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Preface

The papers in this volume were accepted for presentation at the 31st Conference on Compu-
tational Complexity (CCC’16), held May 29 to June 1, 2016 in Tokyo, Japan. The conference
is organized by the Computational Complexity Foundation (CCF) and the Center for Explor-
ing the Limits of Computation (CELC) in cooperation with the European Association for
Theoretical Computer Science (EATCS) and the ACM Special Interest Group on Algorithms
and Computation Theory (SIGACT). CCC’16 is sponsored by Microsoft Research.

The call for papers sought original research papers in all areas of computational complexity
theory. Of the 91 submissions the program committee selected 34 for presentation at the
conference.

The program committee would like to thank everyone involved in the conference, including
all those who submitted papers for consideration as well as the reviewers for their scientific
contributions; the board of trustees of the Computational Complexity Foundation and
especially its president Dieter van Melkebeek for extensive advice and assistance; Jacobo
Toran and Jeff Kinne for a variety of assistance; David Zuckerman for sharing his knowledge as
2015 PC chair; the Local Arrangements Committee and especially its chair Osamu Watanabe;
Nisheeth Vishnoi for contributing an invited talk; and Marc Herbstritt for coordinating the
production of these proceedings.

Ran Raz
Program Committee Chair
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Awards

The program committee of the 31st Conference on Computational Complexity is happy to
present the Best Paper Award to Marco Carmosino, Russell Impagliazzo, Valentine Kabanets
and Antonina Kolokolova for their paper

“Learning Algorithms from Natural Proofs”.1

1 See http://dx.doi.org/10.4230/LIPIcs.CCC.2016.34.
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Average-Case Lower Bounds and Satisfiability
Algorithms for Small Threshold Circuits
Ruiwen Chen∗1, Rahul Santhanam∗2, and Srikanth Srinivasan3

1 University of Oxford, Oxford, UK
ruiwen.chen@cs.ox.ac.uk

2 University of Oxford, Oxford, UK
rahul.santhanam@cs.ox.ac.uk

3 Indian Institute of Technology Bombay, Mumbai, India
srikanth@math.iitb.ac.in

Abstract
We show average-case lower bounds for explicit Boolean functions against bounded-depth thresh-
old circuits with a superlinear number of wires. We show that for each integer d > 1, there is
εd > 0 such that Parity has correlation at most 1/nΩ(1) with depth-d threshold circuits which
have at most n1+εd wires, and the Generalized Andreev Function has correlation at most 1/2nΩ(1)

with depth-d threshold circuits which have at most n1+εd wires. Previously, only worst-case lower
bounds in this setting were known [22].

We use our ideas to make progress on several related questions. We give satisfiability algo-
rithms beating brute force search for depth-d threshold circuits with a superlinear number of
wires. These are the first such algorithms for depth greater than 2. We also show that Parity
cannot be computed by polynomial-size AC0 circuits with no(1) general threshold gates. Previ-
ously no lower bound for Parity in this setting could handle more than log(n) gates. This result
also implies subexponential-time learning algorithms for AC0 with no(1) threshold gates under
the uniform distribution. In addition, we give almost optimal bounds for the number of gates in
a depth-d threshold circuit computing Parity on average, and show average-case lower bounds
for threshold formulas of any depth.

Our techniques include adaptive random restrictions, anti-concentration and the structural
theory of linear threshold functions, and bounded-read Chernoff bounds.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases threshold circuit, satisfiability algorithm, circuit lower bound

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.1

1 Introduction

One of the main goals in complexity theory is to prove circuit lower bounds for explicit
functions in P or NP. We seem quite far from being able to prove that there is a problem in
NP that requires superlinear Boolean circuits. We have some understanding, via formulations
such as the relativization barrier [5], the “natural proofs” barrier [39] and the algebrization
barrier [1], of why current techniques are inadequate for this purpose.

∗ Work done when the author was at University of Edinburgh, Edinburgh, UK, and supported by the
European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ ERC Grant Agreement no. 615075
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1:2 Average-Case Lower Bounds and Satisfiability Algorithms for Small Threshold Circuits

However, the community has had more success proving explicit lower bounds against
bounded-depth circuits of various kinds. Thanks to pioneering work of Ajtai [2], Furst-Saxe-
Sipser [13], Yao [49] and Hastad [19], we know that the Parity and Majority functions require
bounded-depth unbounded fan-in circuits of exponential size if only AND and OR gates are
allowed. Later Razborov [38] and Smolensky [46] showed that Majority requires exponential
size even when MODp gates are allowed in addition to AND and OR gates, for any prime
p. The case of bounded-depth circuits with AND, OR and MODm gates, where m is a
composite, has been open for nearly thirty years now, even though Majority is conjectured to
be hard for such circuits. Williams [47] recently made significant progress by showing that
non-deterministic exponential time does not have super-polynomial size circuits with AND,
OR and MODm gates, for any m.

For all the bounded-depth circuit classes above, Majority is either known or conjectured
to be hard. How about circuit classes which incorporate majority gates, or more generally,
gates that are arbitrary linear threshold functions? Note that such gates generalize AND
and OR, though not MODp. In the 90s, there was some work on studying the power of
bounded-depth threshold circuits. Paturi and Saks [34] showed that depth-2 circuits with
majority gates computing Parity require Ω̃(n2) wires; there is also a nearly matching upper
bound for Parity. Impagliazzo, Paturi and Saks [22] considered bounded-depth threshold
circuits with arbitrary linear threshold gates, and showed that for each depth d, there is a
constant εd > 0 such that Parity requires n1+εd wires to compute with depth d threshold
circuits.

These lower bounds are worst case lower bounds - they show that for any sequence of
small circuits, there exist inputs of every length on which the circuits fail to compute Parity.
There are several reasons to be interested in average case lower bounds under the uniform
distribution, or equivalently, in correlation upper bounds1. For one, average-case lower bounds
show that a randomly chosen input is likely to be hard, and thus give a way to generate hard
instances efficiently. Second, average-case lower bounds are closely tied to pseudo-random
generators via the work of Nisan-Wigderson [30], and are indeed a pre-requisite for obtaining
pseudo-random generators with non-trivial seed length for a circuit class. Third, recent work
on satisfiability algorithms [42, 20, 7] indicates that the design and analysis of non-trivial
satisfiability algorithms is closely tied to proving average-case lower bounds, though there is
no formal connection. Fourth, the seminal work of Linial-Mansour-Nisan [26] shows that
average-case lower bounds for Parity against a circuit class are tied to non-trivially learning
the circuit class under the uniform distribution.

With these different motivations in mind, we systematically study average-case lower
bounds for bounded-depth threshold circuits. Our first main result shows correlation upper
bounds for Parity and another explicit function known as the Generalized Andreev function
with respect to threshold circuits with few wires. No correlation upper bounds for explicit
functions against bounded-depth threshold circuits with superlinear wires was known before
our work.

I Theorem 1.1. For each depth d ≥ 1, there is a constant εd > 0 such that for all large
enough n, no threshold circuit of depth d with at most n1+εd wires agrees with Parity on more
than 1/2 + 1/nεd fraction of inputs of length n, and with the Generalized Andreev function
on more than 1/2 + 1/2nεd fraction of inputs of length n.

Theorem 1.1 captures the content of Theorem 4.4 and Theorem 4.7 in Section 4.

1 By contraposition, if any circuit agreeing with a function f on 1/2 + ε of the inputs has size at least s,
then size-s circuits have correlation at most 2ε with f , and vice versa.
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We constructivize the ideas of the proof of the strong correlation upper bounds for the
Generalized Andreev function to get non-trivial satisfiability algorithms for bounded-depth
threshold circuits with few wires. Previously, such algorithms were only known for depth 2
circuits, due to Impagliazzo-Paturi-Schneider [21] and Tamaki (unpublished).

I Theorem 1.2. For each depth d ≥ 1, there is a constant εd > 0 such that the satisfiability
of depth-d threshold circuits with at most n1+εd wires can be solved in randomized time
2n−nεdpoly(n).

Theorem 1.2 is re-stated and proved as Theorem 5.4 in Section 5.
Using our ideas, we also show correlation bounds against AC0 circuits with a few threshold

gates, as well as learning algorithms under the uniform distribution for such circuits.

I Theorem 1.3. For each constant d, there is a constant γ > 0 such that Parity has
correlation at most 1/nΩ(1) with AC0 circuits of depth d and size at most nlog(n)0.4 augmented
with at most nγ threshold gates. Moreover, the class of AC0 circuits of size at most nlog(n)0.4

augmented with at most nγ threshold gates can be learned to constant error under the uniform
distribution in time 2n1/4+o(1) .

Theorem 1.3 captures the content of Corollary 7.4 and Theorem 7.6 in Section 7.
Having summarized our main results, we now describe related work and our proof techiques

in more detail.

1.1 Related work
There has been a large body of work proving upper and lower bounds for constant-depth
threshold circuits. Much of this work has focused on the setting of small gate complexity,
which seems to be the somewhat easier case to handle. A distinction must also be drawn
between work that has focused on the setting where the threshold gates are assumed to be
majority gates (i.e. the linear function sign representing the gate has integer coefficients that
are bounded by a polynomial in the number of variables) and work that focuses on general
threshold gates, since analytic tools such as rational approximation that are available for
majority gates do not work in the setting of general threshold gates.

We discuss the work on wire complexity first, followed by the results on gate complexity.

Wire complexity
Paturi and Saks [34] considered depth-2 Majority circuits and showed an Ω̃(n2) lower bound
on the wire complexity required to compute Parity; this nearly matches the upper bound
of O(n2). They also showed that there exist majority circuits of size n1+Θ(εd1) and depth
d computing Parity; here ε1 = 2/(1 +

√
5). Impagliazzo, Paturi, and Saks [22] showed a

depth-d lower bound for general threshold circuits computing Parity: namely, that any such
circuit must have wire complexity at least n1+εd2 where ε2 < ε1.

The proof of [22] proceeds by induction on the depth d. The main technical lemma shows
that a circuit of depth d can be converted to a depth d− 1 circuit of the same size by setting
some of the input variables. The variables that are set are set in a random fashion, but not
according to the uniform distribution. In fact, this distribution has statistical distance close
to 1 from the uniform distribution and furthermore, depends on the circuit whose depth
is being reduced. Therefore, it is unclear how to use this technique to prove a correlation
bound with respect to the uniform distribution. In contrast, we are able to reduce the depth
of the circuit by setting variables uniformly at random (though the variables that we restrict
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are sometimes chosen in a way that depends on the circuit), which yields the correlation
bounds we want.

Gate complexity
The aforementioned work of Paturi and Saks [34] also proved a near optimal Ω̃(n) lower
bound on the number of gates in any depth-2 majority circuits computing Parity.

Siu, Roychowdhury, and Kailath [45] considered majority circuits of bounded depth and
small gate complexity. They showed that Parity can be computed by depth-d circuits with
O(dn1/(d−1)) gates. Building on the ideas of [34], they also proved a near matching lower
bound of Ω̃(dn1/(d−1)). Further, they also considered the problem of correlation bounds and
showed that there exist depth-d majority circuits with O(dn1/2(d−1)) gates that compute
Parity almost everywhere and that majority circuits of significantly smaller size have o(1)
correlation with Parity (i.e. these circuits cannot compute Parity on more than a 1/2 + o(1)
fraction of inputs; recall that 1/2 is trivial since a constant function computes Parity correctly
on 1/2 of its inputs). Impagliazzo, Paturi, and Saks [22] extended the worst case lower bound
to general threshold gates, where they proved a slightly weaker lower bound of Ω(n1/2(d−1)).
As discussed above, though, it is unclear how to use their technique to prove a correlation
bound.

Beigel [6] extended the result of Siu et al. to the setting of AC0 augmented with a
few majority gates. He showed that any subexponential-sized depth-d AC0 circuit with
significantly less than some k = nΘ(1/d) majority gates has correlation o(1) with Parity. The
techniques of all the above works with the exception of [22] were based on the fact majority
gates can be well-approximated by low-degree rational functions. However, this is not true
for general threshold functions [44] and hence, these techniques do not carry over the case of
general threshold gates.

A lower bound technique that does carry over to the setting of general threshold gates is
that of showing that the circuit class has low-degree polynomial sign-representations. Aspnes,
Beigel, Furst and Rudich [3] used this idea to prove that AC0 circuits augmented with a
single general threshold output gate – we refer to these circuits as TAC0 circuits as in [15] –
of subexponential-size and constant-depth have correlation o(1) with Parity. More recently,
Podolskii [36] used this technique along with a trick due to Beigel [6] to prove similar bounds
for subexponential-sized AC0 circuits augmented with general threshold gates. However, this
trick incurs an exponential blow-up with the number of threshold gates and hence, in the
setting of the Parity function, we cannot handle k > logn threshold gates.

Another technique that has proved useful in handling general threshold gates is Communi-
cation Complexity, where the basic idea is to show that the circuit – perhaps after restricting
some variables – has low communication complexity in some suitably defined communication
model. We can then use results from communication complexity to infer lower bounds or
correlation bounds. Nisan [29] used this technique to prove exponential correlation bounds
for general threshold circuits (not necessarily even constant-depth) with n1−Ω(1) threshold
gates. Using Beigel’s trick and multiparty communication complexity bounds of Babai, Nisan
and Szegedy [4], Lovett and Srinivasan [27] (see also [40, 17]) proved exponential correlation
bounds for any polynomial-sized AC0 circuits augmented with up to n 1

2−Ω(1) threshold gates.
We do not use this technique in our setting for many reasons. Firstly, it cannot be

used to prove lower bounds or correlation bounds against functions such as Parity (which
has small communication complexity in most models). In particular, these ideas do not
yield the noise sensitivity bounds we get here. Even more importantly, it is unclear how
to use these techniques to prove any sort of superlinear lower bound on wire complexity,
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since there are functions that have threshold circuits with linearly many wires, but large
communication complexity even after applying restrictions (take a generic read-once depth-2
Majority formula for example).

Perhaps most closely related to our work is that of Gopalan and Servedio [15] who use
analytic techniques to prove correlation bounds for AC0 circuits augmented with a few
threshold gates. Their idea is to use Noise sensitivity bounds (as we do as well) to obtain
correlation bounds for Parity with TAC0 circuits and then extend these results in the same
way as in the work of Podolskii [36] mentioned above. As a result, though, the result only
yields non-trivial bounds when the number of threshold gates is bounded by logn, whereas
our result yields correlation bounds for up to n1/2(d−1) threshold gates.

1.2 Proof techniques
In recent years, there has been an explosion of work on the analytic properties (such as
Noise Sensitivity) of linear threshold functions (LTFs) and their generalizations polynomial
threshold functions (PTFs) (e.g., [43, 33, 9, 18, 10, 28, 23]). We show here that these
techniques can be used in the context of constant-depth threshold circuits as well.

Our first result (Theorem 3.1 in Section 3) is a tight correlation bound for Parity
with threshold circuits of depth d and gate complexity much smaller than n1/2(d−1). This
generalizes both the results of Siu et al. [45], who proved such a result for majority circuits,
and Impagaliazzo, Paturi, and Saks [22], who proved a worst case lower bound of the same
order. The proof uses a fundamental theorem of Peres [35] on the noise sensitivity of LTFs;
Peres’ theorem has also been used by Klivans, O’Donnell, and Servedio [24] to obtain learning
algorithms for functions of a few threshold gates. We use Peres’ theorem to prove a noise
sensitivity upper bound on small threshold circuits of constant depth.

The observation underlying the proof is that the noise sensitivity of a function is exactly
the expected variance of the function after applying a suitable random restriction (see
also [31]). Seen in this light, Peres’ theorem says that, on application of a random restriction,
any threshold function becomes quite biased in expectation and hence is well approximated
by a constant function. Our analysis of the threshold circuit therefore proceeds by applying
a random restriction to the circuit and replacing all the threshold gates at height 1 by
the constants that they are well approximated by to obtain a circuit of depth d − 1. A
straightforward union bound tells us that the new circuit is a good approximation of the
original circuit after the restriction. We continue this way with the depth-d− 1 circuit until
the entire circuit becomes a constant, at which point we can say that after a suitable random
restriction, the original circuit is well approximated by a constant, which means its variance
is small. Hence, the Noise Sensitivity of the original circuit must be small as well and we are
done.

This technique is expanded upon in Section 7, where we use a powerful Noise Sensi-
tivity upper bound for low degree PTFs due to Kane [23] along with standard switching
arguments [19] to prove similar results for AC0 circuits augmented with almost n1/2(d−1)

threshold gates. This yields Theorem 1.3.
In Section 4, we consider the problem of extending the above correlation bounds to

threshold circuits with small (slightly superlinear) wire complexity. The above proof breaks
down even for depth-2 threshold circuits with a superlinear number of wires, since such
circuits could have a superlinear number of gates and hence the union bound referred to
above is no longer feasible.

In the case of depth-2 threshold circuits, we are nevertheless able to use Peres’ theorem,
along with ideas of [3] to prove correlation bounds for Parity with circuits with nearly n1.5
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wires. This result is tight, since by the work of Siu et al. [45], Parity can be well approximated
by depth-2 circuits with O(

√
n) gates and hence O(n1.5) wires. This argument is in Section B.

Unfortunately, however, this technique needs us to set a large number of variables, which
renders it unsuitable for larger depths. The reason for this is that, if we set a large number
of variables to reduce the depth from some large constant d to d− 1, then we may be in a
setting where the number of wires is much larger than the number of surviving variables and
hence correlation bounds with Parity may no longer be possible at all.

We therefore use a different strategy to prove correlation bounds for larger constant depths.
The lynchpin in the argument is a qualitative refinement of Peres’ theorem (Lemma 4.1)
that says that on application of a random restriction to an LTF, with good probability, the
variance of the LTF becomes negligible (even exponentially small for suitable parameters).
The proof of this argument is via anticoncentration results based on the Berry-Esseen theorem
and the analysis of general threshold functions via a critical index argument as in many
recent works [43, 33, 9, 28].

The above refinement of Peres’ theorem allows us to proceed with our argument as in
the gates case. We apply a random restriction to the circuit and by the refinement, with
good probability (say 1− n−Ω(1)) most gates end up exponentially close to constants. We
can then set these “imbalanced” gates to constants and still apply a union bound to ensure
that the new circuit is a good approximation to the old one. For the small number of gates
that do not become imbalanced in this way, we set all variables feeding into them. Since the
number of such gates is small, we do not set too many variables. We now have a depth d− 1
circuit. Continuing in this way, we get a correlation bound of n−Ω(1) with Parity. This gives
part of Theorem 1.1.

We then strengthen this correlation bound to exp(−nΩ(1)) for the Generalized Andreev
function, which, intuitively speaking, has the following property: even after applying any
restriction that leaves a certain number of variables unfixed, the function has exponentially
small correlation with any LTF on the surviving variables. To prove lower bounds for
larger depth threshold circuits, we follow more or less the same strategy, except that in
the above argument, we need most gates to become imbalanced with very high probability
(1− exp(−nΩ(1))). To ensure this, we use a bounded read Chernoff bound due to Gavinsky,
Lovett, Saks, and Srinivasan [14]. We can use this technique to reduce depth as above as long
as the number of threshold gates at height 1 is “reasonably large”. If the number of gates
at height 1 is very small, then we simply guess the values of these few threshold gates and
move them to the top of the circuit and proceed. This gives the other part of Theorem 1.1.

This latter depth-reduction lemma can be completely constructivized to design a satisfia-
bility algorithm that runs in time 2n−nΩ(1) . The algorithm proceeds in the same way as the
above argument, iteratively reducing the depth of the circuit. A subtlety arises when we
replace imbalanced gates by constants, since we are changing the behaviour of the circuit on
some (though very few) inputs. Thus, a circuit which was satisfiable only at one among these
inputs might now end up unsatisfiable. However, we show that there is an efficient algorithm
that enumerates these inputs and can hence check if there are satisfiable assignments to the
circuits from among these inputs. This gives Theorem 1.2.

In Section 6, we prove correlation bounds for the Generalized Andreev function with
threshold formulas of any arity and any depth. The proof is based on a retooling of the
argument of Nečiporuk for formulas of constant arity over any basis and yields a correlation
bound as long as the wire complexity is at most n1.5−Ω(1).
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2 Preliminaries

2.1 Basic Boolean function definitions
A Boolean function on n variables will be a function f : {−1, 1}n → {−1, 1}. We
use the standard inner product on functions f, g : {−1, 1}n → R defined by 〈f, g〉 =
Ex∼{−1,1}n [f(x)g(x)]2.

Given Boolean functions f, g on n variables, the Correlation between f and g – denoted
Corr(f, g) – is defined as

Corr(f, g) := |〈f, g〉| =
∣∣∣∣ E
x∼{−1,1}n

[f(x)g(x)]
∣∣∣∣ = |2 Pr

x
[f(x) = g(x)]− 1| .

Also, we use δ(f, g) to denote the fractional distance between f and g: i.e., δ(f, g) =
Prx[f(x) 6= g(x)]. Then, we have Corr(f, g) = |1−2δ(f, g)|. We say that f is δ-approximated
by g if δ(f, g) ≤ δ.

We use Parn to denote the parity function on n variables. I.e. Parn(x1, . . . , xn) =
∏n
i=1 xi .

I Definition 2.1 (Restrictions). A restriction on n variables is a function ρ : [n]→ {−1, 1, ∗}.
A random restriction is a distribution over restrictions. We use Rnp to denote the distribution
over restrictions on n variables obtained by setting each ρ(x) = ∗ with probability p and to 1
and −1 with probability 1−p

2 each. We will often view the process of sampling a restriction
as picking a pair (I, y) where I ⊆ [n] is obtained by picking each element of [n] to be in I
with probability p and y ∈ {−1, 1}n−|I| uniformly at random.

I Definition 2.2 (Restriction trees and Decision trees). A restriction tree T on {−1, 1}n of
depth h is a binary tree of depth h all of whose internal nodes are labelled by one of n
variables, and the outgoing edges from an internal node are labelled +1 and -1; we assume
that a node and its ancestor never query the same variable. Each leaf ` of T defines a
restriction ρ` that sets all the variables on the path from the root of the decision tree to
` and leaves the remaining variables unset. A random restriction tree T of depth h is a
distribution over restriction trees of depth h.

Given a restriction tree T , the process of choosing a random edge out of each internal
node generates a distribution over the leaves of the tree (note that this distribution is not
uniform: the weight it puts on leaf ` at depth d is 2−d). We use the notation ` ∼ T to denote
a leaf ` of T picked according this distribution.

A decision tree is a restriction tree all of whose leaves are labelled either by +1 or -1.
We say a decision tree has size s if the tree has s leaves. We say a decision tree computes a
function f : {−1, 1}n → {−1, 1} if for each leaf ` of the tree, f |ρ` is equal to the label of `.

I Fact 2.3 (Facts about correlation). Let f, g, h : {−1, 1}n → {−1, 1} be arbitrary.
1. Corr(f, g) ∈ [0, 1].
2. If Corr(f, g) ≤ ε and δ(g, h) ≤ δ, then Corr(f, h) ≤ ε+ 2δ.
3. Let g1, . . . , gN be Boolean functions such that no two of them are simultaneously true

and let h denote their OR. Then, Corr(f, h) ≤
∑N
i=1 max{Corr(f, 1),Corr(f, gi)}, where

1 denotes the constant 1 function.
4. Let T be any random restriction tree. Then Corr(f, g) ≤ ET∼T ,`∼T [Corr(f |ρ` , g|ρ`)].

2 x ∼ {−1, 1}n stands for that x is uniform in {−1, 1}n.
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1:8 Average-Case Lower Bounds and Satisfiability Algorithms for Small Threshold Circuits

I Definition 2.4 (Noise sensitivity and Variance [32]). Given a Boolean function f : {−1, 1}n
→ {−1, 1} and a parameter p ∈ [0, 1], we define the Noise senstivity of f with noise
parameter p – denoted NSp(f) – as follows. Pick x ∈ {−1, 1}n uniformly at random and
y ∈ {−1, 1}n by negating (i.e. flipping) each bit of x independently with probability p; we
define NSp(f) = Pr(x,y)[f(x) 6= f(y)]. The variance of f – denoted Var(f) – is defined to be
2NS1/2(f).

I Proposition 2.5. Let f : {−1, 1}n → {−1, 1} be any Boolean function. Then,
1. For p ≤ 1/2, NSp(f) = 1

2 Eρ∼Rn2p [Var(f |ρ)].
2. If p ≥ 1

n , then Corr(f,Parn) ≤ O(NSp(f)).

The above fact is folklore, but we couldn’t find explicit proofs in the literature. Therefore
we present them in the appendix (see Appendix A).

I Fact 2.6. Let f : {−1, 1}n → {−1, 1} be any Boolean function. Let p = min{Prx[f(x) =
1],Prx[f(x) = −1]} where x is chosen uniformly from {−1, 1}n. Then, Var(f) = Θ(p).

2.2 Threshold functions and circuits
I Definition 2.7 (Threshold functions and gates). A Threshold gate is a gate φ labelled with
a pair (w, θ) where w ∈ Rm for some m ∈ N and θ ∈ R. The gate computes the Boolean
function fφ : {−1, 1}m → {−1, 1} defined by fφ(x) = sgn(〈w, x〉 − θ) (we define sgn(0) = −1
for the sake of this definition). The fan-in of the gate φ – denoted fan-in(φ) – is m. A Linear
Threshold function (LTF) is a Boolean function that can be represented by a Threshold gate.

I Definition 2.8 (Threshold circuits). A Threshold circuit C is a Boolean circuit whose gates
are all threshold gates. There are designated output gates, which compute the functions
computed by the circuit. Unless explicitly mentioned, however, we assume that our threshold
circuits have a unique output gate. The gate complexity of C is the number of (non-input)
gates in the circuit, while the wire complexity is the sum of all the fan-ins of the various
gates.

A Threshold map from n to m variables is a depth-1 threshold circuit C with n inputs
and m outputs. We say that such a map is read-k if each input variable is an input to at
most k of the threshold gates in C.

The proof of the following can be found for example in [41].

I Lemma 2.9 ([41]). The number of distinct linear threshold functions on n bits is at most
2O(n2).

I Definition 2.10 (Restrictions of threshold gates and circuits). Given a threshold gate φ of
fan-in m labelled by the pair (w, θ) and a restriction ρ on m variables, we use φρ to denote
the threshold gate over the variables indexed by ρ−1(∗) obtained in the natural way by
setting variables according to ρ.

We will also need Peres’ theorem, which bounds the Noise Sensitivity of threshold
functions.

I Theorem 2.11 (Peres’ theorem[35, 32]). Let f : {−1, 1}n → {−1, 1} be any LTF. Then,

E
ρ∼Rnp

[Var(f |ρ)] = NS p
2
(f) = O(√p).

Using the above for p = 1/n and Proposition 2.5, we obtain

I Corollary 2.12. Let f : {−1, 1}n → {−1, 1} be any threshold function. Then Corr(f,Parn)
≤ O(n−1/2).
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2.3 Description lengths and Kolmogorov Complexity
I Definition 2.13 (Kolmogorov Complexity). The Kolmogorov complexity of an n-bit Boolean
string x is the length of the shortest bit string of the form (M,w) where M is the description
of a Turing Machine and w an input to M such that M(w) = x. We use K(x) to denote the
Kolmogorov complexity of x.

I Fact 2.14. For any α ∈ (0, 1), the fraction of n-bit strings x satisfying K(x) ≤ (1− α)n
is at most 2−αn+1.

I Definition 2.15 (Descriptions of circuits). We can also talk about the description lengths
of threshold circuits, which we define as follows. By Lemma 2.9, we know that the number
of LTFs on n bits is 2O(n2), and hence we can fix some O(n2)-bit description for each such
function. The description of a threshold circuit C is a description of the underlying graph
theoretic structure of C followed by the descriptions of the threshold functions computed by
each of its gates and the input variables labelling its input gates. We use σ(C) to denote the
length of this description of C.

I Proposition 2.16. For any threshold circuit C with wire complexity at most s on at most
n variables, σ(C) = O(s2 + s logn). If s ≥ n, then the description length is at most O(s2).

Proof. Since the wire complexity is at most s, the graph underlying the circuit can be
described using O(s log s) bits (for example, for each wire, we can describe the gates that
it connects). Let φ1, . . . , φm be the threshold gates in the circuit. We can write down a
description of the LTFs f1, . . . , fm using

∑
iO(k2

i ) bits where ki is the fan-in of φi; this is at
most O(

∑
i ki)2 = O(s2). Finally, to describe the input variable assignments to the input

gates, we need O(s logn) bits. J

2.4 The Generalized Andreev function
We state here the definition of a generalization of Andreev’s function, due to Komargodski
and Raz, and Chen, Kabanets, Kolokolova, Shaltiel, and Zuckerman [25, 7]. This function
will be used to give strong correlation bounds for constant-depth threshold circuits with
slightly superlinear wire complexity.

We first need some definitions.

I Definition 2.17 (Bit-fixing extractor). A function E : {−1, 1}n → {−1, 1}m is a (n, k,m, ζ)
bit-fixing extractor if for every random variable X that is uniform on a subcube3 of {−1, 1}n
of dimension at least k, the function E(X) is ζ-close to uniform on {−1, 1}m.

We have the following explicit construction of a bit-fixing extractor.

I Theorem 2.18 ([37]). There is an absolute constant c ≥ 1 so that the following holds. There
is a polynomial-time computable function E : {−1, 1}n → {−1, 1}m that is an (n, k,m, ζ)-bit
fixing extractor for any k ≥ (logn)c, m = 0.9k, and ζ ≤ 2−kΩ(1) .

Also recall that a function Enc : {−1, 1}a → {−1, 1}b defines (α,L)-error-correcting code
for parameters α ∈ [0, 1] and L ∈ N if for any z ∈ {−1, 1}b, the number of elements in the
image of Enc that are at relative Hamming distance at most α from z is bounded by L.

The following theorem is a folklore result, and stated explicitly in the work of Chen et
al. [7].

3 A subcube of dimension k is a subset of {−1, 1}n containing elements which are consistent with some
restriction with k ∗’s.
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I Theorem 2.19 ([7], Theorem 6.4). Let r = nβ for any fixed 0 < β < 1. There exists
an (α,L)-error correcting code with Enc : {−1, 1}4n → {−1, 1}2r where α = 1

2 − O(2−r/4)
and L = O(2r/2). Further, there is a poly(n) time algorithm, which when given as input
x ∈ {−1, 1}n and i ∈ [2r] in binary, outputs Enc(x)i, the ith bit of Enc(x).

Now we can define the generalized Andreev function as in [7]. The function is F :
{−1, 1}4n×{−1, 1}n → {−1, 1} and is defined as follows. Let γ > 0 be a constant parameter.
The parameter will be fixed later according to the application at hand.

Let E be any (n, nγ ,m = 0.9nγ , 2−nΩ(γ)) extractor (we can obtain an explicit one using
Theorem 2.18). We interpret the output of E as an integer from [2m] in the natural way.
Let Enc : {−1, 1}4n → {−1, 1}2m define a ( 1

2 − O(2−m/4), 2m/2)-list decodable code as in
Theorem 2.19. Then, we define F (x1, x2) by

F (x1, x2) = Enc(x1)E(x2). (1)

Given a ∈ {−1, 1}4n, we use Fa(·) to denote the resulting sub-function on n bits obtained
by fixing x1 = a.

The following lemma was proved as part of Theorem 6.5 in [7].

I Lemma 2.20 ([7], Theorem 6.5). Let C be any circuit on nγ variables with binary description
length σ(C) ≤ n according to some fixed encoding scheme. Let ρ be any restriction of n
variables leaving nγ variables unfixed. Let f(y) := Fa|ρ(y) for a ∈ {−1, 1}4n satisfying
K(a) ≥ 3n. Then

Corr(f, C) ≤ exp(−nΩ(γ)).

2.5 Concentration bounds
We state a collection of concentration bounds that we will need in our proofs. The proofs of
Theorems 2.21 and 2.23 may be found in the excellent book by Dubhashi and Panconesi [11].

I Theorem 2.21 (Chernoff bound). Let w ∈ Rn be arbitrary and x is chosen uniformly from
{−1, 1}n. Then

Pr
x

[|〈w, x〉| ≥ t · ‖w‖2] ≤ exp(−Ω(t2)).

I Definition 2.22 (Imbalance). We say that a threshold gate φ labelled by (w, θ) is t-
imbalanced if |θ| ≥ t · ‖w‖2 and t-balanced otherwise.

We also need a multiplicative form of the Chernoff bound for sums of Boolean random
variables.

I Theorem 2.23 (Multiplicative Chernoff bound). Let Y1, . . . , Ym be independent Boolean
random variables such that E[Yi] = pi for each i ∈ [m]. Let p denote the average of the pi.
Then, for any ε > 0

Pr[|
∑
i

Yi − pm| ≥ εpm] ≤ exp(−Ω(ε2pm)).

Let Y1, . . . , Ym be random variables defined as functions of independent random variables
X1, . . . , Xn. For i ∈ [m], let Si ⊆ [n] index those random variables among X1, . . . , Xn that
influence Yi. We say that Y1, . . . , Ym are read-k random variables if any j ∈ [n] belongs to
Si for at most k different i ∈ [m].

The notation D(p||q) represents the KL-divergence (see, e.g., [8]) between the two
probability distributions on {0, 1} where the probabilities assigned to 1 are p and q respectively.
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I Theorem 2.24 (A read-k Chernoff bound [14]). Let Y1, . . . , Ym be {0, 1}-valued read-k
random variables such that E[Yi] = pi. Let p denote the average of p1, . . . , pm. Then, for
any ε > 0,

Pr[
∑
i

Yi ≥ pm(1 + ε)] ≤ exp(−D(p(1 + ε)||p)m/k).

Using standard estimates on the KL-divergence, we get

I Corollary 2.25. Let Y1, . . . , Ym be as in the statement of Theorem 2.24 and assume
E[
∑
i Yi] ≤ µ. Then,

Pr[
∑
i

Yi ≥ 2µ] ≤ exp(−Ω(µ/k)).

3 Correlation bounds for threshold circuits with small gate complexity

In this section, we show that constant-depth threshold circuits with a small number of gates
cannot correlate well with the Parity function.

It should be noted that Nisan [29] already proved strong correlation bounds for the
Inner Product function against any threshold circuit (not necessarily constant-depth) with a
sub-linear (much smaller than n/ logn) number of threshold gates. The idea of the proof
is to first show that each threshold gate on n variables has a δ-error randomized protocol
with complexity O(log(n/δ)) [29, Theorem 1]. One can use this to show that any threshold
circuit as in the theorem can be written as a decision tree of depth n/k querying threshold
functions and hence has a exp(−Ω(k))-error protocol of complexity at most n/10. Standard
results in communication complexity imply that any such function can have correlation at
most exp(−Ω(k)) with inner product.

However, such techniques cannot be used to obtain lower bounds or correlation bounds for
the parity function, since the parity function has low communication complexity (even in the
deterministic setting). An even bigger disadvantage to this technique is that it cannot be used
to obtain any superlinear lower bound on the wire complexity, since threshold circuits with
a linear number of wires can easily compute functions with high communication complexity
(such as the Disjointness function).

The techniques we use here can be used to give correlation bounds for the parity function;
further, these correlation bounds are nearly tight (Theorem 3.4). In fact, we prove something
stronger: we upper bound the noise sensitivity of small constant-depth threshold circuits,
which additionally implies the existence of non-trivial learning algorithms [24, 15]. Further,
our techniques also imply noise sensitivity bounds for AC0 circuits augmented with a small
number of threshold gates.

In this section, we illustrate our technique with the case of threshold circuits with a small
number of gates. The generalizations to AC0 circuits augmented with a small number of
threshold gates are obtained in Section 7.

3.1 Correlation bounds via noise sensitivity
I Theorem 3.1. Let C be a depth d threshold circuit with at most k threshold gates. Then,
for any parameters p, q ∈ [0, 1], we have

NSpd−1q(C) ≤ O(k√p+√q).
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Proof. We assume that q ≤ 1
2 , since otherwise the statement of the theorem is trivial. We

will instead prove that for pd := 2pd−1q ∈ [0, 1] and ρd ∼ Rnpd (n is the number of input
variables to C), we have

E
ρd

[Var(C|ρd)] ≤ O(k√p+√q). (2)

This will imply the theorem, since by Proposition 2.5, we have NSpd−1q(C) =
1
2 Eρd [Var(C|ρd)].

The proof of (2) is by induction on the depth d of the circuit. The base case d = 1 is just
Peres’ theorem (Theorem 2.11).

Now assume that C has depth d > 1. Let k1 be the number of threshold circuits at height
1 in the circuit. We choose a random restriction ρ ∼ Rnp and consider the circuit C|ρ. It is
easy to check that

E
ρd

[Var(C|ρd)] = E
ρ

[ E
ρd−1

[Var((C|ρ)|ρd−1)]], (3)

and hence to prove (2), it suffices to bound the expectation of Var((C|ρ)|ρd−1).
Let us first consider the circuit C|ρ. Peres’ theorem tells us that on application of the

restriction ρ, each threshold gate at height 1 becomes quite biased on average. Formally, by
Theorem 2.11 and Fact 2.6, for each threshold gate φ at height 1, there is a bit bφ,ρ ∈ {−1, 1}
such that

E
ρ

[ Pr
x∈{−1,1}|ρ−1(∗)|

[φρ(x) 6= bφ,ρ]] ≤ O(√p).

In particular, replacing φρ by bφ,ρ in the circuit C|ρ yields a circuit that differs from C|ρ
on only an O(√p) fraction of inputs (in expectation). Applying this replacement to each of
the k1 threshold gates at height 1 yields a circuit C ′ρ with k − k1 threshold gates and depth
d− 1 such that

E
ρ

[δ(C|ρ, C ′ρ)] ≤ O(k1
√
p) (4)

where δ(C|ρ, C ′ρ) denotes the fraction of inputs on which the two circuits differ. On the other
hand, we can apply the inductive hypothesis to C ′ρ to obtain

E
ρd−1

[Var((C ′ρ)|ρd−1)] ≤ O((k − k1)√p+√q). (5)

Therefore, to infer (2), we put the above together with (4) and the following elementary fact.

I Proposition 3.2. Say f, g : {−1, 1}m → {−1, 1} and δ = δ(f, g). Then, for any r ∈ [0, 1],
we have Eρ∼Rnr [Var(f |ρ)] ≤ Eρ∼Rnr [Var(g|ρ)] + 4δ.

Proof of Proposition 3.2. By Proposition 2.5, we know that Eρ∼Rnr [Var(f |ρ)] = 2NSr/2(f),
and similarly for g. By definition of noise sensitivity, we have NSr/2(f) = Pr(x,y)[f(x) 6= f(y)]
where x ∈ {−1, 1}m is chosen uniformly at random and y is chosen by flipping each bit of x
with probability r/2. Note that each of x and y is individually uniformly distributed over
{−1, 1}m and hence, both f(x) = g(x) and f(y) = g(y) hold with probability at least 1− 2δ.
This yields

NSr/2(f) = Pr
(x,y)

[f(x) 6= f(y)] ≤ Pr
(x,y)

[g(x) 6= g(y)] + 2δ = NSr/2(g) + 2δ,

which implies the claimed bound. J
J
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I Corollary 3.3. Let d ≥ 2 and δ ∈ [0, 1] be arbitrary parameters. Assume that C is
a depth d threshold circuit over n variables with at most δn

1
2(d−1) threshold gates. Then,

Corr(C,Parn) ≤ O(δ(1− 1
d )).

Proof. Let k ≤ δn1/2(d−1) be the number of gates in the threshold circuit C. We apply
Theorem 3.1 with the following optimized parameters: p = 1

n1/d · 1
k2/d and q ∈ [0, 1] such that

pd−1q = 1
n . It may be verified that for this setting of parameters, Theorem 3.1 gives us

NS1/n(C) ≤ O
(
k1−1/d

n1/(2d)

)
≤ O(δ1− 1

d ).

As noted in Proposition 2.5, we have Corr(C,Parn) ≤ O(NS1/n(C)). This completes the
proof. J

I Remark. It is instructive to compare the above technique with the closely related work
of Gopalan and Servedio [15]. The techniques of [15] applied to the setting of Theorem 3.1
show that NSp(C) ≤ O(k2k√p), which gives a better dependence on the noise parameter p,
but a much worse dependence on k. Indeed, this is not surprising since in this setting, the
technique of Gopalan and Servedio does not use the fact that the circuit is of depth d. The
threshold circuit is converted to a decision tree of depth k querying threshold functions and
it is this tree that is analyzed.

We believe that the right answer should incorporate the best of both bounds: NSp(f) ≤
Od(kd−1 · √p). As in Corollary 3.3, this would show that Corr(C,Parn) = o(1) if k =
o(n1/2(d−1)), but additionally, we would also get Corr(C,Parn) ≤ n−

1
2 +o(1) as long as

k = no(1), which we are not able to prove currently.
It is known from the work of Siu, Roychowdhury and Kailath [45, Theorem 7] that

Corollary 3.3 is tight in the sense that there do exist circuits of gate complexity roughly
n1/2(d−1) that have significant correlation with Parn. More formally,

I Theorem 3.4 (Theorem 7 in [45]). Let ε > 0 be an arbitrary constant. Then, there is a
threshold circuit of depth d with O(d) · (n log(1/ε))1/2(d−1) gates that computes Parn correctly
on a 1− ε fraction of inputs.

4 Correlation bounds for threshold circuits with small wire complexity

The following is a key lemma that will be used in the proofs of our correlation bounds.
We state the lemma here and prove our correlation bounds. The lemma will be proved in
Section 4.2.

Recall that a threshold gate φ with label (w, θ) is t-balanced if |θ| ≤ t · ||w||2.

I Lemma 4.1 (Main Structural lemma for threshold gates). For any threshold gate φ over n
variables with label (w, θ) and any p ∈ [0, 1], we have

Pr
ρ∼Rnp

[φρ is 1
pΩ(1) -balanced] ≤ pΩ(1).

The proof of the correlation bounds proceed by iteratively reducing the depth of the
circuit. In order to perform this depth-reduction for a depth d circuit, we need to analyze the
threshold map defined by the threshold gates at depth d− 1. The first observation, which
follows from Markov’s inequality, shows that we may assume (after setting a few variables)
that the map reads each variable only a few times.
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I Fact 4.2 (Small wire-complexity to small number of reads). Let C be any threshold circuit on
n variables with wire complexity at most cn. Then, there is a set S of at most n/2 variables
such that each variable outside S is an input variable to at most 2c many gates in C.

The second observation is that if the fan-ins of all the threshold gates are small, then
depth-reduction is easy (after setting some more variables).

I Proposition 4.3 (Handling small fan-in gates). Let C = (φ1, . . . , φm) be any read-k threshold
map on n variables such that maxi fan-in(φi) ≤ t. Then, there is a set S of n/kt variables
such that each φi depends on at most one variable in S.

Proof. This may be done via a simple graph theoretic argument. Define an undirected graph
whose vertex set is the set of n variables and two variables are adjacent iff they feed into the
same threshold gate. We need to pick an S that is an independent set in this graph. Since
the graph has degree at most kt, we can greedily find an independent set of size at least
n/kt. Let S be such an independent set. J

4.1 Proofs of correlation bounds
Let B > 2 be a constant real parameter that we will choose to satisfy various constraints in
the proofs below. For d ≥ 1, define εd = B−(2d−1) and δd = Bεd.

I Theorem 4.4 (Correlation bounds for parity). For any d ≥ 1 and c ≤ nεd , any depth-d
threshold circuit C with at most cn wires satisfies Corr(C,Parn) ≤ O(n−εd) where the O(·)
hides absolute constants (independent of d and n).

Proof. The proof is by induction on the depth d of C. The base case is d = 1, which is
the case when C is only a single threshold gate. In this case, Corollary 2.12 tells us that
Corr(C,Parn) ≤ O(n−1/2) ≤ n−ε1 , since B > 2.

Now, we handle the inductive case when the depth d > 1. Our analysis proceeds in
phases.

Phase 1

We first transform the circuit into a read-2c circuit by setting n/2 variables. This may be
done by Fact 4.2. This defines a restriction tree of depth n/2. By Fact 2.3, it suffices to
show that each leaf of this restriction tree, the correlation of the restricted circuit and Parn/2
remains bounded by O(n−εd).

Let n1 now denote the new number of variables and let C1 now be the restricted circuit
at some arbitrary leaf of the restriction tree. By renaming the variables, we assume that
they are indexed by the set [n1].

Phase 2

Let φ1, . . . , φm be the threshold gates at depth d− 1 in the circuit C1. We call φi large if
fan-in(φi) > nδd and small otherwise. Let L ⊆ [m] be defined by L = {i ∈ [m] | φi large}.
Assume that |L| = `. Note that ` · nδd ≤ n1+εd and hence ` ≤ n1+εd−δd ≤ n.

We restrict the circuit with a random restriction ρ = (I, y) ∼ Rn1
p , where p = n−δd/2. By

Lemma 4.1, we know that for each i ∈ [m] and some t = 1
pΩ(1) and q = pΩ(1),

Pr
ρ

[φi|ρ t-balanced] ≤ q. (6)
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Further, we also know that for each i ∈ L, the expected value of fan-in(φi|ρ) = p·fan-in(φi),
since each variable is set to a constant with probability 1 − p. Since i ∈ L, the expected
fan-in of each φi (i ∈ L) is at least nδd/2. Hence, by a Chernoff bound (Theorem 2.23), we
see that for any i ∈ L,

Pr
ρ

[fan-in(φi|ρ) > 2p · fan-in(φi)] ≤ exp(−Ω(nδd/2)). (7)

Finally another Chernoff bound (Theorem 2.23) tells us that

Pr
ρ=(I,y)

[|I| < n1p

2 ] ≤ exp(−Ω(n1p)) = exp(−Ω(np)). (8)

We call a set I generic if |I| ≥ n1p
2 and fan-in(φi|ρ) ≤ 2p · fan-in(φi) for each i ∈ L. Let G

denote the event that I is generic. By (7) and (8), we know that PrI [¬G] ≤ ` exp(−Ω(nδd/2))+
exp(−Ω(np)) ≤ exp(−nδd/4). In particular, conditioning on G doesn’t change (6) by much.

Pr
ρ=(I,y)

[φi|ρ t-balanced | G] ≤ q + exp(−nδd/4) ≤ 2q. (9)

Our aim is to further restrict the circuit by setting all the input variables to the gates
φi that are t-balanced. In order to analyze this procedure, we define random variables Yi
(i ∈ L) so that Yi = 0 if φi|ρ is t-imbalanced and fan-in(φi|ρ) otherwise. Let Y =

∑
i∈L Yi.

Note that

E
ρ

[Yi | G] ≤ (2p · fan-in(φi)) · Pr
ρ

[φi|ρ t-balanced | G] ≤ 4pq · fan-in(φi)

where the first inequality follows from the fact that since we have conditioned on I being
generic, we have fan-in(φi|ρ) ≤ 2p · fan-in(φi) with probability 1. Hence, we have

E
ρ

[Y | G] ≤ 4pq ·
∑
i

fan-in(φi) ≤ 4pq · n1+εd . (10)

We let µ := 4pq · n1+εd . By Markov’s inequality,

Pr
ρ

[Y ≥ µ
√
q
| G] ≤ √q. (11)

In particular, we can condition on a fixed generic I ⊆ [n] such that for random y ∼
{−1, 1}n1−|I|, we have

Pr
y

[Y ≥ µ
√
q

] ≤ √q.

The above gives us a restriction tree T (that simply sets all the variables in [n1] \ I) such
that at all but 1− 2√q fraction of leaves λ of T , the total fan-in of the large gates at depth 1
in C1 that are t-balanced is at most µ√

q ; call such λ good leaves. Let n2 denote |I|, which is
the number of surviving variables.

Phase 3

We will show that for any good leaf λ, we have

Corr(Cλ,Parn2) ≤ n−εd (12)
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where Cλ denotes C1|ρλ . This will prove the theorem, since we have by Fact 2.3,

Corr(C1,Parn1) ≤ E
λ∼T

[Corr(Cλ,Parn2)]

≤ Pr
λ

[λ not good] + max
λ good

Corr(Cλ,Parn2)

≤ 2√q + n−εd ≤ 2n−εd

where we have used the fact that Parn1 |ρλ = ±Parn2 for each leaf λ, and also that 2√q ≤ n−εd
for a large enough choice of the constant B.

It remains to prove (12). We do this in two steps.
In the first step, we set all large t-imbalanced gates to their most probable constant values.

Formally, for a t-imbalanced threshold gate φ labelled by (w, θ), we have |θ| ≥ t · ‖w‖2. We
replace φ by a constant bφ which is 1 if θ ≥ t · ‖w‖2 and by −1 if −θ ≥ t · ‖w‖2. This turns
the circuit Cλ into a circuit C ′λ of at most the wire complexity of Cλ. Further, note that
for any x ∈ {−1, 1}n1 , Cλ(x) = C ′λ(x) unless there is a t-imbalanced threshold gate φ such
that φ(x) 6= bφ(x). By the Chernoff bound (Theorem 2.21) the probability that this happens
for any fixed imbalanced threshold gate is at most exp(−Ω(t2)) ≤ exp(−nΩ(δd)). By a union
bound over the ` ≤ n large threshold gates, we see that Prx[Cλ(x) 6= C ′λ(x)] ≤ n exp(−nΩ(δd)).
In particular, we get by Fact 2.3

Corr(Cλ,Parn2) ≤ Corr(C ′λ,Parn2)+n exp(−Ω(nδd)) ≤ Corr(C ′λ,Parn2)+exp(−nεd). (13)

In the second step, we further define a restriction tree Tλ such that C ′λ becomes a depth-
(d− 1) circuit with at most cn wires at all the leaves of Tλ. We first restrict by setting all
variables that feed into any of the t-balanced gates. The number of variables set in this way
is at most

µ
√
q
≤ 4p√q · n1+εd ≤ (pn) · (4√qnεd) ≤ pn

8 ≤
n2

2

for a large enough choice of the constant B. This leaves n3 ≥ n2
2 variables still alive.

Further, all the large t-balanced gates are set to constants with probability 1. Finally, by
Proposition 4.3, we may set all but a set S of n4 = n3/2cnδd variables to ensure that with
probability 1, all the small gates depend on at most one input variable each. At this point,
the circuit C ′λ may be transformed to a depth-(d− 1) circuit C ′′λ with at most as many wires
as C ′λ, which is at most cn.

Note that the number of unset variables is n4 ≥ pn/8cnδd ≥ n1−2δd , for large enough B.

Hence, the number of wires is at most cn ≤ n
1+εd
1−2δd
4 ≤ n(1+εd)(1+3δd)

4 ≤ n1+εd−1
4 for suitably

large B. Thus, by the inductive hypothesis, we have

Corr(C ′′λ ,Parn4) ≤ O(n−εd−1
4 ) ≤ n−εd/2

with probability 1 over the choice of the variables restricted in the second step. Along with
(13) and Fact 2.3, this implies (12) and hence the theorem. J

4.1.1 Strong correlation bounds for the generalized Andreev function
We now prove an exponentially strong correlation bound for the generalized Andreev function
defined in Section 2.4 with any γ < 1/6. As in the case of Theorem 4.4, the proof proceeds
by an iterative depth reduction. We prove the depth-reduction in a separate lemma.
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I Definition 4.5 (Simplicity). We call a threshold circuit C (t, d, w)-simple if there is a set R
of r ≤ t threshold functions g1, . . . , gr such that for every setting of these threshold functions
to bits b1, . . . , br, the circuit C can be represented on the corresponding inputs (i.e., inputs
x satisfying gi(x) = bi for each i ∈ [r]) by a depth-d threshold gate of wire complexity at
most w.

In particular, note that a (t, d, w)-simple circuit C may be expressed as

C(x) =
∨

b1,...,br∈{−1,1}

(
Cb1,...,br ∧

∧
i:bi=−1

gi ∧
∧

i:bi=1
(¬gi)

)
(14)

where each Cb1,...,br is a depth d circuit of wire complexity at most w. Further, note that
the OR appearing in the above expression is disjoint (i.e. no two terms in the OR can be
simultaneously true).

I Lemma 4.6. Let d ≥ 1 be any constant and assume that εd, δd are defined as above. Say
we are given any depth d threshold circuit C on n variables with at most n1+εd wires.

There is a restriction tree T of depth n−n1−2δd with the following property: for a random
leaf λ ∼ T , let E(λ) denote the event that the circuit C|ρλ is exp(−nεd)-approximated by an
(nδd , d− 1, n1+εd)-simple circuit. Then, Prλ[¬E(λ)] ≤ exp(−nεd).

Proof. Let φ1, . . . , φm be the threshold gates appearing at height 1 in the circuit C. We
say that φi is large if fan-in(φi) ≥ nδd and small otherwise. Let L = {i | φi large} and
S = [m] \ L. Let ` = |L|. Note that ` ≤ n1+εd−δd ≤ n. Let c = nεd .

As in the inductive case of Theorem 4.4, our construction proceeds in phases.

Phase 1

This is identical to Phase 1 in Theorem 4.4. We thus get a restriction tree of depth n/2 such
that at all leaves of this tree, the resulting circuit is a read-2c circuit with at most cn wires.
Let C1 denote the circuit obtained at some arbitrary leaf of the restriction tree and let n1
denote the number of variables.

Phase 2

This basic idea here is similar to Phase 2 from Theorem 4.4. However, there are technical
differences from Theorem 4.4 since we apply a concentration bound to ensure that the circuit
simplifies with high probability.

We restrict the circuit with a random restriction ρ = (I, y) ∼ Rn1
p , where p = n−δd/2. As

in Theorem 4.4, we have for some t = 1
pΩ(1) , q = pΩ(1), and for each i ∈ [m],

Pr
ρ

[φi|ρ t-balanced] ≤ q (15)

Pr
ρ

[fan-in(φi|ρ) > 2p · fan-in(φi)] ≤ exp(−Ω(nδd/2)) (16)

Pr
ρ=(I,y)

[|I| < n1p

2 ] ≤ exp(−Ω(np)) (17)

Now, we partition L as L = L1 ∪ · · · ∪ La, where a ≤ 1
εd
, as follows. The set Lj indexes

all threshold gates of fan-in at least nδd+(j−1)εd and less than nδd+jεd . We let `j denote |Lj |.
For each i ∈ L, let Yi be a random variable that is 1 if φi|ρ is t-balanced and 0 otherwise.
Note that this defines a collection of read-2c Boolean random variables (the underlying
independent random variables are ρ(k) for each k ∈ [n1]).
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Let Zj =
∑
i∈Lj Yi, the number of t-balanced gates in Lj . We have E[Zj ] =

∑
i∈Lj E[Yi] ≤

q`j by (15). Thus, by an application of the read-2c Chernoff bound in Theorem 2.24, we have

Pr[Zj ≥ 2q`j ] ≤ exp{−Ω(q`j/c)}.

Assuming that `j ≥ n3δd/4 and B = δd/εd is a large enough constant, the right hand
side of the above inequality is upper bounded bounded by exp{−2nεd}. On the other
hand if `j < n3δd/4, then Zj < n3δd/4 with probability 1. Hence, we have Prρ=(I,y)[Zj ≥
max{2q`j , n3δd/4}] ≤ exp{−2nεd} and by a union bound

Pr
ρ=(I,y)

[∃j ∈ [a], Zj ≥ max{2q`j , n3δd/4}] ≤ a exp{−2nεd} . (18)

We call a set I generic if |I| ≥ n1p
2 and fan-in(φi|ρ) ≤ 2p · fan-in(φi) for each i ∈ L.

Let G denote the event that I is generic. By (16) and (17), we know that PrI [¬G] ≤
` exp(−Ω(nδd/2)) + exp(−Ω(np)) ≤ exp(−nδd/4). In particular, similar to Theorem 4.4, we
get,

Pr
ρ=(I,y)

[∃j ∈ [a], Zj ≥ max{2q`j , n3δd/4} | G] ≤ a exp{−2nεd}+exp(−nδd/4) ≤ 2a exp{−2nεd}.

(19)

We fix any generic I such that

Pr
y

[∃j ∈ [a], Zj ≥ max{2q`j , n3δd/4}] ≤ 2a exp{−2nεd}. (20)

Consider the restriction tree T that sets all the variables not in I. The tree leaves
n2 ≥ pn1/2 = pn/4 variables unfixed. We call a leaf λ of the tree good if for each j ∈ [a] we
have Zj < max{2q`j , n3δd/4} and bad otherwise. We have

Pr
λ∼T

[λ a bad leaf] ≤ 2a exp(−2nεd) (21)

For good leaves λ, we show how to approximate Cλ := C1|ρλ as claimed in the lemma
statement.

For the remainder of the argument, fix any good leaf λ. We partition [a] = J1 ∪ J2 where
J1 = {j ∈ [a] | Zj < 2q`j}. Note that for any j ∈ J1, we have∑

i∈Lj

Yi · fan-in(φi|ρλ) ≤
∑
i∈Lj

Yi · 2p · fan-in(φi)

≤ 2p · nδd+j·εd · Zj ≤ nδd+j·εd · 4pq`j
= 4pqnεd · `j · nδd+(j−1)·εd ≤ 4pqnεdn1+εd

= 4pqn1+2εd

where for the last inequality, we have used the fact that since we have `j gates of fan-in at
least nδd+(j−1)εd each, we must have `j · nδd+(j−1)εd ≤ n1+εd , the total wire complexity of
the circuit.

In particular, we can bound the total fan-in of all the t-balanced gates indexed by
⋃
j∈J1

Lj
by ∑

j∈J1

∑
i∈Lj

Yi · fan-in(φi|ρλ) ≤ 4pqn1+2εd

εd
. (22)
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Phase 3

We proceed in two steps as in Theorem 4.4. Since the steps are very similar, we just sketch the
arguments. In the first step, we replace all large t-imbalanced gates by their most probable
values. This yields a circuit C ′λ of at most the wire complexity of Cλ and such that

Pr
x

[Cλ(x) 6= C ′λ(x)] ≤ ` exp(−nΩ(δd)) ≤ n exp(−nΩ(δd)) ≤ exp(−nεd). (23)

In the second step, we construct another restriction tree rooted at λ that simplifies the
circuit to the required form. We first restrict by setting all variables that feed into the
t-balanced gates that are indexed by

⋃
j∈J1

Lj . By (22), the number of variables set is
bounded by

4pqn1+2εd

εd
≤ 4pn · nεd−Ω(δd)

εd
≤ pn

8 ≤
n2

2

for a large enough choice of the constant B. This sets all the t-balanced gates indexed by⋃
j∈J1

Lj to constants while leaving n3 ≥ n2
2 variables still alive. Finally, by Proposition 4.3,

we may set all but a set of n4 = n3/2cnδd variables to ensure that with probability 1, all the
small gates depend on at most one input variable each. We may replace the small gates by
the unique variable they depend on or a constant (if they do not depend on any variable)
without increasing the wire complexity of the circuit. Call the circuit thus obtained C ′′λ .

At this point, the only threshold gates at height 1 in the circuit C ′′λ are the gates indexed
by the t-balanced gates in

⋃
j∈J2

Lj . But by the definition of J2, there can be at most
1
εd
· n3δd/4 ≤ nδd of them. For every setting of these threshold gates to constants, the circuit

becomes a depth-(d− 1) circuit of size at most n1+εd . Hence, we have a (nδd , d− 1, n1+εd)-
simple circuit, as claimed.

Note that the number of variables still surviving is given by n4 ≥ pn/8cnδd ≥ n1−2δd , for
a large enough choice of the parameter B. Hence, the restriction tree constructed satisfies
the required depth constraints.

For a random leaf ν ∼ T , the probability E(ν) does not occur is at most the probability that
in Phase 2, the leaf sampled is bad. By (21), this is bounded by 2a exp(−2nεd) ≤ exp(−nεd)
as claimed. J

We now prove the correlation bound for threshold circuits with the generalized Andreev
function. For the sake of induction, it helps to prove a statement that is stronger in two ways:
firstly, we consider any function Fa = F (a, ·) where a ∈ {−1, 1}4n has high Kolmogorov
complexity and the input to Fa is further restricted by an arbitrary restriction ρ that leaves
a certain number of variables alive; secondly, we prove a correlation bound against circuits
which are the AND of a small threshold circuit with a small number of threshold gates.

Formally, say that f : {−1, 1}n → {−1, 1} is (N, d, t, α)-intractable if for any restriction
ρ on n variables that leaves m ≥ N variables unset, any depth-d threshold circuit C on m
variables of wire complexity at most m1+εd , and any set S of at most t threshold functions,
we have

Corr(f, C ∧
∧
g∈S

g) ≤ α.

The stronger correlation bound is the following.
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I Theorem 4.7 (Generalized version of strong correlation). Fix any constant d ≥ 1. Let a ∈
{−1, 1}4n be any string with K(a) ≥ 3n. Then, the function Fa is (n1−εd , d, nεd , exp(−nεd/2))-
intractable.

The proof is by induction on d. The properties of Fa are only used to prove the base case
of the theorem, which can then be used to prove the induction case using Lemma 4.6. We
prove the base case separately below (we assume that the constant B > 0 is large enough so
that this implies the base case of the theorem stated above).

I Lemma 4.8 (Base case of induction). Let a ∈ {−1, 1}4n be any string with K(a) ≥ 3n.
Then, the function Fa is (

√
n, 1,
√
n, exp(−nΩ(1)))-intractable.

Proof. Let γ < 1/6 in the definition of the Generalized Andreev function in Section 2.4. Let
τ be any restriction of n variables leaving m ≥

√
n variables unfixed. Define f := Fa|τ . Let

C be a conjunction of
√
n+ 1 threshold gates each on m variables. We wish to prove that

Corr(f, C) ≤ exp(−nΩ(γ)).

We build a restriction tree T for C of depth m− nγ , by restricting all but nγ arbitrarily
chosen variables. For any leaf ` of T , the restricted circuit C` := C|ρ` is a conjunction of√
n+ 1 threshold gates each on nγ variables. By Lemma 2.9, each threshold function can be

described using n2γ bits. Hence, the entire circuit can be described in a standard way using
(
√
n + 1) · O(n2γ) < n bits. Then, by Lemma 2.20, we have Corr(f |ρ` , C`) ≤ exp(−nΩ(γ)).

By Fact 2.3, we then obtain Corr(f, C) ≤ exp(n−Ω(γ)). J

Proof of Theorem 4.7. We only need to prove the inductive case. Assume that d ≥ 2 is
given. Fix any restriction ρ that sets all but m ≥ n1−εd variables and let f = Fa|ρ. Let C
be a depth-d threshold circuit on the surviving variables of wire complexity at most m1+εd .
Let S be any set of at most nεd threshold functions on the m variables. We need to show
that Corr(f, C ∧

∧
g∈S g) ≤ exp(−nεd/2).

Apply Lemma 4.6 to circuit C to find a restriction tree T as guaranteed by the statement
of the lemma. By Fact 2.3, we have

Corr(f, C ∧
∧
g∈S

g) ≤ E
`∼T

[Corr(f`, C` ∧
∧
g∈S

g`)]

≤ Pr
`

[¬E(`)] + max
`:E(`) holds

Corr(f`, C` ∧
∧
g∈S

g`) (24)

where f` denotes f |ρ` and similarly for C` and g`, and E(`) is the event defined in the
statement of Lemma 4.6.

Fix any leaf ` so that E(`) holds. We want to bound Corr(f`, C` ∧
∧
g∈S g`). By definition

of E(`), we know that C` is exp(−mεd)-approximated by a (mδd , d− 1,m1+εd)-simple circuit
C ′`. This implies that C` ∧

∧
g∈S g` is exp(−mεd)-approximated by C ′` ∧

∧
g∈S g`. Hence, we

have

Corr(f`, C` ∧
∧
g∈S

g`) ≤ Corr(f`, C ′` ∧
∧
g∈S

g`) + exp(−mεd). (25)

Further, by the definition of simplicity and its consequence (14), we know that there exist
r ≤ mδd threshold functions h`1, . . . , h`r such that

C ′` =
∨

b1,...,br∈{−1,1}

Cb1,...,br ∧
∧

i:bi=−1
h`i ∧

∧
i:bi=1

¬h`i
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where each Cb1,...,br is a depth d − 1-threshold circuit of size at most m1+εd and the OR
above is disjoint. This further implies that

C ′` ∧
∧
g∈S

g` =
∨

b1,...,br∈{−1,1}

Cb1,...,br ∧ ∧
i:bi=−1

h`i ∧
∧

i:bi=1
¬h`i ∧

∧
g∈S

g`

 (26)

and the OR remains disjoint.
Note that we may apply the induction hypothesis to obtain a bound on the correlation

with each term in the OR at this point, since the number of surviving variables is at least
m1 = m1−2δd ≥ n1−εd−2δd ≥ n1−εd−1 (throughout, we assume that B is a large enough
constant for many of the inequalities to hold); and the wire complexity of each depth-(d− 1)
circuit Cb1,...,br is at most m1+εd ≤ m

(1+εd)/(1−2δd)
1 ≤ m1+εd+3δd

1 ≤ m
1+εd−1
1 ; further, the

number of threshold functions in each term is at most nεd + nδd < mεd−1 . Thus, by the
inductive hypothesis, we obtain for any b1, . . . , br,

Corr(f, Cb1,...,br ∧
∧

i:bi=−1
h`i ∧

∧
i:bi=1

¬h`i ∧
∧
g∈S

g`) ≤ exp(−nεd−1/2).

Using the fact that the OR in (26) is disjoint, from Fact 2.3, we obtain

Corr(f, C ′` ∧
∧
g∈S

g`) ≤ 2r · exp(−nεd−1/2) ≤ 2n
δd · exp(−nεd−1/2) ≤ exp(−nεd).

Putting the above together with (24) and (25), we obtain

Corr(f, C ∧
∧
g∈S

g) ≤ exp(−mεd) + exp(−nεd) ≤ exp(−nεd/2).

which proves the induction case and hence the theorem. J

I Corollary 4.9 (Correlation bounds for Andreev’s function). For any d ≥ 1, any depth-d
threshold circuit C of wire complexity at most n1+εd satisfies Corr(C,F ) ≤ 2 exp(−nεd/2).

Proof. For a random a ∈ {−1, 1}4n, we know by Fact 2.14 that K(a) ≥ 3n with probability
1 − exp(−Ω(n)). For each such a, by Theorem 4.7, we have Corr(Ca, Fa) ≤ exp(−nεd/2),
where Ca is the circuit obtained by substituting x1 = a in C. Hence, we have

Corr(C,F ) ≤ E
a

[Corr(Ca, Fa)] ≤ exp(−Ω(n)) + exp(−nεd/2) ≤ 2 exp(−nεd/2)

as claimed. J

4.2 Proof of Main Structural Lemma
We need the following definitions and facts that have appeared many times before in the
literature on threshold functions (see, e.g., [9]).

Let ε ∈ [0, 1] be a real parameter. We say that w ∈ Rn is ε-regular if for each i ∈ [n],
|wi| ≤ ε · ‖w‖2.

Assume for simplicity that the co-ordinates of the vector w are sorted so that |w1| ≥
|w2| ≥ · · · ≥ |wn|. Let w>i ∈ Rn−i denote the vector obtained by removing the first i
co-ordinates of w. We define the ε-critical index of w be the least K = K(ε) so that the
vector w>K is ε-regular. Note that K = 0 if w is already ε-regular and we define K = n if
the ε-critical index is not defined.
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We say that an n-variable threshold gate φ labelled by (w, θ) is ε-regular if w is. Similarly,
the ε-critical index of φ is defined to be the ε-critical index of w.

Also, we define L = L(ε) = 100 log2(1/ε)
ε3 for a large constant A that will be made precise

later.
The Berry Esseen theorem (see, e.g., [12]) yields the following standard anticoncentration

lemma for linear functions. (See [9, Corollary 2.2] for this particular statement.)

I Lemma 4.10 (Anticoncentration for regular linear functions). Let w ∈ Rn be ε-regular and
let J ⊆ R be any interval. Then,∣∣∣∣ Pr

x∈{−1,1}n
[〈w, x〉 ∈ J ]− Φ(J)

∣∣∣∣ ≤ O(ε)

where Φ(·) denotes the cdf of the standard Gaussian with mean 0 and variance ‖w‖22. In
particular, if |J | denotes the length of J , then

Pr
x

[〈w, x〉 ∈ J ] ≤ |J |
‖w‖2

+O(ε).

We now proceed with the proof of Lemma 4.1. We start with an easier case of the lemma
for regular threshold gates. Throughout, we work with random restrictions sampled from
Rnp where p ∈ [0, 1] is the probability from the statement of Lemma 4.1: equivalently, we
pick a pair (I, y) where I ⊆ [n] and y ∈ {−1, 1}n−|I|. Let ε = p

1
8 . Let t = p−

1
16 .

Let the threshold gate φ be labelled by pair (w, θ), where w ∈ Rn. We may assume that
the variables of the threshold gate have been sorted so that |w1| ≥ |w2| ≥ · · · |wn|. Note that
after applying a restriction ρ, the threshold gate φρ is labelled by pair (w′, θ′), where w′ is
the restriction of w to the coordinates in I and

θ′ = θ′(ρ) = θ − 〈w′′, y〉. (27)

Above, we use w′′ to denote the vector w restricted to the indices in [n] \ I.
For a random restriction ρ ∼ Rnp , define the following “bad” events:

1. B(ρ): φρ is t-balanced: i.e., θ′ ≤ t · ‖w′‖2. This is the event whose probability we want to
upper bound.

2. B1(ρ):
∑
i∈I w

2
i ≥
√
p · ‖w‖22.

3. Bk2 (ρ) (k a parameter): One of the first k variables x1, . . . , xk is set to ∗ by ρ.

We have the following simple upper bounds on the probabilities of some of the above bad
events:

Since each variable is set to ∗ with probability p, we have Eρ[
∑
i∈I w

2
i ] = p · ‖w‖22. By

Markov’s inequality, we have Prρ[B1(ρ)] ≤ √p.
By a union bound, for any k, we have Prρ[Bk2 (ρ)] ≤ pk.

We start with a simpler subcase of the lemma that follows almost directly from Lemma 4.10.
We assume throughout that p is a small enough constant, since otherwise the statement of
Lemma 4.1 is trivial.

I Lemma 4.11 (The regular case). Say that w is ε-regular. Then Prρ[B(ρ)] ≤ pΩ(1).

Proof. We bound Prρ[B(ρ)] as follows.

Pr
ρ

[B(ρ)] ≤ Pr
ρ

[B1(ρ)] + Pr
ρ

[B(ρ) | ¬(B1(ρ))]

≤ √p+ Pr
ρ

[B(ρ) | ¬(B1(ρ))]. (28)
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Now, note that the event ¬B1(ρ) only depends on the choice of ρ−1(∗) = I. Hence we
can condition on an I so that this event occurs; choosing ρ is now equivalent to choosing a
random assignment y to the variables in [n] \ I.

We have θ′ = θ − 〈w′′, y〉. Using the fact that B1(ρ) doesn’t occur, we have
‖w′′‖2 ≥ ‖w‖2

√
1−√p ≥ ‖w‖2/2. Using the ε-regularity of w, for each i 6∈ I, we have

|wi| ≤ (ε)‖w‖2 ≤ 2ε‖w′′‖2. Thus, w′′ is 2ε-regular.
‖w′‖2 ≤ p1/4‖w‖2 ≤ 2p1/4‖w′′‖2,

Using the above, we can see that the probability that

Pr
ρ

[B(ρ) | ¬B1(ρ)] ≤ Pr
y

[|θ′| ≤ t · ‖w′‖2] ≤ Pr
y

[|θ′| ≤ 2tp1/4 · ‖w′′‖2]

≤ Pr
y

[〈w′′, y〉 ∈ [θ − 2tp1/4 · ‖w′′‖2, θ + 2tp1/4 · ‖w′′‖2]]

≤ 4tp1/4 +O(ε) = O(ε) = pΩ(1)

where the final inequality uses the anti-concentration bound in Lemma 4.10. Putting the
above together with (28), we are done. J

Proof of Lemma 4.1. The proof of the lemma is a standard case analysis based on the
ε-critical index of the threshold gate φ (see [43, 33, 9, 28]).

The first case is when the critical index K ≤ L. In this case, we bound the probability of
B(ρ) by

Pr
ρ

[B(ρ)] ≤ Pr
ρ

[BK2 (ρ)] + Pr
ρ

[B(ρ) | ¬BK2 (ρ)]

≤ pK + Pr
ρ

[B(ρ) | ¬BK2 (ρ)] ≤ √p+ Pr
ρ

[B(ρ) | ¬BK2 (ρ)] (29)

where the final inequality follows from the fact that pK ≤ pL ≤ √p by our choice of
parameters. The event ¬B2(ρ) only depends on the choice of the sub-restriction ρ|[K] and
we can condition on ρ|[K] so that this event occurs. From now on, the random choice will be
a restriction ρ′ ∼ Rn−Kp on the remaining variables.

Since the restricted linear function is now ε-regular by the definition of the ε-critical
index, we can apply Lemma 4.11 to conclude that Prρ′ [B(ρ) | ¬BK2 (ρ)] ≤ pΩ(1). Along with
(27), this implies the lemma in the case that K ≤ L.

The second case is when K > L. As in previous cases, we first condition on some bad
event not occurring. We have

Pr
ρ

[B(ρ)] ≤ Pr
ρ

[BL2 (ρ)] + Pr
ρ

[B(ρ) | ¬BL2 (ρ)]

≤ pL+ Pr
ρ

[B(ρ) | ¬BL2 (ρ)] ≤ √p+ Pr
ρ

[B(ρ) | ¬BL2 (ρ)]. (30)

As in Lemma 4.11, we can condition on a fixed I so that ¬BL2 (ρ) occurs (i.e. none of the
first L variables belong to I). We then use the following claim that is implicit in [9].

I Proposition 4.12. Let L′ = 10r log(1/ε)
ε2 and assume that K > L′. Let y be a random

assignment to any set of variables including the first L′ = 10r log(1/ε)
ε variables. Then, the

probability over y that the restricted threshold gate is not ( 1
ε )-imbalanced is at most 2−r.

Applying the above proposition with L′ = L and r = 10 log(1/ε), we have Prρ[B(ρ) | ¬BL2 (ρ)] ≤
ε10. Putting this together with (30), we have the claimed upper bound on Prρ[B(ρ)] in the
case that K > L. J

We give a proof sketch of Proposition 4.12 in Section C.
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5 Satisfiability algorithms beating brute-force search

In this section, we give satisfiability algorithms beating brute force search for bounded-depth
threshold circuits with few wires. Until now, such algorithms were only known for threshold
circuits of depth 2. We will assume that each threshold gate on m input bits is given as
a pair (w, θ), where w ∈ Zm and θ ∈ Z, and θ as well as each component of w has bit
complexity poly(n). Note that this assumption is without loss of generality for a threshold
function, and that some assumption on representability of threshold functions is necessary in
an algorithmic context.

The satisfiability algorithm relies on an algorithmic version of Lemma 4.6, along with
a couple of additional ideas. Essentially, we use the algorithmized version of the lemma
to reduce the satisfiability of bounded-depth circuits to satisfiability of ANDs of threshold
functions, which we can then solve using a recent result of Williams, stated below.

I Theorem 5.1 ([48]). There is a deterministic algorithm, which given a bounded-depth
circuit C on n variables of size 2no(1) with ANDs, ORs and threshold gates, and with
the threshold gates appearing only at the bottom layer, decides if C is satisfiable in time
2n−nε

′

poly(n), where ε′ > 0 is a constant that depends only on the depth of the circuit.

We also need the following fact about threshold gates on n input bits: the set of inputs
evaluating to 1 (and dually, the set of inputs evaluating to -1) of a linear threshold gate can
be enumerated in time proportional to the number of such inputs, modulo a poly(n) factor.

I Proposition 5.2. Let (w, θ) represent a threshold function φ on m input bits, where w ∈ Zm
and θ ∈ Z are integers of bit complexity poly(m). Let S be the set of inputs on which φ
evaluates to 1. Then S can be enumerated in time |S|poly(n).

Proof. We will show how to construct a decision tree for φ in time |S|poly(n), where S is the
set of inputs on which φ takes value 1. Given a decision tree of size at most |S|poly(n), it is
easy to enumerate the set of inputs on which φ takes value 1 in time |S|poly(n) by scanning
through leaves labelled 1 and outputting all assignments corresponding to any such leaf.

The decision tree is constructed recursively as follows. Check if φ restricted according to
the current partial assignment is satisfiable (in the sense that there is a total assignment
consistent with the partial assignment for which φ evaluates to 1). Note that satisfiability of
a linear threshold gate with polynomial bit complexity of the weights can be done trivially
in polynomial time. If the satisfiability check fails, make the current node a leaf and label
it with -1. If it succeeds, check if the current partial assignment is falsifiable. If this check
fails, make the current node a leaf and label it with 1. Otherwise, branch on an arbitrary
unassigned variable and recurse.

Clearly, this decision tree can be constructed with polynomial work at each node, and
hence in time Npoly(n), where N is the number of leaves of the tree. We show that N ≤ |S|n.
Indeed, we prove inductively that for any internal node v of the tree of height h ≥ 1, the
number of -1 leaves of the tree rooted at v is at most h times the number of 1 leaves, from
which the claim follows as the height of the tree ≤ n.

For the inductive claim, the base case h = 1 is clear as any node at height 1 must have
one leaf labelled 1 and the other labelled -1. Assume the claim for height h. Consider a node
v at height h+ 1. Either one of its children is a leaf, or not. If one of the children is a leaf,
then the other one v′ is not and by the induction hypothesis, since it is of height h, has at
most h times as many -1 leaves as 1 leaves. The number of -1 leaves of v is at most one plus
the number of -1 leaves of v′, and hence at most h+ 1 times the number of 1 leaves. In case
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both children of v are internal nodes, then they are both of height at most h, and by the
induction hypothesis, both have at most h times as many -1 leaves as 1 leaves, which implies
that the same holds for v. J

I Definition 5.3. We use THR to refer to the class of linear threshold functions. We use
AND ◦ THR to refer to the class of polynomial-size circuits with an AND gate at the top
and threshold gates at the bottom layer.

I Theorem 5.4. For each integer d > 0, there is a constant εd > 0 such that satisfiability
of a depth d threshold circuit with at most n1+εd wires on n variables can be solved by a
randomized algorithm in time 2n−Ω(nεd )poly(n).

Proof. As the proof follows the proof of Lemma 4.6 closely, we just give a sketch. Call
a circuit depth-d AND ◦ THR-skew if the top gate is an AND and all but one child of
the top gate is a bottom-level threshold gate, with the possibly exceptional child being a
depth-d− 1 threshold circuit with few wires. We follow the depth reduction argument in the
lemma to give a recursive algorithm which reduces satisfiability of polynomial-size depth-d
AND◦THR-skew circuits to the satisfiability of polynomial-size depth-d−1 AND◦THR-skew
circuits by appropriately restricting variables.

For the base case d = 1, we simply appeal to the algorithm given by Theorem 5.1, which
solves satisfiability of AND ◦THR circuits of polynomial size in time 2n−nε

′

poly(n) for some
constant ε′ > 0.

For the inductive case, we simulate the proof of Lemma 4.6, which performs and analyzes
a certain kind of adaptive random restriction. Various bad events might happen at Phases 2
and 3 of this random restriction process, however each step of the restriction process as well
as the check that a bad event happens can be implemented in polynomial time. Moreover,
the probability that a bad event happens is at most 2−nεd . Whenever a bad event happens,
we simply do brute force search on the remaining variables of the circuit, but thanks to the
exponentially small probability that a bad event happens, with high probability, we only
spend time 2n−nεd on such brute force searches.

In Phase 3 of the restriction process, we replace imbalanced gates by their most probable
values. This changes the functionality of the circuit and might lose us satisfying assignments
or give us new invalid satisfying assignments. To get around this, for each such imbalanced
gate, we use Proposition 5.2 to efficiently enumerate the inputs evaluating to the minority
value for each imbalanced gate, and for each such input check whether it satisfies the original
circuit. If it does, we just output ‘yes’. We also append to the top gate of the skew circuit a
child representing the assignment of the imbalanced gate to its majority value – this needs
to be done so that we don’t end up with “false positives” in the base case of the recursive
algorithm. Although each such false positive can be tested, there might be too many of
them, and this could destroy all the savings we accrue through the course of the algorithm.
The total time spent in enumerating minority values of imbalanced gates is again at most
2n−nεdpoly(n), with high probability, using the efficient enumeration and the imbalance
property.

Finally, there are a few balanced gates – with high probability at most O(nδd) of them –
for which we need to try all possible values. This could be expensive, but is compensated for
by an increased savings for depth d− 1, just by setting the constant B large enough in the
proof of Lemma 4.6. We also need to set B large enough so that the savings given by the
application of Williams’ algorithm in the base case overwhelms the loss due to branching on
balanced threshold gates at depth d = 2.
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Thus the total running time, once B is chosen appropriately, is 2n−Ω(nεd )poly(n), using
the fact that εd < εd−1 < . . . < ε2. J

6 Threshold formulas

A threshold formula is a threshold circuit such that the fan-out of each gate is at most 1.
A formula can be viewed as a tree. Note that a depth-2 threshold circuit can always be
converted to a threshold formula without increasing either the wire complexity or the gate
complexity (recall that the gate complexity only measures the number of non-input gates).

Let F : {−1, 1}4n × {−1, 1}n → {−1, 1} be the generalized Andreev function defined in
Section 2.4. Recall that F is constructed with (n, nγ ,m = 0.9nγ , 2−nΩ(γ)) bit fixing extractor
E : {−1, 1}n → {−1, 1}m, and (1/2−O(2−m/4), 2m/2) list decodable code Enc: {−1, 1}4n →
{−1, 1}2m .

I Theorem 6.1. Any threshold formula on n variables with at most n1.5−γ wires for has
correlation at most exp(−nΩ(γ)) with the generalized Andreev function.

Proof. Let C be a threshold formula with n inputs and s = n1.5−γ wires. Let L be the
number of leaves in the formula tree; then L ≤ s ≤ 2L. We build a restriction tree T for
C up to depth n − pn for p = nγ/2/n, by greedily restricting the most frequent variables
appearing in the formula. Since the most frequent variable appears at least L/n times
in C, after restricting one variable, the formula tree has at most L(1 − 1/n) leaves left.
Continue until pn variables left unrestricted; then the number of remaining leaves is at
most L · n−1

n · n−2
n−1 · · · · ·

pn
pn+1 = pL. Thus, for any leaf l of T , the restricted formula

C|ρl (on pn = nγ/2 variables) has s(C|ρl) ≤ 2pL ≤ 2ps wires, and by Proposition 2.16,
the description length is at most O(p2s2) ≤ O(n1−γ) < n. Let a ∈ {−1, 1}4n be a string
with Kolmogorov complexity K(a) ≥ 3n, and let Fa(x) := F (a, x). Then, by Lemma 2.20,
Corr(Fa, C) ≤ exp(−nΩ(γ)).

Therefore, for any formula D with 5n inputs and n1.5−γ wires, Prx[F (a, x) = D(a, x)] ≤
1/2+exp(−nΩ(γ)). Since a random a ∈ {−1, 1}4n has K(a) ≥ 3n with probability 1−2−Ω(n),
the correlation of D and F is at most 2−Ω(n) + exp(−nΩ(γ)) = exp(−nΩ(γ)). J

7 Correlation bounds for AC0 with a few threshold gates

Following Gopalan and Servedio [15], we define TAC0[k] to be the class of constant-depth
circuits made up of AND and OR gates and at most k arbitrary threshold gates.

We prove upper bounds on the noise sensitivity of small depth-d TAC0[k] circuits for k
much smaller than n1/2(d−1). The basic idea is the same as in Theorem 3.1, but we also need
to use the following powerful result of Kane [23, Corollary 3].

IDefinition 7.1 (Polynomial Threshold functions). A Boolean function f : {−1, 1}n → {−1, 1}
is a degree-D Polynomial Threshold function if there is a degree-D polynomial p(x) such
that f(x) = sgn(p(x)) for all x ∈ {−1, 1}n.

I Lemma 7.2 (Kane [23]). Let f be a degree-D PTF. Then, for any p > 0,

NSp(f) ≤ √p(log(1/p))O(D logD)2O(D2 logD).

The main theorem of the section is the following.
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I Theorem 7.3. Fix any constant d ≥ 1. Let C be a depth-d TAC0[k] circuit with at most
M gates overall. Then, for any p, q ∈ [0, 1] and any D ≥ 1, we have

NSpd−1q(C) ≤ O(kα(p,D) + α(q,D) +M(10pD)D)

where α(p,D) := √p(log(1/p))O(D logD)2O(D2 logD) and O(·) hides an absolute constant
(independent of d).

Proof. This is a standard switching argument (see, e.g., [19]) augmented with the ideas of
Theorem 3.1. We assume throughout that q ≤ 1

2 w.l.o.g. since otherwise α(q,D) ≥ q ≥ 1
2

and the claim is trivial.
We say that a threshold gate is a true threshold gate if it is not an AND or OR gate.
For any parameters k1, d1, t1, s1 ∈ N with d1 ≥ 2, we define TAC0[k1, d1, t1, s1] to be the

class of constant-depth circuits made up of AND,OR and threshold gates such that:
The overall depth is at most d1,
The total number of gates at depth at most d1 − 2 in the circuit is at most s1,
All the true threshold gates are at depth at most d1− 2 and there are at most k1 of them,
and
The bottom fan-in of the circuit (i.e. the maximum fan-in of a gate at depth d1 − 1) is at
most t1.

Note that the circuit C in the statement of the theorem is in the class TAC0[k, d+1, 1,M ],
since we may replace the input literals with (say) AND gates of fan-in 1 at the expense of
increasing the depth by 1 but in the process satisfying all the criteria of the above definition.
We prove the following stronger statement: for any p, q,D as in the statement of the theorem,
and any C from the class TAC0[k, d,D,M ] with d ≥ 2, we have

NSpd−2q(C) = E
ρd

[Var(C|ρd)] ≤ O(kα(p,D) + α(q,D) +M(10pD)D) (31)

where ρd ∼ Rnpd and pd := 2pd−2q ∈ [0, 1]. Proving (31) will clearly prove the theorem.
The proof is by induction on d. The base case is d = 2. In this case, since there are no

true threshold gates at depth d− 1 by assumption, a true threshold gate can only occur as
the output gate of the circuit C. Since AND and OR gates are also threshold gates, we can
assume that the output gate is a threshold gate. The bottom fan-in being at most D implies
that each gate at depth 1 can be represented exactly as a polynomial of degree at most
D and therefore that the function computed by C is a degree-D PTF. Hence, Lemma 7.2
trivially implies the result.

Now assume d > 2. Let ψ1, . . . , ψs denote the AND and OR gates at depth exactly d− 2
in the circuit and let φ1, . . . , φm denote the true threshold gates. By assumption m ≤ k and
s ≤M . We sample a random restriction ρ ∼ Rnp and consider the restricted circuit C|ρ.

Håstad’s switching lemma [19] tells us that for each i ∈ [s], we have

Pr
ρ

[DT-depth(ψi|ρ) ≥ D] ≤ (10pD)D, (32)

and hence by a union bound,

Pr
ρ

[∃i ∈ [s] : DT-depth(ψi|ρ) ≥ D] ≤ s(10pD)D. (33)

Also, as in the base case, we see that each φj computes a degree-D PTF. Hence, Lemma 7.2
gives us

E
ρ

[
∑
j∈[m]

Var(φj |ρ)] ≤ mα(p,D). (34)
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Consider the circuit C ′ρ obtained from C|ρ as follows: if there is an i ∈ [s] such that
DT-depth(ψi|ρ) ≥ D, then C ′ρ is defined to be a trivial circuit that always outputs 1;
otherwise, C ′ρ is the depth-d− 1 circuit obtained from C|ρ as follows:

We replace each φj |ρ by a bit bj,ρ ∈ {−1, 1} so that by Fact 2.6, we have

Pr
x∈{−1,1}|ρ−1(∗)|

[φj(x) 6= bj,ρ] ≤ O(Var(φj)),

Since each ψi|ρ is a depth-D decision tree, we can write it as a D-DNF or D-CNF or as
a disjoint sum of terms of size at most D each. For each gate χ at depth at most d− 3
that takes ψi as an input, we do the following:

If χ is an OR gate, then we take the D-DNF representing ψi|ρ and feed the terms of
the DNF directly into χ, eliminating the output OR gate of the D-DNF.
If χ is an AND gate, we do the same as above, except that we use the D-CNF
representation of ψi|ρ and eliminate the output AND gate.
If χ is a threshold gate, then we write ψi|ρ as a disjoint sum of terms of size at most
D each and feed each of the terms directly to χ. The gate χ now has many inputs
in the place of ψi|ρ, and the weight given to each of these inputs is the same as the
weight given to ψi|ρ.

Note that the above operations do not increase the number of gates at depth at most
d− 3 in the circuit.

Note that C ′ρ has depth d − 1 and bottom fan-in at most D. Further, the number of
gates at depth at most d− 3 in C ′ρ is at most M − s. Hence, C ′ρ is a circuit from the class
TAC0[k −m, d− 1, D,M ]. We can thus apply the induction hypothesis and obtain

E
ρd−1

[Var(C ′ρ|ρd−1)] ≤ O((k −m)α(p,D) + α(q,D) + (M − s)(10pD)D). (35)

To obtain (31), we use

E
ρd

[Var(C)] = E
ρd−1

[E
ρ

[Var(C|ρ)|ρd−1 ]] ≤ E
ρd−1

[E
ρ

[Var(C ′ρ)|ρd−1 ]] +O

(
E
ρ

[δ(C|ρ, C ′ρ)]
)

= E
ρ

[ E
ρd−1

[Var(C ′ρ)|ρd−1 ]] +O

(
E
ρ

[δ(C|ρ, C ′ρ)]
)

(36)

where the inequality follows from Proposition 3.2. Inequality (35) allows us to bound the
first term on the right hand size.

It remains to analyze the last term on the right hand side of (36). Define a Boolean
random variable Z = Z(ρ) which is 1 iff there is an i ∈ [s] such that φi is not a depth-D
decision tree. Let ∆ = ∆(ρ) be the random variable defined by ∆ := Z +

∑
j∈[m] Var(φj |ρ).

It easily follows from the definition of C ′ρ that for any choice of ρ, either Z = 1 – in
which case we can trivially bound δ(C ′ρ, C|ρ) by 1 – or δ(C ′ρ, C|ρ) ≤

∑
j δ(φj |ρ, bj,ρ) =∑

j Prx[φj |ρ(x) 6= bj,ρ]. Hence, for any choice of ρ, we get

δ(C ′ρ, C|ρ) ≤ Z +
∑
j∈[m]

Pr
x∈{−1,1}|ρ−1(∗)|

[φj |ρ(x) 6= bj,ρ] ≤ O(∆).

Further, by (33) and (34), we have Eρ[∆] ≤ O(mα(p,D) + s(10pD)D). Putting this
together with (35) and (36)4 gives the claimed bound. This completes the induction. J

4 Of course, we need to be judicious in our choice of constants in the O(·). We leave this matter to the
interested reader.
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This yields the following correlation bound as in Corollary 3.3.

I Corollary 7.4. The following is true for any constant d ≥ 2. Say C is a depth-d TAC0[k]
circuit with at most M gates where k ≤ δ · n1/2(d−1) and M = no(

√
logn/ log logn). Then

Corr(C,Parn) ≤ no(1) · δ1− 1
d . In particular, if δ = n−Ω(1), then Corr(C,Parn) = n−Ω(1).

Proof. We choose a D = o(
√

logn/ log logn) so that M ≤ no(D) and p, q as in Corollary 3.3.
We can then use Theorem 7.3 to obtain NS1/n(C) ≤ no(1) · δ1− 1

d + M · (10pD)D. Since
the latter term is 1

nω(1) , we get NS1/n(C) ≤ no(1)δ1− 1
d . By Proposition 2.5, we have

Corr(C,Parn) ≤ O(NS1/n(C)), which proves the claim. J

I Remark. The above corollary can be strengthened considerably if a widely believed
strengthening of Lemma 7.2 – named the Gotsman-Linial conjecture [16] – is known to
hold. The Gotsman-Linial conjecture is a conjecture about the average sensitivity of low-
degree PTFs. We do not recall the exact statement of the conjecture here, and refer the
reader to the work of Gopalan and Servedio [15] instead. As noted by [15, Corollary1 13],
the Gotsman-Linial conjecture implies that for any p and any degree D PTF, we have
NSp(f) ≤ O(D√p). Plugging in this bound in place of Lemma 45, it is not hard to see that
we can obtain Corr(C,Parn) = o(1) for any circuit C of size 2no(1) from the class TAC0[k]
where k = n1/2(d−1)−Ω(1). This is almost a complete generalization of the result of Beigel [6]
who proved such a result in the setting where all the threshold gates are of polynomial
weight. In contrast, the results of Podolskii [36] and Gopalan and Servedio [15] can prove
such correlation bounds only if k < logn.

7.1 Learning algorithms for TAC0[k] circuits
Theorem 7.3 also allows us to obtain an algorithm to learn small TAC0[k] circuits under
the uniform distribution via an observation of Klivans, O’Donnell, and Servedio [24]. We
have the following lemma that can be obtained by putting together Fact 9 and Corollary 15
in [24].

I Lemma 7.5. Let F be a class of Boolean functions defined on {−1, 1}n. Assume that we
know that for some ε > 0 and f ∈ F , there is a γ > 0 such that NSγ(f) ≤ ε/3. Then, there
is an algorithm that learns F with error ε in time nO(1/γ).

Using the above lemma and Theorem 7.3, we get subexponential-time (i.e. 2o(n)-time)
learning algorithms for TAC0[k] circuits of small size.

I Theorem 7.6. Let d be any fixed constant. The class of TAC0[k] circuits of depth d and
size M where M = no(

√
logn/ log logn) and k = δn1/2(d−1) for some δ > 0 can be learned

to within error ε > 0 in time nO(m) where m = max{n1+o(1)δ2(d−1)/ε2d, n1/4+o(1)/ε2}. In
particular, if δ = n−Ω(1) and ε = Ω(1), then the running time of the algorithm is 2o(n).

Proof. We can assume that ε ≥ 1/n1/2d since otherwise, we can just run a brute force
algorithm that takes time 2O(n). We choose a D = o(

√
logn/ log logn) so that M = no(D).

Theorem 7.3 tells us that for any p, q ≥ 1
n any C from the class of circuits described in the

theorem statement, we have

NSpd−1q(C) ≤ Ak√p+B
√
q +O(M(10pD)D)

where A and B are no(1).
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We choose p, q so that the first two terms above are each bounded by ε/10. This requires
p ≤ ε2/O(k2A) and q ≤ ε2/O(B). Further, to ensure that the last term is at most ε/10, it
suffices to choose p ≤ n−Ω(1) (in fact, this ensures that the third term is n−ω(1) whereas
ε ≥ n−1/2d by assumption). Thus, we fix p = min{ε2/O(k2A), n−1/4d} and q = ε2/O(B) so
that all the above conditions are satisfied. This gives

NSγ(C) ≤ ε/3

where γ = pd−1q. Hence, by Lemma 7.5, we obtain the statement of the theorem. J

I Remark. Assuming the Gotsman Linial conjecture, the above technique yields subexpo-
nential time constant-error learning algorithms as long as M ≤ 2no(1) and δ = n−Ω(1). To
contrast again with the work of Gopalan and Servedio [15], the results of [15] – even assuming
the Gotsman Linial conjecture – only yield subexponential time learning algorithms in the
setting where k < logn. However, the dependence on the error parameter in [15] is better
than the dependence we obtain here (the running time there has a ε3 in place of the ε2d that
we obtain here).
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A Proof of Proposition 2.5

Proof. For point 1., we know that NSp(f) = Pr(x,y)[f(x) 6= f(y)] where x and y are sampled
as in Definition 2.4. Alternately, we may also think of sampling (x, y) in the following way:
choose ρ = (I, z) ∼ Rn2p and for the locations indexed by I we choose x′, y′ ∈ {−1, 1}|I|
independently and uniformly at random to define strings x and y respectively. Hence, we
have

NSp(f) = Pr
x,y

[f(x) 6= f(y)] = E
ρ

[ Pr
x′,y′

[f |ρ(x′) 6= f |ρ(y′)]] = E
ρ

[ 12Var(f |ρ)].

We now proceed with point 2.. As NSp(f) is a decreasing function of p [32], we may
assume that p = 1

n ≤
1
2 and hence we have NS1/n(f) = 1

2 Eρ∼Rn2/n [Var(f |ρ)]. Note that for
ρ = (I, y) chosen as above, the probability that I 6= ∅ is Ω(1). Hence we have

NS′1/n(f) := 1
2 E
ρ∼Rn2/n

[Var(f |ρ) | I 6= ∅] ≤
NS1/n(f)
PrI [I 6= ∅]

= O(NS1/n(f)).

Further, note that for any m ≥ 1 and any Boolean function g : {−1, 1}m → {−1, 1},
its distance from either the constant function 1 or the constant function −1 is at most
Var(g)/2. Since Parm has correlation 0 with any constant function, using Fact 2.3, we have
Corr(Parm, g) ≤ Var(g)/2.

Using Fact 2.3 again, we get

Corr(Parn, f) ≤ E
ρ∼Rn2/n

[Corr(Parn|ρ, f |ρ) | I 6= ∅] = E
ρ∼Rn2/n

[Corr(Par|I|, f |ρ) | I 6= ∅]

≤ E
ρ∼Rn2/n

[ 12Var(g) | I 6= ∅] = NS′1/n(f) = O(NS1/n(f)). J

B Correlation bounds for depth-2 threshold circuits

In this section, we prove near optimal correlation bounds for depth-2 threshold circuits
computing Parity.

I Theorem B.1 (Main). Fix any constant ε < 1
2 . Let γ = 1

2 − ε. Any depth-2 threshold
circuit on n variables with at most n1+ε wires has correlation at most n−Ω(γ) with the parity
function on n variables.

Note that the above theorem is tight, since by Theorem 3.4, there is a depth-2 circuit with
O(
√
n) gates (and hence O(n3/2) wires) that computes Parity correctly with high probability.

The proof is based on the following two subclaims:

I Theorem B.2 (Aspnes, Beigel, Furst, and Rudich [3]). Any degree-t polynomial threshold
function (PTF) has correlation at most O(t/

√
m) with the parity function on m variables.

We say that a circuit C is δ-approximated by a circuit C ′ if Prx[C(x) 6= C ′(x)] ≤ δ.
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I Claim B.3. Let ε, γ be as in the statement of Theorem B.1 and let α denote γ/3. Say C
denotes a depth-2 threshold circuit of wire complexity n1+ε and let f1, . . . , ft be the LTFs
computed by C at depth-1. Under a random restriction ρ with ∗-probability p = 1

n1−α , with
probability at least 1− n−Ω(γ), the circuit C|ρ is n−Ω(γ)-approximated by a circuit C̃ρ which
is obtained from C by replacing each of the fi|ρs by an O(nα/2−Ω(γ))-junta gi.

Assuming the above two claims, we can finish the proof of Theorem B.1 easily as follows.
Let C be a circuit of wire complexity n1+ε. We apply a random restriction ρ with

∗-probability p = 1
n1−α as in Claim B.3. Call the restriction good if there is a circuit C̃ρ as in

the Claim that n−Ω(γ)-approximates C|ρ and bad otherwise. The probability that we have a
bad restriction is at most n−Ω(γ).

Say ρ is a good restriction. The circuit C̃ρ can be represented by an O(nα/2−Ω(γ))-degree
PTF and hence by Theorem B.2 has correlation at most n−Ω(γ) with parity (on the remaining
nα variables). Moreover, then C|ρ is well-approximated by C̃ρ and hence has correlation at
most n−Ω(γ) + n−Ω(γ) with parity.

Upper bounding the correlation by 1 for bad restrictions, we see that the overall correlation
is at most n−Ω(γ).

We now prove Claim B.3.

Proof of Claim B.3. Let f1, . . . , ft be the LTFs appearing at depth 1 in the circuit. We will
divide the analysis based on the fan-ins of the fis (i.e. the number of variables they depend
on).

