arbitrary precision, while their exact provisioning requires the sketch size to be
exponential in the number of hypotheticals.

Our results on provisioning numerical queries can then be used for complex queries as
the following theorem summarizes (see Section 5):

I Theorem 3 (Informal). Any complex query whose logical component is a positive relational
algebra query can be compactly provisioned to provide an approximate answer to an arbitrary
precision as long as its numerical component can be compactly provisioned for the same
precision. On the other hand, introducing negation or recursion in the logical component,
requires the sketch size to be exponential in the number of hypotheticals.

Our techniques. At a high-level, our approach for compact provisioning can be described
as follows. We start by building a sub-sketch for each hypothetical by focusing solely on

ICDT 2016



18:4 Algorithms for Provisioning Queries and Analytics

the retained tuples of each hypothetical individually. We then examine these sub-sketches
against each other and collect additional information from the original input to summarize
the effect of appearance of other hypotheticals to each already computed sub-sketch. The
first step usually involves using well-known (and properly adjusted) sampling or sketching
techniques, while the second step, which is where we concentrate the bulk of our efforts, is
responsible for gathering the information required for combining the sketches and specifically
dealing with overlapping hypotheticals. Given a scenario, we answer the query by fetching
the corresponding sub-sketches and merging them together; the result is a new sketch that
act as sketch for the input consist of the union of the hypotheticals.

We prove our lower bounds by first identifying a central problem, i.e., the Coverage
problem (see Problem 8), with provably large space requirement for any provisioning scheme,
and then use reductions from this problem to establish the lower bound for other queries of
interest. The space requirement of the Coverage problem itself is proven using simple tools
from information theory.

Comparison with existing work. Our techniques for compact provisioning share some
similarities with those used in data streaming and in the distributed computation model of [12,
35], and in particular linear sketching, which corresponds to applying a linear transformation
to the input data to obtain the sketch. However, due to overlap in the input, our sketches
are required to to be composable with the union operation (instead of the addition operation
obtained by linear sketches) and hence linear sketching techniques are not directly applicable.

Dealing with duplicates in the input (similar to the overlapping hypotheticals) has also
been considered in the streaming and distributed computation models (see, e.g., [10, 7]),
which consider sketches that are “duplicate-resilient”. Indeed, for simple queries like count, a
direct application of these sketches is sufficient for compact provisioning (see Section 4.1). We
also remark that the Count-Min sketch [9] can be applied to approximate quantiles even in
the presence of duplication (see [7]), i.e., is duplicant-resilient. However, the approximation
guarantee achieved by Count-Min sketch for quantiles is only additive (i.e., ±εn), in contrast
to the stronger notion of multiplicative approximation (i.e., (1± ε)) we seek in this paper. To
the best of our knowledge, there is no similar result concerning duplicate-resilient sketches
for multiplicative approximation of quantiles or the linear regression problem, and existing
techniques do not seem to be applicable for our purpose. Indeed one of the primary technical
contributions of this paper is designing provisioning schemes that can effectively deal with
overlapping hypotheticals for quantiles and linear regression.

Further related work. Provisioning, in the sense used in this paper, originated in [13]
together with a proposal for how to perform it taking advantage of provenance tracking.
Answering queries under hypothetical updates is studied in [17, 4] but the focus there is on
using a specialized warehouse to avoid transactional costs. We refer the interested reader to
[13] for more related work.

Estimating the number of distinct elements (corresponding to the count query) has been
studied extensively in data streams [16, 2, 5, 28] and distributed functional monitoring [11, 35].
For estimating quantiles in the data stream or the distributed model, [31, 18, 22, 9, 23, 36]
achieve an additive error of εn for an input of length n, and [24, 8] achieve a (stronger
guarantee of) (1± ε)-approximation. Sampling and sketching techniques for `2-regression
problem have also been studied in [14, 32, 15, 6] for either speeding up the computation or
in data streams (see [30, 34] for excellent surveys on this topic).
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2 Problem Statement

Hypotheticals. Fix a relational schema Σ. Our goal is to provision queries on Σ-instances.
A hypothetical w.r.t. Σ is a computable function h that maps every Σ-instance I to a
sub-instance h(I) ⊆ I. Formalisms for specifying hypotheticals are of course of interest (e.g.,
apply a selection predicate to each table in I) but we do not discuss them here because the
results in this paper do not depend on them.

Scenarios. We will consider analyses (scenario explorations) that start from a finite set H of
hypotheticals. A scenario is a non-empty set of hypotheticals S ⊆ H. The result of applying a
scenario S = {h1, . . . , hs} to an instance I is defined as a sub-instance I|S = h1(I)∪· · ·∪hs(I).
In other words, under S, if any h ∈ S is said to be turned on (similarly, any h ∈ H \ S is
turned off), each turned on hypothetical h will retain the tuples h(I) from I.

I Definition 4 (Provisioning). Given a query Q, to provision Q means to design a pair of
algorithms: (i) a compression algorithm that takes as input an instance I and a set H
of hypotheticals, and outputs a data structure Γ called a sketch, and (ii) an extraction
algorithm that for any scenario S ⊆ H, outputs Q(I|S) using only Γ (without access to I).

To be more specific, we assume the compression algorithm takes as input an instance I, and
k hypotheticals h1, . . . , hk along with the sub-instances h1(I), . . . , hk(I) that they define. A
hypothetical will be referred to by an index from {1, . . . , k}, and the extraction algorithm
will be given scenarios in the form of sets of such indices. Hence, we will refer to a scenario
S ⊆ H where S = {hi1 , . . . , his} by abusing the notation as S = {i1, . . . , is}.

We call such a pair of compression and extraction algorithms a provisioning scheme.
The compression algorithm runs only once; the extraction algorithm runs repeatedly for all
the scenarios that an analyst wishes to explore. We refer to the time that the compression
algorithm requires as the compression time, and the time that extraction algorithm requires
for each scenario as the extraction time.

The definition above is not useful by itself for positive results because it allows for trivial
space-inefficient solutions. For example, the definition is satisfied when the sketch Γ is defined
to be a copy of I itself or, as mentioned earlier, a scenario-indexed collection of all the
answers. Obtaining the answer for each scenario is immediate for either case, but such a
sketch can be prohibitively large as the number of tuples in I could be enormous, and the
number of scenarios is exponential in |H|.

This discussion leads us to consider complexity bounds on the size of the sketches.

I Definition 5 (Compact provisioning). A query Q can be compactly provisioned if there exists
a provisioning scheme for Q that given any input instance I and any set of hypotheticals H,
constructs a sketch of size poly(|H|, log |I|) bits.

We make the following important remark about the restrictions made in Definitions 4 and 5.
I Remark. At first glance, the requirement that the input instance I cannot be examined at
all during extraction may seem artificial, and the same might be said about the size of the
sketch depending polynomially on logn rather than a more relaxed requirement. However,
we show that our lower bound results hold even if a portion of size o(n) of the input instance
can be examined during extraction after the scenario is revealed and even if the space
dependence of the sketch is only restricted to be o(n) (instead of depending only polynomially
on logn). In spite of this, the positive results we obtain all use sketches with space that
depend polynomially only on logn and does not require examining the original database
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during the extraction. These calibration results further justify our design choices for compact
provisioning.

Even though the definition of compact provisioning does not impose any restriction on
either the compression time or the extraction time, all our positive results in this paper
are supported by (efficient) polynomial time algorithm. Note that this is data-scenario
complexity: we assume the size of the query (and the schema) to be a constant but we
consider dependence on the size of the instance and the number of hypotheticals. Our
negative results (lower bounds on the sketch size), on the other hand, hold even when the
compression and the extraction algorithms are computationally unbounded.

Exact vs. approximate provisioning. Definition 5 focused on exact answers for the queries.
While this is appropriate for, e.g., relational algebra queries, as we shall see, for queries
that compute numerical answers such as aggregates and analytics, having the flexibility of
answering queries approximately is essential for any interesting positive result.

I Definition 6 (ε-provisioning). For any 0 < ε < 1, a query Q can be ε-provisioned if there
exists a provisioning scheme for Q, whereby for each scenario S, the extraction algorithm
outputs a (1± ε) approximation of Q(I|S), where I is the input instance.

We say a query Q can be compactly ε-provisioned if Q can be ε-provisioned by a
provisioning scheme that, given any input instance I and any set of hypotheticals H, creates
a sketch of size poly(|H|, log |I|, 1/ε) bits.

We emphasize that throughout this paper, we only consider the approximation guarantees
which are relative (multiplicative) as opposed to the weaker notion of additive approxim-
ations. The precise definition of relative approximation guarantee will be provided for
each query individually. Moreover, as expected, randomization will be put to good use in
ε-provisioning. We therefore extend the definition to cover the provisioning schemes that use
both randomization and approximation.

I Definition 7. For any ε, δ > 0, an (ε, δ)-provisioning scheme for a query Q is a provisioning
scheme where both compression and extraction algorithms are allowed to be randomized and
the output for every scenario S is an (1± ε)-approximation of Q(I|S) with probability 1− δ.
Moreover, the compression time of the scheme is poly(|I| , |H| , 1/ε, log (1/δ)) and extraction
time is poly(|Γ|).

An (ε, δ)-provisioning scheme is called compact iff it constructs sketches of size only
poly(|H|, log |I|, 1/ε, log(1/δ)) bits.

Note that in many applications, the size of the database is a very large number, and hence
the exponent in the poly(|I|)-dependence of the compression time might become an issue.
Therefore, we further define (ε, δ)-linear provisioning scheme, where the dependence of the
compression time on |I| is essentially linear, i.e., O(|I|) · poly(|H| , log (|I|), 1/ε, log (1/δ)).
All our positive results for queries with numerical answers will be stated in terms of compact
(ε, δ)-linear provisioning schemes, which ensure efficiency in both running time and sketch
size.

Complex queries. Our main target consists of practical queries that combine logical, group-
ing, and numerical components. In Section 5, we focus on complex queries defined by a logical
(relational algebra or Datalog) query that returns a set of tuples, followed by a group-by
operation (on set of grouping attributes) and further followed by numerical query that is
applied to each sets of tuples resulting from the grouping. This class of queries already covers
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many practical examples. We observe that the output of such a complex query is a set of p
tuples where p is the number of distinct values taken by the grouping attributes. Therefore,
the size of any provisioning sketch must also depend on p. We show (in Theorem 19) that
a sketch for a query that involves grouping can be obtained as a collection of p sketches.
Hence, if each of the p sketches is of compact size (as in Definitions 5 and 7) and the value p
itself is bounded by poly(|H| , log |I|), then the overall sketch for the complex query is also
of compact size. Note that p is typically small for the kind of grouping used in practical
analysis queries (e.g., number of products, number of departments, number of locations, etc.).
Intuitively, an analyst would have trouble making sense of an output with a large number of
tuples.

Notation. Throughout the paper, we denote by k the number of hypotheticals, and by n the
size |I| of the input instance. For any integer m > 0, [m] denotes the set {1, 2, . . . ,m}. The
Õ(·) notation suppresses log log(n), log log(1/δ), log(1/ε), and log(k) factors. All logarithms
are in base two unless stated otherwise.

3 Coverage: A “Hard” Problem for Provisioning

To establish our lower bounds in this paper, we introduce a “hard” problem called Coverage.
Though not defined in the exact formalism of provisioning, the Coverage problem can be
solved by many provisioning schemes using proper “reductions” and hence a lower bound for
the Coverage problem can be used to establish similar lower bounds for provisioning various
queries.

Informally speaking, in the Coverage problem, we are given a collection of k subsets of a
universe [n] and the goal is to “compress” this collection in order to answer to the questions
in which indices of some subsets in the collection are provided and we need to figure out
whether these subsets cover the universe [n] or not. We are interested in compressing schemes
for this problem that when answering each question, in addition to the already computed
summary of the collection, also have a limited access to the original instance (see Remark 2
after Definition 5 for motivation of this modification). The Coverage problem is defined
formally as follows.

I Problem 8 (Coverage). Suppose we are given a collection S = {S1, S2, . . . Sk} of the subsets
of [n]. The goal in the Coverage problem is to find a compressing scheme for S, defined
formally as a triple of algorithms:

A compression algorithm which given the collection S creates a data structure D.
An examination algorithm which given a subset of [k], a question, Q = {i1, . . . , is}
and the data structure D, computes a set J ⊆ [n] of indices and lookup for each j ∈ J
and each Si (i ∈ [k]), whether j ∈ Si or not. The output of the examination algorithm is
a tuple SJ := (SJ1 , . . . , SJk ), where SJi = Si ∩ J .
An extraction algorithm which given a question {i1, . . . , is}, the data structure D, and
the tuple SJ , outputs “Yes”, if Si1 ∪ . . . ∪ Sis = [n] and “No” otherwise.

We refer to the size of D, denoted by |D|, as the storage requirement of the compression
scheme and to the size of J , denoted by |J |, as the examination requirement of the scheme.
The above algorithms can all be randomized; in that case, we require that for each question
Q, the final answer (of the extraction algorithm) to be correct with a probability at least
0.99. Note that this choice of constant is arbitrary and is used only to simplify the analysis;
indeed, one can always amplify the probability of success by repeating the scheme constant
number of times and return the majority answer.
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While Coverage is not stated in the exact formalism of provisioning, the analogy between
this problem and provisioning schemes should be clear. In particular, for our lower bound
proofs for provisioning schemes, we can alter the Definition 4 to add an examination algorithm
and allow a similar access to the original database to the provisioning scheme.

We establish the following lower bound on storage and examination requirement of any
compressing scheme for the Coverage problem. The proof of this Theorem is deferred to the
full version of the paper [3] (see Theorem 3.1).

I Theorem 9. Any compressing scheme for the Coverage problem that answers each ques-
tion correctly with probability at least 0.99, either has storage requirement or examination
requirement of min(2Ω(k),Ω(n)) bits.

Allowing access to the original input in Theorem 9 makes the lower bound very robust.
However, due to this property, the lower bound does not seem to follow from standard
communication complexity lower bounds and hence we use an information-theoretic approach
to prove this theorem directly, which may be of independent interest. We remark that since
our other lower bounds are typically proven using a reduction from the Coverage problem,
the properties in Theorem 9 (i.e., allowing randomization and o(n) access to the database
after being given the scenario) also hold for them and we do not mention this explicitly.

4 Numerical Queries

In this section, we study provisioning of numerical queries, i.e., queries that output some
(rational) number(s) given a set of tuples. In particular, we investigate aggregation queries
including count, sum, average, and quantiles (therefore min, max, median, rank, and
percentile), and as a first step towards provisioning database-supported machine learning,
linear (`2) regression. We assume that the relevant attribute values are rational numbers of
the form a/b where both a, b are integers in range [−W,W ] for some W > 0.

4.1 The Count, Sum, and Average Queries
In this section, we study provisioning of the count, sum, and average queries, formally defined
as follows. The answer to the count query is the number of tuples in the input instance. For
the other two queries, we assume a relational schema with a binary relation containing two
attributes: an identifier (key) and a weight. We say that a tuple x is smaller than the tuple
y, if the weight of x is smaller than the weight of y. Given an instance I, the answer to the
sum query (resp. the average query) is the total weights of the tuples (resp. the average
weight of the tuples) in I.

We first show that none of the count, sum, average queries can be provisioned both
compactly and exactly, which motivates the ε-provisioning approach, and then briefly
describe how to build a compact (ε, δ)-linear provisioning scheme for each of them.

I Theorem 10. Exact provisioning of the count, sum, or average queries requires sketches
of size min(2Ω(k),Ω(n)) bits.

Proof Sketch. We prove the lower bound for the count using a reduction from the Coverage
problem; the lower bound of the sum follows immediately by setting all weights to be 1. The
reduction for the average query is slightly more involved and is deferred to the full version of
the paper [3] (see Theorem 4.1).

Given {S1, . . . , Sk}, where each Si is a subset of [n], we solve Coverage using a provisioning
scheme for the count query. Define an instance I of a relational schema with a unary
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relation A, where I = {A(x)}x∈[n]. Define a set H of k hypotheticals, where for any
i ∈ [k], hi(I) = {A(x)}x∈Si

. For any scenario S = {i1, . . . , is}, the count of I|S is n iff
Si1 ∪ . . . ∪ Sis = [n]. Hence, any provisioning scheme for the count query solves the Coverage
problem and the lower bound follows from Theorem 9. J

We further point out that if the weights can be both positive and negative, the sum
(and average) cannot be compactly provisioned even approximately (see the full version [3],
Theorem 4.2), and hence we will focus on ε-provisioning for positive weights.

We conclude this section by briefly explaining the ε-provisioning schemes for the count,
sum, and average queries. These results are mostly direct application of known techniques
and we present them here for completeness.

I Theorem 11 (count, sum, average). For any ε, δ > 0, there exist compact (ε, δ)-linear
provisioning schemes for the count query and the sum/average queries (with positive weights),
respectively.

The count query can be provisioned by using linear sketches for estimating the `0-norm
(see, e.g., [28]) as follows. Consider each hypothetical hi(I) as an n-dimensional boolean
vector xi, where the j-th entry is 1 iff the j-th tuple in I belongs to hi(I). For each xi, create
a linear sketch (using Õ(ε−2 logn) bits of space) that estimates the `0-norm [28]. Given any
scenario S, combine (i.e., add together) the linear sketches of the hypotheticals in S and use
the combined sketch to estimate the `0-norm (which is equal to the answer of count).

Note that we can directly use linear sketching for provisioning the count query since
counting the duplicates once (as done by union) or multiple times (as done by addition)
does not change the answer. However, this is not the case for other queries of interest like
quantiles and regression and hence linear sketching is not directly applicable for them.

In the full version of the paper [3] (see Theorem 4.3), we describe a self-contained approach
for ε-provisioning the count query with a slightly better dependence on the parameter n
(log logn instead of logn). We name this sketch the CNT-Sketch, which will be used
used later for provisioning other queries. In particular, provisioning the sum query using a
CNT-Sketch is straightforward when the weights are positive: group the tuples by weight
into Θ(logn/ε) groups and construct a CNT-Sketch for each group to estimate the total
sum. In the full version [3] (see Theorem 4.4), we describe this in more detail and point
out how to further improve the sketch size. The provisioning scheme for average follows
immediately from these results.

4.2 The Quantiles Query
We now study provisioning of the quantiles query. We again assume a relational schema with
just one binary relation containing attributes identifier and weight. For any instance I and
any tuple x ∈ I, we define the rank of x to be the number of tuples in I that are smaller
than or equal to x (in terms of the weights). The output of a quantiles query with a given
parameter φ ∈ (0, 1] on an instance I is the tuple with rank dφ · |I|e. Finally, we say a tuple
x is a (1± ε)-approximation of a quantiles query whose correct answer is y, iff the rank of x
is a (1± ε)-approximation of the rank of y.

Similar to the previous section, we first show that the quantiles query admits no compact
provisioning scheme for exact answer and then provide a compact ε-provisioning scheme for
this query.

I Theorem 12. Exact provisioning of the quantiles query even on disjoint hypotheticals
requires sketches of size min(2Ω(k),Ω(n)) bits.
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In the quantiles query, the parameter φ may be given either already to the compression
algorithm or only to the extraction algorithm. The latter yields an immediate lower bound
of Ω(n), since by varying φ over (0, 1], one can effectively “reconstruct” the original database.
However, we achieve a more interesting lower bound for the case when φ is given at to
the compression algorithm (i.e., a fixed φ for all scenarios, e.g., setting φ = 1/2 to find
the median). An important property of the lower bound for quantiles is that, in contrast
to all other lower bounds for numerical queries in this paper, this lower bound holds even
for disjoint hypotheticals2. The proof of Theorem 12 is deferred to the full version [3] (see
Theorem 4.7).

We now turn to establish the main result of this section, which argue the existence of
a compact scheme for ε-provisioning the quantiles. We emphasize that the approximation
guarantee in the following theorem is multiplicative.

I Theorem 13 (quantiles). For any ε, δ > 0, there exists a compact (ε, δ)-linear provisioning
scheme for the quantiles query that creates a sketch of size Õ(kε−3 logn·(log(n/δ)+k)(logW+
k)) bits.

We should note that in this theorem the parameter φ is only provided in the extraction phase.
Our starting point is the following simple lemma first introduced by [24].

I Lemma 14 ([24]). For any list of unique numbers A = (a1, . . . , an) and parameters
ε, δ > 0, let t =

⌈
12ε−2 log (1/δ)

⌉
; for any target rank r > t, if we independently sample

each element with probability t/r, then with probability at least 1 − δ, the rank of the t-th
smallest sampled element is a (1± ε)-approximation of r.

The proof of Lemma 14 is an standard application of the Chernoff bound and the main
challenge for provisioning the quantiles query comes from the fact that hypotheticals overlap.
We propose the following scheme which addresses this challenge.

Compression algorithm for the quantiles query. Given an instance I, a set H
of hypotheticals, and two parameters ε, δ > 0, let ε′ = ε/5, δ′ = δ/3, and t =⌈
12ε′−2(log(1/δ′) + 2k + log(n))

⌉
.

1. Create and record a CNT-Sketch for I and H with parameters ε′ and δ′.
2. Let {rj = (1 + ε′)j}dlog(1+ε′) ne

j=0 . For each rj , create the following sub-sketch individually.
3. If rj ≤ t, for each hypothetical hi, record the rj smallest chosen tuples in hi(I). If

rj > t, for each hypothetical hi, choose each tuple in hi(I) with probability t/rj , and
record the d(1 + 3ε′) · te smallest tuples in a list Ti,j . For each tuple x in the resulting
list Ti,j , record its characteristics vector for the set of the hypotheticals, which is a
k-dimensional binary vector (v1, v2, . . . , vk), with value 1 on vl whenever x ∈ hl(I) and
0 elsewhere.

2 All other numerical queries that we study in this paper can be compactly provisioned for exact answer,
when the hypotheticals are disjoint.
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Extraction algorithm for the quantiles query. Suppose we are given a scenario S and
a parameter φ ∈ (0, 1]. In the following, the rank of a tuple always refers to its rank in the
sub-instance I|S .
1. Denote by ñ the output of the CNT-Sketch on S. Let r̃ = φ · ñ, and find the index

γ, such that rγ ≤ r̃ < rγ+1.
2. If rγ ≤ t, among all the hypotheticals turned on by S, take the union of the recorded

tuples and output the rγ-th smallest tuple in the union.
3. If rγ > t, from each hi turned on by S, and each tuple x recorded in Ti,γ with a

characteristic vector (v1, v2, . . . , vk), collect x iff for any l < i, either vl = 0 or hl /∈ S.
In other words, a tuple x recorded by hi is taken only when among the hypotheticals
that are turned on by S, i is the smallest index s.t. x ∈ hi(I). We will refer to this
procedure as the deduplication. Output the t-th smallest tuple among all the tuples
that are collected.

We call a sketch created by the above compression algorithm a QTL-Sketch. We defer
the analysis of this sketch and the proof of Theorem 13 to the full version of the paper [3]
(see Theorem 4.8).

Extensions. By simple extensions of our scheme, many variations of the quantiles query
can be answered, including outputting the rank of a tuple x, the percentiles (the rank of x
divided by the size of the input), or the tuple whose rank is ∆ larger than x, where ∆ > 0 is
a given parameter. As an example, for finding the rank of a tuple x, we can find the tuples
with ranks approximately {(1 + ε)l}, l ∈ [

⌈
log(1+ε) n

⌉
], using the QTL-Sketch, and among

the found tuples, output the rank of the tuple whose weight is the closest to the weight of x.

4.3 The Linear Regression Query
In this section, we study provisioning of the regression query (i.e., the `2-regression problem),
where the input is a matrix An×d and a vector bn×1, and the goal is to output a vector x
that minimizes ‖Ax − b‖ (‖ · ‖ stands for the `2 norm). A (1 + ε)-approximation of the
regression query is a vector x̃ such that ‖Ax̃− b‖ is at most (1 + ε) minx ‖Ax− b‖.

The input is specified using a relational schema Σ with a (d+ 2)-ary relation R. Given
an instance I of Σ with n tuples, we interpret the projection of R onto its first d columns,
the (d + 1)-th column, and the (d + 2)-column respectively as the matrix A, the column
vector b, and the identifiers for the tuples in R. For simplicity, we denote I = (A,b), assume
that the tuples are ordered, and use the terms the i-th tuple of I and the i-th row of (A,b)
interchangeably.

Notation. For any matrix M ∈ Rn×d, denote by M(i) the i-th row of M, and by UM ∈ Rn×ρ
(where ρ is the rank of M) the orthonormal matrix of the column space of M (see [26]
for more details). Given an instance I = (A,b), and k hypotheticals, we denote for each
hypothetical hi the sub-instance hi(I) = (Ai,bi). For any integer i, ei denotes the i-th
standard basis; hence, the i-th row of M can be written as eTi M.

The following theorem shows that the regression query cannot be compactly provisioned
for exact answers (see the full version [3], Theorem 4.10) and hence, we will focus on
ε-provisioning.
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I Theorem 15. Exact provisioning of the regression query, even when the dimension is d = 1,
requires sketches of size min(2Ω(k),Ω(n)) bits

Before continuing, we remark that if hypotheticals are disjoint, the regression query admits
compact provisioning for exact answer (see the full version [3], Section 4.3), and hence the
hardness of the problem again lies on the fact that hypotheticals overlap. We now turn to
provide a provisioning scheme for the regression query and prove the following theorem.

I Theorem 16 (regression). For any ε, δ > 0, there exists a compact (ε, δ)-linear provisioning
scheme for the regression query that creates a sketch of size Õ(ε−1k3d log(nW )(k + log 1

δ ))
bits.

Overview. Our starting point is a non-uniform sampling based approach (originally used
for speeding up the `2-regression computation [32]) which uses a small sample to accurately
approximates the `2-regression problem. Since the probability of sampling a tuple (i.e., a row
of the input) in this approach depends on its relative importance which can vary dramatically
when input changes, this approach is not directly applicable to our setting.

Our contribution is a two-phase sampling based approach to achieve the desired sampling
probability distribution for any scenario. At a high level, we first sample and record a small
number of tuples from each hypothetical using the non-uniform sampling approach; then,
given the scenario in the extraction phase, we re-sample from the recorded tuples of the
hypotheticals presented in the scenario. Furthermore, to rescale the sampled tuples (as
needed in the original approach), we obtain the exact sampling probabilities of the recorded
tuples by recording their relative importance in each hypothetical. Our approach relies on a
monotonicity property of the relative importance of a tuple when new tuples are added to
the original input.

RowSample. We start by describing the non-uniform sampling algorithm. Let P =
(p1, p2, . . . , pn) be a probability distribution, and r > 0 be an integer. Sample r tuples
of I = (A,b) with replacement according to the probability distribution P . For each sample,
if the j-th row of A is sampled for some j, rescale the row with a factor (1/√rpj) and store
it in the sampling matrix (Ã, b̃). In other words, if the i-th sample is the j-th row of I,
then (Ã(i), b̃(i)) = (A(j),b(j))/

√
rpj . We denote this procedure by RowSample(A,b,P, r),

and (Ã, b̃) is its output. The RowSample procedure has the following property [32] (see
also [14, 34] for more details on introducing the parameter β).

I Lemma 17 ([32]). Suppose A ∈ Rn×d, b ∈ Rn, and β ∈ (0, 1]; P = (p1, p2, . . . , pn)
is a probability distribution on [n], and r > 0 is an integer. Let (Ã, b̃) be an output of
RowSample(A, b,P, r), and x̃ = arg minx ‖Ãx− b̃‖.

If for all i ∈ [n], pi ≥ β ‖eT
i UA‖2∑n

j=1
‖eT

j
UA‖2 , and r = Θ(d log d log(1/δ)

ε·β ), then with probability at

least (1− δ), ‖Ax̃− b‖ ≤ (1 + ε) minx ‖Ax− b‖.

The value ‖eTi UA‖2, i.e the square norm of the i-th row of UA, is also called the leverage
score of the i-th row of A. One should view the leverage scores as the “relative importance”
of a row for the `2-regression problem (see [30] for more details). Moreover, using the fact
that columns of UA are orthonormal, we have

∑
j ‖eTj UA‖2 = ρ, where ρ is the rank of A.

We now define our provisioning scheme for the regression query, where the compression
algorithm performs the first phase of sampling (samples rows from each hypothetical) and
the extraction algorithm performs the second (samples from the recorded tuples).
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Compression algorithm for the regression query. Suppose we are given an in-
stance I = (A,b) and k hypotheticals with hi(I) = (Ai,bi) (i ∈ [k]). Let t =
Θ(ε−1kd log d · (k + log (1/δ))), and define for each i ∈ [k] a probability distribution
Pi = (pi,1, pi,2, . . . , pi,n) as follows. If the j-th row of A is the l-th row of Ai (they
correspond to the same tuple), let pi,j = ‖eTl UAi

‖2/ρ, where ρ is the rank of Ai. If A(j)
does not belong to Ai, let pi,j = 0. Using the fact that for every i ∈ [k], UAi is an
orthonormal matrix,

∑n
j=1 pi,j = 1. Record t independently chosen random permutations

of [k], and for each hypothetical hi, create a sub-sketch as follows.
1. Sample t tuples of hi(I) with replacement, according to the probability distribution Pi.
2. For each of the sampled tuples, assuming it is the j-th tuple of I, record the tuple

along with its sampling rate in each hypothetical, i.e., {pi′,j}i′∈[k].

Extraction algorithm for the regression query. Given a scenario S = {i1, . . . , is}, we
will recover from the sketch a matrix Ãt×d and a vector b̃t×1. For l = 1 to t:
1. Pick the l-th random permutation recorded in the sketch. Let γ be the first value in

this permutation that appears in S.
2. If (a, b) is the l-th tuple sampled by the hypothetical hγ , which is the j-th tuple of I,

let qj =
∑
i∈S pi,j/|S|, using the recorded sampling rates.

3. Let (Ã(l), b̃(l)) = (a, b)/√tqj . Return x̃ = arg minx‖Ãx − b̃‖ (using any standard
method for solving the `2-regression problem).

We call a sketch constructed above a REG-Sketch. In order to show the correctness of
this scheme, we need the following lemma regarding the monotonicity of leverage scores (the
proof is presented in the full version [3], Lemma 4.13).

I Lemma 18 (Monotonicity of Leverage Scores). Let A ∈ Rn×d and B ∈ Rm×d be any matrix.
Define matrix C ∈ R(n+m)×d by appending rows of B to A, i.e., CT = [AT ,BT ]. For any
i ∈ [n], if Li is the leverage score of A(i) and L̂i is the leverage score of C(i), then Li ≥ L̂i.

Lemma 18 claims that adding more rows to a matrix A can only reduce the importance
of any point originally in A. Note that this is true even when the matrix C is formed by
arbitrarily combining rows of B and A (rather than appending at the end).

Proof of Theorem 16. Fix a scenario S and let I|S = (Â, b̂). It is straightforward to verify
that, for any step l ∈ [t], qj (in line (2) of the extraction algorithm) is the probability that
the j-th tuple of I is chosen, if the j-th tuple belongs to I|S . Hence, assuming P ′ is the
probability distribution defined by the qjs on rows of the I|S , the extraction algorithm
implements RowSample(Â, b̂,P ′, t).

We will show that qj ≥ ‖eTl UÂ‖2/kρ̂, where the l-th row of Â is the j-th row of A,
and ρ̂ is the rank of Â. Then, by Lemma 17 with β set to 1/k, with probability at least
1 − δ

2k , ‖Âx̃ − b̂‖ is at most (1 + ε) minx ‖Âx − b̂‖; hence, the returned vector x̃ is a
(1 + ε)-approximation. Applying a union bound over all 2k scenarios, with probability at
least (1− δ), our scheme ε-provisions the regression query.

We now prove that qj ≥ ‖eTl UÂ‖2/kρ̂. Denote by Li,j (resp. LS,j) the leverage score
of the j-th tuple of I in the matrix Ai (resp. Â). Further, denote by ρi the rank of Ai.
Consequently, pi,j = Li,j/ρi, and our goal is to show qj ≥ LS,j/(kρ̂). Pick any i∗ ∈ S where
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hi∗(I) contains the j-th tuple of I, then:

qj =
∑
i∈S pi,j

s
≥ pi∗,j

s
≥ Li∗,j

kρi
≥ LS,j

kρ̂
(1)

For the last inequality, since Ai is a sub-matrix of Â, ρi ≤ ρ̂ and the leverage score decreases
due to the monotonicity (Lemma 18).

To conclude, the probabilities will be stored with precision 1/n (hence stored using
O(logn) bits each), and the size of the sketch is straightforward to verify. J

5 Complex Queries

We study the provisioning of queries that combine logical components (relational algebra
and Datalog), with grouping and with the numerical queries that we studied in Section 4.

We start by defining a class of such queries and their semantics formally. For the purposes
of this paper, a complex query is a triple 〈QL;GĀ;QN 〉 where QL is a relational algebra
or Datalog query that outputs some relation with attributes ĀB̄ for some B̄, GĀ is a
group-by operation applied on the attributes Ā, and QN is a numerical query that takes as
input a relation with attributes B̄. For any input I let P = ΠĀ(QL(I)) be the Ā-relation
consisting of all the distinct values of the grouping attributes. For each tuple ū ∈ P , we
define Γū = {v̄ | ūv̄ ∈ QL(I)}. Then, the output of the complex query 〈QL;GĀ;QN 〉 is a set
of tuples {〈ū, QN (Γū)〉 | ū ∈ P}.

In the following, we give positive results for the case where the logical component is a
positive relational algebra (i.e., SPJU) query. It will be convenient to assume a different,
but equivalent, formalism for these logical queries, namely that of unions of conjunctive
queries (UCQs)3. We review quickly the definition of UCQs. A conjunctive query (CQ)
over a relational schema Σ is of the form ans(x) : − R1(x1), . . . , Rb(xb), where atoms
R1, . . . , Rb ∈ Σ, and the size of a CQ is defined to be the number of atoms in its body (i.e.,
b). A union of conjunctive query (UCQ) is a finite union of some CQs in which the head has
the same schema.

In the following theorem, we show that for any complex query, where the logical component
is a positive relational algebra query, compact provisioning of the numerical component
implies compact provisioning of the complex query itself.

I Theorem 19. For any complex query 〈QL;GĀ;QN 〉 where QL is a UCQ, if the numerical
component QN can be compactly provisioned (resp. compactly ε-provisioned), and if the
number of groups is bounded by poly(k, logn), then the query 〈QL;GĀ;QN 〉 can also be
compactly provisioned (resp. compactly ε-provisioned with the same parameter ε).

Proof. Suppose QN can be compactly provisioned (the following proof also works when QN
can be compactly ε-provisioned). Let b be the maximum size of the conjunctive queries in
QL. Given an input instance I and a set H of k hypotheticals, we define a new instance
Î = QL(I) and a set Ĥ of O(kb) new hypotheticals as follows. For each subset S ⊆ [k] of size
at most b (i.e., |S| ≤ b), define a hypothetical ĥS(Î) = QL(I|S) (though S is not a number,
we still use it as an index to refer to the hypothetical ĥS). By our definition of the semantics

3 Although the translation of an SPJU query to a UCQ may incur an exponential size blowup [1], in this
paper, query (and schema) size are assumed to be constant. In fact, in practice, SQL queries often
present with unions already at top level.
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of complex queries, the group-by operation partitions Î and each ĥS into p = |ΠĀ(Î)| groups.
We treat each group individually, and create a sketch for each of them.

To simplify the notation, we still use Î and Ĥ to denote respectively the portion of the
new instance, and the portion of each new hypothetical that correspond to, without loss of
generality, the first group. In the following, we show that a compact provisioning scheme for
QN with input Î and Ĥ can be adapted to compactly provision 〈QL;GĀ;QN 〉 for the first
group. Since the number of groups p is assumed to be poly(log |I|, |H|), the overall sketch
size is still poly(log |I|, |H|), hence achieving compact provisioning for the complex query.

Create a sketch for QN with input Î and Ĥ. For any scenario S ∈ [k] (over H), we
can answer the numerical query QN using the scenario Ŝ (over Ĥ) where Ŝ = {S′ | S′ ⊆
S and |S′| ≤ b}. To see this, we only need to show that the input to QN remains the same,
i.e., QL(I|S) is equal to Î|Ŝ . Each tuple t in QL(I|S) can be derived using (at most) b
hypotheticals. Since any subset of S with at most b hypotheticals belongs to Ŝ, the tuple t
belongs to Î|Ŝ . On the other hand, each tuple t′ in Î|Ŝ belongs to some ĥS′ where S′ ∈ S,
and hence, by definition of ĥS′ , the tuple t is also in QL(I|S). Hence, QL(I|S) = Î|Ŝ .

Consequently, any compact provisioning scheme for QN can be adapted to a compact
provisioning scheme for the query 〈QL;GĀ;QN 〉. J

Theorem 19 further motivates our results in Section 4 for numerical queries as they can
be extended to these quite practical queries. Additionally, as an immediate corollary of
the proof of Theorem 19, we obtain that any boolean UCQ (i.e., any UCQ that outputs a
boolean answer rather than a set of tuples) can be compactly provisioned.

I Corollary 20. Any boolean UCQ can be compactly provisioned using sketches of size O(kb)
bits, where b is the maximum size of each CQ.

I Remark. [13] introduced query provisioning from a practical perspective and proposed
boolean provenance [27, 20, 19, 33] as a way of building sketches. This technique can also be
used for compactly provisioning boolean UCQs (see the full version [3], Remark 5.3).

We further point out that the exponential dependence of the sketch size on the query
size (implicit) in Theorem 19 and Corollary 20 cannot be avoided even for CQs (the proof is
in the full version [3]; see Theorem 5.5).

I Theorem 21. There exists a boolean conjunctive query Q of size b such that provisioning
Q requires sketches of size min(Ω(kb−1),Ω(n)) bits.

More general queries. It is natural to ask (a) if Theorem 19 still holds when adding negation
or recursion to the query QL (i.e. UCQ with negation and recursive Datalog, respectively),
and (b) whether or not it is possible to provision queries in which logical operations are done
after numerical ones. A typical example of a query in part (b) is a selection on aggregate
values specified by a HAVING clause. Unfortunately, the answer to both questions is negative.

