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Abstract
We describe a general method of proving degree lower bounds for conical juntas (nonnegative
combinations of conjunctions) that compute recursively defined boolean functions. Such lower
bounds are known to carry over to communication complexity. We give two applications:

AND-OR trees. We show a near-optimal Ω̃(n0.753...) randomised communication lower bound
for the recursive NAND function (a.k.a. AND-OR tree). This answers an open question posed
by Beame and Lawry [6, 23].
Majority trees. We show an Ω(2.59k) randomised communication lower bound for the 3-
majority tree of height k. This improves over the state-of-the-art already in the context of
randomised decision tree complexity.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Composition theorems, conical juntas

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.5

1 Conical Juntas?

Conical juntas are nonnegative linear combinations of conjunctions. Here are two examples,
one computing the two-bit OR function OR : {0, 1}2 → {0, 1} and another computing the
three-bit majority function Maj3 : {0, 1}3 → {0, 1}:

h1(x) = 1
2x1 + 1

2x2 + 1
2 x̄1x2 + 1

2x1x̄2,

h2(y) = 1
3y1y2 + 1

3y2y3 + 1
3y1y3 + 2

3 ȳ1y2y3 + 2
3y1ȳ2y3 + 2

3y1y2ȳ3.
(1)

The purpose of this work is to prove lower bounds on the degree deg(h) (maximum width of
a conjunction in h) of any conical junta h that computes – even approximately – a given
boolean function f : {0, 1}n → {0, 1}. More precisely, we study the ε-approximate conical
junta degree of f , denoted degε(f), that is defined as the minimum degree of a conical junta h
satisfying

∀x : |h(x)− f(x)| ≤ ε.

Communication complexity connection. A major motivation for studying conical junta
degree comes from the works [10, 13, 24] that connect conical juntas with nonnegative rank, a
basic measure in communication complexity. Roughly speaking, lower bounds on approximate
conical junta degree of f can be translated into lower bounds on the approximate nonnegative
rank of a certain two-party “lift” of f , and therefore into lower bounds against randomised
protocols.
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5:2 A Composition Theorem for Conical Juntas

Related models. Conical juntas have been studied under such names as the (one-sided)
partition bound for query complexity [15] and query complexity in expectation [20]. Another
closely related model is that of randomised subcube partitions [11, 17, 21]. Moreover, if we
restrict the coefficients in a conical junta to be 0-1, we obtain the model of subcube partitions
a.k.a. unambiguous DNFs [30, 7, 12, 14, 21].

2 Our Results

Our main technical result is a Composition Theorem that makes it easy to prove conical junta
degree lower bounds for functions that are defined from simpler functions via composition. If
f and g are boolean functions on n and m bits, respectively, their composition f ◦ gn is the
function on nm bits that maps an input x = (x1, . . . , xn) ∈ ({0, 1}m)n to the output

(f ◦ gn)(x) := f(g(x1), . . . , g(xn)).

Define also f◦k := f ◦ (f◦(k−1))n where f◦1 := f . The exact statement of the Composition
Theorem is deferred to Section 4 as it is somewhat technical. It is phrased in terms of dual
solutions (or certificates) to a linear program that captures a certain average version of conical
junta degree (defined in Section 3). The theorem splits the task of proving lower bounds
into two steps: we first need to find dual certificates for f and g (e.g., by solving an LP,
either by inspection, or by using a computer), and then we can let the Composition Theorem
construct a dual certificate for f ◦ gn in a black-box fashion. We note that similar LP-based
approaches have been extremely popular in analysing the degree of multivariate polynomials
(see [31, 32, 9] for recent examples) – in short, this work develops such a framework for
conical juntas, a nonnegative analogue of multivariate polynomials.

Setting these technical matters aside for a moment, let us illustrate the power the
Composition Theorem by looking at some of its consequences.

2.1 Query complexity
We give applications for two well-studied recursively defined boolean functions; see Figure 1.

I Theorem 2.1. degε(NAND◦k) ≥ Ω(n0.753...) for all ε ≤ 1/n where n := 2k.

I Theorem 2.2. degε(Maj◦k3 ) ≥ Ω(2.59 . . .k) for all ε ≤ 1/n where n := 3k.