We denote by β the quantity 3
4 + ε

2 . It can be checked that we have both

β = 1
2 + ε+ α

2 + Ω(γ) and 1− β = α

2 + Ω(γ). (37)

Consider any fi of fan-in at most nβ . When hit with a random restriction with ∗-
probability n−(1−α), we see that the expected number of variables of fi that survive is at
most nβ−(1−α) = nα−(1−β) = nα/2−Ω(γ) by (37) above. By a Chernoff bound, the probability
that this number exceeds twice its expectation is exponentially small. Union bounding over
all the gates of small fan-in, we see that with probability 1− exp(−nΩ(1)), all the low fan-in
gates depend on at most 2nα/2−Ω(γ) many variables after the restriction. We call this high
probability event E1.

Now, we consider the gates of fan-in at least nβ . W.l.o.g., let f1, . . . , fr be these LTFs.
Since the total number of wires is at most n1+ε, we have r ≤ n1+ε−β = n

1
2−

α
2−Ω(γ) by (37).

By Theorem 2.11, we know that for any fi,

E
ρ

[Var(fi|ρ)] ≤ O(√p) = O( 1
n(1−α)/2 ).

By linearity of expectation, we have

E := E
ρ

[
r∑
i=1

Var(fi|ρ)] ≤ O(r · 1
n(1−α)/2 ) = O(n(1−α)/2−Ω(γ) · 1

n(1−α)/2 ) = O(n−Ω(γ)).

By Markov’s inequality, we see that the probability that
∑r
i=1 Var(fi|ρ) >

√
E is at most√

E = n−Ω(γ). We let E2 denote the event that
∑r
i=1 Var(fi|ρ) ≤

√
E.

Consider the event E = E1 ∧ E2. A union bound tells us that the probability of E is at
least 1− n−Ω(γ). When this event occurs, we construct the circuit C̃ρ from the statement of
the claim as follows.
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When the event E occurs, the LTFs of low arity are already nα/2−Ω(γ)-juntas, so there is
nothing to be done for them.

Now, consider the LTFs of high fan-in, which are f1, . . . , fr. For each fi|ρ (i ∈ [r]), replace
fi by a bit bi ∈ {−1, 1} such that Prx[fi|ρ(x) = bi] ≥ 1

2 . In the circuit C̃ρ, these gates thus
become constants, which are 0-juntas. The circuit C̃ρ now has the required form. We now
analyze the error introduced by this operation.

We know that Prx[fi|ρ(x) 6= bi] ≤ 2Var(fi|ρ) and thus the overall error introduced is at
most 2

∑
i∈[r] Var(fi|ρ) ≤ O(

√
E) = n−Ω(γ) (since E2 is assumed to occur). Thus, the circuit

C̃ρ is an n−Ω(γ)-approximation to C. J

C Proof of Proposition 4.12

Proof of Proposition 4.12. Let J be the set of variables being set and let y ∈ {−1, 1}|J|
denote the random assignment chosen. Let L0 = 1

ε2 · 3 log(1/ε). It can be checked that for
any i < L′ − L0, we have

‖w>(i+L0)‖22 ≤
ε2

9 · ‖w>i‖
2 ≤ w2

i

9 .

Hence, we can choose indices i1 = 1, i2 = 1 +L0, · · · , ir+2 = 1 + (r+ 1)L0 ≤ L′ such that
|wij+1 | ≤

|wij |
3 and ‖wij+1‖22 ≤ ε2

9 · ‖wij‖
2
2. Further, we have

∑
i 6∈J

w2
i ≤ ‖w>L′‖2 ≤ ‖w>ir+2‖2 ≤

ε2

9 · ‖w>ir+1‖22 ≤
ε2

81 · w
2
ir .

We condition on any setting of variables other than yi1 , . . . , yir . This means that the
constant term of the restricted threshold gate θ′ is given by

θ′ = θ′′ −
∑
j∈[r]

wijyij

for some θ′′ ∈ R. The probability that the threshold gate is not 1
ε -imbalanced is at most

Pr
yi1 ,...,yir

[|θ′| ≤ 1
ε2 ·

√∑
i 6∈J

w2
i ]

≤ Pr
yi1 ,...,yir

[|θ′| ≤ 1
9 · |wir |]

= Pr
yi1 ,...,yir

[
∑
j

wijyij ∈ [θ′′ − 1
9 · |wir |, θ

′′ + 1
9 · |wir |]]

Now, as a result of the exponentially decreasing nature of the |wij |, it follows that for
any interval of length at most |wir |/2, there can be at most one choice of yi1 , . . . , yir such
that the

∑
j wijyij lies in that interval. Thus, we have the given bound. J
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Abstract
We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for
any arithmetic circuit C(x1, . . . , xn) of size s and degree d over a field F, and any inputs
a1, . . . , aK ∈ Fn,

the Prover sends the Verifier the values C(a1), . . . , C(aK) ∈ F and a proof of Õ(K · d) length,
and
the Verifier tosses poly(log(dK|F|/ε)) coins and can check the proof in about Õ(K ·(n+d)+s)
time, with probability of error less than ε.

For small degree d, this “Merlin-Arthur” proof system (a.k.a. MA-proof system) runs in nearly-
linear time, and has many applications. For example, we obtain MA-proof systems that run in
cn time (for various c < 2) for the Permanent, #Circuit-SAT for all sublinear-depth circuits,
counting Hamiltonian cycles, and infeasibility of 0-1 linear programs. In general, the value of
any polynomial in Valiant’s class VNP can be certified faster than “exhaustive summation” over
all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-
Merlin Strong ETH posed by Russell Impagliazzo and others.

We also give a three-round (AMA) proof system for quantified Boolean formulas running
in 22n/3+o(n) time, nearly-linear time MA-proof systems for counting orthogonal vectors in a
collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in
nk/2+O(1)-time for counting k-cliques in graphs.

We point to some potential future directions for refuting the Nondeterministic Strong ETH.
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1 Introduction

Suppose you have a circuit of size s that you want to evaluate on k different inputs. In the
worst case, you’d expect and needO(s·k) time to do this yourself. What if you asked a powerful
computer to evaluate the circuit for you? The computer may be extremely fast relative to you,
and send you the k answers almost immediately. But how can you (quickly) check that the
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2:2 Strong ETH Breaks With Merlin and Arthur

computation” questions naturally arise in the study of interactive proofs, and have recently
seen increased attention in the crypto community (see [24, 21, 18, 6, 20, 48, 34] for a sample
of the different models and goals).

For circuits with a certain natural structure1, we show in this paper how a powerful
computer can very efficiently prove in one shot (with extremely low probability of error) that
its answers are indeed the outputs of your circuit. Omitting low-order terms, the proof is
about Õ(s+ k) bits long, and takes about Õ(s+ k) time to verify – roughly proportional to
the size of the circuit and the k inputs. The proof system is simple and has no nasty hidden
constants, low randomness requirements, and many theoretical applications.

1.1 Our Results
Our evaluation result is best phrased in terms of arithmetic circuits over plus and times
gates, evaluated over a finite field. We consider the problem of evaluating such a circuit on
many inputs in batch:

I Definition 1.1. The Multipoint Circuit Evaluation problem: given an arithmetic
circuit C on n variables over a finite field F, and a list of inputs a1, . . . , aK ∈ Fn, output
(C(a1), . . . , C(aK)) ∈ FK .

An important special case of Multipoint Circuit Evaluation is when the arithmetic
circuit is a sum of products of variables (a ΣΠ circuit). This version is called Multivariate
Multipoint Evaluation by Kedlaya and Umans [36]; they give the best known algorithms
for this case, showing how to solve it in about (dn+K)1+o(1)poly(logm) time over Zm, where
d is the degree of each variable and n is the number of variables. The simplest instance of
multipoint evaluation considers circuits that are a sum of products of one variable; this case
is well-known to have very efficient algorithms (see Section 2). However, for more expressive
circuits (such as ΣΠΣ, sums of products of sums), no significant improvements over the
obvious batch evaluation algorithm have been reported.

Our first result is that multipoint evaluation of general arithmetic circuits of low degree
can be “delegated” very efficiently, in a publicly verifiable and non-interactive way:

I Theorem 1.2. For every finite field F and ε > 0, Multipoint Circuit Evaluation for
K points in Fn on a circuits of n inputs, s gates, and degree d has an probabilistic verifier V
where, for every circuit C,

There is a unique proof of (C(a1), . . . , C(aK)) that is Õ(K · d) bits long2, and
The proof can be verified by V with access to C, Õ(1) bits of randomness, and Õ(K ·
max{d, n}+ s) time, such that (C(a1), . . . , C(aK)) is output incorrectly with probability
at most ε.

The proof system is fairly simple to motivate. We want the proof to be a succinct
representation of the circuit C that is both easy to evaluate on all of the K given inputs, and
also easy to verify with randomness. We will set the proof to be a univariate polynomial Q(x)
defined over a sufficiently large extension field of F, of degree about K · d, that “sketches”
the evaluation of the degree-d arithmetic circuit C over all K assignments. The polynomial
Q satisfies two conflicting conditions:

1 In particular, the proof system works for all arithmetic circuits using addition and multiplication over a
finite field, where the resulting polynomial has low degree. A surprising number of functions can be
efficiently implemented in this way.

2 The Õ omits polylog factors in K, |F|, d, s, and 1/ε.
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1. The verifier can use the sketch Q to efficiently produce the truth table of C. In particular,
for some explicitly chosen αi from the extension of F, (Q(α0), Q(α1), . . . , Q(αK)) =
(C(a1), . . . , C(aK)).

2. The verifier can check that Q is a faithful representation of C’s behavior on the list of K
inputs in about K + |C| time, with randomness.

The construction of Q uses a trick originating from the holographic proofs of Babai et al. [9],
in which multivariate expressions are efficiently “expressed” as univariate ones. Both of the
two items utilize fast algorithms for manipulating univariate polynomials. In the parlance
of interactive proofs, Theorem 1.2 gives a Merlin-Arthur proof system for batch evaluation
(Merlin is the prover, Arthur is the verifier, and Merlin communicates first).

Applications to Some Exponential Time Hypotheses

The results of this paper were originally motivated by attempts to refute exponential time
hypotheses of increasing strength. The Exponential Time Hypothesis (ETH) [31] is that
3-SAT requires 2εn time for some ε > 0; ETH has been singularly influential in the area of
exact algorithms for NP-hard problems (see [38] for a survey). A more fine-grained version
of ETH is the Strong Exponential Time Hypothesis (SETH) [29, 15], which further asserts
that k-SAT requires 2n−o(n) time for unbounded k. SETH has also been a powerful driver of
research in the past several years, especially with its connections to the solvability of basic
problems in P (see the recent survey [52]).

Recently, Carmosino et al. [16] proposed the Nondeterministic Strong ETH (NSETH):
refuting unsatisfiable k-CNFs requires nondeterministic 2n−o(n) time for unbounded k. Put
another way, NSETH says there are no proof systems that can refute unsatisfiable k-SAT
instances significantly more efficiently than enumeration of all variable assignments. The
NSETH is quite consistent with known results in proof complexity [42, 11]. Earlier, Carmosino
et al. (private communication) also proposed a Merlin-Arthur and Arthur-Merlin Strong
ETH (MASETH and AMSETH, respectively) which assert that no O(1)-round probabilistic
proof systems can refute unsatisfiable k-CNFs in 2n−Ω(n) time.

Our first application of Theorem 1.2 is a strong refutation of MASETH and AMSETH:

I Theorem 1.3 (MASETH is False). There is a probabilistic verifier V where, for every
Boolean circuit C on n variables of o(n) depth and bounded fan-in,

There is an O?(2n/2)-bit proof that the number of SAT assignments to C is a claimed
value3, and
The proof can checked by V with access to C, using O(n) bits of randomness and O?(2n/2)
time, with probability of error at most 1/poly(n).

That is, one can refute UNSAT circuits of 2o(n) size and o(n) depth significantly faster
than brute force enumeration, using a small amount of randomness in verification. Analogues
of Theorem 1.3 hold for other #P-complete problems: for instance, the Permanent can be
certified in O?(2n/2) time, and the number of Boolean feasible solutions to a linear program
can be certified in O?(23n/4). In fact, if we allow the proof to depend on O(n) coins tossed
prior to sending the proof, one can also solve Quantified Boolean Formulas (QBF) faster:

I Theorem 1.4. QBFs with n variables and m ≤ 2n connectives have a three-round 22n/3 ·
poly(n,m) time interactive proof system using O(n) bits of randomness.

3 The O? notation omits polynomial factors in n.
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A seminal result in interactive computation is that PSPACE = IP; that is, polynomial
space captures interactive proof systems that use poly(n) time and poly(n) rounds [45].
Theorem 1.4 shows how three rounds of interaction can already significantly reduce the
cost of evaluating PSPACE-complete problems. From these results, we see that either
O(n) bits of randomness can make a substantial difference in the proof lengths of n-bit
propositions, or the Nondeterministic SETH is false. In fact, one can isolate a simple
univariate polynomial identity testing problem that is solvable in Õ(n) randomized time and
Õ(n2) time deterministically, but an n1.999-time nondeterministic algorithm would refute
NSETH; see Section 3.2.

Applications to Some Polynomial-Time Problems

In Appendix A, we apply Theorem 1.2 to a group of problems at the basis of a recent theory
of “hardness within P” [52]. A central problem in this theory is Orthogonal Vectors,
which asks if there is an orthogonal pair among n Boolean vectors in d dimensions [54, 43, 57,
13, 3, 4, 10, 2]. The OV conjecture is that this problem cannot be solved in n2−ε · 2o(d), for
every ε > 0. It is known that SETH implies the OV conjecture [54, 57]. The OV conjecture
can also be refuted in the Merlin-Arthur setting, in the following strong sense:

I Theorem 1.5. Let d ≤ n. There is an MA-proof system such that for every A ⊆ {0, 1}d
with |A| = n, the verifier certifies the number of orthogonal pairs in A, running in Õ(n · d)
time with error probability 1/poly(n).

Because several basic problems in P can be subquadratic-time reduced to Orthogonal
Vectors (see the above references and Appendix A), Theorem 1.5 implies subquadratic-time
MA-proof systems for these problems as well. To give another example, we also obtain a
nearly-linear time proof system for verifying Closest Pairs in the Hamming metric:

I Theorem 1.6. Let d ≤ n. There is an MA-proof system such that for every A ⊆ {0, 1}d
with |A| = n, and every given parameter k ∈ {0, 1, . . . , d}, the verifier certifies for all v ∈ A
the number of points w ∈ A with Hamming distance at most k from v, running in Õ(n · d)
time with error probability 1/poly(n).

The best known randomized algorithm for computing Hamming closest pairs (as of last
year) only runs in o(n2) time when d = o(log2 n/ log logn) [5]. Finally, we also give an
efficient proof system for the k-clique problem:

I Theorem 1.7. For every k, there is a MA-proof system such that for every graph G on n
nodes, the verifier certifies the number of k-cliques in G using Õ(nbk/2c+2) time, with error
probability 1/poly(n).

2 Preliminaries

For a vector v ∈ Dd for some domain D, we let v[i] ∈ D denote the ith component of v. We
assume basic familiarity with Computational Complexity, especially the theory of interactive
proofs and Merlin-Arthur games as initiated by Goldwasser-Micali-Rackoff [25] and Babai [8]
(see Arora and Barak [7], Chapter 8). All of the interactive proofs (also known as “protocols”)
of this paper will use public randomness, visible to the Prover (also known as “Merlin”) and
the Verifier (also known as “Arthur”). Along the way, we will recall some particulars of
known results as needed.
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Some Algorithms for Polynomial Computations

We need some classical results in algebraic complexity (see also von zur Gathen and Ger-
hard [53]). Let F be an arbitrary field, and let mult(n) = O(n log2 n) be the time needed to
multiply two degree-n univariate polynomials.

I Theorem 2.1 (Fast Multipoint Evaluation of Univariate Polynomials [19]). Given a polynomial
p(x) ∈ F[X] with deg(p) ≤ n, presented as a vector of coefficients [a0, . . . , adeg(p)], and given
points α1, . . . , αn ∈ F, we can output the vector (p(α1), . . . , p(αn)) ∈ Fn in O(mult(n) · logn)
additions and multiplications in F.

I Theorem 2.2 (Fast Univariate Interpolation [28]). Given a set {(α1, β1), . . . , (αn, βn)} ⊂
F× F with all αi distinct, we can output the coefficients of p(x) ∈ F[X] of degree at most n
satisfying p(αi) = βi for all i, in O(mult(n) · logn) additions and multiplications in F.

2.1 More Related Work
Besides what we have already mentioned, there is a vast body of work on non-interactive
probabilistic protocols and delegating computation which we are ill-equipped to cover in
detail. We confine ourselves to discussing results that seem closest to the present work.4

There has been much work on bounding the communication between the prover and
verifier. For instance, this is not the first time that Merlin and Arthur have led to an
unexpected square-root speedup: Aaronson and Wigderson [1] gave an MA communication
protocol for computing the inner product of two n-length vectors which runs in Õ(

√
n)

time. Their protocol uses a nice bivariate encoding of vectors, although it is somewhat
different from ours (which is univariate). Gur and Rothblum [27] obtain a similar square-root
speedup for checking sums in the “non-interactive property testing” setting. Goldreich and
Hastad [22] and Goldreich, Vadhan, and Wigderson [23] studied interactive proofs which
seek to minimize the number of bits sent from Merlin to Arthur. The “small bits” case is
of course even more restrictive than the “small rounds” case. The latter reference shows
that for any language L that has an interactive proof with b bits of communication, there is
an O(1)-round interactive proof for L that uses only exp(b) communication. The authors
also conjectured an “Arthur-Merlin ETH” that #SAT does not have a 2o(n)-time AM-proof
system with O(1) rounds. What we report in this paper is rather far from disproving this
“AMETH” conjecture, but it is interesting that some non-trivial progress can be made.

Goldwasser, Kalai, and Rothblum [24] study what they call delegating computation,
proving (for example) that for all logspace-uniform NC circuits C, one can prove that
C(x) = 1 on an input x of length n with Õ(n) verification time, O(logn) space, and
poly(logn) communication complexity between the prover and verifier. Despite the amazingly
low running time and space usage, the protocols of this work are highly non-interactive: they
need poly(logn) rounds between the prover and verifier as well.

Relating our work to proof complexity, Grochow and Pitassi [26] introduced a new
algebraic proof system based on axioms satisfied by any Boolean circuit that solves the
polynomial identity testing problem. The proofs in their system can be efficiently verified by
running a polynomial identity test, implying they can be viewed as proof of a Merlin-Arthur
type. An intriguing property of their proof system is that super-polynomial lower bounds for
it would prove lower bounds for the Permanent.

4 We would be happy to hear of results related to ours that we did not cite.
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The area of verifiable computation (e.g. [40]) is a new subject in cryptography, and is
certainly related to our work. However, in crypto the work appears to be either very specific
to particular functions, or it relies on very heavy machinery like probabilistically checkable
proofs, or it relies on cryptographic hardness assumptions.

In our setting, we want non-interactive proofs for batch computations that are shorter
than the computation time, with the typical “perfect completeness” and “low error soundness”
conditions preserved, and which work unconditionally.

3 Fast Multipoint Circuit Evaluation (With Merlin and Arthur)

In this section, we give the proof system for multipoint arithmetic circuit evaluation:

I Theorem 3.1. For every prime power q and ε > 0, Multipoint Circuit Evaluation
for K points in (Fq)n on an arithmetic circuit C of n inputs, s gates, and degree d has an
MA-proof system where:

Merlin sends a proof of O(K · d · log(Kqd/ε)) bits, and
Arthur tosses at most log(Kqd/ε) coins, outputs (C(a1), . . . , C(aK)) incorrectly with
probability at most ε, and runs in time (K ·max{d, n}+ s · poly(log s)) · poly(log(Kqd/ε)).

We have stated the theorem at this level of generality because we need good bounds
on the parameters to obtain certain consequences. For example, in our proof system for
quantified Boolean formulas (Theorem 1.4), the parameters s, K, q, and d are all various
exponentials in n.

Because instances of Multipoint Circuit Evaluation have length O((K ·n+s log s) ·
log q), the running time of Theorem 3.1 is essentially linear in the input length, up to the
factor of d in Merlin’s proof (in general, d could be much larger than n). So Theorem 3.1 is
extremely powerful for arithmetic circuits of low degree.

Proof. Let q be a prime power and C be an arithmetic circuit over Fq with degree d, s gates,
and n variables. Let a1, . . . , aK ∈ Fnq ; we want to know C(a1), . . . , C(aK) ∈ Fq.

Let ε > 0 be arbitrarily small, and let ` be the smallest integer such that q` > (d ·K)/ε.
Let F be the extension field Fq` . Note we can construct Fq` rather quickly in the following way:
Merlin can send an irreducible polynomial f(x) ∈ Fq[x] of degree `, and irreducibility of f can
be checked by running Kedlaya-Umans’ deterministic irreducibility test in `1+o(1) log2+o(1) q

time ([36], Section 8.2).
Since q` ≤ (q ·K · d)/ε, addition and multiplication in F can be done in (log |F |)1+o(1) ≤

log(Kqd/ε)1+o(1) time. Let S ⊆ F be an arbitrary subset of cardinality K. For all i =
1, . . . ,K, associate each vector ai ∈ (Fq)n with a unique element αi ∈ S, and inversely
associate each α ∈ S with a unique vector aα ∈ (Fq)n. This mapping and its inverse can be
easily constructed by listing the first K elements of F under some canonical ordering.

For all j = 1, . . . , n, we define Ψj : F → F as functions satisfying Ψj(α) = aα[j] for every
α ∈ S. That is, Ψj(α) outputs the jth component of the vector aα ∈ Fnq associated with
α ∈ S. Since each Ψj is defined by K input/output pairs, the Ψj can be instantiated as
polynomials of degree at most K. By efficient polynomial interpolation (Theorem 2.2), the
degree-K polynomials Ψj(x) ∈ F [x] for all j = 1, . . . , n can be constructed in n·K ·poly(logK)
additions and multiplications.

Define the univariate polynomial R(x) := C(Ψ1(x), . . . ,Ψn(x)) over F . By the con-
struction of Ψj , we see that for all i = 1, . . . ,K, R(αi) = C(Ψ1(αi), . . . ,Ψn(αi)) =
C(ai[1], . . . , ai[n]) = C(ai). Furthermore, deg(R) ≤ deg(C) · (maxj Ψj) ≤ d ·K.

Now we describe the protocol.
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1. Merlin sends the coefficients of a polynomial Q(x) over F of degree at most d ·K, encoded
in d ·K · log(|F |) bits. Merlin claims that Q(x) = R(x), as defined above.

2. Arthur picks a uniform random r ∈ F (taking at most log(Kqd/ε) bits to describe), and
wishes to check that

Q(r) = R(r) := C(Ψ1(r), . . . ,Ψn(r)),

over F . Evaluating Q(r) takes d · K · (log(Kqd/ε))1+o(1) time, by Horner’s method.
We claim that R(r) can be computed in (K · n + s) · (log |F |)1+o(1) time. First, the
n polynomials Ψj of degree K can be constructed in n ·K · poly(logK) additions and
multiplications (as described above). Given the coefficients of the Ψj polynomials,
computing all values vj := Ψj(r) can be done straightforwardly in O(K · n) additions
and multiplications, by producing the powers r0, r1, . . . , rK and then computing n linear
combinations of these powers. (Note that each resulting value vj takes O(log |F |) ≤
poly(Kqd/ε) bits to represent.) Then Arthur computes C(v1, . . . , vn) in s · poly(log s)
additions and multiplications, by simple circuit evaluation over F . The total running
time is (K · n+ s · poly(log s)) · (log |F |)1+o(1).

3. Arthur rejects the proof if Q(r) 6= C(v1, . . . , vn); otherwise, he uses univariate multipoint
evaluation (Theorem 2.1) to compute (Q(α1), . . . , Q(αK)), in K · d · poly(log(Kd)) ·
(log |F |)1+o(1) time.

On the one hand, if Merlin sends Q(x) := R(x), then Arthur always outputs the tuple

(R(α1), . . . , R(αK)) = (C(a1), . . . , C(an)),

regardless of the r ∈ F chosen. On the other, if Merlin sends a “bad” polynomial Q(x) 6= R(x)
and Arthur fails to pick an r ∈ F such that Q(r) 6= R(r), then Merlin may convince Arthur
of an incorrect K-tuple (Q(α1), . . . , Q(αK)). However, since the degrees of Q and R are both
at most d ·K, this failure of Arthur occurs with probability at most (d ·K)/q` < ε. J

3.1 Evaluating Sums Over Polynomials
The multipoint evaluation protocol of Theorem 3.1 can be applied to perform a one-round
“sum-check” faster than the obvious algorithm:

I Theorem 3.2. Given a prime p, an ε > 0, and an arithmetic circuit C with degree d,
s ≥ n gates, and n variables, the sum∑

(b1,...,bn)∈{0,1}n
C(b1, . . . , bn) mod p

can be computed by a Merlin-Arthur protocol running in 2n/2 · poly(n, s, d, log(p/ε)) time
tossing only n/2 +O(log(pd/ε)) coins, with probability of error ε.

As it applies Theorem 3.1 in a straightforward way, the proof of Theorem 3.2 in fact
works for any finite field. Therefore, every polynomial over a finite field in the class VNP
([49, 51]) has a MA-proof system that beats exhaustive search in a strong sense.

Proof. (of Theorem 3.2) For simplicity, assume n is even. Given an arithmetic circuit C for
which we wish to evaluate its sum over all Boolean inputs, define the n/2-variable circuit

C ′(x1, . . . , xn/2) :=
∑

(b1,...,bn/2)∈{0,1}n/2

C(x1, . . . , xn/2, b1, . . . , bn/2).
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2:8 Strong ETH Breaks With Merlin and Arthur

Note that deg(C ′) = d and size(C ′) ≤ 2n/2 · s. In order to compute the full sum of
C(b1, . . . , bn) over all 2n Boolean points, it suffices to evaluate C ′ on all of its K := 2n/2
Boolean points a1, . . . , aK ∈ {0, 1}n.

Applying the batch evaluation protocol of Theorem 3.1, there is an MA-proof system where
Merlin sends a proof of 2n/2 · d · poly(n, log(pd/ε)) bits, then Arthur tosses n/2 + log(pd/ε)
coins, runs in (2n/2 ·max{n, d}+ 2n/2 · s · poly(log s)) · poly(n, log(pd/ε)) time, and outputs
(C ′(a1), . . . , C(a2n/2)) incorrectly with probability at most ε. The result follows. J

Two important corollaries of Theorem 3.2 are O?(2n/2)-time proof systems for the
Permanent and #SAT problems. The result for Permanent follows immediately from Ryser’s
formula [44], which shows that the permanent of any n× n matrix M can be written in the
form ∑

(a1,...,an)∈{0,1}n
CM (a1, . . . , an),

where CM is a poly(n)-size arithmetic circuit of degree O(n) that can be determined from
M in poly(n) time. We describe the #SAT protocol in detail:

I Theorem 3.3. For any k > 0, #SAT for Boolean formulas with n variables and m

connectives has an MA-proof system using 2n/2 · poly(n,m) time with randomness O(n) and
error probability 1/ exp(n).

Proof. Let F be a Boolean formula over AND, OR, and NOT with n variables and m

connectives. First, any Boolean formula F can be “re-balanced” as in the classical results of
Brent [12] and Spira [47], obtaining in poly(m) time a formula F ′ equivalent to F , where F ′
has depth at most c logm and at most mc connectives for some constant c > 0.

Next, we replace each AND, OR, and NOT gate of F ′ with an equivalent polynomial
of degree 2, by the usual “arithmetization.” More precisely, each OR(x, y) is replaced with
x+y−x ·y, each AND(x, y) is replaced with x ·y, and each NOT (1−x) is replaced with 1−x.
The resulting arithmetic formula P (x1, . . . , xn) computes F ′(b1, . . . , bn) = P (b1, . . . , bn) for
every (b1, . . . , bn) ∈ {0, 1}n. Furthermore, due to the re-balancing step and the fact that
every gate has outdegree 1, we have deg(P ) ≤ 2c logm ≤ mO(1) (note the worst case is when
every gate is an AND).

Set p > 2n to be prime; note by Bertrand’s postulate we may assume p < 2n+1. We can
always find such a prime deterministically in 2n/2+o(n) time by an algorithm of Lagarias
and Odlyzko [37]. (Alternatively, the prover could send p to the verifier, along with a
deterministically verifiable poly(n)-length proof of primality [41].) Then F ′ has exactly r
satisfying assignments if and only if∑

(b1,...,bn)∈{0,1}n
P (b1, . . . , bn) = r mod p.

Since deg(P ) ≤ mO(1), we can apply Theorem 3.2 directly and obtain the result. J

Another corollary of Theorem 3.2 is that Merlin and Arthur can also count Hamiltonian
cycles in n-node graphs in O?(2n/2) time, by construing the inclusion-exclusion method of
Karp [35] running in O?(2n) time as a sum over 2n Boolean values on an arithmetic circuit of
poly(n) size. In particular, Karp’s algorithm works by counting the n-step walks in a graph,
then subtracting the count of n-step walks that miss at least one node, adding back the
count of n-step walks that miss at least two nodes, etc. Each of these counts is computable
by a single arithmetic circuit C(y1, . . . , yn) of O(n4) size which, on the input y ∈ {0, 1}n,
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counts the n-step walks over the subgraph of G defined by the vector y (negating the count
if y has an odd number of zeroes).

Theorem 3.3 shows that Merlin and Arthur can count the number of satisfying assignments
to Boolean formulas of 2δn size in 2n(1/2+O(δ)) time. It also immediately follows from
Theorem 3.3 that we can solve #SAT on bounded fan-in circuits of depth o(n) in 2n/2+o(n)

time, as such circuits can always be expressed as formulas of exp(o(n)) size. It is also clear
from the proof that we can trade off proof length and verification time: if we restrict the
proofs to have length 2` ≤ 2n/2 (so that Merlin sends a polynomial of degree roughly 2`),
then verifying the remaining sum over n− ` variables takes O?(2n−`) time.

We also observe that with more rounds of interaction, Merlin and Arthur can use shorter
proofs. This is somewhat expected, because it is well-known that in O(n) rounds, we can
compute #SAT with poly(n) communication and poly(n) verification time [39].

I Theorem 3.4. For any k > 0, and c > 2, #SAT for Boolean formulas with n variables
and m connectives has an interactive proof system with c rounds of interaction, using
2n/(c+1) · poly(n,m) time with randomness O(n) and error probability 1/ exp(n).

Proof. (Sketch) We essentially interpolate between our protocol and the LFKN protocol
([39]) for #SAT . Let F be a Boolean formula over AND, OR, and NOT with n variables
and m connectives, and let P be its arithmetization as in Theorem 3.3. We will work modulo
a prime p > 2n, as before. For simplicity let us assume n is divisible by c + 1, and that
m ≤ 2o(n). Partition the set of variables into subsets S1, . . . , Sc+1 of n/(c+ 1) variables each.
Via interpolation, define the polynomials Ψ1, . . . ,Ψ n

c+1
analogously to Theorem 3.1, where

for all j ∈ {0, 1, . . . , 2n/(c+1) − 1}, Ψi(j) outputs the ith bit of the j in n/(c+ 1)-bit binary
representation. Now consider the polynomial in c+ 1 variables:

Q1(y) :=
∑

j2,...,jc+1

∈{0,1,...,2n/(c+1)−1}

P (Ψ1(y), . . . ,Ψ n
c+1

(y),Ψ1(j2), . . . ,Ψ n
c+1

(j2), . . . . . . ,Ψ n
c+1

(jc+1)).

In the first round of interaction, an honest prover sends Q1(y), which has degree 2n/(c+1)+o(n).
The verifier then chooses a random r1 ∈ Fp, and sumsQ1(y) over all points {0, 1, . . . , 2n/(c+1)−
1}.

In the kth round of interaction for k = 2, . . . , c, an honest prover sends the 2n/(c+1)+o(n)-
degree polynomial Qk(y), which is∑

jk+1,...,jc+1

∈{0,...,2n/(c+1)−1}

P (Ψ1(r1), . . . ,Ψ n
c+1

(rk−1),Ψ1(y), . . . ,Ψ n
c+1

(y),Ψ1(jc+1) . . . ,Ψ n
c+1

(jc+1)).

The verifier again chooses a random rk ∈ Fp.
Finally in the cth round, after the prover has sendt Qc(y) and the verifier has chosen

rc ∈ Fp at random, the remaining computation is to compute the sum
∑2n/(c+1)−1
i=0 Qc(ji),

and to verify that Qc(rc) equals∑
jc+1

∈{0,...,2n/(c+1)−1}

P (Ψ1(r1), . . . ,Ψ n
c+1

(r1), . . . ,Ψ1(rc), . . . ,Ψ n
c+1

(rc),Ψ1(jc+1), . . . ,Ψ n
c+1

(jc+1)) .

In each of the c rounds, the probability of picking a “bad” ri is at most 2
n
c+1 +o(n)/p ≤

exp(−Ω(n)). J

Thus, with ω(1) rounds of interaction, Arthur and Merlin can compute #SAT in 2o(n)

verification time and communication.
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3.2 Univariate Polynomial Identity Testing and the Nondeterministic
SETH

A nice aspect of Theorem 3.2 and its corollaries is that the randomness is low: for example,
the obvious derandomization strategy of simulating all O?(2n/2) coin tosses recovers a
nondeterministic O?(2n) time algorithm for counting SAT assignments modulo 2.

The proof system itself motivates the following problem. Let univariate polynomial
identity testing (UPIT) be the problem of testing identity for two arithmetic circuits with
one variable, degree n, and O(n) wires, over a field of order poly(n). The following corollary
is immediate from the proofs of Theorems 1.2, 3.3, and the above observations:

I Corollary 3.5. If UPIT ∈ NTIME[n2−ε] for some ε > 0, then #Circuit-SAT for o(n)-depth
circuits is computable in nondeterministic 2n(1−ε/2)+o(n) time. By [56, 32, 16], this further
implies that ENP does not have 2o(n)-size sublinear-depth circuits.

In particular, the randomized verification task of Arthur in the protocol of Theorem 3.3
directly reduces to solving UPIT on two univariate circuits of degree 2n/2+o(n) and size
2n/2+o(n). Hence, assuming the hypothesis of Corollary 3.5, Arthur’s verification can be
performed deterministically in 2n(1−ε/2)+o(n) time.

This is an intriguing example of how derandomization within polynomial time can imply
strong circuit lower bounds: it is easy to see that UPIT is solvable in Õ(n) time with
randomness, and in Õ(n2) time deterministically, by efficient interpolation on n+ 1 distinct
points (Theorem 2.2). In all other cases we are aware of (such as [33, 55]), the necessary
derandomization problem is only known to be solvable in deterministic exponential time.
Thus, the Nondeterministic SETH predicts that the exponent of the simple Õ(n2) algorithm
for UPIT cannot be improved, even with nondeterminism.

4 Quantified Boolean Formulas

In the previous section, we saw how generic #P counting problems can be certified faster
than exhaustive search. We can also give less-than-2n time three-round proof systems for
certifying quantified Boolean formulas, a PSPACE-complete problem. Our quantified Boolean
formulas have the form

(Q1x1) · · · (Qnxn)F (x1, . . . , xn),

where F is an arbitrary propositional formula on m connectives, and each Qi ∈ {∃,∀}.

Reminder of Theorem 1.4 Quantified Boolean Formulas with n variables and m ≤ 2o(n)

connectives have a three-round interactive proof system running in 22n/3 · poly(n,m) time
with O(n) bits of randomness.

Proof. Let φ = (Q1x1) · · · (Qnxn)F (x1, . . . , xn) be a quantified Boolean formula to certify.
Let δ > 0 be a parameter to set later. First, convert the propositional formula F ′ to an
equivalent arithmetic circuit P of poly(m) degree and size, as in Theorem 3.3. Note that
P outputs 0 or 1 on every Boolean input to its variables. Next, determine whether the
quantifier suffix (Qn−δn+1xn−δn+1) · · · (Qnxn) contains at least as many existential quantifiers
as universal quantifiers.
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Case 1. If there are more existentially quantified variables, convert the subformula

φ′(x1, . . . , xn−δn) = (Qn−δn+1xn−δn+1) · · · (Qnxn)P (x1, . . . , xn)

into an arithmetic formula P ′ in a standard way, where each (∃xi) is replaced by a sum over
xi ∈ {0, 1}, and each (∀xi) is replaced by a product over xi ∈ {0, 1}. The formula P ′ has
size 2δn · poly(m), for the tree of possible assignments to the last 2δn variables times the size
of the polynomial P .

It is easy to see that P ′(a1, . . . , an−δn) is nonzero (over Z) on a Boolean assignment
(a1, . . . , an−δn) if and only if φ′(a1, . . . , an−δn) is true. Moreover, P ′ has degree at most
poly(m) · 2δn/2, since there are most δn/2 universal quantifiers among the last δn variables
(so the 2δn tree contains at most δn/2 layers of multiplication gates). Note the value
Va1,...,an−δn = P ′(a1, . . . , an−δn) is always at most (2n ·m)O(2δn/2).

Our protocol begins by having Arthur send a random prime p from the interval [2, 22n2 ·m]
to Merlin, to help reduce the size of the values Va1,...,an−δn . (A similar step also occurs in
the proof that IP = PSPACE [45, 46].) Since a nonzero Va1,...,an−δn has at most O(2δn/2nm)
prime factors, the probability that a random p ∈ [2, 22n2 ·m] divides a fixed Va1,...,an−δn is at
most

O(2δn/2n(n+ logm))
22n2 ,

by the Prime Number Theorem. By the union bound, p divides Va1,...,an−δn for some
a1, . . . , an−δn ∈ {0, 1} with probability at most (logm)/2Ω(n2).

Therefore for all a1, . . . , an−δn ∈ {0, 1}, the “non-zeroness” of P ′(a1, . . . , an−δn) over Z
is preserved over the field Fp, with high probability. Merlin and Arthur will work over Fp in
the following.

Applying Theorem 3.1 to P ′ with d := poly(m) · 2δn/2, p := 22n ·m, K := 2n−δn, and
s := poly(m) · 2δn, there is an MA-proof system where Merlin sends a proof of length at most
2n−δn/2 ·poly(n) bits, while Arthur uses at most poly(n) coins and (2n−δn/2 +2δn) ·poly(n,m)
time, outputting the value of P ′ on all 2n−δn Boolean inputs with high probability. It is easy
to determine the truth value of the original QBF φ from the 2n−δn-length truth table of P ′;
this is simply a formula evaluation on an O(2n−δn)-size formula defined by the quantifier
prefix (Q1x1) · · · (Qn−δnxn−δn).

Setting δ = 2/3 yields a 22n/3 · poly(n,m)-length proof and an analogous running time
bound.

Case 2. If there are at least as many universal variables as existential ones, then Merlin
and Arthur decide to prove that ¬φ is false, by flipping the type of every quantifier (from
existential to universal, and vice-versa) and replacing P with an arithmetic circuit for
¬F . Now the quantifier suffix (Q′n−δn+1xn−δn+1) · · · (Q′nxn) of the new QBF contains more
existential quantifiers than universal ones, and we proceed as in the first case, evaluating
an (n− δn)-variable formula of 2δn size (and at most δn/2 universally quantified variables)
on all of its possible assignments, and inferring the truth or falsity of the QBF from that
evaluation. J

5 Conclusion

By a simple but powerful protocol for batch multipoint evaluation, we have seen how
non-interactive proof systems can be exponentially more powerful than randomized or
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nondeterministic algorithms, assuming some exponential-time hypotheses. There are many
questions left to pursue, for instance:

Are there more efficient proof systems if we just want to prove that a formula is UNSAT?
Perhaps UNSAT has an MA-proof system of O?(2n/3) time. Perhaps Parity-SAT could
be certified more efficiently, exploiting the nice properties of characteristic-two fields? By
the Valiant-Vazirani lemma [50], this would imply a three-round interactive proof system
for UNSAT that is also more efficient. Our MA-proof systems all have extremely low
randomness requirements of Arthur. If we allowed 2δn bits of randomness for some δ > 0,
perhaps they can be improved further.
Faster nondeterministic UNSAT algorithms are by now well-known to imply circuit lower
bounds for problems in nondeterministic exponential time [55, 32]. Can the proof systems
of this paper be applied to conclude new lower bounds? One difficulty is that we already
know MAEXP 6⊂ P/poly [14]. More seriously, it seems possible that one could apply our
protocol for #SAT on circuits of o(n) depth to show that (for instance) EpromiseMA does
not have 2o(n) size formulas; this would be a major advance in our understanding of
exponential-size circuits.
Can O?(2n/2)-time Merlin-Arthur proof system for #SAT be converted into a construction
of nondeterministic circuits of (2− ε)n size for UNSAT? To do this, we would want to
have a small collection of coin tosses that suffices for verification. If we convert the proof
system into an Arthur-Merlin game in the standard way, the protocol has the following
structure: for a proof-length parameter `, we can toss O(` · n) random coins are tossed
prior to the proof, then Merlin can give a single Õ(`)-bit proof of the protocol that needs
to be simulated on O(`) different coin tosses of n/2 + Õ(1) bits each. The difficulty is
that each of these O(`) coin tosses takes Ω(2n/`) time for Arthur to verify on his own, as
far as we can tell. So even though the probability of error here could be extremely small
(less than 1/2Ω(`)) we do not know how to get a (2− ε)n time algorithm for verification.
Does QBF on n variables and poly(n) connectives have an MA-proof system using (2−ε)n
time, for some ε > 0?
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A Quick Proof Systems For Some Poly-Time Problems

We can also obtain nearly-linear time MA-proof systems for quite a few problems which have
been conjectured to be hard to solve faster than quadratic time. Perhaps the most illustrative
example is a proof system for computing orthogonal pairs of vectors. Via reductions, this
result implies analogous proof systems for several other quadratic-time solvable problems
(see [4]); we omit the details here.

I Theorem A.1. Let d ≤ n. For every A ⊆ {0, 1}d such that |A| = n, there is a MA-proof
system certifying for every v ∈ A if there is a u ∈ A such that 〈v, u〉 = 0, with Õ(n · d) time
and error probability 1/poly(n).

Proof. Let p be a prime greater than n2 · d. Define the 2d-variable polynomial

P (x1, . . . , xd, y1, . . . , yd) :=
d∏
i=1

(1− xi · yi) .

Observe deg(P ) ≤ 2d, and for a pair of Boolean vectors u, v ∈ {0, 1}d, P (u, v) = 1 if
〈u, v〉 = 0, otherwise P (u, v) = 0. Then, the polynomial

P ′(u[1], . . . , u[d]) :=
∑

j=1,...,n
P (u[1], . . . , u[d], vj [1], . . . , vj [d])

counts the number of vectors in A that are orthogonal to the input vector u ∈ {0, 1}d. Note
the size of P ′ as an arithmetic circuit is O(n ·d), and its degree is at most 2d as well. Applying
Theorem 3.1 directly, we can certify the evaluation of P ′ on all n vectors of d dimensions in
Õ(n · d) time. J

One consequence (among many) of Theorem A.1 is an MA-proof system for the dominating
pairs problem in computational geometry: given a set S of n vectors in Rd, determine if
there are u, v ∈ S such that u[i] < v[i] for all i = 1, . . . , d. (Here, our computational model
is the real RAM, where additions and comparisons of reals are unit time operations.)

I Corollary A.2. There is an MA-proof system for counting the number of dominating pairs
in Õ(n1.5 ·d1.5) time. As a consequence, there is a MA-proof system for counting 0-1 solutions
to a linear program with k variables and m constraints that runs in 23k/4 · poly(m, k) time.

Proof. Given that one can count orthogonal vectors of n vectors in d Boolean dimensions in
t(n, d) time, a recent reduction of Chan and the author [17] shows how to count the number
of dominating pairs among n vectors in Rd, in O(n2d2/s+ t(n, 2 + ds)) time, for any positive
natural number s. In fact, the reduction makes precisely one call to orthogonal vectors.
Theorem A.1 provides an Õ(n · d) time proof system for counting orthogonal vectors, so by
setting s =

√
n · d to balance the factors, there is a proof system for counting dominating

pairs in Õ(n1.5 · d1.5) time. By a reduction of Impagliazzo, Paturi, and Schneider [30] from
integer linear programming to dominating pairs, we obtain an MA-proof system for counting
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the number of Boolean solutions to a linear program with k variables and m inequalities in
23k/4 · poly(m, k) time. J

Finally, we illustrate that the above ideas can certify Nearest Neighbors (in the Hamming
metric) in near-linear time as well:

Reminder of Theorem 1.6 Let d ≤ n. For every A ⊆ {0, 1}d with |A| = n, and every
parameter k ∈ {0, 1, . . . , d}, there is an MA-proof system certifying for every v ∈ A the
number of points in A with Hamming distance at most k from v, running in Õ(n · d) time
with error probability 1/poly(n).

Proof. (Sketch) Analogous to Theorem A.1. Let p be a prime greater than n2 · (2d + 1),
and let k ∈ {0, 1, . . . , d} be our proximity parameter. Define the degree-2d polynomial Ψ(x)
to be 0 on all j = −d, . . . , d − 2k, and 1 on all j = d − 2k, . . . , d. Note that such a Ψ can
easily be constructed by interpolation in Õ(d) time (cf. Theorem 2.2). Define the 2d-variable
polynomial

P (x1, . . . , xd, y1, . . . , yd) := Ψ
(

d∑
i=1

xi · yi

)
.

Observe that deg(P ) ≤ 2d, and for a pair of Boolean vectors u, v ∈ {−1, 1}d, P (u, v) = 1 if
and only if u and v differ in at most k coordinates. (Differing in k coordinates is equivalent
to summing (d−k) ones and k minus-ones in the inner product.) Therefore, if we map all the
0/1 vectors in A to 1/− 1 vectors (mapping 0 to 1, and mapping 1 to −1), the polynomial

P ′(u[1], . . . , u[d]) :=
∑

j=1,...,n
P (u[1], . . . , u[d], vj [1], . . . , vj [d])

counts the number of vectors in A (construed as vectors in {−1, 1}, instead of {0, 1}) that
have Hamming distance at most k from the input u ∈ {−1, 1}d. The size of P ′ is O(n · d),
its degree is at most 2d, and applying Theorem 3.1 allows us to certify the evaluation of P ′
on all n vectors of d dimensions in Õ(n · d) time. Our prime p is chosen large enough so that
the values of all intermediate computations are preserved. J

A.1 Certifying the Number of Small Cliques
The final result of this section gives an efficient MA-proof system for verifying the number of
k-cliques in a graph:

Reminder of Theorem 1.7 For every k, there is a MA-proof system such that for every
graph G on n nodes, the verifier certifies the number of k-cliques in G using Õ(nbk/2c+2)
time, with error probability 1/poly(n).

Proof. The strategy (as in previous proofs) is to reduce the problem to multipoint evaluation
of an appropriate circuit on an appropriate list of points, and appeal to Theorem 3.1.

Given a graph G = (V,E) on n nodes with V = [n], let A be its adjacency matrix.
Let `-Cliques(G) be the collection of all `-cliques of G, represented as subsets of [n] of
cardinality `. Given a subset S ⊆ [n], let J(S) := {v ∈ (V −S) | (∀u ∈ S)[(u, v) ∈ E]} be the
joint neighborhood of S. We denote the members of J(S) as {uJ(S),1, . . . , uJ(S),|J(S)|} ⊆ [n].
Consider the polynomial

C(x1, . . . , xn) :=
∑

S∈`-Cliques(G)

Ek−`|J(S)|(xuJ(S),1 , . . . , xuJ(S),|J(S)|),
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where Ekn is the kth elementary symmetric polynomial on n variables. Suppose a =
(a1, . . . , an) ∈ {0, 1}n contains exactly k − ` ones, and let Ta ⊆ [n] be the set corresponding
to a. Observe that C(a1, . . . , an) equals the number of S ⊆ (V − Ta) such that S is an
`-clique and every node of S has an edge to every node of Ta. Therefore, if we evaluate C
on the indicator vectors for every (k − `)-clique in G, the sum of these evaluations will be
the number of k-cliques in G times

(
n
k−`
)
(every k-clique will be counted

(
n
k−`
)
times in the

summation).
Therefore, it suffices to evaluate C on the O(

(
n
k−`
)
) indicator vectors of (k − `)-cliques in

G. These vectors of length n can obviously be prepared in O(nk−`+1) time.
It is well-known that for every k, the kth elementary symmetric polynomial on variables

x1, . . . , xn can be computed in O(n2) size and degree O(n) (this result is often attributed to
Ben-Or). To compute this polynomial, we just have to determine the coefficient of zk in the
polynomial

n∏
i=1

(z − xi),

which can be done by computing the coefficient of zk in the polynomial determined by
feeding the set of points {(x0,

∏n
i=1(x0−xi)), (x1, 0), . . . , (xn, 0)} into a circuit for univariate

interpolation, where x0 is a point different from x1, . . . , xn. Each of the joint neighborhoods
J(S) can easily be determined in O(` · n) time. The total degree of C is therefore O(n), and
its size is O(n2 ·

(
n
`

)
).

Applying Theorem 3.1 directly, we can evaluate C on O(
(
n
k−`
)
) points over Fp with

p > nk−`, in time

Õ

((
n

k − `

)
· n+

(
n

`

)
· n2
)
.

Setting ` = bk/2c yields a running time of Õ(nbk/2c+2). J
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Abstract
One of the major challenges of the research in circuit complexity is proving super-polynomial lower
bounds for de-Morgan formulas. Karchmer, Raz, and Wigderson [20] suggested to approach
this problem by proving that formula complexity behaves “as expected” with respect to the
composition of functions f � g. They showed that this conjecture, if proved, would imply super-
polynomial formula lower bounds.

The first step toward proving the KRW conjecture was made by Edmonds et al. [10], who
proved an analogue of the conjecture for the composition of “universal relations”. In this work,
we extend the argument of [10] further to f � g where f is an arbitrary function and g is the
parity function.

While this special case of the KRW conjecture was already proved implicitly in Håstad’s work
on random restrictions [14], our proof seems more likely to be generalizable to other cases of the
conjecture. In particular, our proof uses an entirely different approach, based on communication
complexity technique of Karchmer and Wigderson [21]. In addition, our proof gives a new
structural result, which roughly says that the naive way for computing f � g is the only optimal
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3:2 Toward the KRW Composition Conjecture

The state-of-the-art in this direction is a lower-bound of Ω̃(n3) due to Håstad [14]1,
building on earlier work by [32, 1, 16, 27]. This result was achieved by the celebrated method
of random restrictions, and in particular, by providing a lower-bound on the shrinkage
exponent, which is the parameter controlling the effect of random restrictions. Håstad’s
lower bound on the shrinkage exponent is known to be best possible, so improving the cubic
lower-bound requires a new approach.

In this work we pursue a different approach following the KRW conjecture, named after
Karchmer, Raz, and Wigderson who suggested this conjecture in [20]. The KRW conjecture
is about composed functions of the form f � g : {0, 1}mn → {0, 1} defined by

f � g(x1, . . . , xm) = f(g(x1), . . . , g(xm)),

where f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1}. The conjecture says roughly2 that

L(f � g) ≈ L(f) · L(g)

where L(·) denotes the formula size of a function, namely, the number of leaves in the
underlying tree. In other words, the conjecture says that the naive way of computing f � g,
by first computing g on each component and then f , is essentially the best way to do it. In
addition to being interesting in its own right, the KRW conjecture is particularly important
due to the fact that it implies super-polynomial lower bounds for an explicit function [20].

Despite some early successes in the study of the KRW conjecture [10, 15], so far it has
not bore new lower bounds. Recently, Gavinsky et al. [12] have made the first progress in
two decades in this direction. In this work, we push this direction further, and obtain a new
proof of the state-of-the-art cubic lower bound on the formula size of Andreev’s function.

I Theorem 1.1. Let Andn : {0, 1}n → {0, 1} be Andreev’s function [1] over n bits. Then,

L(Andn) ≥ n3−o(1).

Although this was already proved by [14], our proof is based on an entirely different method
– specifically, the communication-complexity technique of Karchmer and Wigderson [21].
Unlike the proof by random restrictions, this method does not seem to have any inherent
limitation, and we do not see a reason why it should not be able to prove stronger lower
bounds. More importantly, we see this work as a step toward proving the KRW conjecture.

Toward proving the KRW conjecture

As a first step toward proving their conjecture, [20] suggested to study the composition of
universal relations, which are objects that are similar to functions but are easier to analyze
in this context. Let us denote the universal relation by U . Then, [20] suggested to prove an
analogue of their conjecture for the composition U � U . This challenge was met by Edmonds
et al. [10], and an alternative proof was discovered later by Håstad and Wigderson [15].

Recently, Gavinsky et al. [12] made further progress and proved an analogue of the KRW
conjecture for f � U : the composition of an arbitrary function f with the universal relation.
Thus, the next step to proving the KRW conjecture would be to replace the universal relation
in their result with a function g, for every choice of g. In this work, we do it for the special
case where g is the parity function over n bits, denoted ⊕n.

1 Recently, Tal [34] provided a new proof of the lower bound on the shrinkage exponent, and along the
way improved the lower order factors in Håstad’s lower bound.

2 The original KRW conjecture was formulated in terms of formula depth, this variant with formula size
is from [12].
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I Theorem 1.2 (Main theorem). Let f : {0, 1}m → {0, 1} be a non-constant function. Then,

L(f � ⊕n) ≥ L(f) · L(⊕n)
2Õ(
√
m+logn)

.

To summarize, the KRW conjecture has been verified on U � U [10], and then f � U [12]. In
this work we prove it for f � ⊕n, and one would hope that the next step(s) would lead to
f � g for every g.

It is important to note that lower bounds on the composition f � ⊕n were already proved
implicitly in the aforementioned works on the Andreev’s function [1, 16, 27, 14, 34]. In
particular, [14, 34] implicitly prove that

L(f � ⊕n) ≥ L(f) · L(⊕n)
poly(logm, logn) .

However, our proof seems more likely to be generalized to other choices of g, and in addition,
it gives a structural inverse result: not only is the naive way to compute f � ⊕n optimal in
terms of complexity, but it is essentially the only optimal way to compute f � ⊕n. More
specifically, we show that any formula computing f � ⊕n with near optimal complexity must
incur a cost of ≈ L(⊕n) before starting the computation of f . We discuss this result a bit
more in Section 1.2 below, and a formal description is given in Section 3.

Bypassing a barrier for Karchmer-Wigderson relations

As all the previous works on the KRW conjecture, our proof is based on a method of Karchmer
and Wigderson [21]. A particularly interesting feature of our proof of Theorem 1.1 is that
it is the first proof of a super-quadratic formula lower bound that uses this method. In
particular, this requires bypassing a known barrier for Karchmer-Wigderson relations, see
Section 1.1 below for more detail.

Average-case lower bounds

A recent line of research [30, 18, 24, 8, 34] extended the aforementioned formula lower-bounds
to the average-case setting. Our proof can be extended to the average-case setting as well,
yielding the following results. In what follows, we say that a function F is (s, ε)-hard if every
formula of size at most s computes F correctly on at most 1

2 + ε fraction of the inputs.

I Theorem 1.3. Let f : {0, 1}m → {0, 1} be an (s, ε)-hard function. Then, f � ⊕n is
(s′, ε+ 2−m)-hard for

s′ ≥ s · L(⊕n)/2Õ(
√
m+logn).

I Corollary 1.4. For every n, c ∈ N there exists a function Fn,c : {0, 1}n → {0, 1} bits that
is (S, n−c)-hard for

S ≥ n
3−Õ( 1√

logn
)
.

1.1 Background: Karchmer-Wigderson relations
Karchmer and Wigderson [21] observed an interesting connection between depth complexity
and communication complexity: for every boolean function f , there exists a corresponding
communication problem KWf , such that any deterministic protocol for solving KWf can be
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syntactically converted to a formula computing f , and vice versa. In particular, the depth
complexity of f is equal to the deterministic communication complexity of KWf and the
formula size of f equals the protocol size of KWf , which is the smallest number of transcripts
in a deterministic protocol that solves KWf . The communication problem KWf is often
called the Karchmer-Wigderson relation of f , and we will refer to it as a KW relation for
short.

The KW relation KWf is defined as follows: Alice gets an input x ∈ f−1(0), and Bob
gets as input y ∈ f−1(1). Clearly, it holds that x 6= y. The goal of Alice and Bob is to find a
coordinate i such that xi 6= yi. Note that there may be more than one possible choice for i,
which means that KWf is a relation rather than a function. In what follows, we denote the
communication complexity and protocol size of KWf by C(KWf ) and L(KWf ) respectively.

The randomized-complexity barrier

KW relations allow us to translate questions about formula complexity to questions about
communication complexity, thus giving us a different angle for attacking those questions.
This method had great success in proving monotone formula lower-bounds [21, 13, 28, 20],
culminating in exponential formula lower-bounds [28].

In contrast, in the non-monotone setting, this method has been stuck so far at proving
quadratic lower-bounds. This is no coincidence: unlike the monotone setting, in the general
setting it is known that every KW relation can be solved by a randomized protocol of
quadratic size. Therefore, we cannot hope to prove better lower bounds using techniques that
work against randomized protocols, and this fact severely restricts the techniques that we may
employ. In particular, as noted by [12], this barrier implies that KW relations do not have
“hard distributions”, i.e., distributions over the inputs that are hard for every deterministic
protocol. This fact makes it difficult to analyze those relations using information-theoretic
techniques, and similar reasons prohibit the use of rectangle-based techniques [19].

As mentioned above, our proof of Theorem 1.1 is the first proof of a super-quadratic
lower-bound using KW relations. In particular, our proof is the first to bypass the randomized-
complexity barrier.

1.2 Proof outline
In order to prove Theorem 1.2, we analyze KWf�g (for the case of g = ⊕n) and show that

C(KWf�g) ≈ C(KWf ) + C(KWg).

(We actually prove a similar but stronger statement, namely log L(KWf�g) ≈ log L(KWf ) +
log L(KWg) but for this outline we shall focus on the communication complexity.)

In the KW relation KWf�g, Alice and Bob’s inputs are conveniently viewed as m × n
matrices X,Y , respectively, such that g(X) ∈ f−1(0) and g(Y ) ∈ f−1(1), where g(X) ∈
{0, 1}m is obtained by applying g to each row of X and similarly g(Y ). Their goal is to find
an entry (i, j) such that Xi,j 6= Yi,j .

The naive protocol for Alice and Bob is as follows. Alice computes a = g(X) and Bob
computes b = g(Y ). In the first stage they solve KWf on a, b and find an index i ∈ [m]
where ai 6= bi. Then, in the second stage, then solve KWg on inputs Xi, Yi to find j as
required. This protocol shows that C(KWf�g) ≤ C(KWf ) + C(KWg). We remark that the
naive strategy for KWf�g corresponds to the naive formula for f � g, but note that the order
is reversed (top-down vs. bottom up).
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The KRW conjecture asserts that the naive protocol for KWf�g is essentially optimal. A
natural approach for proving the KRW conjecture is to show that any optimal protocol that
solves KWf�g must behave approximately like the naive protocol. This approach potentially
gives, in addition to a lower bound, a structural result about optimal protocols for KWf�g.
This approach was first taken in [10] for the composition of two universal relations. In this
work, we extend the argument of [10] to the case where f is an arbitrary function and g = ⊕n
is the parity function.

Why should it be the case the any optimal behaves like the naive protocol? In order to
gain intuition, consider the following thought experiment: Suppose that every message of
Alice and Bob was either only “about” g(X) and g(Y ), or only “about” Xi and Yi for some
i ∈ [m]. Intuitively, in the first case they are trying to solve KWf on g(X) and g(Y ), and in
the second case they are trying to solve KWg on some pair of rows Xi and Yi. We now claim
that if such a protocol was optimal, then Alice and Bob would have had to finish solving
KWf before solving KWg on any pair of rows, or in other words, they would have had to
behave as in the naive protocol.

More specifically, we claim that it only makes sense for Alice and Bob to communicate
about a pair of rows Xi and Yi if they already know that g(Xi) 6= g(Yi). To see why this
is true, suppose that Alice and Bob communicate about some Xi and Yi without knowing
whether g(Xi) 6= g(Yi) or not. In such a case, Alice and Bob might send a lot of bits about Xi

and Yi, only to find out eventually that Xi = Yi. This would mean that their effort has been
in vain, since if Xi = Yi then the answer to KWf�g cannot possibly lie in Xi and Yi. Hence,
if Alice and Bob do not wish to waste bits on rows where Xi = Yi, they should first make
sure that g(Xi) 6= g(Yi). However, finding i ∈ [m] such that g(Xi) 6= g(Yi) requires solving
KWf on g(X) and g(Y ). Therefore, Alice and Bob must solve KWf before solving KWg.
We now discuss how to turn this intuitive argument into a formal proof.

We begin with an arbitrary optimal protocol Π for KWf�g, and show that it has an
approximate two-stage structure similar to the naive protocol in the following sense. We
split transcripts of Π into two parts π1 and π2, supposedly corresponding to the stages of
solving KWf and KWg respectively. We identify a collection of partial transcripts π1 that
did not fully solve a certain random embedding of KWf into KWf�g. We call these partial
transcripts “alive” since the proof focuses only on them and shows that they lead to many
distinct leaves of the protocol. We refer the reader to Section 3 for more details, and remark
that this embedding is generic and allows embedding KWf into KWf�g for any choice of g.
We then prove:
1. The first stage is hard: There are live partial transcripts π1 whose length is almost

about C(KWf ).
2. The second stage is hard: If π1 is alive, then there is some π2 whose length is

about C(KWg).
These two items together imply that Π has a transcript whose length is

|π1|+ |π2| ≈ C(KWf ) + C(KWg).

In addition, observe that the second item implies a structural result on the optimal protocols
for KWf�g: Essentially, this item says that as long as Alice and Bob have not solved KWf

on g(X) and g(Y ), they must still incur a cost of C(KWg). This roughly means that in any
optimal protocol, Alice and Bob must first solve KWf and then solve KWg. Translating this
result from the language of KW relations to the language of formulas, this means that any
optimal formula for f � g must first compute g and then compute f (in the case of g = ⊕n).
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Our definition of π1 being alive makes it not too difficult to prove the first item above
(see the f -stage lemma in Section 4). However, the second item is much more technically
difficult. Here we must prove that in order to solve KWg on one of the m rows of X,Y , Alice
and Bob must communicate C(KWg) bits. The difficulty is that since Alice and Bob already
spoke |π1| bits, they are not playing on all possible input pairs X,Y but rather on a residual
rectangle that depends on π1.

Nevertheless, since |π1| ≤ m, they only communicated about one bit on the average row.
Intuitively, this means that on the typical row, the players should be quite far from solving
KWg. Hence, if they try to finish solving KWf�g on one of those typical rows, they will
have to communicate about C(KWg) bits. However, there can be a few “revealed” rows on
which π1 reveals a lot, and on which it might be easier to solve KWf�g. We therefore take
steps to force Alice and Bob to play on the typical “non-revealed” rows. In order to carry
out our approach two ingredients are necessary:

The first ingredient is a way to measure how much progress the players made on a given
row, in a way that guarantees there will only be a few revealed rows. Luckily, for the
parity function g = ⊕n, this progress is directly related to the information that was
communicated on the row. We then use an averaging argument which implies that on
most rows, π1 reveals at most one bit of information (and hence, only one bit of progress
was made).
The second ingredient is a way to force Alice and Bob to play only on the non-revealed
rows. This is done by forcing X and Y to be identical on the revealed rows (so the
final output (i, j) cannot be in these rows). Formally, this is done by focusing on a
sub-rectangle of the residual rectangle of π1, in which X and Y are identical on the
revealed rows. However, one must do this without losing the complexity of the problem.
Showing that this is possible is highly non-trivial, and is the most difficult part of our
argument. The main difficulty comes from the fact that if, in the residual rectangle
of π1, it holds that g(Xi) 6= g(Yi) for some revealed row (Xi, Yi), then we cannot force
Xi and Yi to be identical. The point is that such a situation cannot occur, because π1
is alive, i.e., it has not fully solved KWf yet. This implies that π1 has could not find
a small set of (revealed) rows in which the answer to KWf lies. Thus, Alice and Bob
cannot rule out that g(Xi) = g(Yi) in any revealed row i.

In implementing the two above ingredients, we develop two new tools that might be of use
to future works:

Averaging argument for min-entropy: In the discussion above, we argued that Alice
and Bob gained only very little information on the average row of X and Y and therefore,
by an averaging argument, this holds for most rows of X and Y . Such an averaging
argument is easy to prove when we model information using Shannon entropy. Edmonds
et al. [10], whose argument we extend, could not use Shannon entropy in their argument.
Therefore, they defined another measure of information called “predictability” and proved
an averaging argument for this measure.
For our argument, neither Shannon entropy nor predictability are appropriate, and
instead we model information using min-entropy. This requires us to prove a (non-trivial)
averaging argument for min-entropy – see Section 6.1 for details.
Fortification lemma: Throughout our proof, we often need to connect statements about
information to statements about complexity. For example, we would like to say things like
“Alice and Bob learned only little information, so the complexity of solving KWf has not
decreased by much”. The reason is that in the implementation of the second ingredient,
we restrict ourselves to a sub-rectangle. This restriction effectively gives information to
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Alice and Bob, and we need to make sure that this information does not allow them to
solve KWf prematurely.
However, information is not always related to complexity. In particular, it is possible
to come up with examples for relations KWf in which Alice and Bob may get little
information while reducing the complexity by much, or vice versa. In order to resolve this
issue, we prove a general “fortification lemma”, which shows that every relation KWf

has a sub-relation KW ′f for which the information and the complexity are related – see
Section 6.2 for details.

1.3 Organization of the paper
We cover the required preliminaries in Section 2. Then, in Section 3, we prove our main
theorem (Theorem 1.2), as well as our structural result and the resulting cubic lower bounds
(Theorem 1.1). The proof of the main theorem uses three lemmas, which are proved in
Sections 4, 5 and 7. We develop the new tools discussed above in Section 6. We extend our
main theorem and the cubic lower bounds to the average-case setting in Section 8. Finally, in
Section 9, we discuss some future directions and suggest some open problems whose solution
might bring us closer to proving the KRW conjecture.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. Given two strings x, y ∈ {0, 1}n , the relative
(Hamming) distance between x and y is the fraction of coordinates on which they disagree.
For a function t : N→ N, we denote

Õ(t) def= O(t · logO(1) t)

Ω̃(t) def= Ω(t/ logO(1) t).

We denote the set of m× n binary matrices by {0, 1}m×n. For every binary m× n matrix
X, we denote by Xj ∈ {0, 1}n the j-th row of X. Throughout the paper, we denote by ⊕n
the parity function over n bits.

2.1 Formulas
I Definition 2.1. A formula φ is a binary tree, whose leaves are identified with literals of
the forms xi and ¬xi, and whose internal vertices are labeled as AND (∧) or OR (∨) gates.
The size of a formula is the number of its leaves (which is the same as the number of its
wires up to a factor of 2). We note that a single input coordinate xi can be associated with
many leaves.

I Definition 2.2. A formula φ computes a binary function f : {0, 1}n → {0, 1} in the natural
way. The formula complexity of a boolean function f : {0, 1}n → {0, 1}, denoted L(f), is the
size of the smallest formula that computes f . The depth complexity of f , denoted D(f), is
the smallest depth of a formula that computes f .

The following definition generalizes the above definitions from functions to promise problems,
which will be useful when we discuss Karchmer-Wigderson relations.

I Definition 2.3. Let X,Y ⊆ {0, 1}n be disjoint sets. We say that a formula φ separates
X and Y if φ(X) = 0 and φ(Y) = 1. The formula complexity of the rectangle X × Y,
denoted L(X × Y), is the size of the smallest formula that separates X and Y. The depth
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3:8 Toward the KRW Composition Conjecture

complexity of the rectangle X×Y , denoted D(X×Y), is the smallest depth of a formula that
separates X and Y.

Note that Definition 2.2 is indeed a special case of Definition 2.3 where X = f−1(0) and Y =
f−1(1). The following theorem establishes a tight connection between the formula complexity
and the depth complexity of a function.

I Theorem 2.4 ([4], following [31, 7]). For every α > 0 the following holds: For every
formula φ of size s, there exists an equivalent formula φ′ of depth at most O(2 1

α · log s) and
size at most s1+α.

2.2 Communication complexity
Let X, Y, and O be sets, and let R ⊆ X × Y × O be a relation. The communication
problem [35] that corresponds to R is the following: two players, Alice and Bob, get inputs
x ∈ X and y ∈ Y, respectively. They would like to find o ∈ O such that (x, y, o) ∈ R. To
this end, they send bits to each other until they find o, but they would like to send as few
bits as possible. The communication complexity of R is the minimal number of bits that
is transmitted by any protocol that solves R. More formally, we define a protocol as a
binary tree, in which every vertex represents a possible state of the protocol, and every edge
represents a message that moves the protocol from one state to another:

I Definition 2.5. A (deterministic) protocol that solves a relation R ⊆ X×Y×O is a rooted
binary tree with the following structure:

Every node of the tree is labeled by a rectangle Xv ×Yv where Xv ⊆ X and Yv ⊆ Y . The
root is labeled by the rectangle X × Y. Intuitively, the rectangle Xv × Yv is the set of
pairs of inputs that lead the players to the vertex v.
Each internal vertex v is owned by Alice or by Bob. Intuitively, v is owned by Alice if it
is Alice’s turn to speak at state v, and same for Bob.
Every edge of the tree is labeled by either 0 or 1.
For every internal vertex v that is owned by Alice, the following holds: Let v0 and v1 be
the children of v associated with the out-going edges labeled with 0 and 1, respectively.
Then,

Xv = Xv0 ∪ Xv1 , and Xv0 ∩ Xv1 = ∅.
Yv = Yv0 = Yv1 .

Intuitively, when the players are at the vertex v, Alice sends 0 to Bob if her input is in
Xv0 and 1 if her input is in Xv1 . An analogous property holds for vertices owned by Bob,
while changing the roles of X and Y.
For each leaf `, there exists a value o such that X` × Y` × {o} ⊆ R. Intuitively, o is the
output of the protocol at `.

I Definition 2.6. Given a protocol Π and a vertex v of Π, the transcript of v is the string
that is obtained by concatenating the labels of the edges on the path from the root to v.
Intuitively, this string consists of the messages that Alice and Bob sent in their conversation
until they got to v. Since the transcript determines v uniquely and vice versa, we will often
identify the transcript with the vertex v. If v is a leaf of the protocol, we say that it is a
full transcript, and otherwise we say that it is a partial transcript. Unless stated explicitly
otherwise, whenever we say “transcript” we mean “full transcript”.

Given a pair of inputs (x, y) ∈ X× Y , we define the transcript of (x, y), denoted Π(x, y),
as the (full) transcript of the protocol when Alice and Bob get the inputs x and y respectively.
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More formally, Let ` be the unique leaf ` such that (x, y) ∈ X` × Y`, and define Π(x, y) be
the transcript of `.

I Definition 2.7. The communication complexity of a protocol Π, denoted C(Π), is the the
depth of the protocol tree. In other words, it is the maximum number of bits that can be
sent in an execution of the protocol on any pair of inputs (x, y). For a relation R, we denote
by C(R) the minimal communication complexity of a (deterministic) protocol that solves R.

I Definition 2.8. We define the size of a protocol Π to be its number of leaves. Note that
this is also the number of distinct full transcripts of the protocol. We define the protocol
size3 of a relation R, denoted L(R), as the size of the smallest protocol that solves it.

2.3 Karchmer-Wigderson relations
In this section, we define KW relations formally, and state the correspondence between KW
relations and formulas. We start by defining KW relations for general rectangles, and then
specialize the definition to functions.

I Definition 2.9. Let X,Y ⊆ {0, 1}n be two disjoint sets. The KW relation KWX×Y ⊆
X× Y × [n] is defined by

KWX×Y
def= {(x, y, i) : xi 6= yi}

Intuitively, KWX×Y corresponds to the communication problem in which Alice gets x ∈ X,
Bob gets y ∈ Y , and they would like to find a coordinate i ∈ [n] such that xi 6= yi (note that
x 6= y since X ∩ Y = ∅).

I Definition 2.10. Let f : {0, 1}n → {0, 1} be a non-constant function. The KW relation
of f , denoted KWf , is defined by KWf

def= KWf−1(0)×f−1(1).

We are now ready to state the connection between formulas and KW relations. We state the
connection for general rectangles, and the specialization to functions is straightforward.

I Theorem 2.11 (Implicit in [21]4). Let X,Y ⊆ {0, 1}n be two disjoint sets. Then, for every
formula φ that separates X and Y, there exists a protocol Πφ that solves KWX×Y , whose
underlying tree is the same as the underlying tree of φ. In the other direction, for every
protocol Π that solves KWX×Y there exists a formula φΠ that separates X and Y, whose
underlying tree is the same as the underlying tree of Π.

I Corollary 2.12 ([21]). For every two disjoints sets X,Y ⊆ {0, 1}n it holds that D(X ×
Y) = C(KWX×Y), and L(X × Y) = L(KWX×Y). In particular, for every non-constant
f : {0, 1}n → {0, 1}, it holds that D(f) = C(KWf ), and L(f) = L(KWf ).

Note that due to the connection between formula depth and formula size (Theorem 2.4),
it holds that the communication complexity C(KWf ) and the logarithm of the protocol
size log L(KWf ) are always within constant factor of each other. In order to streamline the
presentation, in many of the intuitive discussions in this paper we will identify those two
measures: for example, we will say that “Alice and Bob must transmit t bits” and mean that

3 This parameter is usually called the “protocol partition number” [25], but we prefer to use the term
“protocol size” in order to streamline the presentation.

4 This fact was discussed explicitly in [29, 19, 12].
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3:10 Toward the KRW Composition Conjecture

the protocol size is at least 2t. However, our formal results will always be about the protocol
size.

Throughout this work, we will rely extensively on the following sub-additivity property of
protocol size and formula complexity: for every X,Y ⊆ {0, 1}n such that X = X0 ∪ X1 and
Y = Y0 ∪ Y1, it holds that

L(X× Y) ≤ L(X0 × Y) + L(X1 × Y)
L(X× Y) ≤ L(X× Y0) + L(X× Y1).

To see why the first inequality holds, consider the following protocol for KWX×Y : Alice
starts by saying whether her input belongs to X0 or to X1. Then, the players proceed by
invoking the optimal protocol for either KWX0×Y or KWX1×Y . It is easy to see that the
size of this protocol is at most L(X0 ×Y) + L(X1 ×Y). The proof of the second inequality is
similar.

2.4 Information theory
We use basic concepts from information theory, see [9] for more details.

I Definition 2.13 (Entropy). The entropy of a random variable x is

H(x) def= Ex0←x

[
log 1

Pr [x = x0]

]
=
∑
x0

Pr [x = x0] · log 1
Pr [x = x0] .

The conditional entropy H(x|y) is defined to be Ey0←y[H(x|y = y0)].

I Fact 2.14. H(x) is non-negative and is upper bounded by the logarithm of the size of the
support of x. Equality is attained when x is uniformly distributed over its support.

The notion of mutual information between two variables x and y, defined next, measures
how much information x gives on y and vice versa. Intuitively, the information that x gives
on y is captured by how much the uncertainty about y decreases when x becomes known.

I Definition 2.15 (Mutual Information). The mutual information between two random
variables x, y, denoted I(x : y) is defined as

I(x : y) def= H(x)−H(x|y) = H(y)−H(y|x). (1)

For a random variable z, the conditional mutual information I(x; y|z) is defined as

I(x : y|z) def= H(x|z)−H(x|y, z) = H(y|z)−H(y|x, z).

I Fact 2.16. For all random variables x, y, z it holds that

0 ≤ I(x : y|z) ≤ H(x|z) ≤ H(x).

I Definition 2.17. The min-entropy of a random variable x is

H∞(x) = min
x0

{
log 1

Pr [x = x0]

}
.

In other words, H∞(x) is the minimum number h such that Pr [x = x0] = 2−h for some x0.

The following fact is an immediate consequence of the definitions of entropy and min-entropy.

I Fact 2.18. H∞(x) ≤ H(x).
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2.5 The lower bound for parity
Since our main result is a lower bound on KWf�⊕n , it is helpful to recall a proof of the
lower bound for KW⊕n . We prove that every protocol that solves KW⊕n must transmit at
least 2 logn bits, and more generally, must have at least n2 distinct transcripts. We use the
following fact from the field of interactive information complexity, which intuitively says that
the information that Alice and Bob learn from the execution of a protocol is at most the
information that an external observer learns.

I Fact 2.19 ([6]). Let Π be a protocol, and let xand y be random inputs to Alice and Bob
in Π respectively. Let π = Π(x, y) denote the transcript of Π when given x and y as inputs.
Then

I (π : x, y) ≥ I (π : x|y) + I (π : y|x) .

We also use the following definition of an edge of the boolean hypercube.

I Definition 2.20. An edge (of the boolean hypercube) is a pair of strings (x, y) in {0, 1}n

such that the parity of x is 0, and such that x and y differ on exactly one coordinate, which
is called the axis of the edge.

We are now ready to prove the lower bound. The following proof is due to [12], and is based
on the proof of [21].

I Theorem 2.21 ([22]). It holds that L(KW⊕n) ≥ n2.

Proof. Fix a protocol Π that solves the KW⊕n . Let (x, y) be a uniformly distributed edge of
the hypercube, and let j denote its axis. The intuition for the proof is the following: At the
end of the protocol, Alice and Bob must learn j, since it is the only valid output for (x, y).
On the other hand, at the beginning of the protocol, Alice and Bob know nothing about j.
Hence, throughout the protocol, each of them has to learn at least logn bits. In particular,
this means that each of them has to send at least logn bits to the other, and therefore the
protocol must send at least 2 logn bits in total.

Let π = Π(x, y) be the transcript of the protocol when Alice and Bob get x and y as
inputs. Since the entropy of a random variable is upper bounded by the logarithm of the
size of its support, it holds that

log L(Π) ≥ H(π) ≥ I(π : x, y).

Hence, it suffices to prove that I(π : x, y) ≥ 2 logn. By Fact 2.19, it holds that

I(π : x, y) ≥ I(π : x|y) + I(π : y|x).

We prove that both terms on the right hand side the are equal to logn, and this will imply
the desired lower bound. For I(π : y|x), observe that

I(π : y|x) = H(y|x)−H(y|x, π) = H(j|x)−H(j|x, π),

where the second equality holds because x and j together determine y, and x and y together
determine j. Now, the term H(j|x, π) is 0, because the transcript π reveals j (since it tells
where x and y differ). As for the term H(j|x), observe that j is uniformly distributed even
conditioned on x, and therefore H(j|x) = logn. It thus follows that I(π : y|x) ≥ logn.
Similarly, it holds that I(π : x|y) = logn. Those two equalities imply together than

log L(Π) ≥ I(π : x, y) ≥ I(π : x|y) + I(π : y|x) = 2 logn,

as required. J
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2.6 Error-Correcting Codes
A code C : {0, 1}n → {0, 1}n

′
is an injective function. The images of the code C are called

codewords, and we say that C has relative distance δ if the relative distance between every
two distinct codewords c, c′ is at least δ. The parameters n and n′ are called the message
length and the block length respectively. We use the following fact from coding theory:

I Fact 2.22. Let m,n ∈ N be numbers such that 2m/2 ≥ n. Then, there exists a code
C : {0, 1}n → {0, 1}2

m

with relative distance at least 1
2 −

1
2 ·

n
2m/2 . Furthermore, there exists

a polynomial-time algorithm when given as input m, n, and x ∈ {0, 1}n, computes C(x).

Proof sketch. The code C is the concatenation of a Reed-Solomon code of block length
2m/2 and degree n/(m/2) over GF(2m/2), and the Hadamard code of message length m/2.
It is easy to see that the concatenated code has the required message length and block
length. For the relative distance, observe that the Reed-Solomon code has relative distance
1 − n/(m/2)

2m/2 ≥ 1 − n
2m/2 , and that the Hadamard code has relative distance 1

2 . Hence, the
concatenated code has relative distance at least 1

2 −
1
2 ·

n
2m/2 , as required. J

We say that a code C : {0, 1}n → {0, 1}n
′
is (ρ, L)-list decodable if for every w ∈ {0, 1}n

′
,

there are at most L codewords c whose relative distance to w is less than ρ. We use the
following binary version of the Johnson bound, taken from [33].

I Theorem 2.23 (Johnson bound). A code C : {0, 1}n → {0, 1}n
′
with relative distance δ is

(ρ, n′)-list decodable for ρ def= 1
2 ·
(
1−
√

1− 2 · δ
)
.

By combining the Johnson bound with Fact 2.22, we get the following result.

I Corollary 2.24. The code C of Fact 2.22 is (ρ, 2m)-list decodable for ρ def= 1
2 −

1
2 ·
√

n
2m/2 .

3 Main theorem

In this section, we describe the proof of our main theorem, restated next.

I Theorem 1.2 (restated). Let f : {0, 1}m → {0, 1} be a non-constant function. Then,

L(f � ⊕n) ≥ L(f) · L(⊕n)
2Õ(
√
m+logn)

.

We actually prove the equivalent statement that says that any protocol that solves KWf�⊕n

has at least L(f) · L(⊕n)/2Õ(
√
m+logn) distinct transcripts.

The rest of this section is organized as follows: In Section 3.1, we state a structural result
about protocols that solve KWf�⊕n . Then, in Section 3.2, we prove the structural result
based on two lemmas that are proved in Sections 5 and 7 respectively. Next, in Section 3.3,
we explain how to derive the main theorem from the structural result. Finally, in Section 3.4,
we show how to derive the cubic lower bounds for Andreev’s function from our main theorem.

3.1 The structural result
Let us recall how the communication problem KWf�⊕n is defined. Alice and Bob get m× n
boolean matrices X and Y and should find an entry (i, j) on which the matrices differ. Let
a, b ∈ {0, 1}m be the strings obtained by computing the parity of each row of X and Y

respectively. Alice and Bob are guaranteed that a ∈ f−1(0) and b ∈ f−1(1). We would like
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to prove that Alice and Bob must first solve KWf on a and b, thus finding a row i ∈ [m]
such that ai 6= bi, and then solve KW⊕n on Xi and Yi.

Fix a protocol Π for KWf�⊕n and a partial transcript π1 of Π. Intuitively, our structural
result says that if Alice and Bob have not solved KWf yet in π1, then they have to send
about C(KW⊕n) more bits before they finish solving KWf�⊕n (actually, we will show the
analogous lower bound on protocol size).

To make sense of the statement “Alice and Bob have not solved KWf in π1” we must
first see how any protocol for KWf�⊕n contains (many copies of) a protocol for KWf . To
this end, we define some notation, starting by recalling the definition of an edge.

I Definition 2.20 (restated). An edge (of the boolean hypercube) is a pair of strings (z0, z1)
in {0, 1}n such that the parity of z0 is 0 and such that z0 and z1 differ on exactly one
coordinate, which is called the axis of the edge.

As we have seen in Section 2.5, the uniform distribution over edges of the boolean hypercube
is a hard distribution for KW⊕n . Therefore, we would like to use edges as inputs to KWf�⊕n .
Now, an input to KWf�⊕n contains m inputs to KW⊕n , and this motivates the following
definition.

I Definition 3.1. A product of edges is a pair of m× n boolean matrices Z = (Z0, Z1) such
that for every i ∈ [m], the pair (Z0

i , Z
1
i ) is an edge. Let Z =

{
(Z0, Z1)

}
denote the set of all

products of edges.

I Definition 3.2. Given Z = (Z0, Z1) ∈ Z and a string w ∈ {0, 1}m, we denote by Zw the
matrix defined by

Zwi
def= Zwii

for every i ∈ [m].

Observe that for every Z ∈ Z, there is a natural reduction from KWf to KWf�⊕n : Given
inputs a ∈ f−1(0) and b ∈ f−1(1) for Alice and Bob in KWf , we define inputs for Alice
and Bob in KWf�⊕n by X = Za and Y = Zb. We now execute the protocol for KWf�⊕n on
X and Y , and it outputs an entry (i, j) such that Xi,j 6= Yi,j . By the definition of X and Y ,
it follows that ai 6= bi, and therefore we obtained a solution for KWf on a and b. The above
reduction formalizes the idea that KWf�⊕n contains a copy of KWf for each Z.

Recall that we say that π1 is alive if Alice and Bob have not solved KWf in π1. Intuitively,
we will define the notion that “π1 is alive” as follows. First, we will say π1 is alive with
respect to a specific Z if after the players sent π1, they still have to send

√
m · poly logm bits

in order to solve the copy of KWf in KWf�⊕nthat corresponds to Z. We will say that π1 is
alive if it is alive for many (at least 2−2m fraction) of the Zs.

In order to formalize this intuitive definition, we generalize the reduction of KWf to
KWf�⊕n to sub-relations of KWf�⊕n . Let X ⊆ (f � ⊕n)−1(0) and Y ⊆ (f � ⊕n)−1(1), and
note that the rectangle X × Y defines a sub-relation KWX×Y of KWf�⊕n . Now, given
Z = (Z0, Z1), we can define a corresponding sub-relation of KWf by considering the
rectangle A× B defined as follows:

A def=
{
a ∈ f−1(0)|Za ∈ X

}
B

def=
{
b ∈ f−1(1)|Zb ∈ Y

}
.

We say that A× B is the f -rectangle of X× Y with respect to Z.
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3:14 Toward the KRW Composition Conjecture

We are now ready to formalize what it means for a partial transcript π1 of Π to be alive.
Recall that the transcript π1 is associated with a sub-rectangle Xπ1 × Yπ1 of KWf�⊕n in a
natural way – Xπ1 ×Yπ1 contains all the pairs on inputs on which Alice and Bob transmit π1.
For every product of edges Z, we denote by Aπ1,Z ×Bπ1,Z the f -rectangle of Xπ1 ×Yπ1 with
respect to Z.

I Definition 3.3. Given a partial transcript π1 of Π and Z ∈ Z, we say that π1 is `-alive
with respect to Z if L(Aπ1,Z × Bπ1,Z) ≥ 2`. We say that π1 is (`, α)-alive if it is `-alive with
respect to α fraction of the Z’s, i.e., if

Pr
Z∈Z

[
L(Aπ1,Z × Bπ1,Z) ≥ 2`

]
≥ α.

For our proof we will use α def= 2−2m and ` def= C ·
√
m · logC m for large enough constant

C > 0. We say that π1 is alive as short-hand for (`, 2−2m)-alive. We can finally state our
structural result formally.

I Theorem 3.4 (Structure theorem). Let Π be a protocol for KWf�⊕n and let π1 be a live
partial transcript of Π. Then, there exist at least L(⊕n)/2Õ(

√
m) distinct suffixes π2 such that

π1 ◦ π2 is a (full) transcript of Π.

3.2 Proof of the structure theorem
Let Π be a protocol for KWf�⊕n , and let π1 be a live partial transcript of Π. Intuitively, we
wish to prove that after Alice and Bob have transmitted the messages in π1, they have to
transmit another log L(⊕n)− Õ(

√
m) bits in order to solve KWf�⊕n . To this end, we will

design a distribution over inputs X ∈ Xπ1 and Y ∈ Yπ1 for Alice and Bob, and show that in
order to solve KWf�⊕n on inputs coming from this distribution, Alice and Bob must transmit
log L(⊕n)− Õ(

√
m) bits (and thus must have L(KW⊕n)/2Õ(

√
m) distinct transcripts).

In order to design the latter distribution, we use the fact that the hardest distribution
over inputs for KW⊕n is the uniform distribution over edges of the boolean hypercube (see
Section 2.5). Our distribution for KWf�⊕n will look roughly as follows. Let Zπ1 ⊆ Z be
the set of Zs that are “alive for π1”, i.e. for which L(Aπ1,Z × Bπ1,Z) ≥ 2`. We will choose
a random Z ∈ Zπ1 , then pick a ∈ Aπ1,Z and b ∈ Bπ1,Z at random, and then set X = Za

and Y = Zb.
Observe that X and Y have the following property: for every i ∈ [m], it either holds that

Xi = Yi (when ai = bi) or that Xi and Yi form an edge (when ai 6= bi). In particular, it is
intuitively clear that when given inputs from this distribution, Alice and Bob must solve
KW⊕n on some Xi and Yi that form an edge. If we could show that this edge is always
uniformly distributed, we could easily complete the argument by showing that Alice and
Bob must send log L(⊕n) bits. Indeed this would work if Z was uniform over all products of
edges, i.e. if Zπ1 = Z.

Unfortunately, Zπ1 consists only of α = 2−2m fraction of the products of edges, and
therefore we cannot guarantee that Xi and Yi form a uniformly distributed edge. However,
intuitively, Alice and Bob “know” only 2m bits of information on Z, and therefore they know
only two bits of information on the average row (Xi, Yi). By an averaging argument, on most
rows, Alice and Bob know very little information. Such rows are still hard for KW⊕n , and
therefore Alice and Bob must still transmit about log L(⊕n) in order to solve KWf�⊕n on
one of those rows. If this is the case, we are done.

One must be careful because there could still be a few “revealed” rows on which Alice and
Bob have a lot of information, and such rows might be easy for KW⊕n . In order to prevent
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Alice and Bob from solving KWf�⊕n on those rows, we choose the distribution such that
for every such row i it holds that ai = bi. This forces the equality Xi = Yi, and therefore
prevents Alice and Bob from solving KWf�⊕n on the i-th row.

The following definition captures the essential properties of our distribution. The amount
of information that Alice and Bob know about an edge is modeled using the min-entropy
of the axis of the edge. The parameter t specifies the maximal amount of information that
Alice and Bob may know on the axis of a row, and the set R consists of the rows on which
Alice and Bob have too much information.

I Definition 3.5. Let X and Y be random m×n matrices. We say that (X,Y ) is a t-almost
hard distribution if there exists a set R ⊆ [m] such that the following properties hold:

For every i ∈ R, it holds that Xi = Yi.
For every i ∈ [m]−R, there is a random coordinate ji such that

Either Xi = Yi, or Xi = Yi + eji i.e. Xi and Yi form an edge with axis ji.
For every specific choice X∗ of X it holds that H∞(ji|X = X∗) ≥ logn− t.
For every specific choice Y ∗ of Y it holds that H∞(ji|Y = Y ∗) ≥ logn− t.

The above argument is implemented in the following two lemmas, which are proved in
Sections 7 and 5 respectively, and which together imply the structure theorem immediately.
The first lemma says that there exists an almost-hard distribution over inputs that are
consistent with π1. Since this is the most involved part in our proof, we refer to it as the
“main lemma”.

I Lemma 3.6 (Main Lemma). Let Π be a protocol for KWf�⊕n , and let π1 be a live partial
transcript of Π. Then, there exists a t-almost hard distribution that is supported on Xπ1×Yπ1 ,
where t def= c ·

√
m · logcm for some absolute constant c > 0.

The second lemma states that a hard distribution is indeed hard, i.e., that on inputs from
this distribution, the players must transmit about log L(⊕n) bits. We refer to this lemma as
the “parity-stage lemma”, since it analyzes the stage of the protocol Π in which the players
solve KW⊕n .

I Lemma 3.7 (Parity-stage Lemma). Let Π2 be a protocol that solves KWf�⊕n on a t-almost
hard distribution (X,Y ) with probability 1. Then, Π2 has at least L(⊕n)/22t transcripts.

3.3 Proof of the Main Theorem
We now explain how to prove our main theorem using the structure theorem. To this
end, we use the following lemma, which says that there are many appropriate live partial
transcripts π1 to which the structure theorem can be applied. We refer to this lemma as
the “f -stage lemma” since we view π1 as the stage of the protocol in which the players
solve KWf .

I Lemma 3.8 (f -stage lemma). Let Π be a protocol for KWf�⊕n of depth d. Then, there exist
at least L(f)/

(
2Õ(
√
m) · d2

)
alive partial transcripts π1 of Π, none of them is an ancestor of

another.

The intuition for the f -stage lemma is straightforward: if the players spoke less than

log L(f)− Õ(
√
m) ≤ C(KWf )− Õ(

√
m)

bits, then they could not have solved KWf yet. The proof is is provided in Section 4.
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We turn to the proof of the main theorem. Let Π be a protocol that solves KWf�⊕n . We
would like to show that it has at least L(f) · L(⊕n)/2Õ(

√
m+logn) distinct transcripts. The

natural way to do so would be the following: first, we would apply the f -stage lemma to
show that there are ≈ L(f) alive partial transcripts π1. Then, we would apply the structure
theorem to those transcripts, thus showing that each of them has ≈ L(g) suffixes. We would
conclude that Π has ≈ L(f) · L(g) distinct transcripts, as required.

This proof almost works, but has one issue: the f -stage lemma loses a factor that depends
on the depth of Π. Thus, if Π has very large depth, the number of alive partial transcripts π1
may be insufficient to prove the desired lower bound. In order to resolve this issue, we
use a theorem that says that any protocol can be “balanced”, i.e., every protocol can be
transformed into an equivalent protocol whose depth is logarithmic in its size. We apply
this theorem to Π to obtain a new balanced protocol Π′, and then apply the foregoing proof
to Π′. Specifically, we use the following theorem, which was stated in Section 2 for formulas,
and which we now restate for protocols solving KW relations:

I Theorem 2.4 (restated – [4], following [31, 7]). For every α > 0 the following holds: Let Π
be a protocol of size s that solves a KW relation KWf . Then, there exists a protocol Π′ of
depth at most O(2 1

α · log s) and size at most s1+α that solves KWf .

Proof of the main theorem. Let Π be a protocol that solves KWf�⊕n , and let us denote its
size by S. We wish to prove that S ≥ L(f) · L(⊕n)/2Õ(

√
m+logn). We may assume without

loss of generality that

S ≤ L(f) · L(⊕n) ≤ 2m · n2,

since otherwise we are done. We apply Theorem 2.4 to Π with α = 1√
m+logn

, thus obtaining
a new protocol Π′ whose depth and size are

d′ ≤ O
(

2
√
m+logn · (m+ 2 logn)

)
= 2O(

√
m+logn)

S′ ≤ S
1+ 1√

m+logn ,

respectively. We will prove that S′ ≥ L(f) · L(⊕n)/2Õ(
√
m+logn), and this will imply the

same lower bound for S as follows:

S ≥ (S′)
1/(1+ 1√

m+logn
)

≥ (S′)
1− 1√

m+logn

= S′/ (S′)
1√

m+logn

(Since S′ ≤ S2) ≥ S′/S
2√

m+logn

(Since S ≤ 2m · n2) ≥ S′/
(
2m · n2) 2√

m+logn

= S′/2O(
√
m+logn)

≥ L(f) · L(⊕n)/2Õ(
√
m+logn).

In order to prove that S′ ≥ L(f) · L(⊕n)/2Õ(
√
m+logn), we apply the f -stage lemma to Π′,

thus obtaining a collection of L(f)/2Õ(
√
m+logn) alive partial transcripts π1, none of which

is an ancestor of another. For each such π1, we apply the structure theorem and obtain
L(⊕n)/2Õ(

√
m) distinct suffixes π2 such that π1 ◦ π2 is a transcript of Π′. Since none of the
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π1’s is an ancestor of another, all the transcripts π1 ◦ π2 obtained in this way are distinct. It
follows that the number of distinct transcripts π1 ◦ π2 constructed in this way is at least

L(f) · L(⊕n)/2Õ(
√
m+logn),

as required. J

3.4 Cubic Lower Bounds for Andreev’s Function
In this section, we derive the cubic lower bounds for Andreev’s function from our main
theorem. The following argument is due to Andreev [1], and was used in all the works on
Andreev’s function.

I Theorem 1.1 (restated). Let Andn : {0, 1}n → {0, 1} be Andreev’s function [1] over n bits.
Then,

L(Andn) ≥ n3−o(1).

Andreev’s function is defined as follows: the input consists of two parts, each of length n/2.
The first part is the truth table of a function f : {0, 1}m → {0, 1} over m def= log(n/2) bits.
The second part is a sequence x1, . . . , xm of strings in {0, 1}n/2m. Andreev’s function is now
defined by

AndN (f, x1, . . . , xm) def= (f � ⊕ n
2m

)(x1, . . . , xm).

Proof of Theorem 1.1. It is well known that there are functions over m bits whose formula
complexity is at least 2m/ logm (see, e.g., [17, Theorem 1.23]). We fix the input f : {0, 1}m →
{0, 1} of Andn to be such a function. Clearly, the formula complexity of Andn can only
be decreased by such a fixing. After the fixing, the function Andn is exactly the function
f � ⊕ n

2m
. By our main theorem, the formula complexity of the latter function is at least

2m−Õ(
√
m+logn) ·

( n

2m

)2
= n3−Õ(

√
logn).

Therefore, the formula complexity of Andn is at least n3−o(1), as required. J

4 The f -Stage Lemma

In this section we prove the f -stage lemma. Before we restate the lemma, let us restate the
definition of a alive partial transcript.

I Definition 3.3 (restated). Given a partial transcript π1 of Π and Z ∈ Z, we say that π1 is
`-alive with respect to Z if L(Aπ1,Z ×Bπ1,Z) ≥ 2`. We say that π1 is (`, α)-alive if it is `-alive
with respect to α fraction of the Z’s, i.e., if

Pr
Z∈Z

[
L(Aπ1,Z × Bπ1,Z) ≥ 2`

]
≥ α.

We say that π1 is alive if it is (` = C ·
√
m · logC m,α = 2−2m)-alive (where C is some large

constant to be fixed later).

I Lemma 3.8 (restated – f -stage lemma). Let Π be a protocol for KWf�⊕n of depth d. Then,
there exist at least L(f)/

(
2Õ(
√
m) · d2

)
alive partial transcripts π1 of Π, none of them is an

ancestor of another.
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For the rest of this section, we fix Π to be a protocol for KWf�⊕n . Let `
def= C ·

√
m · logC m be

the parameter from the definition of “alive”. We will prove that Π has at least L(f)/O(2` · d2)
partial transcripts π1 are alive, none of them is an ancestor of another.

This section is organized as follows: We start with a motivating discussion for the proof
in Section 4.1. Next, in Section 4.2, we prove the f -stage lemma based on a combinatorial
lemma, which is then proved in Section 4.3. Finally, in Section 4.4, we state and prove a
generalization of the f -stage lemma, which will be used in Section 8 below to prove the
average-case version of the main theorem.

4.1 Motivation

The basic intuition for the f -stage lemma is the following: Recall that for every product of
edges Z ∈ Z, there is copy of KWf that is embedded in KWf�⊕n , obtained by mapping
inputs a and b for KWf into the inputs X def= Za and Y def= Zb for KWf�⊕n .

Now, suppose that we choose a uniformly distributed Z ∈ Z and some inputs a and b
according to some (unspecified) distribution, and then we run the protocol Π on inputs
X

def= Za and Y def= Zb until it transmits log L(f)− ` bits. Let π1 be the resulting transcript.
Intuitively, since Π only transmitted log L(f)− ` bits in π1, the players must still transmit
at least ` bits in order to solve KWf . On the other hand, since log L(f) − ` ≤ 2m, the
protocol has revealed at most 2m bits of information on Z. Therefore, we expect that after
transmitting π1, the players will still be “` bits far” from solving the copy KWf for at least
2−2m fraction of the Z’s – and this is roughly the definition of π1 being alive.

The above intuitive argument can be formalized, and it shows that there exists at least
one alive transcript π1 of length log L(f)− `. However, we want to prove something stronger:
we want to prove that there exist many alive transcripts π1 – specifically, we wish to prove
that there are about L(f)/2` such transcripts. It turns out that this claim is more difficult to
prove. To see why, it is useful to consider the following simpler version of the f -stage lemma,
which refers to KWf rather than KWf�⊕n :

I Lemma. Let Πf be a protocol that solves KWf . Then, there exist L(f)/2` partial tran-
scripts πf of Πf whose corresponding rectangle Aπf ×Bπf satisfies L(Aπf ×Bπf ) ≥ 2`, none
of them is an ancestor of another.

It turns out that this “lemma” is false. To see why, consider the protocol Πf for KWf in
which Alice sends Bob the unary representation of her input a – in other words, Alice views a
as a number and sends the string 1a0 to Bob. After receiving Alice’s message, Bob knows a
coordinate i such that ai 6= bi and sends it to Alice using logm bits. It is now easy to see
that every partial transcript π of the form 1t0 satisfies

L(Aπ × Bπ) ≤ m� 2`.

Therefore, the only partial transcripts πf for which L(Aπf × Bπf ) ≥ 2` are those of the form
1t for some t ∈ N. However, it is obvious that we cannot find even two such transcripts such
that neither of them is an ancestor of the other, and therefore the claim is false.