We first show that the answer to question (a) is negative.

I Theorem 22. Exact provisioning of (i) boolean conjunctive queries with negation, or (ii)
recursive Datalog (even without negation) queries requires sketches of size min(2Ω(k),Ω(n)).

Proof Sketch. We sketch the proof of each part separately; the complete proofs can be found
in the full version [3] (see Theorem 5.6).

ICDT 2016
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Part (i). Define the following boolean conjunctive query with negation over a schema with
two unary relation symbols, A and B:

QNOTSUB() :− A(x),¬B(x)

This query returns true on I iff there exists some x such that A(x) ∈ I and B(x) /∈ I.
Intuitively, if we view A and B as subsets of the active domain of I, it is querying whether
or not “B is a subset of A”. We use a reduction from the Coverage problem to prove the
lower bound for QNOTSUB.

From an instance {S1, . . . , Sk} (Si ⊆ [n]) of Coverage, we create the following instance
I for the schema Σ = {A,B}, where for any x ∈ [n], A(x), B(x) ∈ I. Define the set of of
hypotheticals H = {h1, h2, . . . , hk+1}, where for any i ∈ [k], hi(I) = {B(x) | x ∈ Si} and
hk+1(I) = {A(x) | x ∈ [n]}. It is easy to see that for any set Ŝ = {i1, . . . , is} ⊆ [k], under
the scenario S = Ŝ ∪ {k + 1}, QNOTSUB(I|S) is true iff there exists x ∈ [n] s.t. B(x) /∈ I|S
which is equivalent to [n] 6⊆ Si1 ∪ . . . ∪ Sis . Therefore any provisioning scheme of QNOTSUB

solves the Coverage problem and the result follows from Theorem 9.

Part (ii). Consider the following Datalog query, st-connectivity:

ans() :− T (t) (2)
T (y) :− E(x, y), T (x) (3)
T (s) :− (4)

This query returns true iff there is a path from the vertex s to the vertex t in the digraph
defined by E. To prove a lower bound for the st-connectivity query we use again a reduction
from the Coverage problem.

From an instance {S1, . . . , Sk} (Si ⊆ [n]) of Coverage, we create the following graph
G(V,E) with vertex set V = {(s =) v0, v1, v2, . . . , vn (= t)}, and edges E(vj−1, vj), for all
j ∈ [n]. In G, there is only one path from s to t and that path uses all the n edges. The edge
set E of the graph G is the input I to the provisioning scheme. Define the hypotheticals
H = {h1, h2, . . . , hk} where hi(I) = {E(vj−1, vj)}j∈Si , for all i ∈ [k]. For any scenario
S = {i1, . . . , is} ⊆ [k], T (t) is true (i.e., s is connected to t) in I|S iff all n edges are in I|S ,
which is equivalent to Si1∪. . .∪Sis = [n]. Therefore any provisioning scheme of st-connectivity
solves the Coverage problem and the result follows from Theorem 9. J

Showing a negative answer to question (b) is very easy. As we already showed in
Theorems 10 and 12, there are numerical queries that do not admit compact provisioning for
exact answer. One can simply verify that each of those queries can act as a counter example
for question (b) by considering HAVING clauses that test the equality of the answer to the
numerical part against an exact answer (e.g. testing whether the answer to count is n or
not).

6 Conclusions and Future Work

In this paper, we initiated a formal framework to study compact provisioning schemes for
relational algebra queries, statistics/analytics including quantiles and linear regression, and
complex queries. We considered provisioning for exact as well as approximate answers, and
established upper and lower bounds on the sizes of the provisioning sketches.

The queries in our study include quantiles and linear regression queries from the list of
in-database analytics highlighted in [25]. This is only a first step and the study of provisioning
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for other core analytics problems, such as variance computation, k-means clustering, logistic
regression, and support vector machines is of interest.

Another direction for future research is the study of queries in which numerical computa-
tions follow each other (e.g., when the linear regression training data is itself the result of
aggregations). Yet another direction for future research is an extension of our model to allow
other kinds of hypotheticals/scenarios as discussed in [13] that are also of practical interest.
For example, an alternative natural interpretation of hypotheticals is that they represent
tuples to be deleted rather than retained. Hence the application of a scenario S ⊆ [k] to I
becomes I|S = I \ (

⋃
i∈S hi(I)). Using our lower bound techniques, one can easily show that

even simple queries like count or sum cannot be approximated to within any multiplicative
factor under this definition. Nevertheless, it will be interesting to identify query classes that
admit compact provisioning in the delete model or alternative natural models.
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Abstract
Schema mappings have been extensively studied in the context of data exchange and data in-
tegration, where they have turned out to be the right level of abstraction for formalizing data
inter-operability tasks. Up to now and for the most part, schema mappings have been studied
as static objects, in the sense that each time the focus has been on a single schema mapping of
interest or, in the case of composition, on a pair of schema mappings of interest.

In this paper, we adopt a dynamic viewpoint and embark on a study of sequences of schema
mappings and of the limiting behavior of such sequences. To this effect, we first introduce a
natural notion of distance on sets of finite target instances that expresses how “close” two sets
of target instances are as regards the certain answers of conjunctive queries on these sets. Using
this notion of distance, we investigate pointwise limits and uniform limits of sequences of schema
mappings, as well as the companion notions of pointwise Cauchy and uniformly Cauchy sequences
of schema mappings. We obtain a number of results about the limits of sequences of GAV schema
mappings and the limits of sequences of LAV schema mappings that reveal striking differences
between these two classes of schema mappings. We also consider the completion of the metric
space of sets of target instances and obtain concrete representations of limits of sequences of
schema mappings in terms of generalized schema mappings, i.e., schema mappings with infinite
target instances as solutions to (finite) source instances.
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1 Introduction

Schema mappings have been extensively studied in the context of data exchange and data
integration, where they have turned out to be the right level of abstraction for formalizing
data inter-operability tasks (see the surveys [11, 12] and the monograph [1]). Up to now and
for the most part, schema mappings have been studied as static objects, in the sense that
each time the focus has been on a single schema mapping or on a finite and, typically, small
number of schema mappings. In the case of data exchange [6], a single schema mapping is
used to specify the relationship between a source schema and a target schema. In the case of
operators on schema mappings [3], such as the composition operator [14, 8], a fixed number
of schema mappings is used as input (e.g., two schema mappings in the case of composition)
and return another schema mapping as output. Even the case of schema-mapping evolution
[9] entails a finite (but potentially large) number of schema mappings.
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In this paper, we adopt a dynamic viewpoint and embark on a systematic investigation of
sequences of schema mappings and of the limiting behavior of such sequences. The original
motivation came from the earlier work [2, 5, 7, 10, 14] on schema-mapping optimization
and the study of various notions of equivalence between schema mappings that, intuitively,
stipulate that two schema mappings cannot be distinguished using conjunctive queries (CQ-
equivalence) or conjunctive queries with at most n variables (CQn-equivalence), for some
fixed n ≥ 1. In particular, in [5] and, implicitly, in [14], it was shown that, given an SO-tgd
(second-order tuple-generating dependency) σ and a positive integer n, one can construct a
GLAV schema mapping that is CQn-equivalent to σ. Informally, this means that a given SO
tgd can be “approximated” by GLAV schema mappings up to any fixed level of precision,
even though an SO tgd is a formula of second-order logic that may not be logically equivalent
to any formula of first-order logic and, in particular, to any GLAV schema mapping. A
more dynamic interpretation is that, given an SO-tgd σ, one can obtain a sequence of GLAV
schema mappings (Mn)n≥1, whose “limit” is σ.

Summary of Results. Our contributions are both conceptual and technical. At the con-
ceptual level, we develop a framework for studying sequences of schema mappings by first
introducing a natural notion of distance dist on the powerset P(Inst(T)) of the set Inst(T)
of finite instances over a schema T. Intuitively, this notion of distance expresses how “close”
two sets of finite T-instances are as regards the certain answers of conjunctive queries on these
sets. The pair (P(Inst(T)),dist) is a pseudometric space, which means that the distance
function dist is symmetric and obeys the triangle inequality, but different sets of finite target
instances may have distance zero; however, two such sets have distance zero if and only
if they are CQ-equivalent, i.e., every conjunctive query has the same certain answers on
these two sets. Thus, we will also work with the metric space obtained by considering the
CQ-equivalence classes of members of P(Inst(T)), and will use the same notation for it.

Sequences of functions from some set to a metric space occupy a central place in the study
of metric spaces (see, e.g., [18]). In particular, there are natural notions of a pointwise limit
and of a uniform limit of a sequence (fn)n≥1 of functions from some set to a metric space;
moreover, there are companion notions of a pointwise Cauchy and of a uniformly Cauchy
sequence of such functions. We now describe briefly how these notions can be applied to
sequences of schema mappings. In its most general formulation, a schema mappingM over a
source schema S and a target schema T is a set of pairs (I, J), where I is a finite S-instance
and J is a finite T-instance. It follows that a schema mappingM can be also be viewed as a
function f from the set Inst(S) of all finite S-instances to the powerset P(Inst(T)) of the
set of all finite T-instances, where f(I) = {J ∶ (I, J) ∈M}. This way, a sequence (Mn)n≥1
of schema mappings over a source schema S and a target schema T can be viewed as a
sequence of functions from Inst(S) to the (pseudo)metric space (P(Inst(T)),dist).

After the conceptual framework has been laid out, we study in depth the limiting behavior
of sequences of GAV mappings and the convergence of sequences of LAV mappings. We
establish a number of technical results that reveal rather dramatic and perhaps unanticipated
differences between GAV schema mappings and LAV schema mappings.

For sequences of GAV mappings, we point out that every uniformly Cauchy sequence of
GAV mappings is eventually constant, hence it has a GAV mapping as uniform limit. We
also show that every pointwise Cauchy sequence of GAV mappings has a pointwise limit, but
it need not have a uniform limit; moreover, there are pointwise Cauchy sequences of GAV
mappings such that no GAV mapping is their pointwise limit. This raises the question as to
when a sequence of GAV mapping has a GAV mapping as a pointwise limit. We prove that
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a sequence of GAV mappings has a GAV mapping as a pointwise limit if and only if it has a
pointwise limit that allows for CQ-rewriting1.

For sequences of LAV mappings, we show that the notions of uniform limit and pointwise
limit coincide; moreover, the same holds true for the notions of uniformly Cauchy and
pointwise Cauchy sequences. However, there are uniformly Cauchy sequences of LAV
mappings that have no uniform limit. We also establish that a uniformly Cauchy sequence of
LAV mappings has a LAV mapping as a uniform limit if and only if it has a uniform limit that
admits universal solutions. The aforementioned results lift to sequences of premise-bounded
sequences of GLAV mappings, i.e., sequences of GLAV mappings for which there is a k ≥ 1
such that, for every mapping in the sequence, the left-hand side of every GLAV constraint
has at most k source atoms (LAV mappings have k = 1).

In terms of techniques, we use systematically the structural characterizations of schema-
mapping languages established in [19], thus creating a link with a different line of research.

The metric space (P(Inst(T)),dist) is incomplete, i.e., there are Cauchy sequences of
elements of P(Inst(T)) that have no limit in P(Inst(T)). It is well known that every
incomplete metric space (X,d) has a completion, which means that it can be embedded into
a complete metric space (X∗, d∗) so that X is a dense subset of X∗. Moreover, pointwise
(respectively, uniformly) Cauchy sequences of functions on X have pointwise (respectively,
uniform) limits that take values in X∗. The construction of X∗ from X involves equivalence
classes of Cauchy sequences of elements of X, thus, in general, the members of X∗ do not
have a concrete representation. In the last part of the paper, we show that the members
of P(Inst(T))∗ can be represented by suitably constructed infinite T-instances. As a
consequence of this, the pointwise (respectively, uniform) limits of Cauchy sequences of
schema mappings can be represented by generalized schema mappings, i.e., schema mappings
that allow for infinite target instances as solutions to finite source instances.

2 Preliminaries

This section contains a minimum amount of the necessary background material.

Schemas, Instances, and Conjunctive Queries. A schema R is a finite sequence ⟨R1, . . . ,

Rk⟩ of relation symbols, where each Ri has a fixed arity. An instance I over R, or an
R-instance, is a sequence (RI

1, . . . ,R
I
k), where each RI

i is a finite relation of the same arity
as Ri. We will often use Ri to denote both the relation symbol and the relation RI

i that
interprets it. The active domain of an instance I is the set of all values occurring in the
relations of I. A fact of an instance I (over R) is an expression RI

i (a1, . . . , am) (or simply
Ri(v1, . . . , vm)), where Ri is a relation symbol of R and (a1, . . . , am) ∈ RI

i .
A conjunctive query is a first-order formula of the form ∃z θ(x,z), where θ(x,z) is a

conjunction of atomic formulas Ri(v1, ..., vm) and each vj is one of the variables in x and z.
A boolean conjunctive query is a conjunctive query with no free variables. We write CQ for
the class of all conjunctive queries over some schema. For every n ≥ 1, we let CQn denote
the class of all conjunctive queries with at most n variables. We also let CQ0 denote the
singleton consisting of a trivially true query.

Schema Mappings, Universal Solutions, Certain Answers. Motivated by the terminology
in data exchange [6], we typically work with two schemas, a source schema S and a target

1 Allowing for CQ-rewriting means that the certain answers of every conjunctive query over the target
schema is definable by a union of conjunctive queries over the source schema - see [19].
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schema T with no relation symbols in common. We refer to S-instances as source instances,
and to T-instances as target instances. We assume the presence of two kinds of values in
instances, namely constants and (labeled) nulls. We also assume that the active domains of
source instances consists of constants; the active domains of target instances may contain
both constants and nulls.

A schema mapping M between a source schema S and a target schema T is a set of pairs
(I, J), where I is source instance and J a target instance. A schema mapping is often (but
not always) given as a tripleM = (S,T,Σ), where Σ is a set of formulas in some suitable
logical formalism such that (I, J) ∈M if and only if I ∪ J ⊧ Σ.

LetM be a fixed schema mapping. In data exchange, the main problem is, given a source
instance I, to find a solution for I w.r.t.M, that is, a target instance J such that (I, J) ∈M
(or determine that no solution exists). We use the notation Sol(I,M) = {J ∣ (I, J) ∈M} to
denote the set of all solutions for I w.r.t.M. In data integration, the main problem is to
compute the certain answers of queries [12]. Specifically, given a query q over the target
schema and a source instance I, the certain answers of q on I w.r.t.M is the set

cert(q, I,M) =⋂{q(J) ∣ J ∈ Sol(I,M)} .

On the face of it, the definition of certain answers may entail computing an intersection
of infinitely many sets. One of the main findings in [6] is that there is a notion of a “good”
solution in data exchange, called universal solution, that can also be used to compute the
certain answers of conjunctive queries in a much more direct way.

Let J1 and J2 be two target instances. A function h is a homomorphism from J1 to J2 if
the following hold: (i) for every constant c, we have that h(c) = c; and (ii) for every relation
symbol R in R and every tuple (a1, . . . , an) ∈ RJ1 , we have that (h(a1), . . . , h(an)) ∈ RJ2 .
We write J1 → J2 to denote that there is a homomorphism from J1 to J2. We say that J1 is
homomorphically equivalent to J2, written J1 ↔ J2, if J1 → J2 and J2 → J1.

Let I be a source instance. A universal solution for I w.r.t.M is a solution J such that
for every solution J ′ ∈ Sol(I,M), we have that J → J ′. Intuitively, a universal solution for I
is a “most general” solution for I. We write UnivSol(I,M) to denote the set of all universal
solutions for I w.r.t.M (universal solutions need not always exist). As shown in [6], if q is a
conjunctive query, I is a source instance, and J is a universal solution for I w.r.t.M, then
cert(q, I,M) = q(J)↓, where q(J)↓ is the set of all null-free tuples in q(J).

Structural Properties of Schema Mappings. We now present a number of structural
properties that a schema mapping may or may not possess. These properties were investigated
in their own right in [19], where they were used to obtain characterizations of schema-mapping
languages that will be of great interest to us in this paper. LetM be a schema mapping.
M allows for CQ-rewriting if for every target conjunctive query q, there exists a union q′ of
source conjunctive queries such that cert(I,M, q) = q′(I), for every source instance I.
M admits universal solutions if for every source instance I, there is a universal solution for
I w.r.t.M. We write univ(I,M) to denote some such universal solution.
M is closed under target homomorphisms if (I, J) ∈M and J → J ′ imply that (I, J ′) ∈M.
M is closed under unions if (I1, J1) ∈M and (I2, J2) ∈M imply that (I1 ∪ I2, J1 ∪ J2) ∈M.
M is closed under target intersections if J1 ∈ Sol(I,M) and J2 ∈ Sol(I,M) imply that
(J1 ∩ J2) ∈ Sol(I,M).
M is n-modular if whenever (I, J) ∉M, there is a subinstance I ′ ⊆ I with at most n elements
in its active domain such that (I ′, J) ∉M (“small counterexample”).



P.G. Kolaitis, R. Pichler, E. Sallinger, and V. Savenkov 19:5

Schema Mapping Languages. A GLAV (global-and-local-as-view) constraint is a first-order
formula of the form ∀x(ϕ(x)→ ∃yψ(x,y)), where ϕ(x) is a conjunction of atoms over the
source schema S, each variable in x occurs in at least one atom in ϕ(x), and ψ(x,y) is
a conjunction of atoms over the target schema T with variables in x and y. We refer to
ϕ(x) as the left-hand side, or premise, and ∃yψ(x,y) as the right-hand side, or conclusion
of the constraint. Another name for GLAV constraints is source-to-target tuple-generating
dependencies or, in short, s-t tgds.

A LAV (local-as-view) constraint is a GLAV constraint whose left-hand side is a single
atom over the source, while a GAV (global-as-view) constraint is a GLAV constraint whose
right-hand side is a single atom over the target (in particular, the right-hand side contains
no existential quantifiers). For example, ∀x, y(E(x, y) → ∃z(F (x, z) ∧ F (z, y))) is a LAV
constraint, and ∀x, y, z(E(x, z) ∧E(z, y)→ F (x, y)) is a GAV constraint.

A GLAV (global-and-local-as=view) mapping is a schema mappingM = (S,T,Σ) such
that Σ is a finite set of GLAV constraints. The notions of a LAV mapping and of a GAV
mapping are defined analogously.

Every GLAV mapping M admits universal solutions [6]; furthermore, given a source
instance I, a canonical universal solution chase(I,M) can be produced via the oblivious
chase procedure as follows: whenever the antecedent of an s-t tgd inM becomes true, fresh
null values are introduced and facts involving these nulls are added to chase(I,M), so that
the conclusion of the s-t tgd becomes true. Every GLAV mapping is also known to allow for
CQ-rewriting and to be n-modular, for some n ≥ 1. Moreover, every LAV mapping is closed
under unions, while every GAV mapping is closed under target intersections.

Second-Order tgds, or SO tgds, were introduced in [8] and were shown to be exactly the
constraints needed to express the composition of a finite number of GLAV mappings. Instead
of giving the precise definition of an SO tgd, we illustrate this notion with an example from
[8]. The formula ∃f(∀e(Emp(e)→Mgr(e, f(e))) ∧ ∀e(Emp(e) ∧ (e = f(e))→ SelfMgr(e)))
expresses the property that every employee has a manager, and if an employee is the manager
of himself/herself, then this employee is a self-manager. The above formula is an SO tgd
that is not logically equivalent to any (finite or infinite) set of GLAV constraints [8].

Every SO tgd allows for CQ-rewriting and admits universal solutions; however, an SO
tgd may not be closed under target homomorphisms and there may not exist any n ≥ 1 such
that the SO tgd is n-modular (see [8, 19]).

Pseudometric Spaces and Metric Spaces. A pseudometric space is a pair (X,d), where X
is a set and d is a function from X ×X to the set R+ of non-negative real numbers with the
following properties: (i) d(x,x) = 0, for every x in X; (ii) d(x, y) = d(y, x), for every x and y
in X; (iii) d(x, y) ≤ d(x, z) + d(y, z), for every x, y, z in X (triangle inequality). A metric
space is a pseudometric space (X,d) such that if d(x, y) = 0, then x = y. It is easy to see
that if (X,d) is a pseudometric space, then the relation Rd = {(x, y) ∈ X ×X ∣ d(x, y) = 0}
is an equivalence relation on X. From this, it follows that every pseudometric space (X,d)
gives rise to a metric space (X̂, d̂), where X̂ is the set of equivalence classes of elements of X
modulo the equivalence relation Rd and d̂([x], [y]) = d(x, y).

A sequence of elements x1, x2, . . . of X converges to an element x of X, denoted by
lim

n→∞
xn = x, if for every ε > 0, there is an integer n0 such that d(xn, x) < ε, for every n ≥ n0.

We say that x is the limit of this sequence (the limit is unique if (X,d) is a metric space). A
sequence x1, x2, . . . of elements of X is Cauchy if for every ε > 0, there is an integer n0 such
that d(xn, xn′) < ε, for every n,n′ ≥ n0.

Using the triangle inequality, it is easy to see that if a sequence of elements in a
(pseudo)metric space has a limit, then the sequence is Cauchy. The converse, however, does
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not hold for arbitrary (pseudo)metric spaces. A (pseudo)metric space (X,d) is complete if
every Cauchy sequence of elements of X has a limit in X; otherwise, it is incomplete.

It is well known that every incomplete (pseudo)metric space (X,d) can be embedded into
a complete (pseudo)metric space (X∗, d∗), called the completion of (X,d), in such a way that
X is a dense subset of X∗, i.e., every member of X∗ is the limit of a sequence of members of
X. The members of X∗ are equivalence classes of Cauchy sequences of X, where two Cauchy
sequences x1, x2, ... and y1, y2, . . . of elements of X are equivalent if lim

n→∞
d(xn, yn) = 0, while

the distance function d∗ is defined as d∗([x1, x2, . . .], [y1, y2, . . .]) = lim
n→∞

d(xn, yn). The proof
of correctness of this construction can be found in [18] or any other book on metric spaces.

As a concrete example, the metric space of the real numbers is the completion of the
metric space of the rational numbers (both with the standard distance).

3 Metric Space of Target Instances

To study the limits of sequences of schema mappings, we first introduce a pseudometric
space of sets of target instances. By considering schema mappings as functions that map
each source instance to the set of its solutions, we can view sequences of schema mappings as
sequences of functions. The (pointwise or uniform) limit of a sequence of schema mappings is
then simply defined in the standard way as the limit of a sequence of functions taking values
in a pseudometric space. Moreover, by passing to the associated metric space of equivalence
classes of sets of target instances, we ensure the uniqueness of the limit. If T is a schema, we
write Inst(T) for the set of all finite instances of T. We also write P(Inst(T)) for the power
set of Inst(T). The notion of distance on P(Inst(T)) that we are about to introduce is
heavily based on the notion of the certain answers to conjunctive queries and on the idea that
two members J and J ′ of P(Inst(T)) are “close” to each other if only “big” conjunctive
queries can yield different certain answers on J and J ′.

I Definition 1. Let q be a query over a schema T and let J be a member of P(Inst(T)).
The certain answers of q over J are defined as cert(q,J ) = ⋂{q(J) ∣ J ∈ J }.

We say that two sets of instances J and J ′ in P(Inst(T)) are CQ-equivalent, denoted
J ≡CQ J ′, if cert(q,J ) = cert(q,J ′) for all conjunctive queries q.

We say that J and J ′ are CQn-equivalent, denoted J ≡CQn
J ′, if cert(q,J ) = cert(q,J ′)

for all conjunctive queries q with at most n variables (i.e., for all q in CQn.) ◁

I Definition 2. Let J and J ′ be two sets of instances in P(Inst(T)). The similarity
sim(J ,J ′) and the distance dist(J ,J ′) between J and J ′ are defined as follows:

sim(J ,J ′) = max{k ∣ J ≡CQk
J ′};

dist(J ,J ′) = 2− sim(J ,J ′). ◁

It is easy to verify that the pair (P(Inst(T)),dist) is a pseudometric space; in fact, dist
is an ultrametric distance function, that is, dist(J ,J ′) ≤ max{dist(J ,J ′′),dist(J ′′,J ′)}
holds for all J , J ′, J ′′ in P(Inst(T)). Moreover, dist(J ,J ′) = 0 if and only if J and J ′

are CQ-equivalent. It is important to note that the pseudo-metric space (P(Inst(T)),dist) is
incomplete, i.e., there exist Cauchy sequences of elements of P(Inst(T)) that do not have a
limit in P(Inst(T)). We first give an example of a sequence that has a limit in P(Inst(T)).

I Example 3. Let T be a schema consisting of a single binary relation and let Cm be the
undirected cycle of length m, for m ≥ 1. Consider the sequence ({C2n+1})n≥1 of singletons
each containing a cycle of odd size. It is not hard to verify that lim

n→∞
({C2n+1})n≥1 = {C2}. ◁
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In contrast, there are Cauchy sequences of element of P(Inst(T)) that have no limit.

I Proposition 4. Let T be a schema consisting of a single binary relation and let Kn be the
clique of size n, for n ≥ 1. The sequence ({Kn})n≥1 of singletons each containing a clique of
different size is Cauchy, but has no limit in P(Inst(T)).

Proof. The sequence ({Kn})n≥1 is Cauchy because if m ≥ n, then Km and Kn satisfy the
same first-order sentences with n variables. To show that this sequence has no limit in
P(Inst(T)), assume that there is a set J of finite instances over T such that lim

n→∞
{Kn} = J .

We distinguish two cases. If J = ∅, then cert(q,J ) = true, for every conjunctive query q.
In contrast, cert(∃xE(x,x),{Kn}) = false, for every n ≥ 2. If J ≠ ∅, consider a member J
of J . Let m be the biggest integer such that J contains a clique of size m, and let ∃Km+1
be the conjunctive query asserting that there is a clique of size m + 1. We now have that
cert(∃Km+1,J ) = false, while cert(∃Km+1,{Kn}) = true, for every n ≥m + 1. J

Since ({Kn})n≥1 is a Cauchy sequence, it has a limit in the completion of
(P(Inst(T)),dist). A concrete representation of this limit is the singleton {K∞}, where K∞
is the infinite clique. In Section 6, we will examine the completion of (P(Inst(T)),dist)
more closely.

The following definitions are perfectly meaningful for every pseudometric space (X,d) and
for every sequence of functions taking values in X. For concreteness, we give the definitions
for sequences of functions taking values in P(Inst(T)).

I Definition 5. Let A be a set, let (fn)n≥1 be a sequence of functions from A to P(Inst(T)),
and let f be a function from A to P(Inst(T)).

We say that (fn)n≥1 converges pointwise to f , denoted as
p

lim
n→∞

fn = f , if for every element
x ∈ A, we have that lim

n→∞
fn(x) = f(x).

We say that (fn)n≥1 converges uniformly to f , denoted as
u

lim
n→∞

fn = f , if for every ε > 0,
there exists an integer n0 ≥ 1 such that for every integer n ≥ n0 and for every element
x ∈ A, we have dist(fn(x), f(x)) < ε.
We say that (fn)n≥1 is pointwise Cauchy, if for every element x ∈ A, the sequence
(fn(x))n≥1 is Cauchy.
We say that (fn)n≥1 is uniformly Cauchy, if for every ε > 0, there exists an integer
n0 ≥ 1 such that for all integers n,n′ ≥ n0 and for every element x ∈ A, we have
dist(fn(x), fn′(x)) < ε. ◁

Clearly, if (fn)n≥1 converges pointwise (resp., uniformly), then (fn)n≥1 is pointwise (resp.,
uniformly) Cauchy. The converse is not in general true for arbitrary (pseudo)metric spaces;
in particular, it is not true for the pseudometric space (P(Inst(T)),dist).

We now bring schema mappings into the picture. Every schema mappingM over a source
schema S and a target schema T can be identified with a function f ∶ Inst(S)Ð→ P(Inst(T)),
where f(I) = Sol(I,M) (recall that Sol(I,M) is the set of all solutions of I w.r.t.M, i.e.,
the set of all finite T instances J such that (I, J) ∈M). Thus, a sequence (Mn)n≥1 of
schema mappings over a source schema S and target schema T can be viewed as a sequence
of functions from Inst(S) to P(Inst(T)). Therefore, we can talk about a sequence of schema
mappings being pointwise Cauchy and uniformly Cauchy if the sequence of the associated
functions has these properties. Similarly, we say that a sequence of schema mappings has a
pointwise limit (resp., a uniform limit) if the sequence of the associated functions converges
pointwise (resp., converges uniformly) to a schema mapping.
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The preceding notion of convergence of a sequence of schema mappings allows us to draw
a connection to earlier work on schema mapping optimization [5, 7]. Here, we are considering
CQ-equivalence and CQn-equivalence of sets of instances. In previous works, these notions of
equivalence have been mainly applied to schema mappings (see, e.g., [5, 7, 14]). Specifically,
two schema mappingsM,M′ are CQ-equivalent (resp., CQn-equivalent) if for every target
conjunctive query q (resp., every target conjunctive query q in CQn) and every source
instance I, we have that cert(q, I,M) = cert(q, I,M′). In this case, we write M ≡CQ M′

(resp., M ≡CQn
M′). The notion of CQn-equivalence has been studied in the context of

schema mapping optimization [5, 7]. Below we discuss its relationship to the convergence of
schema mappings.

I Proposition 6. Consider a sequence (Mn)n≥1 of schema mappings and a schema mapping
M. Then

u

lim
n→∞

Mn =M if and only if for every integer k ≥ 1, there is an integer n0 ≥ 1 such
that for all integers n ≥ n0, we have thatMn ≡CQk

M. ◁

Intuitively, the preceding proposition states that it takes bigger and bigger conjunctive
queries to distinguish the members of a sequence (Mn)n≥1 from its uniform limit.

Although never explicitly introduced, the notion of uniform convergence was implicit
in [5], where it was shown that for every SO tgd σ and for every n ≥ 1, there is a GLAV
mappingMn such that σ ≡CQn

Mn. From this, it is easy to see that
u

lim
n→∞

Mn = σ. Thus, we
have the following result.

I Theorem 7 (implicit in [5]). Every SO tgd is a uniform limit of a sequence of GLAV
mappings.

There are SO tgds that are not CQ-equivalent to any GLAV mapping [7]. Thus, the point
of Theorem 7 is that SO tgds can be “approximated” up to any level of CQk-equivalence by
GLAV mappings, which are syntactically simpler and generally more well-behaved.

As stated earlier, (P(Inst(T)),dist) is a pseudometric space since it cannot distinguish
CQ-equivalent sets of instances. Consequently, the limit of a sequence of sets of instances and
the (uniform or pointwise) limit of a sequence of mappings need not be unique. However, the
limit is unique up to CQ-equivalence and, as described in Section 2, there is an associated
metric space ( ̂P(Inst(T)), d̂ist) obtained by considering the equivalence classes of P(Inst(T))
modulo the equivalence relation Rdist, where (J ,J ′) ∈ Rdist if and only if dist(J ,J ′) = 0
(i.e., if and only if J ≡CQ J ′).

In subsequent sections, we will work with the metric space ( ̂P(Inst(T)), d̂ist). Moreover,
we will be interested in schema mappings modulo CQ-equivalence, which means that from
now on we will view schema mappings as functions from source instances to equivalence
classes of sets of target instances modulo CQ-equivalence. However, for notational simplicity,
we will work each time with representatives of the equivalence classes. By a slight abuse of
notation, we will write (P(Inst(T)),dist), instead of ( ̂P(Inst(T)), d̂ist). Likewise, we will
not explicitly distinguish between a schema mappingM and the equivalence class of schema
mappings that are CQ-equivalent toM.

4 Limits of Sequences of GAV Mappings

Our goal in this section is to analyze sequences of GAV mappings. To this effect, we first
investigate the existence of limits of such sequences and then examine the definability of
limits. As discussed in Section 3, if a sequence (Mn)n≥1 of schema mappings has a pointwise
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(resp., uniform) limit, then the sequence is pointwise (resp., uniformly) Cauchy. The next
result asserts that the converse holds for sequences of GAV mappings.

I Theorem 8. Let (Mn)n≥1 be a sequence of GAV mappings.
If (Mn)n≥1 is pointwise Cauchy, then it has a pointwise limit.
If (Mn)n≥1 is uniformly Cauchy, then it is eventually constant and thus has a GAV
schema mapping as a uniform limit.

Proof Sketch. For showing the first claim, assume that (Mn)n≥1 is a pointwise Cauchy
sequence of schema mappings and let I be a source instance. For each n ≥ 1, consider the uni-
versal solution chase(I,Mn) for I w.r.t.Mn obtained by using the oblivious chase procedure.
Since eachMn is a GAV schema mapping, we have that chase(I,Mn) contains no nulls. It
can be shown that there exists some mI s.t. for all n ≥ mI , we have that chase(I,Mn) =
chase(I,MmI

). In other words, the sequence (chase(I,Mn))n≥1 is eventually constant (does
not oscillate). Then the schema mappingM = {(I, chase(I,MmI

)) ∣ I is a source instance}
is a pointwise limit of the sequence (Mn)n≥1.

For showing the second claim, assume that (Mn)n≥1 is a uniformly Cauchy sequence of
GAV mappings. We claim that (Mn)n≥1 is eventually constant, i.e., there is some m such
that for all n ≥m,Mn ≡CQ Mm holds. Towards a contradiction, assume that for every m
there exists an i >m such thatMi/≡CQMm. That is, for some source instance I, it is the case
that chase(I,Mm) ≠ chase(I,Mi). Since neither chase(I,Mm) nor chase(I,Mi) contain
nulls, they can be distinguished using atomic queries from CQk, where k is the maximum
relation arity of the target schema. Since this is the case for an arbitrarily large m, it follows
that (Mn)n≥1 is not a uniformly Cauchy sequence, a contradiction. J

Next, we point out that even simple sequences of GAV schema mappings may have no
uniform limit.

I Proposition 9. There exists a sequence of GAV mappings that has a pointwise limit but
no uniform limit.

Proof. For every n ≥ 2, let ∃Kn be the boolean conjunctive query asserting that there is a
clique of size n, i.e., ∃Kn is the expression ∃x1, . . . xn⋀i≠j(E(xi, xj) ∧E(xj , xi)).

Let (Mn)n≥1 be the sequence of GAV mappings, whereMn is specified by the constraint
∀x(P (x) ∧ ∃Kn+1 → P ′(x)). Intuitively,Mn is a “copy” schema mapping, but the copying
action is triggered only if E contains a clique of size n + 1. One can show that the GAV
schema mappingM = {∀x∀y(P (x)∧E(y, y)→ P ′(x))} is a pointwise limit of (Mn)n≥1, but
that this pointwise limit is not a uniform limit of (Mn)n≥1 and thus no uniform limit of
(Mn)n≥1 exists.

To see that M is a pointwise limit of (Mn)n≥1, note that for source instances with a
self-loop E(a, a) for some a,M is indistinguishable from every elementMi ∈ (Mn)n≥1. For
source instances without such a self-loop,M coincides with all members of (Mn)n≥1 with
an index exceeding the size of the maximal clique in I.

Now towards a contradiction assume thatM is also a uniform limit. Then, there must
be an n0 such that for all n ≥ n0, the equivalenceMn ≡CQ1 M holds. However, taking n = n0
and a source instance I =Kn∪{P (c)}, one can observe that a target CQ1 query q = ∃xP ′(x)
witnessesMn/≡CQ1M, since I contains no self-loop and thus UnivSol(I,M) = {∅}. J

Proposition 9 and Theorem 8 imply that the sequence of GAV mappings in the proof of
Proposition 9 is an example of a pointwise Cauchy sequence that is not uniformly Cauchy.
More importantly, Theorem 8 gives rise to the following natural question concerning the
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definability of limits: if a sequence of GAV mappings has a pointwise limit, does it have a
GAV mapping as such a limit? We answer this question in the negative: even the much
richer language of SO tgds cannot express pointwise limits of sequences of GAV mappings.

I Proposition 10. There is a pointwise Cauchy sequence of GAV schema mappings such
that no SO tgd is a pointwise limit of that sequence.

Proof Idea. For every n ≥ 1, let Pn(x, y) be the conjunctive query expressing the property
“there is an E-path of length n from x to y”, and letMn be the GAV mapping specified by
the set {∀x, y(Pi(x, y)→ F (x, y)) ∣ 1 ≤ i ≤ n}. The schema mapping

M⋆ = {(I, J) ∣ F J contains the transitive closure TC(I) of EI}

is a pointwise limit of the sequence (Mn)n≥1. However, note thatM⋆ is not CQ-equivalent
to any schema mappingM′ that allows for CQ-rewriting: if it were, then there would exist
a union q of conjunctive queries over the source such that, for every source instance I,
cert(F (x, y), I,M∗) = TC(I) = cert(F (x, y), I,M′) = q(I). Consequently, the transitive
closure of I would be first-order definable over the source, which is not the case. Since every
SO tgd allows for CQ-rewriting, no SO tgd is a pointwise limit of the sequence (Mn)n≥1. J

We have just seen that there are sequences of GAV mappings that have a pointwise
limit, but no such limit is definable by a GAV mapping. This raises the question of finding
necessary and sufficient conditions guaranteeing that a sequence of GAV mappings has a
GAV mapping as a pointwise limit. The next result provides an answer to this question.

I Theorem 11. Let (Mn)n≥1 be a pointwise Cauchy sequence of GAV mappings. The
following statements are equivalent:
1. (Mn)n≥1 has a GAV mapping as a pointwise limit.
2. (Mn)n≥1 has a pointwise limit that allows for CQ-rewriting.