Discussion of Theorem 2.1. The function NAND◦k is computed by a height-k binary tree
consisting of NAND gates (a.k.a. AND-OR tree). A classical result [28, 29] states that any
randomised decision tree needs to query Ω(n0.753...) (here 0.753 . . . = log(1 +

√
33)− 2) many

input bits in order to compute NAND◦k with high probability. This matches an upper bound
due to Snir [33]. Our Theorem 2.1 shows that the same lower bound holds even for conical
juntas that approximate NAND◦k sufficiently well. This is a qualitative strengthening of the
classical results since conical juntas are relaxations of decision trees. Indeed, a randomised
decision tree of depth d that computes a function f to within error ε > 0 can be converted
into a degree-d ε-approximate conical junta for f – the reason is the same as for multivariate
polynomials [8, Theorem 15]. Speaking of polynomials, Theorem 2.1 should be compared
with the fact that the approximate polynomial degree of NAND◦k is only O(

√
n) (and this

upper bound holds even for quantum algorithms [5]).
Note: A caveat with Theorems 2.1–2.2 is that we only know how to prove them for

ε ≤ 1/n. By contrast, one usually takes ε = 1/3 when studying decision trees, and this is
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Figure 1 Examples of recursively defined boolean functions studied in this work.

well-known to be w.l.o.g., because the error can be reduced below any ε < 1/3 with only
a factor O(log(1/ε)) increase in query complexity. Interestingly, for conical juntas, it is
known [13] that ε cannot always be efficiently reduced: for any constants ε > δ > 0 there
exists a partial function f with degε(f) = 1 but degδ(f) ≥ Ω(n). For total functions, it is
still open whether efficient error reduction is possible (standard techniques [8] at least show
that degε(f) is polynomially related to deg0(f)). In any case, Theorems 2.1–2.2 do indeed
imply lower bounds for randomised decision trees with error ε = 1/3: we simply have to
reduce the error below 1/n first and only then convert the decision tree into a conical junta.
This incurs a factor Θ(logn) loss in the value of the lower bound.

Discussion of Theorem 2.2. For the reasons discussed above, Theorem 2.2 implies a
lower bound of Ω̃(2.59 . . .k) ≥ Ω(2.59k) (here 2.59 . . . = 3

√
35/2, and the Ω̃-notation hides

polylog(n) factors) for the randomised query complexity of the recursive majority function
Maj◦k3 . This slightly improves over the previous bound of Ω(2.57k) that is the culmination
of the line of work [19, 22, 25, 27] wielding information theoretic tools. For comparison,
a randomised zero-error decision tree of cost O(2.65k) is known [27]. Even though our
quantitative improvement in Theorem 2.2 is modest, the theorem nevertheless suggests that
our new techniques are rather powerful: they are already competitive with highly optimised
prior work, especially [27].

2.2 Communication complexity
Using the machinery of [13] we can now translate Theorems 2.1–2.2 into analogous commu-
nication results. The translation incurs some polylog(n) factor loss in parameters, which
is suppressed by the Ω̃-notation used below. Here BPPcc(F ) stands for the bounded-error
communication complexity of F under a worst-case Alice–Bob bipartition of the input bits.
For our functions, we may take the bipartition to be such that Alice gets the first bit of every
bottom gate and Bob gets the rest.

I Theorem 2.3. BPPcc(NAND◦k) ≥ Ω̃(n0.753...).

I Theorem 2.4. BPPcc(Maj◦k3 ) ≥ Ω(2.59k).

Discussion of Theorem 2.3. The question of proving a lower bound for the randomised
communication complexity of the balanced alternating AND-OR tree (with fan-in 2 gates next
to the inputs) having n leaves was first posed by Beame and Lawry [6, 23] to the best of
our knowledge. They were interested in matching the randomised query complexity bound,
towards separating randomized communication complexity from both nondeterministic and
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5:4 A Composition Theorem for Conical Juntas

co-nondeterministic communication complexity. Two independent works [18, 26] (building
on [19]) arrived at a lower bound of Ω(n/2O(k)) (or slightly worse Ω(n/kO(k)) in [18]) for the
randomised communication complexity of any height-k unbounded fan-in alternating AND-OR
tree (with fan-in 2 gates next to the inputs). While this lower bound is tight when k = O(1),
the bound becomes trivial in the setting of Theorem 2.3 where k = logn. This shortcoming
was partially addressed by [16] who showed, via a reduction from set-disjointness, a lower
bound of Ω(

√
n) for such AND-OR trees, independently of the height. Our Theorem 2.3 now

gives an essentially optimal Ω̃(n0.753...) bound for the particular case of NAND◦k. It remains
open whether this lower bound holds for all AND-OR trees (with the appropriate gates next
to the inputs). For query complexity, Amano [1] has come close to settling this question,
known as the Saks–Wigderson conjecture [28] for the class of read-once formulas (a more
general version of the conjecture was recently disproved [4]).

Discussion of Theorem 2.4. The function Maj◦k3 has not been studied in communication
complexity previously – after all, even its randomised query complexity is not yet completely
understood.

3 Definitions and Examples

We write h =
∑
wCC for a generic conical junta, where the sum ranges over different

conjunctions of literals C : {0, 1}n → {0, 1} and wC ≥ 0 for each C. Note that h : {0, 1}n →
R≥0. Let |C| denote the width of a conjunction C, i.e., the number of literals in C. The
degree of h, denoted deg(h), is defined as the maximum width of a conjunction C with
wC > 0. Here, it is helpful to work with a more robust notion of degree that we call average
degree. The average degree of h, denoted adeg(h), is defined as the maximum over all inputs x
of

adegx(h) :=
∑

wC |C|C(x) =
∑

wC adegx(C).