A notable feature of the counterexample Πf above is that it is very unbalanced; in
particular, its depth is more than 2m. It turns out that a variant of the above lemma holds
if we consider only protocols Πf that are not too deep. Specifically, we have the following
result.
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I Lemma 4.1. Let Πf be a protocol of depth d that solves KWf . Then, there exist

L(f)
(d+ 1) · d · 2`

partial transcripts πf of Πf whose corresponding rectangle Aπf ×Bπf satisfies L(Aπf ×Bπf ) ≥
2`, none of them is an ancestor of another.

As far as we know, Lemma 4.1 is new, and we believe that it is interesting in its own right. In
order to go from Lemma 4.1 to the f -stage lemma, we first observe that the only property of
protocols that Lemma 4.1 uses is the fact that the protocol size L(·) is a sub-additive measure.
We therefore generalize Lemma 4.1 to a general lemma about sub-additive measures on trees:

I Definition 4.2. Given a rooted binary tree T = (V,E), we say that φ : V → N is a
sub-additive measure on T if for every vertex u with children v and w in T it holds that
φ(u) ≤ φ(v) + φ(w).

I Lemma 4.3. Let T = (V,E) be a rooted binary tree with root r and depth d, and let φ be
a sub-additive measure on T . Suppose that there is some t0 ∈ N such that φ(l) ≤ t0 for every
leaf l of T . Then, for every t ∈ N such that t ≥ t0 there are at least⌊

φ(r)
(d+ 1) · d · t

⌋
vertices v with φ(v) ≥ t, none of which is the ancestor of another.

Lemma 4.1 is a special case of Lemma 4.3 where the tree T is the protocol Πf , and where
the sub-additive measure φ is defined by

φ(π) def= L(Aπ × Bπ).

Now, in order to prove the f -stage lemma, we apply Lemma 4.3 to the protocol Π with
a different sub-additive measure. This measure takes into account both the complexity of
rectangles of the form Aπ1,Z × Bπ1,Z and the number of Z’s. We can therefore obtain many
transcripts π1 for which L(Aπ1,Z × Bπ1,Z) is large for many of the Z’s, as required by the
f -stage lemma.

We prove the f -stage lemma from Lemma 4.3 in Section 4.2, and then prove Lemma 4.3
in Section 4.3.

4.2 Proof of the f -stage lemma
Let us view Π as a tree, and its partial transcripts as vertices. We define the following
measure on Π:

φ(π) def= EZ [L(Aπ,Z × Bπ,Z)] .

where the expectation is with respect to a uniformly chosen Z ∈ Z. This measure is sub-
additive since for every fixed Z, the measure L(Aπ,Z ×Bπ,Z) is sub-additive. Furthermore, it
holds that:

φ assigns L(f) to the root of Π.
For every leaf π of Π, it holds that φ(π) ≤ 1. The reason is that a leaf π must solve
KWf�⊕n , and in particular must solve KWf with respect to any Z that can reach it.
Hence, L(Aπ,Z × Bπ,Z) ≤ 1.
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We now apply Lemma 4.3 to Π and φ with t = 2 · 2`, and we get that there are at least

L(f)
(d+ 1) · d · 2 · 2` = L(f)

O(d2 · 2`)

partial transcripts π1 such that φ(π1) ≥ 2 · 2`, none of them is an ancestor of another. We
show that every such transcript π1 is alive, and this will conclude the proof.

Let π1 be partial transcript such that φ(π1) ≥ 2 · 2`. In other words, it holds that

EZ∈Z [L(Aπ,Z × Bπ,Z)] ≥ 2 · 2`.

We now apply a standard averaging argument as follows. Since for any Z it holds that
L(Aπ,Z × Bπ,Z) ≤ L(f), there must be at least 2`/L(f) fraction of Z’s for which L(Aπ,Z ×
Bπ,Z) ≥ 2` (otherwise the expectation cannot reach 2 ·2`). Since 2`/L(f) > 2−2m we conclude
that π1 is (`, 2−2m)-alive, as required.

4.3 Proof of Lemma 4.3
Proof. Fix t ∈ N. We can assume that φ(r) ≥ (d+ 1) · d · t since otherwise there is nothing
to prove. We say that a vertex v is a maximal vertex if φ(v) ≤ d · t, and φ assigns to its
parent a number that is greater than d · t. We claim that T has at least φ(r)/d · t maximal
vertices: To see it, observe that there is a maximal vertex on every path from the root r to a
leaf (since φ takes value t0 at the leaves and at least (d+ 1)dt > dt at the root). Hence, by
the sub-additivity, if we denote by M the set of maximal vertices, we get that

φ(r) ≤
∑
v∈M

φ(v) ≤ d · t · |M | .

This implies that |M | ≥ φ(r)/d · t, as required. We say that a maximal vertex v is good if
φ(v) ≥ t, otherwise we say it is bad. We will prove that at least 1/(d + 1) fraction of the
maximal vertices are good, and this will imply the required result.

Let T ′ be the tree obtained by trimming T at maximal vertices – that is, for every
maximal vertex v, we remove all the descendants of v and leave v as a leaf of T ′. From
now on, we refer to maximal vertices as leaves (since they are leaves of T ′). In the new
terminology, we wish to prove that at least 1/(d+ 1) fraction of the leaves of T ′ are good.
We will prove it by constructing a d-to-1 mapping from the bad leaves to the good leaves. In
order to construct this mapping, we use the following claim.

I Claim 4.4. Every internal node of T ′ has at least one good leaf as a descendant.

Proof. It suffices to prove the claim for internal nodes u such that φ(u) ≤ 2 · d · t, since every
other internal node clearly has an internal descendant that satisfies this property.

Fix an internal node u such that φ(u) ≤ 2 · d · t. Now, observe that in the sub-tree rooted
at u, every internal node has at least one child that is a leaf. In other words, this sub-tree
looks like a path, with a leaf hanging from each vertex in the path. Therefore, this sub-tree
contains at most d leaves. If all of those leaves were bad, then φ(u) would have been less
than d · t (since by the sub-additivity, φ(u) is at most the sum of φ(v) for every leaf v in the
sub-tree). However, we assumed that u is an internal node, and therefore φ(u) is greater
than d · t. Hence, at least one of the leaves must be good. J

Now, we define the mapping from the bad leaves to the good leaves as follows: Let vbad be
a bad leaf, and let u be the parent of vbad. Then, we map vbad to some arbitrarily chosen
good leaf vgood that is a descendant of u – such a leaf vgood exists by the above claim.
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We conclude the proof by showing that this mapping is d-to-1. Fix a good leaf vgood.
Then, all the bad leaves that are mapped to vgood are direct children of the ancestors of vgood.
Since T is of depth d, it follows that vgood has at most d ancestors, and therefore there are
at most d bad leaves that are mapped to vgood. It follows that at least 1/(d+ 1) fraction of
the leaves are good, as required. J

4.4 Generalized f -stage lemma
In this section, we prove a generalization of the f -stage lemma, that will be used in Section 8
below to prove the average-case version of the main theorem. While the f -stage lemma
applies to protocols Π that solve KWf�⊕n , the generalization applies to protocols that only
solve a sub-rectangle X×Y of KWf�⊕n , provided that X×Y has many “hard” f -rectangles.
Recall that given a sub-rectangle X×Y of KWf�⊕n and a product of edges Z, the f -rectangle
of X× Y with respect to Z is the rectangle A× B defined by:

A def=
{
a ∈ f−1(0)|Za ∈ X

}
B

def=
{
b ∈ f−1(1)|Zb ∈ Y

}
.

We have the following result.

I Lemma 4.5 (generalized f -stage lemma). Let s ∈ N. Let X × Y be a sub-rectangle
of KWf�⊕n such that for at least 2−m fraction of the Z’s, the f-rectangle A× B of X× Y
with respect to Z satisfies L(A× B) ≥ s. Let Π be a protocol for KWX×Y of depth d. Then,
there exist at least s/O(2` · d2) alive partial transcripts π1 of Π, none of them is an ancestor
of another.

Proof. Let Z ′ be the set of Z’s for which the f -rectangle A × B of X × Y with respect
to Z satisfies L(A× B) ≥ s. As in the proof of the f -stage lemma in Section 4.2, we apply
Lemma 4.3 to Π and φ where

φ(π) def= EZ∈Z′ [L(Aπ,Z × Bπ,Z)] .

We can lower bound the value that φ assigns to the root of Π by s, and upper bound each
leaf by 1. We apply the lemma with t = 2 · 2`. We thus obtain that there are at least

s

O(d2 · 2`)

partial transcripts π1 with φ(π1) ≥ 2 · 2`.
We now apply an averaging argument as before. Since for any Z ∈ Z ′ it holds that

L(Aπ,Z × Bπ,Z) ≤ L(f), there must be at least 2`/L(f) fraction of Z’s in Z ′ for which
L(Aπ,Z × Bπ,Z) ≥ 2` (otherwise the expectation cannot reach 2`). Since 2`/L(f) > 2−m we
conclude that L(Aπ,Z ×Bπ,Z) ≥ 2` for 2−m fraction of Z ∈ Z ′ which is at least 2−2m fraction
of Z. So π1 is (2`, 2−2m)-alive as required. J

5 The Parity-Stage Lemma

In this section, we prove the parity-stage lemma, restated next. It is instructive to compare
this proof to the proof of the lower bound for KW⊕n in Section 2.5.

I Lemma 3.7 (restated). Let Π2 be a protocol that solves KWf�⊕n on a t-almost hard
distribution (X,Y ) with probability 1. Then, Π2 has at least L(⊕n)/22t transcripts.
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Proof. The basic idea of the proof is similar to that of the lower bound for KW⊕n in
Section 2.5: At the end of the protocol, Alice and Bob must learn an axis ji for some
i ∈ [m]−R, since the matrices X and Y differ only such axes. On the other hand, at the
beginning of the protocol each of them knows at most t bits on each axis ji, due to the
definition of an almost hard distribution. Therefore, by the end of the protocol, each of the
players has to learn at least logn− t bits of information, and the protocol must transmit at
least 2 logn− 2t bits in total. The difference between this proof an the proof in Section 2.5
is that in the current proof, the players may choose which axis ji they will learn among
multiple options, and this complicates the argument a bit. Details follow.

Assume, for the sake of contradiction, that there is a protocol Π2 that solves KWf�⊕n
on a t-almost hard distribution (X,Y ) and is too efficient, i.e., has less than L(⊕n)/22t

transcripts. Let π2 = Π2(X,Y ) be the (random) transcript of Π2 when Alice and Bob get X
and Y as inputs. By assumption, the support of π2 is of size less than L(⊕n)/22t = n2/22t,
and therefore

I(π2 : X,Y ) ≤ H(π2) < 2 logn− 2t.

On the other hand, by Fact 2.19 it holds that

I(π2 : X,Y ) ≥ I(π2 : X|Y ) + I(π2 : Y |X).

Hence, at least one of the terms on the right-hand side is smaller than logn− t. Without
loss of generality, assume that it is I(π2 : Y |X). It thus holds that

logn− t > I(π2 : Y |X) = H(π2|X)−H(π2|X,Y ) = H(π2|X),

where the last equality holds since X and Y determine π2. Hence, there exists some specific
X∗ such that H(π2|X∗) < logn − t. Furthermore, since entropy is an upper-bound on
min-entropy (Fact 2.18), it follows that H∞(π2|X∗) < logn − t. Therefore, there exists a
specific transcript π∗2 such that log 1

Pr[π∗2 |X∗]
< logn− t or in other words,

Pr [π∗2 |X∗] >
2t

n
. (2)

Suppose that this transcript π∗2 ends by outputting (i∗, j∗). Assuming the protocol solves
KWf�⊕n , this means that for all X,Y ’s consistent with π∗2 , it holds that Xi∗,j∗ 6= Yi∗,j∗ .

Now, let R ⊆ [m] be the set whose existence is guaranteed by the definition of an
almost-hard distribution. We consider two cases, i∗ ∈ R and i∗ /∈ R, and show that in both
cases there is a non-zero probability that Xi∗,j∗ = Yi∗,j∗ conditioned on π∗2 , thus obtaining
a contradiction to the correctness of the protocol. Suppose first that i∗ ∈ R. In this case,
it holds that Xi∗ = Yi∗ with probability 1. In particular, it follows that Xi∗,j∗ = Yi∗,j∗ , as
required.

Next, suppose that i∗ /∈ R. This means that there is a random coordinate ji∗ such that
either Xi∗ = Yi∗ , or Xi∗ and Yi∗ differ only on ji∗ . Moreover, it holds that

H∞(ji∗ |X∗) ≥ logn− t,

and in particular,

Pr [ji∗ = j∗|X∗] ≤ 2t

n
. (3)
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By combining Inequalities 2 and 3, it holds that

Pr [ji∗ = j∗|X∗, π∗2 ] < 1.

The latter inequality implies that conditioned on X∗ and π∗2 , the event “ji∗ 6= j∗” has
non-zero probability. Now, observe that in this event it must hold that Xi∗,j∗ = Yi∗,j∗ , since
ji∗ is the only coordinate on which Xi∗ and Yi∗ may differ. We conclude X∗i∗j∗ = Y ∗i∗j∗ with
non-zero probability and this contradicts the correctness of the protocol. J

6 Technical tools

In this section we describe two technical tools that may be of independent interest.
The first is an averaging argument for min-entropy. Basically, it says that if we reveal

t� m bits of information on an m-tuple, then on most elements almost no information was
revealed.

The second tool, which we call fortification, is a way to relate the information transmitted
between Alice and Bob to the communication complexity of the residual problem. This
is important because some of the steps we take in the proof of the main lemma reveal
information to Alice and Bob, and we need to make sure that this does not decrease the
complexity of the problem by too much.

6.1 An averaging argument for min-entropy
In our proof of the main lemma, we would like to say that if Alice and Bob communicated a
small amount of information on the average row, then they communicated a small amount of
information on most rows. This requires some sort of an averaging argument for information.
Such an averaging argument is easy to prove for entropy, and was proved by [10] for an
information measure called “predictability”. In this section, we prove such an averaging
argument for min-entropy.

On the high level, the averaging argument says that if at most r bits of information
were communicated on a tuple (u1, . . . , um) of random variables, then for every k ≥ 1, at
most r

k bits of information were communicated on all but k of the random variables. As
a warm-up, we first prove the following weak version of our averaging argument. We note
that the following proof is similar to the proof of [10], and is also in the spirit of standard
arguments from the literature on extractors.

I Lemma 6.1 (Weak averaging argument for min-entropy). Let U be some finite universe,
and let u = (u1, . . . , um) be a tuple of random variables taking values in U such that
H∞(u) ≥ m log |U| − r. Then, for every k ≥ 1, there exists a set R ⊆ [m] of size at most k,
and an event E ⊆ Um of probability at least |U|−k, such that for every i ∈ [m]−R it holds
that

H∞(ui|E) ≥ log |U| − r

k
.

Proof. In what follows, for every S ⊆ [m] we denote by uS the tuple of ui’s that belong
to S. We construct the set R and the event E iteratively. We start with R = ∅ and E = Um.
Then, in each iteration, if there is some i ∈ [m] −R that violates the above requirement,
we add it to the set R. More specifically, if i violates the requirement, then there is some
specific value u∗i such that

Pr [u∗i |E] ≥ 2r/k

|U|
.
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Then, we add i to R, and add the condition ui = u∗i to the event E (i.e., we set E to
E ∩ {u′ : u′i = u∗i }). The process stops when there is no i ∈ [m] − R that violates the
requirement.

It remains to prove that |R| ≤ k. To this end, we prove that the following invariant is
maintained throughout the iterations:

H∞(u[m]−R|E) ≥ (m− |R|) · log |U| − r + r

k
· |R| .

This will imply the required upper bound on |R|, since clearly the left-hand side cannot
exceed (m− |R|) · log |U|.

We prove that the invariant is maintained by induction. First, note that it holds trivially
when the process starts, i.e., when R = ∅ and E = Um. Next, suppose that the invariant
holds at the beginning of some iteration, and that in this iteration we add a coordinate i to
R. Then, for every assignment u∗[m]−(R∪{i}) ∈ U [m]−(R∪{i}), it holds that

Pr
[
u[m]−(R∪{i}) = u∗[m]−(R∪{i})|E, ui = u∗i

]
=

Pr
[
u[m]−(R∪{i}) = u∗[m]−(R∪{i}) and ui = u∗i |E

]
Pr [ui = u∗i |E]

≤ 2−[(m−|R|)·log|U|−r+ r
k ·|R|]/Pr [ui = u∗i |E] (4)

≤ 2−[(m−|R|)·log|U|−r+ r
k ·|R|]/2−(log|U|−r/k) (5)

= 2−[(m−|R|−1)·log|U|−r+ r
k ·(|R|+1)],

where Inequality 4 holds due to the induction hypothesis, and Inequality 5 holds since i
violates the requirement. This implies that

H∞(u[m]−(R∪{i})|E, u∗i ) ≥ (m− |R ∪ {i}|) · log |U| − r + r

k
· |R ∪ {i}| ,

as required. Hence, it holds that |R| ≤ k when the process ends. It is now easy to see

that when the process ends, the probability of E is at least
(

2r/k
|U|

)k
≥ |U|−k. The result

follows. J

The reason we say that the above lemma is weak is because it only provides a lower bound
of |U|−k on the probability of the event E, which is very small when U is large. Intuitively,
this means that in order to use this lemma, we need to reveal a lot of information to Alice
and Bob. We therefore prove the following stronger version of the lemma that gives a lower
bound of m−O(k), which is better when m is much smaller than U , as is the case in our
application. To the best of our knowledge, this stronger version of the lemma is new.

The basic idea of the proof is the following: whenever a coordinate i violates the
requirement, it is because there was some “heavy” value u∗i . In the above proof, we resolved
this situation by conditioning on ui = u∗i , but this event may have a very low probability.
In order to condition on an event with a higher probability, we consider two cases: If the
heavy values, taken together, have relatively high probability, then we condition on the event
that ui takes a heavy value and add i to R. If, on the other hand, the heavy values, taken
together, have low probability, then we condition on ui not taking a heavy value, and do not
add i to R – hopefully, this will resolve the issue, because after discarding the heavy values,
ui will satisfy the requirement. This idea works, except for two minor issues:
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When we condition on i not taking a heavy value, this conditioning may cause new values
to become heavy, even if they were not heavy before. This may get us into a “vicious
cycle” of discarding values. In order to resolve this issue, whenever we discard heavy
values, we increase the threshold that determines which values are considered heavy, so
no new heavy values can be created immediately.
When we condition ui on any event – whether it is taking a heavy value or not taking a
heavy value – it may cause new values to become heavy for another random variable ui′ .
This may get us into a different “vicious cycle”, in which we condition ui, then condition
ui′ , then condition ui again, etc. In order to resolve this issue, we choose the different
parameters such that ui may cause new heavy values for another coordinate ui′ only if ui
was conditioned on taking a heavy value. However, when ui is conditioned on taking a
heavy value, it is added to R, and thus will not be selected again. Thus, the “vicious
cycle” cannot happen.

We turn to provide the formal lemma and proof.

I Lemma 6.2 (Averaging argument for min-entropy). Let U be some finite universe, and
let u = (u1, . . . , um) be a tuple of random variables taking values in U such that H∞(u) ≥
m log |U| − r. Then, for every k ≥ 1, there exists a set R ⊆ [m] of size at most k, and an
event E of probability at least 1

4 ·m
−2k, such that for every i ∈ [m]−R it holds that

H∞(ui|E) ≥ log |U| − r + 4
k
− 2 · logm− 2.

Proof. For convenience, we denote

τ
def= log |U| − r + 4

k
− 2 · logm,

that is, τ is the threshold of the lemma except for the additive term of −2.
We construct the set R and the event E iteratively. We start with R = ∅ and E = Um.

In each iteration, we select a coordinate i ∈ [m] and do something with it. We describe a
single iteration: Suppose that there is a coordinate i ∈ [m]−R that has been chosen in p
previous iterations and that satisfies

H∞(ui|E) ≤ τ + log(1− 1
m

)p.

Then, we select the coordinate i (the right-hand side is going to be the threshold that controls
which values are considered “heavy”). By assumption, there exist values u∗i such that

Pr [u∗i |E] ≥ 2−τ/
(

1− 1
m

)p
.

We define those values to be our “heavy values”. Let E′ be the event that ui takes a heavy
value. We consider two cases:

If Pr [E′|E] ≥ 1
m2 , then we set E = E ∩ E′ and add i to R.

Otherwise, we set E = E − E′.
The following claim deals with the issues from the discussion above. Specifically, it shows
that we chose the parameters in a way such that “new heavy values” can be created only by
the first case above but not by the second case.

I Claim 6.3. The second case above cannot occur twice for the same coordinate i without
the first case occurring in between (for some index).
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Proof. Suppose otherwise. This means that there are some coordinate i and numbers h1 ≤ h2
such that the second case occurred for i in both the h1-th and h2-th iterations, and the
first case did not occur for any coordinate between those two iterations. Without loss of
generality, we choose i, h1, h2 such that h2 − h1 is minimal among all the triplets (i, h1, h2)
that satisfy those conditions.

Let p be the number of iterations in which i has been chosen before the h1-th iteration. Let
E1 and E2 be the event E at the h1-th and the h2-th iterations respectively. By assumption,
only the second case happened for all the coordinates between those two iterations, and all
those coordinates have been chosen at most once (because we assumed h2 − h1 is minimal).
This implies that there have been at most m iterations between the h1-th and h2-th iterations,
and in each of those iterations, the second case occurred. Now, observe that every time the
second case occurs, the probability of E is multiplied by a factor that is at least 1 − 1

m2 .
Therefore,

Pr [E2|E1] ≥
(

1− 1
m2

)m
≥ 1− 1

m
.

Let E′1 be the event E′ at the h1-th iteration, and observe that E2 ⊆ E1 − E′1. Now, for
every specific choice u∗i of ui in E1 − E′1, it holds that

Pr [u∗i |E1] < 2−τ/
(

1− 1
m

)p
.

Therefore, for every u∗i it holds that

Pr [u∗i |E2] = Pr [u∗i ∧ E2|E1]
Pr [E2|E1]

≤ Pr [u∗i |E1]
Pr [E2|E1]

<
2−τ/

(
1− 1

m

)p
1− 1

m

= 2−τ/
(

1− 1
m

)p+1
.

But this means that i could not have been selected at the h2-th iteration, which is a
contradiction. J

Observe that the first case cannot occur more than m times, and thus, combined with the
latter claim, we get that the total number of iterations is at most m2. In particular, the
second case cannot happen for a coordinate i more than m times. Therefore, when the
process terminates, every i ∈ [m]−R has been selected at most m times (since if i /∈ R, the
first case never occurred for it). This implies that, when the process terminates, it holds for
every i ∈ [m]−R that

H∞(ui|E) ≥ τ + log(1− 1
m

)m

≥ τ − 2,

where the second inequality holds for sufficiently large m. This means that every i ∈ [m]−R
satisfies the requirement of the lemma.

We turn to upper bounding the size of the set R. Again, we do it by proving that an
invariant is maintained throughout the iterations. Formally, we prove the following.
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I Claim 6.4. At each iteration, the following invariant is maintained:

H∞(u[m]−R|E) ≥ (m− |R|) · log |U| − r + r + 4
k
· |R| − 4 · s

m2 ,

where s is the total number of times the second case has occurred before this iteration.

Proof. We prove the claim by induction. Before the first iteration, when |R| = ∅, the claim
holds by the assumption of the lemma. Fix an iteration, let i be the coordinate that is
selected in this iteration, and let s be the number of times the second case occurred before
this iteration. We consider each of the two cases that may occur separately.

Suppose that the first case occurred, so Pr [E′|E] ≥ 1
m2 . Then, for every assignment

u∗[m]−(R∪{i}) ∈ U [m]−(R∪{i}) the following holds:

Pr
[
u∗[m]−(R∪{i})|E ∩ E

′
]

=
Pr
[
u∗[m]−(R∪{i}) and E′|E

]
Pr [E′|E]

≤ m2 · Pr
[
u∗[m]−(R∪{i}) and E′|E

]
= m2 ·

∑
u∗
i
is a heavy value

Pr
[
u∗[m]−(R∪{i}) and u∗i |E

]
≤ m2 ·

∑
u∗
i
is a heavy value

2−H∞(u[m]−R|E)

≤ m2 · 2τ · 2−H∞(u[m]−R|E) (6)

= m2 · 2log|U|−(r+4)/k

m2 · 2−H∞(u[m]−R|E)

≤ 2log|U|−(r+4)/k · 2−[(m−|R|)·log|U|−r+ r+4
k ·|R|−

4·s
m2 ] (7)

= 2−[(m−|R|−1)·log|U|−r+ r+4
k ·(|R|+1)− 4·s

m2 ],

where Inequality 6 follows from the fact that there can be at most 2τ heavy values, and
Inequality 7 follows from the induction assumption. It follows that

H∞(u[m]−(R−{i})) ≥ (m− |R ∪ {i}|) · log |U| − r + r + 4
k
· |R ∪ {i}| − 4 · s

m2 ,

as required.
Suppose now that the second case occurred. Then, for every assignment u∗[m]−R ∈ U [m]−R

it holds that

Pr
[
u∗[m]−R|E − E

′
]
≤

Pr
[
u∗[m]−R|E

]
Pr [E − E′|E]

≤ 1
1− 1

m2 ·
Pr
[
u∗[m]−R|E

]
≤

(
1 + 2

m2

)
· Pr

[
u∗[m]−R|E

]
≤ exp( 2

m2 ) · Pr
[
u∗[m]−R|E

]
≤ 2−H∞(u[m]−R|E)+ 4

m2

≤ 2−
[
(m−|R|)·logn−r+ r+1

k ·|R|−
4·(s+1)
m2

]
,
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where the last inequality follows from the induction assumption. It follows that

H∞(u[m]−R) ≥ (m− |R|) · logn− r + r + 4
k
· |R| − 4 · (s+ 1)

m2 ,

as required. J

We can now bound the size of the set R: since it must hold that H∞(u[m]−R|E) ≤ (m −
|R|) · logn, and since s ≤ m2, it follows from the last claim that |R| ≤ k, as required. It
remains to lower bound the probability of the event E. The probability of E decreases by a
factor of 1

m2 whenever the first case occurs, and by a factor of 1− 1
m2 whenever the second

case occurs. The first case occurs at most k times, and the second case occurs at most m2

times. Hence, the probability of E is at least(
1
m2

)k
· (1− 1

m2 )m
2
≥ 1

4 ·m
2k,

as required. J

6.2 Fortification
In the proof of the main lemma, we will want to relate the information that Alice and
Bob transmit about their inputs to the reduction in the complexity of the communication
problem. For example, we will want to argue that if Alice and Bob transmitted only one bit
of information, then the communication complexity of the problem was decreased by at most
one bit (or, alternatively, that the protocol size of the problem was decreased by a factor of
at most two).

However, this is not always true. For example, consider a KW relation KWA×B (where
A, B ⊆ {0, 1}m are disjoint), and suppose that the first bit of all the strings in B is 0,
while in A, the first bit is 0 for exactly half of the strings. In this case, if Alice tells Bob
that the first bit of her input is 1, she only tells him only one bit of information, but the
communication complexity of the problem drops to zero – since now Alice and Bob know
that they differ on the first bit.

We say that a rectangle A × B is fortified 5 (with respect to a given protocol Π) if
when Alice and Bob speak, the complexity is decreased in proportion to the information
transmitted. More formally, we define fortified rectangles as follows.

I Definition 6.5. We say that a rectangle A × B is ρ-fortified on Alice’s side if for every
Ã ⊆ A it holds that

L(Ã × B)
L(A× B) ≥ ρ ·

∣∣Ã∣∣
|A|

.

Similarly, we say that A× B is ρ-fortified on Bob’s side if the same holds for subsets B̃ ⊆ B.

In this section, we show that even though there are rectangles A× B that are not fortified,
every rectangle has a fortified sub-rectangle with similar complexity. For example, in the
non-fortified rectangle A×B described above, we could take the sub-rectangle A′ ×B where
A′ def= {a ∈ A : a1 = 0}. More generally, we have the following result.

5 The term “fortified” was coined by Moshkovitz [26] in order to denote two-prover games that remain
hard when restricted to sub-rectangles. She also proved a fortification lemma that transforms two-prover
games into fortified ones. While our notion of fortification is very different from hers on the technical
level, there is a conceptual similarity between the two notions.
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I Lemma 6.6 (Fortification lemma). Let A,B ⊆ {0, 1}m be disjoint sets. There exists a subset
A′ ⊆ A such that A′×B is 1

4m -fortified on Alice’s side, and such that L(A′×B) ≥ 1
4 ·L(A×B).

An analogous statement holds for Bob’s side.

I Remark. Although Definition 6.5 and Lemma 6.6 are phrased in terms of Karchmer-
Wigderson relations, they work equally well for any communication problem.

We begin our proof of the fortification lemma by proving the following proposition, which is
almost what we want.

I Proposition 6.7. Let A,B ⊆ {0, 1}m be disjoint sets. For every 0 < ρ < 1, there exists
A1 ⊆ A such that

for every Ã ⊆ A1 it holds that L(Ã×B)
L(A×B) ≥ ρ ·

|Ã|
|A| .

L(A1 × B) ≥ (1− ρ) · L(A× B).
The same holds for B1 ⊆ B.

The reason that Proposition 6.7 is not exactly what we want is that in the first item, the
denominator on the right hand side is |A|, while it should be |A1| in order to satisfy the
definition of a fortified rectangle. This is problematic, since in our application we will be
able to control the ratio |Ã||A1| , but we will have no way to control the ratio |Ã||A| .

Proof of Proposition 6.7. We prove the proposition for A1 ⊆ A, and the proof for B1 ⊆ B
is analogous. Let Amax ⊆ A be a maximal set that satisfies

L(Amax × B) < ρ · |Amax|
|A|

· L(A× B). (8)

We choose A1
def= A−Amax. Observe that it indeed holds that L(A1×B) ≥ (1−ρ) ·L(A×B)

by the sub-additivity of formula complexity. Now, suppose for the sake of contradiction that
there is a set Ã ⊆ A1 such that L(Ã,B) < ρ · |Ã||A| · L(A,B). Then, this would imply that

L
(
(Ã ∪ Amax)× B

)
≤ L(Ã × B) + L(Amax × B)

< ρ ·
∣∣Ã∣∣
|A|
· L(A× B) + ρ · |Amax|

|A|
· L(A× B)

= ρ ·
∣∣Ã ∪ Amax

∣∣
|A|

· L(A× B),

where the first inequality holds by the sub-additivity of protocol size, and the second inequality
holds by our assumptions on Ã and Amax. It follows that Ã ∪ Amax is a set that satisfies
Inequality 8 and that strictly contains Amax, thus contradicting the maximality of Amax.
Hence, no such set Ã exists. J

I Remark. Consider again the example of a non-fortified rectangle A×B from the beginning
of this section. For this rectangle, the above proof would take Amax to be the set of strings a
such that a1 = 1. Thus, the set A′ would be the set of strings a in which a1 = 0, as required.

In order to prove the fortification lemma from Proposition 6.7, we need to replace the
ratio |Ã||A| with the ratio |Ã||A1| . To this end, observe that∣∣Ã∣∣
|A1|

=
∣∣Ã∣∣
|A|

/
|A1|
|A|

.
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Hence, we could achieve our goal by controlling the ratio |A1|/ |A|. The following proposition
provides us the means to do so. Intuitively, this proposition is a form of “inverse fortification”
– it allows us to lower bound the density of a subset Ã in terms of its complexity.

I Proposition 6.8. Let A,B ⊆ {0, 1}m be disjoint sets. For every c ≥ 1, there exists a subset
A0 ⊆ A such that for every Ã ⊆ A0 it holds that∣∣Ã∣∣
|A0|

≥
(

L(Ã × B)
L(A0 × B)

)c
, (9)

and such that

L(A0 × B) ≥ 2−m/c · L(A× B). (10)

Proof. We set A0 to be a minimal set that satisfies

|A0|
|A|
≤
(

L(A0 × B)
L(A× B)

)c
.

Observe that A0 indeed satisfies Inequality 9: otherwise, there would have been Ã ⊂ A0 that
satisfied∣∣Ã∣∣
|A0|

<

(
L(Ã × B)
L(A0 × B)

)c
,

and this would have implied that∣∣Ã∣∣
|A|

=
∣∣Ã∣∣
|A0|

· |A0|
|A|

<

(
L(Ã × B)
L(A0 × B)

)c
·
(

L(A0 × B)
L(A× B)

)c
=

(
L(Ã × B)
L(A× B)

)c
,

thus contradicting the minimality of A0. It remains to show that A0×B satisfies Inequality 10.
It holds that

|A0|
|A|
≤
(

L(A0 × B)
L(A× B)

)c
,

or in other words

L(A0 × B) ≥
(
|A0|
|A|

) 1
c

· L(A× B)

≥
(

1
2m

) 1
c

· L(A× B)

= 2−m/c · L(A× B),

as required. J

We are now ready to prove the fortification lemma.
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Proof of Lemma 6.6. Let A,B ⊆ {0, 1}m be disjoint sets. Our goal is to find a subset
A′ ⊆ A such that A′×B is 1

4m -fortified on Alice’s side, and such that L(A′×B) ≥ 1
3 ·L(A×B)

(the proof for Bob’s side is analogous). We start by applying Proposition 6.8 to A × B
with c = m, thus obtaining a subset A0 ⊆ A. Then, we apply Proposition 6.7 to A0 × B
with ρ = 1

2m , thus obtaining a subset A1 ⊆ A0. Finally, we choose A′ to be A1.
We prove that A′ has the required properties. Observe that by Proposition 6.7, it holds

that

L(A′ × B) ≥ (1− 1
2m ) · L(A0 × B) ≥ 1

2 · L(A0 × B),

and that by Proposition 6.8, it holds that

L(A0 × B) ≥ 1
2 · L(A× B).

Therefore,

L(A′ × B) ≥ 1
4 · L(A× B),

as required.
It remains to prove that A′ is 1

4m -fortified on Alice’s side. Let Ã ⊆ A′. By Proposition 6.7,
it holds that

L(Ã × B) ≥ 1
2m ·

∣∣Ã∣∣
|A0|

· L(A0 × B) ≥ 1
2m ·

|A′|
|A0|

·
∣∣Ã∣∣
|A′|
· L(A′ × B).

Next, by Proposition 6.8, it holds that

|A′|
|A0|

≥
(

L(A′ × B)
L(A0 × B)

)m
≥
(

1− 1
2m

)m
≥ 1

2 .

Thus,

L(Ã × B) ≥ 1
4m ·

∣∣Ã∣∣
|A′|
· L(A′ × B).

The required result follows. J

7 Restating Lemma Proof of the Main Lemma

In this section, we prove the main lemma, restated next.

I Lemma 3.6 (restated). Let Π be a protocol for KWf�⊕n , and let π1 be a live partial
transcript of Π. Then, there exists a Õ(

√
m)-almost hard distribution that is distributed over

Xπ1 × Yπ1 .

Fix a protocol Π for KWf�⊕n , and let π1 be a live partial transcript of Π. Let Xπ1 ×Yπ1 be
the rectangle associated with π1. We would like to construct a t-almost hard distribution
over Xπ1 × Yπ1 , where t

def= Õ(
√
m) and where the constant in the Big-O notation will be

chosen to be sufficiently large as to make our argument hold.
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7.1 Basic idea
By the definition of π1 being alive, there is a set Zπ1 ⊂ Z, with |Zπ1 | ≥ 2−2m · |Z|, such that
for each Z ∈ Zπ1 , it holds that L(Aπ1,Z × Bπ1,Z) ≥ 2` where ` = C ·

√
m · logC m for some

large constant C to be determined later, and where

Aπ1,Z
def=

{
a ∈ f−1(0)|Za ∈ Xπ1

}
Bπ1,Z

def=
{
b ∈ f−1(1)|Zb ∈ Yπ1

}
.

Consider the following graph G: the graph G is a layered graph, and the three layers are
Xπ1 , Zπ1 , and Yπ1 . A vertex X ∈ Xπ1 (respectively, Y ∈ Yπ1) is a neighbor of a vertex
Z = (Z0, Z1) ∈ Zπ1 if and only if X = Za for some a ∈ f−1(0) (respectively, Y = Zb for
some b ∈ f−1(1)). We define the distribution (X,Y ) of G as the distribution that is sampled
by picking a uniformly distributed path X − Z − Y in G. While this distribution is not
an almost-hard distribution, we will show that there is a subgraph G′ of G such that the
distribution of G′ is an almost-hard distribution.

Let us examine the properties of the distribution (X,Y ) of G more closely. Let Z denote
the vertex that is sampled by this distribution, and let j1, . . . , jm ∈ [n] be the axes of Z (i.e.,
ji is the unique coordinate on which Z0

i and Z1
i differ). Then, for every i ∈ [m], it always

holds that either Xi = Yi, or that Xi and Yi disagree exactly on one coordinate, which is ji.
Hence, in order for (X,Y ) to be a t-almost hard distribution, it only needs to satisfy the
property that for every i ∈ [m], either that Xi = Yi with probability 1, or that for all specific
choice X∗and Y ∗ of X and Y respectively, it holds that

H∞(ji|X = X∗) ≥ logn− t
H∞(ji|Y = Y ∗) ≥ logn− t.

This property would have been satisfied if Zπ1 = Z. In this case, j1, . . . , jm would have
been uniformly distributed over [n], and therefore all of them would have had min-entropy
logn (conditioned on either X or Y ). However, Zπ1 only constitutes 2−2m fraction of Z,
and therefore the min-entropy of some ji’s may be as low as logn− 2m. In order to resolve
this issue, we apply the averaging argument for min-entropy (Lemma 6.2), and conclude
the min-entropy of all but

√
m of the ji’s is at least about logn−O(

√
m). We refer to the√

m rows in which the min-entropy of ji is lower than logn−O(
√
m) as the revealed rows,

and to the other rows as the non-revealed rows.
The non-revealed rows already satisfy what we need, so it remains to deal with the revealed

rows. Let R ⊆ [m] denote the set of revealed rows. We will make sure that Xi = Yi for every
i ∈ R. To this end, recall that X = Za and Y = Zb for some a ∈ f−1(0) and b ∈ f−1(1).
We will construct the graph G′ such that a and b always agree on the coordinates in R.

To see why this is possible, recall that conditioned on the choice of Z, the strings a and b
are taken from the rectangle Aπ1,Z × Bπ1,Z . Since π1 is alive with respect to Z, this means
that L(Aπ1,Z × Bπ1,Z) ≥ 2`. We claim that this means that a and b can be chosen such that
a|R = b|R. If this was not the case, i.e., if it was the case that a|R 6= b|R for all a ∈ Aπ1,Z

and b ∈ Bπ1,Z , then the complexity of Aπ1,Z × Bπ1,Z would have been lower: Alice and Bob
could have solved the game by sending each other their values at R, and this protocol is of
size at most 2O(|R|) < 2` (for an appropriate choice of `). There are two more complications:

It is not sufficient to show that there exists at least one choice of a and b such that
a|R = b|R. Rather, we need to show that there are many such choices – otherwise, forcing
a and b to agree on R would reveal too much information to Alice and Bob.
To this end, we process the graph as follows: we partition the strings a ∈ Aπ1,Z according
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to a|R, and remove the classes that are too small. We do the same for Bπ1,Z . By choosing
the parameters appropriately, we can make sure that at most half of the strings in
Aπ1,Z and Bπ1,Z are removed in the latter process. We then use the fortification lemma
(Lemma 6.6) to show that the latter removal of strings did not decrease the complexity
of Aπ1,Z × Bπ1,Z by too much, and hence this complexity is still large. We now argue as
before that since Aπ1,Z × Bπ1,Z has large complexity, we can choose a class of Aπ1,Z and
a class of Bπ1,Z that agree on R.
Finally, we observe that the classes we chose must be large, since all the small classes
were already removed. Hence, there are indeed many choices of a and b that agree on R.
The above discussion assumed implicitly that conditioned onX, the vertex Z is distributed
uniformly over neighbors of X, and similarly for Y . This is may not always hold, but it
does hold if all the vertices Z have the same degree. Throughout the proof, we take steps
to ensure that the vertices Z have roughly equal degrees, and this will be good enough
for our purposes.

7.2 A technical road-map
In the rest of this section, we describe the proof in detail. The proof follows the basic idea
described above, but along the way there are some technical issues that need to be resolved
and careful accounting that needs to be done. Therefore, we start by giving a “technical
road-map” of the proof, which explains the main steps, the issues that we deal with, and the
considerations that underly the accounting.

Notation

In what follows, we will consider subgraphs of the graph G described above. Given such a
subgraph G0 and a vertex Z, we define the rectangle of Z in G0 by A0,Z ×B0,Z where

A0,Z
def=

{
a ∈ f−1(0)|Za is a neighbor of Z in G0

}
B0,Z

def=
{
b ∈ f−1(1)|Zb is a neighbor of Z in G0

}
.

In general, we will identify the edges that come out of Z with the elements of A0,Z and B0,Z .
For example, we may say that we remove a string from A0,Z and mean that we remove
the corresponding edge. We define the complexity of Z in G0 to be the protocol size of its
rectangle, i.e., L(A0,Z ×B0,Z). Observe that in G, all the Z’s have complexity at least 2` by
the assumption that π1 is alive.

Throughout the proof, we refer to the edges between Xπ1 and Z as the X-side of the
graph or as Alice’s side of the graph. Similarly, we refer to the edges between Yπ1 and Z as
the Y-side or as Bob’s side.

7.2.1 The main steps
The proof consists of five main parts:
1. We process Alice’s side, which means we remove vertices and edges in order to obtain

some desired properties. Along the way, we construct the set RX of revealed rows for the
X-side, i.e., the set of indices i ∈ [m] such that H∞(ji|X) is too small.

2. We process Bob’s side in a similar manner, thus obtaining the set RY of revealed rows
for the Y-side.

3. We force the X’s and Y ’s in the graph to agree on the set of revealed rows R def= RX∪RY .
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4. We perform a clean-up step that removes all the vertices whose degree became too small,
and denote the resulting graph by G′.

5. We conclude by proving that the distribution of G′ is an almost-hard distribution, as
required.

The most technical part is the processing of Alice’s side. It consists of four steps:
Fortification: We fortify the the rectangle of each Z. This is done to make sure that
the following steps, which remove edges on Alice’s side, do not reduce the complexity of
the Z’s by too much. This results in a subgraph of G that we denote by GA1 (here, “A1”
denotes “first step on Alice’s side”).
Regularization: As discussed above, throughout the proof we will need to guarantee
that the Z’s are roughly regular, i.e., that all the Z’s have roughly the same degree. We
create this property in this step, by taking a subset of the Z’s that have roughly the
same degree on the X-side in GA1, and discarding all the rest. We denote the resulting
subgraph by GA2.
Finding the revealed rows: For each X in GA2, we consider the distribution on axes
j1, . . . , jm that is induced by choosing a random neighbor Z of X. We observe that this
distribution has min-entropy which is at least m · logn−O(m), and apply the averaging
argument for min-entropy to this distribution (Lemma 6.2). This yields a set of revealed
axes RX of size

√
m, such that the min-entropy of each ji for i ∈ [m]−RX is at least

logn− Õ(
√
m).

Note that the averaging argument only says that the min-entropy of ji is large conditioned
on some event EX . We therefore remove from the graph all the edges that are not
consistent with EX , for each X. In addition, note that the set RX may be different for
each X. We now choose the most popular set RX , denote it by RX, and discard all the
X’s with a different set. We denote the resulting subgraph by GA3.
Removing the small classes: For each Z, consider its rectangle AA3,Z ×BA3,Z in GA3.
We would like to partition the strings a ∈ AA3 into classes according to a|R, and remove
the small classes – as discussed above, this is done in order to make sure that when we
force the a’s and the b’s to agree on R, we will retain many a’s.
However, there is a small issue here that needs to be dealt with: at this point we do
not know yet the set R of revealed rows – we know the set RX of revealed rows for the
X-side, but we do not know yet the set RY of revealed rows for the Y-side. Therefore, we
perform this step of “removing the small classes” for every possible candidate for R. By
choosing the parameters appropriately, we can ensure that doing so does not remove too
many a’s. We denote the resulting subgraph by GA4.

The processing of Bob’s side is similar to that of Alice’s side, except that the step of removing
the small classes is a little simpler since at this point we know R. This processing creates
corresponding subgraphs GB1,GB2, GB3, GB4.

Next, we force the X’s and Y ’s to agree on the revealed rows as follows: For every Z
in GB4, we consider the rectangle AB4,Z × BB4,Z . We claim that there must be a ∈ AB4,Z
and b ∈ BB4,Z such that a|R = b|R, or otherwise the complexity of AB4,Z × BB4,Z would
have been too small. We then claim that a and b must belong to large classes of AB4,Z
and BB4,Z respectively, since the small classes have already been removed, and therefore
there are many a’s and b’s such that a|R = b|R. We now discard all the other a’s and b’s for
every Z, thus creating a new subgraph Gagr.

The final step is the clean-up step. The reason that this step is needed is that each of the
previous steps removed some edges. This is problematic for two reasons: First, the degree of
some X’s may have become too small, in which case the min-entropy H∞(ji|X) may also
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become too small, and the same goes for the Y ’s. Second, the degree of some Z’s may have
become too small, thus violating the rough regularity of the Z’s. In order to rectify those
violations, we remove the vertices whose degrees are too small. However, this removal may
decrease the degrees of other vertices, so we continue removing vertices until there are no
more vertices whose degrees are too small. By choosing the parameters appropriately, we
can make sure that the process terminates before the whole graph is deleted.

7.2.2 Issues and accounting
Retaining a large number of edges

Recall that at the end of the step of “finding the revealed rows” on Alice’s side, we have for
each X the property that for every i ∈ [m]−RX, it holds that

H∞(ji|X) ≥ logn− Õ(
√
m).

However, in the following steps, we remove vertices and edges from the graph, and this may
destroy this property. More specifically, after we remove edges from the graph, this property
will continue to hold for every X whose degree was reduced by a factor of at most 2Õ(

√
m),

but may cease to hold for X’s whose degree was reduced by more than that.
As explained above, we deal with this issue in the clean-up step by removing all the X’s

whose degree is too small, i.e., whose degree was reduced by a factor of more than 2Õ(
√
m).

However, in order for this solution to be effective, we need to make sure that the degree of
most X’s is not too small (or otherwise the clean-up may remove too many X’s).

To this end, it suffices to show that the number of edges of Gagr on the X-side is at least
2−Õ(

√
m) times the number of edges of GA3 on the X-side. In order to do so, we keep track

of the number of edges on the X-side throughout the proof and make sure that it does not
decrease too much. The same goes for the Y-side.

Retaining a large number of Z’s

When we perform the step of “finding the revealed rows” on Alice’s side, we use the fact
that in GA2, the distribution j1, . . . , jm has min-entropy at least

m · log(n)−O(m).

In order to show this lower bound on the min-entropy, we use the fact that the number of
Z’s in GA2 is at least 2−O(m) fraction of all the possible Z’s. The latter fact follows from
the assumption that π1 is alive, but we also need to make sure that it is not invalidated by
the regularization step. Therefore, when performing the regularization, we make sure that
we did not remove too many Z’s.

Furthermore, since we also perform the step of “finding the revealed rows” on Bob’s side,
we also need to make sure that the number of Z’s in the graph GB2 is sufficiently large. To
this end, we keep track of the number of Z’s throughout the processing on Alice’s side and
make sure that we do not remove too many Z’s.

Interaction between the two sides of the graph

When we process Bob’s side, we remove some of the Z’s in the regularization step and in
the step of “removing the small classes”. However, when we remove Z’s, it also causes the
removal of edges on the X-side. Hence, we have to make sure that those steps do not remove
too many edges on the X-side.
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To this end, we first make sure that those steps do not remove too many Z’s: in particular,
we make sure that after each step, we retain at least 2−Õ(

√
m) fraction of the Z’s. Then, we

use the fact that the Z’s are roughly regular on the X-side to deduce that we retained at
least 2−Õ(

√
m) fraction of the edges on the X-side.

Average degree vs. minimum degree

In many places throughout the proof, we will have a lower bound on the average degree of
vertices, but we will want this lower bound to hold for the minimum degree, i.e., we will want
it to hold for every vertex. For example, at the beginning of the step of “finding the revealed
rows” on Alice’s side, we know that the average X is connected to at least 2−O(m) fraction
of all the possible Z’s, but we will want it to hold for every X. Whenever we encounter such
a situation, we resolve the issue by removing from the graph all the vertices whose degree is
too small compared to the average degree. We will use the following fact to show that this
removal does not discard too many edges.

I Fact 7.1. Let G0 = (U0 ∪ V0, E0) be a bipartite graph, and denote the average degree of U0
by dU . If we remove all the vertices of U0 whose degree is less than ε · dU , then we remove at
most ε fraction of the total number of edges.

Proof. By the definition of average degree, it holds that |E0| = dU · |U0|. The number of
vertices that we remove is at most |U0|, and each of them is connected to at most ε · dU edges.
Hence, the total number of edges we removed is at most ε · dU · |U0| = ε · |E0|, as required. J

We finally turn to present the full proof.

7.3 Processing Alice’s side

Fortification

The first step we take in processing the graph on Alice’s side is fortifying the Z’s on Alice’s
side. For each Z, we apply the fortification lemma (Lemma 6.6) to the rectangle of Z in G,
namely Aπ1,Z × Bπ1,Z , thus obtaining a sub-rectangle AA1,Z × BA1,Z that is 1

4m -fortified on
Alice’s side (where BA1,Z = Bπ1,Z). We then replace Aπ1,Z ×Bπ1,Z with AA1,Z × BA1,Z by
removing from G all the edges that correspond to strings in Aπ1,Z −AA1,Z . We denote the
resulting graph by GA1.

Regularization

Next, we make sure that all the vertices Z have roughly the same degree on the X-side (i.e.,
have the same number of neighbors X). To this end, we partition the Z’s to m+ 1 classes,
such that the Z’s in the i-th class has degree at least 2i−1 and less than 2i (for 1 ≤ i ≤ m+1).
Let i be such that the i-th class is the class that contains a largest number of Z’s. We remove
from GA1 all the Z’s outside the i-th class, and denote the resulting graph by GA2 and the
resulting set of Z’s by ZA2.

Let dZ,X
def= 2i. By definition, all the vertices Z in ZA2 have degrees between 1

2 · dZ,X
and dZ,X. Moreover, observe that GA2 retains at least 1

m+1 fraction of the Z’s. Since G
originally had at least 2−2m · |Z| vertices Z (and so did GA1), it follows that GA2 has at
least 2−2m−log(m+1) · |Z| vertices Z.
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Finding the revealed rows

We turn to applying the averaging argument to the X’s in order to find the revealed rows.
However, we can only do so for X’s with sufficiently large degree. To compute the average
degree of the X’s we observe that each Z must be connected to at least one vertex X, and
therefore the average degree of the X’s is at least

|ZA2|
|Xπ1 |

≥ 2−2m−log(m+1) · |Z|
2m·n =

2−2m−log(m+1) ·
(
2m·(n−1) · nm

)
2m·n = 2−3m−log(m+1) · nm.

We remove from the graph all the X’s with degree less than 2−4m · nm. By Fact 7.1, we
removed less than half of the edges of the graph on the X-side.

Now, for each of the remaining X ′s, we perform the following steps. Let Z be a uniformly
distributed neighbor of X, and let j1, . . . , jm be the axes of Z. Observe that given X, there
is a one-to-one correspondence between Z and the sequence j1, . . . , jm. Thus, the fact that
the degree of X is at least 2−4m · nm implies that

H∞(j1, . . . , jm) ≥ m · logn− 4 ·m.

We apply the averaging argument for min-entropy (Lemma 6.2) to j1, . . . , jm with parameters
r = 4m and k =

√
m, thus obtaining a set RX of size

√
m and an event EX ⊆ [n]m of

probability at least 2−O(
√
m logm) = 2−Õ(

√
m) such that for every i ∈ [m]−RX it holds that

H∞(ji|EX) ≥ logn−O(
√
m).

Observe that the event EX is a set of tuples (j1, . . . , jm), each of which corresponds to an
edge going out of X. We remove all the edges of X that do not belong to EX . Note that we
retain at least 2−Õ(

√
m) fraction of the edges since the probability of EX is at least 2−Õ(

√
m).

Next, we partition the X’s according to their set RX , pick the class that is connected
to the largest number of edges, and remove all the X’s outside of this class. Let RX be
the set RX of the class that was picked, and denote by GA3 the resulting graph. There
are

(
m√
m

)
= 2Õ(

√
m) classes so it is easy to see that after the removal we retain at least

2−Õ(
√
m) fraction of the edges, and therefore GA3 retains at least 2−Õ(

√
m) fraction of the

edges of GA2.
Summing up the discussion so far, the graph GA3 has the following property: Let X be a

vertex in GA3, let Z be a uniformly distributed neighbor of X in GA3, and let j1, . . . , jm be
the axes of the edges in Z. Then, for every i ∈ [m]−RX it holds that

H∞(ji) ≥ logn−O(
√
m). (11)

Removing small classes from the rectangles of the Z’s

The last step we perform is a preparation toward forcing the a’s and the b’s of each Z to
agree on the revealed rows – see the discussion in Section 7.1 about the first complication.
As explained there, for each Z, we would like to partition its set of a’s according to their
values at the revealed rows R, and remove the classes of the partition that are too small.

However, we do not know yet what is the set R of revealed rows. Indeed, we know
the set RX of the revealed rows on Alice’s side, but we do not know yet the revealed rows
on Bob’s side. In order to resolve this issue, we define classes of edges for all the possible
candidates for R, and remove the small classes. Note that now the classes no longer form a
partition of the a’s of Z, but it does not matter for our argument.
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Formally, we define a label to be a pair (R, λ) where R ⊆ [m] is a set of size 2
√
m that

contains RX, and λ ∈ {0, 1}R is an assignment of bits to R. There are only 2Õ(
√
m) possible

labels. We say that a string a ∈ {0, 1}m is consistent with the label (R, λ) if a|R = λ.
Next, we perform the following for each vertex Z in G: Let AA3,Z×BA3,Z be the rectangle

of Z in G3. For every possible label (R, r), define the class of (R, λ) to be the subset of all
strings a ∈ AA3,Z that are consistent with (R, λ). We say that a class is small if it contains
less than 2−3·

√
m·logm fraction of the strings in AA3,Z . We now remove from AA3,Z every

string a that belongs to some small class. If new small classes are created by the latter
removal, we remove them as well, and repeat this process until no small classes remain. By
the union bound, it is not hard to see that this removes at most half of the strings in AA3,Z .
Denote the resulting set by AA4,Z , and let BA4,Z

def= BA3,Z .
Finally, observe that the average degree of the Z’s on the X-side is at least 2−Õ(

√
m) ·dZ,X:

After the regularization, the average degree was at least 1
2 · dZ,X, and after finding the

revealed rows and removing the small classes we retained at least 2−Õ(
√
m) fraction of the

edges. We now remove all the Z ′s whose degree is less than half the average degree in order
to maintain the property that all the Z’s have roughly the same degree – in particular, after
the removal, all Z’s will have degree between 2−Õ(

√
m) · dZ,X and dZ,X. We denote the

resulting set of Z’s by ZA4, and the resulting graph by GA4.
Observe that GA4 retains quarter of the edges of GA3 on the X-side: The removal of the

small classes removed at most half of the edges of each Z, and hence at most half of the
edges of GA3. Then, the removal of low-degree Z’s removed at most half of the remaining
edges by Fact 7.1. Since GA3 retained 2−Õ(

√
m) fraction of the edges of GA2, it follows that

GA4 retains 2−Õ(
√
m) fraction of the edges of GA2.

Furthermore, we claim that the set ZA4 of Z’s in GA4 contains at least 2−Õ(
√
m) fraction

of the Z’s in ZA2. To see why this is the case, recall that the number of edges on the X-side
in GA2 is at least 1

2 ·dZ,X · |ZA,2| (since the minimal degree of a Z in GA2 is 1
2 ·dZ,X). On the

other hand, the number of edges on the X-side in GA4 is at most dZ,X · |ZA4|, and we know
that this number is at least 2−Õ(

√
m) fraction of the number of edges in GA2. Therefore,

dZ,X · |ZA4| ≥ 2−Õ(
√
m) · 1

2 · dZ,X · |ZA,2|

|ZA4| ≥ 2−Õ(
√
m) · |ZA,2|

≥ 2−Õ(
√
m) · |ZA,1|

≥ 2−O(m) · |Z| .

Moreover, observe that the complexity of every Z ∈ ZA4 is at least 2−Õ(
√
m) fraction of

its original complexity in G: First, recall that the complexity of the fortified rectangles
AA1,Z ×BA1,Z was 1

3 fraction of the original complexity. By the fortification, the complexity
of each Z in G4 is

L(AA4,Z × BA4,Z) ≥ 1
4m ·

|AA4,Z |
|AA1,Z |

· L(AA1,Z × BA1,Z)

≥ 2−Õ(
√
m) · L(AA1,Z × BA1,Z)

≥ 2`−Õ(
√
m).

7.4 Processing Bob’s side
We now take the same steps as in Section 7.3 in the Y-side of the graph: We apply the
fortification on Bob’s side to the vertices Z in GA4, thus obtaining a new graph GB1. We
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then apply regularization, thus obtaining a new graph GB2 such that the degrees of the
Z’s on the Y-side are are between 1

2 · dZ,Y and dZ,Y for some degree dZ,Y . Next, we find
the revealed rows for the Y ’s, thus obtaining a new graph GB3 and a set RY such that
the following holds for every Y : Let Z be a uniformly distributed neighbor of Y , and let
j1, . . . , jm be the axes of Z. Then, for every i ∈ [m]−RY it holds that

H∞(ji) ≥ logn− Õ(
√
m). (12)

Let R def= RX ∪RY .
There is a small difference in the step of “removing the small classes”: Now, we know the

set of revealed rows R, so we do not need the labels to contain a candidate for R. Instead, for
each Z, we simply partition the strings b ∈ BB3,Z according to b|R, and remove all the classes
that contain only 2−3·

√
m fraction of the strings in BB3,Z . The rest of this step proceeds as

before, and we denote the resulting graph by GB4.
Again, we note that the following points:
The graph GB4 retains at least 2−Õ(

√
m) fraction of the vertices Z of GA4.

The degree of every Z in GB4 on the Y-side is at least 2−Õ(
√
m) · dZ,Y .

The complexity of each Z in GB4 is at least 2`−Õ(
√
m).

The graph GB4 retains at least 2−Õ(
√
m) fraction of the edges of GB3 on the Y-side.

It is also important to note that GB4 does not lose too many edges on the X-side: We lose
edges on the X-side when we remove Z’s. However, since |ZB4| ≥ 2−Õ(

√
m) · |ZA4|, and since

all the degrees of Z’s on the X-side are between 2−Õ(
√
m) · dZ,X and dZ,X, the graph GB4

retains at least 2−Õ(
√
m) fraction of the edges of GA4 on the X-side.

7.5 Forcing agreement on the revealed rows
We are now ready to force the a’s and b’s of each Z to agree on R. Fix a vertex Z. We show
that there exists an assignment λZ ∈ {0, 1}R, and strings a ∈ AB4,Z and b ∈ BB4,Z such
that

a|R = b|R = λZ .

To this end, we show that if this was not the case, the formula complexity L(AB4,Z ×BB4,Z)
was at most 22

√
m · m – thus contradicting the lower bound of 2`−Õ(

√
m) we have on

L(AB4,Z × BB4,Z) (for an appropriate choice of the constant C in the definition of `). The
upper bound of 22

√
m ·m is derived by considering the following protocol for KWAB4,Z×BB4,Z :

Alice sends to Bob a|R. By assumption, a|R 6= b|R, so now Bob knows a coordinate i such
that ai 6= bi and sends it to Alice. At this point, they solved KWAB4,Z×BB4,Z . It is not hard
to see that the size of this protocol is at most 22

√
m ·m. Hence, there exist a, b, λZ as above.

Due to the step of “removing the small classes” on Alice’s side, we know that the fraction
of the strings a′ ∈ AB4,Z that satisfy a′|R = λZ is at least 2−3·

√
m·logm: To see why, first

observe that AB4 = AA4 ⊆ AA3. Then, recall that in the step of “removing the small
classes”, we partitioned AA3 to classes which were labeled by pairs (R′, λ′), and we obtained
AA4 by removing the classes that consisted of less than 2−3·

√
m·logm fraction of the strings

in AA3. Now, we know that there is a string a ∈ AB4 and rZ such that a|R = λZ , and
this implies that the class labeled by (R, λZ) was not removed. Hence, this class, consists
of at least 2−3·

√
m·logm fraction of the strings in AA3, and in particular consists of at

least 2−3·
√
m·logm fraction of the strings in AB4. A similar argument shows that at least

2−3·
√
m fraction of the strings b′ ∈ BB4,Z satisfy b|R = λZ .
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We now define for every Z the sets

Aagr,Z = {a ∈ AB4 : a|R = λZ}
Bagr,Z = {b ∈ BB4 : b|R = λZ}

and remove all the edges of Z that correspond to strings outside Aagr,Z and Bagr,Z . We
denote the resulting graph by Gagr. We summarize the properties of Gagr:

For every Z, it holds that a|R = b|R for all a ∈ Aagr,Z and b ∈ Bagr,Z .
The graph Gagr retains at least 2−Õ(

√
m) fraction of the edges of GB4 on the X-side, and

hence at least 2−Õ(
√
m) fraction of the edges of GA3 on the X-side. Similarly, Gagr contains

at least 2−Õ(
√
m) fraction of the edges of GB3 on the Y-side.

The Z’s are “roughly regular”: For every Z, its degree on the X-side is between 2−Õ(
√
m) ·

dZ,X and dZ,X. The same holds for the Y-side and dZ,Y .

7.6 Clean-up
We are almost ready to define our almost-hard distribution. Recall that this distribution is
going to be defined by sampling a uniformly distributed path X −Z − Y on a graph G′, and
that we denote by j1, . . . , jm the axes of the edges in Z. We would like this distribution to
satisfy the following properties:

For every i ∈ R, it holds that Xi = Yi with probability 1.
For every i ∈ [m]−R and every specific choice X∗, the min-entropy H∞(ji|X = X∗) is
at least logn− Õ(

√
m). The same holds for Y ∗’s.

The first property holds for the distribution of Gagr. The second property basically follows
from our step of “finding the revealed rows” in Alice’s and Bob’s sides, that is, Inequalities 11
and 12 above. However, the latter inequalities were proved for GA3 and GB3 respectively,
and they do not imply similar inequalities for Gagr because of two issues:

Gagr contains only some of the edges of GA3, and this may cause the min-entropy H(ji|X∗)
in Gagr to be much smaller than in GA3.
We note that this is an issue only for a minority of the vertices X∗: since Gagr retains
2−Õ(

√
m) fraction of the edges of GA3, it holds that the degree of the average X∗ is at least

2−Õ(
√
m) fraction of its degree in GA3. For such vertices X∗, the min-entropy H(ji|X∗) is

still sufficiently large. However, in order for the above second property to hold, we need
the min-entropy to be large for every X∗. Similar considerations apply for Y ∗ and GB3.
When we proved the lower bound on the min-entropy H∞(ji|X∗) for GA3, we assumed
that Z is a uniformly distributed neighbor of X∗. However, in a uniformly distributed
path X − Z − Y , this is not necessarily the case.
It turns out that this is not a problem: It can be shown that the probability of each
specific choice Z∗ of Z is at most 2Õ(

√
m) times the probability of any other specific choice,

and this is sufficiently good for our purposes. This follows from the “rough regularity” of
the Z’s, i.e., the fact that the degree of each specific choice Z∗ on the X-side is at most
2Õ(
√
m) larger than the degree of any other specific choice. The same argument works for

the Y ∗’s.
We could try to resolve the first issue by removing from Gagr the X’s and Y ’s whose degree
is too low. However, this might harm the rough regularity of the Z’s, since it may cause
some of the Z’s to lose too many edges. We could fix the rough regularity by removing the
Z’s whose degree is too small, but then we will have X’s and Y ’s with low degrees again.
Fortunately, it turns out that if we repeat this process sufficiently many times, we end up
with a graph in which all X’s, Y ’s, and Z’s have sufficiently large degrees. We choose the
latter graph to be G′.
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We turn to describing G′ formally. Let ε > 0 be a number such that
Gagr retains at least ε fraction of the edges of GA3 (respectively, GB3) on the X-side
(respectively, on the Y-side).
Every Z inGagr has degree at least ε·dZ,X (respectively, ε·dZ,Y) on the X-side (respectively,
on the Y-side).

It holds that ε = 2−Õ(
√
m). We define the graph G′ to be the graph obtained from Gagr by

performing the following steps iteratively, until there are no more vertices to remove:
1. Remove all the vertices X whose degree is less than 1

4 · ε
3 fraction of their degree in GA3.

2. Remove all the vertices Y whose degree is less than 1
4 · ε

3 fraction of their degree in GB3.
3. Remove all the vertices Z whose degree on the X-side is less than 1

4 · ε · dZ,X.
4. Remove all the vertices Z whose degree on the Y-side is less than 1

4 · ε · dZ,Y .
When the process ends, we define the resulting graph to be G′. Our almost-hard distribution
will be the distribution of G′. However, in order for this distribution to be well defined, we
need to prove that G′ is not empty. The basic idea of the proof is the following: First, we
observe that Steps 1 and 2 cannot remove too many edges, since they only remove vertices
whose degree is much lower than the average degree. Then, we observe that Steps 3 and 4
cannot remove too many Z’s – the reason is that a vertex Z is only removed if many of
its edges were removed in Steps 1 and 2. Finally, we observe that since only a few Z’s are
removed in Steps 3 and 4, and since the Z’s are roughly regular, then those steps also cannot
remove too many edges. We conclude that the process has not removed too many edges in
all of the steps, and hence some edges must have remained. Details follow.

In order to prove that G′ is not empty, we upper bound the number of edges that are
removed by the foregoing process, and show that this number is less than the total number
of edges of Gagr. First, we define some notation:

We denote by eA3,X and eA3,Y , the numbers of edges of GA3 on the X-side and Y-side
respectively. We similarly denote eB3,X, eB3,Y , eagr,X and eagr,Y for GB and Gagr.
We denote Zagr the set of Z’s of Gagr.
We denote by X and Y the sets of X’s and Y ’s in Gagr. Observe that X is equal to the
set of X’s in GA3, and Y is equal to the set of Y ’s in GB3.
For every X ∈ X, we denote by dX the degree of X in GA3. Note that this is the degree
in GA3, and may be different than the degree in GB3 or Gagr.
With some abuse of notation, for every Y ∈ Y, we denote by dY the degree of Y in GB3.
Note that this is the degree in GB3 and not in GA3.

We now prove that the X-side of G′ is not empty, and a similar proof holds for the Y-side.
To this end, we upper bound the number of edges on the X-side that are removed in each
step of the iterative construction above, and show that the total number of edges removed
is less than eagr,X. We start our proof by upper bounding the total number of edges that
are removed in Step 1 above (in all iterations combined): Whenever we remove a vertex X,
we remove at most 1

4 · ε
3 · dX edges. Hence, the total number of edges that are removed in

Step 1 is at most∑
X∈X

1
4 · ε

3 · dX = 1
4 · ε

3 ·
∑
X∈X

dX = 1
4 · ε

3 · eA3,X ≤
1
4 · ε

2 · eagr,X, (13)

where the inequality holds since eagr,X ≥ ε · eA3,X by the definition of ε. Next, observe that
the number of edges on the X-side that are removed in Step 3 (in all iterations combined) is
at most

1
4 · ε · dZ,X · |Zagr| ≤

1
4 · eagr,X,
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where the inequality follows from the fact that every Z ∈ Zagr has at least ε · dZ,X edges on
the X-side in Gagr. Finally, we upper bound the number of edges that are removed on the
X-side in Step 4 (again, in all iterations combined): In order for a vertex Z to be removed
in Step 4, we must have removed at least 3

4 · ε · dZ,Y of its edges on the Y-side previously.
Those edges could only be removed in Step 2. On the other hand, it can be shown that the
total number of edges removed on the Y-side in Step 2 is at most 1

4 · ε
2 · eagr,Y using the

same argument as in Inequality 13. Therefore the total number of Z’s that are removed in
Step 4 is at most

1
4 · ε

2 · eagr,Y
3
4 · ε · dZ,Y

≤
1
4 · ε

2 · dZ,Y · |Zagr|
3
4 · ε · dZ,Y

= 1
3 · ε · |Zagr| .

where the inequality again follows from the fact that every Z ∈ Zagr has at least ε ·dZ,Y edges
on the Y-side in Gagr. Now, note that each of those Z’s can have at most dZ,X edges on the
X-side, so the total number of edges that are removed in Step 4 on the X-side is at most

1
3 · ε · dZ,X · |Zagr| ≤

1
3 · eagr,X.

Summing up, the total number of edges that are removed on the X-side is at most

1
4 · ε

2 · eagr,X + 1
4 · eagr,X + 1

3 · eagr,X < eagr,X,

and therefore G′ is non-empty on the X-side. Similarly, it can be shown that G′ is non-empty
on the Y-side, as required.

7.7 The almost-hard distribution
As mentioned above, our almost-hard distribution is the distribution of G′: choose a uniformly
distributed path X − Z − Y in G′, and output (X,Y ). We now prove that this is indeed
an Õ(

√
m)-almost hard distribution. Clearly, for every i ∈ R it holds that Xi = Yi with

probability 1. For every i ∈ [m]−R it either holds that Xi = Yi or it holds that Xi and Yi
disagree on exactly one coordinate, which is ji, the i-th axis of Z. It remains to prove that
for every X∗ or Y ∗, it holds that

H∞(ji|X = X∗) ≥ logn− Õ(
√
m) (14)

H∞(ji|Y = Y ∗) ≥ logn− Õ(
√
m). (15)

We use the following claim, whose proof is deferred to the end of this section.

I Claim 7.2. Fix a specific choice X∗ of X. The probability of each specific choice Z∗ of Z
to be chosen conditioned on X = X∗ is at most 2Õ(

√
m) times larger than the probability of

any other specific choice. The same holds for Y ∗.

We now prove Inequality 14, and Inequality 15 can be proved similarly. Basically, Inequality 14
follows from the corresponding inequality for GA3 (Inequality 11). As discussed in Section 7.6,
there are two issues to deal with: First, the latter inequality assumes that Z is uniformly
distributed, while in Inequality 14 the vertex Z is not uniformly distributed – this issue
is resolved using Claim 7.2. Second, the degree of X∗ in G′ is smaller than its degree
in GA3 – however, it is only smaller by a factor of 2Õ(

√
m), so this does not decrease the min-

entropy of ji by too much. We now provide the formal argument, which is a straightforward
calculation.
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Fix i ∈ [m]−R, and fix a specific choice X∗ of X. Fix a specific choice j∗ for ji, and let
Zi,j∗ be the set of neighbors Z∗ of X∗ in G′ whose axis on the i-th row is j∗. Recall that we
proved that in GA3, if Z is a uniformly distributed neighbor of X∗, then

H∞(ji|X = X∗) ≥ logn− Õ(
√
m).

This implies in particular that under this distribution it holds that

Pr [ji = j∗|X = X∗] ≤ 2Õ(
√
m)

n
.

In other words, this means that Zi,j∗ constitutes at most 2Õ(
√
m)/n fraction of the neighbors

of X∗ in GA3. Next, observe that by our construction of G′, the degree of X∗ in G′ is at least
2−Õ(

√
m) fraction of its degree in GA3. Therefore Zi,j∗ constitutes at most 2Õ(

√
m)/n fraction

of the neighbors of X∗ in G′. Finally, the latter fact together with Claim 7.2 implies that
the probability that Z ∈ Zi,j∗ is at most 2Õ(

√
m)/n, as required. This concludes the proof of

the main lemma.

Proof of Claim 7.2. Fix choices X∗ and Z∗. For every specific choice Z ′ of Z, it holds that

Pr [Z∗|X∗]
Pr [Z ′|X∗] = Pr [Z∗ and X∗]

Pr [Z ′ and X∗] .

Now, Pr [Z∗ and X∗] is the probability of the edge (X∗, Z∗) to be selected, which is pro-
portional to the number of paths X − Z − Y in which it participates. The latter number
is exactly the degree of Z∗ on the Y-side, which is between 2−Õ(

√
m) · dZ,Y and dZ,Y . The

same holds for the probability Pr [Z ′ and X∗]. It thus follows that

Pr [Z∗ and X∗]
Pr [Z ′ and X∗] ≤

dZ,Y

2−Õ(
√
m) · dZ,Y

≤ 2Õ(
√
m),

as required. J

8 Average-Case Lower Bounds

In this section, we prove average-case analogues of our main theorem (in Section 8.1) and
of the cubic lower bound for Andreev’s function (in Section 8.2). Hardness on-average is
defined as follows.

I Definition 8.1. A function F : {0, 1}N → {0, 1} is said to be (s, ε)-hard if every formula
of size at most s computes F correctly on at most 1

2 + ε fraction of the inputs.

8.1 Average-case lower bound for composition
We prove the following theorem, which is an average-case analogue of our main theorem.

I Theorem 1.3 (restated). Let f : {0, 1}m → {0, 1} be an (s, ε)-hard function. Then, f �⊕n
is (s′, ε+ 2−m)-hard for

s′ ≥ s · L(⊕n)/2Õ(
√
m+logn).

To this end, we use the following immediate corollary of the Karchmer-Wigderson connection
(Theorem 2.11).
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I Corollary 8.2. A function F : {0, 1}N → {0, 1} is (s, ε)-hard if and only if for every
two sets X ⊆ F−1(0) and Y ⊆ F−1(1) such that |X| + |Y| > ( 1

2 + ε) · 2N , it holds that
L(KWX×Y) ≥ s.

Let f : {0, 1}m → {0, 1} be an (s, ε)-hard function and let X ⊆ (f � ⊕n)−1(0) and Y ⊆
(f � ⊕n)−1(1) be such that ( 1

2 + ε+ 2−m) · 2m·n. Our goal is to prove that

L(KWX×Y) ≥ s · n2/2Õ(
√
m+logn).

In order to do so, we prove that the rectangle X×Y satisfies the requirement of the generalized
f -stage lemma (Lemma 4.5). We then derive the lower bound by plugging the latter lemma
into the proof of the main theorem in Section 3.3.

Recall that for every product of edges Z = (Z0, Z1), we define the f -rectangle of X× Y
with respect to Z as the rectangle AZ × BZ where

AZ
def=

{
a ∈ f−1(0)|Za ∈ X

}
BZ

def=
{
b ∈ f−1(1)|Zb ∈ Y

}
.

In order to show that the rectangle X × Y satisfies the requirement of the generalized
f -stage lemma, we need to show that for at least 2−m fraction of the Z’s it holds that
L(KWAZ×BZ ) ≥ s. To this end, it suffices to prove that at least 2−m fraction of the Z’s
satisfy that |AZ | + |BZ | ≥ ( 1

2 + ε) · 2m, and this will imply the required lower bound on
L(KWAZ×BZ ) by the average-case hardness of f . We prove this via a straightforward
averaging argument.

More specifically, consider the following bipartite graph G: One side of the graph is the
set X∪Y , and other side is the set Z of all Z’s. A matrix W ∈ X∪Y is connected to Z ∈ Z
if and only if W = Zw for some w ∈ {0, 1}m. It is easy to see that the degree of every
W ∈ X ∪ Y is exactly nm, so the total number of edges in the graph is

|X ∪ Y| · nm ≥ (1
2 + ε+ 2−m) · 2m·n · nm = (1

2 + ε+ 2−m) · 2m · |Z| ,

where the equality holds since |Z| = 2m·(n−1) · nm. On the other hand, the degree of each Z
in this graph is exactly |AZ | + |BZ |. Now, the Z’s whose degree is less than

( 1
2 + ε

)
· 2m

contribute less than(
1
2 + ε

)
· 2m · |Z|

edges. Therefore, at least 2−m · 2m · |Z| edges are connected to Z’s whose degree is at least( 1
2 + ε

)
· 2m. The degree of every such Z is at most 2m, and therefore the number of such

Z’s must be at least:

2−m · 2m · |Z| /2m = 2−m · |Z| .

It thus follows that |AZ | + |BZ | ≥ ( 1
2 + ε) · 2m for at least 2−m fraction of the Z’s, and

therefore the rectangle X× Y satisfies the requirement of the generalized f -stage lemma.
We finally turn to prove the lower bound. Fix a protocol Π that solves KWX×Y , and

let us denote its size by S. Without loss of generality, we may assume that S ≤ 2m · n2, or
otherwise we are done. We apply Theorem 6 2.4 to Π with α = 1√

m+logn
, thus obtaining a

6 See also the restatement of this theorem in Section 3.3
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new protocol Π′ of depth at most 2Õ(
√
m+logn) and size S′ ≤ S

1+ 1√
m+logn . We prove that

S′ ≥ s · L(⊕n)/2Õ(
√
m+logn) and this will imply the same lower bound for S, as required (see

Section 3.3 for details).
By the generalized f -stage lemma (Lemma 4.5), it follows that Π′ has at least

s/2Õ(
√
m+logn) partial transcripts π1 that are alive, where none of them is an ancestor

of another. By the structure theorem (Theorem 3.4), for each such partial transcript π1 there
are at least L(⊕n)/2Õ(

√
m) suffixes π2 such that π1 ◦π2. Summing over all the possible choices

for π1 and π2, it follows that Π′ has at least s · L(⊕n)/2Õ(
√
m+logn) distinct transcripts,

which is what we wanted to prove.

8.2 Average-case cubic lower bound
In the rest of this section, we prove Corollary 1.4, which gives average-case cubic lower
bounds for a variant of the Andreev function due to Komargodski and Raz [23]. Our proof is
essentially the same as that of [23], modulo the proof of Theorem 1.3, and some different
choices of the parameters.

I Corollary 1.4 (restated). For every n, c ∈ N there exists a function Fn,c : {0, 1}n → {0, 1}
bits that is (S, n−c)-hard for

S ≥ n
3−Õ( 1√

logn
)
.

Let n, c ∈ N be as in the theorem. Let m def= 10 · c · logn. Let C : {0, 1}n/2 → {0, 1}2
m

be the
list-decodable code of Fact 2.22, and recall that the list-decodability means that for every
string w ∈ {0, 1}2

m

, there are at most 2m codewords of C that are ( 1
2 −

1
2 ·
√

n
2m/2 )-close

to w. The function Fn,c is defined as follows: The input of Fn,c consists of two parts, each of
length n/2. The first part of the input is denoted f . Recall that C(f) is a string of length
2m, and we view it as a truth table of a function from {0, 1}m to {0, 1}. The second part of
the input is a sequence x1, . . . , xm of strings in {0, 1}n/2m. The function Fn,c is now defined
by

Fn,c(f, x1, . . . , xm) def=
(
C(f) � ⊕ n

2m

)
(x1, . . . , xm).

We use the following claim, which is proved by a straightforward counting argument.

I Claim 8.3. Let f be a uniformly distributed string in {0, 1}n/2. Then, the function C(f)
is (s, n−2c)-hard for s def= n/16 · logm with probability at least 1− 2−n/5.

Proof. We count the number of functions from {0, 1}m to {0, 1} that can be approximated
by formulas of size s def= n/16 · logm. Following a calculation in [17] (see the proof of
Theorem 1.23), the number of formulas of size s over m variables is at most (9m)s ≤ 2n/4. By
the list-decodability of C, for each such formula φ there are at most 2m strings h ∈ {0, 1}n/2

such that

Pr
x←{0,1}n/2

[C(h)(x) = φ(x)] > 1
2 + n−2c ≥ 1

2 + 1
2 ·
√

n

2m/2
. (16)

It follows that the total number of strings h that satisfy Inequality 16 for any formula of
size s is at most 2n/4 · 2m. Therefore, if f is chosen uniformly at random, the probability
that C(f) is (s, n−2c)-hard is at least

1− 2n/4 · 2m

2n/2
≥ 1− 2−n/5,
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as required. J

By Theorem 1.3, for every fixed choice of f for which C(f) is (s, n−2c)-hard, it holds that
C(f) � ⊕ n

2m
is (S, n−2c + 2−m)-hard for

S
def= s · n2/2Õ(

√
m+logn) = n

3−Õ( 1√
logn

)
.

Therefore, for every such fixed choice of f and every fixed formula φ of size S, it holds that

Pr
x1,...,xm←{0,1}n/2m

[Fn,c(f, x1, . . . , xm) = φ(f, x1, . . . , xm)] ≤ 1
2 + n−2c + 2−m.

Now, let f be uniformly distributed, and let Hf denote the event in which C(f) is (s, n−2c)-
hard. It follows that for every formula φ of size at most S and for uniformly distributed f
and x1, . . . , xm it holds that

Pr [Fn,c(f, x1, . . . , xm) = φ(f, x1, . . . , xm)]
≤ Pr [Fn,c(f, x1, . . . , xm) = φ(f, x1, . . . , xm)|Hf ] + Pr [¬Hf ]

≤ 1
2 + n−2c + 2−m + 2−n/5

≤ 1
2 + n−c.

Hence, Fn,c is (s, n−c)-hard for S ≥ n
3−Õ( 1√

logn
)
, as required.

9 Future Directions and Open Problems

In order to prove the KRW conjecture, one should replace the parity function in our result
with a general function g : {0, 1}n → {0, 1}. It seems to us that a good starting point would
be to prove the KRW conjecture for the composition of a universal relation and a function g,
denoted U � g. We now explain what this composition is, and then discuss how one might
prove the KRW composition for it.

The composition U � g

The universal relation is the following communication problem: Alice and Bob get two
distinct strings x, y ∈ {0, 1}m, and should find a coordinate on which x and y disagree. The
difference between the universal relation and KW relations is that x and y are not required to
be a 0-preimage and 1-preimage of some function f . This makes the universal relation much
simpler and easier to analyze, and therefore the universal relation is often a good starting
point for studying KW relations. For convenience, we denote the universal relation by U .

As was observed by [15], it is often useful to relax the requirement that x and y are
distinct as follows: We allow x and y to be equal, but in this case, we also allow Alice and
Bob to reject the inputs instead of outputting a coordinate. It is not hard to show that this
relaxation does not increase the complexity of the problem by much. It is well-known that
the communication complexity of the (relaxed) universal relation is at least m, and that the
“hardest inputs” are those in which x = y [20, 10, 15, 12].

The composition U � g is the following communication problem: Alice and Bob get as
inputs m × n matrices X and Y respectively such that g(X) 6= g(Y ), and their goal is to
find an entry (i, j) such that Xi,j 6= Yi,j . Again, we relax the requirement that g(X) 6= g(Y )
as follows: We allow X and Y to satisfy g(X) = g(Y ), but in this case, we also allow Alice
and Bob to reject the inputs and not output an entry (i, j). Here, too, the relaxation does
not increase the complexity of the problem by much.
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The KRW conjecture for U � g

The analogue of the KRW conjecture for U � g would be to prove that

C(U � g) ≈ C(U) + C(KWg) ≈ m+ C(KWg)

(for simplicity, we focus on the communication complexity rather than on the protocol size).
We could try to to prove it using the approach of this paper as follows. Suppose that there
is a protocol Π that solves U � g. Then, we would have liked to prove the following claims:

An analogue of the f-stage lemma: There is a partial transcript of π1 of length m−
Õ(
√
m) that is alive, i.e., that has not solved the universal relation on g(X) and g(Y ).

An analogue of the structure theorem: Any live partial transcript π1 has a suffix
of length C(KWg)− Õ(

√
m).

If we could prove those two claims, they would have implied the lower bound

C(U � g) ≥ m+ C(KWg)− Õ(
√
m), (17)

which would have been sufficiently good for our purposes.

An analogue of the f -stage lemma

Recall that in Section 3, we implemented the above approach by defining products of
edges Z = (Z0, Z1). We then invoked the protocol on inputs X and Y of the form X = Za,
Y = Zb for a ∈ f−1(0) and b ∈ f−1(1). In particular, we proved the f -stage lemma by
considering the invocation of the protocol on such inputs for different Z’s.

We would like to prove an analogue of the f -stage lemma for U �g using a similar strategy.
To this end, we would like to invoke the protocol Π on inputs of the form X = Za, Y = Zb,
and show that it cannot solve the universal relation on a and b using m− Õ(

√
m) bits. A

natural way to do so would be to choose the pair (a, b) to be a hard input for the universal
relation.

As we noted above, the hard inputs to the universal relation are those in which a = b.
Now, observe that whenever a = b, it also holds that X = Y . Thus, it seems that for an
analogue of the f -stage lemma for U � g, we should invoke the protocol Π on inputs of the
form (X,X). This leads to the following natural definition for what it means that “π1 is
alive”.

I Definition 9.1. We say that a partial transcript π1 is alive if for at least 2−(m−Õ(
√
m)) frac-

tion of the matrices X ∈ {0, 1}m×n, the input (X,X) is consistent with π1. In other
words, if we denote by Xπ1 × Yπ1 the rectangle of π1, then X ∈ Xπ1 ∩ Yπ1 for at least
2−(m−Õ(

√
m)) fraction of the matrices X ∈ {0, 1}m×n.

Intuitively, this definition says that π1 has gives at most m − Õ(
√
m) bits of information

about the inputs of the players. In particular, π1 gives at most m − Õ(
√
m) bits about a

and b, and therefore it is still far from solving the universal relation on a and b. This intuition
can be formalized using the ideas of [10, 15, 12], but it is not necessary for our discussion.
The following analogue of the f -stage lemma can now be proved using a straightforward
averaging argument.

I Lemma 9.2 (Universal-stage lemma). There is a live partial transcript π1 of length m−
Õ(
√
m) that has not solved the universal relation.
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An analogue of the structure theorem

The difficult part in proving the lower bound on C(U � g) would be proving an analogue of
the structure theorem. Such an analogue would say that if Alice and Bob have not solved
the universal relation yet, then they must transmit C(KWg) − Õ(

√
m) more bits. Given

Definition 9.1, this can be formalized as follows.

I Conjecture 9.3. Let X ⊆ {0, 1}m×n be a set of matrices of density at least 2−(m−Õ(
√
m)).

Then, the restriction of U � g to the rectangle X × X has communication complexity at
least C(KWg)− Õ(

√
m).

We note that it is possible to construct artificial examples of functions g for which Conjec-
ture 9.3 does not hold: in particular, if g is easy on (1− ε)-fraction of its inputs, it is possible
that all the matrices in X contain only easy inputs as rows7. However, it might be possible
to prove it for some “reasonable” class of functions, and that might be sufficient for proving
formula lower bounds. For example, it might be possible to prove this conjecture for the case
where g is a random function. We also note there is a simple (but non-trivial) proof of the
conjecture for the case where g = ⊕n – in fact, this observation was the trigger to this work.

Another way to deal with the aforementioned artificial examples is to change the conjecture
such that it allows us to get rid of the easy inputs of g. This is done by replacing {0, 1}m×n

with some subset X0 that depends on g and should consist of the hard inputs:

I Conjecture 9.4. For every non-constant function g : {0, 1}n → {0, 1} there exists
X0 ⊆ {0, 1}m×n such that the following holds: Let X ⊆ X0 be a set of matrices of den-
sity at least 2−(m−Õ(

√
m)) in X0. Then, the restriction of U � g to the rectangle X× X has

communication complexity at least C(KWg)− Õ(
√
m).

It is not hard to see that Conjecture 9.4 is sufficient for proving the lower bound on C(U � g):
this can be done by replacing {0, 1}m×n with X0 in Definition 9.1 and Lemma 9.2 above.

Conjecture 9.4 could serve as the next intermediate goal toward proving the KRW
conjecture, and we suggest it as an open problem. In fact, we do not know how to prove this
conjecture even if the density of X in X0 is allowed to be as high as 1

2 , and the desired lower
bound is allowed to be as small as C(KWg)− 0.99 ·m.

The 1-out-of-k problem

We now discuss a special case of Conjecture 9.3 which seems to be interesting in its own
right. First, we define the following communication problem.

I Definition 9.5 (The 1-out-of-k problem). Let g : {0, 1}n → {0, 1} be a non-constant
function, and let k ∈ N. The 1-out-of-k version of KWg is the following communication
problem: Alice and Bob get matrices X,Y ∈ {0, 1}k×n respectively such that

g(X) and g(Y ) are the all-zeroes and all-ones strings respectively.
All the rows of X and Y are all distinct.

The goal of Alice and Bob is to find an entry (i, j) such that Xi,j 6= Yi,j .

7 Consider a function g : {0, 1}n → {0, 1} that is defined as follows: given an input x, if the first five
bits of x are all zeroes, then g(x) is some hard function of the remaining bits, and otherwise g(x) = x6.
Now, consider the set X ⊆ {0, 1}m×n that consists of all the matrices X in which there is no row with
the first five bits all being zeroes. It is not hard to see that the communication complexity of U � g
restricted to X× X is at most m + O(1), and this might be much smaller than C(KWg) if m� n.
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Clearly, the communication complexity of the 1-out-of-k version of KWg is at most C(KWg),
since Alice and Bob can run the optimal protocol for KWg on the first rows of X and Y .
The question is whether the communication complexity of the 1-out-of-k version of KWg

can be much smaller? We suggest proving the following conjecture as another open problem.

I Conjecture 9.6. For every non-constant g : {0, 1}n → {0, 1} and k ∈ N, the communication
complexity of the 1-out-of-k version of KWg is at least C(KWg)− poly logn.

Observe that Conjecture 9.6 is indeed a special case of Conjecture 9.3: the reason is that
we can always choose the subset X to be the set of matrices X such that the first k bits
of g(X) are equal, and all the rows of X are distinct. The density of this set X is slightly
less than 2−k, and the communication complexity of the restriction of U � g to the rectangle
X× X is at most the communication complexity of the 1-out-of-k version of KWg.

We note that although we defined the 1-out-of-k problem only for KW relations, it could
be generalized to other models of computation. For those models, one could state analogues
of Conjecture 9.6 that are interesting in their own right. For example, consider the following
analogues for communication complexity and circuit complexity:

I Conjecture 9.7 (The 1-out-of-k problem for communication complexity). Let f : {0, 1}n ×
{0, 1}n → {0, 1}, and consider the communication problem of computing f . The 1-out-of-k
version of f is defined as follows: Alice gets distinct x1, . . . , xk ∈ {0, 1}n, Bob gets distinct
y1, . . . , yk ∈ {0, 1}n, and their goal is to output an index i ∈ [k] and the bit f(xi, yi). The
conjecture is that the communication complexity of this problem is at least C(f)− poly logn.

I Conjecture 9.8 (The 1-out-of-k problem for circuit complexity). Let f : {0, 1}n → {0, 1},
and consider the problem of computing f using a boolean circuit. The 1-out-of-k version
of f is defined as follows: a circuit gets as input distinct x1, . . . , xk, and it should output an
index i ∈ [k] and the bit f(xi). The conjecture is that the circuit complexity of this problem
is at least the circuit complexity of f up to a polynomial factor.

The 1-out-of-k problem is a close variant of the “choose” problem introduced by Beimel et al.
[3], who also posed conjectures that correspond to Conjectures 9.7 and 9.8. The difference
between the 1-out-of-k problem defined above and the “choose” problem of [3] is that in the
“choose” problem, the inputs are not required to be distinct, and on the other hand, we have
k functions f1, . . . , fk instead of a single function f . The question is whether choosing one of
the functions fi and computing it on its corresponding input is easier than computing the
easiest function among f1, . . . , fk in isolation.

[3] made an interesting observation, which also translates to the 1-out-of-k problem
as follows: 1-out-of-k conjectures of the above form are implied by direct-sum conjectures.
For concreteness, we explain this claim for the example of communication complexity. A
direct-sum conjecture for communication complexity says that the complexity of computing
k independent instances of f is k · C(f). The observation of [3] is that the latter direct-sum
conjecture implies that the communication complexity of the 1-out-of-k version of f is C(f).

To see why this is true, suppose there was a protocol that solved the 1-out-of-k version
of f using less than C(f) bits. If this was the case, it would have been possible to compute
k independent instances of f using less than k · C(f) as follows: Alice and Bob first use
the protocol for the 1-out-of-k version of f on the k instances, thus computing f on one
instance. Then, they would compute f independently on each of the remaining instances.
The complexity of this protocol would be (k − 1) · C(f) plus the complexity of the 1-out-of-k
version of f , which is less than k · C(f) by assumption.
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Direct-sum conjectures have been studied in many different areas. In particular, the direct-
sum conjecture for communication complexity has been proposed in [20], and partial results
were obtained in [11, 19, 2, 6, 5] . In particular, the result of [11] implies that the complexity of
the 1-out-of-k problem of Conjecture 9.7 above is at least

√
C(f). Unfortunately, the known

results are insufficient for proving Conjecture 9.6. It is interesting question whether proving
Conjectures 9.6 and 9.7 is easier than proving the corresponding direct-sum conjectures, or
alternatively, whether 1-out-of-k conjectures imply direct-sum conjectures.
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Abstract
We show a nearly quadratic separation between deterministic communication complexity and the
logarithm of the partition number, which is essentially optimal. This improves upon a recent
power 1.5 separation of Göös, Pitassi, and Watson (FOCS 2015). In query complexity, we estab-
lish a nearly quadratic separation between deterministic (and even randomized) query complexity
and subcube partition complexity, which is also essentially optimal. We also establish a nearly
power 1.5 separation between quantum query complexity and subcube partition complexity, the
first superlinear separation between the two measures. Lastly, we show a quadratic separation
between quantum query complexity and one-sided subcube partition complexity.

Our query complexity separations use the recent cheat sheet framework of Aaronson, Ben-
David, and Kothari. Our query functions are built up in stages by alternating function composi-
tion with the cheat sheet construction. The communication complexity separation follows from
“lifting” the query separation to communication complexity.
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1 Introduction

Deterministic communication complexity

In the standard model of communication complexity, we wish to compute a function F :
X × Y → {0, 1}, where the inputs x ∈ X and y ∈ Y are given to two different players,
while minimizing the communication between the players. We use Dcc(F ) to denote the
deterministic communication complexity of F , the number of bits communicated in the worst
case by the best deterministic protocol for the function F .

The partition number of F , denoted χ(F ), is the least number of monochromatic rectangles
in a partition or disjoint cover of X × Y (where a monochromatic rectangle is a set A×B,
with A ⊆ X and B ⊆ Y, such that F takes the same value on all elements of A×B). Yao
[30] observed that any C-bit communication protocol for F partitions the set of all inputs
X × Y into at most 2C monochromatic rectangles, which gives us logχ(F ) ≤ Dcc(F ). This
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4:2 Separations Between Communication/Query Complexity and Partitions

Table 1 Known separations between deterministic communication complexity, Dcc(F ), and
partition number, χ(F ).

Separation Reference

Dcc(F ) ≥ 2 logχ(F ) [18]
Dcc(F ) = Ω̃

(
log1.5 χ(F )

)
[10]

Dcc(F ) ≥
(
logχ(F )

)2−o(1) Theorem 1.1

Dcc(F ) = O
(
logχ(F )2) for all F : X × Y → {0, 1}

turns out to be a powerful lower bound, and in fact almost all lower bound techniques for
deterministic communication complexity, including the partition bound, discrepancy, fooling
sets, (nonnegative) rank, and various norm-based methods [13, 14, 22], actually lower bound
logχ(F ).

In addition to being a fruitful lower bound technique, logχ(F ) also yields an upper bound
on Dcc(F ). Aho, Ullman, and Yannakakis [4] showed that for all F : X × Y → {0, 1}, we
have

Dcc(F ) = O(log2 χ(F )). (1)

It has been a long-standing open problem to determine whether this upper bound can be
improved (see, e.g., [19, Open Problem 2.10]). We show that the upper bound in (1) is
essentially optimal.

I Theorem 1.1. There exists a function F : X ×Y → {0, 1} with Dcc(F ) ≥
(
logχ(F )

)2−o(1).

Until recently, the best known separation between the two measures was only by a factor
of 2 [18]. Recently, Göös, Pitassi, and Watson [10] showed that there exists a function F
with Dcc(F ) = Ω̃(log1.5 χ(F )), where the notation Ω̃(m) hides poly(logm) factors. Table 1
summarizes known separations between Dcc and logχ.

Deterministic query complexity

In the model of query complexity, we wish to compute a function f : {0, 1}n → {0, 1} on
an input x ∈ {0, 1}n given query access to the bits of the input, i.e., we can only access the
input via a black box that accepts an index i ∈ [n] (where [n] := {1, 2, . . . , n}) and responds
with xi ∈ {0, 1}. The goal is to compute f(x) while minimizing the number of queries made
to the black box. Let D(f) to denote the deterministic query complexity of f , the number of
queries made by the best deterministic algorithm that computes f correctly on all inputs.

As in communication complexity, most lower bounds for deterministic query complexity
are based on the simple observation that any d-query algorithm computing f partitions
the domain {0, 1}n into at most 2d monochromatic subcubes where each subcube fixes at
most d variables. A subcube is a restriction of the hypercube where some variables have
been fixed, and it is monochromatic if f takes the same value on all inputs in the subcube.
This motivates defining the subcube partition complexity of f as a smallest d such that the
domain {0, 1}n can be partitioned into at most 2d monochromatic subcubes that each fix
at most d variables. Subcube partition complexity can also be viewed as an unambiguous
version of certificate complexity as explained in Section 3, and hence we denote this measure
UC(f).
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Table 2 Known separations between deter-
ministic query complexity and subcube partition
complexity.

Separation Reference

D(f) = Ω(UC(f)1.261) [27]
D(f) = Ω̃(UC(f)1.5) [10]
D(f) ≥ UC(f)2−o(1) Theorem 1.2

D(f) = O(UC(f)2) for all f : {0, 1}n → {0, 1}

Table 3 Known separations between random-
ized query complexity and subcube partition
complexity.

Separation Reference

R(f) = Ω(UC(f)1.058) [17]
R(f) = Ω̃(UC(f)1.5) [9]
R(f) ≥ UC(f)2−o(1) Theorem 1.3

R(f) = O(UC(f)2) for all f : {0, 1}n → {0, 1}

Due to the observation above, we have UC(f) ≤ D(f). It turns out that this lower bound
is also relatively tight: for all f : {0, 1}n → {0, 1} we have

D(f) = O(UC(f)2). (2)

We show that this upper bound is essentially optimal.

I Theorem 1.2. There exists a total function f with D(f) ≥ UC(f)2−o(1).

The first separation between these two measures was a power 1.261 separation by Savický,
which was recently improved by Göös, Pitassi, and Watson [10] to power 1.5. Table 2
summarizes known separations between these measures.

Randomized query complexity

We can extend the query model to allow randomized algorithms in the natural way. We define
the bounded-error randomized query complexity of a function f , R(f), to be the minimum
number of queries needed in the worst case by a randomized algorithm that outputs f(x) on
input x with probability at least 2/3.

As before, almost all lower bound techniques for randomized query complexity are upper
bounded by UC(f), as shown in [17]. This includes the partition bounds [13, 14], approximate
polynomial degree [25], approximate nonnegative junta degree (also known as nonnegative
literal degree or conical junta degree) [16], block sensitivity [24], randomized certificate
complexity or fractional block sensitivity [1, 7, 29], and the classical analogue of the quantum
adversary bound [20, 28, 2].

Since we obviously have R(f) ≤ D(f), using (2) we know that R(f) = O(UC(f)2). We
show that this upper bound is also essentially optimal.

I Theorem 1.3. There exists a total function f with R(f) ≥ UC(f)2−o(1).

The first asymptotic separation between these measures was a power 1.058 separation
by Racicot-Desloges, Santha, and Kothari [17], which was later improved by Göös, Jayram,
Pitassi, and Watson [9] to a power 1.5 separation. Table 3 summarizes the known separations
between these measures.

Quantum query complexity

The query model can also be naturally extended to quantum algorithms. We denote by Q(f)
the bounded-error quantum query complexity of f , the minimum number of queries made in
the worst case by a quantum algorithm that outputs f(x) on input x with probability at
least 2/3. (See [6] for a formal definition.)
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As before, since Q(f) ≤ D(f), using (2) we know that Q(f) = O(UC(f)2). However,
prior to our work no function was known for which Q(f)� UC(f) was known. Furthermore,
the functions previously used to show separations between D(f) or R(f) and UC(f) do not
separate Q(f) from UC(f). Indeed, even the functions constructed to prove Theorem 1.2 and
Theorem 1.3 do not separate Q(f) from UC(f). Despite this, we give the first superlinear
separation between Q(f) and UC(f).