Proof Idea. Let (Mn)n≥1 be a pointwise Cauchy sequence of schema mappings. As seen
in the proof sketch of Theorem 8, for every source instance I, there is a positive integer
mI , such that for all n ≥ mI the equality chase(I,MmI

) = chase(I,Mn) holds for the
respective elements MmI

and Mn of (Mn)n≥1. Moreover, the schema mapping M =
{(I, chase(I,MmI

) ∣ I is a source instance} is a pointwise limit of (Mn)n≥1, and so is the
CQ-equivalent mapping M⋆ = {(I, J) ∣ chase(I,MmI

) ⊆ J}. The result we seek is an
immediate consequence of the fact that the following four statements are equivalent:
(a) (Mn)n≥1 has a GAV mapping as a pointwise limit.
(b) (Mn)n≥1 has a pointwise limit that allows for CQ-rewriting.
(c) M⋆ allows for CQ-rewriting.
(d) M⋆ is logically equivalent to a GAV mapping.
The proof uses Theorem 3.2 in [19], which asserts that a schema mapping is logically equivalent
to a GAV schema mapping if and only if it allows for CQ-rewriting, admits universal solutions,
and is closed under both target homomorphisms and target intersections. J

I Corollary 12. Let (Mn)n≥1 be a pointwise Cauchy sequence of GAV mappings. The
following statements are equivalent:
1. (Mn)n≥1 has a GAV mapping as a pointwise limit.
2. (Mn)n≥1 has an SO tgd as a pointwise limit.

Proposition 10 and Theorem 11 yield a fairly complete picture of the definability of
pointwise limits of GAV mappings. Specifically, there are two mutually exclusive possibilities:
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1. No pointwise limit allows for CQ-rewriting and no GAV mapping is a pointwise limit.
2. Every pointwise limit admits CQ-rewriting and there is a GAV mapping that is a pointwise

limit. Moreover, this happens precisely when the schema mappingM⋆ in the proof of
Theorem 11 allows for CQ-rewriting or, equivalently, whenM⋆ is logically equivalent to
a GAV mapping.

5 Limits of Sequences of LAV Mappings

In this section, we investigate the existence and definability of limits of sequences of LAV
mappings. In fact, we will consider a much broader class of GLAV mappings than LAV,
which we call premise-bounded GLAV mappings. LAV mappings are the special case of this
class when the premise bound is equal to one.

I Definition 13. Let (Mn)n≥1 be a sequence of GLAV mappings. We say that (Mn)n≥1 is
premise-bounded if there exists an integer k such that for every elementMn of (Mn)n≥1,
the premise of every constraint inMn has at most k atoms.

Unlike the case of GAV mappings, the notions of pointwise Cauchy and uniformly Cauchy
sequences of premise-bounded GLAV mappings coincide. Moreover, the same holds true for
the notions of pointwise limit and uniform limit of sequences of such schema mappings.

I Theorem 14. Let (Mn)n≥1 be a sequence of premise-bounded GLAV mappings.
1. The sequence (Mn)n≥1 is pointwise Cauchy if and only if it is uniformly Cauchy.
2. The sequence (Mn)n≥1 has a pointwise limit if and only if it has a uniform limit.

The following two propositions further demarcate the differences between GAV and
premise-bounded mappings. In fact, these differences are already witnessed by sequences
of LAV mappings. The first difference concerns the existence of limits of uniformly Cauchy
sequences. In contrast to the GAV case, uniformly Cauchy sequences of LAV mappings may
have no uniform limit; in fact, they may not even have a pointwise limit.

I Proposition 15. There exists a uniformly Cauchy sequence of LAV mappings that has no
pointwise limit; in particular, it has no uniform limit either.

Proof Idea. For every n ≥ 1, let Mn be the LAV mapping specified by the constraint
∀x, y(E(x, y)→ ∃Kn+1), where, as earlier, ∃Kn+1 is the boolean conjunctive query asserting
that there is a clique of size n + 1. Using an argument similar to the one in the proof of
Proposition 4, it can be shown that the sequence (Mn)n≥1 has no pointwise limit. J

The next difference is the definability of uniform limits. In Section 4, we saw that if
a sequence of GAV mappings has a uniform limit, then it is eventually constant, hence it
has a GAV mapping as a uniform limit. This property need not hold for sequences of LAV
mappings (hence, it need not hold for sequences of premise-bounded schema mappings).

I Proposition 16. There exists a sequence (Mn)n≥1 of LAV mappings that has a uniform
limit, but no uniform limit of (Mn)n≥1 admits universal solutions. In particular, no SO tgd
is a uniform limit of the sequence (Mn)n≥1.

Proof Idea. For every n ≥ 1, let Mn be the LAV mapping specified by the constraint
∀x(V (x) → ∃Pn), where ∃Pn is a boolean CQ asking for a path of length n in the target
instance. We argue that the mappingM = {(∅,∅)} ∪ {(I,Ck) ∣ I non-empty and k > 1} is
the uniform limit of (Mn)n≥1, and thatM does not admit universal solutions. J
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By Theorem 7, every SO tgd is the uniform limit of a sequence of GLAV mappings.
Proposition 16 implies that the converse is false, even for sequences of LAV mappings.

In the previous section, we showed that a sequence of GAV mappings has a GAV mapping
as a pointwise limit if and only if it has a pointwise limit that allows for CQ-rewriting. Is
there some structural property that characterizes when a sequence of premise-bounded GLAV
mappings has a GLAV mapping as a pointwise limit (which, for premise-bounded mappings,
is the same as a uniform limit)? We will show that the property of admitting universal
solutions is the key to this question. Specifically, we have the following result.

I Theorem 17. Let (Mn)n≥1 be a premise-bounded sequence of GLAV mappings. The
following statements are equivalent.
1. (Mn)n≥1 has a GLAV mappingM as a uniform limit.
2. (Mn)n≥1 has a uniform limit that admits universal solutions.
Moreover, if (Mn)n≥1 is a sequence of LAV mappings, then (Mn)n≥1 has a LAV mapping
as a uniform limit if and only (Mn)n≥1 has a uniform limit that admits universal solutions.

Proof (Hint). The direction (1) ⇒ (2) is obvious. For the direction (2) ⇒ (1), we start with
the case when (Mn)n≥1 is a sequence of LAV mappings. As stepping stones to the proof,
the following lemmas can be used, which are of interest in their own right.

I Lemma 18. IfM is the uniform limit of a sequence (Mn)n≥1 of schema mappings each
of which allows for CQ-rewriting, then alsoM allows for CQ-rewriting.

I Lemma 19. LetM be a uniform limit of a sequence (Mn)n≥1 of LAV mappings. IfM
admits universal solutions, then it is closed under unions.

Assume thatM is a uniform limit of a sequence (Mn)n≥1 of LAV mappings and thatM
admits universal solutions. Since the notion of limit is based on CQ-equivalence, we may
assume w.l.o.g. thatM is closed under target homomorphisms. ThenM has the following
properties: M admits universal solutions; M allows for CQ-rewriting (Lemma 18); M is
closed under target homomorphisms; M is closed under unions (by Lemma 19). From
Theorem 3.1 in [19], it follows thatM is logically equivalent to a LAV mapping.

For the case when (Mn)n≥1 is a sequence of premise-bounded GLAV mappings (but not
necessarily LAV mappings), we apply yet another structural characterization theorem from
[19], namely Theorem 3.9, which asserts that if a schema mapping allows for CQ-rewriting,
admits universal solutions, is closed under target homomorphisms, and is n-modular, for
some fixed n, then it is logically equivalent to a GLAV mapping. Using machinery similar to
the one used for the closure under unions in Lemma 19, it can be shown that the uniform
limitM of the sequence (Mn)n≥1 is n-modular for some fixed n ≥ 1. The other structural
properties are handled as in the case of a sequence of LAV mappings. J

We conclude this section with a conjecture concerning uniform limits of arbitrary sequences
of GLAV mappings.

I Conjecture 20. The following statements are equivalent for a sequence (Mn)n≥1 of GLAV
mappings.
1. (Mn)n≥1 has an SO tgd as a uniform limit.
2. (Mn)n≥1 has a uniform limit that admits universal solutions.
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It is not hard to show that the preceding conjecture is implied by a conjecture in [2]
to the effect that the language of plain2 SO-tgds can be characterized by the following
three properties: allowing for CQ-rewriting, admitting universal solutions, and closure under
target homomorphisms. It appears, however, that the technical tools needed to resolve the
conjecture in [2] are not available at present.

6 Metric Space Completion and Generalized Schema Mappings

Let T be a schema containing a binary relation symbol. By Proposition 4, the metric
space (P(Inst(T)),dist) is not complete, i.e., there are Cauchy sequences of elements of
P(Inst(T)) that have no limit in P(Inst(T)). Let (P(Inst(T))∗,dist∗) be the completion
of (P(Inst(T)),dist). As described in Section 2, the elements of P(Inst(T))∗ are the
equivalence classes of Cauchy sequences of elements of P(Inst(T)), where two Cauchy
sequences I1,I2, . . . and J1,J2, . . . are equivalent if lim

n→∞
dist(In,Jn) = 0. Clearly, this is a

rather abstract description of P(Inst(T))∗. The main result of this section reveals that the
elements of P(Inst(T))∗ can be represented by suitably constructed infinite T-instances. In
turn, this result and basic results about complete metric spaces imply that the (pointwise or
uniform) limits of a Cauchy sequence of schema mappings can be represented by a generalized
schema mapping, that is, a schema mapping in which infinite solutions are allowed.

Let q be a conjunctive query with k free variables and let a be a k-tuple of constants.
We write q(a) to denote the instance K obtained by (i) substituting the free variables of q
by the respective elements of a; (ii) replacing the existential variables of q by fresh distinct
labeled nulls; and (iii) treating the resulting body atoms of q as facts of the instance K.

We write J1 ⊍ J2 to denote the disjoint union of two instances J1 and J2, that is, the
instance obtained as a union of J1 and J2 with all labeled nulls renamed apart. If X is a set
of instances, we write ⊍X to denote the disjoint union of all members of X. Note that we
do not necessarily assume X to be finite; thus, ⊍X may be an infinite instance.

We are now ready to state the main result of this section and sketch its proof.

I Theorem 21. Let (Jn)n≥1 be a Cauchy sequence of elements of P(Inst(T)). Then the
limit of the sequence (Jn)n≥1 is the singleton T-instance set J ∗, where

J ∗ = {⊍{q(a) ∣ q ∈ CQ and there is an integer p such that a ∈ cert(q,Ji), for every i ≥ p}}.

Proof (Sketch). We have to show that (Jn)n≥1 Ð→ J ∗, which means that for every integer
m ≥ 1 there exists an integer n0 ≥ 1 such that Jn ≡CQm

J ∗, for all n ≥ n0.
By definition, J ∗ is a singleton; we write J to denote the single element of J ∗. The first

crucial observation is that the set D of constants occurring in J is finite. To show this, we
consider single-atom conjunctive queries, that is, queries of the form ∃yR(x,y), where R is
a relation symbol in the target schema T. Clearly, every single-atom query has at most k
variables, where k is the maximum arity of the relation symbols in T.

Since the sequence (Jn)n≥1 is Cauchy, there exists an integer pk such that Ji ≡CQk
Jpk

,
for all i ≥ pk. This implies that the certain answers to single-atom conjunctive queries become
fixed in (Jn)n≥1 starting from some integer pk that depends only on the schema T. By
definition, the certain answers hold in every instance in Jpk

; moreover, every instance in
Jpk

is finite. Hence, the set D′ of the certain answers to single-atom conjunctive queries

2 A plain SO tgd is an SO tgd that contains no nested terms and no equalities. Every SO tgd is known
to be CQ-equivalent to a plain one [2].
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that eventually hold in (Jn)n≥1 is finite. To complete the proof of the finiteness, we show
that the set D of constants occurring in the instance J is contained in D′. To see this,
recall that J is composed of the bodies of conjunctive queries q(a) such that a ∈ cert(q,Jn),
for all sufficiently large n. Fix such a conjunctive query q with r atoms and consider its
decomposition to single-atom queries qi(ai), . . . , qr(ar), where qi has the i-th atom of q as its
body and ai contains the constants of a occurring in this atom. Observe that a ∈ cert(q,J )
implies ai ∈ cert(qi,J ), for every set J of instances. Consequently, the inclusion D ⊆ D′

holds, and thus D must be finite.
Now, given m, we need to provide n0 such that for all n ≥ n0, we have that Jn ≡CQm

J ∗

holds. In other words, n0 has to big enough to ensure the equality cert(q,Jn) = cert(q,J ∗) for
every conjunctive query q ∈ CQm. In order to guarantee the inclusion cert(q,Jn) ⊆ cert(q,J ∗),
it suffices to choose n0 greater than the index n1, starting from which all certain answers to
CQm queries become fixed in (Jn)n≥1. Such an index n1 exists since the sequence (Jn)n≥1 is
Cauchy. To ensure cert(q,J ∗) ⊆ cert(q,Jn), we analyze the values of q in the limit instance
J (recall that J ∗ is a singleton {J}). By the definition of J∗, atoms witnessing that J ⊧ q(b)
stem from the bodies of conjunctive queries q1(a1), . . . , q`(a`). All these conjunctive queries
hold in (Jn)n≥1 starting from some index. Inspecting finitely many conjunctive queries in
CQm and all possible certain answers to them, one can choose n0 large enough to ensure
that cert(q,J ∗) ⊆ cert(q,Jn) as well. J

In their recent monograph [15], Nešetřil and Ossona de Mendez considered a notion of
distance between instances, as well as sequences of instances and their limits. However, they
considered a different setting and followed a different approach: first, they did not distinguish
two classes of domain elements (constants and nulls) and, second, they heavily relied on
a quasi-order on instances based on homomorphisms. The limit of a Cauchy sequence of
instances is obtained in [15] via the concept of ideal completion. If (Jn)n≥1 is a Cauchy
sequence of elements of P(Inst(T)) such that all target instances appearing in this sequence
contain only nulls (and no constants), then our description of the limit J ∗ can be shown
to be equivalent in the one in [15]; moreover, in this case, only boolean conjunctive queries
contribute to the disjoint unions defining the limit.

We now recall two basic results about complete metric spaces.

I Proposition 22. Let (Y, d) be a complete metric space and let (fn)n≥1 be a sequence of
function from a set X to Y .

If (fn)n≥1 is a pointwise Cauchy sequence, then (fn)n≥1 has a pointwise limit f ∶X → Y ,
where f(x) = lim

n→∞
fn(x), for every x ∈X.

If (fn)n≥1 is a uniformly Cauchy sequence, then (fn)n≥1 has a uniform limit. Moreover,
the pointwise limit f ∶X → Y of (fn)n≥1 is also the uniform limit of (fn)n≥1.

The proof of the first part of Proposition 22 is immediate from the definitions; the proof
of the second part can be found in any standard book on metric spaces (see, e.g., Proposition
3.6.6 in [18]). Note that the second part of Proposition 22 is known as the Cauchy criterion.

We are now ready to obtain concrete representations of the (pointwise or uniform) limits
of Cauchy sequences of schema mappings.

I Definition 23. Let S,T be two schemas. A generalized schema mapping is a set M of
pairs (I, J) such that I is a finite S-instance and J is a possibly infinite T-instance.

I Corollary 24. Let (Mn)n≥1 be a sequence of schema mappings. Consider the generalized
schema mappingM = {(I, J) ∣ J = ⊍{q(a) ∣ q ∈ CQ and ∃p ∀i ≥ p a ∈ cert(q, I,Mi)}}
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If (Mn)n≥1 is a pointwise Cauchy sequence, then the schema mappingM is the pointwise
limit of (Mn)n≥1.
If (Mn)n≥1 is a uniformly Cauchy sequence, then the schema mappingM is the uniform
limit of (Mn)n≥1.

Proof. The first part follows from Theorem 21 and the definition of pointwise convergence.
The second part follows from the first part and Proposition 22. J

Finally, we consider (pointwise or uniformly) Cauchy sequences of schema mappings
admitting universal solutions and obtain a different representation of their limits.

I Corollary 25. Let (Mn)n≥1 be a pointwise Cauchy sequence of schema mappings over a
source schema S and a target schema T, each admitting universal solutions.
1. For every I ∈ Inst(S), the sequence (UnivSol(I,Mn))n≥1 is Cauchy, and hence it has a

limit lim
n→∞

(UnivSol(I,Mn)) in the complete metric space (P(Inst(T))∗,dist∗).
2. The generalized schema mapping M∗ = {(I, J) ∣ I ∈ Inst(S), J ∈ lim

n→∞
(UnivSol(I,Mn))}

is a pointwise limit of (Mn)n≥1. Moreover, if (Mn)n≥1 is a uniformly Cauchy sequence,
thenM∗ is its uniform limit.

7 Concluding Remarks

In this paper, we have embarked on a systematic study of the limiting behavior of sequences
of schema mappings using concepts and tools from metric spaces. For the important special
cases of GAV and LAV mappings, our main results are summarized in Figures 1 and 2.

In words, we have shown that, for GAV mappings, a pointwise Cauchy sequence need
not be uniformly Cauchy; moreover, the existence of a pointwise limit does not imply the
existence of a uniform limit. This cannot happen for LAV mappings. On the other side, a
uniformly Cauchy sequence of LAV mappings need not even have a pointwise limit, which
cannot happen for GAV mappings. We have also shown that structural properties of schema
mappings can be used to characterize when the limit of a pointwise Cauchy sequence of
GAV (or of LAV) mappings is equivalent to a GAV (or to a LAV) mapping. Finally, we have
shown that infinite target instances and generalized mappings (i.e., schema mappings where
target instances may be infinite) can be used to represent limits of Cauchy sequences of sets
of target instances and limits of Cauchy sequences of arbitrary schema mappings.

We believe that the work reported here has laid the foundation for several interesting lines
of subsequent investigations. We have seen that our results about sequences of LAV mappings
extend in a natural way to sequences of premise-bounded GLAV mappings; an analogous
extension of our results about sequences of GAV mappings to sequences of conclusion-bounded
GLAV mappings is left for future work. We have also seen that there are sequences of LAV
mappings for which no SO tgd is a uniform limit. Are there structural properties that
characterize when a sequence of GLAV mappings has an SO tgd as a pointwise limit? In
this vein, we have offered Conjecture 20. A related interesting open problem is whether
schema mappings with target constraints are powerful enough to express pointwise limits or
uniform limits of sequences of arbitrary GLAV schema mappings. We have some preliminary
evidence that this is plausible, but much more work remains to be done.

We believe that the work reported in this paper provides a new perspective on the study
of schema mappings by examining them from a dynamic viewpoint. As stated earlier, our
original motivation came from schema-mapping optimization and, in particular, from the idea
that “complex” schema mappings can be “approximated” by “simpler” ones. It remains to be
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pointwise Cauchy uniformly Cauchy

pointwise limit exists
(GAV iff allows for CQ rewriting)

Thm. 11

uniform limit exists

Thm. 8
(always GAV)

Thm. 8 Thm. 8

Prop. 9

(LAV iff admits univ.sol.)

Figure 1 Overall picture for GAV schema mappings.

pointwise Cauchy uniformly Cauchy

pointwise limit exists uniform limit exists
Thm. 14

Thm. 14

Thm. 15

(LAV iff admits univ.sol.)
Thm. 17 Thm. 17

(LAV iff admits univ.sol.)(GAV iff admits CQ rewriting)

Figure 2 Overall picture for LAV schema mappings.

seen whether the work reported here will lead to applications to schema-mapping optimization.
We believe, however, that the study of the limiting behavior of schema mappings via metric
spaces is interesting in its own right.

We also note there are several areas in theoretical computer science where the study of
limiting behavior of objects has produced results that were significant in their own right and
also had fruitful consequences. For example, starting with the work of Fagin [4], there has
been an extensive investigation of the asymptotic probabilities of logical properties and of 0-1
laws for various logics of interest in computer science. More recently, there has been a study
of profinite words, which has found applications to automata theory and to the satisfiability
problem for variants of monadic second-order logic (see, e.g., [17, 20]). Note that the profinite
words form the completion of a metric space on words in which the distance is based on the
size of the largest deterministic finite automaton needed to separate two words. Finally, as
mentioned in the previous section, there is a direct connection between graph limits in the
monograph [15] by Nešetřil and Ossona de Mendez and the completion of the metric space
(P(Inst(T)), d), which may merit further exploration. It should also be pointed out that,
motivated from the study of large-scale networks, there has been an extensive body of work
on a notion of graph limits arising from converging sequences of homomorphism densities;
a detailed account of this work is given in the monograph [13] by Lovász. In addition,
Nešetřil and Ossona de Mendez [16] developed a general framework for limits of graphs and
relational structures; in that framework, different fragments of first-order logic are used to
define different notions of limits arising from converging sequences of the frequencies that
first-order formulas in the fragment at hand are satisfied by an assignment (homomorphism
densities correspond to the fragment consisting of all quantifier-free conjunctive queries).
Homomorphisms, metric completions, and representations of limits of finite structures play a
central role in [13, 16]. The precise connections with the work reported here will have to be
worked out in a future investigation.
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Abstract
We study a class of integrity constraints for tree-structured data modelled as data trees, whose
nodes have a label from a finite alphabet and store a data value from an infinite data domain.
The constraints require each tuple of nodes selected by a conjunctive query (using navigational
axes and labels) to satisfy a positive combination of equalities and a positive combination of
inequalities over the stored data values. Such constraints are instances of the general framework
of XML-to-relational constraints proposed recently by Niewerth and Schwentick. They cover
some common classes of constraints, including W3C XML Schema key and unique constraints,
as well as domain restrictions and denial constraints, but cannot express inclusion constraints,
such as reference keys. Our main result is that consistency of such integrity constraints with
respect to a given schema (modelled as a tree automaton) is decidable. An easy extension gives
decidability for the entailment problem. Equivalently, we show that validity and containment
of unions of conjunctive queries using navigational axes, labels, data equalities and inequalities
is decidable, as long as none of the conjunctive queries uses both equalities and inequalities;
without this restriction, both problems are known to be undecidable. In the context of XML
data exchange, our result can be used to establish decidability for a consistency problem for
XML schema mappings. All the decision procedures are doubly exponential, with matching
lower bounds. The complexity may be lowered to singly exponential, when conjunctive queries
are replaced by tree patterns, and the number of data comparisons is bounded.
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1 Introduction

Static analysis is an area of database theory that focuses on deciding properties of syntactic
objects, like queries, integrity constraints, or data dependencies. The unifying paradigm is that
since these objects are mostly user-generated, they tend to be small; hence, higher complexities
are tolerable. Typical problems include satisfiability, validity, containment, and equivalence of
queries [5, 8, 23, 24], and consistency and entailment of constraints [13, 26]. More specialized
tasks include query rewriting in data integration scenarios [22], and manipulating schema
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mappings in data exchange and schema evolution scenarios [1, 12]. Many of these problems
are equivalent to satisfiability of fragments of first order logic, possibly over a restricted
class of structures, but they are rarely presented this way, because the involved fragments
are tailored for specific applications, and usually do not form natural sublogics. As the
satisfiability problem for first order logic is undecidable even for relatively simple fragments,
in static analysis undecidability is always close [15, 16].

In this paper we present a decidability result (with tight complexity bounds) for a problem
in static analysis for tree-structured data. The specific data model we consider is that of data
trees: finite ordered unranked trees whose nodes have a label from a finite alphabet and store
a data value from an infinite data domain. The problem has three possible formulations:

consistency modulo schema for a class of integrity constraints;
validity modulo schema for a class of queries; and
consistency for a class of schema mappings.

The more general problems of entailment (or implication) of constraints and containment of
queries are – as is often the case – very close to their restricted counterparts listed above,
and can be solved by easy modifications of our decision procedure.

Our basic setting is that of consistency of integrity constraints; it seems best suited for
proofs and – in combination with entailment – the most appealing. We consider non-mixing
constraints of the forms

α(x̄)⇒ η∼(x̄) and α(x̄)⇒ η�(x̄)

that require each tuple x̄ of nodes selected by α to satisfy, respectively, a positive combination
of equalities η∼ or a positive combination of inequalities η� over the stored data values. As
tuple selectors α(x̄) we use conjunctive queries over the signature including label tests and
the usual navigational axes.

What is the expressive power of non-mixing constraints? Let us first look at what they
cannot do. Being first-order constraints, they cannot compare full subtrees, unlike some
other formalisms [17, 18]. They have purely universal character (can be written as universal
sentences of first order logic), so they cannot express general inclusion dependencies nor
foreign keys, as these need quantifier alternation. Finally, the inability to mix freely data
equalities and inequalities within a single constraint makes them unable to express general
functional dependencies. What can they do, then?

Non-mixing integrity constraints can be seen as a special case of the general framework of
XML-to-relational constraints (X2R constraints) introduced by Niewerth and Schwentick [25].
Within this framework they cover a wide subclass of functional dependencies, dubbed XKFDs,
which are particularly well suited for tree-structured data and include W3C XML Schema key
and unique constraints [14], as well as absolute and relative XML keys by Arenas, Fan, and
Libkin [2], and XFDs by Arenas and Libkin [3]. XKFDs can be expressed with non-mixing
constraints of the form α(x̄)⇒ η�(x̄); that is, using only data inequalities.

Constraints of the form α(x̄)⇒ η∼(x̄) – that is, using only equalities – can express all
sorts of finite data domain restrictions, either to a specific set of constants or to a set of
data values taken from the data tree (the latter can be seen as a limited variant of inclusion
constraints), as well as cardinality restrictions over data values.

The novelty of our work is that we allow these two kinds of constraints simultaneously.
Unrestricted mixing of data equalities and inequalities in constraints would immediately
lead to undecidability [6], but for non-mixing constraints we can show decidability of the
consistency problem, and a slight extension of the proof gives decidability for entailment
(with the same complexity bounds).
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Under the second interpretation our result shows decidability of validity and containment
for unions of conjunctive queries where each conjunctive query can use either data equality
or inequality, but never both. Seen this way, our result is a uniform extension of decidability
results for UCQs using only data equality, and UCQs using only data inequality by Björklund,
Martens and Schwentick [6] (see also [9]). However, it cannot be obtained via a combination
of techniques used in these cases, as they are virtually contradictory: they require assuming
that almost all data values in counter-examples are, respectively, different and equal. If data
equalities and inequalities are mixed freely in UCQs, even validity is undecidable [6].

In its third incarnation, our result gives decidability of the consistency problem for XML
schema mappings with source integrity constraints, which asks to decide if there exists a
source instance which satisfies the integrity constraints and admits a target instance satisfying
the requirements imposed by the schema mapping.

In all three cases the decision procedure is doubly exponential. This bound is tight,
as already validity modulo schema for UCQs over trees without data values is 2ExpTime-
complete [6]. We show that restricting the CQs to tree patterns does not help. However, the
complexity does drop to ExpTime-complete when we replace CQs with tree patterns and
bound the number of variables used in data comparisons.

The remainder of the paper begins with a precise definition of non-mixing constraints
and a short discussion of their scope (Section 2). Then we present the decision procedure
for consistency of non-mixing constraints (Section 3), followed by a detailed discussion
of the entailment problem, the lower-complexity fragment, the relationships with existing
constraint formalisms, and the two alternative interpretations of our results (Section 4).
We conclude with a brief discussion of further extensions and open questions (Section 5).
An appendix containing the missing proofs is available at: http://www.mimuw.edu.pl/
~fmurlak/papers/concon.pdf.

2 Non-mixing constraints

Preliminaries

Let us fix a finite labelling alphabet Γ and a countably infinite set of data values D. A
data tree t is a finite ordered unranked tree whose nodes are labelled with elements of Γ by
function labt : domt → Γ, and with elements of D by function valt : domt → D; here, domt

stands for the domain of tree t, that is, the set of its nodes. If labt(v) = a and valt(v) = d,
we say that node v has label a and stores data value d. For a node v of t, we write tv for the
fragment of t consisting of trees rooted at v itself and at all preceding siblings of v. By slight
abuse of notation we write t− tv for the remaining part of t.

We abstract schemas as tree automata in the “previous sibling, last child” variant. A tree
automaton A is a tuple (Q, q0, F, δ), where Q is a finite set of states, q0 ∈ Q is an initial state,
F ⊆ Q is a set of accepting states, and δ ⊆ Q×Q× Γ×Q is a set of transitions. Being in a
node v of the input tree t, the automaton has processed tv. The state for node v depends on
the label of v and the states from the previous sibling and the last child of v. In leftmost
siblings and in leaves we resort to imaginary nodes outside of the actual tree t, which are
always assigned the initial state q0. Formally, let domcl

t be the set containing each node of t,
an artificial previous sibling for each leftmost sibling in t, and an artificial (last) child for
each leaf in t. A run of A on t is a function ρ : domcl

t → Q such that ρ(v) = q0 for every
node v ∈ domcl

t − domt, and for every node v ∈ domt with previous sibling vps and last child
vlc there is a transition (ρ(vps), ρ(vlc), labt(v), ρ(v)) ∈ δ. A run ρ is accepting if it assigns a
state from F to the root of t, and a tree t is accepted by A if it admits an accepting run.
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To facilitate the use of the standard first order semantics, we model data trees as relational
structures over signature

sigdt = {↓, ↓+,→,→+,∼,�} ∪ Γ ∪ D ∪ D̂

with D̂ =
{
d̂
∣∣ d ∈ D}; that is, we have

binary relations: child ↓, descendant ↓+, next sibling →, and following sibling →+;
data equality relation ∼ and data inequality relation 6∼ that contain pairs of nodes storing,
respectively, the same data value and different data values;
unary relation a for each label a ∈ Γ;
unary relations d and d̂ for each data value d ∈ D that contain nodes storing, respectively,
data value d and some data value different from d.

Signature sigdt is infinite (because of D and D̂), but queries use only finite fragments.
A conjunctive query α(x1, . . . , xn) over a signature sig is a first order formula of the form

∃y1 . . . ∃ym β(x1, . . . , xn, y1, . . . , ym) ,

where β(x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms over signature sig and variables
x1, . . . , xn, y1, . . . , ym, such that each variable occurs in at least one atom.

Definition

In their most general form, non-mixing integrity constraints σ are formulas of the form

α(x̄)⇒ η∼(x̄) ∧ η�(x̄)

where
α(x̄) is a conjunctive query over signature signav = {↓, ↓+,→,→+} ∪ Γ;
η∼(x̄) is a positive Boolean combination of atoms over sig∼ = {∼} ∪ D and variables x̄;
η�(x̄) is a positive Boolean combination of atoms over sig� = {�} ∪ D̂ and variables x̄.

Query α is called the selector of σ, and η∼, η� are its assertions. Non-mixing constraints
have the usual semantics of first order logic formulas: a data tree t satisfies constraint σ,
denoted t |= σ, if each tuple v̄ of nodes of t selected by α satisfies both η∼ and η�; that is,

t |= α(v̄) implies t |= η∼(v̄) ∧ η�(v̄) .

For a set Σ of non-mixing constraints, we write t |= Σ if t |= σ for all σ ∈ Σ.
Note that α⇒ η∼ ∧ η� is equivalent to {α⇒ η∼ , α⇒ η�}. Consequently, each set Σ

of non-mixing constraints is equivalent to Σ∼ ∪ Σ�, where Σ∼ is a set of constraints of the
form α⇒ η∼, Σ� is a set of constraints of the form α⇒ η�, and the sizes of Σ∼ and Σ� are
bounded by the size of Σ. Thus, without loss of generality, we restrict our attention to sets of
constraints of the form Σ∼ ∪Σ�, which do not mix sig∼ and sig� (hence “non-mixing”). One
can also assume that α is quantifier free: ∃ȳ α(x̄, ȳ)⇒ η(x̄) is equivalent to α(x̄, ȳ)⇒ η(x̄).

Scope

Using non-mixing constraints one can express a variety of useful constraints. Let us consider
a database storing information about banks, each in a separate sub-document. We want each
bank to be identified by its BIC number. This key constraint can be expressed as

qbic(x, x′) ∧ qbic(y, y′) ∧ x 6= y ⇒ x′ � y′
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where qbic selects the root of the sub-document for bank, and the node storing the BIC
number. Depending on the schema, query qbic could be for instance qbic(x, x′) = bank(x)∧x ↓
x′ ∧ BIC(x′). Node inequality 6= is not part of the signature, but can be expressed using
signav. Assuming that the roots of the sub-documents for banks are siblings, x 6= y can be
replaced by x→+ y. In general, we also need to consider four other possible ways in which
two different nodes x and y can be positioned in a tree (up to swapping x and y):

x ↓+ y , x→+ z ∧ z ↓+ y , z ↓+x ∧ z→+ y , and z ↓+x ∧ z→+ z′ ∧ z′ ↓+ y ,

which means that we need five non-mixing constraints to express a single key constraint.
Another natural constraint is that account numbers should be different for every account

within the same bank, but different banks may use the same account numbers. Such a
relative key constraint can also be expressed as

bank(z) ∧ z ↓+x ∧ z ↓+ y ∧ qacc(x, x′) ∧ qacc(y, y′) ∧ x 6=y ⇒ x′ � y′ ,

where qacc(x, x′) selects account x and its number x′, similarly to qbic.
We can also express multi-attribute keys (i.e. keys using composite fields). For example

qbic(u, u′)∧ qbic(v, v′)∧ u↓+x∧ v↓+ y ∧ qacc(x, x′)∧ qacc(y, y′)∧ x 6=y ⇒ u′�v′ ∨ x′�y′

asserts that BIC and account number form an absolute key, not relative to bank sub-document.
If, as a result of redundancy, BIC appears in several places within a bank sub-document,

using the singleton constraint

bank(x) ∧ x ↓+x′ ∧ BIC(x′) ∧ x ↓+x′′ ∧ BIC(x′′) ⇒ x′ ∼ x′′

we can guarantee that each time it gives the same value (for the same bank).
Assume now that each bank has a director and several branches, each of them having a

team of employees among which one is the manager of the branch. The information about
each employee is stored in a sub-document of its branch’s sub-document. Each employee
reports either to the manager of the branch or directly to the director of the bank. Using a
conjunctive query qsuper(x, y, z), we can select the director’s ID node x, the branch manager’s
ID node y and the node z storing the supervisor’s ID for an employee of the same branch.
The constraint on employee’s supervisor can be encoded as

qsuper(x, y, z) ⇒ x ∼ z ∨ y ∼ z .

Following this idea we can express inclusion constraints of a restricted form, where
the intended superset is a tuple of values that can be selected by a conjunctive query. This
includes enumerative domain restrictions, like the constraint

creditCard(x)∧x ↓+x′∧brand(x′)⇒ Visa(x′)∨MasterCard(x′)∨AmericanExpress(x′) ,

ensuring that banks issue only Visa, Master Card, and American Express cards. Unrestricted
inclusion constraints are beyond the scope of our formalism. Indeed, non-mixing constraints
cannot be violated by removing nodes, which is not the case even for the simplest unary
inclusion constraints, like each value stored in an a node is also stored in a b node.

Our formalism is also capable of expressing cardinality constraints. Assume, for
instance, that banks support charity projects by delegating their employees to help. The
projects are organized by category (culture, education, environment, etc.) and each project
sub-document carries the list of involved employees. For the sake of balance, we want each
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category to involve at most ten different employees in total. This can be imposed by selecting
eleven employee nodes below a single category node and imposing at least two of them to
carry the same data value by means of a long disjunction of data equalities. We can also
ensure that no employee is involved in more than three different projects: the conjunctive
query selects four different project nodes and an employee for each of them; the assertion
imposes at least two of the four employees to have different ID.

Let us remark that while these constraints look clumsy expressed as non-mixing constraints,
one can easily imagine a syntactic-sugar layer on top of our formalism. The point is that all
these constraints can be rewritten as non-mixing constraints of linear size (except for the
cardinality constraints, where the numerical bounds would be typically given in decimal).

In Section 4 we examine the expressive power of non-mixing constraints further by
comparing them to other existing formalisms.

3 Consistency problem

Our main result is decidability of the consistency problem for non-mixing constraints:

Problem: Consistency of non-mixing constraints
Input: A set Σ of non-mixing constraints, a tree automaton A.

Question: Is there a data tree such that t ∈ L(A) and t |= Σ ?

More precisely, we show the following theorem, establishing tight complexity bounds.

I Theorem 1. Consistency of non-mixing constraints is 2ExpTime-complete.

The proof of Theorem 1 is based on a simple idea with a geometric flavour, but does not
require any specialist knowledge from geometry or linear algebra. The key fact is an upper
bound on the number of affine subspaces that constitute an intersection of unions of affine
subspaces of an Euclidean space; it has a short elementary proof. From this bound we infer a
“bounded data cut” model property for non-mixing constraints, where by data cut of a data
tree t, denoted by datacut(t), we mean the maximum over nodes v ∈ domt of the number of
data values shared by tv and t− tv.

A subspace of D` is a subset of D` defined by equating pairs of coordinates and fixing
coordinates; that is, it is a set of points (x1, x2, . . . , x`) in space D` defined by a conjunction
of equalities of the form xi = xj or xi = d where d ∈ D. Each nonempty subspace of D` can
be defined by a canonical set of at most ` equalities such that

for each coordinate i we have either xi = xj with i < j, or xi = d with d ∈ D, or nothing;
each coordinate j occurs at most once on the right side of an equality; and
no data value d is used in more than one equality.

A subspace of D` has dimension k if its canonical definition consists of `− k equalities. In
other words, each equality that does not follow from the others decreases the dimension by
one. To enhance intuitions, let us remark that if we equip D` with the structure of linear
space by assuming that D is a field, this notion of dimension coincides with the classical
notion of dimension for affine subspaces (of which the subspaces above are a special case).

An intersection X ∩ Y of subspaces X,Y is also a subspace, defined by the conjunction
of conditions defining X and Y . If X 6⊆ Y , then the canonical definition of X ∩ Y contains
at least one more equation, consequently, the dimension of X ∩ Y is strictly smaller than the
dimension of X. Similarly, intersecting unions of subspaces, we obtain a union of subspaces;
the following lemma gives a bound on the size of such union.
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I Lemma 2. Let Z1, Z2, . . . , Zm ⊆ D` be such that each Zi is a union of at most n subspaces
of D`. Then, Z1 ∩ Z2 ∩ · · · ∩ Zm is a union of at most n` subspaces of D`.

Proof. Assume that Z1 ∩ Z2 ∩ · · · ∩ Zi−1 is a union X1 ∪X2 ∪ · · · ∪Xp of subspaces of D`.
We can write Zi as Y1 ∪ Y2 ∪ · · · ∪ Yn, where some of subspaces Yk may be empty. We have

Z1 ∩Z2 ∩ · · · ∩Zi = (X1 ∪X2 ∪ · · · ∪Xp)∩Zi = (X1 ∩Zi)∪ (X2 ∩Zi)∪ · · · ∪ (Xp ∩Zi) .