In particular, adeg(h) ≤ deg(h) in the natural setting where h(x) ≤ 1 for all x. Our definition
of average degree is in perfect analogy to the usual definition of cost for randomised zero-error
decision trees, namely, charging for the expected number of queries made on a given input.
Indeed, it is not hard to see that any zero-error decision tree of cost d gives rise to a conical
junta of average degree d computing exactly the same boolean function as the decision tree.

For a boolean function f : {0, 1}n → {0, 1} we define
Degree: deg(f) is the minimum deg(h) over all conical juntas h computing f .
Average degree: adeg(f) is the minimum adeg(h) over all conical juntas h computing f .
Approximate degree: degε(f) is the minimum deg(h) over all conical juntas h that compute
f to within error ε, i.e., h(x) ∈ f(x)± ε for all x.

3.1 Tame examples
For our conical juntas h1 and h2 from (1), we have adeg(h1) = adeg10(h1) = 3/2 < 2 =
deg(h1) and adeg(h2) = adeg110(h2) = 8/3 < 3 = deg(h2). In fact, h1 and h2 are optimal:

adeg(OR) = 3/2 and adeg(Maj3) = 8/3.

This can be seen by solving an LP whose value is adeg(f), as is discussed shortly. Note that
our degree measures are inherently one-sided: f and its negation ¬f need not have the same
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degree. For example, we have adeg(¬OR) = 2 (observe that x̄1x̄2 is the only conical junta
for ¬OR) even though adeg(OR) = 3/2. (More dramatic gaps can be demonstrated using
variations of a function introduced in [14].) By contrast, Maj3 is self-dual, ¬Maj3(x1, x2, x3) =
Maj3(¬x1,¬x2,¬x3), so we automatically have adeg(Maj3) = adeg(¬Maj3).

3.2 A wild example!

What is the average degree of OR ◦Maj23? We can obtain a conical junta for this function
starting with the optimal conical juntas h1(x), h2(y), h̄2(y) := h2(ȳ1, ȳ2, ȳ3) computing OR,
Maj3, ¬Maj3, respectively, as follows: Let z1 = (z1

1 , z
1
2 , z

1
3) and z2 = (z2

1 , z
2
2 , z

2
3) be fresh

variables. Start with h1(x) and replace every positive literal xi by h2(zi) and every negative
literal x̄i by h̄2(zi). This construction shows that

adeg(OR ◦Maj23) ≤ 3/2 · 8/3 = 4.

It would be natural to conjecture that this is tight – but this conjecture is false! There is
in fact a more effective conical junta of average degree only 47/12 ≈ 3.92. An analogous
phenomenon is well-known in the context of zero-error decision trees: so-called directional
decision trees need not be optimal for composed functions [28, 34, 2].

What of it? This example shows that we cannot hope for a perfect composition theorem
for average degree that would determine adeg(f ◦gn) solely in terms of adeg(f), adeg(g), and
adeg(¬g), even assuming adeg(g) = adeg(¬g). Consequently, for our LP-based Composition
Theorem, we will have to introduce some technical assumptions: to enable the construction
of a dual certificate for adeg(f ◦ gn), we assume we have dual certificates of a special form for
adeg(f), adeg(g), adeg(¬g). The rest of this section develops our LP formalism for average
degree.

3.3 Generalised input costs

Let us first generalise the definition of adeg(h) by allowing arbitrary costs b0, b1 ≥ 0 to
be assigned to reading the input bits. That is, for a conjunction C, we set |C|b0,b1 :=
b0 · (# of 0’s read by C) + b1 · (# of 1’s read by C). In particular, |C|1,1 = |C|. Then
adeg(h; b0, b1) is defined as the maximum over all inputs x of

adegx(h; b0, b1) :=
∑

wC |C|b0,b1C(x) =
∑

wC adegx(C; b0, b1).

We also introduce some “distributional” notation: for a distribution D1 over f−1(1) we let

adegD1(h; b0, b1) := E
x∼D1

[
adegx(h; b0, b1)

]
.

For a boolean function f : {0, 1}n → {0, 1} we define
adeg(f ; b0, b1) is the minimum of adeg(h; b0, b1) over all conical juntas h computing f .
adegD1(f ; b0, b1) is the minimum of adegD1(h; b0, b1) over all conical juntas h computing f .

It is clear that adeg(f ; b0, b1) ≥ adegD1(f ; b0, b1) for all distributions D1. (In fact, it can be
shown using the minimax theorem that this inequality can be turned into an equality if we
maximise over D1 on the right hand side – however, we do not use this fact.)