I Theorem 1.4. There exists a total function f with Q(f) ≥ UC(f)1.5−o(1).

We are also able to show an improved separation between quantum query complexity
and one-sided subcube partition complexity, denoted by UC1(f), which is similar to subcube
partition complexity except that we only need to partition the 1-inputs using monochromatic
subcubes.

For this measure, the quadratic upper bound D(f) = O(UC1(f)2) still holds [8, Propo-
sition 5], and hence Q(f) = O(UC1(f)2). We show this upper bound is optimal up to log
factors, qualitatively improving upon [10] and [9] who proved the same result for deterministic
and randomized query complexity respectively.

I Theorem 1.5. There exists a total function f with Q(f) = Ω̃(UC1(f)2).

2 High-level overview

We now provide a high-level overview of the separations shown.

Deterministic communication complexity

We prove Theorem 1.1 by showing the analogous separation in query complexity (Theorem 1.2)
and “lifting” the result to communication complexity, which is also the strategy used in
[10]. Essentially, the deterministic simulation theorem of [10] provides a black-box way of
converting a query separation between D(f) and UC(f) to a separation between Dcc(F )
and logχ(F ). The theorem weakens the separation by log of the input size of f , but with a
suitable choice of parameters this is negligible compared to the o(1) term in the separation.

Deterministic query complexity

To prove Theorem 1.2, we use the recently introduced cheat sheet framework [3] and the
commonly used technique of function composition. Before describing the construction, we
need to define some notation. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},
we define the composed function f ◦ g to be the function on mn bits whose output on
y = (y11, . . . , y1m, . . . , yn1, . . . , ynm) is f(g(y11, . . . , y1m), . . . , g(yn1, . . . , ynm)). Let Andn

and Orn denote the And and Or function on n bits respectively. For any function f , we
use fCS to denote the “cheat sheet version” of f , a new total Boolean function constructed
from f . (We review the cheat sheet framework in Section 4.)

An interesting feature of the cheat sheet framework is that UC1(fCS) can be substantially
smaller than UC1(f) because one can construct a partition for inputs with fCS = 1 without
using a partition for inputs with f = 1. This property is crucial for our construction but is
not sufficient by itself because the complexity of the best partition for inputs with fCS = 0 is
of a similar order as UC(f). To deal with this, we combine the cheat sheet construction with
several other steps which rebalance the complexity of partitions for f = 1 and f = 0.

We construct our function in stages starting with the function f0 = Andn that achieves
no separation between D(f) and UC(f). We then compose the function with Orn, construct
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the cheat sheet version, and then compose with Andn, to obtain the function f1 = Andn ◦
(Orn◦Andn)CS, which achieves a power 3/2 separation between D(f) and UC(f). Repeating
this construction once more yields f2 = Andn ◦ (Orn ◦Andn ◦ (Orn ◦Andn)CS)CS, which
achieves a power 5/3 separation, and so on. The function fk achieves a (2k + 1)/(k + 1)
separation, which yields a 2− o(1) separation if we choose k to be a slow growing function
of n.

Randomized query complexity

The function constructed above also yields the separation in Theorem 1.3 with slightly worse
parameters. The analysis of the constructed function is similar since deterministic and
randomized query complexities behave similarly with respect to the cheat sheet technique
and with respect to composition with the And and Or functions.

Quantum query complexity

Lastly, we establish the quantum separations using two functions introduced by Aaronson,
Ben-David and Kothari [3]: the Block-k-sum-of-k-sums function, which we denote Bkk,
and the Block-k-sum function, which we denote bk-sum. The function BkkCS yields the
separation in Theorem 1.5. The separation in Theorem 1.4 requires a function constructed in
stages again. The first function is f1 = And◦BkkCS, which achieves a power 5/4 separation,
the next is f2 = Andn ◦ (bk-sumn ◦ f1), which achieves a power 4/3 separation and so on.
The function fk achieves a power (3k + 2)/(2k + 2) separation.

3 Preliminaries

Communication complexity

The only communication complexity measures we need are Dcc(F ) and χ(F ), which were
defined in Section 1. The interested reader is referred to [19, 15] for more formal definitions
of these measures.

Query complexity

For more formal definitions of measures introduced in Section 1, the reader is referred to the
survey by Buhrman and de Wolf [6]. The only measure not covered in the survey is subcube
partition complexity, which is explained in detail in [17].

Subcube partition complexity can also be viewed as unambiguous certificate complexity
and we use this perspective in this paper. To explain this, let us begin with certificate
complexity.

A certificate for an input x ∈ {0, 1}n is a subset S ⊆ [n] of indices and claimed values for
these bits, such that x is consistent with the certificate and any input y consistent with the
certificate satisfies f(x) = f(y). In other words, a certificate for x is a partial assignment
of bits consistent with x such that any other string consistent with this partial assignment
has the same function value as x. For b ∈ {0, 1}, the b-certificate complexity of f , denoted
Cb(f), is the size of the smallest certificate for x maximized over all inputs with f(x) = b.
The certificate complexity of f , C(f), is defined as C(f) := max{C0(f), C1(f)}. Alternately,
C1(f) is the smallest w such that f can be written as a width-w DNF, i.e., a DNF in which
each term contains at most w variables. Similarly, C0(f) corresponds to CNF width.
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4:6 Separations Between Communication/Query Complexity and Partitions

Unambiguous certificate complexity is defined similarly, except we require the set of
certificates to be unambiguous, i.e., at most one certificate from the set of all certificates
should work for a given input. In other words, the unambiguous 1-certificate complexity of
f is the minimum w such that f can be written as a width-w DNF in which at most one
term evaluates to 1 on any input. Similar to certificate complexity, we denote unambiguous
b-certificate complexity by UCb(f) and define UC(f) := max{UC0(f),UC1(f)}. Clearly,
since unambiguous certificates are more restricted than certificates, we have for b ∈ {0, 1},
Cb(f) ≤ UCb(f) and C(f) ≤ UC(f).

For example, consider the Orn function on n bits defined as
∨

i∈[n] xi. Clearly C0(Orn) =
n since we must examine all n bits to be sure that all xi = 0. On the other hand, C1(Orn) = 1
since the location of any 1 in the input is a certificate. Obviously UC0(Orn) remains n.
However, a single 1 in the input is not an unambiguous 1-certificate since inputs with multiple
1s would have multiple valid certificates. In other words, although

∨
i∈[n] xi is a valid DNF

representation of Orn, it is not unambiguous since several terms can simultaneously be 1.
So consider the following DNF:

Orn(x) = x1 ∨ x1x2 ∨ x1x2x3 ∨ · · · ∨ x1x2 · · ·xn−1xn . (3)

This DNF is unambiguous since any term evaluating to 1 prevents other terms from evaluating
to 1. Thus we have UC1(Orn) ≤ n. Although this result in trivial because UC1(f) ≤ n for
any n-bit function f , this DNF representation of Orn will be useful to us later later because
it has the property that every unambiguous certificate has only one unnegated index xi.

Composition theorems

Composition theorems relate the complexity of composed functions with the complexities of
the individual functions. For example, for all Boolean functions f and g, D(f ◦g) = D(f)D(g)
[29, 23]. In our construction we will repeatedly compose functions with Andn and Orn, and
hence we need to understand the complexities of the resulting functions.

I Lemma 3.1 (AND/OR composition). For any total Boolean function f , the following
bounds hold:

D(Andn ◦ f) = nD(f)
R(Andn ◦ f) = Ω(nR(f))
Q(Andn ◦ f) = Ω(

√
nQ(f))

C0(Andn ◦ f) ≤ C0(f)
C1(Andn ◦ f) ≤ nC1(f)
UC0(Andn ◦ f) ≤
UC0(f) + (n− 1)UC1(f)
UC1(Andn ◦ f) ≤ nUC1(f)

D(Orn ◦ f) = nD(f)
R(Orn ◦ f) = Ω(nR(f))
Q(Orn ◦ f) = Ω(

√
nQ(f))

C0(Orn ◦ f) ≤ nC0(f)
C1(Orn ◦ f) ≤ C1(f)
UC0(Orn ◦ f) ≤ nUC0(f)
UC1(Orn ◦f) ≤ (n−1)UC0(f)+UC1(f)

Proof. We prove the claims for the function Andn◦f . Similar reasoning proves the analogous
claims for the function Orn ◦ f .

The first property follows from the fact thatD(f◦g) = D(f)D(g) for any Boolean functions
f and g [29, 23]. R(Andn ◦ f) = Ω(nR(f)) was recently proved by [9]. Q(Andn ◦ f) =
Ω(
√
nQ(f)) because Q(f ◦ g) = Θ(Q(f)Q(g)) for any Boolean functions f and g [12, 26, 21]

and we know that Q(Andn) = Q(Orn) = Θ(
√
n) [11, 5].

We have C0(Andn ◦ f) ≤ C0(f) since a 0-certificate for Andn is a 0-input to it, which
corresponds to an instance of f that evaluates to 0. On the other hand, by certifying
that all n instances of f evaluate to 1, we can certify Andn ◦ f evaluates to 1, and hence
C1(Andn ◦ f) ≤ nC1(f).
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We can unambiguously certify that Andn ◦ f evaluates to 0 by unambiguously certifying
the value of the first (from the left) 1-input to the Andn gate and unambiguously certifying
that all previous inputs are 0. This is the same idea used to construct the unambiguous DNF
for Orn in (3). This construction gives UC0(Andn ◦ f) ≤ UC0(f) + (n− 1)UC1(f). We can
unambiguously certify that Andn ◦ f evaluates to 1 by providing unambiguous 1-certificates
for all n instances of f . This gives UC1(Andn ◦ f) ≤ nUC1(f). J

4 Cheat sheet framework

We now overview the recently introduced cheat sheet framework [3]. The framework as
presented in [3] is more general and can fulfill different objectives such as making partial
functions total. We present a restricted version of the framework that only works for total
functions. We use the framework because it makes 1-certificates unambiguous in a natural
way.

I Definition 4.1 (Cheat sheet version of a total function). Let f : {0, 1}N → {0, 1} be a
function, c = 10 logN and m = 10C(f) log2 N . Then the cheat sheet version of f , denoted
fCS, is a total function

fCS : ({0, 1}N )c × ({0, 1}m)2c

→ {0, 1}.

Let the input be written as (x1, x2, . . . , xc, Y1, Y2, . . . , Y2c), where for all i ∈ [N ], xi ∈
{0, 1}N and for all j ∈ [2c], Yj ∈ {0, 1}m. Let `i = f(xi) and ` ∈ [2c] be the posi-
tive integer corresponding to the binary string `1`2 . . . `c. Then we define the value of
fCS(x1, x2, . . . , xc, Y1, Y2, . . . , Y2c) to be 1 if and only if Y` contains certificates for f(xi) = `i

for all i ∈ [c].

Informally, the cheat sheet construction takes any total function f and converts it into a
new total function fCS in the following way. An input to the new function fCS first contains
c = 10 logN inputs to f and then a vast array of size 2c of cells of size m bits. The outputs
of these c inputs to f is a bit string `1`2 . . . `c of length c that represents an integer ` ∈ [2c]
in the natural way. We treat this integer ` as an address into this array of size 2c and say
that these c inputs to f point to the `th cell of the array. At the `th cell of the array we
require certificates certifying that this was indeed the cell pointed to by the c inputs to f . In
other words, we require certificates certifying that f(xi), the output of f acting on the ith
input, is indeed equal to `i for all i ∈ [c]. Since a certificate for a single f consists of C(f)
pointers to the input, a certificate is of size C(f) logN bits, and hence c certificates are of
size m = C(f)c logN = 10C(f) log2 N . The function fCS is defined to be 1 if and only if the
input satisfies this property, i.e., if the cell pointed to by the c instances does indeed contain
certificates certifying it is the correct cell.

This construction preserves the complexity of f with respect to some measures. For
example, D(fCS) equals D(f) up to log factors. The upper bound uses the natural algorithm
for fCS: the deterministic algorithm first computes the c copies of f on inputs x1 to xc and
finds the cell pointed to by these c inputs. Then it checks if the certificates in this cell certify
that this is the right cell. This requires cD(f) queries to compute the c copies, m queries
to read the contents of the cell and cC(f) queries to check if the certificates are all correct.
Overall this uses O(cD(f)) queries. We also have D(fCS) = Ω(D(f)), because intuitively if
an algorithm cannot compute f it has no hope of finding the cheat sheet since that would
require solving c copies of f or searching in an array of size n10. Similarly, many measures
behave as expected under cheat sheets, and we show this below.
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4:8 Separations Between Communication/Query Complexity and Partitions

I Lemma 4.2 (Complexity of cheat sheet functions). For any total function f : {0, 1}N →
{0, 1}, if fCS : {0, 1}N ′ → {0, 1} denotes the cheat sheet version of f as defined in Defini-
tion 4.1, then we have the following upper and lower bounds:

D(fCS) = Ω(D(f))
R(fCS) = Ω(R(f)/ log2 N)
Q(fCS) = Ω(Q(f))
C0(fCS) = O(C(f) log2 N)
C1(fCS) = O(C(f) log2 N)
UC0(fCS) = O(UC(f) log2 N)
UC1(fCS) = O(C(f) log2 N)
N ′ = O(N12)

Proof. We have D(fCS) = Ω(D(f)) [3, Lemma 21], R(fCS) = Ω(R(f)/ log2 N) [3, Lemma
6], and Q(fCS) = Ω(Q(f)) [3, Lemma 12].

We have C0(fCS) = O(C(f) log2 N) because a valid 0-certificate for fCS can first certify
the c outputs to f , which requires O(cC(f)) queries. This points to a cell `. The certificate
can then contain the contents of cell ` of size O(C(f) log2 N) and the locations pointed to
(and the bits contained at these locations) by the certificates in cell `. After querying this
cell and all the locations pointed to by the certificates in this cell, it can be determined with
no further queries if this cell is incorrectly filled. We have C1(fCS) = O(C(f) log2 N) since
the location of the correct cell and the pointers within that cell along with the bits they
point to forms a 1-certificate.

We have UC0(fCS) = O(UC(f) log2 N) using the same argument as for certificate com-
plexity. We first certify the c outputs to f unambiguously using unambiguous certificates
of size UC(f). This points to a cell `. The certificate also contains the contents of cell `
and the locations pointed to (and the bits at these locations) by the certificates in cell `.
This certificate is unambiguous because this certificate evaluating to true prevents any other
certificate from evaluating to true. To see this, note that if another certificate tries to certify
a different value of ` then this will be an invalid certificate. If the certificate claims the same
value of `, then it must use the same certificates for the c instances of f because we used
unambiguous certificates and hence there is only one valid certificate for each f(xi) = `i.
Now if the other certificate has the same value of ` but different claimed values for the
contents of the `th cell or the locations pointed to by the cell, this will be inconsistent with
the actual input since our original certificate was consistent with the input.

We have UC1(fCS) = O(C(f) log2 N). For this case an unambiguous certificate will
contain only the contents of cell ` and the locations pointed to by the certificates in cell
` along with the bits contained at these locations. This is identical to the 1-certificate
we constructed above. Since this is clearly a valid certificate, we only need to show it is
unambiguous, i.e., that if this certificate evaluates to true, all other certificates must fail. If
another certificate has a different value of `, then its contents will not be able to certify that
the output of the c functions equals ` and the certificate will be rejected. On the other hand,
if the other certificate has the same value of ` but different claimed values for the contents of
the cell or the locations pointed to by the cell, this will be inconsistent with the input since
our original certificate was consistent with the input.

Lastly, we need to upper bound the input size of fCS. From Definition 4.1 we know the
input size is cN +m2c = 10N logN + 10N10C(f) log2 N = O(10N11 log2 N) = O(N12). J
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5 Randomized query complexity vs. subcube partitions and
deterministic communication vs. partition number

Randomized query complexity vs. subcube partitions

We now establish the following theorem which implies Theorem 1.3, which in turn implies
Theorem 1.2.

I Theorem 5.1. For every k ≥ 0, there exists a total Boolean function fk : {0, 1}Nk → {0, 1},
such that R(fk) = Ω̃(n2k+1) and UC(fk) = Õ(nk+1). Hence there is a function f with
R(f) ≥ UC(f)2−o(1).

Proof. Let f0 = Andn and fk be defined inductively as fk := Andn ◦ (Orn ◦ fk−1)CS, i.e.,
fk is the function obtain by composing Andn with the cheat sheet version of Orn composed
with fk−1.

We prove the claim by induction on k. The induction hypothesis and the base case,
f0 = Andn, are presented below, where Nk is the input size of the function fk.

Induction hypothesis (fk)
Nk = O(n25k )
D(fk) = Ω̃(n2k+1)
R(fk) = Ω̃(n2k+1)
C0(fk) = Õ(nk)
C1(fk) = Õ(nk+1)
UC0(fk) = Õ(nk+1)
UC1(fk) = Õ(nk+1)

Base case (f0 = Andn)
N0 = n

D(f0) = n

R(f0) = Ω(n)
C0(f0) ≤ 1
C1(f0) ≤ n
UC0(f0) ≤ n
UC1(f0) ≤ n

The complexities of f0 = Andn are straightforward to show and also follow from the general
composition lemma (Lemma 3.1) by letting f be the one-bit identity function. Clearly the
base case is consistent with the induction hypothesis.

We now show that the induction hypothesis for fk implies the same for fk+1. First we upper
bound the input size of fk+1 = Andn◦(Orn◦fk)CS. Since the input size of fk is O(n25k ), the
input size of Orn ◦ fk is O(n25k+1) and the input size of (Orn ◦ fk)CS is O(n12(25k+1)) (from
Lemma 4.2). Hence the input size of fk+1 is O(n12(25k+1)+1) = O(n12(25k)+13) = O(n25k+1).

The deterministic query complexity of fk+1 can be lower bounded as follows:

D(fk+1) = D(Andn ◦ (Orn ◦fk)CS) = nD((Orn ◦fk)CS) = Ω(nD(Orn ◦fk)) = Ω̃(n2k+3),

where we used Lemma 3.1 and Lemma 4.2 to compute the relevant measures. The same
calculation also works for R(fk+1) up to log factors since R(f) and D(f) behave similarly in
the aforementioned lemmas up to log factors. Similarly using Lemma 3.1 and Lemma 4.2 we
have

C0(fk+1) = C0(Andn ◦ (Orn ◦ fk)CS) ≤ C0((Orn ◦ fk)CS) = Õ(C(Orn ◦ fk)) = Õ(nk+1)

and

C1(fk+1) = C1(Andn ◦ (Orn ◦fk)CS) ≤ nC1((Orn ◦fk)CS) = Õ(nC(Orn ◦fk)) = Õ(nk+2).

In these bounds we do not differentiate between logNk and logn because they are
asymptotically equal, since logNk = 25k logn = O(logn). Finally, using Lemma 3.1 and
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Lemma 4.2 again we have

UC0(fk+1) = UC0(Andn ◦ (Orn ◦ fk)CS)
≤ max

{
UC0((Orn ◦ fk)CS), nUC1((Orn ◦ fk)CS)

}
= Õ

(
max

{
UC(Orn ◦ fk), nC(Orn ◦ fk)

})
= Õ(nk+2) and

UC1(fk+1) = UC1(Andn ◦ (Orn ◦ fk)CS) ≤ nUC1((Orn ◦ fk)CS)

= Õ(nC(Orn ◦ fk)) = Õ(max
{
nC0(fk), C1(fk)

}
= Õ(nk+2).

This completes the induction and establishes the first part of the theorem.
For the second part, since R(fk) = Ω̃(n2k+1) and UC(fk) = Õ(nk+1), we have R(fk) =

Ω̃(UC(fk)2− 1
k+1 ). Since we treated k as a constant, our notation hides constant and logn

factors that depend only on k, i.e., we only get R(fk) ≥
(

UC(fk)2− 1
k+1

)/(
h1(k) logh2(k) n

)
for some functions h1(k) and h2(k). But we can always choose k to be a slow growing
function of n so that these terms are negligible. This yields the desired separation R(f) ≥
UC(f)2−o(1). J

Clearly Theorem 1.2 and Theorem 1.3 follow from this, which we restate for convenience.

I Theorem 1.2. There exists a total function f with D(f) ≥ UC(f)2−o(1).

I Theorem 1.3. There exists a total function f with R(f) ≥ UC(f)2−o(1).

Deterministic communication vs. partition number

We now show Theorem 1.1 by lifting the previous separation to communication complexity.
From Theorem 1.3, we have a function f : {0, 1}N → {0, 1} such that R(f) ≥ UC(f)2−o(1),

which implies D(f) ≥ UC(f)2−o(1). Göös, Pitassi, and Watson [10] show that for any function
f , there is a corresponding communication problem F such that

Dcc(F ) = Ω(D(f) logN) = Ω(D(f)).

On the other hand, as explained in [10], we also have

logχ(F ) = O(UC(f) logN) = Õ(UC(f)),

where we used the fact that our function has N = n25k , where k is a slow growing function
of n, and hence logN = 25k logn = O(log2 n) = O(log2 UC(f)).

Since the conversion to communication complexity only weakens the result by log factors,
the separation D(f) ≥ UC(f)2−o(1) immediately yields

Dcc(F ) ≥
(
logχ(F )

)2−o(1)
,

which establishes Theorem 1.1:

I Theorem 1.1. There exists a function F : X ×Y → {0, 1} with Dcc(F ) ≥
(
logχ(F )

)2−o(1).

6 Quantum query complexity vs. subcube partitions

In this section we establish Theorem 1.4 and Theorem 1.5. To show this we require a function
Bkk from [3, Theorem 10] with the following properties.
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I Lemma 6.1. There exists a total function Bkk : {0, 1}n2 → {0, 1} such that C(Bkk) =
Õ(n) and Q(Bkk) = Ω̃(n2).

We are now ready to prove Theorem 1.5, restated for convenience:

I Theorem 1.5. There exists a total function f with Q(f) = Ω̃(UC1(f)2).

Proof. Let f = Bkk. Then using Lemma 4.2 we know that Q(fCS) = Ω(Q(f)) = Ω̃(n2) and
UC1(fCS) = O(C(f) log2 n) = Õ(n). J

To show Theorem 1.4, we need another function bk-sum, which is a variant of the k-sum
problem. It has the interesting property that any certificates for it consists essentially of
input bits set to 0 and very few input bits set to 1. As shown in the proof of [3, Theorem 10],
we have the following. (More precisely, our version of bk-sum swaps the roles of zeros and
ones compared to the function of [3], but this does not affect its quantum query complexity.)

I Lemma 6.2. There exists a total function bk-sum : {0, 1}n → {0, 1} with Q(bk-sum) =
Ω̃(n) such that for any function f , we have C(bk-sum ◦ f) = O(nC0(f) + C1(f) log3 n).

In our construction, we repeatedly compose bk-sum with other functions and hence we
need to understand the behavior of bk-sum under composition, analogous to Lemma 3.1 for
And and Or.

I Lemma 6.3 (bk-sum composition). For any function f , the following bounds hold:
Q(bk-sumn ◦ f) = Ω̃(nQ(f))
C(bk-sumn ◦ f) = O(nC0(f) + C1(f) log3 n).
UC(bk-sumn ◦ f) ≤ nUC(f)

Proof. The first lower bound follows because Q(f ◦ g) = Θ(Q(f)Q(g)) for any Boolean
functions f and g [12, 26, 21] and we have Q(bk-sum) = Ω̃(n) from Lemma 6.2. The second
relation follows from Lemma 6.2. Lastly, UC(bk-sumn ◦ f) ≤ nUC(f) because this holds for
any n-bit function. Any function h ◦ f can be unambiguously certified by showing all the
outputs to f and providing unambiguous certificates for each output. J

We are now ready to establish the following theorem, which implies Theorem 1.4. This
proof mimics the proof structure of Theorem 5.1 and reuses several ideas.

I Theorem 6.4. For every k ≥ 0, there exists a total Boolean function fk : {0, 1}Nk → {0, 1},
such that Q(fk) = Ω̃(n1.5k+1) and UC(fk) = Õ(nk+1). Hence there is a function f with
Q(f) ≥ UC(f)1.5−o(1).

Proof. Let f1 = Andn ◦BkkCS, where Bkk is the function on n2 bits in Lemma 6.1. Let
fk be defined inductively as fk := Andn ◦ (bk-sumn ◦ fk−1)CS, i.e., fk is the function obtain
by composing Andn with the cheat sheet version of bk-sumn composed with fk−1.

We prove the claim by induction on k. The induction hypothesis and the base case,
f1 = Andn ◦BkkCS, are presented below, where Nk is the input size of the function fk.

Induction hypothesis (fk)
Nk = O(n25k )
Q(fk) = Ω̃(n1.5k+1)
C0(fk) = Õ(nk)
C1(fk) = Õ(nk+1)
UC(fk) = Õ(nk+1)

Base case (f1 = Andn ◦BkkCS)
N1 = O(n25)
Q(f1) = Ω̃(n2.5)
C0(f1) = Õ(n)
C1(f1) = Õ(n2)
UC(f1) = Õ(n2)
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Let us first compute the complexities of f1 = Andn ◦ BkkCS and verify that they are
consistent with the induction hypothesis. First note that the input size of Bkk is n2, and
thus the input size of BkkCS is O(n24) (from Lemma 4.2), and hence the input size of
f1 = Andn ◦BkkCS is O(n25). We have Q(f1) = Ω̃(n2.5) since Q(f1) = Ω(

√
nQ(BkkCS)) =

Ω̃(n2.5). The other inequalities follow straightforwardly from Lemma 3.1 and Lemma 6.1.
We have C0(f1) = Õ(n) since C0(Andn ◦BkkCS) ≤ C0(BkkCS) = Õ(n). We have C1(f1) =
Õ(n2) since C1(Andn ◦ BkkCS) ≤ nC1(BkkCS) = Õ(n2). Lastly, we have UC(f1) =
UC(Andn ◦ BkkCS) ≤ UC0(BkkCS) + nUC1(BkkCS) ≤ D(BkkCS) + Õ(nC(Bkk)) =
Õ(D(Bkk) + nC(Bkk)) = Õ(n2).

We now show that the induction hypothesis for fk implies the same for fk+1. The input
size calculation is identical to that in Theorem 5.1 and hence we do not repeat it. The
quantum query complexity of fk+1 can be lower bounded as follows:

Q(fk+1) = Q(Andn ◦ (bk-sumn ◦ fk)CS) = Ω(
√
nQ((bk-sumn ◦ fk)CS))

= Ω(
√
nQ(bk-sumn ◦ fk)) = Ω(n1.5Q(fk)) = Ω̃(n1.5(k+1)+1),

where we used Lemma 3.1, Lemma 4.2, Lemma 6.2, and Lemma 6.3 to compute the relevant
measures.

Similarly we have

C0(fk+1) = C0(Andn ◦ (bk-sumn ◦ fk)CS) ≤ C0((bk-sumn ◦ fk)CS)

= Õ(C(bk-sumn ◦ fk)) = Õ(nC0(fk) + C1(fk)) = Õ(nk+1) and
C1(fk+1) = C1(Andn ◦ (bk-sumn ◦ fk)CS) ≤ nC1((bk-sumn ◦ fk)CS)

= Õ(nC(bk-sumn ◦ fk)) = Õ(n2C0(fk) + nC1(fk)) = Õ(nk+2).

Finally, using Lemma 3.1, Lemma 4.2, Lemma 6.2, and Lemma 6.3 again we have

UC(fk+1) = UC(Andn ◦ (bk-sumn ◦ fk)CS)
= O

(
max

{
UC0((bk-sumn ◦ fk)CS), nUC1((bk-sumn ◦ fk)CS)

})
= Õ

(
max

{
UC(bk-sumn ◦ fk), nC(bk-sumn ◦ fk)

})
= Õ

(
max

{
nUC(fk), n2C0(fk) + nC1(fk)

})
= Õ(nk+2).

This completes the induction and establishes the first part of the theorem. Using a similar
argument in Theorem 5.1, this yields a function with Q(f) ≥ UC(f)1.5−o(1). J

Finally, this establishes Theorem 1.4.

I Theorem 1.4. There exists a total function f with Q(f) ≥ UC(f)1.5−o(1).
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Abstract
We describe a general method of proving degree lower bounds for conical juntas (nonnegative
combinations of conjunctions) that compute recursively defined boolean functions. Such lower
bounds are known to carry over to communication complexity. We give two applications:

AND-OR trees. We show a near-optimal Ω̃(n0.753...) randomised communication lower bound
for the recursive NAND function (a.k.a. AND-OR tree). This answers an open question posed
by Beame and Lawry [6, 23].
Majority trees. We show an Ω(2.59k) randomised communication lower bound for the 3-
majority tree of height k. This improves over the state-of-the-art already in the context of
randomised decision tree complexity.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Composition theorems, conical juntas

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.5

1 Conical Juntas?

Conical juntas are nonnegative linear combinations of conjunctions. Here are two examples,
one computing the two-bit OR function OR : {0, 1}2 → {0, 1} and another computing the
three-bit majority function Maj3 : {0, 1}3 → {0, 1}:

h1(x) = 1
2x1 + 1

2x2 + 1
2 x̄1x2 + 1

2x1x̄2,

h2(y) = 1
3y1y2 + 1

3y2y3 + 1
3y1y3 + 2

3 ȳ1y2y3 + 2
3y1ȳ2y3 + 2

3y1y2ȳ3.
(1)

The purpose of this work is to prove lower bounds on the degree deg(h) (maximum width of
a conjunction in h) of any conical junta h that computes – even approximately – a given
boolean function f : {0, 1}n → {0, 1}. More precisely, we study the ε-approximate conical
junta degree of f , denoted degε(f), that is defined as the minimum degree of a conical junta h
satisfying

∀x : |h(x)− f(x)| ≤ ε.

Communication complexity connection. A major motivation for studying conical junta
degree comes from the works [10, 13, 24] that connect conical juntas with nonnegative rank, a
basic measure in communication complexity. Roughly speaking, lower bounds on approximate
conical junta degree of f can be translated into lower bounds on the approximate nonnegative
rank of a certain two-party “lift” of f , and therefore into lower bounds against randomised
protocols.
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5:2 A Composition Theorem for Conical Juntas

Related models. Conical juntas have been studied under such names as the (one-sided)
partition bound for query complexity [15] and query complexity in expectation [20]. Another
closely related model is that of randomised subcube partitions [11, 17, 21]. Moreover, if we
restrict the coefficients in a conical junta to be 0-1, we obtain the model of subcube partitions
a.k.a. unambiguous DNFs [30, 7, 12, 14, 21].

2 Our Results

Our main technical result is a Composition Theorem that makes it easy to prove conical junta
degree lower bounds for functions that are defined from simpler functions via composition. If
f and g are boolean functions on n and m bits, respectively, their composition f ◦ gn is the
function on nm bits that maps an input x = (x1, . . . , xn) ∈ ({0, 1}m)n to the output

(f ◦ gn)(x) := f(g(x1), . . . , g(xn)).

Define also f◦k := f ◦ (f◦(k−1))n where f◦1 := f . The exact statement of the Composition
Theorem is deferred to Section 4 as it is somewhat technical. It is phrased in terms of dual
solutions (or certificates) to a linear program that captures a certain average version of conical
junta degree (defined in Section 3). The theorem splits the task of proving lower bounds
into two steps: we first need to find dual certificates for f and g (e.g., by solving an LP,
either by inspection, or by using a computer), and then we can let the Composition Theorem
construct a dual certificate for f ◦ gn in a black-box fashion. We note that similar LP-based
approaches have been extremely popular in analysing the degree of multivariate polynomials
(see [31, 32, 9] for recent examples) – in short, this work develops such a framework for
conical juntas, a nonnegative analogue of multivariate polynomials.

Setting these technical matters aside for a moment, let us illustrate the power the
Composition Theorem by looking at some of its consequences.

2.1 Query complexity
We give applications for two well-studied recursively defined boolean functions; see Figure 1.

I Theorem 2.1. degε(NAND◦k) ≥ Ω(n0.753...) for all ε ≤ 1/n where n := 2k.

I Theorem 2.2. degε(Maj◦k3 ) ≥ Ω(2.59 . . .k) for all ε ≤ 1/n where n := 3k.

Discussion of Theorem 2.1. The function NAND◦k is computed by a height-k binary tree
consisting of NAND gates (a.k.a. AND-OR tree). A classical result [28, 29] states that any
randomised decision tree needs to query Ω(n0.753...) (here 0.753 . . . = log(1 +

√
33)− 2) many

input bits in order to compute NAND◦k with high probability. This matches an upper bound
due to Snir [33]. Our Theorem 2.1 shows that the same lower bound holds even for conical
juntas that approximate NAND◦k sufficiently well. This is a qualitative strengthening of the
classical results since conical juntas are relaxations of decision trees. Indeed, a randomised
decision tree of depth d that computes a function f to within error ε > 0 can be converted
into a degree-d ε-approximate conical junta for f – the reason is the same as for multivariate
polynomials [8, Theorem 15]. Speaking of polynomials, Theorem 2.1 should be compared
with the fact that the approximate polynomial degree of NAND◦k is only O(

√
n) (and this

upper bound holds even for quantum algorithms [5]).
Note: A caveat with Theorems 2.1–2.2 is that we only know how to prove them for

ε ≤ 1/n. By contrast, one usually takes ε = 1/3 when studying decision trees, and this is
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NAND◦4

=

∧̄ ∧̄ ∧̄ ∧̄ ∧̄ ∧̄ ∧̄ ∧̄

∧̄ ∧̄ ∧̄ ∧̄

∧̄ ∧̄

∧̄

(OR ◦ AND)◦2

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∨ ∨ ∨ ∨

∧ ∧

∨

Maj◦33

M M M M M M M M M

M M M

M

Figure 1 Examples of recursively defined boolean functions studied in this work.

well-known to be w.l.o.g., because the error can be reduced below any ε < 1/3 with only
a factor O(log(1/ε)) increase in query complexity. Interestingly, for conical juntas, it is
known [13] that ε cannot always be efficiently reduced: for any constants ε > δ > 0 there
exists a partial function f with degε(f) = 1 but degδ(f) ≥ Ω(n). For total functions, it is
still open whether efficient error reduction is possible (standard techniques [8] at least show
that degε(f) is polynomially related to deg0(f)). In any case, Theorems 2.1–2.2 do indeed
imply lower bounds for randomised decision trees with error ε = 1/3: we simply have to
reduce the error below 1/n first and only then convert the decision tree into a conical junta.
This incurs a factor Θ(logn) loss in the value of the lower bound.

Discussion of Theorem 2.2. For the reasons discussed above, Theorem 2.2 implies a
lower bound of Ω̃(2.59 . . .k) ≥ Ω(2.59k) (here 2.59 . . . = 3

√
35/2, and the Ω̃-notation hides

polylog(n) factors) for the randomised query complexity of the recursive majority function
Maj◦k3 . This slightly improves over the previous bound of Ω(2.57k) that is the culmination
of the line of work [19, 22, 25, 27] wielding information theoretic tools. For comparison,
a randomised zero-error decision tree of cost O(2.65k) is known [27]. Even though our
quantitative improvement in Theorem 2.2 is modest, the theorem nevertheless suggests that
our new techniques are rather powerful: they are already competitive with highly optimised
prior work, especially [27].

2.2 Communication complexity
Using the machinery of [13] we can now translate Theorems 2.1–2.2 into analogous commu-
nication results. The translation incurs some polylog(n) factor loss in parameters, which
is suppressed by the Ω̃-notation used below. Here BPPcc(F ) stands for the bounded-error
communication complexity of F under a worst-case Alice–Bob bipartition of the input bits.
For our functions, we may take the bipartition to be such that Alice gets the first bit of every
bottom gate and Bob gets the rest.

I Theorem 2.3. BPPcc(NAND◦k) ≥ Ω̃(n0.753...).

I Theorem 2.4. BPPcc(Maj◦k3 ) ≥ Ω(2.59k).

Discussion of Theorem 2.3. The question of proving a lower bound for the randomised
communication complexity of the balanced alternating AND-OR tree (with fan-in 2 gates next
to the inputs) having n leaves was first posed by Beame and Lawry [6, 23] to the best of
our knowledge. They were interested in matching the randomised query complexity bound,
towards separating randomized communication complexity from both nondeterministic and

CCC 2016
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co-nondeterministic communication complexity. Two independent works [18, 26] (building
on [19]) arrived at a lower bound of Ω(n/2O(k)) (or slightly worse Ω(n/kO(k)) in [18]) for the
randomised communication complexity of any height-k unbounded fan-in alternating AND-OR
tree (with fan-in 2 gates next to the inputs). While this lower bound is tight when k = O(1),
the bound becomes trivial in the setting of Theorem 2.3 where k = logn. This shortcoming
was partially addressed by [16] who showed, via a reduction from set-disjointness, a lower
bound of Ω(

√
n) for such AND-OR trees, independently of the height. Our Theorem 2.3 now

gives an essentially optimal Ω̃(n0.753...) bound for the particular case of NAND◦k. It remains
open whether this lower bound holds for all AND-OR trees (with the appropriate gates next
to the inputs). For query complexity, Amano [1] has come close to settling this question,
known as the Saks–Wigderson conjecture [28] for the class of read-once formulas (a more
general version of the conjecture was recently disproved [4]).

Discussion of Theorem 2.4. The function Maj◦k3 has not been studied in communication
complexity previously – after all, even its randomised query complexity is not yet completely
understood.

3 Definitions and Examples

We write h =
∑
wCC for a generic conical junta, where the sum ranges over different

conjunctions of literals C : {0, 1}n → {0, 1} and wC ≥ 0 for each C. Note that h : {0, 1}n →
R≥0. Let |C| denote the width of a conjunction C, i.e., the number of literals in C. The
degree of h, denoted deg(h), is defined as the maximum width of a conjunction C with
wC > 0. Here, it is helpful to work with a more robust notion of degree that we call average
degree. The average degree of h, denoted adeg(h), is defined as the maximum over all inputs x
of

adegx(h) :=
∑

wC |C|C(x) =
∑

wC adegx(C).

In particular, adeg(h) ≤ deg(h) in the natural setting where h(x) ≤ 1 for all x. Our definition
of average degree is in perfect analogy to the usual definition of cost for randomised zero-error
decision trees, namely, charging for the expected number of queries made on a given input.
Indeed, it is not hard to see that any zero-error decision tree of cost d gives rise to a conical
junta of average degree d computing exactly the same boolean function as the decision tree.

For a boolean function f : {0, 1}n → {0, 1} we define
Degree: deg(f) is the minimum deg(h) over all conical juntas h computing f .
Average degree: adeg(f) is the minimum adeg(h) over all conical juntas h computing f .
Approximate degree: degε(f) is the minimum deg(h) over all conical juntas h that compute
f to within error ε, i.e., h(x) ∈ f(x)± ε for all x.

3.1 Tame examples
For our conical juntas h1 and h2 from (1), we have adeg(h1) = adeg10(h1) = 3/2 < 2 =
deg(h1) and adeg(h2) = adeg110(h2) = 8/3 < 3 = deg(h2). In fact, h1 and h2 are optimal:

adeg(OR) = 3/2 and adeg(Maj3) = 8/3.

This can be seen by solving an LP whose value is adeg(f), as is discussed shortly. Note that
our degree measures are inherently one-sided: f and its negation ¬f need not have the same
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degree. For example, we have adeg(¬OR) = 2 (observe that x̄1x̄2 is the only conical junta
for ¬OR) even though adeg(OR) = 3/2. (More dramatic gaps can be demonstrated using
variations of a function introduced in [14].) By contrast, Maj3 is self-dual, ¬Maj3(x1, x2, x3) =
Maj3(¬x1,¬x2,¬x3), so we automatically have adeg(Maj3) = adeg(¬Maj3).

3.2 A wild example!

What is the average degree of OR ◦Maj23? We can obtain a conical junta for this function
starting with the optimal conical juntas h1(x), h2(y), h̄2(y) := h2(ȳ1, ȳ2, ȳ3) computing OR,
Maj3, ¬Maj3, respectively, as follows: Let z1 = (z1

1 , z
1
2 , z

1
3) and z2 = (z2

1 , z
2
2 , z

2
3) be fresh

variables. Start with h1(x) and replace every positive literal xi by h2(zi) and every negative
literal x̄i by h̄2(zi). This construction shows that

adeg(OR ◦Maj23) ≤ 3/2 · 8/3 = 4.

It would be natural to conjecture that this is tight – but this conjecture is false! There is
in fact a more effective conical junta of average degree only 47/12 ≈ 3.92. An analogous
phenomenon is well-known in the context of zero-error decision trees: so-called directional
decision trees need not be optimal for composed functions [28, 34, 2].

What of it? This example shows that we cannot hope for a perfect composition theorem
for average degree that would determine adeg(f ◦gn) solely in terms of adeg(f), adeg(g), and
adeg(¬g), even assuming adeg(g) = adeg(¬g). Consequently, for our LP-based Composition
Theorem, we will have to introduce some technical assumptions: to enable the construction
of a dual certificate for adeg(f ◦ gn), we assume we have dual certificates of a special form for
adeg(f), adeg(g), adeg(¬g). The rest of this section develops our LP formalism for average
degree.

3.3 Generalised input costs

Let us first generalise the definition of adeg(h) by allowing arbitrary costs b0, b1 ≥ 0 to
be assigned to reading the input bits. That is, for a conjunction C, we set |C|b0,b1 :=
b0 · (# of 0’s read by C) + b1 · (# of 1’s read by C). In particular, |C|1,1 = |C|. Then
adeg(h; b0, b1) is defined as the maximum over all inputs x of

adegx(h; b0, b1) :=
∑

wC |C|b0,b1C(x) =
∑

wC adegx(C; b0, b1).

We also introduce some “distributional” notation: for a distribution D1 over f−1(1) we let

adegD1(h; b0, b1) := E
x∼D1

[
adegx(h; b0, b1)

]
.

For a boolean function f : {0, 1}n → {0, 1} we define
adeg(f ; b0, b1) is the minimum of adeg(h; b0, b1) over all conical juntas h computing f .
adegD1(f ; b0, b1) is the minimum of adegD1(h; b0, b1) over all conical juntas h computing f .

It is clear that adeg(f ; b0, b1) ≥ adegD1(f ; b0, b1) for all distributions D1. (In fact, it can be
shown using the minimax theorem that this inequality can be turned into an equality if we
maximise over D1 on the right hand side – however, we do not use this fact.)

CCC 2016



5:6 A Composition Theorem for Conical Juntas

3.4 An LP for average degree
We formulate adegD1(f ; b0, b1) as the optimum value of an LP – here the data f , D1, b0, b1,
is thought of as fixed. We have a nonnegative variable wC ≥ 0 for each of the 3n possible
conjunctions C : {0, 1}n → {0, 1}. Here is the LP:

min adegD1

(∑
wCC; b0, b1

)
subject to

∑
wCC(x) = f(x), ∀x

wC ≥ 0, ∀C

(Primal)

Here is the LP dual; the free variables are packaged into a function Ψ: {0, 1}n → R.

max 〈Ψ, f〉

subject to 〈Ψ, C〉 ≤ adegD1(C; b0, b1), ∀C

Ψ(x) ∈ R, ∀x

(Dual)

Since we are interested in proving lower bounds on average degree, we are only going to
need the “weak” form of LP duality: Suppose h =

∑
wCC is an optimal solution to (Primal).

Then any solution Ψ that is feasible for (Dual) witnesses a lower bound on adeg(f ; b0, b1)
like so:

adeg(f ; b0, b1) ≥ adegD1(f ; b0, b1)
= adegD1(h; b0, b1)
=
∑
wC adegD1(C; b0, b1)

≥
∑
wC〈Ψ, C〉

= 〈Ψ,
∑
wCC〉

= 〈Ψ, f〉.

(2)

4 Statement of the Composition Theorem

We start by defining an (a0, a1; b0, b1)-certificate for f as a special collection of certificates
witnessing

adeg(f ; b0, b1) ≥ a1,

adeg(¬f ; b0, b1) ≥ a0.
(3)

I Definition 4.1. Call a function Ψ: {0, 1}n → R balanced if
∑
x Ψ(x) = 0, and also write

X≥0 := max{X, 0} for short. An (a0, a1; b0, b1)-certificate for a function f : {0, 1}n → {0, 1}
consists of four balanced functions {Ψv, Ψ̂v}v=0,1 mapping {0, 1}n → R such that the
following hold.

Special form: Functions Ψ0 and Ψ1 have the form

Ψv = av(Dv −D1−v), (4)

where Dv is a distribution over f−1(v). Moreover, Ψ̂v is supported on f−1(v).
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Feasibility: For all conjunctions C and v ∈ {0, 1},

〈Ψv, C〉≥0 + 〈Ψ̂v, C〉 ≤ adegDv
(C; b0, b1). (5)

I Theorem 4.2 (Composition Theorem). Suppose f admits an (a0, a1; b0, b1)-certificate and
g admits a (b0, b1; 1, 1)-certificate. Then f ◦ gn admits an (a0, a1; 1, 1)-certificate.

Discussion. First, we note that (5) actually packs together two linear inequalities; it would
be equivalent to require that both Ψv + Ψ̂v and Ψ̂v are feasible for (Dual), namely that{

〈Ψv + Ψ̂v, C〉 ≤ adegDv
(C; b0, b1),

〈Ψ̂v, C〉 ≤ adegDv
(C; b0, b1).

(5’)

Here Ψ1 + Ψ̂1 is the main attraction: it witnesses a lower bound of 〈Ψ1 + Ψ̂1, f〉 = 〈Ψ1, f〉+
〈Ψ̂1, f〉 = a1 + 0 = a1 for adeg(f ; b0, b1) as promised above (3); similarly, Ψ0 + Ψ̂0 witnesses
the complementary lower bound adeg(¬f ; b0, b1) ≥ a0.

The requirement that Ψ1 + Ψ̂1 must be balanced is perhaps our most critical assumption.
We use it to manoeuvre around the counterexample of Section 3.2: we have adeg(Maj3) = 8/3,
while the best balanced solution to (Dual) only witnesses the lower bound adeg(Maj3) ≥ 5/2
(see also Figure 3). The requirement that Ψ̂v is feasible for (Dual) is merely a technical
assumption that helps us in the upcoming proof (akin to a “strengthened induction hy-
pothesis”); we do not know whether the theorem is true without this condition. Another
technical assumption is (4), which allows us to assume that Ψ1 and Ψ0 have opposite signs:
Ψ1 = −a1/a0 ·Ψ0.

Some simple certificates are illustrated in Figures 2–3. Their feasibility can be checked
by hand. For more involved functions, certificates can in principle be found via a computer
search (using computers is not uncommon even in “lower bounds” research [3]). We will in
fact use this approach for Maj◦k3 in Section 6.

5 Proof of the Composition Theorem

Let {Ψv, Ψ̂v}v=0,1 and {Φv, Φ̂v}v=0,1 be the certificates for f and g, respectively. Our goal
is to construct a certificate {Υv, Υ̂v}v=0,1 for f ◦ gn. We use the following notation:

Ψv := av(Fv − F1−v)︸ ︷︷ ︸
given

, Φv := bv(Gv −G1−v)︸ ︷︷ ︸
given

, Υv := av(Dv −D1−v)︸ ︷︷ ︸
want to construct

.

By assumption, the distribution Fv is supported on f−1(v) and Gv is supported on g−1(v).
We will define Dv to be supported on (f ◦ gn)−1(v).

5.1 Construction
Lifts. Let Γ: {0, 1}n → R and suppose that for each y ∈ {0, 1}n we have a function
Hy : {0, 1}mn → R supported on (gn)−1(y) = g−1(y1)× · · · × g−1(yn). The lift of Γ by H is

ΓH :=
∑
y∈{0,1}n Γ(y) ·Hy.

In particular, if Γ and the Hy’s are probability distributions, so is ΓH . Note also that if Γ is
supported on f−1(v), then ΓH is supported on (f ◦ gn)−1(v).
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2 b1; b0, b1)-certificate for NAND : {0, 1}2 → {0, 1} that is valid for all b0, b1 ≥

0. The 1-inputs NAND−1(1) are highlighted in gray. For feasibility, there are 6 equivalence classes
(see Section 6.2) of conjunctions to check: {∗∗, ∗0, ∗1, 00, 10, 11}.
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2 ; 1, 1)-certificate for Maj3 : {0, 1}3 → {0, 1}. The 1-inputs Maj−1
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lighted in gray. Only Ψ1, Ψ̂1 are shown as Ψ0, Ψ̂0 are defined via self-duality. Here Dv is uniform on
inputs of Hamming weight v + 1. For feasibility, there are 10 equivalence classes of conjunctions to
check: {∗∗∗, ∗∗1, ∗∗0, ∗00, ∗10, ∗11, 000, 100, 110, 111}. Note that for any α ≥ 0, we can obtain an
( 5

2α,
5
2α;α, α)-certificate by simply scaling the functions Ψv, Ψ̂v by α.
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New certificate. Write Gy := Gy1 × · · · × Gyn for the canonical product distribution on
(gn)−1(y). We also need a modified version of Gy, denoted (G←i Φ̂)y where i ∈ [n], that has
a copy of Φ̂yi

in place of Gyi
; more formally

(G←i Φ̂)y(x) := Φ̂yi
(xi) ·

∏
j 6=iGyj

(xj).

Note that (G←i Φ̂)y is a balanced function supported on (gn)−1(y).
We now define {Υv, Υ̂v}v=0,1 by

Υv := ΨG
v ,

Υ̂v := Ψ̂G
v +

∑n
i=1 F

G←i Φ̂
v .

(6)

Since ΨG
v = av(FGv −FG1−v), we have Dv = FGv . It is also easy to check that Υ̂v is a balanced

function supported on (f ◦gn)−1(v). Hence {Υv, Υ̂v}v=0,1 is of the special form required of an
(a0, a1; 1, 1)-certificate for f ◦ gn. The interesting part is to verify the feasibility condition (5).

5.2 Feasibility
Fix a conjunction C in the domain of f ◦ gn. Our goal is to show

〈ΨG
v , C〉≥0 + 〈Ψ̂G

v +
∑
i F

G←i Φ̂
v , C〉 ≤ adegDv

(C). (7)

Extracting a conical junta from C. Our analysis will be centered around a conical
junta h(y), defined below, that computes the acceptance probability Prx∼Gy [C(x) = 1] =
Ex∼Gy

[C(x)] = 〈Gy, C〉. In a certain sense, h serves as a projection of C to the domain of f .
Write C(x) =

∏n
i=1 Ci(xi) where Ci is a conjunction depending only on xi. Since Gy is a

product distribution,

〈Gy, C〉 =
∏
i〈Gyi , Ci〉 =:

∏
i pi,yi ,

where we wrote pi,v := 〈Gv, Ci〉 ∈ R≥0 for short. Fix y∗ ∈ {0, 1}n such that pi,y∗
i
≥ pi,1−y∗

i

for all i. We now define h(y) that computes 〈Gy, C〉:

h(y) :=
∏n
i=1
(
pi,1−y∗

i
+ (pi,y∗

i
− pi,1−y∗

i
)︸ ︷︷ ︸

≥0

· `i
)

where literal `i is
{
yi if y∗i = 1,
ȳi if y∗i = 0.

(8)

This product expression can be expanded into a conical combination of conjunctions, h =∑
wTT , in the natural way, but the above “implicit” form is more concise.
Next, we record two properties of h that will suffice for the remaining analysis.

I Lemma 5.1. adegy(h; b0, b1) =
∑
i〈Φyi

, Ci〉≥0
∏
j 6=i〈Gyj

, Cj〉.

Proof. Write h =
∑
wTT . We compute the average degree by summing together the weights∑

T3`i
wTT (y) contributed by each of the n literals `i, i.e.,

adegy(h; b0, b1) =
∑
i |`i|b0,b1 ·

∑
T3`i

wTT (y).

If i is such that yi 6= y∗i , we have `i(y) = 0 and so T (y) = 0 for all T 3 `i; hence `i contributes
no weight in this case. Suppose then that i is such that yi = y∗i ; here we can write

h(y) = pi,1−yi

∏
j 6=i pj,yj

+ `i · (pi,yi
− pi,1−yi

)
∏
j 6=i pj,yj

.
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The conjunctions T underlying the first term do not involve `i, so they contribute no weight
for `i. The conjunctions T underlying the second term all involve `i and contribute a total
weight of (pi,yi

− pi,1−yi
)
∏
j 6=i pj,yj

. Altogether we get

adegy(h; b0, b1) =
∑
i |`i|b0,b1 ·

∑
T3`i

wTT (y)
=
∑
i:yi=y∗

i
byi
· (pi,yi

− pi,1−yi
)
∏
j 6=i pj,yj

=
∑
i byi(pi,yi − pi,1−yi)≥0

∏
j 6=i pj,yj

=
∑
i byi

(〈Gyi
, Ci〉 − 〈G1−yi

, Ci〉)≥0
∏
j 6=i〈Gyj

, Cj〉

=
∑
i〈byi

(Gyi
−G1−yi

), Ci〉≥0
∏
j 6=i〈Gyj

, Cj〉

=
∑
i〈Φyi

, Ci〉≥0
∏
j 6=i〈Gyj

, Cj〉. J

I Lemma 5.2. 〈Γ, h〉 = 〈ΓG, C〉 for all Γ: {0, 1}n → R.

Proof. We calculate

〈Γ, h〉 =
∑
y Γ(y)h(y) =

∑
y Γ(y)〈Gy, C〉 =

∑
y Γ(y)

[∑
xGy(x)C(x)

]
=
∑
x

[∑
y Γ(y)Gy(x)

]
C(x) =

∑
x ΓG(x)C(x) = 〈ΓG, C〉. J

Analysis. Let us expand the right hand side of the desired inequality (7):

adegDv
(C) = |C| · 〈FGv , C〉

= Ey∼Fv

[
|C| · 〈Gy, C〉

]
= Ey∼Fv

[(∑
i |Ci|

)
·
∏
i〈Gyi

, Ci〉
]

= Ey∼Fv

[∑
i |Ci|〈Gyi

, Ci〉
∏
j 6=i〈Gyj

, Cj〉
]

= Ey∼Fv

[∑
i adegGyi

(Ci)
∏
j 6=i〈Gyj

, Cj〉
]
.

Substituting our hypothesis adegGyi
(Ci) ≥ 〈Φyi

, Ci〉≥0 + 〈Φ̂yi
, Ci〉 into the above, we obtain

adegDv
(C) ≥ E

y∼Fv

[∑
i

〈Φyi
, Ci〉≥0

∏
j 6=i
〈Gyj

, Cj〉
]

︸ ︷︷ ︸
(I)

+ E
y∼Fv

[∑
i

〈Φ̂yi
, Ci〉

∏
j 6=i
〈Gyj

, Cj〉
]

︸ ︷︷ ︸
(II)

.

For the first term,

(I) = Ey∼Fv

[
adegy(h; b0, b1)

]
(Lemma 5.1)

= adegFv
(h; b0, b1)

≥ 〈Ψv, h〉≥0 + 〈Ψ̂v, h〉 (Feasibility of {Ψv, Ψ̂v} and (2))

= 〈ΨG
v , C〉≥0 + 〈Ψ̂G

v , C〉. (Lemma 5.2)

For the second term,

(II) = Ey∼Fv

[∑
i〈(G←i Φ̂)y, C〉

]
=
〈∑

i F
G←i Φ̂
v , C

〉
.

Combining these yields (7). This concludes the proof of Theorem 4.2.
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6 Approximate Degree Lower Bounds

In this section we prove Theorems 2.1–2.2 using the Composition Theorem. We begin by ob-
serving that (a0, a1; b0, b1)-certificates {Ψv, Ψ̂v}v=0,1 also yield lower bounds for approximate
degree, if the 1-norm ‖Ψ̂1‖1 is not too large. We call {Ψv, Ψ̂v}v=0,1 an (a0, a1; b0, b1; c)-
certificate if maxv ‖Ψ̂v‖1 ≤ c.

I Lemma 6.1. Suppose f admits an (a0, a1; 1, 1; c)-certificate. If ε ≤ 1/4 and c · ε ≤ a1/4,
then degε(f) ≥ Ω(a1).

Proof. Fix a certificate {Ψv, Ψ̂v}v=0,1 for f and suppose degε(f) = deg(h) where h is a conical
junta with ‖h− f‖∞ ≤ ε. Since h(x) ≤ 1 + ε for all x, we have deg(h) ≥ (1 + ε)−1 adeg(h) ≥
Ω(adeg(h)). Now we calculate

adeg(h) ≥ 〈Ψ1 + Ψ̂1, h〉 (as in (2))

= 〈Ψ1 + Ψ̂1, f〉+ 〈Ψ1 + Ψ̂1, h− f〉

≥ a1 − |〈Ψ1 + Ψ̂1, h− f〉|

≥ a1 − ‖Ψ1 + Ψ̂1‖1 · ‖h− f‖∞
≥ a1 − (‖Ψ1‖1 + ‖Ψ̂1‖1) · ε
≥ a1 − (2a1 + c) · ε
≥ a1/4. J

We use the following version of the Composition Theorem where the bounds on 1-norms
(following immediately from the definition (6)) are made explicit.

I Theorem 6.2. Suppose f admits an (a0, a1; b0, b1; c)-certificate and g admits a (b0, b1; 1, 1; d)-
certificate. Then f ◦ gn admits an (a0, a1; 1, 1; c+ nd)-certificate.

6.1 Proof of Theorem 2.1
We iteratively apply Theorem 6.2 as follows.
1. Assume we have an (αk, βk; 1, 1; γk)-certificate for NAND◦k where γk ≥ αk, βk.
2. Obtain a (2βk, αk + 1

2βk;αk, βk;βk)-certificate for NAND from Figure 2.
3. Compose the above to get an (αk+1, βk+1; 1, 1; γk+1)-certificate for NAND◦(k+1) where

αk+1 := 2βk,
βk+1 := αk + βk/2,
γk+1 := βk + 2γk.

Note that αk+1, βk+1 ≤ γk+1 ≤ 3γk. Starting with α0 = β0 = γ0 = 1 these recurrences
(famously [28]) evaluate to αk, βk = Θ(n0.753...) where n := 2k. In addition, γk ≤ 3k ≤ n1.6.
Now take ε ≤ 1/n in Lemma 6.1 to prove Theorem 2.1.

6.2 Computer search for certificates
Iteratively composing (scaled versions of) the (5/2, 5/2; 1, 1)-certificate given in Figure 3
would yield only an Ω(2.5k) lower bound for Maj◦k3 . This is the best possible for our approach
if we were to just compose certificates for individual Maj3 functions. To obtain a better lower
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Table 1 Certificates for Maj◦`
3 for heights ` = 1, 2, 3. The table lists (α`, α`; 1, 1)-certificates with

values α1 = 5/2 (also illustrated in Figure 3), α2 = 20/3, and α3 = 35/2. Only Ψ1, Ψ̂1 are shown as
Ψ0, Ψ̂0 are defined dually. We give the total weight for each equivalence class of inputs; the functions
are uniform on each class. For height ` = 3 we represent the inputs to the bottom-most Maj3 gates
by their Hamming weight, e.g., 001 1, 011 2, etc.

Function Class representative Class size Ψ1 Ψ̂1 Ψ1 + Ψ̂1

Maj◦1
3

(0, 0, 1) 3 −5/2 0 −5/2
(0, 1, 1) 3 5/2 1/2 3
(1, 1, 1) 1 0 −1/2 −1/2

All others 0 0 0

Maj◦2
3

(001, 001, 011) 81 −20/3 0 −20/3
(001, 011, 011) 81 20/3 7/3 9
(000, 011, 011) 27 0 −1/3 −1/3
(001, 011, 111) 54 0 −2/3 −2/3
(011, 011, 011) 27 0 −4/3 −4/3

All others 0 0 0

Maj◦3
3

(112, 112, 122) 1594323 −35/2 0 -35/2
(112, 122, 122) 1594323 35/2 19/2 27
(122, 122, 122) 531441 0 −7/2 −7/2
(112, 122, 222) 1062882 0 −2 −2
(112, 122, 123) 2125764 0 −4/3 −4/3
(112, 122, 022) 1062882 0 −2/3 −2/3
(111, 122, 122) 531441 0 −5/6 −5/6
(113, 122, 122) 531441 0 −1/2 −1/2
(012, 122, 122) 1062882 0 −2/3 −2/3

All others 0 0 0

bound, we can instead directly find a certificate for Maj◦`3 where ` is a small constant, and then
compose that certificate. Table 1 gives certificates for Maj◦`3 for height up to ` = 3. We used
a computer to solve the dual LP (Dual), with the additional restriction that Ψ (= Ψ1 + Ψ̂1)
should be balanced. The best balanced Ψ happened to satisfy the other conditions required
by our Definition 4.1.

Notes on implementation. For computational efficiency, it is useful to prune the search
space by eliminating symmetries. The symmetries of Maj◦`3 (permutations of input coordinates
that do not change the value of the function) are the symmetries of the underlying height-`
ternary tree. These symmetries partition the set of inputs and the set of conjunctions into
equivalence classes: two inputs/conjunctions are “equivalent” if one can be mapped to the
other by a symmetry. The set of feasible solutions to the LP is also invariant under these
symmetries. It follows that we may look w.l.o.g. for a Ψ that is invariant, i.e., uniform on each
equivalence class. (Indeed, if Ψ is any feasible solution, we obtain an invariant solution by
averaging Ψ over all the symmetries.) Thus we need only maintain one variable in the LP per
equivalence class X ⊆ {0, 1}n recording the total weight

∑
x∈X Ψ(x) of that class. Also, for

such invariant Ψ, we need only check the LP feasibility constraint 〈Ψ, C〉 ≤ adegD1(C; b0, b1)
for a single representative C from each class of conjunctions.

The optimal height-2 certificate happens to have the same support as the certificate
produced by our Composition Theorem starting with two height-1 certificates. Inspired
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by this, in order to speed up the search for height 3, we only optimised over those Ψ
whose support coincides with that coming from the Composition Theorem – this LP has
only 9 variables (i.e., equivalence classes of inputs), but well over 100,000 constraints (i.e.,
equivalence classes of conjunctions).

It is open to analyse height 4. Is there an efficient separation oracle for (Dual)?

6.3 Proof of Theorem 2.2
Table 1 defines a certificate for Maj◦33 with parameters (35/2, 35/2; 1, 1; 19) and we may scale
the certificate by any scalar α ≥ 0 to obtain one with parameters ((35/2)α, (35/2)α;α, α; 19α).
Using Theorem 6.2 iteratively as in Section 6.1, we get a certificate for Maj◦k3 with parameters

((35/2)k/3, (35/2)k/3; 1, 1; 28k/3 · 19).

Here (35/2)k/3 ≥ n0.8 and 28k/3 · 19 ≤ n1.1 where n := 3k. Hence we may apply Lemma 6.1
with ε ≤ 1/n to conclude an ε-approximate degree lower bound of Ω((35/2)k/3) = Ω(2.59 . . .k).

7 Communication Lower Bounds

In this section we prove Theorems 2.3–2.4 by applying the main result of [13]: a simulation
of randomised communication protocols by conical juntas. To this end, let IPb : {0, 1}b ×
{0, 1}b → {0, 1} be the two-party (Alice has x, Bob has y) inner-product function given by

IPb(x, y) := 〈x, y〉 mod 2.

Let BPPcc
ε (F ) denote the randomised ε-error communication complexity of F : X × Y →

{0, 1}. The following is a corollary of [13, Theorem 31] (the original formulation there talks
about WAPPdt

ε (f) which is the same as degε(f); moreover, the result is stated for ε = Θ(1),
but the theorem is true more generally for ε = 2−Θ(b)).

I Theorem 7.1 ([13]). Let ε := 1/n and b := Θ(logn) (with a large enough implicit constant).
For any f : {0, 1}n → {0, 1} we have

BPPcc
ε/2(f ◦ IPnb ) ≥ Ω(degε(f) · b).

Let us prove Theorem 2.3 (a similar argument works for Theorem 2.4). A key observation
(also made in [16, §3]) is that IPb = XORb ◦ ANDb reduces to computing a binary NAND tree
on O(b2) bits. To see this, think of the b-bit parity function XORb as a height-(log b) binary
tree of XOR gates. Each such XOR gate can be rewritten as a height-2 NAND tree (with some
negations on inputs):

∧̄ ∧̄

∧̄

∧ ∧

∨
+

x y x̄ y x ȳ x̄ y x ȳ

= 

In the binary XOR tree, replace the top XOR gate with this NAND tree (this involves making
copies of some subtrees), push the negations to inputs, and repeat recursively. This gives us
a height-(2 log b) NAND tree. Moreover, the bottom layer of AND gates in IPb is also easily
simulated by NAND gates. Consequently, for some N := Θ(nb2), the communication matrix
of NAND◦ logn ◦ IPnb appears as a submatrix of NAND◦ logN (relative to some bipartition of
the input given by the reduction).
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We can now derive Theorem 2.3 – here ε and b are defined as in Theorem 7.1, and &
means that we ignore polylog(N) factors.

BPPcc
1/3(NAND◦ logN ) & BPPcc

ε/2(NAND◦ logN ) (Error reduction)

& BPPcc
ε/2(NAND◦ logn ◦ IPnb ) (Key observation)

& degε(NAND◦ logn) (Theorem 7.1)
& n0.753... (Theorem 2.1)
= Θ̃(N0.753...).
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Abstract

Suppose Alice holds a uniformly random string X ∈ {0, 1}N and Bob holds a noisy version Y

of X where each bit of X is flipped independently with probability ε ∈ [0, 1
2 ]. Alice and Bob

would like to extract a common random string of min-entropy at least k. In this work, we
establish the communication versus success probability trade-off for this problem by giving a
protocol and a matching lower bound (under the restriction that the string to be agreed upon is
determined by Alice’s input X). Specifically, we prove that in order for Alice and Bob to agree
on a common string with probability 2−γk (γk > 1), the optimal communication (up to o(k)
terms, and achievable for large N) is precisely (C(1−γ)−2

√
C(1− C)γ)k, where C := 4ε(1−ε).

In particular, the optimal communication to achieve Ω(1) agreement probability approaches
4ε(1− ε)k.

We also consider the case when Y is the output of the binary erasure channel onX, where each
bit of Y equals the corresponding bit of X with probability 1− ε and is otherwise erased (that is,
replaced by a ‘?’). In this case, the communication required becomes (ε(1− γ)− 2

√
ε(1− ε)γ)k.

In particular, the optimal communication to achieve Ω(1) agreement probability approaches εk,

and with no communication the optimal agreement probability approaches 2
− 1−

√
1−ε

1+
√

1−ε
k
.

Our protocols are based on covering codes and extend the approach of (Bogdanov and Mossel,
2011) for the zero-communication case. Our lower bounds rely on hypercontractive inequalities.
For the model of bit-flips, our argument extends the approach of (Bogdanov and Mossel, 2011) by
allowing communication; for the erasure model, to the best of our knowledge the needed hyper-
contractivity statement was not studied before, and it was established (given our application) by
(Nair and Wang 2015). We also obtain information complexity lower bounds for these tasks, and
together with our protocol, they shed light on the recently popular “most informative Boolean
function” conjecture of Courtade and Kumar.
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6:2 Tight Bounds for Communication-Assisted Agreement Distillation

1 Introduction

Suppose Alice holds a string X = (x1, x2, . . . ) of uniformly random bits and Bob holds a
correlated random string Y = (y1, y2, . . . ) where the bit yj is the bit xj flipped (independently
for each j) with probability ε ∈ (0, 1). Their goal is to communicate as little as possible and
agree on a uniformly random string in {0, 1}k (or under a relaxed requirement, sample a
common string from a distribution of min-entropy at least k).

Besides being a natural task, this scenario also relates to the problem of extracting a
unique ID from process variations; see [5], which studied the communication free version of
this question, for further discussion of this motivation. The agreement distillation problem
also naturally arises in the context of simulating communication protocols that use perfect
shared randomness when the parties only share correlated randomness, and was recently
studied with this motivation in [6]. The underlying information-theoretic question, on the
maximum information a function of X can convey about its noisy version Y , has also received
widespread interest lately, following the appealing conjecture made in [9] that a dictator
(or canalizing) function is the most informative Boolean function (the one maximizing
I[f(X) : Y ]).

Our work is a follow-up to [6, 5] and is motivated by questions such as: How many
bits of communication are needed for the agreement distillation task to succeed with high
probability? At the other extreme, what is the best success probability of a strategy that
involves no communication? More precisely, what is the trade-off between communication
and success probability?

Note that there are two trivial protocols: one where Alice simply sends the first k bits of
X to Bob (which achieves agreement probability of 1), and a zero-communication protocol
where both players simply output their first k bits as the common randomness (which achieves
agreement probability of (1− ε)k). The former protocol does not exploit the fact that Bob
holds a string Y which is correlated with X. How much can we leverage this to save on
communication while at the same time ensuring good agreement probability? A simple
protocol based on capacity-achieving codes for the binary symmetric channel was given
in [6] with communication (h(ε) + o(1))k and high agreement probability; in [6], an Ω(εk)
lower bound based on [5] was also observed. This established that a factor c(ε) savings in
communication is the best one can hope for, but left a gap even in the asymptotic growth of
c(ε).

1.1 Our results
We obtain tight communication complexity upper and lower bounds for the above problem,
identifying the precise trade-off between communication and agreement probability (see
Theorem 1.1 below, our bounds are sharp up to o(k) bits). Our upper bounds are achieved
by one-way communication protocols where Alice sends a single message to Bob. Our lower
bounds hold for a slightly more general model where Alice’s output depends only on her
input X, but Bob’s output may depended on his input Y and the transcript of an arbitrary
two-way interaction with Alice. Below is a statement of the bounds we get.

I Theorem 1.1. Let γ ∈ [0, 1], ε ∈ [0, 1/2], and k > 1 be an integer. Consider the above
setting where Alice and Bob have uniformly random strings X and Y (of sufficiently large
length compared to k) that differ in each position independently with probability ε. The goal
is for Alice and Bob to agree on a shared string gA(X), which only depends on Alice’s input
X. Define C := 4ε(1− ε).
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(Upper bound) There is a protocol where gA(X) is uniformly distributed in {0, 1}k, and
Alice sends (C(1−γ)− 2

√
C(1− C)γ)k bits to Bob, who then succeeds in guessing gA(X)

with probability at least 2−γk−O(log k).
(Matching lower bound) Suppose there is a protocol with H∞[gA(X)] > k where Alice and
Bob exchange c bits after which Bob is able to guess gA(X) with probability 2−γk. Then

c > (C(1− γ)− 2
√
C(1− C)γ)k .

In particular, this implies that for large k, to achieve agreement probability Θ(1) the optimal
communication approaches 4ε(1 − ε)k, and with zero communication the best achievable
success probability approaches 2−

ε
1−εk.1

Note that in the above setup, Bob’s input Y can be viewed as X that is distorted by
a binary symmetric channel, BSC(ε), which flips each bit independently with probability
ε. Inspired by this view, one can consider a similar problem for other discrete memoryless
channels relating X and Y . We consider the binary erasure channel, BEC(ε), where each
Yj equals Xj with probability 1− ε and is erased (say, replaced by a ‘?’) with probability
ε, and obtain tight upper and lower bounds for this setting as well (basically the quantity
C = 4ε(1− ε) is replaced by ε in the bounds).

I Theorem 1.2. Let γ, ε ∈ [0, 1] and k > 1 be an integer. For the agreement distillation
problem when Y is obtained by passing X through BEC(ε), the following hold.

(Upper bound) There is a protocol where gA(X) is uniformly distributed in {0, 1}k, and
Alice sends (ε(1− γ)− 2

√
ε(1− ε)γ)k bits to Bob, who succeeds in guessing gA(X) with

probability at least 2−γk−O(log k).
(Matching lower bound) Suppose there is a protocol where H[gA(X)] > k and Alice and
Bob exchange c bits after which Bob is able to guess gA(X) with probability 2−γk. Then
c > (ε(1− γ)− 2

√
ε(1− ε)γ)k.

In particular, it can be shown that, for large k, to achieve agreement probability Θ(1) the
optimal communication approaches εk, and with zero communication the best achievable

success probability approaches 2
− (1−

√
1−ε)k

1+
√

1−ε .
We also study information complexity bounds, proving the following lower bound on the

information content needed in the protocol transcript.

I Theorem 1.3. Let gA(X) take values in the set {0, 1}k′ such that H[gA(X)] > k. Suppose
π(X,Y ) is the transcript of a protocol that enables Bob to guess gA(X) with probability at
least 1− δ, for some δ ∈ [0, 1]. Then we have

H[π(X,Y )] > 4ε(1− ε)k − δk′ − h(δ) when Y is the output of BSC(ε) on X;
H[π(X,Y )] > εk − δk′ − h(δ) when Y is the output of BEC(ε) on X.

(Note that some term like −δk′ in the lower bounds is unavoidable. For example, gA(X)
might be 0k′ with probability 1−δ and a uniformly random string in {0, 1}k′ with probability
δ. If Bob produces 0k′ always, they agree with probability 1− δ.)

Since the entropy H[π(X,Y )] lower bounds the length of the transcript, the above also
implies lower bounds on the communication complexity. However, the bounds are good only
when δ → 0, whereas Theorems 1.1 and 1.2 apply even when the success probability 1− δ is
very small, and imply communication lower bounds of (4ε(1− ε)− o(1))k and (ε− o(1))k for
any constant success probability.

1 For the problem with zero communication, lower and upper bounds in [5] already establish that the
best probability of success is 2− ε

1−ε k (see Section 1.2).
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The communication upper bounds from Theorems 1.1 and 1.2 of course imply protocols
with the same upper bounds on entropy. In particular, when the failure probability δ → 0, the
optimal entropy of the transcript of an agreement distillation protocol approaches 4ε(1− ε)k
for BSC(ε) and εk for BEC(ε).

1.2 Prior and related work

The variant of agreement distillation where the goal of the two parties is to extract a single bit
without any interaction was studied independently a number of times; see [25] and references
therein. It is known that in this case the optimal protocol is for the two parties to use the
first bit. The works [16, 17] consider the problem of extracting a common random bit in the
multi-party setting where m players receive noisy versions of a common random string; in this
case for large m the majority function is close to being optimal in terms of maximizing the
agreement probability. The problem of two parties agreeing on k random bits without any
communication, when given strings X,Y correlated via BSC(ε), was considered by Bogdanov
and Mossel [5]. They proved that no strategy can achieve agreement probability better than
2−kε/(1−ε) and also gave a protocol with agreement probability O((kε)−1/2 ·2−kε/(1−ε)) when
k > Ω(1/ε).

All these results are for the model where no communication is allowed between Alice and
Bob, and the goal is to maximize the agreement probability. Canonne et al. [6] considered
the setting where Alice and Bob can communicate, and gave a simple scheme based on
capacity-achieving codes for agreeing on k random bits with high probability when Alice
sends a single message of (h(ε) + o(1))k bits to Bob. They also noted an Ω(εk) lower
bound based on the agreement probability upper bound for zero communication protocols
from [5]. Zhao and Chia [26] establish that to agree with high probability on a common
random variable K with Shannon entropy H[K] > k, the communication required approaches
precisely (1− ρ2(X1;Y1))k, where ρ(A;B) is the Hirschfeld-Gebelein-Rényi (HGR) maximal
correlation of the pair (A;B) of random variables. The HGR correlation for BSC(ε) (resp.
BEC(ε)) equals 1−2ε (resp.

√
1− ε), so this implies the communication bounds of Theorems

1.1 and 1.2, albeit for the setting of ensuring high Shannon entropy and agreement probability
tending to 1. The Shannon entropy of a random variable is lower bounded by its min-entropy,
so a lower bound for distilling randomness with Shannon entropy k implies the same lower
bound for min-entropy (our setting). But note that our lower bounds hold also for success
probability bounded away from 1, for which we have to rely on hypercontractivity based
arguments. Indeed, the main novelty in our results is the establishment of the precise trade-off
between communication and probability of agreement.

Our work focuses only on the efficiency of shared randomness generation as a function
of communication (and success probability). We allow the number of correlated samples
N → ∞ for any desired value of k, the number of shared random bits to be generated
(indeed in our protocols as presented, N will be exponential in k and we did not try to
optimize this trade-off). Prior work has also studied the efficiency of common randomness
generation as a function of N [1, 26], specifically understanding the “CR capacity” C(R)
wherein C(R)N bits of shared randomness can be generated (with high probability) using
RN bits of communication, for a fixed R > 0 and growing N .2

2 With zero communication, it is not possible to distill any common randomness with high probability,
unless the joint distribution of X1 and Y1 is decomposable, which is captured by the HGR maximal
correlation ρ(X1, Y1) equaling 1 [13, 21, 15].
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Turning to our information-theoretic results, the entropy lower bound in Theorem 1.3 for
BSC(ε) is based on the following claim. Let Xn, Y n ∈ {0, 1}n be random strings with (Xi, Yi)
being i.i.d. and related via the channel BSC(ε). Then, for every function gA : {0, 1}n → {0, 1}k
we have I[gA(Xn) : Y n] 6 (1− 2ε)2k. This upper bound on mutual information follows from
the so-called Mrs. Gerber’s Lemma [24]; such an upper bound was established using a limit
argument in [7], and is attributed to Erkip [10] in [9].

The earlier mentioned conjecture from [9] on the most informative Boolean function
asserts that when k = 1, we have I[gA(Xn) : Y n] 6 1− h(ε). If this conjecture were true for
every k, then one would have I[gA(Xn) : Y n] 6 (1− h(ε))k when the range of gA is {0, 1}k.
However, our communication protocol in Theorem 1.1 implies the existence of a function gA
for which

I[gA(Xn) : Y n] = H[gA(Xn)]−H[gA(Xn) | Y n]
> k − (4ε(1− ε) + o(1))k
= (1− 2ε)2k − o(k) > (1− h(ε))k

(for ε ∈ (0, 1/2)). So for functions outputting a large number k of bits, the projection onto
the first k bits is not the most informative function. This latter result was already established
in the recent work [7], where a function gA(Xn) based on lossy data compression (under
Hamming distortion) was shown to achieve lim infn→∞ I[gA(Xn) : Y n] > (1− 2ε)2k.

Our entropy lower bound in Theorem 1.3 for the case of BEC(ε) is based on the inequality
I[gA(Xn) : Y n] 6 (1− ε)k for an arbitrary function gA : {0, 1}n → {0, 1}, which we establish
using Shearer’s lemma. So, for the erasure channel, outputting the first k bits indeed
maximizes the information about the channel output Y n, for every k > 1, and in particular
the dictator is the most informative function when k = 1.

As an appealing conjecture bridging information theory and analysis of Boolean functions,
the most informative function conjecture of Courtade and Kumar [9] has generated a lot of
interest. Closely related problems were studied earlier by Erkip and Cover [11], and recent
works addressing aspects of the Courtade-Kumar conjecture include [2, 4, 7, 20, 14, 23, 22].

1.3 Techniques in brief
Our communication protocols are extensions of the Bogdanov-Mossel protocol [5]. Their
zero communication protocol for BSC(ε) was based on an “affine covering code" C ⊆ Fn2 of
size 2k, and both Alice and Bob rounded their inputs Xn and Y n to the closest point in C
(with some explicit rule in case of ties). The probabilistic method is used to establish the
existence of an affine space of Fn2 of dimension k such that each output is generated with the
same probability 2−k, and the agreement probability is high (at least ≈ 2−εk/(1−ε)). In our
scheme, we use different functions for Alice and Bob, with Bob searching for a codeword in
a larger radius. This will lead to a list of candidates on Bob’s side, and he will use Alice’s
message to pick a unique element from the list. Picking parameters carefully leads us to
the protocol with the optimal trade-off between communication and agreement probability
claimed in Theorem 1.1. The protocol for the erasure case in Theorem 1.2 works similarly,
with the analysis handling some technicalities by conditioning on the high probability event
of Y having close to εN erasures.

Turning to our lower bounds, as mentioned above, our entropy lower bounds are based
on Mrs. Gerber’s lemma for BSC(ε) and Shearer’s lemma for BEC(ε). Our communication
lower bounds rely on hypercontractive inequalities for the random variables corresponding
to BSC(ε) and BEC(ε). If (Xi, Yi) are i.i.d. copies of a correlated random variable (X,Y ),
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and f : Xn → R, such a hypercontractive inequality upper bounds ‖E[f(X)|Y ]‖q by
the norm ‖f‖p with p < q (see Section 4.1 for the definition of these norms). The best
possible relationship between p and q depends on amount of correlation between X and Y .
For BSC(ε), it is a classical result in the analysis of Boolean functions that one can take
p = 1 + (1 − 2ε)2(q − 1) [19, Chap. 16]. The inequality for the erasure channel does not
appear to have been studied before, and we use the bound p = 1 + (1− ε)(q − 1), shown to
be valid for 1 6 q 6 3 by Nair [18], prompted by our application.

The lower bound for zero-communication in [5] was also established using hypercontrac-
tivity. The reduction to an hypercontractive inequality was more direct in their case, as the
success probability can be expressed as E(X,Y )[gA(X)gB(Y )] which equals an inner product
EX [gA(X)T1−2εgB(X)] for the Bonami-Beckner noise operator T1−2ε. When Alice is allowed
to send a message to Bob, we need a bit more care in applying the hypercontractive inequality
to deduce the lower bound. Also, as mentioned earlier, for the case of erasures, the requisite
hypercontractive inequality seems to not have been studied before.

It is natural to wonder what the situation is for more general channels besides the BSC
and the BEC. The lower bound on communication to achieve constant agreement probability,
which approaches 4ε(1 − ε)k and εk respectively for BSC(ε) and BEC(ε), arises from the
limiting ratio p−1

q−1 as q ↓ 1. For an arbitrary discrete channel (X,Y ) ∼ p(x, y), this limit has
been shown to equal

s∗(Y ;X) := sup
r(y)6=p(y)

D(r(x)||p(x))
D(r(y)||p(y)) (1)

where r(x) denotes the x-marginal distribution of r(x, y) = r(y)p(x|y) [3]. Our methods
imply a communication lower bound of (1 − s∗(Y ;X))k − o(k) for an arbitrary channel,
though we do not know if this is tight in general.

2 The model

Alice receives a random string X = (X1, X2, . . . , XN ) and Bob receives a (correlated) string
Y = (Y1, Y2, . . . , YN ). We will assume the length N of these strings is sufficiently large, but it
will otherwise not play an important role (and will be mostly suppressed) in our arguments.
Alice uses her random input string X to produce an output in {0, 1}k′ . Then, based on the
inputs, Alice and Bob interact using a two-party protocol σ to produce a transcript σ(X,Y ).
Finally, Bob produces an output in {0, 1}k′ based on his input Y and σ(X,Y ). Their goal is
to ensure that the outputs agree and have high min-entropy.

I Definition 2.1. A (k′, k, η,R)-agreement distillation protocol for a pair of random variables
R = (X,Y ) is a triple (gA, gB , σ), where σ is a two-party protocol and gA(X), gB(Y, σ(X,Y ))
∈ {0, 1}k′ , such that
1. H∞[gA(X)] > k;
2. Pr[gA(X) = gB(Y, σ(X,Y ))] > η.
Let Π(k′, k, η,R) be the collection of all (k′, k, η,R)-protocols. For π ∈ Π(k′, k, η,R), let
π(X,Y ) denote the transcript of the underlying two-party protocol on input (X,Y ). Let

hR(k′, k, η) = min
π∈Π(k′,k,η,R)

H[π(X,Y )]; (2)

cR(k′, k, η) = min
π∈Π(k′,k,η,R)

max
x,y
|π(x, y)|. (3)

We will consider two joint distributions of R = (X,Y ) in this work, where (Xi, Yi) are
independently generated as follows.
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Binary symmetric channel, BSC(N, ε): Xi is uniform in {0, 1}, and Yi = Xi with
probability (1− ε) and Yi = 1−Xi with probability ε.
Binary erasure channel, BEC(N, ε): Xi is uniform in {0, 1}, and Yi = Xi with probability
(1− ε) and Yi =? with probability ε.

3 The entropy bounds

In this section, we show the following, which implies the lower bounds claimed in Theorem 1.3.

I Theorem 3.1. We have the following lower bounds:

hBSC(N,ε)(k′, k, η) > 4ε(1− ε)k − (1− η)k′ − h(η);

hBEC(N,ε)(k′, k, η) > εk − (1− η)k′ − h(η).

Both parts of the theorem will be justified using the following idea. The channel limits the
mutual information between Alice’s output and Bob’s input. Alice’s message must, therefore,
make up for the shortfall.

I Claim 3.2.
(a) If (X,Y ) ∼ BSC(N, ε), then

I[gA(X) : Y ] 6 (1− 2ε)2 I[gA(X) : X] = (1− 2ε)2H[gA(X)]. (4)

(b) If (X,Y ) ∼ BEC(N, ε), then

I[gA(X) : Y ] 6 (1− ε) I[gA(X) : X] = (1− ε)H[gA(X)]. (5)

Proof of Theorem 3.1. First, we have

E[|Π(X,Y )|] > H[Π(X,Y )]
> I[Π(X,Y ) : gA(X)Y ]
= I[gA(X) : Π(X,Y )Y ]− I[Y : gA(X)] + I[Y : Π(X,Y )]
> H[gA(X)]−H[gA(X) | Π(X,Y )Y ]− I[Y : gA(X)] (6)
> H[gA(X)]− h(η)− (1− η)k′ − I[Y : gA(X)]. (7)

Our assumption implies that H[gA(X)] > k. We use the claim above to bound the last term
on the right.

Binary symmetric channel. From (7) and Claim 3.2 (a), we obtain

E[|Π(X,Y )] > (1− (1− 2ε)2)H[gA(X)]− h(η)− (1− η)k′

> 4ε(1− ε)k − (1− η)k′ − h(η).

Erasure channel. From (7) and Claim 3.2 (b), we obtain

E[|Π(X,Y )] > (1− (1− ε))H[gA(X)]− h(η)− (1− η)k′ > εk − (1− η)k′ − h(η) .

J

Proof of Claim 3.2.
(a) Recall the following consequence of Mrs. Gerber’s Lemma due to Wyner and Ziv [24,

Corollary 4]:

CCC 2016
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Suppose (X,W ) is a pair of random variables, where X takes values in {0, 1}N and
H[X |W ] = Nv. Let Z ∈ {0, 1}N be sequence of N independent bits, each taking
the value 1 with probability ε; let Z be independent of (X,W ). Let Y = X ⊕ Z.
Then,

H[Y |W ] > Nh(ε ∗ h−1(v)),

where h is the binary entropy function and ε ∗ v = ε(1− v) + (1− ε)v. Note that
h(ε ∗ h−1(v)) > 1− (1− v)(1− 2ε)2 (see, for example, [7]).

We take W = gA(X) in the above statement; then, H[X | W ] = H[X | gA(X)] =
N − H[gA(X)]. So, we set v = 1 − H[gA(X)]/N and conclude that H[Y | gA(X)] >
N−(1−2ε)2H[gA(X)]. Thus, I[gA(X) : Y ] = H[Y ]−H[Y | gA(X)] 6 (1−2ε)2H[gA(X)].

(b) We first derive a version of Shearer’s lemma. Let sgn(Y ) be the erasure pattern of Y ,
that is, a sequence in {0, 1}N , where the 0s correspond to erasures.

H[Y | sgn(Y ), gA(X) = z] = E
σ

[H[Y | sgn(Y ) = σ, gA(X) = z]]

= E
σ

[ ∑
i:σi=1

H[Xi | (Xj : j < i, σj = 1), g(X) = z]
]

> E
σ

[ ∑
i:σi=1

H[Xi | (Xj : j < i), g(X) = z]
]

= E
σ

[∑
i

1{σi = 1}H[Xi | (Xj : j < i), g(X) = z]
]

= (1− ε)
∑
i

H[Xi | (Xj : j < i), g(X) = z]

= (1− ε)H[X | g(X) = z].

Taking expectations of both sides over choices of z, we obtain H[Y | sgn(Y )gA(Y )] >
(1− ε)H[X | gA(X)]. Then, we have

H[Y | gA(X)] = H[Y sgn(Y ) | gA(X)]
= H[sgn(Y )] +H[Y | sgn(Y )gA(X)]
> h(ε)N + (1− ε)H[X | gA(X)]. (8)

Thus,

I[gA(X) : Y ] = H[Y ]−H[Y | gA(X)]
= h(ε)N + (1− ε)N −H[Y | gA(X)]
6 (1− ε)(N −H[X | gA(X)]) (using (8))
= (1− ε)(H[X]−H[X | gA(X)])
= (1− ε)I[X : gA(X)] = (1− ε)H[gA(X)] .

J

4 The communication lower bounds

We now turn to our lower bounds on communication, formally stated below. Note that these
imply the lower bounds claimed in Theorems 1.1 and 1.2.
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I Theorem 4.1. Let γ, ε ∈ [0, 1] and k > 1 be an integer.

cBSC(N,ε)(k′, k, 2−γk) >
[
C(1− γ)− 2

√
C(1− C)γ

]
k where C = 4ε(1− ε); (9)

cBEC(N,ε)(k′, k, 2−γk) >
[
ε(1− γ)− 2

√
ε(1− ε)γ

]
k . (10)

The arguments for the two channels, BSC(N, ε) and BEC(N, ε), differ only in the choice
of the appropriate hypercontractive inequality. We, therefore, first present the common part
of the argument. Fix a protocol π ∈ Π(k′, k, η,R), where R is either BSC(N, ε) or BEC(N, ε).
Let T denote the set of possible transcripts of π; let t = |T |. We will obtain a lower bound
on t.

Let X ,Y denote the domains of X and Y respectively; X ,Y = {0, 1}N for BSC(N, ε);
X = {0, 1}N and Y = {0, 1, ?}N for BEC(N, ε). Recall that gA(X) and gB(Y, π(X,Y )) take
values in Z = {0, 1}k′ . For y ∈ Y and z ∈ Z, let

β(z|y) := Pr[gA(X) = z | Y = y] = Pr[gA(X) = z ∧ Y = y]/Pr[Y = y];

let Success denote the event “gA(X) = gB(Y, π(X,Y ))”. For y ∈ Y, let

Zy = {gB(y, τ) : τ ∈ T };

then, ty := |Zy| 6 t. On input (x, y), if gA(x) 6∈ Zy, then Success is impossible. Arrange
z ∈ Zy as zy,1, zy,2, . . . so that β(zy,1|y) > β(zy,1|y) > · · · > β(zy,ty |y); let βy,i = β(zy,i|y).

I Claim 4.2. Let π ∈ Π(R, k, η) be a protocol with t transcripts and let q > 1. Then,

Pr[Success] 6 E
Y

[
tY∑
i=1

βY,i

]
6

(∑
z

E
Y

[β(z|Y )q]
)1/q

· t1−1/q. (11)

Proof. When Alice sends no message, Bob’s best strategy on receiving y is to output the
“most likely answer”; so, the probability of Success is at most βy1 . We now generalize this
principle to the case where Bob may base his decision on a transcript. We have

Pr[Success | Y = y] 6
∑
z̃∈Zy

Pr[Success ∧ gB(Y, π(X,Y )) = z̃ | Y = y]

6
∑
z̃∈Zy

Pr[gA(X) = z̃ | Y = y]

=
∑
z̃∈Zy

β(z̃|y) 6
ty∑
i=1

βy,i,

where the last inequality holds because 〈βy,i : i = 1, 2, . . . , ty〉 are the top ty values of β(z|y).
Thus,

Pr[Success] 6 E
Y

[
tY∑
i=1

βY,i

]
(12)

6 E
Y

( tY∑
i=1

βqY,i

)1/q

t
1−1/q
Y

 (by Hölder’s inequality)

6

(
E
Y

[
tY∑
i=1

βqY,i

])1/q

· t1−1/q
Y (by Jensen’s inequality) (13)

6

(∑
z

E
Y

[β(z|Y )q]
)1/q

· t1−1/q. (14)

J
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4.1 Hypercontractivity
For functions α : X → R and β : Y → R, let

‖α‖p = E
X

[|α(X)|p]1/p ;

‖β‖q = E
Y

[|β(Y )|q]1/q .

For z ∈ Z, let 1z be the indicator random variable 1[gA(X) = z] and βz : Y → R be defined
by βz(y) = β(z|y) = E[1x(X) | Y = y]. Then,(

E
Y

[β(z|Y )q]
)1/q

= ‖βz‖q = ‖E[1z(X) | Y ]‖q.

Using this, we may rearrange inequality (11) and obtain

t > Pr[Success]q/(q−1)

[∑
z

‖E[1z(X) | Y ]‖qq

]−1/(q−1)

. (15)

Now assume that we have a pair (p, q), 1 6 p < q, such that for all functions f : X → R,

E[f(X) | Y ]‖q 6 ‖f‖p. (16)

Later we will choose an appropriate pair (p, q) depending on the channel. Using (16) with
the function 1z, we obtain

t > Pr[Success]q/(q−1)

[∑
z

‖1z‖qp

]−1/(q−1)

= Pr[Success]q/(q−1)

[∑
z

Pr[gA(X) = z]q/p
]−1/(q−1)

> Pr[Success]q/(q−1)

[∑
z

Pr[gA(X) = z] Pr[gA(X) = z](q−p)/p
]−1/(q−1)

> Pr[Success]q/(q−1)

[
2−k(q−p)/p

∑
z

Pr[gA(X) = z]
]−1/(q−1)

(since H∞[gA(X)] > k)

> Pr[Success]q/(q−1)
[
2k(q−p)/p]

]1/(q−1)
.

The above argument was general, and applicable for any channel where we can find an
appropriate pair (p, q) so that (16) holds. We now specialize the argument to BSC(N, ε) and
BEC(N, ε).

Binary symmetric channel. In this case, we set q = 1 + δ and p = 1 + (1− 2ε)2δ [19, Chap.
16]. Then,

t > Pr[Success](1+δ)/δ · 24ε(1−ε)k/(1+(1−2ε)2δ). (17)

Binary erasure channel. In this case, for q = 1 + δ, we can take p = 1 + (1− ε)δ [18], and
deduce

t > Pr[Success](1+δ)/δ · 2εk/(1+(1−ε)δ) . (18)
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4.2 The trade-off
Let us fix the success probability at η = 2−γk and try to choose δ above so that we obtain
the best lower bound on t from (17) and (18).

Binary symmetric channel. Plugging in Pr[Success] = 2−γk into (17), we conclude that

t > 2r
BSC(N,ε)
γ (δ)k,

where

rBSC(N,ε)
γ (δ) := C

1 + (1− C)δ −
γ

δ
− γ,

and C = 4ε(1− ε). We need to choose δ so that rγ(δ) is maximum. Setting the derivative to
zero gives us the optimum choice δ∗γ for which

rBSC(N,ε)
γ (δ∗γ) = C(1− γ)− 2

√
C(1− C)γ .

This justifies our lower bound (9) for BSC(N, ε).
Note that at γ = 0 (success probability constant), this quantity is 4ε(1 − ε). As γ

increases, rγ(δ∗γ) decreases monotonically, and becomes 0 when γ = ε/(1− ε), at which point
we may only conclude that t > 1 (which is consistent with the results of Bogdanov and
Mossel [5] for zero communication).

Erasure channel. The calculations are identical. We obtain

t > 2r
BEC(N,ε)
γ (δ)k,

where

rBEC(N,ε)
γ (δ) := ε

1 + (1− ε)δ −
γ

δ
− γ.

Fixing γ, we find the optimum value δ∗γ for δ, such that

rBEC(N,ε)
γ (δ∗γ) = ε(1− γ)− 2

√
ε(1− ε)γ.

This justifies our lower bound (10) for BEC(N, ε). When γ = (1−
√

1− ε)/(1 +
√

1− ε), we
obtain rBEC(N,ε)

γ (δ∗γ) = 0; in the next section we will show that there is indeed a zero commu-
nication protocol of BEC(N, ε) that succeeds with probability close to 2−(1−

√
1−ε)k/(1+

√
1−ε).

5 Communication protocols

Our protocols are similar to the protocol of Bogdanov and Mossel [5]. We first recall their
protocol. Let Z = {0, 1}k. Alice and Bob use an affine subspace of Fn2 (where F2 = {0, 1} is
the field with two elements) with 2k vectors v = (vz : z ∈ {0, 1}k). We will assume that this
subspace is constructed at random, by the following process: pick k linearly independent
vectors w1, w2, . . . , wk uniformly at random and another random vector w0 ∈ {0, 1}N ; then
set

vz = w0 +
k∑
i=1

ziwi.

CCC 2016
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Note, in particular, that if z, z′ ∈ {0, 1}k and z 6= z′, then (vz, vz′) ranges uniformly over
{0, 1}N × {0, 1}N .

On receiving X ∈ {0, 1}n, Alice’s output gA(X) will be the z ∈ Z for which vz is closest
to X. To break ties, the following rule is used. Fix a total ordering � on {0, 1}N such that
if the Hamming weight of x is less than the Hamming weight of x′, then x � x′. Then,
gA(x) = z for which x+ vz is the smallest with respect to �. For this function, Bogdanov
and Mossel [5] show the following.

I Lemma 5.1. For all z ∈ {0, 1}k, we have PrX [f(X) = z] = 2−k.

In the original protocol of Bogdanov and Mossel, Bob uses the same function as Alice to
produce his output. We extend the above protocol, allowing Alice to send a short message
to Bob. Fix a function χ : Z → {0, 1}ck such that |χ−1(α)| = 2(1−c)k for all α ∈ {0, 1}ck.
Alice’s message to Bob is then m = χ(gA(X)). On receiving the message m, Bob’s output is
z ∈ χ−1(m) for which vz agrees most with Y (breaking ties arbitrarily).

It will be convenient to state our proofs using {+1,−1} instead of {0, 1}; so we assume
that the vectors vz and the random string X take values in {+1,−1}N ⊆ RN . If the channel
is BSC(ε), then we will assume that Y ∈ {+1,−1}N ; if the channel is BEC(ε), then we will
assume that Y ∈ {+1,−1, 0}N , where 0 corresponds to erasures. Also, we will assume that
ε 6= 0, for Alice and Bob have identical strings and they can just out the first k bits.

5.1 Agreement distillation protocol for BSC(ε)
We fix γ > 0, and describe a protocol with low communication that achieves success
probability 2−γk−o(k). We will do the computation assuming that the affine space of vectors
v is chosen at random. The overall success probability then is averaged over the random
choices of the affine subspace. Clearly, there is a choice of an affine subspace where the
success probability is at least this average.

Fix z ∈ Z. Note that the quantity X · vz =
∑
iX[i]vz[i] is then a sum of N independent

random variables taking values in {+1,−1}, such that E[X · vz] = 0 and var[X · vz] = N . To
estimate the probabilities, we will assume that N is large and use the normal approximation.
Let

ϕ(r) = 1√
2π

exp
(
−r

2

2

)
;

Φc(r) =
∫ ∞
r

ϕ(x)dx.

I Theorem 5.2 (Berry-Esseen theorem [12, Sec. XVI.5, Theorem 2]). Let S = ξ1 +ξ2 + · · ·+ξN ,
where the ξi are independent random variables. Suppose µi = E[ξi], σ2

i = var[ξi] and
τi = E[|ξi − µi|3]. Let µ = E[S] =

∑
i µi and σ2 = var[S] =

∑
i σ

2
i and τ =

∑
i τi. Then,

|Pr[S > µ+ rσ]− Φc(r)| 6 6τ
σ3 . (19)

In all our applications σ2 = Θ(N) (the constant depends on ε) and τ 6 N ; thus, the right
hand side is O(1/

√
N), where the implicit constant depends only on ε and is positive if

ε ∈ (0, 1) is positive. In particular, using standard estimates for Φc(r) (see, for example, [8]),
we conclude that for all r > 0 and all large enough N

r2

r2 + 1ϕ(r) < Pr[S > µ+ rσ] < ϕ(r) (20)
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Thus, for all large N , one has

ϕ(r)
(
1−O(r−2)

)
< Pr[X · vz > r

√
N ] < ϕ(r) .

Note the following behavior of ϕ when its argument is scaled:

ϕ(αr) = 1
α(
√

2πr)1−α2 ϕ(r)α
2
. (21)

Let

η = 2ε−
√

4ε(1− ε)γ.