Let us examine a single Xj ∩ Zi. If Xj ⊆ Yk for some k, then Xj ∩ Zi = Xj . Otherwise,
Xj ∩ Zi is a union of n subspaces, Xj ∩ Y1, Xj ∩ Y2, . . . , Xj ∩ Yn, where each Xj ∩ Yk is
either empty or has dimension strictly smaller than Xj . Thus, when X1 ∪X2 ∪ · · · ∪Xp is
intersected with Zi, each Xj either does not change, or falls apart into at most n subspaces
of strictly smaller dimension; if Xj is a point, in the second possibility it disappears.

Now, consider the following process: begin with D`, a single subspace of dimension `,
and then intersect with Zi for i from 1 to m, one by one. It follows immediately from the
observation above that we cannot obtain more than n` subspaces in this process. J

We remark that the bound in Lemma 2 is tight, as shown by the following example.

I Example 3. 1 Assume 0, 1 ∈ D and let Zi =
{
x̄ ⊆ D`

∣∣ xi = 0 ∨ xi = 1
}
for i = 1, 2, . . . , `.

Then Z1 ∩ Z2 ∩ · · · ∩ Z` = {0, 1}` is a union of 2` (disjoint) subspaces of D` of dimension 0.

Based on this geometric fact, in Lemma 5 we bound the data cut of data trees witnessing
consistency of non-mixing constraints. The proof relies on a simple compositionality property
for conjunctive queries over trees, stated in Lemma 4 (see Appendix A for proof).

I Lemma 4. Let α(x̄, ȳ) be a conjunction of atoms over signav, where x̄ and ȳ are disjoint,
and let w be a node of a data tree t. For all tuples ū, ū′ of nodes from tw and tuples v̄, v̄′ of
nodes from t− tw, if t |= α(ū, v̄) and t |= α(ū′, v̄′), then t |= α(ū, v̄′) and t |= α(ū′, v̄).

I Lemma 5. If Σ∼ ∪ Σ� is satisfied in a data tree t, it is also satisfied in some data tree t′
obtained from t by changing data values, such that datacut(t′) ≤ ` · 2` · (`+m)`2 · |Σ∼|, where
`,m are the maximal numbers of variables and predicates from D ∪ D̂ in constraints of Σ∼.

Proof. Assume that t |= Σ∼ ∪Σ� and let w be a node of the data tree t. We shall replace all
but ` · 2` · (`+m)`2 · |Σ∼| data values used in tw with distinct fresh data values, thus ensuring
that in the resulting tree the number of data values used both in tw and t− tw is bounded
by ` · 2` · (`+m)`2 · |Σ∼|. As the fresh data values are be distinct, the new ∼ relation over
nodes of t is a subset of the old one. In consequence, the operation does not increase the
number of data values shared by tw′ and t− tw′ for other nodes w′. For the same reason,
the obtained tree still satisfies Σ�. We only need to ensure that Σ∼ is not violated.

Consider a constraint α⇒ η∼ in Σ∼. Recall that we assume that α is quantifier free. Let
x̄, ȳ be a partition of variables used in α (one of the tuples x̄, ȳ may be empty). We shall
indicate the partition of variables by writing the constraint as α(x̄, ȳ)⇒ η∼(x̄, ȳ). Directly
from the definition it follows that t |= α ⇒ η∼, if and only if for each partition x̄, ȳ of
variables in α, for each tuple ū of nodes from tw and each tuple v̄ of nodes from t− tw, if
t |= α(ū, v̄), then t |= η∼(ū, v̄).

Fix a partition x̄, ȳ. By Lemma 4, this is equivalent to: for all tuples ū, ū′ of nodes from
tw and all tuples v̄, v̄′ of nodes from t− tw, if t |= α(ū, v̄) and t |= α(ū′, v̄′), then t |= η∼(ū, v̄′).

1 Provided by Michał Pilipczuk, during the Warsaw Automata Group’s research camp Autobóz 2015.
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Let us turn this into a condition on stored data values. Define η(x̄, ȳ) as the formula
obtained from η∼(x̄, ȳ) by replacing ∼ with =, and d(x) with x = d for all variables x and
all d ∈ D. Reformulating the condition above we obtain: for each tuple ū of nodes from tw
such that t |= α(ū, v̄) for some tuple v̄ of nodes from t− tw, the tuple valt(ū) of data values
belongs to the set

Zα(x̄,ȳ)⇒η∼(x̄,ȳ) =
⋂
v̄′

{
c̄ ∈ D|x̄|

∣∣ η(c̄, valt(v̄′))
}
,

where v̄′ ranges over tuples of nodes from t− tw satisfying t |= α(ū′, v̄′) for some tuple ū′ of
nodes from tw.

Let val′ : domt → D be a new data labelling of t. Since we are only planning to change
data values stored in nodes of tw, the labelling val′ does not violate Σ∼ if and only if for
each constraint α(x̄, ȳ)⇒ η∼(x̄, ȳ) in Σ∼ (with each partition of variables), for each tuple ū
of nodes from tw that satisfies t |= α(ū, v̄) for some tuple v̄ of nodes from t− tw, the tuple
val′(ū) belongs to the set Zα(x̄,ȳ)⇒η∼(x̄,z̄). Writing η(x̄, valt(v̄′)) in the disjunctive normal
form, we see that the set

{
c̄ ∈ D|x̄|

∣∣ η(c̄, valt(v̄′))
}
is a union of subspaces of D|x̄|. How many

subspaces? The canonical definition of each nonempty subspace has for each coordinate i
either an equality xi = xj for some j > i, or an equality xi = d for some d ∈ D, or nothing.
In our case, d is a data value used explicitly in η or occurring in the data tuple valt(v̄′).
Consequently, the number of these subspaces can be bounded by (N + |x̄|+ |ȳ|)|x̄|, where N
is the number of data values used explicitly in η. That is, Zα(x̄,ȳ)⇒η∼(x̄,ȳ) is an intersection
of unions of at most (N + |x̄|+ |ȳ|)|x̄| subspaces of D|x̄|. By Lemma 2, it is a union of at most
(N + |x̄|+ |ȳ|)|x̄|2 subspaces. Let us analyse the restrictions it puts on val′. We have declared
that we shall only replace some data values in tw with fresh data values. That is, equalities
of the form xi = xj in the definitions of those subspaces will not get violated. It remains to
check that equalities of the form xi = d are not violated. Each subspace involves at most |x̄|
such equalities, so for set Zα(x̄,ȳ)⇒η∼(x̄,ȳ) we have at most |x̄| · (N + |x̄|+ |ȳ|)|x̄|2 of them. Let
D ⊆ D be the set of data values occurring in these equalities for all sets Zα(x̄,ȳ)⇒η∼(x̄,ȳ), with
α(x̄, ȳ)⇒ η∼(x̄, ȳ) ranging over constraints from Σ∼ with all possible partitions of variables.
We have |D| ≤ |Σ∼| · 2` ·

(
` · (m+ `)`2), where ` and m are the maximal numbers of variables

and predicates from D ∪ D̂ in constraints from Σ∼. Altogether, a labelling val′ that replaces
each data value from D−D used in tw with a fresh data value does not violate Σ∼. J

Having obtained Lemma 5, we are ready to prove Theorem 1. In the proof we use register
tree automata. These are tree automata, equipped additionally with a finite number of
registers. The registers can store data values (from D) read from the data tree or just guessed,
and compare them with data values seen later in the tree. Formally, a register tree automaton
A is a tuple (Q, q0, F, k, δ), where Q is a finite set of states, q0 ∈ Q is an initial state, F ⊆ Q
is a set of accepting states, k is the number of registers, and δ is a set of transitions. A
transition in δ is of the form (qps, qlc, a, qcur , E), where qps, qlc, qcur ∈ Q, a ∈ Γ, and E is an
equivalence relation over {val} ∪

(
{ps, lc, cur} × {1, . . . , k}

)
in which each equivalence class

contains at most one element from {l} × {1, . . . , k} for each l ∈ {ps, lc, cur}.
Next, we define how A runs on a data tree t. Similarly to a standard tree automaton,

to compute the state and the register valuation in some node, automaton A uses the state
and the register valuation from the previous sibling and the last child of that node. The
equivalence relation E of the transition specifies which data values are equal: val denotes
the data value stored in the tree node, (ps, i) denotes the data value assigned to the i-th
register in the previous sibling, and similarly for (lc, i) and (cur , i). We do not specify initial
register valuations: the register valuation in an imaginary previous sibling or last child may
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be arbitrary. Formally, a run ρ = (ρQ, ρD) of A on t is given by functions ρQ : domcl
t → Q

and ρD : domcl
t × {1, . . . , k} → D such that for every node v ∈ domcl

t − domt it holds that
ρQ(v) = q0, and for every node v ∈ domt with previous sibling vps and last child vlc there
is a transition (ρq(vps), ρq(vlc), labt(v), ρq(v), E) ∈ δ with E = {(a, b) | as(a) = as(b)} where
as(val) = valt(v), as(ps, i) = ρD(vps, i), as(lc, i) = ρD(vlc, i), as(cur , i) = ρD(v, i). Run ρ is
accepting if ρQ assigns a state from F to the root of t.

Our automata cannot store the same value in more than one register, like in the seminal
paper by Kaminski and Francez [18]; this guarantees polynomial-time emptiness test.

I Theorem 6. It is decidable in polynomial time whether a given register tree automaton
accepts at least one data tree.

Kaminski and Francez [19] introduced register automata for words; the tree variant was
proposed by Kaminski and Tan [20]. The emptiness problem was already considered in [20],
but since our automaton model is slightly different, we give a sketch of the proof in Appendix B.

To prove Theorem 1, we reduce consistency of non-mixing constraints to emptiness of
register tree automata of doubly exponential size. The register automaton we construct
computes a representation of tuples selected from the input data tree by the selector queries
of Σ∼ ∪ Σ�. To explain how this can be done, we need some auxiliary notions.

A partial valuation of variables x1, . . . , xk is a function

f : {x1, x2, . . . , xk} → domt ∪ {⊥} .

If f(xi) 6= ⊥, we say that xi is matched at f(xi), and if ui = ⊥ we say that xi is not matched.
Two partial valuations of the same set of variables are disjoint, if no variable is matched by
both of them. The union of disjoint partial valuations f, g of variables x1, . . . , xk is given as

(f ∪ g)(xi) =
{
f(xi) if f(xi) 6= ⊥
g(xi) otherwise

A partial matching of α(x̄) in tw is a partial valuation f of variables x̄ such that variables
are matched only in the nodes of tw, each atom in α(f(x̄)) that does not contain ⊥ holds
true, and each atom that contains both a node from tw and ⊥ is of the form

w → ⊥, w′ →+ ⊥, ⊥ ↓ w′, or ⊥ ↓+ v ,

where w′ is a preceding sibling of w or w itself, and v is an arbitrary node of tw. The last
condition means that each such atom can be made true (independently of others) by replacing
⊥ with a node from t− tw, unless w has no following siblings or no ancestors in t.

If t |= α(ū), each partial valuation matching a subset of variables xi at nodes ui from
tw is a partial matching of α. Conversely, if a partial matching f matches all variables x̄,
then t |= α(f(x̄)). Note, however, that not every partial matching can be extended so that it
matches all variables: remaining atoms may be satisfiable on their own, but not together.

Proof of Theorem 1. Let Σ∼ ∪ Σ� be a set of non-mixing integrity constraints and let A
be a tree automaton. We shall construct a register tree automaton B such that B accepts at
least one data tree if and only if some tree accepted by A satisfies Σ∼ ∪ Σ�. Automaton B
will be the product of automaton A and a register tree automaton C of doubly exponential
size. We would like automaton C to check if the input data tree satisfies Σ∼ ∪ Σ�, but this
does not seem possible. Instead, automaton C will accept data trees that satisfy Σ∼ ∪Σ� up
to a relabelling of data values. This is sufficient to guarantee correctness of the reduction.
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For all tuples ū such that t |= α(ū), automaton C should check that the corresponding
assertion η(ū) holds. For that it suffices to know the equalities between data values stored in
nodes ū and the ones used explicitly in η. The information about these equalities is collected
node by node: when automaton C is in a node w of input data tree t, it has processed tw,
and t− tw remains to be processed. To compute these equalities we need to keep track of
data values used in tw that will also occur in t− tw. We use registers to store them. More
precisely, automaton C stores in registers M data values used explicitly in Σ∼ ∪ Σ� (this is
the only way it can perform comparisons with them), and some data values shared by tw
and t− tw. Number M is bounded by the size of the input. The number of values shared by
tw and t− tw is in general unbounded, but for a tree of optimal data cut we can store all of
them, as, by Lemma 5, their number is bounded by some N , singly exponential in the size of
the input. These two sets of values may overlap, but M +N registers are enough to store
them. Automaton C cannot determine which data values are used in Σ∼ ∪ Σ�, nor which
data values seen in tw will be used again in t− tw, so it uses nondeterminism to fill in the
registers. The first M registers are guessed in each initial configuration and never changed;
the remaining ones are updated (nondeterministically) in each processed node w.

In states, automaton C remembers for each selector α(x̄) a subset ∆α(x̄) of

{r1, r2, . . . , rM+N ,>1,>2, . . . ,>`,⊥}|x̄| ,

where ` is the maximal number of variables used in constraints in Σ∼ ∪ Σ�. Each such
tuple represents a partial matching of α(x̄) in tw, and the whole ∆α(x̄) represents a set of
such partial matchings. The intended meaning of the symbolic values is as follows: ri in
coordinate j of the tuple means that variable xj is matched and its data value is stored in
the i-th register, >i means that variable xj is matched but we do not store the corresponding
data value and consider it different from all others, ⊥ means that variable xj has not been
matched. In the initial state, each ∆α(x̄) is {(⊥,⊥, . . . ,⊥)}. When some ∆α(x̄) contains a
tuple that does not use ⊥ and does not satisfy the corresponding assertion η(x̄), automaton
C rejects the input tree t immediately.

Let us describe the transition relation. Assume that automaton C is about to determine
the state in a node w. Let w′ and w′′ be, respectively, the previous sibling and the last
child of w. The set of partial matchings of α(x̄) in tw depends only on the sets of partial
matchings in tw′ and tw′′ , and the label of w. Indeed, a partial valuation of x̄ is a partial
matching of α(x̄) in tw if it is the union of disjoint partial matchings of α(x̄) in tw′ and tw′′
extended by matching some (yet unmatched) variables at node w, respecting two conditions.
For all atoms xi → xj , xi →+ xj in α(x̄), either xi, xj are both matched in tw′′ or none is;
and the new matching of variables at w does not violate the definition of partial matching.
The latter can be expressed as follows:

if α(x̄) contains xi ↓ xj or xi ↓+ xj , we may match xi at w only if xj is matched in tw′′ ;
for xi ↓ xj , if xj is matched, we must match xi, unless it is matched already;
if α(x̄) contains xi → xj or xi →+xj , we may match xj at w only if xi is matched in tw′ ;
for xi → xj , if xi is matched, we must match xj , unless it is matched already;
if α(x̄) contains a(xi), we may match xi at w only if labt(w) = a.

Checking the conditions above requires only information about which variables are matched
in tw′ and tw′′ ; the used tree nodes are not relevant. Consequently, one can determine the set
of tuples representing partial matchings in tw based on the sets of tuples representing partial
matchings in tw′ and tw′′ , and the label of the current node w. In the resulting representation
we use r′i and r′′i for the copies of the registers from the previous sibling w′ and the last child
w′′, and curr as a symbolic representation of the data value in the current node w. Next, we
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update the content of the registers. Registers 1, 2, . . . ,M must store the same values in both
branches of the run, and they are never modified. Registers M + 1,M + 2, . . . ,M +N are
filled with distinct values chosen nondeterministically. Some of these values may be copied
from registers M + 1,M + 2, . . . ,M +N in one of the two branches of the run, or from the
current node w. After updating the content of registers, we must reflect the changes in sets
∆α(x̄). If the new value in the i-th register is equal to the one in the j-th register in node w′
for some i, j, all occurrences of r′j are replaced by ri; analogously for node w′′. Similarly, if
the value in the i-th register is equal to valt(w), we replace curr with ri. At this point, all
remaining symbols r′j , r′′k , and curr represent data values that are not expected to be seen
again. For each such symbol, in each tuple separately, we replace all its occurrences with a
distinct unused element of set {>1,>2, . . . ,>`}; there are always enough elements available.

Let us see that automaton C is correct. By construction, it accepts each data tree
satisfying Σ∼ ∪ Σ�, whose data cut is at most N : initially it guesses correctly the M data
values used in Σ∼ ∪ Σ�, and then in each processed node w it guess a content for the
remaining N registers such that all data value shared by tw and t− tw are stored. Lemma 5
guarantees that if Σ∼ ∪Σ� is satisfiable, it is satisfiable in a data tree of data cut at most N .

It remains to see that if C accepts a data tree t, then by modifying data values in t we
can obtain a data tree satisfying Σ∼ ∪ Σ�. Observe first that each data tree accepted by C
satisfies Σ∼, modulo a relabelling of data values (there is no guarantee that automaton C
correctly guesses the values used in Σ∼ ∪Σ�, but since registers always store different values,
each permutation of D that sends the content of the i-th register to the i-th data value used
in Σ∼ ∪ Σ� fixes it). Indeed, in each partial matching represented by a given tuple, actual
data values represented in the tuple by the same symbol are always equal. So, when an
assertion η∼ holds for the representing tuple, it also holds for each represented matching.
The same is not ensured for assertions η�. Indeed, when automaton C sees a data value
that is not in the registers, it assumes that it is different from all data values seen before
and now represented by >1,>2, . . . ,>`. But in fact, this value might have been seen, and
later forgotten and replaced with a value >i in the tuples representing partial matchings.
Consequently, in some represented matchings, the same data value may be represented with
two (or more) different symbols. We shall show how to modify the data values in t to obtain
a data tree, also accepted by automaton C, for which data values represented with different
symbols are always different.

Let ρ be an accepting run of automaton C on data tree t. For each node w and each data
value d that is not stored in the registers after processing node w, replace all occurrences of d
in tw and in the corresponding part ρw of run ρ with a fresh data value. The resulting run ρ′
is an accepting run of automaton C on the resulting tree t′. In data tree t′, two nodes store
the same data value if and only if they stored the same value in t and on the shortest path
connecting these nodes this data value was always kept in a register in run ρ. Applying a
permutation of D if necessary, we may assume that the values stored in registers 1, 2, . . . ,M
are indeed the data values used in Σ∼ ∪ Σ�. Hence, as we have argued, t′ |= Σ∼ because
automaton C accepts t′. Let us check that t′ |= Σ�. If a data value valt(w), represented
symbolically by curr, is already stored in some register ri during run ρ, then by definition of
register tree automaton it is identified with ri. Symbol curr is not identified with any ri only
if valt(w) is stored in none of the registers. By construction of t′, valt′(w) does not occur in
t′w, and it is correct to represent it with a distinct symbolic value (which is also done in run
ρ′). Thus, in each partial matching represented by a given tuple, data values represented by
different symbols are indeed different, and if assertion η� holds for the representing tuple, it
also holds for each represented matching. This concludes the proof that t′ |= Σ∼ ∪ Σ�.
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Since number M +N is singly exponential, so is the number of tuples representing partial
matchings. Each state of automaton C stores a set of such tuples for each constraint, so C is
doubly exponential; it can be also constructed in doubly exponential time. By Theorem 6,
we test emptiness of the product of tree automaton A and register tree automaton C in time
polynomial in the size of the product. This amounts to a 2ExpTime algorithm.

The matching lower bound can be shown via a reduction from the acceptance problem
for alternating Turing machines using exponential space, already for constraints that use
tree patterns as selectors and assertions over sig∼ only; see Appendix C for details. J

4 Extensions, connections, and applications

Entailment of non-mixing constraints

A static analysis problem more general than consistency is entailment. Recall that a set of
constraints Σ′ is entailed by a set of constraints Σ modulo a tree automaton A, written as
Σ |=A Σ′, if for each data tree t accepted by automaton A,

t |= Σ implies t |= Σ′ .

The entailment problem is then defined as follows:

Problem: Entailment problem for non-mixing constraints
Input: sets Σ, Σ′ of non-mixing constraints, tree automaton A

Question: Σ |=A Σ′ ?

Entailment is a more general problem than consistency, but for non-mixing constraints the
results on consistency generalize to entailment almost effortlessly.

I Theorem 7. Entailment of non-mixing constraints is 2ExpTime-complete.

Proof. Inconsistency is a special case of entailment: Σ is inconsistent with respect to an
automaton A if and only if Σ |=A ⊥, where ⊥ is an inconsistent set of constraints, say{
a(x)⇒ 0(x) ∧ 1(x)

∣∣ a ∈ Γ
}
. Thus, the lower bound follows.

Lemma 5 shows that witnesses for consistency can have bounded data cut. The same is
true for counter-examples to entailment. Suppose t |= Σ and t 6|= Σ′. Then, t |= α′(ū)∧¬η′(ū)
for some constraint α′(x̄) ⇒ η′(x̄) from Σ′ and some tuple ū of nodes of t. Let D0 be the
set of data values used in the nodes ū. We can repeat the construction of t′ word for word,
except that we replace the set D of values not to be touched by D ∪ D0. This increases
datacut(t′) by the maximal number of variables in the constraints of Σ′.

The automata construction in the proof of Theorem 1 is modified similarly. It is enough
to consider Σ′ consisting of a single constraint α′(x̄) ⇒ η′(x̄). Let M ′ be the number of
data values used explicitly in Σ′. The number of registers is increased by M ′ + |x̄|, to
accommodate these data values, and the ones stored in the nodes ū that witness satisfaction
of α′(x̄) ∧ ¬η′(x̄) in t. All these values are guessed by the automaton in the beginning of
the run, and never modified. In the states the automaton additionally stores a set ∆α′(x̄) of
tuples representing partial matchings of α′(x̄) such that the matched nodes store the initially
guessed values (symbolic values >i are not used in ∆α′(x̄)). The automaton behaves like
before, additionally checking that ∆α′(x̄) contains a tuple without ⊥ that satisfies ¬η′(x̄).

The argument does not change if η′(x̄) mixes predicates from sig∼ and sig�. J
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A singly exponential fragment

A closer look at the complexity of our algorithm reveals that it is double exponential only
in the maximal number ` of variables in the constraints, which appears in two roles: in the
exponent of the bound on the number of data values stored in registers, and as the length of
tuples representing partial matchings of selectors. A slightly more detailed analysis of the
proof of Lemma 5 shows that in the first role ` could be replaced by the maximal number `′
of variables used in the assertions. Indeed, since data equalities involve only variables used in
assertions, everything is in fact happening in a space of dimension at most `′. While limiting
the size of selector queries to lower complexity makes little sense, limiting the number of
variables in assertions seems acceptable. But what about the second role of ` ?

The need to represent all partial matchings (up to data equality type) comes from the fact
that the automaton is evaluating conjunctive queries all over the tree. The standard technique
to lower complexity in such cases is to replace conjunctive queries with tree patterns, which
are essentially tree-structured conjunctive queries. In the most basic form, with only ↓ and
↓+ axes allowed, a tree pattern is a conjunctive query π over signature {↓, ↓+} ∪ Γ, such that
graph (Aπ, ↓π ∪ ↓+π ) is a directed tree, where Aπ = (Aπ, ↓π, ↓+π , {aπ}a∈Γ) is the canonical
relational structure associated to query π in the usual way: the universe Aπ is the set of
variables of π, and relations are given by the respective atoms in π. For non-mixing integrity
constraints, restricting selectors to tree patterns does not suffice to lower the complexity:
the reduction in Appendix C uses only such constraints (and no assertions over sig�). But
together with the bound on the number of variables in assertions – it does (see Appendix D).

I Proposition 8. For non-mixing constraints whose selectors are tree patterns and whose
assertions use constantly many variables, consistency and entailment are ExpTime-complete.

Static analysis of unions of conjunctive queries

Our results can be reinterpreted in the framework of static analysis of unions of conjunctive
queries (UCQs). Note that t 6|= α(x̄)⇒ η(x̄) if and only if t |= ∃x̄ α(x̄) ∧ ¬η(x̄). It follows
immediately that the problem of validity of UCQs over signature sigdt that never mix
predicates from sig∼ and sig� – call them non-mixing UCQs – reduces in polynomial time to
inconsistency of non-mixing constraints. Similarly, containment of such queries reduces to
entailment of non-mixing constraints. The converse reduction is also possible, but it involves
exponential blow-up, caused by rewriting arbitrary Boolean combinations in disjunctive
normal form. This correspondence brings our results very close to the work by Björklund,
Martens, and Schwentick on static analysis for UCQs over signature signav ∪ {∼,�} [6].

On one hand, our results immediately give the following decidability result for the setting
considered by Björklund, Martens, and Schwentick (constraints used in our 2ExpTime lower
bound can be rewritten without blow-up).

I Theorem 9. Over signav ∪ {∼,�}, both validity of non-mixing UCQs and containment of
UCQs in non-mixing UCQs (with respect to a given tree automaton) are 2ExpTime-complete.

Results of Björklund, Martens, and Schwentick give 2ExpTime upper bound for containment
in UCQs over signav ∪ {∼} and UCQs over signav ∪ {�}. The original work is on CQs, but
arguments for UCQs are the same [9]. Essentially, they amount to an observation that in
counter-examples to containment p ⊆ q, all data values can be set equal (in the case with �)
or different (in the case with ∼), except for a bounded number of them needed to witness
satisfaction of p; such counter-examples can be easily encoded as trees over a finite alphabet,
and recognized by an automaton evaluating p and q in the usual way. Theorem 9 extends
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both these results. Since we have both ∼ and � in query q, we cannot assume that all data
values are equal, nor that all are different; our more involved approach seems necessary.

The third relevant result of [6] is that containment of CQ p over signav ∪ {∼} in CQ q

over signav ∪{∼,�} is 2ExpTime-complete. It looks stronger than ours because query q can
mix ∼ and �. In fact, it is much weaker, depending entirely on the fact that q is a single
CQ, not a UCQ. More specifically, the argument is as follows: if q uses �, the answer is yes
if and only if p is not satisfiable with respect to the tree automaton (a witness can have all
data values equal, so it definitely does not satisfy q); if q does not use ∼, we are back in the
case of UCQs over signav ∪ {∼}.

On the other hand, some results of Björklund, Martens, and Schwentick give a broader
context to our results. They show that validity with respect to a given automaton is already
2ExpTime-complete for unions of conjunctive queries over signature signav, that is, for trees
without data. Consequently, restricting only assertions of non-mixing constraints would not
lower the complexity. This is complementary to our 2ExpTime lower bound, which shows
hardness for constraints using tree patterns as selectors. Hence, the only way to lower the
complexity is to restrict both, selectors and assertions. Björklund, Martens, and Schwentick
also show that for UCQs over signav ∪ {∼,�} validity is undecidable; this means that we
cannot go beyond non-mixing assertions.

XML constraints

Non-mixing constraints form an instance of the general framework of XML-to-relational (X2R)
constraints proposed by Niewerth and Schwentick [25]: tuple selectors are conjunctive queries
over signav, schemas are tree automata, and relational constraints are positive quantifier-free
formulas over sig∼ or sig�. Niewerth and Schwentick investigate two classes of relational
constraints: functional dependencies (FDs) and XML-key FDs (XKFDs). In the X2R setting,
tuple selectors return nodes and data values, in separate “columns”. In an FD

A1A2 . . . Am → B ,

A1, A2, . . . , Am, B are arbitrary columns (referring either to nodes or to data values); in an
XKFD, B is required to be a node column. Our setting captures XKFDs, but not general
FDs. Consider an X2R constraint given by a CQ α(x1, . . . , xn) populating a table with
tuples (x1, . . . , xn,@x1, . . . ,@xn), where @xi stands for the data value stored in the node
represented by variable xi, and an XKFD x1, . . . , xj ,@xj+1, . . . ,@xn−1 → xn (it makes no
sense to use both xi and @xi in the same constraint). Such constraint can be rewritten as

α(x1, . . . , xn)∧α(x1, . . . , xj , x
′
j+1, . . . , x

′
n)∧xn 6= x′n ⇒ xj+1 � x′j+1∨· · ·∨xn−1 � x′n−1 ,

which can be turned into a set of five non-mixing constraints by replacing xn 6= x′n with
simple subqueries describing possible ways of arranging two different nodes in a tree, as
explained in Section 2. Note that these constraints do not use ∼. Hence, for XKFDs
with UCQs over signav as tuple selectors decidability of entailment follows already from the
results on containment of UCQs over signav ∪ {∼}, discussed in the previous subsection; the
challenge tackled by Niewerth and Schwentick is to determine the exact complexity and
identify tractable fragments.

If we replace the XKFD above with an FD x1, . . . , xj ,@xj+1, . . . ,@xn−1 → @xn we have

α(x1, . . . , xn)∧α(x1, . . . , xj , x
′
j+1, . . . , x

′
n) ⇒ xj+1 � x′j+1∨· · ·∨xn−1 � x′n−1∨xn ∼ x′n ,
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which cannot be expressed without mixing ∼ and �. As we have explained, consistency
and entailment is undecidable for such constraints, but one can investigate fragments with
restricted schemas and tuple-selectors. This is what Niewerth and Schwentick do.

As XKFDs with tree patterns as tuple-selectors can express XML Schema key and unique
constraints [14], XML keys by Arenas, Fan, and Libkin [2], and XFDs by Arenas and
Libkin [3], so can non-mixing constraints. A technical subtlety is that some of these classes of
constraints apply to nodes of a specified type (playing the role of a state in XML Schemas).
As proposed by Niewerth and Schwentick, we can deal with it by annotating tree nodes with
types (verified by the automaton encoding the schema), and let the patterns refer to types
and labels. This slight extension does not affect our complexity bounds. Also, XML Schema
key constraints demand that each field path selects at most one node, and XML Schema key
constraints demand exactly one node; this can be checked by the automaton too. In practice,
one often wants at most (or exactly) one data value, not tree node. This may or may not
be equivalent. To express that at most one data value is selected, we can use the singleton
constraints discussed in Section 2. Note that this requires assertions over sig∼.

Consistency of XML schema mappings

Schema mappings are a formalism used in data exchange scenarios to specify relations
between instances of two database schemas, a source schema and a target schema [1, 11, 21].
In the basic setting for XML [4], schemas can be abstracted as tree automata, and the
relation between source and target instances can be defined by a set Σ of dependencies of
the form

α(x̄)⇒ α′(x̄)

where α, α′ are conjunctive queries over signav, treated as queries selecting data values, not
nodes. That is, a pair of data trees (t, t′) satisfies dependency σ of the form above, written
as (t, t′) |= σ, if{

valt(ū)
∣∣ t |= α(ū)

}
⊆
{

valt′(ū)
∣∣ t′ |= α′(ū)

}
.

The consistency problem for XML schema mappings [4] is to decide for a given schema
mappingM = (A,A′,Σ), whether there exists a tree t accepted by automaton A and a tree
t′ accepted by automaton A′ such that (t, t′) |= Σ. This problem is known to be decidable:
without loss of generality one may assume that all data values in t and t′ are equal, and use
standard automata techniques ignoring data values. This is not only uninspiring theoretically,
but also not very practical: an instance with all data values equal is not a convincing witness
that the mapping makes sense. What if the source schema includes constraints, say XML
Schema key or unique constraints? We cannot assume that all data values are equal any
more. As we have argued in the previous subsection, such constraints can be expressed with
non-mixing constraints, which leads us to the problem of consistency with source constraints,
a common generalization of consistency of constraints and schema mappings: given a schema
mappingM = (A,A′,Σ) and a set of non-mixing constraints Σsrc, decide if there exist a
tree t accepted by automaton A and a tree t′ accepted by automaton A′ such that t |= Σsrc
and (t, t′) |= Σ.

The following lemma gives the connection between XML schema mappings and non-
mixing constraints that allows us to apply our decidability result. It was proved in a slightly
different but equivalent form in [10]. A non-mixing constraint with free data value predicates
uses additional unary predicate symbols in the assertions. A data tree t satisfies a set Σ
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of such constraints (possibly sharing some additional predicate symbols) if it satisfies Σ′
obtained from Σ by replacing each additional predicate symbol with some d ∈ D. Free data
value predicates are not problematic for the consistency algorithm, as it can guess the data
values to replace them; up to equality type with respect to data values already used in Σ,
there are only exponentially many possibilities.

I Lemma 10. For each schema mappingM = (A,A′,Σ) one can compute in doubly exponen-
tial time sets Σ1

∼,Σ2
∼, . . . ,Σm∼ of non-mixing constraints with free data value predicates, each

obtained from Σ by replacing target-side queries α′(x̄) with assertions η∼(x̄) of exponential
size, such that for each data tree t, t |= Σi for some 1 ≤ i ≤ m if and only (t, t′) |= Σ for
some data tree t′ accepted by automaton A′.

Thus, mappingM is consistent with source constraints Σsrc if and only if at least one
of the sets Σi

∼ ∪ Σsrc obtained via Lemma 10 is consistent with respect to automaton A.
Since the number of variables in each involved constraint is linear, the latter can be tested
in 2ExpTime, as the algorithm from Section 3 is doubly exponential only in the maximal
number of variables. As Lemma 10 translates mappings into constraints with assertions over
sig∼, even if Σsrc is just a set of key constraints (expressible with assertions over sig�), we
need the full power of non-mixing constraints, allowing assertions over sig∼ and sig�.

5 Conclusions

We have shown that consistency and entailment of non-mixing constraints are decidable.
Both problems are 2ExpTime-complete, but become ExpTime-complete when we restrict
selector queries to tree patterns and bound the number of variables in assertions. We have
reinterpreted these results in terms of validity and containment of conjunctive queries, as
well as consistency of schema mappings. The latter setting best illustrates the benefits of
combining assertions over sig∼ and sig�. Indeed, equalities are involved even in the simplest
schema mappings, and inequalities allow to cover key constraints over the source database.

We worked with ordered trees, but our results immediately carry over to unordered trees:
as long as the signature does not contain the horizontal axes, one can freely move back and
forth between ordered and unordered trees by forgetting the sibling order or introducing it
arbitrarily. As the 2ExpTime lower bound does not use the horizontal axes, it holds also
for unordered trees. The reduction can be adapted to the case of unlabelled trees: one can
simulate labels with unique small tree gadgets attached to the main nodes of the tree and
use the automaton to ensure that each main node has exactly one gadget attached. However,
referring to the gadgets with selector queries requires either the next sibling or the following
sibling relation. For unordered unlabelled trees the complexity might drop.

Our decidability results can be pushed further to constraints with selector queries defined
in monadic second order logic (MSO) over the signature signav (an extension of first order
logic with second-order quantification over sets). To this end, one reproves Lemma 5 using
compositionality of MSO instead of Lemma 4; this requires considering MSO types and
makes the bound on the data cut non-elementary. One concludes by using decidability of
MSO over the signature signav ∪ sig∼ ∪ sig� on trees of bounded data cut [7].

Yet another context in which our results can be applied is the static analysis of XPath
queries [5]. In their basic form, our results immediately give decidability of the containment
problem (in the presence of a schema) for unions of XPath queries without negation, where
each query uses either equality or inequality, but never both. The extension to MSO
discussed above allows free use of negation, as long as equalities and inequalities are not
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used under negation. But it does not give satisfying complexity bounds. It seems worthwhile
to investigate the complexity issue deeper, and look at ways of extending this towards full
XPath, for which decidability of satisfiability remains open.
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Abstract
Inconsistent databases (i.e., databases violating some given set of integrity constraints) may arise
in many applications such as, for instance, data integration. Hence, the handling of inconsistent
data has evolved as an active field of research. In this paper, we consider two fundamental
problems in this context: Repair Checking (RC) and Consistent Query Answering (CQA).

So far, these problems have been mainly studied from the point of view of data complexity
(where all parts of the input except for the database are considered as fixed). While for some
kinds of integrity constraints, also combined complexity (where all parts of the input are allowed
to vary) has been considered, for several other kinds of integrity constraints, combined complexity
has been left unexplored. Moreover, a more detailed analysis (keeping other parts of the input
fixed – e.g., the constraints only) is completely missing.

The goal of our work is a thorough analysis of the complexity of the RC and CQA problems.
Our contribution is a complete picture of the complexity of these problems for a wide range
of integrity constraints. Our analysis thus allows us to get a better understanding of the true
sources of complexity.

1998 ACM Subject Classification H.2.0 Database Management – General

Keywords and phrases inconsistency, consistent query answering, complexity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.21

1 Introduction

Database management systems (DBMS) allow the definition of several forms of integrity
constraints (ICs) to specify restrictions on the data to be stored. The DBMS ensures that
the stored data indeed satisfies the ICs. However, in modern applications where data is
integrated from several sources, violations of the ICs may arise even if the data in each single
source satisfies the ICs. Hence, the handling of inconsistent data (i.e., data violating the
given ICs) has evolved as an active field of research, see e.g., [5, 6, 9, 23] for surveys and
[11, 13, 16, 18, 20] for recent work. The foundations of this research were laid by Arenas et
al. in [4], where the key concepts of repairs and of consistent answers were introduced.

Given a set C of ICs and a (presumably inconsistent) database instance D, a repair of
D w.r.t. C is a database instance I which satisfies C and which differs minimally from D.
Difference and minimality can be defined in several ways. We follow the approach of [4]
where repairs are obtained from the original database by the insertion and deletion of tuples
and minimality means that the symmetric set difference ∆(D, I) is minimal w.r.t. subset
inclusion. More formally, let ∆(D, I) = (D \ I) ∪ (I \D). Then I is a repair of D w.r.t. C if
I satisfies C and there does not exist an instance I ′ that satisfies C and ∆(D, I ′) ( ∆(D, I).
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The idea of consistent query answers is that even from an inconsistent database instance
D, we can derive consistent information, namely those answers to a query that one would
obtain over every repair I of D. More precisely, the set of consistent answers to a query Q
for a given database D and ICs C is defined as

⋂
{Q(I) | I is a repair of D w.r.t. C}.