CCC 2016



5:6 A Composition Theorem for Conical Juntas

3.4 An LP for average degree
We formulate adegD1(f ; b0, b1) as the optimum value of an LP – here the data f , D1, b0, b1,
is thought of as fixed. We have a nonnegative variable wC ≥ 0 for each of the 3n possible
conjunctions C : {0, 1}n → {0, 1}. Here is the LP:

min adegD1

(∑
wCC; b0, b1

)
subject to

∑
wCC(x) = f(x), ∀x

wC ≥ 0, ∀C

(Primal)

Here is the LP dual; the free variables are packaged into a function Ψ: {0, 1}n → R.

max 〈Ψ, f〉

subject to 〈Ψ, C〉 ≤ adegD1(C; b0, b1), ∀C

Ψ(x) ∈ R, ∀x

(Dual)

Since we are interested in proving lower bounds on average degree, we are only going to
need the “weak” form of LP duality: Suppose h =

∑
wCC is an optimal solution to (Primal).

Then any solution Ψ that is feasible for (Dual) witnesses a lower bound on adeg(f ; b0, b1)
like so:

adeg(f ; b0, b1) ≥ adegD1(f ; b0, b1)
= adegD1(h; b0, b1)
=
∑
wC adegD1(C; b0, b1)

≥
∑
wC〈Ψ, C〉

= 〈Ψ,
∑
wCC〉

= 〈Ψ, f〉.

(2)

4 Statement of the Composition Theorem

We start by defining an (a0, a1; b0, b1)-certificate for f as a special collection of certificates
witnessing

adeg(f ; b0, b1) ≥ a1,

adeg(¬f ; b0, b1) ≥ a0.
(3)

I Definition 4.1. Call a function Ψ: {0, 1}n → R balanced if
∑
x Ψ(x) = 0, and also write

X≥0 := max{X, 0} for short. An (a0, a1; b0, b1)-certificate for a function f : {0, 1}n → {0, 1}
consists of four balanced functions {Ψv, Ψ̂v}v=0,1 mapping {0, 1}n → R such that the
following hold.

Special form: Functions Ψ0 and Ψ1 have the form

Ψv = av(Dv −D1−v), (4)

where Dv is a distribution over f−1(v). Moreover, Ψ̂v is supported on f−1(v).
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Feasibility: For all conjunctions C and v ∈ {0, 1},

〈Ψv, C〉≥0 + 〈Ψ̂v, C〉 ≤ adegDv
(C; b0, b1). (5)

I Theorem 4.2 (Composition Theorem). Suppose f admits an (a0, a1; b0, b1)-certificate and
g admits a (b0, b1; 1, 1)-certificate. Then f ◦ gn admits an (a0, a1; 1, 1)-certificate.

Discussion. First, we note that (5) actually packs together two linear inequalities; it would
be equivalent to require that both Ψv + Ψ̂v and Ψ̂v are feasible for (Dual), namely that{

〈Ψv + Ψ̂v, C〉 ≤ adegDv
(C; b0, b1),

〈Ψ̂v, C〉 ≤ adegDv
(C; b0, b1).

(5’)

Here Ψ1 + Ψ̂1 is the main attraction: it witnesses a lower bound of 〈Ψ1 + Ψ̂1, f〉 = 〈Ψ1, f〉+
〈Ψ̂1, f〉 = a1 + 0 = a1 for adeg(f ; b0, b1) as promised above (3); similarly, Ψ0 + Ψ̂0 witnesses
the complementary lower bound adeg(¬f ; b0, b1) ≥ a0.

The requirement that Ψ1 + Ψ̂1 must be balanced is perhaps our most critical assumption.
We use it to manoeuvre around the counterexample of Section 3.2: we have adeg(Maj3) = 8/3,
while the best balanced solution to (Dual) only witnesses the lower bound adeg(Maj3) ≥ 5/2
(see also Figure 3). The requirement that Ψ̂v is feasible for (Dual) is merely a technical
assumption that helps us in the upcoming proof (akin to a “strengthened induction hy-
pothesis”); we do not know whether the theorem is true without this condition. Another
technical assumption is (4), which allows us to assume that Ψ1 and Ψ0 have opposite signs:
Ψ1 = −a1/a0 ·Ψ0.

Some simple certificates are illustrated in Figures 2–3. Their feasibility can be checked
by hand. For more involved functions, certificates can in principle be found via a computer
search (using computers is not uncommon even in “lower bounds” research [3]). We will in
fact use this approach for Maj◦k3 in Section 6.

5 Proof of the Composition Theorem

Let {Ψv, Ψ̂v}v=0,1 and {Φv, Φ̂v}v=0,1 be the certificates for f and g, respectively. Our goal
is to construct a certificate {Υv, Υ̂v}v=0,1 for f ◦ gn. We use the following notation:

Ψv := av(Fv − F1−v)︸ ︷︷ ︸
given

, Φv := bv(Gv −G1−v)︸ ︷︷ ︸
given

, Υv := av(Dv −D1−v)︸ ︷︷ ︸
want to construct

.