For z ∈ {0, 1}k, let

Az :=
{
x ∈ {+1,−1}n : vz · x > r

√
N
}

;

Bz :=
{
x ∈ {+1,−1}n : vz · x > (1− η)r

√
N
}
.

Fix r = Θ(
√
k), such that for all large enough N

2−(k+1) 6 µ(Az) 6 2−(k+1) (1 +O(1/k)) . (22)

Consider the following events for z ∈ {0, 1}k.

E1(z) := (X,Y ) ∈ Az ×Bz;
E2(z) := ∀z′ 6= z : X 6∈ Az′ ;
E3(z) := ∀z′ 6= z (χ(z) = χ(z′)) : Y 6∈ Bz′ .

E1(z) and E2(z) ensure that Alice outputs z; E1(z) and E3(z) ensure that Bob outputs z;
thus, if all three events hold, then Alice and Bob both output the string z. Thus,

Pr[Success] >
∑
z

Pr[E1(z)]
(

1− Pr[E2(z) | E1(z)]− Pr[E3(z) | E1(z)]
)
. (23)

We will estimate the probabilities appearing on the right separately. First, we have

Pr[E1(z)] = Pr[X ∈ Az] · Pr[Y ∈ Bz | X ∈ Az]. (24)

For our choice of r (see (22)), Pr[X ∈ Az] > 2−(k+1). To compute the second factor, fix
v (the affine space of 2k vectors) and x ∈ Az; say x · vz = r′

√
N for some r′ > r. Now,

Y · vz is the sum of N independent random variables taking values in {+1,−1}, such that
E[Y · vz] = (1− 2ε)r′

√
N and var[Y · vz] = 4ε(1− ε)N . Thus,

Pr[Y · vz > (1− η)r
√
N | X = x] > ϕ

(
(1− η)r − (1− 2ε)r′√

4ε(1− ε)

)
(1−O(1/k))

> ϕ

(
(1− η)r − (1− 2ε)r√

4ε(1− ε)

)
(1−O(1/k))

(since ϕ(r) is decreasing)

= ϕ

(
(2ε− η)r√
4ε(1− ε)

)
(1−O(1/k))

= ϕ (√γr) (1−O(1/k))

>
1

√
γ(
√

2πr)1−γ
2−γ(k+1)(1−O(1/k)). (25)
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Using these in (24), we obtain

Pr[E1(z)] = Pr[X ∈ Az] · Pr[Y ∈ Bz | X ∈ Az]

>
1

√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)(1−O(1/k)). (26)

Recall that if z 6= z′, then as v varies, vz and vz′ vary uniformly over all pairs of distinct
vectors in {+1,−1}N . It follows that

Pr[E2(z) | E1(z)] 6
∑

z′:z′ 6=z
Pr[0N ∈ Az′ ]

6 (2k − 1) · 2−(k+1)(1 +O(k−1))

6
1
2(1 +O(k−1)). (27)

Similarly, we have

Pr[E3(z) | E1(z)] 6
∑

z′:χ(z)=χ(z′),z′ 6=z

Pr[Y ∈ Bz′ ]

6 2(1−c)kϕ((1− η)r)

6 2(1−c)k 1
(1− η)(

√
2πr)η(2−η)

2−(1−η)2(k+1). (see (21) above) (28)

Thus, if c > 1− (1− η)2 = C(1− γ)− 2
√
C(1− C)γ where C = 4ε(1− ε), then this quantity

is at most 1
4 (say) for all large k. It follows from (23), (26), (27) and (28) that

Pr
v,X,Y

[Success] >
∑
z

1
√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)

(
1− 1

2 −
1
4

)
(1−O(k−1))

= 2−γk−O(log γk)

= 2−γk(1+o(1)).

Thus, there exists a choice of the subspace v such that Alice and Bob succeed with probability
at least 2−γk(1+o(1)).

Constant probability of success. The above argument, was carried out with γ > 0 a
constant, so that it yielded agreement with probability 2−γk(1+o(1)). We may, in fact,
set γ = 1/r2 = Θ(1/k) in the above argument, and conclude that with communication
ck ≈ (C(1− γ)− 2

√
C(1− C)γ)k = 4ε(1− ε)k−Θ(

√
k), we obtain Prv,X,Y [Success] = Ω(1).

5.2 Agreement distillation protocol for BEC(ε)
The calculations are similar to the one we used above. We fix r and Az as before. However,
this time we set η = ε−

√
ε(1− ε)γ and let

Bz :=
{
x ∈ {+1,−1}n : vz · x > (1− η)r

√
N
}
.

We define events E1(z), E2(z) and E3(z) as before, and observe that

Pr[Success] >
∑
z

Pr[E1(z)](1− Pr[E2(z) | E1(z)]− Pr[E3(z) | E1(z)]). (29)
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continues to hold. To estimate the first factor, we expand it as before and obtain

Pr[E1(z)] = Pr[X ∈ Az] · Pr[Y ∈ Bz | X ∈ Az].

Pr[X ∈ Az] > 2−(k+1). As before, for each fixed x ∈ Az (such that x · vz = r′
√
N , r′ > r),

we view Y · vz as a sum of N independent random variables, each taking values in either
{0,+1} or {0,−1}; in particular, E[Y · vz] = (1− ε)r′

√
N and var[Y · vz] = ε(1− ε)N . Thus,

Pr[Y · vz > (1− η)r | X = x] > ϕ

(
(1− η)r − (1− ε)r′√

ε(1− ε)

)
(1−O(k−1))

>
1

√
γ(
√

2πr)1−γ
2−γ(k+1)(1−O(k−1)).

using calculations identical to those leading to (25). We finally have the following lower
bound for the first factor of (29).

Pr[E1(z)] = Pr[X ∈ Az] · Pr[Y ∈ Bz | X ∈ Az]

>
1

√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)(1−O(k−1)). (30)

Calculations that lead to

Pr[E2(z) | E1(z)] 6 1
2(1 +O(k−1)) (31)

remain the same.
Finally, we consider E3(z). First, we observe that since N is large, we may assume that

with probability tending to 1, the number of ones in Y is (1− ε)N ±N3/4 (say), even when
conditioning on E1. Now, the pair (vz, vz′) is uniformly distributed over all possible pairs of
distinct vectors. So, we will fix vz, and assume that vz′ is uniformly distributed in {+1,−1}N
(that it cannot be vz can be overlooked). Fix y with say ` = (ε + N−1/4)N = ε′N zeroes.
Then, Y · vz′ is the sum of (1 − ε′)N independent random variables, each taking values
uniformly in {+1,−1}. In particular, E[Y · vz′ ] = 0 and var[Y · vz′ ] = (1− ε′)N . Then,

Pr[E3(z) | E1(z)] 6
∑

z′:χ(z)=χ(z′),z′ 6=z

Pr[Y ∈ Bz′ ]

6 2(1−c)kϕ

(
(1− η)√

1− ε′
r

)(
1 +O(k−1)

)
6 2(1−c)k 1

(1− η)(
√

2πr)1− (1−η)2
(1−ε′)

2−
(1−η)2(k+1)

(1−ε′)
(
1 +O(k−1)

)
, (32)

where in the last step we used (21). Thus, if c > 1−(1−η)2/(1−ε′) = ε(1−γ)−2
√
ε(1− ε)γ,

then this quantity is at most 1
4 (say) for all large k. It follows from (29), (30), (31) and (32)

that

Pr
v,X,Y

[Success] >
∑
z

1
√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)

(
1− 1

2 −
1
4

)
(1−O(k−1))

= 2−γk−O(log γk).

We may, as before, fix a choice of v such that Alice and Bob succeed with probability at
least 2−γk(1+o(1)).

CCC 2016
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Constant probability of success. Again, we may set γ = 1/r2 = Θ(1/k) in the above
argument, and conclude that with communication εk−Θ(

√
k), we obtain Prv,X,Y [Success] =

Ω(1).

6 Open problems

Our work raises a number of intriguing open questions, such as:
Is there a protocol for general channels whose communication, for agreeing on a k-bit
random string with constant probability, approaches s∗(Y ;X)k? Here s∗(Y ;X) is the
channel parameter defined in (1).
We considered protocols where the shared random string was a function gA(X) of Alice’s
input X. What can we achieved by a general multi-round communication protocol, where
the shared random string can depend on both X and Y ? Can we do better than the
lower bounds we established, or do the lower bounds continue to hold in this (seemingly)
more powerful model?
The setup for BEC(ε) is not symmetric between Alice and Bob. What can be done if
Alice and Bob switch roles, and the shared randomness should be a function of Y ? What
are the possible trade-offs in the symmetric setup where X and Y are the independent
outputs of BEC(ε) on a common random string Z ∈ {0, 1}N?
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Abstract
We study how to extract randomness from a C-interleaved source, that is, a source comprised of
C independent sources whose bits or symbols are interleaved. We describe a simple approach for
constructing such extractors that yields:

For some δ > 0, c > 0, explicit extractors for 2-interleaved sources on {0, 1}2n when one
source has min-entropy at least (1− δ)n and the other has min-entropy at least c logn. The
best previous construction, by Raz and Yehudayoff [36], worked only when both sources had
entropy rate 1− δ.
For some c > 0 and any large enough prime p, explicit extractors for 2-interleaved sources on
[p]2n when one source has min-entropy rate at least .51 and the other source has min-entropy
rate at least (c logn)/n.

We use these to obtain the following applications:
We introduce the class of any-order-small-space sources, generalizing the class of small-space
sources studied by Kamp et al. [22]. We construct extractors for such sources with min-
entropy rate close to 1/2. Using the Raz-Yehudayoff construction would require entropy rate
close to 1.
For any large enough prime p, we exhibit an explicit function f : [p]2n → {0, 1} such that the
randomized best-partition communication complexity of f with error 1/2− 2−Ω(n) is at least
.24n log p. Previously this was known only for a tiny constant instead of .24, for p = 2 [36].
We introduce non-malleable extractors in the interleaved model. For any large enough prime p,
we give an explicit construction of a weak-seeded non-malleable extractor for sources over [p]n
with min-entropy rate .51. Nothing was known previously, even for almost full min-entropy.
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Keywords and phrases extractors,derandomization,explicit construction
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1 Introduction

Extracting truly random bits from various naturally-arising weak random sources is a major
area of study in computer science, and has applications in various areas such as cryptography,
coding theory, communication complexity, and distributed computing. An extractor is defined
to be a procedure that takes input from a weak random source and outputs a distribution
that is close to uniform.

Von Neumann [41] initiated the study of weak random sources, showing how to extract
from a source with independent and biased bits. Various other models of weak random
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sources were considered [3, 37, 11], but it was realized that devising such extractors was
impossible for any general class of weak random sources lacking significant independence
between different parts.

To get around this difficulty, Nisan and Zuckerman [33] introduced the notion of a seeded
extractor, which uses a small number of uniformly random bits to extract randomness from a
weak source X. The min-entropy of a weak source X is a standard way of measuring of the
amount of randomness in X, and is defined as H∞(X) = mins∈support(X) {1/ log(Pr[X = s])}.
The min-entropy rate of X supported on {0, 1}n is given by H∞(X)/n. By a long line of
work ending with [31, 15, 21], we now have explicit seeded extractors with almost optimal
parameters.

In recent years, there has been renewed interest in the original problem of constructing
seedless extractors for weak random sources. In particular, a line of work has focused on
devising seedless extractors that takes input C independent weak sources X1, . . . , XC , and
outputs a distribution close to uniform. This problem was originally considered by Chor and
Goldreich [10], who showed how to extract from two independent sources (on {0, 1}n) each
with min-entropy at least ( 1

2 + δ)n. Such extractors are called two-source extractors.
However, there was no progress on this result for around 20 years until the work of

Bourgain [4], who achieved a small improvement over [10], and showed how to extract from
two independent sources each with min-entropy 0.49n, based on techniques from the area of
additive combinatorics. Subsequently, Raz [35] gave an explicit two source extrator, with one
source having min-entropy at least ( 1

2 + δ)n and the other source having poly-logarithmic
min-entropy at least O(logn). Finally, the authors recently constructed two-source extractors
for polylogarithmic min-entropy with one bit output [9]. Subsequently, Li [30] improved the
output length to Ω(k) bits.

1.1 Interleaved Sources

Raz and Yehudayoff [36] introduced a natural generalization of the class of independent
sources, which we call interleaved sources. We formally define this class of sources.

Notation. Let [n] denote the set {1, . . . , n}. For any string s ∈ [R]n and i ∈ [n], let si
denote the symbol in the ith coordinate of s. For any permutation t : [n]→ [n], define the
string w = (s)t ∈ [R]n such that wi = st(i) for i = 1, . . . , n. For distributions D1 and D2, we
use |D1 −D2| to denote the statistical (or variation) distance. We use D1 ≈ε D2 to denote
that |D1 − D2| ≤ ε. See Section 3 for more preliminaries. Let ◦ denote standard string
concatenation.

I Definition 1.1 (Interleaved Sources). Let X1, . . . , XC be arbitrary independent sources
on [R]n and let t : [Cn] → [Cn] be any permutation. Then Z = (X1 ◦ . . . ◦ XC)t is a
C-interleaved source.

Such sources can arise naturally is when the independent sources are communicated remotely
to an extractor and packets of bits from different sources arrive in a fixed but unknown
order. We show that extractors for interleaved sources can be used to construct extractors
for certain samplable sources, thus extending the line of work initiated by Trevisan and
Vadhan [40]. We discuss this in Section 1.2. Further, Raz and Yehudayoff [36] showed that
such extractors have applications in communication complexity (see Section 1.3) and proving
lower bounds for arithmetic circuits.
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Previous Results
The only known construction of an extractor for the class of interleaved sources is due to
Raz and Yehudayoff [36]. They constructed extractors for 2-interleaved sources on {0, 1}2n
when both sources have min-entropy rate at least 1 − β, with output length Ω(βn) and
exponentially small error.

The constant β in the result of [36] is tiny and arises from a multilinear exponential sum
estimate from [5] (which is based on sum-product estimates on finite fields [6, 26]). Thus, the
only known construction required both the sources to have almost full min-entropy. Moreover,
their analysis requires estimating a non-trivial exponential sum, and is quite involved.

Our Results
We develop a simple technique that yields explicit extractors that work for lower min-entropy
rates. In particular, our method yields explicit extractors for min-entropy rate 0.51 for
two interleaved sources, when the sources are over a finite field of large enough (constant)
characteristic.

We show how to convert any two-source extractor that is a function of the sum of its
inputs into an extractor for a 2-interleaved source. Our method of converting a two-source
extractor into an extractor for interleaved sources is based on explicit constructions of certain
combinatorial sets, which we call (r, s)-spanning sets. These spanning sets are essentially
subspace-evasive sets with different parameters than studied earlier (see Section 2.1 for more
details). It turns out that the columns of parity check matrices of linear codes with good
erasure list-decodability form spanning sets with good parameters. We discuss this in detail
later.

Next, we observe that an existing two-source extractor from [10] is a function of the sum
of the inputs. This leads to our construction of an extractor for 2-interleaved sources with
one source having min-entropy at least (1− α)n and the other source having min-entropy at
least λ logn (for some α, λ > 0). In particular, we have the following theorem.

I Theorem 1.2. For some δ > 0 and any λ > 0, there exists an explicit function ext :
{0, 1}2n → {0, 1}m, m = λ logn, such that if X, Y are independent sources on Fn2 with min-
entropy k1, k2 respectively satisfying k1 > (1− δ)n and k2 > 35 max{logn,m}, t : [2n]→ [2n]
is any permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

Next, we show that for any large enough constant prime p, if the 2-interleaved source is
on [p]2n, we can extract when one source has min-entropy rate at least 0.51 and the other
source has min-entropy rate at least c logn/n.

I Theorem 1.3. There exists c > 0 such that for any δ, λ > 0 and any prime p > 2 cδ , there
exists an explicit function extp : F2n

p → {0, 1}m, m = λ logn, such that if X and Y are
independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > ( 1

2 + δ)n log p
and k2 >

5
δ max{logn log p,m}, t : [2n]→ [2n] is any injective map, then

|extp((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

We give various related constructions achieving different tradeoffs between min-entropy,
error, and output length. This is summarized in Table 1.

We show that random sets are (r, s)-spanners with high probability (see Lemma 5.10).
By our proof technique, any improved construction of an (r, s)-spanning set matching the

CCC 2016
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Table 1 Results on Extractors for 2-Interleaved Sources. The setting is as follows: Z = (X ◦Y )t is
an arbitrary 2-interleaved source on [p]2n, where X and Y are independent sources on [p]n (for some
prime p) with min-entropy k1 and k2 respectively, and t : [2n]→ [2n] is an arbitrary permutation.
Let α be a small enough constant and c a large enough constant. Also let λ > 1 be any constant.
We also list the result of [36] in Table 1.

p k1 k2 Output
Length

Error Reference Remarks

2 ≥ (1− β)n ≥ (1− β)n γn,

γ < β

2−Ω(n) [36] Not strong

2 ≥ (1− α)n ≥ 35λ logn λ logn n−α Theorem 1.2 Strong in X
2 ≥ (1− α)n ≥ 35λ logn Output in

ZM , M =
nλ

2−Ω(k2) Theorem 1.3 Strong in X

any p > 2 cδ ≥
( 1

2 + δ)n log p
≥ c1(δ, λ, p) logn λ logn n−α Theorem 6.5 Strong in X

any p > 2 cδ ≥
( 1

2 + δ)n log p
≥ ( 1

2 + δ)n log p Ω(n) n−α Theorem 6.6 Not strong

any p > 2 cδ ≥
( 1

2 + δ)n log p
≥ c2(δ, λ, p) logn 1 bit 2−Ω(k2) Theorem 6.7 Strong in X

any p > 2 cδ ≥
( 1

2 + δ)n log p
≥ c1(δ, λ, p)λ logn Ω(k2) 2−Ω(k2) Theorem 6.9 Semi-explicit

construction
2 ≥ γn, any con-

stant γ
≥ γn λ logn n−α Theorem 6.11 Assuming

Generalized
Paley Graph
Conjecture

probabilistic method will yield extractors for 2-interleaved sources on {0, 1}2n that have
essentially the same min-entropy requirement as the standard (non-interleaved) setting.

Subsequent Work
In subsequent work, Chattopadhyay and Li [8] constructed extractors for C-interleaved
sources with polylogarithmic min-entropy, for some large enough constant C. However, their
results don’t apply for C = 2, and their construction is more complicated.

1.2 Any-Order-Small-Space-Sources
Trevisan and Vadhan [40] introduced the problem of constructing seedless extractors for the
class of samplable sources (the weak random source is generated by an efficient algorithm)
and constructed explicit extractors based on some complexity-theoretic assumptions. Subse-
quently, Kamp et al. [22] introduced a class of samplable sources called small-space sources,
where the algorithm generating the source has bounded space. They constructed seedless
extractors for such sources with linear min-entropy. Most sources considered previously (for
seedless extraction) can be computed in small-space (see [22] for more details). In particular,
extractors for small-space sources also extract from bit-fixing sources and symbol-fixing
sources, and thus have applications in cryptography [23].

We introduce a natural generalization of small-space sources. For this, we recall the
definition of small-space sources from [22].

I Definition 1.4 (Small-Space Sources [22]). A space s source X on [r]n is generated by a
r-way branching program of length n and width 2s in the following way: The r-way branching
program is a layered graph with n + 1 layers, with each layer containing 2s vertices and
a single start vertex. Each edge is labeled with a variable Xj , a probability value and a
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symbol in [r]. Further all edges between the ith and (i + 1)th layer are labelled with the
same variable Xi. The output of the source is a random walk beginning at the start vertex,
assigning the symbol on the edge to the corresponding variable and finally outputting the
generated string.

Note that in the above definition, the variable assigned to an edge is known (for example,
all edges between the ith and (i + 1)th layers have the variable Xi assigned to it). We
introduce the natural generalization where the branching program is oblivious but the variable
assigned to an edge is unknown. In particular, for an unknown permutation t : [n]→ [n], all
edges between the ith and (i+ 1)th layers have the variable Xt(i) assigned to it.

We formally define this class of sources.

I Definition 1.5 (Any-Order-Small-Space-Sources). An any-order-space s source X on [r]n
is generated by an r-way branching program of length n and width 2s and a permutation
t : [n] → [n] in the following way: The r-way branching program is a layered graph with
n+ 1 layers and a single start vertex. Each edge is labeled with a variable Xj , a probability
value and a symbol in [r]. Further all edges between the ith and (i+ 1)th layer are labelled
with same variable Xt(i). The output of the source is a random walk starting from the start
vertex, assigning the symbol on the edge to the corresponding variable and finally outputting
the generated string.

Our Results
To construct extractors for the class of any-order-oblivious-small-space sources, we reduce it
to the task of extracting from 2-interleaved sources by adapting the technique of [22] to our
situation.

Consider an arbitrary any-order-space s = δn/2 source X on [p]n (for some constant p)
with min-entropy k = (1

2 + δ)n log p. By conditioning on the state of the p-way branching
program at the n

2 th layer, it follows by Lemma 4.7 that X is 2−Ω(n)-close to a source Z = (Y1◦
Y2)t, where Y1 and Y2 are independent sources on [p]n2 with min{H∞(Y1), H∞(Y2)} ≥ δn log p

8
and max{H∞(Y1), H∞(Y2)} ≥ ( 1

2 + δ
8 )n log p

2 , and t : [n]→ [n] is a permutation.
It thus follows that all our extractor constructions for 2-interleaved sources also extract

from any-order-small-space sources (by splitting the input string into two equal parts and
applying the extractor).

Using this reduction, we obtain the first explicit construction of an extractor for any-
order-oblivious-small-space sources with min-entropy rate close to 1

2 (by using the extractor
from Theorem 6.5).

I Theorem 1.6. There exists c > 0 such that for any δ ≥ 2δ1 > 0 and any prime p > 2 cδ ,
there exists an explicit function ext : [p]n → {0, 1}m, m = O(logn), such that if X is an
any-order-oblivious space s = δ1n source on [p]n with min-entropy ( 1

2 + δ)n log p, then

|ext(X)− Um| = n−Ω(1).

We note that using our reduction, the extractor from [36] can be used to extract from
any-order-small-space sources with min-entropy rate very close to 1.

1.3 Applications to Communication Complexity
Since Yao introduced communication complexity in 1978 Yao [42], there has been an extensive
amount of research done on various models of communication (see [27] for formal definitions
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7:6 New Extractors for Interleaved Sources

and background). We recall the definition of the randomized best-partition communication
complexity of an arbitrary function f : [R]2n → {0, 1}, which generalizes the usual setting
where the partition of inputs is known.

Let Alice and Bob be two players who want to collectively compute f following a protocol
Π and having access to a common random string r. Fix an arbitrary partition of the set [2n]
into 2 subsets of equal size, say S and T . For arbitrary x, y ∈ [R]n, Alice is given x and Bob
receives y and the goal is to compute f(z) with probability at least 1− ε, where z ∈ [R]2n
such that zS = x and zT = y.

For any protocol Π, the randomized communication cost of f with respect to an equi-
partition S, T ⊂ [2n] denoted by RεΠ,S,T (f), is defined to be the maximum communication
between Alice and Bob over all inputs x, y in the scenario described above. The best-partition
communication complexity of f , denoted by Rbest,ε(f) is defined as:

Rbest,ε(f) = min
Π

 min
S,T :|S|=|T |=n,
S∪T=[2n]

RεΠ,S,T (f)

 .

Lower bounds on the best-partition communication complexity of f implies lower bounds on
branching programs computing f [1] and also imply time/space tradeoffs for VLSI circuits [28].

Raz and Yehudayoff [36] proved the following lower bound.

I Theorem 1.7 ([36]). For some β > 0, there exists an explicit function f : {0, 1}2n → {0, 1}
such that the randomized best-partition communication complexity of f with error ε = 1

2−2−βn
is at least βn.

The constant β in the above theorem is, however, extremely small and arises from arguments
in additive combinatorics. A similar bound also follows from their work for inputs on [R]2n
(for any constant R) and it appears nontrivial to use their techniques to obtain bounds for
larger β.

Our Results
We obtain the following result.

I Theorem 1.8. There exists c > 0 such that for any δ, γ > 0 and any prime p > 2 cδ ,
there exists an explicit function f : [p]2n → {0, 1} such that the randomized best-partition
communication complexity of f with error ε = 1

2 − p
−γn is at least ( 1

4 − δ − γ)n log p.

We prove this using a well known technique of lower bounding randomized communication
complexity by discrepancy. Our explicit function is the 1-bit extractor constructed in
Theorem 6.7. However, we need to analyze the error of the extractor more carefully to obtain
the above bound. We prove Theorem 1.8 in Section 8.

1.4 Interleaved-Non-Malleable Extractors
Dodis and Wichs [14] introduced non-malleable extractors, where they showed that explicit
constructions of good non-malleable extractors imply almost optimal protocols for privacy
amplification, which is a very well studied problem in cryptography. Recently, non-malleable
extractors were also used in constructing explicit two-source extractors [9]. We introduce the
natural generalization of non-malleable extractors in the interleaved model.

We first recall the definition of a non-malleable extractor.
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I Definition 1.9 (Non-Malleable Extractor). A function nmExt : [R]2n → {0, 1}m is a non-
malleable extractor for min-entropy k and error ε if the following holds: If X is a source (on
[R]n) with min-entropy k, and f : [R]n → [R]n is any function with no fixed points, then

|nmExt(X ◦U[R]n) ◦nmExt(X ◦ f(U[R]n)) ◦U[R]n −Um ◦nmExt(X ◦ f(U[R]n) ◦U[R]n | ≤ ε .

The first explicit construction of a non-malleable extractors was given in [13], with subsequent
improvements of parameters achieved in [12, 29]. However these constructions require min-
entropy > 0.49n. In a recent work [7], the min-entropy required was improved to O(log2 n).

We initiate the study of non-malleable extractors in the interleaved model, where the
extractor is guaranteed to work even when symbols from the source X and tampered seed
U[R]n arrive to the non-malleable extractor in a fixed but unknown interleaved order.

We formally define interleaved-non-malleable extractors.

I Definition 1.10 (Interleaved-Non-Malleable Extractor). A function nmExt : [R]2n → {0, 1}m
is a non-malleable extractor in the any-order model for min-entropy k and error ε if the
following holds: If X is a source (on [R]n) with min-entropy k, f : [R]n → [R]n is any
function with no fixed points and t : [2n]→ [2n] is any permutation, then

|nmExt((X◦U[R]n)t)◦nmExt((X◦f(U[R]n))t)◦U[R]n−Um◦nmExt((X◦f(U[R]n))t)◦U[R]n | ≤ ε ,

where Um is independent of U[R]n .

In the above definition, when the seed has some min-entropy instead of being uniform,
we say that the interleaved-non-malleable extractor is weak-seeded.

Our Results

We give the first explicit construction of an interleaved-non-malleable extractor. Further our
non-malleable extractor is weak-seeded.

I Theorem 1.11. There exists λ > 0 such that for any δ > 0, c > c(δ) and any prime p > 2λδ ,
there exists an explicit function nmExt : F2n

p → {0, 1}m, m = O(logn), such that if X, Y are
independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > ( 1

2 + δ)n log p
and k2 > cm, t : [2n] → [2n] is any permutation and f : Fnp → Fnp is any function with no
fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = n−Ω(1).

As before, if we are allowed to run the non-malleable extractor in sub-exponential time,
we can extract Ω(n) bits with error 2−Ω(n). See Theorem 7.4 for more details.

Organization

We outline our constructions in Section 2. We introduce preliminaries in Section 3 and recall
some known explicit constructions and other tools in Section 4. In Section 6, we present our
extractor constructions for 2-interleaved sources. In Section 7, we present our constructions
of interleaved-non-malleable extractors. We present the proof of Theorem 1.8 in Section 8.
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7:8 New Extractors for Interleaved Sources

2 Outline of Constructions

2.1 Extractors for 2-Interleaved Sources
Our extractor for interleaved sources exploits the existence of good 2-source extractors which
are functions of X + Y . To do this, we encode our source in a new way. Our encoding is
based on explicit constructions of certain combinatorial sets, which we call spanning vectors.

I Definition 2.1. A set of vectors S ⊆ F¯̀
p is (r, s)-spanning if the span of any r vectors of S

has dimension at least s.

Note that this is the same as a subspace-evasive set: Any (s − 1)-dimensional subspace
contains at most (r − 1) vectors in the set. However our parameters are quite different than
studied previously [19, 16].

Our explicit constructions of spanning vectors are based on using the columns of a
parity check matrix of a linear codes with good erasure list-decodability. Informally, an
(e, L)-erasure list-decodable code C satisfies the property that at most L codewords agree on
any particular subset of coordinates of size n− e. This property can then be used to lower
bound the rank of any subset of e columns of the parity check matrix of C. We refer the
reader to Section 5 for more details.

We define the following encoding based on spanning vectors.

I Definition 2.2. For any (r, s)-spanning set S = {v1, . . . , v`} ⊆ F¯̀
p of size `, the function

enc : F`p → F¯̀
p defined as

enc(z) =
∑̀
i=1

zivi

is called an (r, s)-encoding from F`p to F¯̀
p.

Consider the following setting: Let Z = (X ◦ Y )t be any 2-interleaved source on {0, 1}2n,
where X and Y are arbitrary independent sources on {0, 1}n with min-entropy k1 and k2
respectively, and t : [2n]→ [2n] is any permutation.

Our first step is to use an (n, s)-encoding enc from F2n
2 to Fn̄2 to encode Z. Thus,

enc(Z) = X ′ + Y ′ ,

where

X ′ =
n∑
i=1

Xivt(i) , Y ′ =
n∑
i=j

Yjvt(n+j) ,

where S = {v1, . . . , v2n} is an (n, s)-spanning set of vectors.
The idea is to argue that the independent sources X ′ and Y ′ (on {0, 1}n̄) have enough

min-entropy. Since (by construction) the span of the set of vectors {vt(1), . . . , vt(n)} has
dimension at least s, Lemma 4.9 implies that H∞(X ′) = k′1 ≥ k1 − (n − s). Similarly
H∞(Y ′) = k′2 ≥ k2 − (n− s).

We now associate Fn̄2 with F2n̄ . A character sum estimate of Karatsuba1 [24, 25] implies
that for any nonprincipal multiplicative character χ of F∗2n̄ ,

EX′ |EY ′ [χ(X ′ + Y ′)]| ≤ 2−δk
′
2

1 This character sum was also used in [10] for constructing explicit two-source extractors.
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whenever: k1 ≥ ( 1
2 + 3δ)n̄+ (n− s) and k2 ≥ 4

δ log n̄ log p+ (n− s).
Suppose k1 and k2 satisfy these conditions.
We then follow a standard approach and define the function:

ext(Z) = logg(X ′ + Y ′) (mod M) ,

where M = 2δk′2/2 and g is a primitive element of F2n̄ . Using a version of the Abelian XOR
lemma (see Lemma 4.5), it follows that ext is an extractor with output length δk′2/2 and
error 2−Ω(k′2). Further the extractor is strong in the source X. However, the running time of
this extractor is subexponential since it involves computing discrete logs over finite fields.
This gives us a semi-explicit extractor construction.

To get a polynomial time extractor, we compute discrete log over a smaller multiplicative
subgroup of F∗2n̄ . Let M |2n̄ − 1 and M = nλ for any constant λ (we show in Theorem 6.2
that we can ensure that there is always such an M). Define the function:

ext1(Z) = enc(Z)
2n̄−1
M .

Thus ext1(Z) is a distribution on the multiplicative subgroup G = {x 2n̄−1
M : x ∈ F∗2n̄} (of

F∗2n̄) of size M (in fact ext1(Z) is a distribution on G ∪ {0}, but Pr[ext1(Z) = 0] = 2−Ω(n)

and hence we ignore this and add this to the error). Let g be a generator of G. It now follows
by using the character sum estimate of Karatsuba [24] that the function:

ext(Z) = logg(ext1(Z))

is an extractor.
We need to find a generator g of G efficiently. For this, we use an efficient algorithm of

Shoup [39] for finding a small set of elements such that one of them is a primitive element
of F2n̄ . We use a straightforward method to find g from this set in polynomial time. We
achieve output length of λ logn and error n−Ω(1). The extractor is strong in the source X.

Reducing the Min-Entropy Rate. For some c and any δ > 0, let p > 2 cδ be any prime.
When the source Z = (X ◦ Y )t is on [p]2n, we can reduce the min-entropy rate requirement
of the source X to ( 1

2 + δ). The construction follows the same outline as above (using
(n, s)-encodings from F2n

p to Fn̄p ), and the improvement is achieved by using the fact that over
alphabet [p], we can construct (n, n)-spanning sets in Fn̄p with n̄ = n(1 + δ

5 ) (using explicit
codes from [20]). The output length of the extractor obtained is λ logn (for any constant λ)
and achieves error n−Ω(1). Further the extractor is strong in the source X.

Improving the Output Length. We improve the output length of the above extractor
to Ω(n) when both sources X and Y (on [p]n) have min-entropy at least ( 1

2 + δ)n log p.
Our construction is as follows. Let SExt be an explicit strong seeded extractor for linear
min-entropy with linear output length and polynomially small error with seed seed length
O(logn), for example from the work of [21]. Let Z[n] denote the projection of Z to the first
n coordinates and let extp denote the extractor constructed in the previous paragraph (for
2-interleaved sources on [p]2n). Our extractor is the following function:

extp,long(Z) = SExt(Z[n], extp(Z)) .

We sketch the proof of correctness. Without loss of generality, suppose that X has more
symbols in Z[n] than the source Y . Let S ⊆ [n] be the coordinates of X which are in Z[n]
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7:10 New Extractors for Interleaved Sources

and let XS denote the projection of X to the coordinates indexed by S. Let T ⊂ [n] be the
coordinates of Y which are in Z[n] and let YT denote the projection of Y to the coordinates
indexed by T . Further, we use XS ◦YT to denote Z[n]. Note that, by assumption |S| ≥ n

2 and
|T | ≤ n

2 . It follows by Lemma 4.7 that Y |YT is close to a source with min-entropy > δn log p
2

with probability 1− 2−Ω(n). Also note that XS has min-entropy ≥ δn log p.
Consider such a good fixing YT = yT . Since X and Y |YT = yT have enough min-entropy,

it follows that even under this fixing, W = extp(Z) is close to uniform. We now use the
property that extp is strong with respect to the source XS , i.e.,

|(XS ,W )− (XS , Ud)| ≤ n−Ω(1) .

Using a probability lemma from [38], it follows that for any W = w,

|XS − (XS |(W = w))| ≤ n−Ω(1) ,

(using that w is of length O(logn)).
Hence, SExt(XS ◦ YT ,W )|YT = yT is n−Ω(1)-close to the convex combination:

∑
w Pr

[(W |YT = yT ) = w]SExt(XS◦YT , w)|YT = yT . Since as observed above,W |YT = yT is n−Ω(1)-
close to Ud, it follows that SExt(XS ◦ YT ,W )|YT = yT is n−Ω(1)-close to SExt(XS ◦ yT , Ud).
The correctness now follows using the fact that SExt is a seeded extractor for linear min-
entropy.

Probabilistic Method. We show in Lemma 5.10, that a random set S ⊂ Fn2 of size 2n is an
(n, n− 2

√
n)-spanning set with high probability. Thus, using the proof technique described

above, any explicit construction of such a set will yield explicit extractors for 2-interleaved
sources on {01}2n when one source has min-entropy at least 0.51n and the other source has
min-entropy at least cn 1

2 . We leave it as an interesting open problem to explicitly construct
such a set S.2

We give formal proofs of the above extractor constructions and other related constructions
in Section 6.

2.2 Interleaved-Non-Malleable Extractors
For some c > 0 and any δ > 0, let p > 2 cδ be any prime. Let X be a source on [p]n with
min-entropy k1 and Y be a weak- eed on [p]n with min-entropy k2. Let f : [p]n → [p]n be any
function with no fixed points. Thus the non-malleable extractor has access to Z = (X ◦ Y )t
for an artitrary permutation t : [2n]→ [2n]. Let Zf denote the tampered source (X ◦ f(Y ))t.

We show that the extractor extp constructed for 2-interleaved sources (described in
the previous section) is also non-malleable. We prove it in the following way. Recall the
construction of extp:

enc(Z) =
2n∑
i=1

Zivi , ext1(Z) = enc(Z)
pn̄−1
M , extp(Z) = logg(ext1(Z)) ,

where S = {v1, . . . , v2n} is an (n, n)-spanning set in Fn̄p , M = poly(n), n̄ = n(1 + δ
5 ) and g is

a generator of the multiplicative subgroup G = {x 2n̄−1
M : x ∈ F∗2n̄}.

2 This is related to finding explicit constructions of binary erasure list-decodable codes with almost
optimal parameters. See Section 5 for more details.
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Since extp is a distribution on ZM , it follows by a version of the Abelian XOR lemma
proved in [13] that to prove non-malleability, it is enough to prove the bound:

|E[ψa(extp(Z))ψb(extp(Zf ))]| ≤ n−Ω(1) ,

for all additive characters ψa and ψb (of ZM ) such that ψa is nontrivial. When ψb is the
trivial character, the above quantity can be bounded by the fact that extp is an extractor for
2-interleaved sources. Thus, suppose both ψa and ψb are nontrivial.

It follows that

|E[ψa(extp(Z))ψb(extp(Zf ))]| = |E[χa(enc(Z))χb(enc(Zf ))]|

where χa and χb are nonprincipal multiplicative characters of F∗2n̄ .
Further, Z =

∑n
i=1Xivt(i) +

∑n
j=1 Yjvt(j) and Zf =

∑n
i=1Xivt(i) +

∑n
j=1 f(Y )jvt(j).

Thus,

Z = X ′ + Y ′ , Zf = X ′ + f ′(Y ′),

where X ′ =
∑n
i=1Xivt(i), Y ′ =

∑n
i=j Yjvt(n+j) and f ′ = L ◦ f ◦ L−1, L being the one-one

linear map L(z) =
∑n
i=1 zivt(n+i). Thus,

|E[ψa(extp(Z))ψb(extp(Zf ))]| = |E[χa(X ′ + Y ′)χb(X ′ + f ′(Y ′))]| .

Using the work of Dodis et al. [13], we can prove the required upper bound on the quantity
on the right hand side if f ′ does not have any fixed points. We indeed show that f ′ has no
fixed points (by using the fact that L is one-one and f has no fixed points). This completes
the proof sketch. The non-malleable extractor outputs λ logn bits (for any constant λ) and
achieves error n−Ω(1).

See Section 7 for more details.

3 Preliminaries

3.1 Notation
We use capital letters to denote distributions and their support. We use corresponding small
letters to denote a sample from the source.

We use [l] to denote the set {1, 2, . . . , l} and [a, b] to denote the set {a, a+ 1 . . . , b}.
We use Um to denote the uniform distribution over {0, 1}m.
For any set S, let US denote the uniform distribution on S. Also let s ∼ S denote a

uniform draw from S.
For any string s ∈ [R]n and i ∈ [n], let si denote the symbol at the ith coordinate of s.

For any one-one map t : [n]→ [n], define the string w = (s)t ∈ [R]n such that wi = st(i) for
i = 1, . . . , n. Further for any t ⊂ [n], let sT denote the |T | length string that is the projection
of s onto the coordinates indexed by T .

For any x ∈ [p]n1 , y ∈ [p]n2 and disjoint subsets S, T ⊂ [n1 + n2] with |S| = n1, |T | = n2,
we define z = xS ◦ yT such that zS = x and zT = y.

For any integer M > 0, let eM (x) = e
2πix
M .

3.2 Min-Entropy and Flat Distributions
I Definition 3.1. The min-entropy of a source X is defined as:

H∞(X) = min
s∈support(X)

{
1

log(Pr[X = s])

}
.
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7:12 New Extractors for Interleaved Sources

I Definition 3.2. A distribution (source) D is flat if it is uniform over a set S.

I Definition 3.3. A (n, k)-source is a distribution on {0, 1}n with min-entropy k.

Any (n, k)-source is a convex combination of flat sources supported on sets of size 2k [43].

3.3 Statistical distance and Convex Combination of Distributions

I Definition 3.4. Let D1 and D2 be two distributions on a set S. The statistical distance
between D1 and D2 is defined to be: |D1 −D2| = 1

2
∑
s∈S |Pr[D1 = s]− Pr[D2 = s]|.

A distribution D1 is ε-close to another distribution D2 if |D1−D2| ≤ ε, denoted D1 ≈ε D2.

I Definition 3.5. For random variables X and Y , we use X|Y to denote a random variable
with distribution: Pr[(X|Y ) = x] =

∑
y∈support(Y ) Pr[Y = y] · Pr[X = x|Y = y].

4 Some Known Explicit Constructions and Other Tools

To construct our extractors, we use a variety of tools. We first set up these tools in this
section and present our extractor constructions in the next section.

4.1 A 2-Source Extractor

The following double character sum estimate was obtained by Karatsuba [24, 25].

I Theorem 4.1 ([24, 25]). Let p be any prime. Let χ be a nonprincipal multiplicative
character of F∗pn . For any subsets A,B ⊆ Fpn , the following holds: For any integer λ > 0,

∑
a∈A

∣∣∣∣∣∑
b∈B

χ(a+ b)

∣∣∣∣∣ ≤ 2λ|A|
2λ−1

2λ (|B|p n
4λ + |B| 12 p n

2λ ) .

The above theorem can be equivalently restated as a result on 2-source extractors.

I Theorem 4.2. Let p be any prime. Let χ be a nonprincipal multiplicative character of F∗pn .
For any δ > 0 and independent sources X,Y on Fpn with min-entropy k1, k2 respectively,
satisfying k1 ≥

( 1
2 + 3δ

)
n log p and k2 ≥ (4 logn log p)/δ, we have

Ex∼X |Ey∼Y [χ(x+ y)]| ≤ 2−δk2 .

Proof. Let X,Y be flat sources on sets A and B respectively. Thus |A| = 2k1 and |B| = 2k2 .
Setting λ = n log p

δk2
in Theorem 4.1 (so that |B| = 2k2 = p

n
λ ), we have

Ex∼X |Ey∼Y [χ(x+ y)]| ≤ 2λ|A|− 1
2λ (p n

4λ + |B|− 1
2 p

n
2λ )

≤ 2λ|A|− 1
2λ (p n

4λ + 1)

< 3np− 3δn
2λ

= 2log(3n)− 3k2δn log p
2n log p < 2−δk2 .

J
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4.2 A Seeded Extractor
We recall an explicit construction of a strong seeded extractor with optimal parameters.

I Theorem 4.3 ([21]). There exists a constant α > 0 such that for all n, k ∈ N, there exists
an explicit strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(log(n/
epsilon)) and m = (1− α)k.

4.3 Abelian XOR Lemmas
The following lemma is known as Vazirani’s XOR Lemma.

I Lemma 4.4. Let D be a distribution over ZM such that for every nontrivial additive
character ψ of ZM , we have |E[ψ(D)]| ≤ ε. Then, we have

|D − UM | ≤ ε
√
M .

Let σM : ZN → ZM be defined as σM (x) = x (mod M). The following general version of the
above XOR lemma was proved in [34].

I Lemma 4.5 ([34]). Let D be a distribution over ZN such that for every non-trivial additive
character ψ of ZN , we have |E[ψ(D)]| ≤ ε. Then, for any M < N , we have

|σM (D)− UM | ≤ O(ε logN
√
M) +O(M/N) .

We also record a more generalized form of the XOR Lemma [13].

I Lemma 4.6 ([13]). Let D1, D2 be distributions over ZN such that for arbitrary characters
ψ, φ of ZN , we have |E[ψ(D1)φ(D2)]| ≤ ε, whenever ψ is nontrivial. Then, for any M < N ,
we have

|(σM (D1), σM (D2))− (UM , σM (D2))| = O(ε(logN)2M) +O(M/N) .

4.4 Probability Lemmas
The following result follows from a lemma proved in [32].

I Lemma 4.7 ([32]). Let X,Y be random variables with supports S, T ⊆ V such that (X,Y )
is ε-close to a distribution with min-entropy k. Further suppose that the random variable Y
can take at most l values. Then

Pr
y∼Y

[
(X|Y = y) is 2ε1/2-close to a source with min-entropy k − log l − log

(
1
ε

)]
≥ 1− 2ε1/2.

We also need the following lemma.

I Lemma 4.8 ([38]). Let Y be a random variable taking values in {0, 1}d. Suppose |(X,Y )−
(X,Ud)| ≤ ε. Then for any y ∈ support(Y ), |X − (X|Y = y)| ≤ 2d+1ε.

I Lemma 4.9. Let X be a source on Fnp with min-entropy k. Let V = {v1, . . . , vn} be a
collection of vectors such that dim(span{V }) ≥ n − A. Then XV =

∑
i xivi : x ∼ X is a

source with min-entropy ≥ k −A log p.
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4.5 Finding Primitive Elements in Finite fields
There is no known deterministic polynomial time algorithm to find any primitive element of
a finite field Fpn . However, there are efficient algorithms known for a weaker task, where the
algorithm is only required to output a small set of elements with the guarantee that one of
the elements is primitive. The following result is due to Shoup [39].

I Theorem 4.10 ([39]). Let p > 0 be any prime. For all n > 0, there exists a deterministic
procedure which takes as input n, runs in time poly(n), and outputs a set S = {a1, . . . , al},
l = poly(n), such that S contains a primitive element of Fpn .

5 Constructing Spanning Vectors

A key ingredient in our extractor construction are explicit constructions of spanning vectors.
Recall that a set of vectors S ⊆ F¯̀

p is (r, s)-spanning if the span of any r vectors of S has
dimension at least s (see Definition 2.1). Our constructions of spanning vectors are simple
and are based on explicit linear codes. Recall that a linear code of block length n, dimension
k and distance d over any field F is a k dimensional subspace over F with the number of zero
coordinates of any vector in this subspace being at most n− d. The relative rate of the code
is k/n and the relative distance is d/n.

We show that the columns of the parity check matrix of any linear code with good erasure
list-decoding radius (defined below) can be used as a spanning set.

I Definition 5.1 (Erasure List-Decoding Radius [17]). We say that a linear code [n, k, d] code
C over a finite field F is (e, L)-erasure list-decodable if for every for every r ∈ Fn−e and
T ⊆ [n] of size n− e, |{c ∈ C : cT = r}| ≤ L.

We now establish a simple connection between erasure list-decodable codes and spanning
sets.

I Lemma 5.2. Let C be a linear [n, k, d] code over a finite field F, which is (e, L)-earasure
list-decodable. Let H be parity check matrix of C, and let S be the set of columns of H. Then
S ⊂ Fn−k is a (r, s)-spanning set of size n, with r = e and s = e− log|F|(L).

Proof. Since C is (e, L)-erasure list-decodable, it follows that the size of the null space of any
e columns of the parity check matrix H is at most L. By the rank-nullity theorem, it follows
that the rank of the sub-matrix of H restricted to these e columns is at least e− log|F|(L).
Thus by definition, the set of columns of H form a (e, e− log|F|(L))-spanning set. J

The following lemma relates the minimum distance of a code to its erasure list-decoding
radius, and can be seen as an analogue of the Johnson bound for erasure list-decoding.

I Lemma 5.3 ([18]). Let C be a code with block length n and relative distance δ over an
alphabet of size q. Then for any ε > 0, C is a (e, L)-erasure list-decodable code, where
e =

(
q
q−1 − ε

)
δn and L = q

(q−1)ε .

Combining the above results, the following lemma is immediate.

I Lemma 5.4. For any δ > 0, let C be a binary linear code with relative distance 1
4 + δ, and

block length 2n. Then the columns of the parity check matrix of H form a (r, s)-spanning set,
with r = n and s = n− log

( 1
δ

)
.

Proof. Using Lemma 5.3, it follows that C is (n, 1
δ )-erasure list-decodable. Now applying

Lemma 5.2, the lemma follows directly. J
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A similar result follows for the case of q-ary linear codes.

I Lemma 5.5. For any δ > 0, let C be a linear code with relative distance q−1
2q + δ and block

length 2n over a finite field of size q. Then the columns of the parity check matrix of H form
a (r, s)-spanning set, with r = n and s = n− log

(
q

(q−1)δ

)
.

To instantiate the above results, we recall some explicit code constructions. Using
standard code concatenation, there are known constructions of binary linear codes achieving
the Zyablov bound.

I Theorem 5.6. For any ε, γ > 0, there exists an explicit construction of a binary linear code
with relative distance δ = 1

4 + ε and relative rate R ≥ max0<r<1−H(δ+ε) r
(

1− δ
H−1(1−r)−ε

)
.

Over larger alphabets, the following explicit codes were constructed in the work of
Guruswami and Indyk [20].

I Theorem 5.7 ([20]). There exists c > 0 such that for every γ > 0 and any prime p > 2
c
γ

there is an efficient construction of a linear code C ⊂ Fnp with relative distance δ = 1
2 −

1
4p

and rate R = 1
2 − γ.

Using the above codes, we now have explicit constructions of spanning sets.

I Lemma 5.8. There exist constants γ > 0 and c such that for any n, there exists an explicit
(n, n− c)-spanning set S ⊂ F2n̄ of size 2n, where n̄ = 2n(1− γ).

Proof. LetH be the parity check matrix of the explicit linear code C ⊂ F2n
2 from Theorem 5.6

for relative distance 1
4 + δ, for some small constant δ. Let S = {v1, . . . , v2n} be the set of

columns of H. Thus S ⊂ Fn̄2 , n̄ = 2n(1− γ), γ being the relative rate of the code. Applying
Lemma 5.4, the result is now immediate. J

I Lemma 5.9. There exists c > 0 such that for any γ > 0 and any prime p > 2
c
γ , there is

an efficient construction of an explicit set (n, n− C)-spanning set S ⊂ F2n̄ of size 2n, where
n̄ = n(1 + 2γ) and C = 2c

γ .

Proof. Let H be the parity check matrix of the explicit linear code C ⊂ F2n
p from Theorem 5.7

with relative distance 1
2 −

1
4p and rate 1

2 − γ . Let S = {v1, . . . , v2n} be the set of columns of
H. The result now follows by Lemma 5.5. J

We show that random sets are (r, s)-spanning sets with overwhelmingly high probability.
Guruswami’s existence proof of subspace evasive [19] targets different parameters and does
not apply here. This lemma is more related to the existence of good erasure list-decodable
codes.

I Lemma 5.10. Let S be a random subset of Fn2 of size 2n. Then,

Pr[S is not a (n, n− 2
√
n)-spanning set ] ≤ 2−n .

Proof. Let t > 0. Consider any subset R ⊂ S, |R| = n. By standard arguments, it follows
that

Pr[dim(span(R)) ≤ n− t] ≤
(
n

t

)
(2−t)t ≤

( n
2t
)t
.

Thus,

Pr[∃ R ⊂ S, |R| = n with dim(span(R)) ≤ n− t] ≤
(

2n
n

)( n
2t
)t
≤ 22n−t2+t logn

The lemma follows by setting t = 2
√
n+ 1. J
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6 Extractors for 2-Interleaved Sources

6.1 Extractors for 2-Interleaved Sources on {0, 1}2n

Our extractor constructions are based on encoding the interleaved-sources using spanning
vectors. Recall that any (r, s)-encoding from F`p → F¯̀

p is defined in the following way: For
any (r, s)-spanning set S = {v1, . . . , v`} ⊆ Fn̄p , the function enc : F`p → F¯̀

p defined as

enc(z) =
n∑
i=1

zivi

is an (r, s)-encoding from F`p → F¯̀
p.

The following is a key lemma in our extractor constructions.

I Lemma 6.1 (Main Lemma). Fix any δ > 0. Let p be any prime and let Z = (X ◦ Y )t
be any 2-interleaved source on F2n

p , where X and Y are independent sources on Fnp with
min-entropy k1 and k2 respectively, and t : [2n]→ [2n] is any permutation. Also suppose χ
is any nonprincipal multiplicative character of F∗pn̄ and enc is an arbitrary (n, s)-encoding
from F2n

p to Fn̄p . Then,

EX |EY [χ(enc(Z))]| ≤ 2−δ(k2−(n−s) log p) ,

whenever
k1 ≥ ( 1

2 + 3δ)n̄ log p+ (n− s) log p, and
k2 ≥ 4 log n̄ log p

δ + (n− s) log p.

Proof. For any z ∈ F2n
p , let

enc(z) =
2n∑
i=1

zivi

where S = {v1, . . . , v2n} ⊂ Fn̄p is (n, s)-spanning.
We have,

χ(enc(Z)) = χ

( 2n∑
i=1

Zivi

)
= χ

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)


Define the following independent sources:

X ′ =
n∑
i=1

xivt(i) : x ∼ X , Y ′ =
n∑
j=1

yjvt(n+j) : y ∼ Y .

Using Lemma 4.9, it follows that: k′1 = H∞(X ′) ≥ k1 − (n− s) log p and k′2 = H∞(Y ′) ≥
k2 − (n− s) log p.

Thus, we have

EX |EY [χ(enc(Z))]| = Ex∼X

∣∣∣∣∣∣Ey∼Y
χ
 n∑
i=1

xivt(i) +
n∑
j=1

yjvt(n+j)

∣∣∣∣∣∣
= EX′ |EY ′ [χ (X ′ + Y ′)]|

= 2−δk
′
2

where the last inequality follows using Theorem 4.2. J
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Using the above main lemma, we construct extractors for 2-interleaved sources on F2n
2 .

I Theorem 6.2. For some δ > 0 and any λ > 0, there exists an explicit function ext :
{0, 1}2n → [M ], M = nλ, such that if X and Y are independent sources on Fn2 with
min-entropy k1, k2 respectively satisfying k1 > (1 − δ)n and k2 > 35 max{logn, logM},
t : [2n]→ [2n] is any permutation, then

|ext((X ◦ Y )t) ◦X − UM ◦X| = 2−Ω(k2).

Proof. Let H be the parity check matrix of a code C ⊂ F2n
2 with relative distance = 1

4 + δ1
(for some small constant δ1) and constant rate R, where we fix R as follows. Let RZ be the
rate of the code from Theorem 5.6. Let ε1 << RZ be a small constant. We choose R in the
interval [RZ − ε1, RZ ] such that n̄ = 2n(1−R) is divisible by integer m, m = λ logn. Since
2RZε1n >> m, we can indeed find such an R. Fix M = 2m − 1. We note that M |2n̄ − 1.
Set δ = R

6 .
Let S = {v1, . . . , v2n} be the set columns of H. By Lemma 5.8, S is (n, n−C)-spanning,

for some constant C. We interpret each vi as being an element in the field F2n̄ . Consider the
multiplicative subgroup:

G = {x
2n̄−1
M : x ∈ F∗2n̄} .

A generator g of G can be found efficiently in the following way: Using Theorem 4.10, we
can efficiently construct a set S = {a1, . . . , al}, l = poly(n), such that one of the ai’s, say aj ,

is a primitive element of F2n̄ . Let S′ = {a
2n̄−1
M

1 , . . . , a
2n̄−1
M

l }. We note that a
2n̄−1
M

j ∈ S′ is an
element of order M . Thus, it is enough to enumerate over the elements in S′ and compute
the order of each element. Since the order of any element in S′ is bounded by M = poly(n),
the search procedure can be implemented efficiently.

Let Z = (X ◦ Y )t. For any z ∈ F2n
2 , define the functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = (enc(z))
2n̄−1
M , ext(z) = logg(ext1(z)) .

We note that ext1 and ext are efficiently computable functions. Further note that enc is
an (n, n− C)-encoding from F2n

2 to Fn̄2 .
Using the above lemma, we prove the following claim.

I Claim 6.3. Let ψ(x) = eM (βx), β 6= 0 (mod M), be any nontrivial character of the
additive group ZM .

Then,

EX |EY [ψ(ext2((X ◦ Y )t))]| ≤ 2−δk2 .

We note that Theorem 6.2 follows directly from Claim 6.3 by using Lemma 4.4. Thus it is
enough to prove Claim 6.3.

Proof of Claim 6.3. We have,

ψ(ext(z)) = eM (β logg(ext1(z)))
= χ (enc(z)) ,

where χ(x) = eM (β logg(x)) is a nonprincipal multiplicative character of F∗2n̄ of order
M

gcd(M,β) .
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Thus, we have

EX |EY [ψ(ext2((X ◦ Y )t))]| = Ex∼X |Ey∼Y [χ (enc(Z))]|
≤ 2−δk2 ,

where the inequality follows from Lemma 6.1. J

J

It is direct from the above theorem, that if we insist that the output of the above extractor
is a bit string, we have the following result.

I Theorem 6.4 (Theorem 1.2 restated). For some δ > 0 and any λ > 0, there exists an explicit
function ext : {0, 1}2n → {0, 1}m, m = λ logn, such that if X, Y are independent sources on
Fn2 with min-entropy k1, k2 respectively satisfying k1 > (1− δ)n and k2 > 35 max{logn,m},
t : [2n]→ [2n] is any permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

6.2 Extracting from 2-Interleaved Sources on F2n
p

If the sources X and Y are on Fnp (for some large enough prime p), we can reduce the
min-entropy rate requirement of the source X to about 1

2 .

I Theorem 6.5 (Theorem 1.3 restated). There exists c > 0 such that for any δ, λ > 0 and
any prime p > 2 cδ , there exists an explicit function extp : F2n

p → {0, 1}m, m = λ logn, such
that if X and Y are independent sources on Fnp with min-entropy k1, k2 respectively, satisfying
k1 > ( 1

2 + δ)n log p and k2 >
5
δ max{logn log p,m}, t : [2n]→ [2n] is any injective map, then

|extp((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

Proof. Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p from Lemma 5.9.
Further, as in the proof of Theorem 6.2, we choose the rate of the code in Lemma 5.9 such
that m|n̄ and m = λ logp n. Thus we can ensure that n̄ ≤ n(1 + δ

5 ).
Let M = nλ. For any z ∈ F2n

p , define the functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
pn̄−1
M : x ∈ F∗pn̄}. The proof now follows using Lemma 6.1

and Lemma 4.4. J

6.3 Improving the Output Length
The output length of the extractor in Theorem 6.5 is Ω(logn). We improve the output length
to Ω(n) bits when the min-entropy rate of both the sources (on Fnp ) are slightly more than 1

2 .
A general technique to improve the output length extractors was introduced by Shaltiel

[38]. In particular, Shaltiel showed that the function:

SExt(X, 2ext(X,Y )) ◦ SExt(Y, 2ext(X,Y ))

is 2-source extractor with longer output length, where 2ext is a 2-source extractor with short
output length and SExt is a seeded extractor set to appropriate parameters.
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However this does not work in our case since it requires access to the individual sources
X and Y . Surprisingly, we show that the construction: SExt(((X ◦ Y )t)[n], 2extp((X ◦ Y )t))
can be proved to be an extractor.

I Theorem 6.6. There exists c > 0 such that for any δ > 0 and any prime p > 2 cδ , there
exists an explicit function extp,long : F2n

p → {0, 1}m, m = Ω(n), such that if X and Y are
independent sources on Fnp with min-entropy k1, k2 respectively satisfying k1 > ( 1

2 + δ)n log p
and k2 > ( 1

2 + δ)n log p, t : [2n]→ [2n] is any injective map, then

|extp,long((X ◦ Y )t)− Um| = n−Ω(1).

Proof. Let SExt be the seeded-extractor from Theorem 4.3 with parameters β = δ, α = δ/2
and ε = n−Ω(1). Let the seed length of SExt with this setting of the parameters be d = λ logn.
Let Z = (X ◦ Y )t. Define

extp,long(Z) = SExt(Z[n], extp(Z)) ,

where extp is the extractor from Theorem 6.5 designed to extract from 2-interleaved sources
with one source at min-entropy k1 ≥ ( 1

2 + δ)n log p and the other source with min-entropy
k2 ≥ δn log p

2 with error εp = n−2λ and output length mp = λ logn.
Let S = {i ∈ [n] : Zi = Xi} and T = {j ∈ [n] : Zj = Yj}. Also let S̄ = [n] \ S and

T̄ = [n] \ T . Without loss of generality, we can assume that |S| ≥ n
2 . It follows from

Lemma 4.7 that there exists a set Goody such that for any yT ∈ Goody, YT̄ |YT = yT is
2−Ω(n)-close to a source with entropy more than δn log p

2 , and Pr[Yt ∈ Goody] > 1− 2−Ω(n).
Let yT ∈ Goody. It follows by the setting of extp that

|(extp(Z|YT = yT ) ◦XS − Um ◦XS | ≤ n−2λ .

Using Lemma 4.8, it follows that

|XS − (XS |(extp(Z|YT = yT ) = e))| ≤ n−λ+1. (1)

Let pyT = Pr[YT = yT ] and let pe|yT = Pr[extp(Z|YT = yT ) = e].
Using the above estimates, we have

|extp,long(Z)− Um| ≤
∑
yT

pyT |SExt(XS ◦ yT , extp(Z|YT = yT ))− Um|

≤

 ∑
yT∈Goody

pyT |SExt(XS ◦ yT , extp(Z|YT = yT ))− Um|

+ 2−Ω(n)

≤
∑

yT∈Goody

pyT

(∑
e

pe|yT |SExt(XS ◦ yT , e)− Um|+ n−λ+1

)
+ 2−Ω(n)

≤

 ∑
yT∈Goody

pyT |SExt(XS ◦ yT , Ud)− Um|

+ n−Ω(1)

= n−Ω(1).

where the last line follows from the fact that XS has min-entropy at least δn log p. J
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6.4 One Bit Extractors for 2-Interleaved Sources on F2n
p with

Exponentially Small Error
Note that all our extractor constructions so far have polynomially small error if we insist
that the output of the extractor is a bit string. Here we show how to achieve exponentially
small error for 2-interleaved sources on Fp, for any large enough prime. However we can
output only 1 bit.

I Theorem 6.7. There exists c > 0 such that for any δ > 0 and any prime p > 2 cδ , there exists
an explicit function ext1bit : F2n

p → {0, 1}, such that if X and Y are independent sources on Fnp
with min-entropy k1, k2 respectively, satisfying k1 > ( 1

2 + δ)n log p and k2 > (5 logn log p)/δ,
t : [2n]→ [2n] is any injective map, then

|ext1bit((X ◦ Y )t) ◦X − U1 ◦X| = 2−Ω(k2).

Proof. Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p from Lemma 5.9.
Define the functions:

enc(z) =
2n∑
i=1

zivi , ext(z) = QR (enc(z)) ,

where QR is the quadratic character of F∗pn̄ . The proof now follows using Lemma 6.1. J

6.5 Semi-Explicit Extractors for 2-Interleaved Sources with Linear
Output Length and Exponentially Small Error

We note that the extractors constructed so far have either achieved linear output length
or exponentially small error, but not both simultaneously. We show that if we allow the
extractors to run in sub-exponential time, then we can indeed construct such extractors.
(Note that the trivial algorithm to find such an extractor runs in doubly exponential time.)
The non-polynomial running time comes from having to compute the discrete logarithm.
To reduce the running time, we can in fact use a heuristic algorithm for finding discrete
logarithm [2], which runs in time nO(logn) on fields of small characteristics under plausible
assumptions.

I Theorem 6.8. For some δ > 0, there exists a semi-explicit function ext : {0, 1}2n →
{0, 1}m, such that if X and Y are independent sources on Fn2 with min-entropy k1, k2
respectively satisfying k1 > (1 − δ)n and k2 > 10

δ max{logn,m}, t : [2n] → [2n] is any
permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = 2−Ω(k2).

Proof. Let S = {v1, . . . , v2n} be an explicit (n, n− C)-spanning set in Fn̄2 constructed using
Lemma 5.8. Let m = δk2

2 . For any z ∈ F2n
p , define the functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = logg(enc(z)) , ext(z) = ext1(z) (mod 2m)

where g is a generator of F∗2n̄ . The proof now follows using Lemma 6.1 and Lemma 4.5. J

Using the (n, n− C)-spanning sets from Lemma 5.9 to encode the sources, we obtain the
following theorem using Lemma 6.1.
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I Theorem 6.9. There exists c > 0 such that for any δ > 0 and any prime p > 2 cδ , there
exists a semi-explicit function ext : F2n

p → {0, 1}m, such that if X, Y are independent
sources on Fnp with min-entropy k1, k2 respectively satisfying k1 > ( 1

2 + δ)n log p and k2 >
5
δ max{logn log p,m}, t : [2n]→ [2n] is any permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = 2−Ω(k2).

6.6 Extractors for 2-Interleaved Sources with Linear Min-Entropy
Under the Generalized Paley Graph Conjecture

In this section, we show how to construct extractors for sources with linear min-entropy
under the widely believed Generalized Paley Graph Conjecture.

I Generalized Paley Graph Conjecture. Let χ be any non-principal multiplicative character
of F∗pn . For any constant δ > 0, and arbitrary subsets A,B ⊆ Fpn satisfying |A|, |B| > pδn,
we have∣∣∣∣∣∣

∑
a∈A,b∈B

χ(a+ b)

∣∣∣∣∣∣ ≤ p−γ(δ)n|A||B| .

Assuming the above conjecture, we obtain the following improved version of Lemma 6.1.

I Lemma 6.10. Assume the Generalized Paley graph Conjecture. Fix any δ > 0 and any
prime p. Let Z = (X◦Y )t be any 2-interleaved source on F2n

p , where X and Y are independent
sources on Fnp with min-entropy k1 and k2 respectively, and t : [2n]→ [2n] is any permutation.
Also suppose χ is any nonprincipal multiplicative character of F∗pn̄ and enc is an arbitrary
(n, s)-encoding from F2n

p to Fn̄p . Then, there exists γ = γ(δ) such that

EX |EY [χ(enc(Z))]| ≤ p−γn ,

whenever
k1 ≥ δn̄ log p+ (n− s) log p, and
k2 ≥ δn̄ log p+ (n− s) log p.

Proof. For any z ∈ F2n
p , let

enc(z) =
2n∑
i=1

zivi

where S = {v1, . . . , v2n} ⊂ Fn̄p is (n, s)-spanning.
We have,

χ(enc(Z)) = χ

( 2n∑
i=1

Zivi

)
= χ

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)


Define the following independent sources:

X ′ =
n∑
i=1

xivt(i) : x ∼ X , Y ′ =
n∑
j=1

yjvt(n+j) : y ∼ Y.

Using Lemma 4.9, it follows that: H∞(X ′) ≥ k1 − (n− s) log p and H∞(Y ′) ≥ k2 − (n−
s) log p.
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Thus, we have

EX |EY [χ(enc(Z))]| = Ex∼X

∣∣∣∣∣∣Ey∼Y
χ
 n∑
i=1

xivt(i) +
n∑
j=1

yjvt(n+j)

∣∣∣∣∣∣
= EX′ |EY ′ [χ (X ′ + Y ′)]|
≤ p−γn

where the last inequality follows using the Generalized Paley Graph Conjecture. J

Using the above lemma, we have the following theorem.

I Theorem 6.11. Assume the Generalized Paley Graph Conjecture. For any δ, λ > 0, there
exists an explicit function extconjecture : {0, 1}2n → {0, 1}m, m = λ logn, such that if X and
Y are independent sources with min-entropy δn each, and t : [2n]→ [2n] is any permutation,
then

|extconjecture((X ◦ Y )t)− Um| = n−Ω(1) .

Proof. Let S = {v1, . . . , v2n} be an explicit (n, n− C)-spanning set in Fn̄p constructed using
Lemma 5.8. Further, as in the proof of Theorem 6.2, we choose the rate of the code in
Lemma 5.9 such that m|n̄ and m = λ logn. Let M = nλ. For any z ∈ F2n

2 , define the
functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x 2n̄−1
M : x ∈ F∗2n̄}. The proof now follows using Lemma 6.10

and Lemma 4.4. J

We note that assuming the above conjecture, the output length of the above extractor
can be improved to Ω(n) if both X and Y have min-entropy rate more than 1

4 by using the
proof method of Theorem 6.6.

7 Interleaved-Non-Malleable Extractors

In this section, we show that the proof technique developed in constructing extractors for
2-interleaved sources can be used to construct non-malleable extractors in the interleaved
model.

I Theorem 7.1. There exists λ1 > 0 such that for any δ, λ2 > 0, c > c(δ) and any prime
p > 2

λ1
δ , there exists an explicit function nmExt : F2n

p → {0, 1}m, m = λ2 logn, such
that if X, Y are independent sources on Fnp with min-entropy k1, k2 respectively, satisfying
k1 > ( 1

2 + δ)n log p and k2 > cmax{m, logn}, t : [2n] → [2n] is any injective map and
f : Fnp → Fnp is any function with no fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = n−Ω(1).

To prove the above theorem, we recall a character sum estimate of Dodis et al. [13].
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I Theorem 7.2. For any δ > 0 and η < 1
2 , suppose S and T are non-empty subsets of

Fq satisfying |S| > q
1
2 +δ and |T | > max{( 1

η ) 7
δ , (log q)8}. Let f : Fq → Fq be any arbitrary

function with no fixed points. For arbitrary multiplicative characters χa and χb, such that
χa is nonprincipal, we have∑

y∈T

∣∣∣∣∣∑
x∈S

χa(x+ y)χb(x+ f(y))

∣∣∣∣∣ < η|S||T |.

Proof of Theorem 7.1. We use encoding based on spanning vectors. In particular, let
S = {v1, . . . , v2n} be an explicit (n, n− C)-spanning set in Fn̄p constructed using Lemma 5.9.
Further, as in the proof of Theorem 6.2, we choose the rate of the code in Lemma 5.9 such
that m|n̄ and m = λ2 logp n. Let M = nλ2 . For any z ∈ F2n

p , define the functions:

enc(z) =
2n∑
i=1

zivi , ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
pn̄−1
M : x ∈ F∗pn̄}.

We prove the following claim.

I Claim 7.3. Let ψa and ψb be arbitrary characters of the additive group ZM such that ψa
is nontrivial. Then,

Ey∼Y |Ex∼X [ψa(nmExt((X ◦ Y )t))ψb(nmExt((X ◦ f(Y ))t))]| = n−Ω(1) .

Before proving this claim, we note that Theorem 7.1 follows directly from Claim 7.3 by using
Lemma 4.6.

Proof of Claim 7.3. Let t([n]) = T1 and t([n + 1, 2n]) = T2. Since S is (n, n)-spanning,
it follows that the set {vi : i ∈ T1} consists of linearly independent vectors. Similarly
{vj : j ∈ T2} is a set of linearly independent vectors.

Let ψa(x) = eM (ax), where a 6= 0 (mod M). Also let ψb(x) = eM (bx). If b = 0 (mod M),
the claim follows from Lemma 6.1. Thus suppose b 6= 0 (mod M).

We have,

ψa(nmExt((X ◦ Y )t) = eM (a logg(ext1((X ◦ Y )t)))

= χa

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)


= χa (X ′ + Y ′)

where χa(x) = eM (a logg(x)) is a nonprincipal multiplicative character of F∗pn̄ of order
M

gcd(M,a) , X
′ =

∑n
i=1 xivt(i) : x ∼ X and Y ′ = L(Y ), L : Fnp → Fn̄p being the injective linear

map:

L(y) =
n∑
j=1

yjvt(n+j) .

Further,

ψb(nmExt((X ◦ f(Y ))t) = eM (b logg(ext1((X ◦ Y )t)))

= χb

 n∑
i=1

Xivt(i) +
n∑
j=1

f(Y )jYt(n+j)


= χb (X ′ + f ′(Y ′))
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where f ′ = L ◦ f ◦ L−1 and χb(x) = eM (b logg(x)) is a nonprincipal multiplicative character
of F∗pn̄ of order M

gcd(M,b) .
We claim that f ′ has no fixed points. This can be proved in the following way. Suppose

f ′(x) = x for some x. This implies that f(L−1(x)) = L−1(x) and hence f(w) = w for
w = L−1(x). This contradicts our assumption on f . Thus f ′ has no fixed points.

It now follows from Theorem 7.2 that

Ex′∼X′ |Ey′∼Y ′ [χa(x′ + y′)χb(x′ + f ′(y′))]| = n−Ω(1).

J
J

If we allow the non-malleable extractor to run in sub-exponential time, then using the
proof method of the above theorem, it can be shown that the extractor from Theorem 6.9 is
non-malleable. Thus, we have the following result.

I Theorem 7.4. There exists λ > 0 such that for any δ > 0, c > c(δ) and any prime p > 2λδ ,
there exists a semi-explicit function nmExt : F2n

p → {0, 1}m, m = Ω(n), such that if X, Y are
independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > ( 1

2 + δ)n log p
and k2 > cmax{m, logn}, t : [2n] → [2n] is any permutation and f : Fnp → Fnp is any
function with no fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = 2−Ω(k2).

We note that under the Generalized Paley Graph Conjecture, we can reduce the min-entropy
requirement of the source X in Theorem 7.1 to βn, for any constant β > 0.

8 Proof of Theorem 1.8

We briefly recall some definitions from communication complexity. We refer the reader to
[27] for more background. For convenience, we define boolean functions with range {−1, 1}
(instead of {0, 1}).

I Definition 8.1. Let f : [p]2n → {−1, 1} be any function. Fix any equi-partition of [2n]
into subsets S, T . For any rectangle R and probability distribution µ on [p]2n, denote

Discµ,RS,T (f) = |Pr
µ

[f(xS , yT ) = 1 and (x, y) ∈ R]− Pr
µ

[f(xS , yT ) = −1 and (x, y) ∈ R]|.

I Definition 8.2. The discrepancy of f : [p]2n → {−1, 1} with respect to an equi-partition
of [2n] into S, T and distribution µ on [p]2n is defined as:

DiscµS,T (f) =
{

max
R

(
Discµ,RS,T (f)

)}
.

I Definition 8.3. The maximal-equipartition discrepancy of f : [p]2n → {0, 1} with respect
to a distribution µ on [p]2n is defined as:

Discµbest(f) = max
S,T :|S|=|T |=n,
S∪T=[2n]

{
DiscµS,T (f)

}
.

The following theorem provides a method to lower bound randomized best-paritition commu-
nication complexity of f using its maximal-equi-partition discrepancy. A proof can be found
in [27].



E. Chattopadhyay and D. Zuckerman 7:25

I Theorem 8.4. For every function f : [p]2n → {−1, 1}, every probability distribution µ on
[p]2n and every ε ≥ 0,

Rbest, 12−ε(f) ≥ log
(

2ε
Discµbest(f)

)
.

We now prove Theorem 1.8.

Proof of Theorem 1.8. We show that the explicit extractor from Theorem 6.7 is the required
function. Recall the construction of the extractor.

Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p constructed using
Lemma 5.9, n̄ = n(1 + 2δ).

Define the functions:

enc(z) =
2n∑
i=1

zivi , ext(z) = QR (enc(z)) ,

where QR is the quadratic character of F∗pn̄ .
We claim that the randomized best partition discrepancy of ext with error 1

2 − p
−γn is at

least ( 1
4 − δ − γ)n log p.

Let µ be the uniform distribution on [p]2n.

I Claim 8.5. For any equi-partition of [2n] into disjoint subsets S and T ,

log
(

1
DiscµS,T (ext)

)
≥
(

1
4 − δ

)
n log p .

We note that the proof of Theorem 1.8 is direct from Claim 8.5 by using Theorem 8.4.

Proof of Claim 8.5. Fix any rectangle R = X × Y , for arbitrary subsets X,Y ⊆ [p]n. We
have,

Discµ,RS,T (ext) = |X||Y |
p2n |Ex∈X,y∈Y [QR (enc(xS ◦ yT ))]|

We note that if |X| ≤ p 3n
4 or |Y | ≤ p 3n

4 , the claim follows easily.
Thus suppose |X|, |Y | > p

3n
4 . We abuse notation and also use X,Y to denote the

flat distributions supported on the sets X and Y respectively. Define the distribution
Z = (X ◦ Y )π, where π : [2n] → [2n] is a permutation defined in the following way: Let
S = {s1, . . . , sn} and T = {t1, . . . , tn} such that s1 ≤ . . . ≤ sn and t1 ≤ . . . ≤ tn. For any
i ∈ [n], define π(i) = si and for any j ∈ [n+ 1, 2n], define π(j) = tj (thus, π([n]) = S and
π([n+ 1, 2n]) = T ).

We note that enc is an (n, n)-encoding from F2n
p → Fn̄p . Thus,

enc(Z) = X ′ + Y ′ ,

where X ′ and Y ′ are independent sources on Fn̄p with H∞(X ′) = log(|X|) and H∞(Y ′) =
log(|Y |).

Using Theorem 4.1, with λ = 1, we have

|E[QR (X ′ + Y ′))]| ≤ 2

( pn̄

|X||Y |

) 1
2

+
(
p
n̄
2

|X|

) 1
2

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Thus,

Discµ,RS,T (ext) ≤ 2
(
|X||Y |
p2n

)( pn̄

|X||Y |

) 1
2

+
(
p
n̄
2

|X|

) 1
2


≤ 2
(
|X| 12 |Y | 12
p2n− n̄2

+ |X|
1
2

pn−
n̄
4

)
≤ 2(p−(n− n̄2 ) + p−

n
2 + n̄

4 )

Since the above estimate holds for any arbitrary rectangle R, we have

log
(

1
DiscµS,T (ext)

)
≥
(

1
4 − δ

)
n log p.

J
J
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Abstract
A non-malleable extractor is a seeded extractor with a very strong guarantee – the output of a
non-malleable extractor obtained using a typical seed is close to uniform even conditioned on the
output obtained using any other seed. The first contribution of this paper consists of two new
and improved constructions of non-malleable extractors:

We construct a non-malleable extractor with seed-length O(logn · log logn) that works for
entropy Ω(logn). This improves upon a recent exciting construction by Chattopadhyay,
Goyal, and Li (STOC’16) that has seed length O(log2 n) and requires entropy Ω(log2 n).
Secondly, we construct a non-malleable extractor with optimal seed length O(logn) for en-
tropy n/polylogn. Prior to this construction, non-malleable extractors with a logarithmic
seed length, due to Li (FOCS’12), required entropy 0.49n. Even non-malleable condensers
with seed length O(logn), by Li (STOC’12), could only support linear entropy.

We further devise several tools for enhancing a given non-malleable extractor in a black-box
manner. One such tool is an algorithm that reduces the entropy requirement of a non-malleable
extractor at the expense of a slightly longer seed. A second algorithm increases the output length
of a non-malleable extractor from constant to linear in the entropy of the source. We also devise
an algorithm that transforms a non-malleable extractor to the so-called t-non-malleable extractor
for any desired t. Besides being useful building blocks for our constructions, we consider these
modular tools to be of independent interest.

1998 ACM Subject Classification F.0 Theory of Computation] General, G.3 Probability and
Statistics

Keywords and phrases extractors, non-malleable, explicit constructions

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.8

1 Introduction

A non-malleable extractor is a seeded extractor with a very strong property – the output of a
non-malleable extractor obtained using a typical seed is close to uniform even given the output
obtained using any other seed. Constructing non-malleable extractors gained a significant
attention in the literature, with original motivation coming from privacy amplification
protocols due to Dodis and Wichs [12]. Recently, non-malleable extractors were used as a key
component in the breakthrough construction of two-source extractors by Chattopadhyay and
Zuckerman [5]. Before giving the formal definition of a non-malleable extractor, we recall
the more basic notion of seeded extractors (see [30, 32] for a more elaborated discussion).

Seeded extractors, introduced by Nisan and Zuckerman [26], are central objects in
pseudorandomness with many applications in theoretical computer science. Informally
speaking, a seeded extractor is a randomized algorithm that uses only few bits of internal
randomness, called the seed, to extract pure randomness from a weak random source.
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8:2 Non-Malleable Extractors – New Tools and Improved Constructions

For a formal treatment, we recall the notion of min-entropy, introduced by Chor and
Goldreich [6]. A random variable X has min-entropy k if no point is sampled by X with
probability larger than 2−k. When X is supported on n bit strings, we say that X is an
(n, k)-source. With this notion of entropy, we recall the definition of a seeded extractor.

I Definition 1.1 (Seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a
seeded extractor for entropy k if for any (n, k)-source X and an independent random variable
Y that is uniformly distributed over {0, 1}d, it holds that Ext(X,Y ) ≈ Um.

In the definition above, and throughout the paper, Um stands for the uniform distribution
over m bit strings. Further, by writing A ≈ B we mean that A and B are two distributions
that are close in statistical distance. Throughout the introduction we will be vague about
how close distributions are exactly, and the reader is advised to think of A,B as being, say,
1/10-close. In some cases, constants that appear in the results described in this section hide
polylog(1/ε) factors, where ε is the error guarantee.

The second input to Ext is called the seed. The general goal is to design efficiently
computable seeded extractors with short seeds for low entropy sources, having many output
bits. By a straightforward application of the probabilistic method one can prove the existence
of a seeded extractor that works for any entropy k = Ω(1) with seed length d = log(n) +O(1),
and m = k−O(1) output bits. By now, following a long line of research initiated by [26] and
that has accumulated to [15, 13, 31], it is known how to construct seeded extractors with
seed length O(logn) for any entropy k = Ω(1), with m = 0.99k output bits.

For many applications, it is desired that the output of a seeded extractor will be close to
uniform even given the seed that was used for the extraction. A seeded extractor that has
this property is called strong.

I Definition 1.2 (Strong seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
called a strong seeded extractor for entropy k if for any (n, k)-source X and an independent
random variable Y that is uniform over {0, 1}d, it holds that (Ext(X,Y ), Y ) ≈ (Um, Y ).

In the definition above, Um stands for a random variable that is uniformly distributed
over m bit strings and is independent of Y , namely, (Um, Y ) is a product distribution. The
explicit constructions mentioned above [15, 13, 31] are in fact strong. In particular, it is
known how to construct a strong seeded extractor for any entropy k = Ω(1) with seed length
d = O(logn) and m = 0.99k output bits. Moreover, there is a black-box transformation that
produces a strong seeded extractor given a seeded extractor (which not necessarily strong)
with essentially the same parameters [29].

1.1 Non-malleable extractors
It is straightforward to show that if Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded
extractor for entropy k then for any (n, k)-source X, there exists a small subset of seeds
B ⊂ {0, 1}d such that for any y 6∈ B, it holds that Ext(X, y) is close to uniform. That is, one
can associate with any source X a small set of “bad” seeds such that for any seed y that is
not bad, Ext(X, y) is close to uniform.

This dichotomic point of view on strong seeded extractors is frequently used in the
literature. Taking this view, we note that nothing in the definition of a strong seeded
extractor prevents Ext(X, y) from being arbitrarily correlated with Ext(X, y′) for some good
seeds y, y′. Namely, there is no guarantee on the correlation (or the lack of) between the
outputs of a strong seeded extractor when applied with two distinct good seeds. One can
then contemplate an even stronger notion of seeded extractors in which the output Ext(X, y)
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Table 1 Summary of explicit non-malleable extractors from the literature as well as our contri-
bution.

Construction Seed length Supported min-entropy
[12] (non-constructive) log(n) +O(1) Ω(log logn)
[25] n (0.5 + δ) · n for any constant δ > 0
[9, 10, 17] O(logn) (0.5 + δ) · n for any constant δ > 0

[19] O(logn) (0.5 − α) · n for some small constant
0 < α < 0.5

[4] O(log2 n) Ω(log2 n)
Theorem 2.1 O(logn · log logn) Ω(logn)
Theorem 2.2 O(logn) Ω(n/ logc n) for any constant c > 0

is uniform even conditioned Ext(X, y′) for any good seed y and for any y′ 6= y. This point
of view leads to the definition of non-malleable extractors. We choose to present next an
equivalent definition, which is the one originally suggested by Dodis and Wichs [12]. In
Lemma 4.14 we show that the original definition and the dichotomic one described above are
equivalent. On top being natural, we make frequent use of the dichotomic definition in our
proofs.

I Definition 1.3 (Non-malleable extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m
is called a non-malleable extractor for entropy k if for any (n, k)-source X and a function
A : {0, 1}d → {0, 1}d with no fixed points, it holds that

(Ext(X,Y ),Ext(X,A(Y )), Y ) ≈ (Um,Ext(X,A(Y )), Y ),

where Y is uniformly distributed over {0, 1}d and is independent of X.

As suggested in [9], one can consider the generalization to t-non-malleable extractors
in which Ext(X, y) is close to uniform even conditioned on Ext(X, y1), . . . ,Ext(X, yt) for
any good seed y and arbitrary seeds y1, . . . , yt ∈ {0, 1}d \ {y}, or equivalently, where
Ext(X,Y ) looks uniform even given Ext(X,A1(Y )), . . . ,Ext(X,At(Y )) for arbitrary functions
{Ai : {0, 1}d → {0, 1}d}ti=1 with no fixed points. Note that a strong seeded extractor
can be viewed as a 0-non-malleable extractor. Although this generalization is useful for
some applications (e.g., [5] uses t = polylogn), in this section we consider only the standard
definition of non-malleable extractors, namely, the case t = 1. In fact, one of our contributions
is an algorithm that transforms a “standard” non-malleable extractor (namely, a 1-non-
malleable extractor) to a t-non-malleable extractor, for any desired t > 1, in a black-box
manner (see Lemma 2.5). Thus, it is not only for simplicity that the reader can focus on
standard non-malleable extractors.

Dodis and Wichs [12], who introduced the notion of non-malleable extractors, left the
problem of constructing such extractors to future research, yet showed that such extractors,
with great parameters, do exist. More precisely [12] proved the existence of a non-malleable
extractor with seed length d = log(n) + O(1) that supports any entropy k = Ω(log logn),
having m = k/2−O(1) output bits.

Since then, several explicit constructions of non-malleable extractors appeared in the
literature, as summarized in Table 1. Moreover, different objects related to non-malleable
extractors were considered in the literature as well [17, 18, 7, 1]. Up until the recent work
of Chattopadhyay, Goyal, and Li [4], all constructions of non-malleable extractors worked
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for entropy roughly n/2. The non-malleable extractor of [4] substantially improved upon
previous results by supporting min-entropy O(log2 n).

Unfortunately, unlike most previous constructions, the seed length required by the non-
malleable extractor of [4] is O(log2 n) as apposed to the desired O(logn). Thus, the exciting
result of [4] sets the next natural goal at obtaining non-malleable extractors with logarithmic
seed length for poly-logarithmic or even lower entropy. Besides being a natural goal, reducing
the seed length to logarithmic in n is desired as in many constructions of pseudorandom
objects that appear in the literature (e.g., [3, 27, 16, 21, 20, 7, 8, 5, 23, 22]) one cycles over
all possible seeds of a strong seeded extractor to obtain and further process all 2d possible
outputs. Such techniques are inefficient whenever the seed length d is super-logarithmic.

2 Our Contribution

In this paper we give two constructions of non-malleable extractors that improve upon
existing knowledge (see Theorem 2.1 and Theorem 2.2). Moreover, we devise several tools
that we consider to be of independent interest. The first tool is an algorithm that reduces the
entropy requirement of a given non-malleable extractor at the expense of slightly increasing
its seed length (see Lemma 2.3). Our second algorithm increases the output length of a given
non-malleable extractor from constant to optimal up to constant factors, where the constants
depend only on the error guarantee (see Lemma 2.4). A third algorithm, already mentioned
above, transforms a non-malleable extractor to a t-non-malleable extractor, for any desired
t > 1 in a black-box manner (see Lemma 2.5). We now elaborate.

2.1 Two new constructions of non-malleable extractors

The first contribution of this work is a construction of a non-malleable extractor with quasi-
logarithmic seed length. Our extractor also has the advantage of supporting logarithmic
entropy, which is lower than that supported by the extractor of [4]. More precisely, we prove
the following.

I Theorem 2.1. There exists an explicit non-malleable extractor NMExt : {0, 1}n×{0, 1}d →
{0, 1}m with seed length d = O(logn · log logn) for entropy k = Ω(logn), having m = Ω(k)
output bits.

We note that Theorem 2.1 improves upon [4] both in seed length and in the required
entropy. In particular, the seed length is optimal up to a multiplicative factor of O(log logn).
Our second contribution is a construction of non-malleable extractors with optimal seed
length, up to a constant factor, that work for sources with entropy n/polylogn. Prior to this
construction, the lowest entropy supported by a non-malleable extractor with a logarithmic
seed length was 0.49n [19]. Furthermore, even non-malleable condensers with logarithmic
seed length [17] did not support sub-linear entropy.

I Theorem 2.2. For any constant c > 0 there exists an explicit non-malleable extrac-
tor NMExt : {0, 1}n × {0, 1}d → {0, 1}m with seed length d = O(logn) for entropy k =
Ω(n/ logc n), having Ω(k) output bits.

In fact, the parameter c in Theorem 2.2 can be taken to be slightly super-constant so that
the resulted non-malleable extractor can support entropy k = n/(logn)ω(1). This, however,
will increase the seed length as it has exponential dependence in c.
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2.2 Reducing the entropy requirement of a non-malleable extractor
A tool that we develop for proving Theorem 2.1 and Theorem 2.2, which we find to be of
independent interest, is an algorithm that reduces the entropy requirement of a non-malleable
extractor at the expense of slightly increasing its seed length. We state here a special case
that is used in order to prove Theorem 2.2.

I Lemma 2.3. There exist constants 0 < α < 1 < c and an efficient algorithm that given
a non-malleable extractor with seed length d for entropy k = Ω(d1+α) having c output bits,
produces a non-malleable extractor with seed length O(d) for a lower entropy k′ = k/dα.

For a more general and formal statement, see Lemma 6.1. We are not aware of such an
“entropy-seed tradeoff” being considered in previous works on seeded extractors. What is
known is how to increase the output length at the expense of a longer seed. Next we consider
this transformation in the context of non-malleable extractors.

2.3 Increasing the output length of a non-malleable extractor
A second tool we develop is a general method for increasing the output length of non-malleable
extractors. In fact, the algorithm in the following lemma is able to increase the output length
from a constant (more precisely, from Ω(log(1/ε)), where ε is the desired error guarantee) to
linear in the entropy.

I Lemma 2.4. There exists a constant c and an efficient algorithm that given a non-
malleable extractor with seed length d for entropy k = Ω(logn) and c output bits, produces a
non-malleable extractor with seed length O(d) for the same entropy k having Ω(k) output bits.

A more formal statement and its proof are given in Section 7. Increasing the output length
of seeded extractors is a useful tool introduced already by Nisan and Zuckerman [26]. Using
the framework set in [26], Li [17] showed how to increase the output length of non-malleable
extractors. However, the latter only works for high entropy sources and requires the output
length one starts with to depend on the input length n. Our technique does not follow the
method of Nisan and Zuckerman and involves new ideas which allows us to obtain our result.

2.4 From non-malleable extractors to t-non-malleable extractors
As mentioned, for some applications one requires an even stronger notion of non-malleability,
where the output of the non-malleable extractor obtained using a typical seed is uniform
even conditioned on the outputs obtained using any other t seeds for some desired parameter
t ≥ 1.

Several known constructions of non-malleable extractors are in fact t-non-malleable.
Usually proving that a non-malleable extractor is a t-non-malleable extractor for some t > 1
is straightforward yet requires to make some changes in the proof. In other cases (e.g., [19])
one needs to make some changes in the construction itself rather than in the analysis alone.

Our next result is a black-box reduction from t-non-malleable extractors to standard
(namely, t = 1) non-malleable extractors. Having such a reduction allows one to focus only
on constructing non-malleable extractors.

I Lemma 2.5. There exists a constant c and an efficient algorithm that given an integer
t ≥ 1 and a non-malleable extractor for entropy k with seed length d and c output bits, such
that k = Ω(logn+ t · log(td)), produces a t-non-malleable extractor for entropy k with seed
length O(t2d).

A more general and formal statement and its proof appear in Section 10.
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3 Proof Overview

In this section we give an informal proof overview for our results. Our techniques build on
novel ideas from [4] which in turn make use of the flip-flop primitive that was introduced
in [7]. To get a broad perspective, we believe it is instructive to start by describing this
primitive.

3.1 The flip-flop primitive
Informally speaking, the flip-flop primitive uses a weak-source of randomness to break
correlations between random variables. To this end, the flip-flop also requires an “advice bit”.
More precisely, a flip-flop is a function

FF : {0, 1}n × {0, 1}` × {0, 1} → {0, 1}m

with the following property. Assume that Y, Y ′ are two arbitrarily correlated random variables
on ` bit strings such that Y is uniform, and let X be an (n, k)-source that is independent of
the joint distribution (Y, Y ′). Then, the guarantee of the flip-flop primitive is that FF(X,Y, 0)
looks uniform even conditioned on FF(X,Y ′, 1). Similarly, FF(X,Y, 1) looks uniform even
conditioned on FF(X,Y ′, 0). So, informally speaking, as long as the advice bit, that is passed
as the third argument to the flip-flop primitive, is different in the two applications, the
flip-flop can use the weak-source X to break the correlation Y ′ has with Y . As mentioned,
we think of the third input bit as an advice.

The construction of FF, which is implicit in [7], is based on alternating extraction – a
technique that was introduced by Dziembowski and Pietrzak [14] and has found several
applications in the literature since then [12, 20, 24]. We will treat FF as an atomic operation
and will not get into the details of its construction here. We remark that the construction
and its analysis are not very complicated. Nevertheless, we believe that thinking of FF as an
atomic operation is the right level of abstraction for this discussion.

Quantitatively speaking, in [7], an explicit construction of FF was given for any n as long
as ` = Ω(logn) and k = Ω(log `), with m = Ω(`) output bits. In particular, if one is willing
to output O(logn) bits (which usually suffices for the purpose of compositions with other
pseudo-random objects), the required entropy from X is surprisingly low, namely, one only
needs k = Ω(log logn).

3.2 Correlation breakers with advice
Informally speaking, the flip-flop primitive breaks the correlation between random variables
as above, using a weak-source of randomness and an advice bit. At this point, it is not at all
clear where do we expect this advice to come from when designing a non-malleable extractor.
In fact, following [4], in the construction of our non-malleable extractors we will not be able
to generate an advice bit but rather an advice string. More formally, we say that a function

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

is called a correlation breaker with advice if for any two `-bit random variables Y, Y ′ such that
Y is uniform and for any independent (n, k)-source X, it holds that FF(X,Y, α) looks uniform
even conditioned on FF(X,Y ′, α′) for any distinct α, α′ ∈ {0, 1}a (for a formal definition the
reader is referred to Definition 4.11).

Note that a correlation breaker with advice of length a = 1 is exactly the flip-flop
primitive. Clearly, it is easier to generate long advices than shorter ones. Nevertheless, one
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can implement an AdvCB using the flip-flop primitive. We will not delve into the details
of the reduction here, and will be satisfied by stating that this reduction, as was done
implicity in [7, 4], works for every n, a with ` = Ω(a · log(an)), k = Ω(a · log(a logn)), and
has m = Ω(logn) output bits (see Theorem 4.12 for a formal statement).

In fact, as in [4], we will need a somewhat stronger guarantee. Namely, not only
AdvCB(X,Y, α) should be uniform even conditioned on AdvCB(X,Y ′, α′) with the notation set
as above, but rather AdvCB(X,Y, α) should look uniform even after given AdvCB(X ′, Y ′, α′),
where X ′ may correlate arbitrarily with the (n, k)-source X, as long as the joint distribution
(X,X ′) is independent of the joint distribution (Y, Y ′).

3.3 The [4] reduction from non-malleable extractors to advice
generators

In this section we introduce the notion of an advice generator that is implicit in [4], and
present the novel reduction by [4] from non-malleable extractors to advice generators. In the
following section we introduce our improved reduction. We start by defining the notion of an
advice generator (for a formal treatment, see Definition 5.1). A function

AdvGen : {0, 1}n × {0, 1}d → {0, 1}a

is called an advice generator if for anyX,Y as above and for any function A : {0, 1}d → {0, 1}d
with no fixed points, it holds that AdvGen(x, y) 6= AdvGen(x,A(y)) with high probability
over x ∼ X, y ∼ Y . The general idea in [4] is to compute an advice using x, y and feed that
advice to a correlation breaker with advice. Namely, given an advice generator AdvGen and
a correlation breaker with advice AdvCB, the non-malleable extractor is defined as

NMExt(x, y) = AdvCB(x, y,AdvGen(x, y)). (1)

Indeed, with high probability, the advices AdvGen(X,Y ) and AdvGen(X,A(Y )) are distinct,
and so one may carelessly conclude that AdvCB guarantees that NMExt(X,Y ) is uniform
even conditioned on NMExt(X,A(Y )). Of course, the problem with this argument is that
there are correlations between the advices and between X,Y .

To salvage the argument above, one needs to make sure that even conditioned on the
fixings of the advices AdvGen(X,Y ), AdvGen(X,A(Y )), it holds that X and Y remain
independent. So there is a strong limitation on the type of computation that can be carried
by AdvGen. Even having such a guarantee there are a couple of problems with such a
general method for constructing a non-malleable extractor. First, we must make sure that
conditioned on the fixings of AdvGen(X,Y ), AdvGen(X,A(Y )), it holds that X has enough
entropy as required by AdvCB. Typically, this is a non-issue. Second, we need Y to remain
uniform even after these fixings. Nevertheless, by constructing an advice generator that has
a suitable interplay with AdvCB, a construction having the general form above was used
by [4] for their construction of non-malleable extractors.

Quantitatively speaking, [4] constructed an advice generator with advice length a =
O(logn) (see Section 8.1) that, using the reduction above, can be shown to yield a non-
malleable extractor for min-entropy Ω(log2 n) with seed length O(log2 n). In the next section
we describe our improved reduction from non-malleable extractors to advice generators.

3.4 An improved reduction
We now present a different way of constructing a non-malleable extractor given an advice
generator. Our reduction will enable us to obtain non-malleable extractors with shorter seeds
that work for lower min-entropies compared to [4].
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A building block that we use is the seeded extractor of Raz [28] that works with weak-
seeds. This is a strong seeded extractor Raz : {0, 1}n × {0, 1}d → {0, 1}m that has the same
guarantee as standard strong seeded extractors even if the seed is not uniform, but rather
has min-entropy 0.6d. Raz [28] gave an explicit construction of such an extractor with seed
length d = O(logn) that supports any entropy k = Ω(d). See Theorem 4.3 for a formal
statement.

With this building block, we are ready to define our reduction. First, we divide the
seed y to 3 parts y = y1 ◦ y2 ◦ y3, where yi has length di. We only assume that d1 is very
small compared to d (taking d1 ≤ d/1000 will do) and set 9d2 = d3. Our reduction make
use of an advice generator AdvGen : {0, 1}n × {0, 1}d → {0, 1}a that has the following extra
guarantee. For any function A : {0, 1}d → {0, 1}d with no fixed points, it holds that with
high probability over the fixing of AdvGen(X,Y ), AdvGen(X,A(Y )):

The random variables X,Y remain independent;
X has not lost more than, say, half of its min-entropy;
The random variable Y2 ◦ Y3 has min-entropy rate 0.99.

Given any such “nice” advice generator, we define our non-malleable extractor by

NMExt(x, y) = AdvCB (y3,Raz(x, y2),AdvGen(x, y)) . (2)

It is worthwhile to compare the above definition with the reduction given by Equation (1).
The most important difference being the “switch” that was done between the roles of the
source and the seed. Namely, the seed Y to the non-malleable extractor takes the role of a
source in AdvCB as (a suffix of) it is being passed as the first argument, whereas the seed to
AdvCB is this function Raz(X,Y2) of both X and Y . This switch is what makes the reduction
more efficient in the sense that the resulted non-malleable extractor has a shorter seed and
can support a lower entropy. Informally speaking, the reason for this is that Y3 makes a
much shorter source than X as the latter consists of n bits whereas we will end up setting Y
to have length which is logarithmic in n.

3.4.1 Analyzing the reduction
We now give a sketch of the analysis for the reduction given by Equation (2). First,
according to the definition of AdvGen, by aggregating a small error, we may assume that
α = AdvGen(X,Y ) and α′ = AdvGen(X,A(Y )) are distinct fixed strings. Further, the three
extra properties of AdvGen hold.

By the third property, Y2 ◦ Y3 has min-entropy rate 0.99. Since d2 = (d2 + d3)/10, we
argue that with high probability over Y3, it holds that Y2 has min-entropy rate 0.9. To see
why a claim of this sort should be true, think of the special case where 0.99 fraction of the
bits of Y2 ◦ Y3 are distributed uniformly and independently at random, and the remaining
0.01 fraction of the bits behave adversarially. Since Y2 is a block of density 0.1 in Y2 ◦ Y3,
even in the worst case where Y2 contains all the “bad” bits, their fraction within Y2 is at
most 0.01/0.1 = 0.1, and so 0.9 fraction of the bits in Y2 are uniform and independent of
each other, leaving Y2 with min-entropy rate of 0.9. A somewhat more careful argument can
be carried out to handle the more general case where we only assume that the min-entropy
rate of Y2 ◦ Y3 is 0.99.