I Example 1. Consider the set of constraints C = {Course(p, c)→ Prof(p)} consisting of a
single inclusion dependency which states that every course must be taught by a professor.
Now let us define our database D = {Course(db, alice),Course(dm, bob),Prof(alice)} that
describes two courses: The course database systems (db) taught by Alice (alice) and discrete
mathematics (dm) taught by Bob (bob). We observe that D is inconsistent w.r.t. C: While
for the course offered by Alice there exists a corresponding tuple Prof(alice), there is no such
tuple for Bob, violating the single constraint contained in C.

There are two possible repairs, that is, consistent databases that differ minimally from
D: We can either add Bob as a professor, yielding I1 = D ∪ {Prof(bob)} or we remove the
discrete mathematics course, yielding I2 = D \ {Course(dm, bob)}. It is easy to see that I1
and I2 are consistent. Yet to check that these are indeed repairs, we have to show that they
differ minimally from D in terms of symmetric difference and subset minimality. Indeed,
both have just a single tuple in their symmetric difference with D, thus there can be no
other consistent database instance with a smaller symmetric difference to D. In contrast,
the instance I3 = ∅ is not a repair as, while it fulfills all constraints, repair I2 has a smaller –
in terms of set inclusion – symmetric difference (I2 removes only the offending tuple, while
I3 removes all tuples).

Let us now proceed to answering queries. Assume that we pose the query Q = Course(p, c).
The only consistent answer to Q given C and D is the tuple Course(db, alice) as it is contained
in all repairs (both in I1 and in I2). In contrast, Course(dm, bob) is not a consistent answer,
as it is not contained in the repair I2.

The following decision problems are crucial to deal with inconsistent data:

Repair Checking (RC)
Instance: Databases D and I and a set of constraints C
Question: Is I a repair of D w.r.t. C?

Consistent Query Answering (CQA)
Instance: A database D, a set of constraints C, and a Boolean query Q
Question: Is Q true in all repairs of D w.r.t. C?

Goal. Most research on the RC and CQA problems has focused on data complexity. For
the CQA problem, this means that constraints C and query Q are considered as fixed and
only the database D is allowed to vary. There are a few exceptions, as some works also
consider the combined complexity, where all three parts of the input are allowed to vary, e.g.
[8, 3]. However, for several kinds of integrity constraints, the combined complexity has been
left unexplored. Moreover, a more detailed analysis (keeping other parts of the input fixed)
is completely missing. For instance, what happens if we just fix the integrity constraints C,
which is a relatively typical setting in a system where data and queries vary, but constraints
stay the same? What about other types of complexity – after all, with three parts of the
input, there is a total of seven reasonable combinations.

The goal of our work is a thorough analysis of the complexity of the CQA and RC
problems. As an important special case, we also consider the complexity of these problems



S. Arming, R. Pichler, and E. Sallinger 21:3

when the arity of the relation symbols is bounded by a constant. Known results in the area
provide important parts of the picture (in particular with respect to data complexity). Yet
when considering all possible types of complexity (i.e., parts of the input to be fixed or
varying), it turns out that for most cases the exact complexity is actually not known. In this
work, we complete the picture, allowing us to get a better understanding of the true sources
of complexity.

As far as the queries Q are concerned, we concentrate on the fundamental class of Boolean
conjunctive queries. It can be easily verified that all of our results carry over to arbitrary
conjunctive queries (i.e., asking if a given tuple is contained in the answer to Q over every
repair I) and unions of conjunctive queries. We consider a number of different languages
from which the constraints C are taken. The languages considered here range from first-order
logic as the most powerful one to inclusion dependencies and key dependencies which are
among the least expressive ones. In total, the contribution of this work is a complete picture
of the complexity of the RC and CQA problems for a wide range of constraint classes.

Organization. In Section 2 (preliminaries), we introduce the constraint classes and com-
plexity classes that are considered in this work. This will allow us to give an overview of
our results in Section 3 – starting with the CQA problem (Section 3.1) and continuing with
the RC problem (Section 3.2). The intuition of the results and selected proofs are given in
Section 4 for repair checking and after that, in Section 5, for consistent query answering. We
give concluding remarks in Section 6.

2 Preliminaries

We assume familiarity with the relational data model [1]. Below we recall some basic notions
to fix the notation. A schema S is a triple (U ,R,B) where U is a countable domain, R is a
finite set of relation symbols (each with some arity), and B is a finite set of built-in predicates,
e.g. B = {≤,=}. Each built-in predicate from B comes with some fixed, not necessarily
finite, relation over U . We restrict ourselves here to the equality predicate, i.e., B = {=}.
However, it is easy to see that allowing other standard comparisons does not change our
results. The relation symbols of R and B are called the vocabulary of the schema, and give
rise to a language of first-order predicate logic. The arity of the schema is the maximum of
the arities of the symbols in the vocabulary. A database instance is a finite set of facts of
the form R(a1, . . . , an) where R ∈ R is a relational symbol of arity n, and a1, . . . , an are all
elements from U . Each database instance corresponds to a structure of the vocabulary.

We have already defined the RC and CQA problems in the introduction. We now give
additional notation that will be helpful in the sequel. Given a database instance D and a
first-order sentence ϕ such that ϕ is true in D, i.e. it is true in the structure corresponding
to D, we write D |= ϕ and say that D is consistent with ϕ. We often extend this notation to
finite sets of first-order sentences Φ, writing D |= Φ if D |= ϕ for every ϕ ∈ Φ.

For an arbitrary database instance D, we define the partial order ≤D on database
instances as I ≤D I ′ iff ∆(D, I) ⊆ ∆(D, I ′). Given a set of first-order sentences C and a
database instance I, we can thus say that I is a repair of D w.r.t. C iff I |= C and there is no
I ′ with I ′ �D I and I ′ |= C. A Boolean query Q is a first-order sentence. We write D |=C Q

to mean that Q is true in all repairs of D w.r.t. C. In this work, we restrict ourselves to
Boolean conjunctive queries.

IC languages. Figure 1 shows the hierarchy of the IC languages considered here.

ICDT 2016
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FO
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lav tgd

ID

full ∨-tgd

full tgd

UC

denial

egd

FD

key

Figure 1 Hierarchy of IC languages.

Besides domain independent first-order (FO) sentences, all studied languages arise from
restrictions on formulas of the following form

∀~x(ϕ(~x) ∧ β(~x)→
n∨
i=1
∃~yi ψi(~x, ~yi))

where ϕ, ψi are conjunctions of database atoms and β is a quantifier-free formula using only
built-in predicates (i.e. equality and – in case of negated form – inequality, in this work) .
To ensure safety, we require that every variable in ~x must occur in some relational atom in
ϕ. We assume that constraints do not contain constants.

We call such a constraint a full or a universal constraint (UC) if it contains no existential
quantifiers. A disjunctive tuple generating dependency (∨-tgd) has empty β, while an ordinary
tuple generating dependency (tgd) additionally has n = 1. A local-as-view (lav) tgd is a tgd
where ϕ is a single atom, and an inclusion dependency (ID) is a lav tgd where also ψ1 is a
single atom. A denial constraint is of the form ∀~x¬(ϕ(~x) ∧ β(~x)) and can be thought of as a
universal constraint with empty right hand side. An equality generating dependency (egd) is of
the form ∀~x(ϕ(~x)→ xi = xj) and can be thought of as a denial constraint where β is a single
inequality. Given a relation symbol R of arity n, two sets I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n} and
pairwise distinct variables x1, . . . , xn, y1, . . . , yn, a functional dependency (FD) over R is a
formula of the form

∀~x(R(x1, . . . , xn) ∧R(y1, . . . , yn) ∧
∧
α∈I

xα = yα →
∧
β∈J

xβ = yβ .

W.l.o.g., we may exclude trivial FDs by assuming that I ∩ J = ∅ holds. Clearly, FDs are a
special case of egds, since we can of course propagate the equalities on the left-hand side
into the R-atoms and we can get rid of the conjunction on the right-hand side by splitting
such a formula into |J | formulas with identical left-hand side and a single equality on the
right-hand side. A key constraint is an FD where I ∪ J = {1, . . . , n} holds.

Note that in this work, we do not distinguish between individual constraints and sets of
constraints. In particular, as argued above, an FD or a key constraint corresponds to a set
of egds. This has to be kept in mind for the inclusions shown in Figure 1.

Complexity classes. Apart from the more familiar complexity classes P, NP, PSPACE and
EXP we will refer to the following classes. First recall that Σ2P is the class of problems



S. Arming, R. Pichler, and E. Sallinger 21:5

decidable by an NP Turing machine with an NP oracle, and Σ3P contains the problems
decidable by an NP Turing machine with a Σ2P oracle. A typical complete problem for Σ3P
is the problem ∃QSAT3, which asks whether a given quantified boolean formula with three
alternating blocks of quantifiers, starting with an existential quantifier, is satisfiable. The
co-classes of Σ2P and Σ3P are called Π2P and Π3P, respectively. In a similar way, Π2EXP
denotes the class of problems that can be decided by a coNEXP Turing machine with an NP
oracle. The class Θ2P consists of the problems that can be decided by a P Turing machine
with nonadaptive calls to an NP oracle (i.e., calls not depending on previous calls).

Next, the Boolean hierarchy BH is the class of languages that can be expressed as a
Boolean combination of languages in NP, i.e., every language in BH can be built from finitely
many NP languages using intersection and complementation. An alternative characterization
of BH (which is then called QH) is as the languages decidable by a P Turing machine using a
constant number of calls to an NP oracle.

We use the notation C1 ∧ C2 to denote the conjunctive Boolean combination of two
complexity classes (a language from C1 ∧ C2 is the intersection of a language from C1 and a
language from C2). Using this notation, we define the last two relevant complexity classes,
namely DP which is NP∧ coNP, and its analogue one step higher in the polynomial hierarchy
DP2 which is Σ2P ∧ Π2P. For further details on the complexity classes recalled above, we
refer the reader to [14, 19].

3 Overview of Results

In this section, we give an overview of our results. We start in Section 3.1 with the Consistent
Query Answering (CQA) problem, as it is more natural to explain the different types of
complexity here. We then continue in Section 3.2 with the Repair Checking (RC) problem.

3.1 Consistent Query Answering
In this section, we discuss the complexity of consistent query answering. Recall that the CQA
problem as defined in Section 1 has three parts of input: the database instance, the set of
constraints, and the query. Most of the previous research has focused on a particular variant
of this problem, where constraints and query are considered fixed, and the input consists
only of the database instance. The complexity of this variant is called the data complexity.

Yet, as we have three parts of input, there are seven possible variants to consider (as
fixing all parts yields a trivial problem). In this section, we study all of the variants of CQA
for all the dependency classes introduced in Section 2 and for boolean conjunctive queries as
the query language.

In order to unambiguously identify the variants, we now introduce a notation based on
[3, 6]. We will write CQA(X) to refer to the variant of consistent query answering where X
is fixed. For example, data complexity is denoted as CQA(C,Q), since in this variant, C and
Q are fixed. For the variant where no parts of the input are fixed, we simply write CQA
rather than CQA(). Another, orthogonal, restriction considered in the literature is bounding
the arity of the schema, which we will also consider in this work.

Overview of results. Table 1 shows the complexity of all CQA variants for each of the IC
languages from Figure 1. All results in the table are completeness results, with the exception
that we typically do not further classify problems in P and undecidable problems. Only for
the CQA variants with FDs we show L-membership in order to match the previously known
L-membership result for the data complexity of the RC problem for FDs.

ICDT 2016
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Table 1 Complexity of CQA. All entries denote completeness results (except for those inside P
and undecidable problems). Black triangles indicate upper (H) and lower (N) bounds shown in this
paper. White triangles indicate previously known bounds (concrete references can be found in the
paragraph on “Known results”).

IC L CQA CQA(D) CQA(C) CQA(Q) CQA(C,Q) CQA(D,C) CQA(D,Q)
FO undec undec undec undec undec undec undec

∨-tgd undec undec undec undec undec undec undec
tgd undec undec undec undec undec M undec N undec M

lav tgd NP O NP NP NP in P O NP NP N

ID NP NP NP in P H in P NP M in P
UC Π2EXP H Π2EXP Π2P O Π2EXP Π2P NP H Π2EXP

full ∨-tgd Π2EXP Π2EXP Π2P Π2EXP Π2P M NP Π2EXP N

full tgd EXP H EXP Π2P N EXP coNP MO NP M EXP N

denial Π2P O BH H Π2P Π2P coNP O NP BH
egd Π2P BH Π2P Π2P N coNP NP BH N

FD Π2P NP H Π2P coNP O coNP NP in L H

key Π2P NP Π2P N coNP coNP M NP M in L

Table 2 Complexity of CQA with bounded arity. Complexity for combinations not shown are as
in Table 1.

IC L CQA CQA(D) CQA(Q) CQA(D,Q)
UC Π3P H Π3P Π3P Π3P

full ∨-tgd Π3P Π3P Π3P Π3P N

full tgd Π2P H Θ2P H Π2P N Θ2P N

For showing the results claimed in Table 1, it is not necessary to separately show
membership and hardness for each single cell. Figure 1 shows the rich inclusion structure
between the constraint languages (e.g., every ID is a lav tgd). Recall that lower bounds
propagate from more restricted problems to more general ones and upper bounds propagate
from more general problems to more restricted ones. Thus, it suffices to show only certain
membership and hardness results.

We use triangles in Table 1 to indicate the upper (O/H) and lower (M/N) bounds that
have to be shown in order to obtain all results given in the table. Black triangles indicate
upper bounds (H) and lower bounds (N) shown in this paper. White triangles indicate upper
bounds (O) and lower bounds (M) given in previous work.

I Theorem 2. For all variants of the CQA problem studied here, the complexity is as depicted
in Table 1.

We also consider CQA with bounded arity. In most cases, the complexity remains the same as
for the unbounded case. Yet, where the unbounded case has provably exponential complexity,
the bounded case yields complexity results inside the polynomial hierarchy. Table 2 depicts
those cases.

I Theorem 3. For the variants of the CQA problem with bounded arity, the complexity is
as depicted in Table 2; in all other cases, the complexity is as given in Table 1.

Known results. In Section 5, we will give the intuition of our results for CQA (black
triangles in Tables 1 and 2). In the remainder of this section, we summarize results given in
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or implicit in previous work (white triangles in Table 1). We proceed from the first to the
last column of Table 1, top to bottom.

We first consider CQA (the first column of Table 1). NP-membership for lav tgds follows
from [22, Theorem 4.7] as a by-product of the P-membership proof for the data complexity.
Π2P-membership for denial constraints follows from [8], where Π2P-completeness for key
constraints is stated, and it can be checked that it still holds for denial constraints.

Turning to CQA(C) (the third column of Table 1), we have that Π2P-membership for UCs
is implicit in [21, Lemma 4]. For CQA(Q) (the fourth column of Table 1), coNP-membership
for FDs is established by a straightforward algorithm that guesses a counter-example and
the fact that model-checking for FDs is in L.

We now proceed to CQA(C,Q) (i.e., data complexity, the fifth column of Table 1).
Undecidability for tgds is shown in [22, Theorem 7.2] while P-membership for lav tgds is
shown in [22, Theorem 4.7]. Π2P-completeness for UCs is given in [21, Theorem 6]. A slight
modification of the proof shows that hardness already holds for full ∨-tgds. We now proceed
to full tgds. coNP-hardness for full tgds is given in [22, Theorem 5.5]. coNP-membership
for full tgds and denial constraints is given in [21]. The matching coNP-hardness for key
dependencies is shown in [10, Theorem 3.3].

We next turn to CQA(D,C) (i.e., query complexity, the penultimate column of Table 1).
NP-hardness for IDs, full tgds and key dependencies follows trivially from the NP-hardness
of conjunctive query answering. The result for IDs was also implicit in [8]. Finally, we
proceed to CQA(D,Q) (the last column of Table 1). Undecidability for tgds follows by a
slight modification of [22, Theorem 7.2].

3.2 Repair Checking
In this section, we discuss the complexity of repair checking. Recall that the RC problem as
defined in Section 1 has three parts of input: two database instances and a set of constraints.
As with consistent query answering, previous research has focused on data complexity, which
in this case means that the two database instances are the input, while the constraints are
considered as fixed.

We use the same notation as for CQA. That is, we write RC(X) to refer to the variant of
repair checking where X is fixed. For example, data complexity is denoted as RC(C). For the
variant where no part of the input is fixed, we again write RC rather than RC().

While the CQA problem has three dimensions (data, constraints and query), the RC
problem only has two dimensions (data and constraints - as both D and I refer to data). For
this reason, it is natural to treat both database instances D and I in the same way, i.e. we
either fix both or none of them. In fact, it can be shown that fixing only one of the database
instances does not lead to any change of complexity. That is, for the considered constraint
languages, the problem variants RC(D) and RC(I) have the same complexity as RC. Thus,
for every hardness result of RC, we can actually show two hardness results, namely one for
RC(D) and one for RC(I). Note however, that we do not explicitly consider RC(D,C) and
RC(I,C). Of course, the membership results for RC(C) implicitly carry over to the RC(D,C)
and RC(I,C) cases.

Overview of results. Table 3 shows the complexity of the considered RC variants for each
of the IC languages from Figure 1. The notation used is as described in Section 3.1 for
Tables 1 and 2. Again all results in the table are completeness results, with the exception
that we typically do not further classify problems in P. However, in addition to the cases of
FDs, we now also establish an L-membership result for IDs in case of the RC(D,I) problem.
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Table 3 Complexity of RC. Black triangles indicate upper (H) and lower (N) bounds shown in
this paper. White triangles indicate previously known bounds (concrete references can be found in
the paragraph on “Known results”).

IC L RC RC(D,I) RC(C)
FO PSPACE H PSPACE M coNP O

∨-tgd Π3P H DP2 H coNP
tgd Π3P N DP2 N coNP M

lav tgd DP H DP N in P O

ID in P H in L H in P
UC Π2P H DP H coNP

full ∨-tgd Π2P N DP coNP M

full tgd DP H DP N P MO

denial DP H DP in L O

egd DP DP N in L
FD in L H in L in L
key in L in L in L

I Theorem 4. For all variants of the RC problem studied here, the complexity is as depicted
in Table 3. The complexity does not change in the case of bounded arity.

Known results. In Section 4, we will give the intuition of our results for RC (black triangles
in Table 3). In the remainder of this section, we summarize results given in or implicit in
previous work (white triangles).

First, we consider RC(D,I) (the second column of Table 3). The PSPACE-hardness for
FO follows immediately from the PSPACE-hardness of first-order model checking. We now
proceed to RC(C) (i.e., data complexity, the last column of Table 3). Staworko [21] showed
coNP-completeness for UCs [21, Corollary 3] and P-membership for full tgds [21, Theorem 2].
A slight modification of the proofs shows that coNP-hardness already holds for full ∨-tgds.
The matching P-hardness for full tgds was given in [2, Theorem 5], where also coNP-hardness
for tgds [2, Theorem 7] and L-membership for denial constraints [2, Proposition 5] was proved.
The P-membership for lav tgds was given in [22, Theorem 4.9], and the coNP-membership
for FO constraints in [2, Proposition 4].

As a concluding remark, note that in Table 3, we do not separately list RC with bounded
arity. A quick inspection of our hardness proofs shows that, in case of the Repair Checking
problem, the complexity does not change if the arity is bounded.

4 Repair Checking – Intuition

In this section, we will give the intuition and present selected proofs for the repair checking
problem. We first illustrate the sources of complexity by discussing the membership results.
After that, we will present selected hardness proofs.

The naive algorithm. Repair checking has two fundamental sources of complexity, namely,
checking that the supposed repair I is consistent, and checking that it is indeed minimal.
This immediately gives the following naive algorithm:
1. check consistency of I
2. check minimality of I by considering the co-problem, where we try to guess a counter-

example to minimality (i.e., a consistent instance with smaller symmetric difference)
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Since every database instance with a smaller symmetric difference has size at most polynomial
in the size of the input, the guess is polynomial. Thus, if we know that the complexity of
model checking of a constraint language is in C, then our naive algorithm yields an upper
bound of C ∧ coNPC for the variant of RC where all parts of the input vary. Recall that we
write C1 ∧ C2 to denote the conjunctive Boolean combination of two complexity classes.

For C = NP (which is the case for lav tgds), it it easy to see that the entire second step
fits into coNP. Indeed, for the co-problem, one can simultaneously guess a counter-example
(a database instance) and a witness for its consistency. In this case, RC is in DP. For other
classes C, the coNPC factor dominates.

In many cases, one cannot do better than that. In particular, considering the RC problem
(i.e., all parts of the input are allowed to vary), we use the upper bound given by the naive
algorithm to show PSPACE-membership for FO, Π3P-membership for ∨-tgds, DP-membership
for lav tgds, and Π2P-membership for UCs (four of the H in the first column of Table 3).

Beyond the naive algorithm. In some cases, one can do better than the naive algorithm.
For full tgds, [21, Lemma 1] provides an NP test for checking minimality of a candidate
repair. Since model checking for full tgds is in coNP, we get a DP algorithm for RC.

For denial constraints, the minimality check only needs to test if all immediate supersets
are inconsistent. This is the case since denial constraints can only be repaired by deletions
and since they are monotone in the sense that supersets of inconsistent instances are always
inconsistent. Since consistency can be checked in coNP for denial constraints, we thus
have a DP algorithm for RC. For FDs, the tractability of consistency checking yields a
polynomial-time (actually, even a logarithmic-space) algorithm for RC.

For IDs, P-membership for RC exploits the existence of a unique subset repair (subset
repairs are those repairs that can be obtained by deletions only). Such a subset repair can be
computed in polynomial time in case of IDs. Using a construction similar to the one given in
[22, Lemma 4.8], we can exploit subset repairs to devise a polynomial-time algorithm for the
RC problem of IDs.

Fixing the instances. If we fix the instances D and I, that is, if we consider RC(D, I), the
naive algorithm can be refined into:
1. check consistency
2. for every instance I ′ between D and I, check I ′ 6|= C

Observe that the second step of the algorithm has turned from a guess into an explicit
computation. In total, this refined version yields an upper bound of C ∧ co C. Let us now
consider the results for RC(D,I) (the second column of Table 3): Using this algorithm, we
obtain DP2-membership for ∨-tgds and DP-membership for UCs. For IDs, we can further
improve the P upper bound to an L upper bound. This completes our discussion of the
membership results shown in Table 3.

Sources of complexity. An inspection of our proofs yields an interesting relationship
between the roles of consistency and minimality checking, our two orthogonal sources of
complexity. For tgds and full ∨-tgds, minimality checking dominates the complexity of
RC. In particular, hardness holds even if the given instance is promised to be consistent.
In contrast, for our DP results for RC, the role of consistency and minimality checking is
distributed between the NP and the coNP parts of DP (i.e. if one check requires NP power
and the other one requires coNP power). As a consequence, if the given instance is promised
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to be consistent, the complexity of RC for lav tgds drops to coNP while for full tgds and
egds it drops to NP.

Selected hardness proofs. We now present two hardness proofs illustrating typical tech-
niques used to obtain our results. Many of our reductions from QSAT problems share similar
machinery. We thus define a set and a formula transformation that we will need in most of
these proofs. First, we define a set ĉ that encodes the legal value-combinations of literals in
a clause of a 3CNF formula (i.e., all combinations except for c(0, 0, 0)). Here we identify the
truth value true (resp. false) with 1 (resp. 0):

ĉ = {c(0, 0, 1), c(0, 1, 0), c(0, 1, 1), c(1, 0, 0), c(1, 0, 1), c(1, 1, 0), c(1, 1, 1)}

If ψ is a 3CNF formula of the form ψ =
∧
i(li1∨li2∨li3), then we denote by ψ∗ the conjunction∧

i c(l∗i1, l∗i2, l∗i3) where l∗ij = x if lij is the positive literal x and l∗ij = x if lij is the negative
literal ¬x. For example, [(x ∨ ¬z ∨ y) ∧ (¬z ∨ y ∨ ¬y)]∗ = c(x, z, y) ∧ c(z, y, y).

I Lemma 5. There is a database instance D such that RC(D) for tgds is Π3P-hard. This
holds even for bounded arity and if it is known that I |= C.

Proof. We proceed by reduction from ∃QSAT3 to the co-problem of RC. Let

ϕ = ∃x1 . . . xk ∀y1 . . . yl ∃z1 . . . zm ψ

be an arbitrary instance of ∃QSAT3. W.l.o.g., we may assume that ψ is in 3CNF. From this,
we construct an instance (D, I, C) of RC, such that ϕ is true if and only if I is not a repair
of D w.r.t. C.

D = ĉ ∪ {q(0, 1), q(1, 0)} (1)

I = D ∪ {c(0, 0, 0)} ∪
⋃

1≤i≤k
{pi(0, 1), pi(1, 0)} (2)

C =
⋃

1≤i≤k
{q(x, x′)→ ∃yy′ pi(y, y′)} (3)

∪
⋃

1≤i≤k
{pi(x, y) ∧ pi(y, x)→ c(x, x, x)} (4)

∪
⋃

1≤i≤k
{q(x, y) ∧ c(x, x, x) ∧ c(y, y, y)→ pi(x, y)} (5)

∪ {
∧

1≤i≤k
pi(xi, xi) ∧

∧
1≤i≤l

q(yi, yi)→ ∃z1z1 . . . zmzm
∧

1≤i≤m
q(zi, zi) ∧ ψ∗} (6)

It is easy to see that I is a superset of D that is consistent with C. So we claim that ϕ is
true if and only if there is a consistent instance I ′ with D ⊆ I ′ ( I. The constraints restrict
such an instance I ′ to a specific form:
1. I ′ does not contain c(0, 0, 0): otherwise by (5) it would contain all of I.
2. I ′ contains exactly one of pi(1, 0) and pi(0, 1) for all i ≤ k: by (3) I ′ contains at least

one, and (4) would add c(0, 0, 0) if more than one were present.
The second property establishes a natural 1-to-1 correspondence between such instances and
truth assignments to the xi variables: instance I ′ corresponds to truth assignment µ with

µ(xi) =
{
T if pi(1, 0) ∈ I ′

F if pi(0, 1) ∈ I ′

and vice versa. Finally note that I ′ satisfies C, and in particular the last constraint (6), if
and only if ∀~y ∃~z ψ is satisfied by the assignment µ corresponding to I ′. J
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We note that while these constraints are not weakly acyclic (see e.g. [22]), the proof can be
easily adapted to turn the constraints into a weakly acyclic set of tgds.

I Lemma 6. There are database instances D, I such that RC(D,I) for egds is DP-hard. This
holds even for bounded arity. If we know that I |= C, then this drops to NP-hard.

Proof. We proceed by reduction from 3-colorability and its complement. Let G = (V,E)
be an arbitrary instance of 3-colorability and G′ = (V ′, E′) be an arbitrary instance of
not-3-colorability. W.l.o.g., assume that both E and E′ contain the edge (1, 2). From this,
we construct the following instance (D, I, C) of RC.

D = {b(1, 2), b(1, 3), b(2, 3), b(2, 1), b(3, 1), b(3, 2), g}
I = D \ {g}

C = {
∧

(i,j)∈E

b(xi, xj) ∧ g → x1 = x2,
∧

(i,j)∈E′

b(xi, xj)→ x1 = x2}

Observe how the big conjunctions encode the graphs, and can be satisfied if and only if the
corresponding graph is 3-colorable. Since both graphs contain an edge between the vertices 1
and 2, the atom b(x1, x2) appears in both conjunctions, ensuring that x1 and x2 are assigned
different values and thus that the right-hand sides of the egds are false.

Therefore, I is consistent iff G′ is not 3-colorable, and D is consistent (thus I not minimal)
iff neither G nor G′ are 3-colorable. In sum, I is a repair of D w.r.t. C iff G is 3 colorable
and G′ is not. J

5 Consistent Query Answering – Intuition

In this section, we will give the intuition and present selected proofs for the consistent query
answering problem. As in the previous section, we first illustrate the sources of complexity
by discussing the membership results. After that, we will present selected hardness proofs.

Existential constraints. We first consider existential constraints, i.e., all classes of con-
straints that allow existential quantification in the conclusion (in Figure 1, these can be
found on the left-most branch from FO to ID). For these classes of constraints, we see a
particularly clear-cut picture of complexity: They are either undecidable, or have relatively
low complexity (in P or NP-complete, depending on the type of complexity considered). The
reason for this sharp contrast in complexity is the following: by the monotonicity of CQs, the
relevant repairs for CQ-answering are the subset-minimal ones. In case of lav tgds and IDs,
we can be sure that all subset-minimal repairs are subsets of the original database instance
D. This property is lost for tgds as the following simple example shows:

I Example 7. Consider the instance (D,C,Q) of CQA with D = {a, b} and C = {a →
e; b ∧ e→ f} and Q = b. In this case, the minimal repairs are {b} and {a, e}. Then we have
{a, e} 6|= Q and, therefore, (D,C) 6|= Q even though Q is satisfied in all subset-repairs of D
w.r.t. C (actually, {b} is the only subset-repair). The difficulty comes from the fact that
deleting b in a repair only makes sense after e has been added. Such an effect cannot occur
with lav tgds. J

Consequently, even though lav tgds and IDs also contain existential quantification, all variants
of CQA yield complexity of at most NP-completeness. Looking at Table 1, one can see that
while known results showed essentially identical pictures for lav tgds and IDs (e.g., CQA is
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NP-complete for both, CQA(C,Q) is in P for both), it turns out that for CQA(Q) as well as
CQA(D,Q) we have NP-completeness for lav tgds while for IDs we have P-membership. The
intuitive reason for P-membership of CQA(Q) with IDs is the existence of a unique subset
repair which can be computed in polynomial time for IDs (but the computation requires NP
power for lav tgds).

In contrast, for tgds and all extensions thereof (i.e., ∨-tgds and FO constraints) unde-
cidability holds for all types of complexity considered here. That is, undecidability holds
even if only one of the three parts of the input is allowed to vary. Note that there is a close
relationship between the CQA problem and the problem of CQ-answering under tgds. In
the latter problem, we are given a database D, a set C of tgds and a conjunctive query
Q. The question is if D (considered as a conjunction of ground atoms) together with C

logically implies Q. It is well-known that the latter problem is undecidable even if (D,Q) or
(C,Q) is fixed [15, 7]. From these undecidability results, the undecidability of CQA(D,Q)
and of CQA(C,Q) follows immediately. To the best of our knowledge, the undecidability
of CQ-answering for fixed (D,C) has not been published so far. It has been observed by
G. Gottlob [12] independently of our undecidability proof for CQA(D,C). The key idea of
the latter proof is that even for fixed D and C, there can exist arbitrarily big repairs. We
can then encode the Halting problem into the CQA(D,C) problem via CQs that ask for the
existence of certain chains of binary atoms in every repair.

From universal constraints to full tgds. For universal constraints, the intuition of mem-
bership in many cases originates from our algorithm for UCs that we will present next.
Previous work [3] showed coN2EXP-membership for CQA (i.e., all parts of the input vary).
The algorithm we present here yields a coNEXPNP = Π2EXP upper bound, which together
with our hardness results allows us to establish completeness in all cases. Note that [3]
considers a semantical definition of UCs that includes logically equivalent FO formulas. Our
algorithm also applies to their setting, thus closing the gap left as future work in that paper.

We first illustrate the key ideas of the coNEXPNP-membership proof for UCs. Let (D,C,Q)
be an instance of CQA. The crucial observation is that it never makes sense to introduce
fresh domain elements when repairing w.r.t. UCs. More precisely, let G be the set of all
ground atoms over the active domain of D. Then every repair of D is a subset of G. We
now give the following NEXPNP algorithm for the co-problem of CQA.
1. Guess I ⊆ G
2. Check that I 6|= Q and I |= C

3. Call an oracle to check that there is no J such that J |= C and that J has smaller
symmetric difference to D than I

For verifying the complexity of our algorithm, observe that G has at most exponential size.
Furthermore, note that checking whether a first-order formula ϕ is satisfied by a model M
can be done in time O

(
|ϕ|2 × |M ||ϕ|

)
. This model-checking algorithm can also be used inside

the NP oracle by padding its input. Thus our algorithm is indeed in NEXPNP. The cost of
the exponential guess in the first step and the call to an NP oracle in the last step remains
unchanged even if D and Q are fixed. In contrast, if D and C are fixed, then the complexity
drops to NP, i.e., the query complexity of CQ-answering.

Full ∨-tgds fall into exactly the same classes of complexity as UCs for all types of
complexity – in essence, membership holds for UCs while our hardness results only use full
∨-tgds. For full tgds, inspired by [21, Lemma 1], a refined algorithm that exploits the limited
number of repairs yields EXP-membership for CQA. Again, the main sources of complexity
persist even if D and Q are fixed.
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Bounded arity. In Table 2, we observe that only for UCs, full ∨-tgds, and full tgds the
complexity decreases if we assume bounded arity of all relation symbols involved. More
precisely, the complexity drops from the exponential hierarchy (Table 1) to the polynomial
hierarchy (Table 2). The reason for this is that if the arity of the relation symbols is bounded
by a constant, the number of possible ground atoms over the active domain, and therefore
the size of any repair, is polynomially bounded in the size of the input.

The Π3P upper bound for UCs is obtained by simply revisiting the basic algorithm above
and using the fact that now the guess of I ⊆ G in the first step is polynomially bounded.
For the repair check (i.e., mainly the minimality check in the third step), a Π2P oracle is
needed. These two sources of complexity persist even for CQA(D,Q).

Also for full tgds, the upper bound is obtained via the basic algorithm. In this case, the
repair check drops to DP. We thus get the Π2P upper bound for CQA with full tgds. In
contrast to full ∨-tgds, the complexity decreases if we fix the database D. It is convenient to
consider a set of full tgds as a datalog program. Then the minimality check only requires the
computation of the least fixed point of the immediate consequence operator defined by the
datalog program for all (constantly many) subsets of the fixed database D. This fixed point
computation can be done with polynomially many nonadaptive oracle calls to an NP oracle.
This gives us the Θ2P upper bound in the last line of Table 2.

Less expressive subclasses of UCs. In case of FDs, we have NP-membership for CQA(D),
since we can exploit that all repairs are subsets of (a fixed) D. The same holds for the (more
expressive) denial constraints, but here we have BH-membership: since model checking is
now coNP-hard, a single NP call is not sufficient – but as the subsets are again fixed, no
more than constantly many NP oracle calls are needed. The remaining L-membership for
CQA(D,Q) with FDs, which we distinguish because known results [2] feature such a more
fine-grained analysis, follows from the fact that all repairs are subsets, and repair checking is
possible in L.

Selected hardness proofs. The following hardness proof – establishing hardness for any
level in the Boolean hierarchy – is of a significantly different flavor than the proofs in Section 4.
We will then also present a Π3P -hardness proof, which uses similar ideas as the proofs in
Section 4.

The levels of the Boolean hierarchy BH are denoted by BHk. In the proof that follows,
we will be interested in the co-classes coBHk that can be defined as follows: coBH1 = coNP,
coBH2 = coBH1 ∨ NP, coBH3 = coBH2 ∧ coNP, coBH4 = coBH3 ∨ NP, and so on.

I Lemma 8. There is an atomic query Q, such that for every k > 0 there is a database
instance D s.t. CQA(D,Q) for egds is BHk-hard. This holds even for bounded arity.

Proof. We reduce from a coBHk-hard problem. This suffices since BHk ⊆ coBHk+1. As
our coBHk-hard problem, we consider the Boolean combination of 3-colorability. Thus an
instance of our problem is given by k graphs G1, G2, . . . , Gk with edges Ei. The question of
our problem is whether the Boolean combination of 3-colorability is true. W.l.o.g. let all
graphs G1, G2, . . . , Gk contain the edge (1, 2).

We now construct our equivalent CQA(D,Q) instance (Dk, Ck, Q). We first construct Q
and Dk. Note that Q is fixed and Dk depends only on k and not on the graphs given in the

ICDT 2016



21:14 Complexity of Repair Checking and Consistent Query Answering

input of our problem.

Q = ∃z1z2z3 a(z1, z2, z3)

Dk = {a(1, 2, 3)} ∪
⋃

1≤n≤k
{bn(1, 2), bn(1, 3), bn(2, 3), bn(2, 1), bn(3, 1), bn(3, 2)}

Intuitively, the query asks whether there is an a-tuple, and the database Dk consists of an
a-tuple and all valid color combinations.

We now proceed to constructing Ck, which will encode the Boolean combination of the
k instances of 3-colorability. Recall that the definition of coBHk alternates between odd
(coBHk = coBHk−1 ∧ coNP) and even (coBHk = coBHk−1 ∨ NP) cases. This alternation will
be reflected in the construction of Ck. It is convenient to define the following abbreviation:
Coln = bn(y1, y2) ∧ bn(y1, y3) ∧ bn(y2, y3) ∧ bn(y2, y1) ∧ bn(y3, y1) ∧ bn(y3, y2).

O0 = A0 = ∅

An =
{
An−1 ∪ {a(y1, y2, y3) ∧

∧
(i,j)∈En

bn(xi, xj)} n odd (1)
{ϕ ∧ Coln | ϕ ∈ An−1} n even (2)

On =
{
On−1 n odd
On−1 ∪ {

∧
(i,j)∈En

bn(xi, xj)} n even (3)

Ck = {ϕ→ x1 = x2 | ϕ ∈ Ak ∪Ok}

For illustration, here is C2:

{a(y1, y2, y3) ∧
∧

(i,j)∈E1

b1(xi, xj) ∧ Col2 → x1 = x2,
∧

(i,j)∈E2

b2(xi, xj)→ x1 = x2}

Recall from Lemma 6 how x1 = x2 in the conclusions can never be fulfilled and thus effectively
represent negative constraints. Intuitively, the formula constructed in An in the odd case (1)
provides a reason to delete a(1, 2, 3) iff the graph Gn is 3-colorable. The formula constructed
in On in the even case (3) – together with the additional Coln conjuncts added in (2) –
nullifies any reason to delete a(1, 2, 3) iff the graph Gn is 3-colorable.