By assumption, the distribution Fv is supported on f−1(v) and Gv is supported on g−1(v).
We will define Dv to be supported on (f ◦ gn)−1(v).

5.1 Construction
Lifts. Let Γ: {0, 1}n → R and suppose that for each y ∈ {0, 1}n we have a function
Hy : {0, 1}mn → R supported on (gn)−1(y) = g−1(y1)× · · · × g−1(yn). The lift of Γ by H is

ΓH :=
∑
y∈{0,1}n Γ(y) ·Hy.

In particular, if Γ and the Hy’s are probability distributions, so is ΓH . Note also that if Γ is
supported on f−1(v), then ΓH is supported on (f ◦ gn)−1(v).

CCC 2016
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Figure 2 A (2b1, b0 + 1
2 b1; b0, b1)-certificate for NAND : {0, 1}2 → {0, 1} that is valid for all b0, b1 ≥

0. The 1-inputs NAND−1(1) are highlighted in gray. For feasibility, there are 6 equivalence classes
(see Section 6.2) of conjunctions to check: {∗∗, ∗0, ∗1, 00, 10, 11}.

Ψ1

0

−5/6 −5/6 −5/6

5/6 5/65/6

0

+ =

Ψ̂1

0

0 0 0

1/6 1/61/6

−1/2

Ψ1 + Ψ̂1

0

−5/6 −5/6 −5/6

1 11

−1/2

Figure 3 A ( 5
2 ,

5
2 ; 1, 1)-certificate for Maj3 : {0, 1}3 → {0, 1}. The 1-inputs Maj−1

3 (1) are high-
lighted in gray. Only Ψ1, Ψ̂1 are shown as Ψ0, Ψ̂0 are defined via self-duality. Here Dv is uniform on
inputs of Hamming weight v + 1. For feasibility, there are 10 equivalence classes of conjunctions to
check: {∗∗∗, ∗∗1, ∗∗0, ∗00, ∗10, ∗11, 000, 100, 110, 111}. Note that for any α ≥ 0, we can obtain an
( 5

2α,
5
2α;α, α)-certificate by simply scaling the functions Ψv, Ψ̂v by α.
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New certificate. Write Gy := Gy1 × · · · × Gyn for the canonical product distribution on
(gn)−1(y). We also need a modified version of Gy, denoted (G←i Φ̂)y where i ∈ [n], that has
a copy of Φ̂yi

in place of Gyi
; more formally

(G←i Φ̂)y(x) := Φ̂yi
(xi) ·

∏
j 6=iGyj

(xj).

Note that (G←i Φ̂)y is a balanced function supported on (gn)−1(y).
We now define {Υv, Υ̂v}v=0,1 by

Υv := ΨG
v ,

Υ̂v := Ψ̂G
v +

∑n
i=1 F

G←i Φ̂
v .

(6)

Since ΨG
v = av(FGv −FG1−v), we have Dv = FGv . It is also easy to check that Υ̂v is a balanced

function supported on (f ◦gn)−1(v). Hence {Υv, Υ̂v}v=0,1 is of the special form required of an
(a0, a1; 1, 1)-certificate for f ◦ gn. The interesting part is to verify the feasibility condition (5).

5.2 Feasibility
Fix a conjunction C in the domain of f ◦ gn. Our goal is to show

〈ΨG
v , C〉≥0 + 〈Ψ̂G

v +
∑
i F

G←i Φ̂
v , C〉 ≤ adegDv

(C). (7)

Extracting a conical junta from C. Our analysis will be centered around a conical
junta h(y), defined below, that computes the acceptance probability Prx∼Gy [C(x) = 1] =
Ex∼Gy

[C(x)] = 〈Gy, C〉. In a certain sense, h serves as a projection of C to the domain of f .
Write C(x) =

∏n
i=1 Ci(xi) where Ci is a conjunction depending only on xi. Since Gy is a

product distribution,

〈Gy, C〉 =
∏
i〈Gyi , Ci〉 =:

∏
i pi,yi ,

where we wrote pi,v := 〈Gv, Ci〉 ∈ R≥0 for short. Fix y∗ ∈ {0, 1}n such that pi,y∗
i
≥ pi,1−y∗

i

for all i. We now define h(y) that computes 〈Gy, C〉:

h(y) :=
∏n
i=1
(
pi,1−y∗

i
+ (pi,y∗

i
− pi,1−y∗

i
)︸ ︷︷ ︸

≥0

· `i
)

where literal `i is
{
yi if y∗i = 1,
ȳi if y∗i = 0.

(8)

This product expression can be expanded into a conical combination of conjunctions, h =∑
wTT , in the natural way, but the above “implicit” form is more concise.
Next, we record two properties of h that will suffice for the remaining analysis.