Once we have established that Y2 has min-entropy rate 0.9, we have that Raz(X,Y2) is
close to uniform. For this we use the guarantees that the entropy of X remained high after
the fixings of the advices, and that these fixings have not introduced correlations between X
and Y2. In fact, since Raz is strong, with high probability over the fixing of y2 ∼ Y2 we have
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that Raz(X, y2) is close to uniform. Since Raz(X, y2) is a deterministic function of X, we can
further fix A(Y )2 without affecting Raz(X, y2) and without introducing correlations between
X,Y . One can then show that these fixings of Y2 and A(Y )2 can only reduce the min-entropy
of Y3 by roughly 2d2, and so the min-entropy of Y3 is at least 0.99(d2 + d3)− 2d2 > 0.8d3.
Namely, Y3 is a (d3, 0.8d3)-source.

Note that by now, Raz(X,Y2) and Raz(X,A(Y )2) are deterministic functions ofX whereas
Y3, A(Y )3 are independent of X. Further, Raz(X, y2) is close to uniform and Y3 is has min-
entropy rate 0.8. Thus, the hypothesis of AdvCB is met and we conclude that NMExt(X,Y )
looks uniform even conditioned on NMExt(X,A(Y )), as desired.

3.5 Reducing the entropy requirement of non-malleable extractors
In this section we describe another contribution of this paper stated as Lemma 2.3, which
is a black-box transformation that given a non-malleable extractor with seed length d for
entropy k = Ω(d1+α), produces a non-malleable extractor for a lower entropy k′ = k/dα

with seed length O(d). Here α > 0 is some small universal constant. Our reduction is
composed of two steps. In the first step we construct an advice generator for entropy k′
given a non-malleable extractor for entropy k. We then apply our reduction from Section 3.4
to obtain a non-malleable extractor for entropy k′ using the advice generator.

To describe this “reversed” reduction, namely, the reduction from advice generators to
non-malleable extractors with higher entropy, we make use of several building blocks, the
first of which is a somewhere condenser. Informally speaking, this is a sequence of functions
{Condi : {0, 1}n → {0, 1}n}ri=1 with the following property. Let δ > 0. Then, for any (n, δk)-
source X there exists g ∈ [r] such that Condg(X) is an (n, k)-source. It is known [2, 33] how
to construct such a somewhere condenser with r = poly(1/δ) (see Theorem 4.5). Building
on [4], we also make use of a strong seeded extractor Ext and a binary error correcting code
ECC with relative distance, say, 1/4 having a constant rate.

Given these building blocks, say we are given a non-malleable extractor NMExt : {0, 1}n×
{0, 1}d1 → {0, 1}logm for entropy k, where m will be set later on. Our advice generator is
defined as follows. Split the seed y to two substrings y = y1 ◦ y2, where y1 is of length d1
and d2 = 100d1. We define

AdvGen(x, y) = NMExt(Cond1(x), y1) ◦ · · · ◦ NMExt(Condr(x), y1) ◦ ECC(y2)Ext(x,y1),

where we interpret the output of Ext(x, y1) as a size logm subset of the index set [D2] and
use ECC(y2)Ext(x,y1) to denote the projection of the string ECC(y2) on to that set of indices.
Note that for this we need the output of Ext to consists of O(logm · log d1) bits.

The construction above is influenced by the advice generator construction of [4]. In
particular, with the notation set above, the advice generator of [4] can be written as
AdvGen(x, y) = y1 ◦ ECC(y2)Ext(x,y1) (see Section 8.1).

3.5.1 Analyzing the entropy reduction transformation
In this section we give an informal analysis showing that the function AdvGen is indeed an
advice generator for entropy δk. To this end we consider an (n, δk)-source X and a function
A : {0, 1}d → {0, 1}d with no fixed points. We start by fixing y1 ∼ Y1 and y′1 ∼ A(Y )1 and
consider two cases according to whether or not y1 = y′1.

Case 1 – y1 = y′
1. In this case, following [4], we show that with high probability

ECC(Y2)Ext(X,y1) 6= ECC(A(Y )2)Ext(x,y1),
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which in particular will guarantee that with high probability AdvGen(X,Y ) 6= AdvGen(X,A(Y ))
in this case. To see why this is true, note that since y1 = y′1 we have that Y2 6= A(Y )2 and so
the two codewords ECC(Y2), ECC(A(Y )2) agree on at most 3/4 of the indices. In particular,
by projecting each of these codewords to a random set of indices of size logm, we will get
the same string with a probability bound that decrease polynomially with 1/m. Of course,
we do not (and cannot) sample a truly uniform projection. Nevertheless, as Ext is a strong
seeded extractor, for most fixings of y1 it holds that Ext(X, y1) is close to a random subset
of [D2] which suffices for the argument above to go through.

Case 2 – y1 6= y′
1. For analyzing this case, we recall that NMExt is a non-malleable extractor

for entropy k and that there is some g ∈ [r] for which Condg(X) has min-entropy k. Using
the dichotomic point of view on non-malleable extractors (see Lemma 4.14), one can show
that NMExt(Condg(X), y1) is close to uniform even conditioned on NMExt(Condg(X), y′1) for
most choices of y1. In particular, the probability that the two strings NMExt(Condg(X), y1),
NMExt(Condg(X), y′1) are equal is polynomially small in m.

By taking m = poly(1/ε) we can bound the error of AdvGen by ε. This choice of m yields
an advice length a = O(r · log(1/ε)) = poly(1/δ) · log(1/ε).

So far we gave an informal proof showing that AdvGen is an advice generator for entropy
δk. Recall that to use the advice generator in our reduction from Section 3.4, AdvGen
must have some extra guarantees. Perhaps the most subtle of which is that conditioned
on the fixings of AdvGen(X,Y ), AdvGen(X,A(Y )), the random variables X,Y must remain
independent. We assure the reader that this is the case with our construction due to the
“alternating” fashion of the computation involving AdvGen, though we will skip the details in
this proof overview and refer the reader to Section 6.

3.6 Increasing the output length of a non-malleable extractor
In this section we briefly describe our algorithm that increases the output length of a given
non-malleable extractor described in Lemma 2.4. Being a bit more formal, for a desired error
guarantee ε, we show how to increase the output length of a non-malleable extractor NMExt
from O(log(1/ε)) to Ω(k/ log(1/ε)). Here, k is the entropy supported by NMExt. As with
our entropy reduction transformation described in Section 3.5, here too the general idea is
to use the given non-malleable extractor NMExt so to obtain an advice generator AdvGen
which in turn will be used to construct the desired non-malleable extractor NMExt′ using
our reduction from Section 3.4. More precisely, borrowing notation from previous sections,
we define

AdvGen(x, y) = NMExt(x, y1) ◦ ECC(y2)Ext(x,y1).

A similar argument to the one used in Section 3.5 shows that AdvGen is an advice
generator for entropy k (in fact, this is a special case of the argument from Section 3.5).
In particular, we show that if one aims for an error guarantee ε, it suffices that the output
length of NMExt consists of O(log(1/ε)) bits. At this point we can apply the reduction from
Section 3.4 to AdvGen. This results in a non-malleable extractor NMExt′ that supports the
same entropy k, though it has the advantage of having output length Ω(k/ log(1/ε)).

3.7 Proof overview for Theorem 2.1 and Theorem 2.2
In this section we give an overview for the proofs of Theorem 2.1 and Theorem 2.2, starting
with the first theorem. As our starting point, we apply our improved reduction given in
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Section 3.4 with the advice generator of [4]. This already yields a non-malleable extractor
with seed length O(logn · log logn) that supports entropy Ω(logn · log logn). Our second
step is to apply the entropy reduction transformation so to obtain a second non-malleable
extractor that supports a lower entropy. By choosing the parameters correctly, one can show
that the resulted non-malleable extractor can support entropy Ω(logn) while maintaining a
seed of length O(logn · log logn). As our final step we apply the transformation for increasing
the output length that was described in the previous section to yield Theorem 2.1.

For the proof of Theorem 2.2, our starting point is any of the constructions of non-
malleable extractors for entropy 0.6n with seed length O(logn) (e.g., the one given in
Theorem 4.6) and denote this non-malleable extractor by NMExt0. We now apply the entropy
reduction transformation described in Section 3.5 to NMExt0 so to obtain a new non-malleable
extractor, which we denote by NMExt1. Working out the parameters, NMExt1 can be shown
to support entropy n/(logn)α for some small universal constant α > 0. Further, NMExt1 has
seed length d1 = O(d) = O(logn).

We continue by applying the entropy reduction transformation again, this time to NMExt1
and obtain a new non-malleable extractor NMExt2 that has seed length O(d1) = O(logn)
and supports entropy n/(logn)2α. By repeating this process, we construct a sequence of
non-malleable extractors where each extractor supports lower entropy than its predecessor.
After r steps, we obtain a non-malleable extractor NMExtr that supports entropy n/(logn)αr
and has seed length 2O(r) · logn. The proof of Theorem 2.2 follows by taking r = c/α, where
c is the desired constant.

3.8 From non-malleable extractor to t-non-malleable extractors

We turn to say a few words about our reduction from non-malleable extractors to t-non-
malleable extractors for any t > 1 stated in Lemma 2.5. Recall that our construction of
non-malleable extractors from Section 3.4 consists of two steps. First, we construct a “nice”
advice generator. Second, the generated advice is passed to a correlation breaker with advice.

One can generalize the notions of advice generators and correlation breakers with advice
to t-advice generators and t-correlation breakers with advice in the natural way for any t ≥ 1.
One can then show that the idea presented in Section 3.4 of constructing non-malleable
extractors based on advice generators and correlation breakers with advice can be extended
to any t > 1. Namely, given a t-advice generator and t-correlation breaker with advice, one
can obtain a t-non-malleable extractor using the exact same reduction (see Lemma 10.4).

We already know how to construct a t-correlation breaker with advice (see Theorem 4.12)
for any t ≥ 1. A key observation we make is that for any t ≥ 1 one can construct a t-advice
generator using a standard non-malleable extractor. This allows us to reduce the problem
of constructing t-non-malleable extractors to the problem of constructing non-malleable
extractors. For further details see Section 10.

4 Preliminaries

Unless stated otherwise, the logarithm in this paper is always taken base 2. For every natural
number n ≥ 1, define [n] = {1, 2, . . . , n}. Throughout the paper we avoid the use of floor
and ceiling in order not to make the equations cumbersome.
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Random variables and distributions
We sometimes abuse notation and syntactically treat random variables and their distribution
as equal, specifically, we denote by Um a random variable that is uniformly distributed over
{0, 1}m. Furthermore, if Um appears in a joint distribution (Um, X) then Um is independent
of X. When m is clear from context, we omit it from the subscript and write U .

Let X,Y be two random variables. We say that Y is a deterministic function of X if the
value of X determines the value of Y . Namely, there exists a function f such that Y = f(X).
Let X,Y, Z1, . . . , Zr be random variables. We use the following shorthand notation and write
(X,Z1, . . . , Zr) ≈ε (Y, ·) for (X,Z1, . . . , Zr) ≈ε (Y,Z1, . . . , Zr).

Statistical distance
The statistical distance between two distributions X,Y on the same domain D is defined by
SD (X,Y ) = maxA⊆D {|Pr[X ∈ A]− Pr[Y ∈ A] |}. If SD(X,Y ) ≤ ε we write X ≈ε Y and
say that X and Y are ε-close.

Min-entropy
The min-entropy of a random variable X, denoted by H∞(X), is defined by H∞(X) =
minx∈supp(X) log2(1/Pr[X = x]). If X is supported on {0, 1}n, we define the min-entropy
rate of X by H∞(X)/n. In such case, if X has min-entropy k or more, we say that X is an
(n, k)-source.

Pseudorandom objects we use
I Definition 4.1 (Seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called
a seeded extractor for entropy k, with error ε, if for any (n, k)-source X it holds that
Ext(X,S) ≈ε Um, where S is uniformly distributed over {0, 1}d and is independent of X. We
say that Ext is a strong seeded-extractor if (Ext(X,S), S) ≈ε (Um, Ud).

Throughout the paper we make use of the following explicit pseudorandom objects.

I Theorem 4.2 ([15]). There exists a universal constant c > 0 such that the following
holds. For all positive integers n, k and ε > 0, there exists an efficiently-computable strong
seeded-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m for entropy k, with error ε, seed length
d = c · log(n/ε), and m = 0.99 · k output bits.

I Theorem 4.3 ([28]). For all integers n, k, d and for any ε > 0 such that d = Ω(log(n/ε))
and k = Ω(d), there exists an efficiently-computable function Raz : {0, 1}n×{0, 1}d → {0, 1}k/2
with the following property. Let X be an (n, k)-source, and let Y be an independent (d, 0.6d)-
source. Then, (Raz(X,Y ), Y ) ≈ε (U, Y ).

I Theorem 4.4. There exists a universal constant c such that the following holds. For all
integers n, there exists an explicit error correcting code ECC : {0, 1}n → {0, 1}cn with relative
distance 1/4.

I Theorem 4.5 ([2, 33]). For any integer n and any δ > 0 there exists a sequence of
efficiently computable functions {Condi : {0, 1}n → {0, 1}m}∆i=1 with ∆ = poly(1/δ) and
m = n ·poly(δ) such that the following holds. For any (n, δn)-source X, the joint distribution
of {Condi(X)}ri=1 is 2−Ω(δ2n)-close to a convex combination such that for any participant
(Y1, . . . , Yr) in the combination, there exists g ∈ [∆] such that Yg has min-entropy rate 0.6.
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I Theorem 4.6 ([9]). For all integers n,m, t such that n = Ω(mt) and for any ε > 0 there
exists a poly(n)-time computable t-non-malleable extractor CRS : {0, 1}n × {0, 1}d → {0, 1}m
for (n, 0.6n)-sources, with error 2−m and seed length d = tm+ 2 logn.

Average conditional min-entropy
We make use of the notion of average min-entropy and some basic properties of it.

I Definition 4.7. Let X,W be two random variables. The average conditional min-entropy
of X given W is defined as H̃∞(X |W ) = − log2 (Ew∼W [maxx Pr [X = x |W = w]]).

I Lemma 4.8 ([11]). Let X,Y, Z be random variables such that Y has support size at most
2`. Then, H̃∞(X | (Y,Z)) ≥ H̃∞(X | Z)− `. In particular, H̃∞(X | Y ) ≥ H∞(X)− `.

I Lemma 4.9 ([11]). For any two random variables X,Y and any ε > 0, it holds that

Pr
y∼Y

[
H∞(X | Y = y) < H̃∞(X | Y )− log(1/ε)

]
≤ ε.

We further make use of the following simple lemma.

I Lemma 4.10. Let X,Y, Z be random variables such that for any y ∈ supp(Y ), the random
variables (X | Y = y) and (Z | Y = y) are independent. Assume that X is supported on
{0, 1}n. Then, SD ((X,Y, Z) , (Un, Y, Z)) = SD ((X,Y ) , (Un, Y )).

4.1 Correlation breakers with advice
In this section we introduce the notion of correlation breakers with advice which is a variant
of local correlation breakers [7] that is implicit in [4]. We then state the parameters of the
explicit construction obtained by following the proof of [4].

I Definition 4.11. For an integer t ≥ 1 a t-correlation-breaker with advice for entropy k and
error ε is a function

AdvCB : {0, 1}w × {0, 1}` × {0, 1}a → {0, 1}m

with the following property. Let X0, X1, . . . , Xt be random variables distributed over {0, 1}w
such that X0 has min-entropy k. Let Y 0, Y 1, . . . , Y t be random variables over {0, 1}` that
are jointly independent of (X0, X1, . . . , Xt) such that Y 0 is uniform. Then, for any strings
s0, s1, . . . , st ∈ {0, 1}a such that s0 6∈ {s1, . . . , st}, it holds that(

AdvCB(X0, Y 0, s0), {AdvCB(Xi, Y i, si)}ti=1
)
≈ε (Um, ·) .

The third argument to the function AdvCB is called the advice.

I Theorem 4.12. For all integers `, w, a, t and for any ε ∈ (0, 1) such that

` = Ω
(
at · log

(aw
ε

))
, (3)

there exists a poly(`, w)-time computable t-correlation-breaker with advice AdvCB : {0, 1}w ×
{0, 1}` × {0, 1}a → {0, 1}m, for entropy

k = Ω
(
at · log

(
a`

ε

))
, (4)

with error ε and m = Ω(`/(at)) output bits.
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4.2 An equivalent definition for t-non-malleable extractors
In this section we give an equivalent definition for t-non-malleable extractors. We make use
of this equivalence in some of our proofs, and in general, we find this alternative definition to
be more convenient to work with than the original definition of non-malleable extractors.

I Definition 4.13 (Dichotomic t-non-malleable extractors). A function Ext : {0, 1}n×{0, 1}d →
{0, 1}m is called a dichotomic t-non-malleable extractor for entropy k with error ε if for any
(n, k)-source X there exists a set B ⊂ {0, 1}d of size at most ε · 2d such that the following
holds. For any y 6∈ B and any y1, . . . , yt ∈ {0, 1}d \ {y} it holds that(

Ext(X, y),
{

Ext(X, yi)
}t
i=1

)
≈ε (Um, ·) .

The following simple lemma that shows the equivalence between the definition of non-
malleable extractors and dichotomic non-malleable extractors, up to some loss in the error
guarantee, builds on ideas by [5].

I Lemma 4.14. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be some function.
If Ext is a t-non-malleable extractor for entropy k with error ε then Ext is a dichotomic
t-non-malleable extractor for entropy k with error

√
ε.

If Ext is a dichotomic t-non-malleable extractor for entropy k with error ε then Ext is a
t-non-malleable extractor for entropy k with error 2ε.

Proof. We start by proving the first item. Let X be an (n, k)-source. Define B to be the set
of all y ∈ {0, 1}d for which there exist y1, . . . , yt ∈ {0, 1}d \ {y} such that(

Ext(X, y), {Ext(X, yi)}ti=1
)
6≈√ε (Um, ·) . (5)

We want to prove that β , |B|/2d ≤
√
ε. To this end, for every i ∈ [t] define the function

Ai : {0, 1}d → {0, 1}d as follows. For y 6∈ B define Ai(y) arbitrarily, only ensuring that there
are no fixed points. For y ∈ B, let y1, . . . , yt ∈ {0, 1}d \ {y} be a sequence of seeds for which
Equation (5) holds, and set Ai(y) = yi. Note that by the definition of B,(

Ext(X,Y ), {Ext(X,Ai(Y ))}ti=1
)
6≈β·√ε (Um, ·) .

On the other hand, as Ext is a t-non-malleable extractor with error ε(
Ext(X,Y ), {Ext(X,Ai(Y ))}ti=1

)
≈ε (Um, ·) ,

which concludes the proof of the first item.

As for the second item, let A1, . . . ,At : {0, 1}d → {0, 1}d be functions with no fixed points,
and let X be an (n, k)-source. As Ext is a dichotomic t-non-malleable extractor for entropy
k with error ε, there exists a set B ⊂ {0, 1}d of size |B| ≤ ε · 2d such that for any y 6∈ B it
holds that(

Ext(X, y), {Ext(X,Ai(y))}ti=1
)
≈ε (Um, ·) .

As |B| ≤ ε · 2d we conclude that(
Ext(X,Y ), {Ext(X,Ai(Y ))}ti=1

)
≈2ε (Um, ·) ,

which concludes the proof of the second item. J
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5 A New Reduction From Non-Malleable Extractors to Advice
Generators

In this section we describe our reduction from non-malleable extractors to advice generators.
Most of our results make use of this reduction by plugging in different advice generators
(some of which are constructed using other non-malleable extractors). We start by giving a
formal definition of advice generators.

I Definition 5.1 (Advice generators). A function AdvGen : {0, 1}n × {0, 1}d → {0, 1}a is
called an advice generator for entropy k with error ε if the following holds. For any (n, k)-
source X, an independent random variable Y that is uniform over {0, 1}d, and a function
A : {0, 1}d → {0, 1}d with no fixed points, it holds that

Pr
x∼X
y∼Y

[AdvGen(x, y) = AdvGen(x,A(y))] ≤ ε.

The second input to AdvGen is called the seed.

For our reduction to work, some extra guarantee is needed from the advice generator.
Informally speaking, it is required that even conditioned on the fixings of the advices, the
random variables X,Y remain independent and have a sufficient amount of entropy. The
formal guarantee is encapsulated in the following definition.

I Definition 5.2 (Nice advice generators). An advice generator AdvGen : {0, 1}n × {0, 1}d →
{0, 1}a for entropy k with error ε is said to be d1-nice if the following holds. Let X be
an (n, k)-source, let Y be a random variable that is independent of X and is uniformly
distributed over {0, 1}d, and let A : {0, 1}d → {0, 1}d be a function with no fixed points.
Then, except with probability ε over the fixings of AdvGen(X,Y ), AdvGen(X,A(Y )) it holds
that:

X,Y are independent.
H∞(X) ≥ 0.99k.
The length d− d1 suffix of Y has min-entropy rate 0.99.

In the following lemma we present our reduction from non-malleable extractors to nice
advice generators.

I Lemma 5.3. There exist universal constants 0 < c < 1 < c′, c′′ such that the following
holds. Let AdvGen : {0, 1}n × {0, 1}d → {0, 1}a be an explicit advice generator for entropy k
with error ε that is d1-nice, with d1 ≤ d/2. Then, for any integer m such that

m ≤ c · k/a

d ≥ c′ ·max
(
a · log

(am
ε

)
, log(n/ε)

)
,

k ≥ c′′ ·max
(
a · log

(
ad

ε

)
, log(n/ε)

)
,

there exists an explicit non-malleable extractor NMExt : {0, 1}n × {0, 1}d → {0, 1}m for
entropy k, with error O(

√
ε).

Proof. We start by describing the construction of NMExt and then turn to the analysis.
Given a string y ∈ {0, 1}d, we partition y to three consecutive substrings y = y1 ◦ y2 ◦ y3,
where |y1| = d1, |y2| = d2 = Ω(log(n/ε)) is a sufficient length for a seed of the extractor from
Theorem 4.3 set with error ε, and |y3| = d3 = 9d2. By choosing a sufficiently large constant
c′, d is large enough so to satisfy these properties. We make use of the following building
blocks:
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Let Raz : {0, 1}n × {0, 1}d2 → {0, 1}` be the extractor from Theorem 4.3, where

` = c′′′ ·max (am, a log(ad/ε))

for some suitable constant c′′′ to be chosen next. By our choice of d2, the error of Raz is
bounded above by ε.
Let AdvCB : {0, 1}d3 × {0, 1}` × {0, 1}a → {0, 1}m be the correlation breaker with advice
from Theorem 4.12 set with error ε. By Theorem 4.12, the constant c′′′ can be chosen
such that the output length of AdvCB is indeed m.

With the notation set and using the building blocks above, we define

NMExt(x, y) = AdvCB (y3,Raz(x, y2),AdvGen(x, y)) .

We now turn to the analysis. Let X be an (n, k)-source, let Y be an independent random
variable that is uniformly distributed over {0, 1}d, and let A : {0, 1}d → {0, 1}d be a function
with no fixed points. As AdvGen is a d1-nice advice generator with error ε, we have that
except with probability ε over the fixings α ∼ AdvGen(X,Y ), α′ ∼ AdvGen(X,A(Y )), it
holds that

α 6= α′.
X,Y remain independent.
H∞(X) ≥ 0.99k.
The length d− d1 suffix of Y has min-entropy rate 0.99.

We condition on such fixing. Next, we argue that except with probability ε over y3 ∼ Y3 it
holds that Y2 | (Y3 = y3) has min-entropy rate at least 0.6. To see this, apply Lemma 4.8 to
obtain

H̃∞(Y2 ◦ Y3 | Y3) ≥ H∞(Y2 ◦ Y3)− |Y3| ≥ 0.99(d2 + d3)− d3 = 0.9d2.

Thus, by Lemma 4.9, except with probability ε over y3 ∼ Y3 it holds that

H∞(Y2 | Y3 = y3) = H∞(Y2 ◦ Y3 | Y3 = y3) ≥ 0.9d2 − log(1/ε) ≥ 0.6d2.

Therefore, except with probability ε over the fixing of Y3, the min-entropy rate of Y2 is
bounded below by 0.6. For the remaining of the proof we assume that the min-entropy rate
of Y2 is at least 0.6, and aggregate an additional error of ε to the total error.

By setting the constant c′′ to be large enough, we can guarantee that H∞(X) ≥ 0.99k ≥ 2`
and that H∞(X) = Ω(d2). Since Y2 is a (d2, 0.6d2)-source with d2 = Ω(log(n/ε)), we can
apply Theorem 4.3 and conclude that

(Raz(X,Y2), Y2) ≈ε (U`, Y2) .

As Raz(X,Y2) is independent of A(Y )2 conditioned on the fixing of Y2, Lemma 4.10 implies
that

(Raz(X,Y2), Y2,A(Y )2) ≈ε (U`, ·) .

Thus, except with probability
√
ε over the fixings of Y2,A(Y )2 it holds that Raz(X,Y2) is√

ε-close to uniform. As for the entropy loss of Y3 incurred by these fixings,

H̃∞ (Y3 | Y2,A(Y )2) = H̃∞ (Y2 ◦ Y3 | Y2,A(Y )2) ≥ 0.99(d2 + d3)− 2d2 ≥ 0.8d3,

and so by Lemma 4.9, except with probability ε over the fixings of Y2,A(Y )2, it holds that
Y3 has min-entropy rate larger than 0.5.

To summarize, except with probability O(
√
ε) over all fixings done so far, we have that
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The joint distribution of Raz(X,Y2), Raz(X,A(Y )2) is independent of the joint distribution
of Y3,A(Y )3.
The min-entropy of Y3 is bounded below by

d3

2 ≥
9d
20 = Ω

(
a · log

(am
ε

))
= Ω

(
a · log

(
a`

ε

))
, (6)

where we used the lemma hypothesis on d for the second inequality and that d ≥ 2d1 for
the first inequality. The last equality follows by our choice of `.
Raz(X,Y2) is O(

√
ε)-close to uniform.

Therefore, we can apply Theorem 4.12 and conclude that

(NMExt(X,Y ),NMExt(X,A(Y )), Y ) ≈O(
√
ε) (Um, ·).

Note that the hypothesis of Theorem 4.12 holds. In particular, Equation (3) holds by our
choice of `, and Equation (4) follows by Equation (6). This concludes the proof. J

6 Reducing the Entropy Requirement of Non-Malleable Extractors

In this section we prove the following lemma which is a formal restatement of Lemma 2.3.

I Lemma 6.1. There exists a universal constant α > 0 such that the following holds. Let
NMExt : {0, 1}n × {0, 1}d → {0, 1}log(1/ε) be an explicit non-malleable extractor with error ε
for entropy k. Let m be any integer. Assume that

k = Ω(dα · log(n/ε)),
d = Ω

(
log4(1/ε) · log2m

)
,

m = O
(√

k/ log(1/ε)
)
.

Then, there exists an explicit non-malleable extractor NMExt′ : {0, 1}n×{0, 1}d′ → {0, 1}m
for entropy k′ = k/dα with seed length d′ = O(d) and error O(ε1/4).

The proof of Lemma 6.1 consists of two steps. First, we show how to construct an advice
generator for entropy k′ given a non-malleable extractor for entropy k > k′. This is done
in the next subsection. Then, we apply Lemma 5.3 to obtain a non-malleable extractor for
entropy k′ using this advice generator. This second step is covered in Section 6.2.

6.1 From non-malleable extractors to advice generators for lower
entropy

In this section we prove the following lemma.

I Lemma 6.2. There exists a universal constant c > 1 such that the following holds. Let
NMExt : {0, 1}n × {0, 1}d1 → {0, 1}log(1/ε) be an explicit non-malleable extractor for entropy
k with error ε. Let δ > 0, and set ∆ = δ−c. Assume that

δk = Ω((∆ + log d1) · log(1/ε)). (7)

Then, there exists an explicit d1-nice advice generator AdvGen : {0, 1}n × {0, 1}d → {0, 1}a
for entropy δk with error O(

√
ε) + 2−Ω(δ2n), seed length d = O(d1), and a = O(∆ · log(1/ε))

output bits.
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Proof. Let d2 = 1000d1 and set d = d1 + d2. For the construction of AdvGen we make use of
the following building blocks:

Let {Condi : {0, 1}n → {0, 1}u}∆i=1 be the sequence of efficiently computable functions
given by Theorem 4.5 when applied with n and δ. By Theorem 4.5, u = n · poly(δ) and
∆ = δ−c for some universal constant c. This constant will be the constant c introduced
in the statement of the lemma.
Let ECC : {0, 1}d2 → : {0, 1}D2 be the error correcting code from Theorem 4.4 set with
relative distance 1/4. By Theorem 4.4, D2 = O(d2).
Let r = log4/3(1/ε) and set m = r · log2D2. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}m be the
extractor from Theorem 4.2. Note that we use a seed of the same length d1 as was used
for the non-malleable extractor NMExt. This suffices for us since by Theorem 4.2, a seed
of that length is sufficient for Ext to have error ε. By identifying {0, 1}m with [D2]r, we
interpret the output of Ext as an r-tuple in [D2].

Set a = ∆ · log2(1/ε) + log4/3(1/ε). We define the function AdvGen : {0, 1}n × {0, 1}d →
{0, 1}a as follows:

AdvGen(x, y) = NMExt(Cond1(x), y1) ◦ · · · ◦ NMExt(Cond∆(x), y1) ◦ ECC(y2)Ext(x,y1).

Note that we feed as a first argument to NMExt u bit strings rather than the n bit strings it
expects. We do so for simplicity of presentation. This minor technical issue can be overcome
by appending zeros to the u bit string so to obtain an n bit string, and instructing the
extractor to ignore these zeros.

Having the definition of AdvGen at hand, we turn to the analysis. Let X be an (n, δk)-
source and let Y be an independent random variable that is uniformly distributed over
{0, 1}d. Consider a function A : {0, 1}d → {0, 1}d with no fixed points. By Theorem 4.5
(and ignoring the convexity, for ease of readability) there exists g ∈ [∆] such that Condg(X)
is 2−Ω(δ2n)-close to having min-entropy k. Therefore, by Lemma 4.14, there exists a set
B ⊂ {0, 1}d1 of density

√
ε such that for any y1 6∈ B and any d1-bit string y′1 6= y1, it holds

that

(NMExt(Condg(X), y1),NMExt(Condg(X), y′1)) ≈√ε+2−Ω(δ2n) (U, ·) . (8)

We now fix y1 ∼ Y1 and y′1 ∼ A(Y )1. Clearly, these fixings do not introduce dependencies
between X,Y . Furthermore, by the above, we can aggregate

√
ε to the total error and assume

that y1 6∈ B. We continue by considering two cases.

Case 1 – y1 6= y′
1. As the output length of NMExt is log(1/ε), Equation (8) implies that

the probability that NMExt(Condg(X), y1) = NMExt(Condg(X), y′1) is bounded above by
O(
√
ε) + 2−Ω(δ2n). Thus, in this case, except with probability O(

√
ε) + 2−Ω(δ2n) we have

that AdvGen(X,Y ) 6= AdvGen(X,A(Y )).

Case 2 – y1 = y′
1. This case follows the same idea as in the proofs of Theorem 8.1 and

Lemma 7.1. Conditioned on y1 = y′1 we have that Y2 6= A(Y )2. Hence, the codewords
ECC(Y2),ECC(A(Y )2) agree on at most 3/4 of the coordinates of [D2]. Hence, the set of
r-tuples over [D2] for which ECC(Y2) agrees with ECC(A(Y )2) on all r coordinates of the tuple
has density at most (3/4)r = ε within [D2]r. We denote this set of r-tuples by B′ ⊆ [D2]r.

Recall that Ext is a strong seeded extractor with ε. Thus, except for probability
√
ε over

the choice of y1, we have that Ext(X, y1) is
√
ε-close to uniform. Therefore, for such y1,
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Pr[Ext(X, y1) ∈ B′] = O(
√
ε). Hence, except with probability O(

√
ε) over the fixings done

so far, we have that also in this case, AdvGen(X,Y ) 6= AdvGen(X,A(Y )).

As for niceness property, by Lemma 4.8, the fixings of Y1,A(Y )1 reduce the average
min-entropy of Y2 by a most 2d1. Once Y1,A(Y )1 are fixed, we have that Ext(X,Y1)
and Ext(X,A(Y )1) are deterministic functions of X. Thus, we can fix the latter random
variables without introducing dependencies between X,Y . Further, by Lemma 4.8, the
average min-entropy of X decreases by at most 2m. After these fixings, ECC(Y2)Ext(X,Y1)
and ECC(A(Y )2)Ext(X,A(Y )1) are deterministic functions of Y that consist of r bits each.
Thus, fixing these random variables will reduce the average min-entropy of Y by at most 2r.
Further, these fixings do not introduce any dependencies between X,Y .

Finally, after all of the fixings done so far, AdvGen(X,Y ) and AdvGen(X,A(Y )) are
deterministic functions of X. We can therefore fix these random variables, which will result
in an entropy-loss of at most 2∆ · log(1/ε). Again, these last fixings do not introduce any
dependencies between X,Y .

To summarize, in the process of fixing AdvGen(X,Y ), AdvGen(X,A(Y )), the random
variable Y lost an average entropy of 2d1 + 2 log4/3(1/ε). Thus, by the choice of d2, except
with probability ε over these fixings, Y2 has min-entropy rate 0.99. As for X, the fixings
reduced its average min-entropy by

2∆ log(1/ε) + 2m = O (∆ log(1/ε) + log(d) log(1/ε)) ,

and so by Equation (7), except with probability ε over the fixings of AdvGen(X,Y ),
AdvGen(X,A(Y )), the source X has min-entropy rate 0.99. This concludes the proof. J

6.2 Proof of Lemma 6.1
Proof of Lemma 6.1. Let c be the constant from Lemma 6.2. Set α = 1/(4c) and set
δ = d−α. We borrow the notation from Lemma 6.2 and write ∆ = δ−c = d1/4. First, we
apply Lemma 6.2 with the non-malleable extractor NMExt and δ as set above. To show that
this application is valid one needs to verify that

I Claim 6.3. δk = Ω((∆ + log d) · log(1/ε)).

Proof. Note that ∆ = d1/4 = Ω(log d). Thus, to prove the claim it suffices to show
that δk = Ω(∆ · log(1/ε)). To verify that this inequality holds, it suffices to show that
k = Ω(∆2 · log(1/ε)), or equivalently that k = Ω(

√
d · log(1/ε)), which indeed follows by our

assumption. J

Lemma 6.2 transforms the given NMExt to an efficiently computable d-nice advice
generator AdvGen : {0, 1}n × {0, 1}O(d) → {0, 1}a for entropy δk with advice length a =
O(∆·log(1/ε)) and error O(

√
ε)+2−Ω(δ2n) = O(

√
ε). Next, we would like to apply Lemma 5.3

to AdvGen so to obtain a non-malleable extractor NMExt′ : {0, 1}n×{0, 1}O(d) → {0, 1}m for
entropy δk, with error O(ε1/4). To this end, we need to verify that the hypothesis of the
lemma holds, which is guaranteed by the following cliam.

I Claim 6.4.

m = O(δk/a),

d = Ω
(
a · log

(am
ε

)
+ log(n/ε)

)
,

δk = Ω
(
a · log

(
ad

ε

)
+ log(n/ε)

)
,
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Proof. To prove the first inequality it suffices to show that m = O(k/(∆2 · log(1/ε))). Since
∆ = d1/4 and k > d, it suffices to show that m = O(

√
k/ log(1/ε)), which follows by the

hypothesis of the lemma. As for the second inequality, first note that d = Ω(log(n/ε))
as d is a seed for the non-malleable extractor NMExt. Thus, it suffices to verify that
d = Ω(a · log(am/ε)). Since a = O(∆ · log(1/ε)), this inequality holds as long as d =
Ω(∆2 · log2(1/ε) · logm). Since ∆2 =

√
d, it suffices to verify that d = Ω(log4(1/ε) · log2m),

which holds by assumption.
As for the last inequality, we first show that δk = Ω(a · log(ad/ε)) and afterwards

turn to verify that δk ≥ log(n/ε). For the first inequality, it suffices to show that k =
Ω(∆2 · log2(1/ε) · log d). As ∆2 =

√
d and since

√
d = Ω(log2(1/ε)), it suffices to show

that k = Ω(d · log d) which follows by assumption. Further, as δ = d−α, the inequality
δk ≥ log(n/ε) follows. J

By the above claim, NMExt′ is indeed a non-malleable extractor for min-entropy δk, with
seed length O(d), error O(ε1/4) and m output bits. This concludes the proof. J

7 Increasing the Output Length of a Non-Malleable Extractor

A general tool we use is an algorithm that increases the output length of a given non-malleable
extractor in a black-box manner. This is given by the following lemma which is a formal
restatement of Lemma 2.4.

I Lemma 7.1. There exists a universal constant α > 0 such that the following holds. Let
NMExt : {0, 1}n × {0, 1}d1 → {0, 1}log(1/ε) be an explicit non-malleable extractor for entropy
k with error ε such that

k = Ω (log(d1/ε) · log(1/ε) + log(n/ε)) .

Then, for anym < αk/ log(1/ε) there exists an explicit non-malleable extractor NMExt′ : {0, 1}n
× {0, 1}d → {0, 1}m for entropy k with error O(ε1/4), having seed length

d = O (d1 + log(m/ε) · log(1/ε)) .

Note that Lemma 2.4 follows by Lemma 7.1 for constant ε by setting m = Ω(k). Indeed,
the expression log(m/ε) · log(1/ε) in the resulted seed length d is O(log k) which is always
smaller than d1 (as the seed length of any seeded extractor, in particular NMExt, is at least
log(n− k)), and so in the setting of Lemma 2.4, d = O(d1).

Proof of Lemma 7.1. During the proof we make use of the following notation. Given a
string y ∈ {0, 1}d, we write y = y1 ◦ y2 where |y1| = d1 and define d2 = d− d1 = 500d1. We
make use of the following building blocks:

Let ECC : {0, 1}d2 → : {0, 1}D2 be the error correcting code from Theorem 4.4 set with
relative distance 1/4. By Theorem 4.4, D2 = O(d2).
Let r = log4/3(1/ε) and set v = r · log2D2. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}v be the
extractor from Theorem 4.2. Note that we use a seed of the same length d1 as was used
for the non-malleable extractor NMExt. By identifying {0, 1}v with [D2]r, we interpret
the output of Ext as an r-tuple over [D2].

We proceed by proving the following claim.
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I Claim 7.2. The function

AdvGen(x, y) = NMExt(x, y1) ◦ ECC(y2)Ext(x,y1)

is a d1-nice advice generator for entropy k with error O(
√
ε).

Proof. By Lemma 4.14, there exists a set B ⊂ {0, 1}d1 of density
√
ε such that for any

y1 6∈ B and any d1-bit string y′1 6= y1, it holds that

(NMExt(X, y1),NMExt(X, y′1)) ≈√ε (U, ·) . (9)

We now fix y1 ∼ Y1 and y′1 ∼ A(Y )1. Clearly, these fixings do not introduce dependencies
between X,Y . Furthermore, by the above, we can aggregate

√
ε to the total error and assume

that y1 6∈ B. We continue by considering two cases.

Case 1 – y1 6= y′
1. In this case Equation (9) holds. In particular, as NMExt has output

length log(1/ε), the probability that NMExt(X, y1) = NMExt(X, y′1) is bounded above by
O(
√
ε). Thus, in this case, except with probability O(

√
ε) we have that AdvGen(X,Y ) 6=

AdvGen(X,A(Y )).

Case 2 – y1 = y′
1. Here we follow the idea of [4] from Theorem 8.1. Conditioned on

y1 = y′1 we have that Y2 6= A(Y )2, and so the codewords ECC(Y2),ECC(A(Y )2) agree on at
most 3/4 of the coordinates of [D2]. Hence, the set of r-tuples over [D2] for which ECC(Y2)
agrees with ECC(A(Y )2) on all r coordinates of the tuple has density at most (3/4)r = ε

within [D2]r. We denote this set of r-tuples by B′ ⊆ [D2]r.
Recall that Ext is a strong seeded extractor with error ε. Moreover, H∞(X) ≥ k = Ω(v),

and so except for probability
√
ε over the choice of y1, we have that Ext(X, y1) is

√
ε-

close to uniform. For any such y1 we have that Pr[Ext(X, y1) ∈ B′] = O(
√
ε). Thus,

except with probability O(
√
ε) over the fixings done so far, we have that also in this case

AdvGen(X,Y ) 6= AdvGen(X,A(Y )).

As for the niceness property, by Lemma 4.8, the fixings of Y1,A(Y )1 reduce the average
min-entropy of Y2 by a most 2d1. Once Y1,A(Y )1 are fixed, we have that Ext(X,Y1),
Ext(X,A(Y )1), NMExt(X,Y1), and NMExt(X,A(Y )1) are all deterministic functions of X.
Thus, we can fix the latter random variables without introducing dependencies between X,Y .
Further, by Lemma 4.8, the average min-entropy of X decreases by at most 2v+ 2 log(1/ε) =
O(log(1/ε) · log d1).

After these fixings, ECC(Y2)Ext(X,Y1) and ECC(A(Y )2)Ext(X,A(Y )1) are deterministic func-
tions of Y , each consists of r bits. Thus, fixing these random variables will reduce the average
min-entropy of Y by at most 2r = O(log(1/ε)). Further, these fixings do not introduce any
dependencies between X,Y . Note that after all of the fixings done so far, AdvGen(X,Y ) and
AdvGen(X,A(Y )) are fixed.

To summarize, in the process of fixing AdvGen(X,Y ), AdvGen(X,A(Y )), the random
variable Y2 lost an average entropy of 2d1 + 2r. Since d2 = 500d1 we have that except with
probability ε over these fixings, Y2 has min-entropy rate 0.99. As for X, the fixings reduced
its average min-entropy by O(log(1/ε) · log d1), and so except with probability ε, X has
min-entropy rate 0.99 conditioned on these fixings. J

To conclude the proof we apply Lemma 5.3 with AdvGen defined above and the parameter
m. The hypothesis of Lemma 5.3 is met due to our hypothesis on m, d, k and since a =
O(log(1/ε)). J

CCC 2016



8:22 Non-Malleable Extractors – New Tools and Improved Constructions

8 Proof of Theorem 2.1

In this section we prove Theorem 2.1. For the proof we make use of the advice generator
of [4] that is given by the following theorem.

I Theorem 8.1 ([4]). For any integer n and all ε > 0 there exists a O(log(n/ε))-nice advice
generator AdvGen : {0, 1}n × {0, 1}d → {0, 1}a for entropy

k = Ω (log(1/ε) · log log(n/ε)) (10)

with error ε, seed length d = O(log(n/ε)), and a = O(log(n/ε)) output bits.

We defer the proof of Theorem 8.1 to Section 8.1 and start by proving Theorem 2.1.

Proof of Theorem 2.1. Our first step is to apply Lemma 5.3 to the advice generator AdvGen
given by Theorem 8.1. For simplicity, we consider a constant error ε. One can easily verify
that this gives us a non-malleable extractor NMExt0 for entropy Ω(logn · log logn) having
seed length O(logn · log logn).

Our second step would be to reduce the entropy requirement to Ω(logn). To this end,
we apply Lemma 6.2 to NMExt0 with δ = O(1/ log logn). One can easily verify that the
hypothesis of Lemma 6.2 holds with this choice of δ. Thus, we obtain an advice generator
with seed length O(logn · log logn) and advice length a = poly log logn for entropy Ω(logn).

We now apply Lemma 5.3 to AdvGen with constant output length m so to obtain a
non-malleable extractor NMExt1 with seed length O(logn · log logn) for entropy Ω(logn).
One can easily verify that the hypothesis of Lemma 5.3 are met by our choice of δ.

To obtain our final non-malleable extractor, denoted by NMExt2, we apply Lemma 7.1 to
NMExt1 with m = Ω(logn). One can again easily verify that all the conditions of Lemma 7.1
hold and that the resulting non-malleable extractor, NMExt2, supports entropy Ω(logn), has
seed length O(logn · log logn), and has output length Ω(logn). J

8.1 The advice generator of [4]
In this section we prove Theorem 8.1. We give a full proof here since the theorem as stated
is somewhat implicit in [4]. Nevertheless, we stress that all the ideas already appear in [4].

Proof of Theorem 8.1. We start by describing the construction of AdvGen and then turn to
the analysis. Let c be the universal constant from Theorem 4.2. Split y = y1 ◦ y2, where y1
consists of d1 = c · log(n/ε) bits, and set d2 = d− d1, where d = c′ · d1 for some large enough
constant c′. We define AdvGen(x, y) = y1 ◦ φ(x, y), where φ(x, y) is described next. For the
definition of φ we make use of the following building blocks:

Let ECC : {0, 1}d2 → : {0, 1}D2 be the error correcting code from Theorem 4.4 set with
relative distance 1/4. By Theorem 4.4, D2 = O(d2).
Let r = log4/3(1/ε) and set m = r · log2D2. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}m be the
extractor from Theorem 4.2, set with error ε. Recall that we set d1 to be large enough as
required by a seed for Ext. Moreover, one can verify that by our assumption on k given
by Equation (10), k ≥ 2m.

Let z = Ext(x, y1). We identify {0, 1}m with [D2]r and let i1(z), . . . , ir(z) be elements in
[D2] corresponding to the r consecutive length log2D2 substrings of z. For j = 1, . . . , r, we
define

φ(x, y)j = ECC(y2)ij(z).
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We now turn to the analysis. First, note that the output length of AdvGen is a =
O(log(n/ε)) as stated. Indeed, the output is a concatenation of y1 with φ(x, y), where
|y1| = d1 = O(log(n/ε)) and φ(x, y) consists of r = O(log(1/ε)) bits. Now, by the strongness
of Ext we have that

(Ext(X,Y1), Y1) ≈ε (Um, ·) .

Further, by Lemma 4.10

(Ext(X,Y1), Y1,A(Y )1) ≈ε (Um, ·) ,

Indeed, the hypothesis of Lemma 4.10 is met as conditioned on any fixing of Y1, the random
variable Ext(X,Y1) is independent of A(Y )1. Furthermore, by Lemma 4.8,

H̃∞ (Y2 | Y1,A(Y )1) ≥ d2 − 2d1.

Thus, except with probability 2
√
ε over the fixing of y1 ∼ Y1, y′1 ∼ A(Y )1, it holds that

Ext(X, y1) is
√
ε-close to uniform and that

H∞(Y2) ≥ d2 − 2d1 − log(1/ε) ≥ 0.999d2. (11)

From this point on we condition on a fixings of y1, y
′
1 for which Ext(X, y1) is

√
ε-close to

uniform and for which Equation (11) holds, and aggregate 2
√
ε to the total error.

As y1 is a prefix of AdvGen(x, y) and y′1 is a prefix of AdvGen(x,A(y)), we have that
if y1 6= y′1 then AdvGen(X,Y ) 6= AdvGen(X,A(Y )). Therefore, we may assume that y1 =
y′1. Since A has no fixed points it holds that Y2 6= A(Y )2. Therefore, the codewords
ECC(Y2),ECC(A(Y )2) agree on at most 3/4 fraction of the coordinates of [D2], and so the set
of r-tuples over [D2] in which ECC(Y2) equals ECC(A(Y )2) in all r coordinates has density
at most (3/4)r = ε within [D2]r. We denote this set of “bad” r-tuples by B ⊆ [D2]r.

As Ext(X, y1) is
√
ε-close to uniform, we have that

Pr[Ext(X, y1) ∈ B] ≤ ε+
√
ε ≤ 2

√
ε,

and so

Pr
x∼X
y∼Y

[AdvGen(x, y) = AdvGen(x,A(y))] = O(
√
ε).

As for the niceness property, note that conditioned on the fixings done so far, namely,
the fixings of Y1 and A(Y )1 it holds that both Ext(X,Y1), Ext(X,A(Y )1) are deterministic
functions of X. As these random variables consist of 2m bits altogether, we have that
conditioned on the further fixings of Ext(X,Y1), Ext(X,A(Y )1), the average min-entropy of
X is bounded below by k − 2m. Hence, by Lemma 4.9, except with probability ε over the
further fixings of these random variables,

H∞(X) ≥ k − 2m− log(1/ε) ≥ 0.99k.

Note that the fixing of Ext(X,Y1), Ext(X,A(Y )1) does not reduce the entropy of Y2 and
does not introduce any correlation between X,Y .

Conditioned on the fixings done so far, we have that Ext(X,Y1), Ext(X,A(Y )1) are fixed,
and so φ(X,Y ), φ(X,A(Y )) are deterministic functions Y that consist of 2r bits. Thus,
we can further condition the fixings of φ(X,Y ), φ(X,A(Y )), which results in the fixings of
AdvGen(X,Y ) and AdvGen(X,A(Y )). Furthermore, as 2r + log(1/ε) ≤ 0.009d2, conditioned
on these fixings we have that Y2 has min-entropy rate 0.99 except with probability ε. Note
that these fixings do not introduce dependencies between X,Y . Further, note that the total
error incurred so far can be reduced from O(

√
ε) to ε without need for any change in the

hypothesis of the theorem. This concludes the proof of the theorem. J

CCC 2016



8:24 Non-Malleable Extractors – New Tools and Improved Constructions

9 Proof of Theorem 2.2

Building on results developed so far, in this section we prove Theorem 2.1.

Proof of Theorem 2.2. Set m = logn. Our starting point is the explicit non-malleable
extractor NMExt0 : {0, 1}n×{0, 1}d → {0, 1}m from Theorem 4.6 that supports entropy 0.6n,
has error 1/ logn, and seed length d = O(logn). We apply Lemma 6.1 to NMExt0 with m as
set above so to obtain a second non-malleable extractor NMExt1 : {0, 1}n×{0, 1}d1 → {0, 1}m,
where d1 = O(d). One can easily verify that the hypothesis of Lemma 6.1 holds, and so
Lemma 6.1 guarantees that NMExt1 is a non-malleable extractor for entropy k1 = k0/d

α
0 =

Ω(n/(logn)α), where α is the universal constant from Lemma 6.1. By Lemma 6.1, the error
of NMExt1 is ε1 = O((logn)−1/4).

We apply Lemma 6.1 again, now to NMExt1 with m as before. One can verify that
the hypothesis of this application of Lemma 6.1 holds as well, and so we obtain a third
non-malleable extractor NMExt2 : {0, 1}n × {0, 1}d2 → {0, 1}m, where d2 = O(d1) = O(d),
for min-entropy k2 = k1/d

α
1 = Ω(n/(logn)2α). The error of NMExt2 is ε2 = O((logn)−1/42)

We repeat this process, producing a sequence of non-malleable extractors, always with
m output bits. After r iterations we obtain a non-malleable extractor NMExtr : {0, 1}n ×
{0, 1}dr → {0, 1}m, where dr = 2O(r) · logn, having error εr = (logn)−1/4r for entropy
kr = Ω (n/(logn)αr). One can prove by induction that indeed for any constant r, these
sequence of applications of Lemma 6.1 is valid. Notice that for any constant r the error
is bounded above by ε – the desired constant error guarantee, assuming n is large enough.
Thus, by setting r = c/α, we obtain a non-malleable extractor with seed length O(logn) for
entropy Ω(n/ logc n) with error ε.

Lastly, we increase the output length of NMExtr by applying Lemma 7.1 with m = Ω(k) to
NMExtr so to obtain our final non-malleable extractor NMExt′ : {0, 1}n × {0, 1}d′ → {0, 1}m.
One can easily verify that the hypothesis of Lemma 7.1 is met and that d′ = O(logn). J

10 From Non-Malleable Extractors to t-Non-Malleable Extractors

In this section we prove the following lemma, which is a formal restatement of Lemma 2.5.

I Lemma 10.1. Let t ≥ 1 be an integer. Let NMExt : {0, 1}n × {0, 1}d1 → {0, 1}log(1/ε) be
an explicit non-malleable extractor for entropy k with error ε such that

k = Ω (t · log(td1/ε) · log(1/ε) + log(n/ε)) .

Then, for any m = O(k/(t · log(1/ε))) there exists an explicit t-non-malleable extractor
NMExt′ : {0, 1}n × {0, 1}d → {0, 1}m for entropy k with error O(t · ε1/4), having seed length

d = O
(
t2d1 + t · log(tm/ε) · log(1/ε)

)
.

The proof of Lemma 10.1 builds on what we call t-advice generators that generalize
Definition 5.1.

I Definition 10.2 (t-advice generators). For an integer t ≥ 1, a function AdvGen : {0, 1}n ×
{0, 1}d → {0, 1}a is called a t-advice generator for entropy k with error ε if the following
holds. For any (n, k)-source X, an independent random variable Y that is uniform over
{0, 1}d, and any functions {Ai : {0, 1}d → {0, 1}d}ti=1 with no fixed points, it holds that

Pr
x∼X
y∼Y

[∃i ∈ [t] AdvGen(x, y) = AdvGen(x,Ai(y))] ≤ ε.
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Note that a 1-advice generator is an advice generator as defined in Definition 5.1. Similarly
to our reduction in Lemma 5.3, some extra guarantee from the t-advice generator is needed
for the reduction from t-non-malleable extractors to t-advice generators. This is encapsulated
in the following definition.

IDefinition 10.3 (Nice t-advice generators). A t-advice generator AdvGen : {0, 1}n×{0, 1}d →
{0, 1}a for entropy k with error ε is said to be d1-nice if the following holds. Let X be
an (n, k)-source, let Y be a random variable that is independent of X and is uniformly
distributed over {0, 1}d, and let {Ai : {0, 1}d → {0, 1}d}ti=1 be functions with no fixed points.
Then, except with probability ε over the fixings of AdvGen(X,Y ), {AdvGen(X,Ai(Y ))}ti=1 it
holds that:

X,Y are independent.
H∞(X) ≥ 0.99k.
The length d− d1 suffix of Y has min-entropy rate 1− 1/(100t).

Note that a nice 1-advice generator is a nice advice generator as defined in Section 5.
Mimicking the proof of Lemma 5.3 we obtain the following lemma.

I Lemma 10.4. There exist universal constants 0 < c < 1 < c′, c′′ such that the following
holds. Let AdvGen : {0, 1}n × {0, 1}d → {0, 1}a be an explicit t-advice generator for entropy
k with error ε that is d1-nice, with d1 ≤ d/2. Then, for any integer m such that

m ≤ c · k/(at)

d ≥ c′t ·max
(
a · log

(
atm

ε

)
, log(n/ε)

)
,

k ≥ c′′ ·max
(
at · log

(
ad

ε

)
, log(n/ε)

)
,

there exists a t-non-malleable extractor NMExt : {0, 1}n × {0, 1}d → {0, 1}m for entropy k
with error O(

√
ε).

Proof. We start by describing the construction of NMExt and then turn to the analysis.
Given a string y ∈ {0, 1}d, we partition y to three consecutive substrings y = y1 ◦ y2 ◦ y3,
where |y1| = d1, |y2| = d2 = Ω(log(n/ε)) is a sufficient length for a seed of the extractor from
Theorem 4.3 set with error ε, and |y3| = d3 = (10t − 1)d2. By our hypothesis, d is large
enough so to satisfy these properties. We make use of the following building blocks:

Let Raz : {0, 1}n × {0, 1}d2 → {0, 1}` be the extractor from Theorem 4.3, where

` = c′′′ ·max(atm, at log(ad/ε))

for some suitable constant c′′′ to be chosen next. By our choice of d2, the error of Raz is
bounded above by ε.
Let AdvCB : {0, 1}d3 ×{0, 1}`×{0, 1}a → {0, 1}m be the t-correlation breaker with advice
from Theorem 4.12 set with error ε. By Theorem 4.12, c′′′ can be chosen such that the
output length of AdvCB is indeed m.

With the notation set and using the building blocks above, we define

NMExt(x, y) = AdvCB (y3,Raz(x, y2),AdvGen(x, y)) .

We now turn to the analysis. Let X be an (n, k)-source, let Y be an independent
random variable that is uniformly distributed over {0, 1}d, and let {Ai : {0, 1}d → {0, 1}d}ti=1

CCC 2016



8:26 Non-Malleable Extractors – New Tools and Improved Constructions

be functions with no fixed points. As AdvGen is a d1-nice t-advice generator with error
ε, we have that except with probability ε over the fixings of α ∼ AdvGen(X,Y ), {αi ∼
AdvGen(X,Ai(Y ))}ti=1, it holds that

α 6∈ {α1, . . . , αt}.
X,Y remain independent.
H∞(X) ≥ 0.99k.
The length d− d1 suffix of Y has min-entropy rate 1− 1/(100t).

We condition on such fixings. Next, we argue that except with probability ε over y3 ∼ Y3 it
holds that Y2 | (Y3 = y3) has min-entropy rate at least 0.6. To see this, apply Lemma 4.8 to
obtain

H̃∞(Y2 ◦ Y3 | Y3) ≥ H∞(Y2 ◦ Y3)− |Y3| ≥
(

1− 1
100t

)
(d2 + d3)− d3 = 0.9d2.

Thus, by Lemma 4.9, except with probability ε over y3 ∼ Y3 it holds that

H∞(Y2 | Y3 = y3) = H∞(Y2 ◦ Y3 | Y3 = y3) ≥ 0.9d2 − log(1/ε) ≥ 0.6d2.

Therefore, except with probability ε over the fixing of Y3, the min-entropy rate of Y2 is
bounded below by 0.6. For the remaining of the proof we assume that the min-entropy rate
of Y2 is at least 0.6, and aggregate an additional error of ε to the total error.

As H∞(X) ≥ 0.99k ≥ 2`, H∞(X) = Ω(d2), and since Y2 is a (d2, 0.6d2)-source with
d2 = Ω(log(n/ε)), Theorem 4.3 implies that

(Raz(X,Y2), Y2) ≈ε (U`, Y2) .

As Raz(X,Y2) is independent of the joint distribution of {(Ai(Y ))2}ti=1 conditioned on the
fixing of Y2, Lemma 4.10 implies that(

Raz(X,Y2), Y2, {(Ai(Y ))2}ti=1
)
≈ε (U`, ·) .

Thus, except with probability
√
ε over the fixings of Y2, {(Ai(Y ))2}ti=1 it holds that Raz(X,Y2)

is
√
ε-close to uniform. As for the entropy loss of Y3 resulted by these fixings,

H̃∞
(
Y3 | Y2, {(Ai(Y ))2}ti=1

)
≥
(

1− 1
100t

)
(d2 + d3)− (t+ 1)d2 ≥ 0.8d3

and so except with probability ε over Y2, {(Ai(Y ))2}ti=1 it holds that Y3 has min-entropy
rate larger than 0.5. To summarize, except with probability O(

√
ε) over all fixings done so

far, we have that
The joint distribution of Raz(X,Y2), {Raz(X, (Ai(Y ))2)}ti=1 is independent of the joint
distribution of Y3, {(Ai(Y ))3}ti=1.
The min-entropy of Y3 is bounded below by

d3

2 ≥
9d
20 = Ω

(
at · log

(
atm

ε

))
= Ω

(
at · log

(
a`

ε

))
, (12)

where we used the hypothesis on d and the choice of m for the second inequality and that
d ≥ 2d1 for the first inequality. For the last inequality we used our choice of `.
Raz(X,Y2) is O(

√
ε)-close to uniform.

Therefore, we can apply Theorem 4.12 and conclude that(
NMExt(X,Y ), {NMExt(X,Ai(Y ))}ti=1, Y

)
≈O(

√
ε) (Um, ·).

Note that indeed the hypothesis of Theorem 4.12 holds. In particular, Equation (3) holds by
our choice of `, and Equation (4) follows by Equation (12). This concludes the proof. J
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We are now ready to prove Lemma 10.1

Proof of Lemma 10.1. Write d = d1 + d2, where d2 = 500t2d1. For the proof we make use
of the following building blocks:

Let ECC : {0, 1}d2 → : {0, 1}D2 be the error correcting code from Theorem 4.4 set with
relative distance 1/4. By Theorem 4.4, D2 = O(d2).
Let r = log4/3(1/ε) and set v = r · log2D2. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}v be the
extractor from Theorem 4.2, set with error ε. Note that we set d1 to be large enough as
required by a seed for Ext. Moreover, one can verify that by our assumption on k, given
by Equation (10), k ≥ 2v as required by Theorem 4.2.

We proceed by proving the following claim.

I Claim 10.5. The function

AdvGen(x, y) = NMExt(x, y1) ◦ ECC(y2)Ext(x,y1)

is a d1-nice t-advice generator for entropy k with error O(t
√
ε).

Proof. Let X be an (n, k)-source, let Y be a random variable that is independent of X and
is uniformly distributed over {0, 1}d, and let {Ai : {0, 1}d → {0, 1}d}ti=1 be functions with
no fixed points. By Lemma 4.14, there exists a set B ⊂ {0, 1}d1 of density

√
ε such that for

any y1 6∈ B and any d1-bit string y′1 6= y1, it holds that

(NMExt(X, y1),NMExt(X, y′1)) ≈√ε (U, ·) . (13)

We now fix y1 ∼ Y1 and yi1 ∼ (Ai(Y ))1 for i = 1, . . . , t. Clearly, these fixings do not introduce
dependencies between X,Y . Furthermore, by the above, we can aggregate

√
ε to the total

error and assume that y1 6∈ B. Let I be the set of i ∈ [t] such that y1 6= yi1.
Fix i ∈ I. By Equation (13) it holds that NMExt(X, y1) is

√
ε-close to uniform even

conditioned on NMExt(X, yi1). In particular, as NMExt has output length log(1/ε), the
probability that NMExt(X, y1) = NMExt(X, yi1) is bounded above by O(

√
ε). By the

union bound over all i ∈ I, we have that except with probability O(t
√
ε), for all i ∈ I,

AdvGen(X,Y ) 6= AdvGen(X,Ai(Y )).
Consider now i 6∈ I. Conditioned on y1 = yi1 we have that Y2 6= (Ai(Y ))2, and so

the codewords ECC(Y2),ECC((Ai(Y ))2) agree on at most 3/4 of the coordinates of [D2].
Hence, the set of r-tuples over [D2] for which ECC(Y2) agrees with ECC((Ai(Y ))2) on all r
coordinates of the tuple has density at most (3/4)r = ε within [D2]r. By the union bound
over all i 6∈ I, at most εt fraction of the r-tuples in [D2]r are such that ECC(Y2) agrees with
ECC((Ai(Y ))2) for some i 6∈ I. We denote this set of r-tuples by B′ ⊆ [D2]r.

Recall that Ext is a strong seeded extractor with error ε, and so except for probability√
ε over the choices of y1, we have that Ext(X, y1) is

√
ε-close to uniform. For any such y1

we have that Pr[Ext(X, y1) ∈ B′] ≤ εt+O(
√
ε). Thus, except with probability O(t

√
ε) we

have that also for all i 6∈ I, AdvGen(X,Y ) 6= AdvGen(X,Ai(Y )).

As for niceness property, by Lemma 4.8, the fixings of Y1, {(Ai(Y ))1}ti=1 reduce the
average min-entropy of Y2 by a most (t+ 1)d1. Once Y1, {(Ai(Y ))1}ti=1 are fixed, we have
that Ext(X,Y1), {Ext(X, (Ai(Y ))1)}ti=1, NMExt(X,Y1), and {NMExt(X, (Ai(Y ))1)}ti=1 are
all deterministic functions of X. Thus, we can fix the latter random variables without
introducing dependencies between X,Y . Further, by Lemma 4.8, the average min-entropy of
X decreases by at most O(t · log(1/ε) · log d).
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After these fixings, ECC(Y2)Ext(X,Y1) and {ECC((Ai(Y ))2)Ext(X,(Ai(Y ))1)}ti=1 are determin-
istic functions of Y , each consists of r bits. Thus, fixing these random variables will reduce
the average min-entropy of Y by at most (t+ 1)r = O(t · log(1/ε)). Further, these fixings do
not introduce any dependencies between X,Y . Note that after all of the fixings done so far,
AdvGen(X,Y ) and {AdvGen(X, (Ai(Y )))}ti=1 are all fixed.

To summarize, in the process of fixing AdvGen(X,Y ), {AdvGen(X, (Ai(Y )))}ti=1, the
random variable Y2 lost an average entropy of (t+ 1)(d1 + r). As we set d2 = 500t2d1 we
have that except with probability ε over these fixings, Y2 has min-entropy rate 1− 1/(100t).
As for X, the fixings reduced its average min-entropy by O(t · log(1/ε) · log d), and so except
with probability ε, X has min-entropy rate 0.99 conditioned on these fixings. J

To conclude the proof we apply Lemma 10.4 with AdvGen defined above and the parameter
m. The hypothesis of Lemma 10.4 is met due to our hypothesis on m, d, k and since
a = O(log(1/ε)). J
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Abstract
Impagliazzo and Wigderson [25] showed that if E = DTIME(2O(n)) requires size 2Ω(n) circuits,
then every time T constant-error randomized algorithm can be simulated deterministically in time
poly(T ). However, such polynomial slowdown is a deal breaker when T = 2α·n, for a constant
α > 0, as is the case for some randomized algorithms for NP-complete problems. Paturi and
Pudlak [30] observed that many such algorithms are obtained from randomized time T algorithms,
for T ≤ 2o(n), with large one-sided error 1− ε, for ε = 2−α·n, that are repeated 1/ε times to yield
a constant-error randomized algorithm running in time T/ε = 2(α+o(1))·n.

We show that if E requires size 2Ω(n) nondeterministic circuits, then there is a poly(n)-
time ε-HSG (Hitting-Set Generator) H : {0, 1}O(logn)+log(1/ε) → {0, 1}n, implying that time T
randomized algorithms with one-sided error 1−ε can be simulated in deterministic time poly(T )/ε.
In particular, under this hardness assumption, the fastest known constant-error randomized
algorithm for k-SAT (for k ≥ 4) by Paturi et al. [31] can be made deterministic with essentially
the same time bound. This is the first hardness versus randomness tradeoff for algorithms for
NP-complete problems. We address the necessity of our assumption by showing that HSGs with
very low error imply hardness for nondeterministic circuits with “few” nondeterministic bits.

Applebaum et al. [2] showed that “black-box techniques” cannot achieve poly(n)-time com-
putable ε-PRGs (Pseudo-Random Generators) for ε = n−ω(1), even if we assume hardness against
circuits with oracle access to an arbitrary language in the polynomial time hierarchy. We in-
troduce weaker variants of PRGs with relative error, that do follow under the latter hardness
assumption. Specifically, we say that a function G : {0, 1}r → {0, 1}n is an (ε, δ)-re-PRG for a
circuit C if (1 − ε) · Pr[C(Un) = 1] − δ ≤ Pr[C(G(Ur) = 1] ≤ (1 + ε) · Pr[C(Un) = 1] + δ. We
construct poly(n)-time computable (ε, δ)-re-PRGs with arbitrary polynomial stretch, ε = n−O(1)

and δ = 2−nΩ(1) . We also construct PRGs with relative error that fool non-boolean distinguishers
(in the sense introduced by Dubrov and Ishai [11]).

Our techniques use ideas from [30, 43, 2]. Common themes in our proofs are “composing”
a PRG/HSG with a combinatorial object such as dispersers and extractors, and the use of
nondeterministic reductions in the spirit of Feige and Lund [12].
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1 Introduction

Derandomization, the construction of deterministic algorithms from randomized algorithms, is
an area where there are tight connections between lower bounds and algorithm design. Indeed,
strong enough circuit lower bounds can be used to construct pseudo-random generators that
can then be used to simulate randomized algorithms with only polynomial overhead. This is
often summarized as saying, “Randomness is never essential for efficient algorithm design”, if
such lower bounds exists.

However, there are many algorithmic applications where a simulation with polynomial
overhead is next to useless. For example, consider the best algorithms for different NP-
complete problems such as different variations of SAT. Many of the best algorithms for these
problems are in fact randomized or careful derandomizations of probabilistic algorithms
[32, 31, 34, 22, 33, 1]. If the Exponential Time Hypothesis is true, these problems all
require exponential time, so a polynomial slowdown might take an algorithm from best
possible to worse than exhaustive search. On the other hand, as observed in [30], most of
these randomized algorithms are in fact fast algorithms, but with only a very small success
probability ε. [30] call such algorithms OPP algorithms, for One-sided error Probabilistic
Polynomial Time. (These algorithms can then be repeated O(1/ε) times to yield a final
randomized algorithm with constant success probability).

It is not to hard to see that OPP algorithms can be derandomized in time comparable to
the running time of the final randomized algorithm, if we can construct efficient pseudorandom
generators (or hitting set generators) which work for a very low error parameter ε using short
seeds.

In this paper, we address the question of constructing such generators. We give construc-
tions of pseudorandom generators and hitting-set generators that get essentially optimal
simulations of OPP, and go beyond to also consider algorithms that have two-sided error that
only slightly favors the correct answer. In order to get these generators, we need stronger lower
bounds, lower bounds against nondeterministic circuits rather than deterministic circuits.
However, we also show that such lower bounds are necessary for strong derandomization of
OPP algorithms.

As we explain later, in some settings there are black-box impossibility results on construct-
ing generators for very low error parameter. In this paper, we also introduce new notions
of pseudorandom generator with “relative error” which can be used to replace low-error
generators in certain settings. We give constructions of such generators, and discuss potential
applications.

1.1 Pseudorandom generators and hitting-set generators
We start by reviewing the definitions of pseudorandom generators and hitting set generators.

I Definition 1.1 (PRGs and HSGs). Let C be a class of boolean functions C : {0, 1}n → {0, 1}.
A function G : {0, 1}r → {0, 1}n is:

an ε-PRG for C if for every C in C, |Pr[C(G(Ur)) = 1]− Pr[C(Un) = 1]| ≤ ε.
an ε-HSG for C if for every C in C s.t. Pr[C(Un) = 1] > ε, there exists x ∈ {0, 1}r s.t.
C(G(x)) = 1.

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.9
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We will be interested in generators that fool circuits of size nb for some fixed constant b,
and run in time poly(nb). In the case of logarithmic seed length (r = O(logn)) this is often
referred to as the Nisan-Wigderson setting. We will typically be interested in larger seed
length (which is required to handle low error ε).

Such PRGs imply circuit lower bounds, and so in the current state of knowledge, we cannot
construct them unconditionally. A long line of research [9, 45, 29, 5, 21, 25, 41, 24, 35, 44] is
devoted to constructing such PRGs under the weakest possible hardness assumptions. An
important milestone of this line of research is the hardness versus randomness tradeoff of
Impagliazzo and Wigderson [25].

I Definition 1.2 (E is hard for exponential size circuits). We say that E is hard for exponential
size circuits, if there exists a language L in E = DTIME(2O(n)) and a constant β > 0, such
that for every sufficiently large n, circuits of size 2βn fail to compute the characteristic
function of L on inputs of length n.

I Theorem 1.3 ([25]). If E is hard for exponential size circuits, then for every constant
b > 1 there exists a constant c > 1 such that for every sufficiently large n, there is a function
G : {0, 1}r → {0, 1}n that is an n−b-PRG for size nb circuits, with r = c logn. Furthermore,
G is computable in time poly(nb).

By a standard probabilistic argument, for every ε > 0, there exists a (nonexplicit) ε-PRG
with seed length r = c logn+O(log(1/ε)) for size nb circuits. In particular, if we shoot for
PRGs with “polynomial stretch” (that is, r = nΩ(1)), we can expect to get error ε = 2−nΩ(1)

that is exponentially small. The known proofs of Theorem 1.3 do not achieve these parameters.
In fact, they cannot achieve negligible error of ε = n−ω(1) if the constructed PRG runs in time
poly(n), even if we allow large seed length r = Ω(n).1 It is natural to ask if we can construct
poly(n)-time computable ε-PRGs or ε-HSGs with ε = n−ω(1)? Under what assumptions?
Can we get ε to be exponentially small?

1.2 Limitations on deterministic reductions for PRGs and HSGs
There is a formal sense in which “black-box” proofs of Theorem 1.3 cannot achieve negligible
ε [38, 18, 3]. It is instructive to explain this argument. Loosely speaking, “black-box” proofs
are made of two components: The first is a construction, this is an oracle procedure Con(·)

which implements the PRG G(x) = Conf (x) given oracle access to the hard function f

that is guaranteed in the hardness assumption. Note that as G runs in time poly(n), the
construction cannot afford to query f ∈ E on inputs of length larger than ` = c logn (for
some constant c > 1). On inputs of this length, the maximal possible circuit complexity of f
is at most 2` = nc.

1 In this paper we are mostly interested in PRGs that run in time poly(n), that is polynomial in the
output length. Another natural notion is allowing PRGs to run in time exponential in the seed length
(that is time 2O(r)). These notions differ in the case of “polynomial stretch” (r = nΩ(1)) which will be
the setting that we will consider. PRGs which run in time exponential in the seed length make sense in
most applications which run the PRGs over all 2r seeds. An exception is the case of “SAT algorithms”
where r may be α · n for a constant α < 1 that is close to 1, and there may be a substantial difference
between running 2r instantiations of a time poly(n) PRG, (which gives time less than 2n) compared to
2r instantiations of a PRG running in time larger than 2r, which takes time at least 2r · 2r > 2n. Other
applications in which there is a big difference between 2O(r) time PRGs and poly(n) time PRGs are
applications that run the PRG only once. In such cases, it is typically important that the PRG run
in time polynomial in the output length (so that the application runs in polynomial time). We will
elaborate on several such applications in this paper.
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The second component in the proof is a reduction Red(·), which is given black-box access to
a circuit D that is not fooled by the PRG, and implements a small circuit C : {0, 1}` → {0, 1}
for f (contradicting the hardness assumption). By the discussion above, in order to contradict
the hardness assumption, the reduction must produce a circuit C of size less than nc. However,
note that in some sense, the reduction needs to distinguish between a useless function D that
always answers zero, and a useful function D that is not fooled by the PRG, and answers
one with probability ε. It intuitively follows that Red (which only has black-box access to
D) must query D at least 1/ε times. (This part of the argument can be made formal, see
[38, 18, 3], and also applies for constructions of HSGs). In particular, the circuit C that is
implemented by Red has size ≥ 1/ε. This gives 1/ε ≤ nc which implies ε ≥ n−c.

The same kind of limitations apply in the closely related problem of hardness amplification
(there the goal is to start with a worst-case hard lower bound (such as the assumption E is hard
for exponential size circuits) and produce an average-case hard function. An influential work
of Feige and Lund [12] shows that nondeterministic reductions can be used to bypass these
limitations. Specifically, we may relax the requirement that Red implements a (deterministic)
circuit, and allow Red to implement a nondeterministic circuit. Indeed, nondeterminism allows
Red to make exponentially many queries to D (on different “nondeterministic computations
paths”) circumventing the limitation above. The price we pay is that we need to assume
a hardness assumption against nondeterministic circuits. This approach indeed leads to
hardness amplification with negligible ε under hardness assumptions for nondeterministic
circuits [43, 10, 2].

1.3 Hardness assumptions for nondeterministic circuits
We start by defining various notions of nondeterministic circuit.

I Definition 1.4 (nondeterministic circuits with few nondeterministic bits). We say that a
function f : {0, 1}n → {0, 1} is computed by a size s circuit D with k nondeterministic bits
if there exists a size s deterministic circuit C : {0, 1}n × {0, 1}k → {0, 1} such that for every
x ∈ {0, 1}n

f(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1.

I Definition 1.5 (oracle circuits and Σi-circuits). Given a boolean function A(x), an A-circuit
is a circuit that is allowed to use A gates (in addition to the standard gates). An NP-circuit
is a SAT-circuit (where SAT is the satisfiability function) a Σi-circuit is an A-circuit where
A is the canonical ΣPi -complete language. The size of all circuits is the total number of wires
and gates.2

Note for example that an NP-circuit is different than a nondeterministic circuit. The
former is a nonuniform analogue of PNP (which contains coNP) while the latter is an
analogue of NP. Hardness assumptions against nondeterministic/NP/Σi circuits appear in
the literature in various contexts of derandomization [27, 28, 43, 15, 35, 19, 36, 6, 37, 10, 4, 2].
Typically, the assumption is of the following form: E is hard for exponential size circuits
(where the type of circuits is one of the types discussed above). More specifically:

2 An alternative approach is to define using the Karp-Lipton notation for Turing machines with
advice. For s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a
size sΘ(1) nondeterministic circuit is equivalent to NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit
is equivalent to DTIMENP(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic NP-circuit is equivalent to
NTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to DTIMEΣPi (sΘ(1))/sΘ(1).
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I Definition 1.6. We say that E is hard for exponential size circuits of type X if there exists
a problem L in E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently
large n, circuits of type X with size 2βn fail to compute the characteristic function of L on
inputs of length n.

Such assumptions can be seen as the nonuniform and scaled-up versions of assumptions of
the form EXP 6= NP or EXP 6= ΣP

2 (which are widely believed in complexity theory). As such,
these assumptions are very strong, and yet plausible - the failure of one of these assumptions
will force us to change our current view of the interplay between time, nonuniformity and
nondeterminism.3

It is known that Theorem 1.3 extends to every type of circuits considered in Definitions 1.4,
Definition 1.5 and their combinations.

I Theorem 1.7 ([25, 27, 35, 36]). For every i ≥ 0, the statement of Theorem 1.3 also holds
if we replace every occurrence of the word “circuits” by “Σi-circuits” or alternatively by
“nondeterministic Σi-circuits”.

1.4 A construction of HSGs with low error
Our first result is a construction of a poly(n)-time computable ε-HSG that works for small
ε. We rely on the assumption that E is hard for exponential size nondeterministic circuits.
(Note that by the earlier discussion we cannot expect to get this with hardness against
deterministic circuits).

I Theorem 1.8 (HSG with seed length r = log(1/ε) +O(logn)). If E is hard for exponential
size nondeterministic circuits then for every constant b > 1 there exists a constant c > 1
such that for every sufficiently large n, there is a function G : {0, 1}r → {0, 1}n that is an
ε-HSG for size nb circuits, with r = log(1/ε) + c logn. Furthermore, G is computable in time
poly(nb).

We stress that the seed length achieved in Theorem 1.8 matches that of nonexplicit HSGs
that exist by a probabilistic argument: the dependence of r on ε is an additive factor of
1 · log(1/ε). In some settings, achieving this correct dependence (with the right constant) for
a polynomial time computable HSG is crucial (as seen in the example of the next section).4

1.5 Derandomizing randomized algorithms with large one sided error
By going over all seeds of the HSG, we can deterministically simulate randomized polynomial
time algorithms with large one-sided error of 1− ε(n) in time 2r · poly(n) = poly(n)/ε(n).
This is stated precisely in the theorem below.

I Theorem 1.9. Let A be a time T (n) ≥ n randomized algorithm that accepts some language
L with one sided error of 1− ε(n). That is, for every sufficiently large n and x ∈ {0, 1}n:

x ∈ L ⇒ Pr[A(x) = 1] ≥ ε(n).

3 Another advantage of constructions based on this type of assumptions is that any E-complete problem
(and such problems are known) can be used to implement the constructions, and the correctness of the
constructions (with that specific choice) follows from the assumption. We do not have to consider and
evaluate various different candidate functions for the hardness assumption.

4 We remark that when applying the probabilistic argument for PRGs we get an additive factor of
2 · log(1/ε) whereas for HSGs it is possible to get 1 · log(1/ε). This difference is crucial for the application
of derandomizing OPP algorithms as we explain below.
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x 6∈ L ⇒ Pr[A(x) = 1] = 0.
If E is hard for exponential size nondeterministic circuits then there is a deterministic
algorithm running in time poly(T (n))/ε(n) that accepts L.

Note that if T (n)� 1/ε(n) then the slowdown is polynomial in T (n) but linear in 1/ε(n).
As we explain below, in many algorithms in the literature, T (n) = poly(n) and ε(n) = 2−α·n
for some constant 0 < α < 1. Note that even the more modest goal of amplifying the success
probability of A to obtain a randomized algorithm with constant one-sided error, requires
running time of poly(T (n))/ε(n) which is poly(n) · 2α·n for the choices above. We achieve
the same time with a deterministic algorithm.5

Moreover, if we were to amplify A, and then derandomize it using known hardness versus
randomness tradeoffs, we would end up with a deterministic algorithm running in time at
least poly(n)/ε(n)c for a large constant c. Such a slowdown is a “deal breaker” if ε is very
small (say ε = 2−α·n) for a constant α that is only slightly smaller than one. In the next
section we observe that this is the case in many randomized k-SAT algorithms.

1.6 Deterministic k-SAT algorithms
Paturi and Pudlak [30] observed that many of the randomized algorithms in the literature
for solving k-SAT and other NP-complete problems (in particular the algorithm of Paturi,
Pudlak and Zane [32], Paturi et al. [31], Schöning [34]) are based on designing probabilistic
polynomial-time (or subexponential-time) algorithms with one-sided error, whose success
probability may be exponentially small. To improve the success probability to a constant, one
repeats the original randomized algorithm the inverse of the success probability times. The
running time of this new randomized algorithm is dominated by the inverse of the success
probability of the original algorithm.

For example, suppose A is a SAT-algorithm running in time T (n) = 2o(n) that, given a
satisfiable formula, produces a satisfying assignment with probability at least ε = 2−α·n (for
some constant 0 < α < 1). The algorithm with constant success probability is produced by
repeating A O(1/ε) times, and so has the running time 2(α+o(1))·n.

By Theorem 1.9, all such algorithms can be made deterministic (with essentially the
same time bounds) under the assumption that E is hard for nondeterministic circuits. This
is the first application of the hardness versus randomness paradigm that yields a nontrivial
derandomization of these algorithms.

Some of these randomized algorithms (and in particular the PPZ algorithm [32] and
Schöning’s algorithm [34]) have deterministic versions. However the fastest known algorithms
for k-SAT for k ≥ 4 due to Paturi et al. [31] does not have a matching deterministic algorithm.
We get the first derandomization result for these k-SAT algorithms from [31], based on circuit
complexity assumptions.

For each k ≥ 4, let us denote by TPPSZ
k (n) ≤ 2o(n) the running time of the randomized

PPSZ algorithm [31], and let 2−αPPSZ
k ·n (where 0 < αPPSZk < 1 is a constant specified in

[31]) be its success probability. The fastest known constant-error randomized algorithm for
k-SAT, for k ≥ 4, is obtained by repeating the above algorithm the inverse success probability
number of times, resulting in the running time

2α
PPSZ
k ·n · TPPSZ

k (n) ≤ 2(αPPSZ
k +o(1))·n.

5 The assumption in Theorem 1.9 can be relaxed to “E is hard for size nω(1) nondeterministic circuits”
and then, the final running time will be 2T (n)o(1)

/ε(n).
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Our approach gives the following result:

I Theorem 1.10. If E is hard for nondeterministic circuits, then there are deterministic
algorithms for k-SAT, for each k ≥ 4, running in time

Tk(n) = 2α
PPSZ
k ·n · poly(TPPSZ

k (n)) ≤ 2(αPPSZ
k +o(1))·n.

We remark that the assumption could be relaxed to E is hard for size nω(1) nondeterministic
circuits, and then the deterministic time Tk(n) for k-SAT would become

2α
PPSZ
k ·n · 2(TPPSZ

k (n))o(1)
,

which is still at most 2(αPPSZ
k +o(1))·n, as TPPSZ

k (n) ≤ nβ(n) for every β(n) ∈ ω(1).

1.7 Hardness assumptions implied by HSGs with low error
In Theorem 1.8 we show that hardness for nondeterministic circuits implies HSGs with
low error. Is this assumption necessary? Is the converse statement true? We do not know
the answer to these questions. However, we can show ε-HSGs for deterministic poly-size
circuits are essentially equivalent to 1

2 -HSGs for a subclass of nondeterministic circuits: The
class of poly-size nondeterministic circuits with approximately log(1/ε) nondeterministic bits.
The precise definitions and statements appear in Section 6. Note that as n > r ≥ log(1/ε),
the circuits we are interested in are nondeterministic circuits with a sublinear number of
nondeterministic bits. Using this connection, we can show that ε-HSGs with seed length
r = no(1) +O(log(1/ε)) imply that E is hard for poly-size nondeterministic circuits with o(n)
nondeterministic bits.

I Theorem 1.11. Let δ > 0 be a constant. Assume that for every sufficiently large n, there
is a 2−nδ -HSG H : {0, 1}O(nδ) → {0, 1}n for size s ≥ n circuits, and furthermore that the
family of functions H = {Hn} is computable in time exponential in the seed length, that is
time 2O(nδ). Then there exists a constant γ > 0 and a problem L ∈ E such that, for every
sufficiently large n′, nondeterministic circuits of size (γn′)1/δ with γ · n′ nondeterministic
bits fail to compute the characteristic function of L on inputs of length n′.

1.8 Limitations on nondeterministic reductions for PRGs
Theorem 1.8 demonstrates that hardness assumption for nondeterministic circuits can yield
polynomial time computable HSGs with low error. A recent result of Applebaum et al.
[2] shows that these techniques cannot be extended to yield PRGs. We state this result
informally below (the reader is referred to [2] for the formal model and precise statement).

I Informal Theorem 1.12. For every i ≥ 0, it is impossible to use “black-box reductions”
to prove that the assumption that E is hard for exponential size Σi-circuits implies that for
ε = n−ω(1), there is a poly(n)-time computable ε-PRG G : {0, 1}n−1 → {0, 1}n for size n2.

While hardness against circuits with oracle to PH problems does not suffice, hardness
for circuits with oracle to PSPACE problems does suffice. This follows by inspecting the
correctness proofs of Theorem 1.3 (the one that seems easiest to handle is by Sudan, Trevisan
and Vadhan [41]).

I Theorem 1.13 (PRG with seed length r = O(logn)+log(1/ε))). If E is hard for exponential
size PSPACE-circuits then for every constant b > 1 there exists a constant c > 1 such that
for every sufficiently large n, there is a function G : {0, 1}r → {0, 1}n that is an ε-PRG for
size nb circuits, with c · (logn+ log(1/ε)). Furthermore, G is computable in time poly(nb).
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In fact, something more precise can be said. The circuit model that comes up is the
nonuniform class which corresponds to the fourth level of the counting hierarchy (which is
contained in PSPACE).

1.9 Derandomizing randomized algorithms with large two sided error
By Theorem 1.12 we do not expect to construct ε-PRGs for small ε under the assumption
that E is hard for Σ1-circuits. Nevertheless, it turns out that we can use this assumption to
extend Theorem 1.9 to the case of two-sided error.

I Theorem 1.14. Let A be a time T (n) ≥ n randomized algorithm such that for every
sufficiently large n and x ∈ {0, 1}n:

x ∈ L ⇒ Pr[A(x) = 1] ≥ 2 · ε(n).
x 6∈ L ⇒ Pr[A(x) = 1] ≤ ε(n).

If E is hard for exponential size Σ1-circuits then there is a deterministic algorithm running
in time poly(T (n))

ε(n)2 that accepts L.6

Note that even the more modest goal of amplifying the success probability of A to obtain
a randomized algorithm with constant two-sided error, requires running time of T (n)/ε(n)2.
We achieve roughly the same time with a deterministic algorithm. In fact, the conclusion of
Theorem 1.14 is stronger than the one that follows if we were to run the PRG of Theorem 1.13
on all seeds. The latter approach would have given time poly(n)

ε(n)c for a large constant c.
Loosely speaking, we avoid the limitations on PRGs by showing a derandomization

procedure which runs the algorithm on 2r “pseudorandom strings” (just like in PRGs). The
key difference is that the “estimation of the success probability of A(x)” is not done by
“averaging over all pseudorandom strings”. This allows the procedure not to be fooled by a
small fraction of “pseudorandom strings” that yield incorrect results.

1.10 Implications to derandomization of BPPpath

The class BPPpath defined by Han, Hemaspaandra and Thierauf [20] consists of polynomial
time randomized algorithms A(x) which are allowed to output “don’t know”. It is required
that for every input x, conditioned on giving an answer, the probability that A(x) answers
correctly is at least 2/3, and that the probability that A(x) answers is larger than ε(n) for
some ε(n) > 0.

Han, Hemaspaandra and Thierauf [20] showed that this class is quite powerful and
contains PNP

|| which contains NP. (The subscript “||” in PNP
|| means that the queries to the

NP oracle are nonadaptive). Shaltiel and Umans [36] showed that BPPpath is equal to PNP
||

if ENP
|| is hard for exponential size nondeterministic circuits.
Theorem 1.14 allows us to give a deterministic simulation of BPPpath algorithms with

running time depending on the parameter ε(n). More specifically, it follows that under the
hardness assumption, every BPPpath algorithm that gives an answer with probability ε(n),
can be simulated in deterministic time poly(n)/ε(n)2.

6 The assumption in Theorem 1.14 can be improved to E is hard for exponential size nondeterministic
circuit. This is because Shaltiel and Umans [36] showed that this assumption implies that E is hard for
exponential size Σ1-circuits which make nonadaptive queries to their oracle. This latter assumption is
sufficient for our proof. We defer the details to the final version.
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1.11 PRGs with relative error
Theorem 1.14 demonstrates that it is sometimes possible to achieve consequences of PRGs
with low error, under hardness assumptions that do not seem to suffice for such PRGs. We
now give another such example.

A useful property of a δ-PRG G : {0, 1}r → {0, 1}n with very small error δ = n−ω(1) is
that it “preserves the probability of small events”. By that we mean that for every circuit
C : {0, 1}n → {0, 1} such that Pr[C(Un) = 1] ≤ δ,

Pr[C(G(Ur)) = 1] ≤ Pr[C(Un) = 1] + δ ≤ 2δ

which is still negligible. The notion of PRGs with “relative error” defined below captures
this property. In the definition below, the reader should think of δ � ε, and recall eε ≈ 1 + ε

for sufficiently small ε.

I Definition 1.15 (re-PRGs). Let p1, p2 be two numbers, we define a relation on p1, p2 by:

p1
re∼(ε,δ) p2 ⇔ max(p1, p2) ≤ eε ·min(p1, p2) + δ.

A function G : {0, 1}r → {0, 1}n is an (ε, δ)-re-PRG for a class C of functions C : {0, 1}n →
{0, 1} if for every C in the class C,

Pr[C(G(Ur)) = 1] re∼(ε,δ) Pr[C(Un) = 1].

The use of the formalism above is inspired by the notion of (ε, δ)-differential privacy. An
(1, δ)-re-PRG indeed “preserves the probability of small events” and gives that Pr[C(Un) =
1] ≤ δ implies Pr[C(G(Ur)) = 1] ≤ e · δ. It also immediately follows that:

I Fact 1.16. If G is an (ε, δ)-re-PRG for C and δ ≤ ε then G is a 4ε-PRG for C.

Thus, an (ε, δ)-re-PRG with δ � ε can be thought of as an ε-PRG which has the additional
property that it preserves the probability of small events.

Our next result is a construction of poly(n)-time computable (ε, δ)-re-PRGs with arbitrary
polynomial stretch, ε = n−O(1) and exponentially small δ = 2−

√
r = 2−nΩ(1) .

I Theorem 1.17. If E is hard for exponential size Σ3-circuits, then for every constants
b, e > 1 and µ > 0 there exists a constant γ > 0 such that and every sufficiently large n, there
is a function G : {0, 1}r=nµ → {0, 1}n that is an (n−b, 2−γ·

√
r)-re-PRG for size nb circuits.

Furthermore, G is computable in time poly(nb).

We remark that we would have liked to achieve δ = 2−Ω(r) (rather than δ = 2−Ω(
√
r)) but

we don’t know how to achieve this.

1.12 Randomness reduction in Monte-Carlo constructions
In many famous explicit construction problems (such as constructing rigid matrices or
generator matrices for linear codes matching the Gilbert-Varshamov bound) a random n bit
string has the required property with overwhelming probability of 1− δ for exponentially
small δ. It is often the case that we do not have poly(n)-time deterministic algorithm that
produce an n bit string with the required property. An intermediate goal is to reduce the
number of random bits used (while preserving exponentially small failure probability). Using
re-PRGs, achieves this task for problems where checking whether a given an n bit string x
satisfies the property can be decided in the polynomial time hierarchy (and note that the
two aforementioned construction problems satisfy this requirement). This is stated formally
below:
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I Theorem 1.18. Let i ≥ 0 be a constant and let L be a language such that:
There is a constant α > 0 s.t. for every sufficiently large n, PrX←Un [X ∈ L] ≥ 1− δ for
δ = 2−nα .
L is accepted by a family of poly-size Σi-circuits.

If E is hard for exponential size Σi+3-circuits then there is a poly(n)-time algorithm B such
that Pr[B(Ur) ∈ L] ≥ 1− 4 · δ with r = O(log(1/δ)2) = n2α.

Note that standard PRGs (which under this assumption achieve error ≥ 1/poly(n)) give
a version of Theorem 1.18 with δ = 1/poly(n). Our result gives this tradeoff also for smaller
values of δ. We remark that we would have liked the dependence of r on δ in Theorem 1.18
to be r = O(log(1/δ)), and this would follow if we can improve the parameter δ = 2−Ω(

√
r)

in Theorem 1.17 to δ = 2−Ω(r).
The aforementioned examples of matrix rigidity and linear codes matching the Gilbert-

Varshamov bound do not seem related to computational hardness assumptions. Assuming
circuit lower bounds in order to handle them, may seem like an overkill. We remark
that one can also apply Theorem 1.18 to solve explicit construction problem that are
computational in nature. For example, the language L consisting of truth tables of functions
f : {0, 1}logn → {0, 1} with almost maximal circuit complexity also satisfies the requirements
in Theorem 1.18, and so, if E is hard for exponential size Σ4-circuits, then there is a
randomized polynomial time algorithm that uses r = n2α random bits and generates an n-bit
truth table of a function with almost maximal circuit complexity with probability at least
1− 2−nα .

This approach can be useful to construct other “computational” pseudorandom objects,
and is used to explicitly construct nonboolean PRGs (formally defined in the next section)
with relative error, under hardness assumptions. This result is described in the next section.

1.13 PRGs with relative error for nonboolean distinguishers
Dubrov and Ishai [11] considered a generalization of PRGs which fools circuits that output
many bits (and not just boolean circuits).

I Definition 1.19 (nb-PRG). Let ` be a parameter, and let C be a class of functions
C : {0, 1}n → {0, 1}`. A function G : {0, 1}r → {0, 1}n is an (`, ε)-nb-PRG for C if for every
C in C, the probability distributions C(G(Ur)) and C(Un) are ε-close, meaning that for every
function D : {0, 1}` → {0, 1}, |Pr[D(C(G(Ur))) = 1]− Pr[D(C(Un)) = 1]| ≤ ε.

For every ` ≥ 1, an (`, ε)-nb-PRG is in particular a (1, ε)-nb-PRG which is easily seen to
be equivalent to an ε-PRG. Thus, (`, ε)-nb-PRGs are a generalization of ε-PRGs, and so the
limitations of Theorem 1.12 apply to them.

The motivation for nb-PRGs is reducing the randomness complexity of sampling pro-
cedures. We now explain this application. Let P be a distribution over `-bit strings, and
let A be a sampling algorithm for it. That is, A is a poly(n)-time algorithm such that
A(Un) = P . An (`, ε)-nb-PRG G : {0, 1}r → {0, 1}n for size nb-circuits can be used to sample
a distribution P ′ that is ε-close to P , using only r < n random bits. This is because the
sampling algorithm B(Ur) = A(G(Ur)) produces a distribution that is ε-close to A(Un).7
Note that if we want B to run in time poly(n), we must require that G runs in time poly(n).
Thus, this is another setting where we would like to have PRGs computable in time poly(n).

7 It is important to note that if G is a standard PRG, we can only guarantee that B(Ur) is computationally
indistinguishable from A(Un), rather than statistically indistinguishable.
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In this paper we consider a generalization of nb-PRGs with (ε, δ)-relative error.

I Definition 1.20 (re-nb-PRG). Let C be a class of functions C : {0, 1}n → {0, 1}`. A
function G : {0, 1}r → {0, 1}n is an (`, ε, δ)-re-nb-PRG for C if for every C in C, the
probability distributions C(G(Ur)) and C(Un) are (ε, δ)-close in relative distance, meaning
that for every function D : {0, 1}` → {0, 1}, Pr[D(C(G(Ur))) = 1] re∼(ε,δ) Pr[D(C(Un)) = 1].

If we use re-nb-PRGs (rather than nb-PRGs) in the construction of the sampling algorithm
B, then we “preserve probability of small events”. That is for every D : {0, 1}` → {0, 1}, if
Pr[D(P ) = 1] ≤ δ then Pr[D(P ′) = 1] ≤ O(δ). This property is helpful in some applications.

Previous work by Applebaum et al. [2] (improving upon [11, 4]) gives (`, n−O(1))-nb-PRGs
with seed length r = O(` + logn) and ε = n−O(1). This is under the assumption that E
is hard for exponential size nondeterministic circuits. Note that r ≥ ` is a trivial lower
bound on the seed length. In this paper we construct (ε, δ)-re-nb-PRGs with ε = n−O(1) and
r = 1 · `+O(log(1/δ))2 for δ ≥ 2−nΩ(1) . This is done under the stronger assumption that E
is hard for exponential size Σ6-circuits.

I Theorem 1.21 (re-nb-PRG with seed length 1 ·`+O(log(1/δ))2). If E is hard for exponential
size Σ6-circuits then for every constants b > 1, α > 0 there exists a constant c > 1 such that
for every functions ` = `(n) ≤ n, δ = δ(n) ≤ 2−nα , and every sufficiently large n, there is
a function G : {0, 1}r → {0, 1}n that is an (`, ε, δ)-re-nb-PRG for circuits of size nb with
ε = n−b, and r = `+ c · (log(1/δ))2.

Note that the dependence of r on ` is an additive term of 1 · `. This is best possible,
with the correct leading constant. We would have liked the dependence of r on δ to be
an additive term of O(log(1/δ)). Once again, we would get this if we could improve the
parameter δ = 2−Ω(

√
r) in Theorem 1.17 to δ = 2−Ω(r). We also remark that the requirement

that δ ≤ 2−nα may be omitted, and then r = `+ c · ((log(1/δ))2 + logn).

1.14 Cryptographic applications of re-nb-PRGs
Dubrov and Ishai [11] observe that nb-PRGs can be used to reduce the randomness complexity
of parties in multi-party cryptographic protocols. They consider the setup where honest
parties run in polynomial time, and security is information theoretic (that is security is
guaranteed even against unbounded adversaries). The precise details can be found in [11].
When using nb-PRGs, this application requires nb-PRGs with small error, as the probability
of a security breach in the final protocol is additive in the error of the nb-PRG. However,
assuming the probability of a security breach in the original protocol is at most δ (for some
negligible δ), we can use (`, 1, δ)-re-nb-PRGs to “preserve the probability of small events”
and obtain a protocol with reduced randomness complexity, and where the probability of a
security breach is at most 4 · δ.

The key idea in the application above is that the nb-PRG is used to fool “honest
parties” rather than “adversaries”. This observation is crucial if we want to use NW-style
PRGs in cryptography. More precisely, unlike “cryptographic PRGs” which fool circuits of
superpolynomial size, NW-style PRGs (such as our re-nb-PRGs) only fool circuits of fixed
polynomial size nb and run in time poly(nb). Thus, they are unsuitable to fool cryptographic
adversaries (which are more powerful than honest parties).

It is our hope that re-nb-PRGs may find other applications in cryptography. Toward this
goal, we present the following toy example of a potential application of re-nb-PRGs: Suppose
we are given a one-way function f : {0, 1}n3 → {0, 1}n that is computable in time nb and
circuits of very large size (say s = 2n1/3) cannot invert with probability larger than δ. Can
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9:12 Pseudorandomness When the Odds are Against You

we reduce the input length of f to say O(n) bits while preserving its security? Note that
this only makes sense if we use tools that don’t imply a stronger one-way function. We are
not aware of such a conversion.