We now proceed to the correctness proof. Let us first note that the query is false in a
repair R if and only if there is a formula ϕ in Ak that is satisfied by R ∪ {a(1, 2, 3)}. The
proof goes by induction and in two cases.
1. k is odd (coBHk = coBHk−1 ∧ coNP)

In this case, there is only one formula added, namely in (1). If Gk is 3-colorable, then
this formula is satisfied by Dk and one can avoid deleting one of bk by deleting a(1, 2, 3).
If on the other hand Gk is not 3-colorable, then the formula cannot be satisfied. So there
is a repair of Dk w.r.t. Ck that falsifies the query if and only if there is such a repair of
Dk−1 w.r.t. Ck−1. For the base case k = 1 note that D0 is already consistent.

2. k is even (coBHk = coBHk−1 ∨ NP)
In this case, there is only one formula added, namely in (3). If Gk is 3-colorable then
one of bk has to be deleted as enforced by the formula. Yet then, by the modifications
in (2), no constraint from Ak can ever fire and delete a. On the other hand if Gk is not
3-colorable, then the added formula cannot be satisfied. So there is a repair of Dk w.r.t.
Ck that falsifies the query if and only if there is such a repair of Dk−1 w.r.t. Ck−1. J

I Lemma 9. There is a database instance D and an atomic query Q, s.t. CQA(D,Q) for
full ∨-tgds is Π3P-hard in case of bounded arity.
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Proof. We proceed by reduction from ∃QSAT3 to the co-problem of CQA(D,Q). Let

ϕ = ∃x1 . . . xk ∀y1 . . . yl ∃z1 . . . zm ψ

be an arbitrary instance of ∃QSAT3. W.l.o.g., we may assume that ψ is in 3CNF. From this,
we construct the following instance (D,C,Q) of CQA, where ĉ and ψ∗ are as defined in the
paragraph preceding Lemma 5.

D = ĉ ∪ {r(0, 1), r(1, 0), d(0, 1), a} (1)

C =
⋃

1≤i≤k
{d(x, y)→ pi(x, y) ∨ pi(y, x)} (2)

∪
⋃

1≤i≤l
{d(x, y)→ qi(x, y) ∨ qi(y, x)} (3)

∪
⋃

1≤i≤l
{d(x, y) ∧ b→ qi(x, y) ∧ qi(y, x)} (4)

∪ {
∧

1≤i≤k
pi(xi, xi) ∧

∧
1≤i≤l

qi(yi, yi) ∧
∧

1≤i≤m
r(zi, zi) ∧ ψ∗ → b} (5)

∪ {d(x, y) ∧ a ∧ b→ e} (6)
Q = a (7)

We claim that ϕ is true iff there is a repair R of D w.r.t. C in which Q is false. Clearly, D is
inconsistent since it violates the first ∨-tgd in line (2). We distinguish two main cases of
repairs, namely either d(0, 1) is deleted from D or d(0, 1) is retained. If d(0, 1) is deleted
then there is no reason to delete a. Hence, in these repairs, Q is clearly true. Hence, the
only interesting case are repairs which do contain d(0, 1).

A repair R containing d(0, 1) also contains exactly one of {pi(0, 1), pi(1, 0)} for every
i ∈ {1, . . . , k}. We thus get a 1-to-1 correspondence between the choice of pi-atoms and
truth assignments on {x1, . . . , xk}. Similarly, by the ∨-tgd in line (3), at least one of
{qi(0, 1), qi(1, 0)} for every i ∈ {1, . . . , l} has to be added to R. In case exactly one of
{qi(0, 1), qi(1, 0)} is added to R, we again get a 1-to-1 correspondence between the choice of
qi-atoms and truth assignments on {y1, . . . , yl}.

Now the crucial question is whether the tgd in line (5) fires and b has to be added to R.
If so, then for every i ∈ {1, . . . , l} both qi(0, 1) and qi(1, 0) have to be added to R, due to the
tgd in line (4). Note that R thus contains a strict superset of all other choices of qi-atoms.
Due to the minimality of R, the tgd in line (5) thus encodes the following condition: for the
chosen pi-atoms, no matter how we choose one qi-atom for every i ∈ {1, . . . , l}, there exists
an instantiation of the variables (zi, zi) to (0, 1) or (1, 0), such that ψ∗ can be matched into
the repair R. Finally, note that, since a only occurs in line (6), a repair that deletes a has to
contain b.

By making use of the correspondence between pi and qi atoms in R on the one hand, and
truth assignments to the variables in ϕ on the other hand, we get the desired equivalence,
namely: (D,C) 6|= Q iff there exists a repair R with a 6∈ R iff there exists a truth assignment
µ on {x1, . . . , xk}, s.t. for every extension of µ to {y1, . . . , yl}, there exists a further extension
ν to the variables {z1, . . . , zm}, s.t. ν |= ψ, i.e., ϕ is true. J

6 Conclusion

In this work, we have provided a complete picture of the complexity of the RC- and CQA-
problems for a wide range of constraint languages. While previous work provided important
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parts of the picture (in particular, a thorough analysis of data complexity), this work now
completes the picture for all types of complexity. In many cases, this has allowed us to get a
better understanding of the true sources of complexity.

Tables 1 and 2 summarize the picture for consistent query answering, while Table 3
does the same for repair checking. In particular, for the CQA problem, we get a great
variety of complexity results ranging from tractability via various levels of the polynomial
hierarchy and various results in the exponential hierarchy up to undecidability. We observe
several similarities between classes of constraints such as for UCs and ∨-tgds (also for denial
constraints and egds). On the other hand, in several cases, we see a diversity of complexity in
settings where results for data complexity where relatively uniform. For example, for full tgds,
as well as denial constraints and their three subclasses, previously known data complexity
results (i.e., CQA(C,Q)) showed coNP-completeness in all five cases (cf. the fifth column
of Table 1). Yet if we consider different types of complexity, we see a much more diverse
picture, e.g. if we look at CQA(Q) (i.e., the query Q is fixed): full tgds are EXP-complete
(Π2P-complete for bounded arity), while denial constraints and egds are Π2P-complete and
FDs and key dependencies remain coNP-complete (cf. the fourth column of Table 1).

Similar stories could be told about other types of complexity in our tables (for example,
in the second column of Table 1 we get BH or Θ2P instead of Π2P and we get NP instead of
coNP) or for different types of constraint classes considered here. In total, we believe that
apart from completing the picture for all types of complexity, the results obtained give new
insights into the sources of complexity that were hidden before.

Future work. In this work, we have considered a wide range of constraint languages.
However, in the literature, further classes of constraint languages can be found, such as
binary constraints [9], weakly acyclic tgds [22], and further subclasses of tgds [17]. The
exploration of the combined complexity of the RC- and CQA-problems for ICs from these
classes has been left for future work.

Yet more importantly, settings with combinations of various kinds of constraints (such
as, e.g., inclusion dependencies with key dependencies) should be further explored, thus
extending work that was already started in [8]. Finally, further problem variants deserve
future investigation, such as adopting different notions of repairs either by restricting the
allowed repair actions or by considering different notions of minimality.

Another natural next question is what happens if not only the arity is bounded, but
the whole schema is fixed. In most cases this does not seem to change anything, but some
problems (especially regarding UCs and full ∨-tgds) indeed become easier. Consider for
example RC(D) for UCs: Here, since the schema and the active domain are fixed, all repairs
are among a constant set of instances. This allows for an NP minimality check, so the
complexity of RC(D) drops to DP - in stark contrast to all cases we considered, where RC(D)
and RC always have the same complexity.
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Abstract
Well-designed pattern trees (wdPTs) have been introduced as an extension of conjunctive queries
to allow for partial matching – analogously to the OPTIONAL operator of the semantic web
query language SPARQL. Several computational problems of wdPTs have been studied in recent
years, such as the evaluation problem in various settings, the counting problem, as well as static
analysis tasks including the containment and equivalence problems. Also restrictions needed to
achieve tractability of these tasks have been proposed. In contrast, the problem of enumerating
the answers to a wdPT has been largely ignored so far. In this work, we embark on a systematic
study of the complexity of the enumeration problem of wdPTs. As our main result, we identify
several tractable and intractable cases of this problem both from a classical complexity point of
view and from a parameterized complexity point of view.
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1 Introduction

With the steadily increasing amount of inaccurate and incomplete data on the web, the
need for partial matching as an extension of Conjunctive Queries (CQs) is gaining more and
more importance. Therefore, in the semantic web query language SPARQL, the OPTIONAL
operator is a crucial feature. Recently, this operator (which we shall abbreviate to “OPT”
in the sequel) has also been studied for arbitrary relational vocabulary [4]. Intuitively, the
OPT operator (which corresponds to the left outer join in the Relational Algebra) allows
the user to extend CQs by optional parts which are retrieved from the data if available, but
which do not cause the partial answers to get lost in case the optional information is not
available. The following example will help to illustrate this idea.

I Example 1. Consider the following {AND,OPT}-SPARQL query that is posed over a
database that stores information about movies:1((

(x, directed_by, y) AND (x, released, “before_1980”)
)

OPT (x, oscars_won, z)
)

OPT (y, first_movie, z′).

1 We use here the algebraic-style notation from [25] rather than the official SPARQL syntax of [28].
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{(x, directed_by, y), (x, released, “before_1980”)}

{(x, oscars_won, z)} {(y, first_movie, z′)}

Figure 1 The wdPT representing the query from Example 1.

This query retrieves all pairs (m, d) s.t. movie m is directed by d and released before
1980. This is specified by the pattern (x, directed_by, y) AND (x, released, “before_1980”).
Furthermore, whenever possible, this query also retrieves (one or both of) the following
pieces of data: the number of Academy Awards n won by movie m and the first movie m′
directed by d. In other words, in addition to (m, d) we also retrieve n and/or m′ if the
information is available in the database. This is specified by the atoms (x, oscars_won, z)
and (y, first_movie, z′) following the respective OPT-operators.

In [23], so-called well-designed pattern trees (wdPTs) were introduced as a convenient
graphical representation of CQs extended by the OPT operator. Intuitively, the nodes in a
wdPT correspond to CQs while the tree structure represents the optional extensions. The
wdPT corresponding to the query in Example 1 is displayed in Figure 1.

The semantics of a wdPT p is defined in terms of the CQs contained in it: with each
subtree T ′ of T containing the root, we associate a CQ qT ′ defined by the conjunction of all
atoms in the nodes of T ′. The evaluation of wdPT p over database D consists then of all
“maximal” answers to the CQs of the form qT ′ . That is, we take the union of all answers to
the CQs of the form qT ′ , for each T ′, and then remove all those answers that are “extended”
by some other answer in the set. We revisit Example 1 to illustrate these ideas.

I Example 2. Consider an RDF database D consisting of triples (“American_Graffiti”,
directed_by, “George_Lucas” ), ( “American_Graffiti”, released, “before_1980” ),
(“Star_Wars”, directed_by, “George_Lucas”), (“Star_Wars”, released, “before_1980”),
(“Star_Wars”, oscars_won, “6”). The evaluation over D of the wdPT in Figure 1, and,
therefore, of the query from Example 1, consists of partial mappings µ1 and µ2 defined
on variables x, y, z, z′ such that: (1) µ1 is only defined on x and y in such a way that
µ1(x) = “American_Graffiti” and µ1(y) = “George_Lucas”, and (2) µ2 is defined on x, y
and z in such a way that µ2(x) = “Star_Wars”, µ2(y) = “George_Lucas”, and µ2(z) = “6”.

To make wdPTs a proper extension of CQs, wdPTs have to be enhanced with projection.
For instance, for the wdPT in Example 1, one might decide to project out the variable x. In
this way, the answers µ1 and µ2 over the database in Example 2 would be restricted to µ′1
and µ′2, s.t. (1) µ′1 is only defined on y with µ′1(y) = “George_Lucas”, and (2) µ′2 is defined
on y and z and it holds that µ′2(y) = “George_Lucas” and µ′2(z) = “6”.

Several aspects of the complexity of wdPTs have been studied in previous works. Given a
database D and a query p, the evaluation problem asks if some given mapping µ is an answer
to p over D. This problem was shown coNP-complete for wdPTs without projection [25]
and ΣP2 -complete for wdPTs with projection [23]. Wrapping wdPTs into the CONSTRUCT
operator of SPARQL makes the evaluation problem NP-complete [20]. In [2], the max-
evaluation problem was introduced as a variant of the evaluation problem. Note that if we
allow projection, then it may happen that both, some mapping µ and a proper extension of µ
are solutions. This is indeed the case for µ′1 and µ′2 above. In [2], the max-evaluation problem
was identified as an important variant of wdPT evaluation: it asks if a given mapping is a
maximal solution (i.e., it cannot be properly extended to another solution). This problem is
DP-complete [2]. In [27], the counting problem of wdPTs was studied, i.e., given a database
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D and a query p, what is the number of solutions? It turned out that the counting problem
of wdPTs remains intractable even under very severe restrictions. Important query analysis
tasks such as the containment and equivalence problems in various settings were studied in
[26]. It was shown that the complexity of these tasks ranges from NP-completeness (if we
disallow projection) to undecidability (if projection is allowed in both queries).

Another interesting and very natural problem in the context of query languages is the
enumeration problem (i.e., computing one solution after the other without ever outputting
duplicates). Despite recent interest in the enumeration problem for First-Order and Conjunct-
ive Queries [5, 19, 29, 12], the complexity of enumerating the answers to wdPTs has been
hardly considered so far. A notable exception is [23], where it was shown that enumeration
of wdPTs without projection is tractable provided that the CQs contained in the wdPTs
are from some tractable fragment. In contrast, for wdPTs with projection, the enumeration
problem of wdPTs was shown intractable in [23] even when allowing only acyclic CQs to
appear at each node of a wdPT.

Goal. The goal of this work is to initiate a systematic complexity study of the enumeration
problem of wdPTs. We thus view the enumeration problem from various angles:

Classical complexity analysis of the combined complexity. We aim at identifying the
boundary between tractable and intractable enumeration for the set of both, all solutions
and maximal solutions. In [17], various notions of tractable enumeration are defined. We
concentrate on two such notions, namely polynomial delay as the strongest and output
polynomial time as the weakest form of tractability. The former means that the time
before outputting the first solution, the time between any two solutions and the time
between the last output and termination are all bounded by a polynomial in the size of
the input. The latter means that the total time for outputting all solutions is bounded by
a polynomial in the combined size of the input plus the output. In our quest for tractable
enumeration, we start with restrictions introduced in [4] to achieve tractable evaluation
and we will introduce further restrictions to get a better understanding of the sources of
complexity.
Parameterized complexity. Over more than a decade, parameterized complexity theory
[11] has developed into a well-established approach to dealing with intractability. The
ideal result of a parameterized complexity analysis is fixed-parameter tractability. This
means that the problem at hand can be solved in time f(k) · nO(1), where n is the size of
the input and f(k) is a function depending solely on the parameter k. In other words, the
exponential explosion can thus be confined to the parameter. By FPT, we denote the class
of problems with this behavior. The opposite behavior is fixed-parameter intractability.
This means that we can at best achieve an upper bound O(nf(k)) on the time complexity.
In other words, the size of the parameter occurs in the exponent of the input size n.
In this paper, we take the size of the query as parameter. In a sense, this gives us an
intermediate state between data complexity (where the query is considered as fixed) and
classical combined complexity (where the query is treated equally as the data). The
parameterized complexity approach allows us to obtain a more fine-grained picture of
the intractable cases by exploring the boundary between FPT-delay and fixed-parameter
intractable enumeration.
Revisiting the evaluation problem. Our complexity analysis of the enumeration problem
will bring to light an interesting relationship between fixed-parameter tractable enumer-
ation and evaluation. More formally, we will show that FPT-delay of the enumeration
problem for some type of wdPTs implies that also the evaluation problem for this type
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of wdPTs is in FPT. We thus resume the quest for tractable evaluation from [4] and
inspect the intractable cases (classical complexity) from a parameterized complexity point
of view. We thus aim at delineating the border between fixed-parameter tractability
and fixed-parameter intractability to get a better understanding of the nature of the
intractability.
Data complexity. Finally, we have a brief look at the data complexity of the enumeration
problem of wdPTs. Note that polynomial delay is trivial for query languages derived
from First-Order logic. Hence, the goal of analyzing the data complexity is to construct
an enumeration algorithm which works with linear-time preprocessing (i.e., the time to
produce the first output) and constant delay (i.e., the time between any two successive
outputs and the time after the last output).

Organization of the paper and summary of results. In Section 2, we recall some basic
notions and results. A conclusion and an outlook to future work are given in Section 6. The
main results of the paper are detailed in Sections 3–5, namely:

Evaluation problem. In Section 3, we revisit the evaluation problem of wdPTs. More
precisely, we subject the intractable cases from [4] for the evaluation problem to a
parameterized complexity analysis. By establishing both fixed-parameter tractability and
intractability results, we provide a more fine-grained picture of the complexity of this
problem.
Combined complexity. In Section 4, we study the combined complexity of enumerating
all solutions and of enumerating the maximal solutions. We have already recalled above
that – without any restrictions – testing if some mapping is a solution is harder than
testing if it is a maximal solution [23, 2]. By the same token, it was shown in [4] that
strictly more severe restrictions on the wdPTs are needed to achieve tractability of the
evaluation problem than for the max-evaluation problem. Our complexity analysis of
the enumeration problem reveals an interesting effect: it turns out that enumerating the
maximal solutions is harder than enumerating all solutions. A yet more detailed picture
of the complexity of the enumeration problem (for all solutions resp. for the maximal
solutions) is provided by studying also the parameterized complexity of this problem
under various restrictions.
Data complexity. In Section 5, we study the data complexity of the enumeration problem
(for all resp. for the maximal solutions) of wdPTs. Under the common assumption that
matrix multiplication of two Boolean n×n matrices is not feasible in time O(n2), we rule
out the possibility of linear time preprocessing and constant delay for a very restricted
class of wdPTs. However, if we allow polynomial time preprocessing then constant delay
is achievable for an appropriately restricted class of wdPTs.

2 Preliminaries

Conjunctive queries. We assume familiarity with the relational model, especially with
conjunctive queries (CQs), see [1] for details. In the following, we fix some notation. For a
set A of atoms we use dom(A) to denote the set of constants and variables appearing in A,
while var(A) refers to the variables only. Similarly, for a mapping µ we denote with dom(µ)
the set of elements on which µ is defined. It is convenient to denote mappings as sets of
ordered pairs. Thus two mappings µ1, µ2 are equal if µ1 = µ2, and a mapping µ2 extends a
mapping µ1 if µ1 ⊆ µ2. Furthermore, µ2 is a proper extension of µ1 if µ1 ⊂ µ2.
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We write CQs q as Ans(~x) ← R1(~v1), . . . , Rm(~vm), where ~x are the free variables, and
define var(q) = var({Ri(~vi) | 1 ≤ i ≤ m}). For the evaluation q(D) of a CQ q with free
variables ~x over database D, we depart slightly from the traditional definition. We define q(D)
to be the set of all mappings µ|~x such that µ is a homomorphism from R1(~v1), . . . , Rm(~vm)
into D, where µ|~x denotes the restriction (or projection) of µ to the variables ~x (observe that
usually, q(D) is defined as the set of all tuples µ(~x)).

Graphs. We consider undirected, simple graphs G = (V,E). For a graph G, we may write
V (G) and E(G) to denote the set of nodes and edges, respectively. As usual, a tree is an
acyclic graph, and a subtree is a connected subgraph of a tree. A tree decomposition of a
graph G = (V,E) is a pair (S, ν), where S is a tree and ν : V (S) → 2V , that satisfies the
following: (1) For each u ∈ V the set {s ∈ V (S) | u ∈ ν(s)} is a connected subset of V (S),
and (2) each edge of E is contained in one of the sets ν(s), for s ∈ V (S). The width of
(S, ν) is (max {|ν(s)| | s ∈ V (S)})− 1. The treewidth of G is the minimum width of its tree
decompositions. Intuitively, the treewidth of G measures its tree-likeness. Notice that if G is
an undirected graph, then G is acyclic iff it is of treewidth one.

Well-designed pattern trees. Well-designed pattern trees (wdPTs) were originally intro-
duced in [23] as a graphical representation of well-designed SPARQL defined in [25] and later
extended to arbitrary relational vocabulary [4]. Their formal definition is given below.

I Definition 3 (wdPTs). A well-designed pattern tree (wdPT) p is a tuple (T, λ, ~x), such
that the following holds:
1. T is a rooted tree and λ maps each node N ∈ V (T ) to a set of relational atoms.
2. For every variable y mentioned in T , the set of nodes of T where y occurs is connected.
3. The tuple ~x of distinct variables from T denotes the free variables of the wdPT.
We say that (T, λ, ~x) is projection-free, if ~x contains all variables mentioned in T .

Clearly, CQs correspond to the special case of wdPTs consisting of the root node only.
Condition (2) above is referred to as the well-designedness condition introduced in [25]. We
use upper-case letters to denote nodes of a wdPT, and lower-case letters for vertices of
tree-decompositions and general graphs. For a wdPT p = (T, λ, ~x) and a node N ∈ V (T ),
we may abbreviate var(λ(N)) to var(N). Also, for a subtree T ′ of T we may use var(T ′) to
denote the set

⋃
N∈V (T ′) var(N). Finally, we may write var(p) instead of var(T ).

Let p = (T, λ, ~x) be a wdPT. We write R to denote the root of T . Given a subtree
T ′ of T rooted in R, we define qT ′ to be the CQ Ans(~y) ← R1(~v1), . . . , Rm(~vm), where
{R1(~v1), . . . , Rm(~vm)} =

⋃
N∈T ′ λ(N), and ~y = var(T ′). Finally, we write |p| to denote the

size of p in standard relational notation – which corresponds to the size of qT .
We define the semantics of wdPTs by naturally extending their interpretation under

semantic web vocabularies [23, 26]. Intuitively, a mapping µ satisfies (T, λ) over a database
D if it is a solution to a CQ qT ′ and if no proper extension of µ is a solution to some CQ qT ′′ .
The result of evaluating a wdPT (T, λ, ~x) over D contains the projection of all mappings
satisfying (T, λ) to ~x. We formalize this next.

I Definition 4 (Semantics of wdPTs). Let p = (T, λ, ~x) be a wdPT and D a database.
A homomorphism from p to D is a partial mapping µ for which there is a subtree T ′ of
T rooted in R such that µ ∈ qT ′(D).
A homomorphism µ is maximal if there is no homomorphism µ′ from p to D s.t. µ ⊂ µ′.

The evaluation of wdPT p = (T, λ, ~x) over D, denoted p(D), corresponds to the set of all
mappings of the form µ|~x, such that µ is a maximal homomorphism from p to D.
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For a wdPT p and a database D, a mapping µ is called a partial solution if there exists some
solution µ′ ∈ p(D) s.t. µ ⊆ µ′. Observe that p(D) may contain mappings µ, µ′ s.t. µ ⊆ µ′. As
an example, recall the mappings µ′1 and µ′2 that are the result of restricting the mappings µ1
and µ2 from Example 2 to the variables y and z. We thus define the set of maximal solutions
as pm(D) = {µ ∈ p(D) | for all µ′ ∈ p(D) : µ 6⊂ µ′}. For instance, in the above example, the
maximal solutions contain only the mapping µ′2.

Parameterized complexity. Let Σ be a finite alphabet. A parameterization of Σ∗ is a
polynomial time computable mapping κ : Σ∗ → N. A parameterized problem over Σ is a pair
(L, κ) where L ⊆ Σ∗ and κ is a parameterization of Σ∗. We refer to x ∈ Σ∗ as the instances of
a problem, and to the numbers κ(x) as the parameters. The following well-known problems
will play an important role in our parameterized-complexity analyses.

p-Clique
Instance: A graph G and k ∈ N.
Parameter: k

Question: Does G contain a
clique of size k?

p-Dominating Set
Instance: A graph G and k ∈ N.
Parameter: k

Question: Does G contain a
dominating set of size k?

A parameterized problem E = (L, κ) belongs to the class FPT of “fixed parameter
tractable” problems if there exists an algorithm A deciding L, a polynomial p, and a
computable function f : N→ N such that the running time of A is at most f(κ(x)) · p(|x|).

Parameterized complexity theory also provides notions of intractability. Towards this
notion, we first recall the definition of fpt-reductions. Let E = (L, κ) and E′ = (L′, κ′)
be parameterized problems over the alphabets Σ and Σ′, respectively. An fpt-reduction
from E to E′ is a mapping R : Σ∗ → (Σ′)∗ such that (1) for all x ∈ Σ∗ we have x ∈ L iff
R(x) ∈ L′, (2) there is a computable function f and a polynomial p such that R(x) can be
computed in time f(κ(x)) · p(|x|), and (3) there is a computable function g : N → N such
that κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.

One notion of intractability for parameterized problems are the classes W[i] (for i ≥ 1) of
the W-hierarchy. Since we are here only interested in the classes W[1] and W[2], we omit a
discussion of the W-hierarchy and only recall the following facts: A parameterized problem
E is in W[1] or W[2], if there exists an fpt-reduction to the problems p-Clique (for W[1])
and p-Dominating Set (for W[2]), respectively. Similarly, E is W[1]-hard or W[2] if there
exists an fpt-reduction from p-Clique and p-Dominating Set, respectively. It is strongly
believed that problems that are hard for W[1] or W[2] are not in FPT. For details, see [13].

Complexity classes for enumeration problems. A parameterized enumeration problem is
a triple (L, κ,Sol) such that L ⊆ Σ∗ (for an alphabet Σ), κ is a parameterization of Σ∗, and
Sol : Σ∗ → P(Σ∗) is a function such that for all x ∈ Σ∗, we have that Sol(x) (the set of
“solutions”) is finite and Sol(x) = ∅ iff x /∈ L. When we omit the parameterization κ, the
pair (L,Sol) is an enumeration problem.

An enumeration algorithm A for a (parameterized) enumeration problem E = (L,Sol)
(resp., E = (L, κ,Sol)) is an algorithm which, on input x, outputs exactly the elements from
Sol(x) without duplicates. We denote the output of A on x by A(x).

Let A be an enumeration algorithm for some problem E. For an input x, let n = |A(x)|.
For 0 ≤ i ≤ n, we define the delay delay(i) as follows: delay(0) (“preprocessing”) is the time
between the start of the algorithm and the (beginning of the) first output (or termination of
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A, if n = 0). For 0 < i < n, delay(i) is the time between outputting solution i and (i+ 1).
Finally, delay(n) is the time between the last output and the termination of A.

The concept of the delay between outputs allows us to define several classes of enumeration
problems that capture different notions of tractability for these problems [17, 8, 31]. In the
sequel, let E = (L,Sol) (resp. E′ = (L, κ,Sol)) be a (parameterized) enumeration problem.
For a class C, we say that E ∈ C (E′ ∈ C, respectively), if there exists an enumeration
algorithm A for E, some m ∈ N, and a computable function f such that on every input x
the following holds:

E ∈ OutputP: A terminates in time O((|x|+ |Sol(x)|)m).
E′ ∈ OutputFPT: A terminates in time O(f(κ(x)) · (|x|+ |Sol(x)|)m).
E ∈ DelayP: delay(i) is in O(|x|m) for every 0 ≤ i ≤ |Sol(x)|.
E′ ∈ DelayFPT: delay(i) is in O(f(κ(x)) · |x|m) for every 0 ≤ i ≤ |Sol(x)|.
E ∈ DelayClin: delay(0) is in O(|x|) and for 0 < i ≤ |Sol(x)|, delay(i) is in O(1).

A stricter notion of allowing for polynomial delay between two solutions is captured by the
class SDelayP (“strict polynomial delay”): An enumeration problem E is in SDelayP if there
exists a total order < on Sol(x), some m ∈ N, and an algorithm B terminating in time O(|x|m)
with the following output: On input x, it returns the first element of Sol(x) (according to
<). On input (x, y) for any y ∈ Sol(x), it either returns the next element according to < if
there is some, or halts otherwise. As is common in the literature on enumeration, we use
RAMs (rather than Turing Machines) as model of computation [17].

3 Parameterized Complexity of Evaluation

While there has been some research on the classical complexity of fragments of wdPTs [4],
the parameterized complexity is still open. We thus recall two variants of the evaluation
problem, namely Eval(C) and Max-Eval(C) (where we ask if a given mapping is a solution
or a maximal solution, respectively) and introduce the parameterized versions p-Eval(C)
and p-Max-Eval(C). Here, the size of the query is taken as parameter.

Eval(C) / Max-Eval(C)
Instance: Query: wdPT p ∈ C,

mapping µ,
Data: database D.

Question: µ ∈ p(D) / µ ∈ pm(D)?

p-Eval(C) / p-Max-Eval(C)
Instance: wdPT p ∈ C, mapping µ,

database D.
Paramter: |p|
Question: µ ∈ p(D) / µ ∈ pm(D)?

Observe that in order to talk about the common notions of data- and query complexity, for
Eval(C) and Max-Eval(C) we distinguish which parts of the input are considered to be
part of the query, and which are part of the data. For the parameterized case, because of the
explicit parameter, such a distinction does not make sense.

Tractable CQ-evaluation. When looking for tractable classes of wdPT evaluation [4], a
natural starting point are tractable classes of CQ evaluation. We define the problem CQ-
Eval(C) for a class C of CQs as follows: Given a CQ q ∈ C, a mapping µ, and a database D
as input, decide if µ ∈ q(D). This problem has been extensively studied and several tractable
classes of CQs have been identified [32, 14, 15]. If the maximal arity of the relation symbols
is known in advance, even the precise border of tractability is known [16].

An important tractable class of CQs is obtained by restricting the treewidth of the
Gaifman-graph of queries [6]. The Gaifman-graph of a CQ q is a graph G = (V,E) where
V = var(q) and E contains exactly all pairs of variables that jointly occur in some atom
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in q. The treewidth of a CQ is the treewidth of its Gaifman-graph. We denote by TW(k)
the class of CQs of treewidth at most k. It follows from [6] (see also [10]) that for k ≥ 1,
CQ-Eval(TW(k)) is in PTIME.

Tractable wdPT-evaluation. In the past, tractable classes of CQs have been successfully
used for defining tractable classes of wdPTs following two different approaches. Either by
locally restricting the CQs defined by each node of the wdPT to be from some tractable class
(“local tractability”), or by globally requiring that for every subtree (containing the root) the
corresponding CQ is tractable (“global tractability”). Formally, let C be a class of CQs. A
wdPT p = (T, λ, ~x) is locally in C if for every node N ∈ V (T ) the CQ Ans()← λ(N) is in
C. Also, p is globally in C if for every subtree T ′ of T rooted in R the CQ qT ′ is in C. We
denote with `-C and g-C the sets of all wdPTs that are locally and globally in C, respectively.

It was shown for projection-free wdPTs that local tractability is sufficient to achieve tract-
ability. However, in the presence of projection, Eval(`-TW(k)) and Max-Eval(`-TW(k))
are NP-complete [23] and DP-complete [4], respectively. Resorting to global tractability
only helps when dealing with maximal solutions: Max-Eval(g-TW(k)) is in PTIME, while
Eval(g-TW(k)) remains NP-complete [4].

Thus, just restricting the structure of the CQs defined by a wdPT is not sufficient for
tractability. Instead, an additional source of complexity comes from the information shared
between different nodes. Thus another approach is to restrict the number of variables nodes
may have in common. Formally, let p = (T, λ, ~x) be a wdPT. For two nodes N,M ∈ V (T ),
we define the interface I(N,M) = var(N) ∩ var(M). Similarly, for a node N ∈ V (T ) define
I(N) =

⋃
M∈(V (T )\{N}) I(N,M). Observe that because of condition (2) in the definition of

wdPTs, the interface of a nodeN can be completely determined by just looking at its neighbors,
i.e. for every N ∈ V (T ) we have

⋃
M∈(V (T )\{N}) I(N,M) =

⋃
{M |{N,M}∈E(T )} I(N,M). For

c ≥ 0, we say that p has c-bounded interface if |I(N)| ≤ c for all N ∈ V (T ). Similarly, we
say that p has c-semi-bounded interface if for any two distinct nodes N,M ∈ V (T ) we have
|I(N,M)| ≤ c. We denote with BI(c) and SBI(c) the classes of wdPTs of c-bounded interface
and c-semi-bounded interface, respectively.

Of course, restricting only the number of shared variables is not sufficient for tractability,
since already the evaluation of the CQ in the root node is intractable. However, combining
the two approaches above finally leads to tractable classes of wdPTs: Let C be a class of CQs
s.t. CQ-Eval(C) is in PTIME and c ≥ 1. Then Eval(`-C ∩ BI(c)) is also in PTIME [4].

An inspection of the NP-hardness proof for Eval(g-TW(k)) provided in [4] reveals that
hardness even holds for Eval(g-TW(k) ∩ SBI(c)), but this class is newly introduced in the
present paper and was not considered in [4]. The introduction of the notion of a semi-bounded
interface allows us to define the classes `-TW(k) ∩ SBI(c) and g-TW(k) ∩ SBI(c). Below,
we show that a parameterized complexity analysis of these classes helps to explore the
gap between tractability of Eval(`-C ∩ BI(c)) and the NP-completeness of Eval(g-TW(k)).
In fact, we show that the parameterized evaluation problem for the different classes of
wdPTs is in PTIME (for `-C ∩ BI(c)), in FPT (for g-TW(k) ∩ SBI(c)), W[1]-complete (for
`-TW(k) ∩ SBI(c)), and W[2]-hard (for g-TW(k)), respectively.

Evaluation in case of bounded vs. semi-bounded interface. Before we present our FPT-
result for wdPTs in g-TW(k) ∩ SBI(c), we first discuss the main difference compared with
the restriction to `-TW(k) ∩ BI(c). In the latter case, it is easy to construct a global tree
decomposition of width k + c, s.t. for any two neighboring nodes N,M in the wdPT, the
interface I(N,M) is covered by some bag in the tree decomposition. Indeed, we can take a
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local tree decomposition for every node N (of width at most k) and add all interface variables
to every bag. A global tree decomposition of p is then obtained by gluing together the local
tree decompositions. With this global tree decomposition, the FPT-membership (actually,
even the PTIME-membership) is easily established [4]. In contrast, for semi-bounded interface,
the variables in I(N,M) for neighboring nodes N,M in p can be arbitrarily scattered over
the global tree decomposition. Since the total number of interface variables of a single node
in p with all its neighbors is unbounded, we cannot apply the above trick to construct a tree
decomposition where all interfaces are covered by some bag. Hence, a different approach is
needed in the following theorem to obtain FPT-membership also in this case.

We first introduce the decision problem ExtendSolution(C) (a similar problem was
introduced in [7, 9] to study enumeration problems), defined as follows: given a database D,
a wdPT p ∈ C, a partial mapping µ and a set ~x′ ⊆ ~x (where ~x are the free variables of p),
does there exist some mapping µ′ ∈ p(D) such that µ ⊆ µ′ and dom(µ′) ∩ ~x′ = ∅? Observe
that the last property dom(µ′) ∩ ~x′ = ∅ is essential, since it allows us to explicitly specify
variables ~x′ which we do not want to be bound by the desired solutions. Clearly, the problem
Eval(C) corresponds to the special case of the ExtendSolution(C) problem where we set
~x′ ∪ dom(µ) = ~x, i.e., we ask if µ itself is the desired mapping µ′.

I Theorem 5. The problem p-Eval(g-TW(k) ∩ SBI(c)) is in FPT for every k, c ≥ 1.

Proof idea. We prove FPT-membership for the ExtendSolution(g-TW(k) ∩ SBI(c)) prob-
lem, from which the desired FPT-result follows. Let p be a wdPT and D a database. Further
let T denote a global tree decomposition of p of width k, let ~x denote the set of free variables
in p, and let µ be a mapping with dom(µ) ⊆ ~x. Let N denote a set of nodes in p with
dom(µ) ⊆ var(N ) and let M = {M1, . . . ,Mβ} denote the set of nodes outside N whose
parent is in N . We have to test if there exists an extension ν of µ on the existentially
quantified variables in N , s.t. ν cannot be further extended to any of the nodes Mi inM.

The key idea is, for all Mi ∈M, to define critical subsets C(Ni,Mi) of I(Ni,Mi), where
Ni ∈ N is the parent of Mi. Intuitively, C(Ni,Mi) is defined in such a way that the existence
of an extension ν of µ to the variables in Mi only depends on the values for µ on each of the
critical subsets. Our FPT-algorithm relies on several crucial properties of C(Ni,Mi):

First of all, for each critical subset ~v ⊆ I(Ni,Mi), we can efficiently determine the “good”
(resp. “bad”) value combinations, i.e., value combinations such that an extension (resp. no
extension) of a mapping ν to Mi is possible, namely: good(~v) = {η | dom(η) = ~v and there
exists an extension ν of η to var(Mi) with ν(Mi) ⊆ D} and bad(~v) = {η | dom(η) = ~v and
there exists no extension ν of η to var(Mi) with ν(Mi) ⊆ D}. It can be shown that, for
an arbitrary mapping µ with I(Mi, Ni) ⊆ dom(µ), there exists an extension ν of µ with
var(Mi) ⊆ dom(ν) and ν(Mi) ⊆ D iff for every ~v ∈ C(Mi, Ni), we have µ|~v ∈ good(~v).

Consider µ from our arbitrary instance of ExtendSolution(g-TW(k) ∩ SBI(c)). We
have to test if there exists an extension ν of µ to the existentially quantified variables in N ,
s.t. ν cannot be further extended to any of the nodes Mi inM. In other words, such ν has
to satisfy the following two conditions: (1) ν(N) ⊆ D for every N ∈ N and (2) for every
i ∈ {1, . . . , β}, there exists a critical subset ~vi ∈ C(Mi, Ni), s.t. ν|~vi

∈ bad(~vi).
Hence, our decision procedure for ExtendSolution(g-TW(k)∩SBI(c)) just checks if such

a combination (~v1, . . . , ~vβ) of critical subsets exists. We can search for such a combination
by nested loops over all ~vi ∈ C(Mi, Ni) with i ∈ {1, . . . , β}. Since ~vi ⊆ I(Mi, Ni) and
|I(Mi, Ni)| ≤ c, there are at most 2c elements in each C(Mi, Ni). Moreover, β is bounded by
the size of p. Hence, we have to check at most f(p) = (2c)|p| combinations (~v1, . . . , ~vβ). To
prove the algorithm to be in FPT, it suffices to show that, for a given combination (~v1, . . . , ~vβ)
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of critical subsets, one can test in polynomial time if there exists an extension ν of µ with
(1) ν(N) ⊆ D for every N ∈ N and (2) ν|~vi

∈ bad(~vi) for every i ∈ {1, . . . , β}.
The second crucial property of the critical subsets C(Ni,Mi) with i ∈ {1, . . . , β} is that

for any combination (~v1, . . . , ~vβ) with ~vi ∈ C(Ni,Mi), we can transform the given global tree
decomposition T of p of width k into a tree decomposition T ∗ of width ≤ (k+ 1) · (c+ 1), s.t.
every ~vi is covered by the bag of some vertex t in T ∗. Analogously to the PTIME-membership
proof in [4], the tree decomposition T ∗ guarantees that the check for the existence of an
extension ν of µ with the desired properties (1) and (2) is feasible in polynomial time. J

What happens if, instead of the restriction to g-TW(k) ∩ SBI(c), we consider `-TW(k) ∩
SBI(c)? Below we show that, with this relaxation, fixed-parameter tractability is lost.