I Lemma 5.1. adegy(h; b0, b1) =
∑
i〈Φyi

, Ci〉≥0
∏
j 6=i〈Gyj

, Cj〉.

Proof. Write h =
∑
wTT . We compute the average degree by summing together the weights∑

T3`i
wTT (y) contributed by each of the n literals `i, i.e.,

adegy(h; b0, b1) =
∑
i |`i|b0,b1 ·

∑
T3`i

wTT (y).

If i is such that yi 6= y∗i , we have `i(y) = 0 and so T (y) = 0 for all T 3 `i; hence `i contributes
no weight in this case. Suppose then that i is such that yi = y∗i ; here we can write

h(y) = pi,1−yi

∏
j 6=i pj,yj

+ `i · (pi,yi
− pi,1−yi

)
∏
j 6=i pj,yj

.
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The conjunctions T underlying the first term do not involve `i, so they contribute no weight
for `i. The conjunctions T underlying the second term all involve `i and contribute a total
weight of (pi,yi

− pi,1−yi
)
∏
j 6=i pj,yj

. Altogether we get

adegy(h; b0, b1) =
∑
i |`i|b0,b1 ·

∑
T3`i

wTT (y)
=
∑
i:yi=y∗

i
byi
· (pi,yi

− pi,1−yi
)
∏
j 6=i pj,yj

=
∑
i byi(pi,yi − pi,1−yi)≥0

∏
j 6=i pj,yj

=
∑
i byi

(〈Gyi
, Ci〉 − 〈G1−yi

, Ci〉)≥0
∏
j 6=i〈Gyj

, Cj〉

=
∑
i〈byi

(Gyi
−G1−yi

), Ci〉≥0
∏
j 6=i〈Gyj

, Cj〉

=
∑
i〈Φyi

, Ci〉≥0
∏
j 6=i〈Gyj

, Cj〉. J

I Lemma 5.2. 〈Γ, h〉 = 〈ΓG, C〉 for all Γ: {0, 1}n → R.

Proof. We calculate

〈Γ, h〉 =
∑
y Γ(y)h(y) =

∑
y Γ(y)〈Gy, C〉 =

∑
y Γ(y)

[∑
xGy(x)C(x)

]
=
∑
x

[∑
y Γ(y)Gy(x)

]
C(x) =

∑
x ΓG(x)C(x) = 〈ΓG, C〉. J

Analysis. Let us expand the right hand side of the desired inequality (7):

adegDv
(C) = |C| · 〈FGv , C〉

= Ey∼Fv

[
|C| · 〈Gy, C〉

]
= Ey∼Fv

[(∑
i |Ci|

)
·
∏
i〈Gyi

, Ci〉
]

= Ey∼Fv

[∑
i |Ci|〈Gyi

, Ci〉
∏
j 6=i〈Gyj

, Cj〉
]

= Ey∼Fv

[∑
i adegGyi

(Ci)
∏
j 6=i〈Gyj

, Cj〉
]
.

Substituting our hypothesis adegGyi
(Ci) ≥ 〈Φyi

, Ci〉≥0 + 〈Φ̂yi
, Ci〉 into the above, we obtain

adegDv
(C) ≥ E

y∼Fv

[∑
i

〈Φyi
, Ci〉≥0

∏
j 6=i
〈Gyj

, Cj〉
]

︸ ︷︷ ︸
(I)

+ E
y∼Fv

[∑
i

〈Φ̂yi
, Ci〉

∏
j 6=i
〈Gyj

, Cj〉
]

︸ ︷︷ ︸
(II)

.

For the first term,

(I) = Ey∼Fv

[
adegy(h; b0, b1)

]
(Lemma 5.1)

= adegFv
(h; b0, b1)

≥ 〈Ψv, h〉≥0 + 〈Ψ̂v, h〉 (Feasibility of {Ψv, Ψ̂v} and (2))

= 〈ΨG
v , C〉≥0 + 〈Ψ̂G

v , C〉. (Lemma 5.2)

For the second term,

(II) = Ey∼Fv

[∑
i〈(G←i Φ̂)y, C〉

]
=
〈∑

i F
G←i Φ̂
v , C

〉
.

Combining these yields (7). This concludes the proof of Theorem 4.2.
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6 Approximate Degree Lower Bounds

In this section we prove Theorems 2.1–2.2 using the Composition Theorem. We begin by ob-
serving that (a0, a1; b0, b1)-certificates {Ψv, Ψ̂v}v=0,1 also yield lower bounds for approximate
degree, if the 1-norm ‖Ψ̂1‖1 is not too large. We call {Ψv, Ψ̂v}v=0,1 an (a0, a1; b0, b1; c)-
certificate if maxv ‖Ψ̂v‖1 ≤ c.

I Lemma 6.1. Suppose f admits an (a0, a1; 1, 1; c)-certificate. If ε ≤ 1/4 and c · ε ≤ a1/4,
then degε(f) ≥ Ω(a1).