Nevertheless, using a poly(n)-time computable (n, 1, δ)-re-nb-PRG G : {0, 1}O(n) →
{0, 1}n3 for size nb circuits (which we can achieve for δ = 2−

√
n under Theorem 1.21) we can

argue that f ′(x) = f(G(x)) is a one-way function where the input length is reduced from n3

to O(n), and the security of f is preserved: circuits of size s can invert f ′ with probability
at most 4 · δ.

2 Overview of the technique

In this section we give a high level overview of the technique used to prove our results.

2.1 HSGs with low error
We assume that E is hard for exponential size nondeterministic circuits, and construct a
poly(n)-time computable ε-HSG G : {0, 1}O(logn)+log(1/ε) → {0, 1}n for circuits of fixed
polynomial size. By Theorem 1.7 our assumption implies a poly(n)-time computable 1

2 -HSG
G′ : {0, 1}O(logn) → {0, 1}2n for nondeterministic circuits of fixed polynomial size. It is
standard that using z ← U2n, we can produce t = O(1/ε) ≤ 2n pairwise independent random
variables Y1(z), . . . , Yt(z) of length n. Furthermore, even though t may be super-polynomial,
there is a polynomial time algorithm that given z, i, outputs the i’th variable Yi(z).

Our generator G will receive two seeds: a seed x for G′, and an i ∈ [t]. It uses x to
prepare a 2n bit long output string z = G′(x), and then uses z as a seed to generate the i’th
random variable Yi(z).

Let D : {0, 1}n → {0, 1} be some fixed polynomial size deterministic circuit with
Pr[D(Un) = 1] ≥ ε, and let B = {x : D(x) = 1}. By Chebyshev’s inequality, pairwise
independent variables have a “hitting property” for sets B of size at least ε · 2n, meaning that
with probability at least 2/3 over choosing z ← U2n, there exists an i ∈ [t] such that Yi(z) ∈ B
which means that D(Yi(z)) = 1. Consider the nondeterministic circuit C : {0, 1}2n → {0, 1},
which given z ∈ {0, 1}2n accepts iff ∃i : D(Yi(z)) = 1. This is a fixed polynomial size
nondeterministic circuit (and jumping ahead we mention that it uses log t = log(1/ε) +O(1)
nondeterministic bits). We have that Prz←U2n [C(z) = 1] ≥ 2/3. Thus by the guarantee on
G′, there exists a seed x for G′ such that C(G′(x)) = 1. This in turn means that there exists
a seed (x, i) for G, such that D(G(x, i)) = 1 as required. The precise argument is given in
Section 5.

The proof above uses the standard pairwise independent based randomness efficient
amplification of success probability of randomized algorithms with a twist: The circuit C uses
its nondeterminism to “speed up” the amplification as it does not have to explicitly go over
all t options for i. A technically related (though somewhat different) idea was used by Paturi
and Pudlak [30] in the context of “boosting” the success probability of hypothetical efficient
randomized circuit-sat algorithms. There, given a circuit D, one considers a deterministic
circuit D′ which is hardwired with a “good string” z, and on input i, applies C on Yi(z). The
key idea is that the input length of D′ is log(1/ε) < n, and this is used to argue that feeding
D′ (rather than D) to the hypothetical circuit-sat algorithm, allows one to make progress.

2.2 Derandomization of randomized algorithms with large error
By going over all seeds of our ε-HSG we can derandomize one-sided error polynomial time
algorithms with success probability ε and prove Theorem 1.9. We now explain that this
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argument extends also to two-sided error algorithms of the form of Theorem 1.14. We
make slight modifications in the construction above. This time we require that G′ is a
1
10 -PRG for Σ1-circuits, and by Theorem 1.7 such PRGs follow from the assumption that E
is hard for exponential size Σ1-circuits (and a more careful analysis allows an even weaker
assumption). We also increase the number of pairwise independent variables from O(1/ε) to
t = O(1/ε2). We do this, as with this “query complexity”, pairwise independent variables
give an “averaging sampler”, which means that for any set B ⊆ {0, 1}n, the fraction of Yi’s
that land in B is with probability 9/10 close to the volume |B|2n of B. Let G be the function
obtained by these modifications.

We do not expect to prove that G is an ε-PRG, as by Theorem 1.12 such a proof will not
be black-box. More concretely, the generator G′ has an error of 1/10, and so a 1/10-fraction
of its seeds may be useless, and we cannot hope that G has error < 1/10.

Let D : {0, 1}n → {0, 1} be a fixed polynomial size circuit. In the two sided error case, we
want to distinguish the case that Pr[D(Un) = 1] ≥ 2ε from the case that Pr[D(Un) = 1] ≤ ε.
We show how to use G in order to distinguish these two cases, in deterministic time poly(n)/ε2.

In analogy to the previous argument, we can show that with probability 9/10 over z ← U2n,
the estimate p(z) = 1

t · | {i : D(Yi(z)) = 1} | is very close to the acceptance probability of
D. For simplicity, let us cheat and assume equality. The key observation is that by the
classical results of [40, 39, 26] on approximate counting of NP witnesses (see Section 4.1
for a precise statement), p(z) can be estimated by a fixed polynomial size Σ1-circuit C(z).
Furthermore, this estimation is sufficiently accurate to distinguish the case that p(z) ≥ 2ε
from the case that p(z) ≤ ε. Similarly to the earlier argument, the fact that G′ fools C,
means that replacing z ← U2n with G′(x) : x← UO(logn) makes little difference. This means
that by going over all x ∈ {0, 1}c logn, and checking if for at least half of them p(G′(x)) ≥ 2ε,
we can indeed distinguish the two cases. This takes time poly(n)/ε2 as required. The precise
argument is given in Section 5.

2.3 HSGs with low error imply hardness for weak nondeterministic
circuits

Let G : {0, 1}r → {0, 1}n be an ε-HSG for fixed polynomial size circuits. Note that in
Section 2.1 we explained that such HSGs follow from 1

2 -HSGs for fixed polynomial size
nondeterministic circuits with roughly log(1/ε) nondeterministic bits. We now show that G
implies such HSGs. Indeed consider, the function G′ that outputs the first n− k bits of the
output ofG, for k = log(1/ε)−1. We show thatG′ is a 1

2 -HSG for fixed polynomial size circuits
with k nondeterministic bits. Indeed, let C : {0, 1}n−k → {0, 1} be such a circuit that accepts
at least half of its inputs. This means that there exists a fixed polynomial size deterministic
circuit D : {0, 1}n → {0, 1}, such that C(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1. The fact
that C accepts half of its input implies that D accepts at least 1

2 · 2
−k = ε fraction of the

pairs (x, y) ∈ {0, 1}n, which implies that there exists a seed s for G such that D(G(s)) = 1.
This in turn implies that C(G′(s)) = 1 as required.

There is an easy general transformation by Impagliazzo, Shaltiel and Wigderson [23]
which transforms an HSG into a worst-case hard function in E. This transformation can
be used to transform G′ into a function that is hard for nondeterministic circuits with few
nondeterministic bits. The precise argument is given in Section 6.
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2.4 A construction of re-PRGs
Our starting point is a construction of Trevisan and Vadhan [43], which under the assumption
that E is hard for exponential size Σ1-circuits, gives a polynomial time computable function
f : {0, 1}n → {0, 1}n′=Ω(n) such that for every fixed polynomial size circuit A : {0, 1}n →
{0, 1}, PrV←Un [A(V ) = f(V )] ≤ 2−n′/3.8

A natural approach toward constructing PRGs is to use the Goldreich-Levin theorem [14]
to transform f into a boolean function g. Indeed, the standard way to do this is to define
g(v, y) = EC(f(v))y where EC is a binary list-decodable code (and the GL theorem is for
the special case of the Hadamard code). For this to work, we require that EC has an efficient
list-decoding algorithm that can recover from distance 1

2 − ε. In our setting, ε = 2−Ω(n), and
we want a list-decoding algorithm implementable by a polynomial size circuit D. This is
obviously impossible, as D needs to read at least 1/ε positions in the “received word”.

We may hope to circumvent this problem by allowing D to be a poly-size Σi-circuit.
This will allow D to query the received word in exponentially many positions (on different
computation paths). On the one hand, if we assume that E is hard for exponential size
Σi+1-circuits, then the proof of Trevisan and Vadhan (which relativizes) gives security against
Σi-circuits. However, the lower bounds of Applebaum et al. [2] show that even Σi-circuits
cannot be used for this task of list decoding binary codes. Indeed, if we could get a boolean
function g that cannot be computed with advantage better than ε = 2−Ω(n) over random
guessing, we would obtain an O(ε)-PRG by plugging g into the NW generator.

Instead, we shoot for a weaker conclusion, and try to show that the function g has the
property that G(x) = (x, g(x)) is a (2−Ω(n), n−O(1))-re-PRG with one bit stretch. (Later,
we will be able to get arbitrary stretch by plugging g in the NW-generator). That is, that
for every fixed polynomial size circuit C, Pr[C(G(Un)) = 1] re∼(n−O(1),δ) Pr[C(Un+1) = 1] for
δ = 2−Ω(n). We give a “list-decoding algorithm”, that given C, constructs a Σ2-circuit A
that computes the function f too well. This allows us to choose i = 2 and start from the
assumption that E is hard for exponential-size Σ3-circuits.

Our “list-decoding algorithm” builds on ideas by Trevisan and Vadhan [43] and Applebaum
et al. [2]. For our purposes it is more intuitive to restate the construction of g in an equivalent
way: We set g(v, y) = E(f(v), y) where E is a strong extractor with error δO(1), which allows
seed length and entropy threshold of O(log(1/δ)).

After a suitable averaging argument, we get that for a non-negligible fraction of good
v, a circuit C that distinguishes G(Un) from Un+1, can be used to distinguish (Y,E(z∗, Y ))
from uniform for z∗ = f(v). The guarantee of strong extractors says that there cannot be
more than poly(1/δ) strings z ∈ {0, 1}n′ for which this distinguishing is possible. (As the
uniform distribution over these z’s would be a source on which the extractor fails).

The key observation is that we can design a Σ1-circuit Bv(z) which uses approximate
counting of NP witnesses and accept iff C distinguishes (Y,E(z, Y )) from uniform with
relative distance. This is because we can use approximate counting to estimate the acceptance
probability of C on these two distributions.9 We have that z∗ = f(v) is one of the few z’s
that Bv accepts. We can guess z∗ = f(v) by using random sampling of NP-witnesses [26, 7]
to uniformly sample an accepting input of Bv. This strategy can be seen as a Σ2-circuit A
that given v computes f(v) with probability δO(1) = 2−Ω(n), contradicting the hardness of f .

8 This is another example showing that nondeterministic reductions can achieve very low error.
9 It is important to note that here we critically use the fact that C distinguishes with relative distance,

and we cannot hope to do this for an additive distance of 2−Ω(n). This is the reason why constructing
re-PRGs with small δ is easier than constructing δ-PRGs.
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We obtain re-PRGs with polynomial stretch by plugging g into the NW-generator. The
analysis of the NW-generator can be used (with suitable modifications) to argue that if
G(x) = (x, g(x)) is an re-PRG then we obtain an re-PRG with larger output with closely
related ε, δ. An inherent limitation of the NW-generator (that is discussed in detail in [24])
gives that the seed length is quadratic in the input length of g. This is the reason why we get
that the seed length has quadratic dependence on log(1/δ). The precise argument is given in
Section 7.

2.5 A construction of re-nb-PRGs
We first show that an (ε, δ · 2−`)-re-PRG for Σ1-circuits is an (`, O(ε), O(δ))-re-nb-PRG for
deterministic circuits. This implication appears in Section 8.

This means that our previous construction of re-PRGs can give re-nb-PRGs assuming E is
hard for exponential size Σ4-circuits. A disadvantage of this approach is that because of the
quadratic loss mentioned above, we obtain seed length approximately r = O(`+ log(1/δ))2.
Previous work on nb-PRGs [4, 2] already achieved seed length that is linear in ` which is
optimal up to constants. We can obtain seed length r = 1 · `+O(log(1/δ))2. That is, we can
remove the quadratic dependence on ` but not on log(1/δ).

For this, we imitate an approach developed by Applebaum et al. [2], which we can
now improve as we can use re-PRGs instead of standard PRGs. We first show that with
probability 1− δ, a random poly(nb)-wise independent hash function h : {0, 1}r → {0, 1}n
is an re-PRG for size nb Σ1-circuits, with excellent dependence of r on ε and δ. We then
show that checking whether a given circuit h is not an re-PRG for Σ1-circuits can be done
by Σ3-circuits. Loosely speaking, this is because a Σ3-circuit can guess a Σ1-circuit that is
not fooled by h, and use approximate counting of NP-witnesses (which costs an NP-oracle)
to check whether that circuit is not fooled by the given circuit. (Here again, it is crucial that
the notion of distance is relative, so that approximate counting can be used).

Finally, we construct the re-nb-PRG G as follows: We use two seeds x1 for h and x2 for
an (n−O(1), δ)-re-PRG G′ for Σ3-circuits (that we have under the assumption that E is hard
for exponential size Σ6-circuits). G computes G′(x2) and use this to choose a hash function
h from the family. The final output is h(x1).

We have that a random h from the family is an re-PRG for Σ1-circuits with probability
1− δ, and that Σ3-circuits can check whether h is an re-PRG for Σ1-circuits. As re-PRGs
preserve the probability of small events, we conclude that with probability 1− 4δ over the
choice of x2 we obtain a hash function h that is an re-PRG for Σ1-circuits (which we already
showed is an re-nb-PRG for deterministic circuits). Therefore, G is an re-nb-PRG. The
precise argument is given in Section 8.

3 Organization of the paper

In Section 4 we state the classical results on approximate counting and sampling of NP
witnesses. We also define several notions of relative approximation and prove some useful lem-
mas regarding them. In Section 5 we construct HSGs with low error, and prove Theorem 1.8.
We also show how to derandomize two sided error algorithms and prove Theorem 1.14.
In Section 6 we show that HSGs with low error are essentially equivalent to 1

2 -HSGs for
nondeterministic circuits with few nondeterministic bits. We also prove Theorem 1.11 and
show that HSGs with low error imply lower bounds for nondeterministic circuits with few
nondeterministic bits. In Section 7 we give our construction of re-PRGs. In Section 8 we
show how to use re-PRGs in order to construct re-nb-PRGs.
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4 Preliminaries

4.1 Approximate counting and uniform sampling of NP witnesses
We use the classical result on approximate counting and uniform sampling of NP-witnesses
[40, 39, 26, 7], which we now state in a way that is convenient for our application.

I Definition 4.1 (relative approximation). We say that a number p is an ε-relative approxi-
mation to q if e−ε · q ≤ p ≤ eε · q.

I Theorem 4.2 (approximate counting [40, 39, 26]). For every i ≥ 0, every sufficiently large
s and every 0 < ε ≤ 1, there is a Σi+1-circuit of size poly(s/ε) that given a Σi-circuit C of
size s outputs an ε-relative approximation of | {x : C(x) = 1} |.

I Theorem 4.3 (uniform sampling [26, 7]). For every i ≥ 0, every sufficiently large s and
every δ > 0, there is a randomized size poly(s, log(1/δ)) Σi+1-circuit A that given a Σi-circuit
C : {0, 1}n → {0, 1} of size s ≥ n outputs a value in {0, 1}n ∪ {⊥} such that for every size
s Σi-circuit, Pr[A(C) = ⊥] ≤ δ and the distribution (A(C)|A(C) 6= ⊥) is uniform over
{x : C(x) = 1}.

4.2 Notions of relative error
In Section 1 we defined a notion of relative distance between two numbers which we notate
by p1

re∼(ε,δ) p2. This notion was used in the definition of re-PRGs and re-nb-PRGs. In this
section we discuss properties of this distance, as well as related notions of distance.

I Definition 4.4. Let p1, p2 be two numbers, and let pmax = max(p1, p2) and pmin =
min(p1, p2). We say that p1, p2 are

ε-close if pmax − pmin ≤ ε, and use the notation p1
ad∼ε p2.

(ε, δ)-relative-close if pmax ≤ eε · pmin + δ, and use the notation p1
re∼(ε,δ) p2.

(ε, δ)-relative-threshold-close if pmax ≤ δ or pmax ≤ eε · pmin, and use the notation
p1

rt∼(ε,δ) p2.
The three notions above can be used to define distance between probability distributions.
Thus, for example, if X,Y are distributions over a finite set Ω, we write X re∼(ε,δ) Y if for
every function D : Ω→ {0, 1}, Pr[D(X) = 1] re∼(ε,δ) Pr[D(Y ) = 1].

It is easy to verify the following relationships between the three notions, by using the
approximations 1 + x ≤ ex ≤ 1 + 3x and 1− x ≤ e−x ≤ 1− x/3 which hold for 0 ≤ x ≤ 1

I Lemma 4.5. For every numbers 0 ≤ p1, p2 ≤ 1, and 0 ≤ ε, δ ≤ 1
p1

re∼(ε,δ) p2 ⇒ p1
ad∼3ε+δ p2.

p1
rt∼(ε,δ) p2 ⇒ p1

re∼(ε,δ) p2.
For ε ≤ 1

2 , p1
re∼(ε,δ) p2 ⇒ p1

rt∼(4ε,4δ/ε) p2.
p1

rt∼(ε,δ) p2 ⇒ p1
ad∼3ε+δ p2.

p1
ad∼δ p2 ⇒ p1

rt∼(ε,3δ/ε) p2.

In our constructions of re-PRGs and re-nb-PRGs, we will shoot for ε = n−O(1) and
δ = 2−nΩ(1) . Note that by Lemma 4.5, for these choices, the notions of “relative-close”
and “relative-threshold-close” are equivalent. It turns out that for our purposes, the notion
of “relative-threshold-close” is easier to work with. For this reason we now redefine the
notions of re-PRGs and re-nb-PRGs using the notion of relative-threshold-close instead
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of relative-close. The definitions are identical except that we use “relative-threshold-close”
instead of “relative-close”.

I Definition 4.6 (rt-PRGs). A function G : {0, 1}r → {0, 1}n is an (ε, ρ)-rt-PRG for a class
C of functions C : {0, 1}n → {0, 1} if for every C in the class C,

Pr[C(G(Ur)) = 1] rt∼(ε,ρ) Pr[C(Un) = 1].

I Definition 4.7 (rt-nb-PRG). Let C be a class of boolean functions C : {0, 1}n → {0, 1}`.
A function G : {0, 1}r → {0, 1}n is an (`, ε, ρ)-rt-nb-PRG for C if for every C in C, the
probability distributions C(G(Ur))

rt∼(ε,ρ) C(Un).

By the discussion above it immediately follows that:

I Fact 4.8 (rt-PRGs are re-PRGs). An (ε, ρ)-rt-PRG is also an (ε, ρ)-re-PRG, and an (ε, ρ)-
rt-nb-PRG is also an (ε, ρ)-re-nb-PRG.

In the remainder of the paper we will only discuss rt-PRGs.

4.3 Some useful technical lemmas on relative error
The next lemma shows that if we can approximate two quantities p1, p2 using an η-relative
approximation, for η < ε/10 then when we can essentially tell if p1

rt

6∼(ε,ρ) p2.

I Lemma 4.9. Let 0 ≤ p1, p2 ≤ 1 and let p′1, p′2 be η-relative approximations of p1, p2

respectively. Let T (p′1, p′2) be a test that accepts iff max(p′1, p′2) ≥ ρ·e−η and max(p′1,p
′
2)

min(p′1,p′2) ≥ e
ε−2η.

Then,

p1
rt

6∼(ε,ρ) p2 ⇒ T (p′1, p′2) accepts.

T (p′1, p′2) accepts ⇒ p1
rt

6∼(ε−4η,ρ·e−2η) p2.
We also need the following technical lemma that allows us to perform “Markov style arguments”
with relative distance.

I Lemma 4.10. Let R,W be independent random variables, and let ψ1, ψ2 be boolean
functions. Assume that

Pr[ψ1(R,W ) = 1]
rt

6∼(ε,ρ) Pr[ψ2(R,W ) = 1].

Let ε′ = ε/10 and ρ′ = ρ · ε/10, and let G =
{
r : Pr[ψ1(r,W ) = 1]

rt

6∼(ε′,ρ′) Pr[ψ2(r,W ) = 1]
}
.

Then Pr[R ∈ G] ≥ ρ · ε/10.

Proof. Let ar = Pr[ψ1(r,W ) = 1], br = Pr[ψ2(r,W ) = 1] and pr = Pr[R = r]. We
can write a = Pr[ψ1(R,W ) = 1] =

∑
r p(r)ar and b = Pr[ψ2(R,W ) = 1] =

∑
r p(r)br.

Assume w.l.o.g. that a > b and we know that a > eεb and a > ρ. We conclude that
a− b =

∑
r p(r)(ar − br) > max((eε − 1)b, ρ− b) and assume that (ar − br) is positive for all

r (otherwise we take only positive terms and increase the sum).
Let A = {r : ar > eε

′
br ∧ ar > ρ′}, B = {r : ar ≤ ρ′}, C = {r : ar ≤ eε

′
br ∧ ar > ρ′}.∑

r∈A
p(r) ≥

∑
r∈A

p(r)(ar− br) > max((eε−1)b, ρ− b)−
∑
r∈B

p(r)(ar− br)−
∑
r∈C

p(r)(ar− br).
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Goal: Construct a poly(n)-time computable ε-HSG, G : {0, 1}r → {0, 1}n for circuits of size nb
with r = 1 · log(1/ε) +O(b · log(·n)).

Assumption: E is hard for exponential size nondeterministic circuits.
Parameters:

b, n - We are shooting to fool circuits of size nb.
ε ≥ 2−(n−1) - the required error.

Ingredients:
We make use of a 1

2 -HSG for nondeterministic circuits. Specifically, let b′ = a · b for a
constant a > 1 to be chosen later. By Theorem 1.7, there exists a constant c > 1 such that
the assumption that E is hard for exponential size nondeterministic circuits, implies that for
every sufficiently large n, there is a poly(n)-time computable G′ : {0, 1}c logn → {0, 1}2n
that is a 1

2 -HSG for size nb
′
nondeterministic circuits.

A hitter, that is a function hitter : {0, 1}2n → ({0, 1}n)4/ε such that for every B ⊆ {0, 1}n,
PrZ←U2n [∃i : hitter(Z)i ∈ B] ≥ 2

3 . It is standard that this is achieved by the “pair-wise
independent hitter” that uses its 2n bit input to sample 4/ε pairwise independent n
bit variables, (see e.g., [13]). Moreover, given (z, i), hitter(z)i can be computed in time
poly(n).

The HSG: Define G : {0, 1}c logn+log(4/ε) → {0, 1}n by G(x, i) = hitter(G′(x))i.

Figure 1 An HSG for low error.

Since
∑
r∈B p(r)(ar − br) ≤ ρ′ and

∑
r∈C p(r)(ar − br) ≤ (eε′ − 1)b we conclude∑

r∈A
p(r) > max((eε − eε

′
)b− ρ′, ρ− eε

′
b− ρ′).

If b < 0.25ρ then ρ−eε′b−ρ′ > ρ(1−e/4−1/10) > 0.22ρ. If b ≥ 0.25ρ then (eε−eε′)b−ρ′ >
(0.9·0.25−0.1)ερ = 0.125ερ. So we can conclude that Pr[R ∈ G] =

∑
r∈G p(r) ≥

∑
r∈A p(r) >

0.125ερ since A ⊆ G. J

5 Derandomization of poly-time randomized algorithms with large
error

In this section we prove construct the low-error HSG of Theorem 1.8 and show how to extend
the argument to handle two-sided error algorithms, proving Theorem 1.14.

5.1 An HSG for low error
We first consider the case of one-sided error algorithms which can be derandomized using
hitting-set generators. The following theorem gives a construction of HSGs and implies
Theorem 1.8 and Theorem 1.9.

I Theorem 5.1 (HSG with seed length log(1/ε) +O(logn)). Let b > 1 be a constant, and let
ε = ε(n) ≥ 2−(n−1). Assume that E is hard for exponential size nondeterministic circuits. Let
G be the function constructed in Figure 1, with the parameters chosen there. Then there exists
a constant c > 1 such that for every sufficiently large n, G : {0, 1}log(1/ε)+c logn → {0, 1}n is
an ε-HSG for size nb circuits. Furthermore, G is computable in time poly(nb).

Proof. Let D : {0, 1}n → {0, 1} be a size nb circuit, let B = {y : D(y) = 1}, and assume
that |B| ≥ ε · 2n. Let T =

{
z ∈ {0, 1}2n : ∃i : hitter(z)i ∈ B

}
. By the properties of hitter
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|T | ≥ 2
3 · 2

2n. Note that by the definition of T , there exists a nondeterministic circuit
C : {0, 1}2n → {0, 1} of size poly(n) + nb such that C(z) = 1 iff z ∈ T . We can choose the
constant a to be sufficiently large so that nb′ = na·b is larger than the size of C. It follows
that G′ fools C and in particular, there exists x ∈ {0, 1}c logn such that C(G′(x)) = 1 which
implies D(G(x, i)) = D(hitter(G′(x)i) = 1 as required. J

5.2 Extending the argument to 2-sided error randomized algorithms
In this section we prove Theorem 1.14. Our first step is to modify the construction in Figure 1
to use a PRG instead of an HSG and an averaging sampler instead of a hitter. Specifically,
we replace hitter : {0, 1}2n → ({0, 1}n)4/ε with a function samp : {0, 1}2n → ({0, 1}n)t for
t = O(1/ε2). that has the property that for every B ⊆ {0, 1}n with |B| ≥ 2

3 · 2
n,

Pr
Z←U2n

[∣∣∣∣ | {i : samp(Z)i ∈ B} |
t

− |B|2n

∣∣∣∣ ≥ ε

10

]
≤ 1

10 .

It is standard that this is achieved by the “pair-wise independent sampler” that uses its
2n bit input to sample t = O(1/ε)2 pairwise independent n bit variables, (see e.g., [13]).
We also require that G′ is a 1/10-PRG for Σ1-circuits of size nb

′ (rather than a 1
2 -HSG for

nondeterministic circuits of size nb′). This follows just the same from Theorem 1.7, if we
strengthen the assumption, and assume that E is hard for exponential size Σ1-circuits. We
repeat the construction of Figure 1 with these choices, and let G denote the final function
G obtained in Figure 1 with the modifications above. We prove the following extension of
Theorem 5.1.

I Theorem 5.2. Let b > 1 be a constant, and let ε = ε(n) ≥ 2−n/2. Assume that E is hard
for exponential size Σ1-circuits. Let G be the function constructed in Figure 1, with the
parameters chosen there and the modifications explained above. Then there exists a constant
c > 1 such that for every sufficiently large n, G : {0, 1}c logn × {0, 1}log t → {0, 1}n satisfies
that for every size nb circuit D : {0, 1}n → {0, 1}:

If Pr[D(Un) = 1] ≥ 2 · ε then PrX←Uc logn

[
|{i:D(G(X,i))=1}|

t ≥ 3
2 · ε

]
≥ 4

5 .

If Pr[D(Un) = 1] ≤ ε then PrX←Uc logn

[
|{i:D(G(X,i))=1}|

t ≥ 3
2 · ε

]
≤ 1

5 .
Furthermore, G is computable in time poly(nb).

By the discussion in Section 1.8 we cannot use black-box techniques to construct poly-time
computable PRGs with low error under the assumption of Theorem 5.2. Theorem 5.2 does
not contradict the discussion as the constructed object G is not a PRG. It is not the case
that G(Ur) indistinguishable from uniform with very low error. Nevertheless, the guarantee
on G suffices for derandomization in time exponential in the seed length (as is the case in
PRGs).

Proof. (of Theorem 5.2) Let D : {0, 1}n → {0, 1} be a size nb circuit, let B = {y : D(y) = 1}.
Let

T =
{
z ∈ {0, 1}2n :

∣∣∣∣ | {i : samp(z)i ∈ B} |
t

− |B|2n

∣∣∣∣ ≤ ε

10

}
.

By the properties of samp, |T | ≥ 9
10 · 2

2n. It follows that:
If Pr[D(Un) = 1] ≥ 2 · ε then PrZ←U2n

[
|{i:D(samp(Z)i)=1}|

t ≥ 7
4 · ε

]
≥ 9

10 .

If Pr[D(Un) = 1] ≤ ε then PrZ←U2n

[
|{i:D(samp(Z)i)=1}|

t ≤ 5
4 · ε

]
≥ 9

10 .

CCC 2016



9:20 Pseudorandomness When the Odds are Against You

Consider the Σ1-circuit C : {0, 1}2n → {0, 1} that works as follows: given input
z ∈ {0, 1}2n, C uses Theorem 4.2 to compute an η-relative approximation p′ of p =
| {i ∈ [t] : D(samp(z)i) = 1} |, for η = 1/100. The circuit C accepts iff p′ ≥ t · 3

2 · ε. It
follows that C is a Σ1-circuit of size poly(nb). The quality of approximation is sufficient to
distinguish the case that p ≥ 7

4 · ε and p ≤
5
4 · ε.

We can choose the constant a to be sufficiently large so that nb′ = na·b is larger than the
size of C. It follows that G′ fools C, and the theorem follows.10 J

We are now ready to prove Theorem 1.14.

Proof of Theorem 1.14. Let T (n) ≥ n be a bound on the running time of A. Given an
input x ∈ {0, 1}n, we consider the circuit Dx : {0, 1}T (n) → {0, 1}, which given y simulates
A(x) using y as random coins. We apply Theorem 5.2 to obtain a constant c and a function

G : {0, 1}c logT (n) × {0, 1}log t(n) → {0, 1}T (n),

where t(n) = O(1/ε(n)2). By applying the guarantee of Theorem 5.2 on Dx we get that
x ∈ L ⇒ Pr[Dx(Un) = 1] ≥ 2 · ε] ⇒ PrS←Uc logT (n)

[
|{i:Dx(G(S,i))=1}|

t(n) ≥ 3
2 · ε(n)

]
≥ 4

5 .

x 6∈ L ⇒ If Pr[D(Un) = 1] ≤ ε] ⇒ PrS←Uc logT (n)

[
|{i:Dx(G(S,i))=1}|

t(n) ≥ 3
2 · ε(n)

]
≤ 1

5 .
The deterministic algorithm works as follows: We go over all s ∈ {0, 1}c logT (n). For each one
we count the number of i ∈ [t(n)] for which Dx accepts G(s, i). If the fraction of s, such that

| {i : Dx(G(s, i)) = 1} |
t(n) ≥ 3

2 · ε(n)

is larger than 4
5 , we accept. The correctness of this simulation follows. The running time is

t(n) · poly(T (n)) = poly(T (n))/ε(n)2. J

6 On minimal hardness assumptions for HSGs with low error

We are using hardness for nondeterministic circuits in Theorem 1.8 which constructs an
ε-HSG with very low error. Is this assumption necessary?

In this section we address this question. We will consider a natural intermediate model
of circuits that are stronger than deterministic circuits, and weaker than nondeterministic
circuits, namely nondeterministic circuits that use k ≤ n nondeterministic bits (as defined in
Definition 1.4).

6.1 1
2-HSGs for nondeterministic circuits with few nondeterministic bits

An inspection of our construction of HSG in Figure 1 reveals that the assumption that E
is hard for exponential size nondeterministic circuits was only used to obtain a 1

2 -HSG for
nondeterministic circuits with a number of nondeterministic bits that is roughly k = log(1/ε).
More precisely, our construction gives the following general conversion.

10Note that the circuit C uses its oracle only to perform approximate counting. It can be verified that
this can be done by a circuit C that makes nonadaptive queries to its oracle. This means that for this
argument it is sufficient that G′ fools circuits of this type, and by the “downward collapse theorem”
of Shaltiel and Umans [36], coupled with Theorem 1.7, such PRGs follow under the seemingly weaker
assumption that E is hard for exponential size nondeterministic circuits.
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I Theorem 6.1. For every constant b > 1 there is a constant b′ > b such that for every
sufficiently large n, if G : {0, 1}r → {0, 1}2n is a 1

2 -HSG for size nb′ nondeterministic circuits
that use k = log(1/ε) +O(1) nondeterministic bits, then there is a function G′ : {0, 1}r+k →
{0, 1}n that is an ε-HSG for circuits of size nb. Furthermore, G can be computed in time
poly(n) with one oracle call to G.

We can show the following partial converse:

I Lemma 6.2. Let G : {0, 1}r → {0, 1}n be an ε-HSG for circuits of size s, and let
G′ : {0, 1}r → {0, 1}n−k be G′(x) = G(x)|1,...,n−k for k = log(1/ε)− 1. G′ is a 1

2 -HSG for
size s nondeterministic circuits with k nondeterministic bits.

Proof. Let C : {0, 1}n−k → {0, 1} be a size s nondeterministic circuit with k nondeterministic
bits, which accepts at least half of its inputs. That is, there exists a deterministic circuit
D : {0, 1}n−k × {0, 1}k → {0, 1} of size s such that: for every x ∈ {0, 1}n−k,

C(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1,

and Pr[C(Un−k) = 1] ≥ 1
2 . It follows that Pr[D(Un) = 1] ≥ 1

2 · 2
−k = ε (here we view

D as a circuit with n input bits). Thus, by the guarantee of the HSG, there exists an
s′ ∈ {0, 1}r such that D(G(s′)) = 1. Denote G(s′) = (x′, y′) so that G′(s′) = x′. It follows
that D(x′, y′) = 1 which implies that C(x′) = 1, and we have that C(G′(s′)) = 1. J

This means that in the case that r = Ω(log(1/ε)) the notions of 1
2 -HSG for nondeterministic

circuits with k = log(1/ε) bits of nondeterminism, and the notion of ε-HSGs for standard
circuits are essentially equivalent (in the sense that conversions between them incur only
slight penalties in seed length and circuit size).

Consequently, if we are interested in low error HSGs for deterministic circuits that have
polynomial stretch, we should be interested in HSGs against the class of polynomial size
nondeterministic circuits on n bits with γ · n nondeterministic bits, for a small γ > 0.

6.2 Hardness assumptions that imply HSGs for circuits with weak
nondeterminism

How hard is it to construct 1
2 -HSGs for poly-size nondeterministic circuits with γ · n nonde-

terministic bits? Given the success of the hardness versus randomness paradigm exhibited in
Theorems 1.3 and Theorem 1.7, we can hope that hardness for this circuit class, translates
into pseudorandomness for this circuit class. If this is the case, we can start from the
assumption that there exists a γ > 0 such that E is hard for exponential size nondeterministic
circuits that use γn nondeterministic bits.

An inspection of the hardness versus randomness tradeoffs in the literature reveal that
they do not give such a result. Loosely speaking, because of the need for a hybrid argument,
the reductions need to “perform decoding” from error less than 1/n and make a super-linear
number queries to the distinguisher circuit. This overall means that we require hardness
against circuits with a super-linear number of nondeterministic bits.

This is a pity because it trivially follows that nondeterministic circuits of size s with k
nondeterministic bits can be simulated by deterministic circuits of size s · 2k, and this implies
that:

I Fact 6.3. If E is hard for exponential size circuits, then there exists a γ > 0 such that E
is hard for exponential size nondeterministic circuits that use γn nondeterministic bits.

CCC 2016
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Consequently, a hardness versus randomness tradeoff of the form we hope for, would
be able to start from the assumption that E is hard for exponential size circuits. By the
discussion in the introduction, such hardness versus randomness tradeoffs cannot have
black-box proofs.

6.3 Hardness assumptions implied by HSGs with low error
In the previous section we observed that it is unlikely that we can prove that hardness
for nondeterministic circuits with few nondeterministic bits implies HSGs with low error
against deterministic circuits. We are able to prove the other direction. Specifically, we
show that HSGs with low error and polynomial stretch, that run in time exponential in their
seed length, imply that E is hard for polynomial size nondeterministic circuits with Ω(n)
nondeterministic bits on inputs of length n. The following is a restatement of Theorem 1.11

I Theorem 6.4. Let δ > 0 be a constant. Assume that for every sufficiently large n, there
is a 2−nδ -HSG H : {0, 1}O(nδ) → {0, 1}n for size s ≥ n circuits, and furthermore that the
family of functions H = {Hn} is computable in time exponential in the seed length, that is
time 2O(nδ). Then, there exists a constant γ > 0, and a problem L ∈ E such that for every
sufficiently large n′, nondeterministic circuits of size (γn′)1/δ with γ · n′ nondeterministic
bits fail to compute the characteristic function of L on inputs of length n′.

Our current state of knowledge doesn’t give us any reason to think that HSGs with
ε = 1/n imply the same conclusion.

We use the following simple argument from [23] to prove the following:

I Theorem 6.5. Let H : {0, 1}r → {0, 1}n be a 1
2 -HSG for size s nondeterministic circuits

that use k bits. Let f : {0, 1}r+2 → {0, 1} be the function

f(y) = 0 ⇔ ∃z ∈ {0, 1}n−(r+2),∃x ∈ {0, 1}n s.t. H(x) = y ◦ z

where “◦” denotes concatenation. f cannot be computed by size s-circuits that use k bits of
nondeterminism.

Proof. A circuit C : {0, 1}r+2 → {0, 1} computing f , can be thought of a circuit C :
{0, 1}n → {0, 1} (that only looks at the r + 2 prefix of its input). It is immediate that
Pr[C(Un) = 1] ≥ 3

4 and yet C answers zero on all outputs of G. J

Theorem 6.4 now follows by converting the low error HSG into a 1
2 -HSG for nondeter-

ministic circuits with few nondeterministic bits, and then using Theorem 6.5 to convert the
HSG into a hard function.

Proof of Theorem 6.4. Let c be the constant hidden in the seed length of H, and let n
be sufficiently large. By Lemma 6.2 we have that H ′ : {0, 1}r → {0, 1}n−k is a 1

2 -HSG
for size s ≥ n, nondeterministic circuits with k bits of nondeterminism, for k = nδ − 1.
Let n′ = c · nδ + 2, and let f : {0, 1}n′ → {0, 1} be the function obtained by applying
Theorem 6.5 on H ′. We have that f cannot be computed by size s-circuits that use k bits of
nondeterminism. Note that s ≥ n ≥ Ω(n′)1/δ, and k ≥ Ω(n′). Let L be the language of the
decision problem f . It follows that L ∈ E as f can be computed by running over all 2O(nδ)

seeds of G and computing G, and this takes time 2O(nδ) = 2O(n′). J
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7 A construction of an re-PRG

In this section we construct re-PRGs and prove Theorem 1.17. We will actually construct rt-
PRGs which are in particular re-PRGs. We begin by constructing a poly(n)-time computable
function g : {0, 1}n → {0, 1}, such that the function G : {0, 1}n → {0, 1}n+1 defined by
G(x) = (x, g(x)) is an (1/poly(n), 2−Ω(n))-rt-PRG for fixed polynomial size circuits. This
construction is given in Section 7.1 and builds on ideas from [43, 2]. In order to obtain an
re-PRG with polynomial stretch we apply the Nisan-Wigderson generator [29] where the
function g plays the role of the hard function. The analysis of the NW-generator can be used
(with some modifications) to argue that this yields an rt-PRG.

7.1 rt-PRGs with one bit stretch
7.1.1 The construction
We use the following result by Trevisan and Vadhan [43].

I Theorem 7.1 ([43]). Let i ≥ 0. If E is hard for exponential size Σi+1-circuits, then for
every constant b > 1, there exists some constant α > 0 such that for every sufficiently large
n, there is a function f : {0, 1}n → {0, 1}m=α·n such that for every size nb, Σi-circuit A,
PrX←Un [A(X) = f(X)] ≤ 2−m/3. Furthermore, f is computable in time poly(nb).

I Remark. Theorem 7.1 is not stated in this form in [43]. Nevertheless, it is implicit in the
work of [43] as we now explain.

Lemma 5.1 in [43] states that if a circuit C computes a degree d multivariate polynomial
p : Ft → F (over a field F of size q) correctly on an ε fraction of its inputs (and if certain
conditions on the parameters t, d, q and ε are met) then there exists a Σj-circuit C ′ that
computes p correctly on all inputs, and the size of C ′ is polynomial in the size of C and in
t, d, log q (but does not depend on ε). The lemma claims this for j = 2, but we will later
observe that this holds also for j = 1.

The parameters in the lemma allow ε which is roughly
√
d/q and thinking of p as a

boolean function outputting log q bits, this allows ε to approach 2− 1
2 ·log q if d� q.

By using the “low degree extension” it is standard that E has complete problems that
can be represented as such low degree polynomials. More precisely, given an input length
n, we consider a restriction of an E complete problem to inputs of length ` = c logn and
perform the low degree extension with d = 2γ·`, where γ > 0 is a small constant, t = O(1/γ)
and huge field size q = 2n/t so that the input length of p (in bits) is t log q = n and the
output length is log q = Ω(n). It follows that p can be computed in time 2O(c`) = nO(c) and
if we assume that E is hard for Σj-circuits then p cannot be computed by circuits of size
2β·` = nβc, which we can control by choosing c. The reader can also find this argument in
the proof of Theorem 5.5 in [43].

From this, Lemma 5.1 in [43] gives that p (interpreted as a function with boolean input
and output) is a function that is hard on average. This proves a version of Theorem 7.1 in
which Σ1 is replaced by Σ2. The stronger statement (for Σ1) follows because Lemma 5.1 in
[43] also holds for j = 1. This was stated in an earlier version of [43] and follows by a more
efficient implementation of the proof.

More specifically, the proof of Lemma 5.1 constructs the circuit C ′ by first specifying a
randomized procedure which for every input x ∈ Ft computes p(x) correctly with probability
say 2/3. The procedure requires “nonuniform advice” about p in the form of a point z ∈ Ft
and its evaluation p(z) (the existence of a “good point” z is shown in the proof). The
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Goal: Construct a poly(n)-time computable (n−b, 2−Ω(n))-rt-PRG, G : {0, 1}n → {0, 1}n+1 for
Σi-circuits of size nb.

Assumption: E is hard for exponential size Σi+3-circuits.
Parameters:

i, b, n - We are shooting to fool Σi-circuits of size nb.
We set ρ = 2−µn for a constant 0 < µ < 1

2 to be specified later.
We set t = νn for a constant ν > 1

2 to be specified later.
Ingredients:

We make use of an exponentially hard on average function due to Trevisan and Vadhan [43].
Specifically, let b′ = a · b for a constant a > 1 to be chosen later. By Theorem 7.1, there
exists a constant α > 0 such that under the assumption that E is hard for exponential size
Σi+3-circuits, for every sufficiently large n, there is a polynomial time computable function
f : {0, 1}t → {0, 1}t

′=α·t such that for every size nb
′
, Σi+2-circuit A, PrX←Ut [A(X) =

f(X)] ≤ 2−t
′/3.

A strong (k = O(log(1/ρ)), ρ/2000)-extractor, E : {0, 1}t
′
× {0, 1}d → {0, 1}, with seed

length d = O(log(1/ρ)). There are constructions of polynomial time computable extractors
with these parameters [17]. (In fact, such extractors immediately follow from binary poly-
time (1/2 − Ω(ρ),poly(1/ρ))-list-decodable codes with rate poly(ρ) [42]. We have that
d = O(log(1/ρ) = e · µ · n for some constant e > 1. We now specify the constant ν (which
was used to define t = ν · n) so that the equality n = t + d holds, we will later choose
µ > 0 to be sufficiently small so that we indeed have that ν > 1/2 as promised.

The rt-PRG: Define g : {0, 1}t × {0, 1}d → {0, 1}, by g(v, y) = E(f(v), y). The final generator
G : {0, 1}n → {0, 1}n+1 is given by G(v, y) = (v, y, g(v, y)).

Figure 2 An rt-PRG with one bit stretch.

computation of the procedure can be expressed in the following form: Given x, the procedure
nondeterministically guesses polynomially many strings h1, . . . , h` of polynomial length. For
each one it prepares a circuit Ti which depends on hi (and also on x, z, p(z)). The procedure
then uses approximate counting to verify that sufficiently many of the Ti’s accept more than
a fixed number of inputs.

Indeed, such a computation can be described (after removing the random coins) by a
nondeterministic circuit that uses an NP-oracle to perform approximate counting. Overall,
this gives a Σ2-circuit.

However, approximate counting is only used to check that a given circuit accepts more
than a fixed number of inputs. The problem of checking that the number of accepting inputs
is larger than a fixed quantity is easier than approximating the number of accepting inputs:
it can be solved by an Arthur-Merlin protocol as shown by Goldwasser and Sipser [16]. With
this implementation, the entire procedure can be seen (after removing the randomness) as a
Σ1-circuit.

Our construction is given in Figure 2. Note that an intuitive overview is given in Section 2.

I Theorem 7.2 (rt-PRG with one bit stretch). Let i ≥ 0, b > 1 be constants. Assume that E
is hard for exponential size Σi+3 circuits. Let g,G be the functions constructed in Figure 2,
with the parameters chosen there. Then there exists a constant µ > 0 such that for every
sufficiently large n, G(x) = (x, g(x)) is an (n−b, ρ)-rt-PRG for size nb, Σi-circuits, for
ρ = 2−µ·n. Furthermore, g is computable in time poly(nb).
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7.1.2 Proof of Theorem 7.2
We start by proving the following lemma (which captures the role that strong seeded extractors
play in the proof).

I Lemma 7.3. Let E : {0, 1}n × {0, 1}d → {0, 1} be a (k, ρ)-strong extractor, and let
T : {0, 1}d × {0, 1} → {0, 1} be a function. Let

Z =
{
z : Pr

Y←Ud
[T (Y,E(z, Y )) = 1]

ad

6∼ρ Pr
Y←Ud,W←U1

[T (Y,W ) = 1]
}
.

Then |Z| ≤ 2 · 2k.

Proof. We can partition Z into two sets according to which of the two terms in the definition
of Z is the maximal one. If |Z| > 2 · 2k then we can assume w.l.o.g

|{z : Pr
Y←Ud

[T (Y,E(z, Y )) = 1]− Pr
Y←Ud,W←U1

[T (Y,W ) = 1] > ρ}| > 2k.

Let X be a random variable that is uniformly distributed over Z and note that H∞(X) > k.
E is a (k, ρ)-strong extractor which implies that (Y,E(X,Y )) is ρ-close to (Y,W ). This
implies that |Pr[T (Y,E(X,Y )) = 1]−Pr[T (Y,W ) = 1]| ≤ ρ, and we get a contradiction. J

We are now ready to prove Theorem 7.2. We assume (for contradiction) that G is not a
(n−b, ρ)-rt-PRG for size nb Σi-circuits, and our goal is to show that there is a Σi+2-circuit A
of size nb′ such that PrX←Ut [A(X) = f(X)] > 2−t′/3.

Our assumption says that there exists a size nb Σi-circuit C such that Pr[C(G(Un)) =

1]
rt

6∼(n−b,ρ) Pr[C(Un+1) = 1]. For the remainder of the proof, let us consider a probability
space that consists of three independent random variables: V ← Ut, Y ← Ud and U ← U1.
By the construction of G we have that:

Pr[C(V, Y,E(f(V ), Y )) = 1]
rt

6∼(n−b,ρ) Pr[C(V, Y, U) = 1]

We now apply Lemma 4.10. For this purpose we set R = V , W = (Y,U). We use the notation
W1 = Y and W2 = U . Let ψ1(r, w) = C(r, w1, E(f(r), w1)) and ψ2(r, w) = C(r, w1, w2). We
apply the lemma and obtain that:

I Claim 7.4. Let ε′ = n−b/10, ρ′ = ρ · n−b/10 and let

G =
{
v ∈ {0, 1}t : Pr[C(v, Y,E(f(v), Y )) = 1]

rt

6∼(ε′,ρ′) Pr[C(v, Y, U) = 1]
}
.

It follows that Pr[V ∈ G] ≥ ρ · n−b/10.

Recall that our goal is to contradict the hardness of f by showing the existence of a
suitable circuit A that compute f(v) too well given a random v. For every v ∈ G, we
define Tv(y, b) = C(v, y, b) so that Tv distinguishes (Y,E(f(v), Y )) from (Y, U) in the sense

that Pr[Tv(Y,E(f(v), Y )) = 1]
rt

6∼(ε′,ρ′) Pr[Tv(Y,U) = 1]. By Lemma 4.5, this implies that

Pr[Tv(Y,E(f(v), Y )) = 1]
ad

6∼ρ′·ε′/3 Pr[Tv(Y, U) = 1]. This is helpful because by Lemma 7.3
there aren’t that many z ∈ {0, 1}t′ for which Tv distinguishes (Y,E(z, Y )) from (Y,U), and
yet z∗ = f(v) is one of those z’s. We will use this property to construct a small Σi+2 circuit
A that given a v ∈ G, produces f(v) with probability ρO(1), and this will be a contradiction.
The description of A appears in Figure 3. We first present A as a randomized circuit that
tosses coins, and will later fix its coins to give a circuit that does not toss coins. The
correctness of A will follow from the following claims.
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Goal: A size nb
′

Σi+2-circuit C that computes f with probability 2−t
′/3.

Description: On input v ∈ {0, 1}t, A computes as follows:
Prepare the Σi-circuit Tv(y, b) = C(v, y, b)
Prepare the Σi+1-circuit Bv, defined as follows:

On input z ∈ {0, 1}t
′
, Bv computes as follows:

Bv prepares the circuits Dv
1 : {0, 1}d → {0, 1} and Dv

2 : {0, 1}d+1 → {0, 1} defined by
D1(y) = Tv(y,E(z, y)) and D2(y, b) = Tv(y, b). Note that these are circuits of size
poly(nb).
Let p1, p2 be the number of accepting inputs of Dv

1 , D
v
2 respectively. Let η = ε′/10 =

n−b/100. B uses Theorem 4.2 to compute η-relative approximations p′1, p′2 to p1, p2.
Note that by Theorem 4.2, this can be done in a size poly(nb) Σi+1-circuit.
Bv accepts z if max(p′1, p′2) ≥ ρ′e−η and max(p′1, p′2)/min(p′1, p′2) ≥ eε

′−2η. This choice
is made so that by Lemma 4.9:

∗ p1
rt

6∼(ε′,ρ′) p2 ⇒ Bv accepts z, and

∗ Bv accepts z ⇒ p1
rt

6∼(ε′′,ρ′′) p2, where ε′′ = ε′ − 4η ≥ ε′/2 and ρ′′ = ρ′ · e−2η ≥ ρ′/2.
The circuit A uses Theorem 4.3 to sample an accepting input z of Bv (with error δ = 2−n).
Note that this can be done with a size poly(nb) Σi+2-circuit. Overall, the size of A is
poly(nb). Recall that in Figure 2 we have chosen b′ = a · b for an unspecified constant a.
Note that A is indeed a Σi+2-circuit, and we can now choose a to be sufficiently large so
that the size of A is poly(nb) = na·b = nb

′
.

Finally, the circuit A outputs z.

Figure 3 Circuit A: A Σi+2-circuit that computes f correctly with noticeable probability.

I Claim 7.5. For every v ∈ G, Bv accepts f(v).

Proof. Fix some v ∈ G. By Claim 7.4 and the definition of Tv, Pr[Tv(Y,E(f(v), Y )) =

1]
rt

6∼(ε′,ρ′) Pr[Tv(Y,U) = 1]. When Bv receives z = f(v) as input, it prepares the circuit
D1(y) = Tv(y,E(f(v), y)) and D2(y, b) = Tv(y, b). Recall that p1, p2 are the number of

accepting inputs of these two circuits. Therefore, we have that p1
rt

6∼(ε′,ρ′) p2, and by
construction, Bv accepts z. J

I Claim 7.6. For every v ∈ G, Bv accepts at most 2k+1 = ( 1
ρ )O(1) inputs.

Proof. By construction, if Bv accepts an input z, then the quantities p1, p2 in Figure 3,

satisfy p1
rt

6∼(ε′−4η,ρ′·e−2η) p2. By Lemma 4.5, this implies that p1
ad

6∼ε′′·ρ′′/3 p2, and note that

ε′′ · ρ′′/3 ≥ ε′ · ρ′/12 ≥ n−2b · ρ/1200 ≥ ρ/2000.

Therefore, if Bv accepts z, then Pr[Tv(Y,E(z, Y )) = 1]
ad

6∼ρ/2000 Pr[Tv(Y,U) = 1] and by
Lemma 7.3, there are at most 2 · 2k = poly(1/ρ) such strings z. J

The two claims above give that

I Claim 7.7. For every v ∈ G, Pr[A(v) = f(v)] ≥ 2−(k+1) = ρO(1) (where the probability is
over the coin tosses of A).

It follows that

Pr[A(V ) = f(V )] ≥ Pr[V ∈ G] · Pr[A(V ) = f(V )|V ∈ G] ≥

ρ · n−b/10 · ρO(1) = ρO(1) = 2−O(µ·n) ≥ 2−t
′/3,
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where the last step follows because we can choose µ > 0 to be sufficiently small so that

t′/3 = α · t/3 = α · ν · n/3 ≥ α · n/6 ≥ O(µn).

Finally, by an averaging argument, we can hardwire the random coins of A to produce a
non-randomized circuit with the same success probability. Thus, the circuit A contradicts
the assumption that f is 2−t′/3-incomputable by Σi+2-circuits of size nb

′ .

7.2 rt-PRGs with polynomial stretch
We now use the NW-generator to transform the 1-bit stretch rt-PRG into an rt-PRG with
polynomial stretch.

7.2.1 Using the NW-generator
We review the construction of the NW-generator.

I Definition 7.8 (Design). A collection ∆ = (S1, . . . , Sn) of subsets of [r] is an (r, `, u)-design
if

For every i ∈ [n], |Si| = `.
For every distinct i, j ∈ [n], |Si ∩ Sj | ≤ u.

I Definition 7.9 (NW-generator). Let ∆ = (S1, . . . , Sn) be an (r, `, u)-design, and let
g : {0, 1}` → {0, 1} be a function. For y ∈ {0, 1}r, we define xi(y) = y|Si and zi(y) = g(xi(y)).
Let,

NW∆
g (y) = z1(y), . . . , zn(y).

Theorem 1.17 follows from the next theorem.

I Theorem 7.10. Let ∆ be an (r, `, u)-design with u = c · logn. If G(x) = (x, g(x)) is an
( ε

20n ,
ρ·ε
30n )-rt-PRG for size nc+1 + nb + O(n) circuits, then NW∆

g : {0, 1}r → {0, 1}n is an
(ε, ρ)-rt-PRG for size nb circuits.

We need the following notation for the proof.

I Definition 7.11. Given x ∈ {0, 1}`, v ∈ {0, 1}r−` and i ∈ [n] let y(i)(x, v) denote the r-bit
string y obtained by “placing” the bits of x in the ` indices of y that are in Si, and using v
to fill the remaining r − ` positions.

of Theorem 7.10. In this proof g and ∆ are fixed, and so, to avoid clutter we write NW
instead of NW∆

g . Assume for contradiction that NW is not an (ε, ρ)-rt-PRG for size nb
circuits. That is, that there exists a circuit D of size nb such that

Pr[D(NW(Ur)) = 1]
rt

6∼(ε,ρ) Pr[D(Un) = 1].

I Claim 7.12 (“Relative error hybrid argument”). Consider a probability space consisting of
independent random variables Y ← Ur and B1, . . . , Bn ← U1, and define

Hi = z1(Y ), . . . , zi(Y ), Bi+1, . . . , Bn,

so that H0 = Un and Hn = NW(Y ). There exists 0 ≤ i < n such that

Pr[D(Hi) = 1]
rt

6∼(ε/2n,ρ·e−ε/2) Pr[D(Hi+1) = 1]
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Proof. Let pi = Pr[D(Hi) = 1]. We have that p0
rt

6∼(ε,ρ) pn which indeed implies that there

exists an i such that pi
rt

6∼(ε/2n,ρ·e−ε/2) pi+1. J

We have that

Pr[D(z1(Y ), . . . , zi(Y ), Bi+1, . . . , Bn) = 1]
rt

6∼(ε/2n,ρ·e−ε/2)

Pr[D(z1(Y ), . . . , zi+1(Y ), Bi+2, . . . , Bn) = 1

We can imagine that the experiment of choosing Y ← Ur is performed by choosing inde-
pendently X ← U` and V ← Ur and setting Y = y(i+1)(X,V ). We now apply Lemma 4.10
setting R = (V,Bi+2, . . . , Bn) and W = (X,Bi+1). We conclude that there exists a fixing
(v, bi+2, . . . , bn) for R such that

Pr[D(z1(y(i+1)(X, v)), . . . , zi(y(i+1)(X, v)), Bi+1, bi+2, . . . , bn) = 1]
rt

6∼(ε/20n,ρ·e−ε·ε/20n)

Pr[D(z1(y(i+1)(X, v)), . . . , zi+1(y(i+1)(X, v)), bi+2, . . . , bn) = 1].

Note that by definition, zi+1(y(i+1)(X, v)) = g(X). Furthermore, note that as ∆ is a
(r, `, u)-design, for j ≤ i, zj(y(i+1)(X, v) depends only on u bits of X, and therefore, can be
computed by a circuit Cj(X) of size 2u. We now define a circuit C as follows:

C(x, b) = D(C1(x), . . . , Ci(x), b, bi+2, . . . , bn).

Substituting in the expression above, we have that:

Pr[C(X, g(X)) = 1]
rt

6∼(ε/20n,ρ·e−ε·ε/20n) Pr[C(X,Bi+1) = 1]

Note that C is of size n·2u+nb+O(n) = nc+1+nb+O(n) and that ρ·e−ε·ε/20n ≥ ρ·ε/30n. J

7.2.2 Putting it together: Proof of Theorem 1.17
We assume that E is hard for exponential size Σi+3-circuits. Let e, b > 1 be some constants.
Nisan and Wigderson [29] showed that there exists a constant c > 1 such that for every
sufficiently large n, there is an (r, `, u) design with n = re sets, that has r = O(`2) and u =
c logn. Note that n = O(`2e) and so, by Theorem 7.2 there are polynomial time computable
functions g : {0, 1}` → {0, 1} and G(x) = (x, g(x)) such that G is a (n−b′ , ρ)-rt-PRG for
size nb′ Σi-circuits, where b′ is a constant that we choose later, and ρ = 2−Ω(`) = 2−Ω(

√
r).

We can choose the constant b′ to be sufficiently large so that by Theorem 7.10 we have
that NW∆

g is an (ε′, ρ′)-rt-PRG for size nb Σi-circuits, with ε′ = n−b
′ · 20n ≤ n−b and

ρ′ = ρ · 30n/n−b′ = ρΩ(1) = 2−Ω(
√
r) for sufficiently large n. This gives a re-PRG with the

same parameters.

8 A construction of re-nb-PRGs

In this section we construct rt-nb-PRGs which imply re-nb-PRGs.
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8.1 rt-PRGs for Σ1-circuits are rt-nb-PRGs
We first show that sufficiently strong rt-PRGs for Σ1-circuits are rt-nb-PRGs. More specifically
that (ε, ρ)-rt-PRGs with ρ = O(2−` · ρ′ · ε) for Σ1-circuits are (`, O(ε), ρ′)-rt-nb-PRGs (for
standard circuits).

I Lemma 8.1. There exists a constant c > 1 such that for every constant b > 1, and for every
sufficiently large n, if G : {0, 1}r → {0, 1}n is an (ε, ρ)-rt-PRG for Σ1-circuits of size nbc
with ρ ≤ 2−(`+t) then G is a (`, 4 · ε, ρ′)-rt-nb-PRG for circuits of size nb for ρ′ = O(2−t/ε).

Proof. Let C : {0, 1}n → {0, 1}` be a size nb circuit. We consider the circuit A : {0, 1}` →
{0, 1} that on input z ∈ {0, 1}` computes a 1/10-relative approximation to the quantity
Pr[C(Un) = z] and accepts if and only if the approximation is smaller than 2ρ. By Theo-
rem 4.2, A can be implemented by a Σ1-circuit of size poly(nb). We use A also to denote
the set of inputs accepted by A. Note that for every z ∈ A, Pr[C(Un) = z] < 4ρ. It follows
that Pr[C(Un) ∈ A] ≤ 2` · 4ρ = 2−(t−2). By the pseudorandomness of G, this implies that
Pr[C(G(Ur)) ∈ A] ≤ eε2−(t−2).

Let H = {z : Pr[C(Un) = z] ≥ 4ρ}. We have that H ∩A = ∅. For every z ∈ {0, 1}`, we
can consider the circuit Tz(x) which accepts iff C(x) = z. This circuit is fooled by G. For
z 6∈ A, Pr[C(Un) = z] ≥ ρ, and we have that Pr[C(Un) = z] rt∼(ε,0) Pr[C(G(Ur)) = z]. This
in turn implies that for every T such that T ∩A = ∅, Pr[C(Un) ∈ T ] rt∼(ε,0) Pr[C(G(Ur)) ∈ T ].
We will show that:

I Claim 8.2. For every D ⊆ {0, 1}`, Pr[C(Un) ∈ D] re∼(ε,δ) Pr[C(G(Ur)) ∈ D] for δ =
2−(t−2).

Proof. We have that:

Pr[C(Un) ∈ D] = Pr[C(Un) ∈ D \H] + Pr[C(Un) ∈ D ∩H]
≤ 4ρ · 2` + eε · Pr[C(G(Ur)) ∈ D ∩H]

≤ 2−(t−2) + eε · Pr[C(G(Ur)) ∈ D ∩H]

We also have that:

Pr[C(Un) ∈ D] ≥ Pr[C(Un) ∈ D \A]
≥ e−ε · Pr[C(G(Ur)) ∈ D \A]
= e−ε · (Pr[C(G(Ur)) ∈ D]− Pr[C(G(Ur)) ∈ D ∩A])

≥ e−ε · (Pr[C(G(Ur)) ∈ D]− eε · 2−(t−2))

= e−ε · Pr[C(G(Ur)) ∈ D]− 2−(t−2) J

The lemma now follows because by Lemma 4.5 for ε ≤ 1
2 , p1

re∼(ε,δ) p2 ⇒ p1
rt∼(4ε,4δ/ε) p2.

J

Using the rt-PRG of Theorem 1.17 we obtain the following rt-nb-PRG.

I Theorem 8.3. Let b, e > 1 be constants, and ` = `(n) ≤ n, ρ = ρ(n) be functions.
If E is hard for exponential size Σ4-circuits, then there is a polynomial time computable
G : {0, 1}r → {0, 1}n, such that for every sufficiently large n, G is an (`, n−b, ρ)-rt-nb-PRG
for circuits of size nb, with r = O((`+ log(1/ρ))2).

This is disappointing as previous work on (non-relative) nb-PRGs achieves a better dependence
on ` in the form of r = O(`). We would like to also achieve a linear dependence of r on `.
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8.2 An rt-nb-PRG with seed length r = `+ O(log(1/ρ))2

We will use the approach of Theorem 1.18 to achieve a construction with shorter seed length.
Specifically, we design a poly(n) time randomized procedure P that produces circuit that
is with high probability an rt-PRG for Σ1-circuits that has excellent seed length. We then
show that checking whether a given circuit is an rt-PRG for Σ1-circuits can be done in the
polynomial time hierarchy. This means that our rt-PRG G′ of the earlier section can be used
to produce a circuit h that with high probability is an rt-PRG for Σ1-circuits. This in turn
implies that it is an rt-nb-PRG for standard circuits. Our final rt-PRGs takes two seeds,
x1, x2. It first constructs h by applying P (G′(x1)) and then outputs h(x2).

8.2.1 A random hash function is an rt-PRG

We use the following standard construction of t-wise independent hash functions (that is
based on degree t− 1 polynomials).

I Theorem 8.4 (t-wise independent hash functions). For every n,m, t there is a family
Htn,m of at most 2d=t·max(n,m) functions from n bits to m bits, such that for every distinct
x1, . . . , xt ∈ {0, 1}n, the random variables h(x1), . . . , h(xt) defined over the experiment
h ← Htn,m are uniformly distributed and t-wise independent. Furthermore, there is a
polynomial time algorithm that given the d bit description s of a hash function hs ∈ Htn,m,
and an input x ∈ {0, 1}n, computes hs(x).

A standard probabilistic argument shows that for any class C with 2k functions, a random
function G : {0, 1}r → {0, 1}n is w.h.p. a PRG for C with r ≈ log k. In the theorem below,
we repeat this argument and show that it also applies for rt-PRGs and achieves an excellent
dependence on ρ.

I Theorem 8.5. Let C be a family of at most 2k boolean functions on n bits. Let t =
2(k + 3) + 2n and r = log k + logn + 2 log(1/ε) + log(1/ρ) + c for a sufficiently large
universal constant c. With probability at least 1− 2−n over h← Htr,n, we obtain a function
h : {0, 1}r → {0, 1}n that is an (ε, ρ)-rt-PRG for C.

Proof. Let C : {0, 1}n → {0, 1} be a function in C, and let µ = Pr[C(Un) = 1]. Let XC be the
random variable that counts the number of s ∈ {0, 1}r such that C(h(s)) = 1. The random
variable XC is a sum of 2r, t-wise independent variables. We have that E(XC) = 2r · µ. By
the t-wise independent “Chernoff style” bound of Bellare and Rompel [8] we have that for
even t,

Pr[|XC − E(XC)| ≥ A] ≤ 8 ·
(
t · E(XC) + t2

A2

)t/2

Let A = 1
3 · ε · 2r · max(µ, ρ). This choice is made so that XC

2r
rt

6∼(ε,ρ) µ implies that
|XC − E(XC)| ≥ A. By our choice of parameters it follows that:

t · E(XC) + t2

A2 ≤ t · µ · 2r + t2

1
9 · ε2 · 22r ·max(µ, ρ)2 ≤

t
1
9 · ε2 · 2r · ρ

+
(

t
1
3 · ε · 2r · ρ

)2
≤ 1

2

where the last inequality follows for a sufficiently large constant c in the definition of r, and
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using our choice of parameters. It follows that

Pr[XC

2r
rt

6∼(ε,ρ) µ] ≤ 8 ·
(
t · E(XC) + t2

A2

)t/2
≤ 8 ·

(
1
2

)t/2
≤ 2−n · 2−k

where the last inequality follows by our choice of t. By a union bound over all 2k functions
C in C we have that with probability 1− 2−n we obtain an rt-PRG. J

I Corollary 8.6. For every b > 1, and for every sufficiently large n, and every ε, ρ ≥ 2−n,
there is a randomized Turing Machine P running in time poly(nb) that with probability 1−2−n
produces a circuit h : {0, 1}r → {0, 1}n that is an (ε, ρ)-rt-PRG for Σ1-circuits of size nb,
with r = O(b logn) + 2 log(1/ε) + log(1/ρ).

8.2.2 The complexity of checking if a given circuit is an rt-PRG
We consider the problem of checking whether a given circuit is an rt-PRG. We would like to
show that this problem is in the polynomial time hierarchy. The following formulation as a
promise problem makes this possible, and will suffice for our needs.

I Definition 8.7. Let DCi,s,s′ε,ρ denote the following promise problem:
Input: a circuit G : {0, 1}r → {0, 1}n of size s.
Yes instances: G is not an (ε, ρ)-rt-PRG for Σi-circuits of size s′.
No instances: G is an (ε/2, ρ · (1− ε))-rt-PRG for Σi-circuits of size s′.

I Theorem 8.8. For every i ≥ 0, 0 < ε, ρ ≤ 1, and r ≤ n ≤ s′ ≤ s there is a nondeterministic
Σi+2-circuit of size poly(r, n, s, 1/ε) which solves DCi,s,s′ε,ρ .

Proof. We consider the following nondeterministic Σi+1-circuit A: when given the circuit
G as input, the circuit A guesses a Σi-circuit C : {0, 1}n → {0, 1} of size s′. Let η = ε/10.
Using Theorem 4.2, A computes η-relative approximations p′1, p′2 of the quantities of p1 =
Pr[C(Un) = 1] and p2 = Pr[C(G(Un) = 1]. A then applies the test T (p′1, p′2) of Lemma 4.9
and outputs its outcome. By Lemma 4.9:

p1
rt

6∼(ε,ρ) p2 ⇒ T (p′1, p′2) accepts.

T (p′1, p′2) accepts ⇒ p1
rt

6∼(ε−4η,ρ·e−2η) p2.
The theorem follows by our choice of η. J

The key is that the size of the circuit above does not depend on ρ, and note that if the
circuit rejects G, then G is an (ε, ρ)-rt-PRG.

8.3 rt-nb-PRGs with small seed length
The following Theorem implies Theorem 1.21.

I Theorem 8.9 (rt-nb-PRG with seed length 1 · `+ O(log(1/ρ))2). Let b > 1 and α > 0 be
constants and ` = `(n) ≤ n, ρ = ρ(n) ≤ 2−nα . Assume that E is hard for exponential size
Σ6-circuits. Let G be the function constructed in Figure 4, with the parameters chosen there.
Then for every sufficiently large n, there is a polynomial time computable (`, n−b, ρ)-rt-nb-PRG
G : {0, 1}r → {0, 1}n for size nb circuits, with r = `+O(log(1/ρ))2.
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Goal: Construct a poly(n)-time computable (`, n−b, ρ)-rt-nb-PRG, G : {0, 1}r → {0, 1}n for
circuits C : {0, 1}n → {0, 1}` of size nb.

Assumption: E is hard for exponential size Σ6-circuits.
Parameters:

`, b, n - We are shooting to fool circuits C : {0, 1}n → {0, 1}` of size nb.
We require that ρ ≤ 2−n

α

for some constant α > 0. (This is done to simplify the
presentation).

Ingredients:
We make use of the Turing Machine P of Corollary 8.6. Specifically, let b′ = a · b for a
sufficiently large constant a > 1 to be chosen later. By Corollary 8.6 there is a randomized
Turing Machine P running in time poly(nb

′
) which produces a circuit h : {0, 1}r → {0, 1}n,

that with probability 1− 2−n is an (n−b
′
, ρ′ = 2−` · ρ · n−3b′)-rt-PRG for Σ1-circuits of

size nb
′
, and r1 = `+O(b′ · logn) + log(1/ρ).

We also make use of the rt-PRG of Theorem 1.17. Specifically, let b′′ = a · b′ and
recall that a sufficiently large constant a > 1 will be chosen later. By Theorem 1.17 the
hardness assumption that E is hard for exponential size Σ6-circuits implies that there is
a poly(nb

′′
) computable ( 1

2 , ρ
′)-rt-PRG G′ : {0, 1}r2 → {0, 1}n

b′′
for size nb

′′
Σ3-circuits,

with r2 = O(1/ρ))2. (Here we use the fact that ρ ≤ 2−n
α

so that log(1/ρ) ≥ nα).
The rt-nb-PRG:

Let r = r1 + r2 = `+O(b′ · logn) +O(log(1/ρ))2 = `+O(log(1/ρ))2. Given x ∈ {0, 1}r
interpret it as (x1, x2) ∈ {0, 1}r1 × {0, 1}r2 .
Run the procedure P using the string G′(x2) as random coins. (Note that we can choose
the constant a to be sufficiently large so that nb

′′
= nab

′
is larger than the number of

coins required by P ). The procedure P produces a circuit h : {0, 1}r1 → {0, 1}n.
G(x) outputs h(x1).

Figure 4 An rt-nb-PRG with seed length ≈ 1 · `.

Proof of Theorem 8.9. We first argue, that when G applies P to obtain a circuit h, then
w.h.p. it obtains an rt-PRG. Specifically,

I Claim 8.10. With probability 1 − 2ρ′ over x2 ← Ur2 , the circuit h : {0, 1}r1 → {0, 1}n
obtained by P (G′(x2)) is a (n−b′ , ρ′)-rt-PRG for size nb′ Σ1-circuits.

Proof. (of claim) Let s′ = nb
′ and s = poly(nb′) be a bound on the size of h. By Theorem 8.3

we have that the promise problem DC1,s,s′

n−2b′ ,ρ′
is solved by a nondeterministic Σ3-circuit T of

size poly(nb′). Recall that if T rejects a given circuit, then this circuit is a (n−2b′ , ρ′)-rt-PRG
for Σ1-circuits of size s′ = nb

′ . Let D(z) = T (P (z)) and note that D can be implemented
by a Σ3-circuit of size poly(nb′). The parameters of the generator G′ were chosen so that it
fools D. More specifically, by choosing a to be sufficiently large we have that the size of D
is smaller than nb′′ = na·b

′ . By the guarantee on P , we know that the probability that D
accepts a uniform input is at most 2−n. As G′ is a ( 1

2 , ρ
′)-PRG it follows that the probability

that D accepts G′(Ur2) is at most e 1
2 · ρ′ ≤ 2ρ′. The claim follows. J

We have that with probability 1− 2ρ′ over the choice of x2, G output h(Ur1) for h that is
a (n−b′ , ρ′)-rt-PRG for Σ1-circuits of size nb

′ . This implies that G is a (O(n−b′), O(ρ′/n−b′))-
rt-PRG for size nb′ Σ1-circuits. A trivial (albeit somewhat wasteful) way to see this is to
use Lemma 4.5 to transform the guarantee on rt∼(,) to re∼(,) which makes the calculation
straightforward, and then transform back. This is why we have n−b′ in the denominator.
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Finally, we choose a to be sufficiently large so that by Lemma 8.1 an rt-PRG against
Σ1-circuits of size nb

′ = nab is a rt-nb-PRG for circuits of size nb. Applying the lemma, we get
that G is an (O(n−b′), O(ρ′/n−2b′))-rt-nb-PRG for circuits of size nb. The Theorem follows
as by our choice of parameters O(n−b′) can be made smaller than n−b and O(ρ′/n−2b′) is
smaller than ρ. J

9 Open Problems

Theorem 1.8 is the first hardness versus randomness tradeoff that is applicable to randomized
algorithm solving NP complete problem. It is interesting to find more instances where this
approach can be used to efficiently derandomize algorithms for other NP complete problems.
Is it possible to give hardness versus randomness tradeoffs for general randomized algorithms
(that are not necessarily OPP)?

The dependence of the seed length on the parameter δ in Theorem 1.17 is additive in
log(1/δ)2 can this be reduced to log(1/δ)? As explained in the introduction, this will give
improvements in applications of the theorem.

Can we find more applications of re-PRGS and re-nb-PRGs? It will be especially
interesting to find cryptographic applications in computational settings as discussed in
Section 1.14.
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Abstract
Based on Håstad’s (1986) circuit lower bounds, Linial, Mansour, and Nisan (1993) gave a
quasipolytime learning algorithm for AC0 (constant-depth circuits with AND, OR, and NOT
gates), in the PAC model over the uniform distribution. It was an open question to get a learn-
ing algorithm (of any kind) for the class of AC0[p] circuits (constant-depth, with AND, OR,
NOT, and MODp gates for a prime p). Our main result is a quasipolytime learning algorithm for
AC0[p] in the PAC model over the uniform distribution with membership queries. This algorithm
is an application of a general connection we show to hold between natural proofs (in the sense
of Razborov and Rudich (1997)) and learning algorithms. We argue that a natural proof of a
circuit lower bound against any (sufficiently powerful) circuit class yields a learning algorithm for
the same circuit class. As the lower bounds against AC0[p] by Razborov (1987) and Smolensky
(1987) are natural, we obtain our learning algorithm for AC0[p].
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1 Introduction

Circuit analysis problems, problems whose input or output is a Boolean circuit, are a
crucial link between designing algorithms and proving lower bounds. For example, Williams
[41, 43, 42] shows how to convert non-trivial Circuit-SAT algorithms into circuit lower bounds.
In the other direction, there have been many circuit analysis algorithms inspired by circuit
lower bound techniques [25, 4, 32, 34, 19, 20, 3, 8, 7, 33, 6, 9, 37], but outside the setting of
derandomization [28, 2, 21, 18, 39, 23], few formal implications giving generic improvements.

Here we make a step towards such generic connections. While we are not able to show
that an arbitrary way to prove circuit lower bounds yields circuit analysis algorithms, we show
that any circuit lower bound proved through the general natural proofs paradigm of Razborov
and Rudich [31] does yield such algorithms. Our main general result is the following.

I Theorem 1.1 (Learning Algorithms from Natural Lower Bounds: Informal version). Natural
proofs of circuit lower bounds imply learning algorithms for the same circuit class.

© Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets,
and Antonina Kolokolova;
licensed under Creative Commons License CC-BY

31st Conference on Computational Complexity (CCC 2016).
Editor: Ran Raz; Article No. 10; pp. 10:1–10:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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Using known natural lower bounds [30, 35, 31], we get quasipolynomial-time learning
algorithms for the hypothesis class AC0[p], for any prime p (polynomial-size constant-depth
circuits with AND, OR, NOT, and MODp gates).

I Theorem 1.2 (Learning for AC0[p]: Simplified version). For every prime p ≥ 2, there is
a randomized algorithm that, given membership queries to an arbitrary n-variate Boolean
function f ∈ AC0[p], runs in quasi-polynomial time npoly logn and finds a circuit that computes
f on all but 1/poly(n) fraction of inputs.

No learning algorithms for AC0[p] were previously known. For AC0, a learning algorithm
was given by Linial, Mansour, and Nisan [25]1, based on Håstad’s proof of strong circuit
lower bounds for AC0 [15].

We also apply the general result to immediately obtain the following compression algorithm,
first developed (with somewhat stronger parameters) by Srinivasan [36].

I Theorem 1.3 (Compression for AC0[p]: Simplified version). For every prime p ≥ 2, there is
a randomized algorithm that, given the 2n-bit truth table of an arbitrary n-variate Boolean
function f ∈ AC0[p], runs in time poly(2n) (polynomial in the input size), and outputs a
circuit computing f of the circuit size at most 2n−nµ , for some 0 < µ < 1.

1.1 Compression and learning algorithms from natural lower bounds
Informally, a natural lower bound for a circuit class Λ contains an efficient algorithm that
distinguishes between the truth tables of “easy” functions (of low Λ-circuit complexity) and
those of random Boolean functions. This notion was introduced by Razborov and Rudich [31]
to capture a common feature of most circuit lower bound proofs: such proofs usually come
with efficient algorithms that say something nontrivial about the structure of easy functions
in the corresponding circuit class. In [31], this observation was used to argue that any
circuit class with a natural lower bound is too weak to support cryptography: no strong
pseudorandom generator can be computed by a small circuit from the class.

We show that natural circuit lower bounds also imply algorithms for compression and
learning of Boolean functions from the same circuit class (provided the circuit class is not too
weak). More precisely, we show how to reduce the task of compressing (learning) Boolean
functions in a circuit class Λ to the task of distinguishing between the truth tables of functions
of low Λ-circuit complexity and those of random functions. The latter task is exactly what is
solved by an efficient algorithm embedded in any natural proof of Λ-circuit lower bounds.

Compression. Recall the compression task for Boolean functions: given the truth table
of a Boolean function f , print a circuit that computes f . If f is unrestricted, the best
guarantee for the circuit size is 2n/n [26, 27], and such a circuit can be found in time poly(2n),
polynomial in the truth table size. We might however be able to do much better for restricted
classes of functions. Let Λ be the set of functions computed by some circuit class Λ. Recent
work has shown that we can “mine” specific lower bounds against Λ to compress functions
g ∈ Λ better than the universal construction [7]. This work suggests that there should be
some generic connection between circuit lower bounds and compression algorithms, but such
a connection was not known.

1 Their algorithm works in a more general learning model without membership queries, but with access
to labeled examples (x, f(x)) for uniformly random x.
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We show that any circuit lower bound that is natural in the sense of Razborov and
Rudich [31] yields a generic compression algorithm for Boolean functions from the same
circuit class, provided the circuit class is sufficiently powerful (e.g., containing AC0[p] for
some prime p ≥ 2).

A compression algorithm may be viewed as a special case of a natural property: if the
compression fails, the function must have high complexity, and compression must fail for
most functions. Thus we get an equivalence between these two notions for the case of
randomized compression algorithms and BPP-computable natural properties. That is, for
an appropriate circuit complexity class C, a BPP-computable natural property against C
implies the existence of a related C-compression algorithm in BPP, and a C-compression
algorithm in BPP implies a BPP-computable natural property against C. As our compression
algorithms are randomized, we don’t get such an equivalence for the case of deterministic
natural properties.

Learning. The first stage of our algorithm is a lossy compression of the function in the
sense that we get a small circuit that computes the function on most inputs. Because this
first stage only examines the truth table of the function in relatively few locations, we can
view this stage as a learning algorithm. This algorithm produces a circuit that approximately
computes the given function f with respect to the uniform distribution, and uses membership
queries to f . So it fits the framework of PAC learning for the uniform distribution, with
membership queries.

Minimum Circuit Size Problem: Search to decision reduction. Our main result also yields
a certain “search-to-decision” reduction for the Minimum Circuit Size Problem (MCSP).
Recall that in MCSP, one is given the truth table of a Boolean function f , and a parameter
s, and needs to decide if the minimum circuit size of f is less than s. Since an efficient
algorithm for MCSP would make it a natural property (with excellent parameters), our main
result implies the following. If MCSP is in BPP, then, given oracle access to any n-variate
Boolean function f of circuit complexity s, one can find (in randomized polynomial time) a
circuit of size poly(s) that computes f on all but 1/poly(n) fraction of inputs.

1.2 Our proof techniques
One of the main tools we use is the Nisan-Wigderson (NW) generator construction [28].
Informally, this construction takes as input the truth table of a Boolean function f , and
outputs an algorithm for the new function Gf mapping “short” input strings to “long”
output strings. The function Gf is intended to be a pseudo-random generator (PRG) in
the sense that no “small” Boolean circuit can “distinguish” the uniform distribution from
the distribution of Gf ’s outputs (on uniformly random inputs to Gf ). A circuit that can
distinguish these two distribution is said to break the generator, and is called a distinguisher.
Nisan and Wigderson [28] prove that if the initial function f has “high” circuit complexity,
then the function Gf is indeed a PRG. Moreover, their proof is constructive in the sense
that there is an efficient reconstruction algorithm that, given a distinguisher for Gf and
oracle access to f , outputs a “small” Boolean circuit that approximately computes f . (See
Section 2 for the formal definitions and statements.)

Intuitively, we can use this reconstruction algorithm as a learning algorithm for a Boolean
function f in some circuit class Λ, provided we manage to find an efficient distinguisher for
the NW generator Gf . As we shall argue, such a distinguisher for Gf is supplied by any
natural proof of Λ-circuit lower bounds (natural property for the circuit class Λ)!

CCC 2016
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Thus, the main idea of our lossy-compression algorithm is, given the truth table of a
Boolean function f from a circuit class Λ,

imagine using f as the basis for the NW generator Gf ,
argue that the natural property R for the class Λ is a distinguisher for Gf ,
apply the reconstruction algorithm to R to produce a small circuit that approximates f .

For the described approach to work, we need to ensure that (1) there is an efficient
reconstruction algorithm that takes a distinguisher for Gf and constructs a small circuit for
(approximately computing) f , and (2) the natural property for Λ is a distinguisher for Gf .

For (1), we use the known efficient randomized algorithm that takes a distinguisher for
Gf and constructs a small circuit approximately computing f , provided the algorithm is
given oracle access to f . The existence of such a uniform algorithm was first observed by
Impagliazzo and Wigderson [22] (based on [28, 2]) in the context of derandomizing BPP
under uniform complexity assumptions. Simulating oracle access to f in the framework of
[22] was quite nontrivial (and required the downward self-reducibility of f). In contrast, we
are explicitly given the truth table of f (or allowed membership queries to f), and so oracle
access to f is not an issue!

For (2), we must show that each output of the NW generator, when viewed as the truth
table of a Boolean function, is computable by a small circuit from the circuit class for which
we have a natural lower bound (and so the natural property algorithm can be used as a
distinguisher to break the generator). Looking inside the construction of the NW generator,
we note that, for a fixed seed (input) of Gf , each bit of the output of Gf is the value of f on
some substring of the seed (chosen via a certain combinatorial structure, the NW design).
We argue that the circuit complexity of the truth table output by the NW generator Gf is
closely related to the circuit complexity of the original function f .

In particular, we show that if f is in AC0[p], and the NW generator has exponential
stretch (from poly(n) bits to 2nγ bits, for some γ > 0), then each string output by the NW
generator is also a function in AC0[p]. If, on the other hand, we take the NW generator
with certain polynomial stretch, we get that its output strings will be Boolean functions
computable by AC0[p] circuits of subexponential size. The trade-off between the chosen
stretch of the NW generator and the circuit complexity of the string it outputs will be
very important for the efficiency of our learning algorithms: the runtime of the learning
algorithm will depend polynomially on the stretch of the NW generator. This makes our
setting somewhat different than most applications of the NW generator. We will want to
make the stretch as small as possible, but must set it above a threshold determined by the
quantitative strength of the circuit lower bound that we start from. Thus, the larger the
circuit size for which we have lower bounds, the faster the learning algorithms we get.

Note that if we break the NW generator based on a function f , we only get a circuit
that agrees with f on slightly more than half of all inputs. To get a better approximation of
f , we employ a standard “hardness amplification” encoding of f , getting a new, amplified
function h, and then use h as the basis for the NW generator. The analysis of such hardness
amplification is also constructive: it yields an efficient reconstruction algorithm that takes a
circuit C0 computing h on more than 1/2 of the inputs, and constructs a new circuit C that
computes the original f on most inputs.

For this amplification to work in our context, we need to ensure that the amplified function
h is in the same circuit class as f , and is of related circuit complexity. We show that standard
tools such as the Direct Product and XOR constructions have the required properties for
AC0[2]. For AC0[p] where p is prime other than 2, we can’t use the XOR construction (as
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Parity cannot be computed in AC0[p] for any prime p > 2 by Smolensky’s lower bound [35]).
We argue that the MODp function can be used for the required amplification within AC0[p]2.

Thus, our actual lossy-compression algorithm for a circuit class Λ is as follows:

Given the truth table of a function f ∈ Λ,
1. Run the reconstruction algorithm for the NW generator Gh with the natural

property for Λ as a distinguisher, where h is the amplified version of f . This
produces a circuit C0 computing h on more than 1/2 of inputs.

2. Run the reconstruction algorithm for hardness amplification to get from C0 a new
circuit C that computes f on most inputs.

To turn this algorithm into an exact compression algorithm, we just patch up the errors
by table lookup. Since there are relatively few errors, the size of the patched-up circuit will
still be less that the trivial size 2n/n.

More interestingly, our lossy compression algorithm described above also yields a learning
algorithm! The idea is that the reconstruction algorithm for the NW generator Gf runs in
time polynomial in the size of the output of the generator, and so only needs at most that
many oracle queries to the function f . Rather than being given the full truth table of f , such
an algorithm can be simulated with just membership queries to f . Thus we get a learning
algorithm with membership queries in the PAC model over the uniform distribution.

Since the runtime of this learning algorithm (and hence also the size of the circuit for f
it produces) will be polynomial in the output length of the NW generator that we use to
learn f , we would like to minimize the stretch of the NW generator3. However, as noted
above, shorter stretch of the generator means higher circuit complexity of the truth table
it outputs. This in turn means that we need a natural property that works for Boolean
functions of higher circuit complexity (i.e., natural properties useful against large circuits).
In the extreme case, to learn a polysize Boolean function f in polynomial time, we need to
use the NW generator with polynomial stretch, and hence need a natural property useful
against circuits of exponential size. In general, there will be a trade-off between the efficiency
of our learning algorithm for the circuit class Λ and the usefulness of a natural circuit lower
bound for Λ: the larger the size s such that a natural property is useful against Λ-circuits of
size s, the more efficient the learning algorithm for Λ.

Razborov and Rudich [31] showed the AC0[p] circuit lower bounds due to Razborov [30]
and Smolensky [35] can be made into natural properties that are useful against circuits
of weakly exponential size 2nγ , for some γ > 0 (dependent on the depth of the circuit).
Plugging this natural property into our framework, we get our quasi-polynomial-time learning
algorithm for AC0[p], for any prime p.

We remark that our approach is quite similar to the way Razborov and Rudich [31]
used natural properties to get new algorithms. They used natural properties to break the
cryptographic pseudorandom function generator of [11], which by definition outputs functions
of low circuit complexity. Breaking such a generator based on an assumed one-way function

2 We stress that for our purposes it is important that the forward direction of the conditional PRG
construction, from a given function f to a generator based on that f , be computable in some low
nonuniform circuit class (such as AC0[p]). In contrast, in the setting of conditional derandomization, it
is usually important that the reverse direction, from a distinguisher to a small circuit (approximately)
computing the original function f , be computable in some low (nonuniform) circuit class (thereby
contradicting the assumed hardness of f for that circuit class). One notable exception is hardness
amplification within NP [29, 16, 38].

3 This is in sharp contrast to the setting of derandomization where one wants to maximize the stretch of
the generator, as it leads to a more efficient derandomization algorithm.
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F leads to an efficient algorithm for inverting this function F well on average (contradicting
the one-wayness of F ). We, on the other hand, use the NW generator based on a given
function f . The properties of the NW generator construction can be used to show that
it outputs (the truth tables of) functions of low circuit complexity, relative to the circuit
complexity of f . Thus a natural property for the appropriate circuit complexity class (with
an appropriate size parameter) can be used to break this NW generator, yielding an efficient
algorithm for producing a small circuit approximating f .

Discussion. One counter-intuitive development in the theory of pseudorandomness has
been the prevalence of “win-win” arguments. Typically, in a win-win argument in pseudoran-
domness, one takes a construction of pseudorandom generator from a hardness assumption
(such as the NW generator mentioned above) and applies it to a function that is not known
to actually be hard. If the construction is still a PRG, that is a win; if it is not, one learns
that the function in question is not hard, and perhaps finds a circuit computing it. Here,
we take this paradigm one step further; ours is a “play-to-lose” argument. We apply the
pseudorandom generator construction to a function f we know not to be hard, in such a
way as to guarantee that the resulting generator Gf is not pseudorandom. The win in this
argument is that the proof of the hardness to pseudorandomness connection gives a way
of converting the non-randomness of the generator Gf into a way of computing f , thus
translating the knowledge that f is easy to compute into an actual circuit computing f .

1.3 Related work

This work was prompted by results that circuit analysis algorithms imply circuit lower bounds.
A natural question is: given that these algorithms are sufficient for circuit lower bounds, to
what degree are they necessary? Apart from derandomization, no other equivalences between
circuit analysis algorithms and circuit lower bounds are known. Some of the known circuit-
analytic algorithmic tasks that would imply circuit lower bounds include: derandomization
[18, 23, 1, 5], deterministic (lossy) compression or MCSP [7, 18], deterministic learning
[10, 24], and deterministic (QBF) SAT algorithms [41, 33].

Bracketing the hardness vs. randomness setting, special cases of using circuit lower bounds
to construct circuit analysis algorithms abound. Often, lower bounds are the only way that
we know to construct these algorithms. Each of the following results uses the proof of a lower
bound to construct an algorithm. The character and number of these results gives empirical
evidence that there should be generic algorithms for circuit analysis based on generic lower
bounds.

Parity 6∈ AC0  AC0-Learning [25], AC0-SAT [19], and AC0-Compression [7]
MODq 6∈ AC0[p], p, q distinct primes,  AC0[p]-Compression [36]
Andreev’s function 6∈ deMorgan[n3−ε]  subcubic formula Compression [7]

All the lower bounds listed above belong to the natural proofs framework. Given these
results, the obvious conjecture was that natural proofs imply some kind of generic circuit
analysis algorithm. For instance, [7] suggested that every natural circuit lower bound should
imply a compression algorithm. We take a step towards proving such an implication by
showing that any natural circuit lower bound for a sufficiently powerful circuit class (AC0[p]
or bigger) does indeed lead to a randomized compression algorithm for the same circuit class.
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The remainder of the paper. e give the necessary background in Section 2. Sections 3 and
4 summarize the useful properties of past constructions of black-box generators and black-box
amplifications, which we revisit and modify to implement in AC0[p]. In Section 5, we use those
tools to prove our main result that natural properties yield learning algorithms for circuit
classes AC0[p] and above, using a novel “play-to-lose” interpretation of pseudorandomness.
On the other hand, in Section 6, we argue that our main result cannot be applied directly to
AC0 because the construction of Section 3 is impossible in AC0. Section 7 contains concluding
remarks and open questions.

2 Definitions and tools

2.1 Circuits and circuit construction tasks
For a circuit class Λ and a set of size functions S, we denote by Λ[S] the set of S-size n-input
circuits of type Λ. When no S is explicitly given, it is assumed to be poly(n).

I Definition 2.1 (Circuits (Approximately) Computing f). Let f : {0, 1}n → {0, 1} be some
Boolean function, and let ε : N→ [0, 1] be an approximation bound. Then CKTn(f) denotes
the set of circuits that compute the function f on all n-bit inputs, and C̃KTn(f, ε) the set of
all circuits that compute f on all but an ε fraction of inputs.

I Definition 2.2 (Circuit Builder Declarations (adapted from [22])). Let A and B be indexed
sets of circuits. A T (n)-construction of B from A is a probabilistic machine M(n, α,An)
which outputs a member of Bn with probability at least 1−α in time T (n), where the size of
Bn is poly(|An|). We declare that such a machine exists by writing: Cons(A→ B; T (n)).
Read this notation as “from A we can construct B in time T (n).” To assert the existence of
a T (n)-construction of B from A, with oracle O, where the machineM is equipped with an
oracle for the language O but otherwise is as above, write: ConsO(A→ B; T (n)).

2.2 Learning and compression tasks
Let f ∈ Λ be some Boolean function. The learner is allowed membership queries to f . That
is, the learner may query an input x ∈ {0, 1}n to the oracle, getting back the value f(x).

I Definition 2.3 (PAC learning over the uniform distribution with membership queries). Let Λ
be any class of Boolean functions. An algorithm A PAC-learns Λ if for any n-variate f ∈ Λ
and for any ε, δ > 0, given membership query access to f algorithm A prints with probability
at least 1 − δ over its internal randomness a circuit C ∈ C̃KTn(f, ε). The runtime of A is
measured as a function T = T (n, 1/ε, 1/δ, size(f)).

I Definition 2.4 (Λ-Compression). Given the truth table of n-variate Boolean function f ∈ Λ,
print some Boolean circuit C ∈ CKTn(f) computing f such that |C| < 2n/n, the trivial
bound.

I Definition 2.5 (ε-Lossy Λ-Compression). Given the truth table of n-variate Boolean function
f ∈ Λ, print some Boolean circuit C ∈ C̃KTn(f, ε) such that |C| < 2n/n, the trivial bound.

The relevant parameters for compression are runtime and printed circuit size. We say that a
compression algorithm is efficient if it runs in time poly(2n), which is polynomial in the size
of the truth-table supplied to the algorithm. Though we count any output circuit of size less
than 2n/n as a successful compression, we will of course want to optimize this. In previous
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10:8 Learning Algorithms from Natural Proofs

work, the size of the resulting circuits approximately matches the size of circuits for which
we have lower bounds.

We remark that we do not obtain “proper” learning or compression: the output of the
learning (compression) algorithm is an unrestricted circuit, not necessarily from the class to
be learned (compressed).

2.3 Natural properties
Let Fn be the collection of all Boolean functions on n variables. Λ and Γ denote complexity
classes. A combinatorial property is a sequence of subsets of Fn for each n.

I Definition 2.6 (Natural Property [31]). A combinatorial property Rn is Γ-natural against
Λ with density δn if it satisfies the following three conditions:

Constructivity: The predicate fn
?
∈ Rn is computable in Γ

Largeness: |Rn| ≥ δn · |Fn|
Usefulness: For any sequence of functions fn, if fn ∈ Λ then fn 6∈ Rn, almost everywhere.

For each n, δn is a lower bound on the probability that g ∈ Fn has Rn. The original
definition in [31] sets δn ≥ 2−O(n). However, we show (see Lemma 2.7 below) that one may
usually assume that δn ≥ 1/2. Note that in the wild, nearly all natural properties have δn
close to one and Γ ⊆ NC2.

I Lemma 2.7 (Largeness for natural properties). Suppose P is a P-natural property of n-variate
Boolean functions that is useful against class Λ of size s(n), and has largeness δn ≥ 2−cn,
for some constant c ≥ 0. Then there is another P-natural property P ′ that is useful against
the class Λ of size s′(n) := s(n/(c+ 1)), and has largeness δ′n ≥ 1/2.

Proof. Define P ′ as follows:

The truth table of a given f : {0, 1}n → {0, 1} is in P ′ iff for at least one string
a ∈ {0, 1}k, for k = cn/(c+ 1), the restriction

fa(y1, . . . , yn−k) := f(a1, . . . , ak, y1, . . . , yn−k)

is in P (as a function on n− k = n/(c+ 1) variables).

Observe that testing P ′ on a given n-variate Boolean function f can be done in time
O(2k) · poly(2n−k) ≤ poly(2n); so we have constructivity for P ′. Next, if f : {0, 1}n → {0, 1}
has a Λ circuit of size less s′(n), then each restricted subfunction fa : {0, 1}n−k → {0, 1} has
a Λ circuit of size less than s(n− k) ≤ s′(n). Finally, a random function f : {0, 1}n → {0, 1}
yields 2k independent random subfunctions, on n− k variables each, and the probability that
at least one of these (n− k)-variate functions satisfies P is at least 1− (1− 2−c(n−k))2k =
1− (1− 2−k)2k , which is at least 1/2, as required. J

2.4 NW generator
I Definition 2.8 (NW Design). For parameters n,m,L ∈ N, a sequence of sets S1, . . . , SL ⊆
[m] is called an NW design if
|Si| = n, for all 1 ≤ i ≤ L, and
|Si ∩ Sj | ≤ logL, for all 1 ≤ i 6= j ≤ L.
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It is well-known that NW designs exist and can be efficiently constructed for any n,
m = O(n2), and L < 2n [28]. In Section 3.1 below, we review the construction of NW designs
from [28], and show that it can be implemented in AC0[p] (Theorem 3.3). The efficiency of
this construction of designs is necessary for our transfer theorem.

I Definition 2.9 (NW Generator). Let f : {0, 1}n → {0, 1}. For m = n2 and a stretch
function L(m) : N → N, where L(m) < 2n, let S1, . . . , SL ⊆ [m] be an NW design. Define
the NW generator Gf : {0, 1}m → {0, 1}L(m) as:

Gf (z) = f(z|S1)f(z|S2) . . . f(z|SL(m)), (1)

where z|S denotes the |S|-length bit-string obtained by restricting z to the bit positions
indexed by the set S.

Recall the notion of a distinguisher, a circuit that breaks a given generator.

I Definition 2.10 (Distinguishers). Let L : N→ N be a stretch function, let 0 < ε < 1 be an
error bound, and let G = {gm : {0, 1}m → {0, 1}L(m)} be a sequence of functions. Define
DIS(G, ε) to be the set of all Boolean circuits D on L(m)-bit inputs satisfying:

Pr
z∈{0,1}m

[D(gm(z))]− Pr
y∈{0,1}L(m)

[D(y)] > ε.

I Theorem 2.11 (NW Reconstruction [28, 22]). We have

Consf (DIS(Gf , 1/5)→ C̃KT(f, 1/2− 1/L(m)); poly(L(m))).

NW Reconstruction Algorithm. Since the reconstruction algorithm from the proof of
Theorem 2.11 above is an essential ingredient in our learning algorithms, we sketch this
algorithm below (omitting the correctness proof, which can be found in [28, 22]).

LetGf : {0, 1}m → {0, 1}L be the NW generator based on a Boolean function f : {0, 1}n →
{0, 1}, using the NW design S1, . . . , SL ⊆ [m]. Suppose D is a distinguisher for Gf such
that D ∈ DIS(Gf , 1/5). The following randomized algorithm will produce, with probability
at least 1/poly(L), a circuit C computing f on at least 1/2 + Ω(1/L) fraction of inputs. It
consists of a preprocessing stage, and a circuit construction stage.

Preprocessing
1. Pick a random i ∈ [L].
2. For each i ≤ j ≤ L, fix the jth input of the distinguisher D to a random bit wj .
3. For each j ∈ [m] \ Si, fix the jth input of the generator Gf to a random bit zj .
4. For each 1 ≤ j < i, enumerate all x ∈ {0, 1}n consistent with the partial assignment
z|Sj from the previous step, query f(x), and build the table T of pairs (x, f(x)).

Circuit construction
Using T , wj ’s, and zj ’s from preprocessing, build a circuit C following the template:
“On input x ∈ {0, 1}n,
1. Assign the inputs z|Si of Gf to x, getting a fully specified input z ∈ {0, 1}m.
2. For each 1 ≤ j < i, fix the jth input of D to wj = f(z|Sj ), via table lookup in T .
3. If D(w1, . . . , wL) = 1, then output wi; otherwise, output 1− wi.”