I Theorem 6. The problem p-Eval(`-TW(k)∩SBI(c)) is W[1]-complete for k ≥ 1 and c ≥ 2.

Proof sketch. Membership is shown by reduction to the W[1]-complete problem Pos-Eval,
which is the evaluation problem for FO-queries built from relational atoms using ∃,∧,∨ [24]
(see also [24] for the problem definition). The idea is to create one positive query which is a
big disjunction over all possible CQs qT ′ corresponding to subtrees of p that potentially have
µ as an answer. The maximality of answers is enforced by introducing “interface relations”
which, for every child node, only contain those tuples which cannot be extended to the child.

Hardness is shown by an fpt-reduction from p-Clique. Given a graph G = (V,E) and
d ∈ N, we construct a wdPT p and a database D with the following intuition: The root R of
p contains d variables x1, . . . , xd. Mapping the root into D assigns one node from V to each
xi. In addition, R contains one child for each pair of distinct variables xα, xβ ∈ {x1, . . . , xd}.
Each of these children can be mapped into D iff there is an edge between the nodes assigned
to xα, xβ . Thus G contains a clique of size d iff there exists a mapping µ ∈ p(D) that maps
all children of R into D. J

We now consider another relaxation of the g-TW(k) ∩ SBI(c) restriction from Theorem 5
by considering wdPTs in g-TW(k) but without any bound on the interfaces.

I Theorem 7. The problem p-Eval(g-TW(k)) is W[2]-hard for k ≥ 1.

Proof sketch. The proof is by reduction from p-Dominating Set. Thus, let G = (V,E) be
a graph and d ∈ N. The idea of the constructed wdPT p and database D is to have variables
x1, . . . , xd in the root R of p such that a mapping of R into D assigns one node from V to
each xi. Observe that S ⊆ V is a dominating set iff there does not exist some u ∈ V \ S that
is not adjacent to any node in S. This is tested in the single child node of R: It contains an
additional variable x0 which also encodes nodes in V . Now the child node is mapped into D
iff there exists a value for x0 that differs from those of all xi’s, and there does not exist an
edge between the nodes mapped to x0 and any of the xi’s. I.e., there exists a solution that
only maps the root into D iff G contains a dominating set of size d. J

It was shown in [4] that the problem Max-Eval(g-TW(k)) is in PTIME. In other words,
for wdPTs with globally bounded treewidth, there is no need to also restrict the interface.
Moreover, as recalled above, restricting wdPTs to `-TW(k) ∩ BI(c) also yields a restriction of
the global treewidth. The only case remaining is therefore the restriction to `-TW(k)∩SBI(c).

I Proposition 8. The problem p-Max-Eval(`-TW(k) ∩ SBI(c)) is W[1]-hard for k ≥ 1 and
c ≥ 2.

Proof. The reduction used to prove the hardness in the proof of Theorem 6 also proves this
case, since clearly µ ∈ p(D) iff µ ∈ pm(D). J



M. Kröll, R. Pichler, and S. Skritek 22:11

4 Classical and Parameterized Complexity of Enumeration

We now turn our attention to the enumeration problem. Analogously to the evaluation
problem in Section 3, we will study four variants of the enumeration problem, namely
enumerating all vs. the maximal solutions and parameterized vs. non-parameterized problems.

Enum(C) / Max-Enum(C)
Instance: Query: wdPT p ∈ C.

Data: database D.
Output: p(D) / pm(D)?

p-Enum(C) / p-Max-Enum(C)
Instance: wdPT p ∈ C, database D.
Parameter: |p|
Output: p(D) / pm(D)?

For CQs, the enumeration problem is also well-studied, although not as thoroughly as the
evaluation problem. Similarly to the evaluation problem, restrictions on the graph structure
of the query have proven useful when looking for tractable enumeration of CQs, cf. [32, 5, 3].
For wdPTs, analogously to the evaluation problem, additional restrictions are necessary
in order to achieve tractability. However, for enumeration we get a more diverse picture
than for evaluation: When we are interested in all solutions, the additional restrictions used
for evaluation are sufficient also for enumeration, while this is not the case if we are only
interested in the maximal solutions. It will turn out that the techniques required to analyze
the enumeration of all vs. the maximal solutions differ significantly. We thus treat the
enumeration and the max-enumeration problems in separate subsections below.

4.1 Enumeration
For our study of the enumeration problem, the decision problem ExtendSolution(C),
which we introduced in Section 3, again plays an important role.

I Lemma 9. Let C be a class of pattern trees, p = (T, λ, ~x) ∈ C, and D a database. Assume
that there is a computable function f such that for every partial mapping µ and every subset
~x′ of ~x, the problem ExtendSolution(C) can be decided in O(f(|p|, |D|)). Then there exists
an algorithm enumerating p(D) with delay(i) in O(f(|p|, |D|) · |D| · |p|) for i ≥ 0.

Proof Sketch. The general idea is to create solutions by iteratively testing if certain variable
bindings can be extended to solutions. Observe that for CQs, it would suffice to test (in
nested loops) for each variable if it can be bound to a certain domain element. In contrast,
for wdPTs, we now have to consider an additional option, namely not binding a variable at
all. Thus, we look for extensions (= solutions) that bind some variables to specific domain
values (expressed by µ) and leave some variables unbound (expressed by ~x′).

In a little bit more detail, we enumerate all ν ∈ p(D) as follows: For all a ∈ dom(D), we
can check using ExtendSolution(C) whether {(x1, a)} can be extended to a solution (by
setting µ = {(x1, a)}), and whether there is a solution ν ∈ p(D) with x1 6∈ dom(ν) (by setting
~x′ = {x1}). Then by either fixing such a value a1 ∈ dom(D), or by fixing the fact that x1 will
not be in the domain of an extension, we can repeat this test for all a2 ∈ dom(D). Thus by
iteratively fixing such variable assignments (respectively intentional non-assignments) for all
n variables xi in ~x by either extending µ or ~x′, we can output a mapping ρ ∈ p(D) in the n-th
step. Given a solution ρ ∈ p(D), we find the next one by taking the maximal j ∈ {1, . . . , n}
such that under the same assignments for x1, . . . , xj , the check for an extension is positive
for a different ν(xj). Extending this assignment as described above gives a ρ′ 6= ρ with
ρ′ ∈ p(D). Iterating this process outputs p(D) with a delay of O(f(|p|, |D|) · |D| · |p|). J
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To make use of this lemma, we identify classes of wdPTs that meet the requirements:

I Proposition 10. The following complexity results hold for ExtendSolution(C):
1. Let k, c ≥ 1 and C be a class of CQs for which CQ-Eval(C) is in PTIME. Then

ExtendSolution(`-C ∩ BI(c)) is in PTIME.
2. ExtendSolution(g-TW(k)) is NP-complete for every k ≥ 1.
3. Let k, c ≥ 1. Then ExtendSolution(g-TW(k) ∩ SBI(c)) parameterized by |p| is in FPT.

Proof idea. (1) follows by some slight modifications of the proof of [4, Theorem 6]. Since
Eval(C) is a special case of ExtendSolution(C) where ~x′ = ~x \ dom(µ), (2) follows
immediately from [4]. For (3) we note that in the previous section, Theorem 5 was stated for
p-Eval(g-TW(k) ∩ SBI(c)). One can actually show the stronger result of FPT membership
for the parameterized version of ExtendSolution(g-TW(k) ∩ SBI(c)). J

Now the following corollary follows immediately from the previous results.

I Corollary 11. Let k, c ≥ 1.
Let C be a class of CQs for which CQ-Eval(C) is in PTIME. Then Enum(`-C ∩BI(c)) is
in SDelayP.
The problem p-Enum(g-TW(k) ∩ SBI(c)) is in DelayFPT.

We now move to negative results for the enumeration problem. As an important tool and
an interesting result in its own right, we establish a close relationship between enumeration
and the parameterized complexity of evaluation. We introduce some terminology first:

I Definition 12. A class C of wdPTs is robust if for every wdPT p = (T, λ, ~x) ∈ C the
following two conditions hold:
1. For every N = {N1, . . . , Nm} ⊆ V (T ) the wdPT (T, λN , ~z) is in C, where ~z = {z1 . . . , zm}

is a set of new variables, λN (N) = λ(N) for all N ∈ V (T ) \ N and λN (Ni) = λ(Ni) ∪
{b(zi)} for 1 ≤ i ≤ m and some new relation symbol b.

2. For every variable x ∈ var(p), let p′ be the wdPT retrieved from p by replacing every
occurrence of x by the same constant c. Then p′ ∈ C.

The notion of “robust” classes of wdPTs is important in the following theorem, to make
sure that wdPTs do not fall out of their class when certain transformations are performed.

I Theorem 13. Let C be a robust class of wdPTs. If p-Enum(C) is in OutputFPT, then
p-Eval(C) is in FPT.

Proof Sketch. Given a pattern tree p = (T, λ, ~x), a database D and a mapping µ, we first
transform p into a pattern tree p′ by substituting free variables in p according to µ, and then
adding unary atoms of the form b(zi) with new variables to the leaf nodes of the minimal
subtree of T only containing the variables dom(µ) and to the children of the leaf nodes of
the maximal subtree containing only dom(µ). Further we set the free variables of p′ to the
newly introduced variables and extend the database to a database D′ = D ∪ {b(1)}. We can
fix a mapping µ′ ∈ p′(D′) such that µ ∈ p(D) iff µ′ ∈ p′(D′). Since |p′(D′)| is in O(|p| · 2|p|),
we can output all of p′(D′) in O(f(|p|) · |D|m) for some m ≥ 1 and some function f , and
hence decide whether µ′ ∈ p′(D′) and thus whether µ ∈ p(D) in time in O(f(|p|) · |D|m). J

Exploiting this relationship between the evaluation and the enumeration problem, the
next results are immediate consequences of the W[1]- and W[2]-hardness, respectively, shown
in the previous section and the fact that all the classes mentioned in this paper are robust.
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I Corollary 14. If FPT 6= W[1], then the following holds:
The problem p-Enum(`-TW(k) ∩ SBI(c)) is not in OutputFPT for k ≥ 1 and c ≥ 2. Thus
also the problem Enum(`-TW(k) ∩ SBI(c)) is not in OutputP for k ≥ 1 and c ≥ 2.
The problem p-Enum(g-TW(k)) is not in OutputFPT for k ≥ 1.

It follows of course also immediately from Theorem 13 (in combination with Theorem 7)
that Enum(g-TW(k)) is not in OutputP if FPT 6= W[1]. However, we can show the same
result under an even stronger assumption, namely assuming that PTIME 6= NP, by making
use of the following NP-hardness result.

I Proposition 15. The following problem is NP-hard for every k ≥ 1: Given a wdPT
p ∈ g-TW(k) and a database D, decide whether |p(D)| = 2.

Proof sketch. The proof is by reduction from the NP-complete problem Dominating Set,
via the same reduction used to prove Theorem 7. W.l.o.g. we consider only graphs G that
contain at least one node that is not already a dominating set. Then there always exists
one solution that maps both, the root and the child into D. In addition there still exists a
second solution that maps only the root into D iff G contains a dominating set of size d. J

The next result follows immediately. Indeed, an algorithm solving Enum(g-TW(k)) in
polynomial time w.r.t. the size of the input plus the output would provide a polynomial time
decision procedure for Dominating Set, a problem well-known to be NP-hard.

I Corollary 16. If PTIME 6= NP, then Enum(g-TW(k)) is not in OutputP for every k ≥ 1.

4.2 Max-Enumeration
We next turn our attention to the problem of enumerating only the maximal solutions of
a wdPT. In fact, we show that for none of the classes of wdPTs considered in this work,
the problem Max-Enum(`-TW(k) ∩ BI(c)) is in OutputP. After establishing this result, we
therefore turn towards the parameterized problem, where for all but one of the classes we
can show a positive result, namely DelayFPT membership.

Of course, for the negative result on the non-parameterized problem, it suffices to show
intractability for Max-Enum(`-TW(k) ∩ BI(c)), since the other results follow from that.
Again, we do this via an intractability result for a suitable decision problem.

I Proposition 17. The following problem is NP-hard for every k, c ≥ 1: Given a wdPT
p ∈ `-TW(k) ∩ BI(c), a database D, and an integer s ≥ 1 encoded in unary, decide if
|pm(D)| > s.

To show that Max-Enum(`-TW(k) ∩ BI(c)) is not in OutputP using this result, we recall
a relationship from [31] (also [18]). The lemma below is actually a slight reformulation of
[31, Lemma 2.11]. However, it holds by the same arguments as the original statement.

I Lemma 18 ([31]). Let E be an enumeration problem. If E is in OutputP, then the following
problem is in PTIME: Given an instance x of E and an integer s encoded in unary, decide if
|E(x)| > s.

The intractability of Max-Enum(`-TW(k) ∩ BI(c)) now is an immediate consequence of
the previous two results.

I Corollary 19. If PTIME 6= NP, then Max-Enum(`-TW(k) ∩ BI(c)) is not in OutputP for
every k, c ≥ 1.

ICDT 2016
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We now show that the parameterized problem p-Max-Enum(C) is tractable in all but
one cases. We first establish the tractability for C = g-TW(k) and C = `-TW(k) ∩ BI(c),
respectively. Of course, this immediately implies tractability for C = g-TW(k) ∩ SBI(c).

We start by formulating a crucial lemma. It will be convenient to recall the problem
Partial-Eval(C) from the literature (cf. [4]): Given a wdPT p, a database D and a mapping
µ, does there exist some µ′ ∈ p(D) s.t. µ ⊆ µ′?

I Lemma 20. Let C be a class of wdPTs such that Partial-Eval(C) is in PTIME. Assume
that there exists an enumeration algorithm A, such that for every p ∈ C and every database D,
A enumerates some set P of partial solutions with pm(D) ⊆ P with delay(i) in O(f(|p|)·|D|m)
for some computable function f , some positive integer m and 0 ≤ i ≤ |P |. Then p-Max-
Enum(C) is in DelayFPT.

Proof idea. Given the enumeration algorithm A for P , the idea is to construct an extension
A′ of A that, after initializing a set M = ∅, performs the following steps: (1) Retrieve the
next output µ of A and extend it to a maximal solution µm. If µm has not been created
before, add µm to M ; (2) If the previous step was repeated 2|p| times since the last output,
output and delete a mapping from M . If A halts, A′ outputs M and halts as well.

Two main observations are important: First, if Partial-Eval(C) is in PTIME, we can
always extend a (partial) solution to a maximal solution by greedily adding variable mappings.
Second, at most 2|p| partial solutions can be extended to the same maximal solution. J

For a class C of wdPTs to show that Max-Enum(C) is in DelayFPT it thus remains to
identify a suitable set of partial solutions. We do this for the classes mentioned before.

I Theorem 21. Let C′ be a class of CQs s.t. CQ-Eval(C′) is in PTIME, k, c ≥ 1, and
C ∈ {g-C′, l-C′ ∩ BI(c)}. Then the problem p-Max-Enum(C) is in DelayFPT.

Proof idea. If CQ-Eval(C′) is in PTIME, then the corresponding enumeration problem is
in DelayP (cf. [5]). Thus, for wdPTs p ∈ g-C′, we have qT ′ ∈ C′ for every subtree T ′ of T
containing the root. Thus

⋃
T ′ qT ′(D) gives the required set of partial solutions – it suffices

to compute the solutions for one CQ after the other. For l-C′ ∩ BI(c), we use p(D) which can
be efficiently enumerated by Corollary 11. J

Algorithm A′ sketched in the proof of Lemma 20 crucially depends on the choice of RAMs
as the model of computation: A′ may need to store an exponential number of maximal
solutions. A Turing Machine (TM) cannot access these solutions efficiently, while a RAM can.
However, these algorithms could be easily adapted to run in incremental delay on a TM, i.e.
for some m ∈ N and computable function f , delay(i) is in O(f(|p|) · (|p|+ |D|+

∑i
j=1 |yi|)m)

for i ≥ 0 (where y1, . . . , yi are the first i solutions returned by the algorithm).
We have thus shown fixed-parameter tractability for three out of the four classes we

consider. We conclude this section by showing that for the remaining class the problem is
not in OutputFPT.

I Proposition 22. If FPT 6= W[1], then p-Max-Enum(`-TW(k)∩SBI(c)) is not in OutputFPT
for every k, c ≥ 1.

Proof idea. The proof is based on the same parameterized reduction from p-Clique used
in the proof of Theorem 6. There we have that |pm(D)| ≤ 2|p|. Thus, if enumerating pm(D)
were in OutputFPT, then deciding p-Clique would be in FPT. J
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5 Constant Delay

We now move to the data complexity of the enumeration problem. To make this explicit
in the notation used below, we write Enump to denote the problem Enum(C) where the
query is considered fixed and the input consists of the database only. The usual goal in
the database context is to devise an enumeration algorithm that works with linear time
preprocessing and then outputs the solutions with constant delay [29, 30]. To reach this
goal, typically additional restrictions on the query (and/or the data) are required than just
acyclicity/bounded treewidth [12, 19, 3]. For instance, for CQs it was shown that under
reasonable complexity assumptions, the class of conjunctive queries that are free-connex
acyclic (respectively of bounded free-connex treewidth) is the only class of acyclic (bounded
treewidth) CQs which allows constant delay enumeration [3].

Below, we show that this goal is not reachable for the classes of wdPTs studied here. Recall
from Section 4 that lower bounds are proved relative to some common complexity theoretic
assumption such as PTIME 6= NP or FPT 6= W[1]. The assumptions used in this section are
of a different nature, namely assuming that certain upper bounds are not achievable for
the search of a triangle in a graph [21] and for the multiplication of Boolean matrices [22].
Observe that these are typical problems for showing these kind of lower bounds and have
been used e.g. in [3] to show the dichotomy result mentioned above.

We first revisit the case of wdPTs without projections, i.e. let Cpf be the class of wdPTs
p = (T, λ, ~x) such that ~x = var(p).

I Proposition 23. If it is not possible to decide in time O(n2) whether a graph G with
|V (G)| = n contains a triangle, then Enump is not in DelayClin already for wdPTs in Cpf
consisting of only a root node with a single child where the root node contains a single binary
atom, the child node contains two binary atoms, and the two nodes share two variables.

Proof Idea. Constructing a pattern tree p with only two nodes R and N and three binary
atoms and an appropriate database D, we can decide whether a graph has a triangle by
checking whether there is a µ ∈ p(D) such that µ is a mapping on the whole pattern tree.
Using the fact that |p| is constant, constant delay enumeration with linear preprocessing
thus leads to an algorithm detecting a triangle in O(n2). J

The negative result in Proposition 23 is mainly due to the restriction of preprocessing to
linear time. Below, we show that if we relax this restriction and allow preprocessing in time
O(|D|mf(|p|)) in terms of combined complexity for a constant m > 0 and some computable
function f , then constant delay is achievable. Note that it is important to require that m be
a constant in order to exclude preprocessing of time O(|D||p|), which in most cases would
suffice to simply compute all of the solutions.

I Theorem 24. Let c, k ≥ 1 be positive integers. Then there exists an enumeration algorithm
A for Enum(`-TW(k)∩BI(c)) with delay(0) in O(f(|p|) · |D|c+k+1) and delay(i) in O(1) for
i > 0.

Proof Idea. In the preprocessing, we construct a global tree decomposition of all atoms, which
is consistent with the structure of the pattern tree (cf. our discussion preceding Theorem 5).
Then by partitioning the corresponding relations of the nodes of the decomposition and
eliminating tuples which are not part of some solution, a repeated top-down traversal through
the tree yields all solutions with a delay only in the size of the pattern tree. J

ICDT 2016
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Table 1 Summary of the main results on evaluation and enumeration of wdPTs.

`-TW(k) ∩ BI(c) g-TW(k) ∩ SBI(c) `-TW(k) ∩ SBI(c) g-TW(k)

p-Eval(C) PTIME [4] FPT W[1]-complete W[2]-hard
p-Max-Eval(C) PTIME [4] PTIME [4] W[1]-hard PTIME [4]

Enum(C) SDelayP open not OutputP not OutputP
Max-Enum(C) not OutputP not OutputP not OutputP not OutputP

p-Enum(C) SDelayP DelayFPT not OutputFPT not OutputFPT
p-Max-Enum(C) DelayFPT DelayFPT not OutputFPT DelayFPT

We note that the proof in fact allows to show that in the above theorem, f(|p|) is actually
polynomial w.r.t. |p|. Thus, given an exponential number of solutions, it is impossible to
compute all of them during the preprocessing step.

For wdPTs with projection, we need to restrict the class of CQs in the pattern tree for a
chance to achieve constant delay with linear preprocessing: Recall that – under reasonable
complexity assumptions – the class of free-connex acyclic (respectively of bounded free-connex
treewidth) CQs is the only class of acyclic (bounded treewidth) CQs which allows constant
delay enumeration [3]. However, we show below that Enump is not in DelayClin even for
wdPTs with such a restriction imposed locally on each set of atoms. As in Proposition 23,
constant delay and linear preprocessing would lead to an unlikely upper bound on the runtime
of a well-studied combinatorial problem.

I Proposition 25. If the product AB of two Boolean n × n matrices A and B cannot be
computed in time O(n2), then Enump is not in DelayClin already for wdPTs consisting of
only two nodes, each containing a single binary atom and sharing a single variable.

Let C∗ be the class of conjunctive queries with bounded free-connex treewidth. Then,
even if we allow polynomial time preprocessing instead of a linear one as in Theorem 24,
there is no constant delay enumeration algorithm for pattern trees in {g-C∗, l-C∗ ∩ SBI(c)}
assuming that W[1] 6= FPT. This is due to the fact that enumeration in these classes is not
in OutputFPT under this complexity assumption.

I Proposition 26. Let c ≥ 1 and C∗ be the class of conjunctive queries with bounded free-
connex treewidth. Further let p ∈ {g-C∗, l-C∗ ∩ SBI(c)} and D be a database. Then there is
no positive integer m and computable function f such that p(D) can be enumerated with
delay(0) in O(|D|m · f(|p|)) and delay(i) in O(1) for i ≥ 1 unless FPT = W[1].

6 Conclusion

In this paper, we have embarked on a complexity analysis of two versions of the enumeration
problem of wdPTs: the problems of enumerating all solutions and of enumerating the
maximal solutions. Due to the close relationship with the parameterized complexity of the
corresponding evaluation problem, we have also revisited the evaluation and max-evaluation
problems. A summary of the main results is given in Table 1.

For the problems Eval(C) and Max-Eval(C) we have identified fixed-parameter tractable
and intractable cases. Likewise, for the two variants of the enumeration problem, we have
identified tractable and intractable cases – both in terms of classical and parameterized
complexity. More precisely, for the classical complexity, we have established tractability
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by showing a strong form of tractability (i.e., polynomial delay) and we have established
intractability by ruling out even a weaker form of tractability (i.e., output polynomial time).
We have proved analogous results from a parameterized complexity point of view.

Even though we have provided quite a comprehensive picture of the complexities in
various settings, Table 1 still calls for further work. Above all, the Enum(C) problem with
C = g-TW(k) ∩ SBI(c) is open. We conjecture tractability in this case – but this has to be
proved yet. Also, for two of our W[1]- and W[2]-hardness results, a matching upper bound
is missing. Finally, the search for tractable classes both, for evaluation and enumeration
of wdPTs should be continued. Note that none of the restrictions studied here sufficed to
ensure tractability of Max-Enum(C). Hence, further restrictions should be studied.

Acknowledgments. This work was supported by the Vienna Science and Technology Fund
(WWTF) through project ICT12-015 and by the Austrian Science Fund (FWF):P25207-N23.
Markus Kröll was funded by FWF project W1255-N23.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, Reading, Massachusetts, 1995.
2 Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Simkus, and Sebastian

Skritek. Towards reconciling SPARQL and certain answers. In Proc. WWW 2015, pages
23–33. ACM, 2015.

3 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In Computer Science Logic, pages 208–222. Springer, 2007.

4 Pablo Barceló, Reinhard Pichler, and Sebastian Skritek. Efficient evaluation and approx-
imation of well-designed pattern trees. In Proc. PODS 2015, pages 131–144. ACM, 2015.

5 Andrei A. Bulatov, Víctor Dalmau, Martin Grohe, and Dániel Marx. Enumerating homo-
morphisms. J. Comput. Syst. Sci., 78(2):638–650, 2012.

6 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theor.
Comput. Sci., 239(2):211–229, 2000.

7 Nadia Creignou and J-J Hébrard. On generating all solutions of generalized satisfiability
problems. Informatique théorique et applications, 31(6):499–511, 1997.

8 Nadia Creignou, Arne Meier, Julian-Steffen Müller, Johannes Schmidt, and Heribert
Vollmer. Paradigms for parameterized enumeration. CoRR, abs/1306.2171, 2013.

9 Nadia Creignou and Heribert Vollmer. Parameterized complexity of weighted satisfiability
problems: Decision, enumeration, counting. Fundam. Inform., 136(4):297–316, 2015. doi:
10.3233/FI-2015-1159.

10 Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. In Proc. CP, pages 310–326, 2002.

11 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, Ber-
lin/Heidelberg/New York, 1999.

12 Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-order
queries over databases of low degree. In Proc. PODS 2014, pages 121–131. ACM, 2014.

13 Jörg Flum and Martin Grohe. Parameterized complexity theory. Berlin/Heidelberg/New
York, 2010.

14 Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic conjunct-
ive queries. J. ACM, 48(3):431–498, 2001.

15 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

ICDT 2016

http://dx.doi.org/10.3233/FI-2015-1159
http://dx.doi.org/10.3233/FI-2015-1159


22:18 On the Complexity of Enumerating the Answers to Well-designed Pattern Trees

16 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1), 2007.

17 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating
all maximal independent sets. Inf. Process. Lett., 27(3):119–123, 1988. doi:10.1016/
0020-0190(88)90065-8.

18 Dimitris J Kavvadias, Martha Sideri, and Elias C Stavropoulos. Generating all maximal
models of a boolean expression. Information Processing Letters, 74(3):157–162, 2000.

19 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of struc-
tures with bounded expansion. In Proc. PODS 2013, pages 297–308. ACM, 2013.

20 Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte. CONSTRUCT queries in SPARQL.
In Proc. ICDT 2015, volume 31 of LIPIcs, pages 212–229. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2015.

21 Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law))
graphs. Theoretical Computer Science, 407(1):458–473, 2008.

22 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. ISAAC 2014,
pages 296–303. ACM, 2014.

23 Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static analysis and
optimization of semantic web queries. ACM Trans. Database Syst., 38(4):25, 2013.

24 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.
J. Comput. Syst. Sci., 58(3):407–427, 1999.

25 Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3), 2009.

26 Reinhard Pichler and Sebastian Skritek. Containment and equivalence of well-designed
SPARQL. In Proc. PODS 2014, pages 39–50. ACM, 2014.

27 Reinhard Pichler and Sebastian Skritek. On the hardness of counting the solutions of
SPARQL queries. In Proc. AMW 2014, volume 1189 of CEUR Workshop Proceedings.
CEUR-WS.org, 2014.

28 Eric Prud′hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C
Recommendation, World Wide Web Consortium (W3C), January 2008. URL: http://www.
w3.org/TR/rdf-sparql-query/.

29 Luc Segoufin. Enumerating with constant delay the answers to a query. In Proc. ICDT
2013, pages 10–20. ACM, 2013.

30 Luc Segoufin. A glimpse on constant delay enumeration (invited talk). In Proc. STACS
2014, volume 25 of LIPIcs, pages 13–27. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2014.

31 Yann Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Universite
Paris Diderot – Paris 7, December 2010. URL: http://www.prism.uvsq.fr/~ystr/these_
strozecki.

32 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proc. VLDB, pages 82–94,
1981.

http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.prism.uvsq.fr/~ystr/these_strozecki
http://www.prism.uvsq.fr/~ystr/these_strozecki


A Practically Efficient Algorithm for Generating
Answers to Keyword Search Over Data Graphs∗†

Konstantin Golenberg1 and Yehoshua Sagiv2

1 The Hebrew University of Jerusalem, Jerusalem, Israel
2 The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract
In keyword search over a data graph, an answer is a non-redundant subtree that contains all
the keywords of the query. A naive approach to producing all the answers by increasing height
is to generalize Dijkstra’s algorithm to enumerating all acyclic paths by increasing weight. The
idea of freezing is introduced so that (most) non-shortest paths are generated only if they are
actually needed for producing answers. The resulting algorithm for generating subtrees, called
GTF, is subtle and its proof of correctness is intricate. Extensive experiments show that GTF
outperforms existing systems, even ones that for efficiency’s sake are incomplete (i.e., cannot
produce all the answers). In particular, GTF is scalable and performs well even on large data
graphs and when many answers are needed.
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answers, efficiency

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.23

1 Introduction

Keyword search over data graphs is a convenient paradigm of querying semistructured and
linked data. Answers, however, are similar to those obtained from a database system, in the
sense that they are succinct (rather than just relevant documents) and include semantics (in
the form of entities and relationships) and not merely free text. Data graphs can be built
from a variety of formats, such as XML, relational databases, RDF and social networks. They
can also be obtained from the amalgamation of many heterogeneous sources. When it comes
to querying data graphs, keyword search alleviates their lack of coherence and facilitates
easy search for precise answers, as if users deal with a traditional database system.

In this paper, we address the issue of efficiency. Computing keyword queries over data
graphs is much more involved than evaluation of relational expressions. Quite a few systems
have been developed (see [2] for details). However, they fall short of the degree of efficiency
and scalability that is required in practice. Some algorithms sacrifice completeness for the
sake of efficiency; that is, they are not capable of generating all the answers and, consequently,
may miss some relevant ones.

We present a novel algorithm, called Generating Trees with Freezing (GTF). We start
with a straightforward generalization of Dijkstra’s shortest-path algorithm to the task of
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constructing all simple (i.e., acyclic) paths, rather than just the shortest ones. Our main
contribution is incorporating the freezing technique that enhances efficiency by up to one
order of magnitude, compared with the naive generalization of Dijkstra’s algorithm. The
main idea is to avoid the construction of most non-shortest paths until they are actually
needed in answers. Freezing may seem intuitively clear, but making it work involves subtle
details and requires an intricate proof of correctness.

Our main theoretical contribution is the algorithm GTF, which incorporates freezing,
and its proof of correctness. Our main practical contribution is showing experimentally (in
Section 5 and Appendix B of [5]) that GTF is both more efficient and more scalable than
existing systems. This contribution is especially significant in light of the following. First,
GTF is complete (i.e., it does not miss answers); moreover, we show experimentally that
not missing answers is important in practice. Second, the order of generating answers is by
increasing height. This order is commonly deemed a good strategy for an initial ranking that
is likely to be in a good correlation with the final one (i.e., by increasing weight).

2 Preliminaries

We model data as a directed graph G, similarly to [1]. Data graphs can be constructed from
a variety of formants (e.g., RDB, XML and RDF). Nodes represent entities and relationships,
while edges correspond to connections among them (e.g., foreign-key references when the
data graph is constructed from a relational database). We assume that text appears only in
the nodes. This is not a limitation, because we can always split an edge (with text) so that it
passes through a node. Some nodes are for keywords, rather than entities and relationships.
In particular, for each keyword k that appears in the data graph, there is a dedicated node.
By a slight abuse of notation, we do not distinguish between a keyword k and its node –
both are called keyword and denoted by k. For all nodes v of the data graph that contain a
keyword k, there is a directed edge from v to k. Thus, keywords have only incoming edges.

Figure 1 shows a snippet of a data graph. The dashed part should be ignored unless
explicitly stated otherwise. Ordinary nodes are shown as ovals. For clarity, the type of each
node appears inside the oval. Keyword nodes are depicted as rectangles. To keep the figure
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small, only a few of the keywords that appear in the graph are shown as nodes. For example,
a type is also a keyword and has its own node in the full graph. For each oval, there is an
edge to every keyword that it contains.

Let G = (V, E) be a directed data graph, where V and E are the sets of nodes and
edges, respectively. A directed path is denoted by 〈v1, . . . , vm〉. We only consider rooted
(and, hence, directed) subtrees T of G. That is, T has a unique node r, such that for all
nodes u of T , there is exactly one path in T from r to u. Consider a query K, that is, a
set of at least two keywords. A K-subtree is a rooted subtree of G, such that its leaves are
exactly the keywords of K. We say that a node v ∈ V is a K-root if it is the root of some
K-subtree of G. It is observed in [1] that v is a K-root if and only if for all k ∈ K, there is a
path in G from v to k. An answer to K is a K-subtree T that is non-redundant (or reduced)
in the sense that no proper subtree T ′ of T is also a K-subtree. It is easy to show that a
K-subtree T of G is an answer if and only if the root of T has at least two children. Even if
v is a K-root, it does not necessarily follow that there is an answer to K that is rooted at v

(because it is possible that in all K-subtrees rooted at v, there is only one child of v).
Figure 3 shows three answers to the query {France, Paris} over the data graph of Figure 1.

The answer A1 means that the city Paris is located in a province containing the word France
in its name. The answer A2 states that the city Paris is located in the country France.
Finally, the answer A3 means that Paris is located in a province which is located in France.

Now, consider also the dashed part of Figure 1, that is, the keyword Seine and the
node river with its outgoing edges. There is a path from river to every keyword of K =
{France, Paris}. Hence, river is a K-root. However, the K-subtree of Figure 2 is not an
answer to K, because its root has only one child.

For ranking, the nodes and edges of the data graph have positive weights. The weight of
a path (or a tree) is the sum of weights of all its nodes and edges. The rank of an answer is
inversely proportional to its weight. The height of a tree is the maximal weight over all paths
from the root to any leaf (which is a keyword of the query). For example, suppose that the
weight of each node and edge is 1. The heights of the answers A1 and A3 (of Figure 3) are 5
and 7, respectively. In A1, the path from the root to France is a minimal (i.e., shortest) one
between these two nodes, in the whole graph, and its weight is 5. In A3, however, the path
from the root (which is the same as in A1) to France has a higher weight, namely, 7.

3 The GTF Algorithm

3.1 The Naive Approach
Consider a query K = {k1, . . . , kn}. In [1], they use a backward shortest-path iterator from
each keyword node ki. That is, starting at each ki, they apply Dijkstra’s shortest-path
algorithm in the opposite direction of the edges. If a node v is reached by the backward
iterators from all the ki, then v is a K-root (and, hence, might be the root of some answers).
In this way, answers are generated by increasing height. However, this approach can only
find answers that consist of shortest paths from the root to the keyword nodes. Hence, it
misses answers (e.g., it cannot produce A3 of Figure 3).

Dijkstra’s algorithm can be straightforwardly generalized to construct all the simple
(i.e., acyclic) paths by increasing weight. This approach is used1 in [11] and it consists
of two parts: path construction and answer production. Each constructed path is from

1 They used it on a small summary graph to construct database queries from keywords.
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Figure 4 Paths to keywords in the graph snippet of Figure 1.

some node of G to a keyword of K. Since paths are constructed backwards, the algorithm
starts simultaneously from all the keyword nodes of K. It uses a single priority queue to
generate, by increasing weight, all simple paths to every keyword node of K. When the
algorithm discovers that a node v is a K-root (i.e., there is a path from v to every ki), it
starts producing answers rooted at v. This is done by considering every combination of paths
p1, . . . , pn, such that pi is from v to ki (1 ≤ i ≤ n). If the combination is a non-redundant
K-subtree of G, then it is produced as an answer. It should be noted that in [11], answers
are subgraphs; hence, every combination of paths p1, . . . , pn is an answer. We choose to
produce subtrees as answers for two reasons. First, in the experiments of Section 5, we
compare our approach with other systems that produce subtrees. Second, it is easier for
users to understand answers that are presented as subtrees, rather than subgraphs.

The drawback of the above approach is constructing a large number of paths that are
never used in any of the generated answers. To overcome this problem, the next section
introduces the technique of freezing, thereby most non-minimal paths are generated only if
they are actually needed to produce answers. Section 3.3 describes the algorithm Generating
Trees with Freezing (GTF) that employs this technique.

To save space (when constructing all simple paths), we use the common technique known
as tree of paths. In particular, a path p is a linked list, such that its first node points to the
rest of p. As an example, consider the graph snippet of Figure 1. The paths that lead to
the keyword France are p1, p2, p3, p4, p5 and p6, shown in Figure 4. Their tree of paths is
presented in Figure 5.

Since we build paths backwards, a data graph is preprocessed to produce for each node
v the set of its parents, that is, the set of nodes v′, such that (v′, v) is an edge of the data
graph. We use the following notation. Given a path p that starts at a node v, the extension
of p with a parent v′ of v is denoted by v′ → p. Note that v′ is the first node of v′ → p and
v is the second one.

3.2 Incorporating Freezing

The general idea of freezing is to avoid the construction of paths that cannot contribute to
production of answers. To achieve that, a non-minimal path p is frozen until it is certain
that p can reach (when constructed backwards) a K-root. In particular, the first path that
reaches a node v is always a minimal one. When additional paths reach v, they are frozen
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Figure 5 Tree of paths.

there until v is discovered to be on a path from a K-root to a keyword node. The process of
answer production in the GTF algorithm remains the same as in the naive approach.