Proof. Fix a certificate {Ψv, Ψ̂v}v=0,1 for f and suppose degε(f) = deg(h) where h is a conical
junta with ‖h− f‖∞ ≤ ε. Since h(x) ≤ 1 + ε for all x, we have deg(h) ≥ (1 + ε)−1 adeg(h) ≥
Ω(adeg(h)). Now we calculate

adeg(h) ≥ 〈Ψ1 + Ψ̂1, h〉 (as in (2))

= 〈Ψ1 + Ψ̂1, f〉+ 〈Ψ1 + Ψ̂1, h− f〉

≥ a1 − |〈Ψ1 + Ψ̂1, h− f〉|

≥ a1 − ‖Ψ1 + Ψ̂1‖1 · ‖h− f‖∞
≥ a1 − (‖Ψ1‖1 + ‖Ψ̂1‖1) · ε
≥ a1 − (2a1 + c) · ε
≥ a1/4. J

We use the following version of the Composition Theorem where the bounds on 1-norms
(following immediately from the definition (6)) are made explicit.

I Theorem 6.2. Suppose f admits an (a0, a1; b0, b1; c)-certificate and g admits a (b0, b1; 1, 1; d)-
certificate. Then f ◦ gn admits an (a0, a1; 1, 1; c+ nd)-certificate.

6.1 Proof of Theorem 2.1
We iteratively apply Theorem 6.2 as follows.
1. Assume we have an (αk, βk; 1, 1; γk)-certificate for NAND◦k where γk ≥ αk, βk.
2. Obtain a (2βk, αk + 1

2βk;αk, βk;βk)-certificate for NAND from Figure 2.
3. Compose the above to get an (αk+1, βk+1; 1, 1; γk+1)-certificate for NAND◦(k+1) where

αk+1 := 2βk,
βk+1 := αk + βk/2,
γk+1 := βk + 2γk.

Note that αk+1, βk+1 ≤ γk+1 ≤ 3γk. Starting with α0 = β0 = γ0 = 1 these recurrences
(famously [28]) evaluate to αk, βk = Θ(n0.753...) where n := 2k. In addition, γk ≤ 3k ≤ n1.6.
Now take ε ≤ 1/n in Lemma 6.1 to prove Theorem 2.1.

6.2 Computer search for certificates
Iteratively composing (scaled versions of) the (5/2, 5/2; 1, 1)-certificate given in Figure 3
would yield only an Ω(2.5k) lower bound for Maj◦k3 . This is the best possible for our approach
if we were to just compose certificates for individual Maj3 functions. To obtain a better lower
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Table 1 Certificates for Maj◦`
3 for heights ` = 1, 2, 3. The table lists (α`, α`; 1, 1)-certificates with

values α1 = 5/2 (also illustrated in Figure 3), α2 = 20/3, and α3 = 35/2. Only Ψ1, Ψ̂1 are shown as
Ψ0, Ψ̂0 are defined dually. We give the total weight for each equivalence class of inputs; the functions
are uniform on each class. For height ` = 3 we represent the inputs to the bottom-most Maj3 gates
by their Hamming weight, e.g., 001 1, 011 2, etc.

Function Class representative Class size Ψ1 Ψ̂1 Ψ1 + Ψ̂1

Maj◦1
3

(0, 0, 1) 3 −5/2 0 −5/2
(0, 1, 1) 3 5/2 1/2 3
(1, 1, 1) 1 0 −1/2 −1/2

All others 0 0 0

Maj◦2
3

(001, 001, 011) 81 −20/3 0 −20/3
(001, 011, 011) 81 20/3 7/3 9
(000, 011, 011) 27 0 −1/3 −1/3
(001, 011, 111) 54 0 −2/3 −2/3
(011, 011, 011) 27 0 −4/3 −4/3

All others 0 0 0

Maj◦3
3

(112, 112, 122) 1594323 −35/2 0 -35/2
(112, 122, 122) 1594323 35/2 19/2 27
(122, 122, 122) 531441 0 −7/2 −7/2
(112, 122, 222) 1062882 0 −2 −2
(112, 122, 123) 2125764 0 −4/3 −4/3
(112, 122, 022) 1062882 0 −2/3 −2/3
(111, 122, 122) 531441 0 −5/6 −5/6
(113, 122, 122) 531441 0 −1/2 −1/2
(012, 122, 122) 1062882 0 −2/3 −2/3

All others 0 0 0

bound, we can instead directly find a certificate for Maj◦`3 where ` is a small constant, and then
compose that certificate. Table 1 gives certificates for Maj◦`3 for height up to ` = 3. We used
a computer to solve the dual LP (Dual), with the additional restriction that Ψ (= Ψ1 + Ψ̂1)
should be balanced. The best balanced Ψ happened to satisfy the other conditions required
by our Definition 4.1.

Notes on implementation. For computational efficiency, it is useful to prune the search
space by eliminating symmetries. The symmetries of Maj◦`3 (permutations of input coordinates
that do not change the value of the function) are the symmetries of the underlying height-`
ternary tree. These symmetries partition the set of inputs and the set of conjunctions into
equivalence classes: two inputs/conjunctions are “equivalent” if one can be mapped to the
other by a symmetry. The set of feasible solutions to the LP is also invariant under these
symmetries. It follows that we may look w.l.o.g. for a Ψ that is invariant, i.e., uniform on each
equivalence class. (Indeed, if Ψ is any feasible solution, we obtain an invariant solution by
averaging Ψ over all the symmetries.) Thus we need only maintain one variable in the LP per
equivalence class X ⊆ {0, 1}n recording the total weight

∑
x∈X Ψ(x) of that class. Also, for

such invariant Ψ, we need only check the LP feasibility constraint 〈Ψ, C〉 ≤ adegD1(C; b0, b1)
for a single representative C from each class of conjunctions.

The optimal height-2 certificate happens to have the same support as the certificate
produced by our Composition Theorem starting with two height-1 certificates. Inspired
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by this, in order to speed up the search for height 3, we only optimised over those Ψ
whose support coincides with that coming from the Composition Theorem – this LP has
only 9 variables (i.e., equivalence classes of inputs), but well over 100,000 constraints (i.e.,
equivalence classes of conjunctions).

It is open to analyse height 4. Is there an efficient separation oracle for (Dual)?

6.3 Proof of Theorem 2.2
Table 1 defines a certificate for Maj◦33 with parameters (35/2, 35/2; 1, 1; 19) and we may scale
the certificate by any scalar α ≥ 0 to obtain one with parameters ((35/2)α, (35/2)α;α, α; 19α).
Using Theorem 6.2 iteratively as in Section 6.1, we get a certificate for Maj◦k3 with parameters

((35/2)k/3, (35/2)k/3; 1, 1; 28k/3 · 19).

Here (35/2)k/3 ≥ n0.8 and 28k/3 · 19 ≤ n1.1 where n := 3k. Hence we may apply Lemma 6.1
with ε ≤ 1/n to conclude an ε-approximate degree lower bound of Ω((35/2)k/3) = Ω(2.59 . . .k).

7 Communication Lower Bounds

In this section we prove Theorems 2.3–2.4 by applying the main result of [13]: a simulation
of randomised communication protocols by conical juntas. To this end, let IPb : {0, 1}b ×
{0, 1}b → {0, 1} be the two-party (Alice has x, Bob has y) inner-product function given by

IPb(x, y) := 〈x, y〉 mod 2.

Let BPPcc
ε (F ) denote the randomised ε-error communication complexity of F : X × Y →

{0, 1}. The following is a corollary of [13, Theorem 31] (the original formulation there talks
about WAPPdt

ε (f) which is the same as degε(f); moreover, the result is stated for ε = Θ(1),
but the theorem is true more generally for ε = 2−Θ(b)).

I Theorem 7.1 ([13]). Let ε := 1/n and b := Θ(logn) (with a large enough implicit constant).
For any f : {0, 1}n → {0, 1} we have

BPPcc
ε/2(f ◦ IPnb ) ≥ Ω(degε(f) · b).

Let us prove Theorem 2.3 (a similar argument works for Theorem 2.4). A key observation
(also made in [16, §3]) is that IPb = XORb ◦ ANDb reduces to computing a binary NAND tree
on O(b2) bits. To see this, think of the b-bit parity function XORb as a height-(log b) binary
tree of XOR gates. Each such XOR gate can be rewritten as a height-2 NAND tree (with some
negations on inputs):

∧̄ ∧̄

∧̄

∧ ∧

∨
+

x y x̄ y x ȳ x̄ y x ȳ

= 

In the binary XOR tree, replace the top XOR gate with this NAND tree (this involves making
copies of some subtrees), push the negations to inputs, and repeat recursively. This gives us
a height-(2 log b) NAND tree. Moreover, the bottom layer of AND gates in IPb is also easily
simulated by NAND gates. Consequently, for some N := Θ(nb2), the communication matrix
of NAND◦ logn ◦ IPnb appears as a submatrix of NAND◦ logN (relative to some bipartition of
the input given by the reduction).
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5:14 A Composition Theorem for Conical Juntas

We can now derive Theorem 2.3 – here ε and b are defined as in Theorem 7.1, and &
means that we ignore polylog(N) factors.

BPPcc
1/3(NAND◦ logN ) & BPPcc

ε/2(NAND◦ logN ) (Error reduction)

& BPPcc
ε/2(NAND◦ logn ◦ IPnb ) (Key observation)

& degε(NAND◦ logn) (Theorem 7.1)
& n0.753... (Theorem 2.1)
= Θ̃(N0.753...).
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