We now describe some details about the implementation of GTF. We mark nodes of the
data graph as either active, visited or in-answer. Since we simultaneously construct paths
to all the keywords (of the query K = {k1, . . . , kn}), a node has a separate mark for each
keyword. The marks of a node v are stored in the array v.marks, which has an entry for
each keyword. For a keyword ki, the mark of v (i.e., v.marks[ki ]) means the following. Node
v is active if we have not yet discovered that there is a path from v to ki. Node v is visited if
a minimal path from v to ki has been produced. And v is marked as in-answer when we
discover for the first time that v is on a path from some K-root to ki.

If v.marks[ki ] is visited and a path p from v to ki is removed from the queue, then p is
frozen at v. Frozen paths from v to ki are stored in a dedicated list v.frozen[ki]. The paths
of v.frozen[ki] are unfrozen (i.e., are moved back into the queue) when v.marks[ki ] is changed
to in-answer.

We now describe the execution of GTF on the graph snippet of Figure 1, assuming
that the query is K = {France, Paris}. Initially, two paths 〈France〉 and 〈Paris〉, each
consisting of one keyword of K, are inserted into the queue, where lower weight means higher
priority. Next, the top of the queue is removed; suppose that it is 〈France〉. First, we change
France.marks[France] to visited. Second, for each parent v of France, the path v → France
is inserted into the queue; namely, these are the paths p1 and p2 of Figure 4. We continue to
iterate in this way. Suppose that now 〈Paris〉 has the lowest weight. So, it is removed from
the queue, Paris.marks[Paris] is changed to visited, and the path p7 (of Figure 4) is inserted
into the queue.

Now, let the path p1 be removed from the queue. As a result, province.marks[France] is
changed to visited, and the path p6 = city → p1 is inserted into the queue. Next, assume
that p2 is removed from the queue. So, country.marks[France] is changed to visited, and the
paths p3 = province → p2 and p5 = city → p2 are inserted into the queue.

Now, suppose that p3 is at the top of the queue. So, p3 is removed and immediately frozen
at province (i.e., added to province.frozen[France]), because province.marks[France] = visited.
Consequently, no paths are added to the queue in this iteration. Next, assume that p6 is
removed from the queue. The value of city.marks[France] is changed to visited and no paths
are inserted into the queue, because city has no incoming edges.

Now, suppose that p7 is at the top of the queue. So, it is removed and city.marks[Paris]
is changed to visited. Currently, both city.marks[Paris] and city.marks[France] are visited.
That is, there is a path from city to all the keywords of the query {France, Paris}. Recall
that the paths that have reached city so far are p6 and p7. For each one of those paths p, the
following is done, assuming that p ends at the keyword k. For each node v of p, we change
the mark of v for k to in-answer and unfreeze paths to k that are frozen at v. Doing it
for p6 means that city.marks[France], province.marks[France] and France.marks[France] are
all changed to in-answer. In addition, the path p3 is removed from province.frozen[France]
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and inserted back into the queue. We act similarly on p7. That is, city.marks[Paris] and
Paris.marks[Paris] are changed to in-answer. In this case, there are no paths to be unfrozen.

Now, the marks of city for all the keywords (of the query) are in-answer. Hence, we
generate answers from the paths that have already reached city. As a result, the answer A1
of Figure 3 is produced. Moreover, from now on, when a new path reaches city, we will try
to generate more answers by applying produceAnswers(P, p).

3.3 The Pseudocode of the GTF Algorithm
The GTF algorithm is presented in Figure 6 and its helper procedures in Figure 7. The
input is a data graph G = (V, E) and a query K = {k1, . . . , kn}. The algorithm uses a single
priority queue Q to generate, by increasing weight, all simple paths to every keyword node of
K. For each node v ∈ V , there is a flag isKRoot that indicates whether v has a path to each
keyword of K. Initially, that flag is false. For each node v ∈ V , the set of the constructed
paths from v to the keyword k is stored in v.paths[k], which is initially empty. Also, for all
the keywords of K and nodes of G, we initialize the marks to be active and the lists of frozen
paths to be empty. The paths are constructed backwards, that is, from the last node (which
is always a keyword). Therefore, for each k ∈ K, we insert the path 〈k〉 (consisting of the
single node k) into Q. All these initializations are done in lines 1–9 (of Figure 6).

The main loop of lines 10–37 is repeated while Q is not empty. Line 11 removes the best
(i.e., least-weight) path p from Q. Let v and ki be the first and last, respectively, nodes of
p. Line 12 freezes p provided that it has to be done. This is accomplished by calling the
procedure freeze(p) of Figure 7 that operates as follows. If the mark of v for ki is visited,
then p is frozen at v by adding it to v.frozen[ki] and true is returned; in addition, the
main loop continues (in line 13) to the next iteration. Otherwise, false is returned and p is
handled as we describe next.

Line 15 checks if p is the first path from v to ki that has been removed from Q. If so,
line 16 changes the mark of v for ki from active to visited. Line 17 assigns true to the flag
relax, which means that (as of now) p should spawn new paths that will be added to Q.

The test of line 18 splits the execution of the algorithm into two cases. If v is a K-
root (which must have been discovered in a previous iteration and means that for every
k ∈ K, there is a path from v to k), then the following is done. First, line 19 calls the
procedure unfreeze(p, Q) of Figure 7 that unfreezes (i.e., inserts into Q) all the paths
to ki that are frozen at nodes of p (i.e., the paths of v̄.frozen[ki], where v̄ is a node of
p). In addition, for all nodes v̄ of p, the procedure unfreeze(p, Q) changes the mark of
v̄ for ki to in-answer. Second, line 20 tests whether p is acyclic. If so, line 21 adds p to
the paths of v that reach ki, and line 22 produces new answers that include p by calling
produceAnswers of Figure 7. The pseudocode of produceAnswers(v.paths, p) is just an
efficient implementation of considering every combination of paths p1, . . . , pn, such that pi is
from v to ki (1 ≤ i ≤ n), and checking that it is an answer to K. (It should be noted that
GTF generates answers by increasing height.) If the test of line 20 is false, then the flag
relax is changed back to false, thereby ending the current iteration of the main loop.

If the test of line 18 is false (i.e., v has not yet been discovered to be a K-root), the
execution continues in line 26 that adds p to the paths of v that reach ki. Line 27 tests
whether v is now a K-root and if so, the flag isKRoot is set to true and the following is done.
The nested loops of lines 29–32 iterate over all paths p′ (that have already been discovered)
from v to any keyword node of K (i.e., not just ki). For each p′, where k′ is the last node of
p′ (and, hence, is a keyword), line 31 calls unfreeze(p′, Q), thereby inserting into Q all the
paths to k′ that are frozen at nodes of p′ and changing the mark (for k′) of those nodes to
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Algorithm: GTF (Generate Trees with Freezing)
Input: G = (V, E) is a data graph

K is a set of keyword nodes
Output: Answers to K

1: Q← an empty priority queue
2: for v ∈ V do
3: v.isKRoot ← false
4: for v ∈ V and k ∈ K do
5: v.paths[k]← ∅
6: v.frozen[k]← ∅
7: v.marks[k]← active
8: for k ∈ K do
9: Q.insert(〈k〉)

10: while Q is not empty do
11: p← Q.remove()
12: if freeze(p) then
13: continue
14: v ← first(p)
15: if v.marks[p.keyword] = active then
16: v.marks[p.keyword]← visited
17: relax ← true
18: if v.isKRoot = true then
19: unfreeze(p, Q)
20: if p has no cycles then
21: v.paths[p.keyword].add(p)
22: produceAnswers(v.paths, p)
23: else
24: relax ← false
25: else
26: v.paths[p.keyword].add(p)
27: if for all k ∈ K, it holds that v.paths[k] 6= ∅ then
28: v.isKRoot ← true
29: for k ∈ K do
30: for p′ ∈ v.pahts[k] do
31: unfreeze(p′, Q)
32: remove cyclic paths from v.paths[k]
33: produceAnswers(v.paths, p)
34: if relax then
35: for v′ ∈ parents(v) do
36: if v′ is not on p or v′ → p is essential then
37: Q.insert(v′ → p)

Figure 6 The GTF algorithm.
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Procedure: freeze(p)
1: if first(p).marks[p.keyword] = visited then
2: first(p).frozen[p.keyword].add(p)
3: return true
4: else
5: return false

Procedure: unfreeze(p, Q)
1: p′ ← p

2: while p′ 6=⊥ do
3: v̄ ← first(p′)
4: if v̄.marks[p.keyword] 6= in-answer then
5: v̄.marks[p.keyword]← in-answer
6: for p′′ ∈ v̄.frozen[p.keyword] do
7: Q.insert(p′′)
8: p′ ← predecessor(p′)

Procedure: produceAnswers(P, p)
Output: answers rooted at first(p)
1: P[p.keyword]← {p}
2: iter ← new pathGroups(P)
3: while iter .hasNext() do
4: P̄ ← iter .next()
5: a← combine all the paths in P̄

/* next() ensures that the combin-
ation of all the paths in P̄ yields a
tree (rather than a graph) */

6: if the root of a has more than one
child then

7: output a

Figure 7 Helper procedures for the GTF algorithm.

in-answer. Line 32 removes all the cyclic paths among those stored at v. Line 33 generates
answers from the paths that remain at v.

If the test of line 34 is true, the relaxation of p is done in lines 35–37 as follows. For each
parent v′ of v, the path v′ → p is inserted into Q if either one of the following two holds (as
tested in line 36). First, v′ is not on p. Second, v′ → p is essential, according to the following
definition. The path v′ → p is essential if v′ appears on p and the section of v′ → p from
its first node (which is v′) to the next occurrence of v′ has at least one node u, such that
u.marks[k] = visited, where the keyword k is the last node of p. Appendix A of [5] gives an
example that shows why essential paths (which are cyclic) have to be inserted into Q.

Note that due to line 24, no cyclic path p[v, k] is relaxed if v has already been discovered
to be a K-root in a previous iteration. The reason is that none of the nodes along p[v, k]
could have the mark visited for the keyword k (hence, no paths are frozen at those nodes).

Observe that before v is known to be a K-root, we add cyclic paths to the array v.paths.
Only when discovering that v is a K-root, do we remove all cyclic paths from v.paths (in
line 32) and stop adding them in subsequent iterations. This is lazy evaluation, because prior
to knowing that answers with the K-root v should be produced, it is a waste of time to test
whether paths from v are cyclic.

4 Correctness and Complexity of GTF

4.1 Definitions and Observations
Before proving correctness of the GTF algorithm, we define some notation and terminology
(in addition to those of Section 2) and state a few observations. Recall that the data graph is
G = (V, E). Usually, a keyword is denoted by k, whereas r, u, v and z are any nodes of V .

We only consider directed paths of G that are defined as usual. If p is a path from v to k,
then we write it as p[v, k] when we want to explicitly state its first and last nodes. We say
that node u is reachable from v if there is a path from v to u.

A suffix of p[v, k] is a traversal of p[v, k] that starts at (some particular occurrence of) a
node u and ends at the last node of p. Hence, a suffix of p[v, k] is denoted by p[u, k]. A prefix
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of p[v, k] is a traversal of p[v, k] that starts at v and ends at (some particular occurrence of)
a node u. Hence, a prefix of p[v, k] is denoted by p[v, u]. A suffix or prefix of p[v, k] is proper
if it is different from p[v, k] itself.

Consider two paths p1[v, z] and p2[z, u]; that is, the former ends in the node where the
latter starts. Their concatenation, denoted by p1[v, z] ◦ p2[z, u], is obtained by joining them
at node z.

As already mentioned in Section 2, a positive weight function w is defined on the nodes
and edges of G. The weight of a path p[v, u], denoted by w(p[v, u]), is the sum of weights
over all the nodes and edges of p[v, u]. A minimal path from v to u has the minimum weight
among all paths from v to u. Since the weight function is positive, there are no zero-weight
cycles. Therefore, a minimal path is acyclic. Also observe that the weight of a proper suffix
or prefix is strictly smaller than that of the whole path.2

Let K be a query (i.e., a set of at least two keywords). Recall from Section 2 the definitions
of K-root, K-subtree and height of a subtree. The best height of a K-root r is the maximum
weight among all the minimal paths from r to any keyword k ∈ K. Note that the height of
any K-subtree rooted at r is at least the best height of r.

Consider a nonempty set of nodes S and a node v. If v is reachable from every node of S,
then we say that node u ∈ S is closest to v if a minimal path from u to v has the minimum
weight among all paths from any node of S to v.

Similarly, if every node of S is reachable from v, then we say that node u ∈ S is closest
from v if a minimal path from v to u has the minimum weight among all paths from v to
any node of S.

In the sequel, line numbers refer to the algorithm GTF of Figure 6, unless explicitly
stated otherwise. We say that a node v ∈ V is discovered as a K-root if the test of line 27 is
satisfied and v.isRoot is assigned true in line 28. Observe that the test of line 27 is true if
and only if for all k ∈ K, it holds that v.marks[k] is either visited or in-answer. Also note
that line 28 is executed at most once for each node v of G. Thus, there is at most one
iteration of the main loop (i.e., line 10) that discovers v as K-root.

We say that a path p is constructed when it is inserted into Q for the first time, which
must happen in line 37. A path is exposed when it is removed from Q in line 11. Observe
that a path p[v, k] may be exposed more than once, due to freezing and unfreezing.

I Proposition 1. A path can be exposed at most twice.

Proof. When an iteration exposes a path p[v, k] for the first time, it does exactly one of the
following. It freezes p[v, k] at node v, discard p[v, k] due to line 24, or extend (i.e., relax)
p[v, k] in the loop of line 35 and inserts the results into Q in line 37. Note that some
relaxations of p[v, k] are never inserted into Q, due to the test of line 36. Only if p[v, k] is
frozen at v, can it be inserted a second time into Q, in line 7 of the procedure unfreeze
(Figure 7) that also sets v.marks[k] to in-answer. But then p[v, k] cannot freeze again at v,
because v.marks[k] does not change after becoming in-answer. Therefore, p[v, k] cannot be
inserted into Q a third time. J

In the next section, we sometimes refer to the mark of a node v of a path p. It should be
clear from the context that we mean the mark of v for the keyword where p ends.

2 For the proof of correctness, it is enough for the weight function to be non-negative (rather than positive)
provided that every cycle has a positive weight.
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Figure 8 The path p̄[v, k].

4.2 The Proof
We start with an auxiliary lemma that considers the concatenation of two paths, where the
linking node is z, as shown in Figure 8 (note that a wavy arrow denotes a path, rather than
a single edge). Such a concatenation is used in the proofs of subsequent lemmas.

I Lemma 2. Let k be a keyword of the query K, and let v and z be nodes of the data graph.
Consider two paths ps[v, z] and pm[z, k]. Let p̄[v, k] be their concatenation at node z, that is,

p̄[v, k] = ps[v, z] ◦ pm[z, k].

Suppose that the following hold at the beginning of iteration i of the main loop (line 10).
1. The path ps[v, z] is minimal or (at least) acyclic.
2. The path pm[z, k] has changed z.marks[k] from active to visited in an earlier iteration.
3. z.marks[k] = visited.
4. For all nodes u 6= z on the path ps[v, z], the suffix p̄[u, k] is not frozen at u.
5. The path p̄[v, k] has not yet been exposed.
Then, some suffix of p̄[v, k] must be on Q at the beginning of iteration i.

Proof. Suppose, by way of contradiction, that no suffix of p̄[v, k] is on Q at the beginning of
iteration i. Since p̄[v, k] has not yet been exposed, there are two possible cases regarding its
state. We derive a contradiction by showing that none of them can happen.
Case 1: Some suffix of p̄[v, k] is frozen. This cannot happen at any node of p̄[z, k] (which

is the same as pm[z, k]), because Condition 3 implies that pm[z, k] has already changed
z.marks[k] to visited. Condition 4 implies that it cannot happen at the other nodes of
p̄[v, k] (i.e., the nodes u of ps[v, z] that are different from z).

Case 2: Some suffix of p̄[v, k] has already been discarded (in an earlier iteration) either by
the test of line 36 or due to line 24. This cannot happen to any suffix of p̄[z, k] (which
is the same as pm[z, k]), because pm[z, k] has already changed z.marks[k] to visited. We
now show that it cannot happen to any other suffix p̄[u, k], where u is a node of ps[v, z]
other than z. Note that p̄[v, k] (and hence p̄[u, k]) is not necessarily acyclic. However,
the lemma states that ps[v, z] is acyclic. Therefore, if the suffix p̄[u, k], has a cycle that
includes u, then it must also include z. But z.marks[k] is visited from the moment it was
changed to that value until the beginning of iteration i (because a mark cannot be changed
to visited more than once). Hence, the suffix p̄[u, k] could not have been discarded by the
test of line 36. It is also not possible that line 24 has already discarded p̄[u, k] for the
following reason. If line 24 is reached (in an iteration that removed p̄[u, k] from Q), then
for all nodes x on p̄[u, k], line 19 has already changed x.marks[k] to in-answer. Therefore,
z.marks[k] cannot be visited at the beginning of iteration i.

It thus follows that some suffix of p̄[v, k] is on Q at the beginning of iteration i. J

I Lemma 3. For all nodes v ∈ V and keywords k ∈ K, the mark v.marks[k] can be changed
from active to visited only by a minimal path from v to k.
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Proof. Suppose that the lemma is not true for some keyword k ∈ K. Let v be a closest
node to k among all those violating the lemma with respect to k. Node v is different from k,
because the path 〈k〉 marks k as visited. We will derive a contradiction by showing that a
minimal path changes v.marks[k] from active to visited.

Let ps[v, k] be a minimal path from v to k. Consider the iteration i of the main loop
(line 10 in Figure 6) that changes v.marks[k] to visited (in line 16). Among all the nodes of
ps[v, k] in which suffixes of some minimal paths from v to k are frozen at the beginning of
iteration i, let z be the first one when traversing ps[v, k] from v to k (i.e., on the path ps[v, z],
node z is the only one in which such a suffix is frozen). Node z exists for the following three
reasons.

The path ps[v, k] has not been exposed prior to iteration i, because we assume that
v.marks[k] is changed to visited in iteration i and that change can happen only once.
The path ps[v, k] is acyclic (because it is minimal), so a suffix of ps[v, k] could not have
been discarded either by the test of line 36 or due to line 24.
The path ps[v, k] (or any suffix thereof) cannot be on the queue at the beginning of
iteration i, because v violates the lemma, which means that a non-minimal path from v

to k must be removed from the queue at the beginning of that iteration.
The above three observations imply that a proper suffix of ps[v, k] must be frozen at the
beginning of iteration i and, hence, node z exists. Observe that z is different from v, because
a path to k can be frozen only at a node v̂, such that v̂.marks[k] = visited, whereas we
assume that v.marks[k] is active at the beginning of iteration i.

By the selection of v and ps[v, k] (and the above fact that z 6= v), node z does not violate
the lemma, because ps[z, k] is a proper suffix of ps[v, k] and, hence, z is closer to k than v.
Therefore, according to the lemma, there is a minimal path pm[z, k] that changes z.marks[k]
to visited. Consequently,

w(pm[z, k]) ≤ w(ps[z, k]). (1)

Now, consider the path

p̄[v, k] = ps[v, z] ◦ pm[z, k]. (2)

Since ps[v, k] is a minimal path from v to k, Equations (1) and (2) imply that so is p̄[v, k].
We now show that the conditions of Lemma 2 are satisfied at the beginning of iteration i.

In particular, Condition 1 holds, because ps[v, k] is acyclic (since it is minimal) and, hence, so
is the path ps[v, z]. Condition 2 is satisfied, because of how pm[z, k] is defined. Condition 3
holds, because we chose z to be a node where a path to k is frozen. Condition 4 is satisfied,
because of how z was chosen and the fact that p̄[v, k] is minimal. Condition 5 is satisfied,
because we have assumed that v.marks[k] is changed from active to visited during iteration i.

By Lemma 2, a suffix of p̄[v, k] must be on the queue at the beginning of iteration i. This
contradicts our assumption that a non-minimal path (which has a strictly higher weight than
any suffix of p̄[v, k]) changes v.marks[k] from active to visited in iteration i. J

I Lemma 4. For all nodes v ∈ V and keywords k ∈ K, such that k is reachable from v,
if v.marks[k] is active at the beginning of an iteration of the main loop (line 10), then Q

contains a suffix (which is not necessarily proper) of a minimal path from v to k.

Proof. The lemma is certainly true at the beginning of the first iteration, because the path
〈k〉 is on Q. Suppose that the lemma does not hold at the beginning of iteration i. Thus,
every minimal path p[v, k] has a proper suffix that is frozen at the beginning of iteration i.
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(Note that a suffix of a minimal path cannot be discarded either by the test of line 36 or
due to line 24, because it is acyclic.) Let z be the closest node from v having such a frozen
suffix. Hence, z.marks[k] is visited and z 6= v (because v.marks[k] is active). By Lemma 3,
a minimal path pm[z, k] has changed z.marks[k] to visited. Let ps[v, z] be a minimal path
from v to z. Consider the path

p̄[v, k] = ps[v, z] ◦ pm[z, k].

The weight of p̄[v, k] is no more than that of a minimal path from v to k, because both
ps[v, z] and pm[v, k] are minimal and the choice of z implies that it is on some minimal path
from v to k. Hence, p̄[v, k] is a minimal path from v to k.

We now show that the conditions of Lemma 2 are satisfied. Conditions 1–3 clearly hold.
Condition 4 is satisfied because of how z is chosen and the fact that p̄[v, k] is minimal.
Condition 5 holds because v.marks[k] is active at the beginning of iteration i.

By Lemma 2, a suffix of p̄[v, k] is on Q at the beginning of iteration i, contradicting our
initial assumption. J

I Lemma 5. Any constructed path can have at most 2n(n+1) nodes, where n = |V | (i.e., the
number of nodes in the graph). Hence, the algorithm constructs at most (n + 1)2n(n+1) paths.

Proof. We say that vm → · · · → v1 is a repeated run in a path p̄ if some suffix (not necessarily
proper) of p̄ has the form vm → · · · → v1 → p, where each vi also appears in any two positions
of p. In other words, for all i (1 ≤ i ≤ m), the occurrence of vi in vm → · · · → v1 is (at least)
the third one in the suffix vm → · · · → v1 → p. (We say that it is the third, rather than the
first, because paths are constructed backwards).

When a path p′[v′, k′] reaches a node v′ for the third time, the mark of v′ for the keyword
k′ has already been changed to in-answer in a previous iteration. This follows from the
following two observations. First, the first path to reach a node v′ is also the one to change
its mark to visited. Second, a path that reaches a node marked as visited can be unfrozen
only when that mark is changed to in-answer.

Let vm → · · · → v1 be a repeated run in p̄ and suppose that m > n = |V |. Hence, there is
a node vi that appears twice in the repeated run; that is, there is a j < i, such that vj = vi.
If the path vi → · · · → v1 → p is considered in the loop of line 35, then it would fail the test
of line 36 (because, as explained earlier, all the nodes on the cycle vi → · · · → vj are already
marked as in-answer). We conclude that the algorithm does not construct paths that have a
repeated run with more than n nodes.

It thus follows that two disjoint repeated runs of a constructed path p̄ must be separated
by a node that appears (in a position between them) for the first or second time. A path can
have at most 2n positions, such that in each one a node appears for the first or second time.
Therefore, if a path p̄ is constructed by the algorithm, then it can have at most 2n(n + 1)
nodes. Using n distinct nodes, we can construct at most (n + 1)2n(n+1) paths with 2n(n + 1)
or fewer nodes. J

I Lemma 6. K-Roots have the following two properties.
1. All the K-roots are discovered before the algorithm terminates. Moreover, they are

discovered in the increasing order of their best heights.
2. Suppose that r is a K-root with a best height b. If p[v, k] is a path (from any node v to

any keyword k) that is exposed before the iteration that discovers r as a K-root, then
w(p[v, k]) ≤ b.



K. Golenberg and Y. Sagiv 23:13

Proof. We first prove Part 1. Suppose that a keyword k is reachable from node v. As long
as v.marks[k] is active at the beginning of the main loop (line 10), Lemma 4 implies that
the queue Q contains (at least) one suffix of a minimal path from v to k. By Lemma 5,
the algorithm constructs a finite number of paths. By Proposition 1, the same path can be
inserted into the queue at most twice. Since the algorithm does not terminate while Q is not
empty, v.marks[k] must be changed to visited after a finite time. It thus follows that each
K-root is discovered after a finite time.

Next, we show that the K-roots are discovered in the increasing order of their best heights.
Let r1 and r2 be two K-roots with best heights b1 and b2, respectively, such that b1 < b2.
Lemma 3 implies the following for ri (i = 1, 2). For all keywords k ∈ K, a minimal path
from ri to k changes ri.marks[k] from active to visited; that is, ri is discovered as a K-root
by minimal paths. Suppose, by way of contradiction, that r2 is discovered first. Hence, a
path with weight b2 is removed from Q while Lemma 4 implies that a suffix with a weight of
at most b1 is still on Q. This contradiction completes the proof of Part 1.

Now, we prove Part 2. As shown in the proof of Part 1, a K-root is discovered by minimal
paths. Let r be a K-root with best height b. Suppose, by way of contradiction, that a path
p[v, k], such that w(p[v, k]) > b, is exposed before the iteration, say i, that discovers r as a
K-root. By Lemma 4, at the beginning of iteration i, the queue Q contains a suffix with
weight of at most b. Hence, p[v, k] cannot be removed from Q at the beginning of iteration i.
This contradiction proves Part 2. J

I Lemma 7. Suppose that node v is discovered as a K-root at iteration i. Let p1[v′, k′] and
p2[v, k] be paths that are exposed in iterations j1 and j2, respectively. If i < j1 < j2, then
w(p1[v′, k′]) ≤ w(p2[v, k]). Note that k and k′ are not necessarily the same and similarly for
v and v′; moreover, v′ has not necessarily been discovered as a K-root.

Proof. Suppose the lemma is false. In particular, consider an iteration j1 of the main loop
(line 10) that violates the lemma. That is, the following hold in iteration j1.

Node v has already been discovered as a K-root in an earlier iteration (so, there are no
frozen paths at v).
A path p1[v′, k′] is exposed in iteration j1.
A path p2[v, k] having a strictly lower weight than p1[v′, k′] (i.e., w(p2[v, k]) < w(p1[v′, k′]))
will be exposed after iteration j1. Hence, a proper suffix of this path is frozen at some
node z during iteration j1.

For a given v and p1[v′, k′], there could be several paths p2[v, k] that satisfy the third
condition above. We choose one, such that its suffix is frozen at a node z that is closest from
v. Since v has already been discovered as a K-root, z is different from v.

Clearly, z.marks[k] is changed to visited before iteration j1. By Lemma 3, a minimal path
pm[z, k] does that. Let ps[v, z] be a minimal path from v to z.

Consider the path

p̄[v, k] = ps[v, z] ◦ pm[z, k].

Since both ps[v, z] and pm[z, k] are minimal, the weight of their concatenation (i.e., p̄[v, k])
is no more than that of p2[v, k] (which is also a path that passes through node z). Hence,
w(p̄[v, k]) < w(p1[v′, k′]).

We now show that the conditions of Lemma 2 are satisfied at the beginning of iteration j1
(i.e., j1 corresponds to i in Lemma 2). Conditions 1–2 clearly hold. Condition 3 is satisfied
because a suffix of p2[v, k] is frozen at z. Condition 4 holds, because of the choice of z and the
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fact w(p̄[v, k]) < w(p1[v′, k′]) that was shown earlier. Condition 5 holds, because otherwise
p̄[v, k] would be unfrozen and z.marks[k] would be in-answer rather than visited.

By Lemma 2, a suffix of p̄[v, k] is on the queue at the beginning of iteration j1. This
contradicts the assumption that the path p1[v′, k′] is removed from the queue at the beginning
of iteration j1, because p̄[v, k] (and, hence, any of its suffixes) has a strictly lower weight. J

I Lemma 8. For all nodes v ∈ V , such that v is a K-root, the following holds. If z is a
node on a simple path from v to some k ∈ K, then z.marks[k] 6= visited when the algorithm
terminates.

Proof. The algorithm terminates when the test of line 10 shows that Q is empty. Suppose
that the lemma is not true. Consider some specific K-root v and keyword k for which the
lemma does not hold. Among all the nodes z that violate the lemma with respect to v and
k, let z be a closest one from v. Observe that z cannot be v, because of the following two
reasons. First, by Lemma 6, node v is discovered as a K-root before termination. Second,
when a K-root is discovered (in lines 27–28), all its marks become in-answer in lines 29–31.

Suppose that pm[z, k] is the path that changes z.marks[k] to visited. Let ps[v, z] be a
minimal path from v to z. Note that ps[v, z] exists, because z is on a simple path from v to
k. Consider the path

p̄[v, k] = ps[v, z] ◦ pm[z, k].

Suppose that the test of line 10 is false (and, hence, the algorithm terminates) on
iteration i. We now show that the conditions of Lemma 2 are satisfied at the beginning
of that iteration. Conditions 1–2 of Lemma 2 clearly hold. Conditions 3–4 are satisfied
because of how z is chosen. Condition 5 holds, because otherwise z.marks[k] should have
been changed to in-answer.

By Lemma 2, a suffix of p̄[v, k] is on Q when iteration i begins, contradicting our
assumption that Q is empty. J

I Theorem 9. GTF is correct. In particular, it finds all and only answers to the query K by
increasing height within 2(n + 1)2n(n+1) iterations of the main loop (line 10), where n = |V |.

Proof. By Lemma 5, the algorithm constructs at most (n+1)2n(n+1) paths. By Proposition 1,
a path can be inserted into the queue Q at most twice. Thus, the algorithm terminates after
at most 2(n + 1)2n(n+1) iterations of the main loop.

By Part 1 of Lemma 6, all the K-roots are discovered. By Lemma 8, no suffix of a simple
path from a K-root to a keyword can be frozen upon termination. Clearly, no such suffix
can be on Q when the algorithms terminates. Hence, the algorithm constructs all the simple
paths from each K-root to every keyword. It thus follows that the algorithm finds all the
answers to K. Clearly, the algorithm generates only valid answers to K.

Next, we prove that the answers are produced in the order of increasing height. So,
consider answers a1 and a2 that are produced in iterations j′1 and j2, respectively. For the
answer ai (i = 1, 2), let ri and hi be its K-root and height, respectively. In addition, let bi

be the best height of ri (i = 1, 2).
Suppose that j′1 < j2. We have to prove that h1 ≤ h2. By way of contradiction, we

assume that h1 > h2. By the definition of best height, h2 ≥ b2. Hence, h1 > b2.
Let p2[r2, k] be the path of a2 that is exposed (i.e., removed from Q) in iterations j2.

Suppose that p1[r1, k′] is a path of a1, such that w(p1[r1, k′]) = h1 and p1[r1, k′] is exposed
in the iteration j1 that is as close to iteration j′1 as possible (among all the paths of a1 from
r1 to a keyword with a weight equal to h1). Clearly, j1 ≤ j′1 and hence j1 < j2.
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We now show that w(p1[r1, k′]) < h1, in contradiction to w(p1[r1, k′]) = h1. Hence, the
claim that h1 ≤ h2 follows. Let i be the iteration that discovers r2 as a K-root. There are
two cases to consider as follows.

Case 1: i < j1. In this case, i < j1 < j2, since j1 < j2. By Lemma 7, w(p1[r1, k′]) ≤
w(p2[r2, k]). (Note that we apply Lemma 7 after replacing v and v′ with r2 and r1,
respectively.) Hence, w(p1[r1, k′]) < h1, because w(p2[r2, k]) ≤ h2 follows from the
definition of height and we have assumed that h1 > h2.

Case 2: j1 ≤ i. By Part 2 of Lemma 6, w(p1[r1, k′]) ≤ b2. Hence, w(p1[r1, k′]) < h1,
because we have shown earlier that h1 > b2.

Thus, we have derived a contradiction and, hence, it follows that answers are produced by
increasing height. J

I Corollary 10. The running time of the algorithm GTF is O
(
kn(n + 1)2kn(n+1)+1)

, where
n and k are the number of nodes in the graph and keywords in the query, respectively.

Proof. The most expensive operation is a call to produceAnswers(v.paths, p). By Lemma 5,
there are at most (n+1)2n(n+1) paths. A call to the procedure produceAnswers(v.paths, p)
considers all combinations of k − 1 paths plus p. For each combination, all its k paths are
traversed in linear time. Thus, the total cost of one call to produceAnswers(v.paths, p) is
O

(
kn(n + 1)(n + 1)(k−1)2n(n+1)). By Theorem 9, there are at most 2(n+1)2n(n+1) iterations.

Hence, the running time is O
(
kn(n + 1)2kn(n+1)+1)

. J

5 Summary of the Experiments

In this section, we summarize our experiments. The full description of the methodology and
results is given in Appendix B of [5]. We performed extensive experiments to measure the
efficiency of GTF. The experiments were done on the Mondial3 and DBLP4 datasets.

To test the effect of freezing, we ran the naive approach (described in Section 3.1) and
GTF on both datasets. We measured the running times of both algorithms for generating
the top-k answers (k = 100, 300, 1000). We discovered that the freezing technique gives an
improvement of up to about one order of magnitude. It has a greater effect on Mondial than
on DBLP, because the former is highly cyclic and, therefore, has more paths (on average)
between a pair of nodes. Freezing has a greater effect on long queries than short ones. This
is good, because the bigger the query, the longer it takes to produce its answers. This
phenomenon is due to the fact that the average height of answers increases with the number
of keywords. Hence, the naive approach has to construct longer (and probably more) paths
that do not contribute to answers, whereas GTF avoids most of that work.

In addition, we compared the running times of GTF with those of BANKS [1, 7],
BLINKS [6], SPARK [9] and ParLMT [4]. The last one is a parallel implementation of [3];
we used its variant ES (early freezing with single popping) with 8 threads. BANKS has two
versions, namely, MI-BkS [1] and BiS [7]. The latter is faster than the former by up to one
order of magnitude and we used it for the running-time comparison.

GTF is almost always the best, except in two particular cases. First, when generating
1, 000 answers over Mondial, SPARK is better than GTF by a tiny margin on queries with 9
keywords, but is slower by a factor of two when averaging over all queries. On DBLP, however,

3 http://www.dbis.informatik.uni-goettingen.de/Mondial/
4 http://dblp.uni-trier.de/xml/
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SPARK is slower than GTF by up to two orders of magnitude. Second, when generating 100
answers over DBLP, BiS is slightly better than GTF on queries with 9 keywords, but is 3.5
times slower when averaging over all queries. On Mondial, however, BiS is slower than GTF
by up to one order of magnitude. All in all, BiS is the second best algorithm in most of the
cases. The other systems are slower than GTF by one to two orders of magnitude.

Not only is our system faster, it is also increasingly more efficient as either the number
of generated answers or the size of the data graph grows. This may seem counterintuitive,
because our algorithm is capable of generating all paths (between a node and a keyword)
rather than just the minimal one(s). However, our algorithm generates non-minimal paths
only when they can potentially contribute to an answer, so it does not waste time on doing
useless work. Moreover, if only minimal paths are constructed, then longer ones may be
needed in order to produce the same number of answers, thereby causing more work compared
with an algorithm that is capable of generating all paths.

GTF does not miss answers (i.e., it is capable of generating all of them). Among the
other systems we tested, ParLMT [4] has this property and is theoretically superior to GTF,
because it enumerates answers with polynomial delay (in a 2-approximate order of increasing
height), whereas the delay of GTF could be exponential. In our experiments, however,
ParLMT was slower by two orders of magnitude, even though it is a parallel algorithm (that
employed eight cores in our tests). Moreover, on a large dataset, ParLMT ran out of memory
when the query had seven keywords. The big practical advantage of GTF over ParLMT is
explained as follows. The former constructs paths incrementally whereas the latter (which is
based on the Lawler-Murty procedure [8, 10]) has to solve a new optimization problem for
each produced answer, which is costly in terms of both time and space.

A critical question is how important it is to have an algorithm that is capable of producing
all the answers. We compared our algorithm with BANKS. Its two versions only generate
answers consisting of minimal paths and, moreover, those produced by BiS have distinct
roots. BiS (which is overall the second most efficient system in our experiments) misses
between 81% (on DBLP) to 95% (on Mondial) of the answers among the top-100 generated
by GTF. MI-BkS misses much fewer answers, that is, between 1.8% (on DBLP) and 32%
(on Mondial), but it is slower than BiS by up to one order of magnitude. For both versions
the percentage of misses increases as the number of generated answers grows. This is a valid
and significant comparison, because our algorithm generates answers in the same order as
BiS and MI-BkS, namely, by increasing height.

6 Conclusions

We presented the GTF algorithm for enumerating, by increasing height, answers to keyword
search over data graphs. Our main contribution is the freezing technique for avoiding the
construction of (most if not all) non-minimal paths until it is determined that they can
reach K-roots (i.e., potentially be parts of answers). Freezing is an intuitive idea, but its
incorporation in the GTF algorithm involves subtle details and requires an intricate proof of
correctness. In particular, cyclic paths must be constructed, although they are not part of
any answer. For efficiency’s sake, however, it is essential to limit the creation of cyclic paths
as much as possible, which is accomplished by lines 24 and 36 of Figure 6.

Freezing is not merely of theoretical importance. Our extensive experiments (described in
Section 5 and Appendix B of [5]) show that freezing increases efficiency by up to about one
order of magnitude compared with the naive approach (of Section 3.1) that does not use it.

The experiments of Section 5 and Appendix B of [5] also show that in comparison to
other systems, GTF is almost always the best, sometimes by several orders of magnitude.
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Moreover, our algorithm is more scalable than other systems. The efficiency of GTF is a
significant achievement especially in light of the fact that it is complete (i.e., does not miss
answers). Our experiments show that some of the other systems sacrifice completeness for
the sake of efficiency. Practically, it means that they generate longer paths resulting in
answers that are likely to be less relevant than the missed ones.

The superiority of GTF over ParLMT is an indication that polynomial delay might not
be a good yard stick for measuring the practical efficiency of an enumeration algorithm. An
important topic for future work is to develop theoretical tools that are more appropriate for
predicting the practical efficiency of those algorithms.
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