To boost the probability of producing a good circuit C, we repeat the algorithm above
poly(L) times, and estimate, using random sampling and membership queries to f , the
agreement between f and each produced circuit C. We output the best circuit on our list.
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10:10 Learning Algorithms from Natural Proofs

3 Black-box generators

The main tool we need for our learning algorithms is a transformation, which we call black-
box generator, taking a given function f : {0, 1}n → {0, 1} to a family G = {gz}z∈I of new
Boolean functions gz : {0, 1}n′ → {0, 1} satisfying the following properties:
Nonuniform Efficiency: Each function gz has “small” circuit complexity relative to the

circuit complexity of f .
Reconstruction: Any circuit distinguishing a random function gz (for a uniformly random

z ∈ I) from a random n′-variate Boolean function can be used (by an efficient randomized
algorithm with oracle access to f) to construct a good approximating circuit for f .

Once we have such a black-box generator, we get our learning algorithm as follows. To
learn a function f : {0, 1}n → {0, 1}, use the natural property as a distinguisher that rejects
(the truth tables of) all functions gz, z ∈ I, but accepts a constant fraction of truly random
functions; apply the efficient reconstruction procedure to learn a circuit approximating f .
Intuitively, we use the nonuniform efficiency property to argue that if f is an easy function
in some circuit class Λ, then so is each function gz, z ∈ I.

Next we give a more formal definition of a black-box generator. For a function f , we
denote by Λf the class of oracle circuits in Λ that have f -oracle gates. Also recall that Λ[s]
denotes the class of Λ-circuits of size at most s.

I Definition 3.1 (Black-Box (ε, L)-Generator Within Λ). For a given error parameter ε : N→
[0, 1] and a stretch function L : N→ N, a black-box (ε, L)-generator within Λ is a mapping Gen
that associates with a given function f : {0, 1}n → {0, 1} a family Gen(f) = {gz}z∈{0,1}m of
Boolean functions gz : {0, 1}` → {0, 1}, where ` = logL(n), satisfying the following conditions
for every f : {0, 1}n → {0, 1}:
Small Family Size: m ≤ poly(n, 1/ε),
Nonuniform Λ-Efficiency: for all z ∈ {0, 1}m, gz ∈ Λf [poly(m)], and
Reconstruction: Consf (DIS(Gen(f), 1/5)→ C̃KT(f, ε); poly(n, 1/ε, L(n))), where we think

of Gen(f) as the distribution over the truth tables of functions gz ∈ Gen(f), for uniformly
random z ∈ {0, 1}m.

We will prove the following.

I Theorem 3.2. Let p be any prime. For every ε : N → [0, 1] and L : N → N such that
L(n) ≤ 2n, there exists a black-box (ε, L)-generator within AC0[p].

We will use the NW generator as our black-box generator. For it to be within AC0[p], we need
NW designs to be computable within AC0[p]. We prove the following in the next subsection
(see the proof of Theorem 3.7 in Section 3.1).

I Theorem 3.3. Let p be any prime. There exists a constant dMX ≥ 1 such that, for
any n and L < 2n, there exists an NW design S1, . . . , SL ⊆ [m] with m = O(n2), each
|Si| = n, and |Si ∩ Sj | ≤ ` = logL for all 1 ≤ i 6= j ≤ L, such that the function
MXNW : {0, 1}` × {0, 1}m → {0, 1}n, defined by MXNW (i, z) = z|Si , is computable by an
AC0[p] circuit of size O(` · n3 logn) and depth dMX .

Another ingredient we need for the proof of Theorem 3.2 is the following notion of black-box
amplification. Let Λ be any circuit class.

IDefinition 3.4 (Black-Box (ε, δ)-Amplification within Λ). For given ε, δ > 0, (ε, δ)-amplification
within Λ is a mapping that associates with a given function f : {0, 1}n → {0, 1} its am-
plified version, Amp(f) : {0, 1}n′ → {0, 1}, satisfying the following conditions for every
f : {0, 1}n → {0, 1}:
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Short Input: n′ ≤ poly(n, 1/ε, log 1/δ),
Nonuniform Λ-Efficiency: Amp(f) ∈ Λf [poly(n′)],
Uniform P-Efficiency: Amp(f) ∈ Pf , and
Reconstruction: Consf (C̃KT(Amp(f), 1/2− δ)→ C̃KT(f, ε); poly(n, 1/ε, 1/δ)).

We prove the following in the next section (see Theorems 4.3 and 4.8).

I Lemma 3.5. Let p be any fixed prime. For all 0 < ε, δ < 1, there is black-box (ε, δ)-
amplification within AC0[p].

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. For a given n-variate Boolean function f , consider its amplified
version f? = (ε(n), 1/L(n))-Amp(f), for the black-box amplification within AC0[p] that exists
by Lemma 3.5. We have that f? is a function on n′ = poly(n, 1/ε, logL) = poly(n, 1/ε)
variables (using the assumption that L(n) ≤ 2n).

Let Gf? : {0, 1}m → {0, 1}L(n) be the NW generator based on the function f?, with the
seed size m = (n′)2. Define Gen(f) = {gz}z∈{0,1}m , where gz = Gf?(z). We claim that this
Gen(f) is an (ε, L)-black-box generator within AC0[p]. We verify each necessary property:

Small Family Size: m = (n′)2 ≤ poly(n, 1/ε).

Nonuniform AC0[p]-Efficiency: We know that f? = Amp(f) ∈ (AC0[p])f [poly(m)]. For
each fixed z ∈ {0, 1}m, we have gz(i) = (Gf?(z))i, for i ∈ {0, 1}`, where ` = logL(n). By
the definition of the NW generator, gz(i) = f?(z|Si). By Theorem 3.3, the restriction z|Si ,
as a function of z and i, is computable in AC0[p] of size poly(n′) and some fixed depth dMX .
It follows that each gz is computable in (AC0[p])f [poly(m)].

Reconstruction: The input to reconstruction is D ∈ DIS(GAmp(f), 1/5). LetMNW be the
reconstruction machine from the NW construction, and let MAmp be the reconstruction
machine from (ε, 1/L)-amplification. We first run MAmp(f)

NW (D) to get, in time poly(L),
a circuit C ∈ C̃KT(Amp(f), 1/2 − 1/L(n)); note that we can provide this reconstruction
algorithm oracle access to Amp(f), since Amp(f) ∈ Pf by the uniform P-efficiency property
of black-box amplification. Next we run Mf

Amp on C to get C ′ ∈ C̃KT(f, ε), in time
poly(n, 1/ε, L(n)). J

3.1 NW designs in AC0[p]
Here we show that the particular NW designs we need in our compression and learning
algorithms can be constructed by small AC0[p] circuits, for any fixed prime p. Consider an
NW design S1, . . . , SL ⊆ [m], for m = O(n2), where

each set Si is of size n,
the number of sets is L = 2` for ` ≤ n, and
for any two distinct sets Si and Sj , i 6= j, we have |Si ∩ Sj | ≤ `.

We show a particular construction of such a design that has the following property: the
index set [m] is partitioned into n disjoint subsets U1, . . . , Un of equal size (m/n) ∈ O(n).
For each 1 ≤ i ≤ L, the set Si contains exactly one element from each subset Uj , over all
1 ≤ j ≤ n. For 1 ≤ j ≤ n and 1 ≤ k ≤ O(n), we denote by (Uj)k the kth element in the
subset Uj .
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To describe such a design, we use the following Boolean function g: for 1 ≤ i ≤ L,
1 ≤ j ≤ n, and 1 ≤ k ≤ O(n), we define g(i, j, k) = 1 iff (Uj)k ∈ Si. We will prove the
following.

I Theorem 3.6. There exists a constant dNW ≥ 1 such that, for any prime p, there exists a
family of functions g : {0, 1}`+2 logn → {0, 1} that are the characteristic functions for some
NW design with the parameters as above, so that g ∈ AC0[p] of size O(n2 logn) and depth
dNW .

Proof. Recall the standard construction of NW designs from [28]. Let F be a field of size
O(n). Consider an enumeration of L polynomials of degree at most ` over F , with all
coefficients in {0, 1}; there are at least 2` = L such polynomials. We associate each such
polynomial with a binary string i = i1 . . . i` ∈ {0, 1}`, so that i corresponds to the polynomial

Ai(x) =
∑̀
j=1

ij · xj−1

over the field F . Let r1, . . . , r|F | be some canonical enumeration of the elements of F . For each
binary string i ∈ {0, 1}`, we define a set Si = {(rj , Ai(rj)) | 1 ≤ j ≤ n}. Note that |Si| = n,
and Si defines a set of n pairs in the universe F × F of O(n2) pairs (hence the universe size
for this construction is O(n2)). Finally, any two distinct degree (`− 1) polynomials Ai(x)
and Aj(x) may agree on at most ` points r ∈ F , and so we have |Si ∩ Sj | ≤ ` for the sets Si
and Sj , corresponding to the polynomials Ai(x) and Aj(x).

Arrange the elements of the universe [m] on an n× (m/n) grid. The n rows of the grid
are indexed by the first n field elements r1, . . . , rn, and the columns by all fields elements
r1, . . . , r|F |. For each j, 1 ≤ j ≤ n, define Uj to be the elements of [m] that belong to the
row j of the grid. We get that every set Si = {(rj , Ai(rj)) | 1 ≤ j ≤ n} picks exactly one
element from each of the n sets U1, . . . , Un.

We will argue that this particular design construction is computable in AC0[p] of size
polynomial in `, for each prime p. Let p be any fixed prime (which we think of as a constant).
Let F be an extension field over GF(p) of the least size so that |F | ≥ n; such a field
is described by some polynomial over GF(p) of degree O(logp n), and is of size at most
pn = O(n). As before, let r1, . . . , r|F | be a canonical enumeration of the field elements in F .

Define the following n× ` matrix M : for 1 ≤ j ≤ n and 1 ≤ k ≤ `, we have Mj,k = (rj)k,
where the power (rj)k is computed within the field F . Then the values Ai(r1), . . . , Ai(rn)
may be read off from the column vector obtained by multiplying the matrix M by the column
vector i ∈ {0, 1}`, in the field F . For a particular 1 ≤ j ≤ n, we have Ai(rj) =

∑`
k=1Mj,k · ik.

Since each ik ∈ {0, 1}, the latter reduces to the task of adding a subset of ` field elements.
Each field element of F is a polynomial over GF(p) of degree k ≤ O(logn), and so adding
a collection of elements from F reduces to the coordinate-wise summation modulo p of
k-element vectors in (GF(p))k. The latter task is easy to do in AC0[p]4.

For any 1 ≤ i ≤ L, 1 ≤ j ≤ n, and 1 ≤ k ≤ |F |, g(i, j, k) = 1 iff Ai(rj) = rk. To compute
g(i, j, k), we need to evaluate the polynomial Ai(x) at rj , and then check if the result is

4 We code elements of GF(p) by p-wire bundles, where wire i is on iff the bundle codes the ith element of
GF(p). An addition, multiplication, or inverse in the field GF(p) can be implemented in AC0. To add
up a tuple of field elements, we first convert each field element from the representation above to the
unary representation (using constant-depth selection circuits). Then we lead these unary encodings into
a layer of p gates, ⊕j

p, for 0 ≤ j ≤ p− 1, where ⊕j
p is the gate ⊕p with p− j extra inputs 1. Thus the

gate ⊕j
p on inputs x1, . . . , xn ∈ GF(p) outputs 1 iff x1 + · · ·+ xn = j mod p. Note that exactly one of

the gates ⊕j
p will output 1, giving us the desired field element in our encoding.
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equal to rk. To this end, we “hard-code” the matrix M into the circuit (which incurs the
cost at most O(n` logn) bits of advice). We compute Ai(rj) by computing the matrix-vector
product M · i, and restricting to the jth coordinate of the resulting column vector. This
computation involves O(logn) summations of ` field elements of GF(p) modulo p, over n
rows of the matrix M . The resulting field element is described an O(logn)-element vector of
elements from the underlying field GF(p). Using O(logn) operations over GF(p), we can
check if this vector equals the vector corresponding to rk.

It is easy to see that this computation can be done in some fixed constant depth dNW by
an AC0[p] circuit of size O(` ·n logn), which can be bounded by O(n2 logn), as required. J

As a corollary, we get Theorem 3.3, which we re-state below.

I Theorem 3.7. Let p be any prime. There exists a constant dMX ≥ 1 such that, for
any n and L < 2n, there exists an NW design S1, . . . , SL ⊆ [m] with m = O(n2), each
|Si| = n, and |Si ∩ Sj | ≤ ` = logL for all 1 ≤ i 6= j ≤ L, such that the function
MXNW : {0, 1}` × {0, 1}m → {0, 1}n, defined by MXNW (i, z) = z|Si , is computable by an
AC0[p] circuit of size O(` · n3 logn) and depth dMX .

Proof. Let g(i, j, k) be the characteristic function for the NW design from Theorem 3.6,
where |i| = `, |j| = logn, and |k| = logn+log c, for some constant c ≥ 1. We have g ∈ AC0[p]
of size O(` · n logn) and depth dNW . Let U1, . . . , Un ⊆ [m] be the sets of size cn each that
partition [m] so that every Si contains exactly one element from every Uj , 1 ≤ j ≤ n.

Let i1, . . . , i` and z1, . . . , zm denote the input gates of MXNW , and let y1, . . . , yn denote
its output gates. Associate each gate yj with the set Uj of indices in [m], for 1 ≤ j ≤ n. For
each 1 ≤ i ≤ L and each 1 ≤ j ≤ n, define

yj = ∨cnk=1 g(i, j, k) ∧ (z|Uj )k.

Clearly, the defined circuit computes MXNW . It has size O(` · n3 logn) and depth
dMX ≤ dNW + 2, as required. J

Let Gf be the NW generator based on a function f , using the NW design S1, . . . , SL from
Theorem 3.3. For each fixed seed z, define the function gz : {0, 1}` → {0, 1}, for ` = logL,
as gz(i) = (Gf (z))i = f(z|Si), where 1 ≤ i ≤ L. By Theorem 3.3, we get gz ∈ (AC0[p])f . See
Figure 1 for the description of a small circuit for gz that combines the AC0[p] circuit for
MXNW with a circuit for f .

4 Black-box amplification

Here we show that black-box amplification (Definition 3.4) is possible within AC0[p], for
any prime p ≥ 2, as required for the proof that black-box generators within AC0[p] ex-
ist (Theorem 3.2). For AC0[2], we shall use standard hardness amplification tools from
pseudorandomness: Direct Product and XOR construction. For AC0[p], p 6= 2, we will
need to use something else in place of XOR, as small AC0[p] circuits can’t compute Par-
ity [35]. We will replace XOR with a MODp function, also using an efficient conversion
from {0, 1, . . . , p− 1}-valued functions to Boolean functions, which preserves the required
amplification parameters.

For a Boolean function f : {0, 1}n → {0, 1} and a parameter k ∈ N, the k-wise direct
product of f is fk : {0, 1}nk → {0, 1}k, where fk(x1, . . . , xk) = (f(x1), . . . , f(xk)) for
xi ∈ {0, 1}n, 1 ≤ i ≤ k. It is well-known that the Direct Product (DP) construction
amplifies hardness of a given function f in the sense that a circuit somewhat nontrivially
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MXNW
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z
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z|Si

Figure 1 A circuit for gz(i) = f(z|Si).

approximating the function fk may be used to get a new circuit that approximates the
original function f quite well [13], and, moreover, this new circuit for f can be constructed
efficiently uniformly [22]. We shall use the following algorithm due to [17] that has optimal
parameters (up to constant factors).

I Theorem 4.1 (DP Reconstruction [17]). There is a constant c and a probabilistic algorithm
A with the following property. Let k ∈ N, and let 0 < ε, δ < 1 be such that δ > e−εk/c. For a
Boolean function f : {0, 1}n → {0, 1}, let C ′ be any circuit in C̃KT(fk, 1− δ). Given such a
circuit C ′, algorithm A outputs with probability Ω(δ) a circuit C ∈ C̃KT(f, ε).

DP Reconstruction Algorithm. The algorithm A in Theorem 4.1 is a uniform randomized
NC0 algorithm (with one C ′-oracle gate), and the produced circuit C is an AC0 circuit of
size poly(n, k, log 1/ε, 1/δ) (with O((log 1/ε)/δ) of C ′-oracle gates). We sketch this algorithm
below. It consists of a preprocessing stage and a circuit construction stage. For simplicity,
we allow the constructed circuit to be randomized; it can easily be made deterministic by
choosing all required randomness in the preprocessing stage.

Preprocessing
Randomly pick a set B0 of k strings in {0, 1}n. Pick a random subset A ⊂ B0 of size
k/2. Evaluate C ′ on a k-tuple ~b0 that is a random permutation of the strings in B0,
and note the answers ~a given by C ′(~b0) for the strings in A.

Circuit construction
Using A and ~a from preprocessing, build a randomized circuit C following the template:
“On input x ∈ {0, 1}n, if x ∈ A, then output the corresponding answer in ~a. Otherwise,
for m = O((log 1/ε)/δ) times,
1. sample a random k-set B such that A ∪ {x} ⊂ B;
2. evaluate C ′ on a k-tuple ~b that is a random permutation of the strings in B;
3. if the answers of C ′(~b) for A are consistent with ~a, then output C ′(~b)x (the answer
C ′ gave for x), and stop.

If no output is produced after m iterations, output a random bit.”

Next, we need to convert a non-Boolean function fk : {0, 1}kn → {0, 1}k into a Boolean
function h such that a circuit approximately computing h would uniformly efficiently yield
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a circuit approximately computing fk, where the quality of approximation is essentially
preserved. To this end, we “collapse” the k-bit output of fk to a single number modulo a prime
p, using the Goldreich-Levin construction [12] over F = GF(p): For g : {0, 1}m → {0, 1}k,
define gGL : {0, 1}m × F k → F to be

gGL(x1, . . . , xm, r1, . . . , rk) =
k∑
i=1

ri · g(x1, . . . , xm)i,

where all arithmetic is over the field F .
We will describe an efficient reconstruction algorithm that takes a circuit computing

the function gGL on more than 1/p + γ fraction of inputs, for some γ > 0, and produces
a circuit that computes g on more than Ω(γ3) fraction of inputs. The main ingredient of
this algorithm is the following result first proved by Goldreich and Levin [12] for the case of
p = 2, and later generalized by Goldreich, Rubinfeld, and Sudan [14] to all primes p.

I Theorem 4.2 (GL Reconstruction [12, 14]). There is a probabilistic algorithm A with the
following property. Let h ∈ F k be arbitrary, and let B : F k → F be such that Prr∈Fk [B(r) =
〈h, r〉] ≥ 1/p + γ for some γ > 0, where 〈x, y〉 =

∑k
i=1 xi · yi mod p. Then, given oracle

access to B and the parameter γ, the algorithm A runs in time poly(k, 1/γ) and outputs a
list of size O(1/γ2) such that, with probability at least 1/2, the tuple h is on the list.

GL Reconstruction Algorithm. We sketch below the algorithm A of Theorem 4.2.

Proceed in k rounds, maintaining after round i a list Hi of length-i tuples in F i; the
list after round k is the final output. In round i:
1. Extend each tuple in Hi−1 by one element in all |F | possible ways.
2. For each extended tuple ~c ∈ F i, include ~c in Hi iff it passes the following test:

Randomly pick m = poly(k/γ) tuples ~s1, . . . , ~sm ∈ F k−i. For each ~si and
each σ ∈ F , estimate Pr~r∈F i [B(~r,~s) = 〈~c, ~r〉 + σ]. If at least one of these
estimates is significantly larger than 1/p, then accept; otherwise, reject.

4.1 Case of AC0[2]
Theorems 4.1 and 4.2 imply the following.

I Theorem 4.3 (Black-Box Amplification within AC0[2]). For any 0 < ε, γ < 1, there is
black-box (ε, γ)-amplification within AC0[2].

Proof. Given f : {0, 1}n → {0, 1} in AC0[2] of size s, and given 0 < ε, δ < 1, define Amp(f)
as follows:
1. Set k = d(3c) · 1/ε · ln 1/γe+ 1, where c is the constant in Theorem 4.1.
2. Define g to be the direct product fk : {0, 1}nk → {0, 1}k.
3. Define Amp(f) to be gGL : {0, 1}nk+k → {0, 1} over F = GF(2).

I Claim 4.4. For any γ > 0, we have

Consf (C̃KT(gGL, 1/2− γ)→ C̃KT(g, 1− Ω(γ3)); poly(n, k, 1/γ)).

Proof. Suppose we are given a circuit C ′ ∈ C̃KT(gGL, 1/2− γ). Let AGL be the Goldreich-
Levin algorithm of Theorem 4.2. Consider the following algorithm A1 that attempts to
compute g:
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For a given input x ∈ {0, 1}nk, define a circuit Bx(r) := C ′(x, r), for r ∈ {0, 1}k. Run
AGL on Bx, with parameter γ/2, getting a list L of k-bit strings. Output a uniformly
random k-bit string from the list L.

Correctness Analysis of A1: By averaging, for each of at least γ/2 fraction of
strings x ∈ {0, 1}nk, the circuit Bx(r) := C ′(x, r) agrees with gGL(x, r) = 〈g(x), r〉 on at
least 1/2 + γ/2 fraction of strings r ∈ {0, 1}k. For each such x, the circuit Bx satisfies
the condition of Theorem 4.2, and so the GL algorithm will find, with probability at least
1/2, a list L of O(1/γ2) strings in {0, 1}k that contains the string g(x). Conditioned on
the list containing the string g(x), if we output a random string on that list, we get g(x)
with probability at least 1/|L| ≥ Ω(γ2). Overall, the fraction of inputs x where A1 correctly
computes g(x) is at least γ

2 ·
1
2 ·Ω(γ2) ≥ Ω(γ3). The runtime of A1 is poly(|C ′|, k, n, 1/γ). J

By Theorem 4.1, we have

Consf (C̃KT(fk, 1− µ)→ C̃KT(f, ε); poly(n, k, log 1/ε, 1/µ)),

as long as µ > e−εk/c, for some fixed constant c > 0. Combining this with Claim 4.4 yields

Consf (C̃KT(Amp(f), 1/2− γ)→ C̃KT(f, ε); poly(n, 1/ε, 1/γ)),

as long as γ3 > e−εk/c, which is equivalent to γ > e−εk/c
′ , for c′ = 3c. Our choice of k

satisfies this condition.
Finally, we verify that Amp(f) also satisfies the other conditions of black-box amplification:
(fk)GL is defined on inputs of size kn+ k ≤ O(n · 1/ε · log 1/γ).
If f ∈ AC0[2] of size s, then fk is in AC0[2] of size O(s · k) = O(s · 1/ε · log 1/γ), and
(fk)GL is of size at most the additive term O(k) larger.
(fk)GL is in Pf .

Thus, Amp(f) defined above is black-box (ε, γ)-amplification of f , as required. J

4.2 Case of AC0[p] for primes p > 2
For AC0[p] circuits, with p > 2, we can’t use the XOR construction above, as Parity is not
computable by small AC0[p] circuits [35]. A natural idea to amplify a given function f is to
apply the Goldreich-Levin construction gGL over the field F = GF(p) to the direct-product
function g = fk, for an appropriate value of k. Theorem 4.2 guarantees that if we have a
circuit that computes gGL on more than 1/p+ γ fraction of inputs, then we can efficiently
construct a circuit that computes g on Ω(γ3) fraction of inputs; the proof is identical to that
of Claim 4.4 inside the proof of Theorem 4.3 for the case of AC0[2] above.

The only problem is that the function gGL defined here is not Boolean-valued, but we
need a Boolean function to plug into the NW generator in order to complete our construction
of a black-box generator within AC0[p]. We need to convert gGL into a Boolean function h in
such a way that if h can be computed by some circuit on at least 1/2 + µ fraction of inputs,
then gGL can be computed by a related circuit on at least 1/p+ µ′ fraction of inputs, where
µ and µ′ are close to each other.

We use von Neumann’s idea for converting a coin of unknown bias into a perfectly
unbiased coin [40]. Given a coin that is “heads” with some (unknown) probability 0 < p < 1,
flip the coin twice in a row, independently, and output 0 if the trials were (“heads”, “tails”),
or 1 if the trials were (“tails”, “heads”). In case both trials came up the same (i.e., both
“heads”, or both “tails”), flip the coins again.
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Observe that, conditioned on producing an answer b ∈ {0, 1}, the value b is uniform
over {0, 1} (as both conditional probabilities are equal to p(1− p)/(1− p2 − (1− p)2). The
probability of not producing an answer in one attempt is p2 +(1−p)2, the collision probability
of the distribution (p, 1− p). If p is far away from 0 and 1, the probability that we need to
repeat the flipping for more than t trials diminishes exponentially fast in t.

In our case, we can think of the value of gGL on a uniformly random input as a distribution
over F . Assuming that this distribution is close to uniform over F , we will define a new
Boolean function h based on gGL so that the output of h on a uniformly random input is close
to uniform over {0, 1}. Our analysis of h will be constructive in the following sense. If we
are given a circuit that distinguishes the distribution of the outputs of h from uniform, then
we can efficiently construct a circuit that distinguishes the distribution of the outputs of gGL
from uniform over F . Finally, using the standard tools from pseudorandomness (converting
distinguishers into predictors), we will efficiently construct from this distinguisher circuit a
new circuit that computes gGL on noticeably more than 1/p fraction of inputs.

The construction of this function h follows the von Neumann trick above. Formally we
have the following.

I Definition 4.5 (von Neumann trick function). For an integer parameter t > 0, define the
function EvN : (F 2)t → {0, 1} as follows: For pairs (a1, b1), . . . , (at, bt) ∈ F × F , set

EvN ((a1, b1), . . . , (at, bt)) =


1 if, for each 1 ≤ i ≤ t, ai = bi

1 if (ai, bi) is the first unequal pair and ai > bi

0 if (ai, bi) is the first unequal pair and ai < bi

It is not hard to see that EvN is computable in AC0. Moreover, for independent uniformly
distributed inputs, the output of EvN is a random coin flip, with bias at most (1/p)t.

I Claim 4.6. Let F be the uniform distribution over the field F = GF(p), and let G =
(F2)t be the uniform distribution over sequences of t pairs of elements from F . Then∣∣Prr∈G [EvN (r) = 1]−Prr∈G [EvN (r) = 0]

∣∣ ≤ p−t.
Proof. Conditioned on having some unequal pair in the sample from G, the bias of the
random variable EvN (G) is 0. Conditioned on having no such unequal pair, the bias is
at most 1. Note that the collision probability of the uniform distribution over GF(p) is∑p
i=1 p

−2 = p−1. So the probability of having collisions in all t independent samples from
F2 is p−t. Thus, the overall bias is at most p−t. J

Next, given gGL : D → F , for the domain D = {0, 1}m × F k, define hvN : (D2)t → {0, 1}
as follows:

hvN ((a1, b1), . . . , (at, bt)) = EvN ((gGL(a1), gGL(b1)), . . . , (gGL(at), gGL(bt))).

I Theorem 4.7. For any 0 < µ < 1 and 1 > γ > Ω(µ/(log 1/µ)), we have

Consf (C̃KT(hvN , 1/2− µ)→ C̃KT(gGL, 1− 1/p− γ); poly(k,m, poly(1/µ))).

Proof. Recall some basic definition from pseudorandomness theory. We say that distributions
X and Y are computationally (η, s)-indistinguishable, denoted by X

η,s
≈ Y if, for any circuit

T of size s, the probability that T accepts a sample from X is the same as the probability T
accepts a sample from Y , to within ±η.

CCC 2016



10:18 Learning Algorithms from Natural Proofs

We want to show that if hvN is predictable with probability better than 1/2, then gGL is
predictable with probability better than 1/p. We will argue the contrapositive: suppose gGL
is unpredictable, and show that hvN is unpredictable. This will take a sequence of steps.

Let D denote the uniform distribution over D, F the uniform distribution over F , and
U the uniform distribution over {0, 1}. Assume gGL is unpredictable by circuits of size s
with probability better than 1/p+ γ, for some γ > 0. This implies the following sequence of
statements:

1. (D, gGL(D))
2γ,Ω(s)
≈ (D,F) (unpredictable ⇒ indistinguishable)

2. (D2t, gGL(D)2t)
4tγ,Ω(s/t)
≈ (D2t, F 2t) (hybrid argument)

3. (D2t, EvN (gGL(D)2t))
4tγ,Ω((s/t)−poly(t))
≈ (D2t, EvN (F 2t)) (applying hvN )

4. (D2t, hvN (D2t))
4tγ+p−t,Ω((s/t)−poly(t))
≈ (D2t,U) (by Claim 4.6)

Finally, the last statement implies (via the “indistinguishable to unpredictable” direction)
that hvN cannot be computed on more than 1/2 + µ fraction of inputs by any circuit of size
Ω((s/t)− poly(t)), where µ = Ω(tγ + p−t). For t = O(log 1/µ), we get γ ≥ Ω(µ/(log 1/µ)).

In the standard way, the sequence of implications above yields an efficient randomized
algorithm, with the runtime poly(k,m, log 1/µ), for going in the reverse direction: from
a predictor circuit for hvN to a predictor circuit for gGL. To be able to carry out the
hybrid argument with uniform algorithms, we need efficient sampleability of the distribution
(D, gGL(D)). Such sampling is possible when we have membership queries to f (as gGL ∈ Pf );
in fact, here it would suffice to have access to uniformly random labeled examples (x, f(x)).
Another issue is that we need to sample uniformly from Zp, while we only have access to
uniformly random bits. However, it is easy to devise an efficient sampling algorithm for Zp,
with the distribution statistically almost indistinguishable from uniform over Zp.5 J

We now have all the ingredients to prove the following.

I Theorem 4.8 (Black-Box Amplification within AC0[p]). For any 0 < ε, γ < 1, there is
black-box (ε, γ)-amplification within AC0[p].

Proof. The proof is similar to that of Theorem 4.3. To amplify a given function f , we first
apply the Direct Product construction to get g = fk (for an appropriate parameter k), then use
the Goldreich-Levin construction to get gGL, and finally apply the von Neumann construction
hvN . The only difference is the use of the von Neumann construction of Theorem 4.7. But
the only consequence of this extra step for the parameters of the amplification procedure is
the slightly worse dependence on 1/γ: from 1/γ to (1/γ) · log 1/γ ≤ 1/γ2. J

5 Natural properties imply randomized learning

In this section, we prove the general implication from natural properties to learning algorithms.
First we prove the generic reduction from learning (and compression) to natural properties.
Then, as our main application, we use the known natural properties for AC0[p], to get learning
and compression algorithms for AC0[p].

5 We divide an interval [0, 2k−1] into p almost equal pieces (all but the last piece are equal to b2k/pc),
and check in AC0 which piece we fall into. The statistical difference between the uniform distribution
over Zp and this distribution is at most p/2k. So we can make it negligible by choosing k to be a large
enough polynomial in the relevant parameters.
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5.1 A generic reduction from learning to natural properties

I Theorem 5.1 (Learning from a natural property). Let Λ be any circuit class containing
AC0[p] for some prime p. Let R be a P-natural property, with largeness at least 1/5, that is
useful against Λ[u], for some size function u : N→ N. Then there is a randomized algorithm
that, given oracle access to any function f : {0, 1}n → {0, 1} from Λ[sf ], produces a circuit
C ∈ C̃KT(f, ε) in time poly(n, 1/ε, 2u−1(poly(n,1/ε,sf ))).

Proof. Let Gen(f) = {gz} be an (ε, L)-black-box generator based on f , for L(n) such
that logL(n) > u−1(poly(n, 1/ε(n), sf )). Using the nonuniform Λ-efficiency of black-box
generators, we have that gz ∈ Λf [poly(n, 1/ε)], for every z. Hence, we get, by replacing the
f -oracle with the Λ-circuit for f , that gz ∈ Λ[sg], for some sg ≤ poly(n, 1/ε, sf ). We want
sg < u(logL(n)). This is equivalent to u−1(sg) < logL(n).

Let D be the circuit obtained from the natural property R restricted to truth tables of
size L(n). By usefulness, we have Prz[¬D(gz) = 1] = 1, and by largeness, Pry[¬D(y) = 1] ≤
1−1/5. So ¬D is a 1/5-distinguisher for Gen(f). By the reconstruction property of black-box
generators, we have a randomized algorithm that constructs a circuit C ∈ C̃KT(f, ε) in time
poly(n, 1/ε(n), L(n)) = poly(n, 1/ε, 2u−1(poly(n,1/ε,sf ))), as required. J

For different usefulness bounds u, we get different runtimes for our learning algorithm:
polynomial poly(nsf/ε), for u(n) = 2Ω(n),
quasi-polynomial quasi-poly(nsf/ε), for u(n) = 2nα where α < 1, and
subexponential poly(n, 1/ε, 2(nsf/ε)o(1))), for u(n) = nω(1).

I Corollary 5.2. Under the same assumptions as in Theorem 5.1, we also get randomized
compression for Λ[poly] to the circuit size at most O(ε(n) · 2n · n), for any 0 < ε(n) < 1 such
that log(ε(n) · 2n · n) ≥ u−1(poly(n, 1/ε)).

Proof. We use Theorem 5.1 to learn a small circuit that computes f on all but at most ε · 2n
inputs, and then patch up this circuit by hardwiring all the error inputs, using extra circuitry
of size at most O(ε · 2n · n). This size will dominate the overall size of the patched-up circuit
for the ε satisfying the stated condition. J

5.2 Application: Learning and compression algorithms for AC0[p]

We have natural properties useful against the class of AC0 circuits with mod p gates, for
any fixed prime p, as given in [31]. The lower bound of Razborov [30] (showing that
Majority is not in AC0[2]) embeds a natural property against AC0[2], and the lower bound
of Smolensky [35] (showing that Parity is not in AC0[p], for any prime p 6= 2) embeds a
natural property against AC0[p] for any prime p > 2. In both cases, the natural property is
NC2-computable, and is useful for circuit size up to 2Ω(n1/(2d)), where d is the circuit depth,
and n is the input size.

I Theorem 5.3 ([31]). For every prime p, there is an NC2-natural property of n-variate
Boolean functions, with largeness at least 1/2, that is useful against AC0[p] circuits of depth
d of size up to 2Ω(n1/(2d)).

Below we sketch the corresponding natural properties; see the full paper for more details.
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Natural Property useful against AC0[2]. For 0 ≤ a, b ≤ n, define a linear transformation
Aa,b that maps a Boolean function f : {0, 1}n → {0, 1} to a matrixM = Aa,b(f) of dimension(
n
a

)
×
(
n
b

)
, whose rows are indexed by size a subsets of [n], and rows by size b subsets of [n].

For every K ⊆ [n], define the set Z(K) = {(x1, . . . , xn) ∈ {0, 1}n | ∀i ∈ K, xi = 0}. For a
size a subset I ⊆ [n] and size b subset J ⊆ [n], define MI,J = ⊕x∈Z(I∪J)f(x).

The natural property of Theorem 5.3 for AC0[2] is the following algorithm:

Given an n-variate Boolean function f , construct matrices Mb = Aa,b(f) for a =
n/2−

√
n and for every 0 ≤ b ≤ a. Accept f if, for at least one b, rank(Mb) ≥ 2n

140n2 .

Natural Property useful against AC0[p], for primes p > 2. Let f be a given n-variate
Boolean function. Without loss of generality, assume n is odd. Denote by L the vector
space of all multilinear polynomials of degree less than n/2 over GF(p). Let f̄ be the unique
multilinear polynomial over GF(p) that represents f on the Boolean cube {−1, 1}n (after the
linear transformation mapping the Boolean 0 to 1 mod p, and the Boolean 1 to −1 mod p),
i.e., f and f̄ agree over all points of {−1, 1}n.

The natural property of Theorem 5.3 for AC0[p] is the following algorithm:

Given an n-variate Boolean function f , construct its unique multilinear polynomial
extension f̄ over GF(p). Accept f if dim(f̄L+ L) ≥ 3

4 · 2
n (over GF(p)).

Theorem 5.3, in conjunction with Theorem 5.1, immediately yields our main application.

I Corollary 5.4 (Learning AC0[p] in quasipolytime). For every prime p, there is a randomized
algorithm that, using membership queries, learns a given n-variate Boolean function f ∈
AC0[p] of size sf to within error ε over the uniform distribution, in time quasi-poly(nsf/ε).

Using Corollary 5.2, we also immediately get the following compression result, first proved
(with somewhat stronger parameters) by Srinivasan [36].

I Corollary 5.5. There is a randomized compression algorithm for depth-d AC0[p] functions
that compresses an n-variate function to the circuit size at most 2n−nµ , for µ ≥ Ω(1/d).

5.3 Sketch of Complete Algorithm
Here, we sketch the algorithm implied by Theorem 5.1 for the case of AC0[2]. Let f : {0, 1}n →
{0, 1} be a function in AC0[2] to be learned, given via membership oracle. Let R be a natural
property, and let L = npoly(logn).

1. Design a subroutine for computing Amp(f) = (fk)GL (Theorem 4.3) using f as an oracle.
2. Let D be a circuit simulating the natural property RL. D is a distinguisher between

GAmp(f)(s) for a random s and uniform, as shown in the proof of Theorem 5.1.
3. Convert D into C, a weak predictor for Amp(f) on (1/2 + Ω(1/L))-fraction of inputs,

using the NW reconstruction algorithm (Section 2.9) and oracle for Amp(f).
4. Use C as the oracle for the Goldreich-Levin reconstruction algorithm (Theorem 4.2),

obtaining a predictor C ′ for the direct product of f .
5. Use C ′ as input to the Direct Product reconstruction algorithm of Theorem 4.1, and

print the resulting circuit.

For the case of AC0[p] with p 6= 2, the algorithm is essentially the same, but requires an
additional step in the definition of Amp(f): the von Neumann construction (Theorem 4.7)
applied to (fk)GL. Thus, we need the von Neumann reconstruction step inserted between
steps 3 and 4 of the complete algorithm above.
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6 NW designs cannot be computed in AC0

In Section 3.1 we showed that NW designs (with parameters of interest to us) are computable
by small AC0[p] circuits, for any prime p. It is natural to ask if one can compute such NW
designs by small AC0 circuits, without modular gates. Here we show that this is not possible.

Consider an NW design S1, . . . , SL ⊆ [n2], where
each set Si is of size n,
the number of sets is L = 2` for ` = nε (for some ε > 0), and
for any two distinct sets Si and Sj , i 6= j, we have |Si ∩ Sj | ≤ `.

To describe such a design, we use the following Boolean function g: for 1 ≤ i ≤ L, and for
1 ≤ k ≤ n2, define g(i, k) = 1 iff k ∈ Si.

We will prove the following.

I Theorem 6.1. Let g : {0, 1}`+2 logn → {0, 1} be the characteristic function for any NW
design with the above parameters. Then g requires depth d AC0 circuits of size exp(`1/d).

To prove this result, we shall define a family of Boolean functions fT , parameterized
by sets T ⊆ [n2]: for 1 ≤ i ≤ L, we define fT (i) = 1 iff T ∩ Si 6= ∅. Observe that if g(i, k)
is computable by AC0 circuits of depth d and size s, then, for every set T , the function
fT (i) = ∨k∈T g(i, k) is computable by AC0 circuits of depth at most d+ 1 and size O(s · |T |).
Therefore, to prove Theorem 6.1, it will suffice to prove the following.

I Lemma 6.2. There exists a set T ⊆ [n2] such that fT : {0, 1}` → {0, 1} requires depth
d+ 1 AC0 circuits of size at least exp(`1/d).

The idea of the proof of Lemma 6.2 is to show that for a random set T (of expected size
O(n)), the function fT has high average sensitivity (i.e., is likely to flip its value for many
Hamming neighbors of a randomly chosen input). By averaging, we get the existence of a
particular function fT of high average sensitivity. On the other hand, it is well-known that
AC0 functions have low average sensitivity. This will imply that fT must require large AC0

circuits. We refer the reader to the full version of the paper for more details.

7 Conclusions

For our applications, we need Λ strong enough to carry out a (version of) the construction,
yet weak enough to have a natural property useful against it. Here we show that Λ = AC0[p]
for any prime p satisfies both conditions. A logical next step would be ACC0: if one can get
a natural property useful against ACC0, for example by naturalizing Williams’s [43] proof,
then a learning algorithm for ACC0 would follow. (As MODp can be simulated with MODm,
m = p · a gates by duplicating each input to the Modm gate a times (without any penalty in
the number of gates), our construction for MODp can be applied directly by taking p to be
any prime factor of m.)

Connections between learning algorithms and lower bounds could also be explored in
other settings. In particular, it would be interesting to give such a connection for arithmetic
circuits. In [23], the NW generator is used to derandomize polynomial identity testing based
on a polynomial with a large arithmetic circuit lower bound. Since the main reduction is
constructive, one might hope to use it to design learning (or interpolation) algorithms for
multivariate polynomials of small circuit complexity. However, it is unclear what the analogy
of “natural property” would be in this setting.

We conclude with the following open questions. Can we get an exact compression
algorithm for AC0[p] (or even AC0) functions that would produce circuits of subexponential
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size? Can our learning algorithm be derandomized? Is there a way to get nontrivial SAT
algorithms from natural properties? Finally, are there more applications of “play-to-lose”
pseudorandom constructions?
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Abstract
We give a polynomial time algorithm to decode multivariate polynomial codes of degree d up to
half their minimum distance, when the evaluation points are an arbitrary product set Sm, for
every d < |S|. Previously known algorithms can achieve this only if the set S has some very
special algebraic structure, or if the degree d is significantly smaller than |S|. We also give a
near-linear time algorithm, which is based on tools from list-decoding, to decode these codes
from nearly half their minimum distance, provided d < (1− ε)|S| for constant ε > 0.

Our result gives an m-dimensional generalization of the well known decoding algorithms for
Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel
lemma.
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1 Introduction

Error-correcting codes based on polynomials have played an important role throughout the
history of coding theory. The mathematical phenomenon underlying these codes is that
distinct low-degree polynomials have different evaluations at many points. More recently,
the intimate relation between polynomials and computation has led to polynomial-based
error-correcting codes having a big impact on complexity theory. Notable applications include
PCPs, interactive proofs, polynomial identity testing and property testing.

Our main result is a decoding algorithm for multivariate polynomial codes. Let F be a
field, let S ⊆ F, let d < |S| and let m ≥ 1. Consider the code of all m-variate polynomials of
total degree at most d, evaluated at all points of Sm:

C = {〈P (a)〉a∈Sm | P (X1, . . . , Xm) ∈ F[X1, . . . , Xm], deg(P ) ≤ d}.

When m = 1, this code is known as the Reed-Solomon code [3], and for m > 1 this code is
known as the Reed-Muller code [1, 2]1.
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1 The family of Reed-Muller codes also includes polynomial evaluation codes where the individual degree
d is larger than |S|, and the individual degree is capped to be at most |S| − 1. We do not consider the
d ≥ |S| case in this paper.

© John Y. Kim and Swastik Kopparty;
licensed under Creative Commons License CC-BY

31st Conference on Computational Complexity (CCC 2016).
Editor: Ran Raz; Article No. 11; pp. 11:1–11:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


11:2 Decoding Reed-Muller Codes Over Product Sets

The code C above is a subset of FSm , which we view as the space of functions from Sm

to Fq. Given two functions f, g : Sm → F, we define their (relative Hamming) distance
∆(f, g) = Pra∈Sm [f(a) 6= g(a)]. To understand the error-correcting properties of C, we recall
the following well known lemma, often called the Schwartz-Zippel lemma:

I Lemma 1.1. Let F be a field, and let P (X1, . . . , Xm) be a nonzero polynomial over F with
degree at most d. Then for every S ⊆ F,

Pr
a∈Sm

[P (a) = 0] ≤ d

|S|
.

This lemma implies that for any two polynomials P,Q of degree at most d, ∆(P,Q) ≥ (1− d
|S| ).

In other words the minimum distance of C is at least (1− d
|S| ). It turns out that the minimum

distance of C is in fact exactly (1− d
|S| ), and we let δC denote this quantity.

For error-correcting purposes, if we are given a “received word” r : Sm → F such that
there exists a polynomial P of degree at most d with ∆(r, P ) ≤ δC/2, then we know that
there is a unique such P . The problem that we consider in this paper, “decoding C upto half
its minimum distance”, is the algorithmic task of finding this P .

1.1 Our Results
There is a rich history with several deep algebraic ideas surrounding the problem of decoding
multivariate polynomial codes. We first state our main results, and then discuss its relationship
to the various other known results.

I Theorem 1.2 (Efficient decoding of multivariate polynomial codes upto half their minimum
distance). Let F be a finite field, let S, d,m be as above, and let δC = (1− d

|S| ).
There is an algorithm, which when given as input a function r : Sm → F, runs in time

poly(|S|m, log |F|) finds the polynomial P (X1, . . . , Xm) ∈ F[X1, . . . , Xm] of degree at most d
(if any) such that:

∆(r, P ) < δC/2.

As we will discuss below, previously known efficient decoding algorithms for these codes
only either worked for (1) very algebraically special sets S, or (2) very low degrees d, or (3)
decoded from a much smaller fraction of errors (≈ 1

m+1δC instead of 1
2δC).

Using several further ideas, we also show how to implement the above algorithm in near-
linear time to decode upto almost half the minimum distance, provided d is not (1− o(1))|S|.

I Theorem 1.3 (Near-linear time decoding). Let F be a finite field, let S, d,m be as above,
and let δC = (1− d

|S| ). Assume δC > 0 is a constant.
There is an algorithm, which when given as input a function r : Sm → F, runs in time

|S|m · poly(log |S|m, log |F|) finds the polynomial P (X1, . . . , Xm) ∈ F[X1, . . . , Xm] of degree
at most d (if any) with:

∆(r, P ) < (1− o(1)) · δC/2.

Over the rational numbers, we get a version of Theorem 1.2 where the running time is
poly(|S|m, t), where t is the maximum bit-complexity of any point in S or in the image of r.
This enables us to decode multivariate polynomial codes upto half the minimum distance in
the natural special case where the evaluation set S equals {1, 2, . . . , n}.
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We also mention that decoding Reed-Muller codes over an arbitrary product set Sm
appears as a subroutine in the local decoding algorithm for multiplicity codes [17] (see Section
4 on “Solving the noisy system”). Our results allow the local decoding algorithms there to
run efficiently over all fields ([17] could only do this over fields of small characteristic, where
algebraically special sets S are available).

1.2 Related work
There have been many works studying the decoding of multivariate polynomial codes, which
prove (and improve) various special cases of our main theorem.

1.2.1 Reed-Solomon codes (m = 1)
When m = 1, our problem is also known as the problem of decoding Reed-Solomon codes
upto half their minimum distance. That this problem can be solved efficiently is very
classical, and a number of algorithms are known for this (Mattson-Solomon [5], Berlekamp-
Massey [4], Berlekamp-Welch [12]). The underlying algorithmic ideas have subsequently had
a tremendous impact on algebraic algorithms.

For Reed-Solomon codes, it is in fact known how to list-decode beyond half the minimum
distance, upto the Johnson bound (Guruswami-Sudan [6]). This has had numerous further
applications in coding theory, complexity theory and pseudorandomness.

1.2.2 Special sets S

For very special sets S, it turns out that there are some algebraic ways to reduce the decoding
of multivariate polynomial codes over Sm to the decoding of univariate polynomial codes.
This kind of reduction is possible when S equals the whole field F, or more generally when S
equals an affine subspace over the prime subfield of F.

When S = Fq, then Sm = Fmq and Sm can then be identified with the large field Fqm in a
natural Fq-linear way (this understanding of Reed-Muller codes was discovered by [8]). This
converts the multivariate setting into univariate setting, identifies the multivariate polynomial
code as a subcode of the univariate polynomial code, and (somewhat miraculously), the
minimum distance of the univariate polynomial code equals the minimum distance of the
multivariate polynomial code. Thus the classical Reed-Solomon decoding algorithms can
then be used, and this leads to an algorithm for the multivariate setting decoding upto half
the minimum distance. In fact, Pellikaan-Wu [7] observed that this connection allows one to
decode multivariate polynomial codes beyond half the minimum distance too, provided S is
special in the above sense.

Another approach which works in the case of S = Fq is based on local decoding. Here
we use the fact that Sm = Fmq contains many lines (not just the axis-parallel ones), and
then use the univariate decoding algorithms to decode on those lines from (1− d

q )/2 fraction
errors. This approach manages to decode multivariate polynomial codes with S = Fq from
( 1

2 − o(1)) of the minimum distance. Again, this approach does not work for general S, since
a general Sm usually contains only axis-parallel lines (while Fmq has many more lines).

1.2.3 Low degree d

When the degree d of the multivariate polynomial code is significantly smaller than |S|, then
a number of other list-decoding based methods come into play.

CCC 2016
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The powerful Reed-Muller list-decoding algorithm of Sudan [9] and its multiplicity-based
generalization, based on (m + 1)-variate interpolation and root-finding, can decode from
1 − ( d

|S| )
1

m+1 fraction errors. With small degree d = o(|S|) and m = O(1), this decoding
radius equals 1− o(1)! However when d is much larger (say 0.9 · |S|), then the fraction of
errors decodable by this algorithm is around 1

m+1 · (1−
d
|S| ) = 1

m+1 · δC .
Another approach comes from the list-decoding of tensor codes [10]. While the multivariate

polynomial codes we are interested in are not tensor codes, they are subcodes of the code of
polynomials with individual degree at most d. Using the algorithm of [10] for decoding tensor
codes, we get an algorithm that can decode from a 1− o(1) fraction of errors when d = o(|S|),
but fails to approach a constant fraction of the minimum distance when d approaches |S|.

In light of all the above, to the best of our knowledge, for multivariate polynomial codes
with d > 0.9 · |S| (i.e., δC < 0.1), and S generic, the largest fraction of errors which could be
corrected efficiently was about 1

m+1δC . In particular, the correctable fraction of errors is a
vanishing fraction of the minimum distance, as the number of variables m grows.

We thus believe it is worthwhile to investigate this problem, not only because of its basic
nature, but also because of the many different powerful algebraic ideas that only give partial
results towards it.

1.3 Overview of the decoding algorithm
We now give a brief overview of our decoding algorithms. Let us first discuss the bivariate
(m = 2) case. Here we are given a received word r : S2 → F such that there exists a codeword
P (X,Y ) ∈ F[X,Y ] of degree at most d = (1− δC)|S| with ∆(P, r) < δC

2 . Our goal is to find
P (X,Y ).

First some high-level strategy. An important role in our algorithm is played by the
following observation: the restriction of a degree ≤ d bivariate polynomial P (X,Y ) to a
vertical line (fixing X = α) or a horizontal line (fixing Y = β) gives a degree ≤ d univariate
polynomial. Perhaps an even more important role is played by the following disclaimer:
the previous observation does not characterize bivariate polynomials of degree d! The set
of functions f : S2 → F for which the horizontal restrictions and vertical restrictions are
polynomials of degree ≤ d is the code of polynomials with individual degree at most d (this
is the tensor Reed-Solomon code, with much smaller distance than the Reed-Muller code).
For such a function f to be in the Reed-Muller code, the different univariate polynomials
that appear as horizontal and vertical restrictions must be related in some way. The crux of
our algorithm is to exploit these relations.

It will also help to recap the standard algorithm to decode tensor Reed-Solomon codes
upto half their minimum distance (this scheme actually works for general tensor codes).
Suppose we are given a received word r : S2 → F, and we want to find a polynomial P (X,Y )
with individual degrees at most d which is close to r. One then takes the rows of this
new received word (after having corrected the columns) and decodes them to the nearest
degree ≤ d polynomial. The key point is to pass some “soft information” from the column
decodings to the row decodings; the columns which were decoded from more errors are
treated with lower confidence. This decodes the tensor Reed-Solomon code from 1/2 the
minimum distance fraction errors. Several ingredients from this algorithm will appear in our
Reed-Muller decoding algorithm.

Now we return to the problem of decoding Reed-Muller codes. Let us write P (X,Y ) as a
single variable polynomial in Y with coefficients in F[X]: P (X,Y ) =

∑d
i=0 Pi(X)Y d−i, where

deg(Pi) ≤ i. For each α ∈ S, consider the restricted univariate polynomial P (α, Y ). Since
deg(P0) = 0, P0(α) must be the same for each α. Thus all the polynomials 〈P (α, Y )〉α∈S



J. Y. Kim and S. Kopparty 11:5

have the same coefficient for Y d. Similarly, the coefficients of Y d−i in the polynomials
〈P (α, Y )〉α∈S fit a degree i polynomial.

As in the tensor Reed-Solomon case, our algorithm begins by decoding each column r(α, ·)
to the nearest degree ≤ d univariate polynomial. Now, instead of trying to use these decoded
column polynomials to recover P (X,Y ) in one shot, we aim lower and just try to recover
P0(X). The advantage is that P0(X) is only a degree 0 polynomial, and is thus resilient to
many more errors than a degree d polynomial. Armed with P0(X), we then proceed to find
P1(X). The knowledge of P0(X) allows us to decode the columns r(α, ·) to a slightly larger
radius; in turn this improved radius allows us to recover the degree 1 polynomial P1(X). At
the ith stage, we have already recovered P0(X), P1(X), . . . , Pi−1(X). Consider, for each
α ∈ S, the function fα(Y ) = r(α, Y )−

∑i−1
j=0 Pj(α)Y d−j . Our algorithm decodes fα(Y ) to

the nearest degree d − i polynomial: note that as i increases, we are decoding to a lower
degree polynomial, and hence we are able to handle a larger fraction of errors. Define h(α) to
be the coefficient of Y d−i in the polynomial so obtained; this “should” equal the evaluation
of the degree i polynomial Pi(α). So we next decode h(α) to the nearest degree i polynomial
(using the appropriate soft information), and it turns out that this decoded polynomial must
equal Pi(X). By the time i reaches d, we would have recovered P0(X), P1(X), . . . , Pd(X),
and hence all of P (X,Y ). Summarizing, the algorithm repeatedly decodes the columns
r(α, ·), and at each stage it uses the relationship between the different univariate polynomial
P (α, Y ) to: (1) learn a little bit more about the polynomial P (X,Y ), and (2) increase the
radius to which we can decode r(α, ·) in the next stage. This completes the description of
the algorithm in the m = 2 case.

The case of general m is very similar, with only a small augmentation needed. Decoding
m-variate polynomials turns out to reduce to decoding m− 1-variate polynomials with soft
information; thus in order to make a sustainable recursive algorithm, we aim a little higher
and instead solve the more general problem of decoding multivariate polynomial codes with
uncertainties (where each coordinate of the received word has an associated “confidence”
level).

To implement the above algorithms in near-linear time, we use some tools from list-
decoding. The main bottleneck in the running time is the requirement of having to decode
the same column r(α, ·) multiple times to larger and larger radii (to lower and lower degree
polynomials). To save on these decodings, we can instead list-decode r(α, ·) to a large radius
using a near-linear time list-decoder for Reed-Solomon codes; this reduces the number of
required decodings of the same column from d to O(1) (provided d < (1 − Ω(1))|S|). For
the m = 2 case this works fine, but for m > 2 case this faces a serious obstacle; in general it
is impossible to efficiently list-decode Reed-Solomon codes with uncertainties beyond half
the minimum distance of the code (the list size can be superpolynomial). We get around
this using some technical ideas, based on speeding-up the decoding of Reed-Muller codes
with uncertainties when the fraction of errors is significantly smaller than half the minimum
distance. For details, see Section 6.

1.4 Organization of this paper
In Section 2, we cover the notion of weighted distance, which will be used in handling
Reed-Solomon and Reed-Muller decoding with soft information on the reliability of the
symbols in the encoding. In Section 3, we state and prove a polynomial time algorithm for
decoding bivariate Reed-Muller codes to half the minimum distance. We then generalize the
proof to decode multivariate Reed-Muller codes in Section 4. Finally, in sections 5 and 6, we
show that decoding Reed-Muller codes to almost half the minimum distance can be done in
near-linear time by improving on the algorithms in Section 3 and 4.
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2 Preliminaries

At various stages of the decoding algorithm, we will need to deal with symbols and received
words in which we have varying amounts of confidence. We now introduce some language to
deal with such notions.

Let Σ denote an alphabet. A weighted symbol of Σ is simply an element of Σ× [0, 1]. In
the weighted symbol (σ, u), we will be thinking of u ∈ [0, 1] as our uncertainty that σ is the
symbol we should be talking about.

For a weighted symbol (σ, u) and a symbol σ′, we define their distance ∆((σ, u), σ′) by:

∆((σ, u), σ′) =
{

1− u/2 σ 6= σ′

u/2 σ = σ′

For a weighted function r : T → Σ× [0, 1], and a (conventional) function f : T → Σ, we
define their Hamming distance by

∆(r, f) =
∑
t∈T

∆(r(t), f(t)).

The key inequality here is the triangle inequality.

I Lemma 2.1 (Triangle inequality for weighted functions). Let f, g : T → Σ be functions, and
let r : T → Σ× [0, 1] be a weighted function. Then:

∆(r, f) + ∆(r, g) ≥ ∆(f, g).

Proof. We will show that if t ∈ T is such that f(t) 6= g(t), then ∆(r(t), f(t))+∆(r(t), g(t)) ≥
1. This will clearly suffice to prove the lemma.

Let r(t) = (σ, u). Suppose f(t) = σ1 and g(t) = σ2. Then either σ 6= σ1 or σ 6= σ2,
or both. Thus either we have ∆(r(t), f(t)) + ∆(r(t), g(t)) = (1 − u/2) + u/2 or we have
∆(r(t), f(t)) + ∆(r(t), g(t)) = u/2 + (1 − u/2), or we have ∆(r(t), f(t)) + ∆(r(t), g(t)) =
(1− u/2) + (1− u/2). In all cases, we have ∆(r(t), f(t)) + ∆(r(t), g(t)) ≥ 1, as desired. J

The crucial property that this implies is the unique decodability up to half the minimum
distance of a code for weighted received words.

I Lemma 2.2. Let C ⊆ ΣT be a code with minimum distance ∆. Let r : T → Σ× [0, 1] be a
weighted function. Then there is at most one f ∈ C satisfying

∆(r, f) < ∆/2.

Furthermore, for this particular definition of weighted distance, there is a very natural
decoding algorithm, due to Forney, to find the unique f ∈ C in Lemma 2.2 [13]. For each
weighted symbol (x, u), we erase x with probability u. We then apply a standard decoding
algorithm that handles both errors and erasures. This successfully finds the unique codeword
f as long as 2E + F < ∆, where E denotes the number of errors and F denotes the number
of erasures. With this definition of weighted distance, the condition that ∆(r, f) < ∆/2 is
equivalent to the expected value of 2E + F being at most ∆.



J. Y. Kim and S. Kopparty 11:7

3 Bivariate Reed-Muller Decoding

In this section, we provide an algorithm for decoding bivariate Reed-Muller codes to half
the minimum distance. Consider the bivariate Reed-Muller decoding problem. We are
given a received word r : S2 → F. Suppose that there is a codeword C ∈ F[X,Y ] with
deg(C) ≤ d, whose distance ∆(r, C) from the received word is at most half the minimum
distance |S|(|S| − d)/2. The following result says that there is a polynomial time algorithm
in the size of the input |S|2 to find C:

I Theorem 3.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
Given a received word r : S2 → F, there is a O(n3 polylog(n, |F|)) time algorithm to find the
unique polynomial (if it exists) C ∈ F[X,Y ] with deg(C) ≤ d such that

∆(r, C) < n2

2

(
1− d

n

)
.

3.1 Outline of Algorithm
The general idea of the algorithm is to write C(X,Y ) =

∑d
i=0 Pi(X)Y d−i ∈ F[X][Y ] as

a polynomial in Y with coefficients as polynomials in F[X], and attempt to uncover the
coefficients Pi(X) one at a time.

We outline the first iteration of the algorithm, which uncovers the coefficient P0(X) of
degree 0. View the encoded message as a matrix on S × S, where the rows are indexed by
x ∈ S and the columns by y ∈ S. We first Reed-Solomon decode the rows r(x, Y ), x ∈ S to
half the minimum distance (n− d)/2 and extract the coefficient of Y d in those decodings.
This gives us guesses for what P0(x) is for x ∈ S. However, this isn’t quite enough to
determine P0(X). So we will also include some soft information which tells us how uncertain
we are that the coefficient is correct. The uncertainty is a number in [0, 1] that is based
on how far the decoded codeword Gx(Y ) is from the received word r(x, Y ). The farther
apart, the higher the uncertainty. A natural choice for the uncertainty is simply the ratio
of the distance ∆(Gx(Y ), r(x, Y )) to half the minimum distance (n − d)/2. In the event
that the Reed-Solomon decoding finds no codeword, we make an arbitrary guess and set the
uncertainty to be 1. Let f : S → F × [0, 1] be the function of guesses for P0(x) and their
uncertainties. We then use a Reed-Solomon decoder with uncertainties to find the degree
0 polynomial that is closest to f(X). This will give us P0(X). Finally, subtract P0(X)Y d
from r(X,Y ) and repeat to get the subsequent coefficients.

In the algorithm, we use REED-SOLOMON-DECODER(r, d) to denote the O(n polylogn)
time algorithm that performs Reed-Solomon decoding of degree d to half the minimum
distance [11, 12]. We use RS-SOFT-DECODER(r, d) to denote the O(n2 polylogn) time
algorithm that performs Reed-Solomon decoding of degree d with uncertainties to half the
minimum distance, which is based on Forney’s generalized minimum distance decoding
algorithm for concatenated codes [13].

3.2 Proof of Theorem 3.1
Correctness of Algorithm. It suffices to show that Qi(X) = Pi(X) for i = 0, 1, . . . , d, which
we prove by induction. For this proof, the base case and inductive step can be handled by a
single proof. We assume the inductive hypothesis that we have Qj(X) = Pj(X) for j < i.
Note that the base case is i = 0 and in this case, we assume nothing.

It is enough to show ∆(fi(X), Pi(X)) < n
2
(
1− i

n

)
. Then Pi(x) is the unique polynomial

within weighted distance n
2
(
1− i

n

)
of fi(X). So RS-SOFT-DECODER(fi(X), i) will output

Qi(X) = Pi(X).
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Algorithm 1 Decoding Bivariate Reed-Muller
1: Input: r : S2 → F.
2: for i = 0, 1, . . . , d do
3: Define ri : S × S → F by

ri(X,Y ) = r(X,Y )−
i−1∑
j=0

Qj(X)Y d−j .

4: for x ∈ S do
5: Define ri,x : S → F by

ri,x(Y ) = ri(x, Y ).

6: Define Gx(Y ) ∈ F[Y ] by

Gx(Y ) = REED-SOLOMON-DECODER(ri,x(Y ), d− i).

7: σx ← CoeffY d−i(Gx).
8: δx ← ∆(ri,x, Gx).
9: end for

10: Define the weighted function fi : S → F× [0, 1] by

fi(x) =
(
σx,

δx
(n− d+ i)/2

)
.

11: Define Qi : S → F by

Qi(X) = RS-SOFT-DECODER(fi(X), i).

12: end for

13: Output:
d∑
i=0

Qi(X)Y d−i.

We first show that ri(X,Y ) is close to Ci(X,Y ) =
∑d
j=i Pj(X)Y d−j . Observe that:

ri(X,Y )− Ci(X,Y )

= (ri(X,Y ) +
i−1∑
j=1

Pj(X)Y d−j)− (Ci(X,Y ) +
i−1∑
j=1

Pj(X)Y d−j))

= (ri(X,Y ) +
i−1∑
j=1

Qj(X)Y d−j)− C(X,Y )

= r(X,Y )− C(X,Y ).

Hence,

∆(ri(X,Y ), Ci(X,Y )) = ∆(r(X,Y ), C(X,Y )) < n2

2

(
1− d

n

)
.

For each x ∈ S, define Ci,x(Y ) = Ci(x, Y ). Define ∆x = ∆(ri,x(Y ), Ci,x(Y )). Let
A = {x ∈ S|Gx(Y ) = Ci,x(Y )} be the set of choices of x such that Gx(Y ) = REED-
SOLOMON-DECODER(ri,x(Y ), d− i) produces Ci,x(Y ).
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Then, for x ∈ A, we have

δx = ∆(ri,x(Y ), Gx(Y )) = ∆(ri,x(Y ), Ci,x(Y )) = ∆x,

which gives us an uncertainty value of

ui,x = ∆x

(n− d+ i)/2 .

For x /∈ A, either we have Gx 6= Ci,x, or the Reed-Solomon decoder does not find a
polynomial. In the first case, Lemma 2.1 tells us:

δx = ∆(ri,x(Y ), Gx(Y )) ≥ n− d+ i−∆(ri,x(Y ), Ci,x(Y )) = n− d+ i−∆x,

which gives us an uncertainty value of

ui,x = n− d+ i−∆x

(n− d+ i)/2 .

Finally, in the case where the Reed-Solomon decoder does not find a polynomial, we get
an uncertainty value of

ui,x = 1.

This means that the contribution of the corresponding guess to the weighted distance
∆(fi(X), Pi(X)) is 1/2, However, we know that since no polynomial was found, ∆x ≥ n−d+i

2 ,
so the contribution to the weighted distance had the Reed-Solomon decoder found an incorrect
polynomial not matching the true codeword is 1− 1

2
n−d+i−∆x

(n−d+i)/2 ≥ 1/2. So for the purposes
of upper bounding the weighted distance ∆(fi(X), Pi(X)), we treat this case the same as
decoding to the wrong polynomial.

We now upper bound ∆(fi(X), Pi(X)):

∆(fi(X), Pi(X)) ≤
∑
x∈A

1
2

∆x

(n− d+ i)/2 +
∑
x/∈A

1− 1
2
n− d+ i−∆x

(n− d+ i)/2

≤
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

1− n− d+ i−∆x

n− d+ i

=
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

∆x

n− d+ i

=
∑
x∈Sm

∆x

n− d+ i

= ∆(ri(X,Y ), Ci(X,Y ))
n− d+ i

<
n2

2

(
1− d

n

)
1

n− d+ i

= n

2 ·
n− d

n− d+ i

≤ n

2 ·
n− i
n

= n

2

(
1− i

n

)
.
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Runtime of Algorithm

We claim that the runtime of our algorithm is O(n3 polylogn), ignoring the polylog |F| factor
from field operations. The algorithm has d+ 1 iterations. In each iteration, we update ri,
apply REED-SOLOMON-DECODER to n rows and apply RS-SOFT-DECODER a single
time to get the leading coefficient. As updating takes O(n2) time, REED-SOLOMON-
DECODER takes O(n polylogn) time, and RS-SOFT-DECODER takes O(n2 polylogn)
time, we get O(n2 polylogn) for each iteration. d + 1 iterations gives a total runtime of
O(dn2 polylogn) < O(n3 polylogn). J

4 Reed-Muller Decoding for General m

We now generalize the algorithm for decoding bivariate Reed-Muller codes to handle Reed-
Muller codes of any number of variables. As before, we write the codeword as a polynomial in
one of the variables and attempt to uncover its coefficients one at a time. Interestingly, this
leads us to a Reed-Muller decoding on one fewer variable, but with uncertainties. This lends
itself nicely to an inductive approach on the number of variables, however, the generalization
requires us to be able to decode Reed-Muller codes with uncertainties. This leads us to our
main theorem:

I Theorem 4.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
Given a received word with uncertainties r : Sm → F×[0, 1], there is a O(nm+2 polylog(n, |F|))
time algorithm to find the unique polynomial (if it exists) C ∈ F[X1, . . . , Xm] with deg(C) ≤ d
such that

∆(r, C) < nm

2

(
1− d

n

)
.

Note that to decode a Reed-Muller code without uncertainties, we may just set all the
initial uncertainties to 0. The algorithm slows by a factor of n from the bivariate case due to
having to use the RS-SOFT-DECODER instead of the faster REED-SOLOMON-DECODER
on the rows of the received word.

Proof. The proof is by induction on the number of variables, and closely mirrors the proof
of the bivariate case.

Base Case

We are given a received word with uncertainties r : S → F × [0, 1] and asked to find the
unique polynomial C ∈ F[X] with deg(C) ≤ d within weighted distance n−d

2 of r. This is
just Reed-Solomon decoding with uncertainty, which can be done in time O(n2 polylogn).

Inductive Step

Assume that the result holds for m variables. That is, assume we have access to an algorithm
REED-MULLER-DECODER(r,m, d) which takes as input a received word with uncertainties
r : Sm → F × [0, 1], and outputs the unique polynomial of degree at most d (if it exists)
within weighted distance nm

2
(
1− d

n

)
from r. We want to produce an algorithm for m+ 1

variables. Before we progress, we set up some definitions to make the presentation and
analysis of the algorithm cleaner. We are given r : Sm+1 → F× [0, 1]. View r as a map from
Sm × S → F× [0, 1], and write r(X, Y ) = (r(X, Y ), u(X, Y )).
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Suppose that there exists a polynomial C ∈ F[X, Y ] with deg(C) ≤ d such that

∆(r, C) < nm+1

2

(
1− d

n

)
.

View C as a polynomial in Y with coefficients in F[X], C(X, Y ) =
∑d
i=0 Pi(X)Y d−i. The

general strategy of the algorithm is to determine the Pi’s inductively by performing d+ 1
iterations from i = 0 to i = d, and recovering Pi(X) at the i-th iteration.

For the i-th iteration, consider the word

ri(X, Y ) =

r(X, Y )−
i−1∑
j=0

Pj(X)Y d−j , u(X, Y )

 .

Since r is close to
∑d
j=0 Pj(X)Y d−j , ri will be close to Ci =

∑d
j=i Pj(X)Y d−j . Our goal

is to find Pi(X), the leading coefficient of Ci when viewed as a polynomial in Y . For
each x ∈ Sm, we decode the Reed-Solomon code with uncertainties given by ri(x, Y ) and
extract the coefficient of Y d−i along with how uncertain we are about the correctness of this
coefficient. This gives us a guess for the value Pi(x) and our uncertainty for this guess. We
construct the function fi : Sm → F × [0, 1] of guesses for Pi with their uncertainties. We
then apply the induction hypothesis of Theorem 4.1 to fi to recover Pi.

Correctness of Algorithm

Suppose there is a polynomial C(X, Y ) =
∑d
i=0 Pi(X)Y d−i such that

∆(r(X, Y ), C(X, Y )) < nm+1

2

(
1− d

n

)
.

We will show by induction that the i-th iteration of the algorithm produces Qi(X) = Pi(X).
For this proof, the base case and inductive step can be handled by a single proof. We assume
the inductive hypothesis that we have Qj(X) = Pj(X) for j < i. Note that the base case is
i = 0 and in this case, we assume nothing.

It is enough to show ∆(fi(X), Pi(X)) < nm

2
(
1− i

n

)
. Then Pi(X) is the unique poly-

nomial within weighted distance nm

2
(
1− i

n

)
of fi(X). This means that REED-MULLER-

DECODER(fi(X),m, i) will output Qi(X) = Pi(X).
We first show that ri(X, Y ) is close to Ci(X, Y ) =

∑d
j=i Pj(X)Y d−j . Observe that:

ri(X, Y )− Ci(X, Y )

= (ri(X, Y ) +
i−1∑
j=1

Pj(X)Y d−j)− (Ci(X, Y ) +
i−1∑
j=1

Pj(X)Y d−j))

= (ri(X, Y ) +
i−1∑
j=1

Qj(X)Y d−j)− C(X, Y )

= r(X, Y )− C(X, Y ).

Hence,

∆(ri(X, Y ), Ci(X, Y )) = ∆(r(X, Y ), C(X, Y )) < nm+1

2

(
1− d

n

)
.
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Algorithm 2 Decoding Reed-Muller with Uncertainties
1: Input: r : Sm+1 → F× [0, 1].
2: for i = 0, 1, . . . , d do
3: Define ri : Sm × S → F× [0, 1] by

ri(X, Y ) =

r(X, Y )−
i−1∑
j=0

Qj(X)Y d−j , u(X, Y )

 .

4: for x ∈ Sm do
5: Define ri,x : S → F× [0, 1] by

ri,x(Y ) = ri(x, Y ).

6: Define Gx(Y ) ∈ F[Y ] by

Gx(Y ) = RS-SOFT-DECODER(ri,x(Y ), d− i).

7: σx ← CoeffY d−i(Gx).
8: δx ← ∆(ri,x, Gx).
9: end for

10: Define the weighted function fi : Sm → F× [0, 1] by

fi(x) =
(
σx,

δx

(n− d+ i)/2

)
.

11: Define Qi : Sm → F by

Qi(X) = REED-MULLER-DECODER(fi(X),m, i).

12: end for

13: Output:
d∑
i=0

Qi(X)Y d−i.

For each x ∈ Sm, define Ci,x(Y ) = Ci(x, Y ). Define ∆x = ∆(ri,x(Y ), Ci,x(Y )). Let
A = {x ∈ Sm|Gx(Y ) = Ci,x(Y )} be the set of choices of x such that Gx(Y ) = RS-SOFT-
DECODER(ri,x(Y ), d− i) produces Ci,x(Y ).

Then, for x ∈ A, we have

δx = ∆(ri,x(Y ), Gx(Y )) = ∆(ri,x(Y ), Ci,x(Y )) = ∆x.

And for x /∈ A, we have Gx 6= Ci,x, so

δx = ∆(ri,x(Y ), Gx(Y )) ≥ n− d+ i−∆(ri,x(Y ), Ci,x(Y )) = n− d+ i−∆x.

We now upper bound ∆(fi(X), Pi(X)):

∆(fi(X), Pi(X)) ≤
∑
x∈A

1
2

δx

(n− d+ i)/2 +
∑
x/∈A

1− 1
2

δx

(n− d+ i)/2

≤
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

1− n− d+ i−∆x

n− d+ i
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=
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

∆x

n− d+ i

=
∑

x∈Sm

∆x

n− d+ i

= ∆(ri(X, Y ), Ci(X, Y ))
n− d+ i

<
nm+1

2

(
1− d

n

)
1

n− d+ i

= nm

2 ·
n− d

n− d+ i

≤ nm

2 ·
n− i
n

= nm

2

(
1− i

n

)
.

Runtime of Algorithm

We claim the runtime of our m-variate Reed-Muller decoder is O(nm+2 polylogn), ignoring
the polylog |F| factor from field operations. We again proceed by induction on m. In the
base case of m = 1, we simply run the Reed-Solomon decoder with uncertainties, which
runs in O(n2 polylogn) time. Now suppose the m-variate Reed-Muller decoder runs in time
O(nm+2 polylogn). We need to show that the m+ 1-variate Reed-Muller decoder runs in
time O(nm+3 polylogn).

The algorithm makes d+ 1 iterations. In each iteration, we perform nm Reed-Solomon
decodings with uncertainties, and extract the leading coefficient along with its uncertainty
for each one. Each Reed-Solomon decoding takes O(n2 polylogn) time, while computing an
uncertainty of a leading coefficient takes O(n polylogn). So in this step, we have cumulative
runtime O(nm+2 polylogn). Next we do a single m-variate Reed-Muller decoding with
uncertainties, which takes O(nm+2 polylogn) by our induction hypothesis. This makes the
total runtime O(dnm+2 polylogn) ≤ O(nm+3 polylogn), as desired. J

5 Near-Linear Time Decoding in the Bivariate Case

In this section, we present our near-linear time decoding algorithm for bivariate Reed-Muller
codes.

I Theorem 5.1. Let α ∈ (0, 1) be a constant. Let F be a finite field and let S ⊆ F be a
nonempty subset of size |S| = n. Let d = αn. Given a received word r : S2 → F, there is a
O(n2 polylog(n, |F|)) time algorithm to find the unique polynomial (if it exists) C ∈ F[X,Y ]
with deg(C) ≤ d such that

∆(r, C) < n2

2

(
1− d

n
− 1√

n

)
.

5.1 Outline of Improved Algorithm
Recall that the decoding algorithms we presented in the previous sections make d+1 iterations,
where d = αn, revealing a single coefficient of the nearest codeword during one iteration. In
a given iteration, we decode each row of ri(X,Y ) to the nearest polynomial of degree d− i,
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extracting the coefficient of Y d−i and its uncertainty. Then we Reed-Solomon decode with
uncertainties to get the leading coefficient of C(X,Y ), when viewed as a polynomial in Y .

The runtime of this algorithm is O(n3 polylogn). Each iteration has n Reed-Solomon
decodings and a single Reed-Solomon decoding with uncertainties. As Reed-Solomon de-
coding takes O(n polylogn) time and Reed-Solomon decoding with uncertainties takes
O(n2 polylogn) time, we get a runtime of O(n3 polylogn) with d+ 1 iterations. To achieve
near-linear time, we need to shave off a factor of n on both the number of Reed-Solomon
decodings and the runtime of Reed-Solomon decoding with uncertainties.

To save on the number of Reed-Solomon decodings, we will instead list decode beyond
half the minimum distance (using a near-linear time Reed-Solomon list-decoder), and show
that the list we get is both small and essentially contains all of the decoded polynomials
we require for Ω(n) iterations of i. So we will do O(n) Reed-Solomon list-decodings total
instead of O(n2) Reed-Solomon unique decodings to half the minimum distance.

To save on the runtime of Reed-Solomon decoding with uncertainties, we will use a
probabilistic variant of Forney’s generalized minimum distance decoding algorithm, which
runs in near-linear time, but reduces the decoding radius from 1/2 the minimum distance to
1/2− o(1) of the minimum distance.

5.2 Proof of Fast Bivariate Reed-Muller Decoding
Proof of Theorem 5.1. As in the proof of Theorem 3.1, we write C =

∑d
j=0 Pj(X)Y d−j ,

and inductively find the Pi(X). Suppose that we have successfully found the first i of the
Pj(X) and are now trying to find Pi(X). Also as before, we fix x ∈ S and guess the value of
Pi(x) by Reed-Solomon decoding ri,x = r(x, Y )−

∑i−1
j=0 Pj(x)Y d−j to the nearest polynomial

of degree at most i within distance (n− d+ i)/2.

Reducing the Number of Decodings

To reduce the number of Reed-Solomon decodings, we will instead list decode past half the
minimum distance, and use the small list of polynomials we get to guess Pi(x) for the next
Ω(n) values of j. In the above setting, we have that ri,x : S → F is a received word for a
Reed-Solomon code Ci of degree at most di = d − i. Let t be the radius to which we list
decode, and let Li,x = {C ∈ Ci|∆(C, ri,x) < t} be the list of codewords within distance t of
ri,x. The radius to which we can decode while maintaining a polynomial-size list is given by
the Johnson bound:

n(1−
√

1− δi),

where δi = 1 − d−i
n > 1 − d

n = 1 − α is the relative distance of the code. By Taylor
approximating the square root, we see that the Johnson bound exceeds half the minimum
distance by Ω(n):

n(1−
√

1− δi) >n(1− (1− δi/2 + δ2
i /8 + 3δ3

i /16))
=n(δi/2 + (1− α)2/8 + 3(1− α)3/16)
= (n− d+ i)/2 + ((1− α)2/8)n+ cn,

where c = 3(1− α)3/16 is a positive constant. By a standard list-size bound as in the one in
Cassuto and Bruck [14], we see that if we set the list decoding radius t = (n − d + i)/2 +
((1 − α)2/8)n, then the size of the list |Li,x| < 1

c is constant. So the list decoding radius
exceeds half the minimum distance by Ω(n), and the list size is constant. By Aleknovich’s
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fast algorithm for weighted polynomial construction [15], the list Li,x can be produced in
time (1/α)O(1)n log2 n log logn = O(n polylogn). We will let RS-LIST-DECODER(r, d, t)
denote the Reed-Solomon list decoder that outputs a list of all ordered pairs of polynomials
of degree at most d within distance t to the received word r along with their distances to r.
Since the list size is constant, all of the distances can be computed in O(n polylogn) time.

For the next cn values of j, we search the O(1)-size list Li,x to find the nearest polynomial
of degree at most n− d+ j within distance (n− d+ j)/2 from rj,x.

Faster Reed-Solomon Decoding with Uncertainties

Once we have all the guesses for Pi(x), x ∈ S along with their uncertainties, we want to apply
a near-linear time decoding algorithm to find Pi(x). In the appendix, we give a description of
the probabilistic GMD algorithm that gives a faster Reed-Solomon decoder with uncertainties.
We will refer to this algorithm as FAST-RS-DECODER(f, i), where f : S → F× [0, 1] is a
received word with uncertainties, and i is the degree of the code. FAST-RS-DECODER(f, i)
will output the codeword within distance (n − i −

√
n)/2 (if it exists) with probability at

least 1− 1
nΩ(1) (the Ω(1) can be chosen to be an arbitrary constant, by simply repeating the

algorithm independently several times).

Correctness of Algorithm

View the received word as a matrix on S × S, where the rows are indexed by x ∈ S and the
columns by y ∈ S. For correctness, we have to show two things. First, that Algorithm 3
produces the same row decodings Gx(Y ) as Algorithm 2. Second, that the algorithm actually
extracts the coefficients of C(X,Y ) =

∑d
i=0 Pi(X)Y d−i when viewed as a polynomial in Y ,

i.e. Qi(X) = Pi(X) for i = 0, . . . , d. Define rj·2cn+k : S × S → F by

rj·2cn+k(X,Y ) = r(X,Y )−
j·2cn+k−1∑

i=0
Qi(X)Y d−i,

and define rj·2cn+k,x : S → F by

rj·2cn+k,x(Y ) = rj·2cn+k(x, Y ).

Then we want to show that in each of the d+ 1 iterations of (j, k), we have

Gx(Y ) = REED-SOLOMON-DECODER(rj·2cn+k,x(Y ), d− j · 2cn− k) .

It is enough to instead show that the list Lj,k,x contains all the polynomials of degree at
most d− j · 2cn− k within distance tj = (n− d+ j · 2cn)/2 + cn > (n− d+ j · 2cn+ k)/2 of
rj·2cn+k,x(Y ). Furthermore, we want to show Qj·2cn+k(X) = Pj·2cn+k(X).

We prove this by induction on (j, k). The base case is j = k = 0. For each row x ∈ S, we
have

L0,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, t0).

The induction hypothesis is that for every (j′, k′) < (j, k) in the lexicographic order,
we have Lj′,k′,x = {(C,∆(C, rj′·2cn+k′,x))|C ∈ Cj′·2cn+k′ ,∆(C, rj′·2cn+k′,x) < tj′} and that
Qj′·2cn+k′(X) = Pj′·2cn+k′(X). We will show the corresponding statements hold true for
(j, k).

If k = 0, then the fact that the algorithm extracted the correct coefficients thus far
means that the rj·2cn are the same in both Algorithm 2 and Algorithm 3. Since Lj,0,x =
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Algorithm 3 Decoding Bivariate Reed-Muller
1: Input: r : S2 → F.
2: Let c = ((1− α)2/8).
3: for j = 0, 1, . . . , d

2cn do
4: Let tj = n−d+j·2cn

2 + cn.
5: Define rj·2cn : S × S → F by

rj·2cn(X,Y ) = r(X,Y )−
j·2cn−1∑
i=0

Qi(X)Y d−i.

6: for x ∈ S do
7: Define rj·2cn,x : S → F by

rj·2cn,x(Y ) = rj·2cn(x, Y ).

8: Define Cj·2cn by

Cj·2cn = {C(Y ) ∈ F[Y ]| deg(C) < d− j · 2cn}.

9: Define Lj,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, tj).
10: end for
11: for k = 0, 1, . . . , 2cn− 1 do
12: for x ∈ S do
13: Define (Gx(Y ), δx) ∈ Lj,k,x to be the unique codeword (if any) with

δx <
n− d+ j · 2cn+ k

2

14: σx ← CoeffY d−j·2cn−k (Gx).
15: end for
16: Define the weighted function fj·2cn+k : S → F× [0, 1] by

fj·2cn+k(x) =
(
σx,

δx
(n− d+ j · 2cn+ k)/2

)
.

17: Define Qj·2cn+k : S → F by

Qj·2cn+k(X) = FAST-RS-DECODER(fj·2cn+k(X), j · 2cn+ k).

18: for x ∈ S do
19: Define

Lj,k+1,x = {(C −Qj·2cn+k(x)Y d−j·2cn−k, δC,x)
|C ∈ Lj,k,x,CoeffY d−j·2cn−k (C) = Qj·2cn+k(x)}.

20: end for
21: end for
22: end for

23: Output:
d∑
i=0

Qi(X)Y d−i.
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RS-LIST-DECODER(rj·2cn,x(Y ), d − j · 2cn, tj), the induction hypothesis on Lj,0,x is met
by the definition of RS-LIST-DECODER.

If k 6= 0, then we know from the induction hypothesis that

Lj,k−1,x = {(C,∆(C, rj·2cn+k−1,x))|C ∈ Cj·2cn+k−1,∆(C, rj·2cn+k−1,x) < tj}.

We want to say that

Lj,k,x = {(C,∆(C, rj·2cn+k,x))|C ∈ Cj·2cn+k,∆(C, rj·2cn+k,x) < tj}.

We defined Lj,k,x in terms of Lj,k−1,x to be:

{(C −Qj·2cn+k−1(x)Y d−j·2cn−k+1,∆(C, rj·2cn+k−1,x))
|C ∈ Lj,k−1,x,CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x)}.

As Qj·2cn+k−1(X) = Pj·2cn+k−1(X), Lj,k,x is essentially obtained by taking the codewords
with the correct leading coefficients and subtracting off the leading term. We claim that
what we get is the set of all polynomials of degree at most d− j · 2cn− k within distance tj
of rj·2cn+k,x.

Consider any (G, δ) ∈ Lj,k,x. By definition of Lj,k,x, we know there exists a C ∈ Lj,k−1,x
with CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x) such that

(G, δ) = (C −Qj·2cn+k−1(x)Y d−j·2cn−k+1,∆(C, rj·2cn+k−1,x)).

So we have

C =G+Qj·2cn+k−1(x)Y d−j·2cn−k+1

δ = ∆(C, rj·2cn+k−1,x) < tj .

As CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x), we have deg(G) is at most d − j · 2cn − k.
Also, as rj·2cn+k−1,x = rj·2cn+k,x +Qj·2cn+k−1(x)Y d−j·2cn−k+1, we have ∆(G, rj·2cn+k,x) =
∆(C, rj·2cn+k−1,x) = δ < tj . Hence, G is a polynomial of degree at most d− j ·2cn−k within
distance tj of rj·2cn+k,x.

For the reverse inclusion, suppose G is a polynomial of degree at most d− j · 2cn− k at
distance δ < tj of rj·2cn+k,x. Then C := G+Qj·2cn+k−1(x)Y d−j·2cn−k+1 ∈ Lj,k−1,x. Since
CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x), we get that G = C − Qj·2cn+k−1(x)Y d−j·2cn−k+1 ∈
Lj,k,x, as desired.

It remains to show that Qj·2cn+k(X) = Pj·2cn+k(X). As in the proof of Theorem 4.1,
we show that ∆(fj·2cn+k(X), Pj·2cn+k(X)) < n−j−

√
n

2 , so that the output of FAST-RS-
DECODER(fj·2cn+k(X), j) is Pj·2cn+k(X). Using the first part of the induction we just
proved, we get the same fj·2cn+k(X) as in Algorithm 2. This means we can adopt a nearly
identical argument to get to this step:

∆(fj·2cn+k(X), Pj·2cn+k(X)) ≤ ∆(rj·2cn+k(X,Y ), Cj·2cn+k(X,Y ))
n− d+ j · 2cn+ k

.
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From here, we get:

∆(fj·2cn+k(X), Pj·2cn+k(X)) < n2

2

(
1− d

n
− 1√

n

)
1

n− d+ j · 2cn+ k

= n

2 ·
n− d−

√
n

n− d+ j · 2cn+ k

≤ n

2 ·
n− j · 2cn− k −

√
n

n

= n− j · 2cn− k −
√
n

2 .

Analysis of Runtime of Bivariate Reed-Muller Decoder

We run RS-LIST-DECODER d
2cnn = α

2cn = 4α
(1−α)2n times. Also, we run FAST-RS-

DECODER d = αn times. As both of these algorithms run in O(n polylogn) time, the total
runtime of the algorithm is O(n2 polylog(n, |F|)), after accounting for field operations. As
the input is of size n2, this is near-linear in the size of the input. J

6 Near-Linear Time Decoding in the General Case

A more involved variation of the near-linear time decoding algorithm for bivariate Reed-
Muller codes can be used to get a near-linear time algorithm for decoding Reed-Muller codes
on any number of variables:

I Theorem 6.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
Let β > 1

2 . Given a received word r : Sm → F, there is a O (nm · polylog(n, |F|)) time
algorithm to find the unique polynomial (if it exists) C ∈ F[X1, . . . , Xm] with deg(C) ≤ d

such that

∆(r, C) < nm

2

(
1− d+ (m− 1)β

√
n

n

)
.

As part of the algorithm for near linear time Reed-Muller decoding, we will need to
decode Reed-Muller codes with uncertainties to various radii less than half their minimum
distance. We require the following theorem to do such decodings efficiently.

I Theorem 6.2. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
Let β > 1

2 , and let e be an integer satisfying 0 ≤ e < n− d−mβ
√
n. Given a received word

with uncertainties r : Sm → F× [0, 1], there is a O
(
nm+1

e+1 · polylog(n, |F|)
)
time algorithm

to find the unique polynomial (if it exists) C ∈ F[X1, . . . , Xm] with deg(C) ≤ d such that

∆(r, C) < nm

2

(
1− d+mβ

√
n+ e

n

)
.

I Remark. The algorithm requires the use of the FAST-RS-DECODER to a radius that is
β
√
n less than half the minimum distance. As long as β > 1

2 , the FAST-RS-DECODER runs
in O(n polylogn) time.

Proof of Theorem 6.2. The proof is by induction on the number of variables m. The proof
of the base case of m = 2 is similar to the proof of the inductive step and will be handled
last. Assume the theorem statement is true for m, and let RM-UNC-DECODER(f, d, s)
denote the O

(
nm+1

e+1 · polylog(n, |F|)
)
time algorithm that finds the unique polynomial (if it
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exists) of degree at most d within distance s from f , where f : Sm → F× [0, 1] and s can
be written as nm

2

(
1− d+mβ

√
n+e

n

)
. We want to show that the theorem statement holds for

m+ 1 variables.
The algorithm proceeds as follows: As before, we write C(X, Y ) =

∑d
i=0 Pi(X)Y d−i,

and find the Pi iteratively. In the i-th iteration, decode row ri,x, x ∈ Sm to a degree d− i
polynomial within radius 1

2 (n− d+ i− β
√
n− e) to get Di,x(Y ). To reduce the number of

times we decode, we will instead decode to the larger radius 1
2 (n − d + i − β

√
n) and use

this decoding for e + 1 iterations. Construct the function fi : Sm → F × [0, 1] of (leading
coefficient, uncertainty) =

(
CoeffY d−i(Di,x), ∆(ri,x,Di,x)

(n−d+i−β
√
n−e)/2

)
. Finally, decode fi(X) to a

degree i polynomial within radius nm

2

(
1− i+mβ

√
n

n−d+i

)
to get Qi(X).

Proof of Correctness

We have to show Qi(X) = Pi(X). It is enough to show that

∆(fi, Pi) <
nm

2

(
1− i+mβ

√
n

n− d+ i

)
<
nm

2

(
1− i

n

)
.

Then Pi will be the unique polynomial of degree i within distance nm

2

(
1− i+mβ

√
n

n−d+i

)
of fi.

Since Qi is a polynomial of degree i within distance nm

2

(
1− i+mβ

√
n

n−d+i

)
of fi, Qi must be

equal to Pi.
When we decode ri,x to radius 1

2 (n− d+ i− β
√
n− e), there are four possibilities:

1. The decoding is unsuccessful. In this case, we set Di,x to be any polynomial of degree
n−d+i and set the uncertainty ui = 1. The contribution to ∆(fi, Pi) is ∆(fi(x), Pi(x)) =
1/2, which is bounded above by 1

2
∆(ri,x,Ci,x)

(n−d+i−β
√
n−e)/2 .

2. The decoding succeeds and is correct. In this case, Di,x = Ci,x, so ∆(fi(x), Pi(x)) =
1
2

∆(ri,x,Ci,x)
(n−d+i−β

√
n−e)/2 .

3. The decoding succeeds, but is the wrong codeword, whose leading coefficient disagrees
with that of the correct codeword. In this case, Di,x 6= Ci,x, so

∆(fi(x), Pi(x)) = 1− 1
2

∆(ri,x, Di,x)
(n− d+ i− β

√
n− e)/2

≤ 1− (n− d+ i)−∆(ri,x, Ci,x)
(n− d+ i− β

√
n− e)

≤ 1− (n− d+ i− β
√
n− e)−∆(ri,x, Ci,x)

(n− d+ i− β
√
n− e)

≤ ∆(ri,x, Ci,x)
(n− d+ i− β

√
n− e)

.

4. The decoding succeeds, but is the wrong codeword, whose leading coefficient matches
that of the correct codeword. As in the previous case, Di,x 6= Ci,x, and we have:

∆(fi(x), Pi(x)) = 1
2

∆(ri,x, Di,x)
(n− d+ i− β

√
n− e)/2

≤ 1− 1
2

∆(ri,x, Di,x)
(n− d+ i− β

√
n− e)/2

≤ ∆(ri,x, Ci,x)
(n− d+ i− β

√
n− e)

.
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Algorithm 4 Decoding Reed-Muller with Uncertainties
1: Input: r : Sm+1 → F× [0, 1].
2: for j = 0, 1, . . . , d

e+1 do
3: Let tj = n−d+j·(e+1)−β

√
n

2 .
4: Define rj·(e+1) : Sm × S → F by

rj·(e+1)(X, Y ) = r(X, Y )−
j·(e+1)−1∑

i=0
Qi(X)Y d−i.

5: for x ∈ Sm do
6: Define rj·(e+1),x : S → F by

rj·(e+1),x(Y ) = rj·(e+1)(x, Y ).

7: Define Dj,0,x(Y ) = FAST-RS-DECODER(rj·(e+1),x(Y ), d− j · (e+ 1), tj).
8: Define δx = ∆(Dj,0,x(Y ), rj·(e+1),x(Y )).
9: end for

10: for k = 0, 1, . . . , e do
11: for x ∈ Sm do
12: if deg(Dj,k,x(Y )) ≤ d− j · (e+ 1)− k then

σx ← CoeffY d−j·(e+1)−k (Dj,k,x(Y )).

13: end if
14: end for
15: Define the weighted function fj·(e+1)+k : Sm → F× [0, 1] by

fj·(e+1)+k(x) =
(
σx,min

{
1, δx

(n− d+ j · (e+ 1) + k − β
√
n− e)/2

})
.

16: Define Qj·(e+1)+k : Sm → F by

Qj·(e+1)+k(X) = RM-UNC-DECODER(
fj·(e+1)+k(X), j · (e+ 1) + k,

nm

2

(
1− j · (e+ 1) + k +mβ

√
n

n− d+ j · (e+ 1) + k

))
.

17: for x ∈ Sm do
18: Define Dj,k+1,x : S → F by

Dj,k+1,x = Dj,k,x −Qj·(e+1)+k(x)Y d−j·(e+1)−k.

19: end for
20: end for
21: end for

22: Output:
d∑
i=0

Qi(X)Y d−i.
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Putting it all together, we have:

∆(fi, Pi) ≤
∑

x∈Sm

∆(ri,x, Ci,x)
n− d+ i− β

√
n− e

= ∆(ri, Ci)
n− d+ i− β

√
n− e

= ∆(r, C)
n− d+ i− β

√
n− e

≤
nm+1

2

(
1− d+(m+1)β

√
n+e

n

)
n− d+ i− β

√
n− e

= nm

2
n− d− (m+ 1)β

√
n− e

n− d+ i− β
√
n− e

≤ nm

2
n− d−mβ

√
n

n− d+ i

= nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

Analysis of Runtime

The algorithm can be divided into two parts:
1. Constructing the fi, i = 0, . . . , d.
2. Decoding the fi to get the Pi, i = 0, . . . , d.

The dominant contribution to the runtime when constructing fi comes from all the
Reed-Solomon decodings with uncertainties we have to do to get the Di,x(Y ). For every e+ 1
iterations, we have to decode each row x ∈ Sm again. The total number of such decodings is
given by n

e+1 · n
m = nm+1

e+1 . Since each Reed-Solomon decoding with uncertainty can be done
in O(n polylogn) time via the FAST-RS-DECODER, we have that the runtime of this part
of the algorithm is O

(
nm+2

e+1 polylogn
)
.

To understand the runtime of the second part of the algorithm, we will compute the
runtime of decoding fi for some fixed i. Note that decoding fi is a Reed-Muller decod-
ing with uncertainties problem with m variables. So we will write the decoding radius
nm

2

(
1− i+mβ

√
n

n−d+i

)
in the form nm

2

(
1− i+mβ

√
n+ei

n

)
and apply the induction hypothesis to

get a O
(
nm+1

ei+1 · polylogn
)
runtime. We now need to compute ei:

ei =n
i+mβ

√
n

n− d+ i
− (i+mβ

√
n)

= (i+mβ
√
n)
(

n

n− d+ i
− 1
)

= (i+mβ
√
n)(d− i)

n− d+ i
.

The runtime for all d+ 1 iterations from i = 0, . . . , d is then

O

(
d∑
i=0

1
ei + 1 · n

m+1 polylogn
)
.
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It remains to bound
∑d
i=0

1
ei+1 from above:

d∑
i=0

1
ei + 1 ≤

d∑
i=0

min
(

1, 1
ei

)

≤ 4 +
d−2∑
i=2

1
ei

≤ 4 +
∫ d−1

1

n− d+ t

(t+mβ
√
n)(d− t)

dt.

The last inequality is a simple Riemann sum bound using the fact that the function
n−d+t

(t+mβ
√
n)(d−t) decreases then increases continuously on [1, d− 1]. Computing the integral is

a straightforward partial fraction decomposition:

n− d+ t

(t+mβ
√
n)(d− t)

= n

(t+mβ
√
n)(d− t)

− 1
t+mβ

√
n

= n

d+mβ
√
n

(
1

t+mβ
√
n

+ 1
d− t

)
− 1
t+mβ

√
n

≤ 1
α

(
1

t+mβ
√
n

+ 1
d− t

)
− 1
t+mβ

√
n

=
(

1
α
− 1
)

1
t+mβ

√
n

+ 1
α
· 1
d− t

So we have:∫ d−1

1

n− d+ t

(t+mβ
√
n)(d− t)

dt ≤
∫ d−1

1

[(
1
α
− 1
)

1
t+mβ

√
n

+ 1
α
· 1
d− t

]
dt

≤O
((

1
α
− 1
)

logn+ 1
α

logn
)

=O

((
2
α
− 1
)

logn
)

=O(logn).

So the runtime for all d+ 1 iterations is:

O
(
(4 +O(logn)) · nm+1 polylogn

)
= O(nm+1 polylogn).

This means the runtime for both parts of the algorithm is just O
(
nm+2

e+1 polylogn
)
.

Base Case

The algorithm for m = 2 is almost identical to that for general m, except that we decode
fi(X) to a degree i polynomial within the larger radius n

2

(
1− i+β

√
n

n

)
to get Qi(X). Note

that this radius is still less than half the minimum distance of the Reed-Solomon code of
degree i. The correctness of the algorithm follows from the fact that Pi is still the unique
polynomial within distance n

2

(
1− i+β

√
n

n

)
of fi.

We can again analyze the runtime of the two parts of the algorithm. The runtime for
finding the fi follows the same analysis as before and is O( n3

e+1 polylogn). For decoding the
fi, we simply call the FAST-RS-DECODER for d+ 1 different values of i. This has a runtime
of O(dn polylogn) ≤ O(n2 polylogn). So we get a total runtime of O( n3

e+1 polylogn). J
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The algorithm for general Reed-Muller decoding follows the same strategy as the algorithm
for Reed-Muller decoding with uncertainties to a radius less than half the minimum distance.
Recall that to get the fi in the algorithm, we only needed to Reed-Solomon decode to a
radius significantly less than half the minimum distance. We then saved on the number of
Reed-Solomon decodings by instead decoding to half the minimum distance and reusing that
decoding for many iterations. We now want to Reed-Muller decode to near half the minimum
distance. Using the same algorithm doesn’t save on enough Reed-Solomon decodings to
achieve near linear time. However, when there are no uncertainties in the original received
word, we can list decode efficiently to a radius significantly larger than half the minimum
distance. We then use the lists for many iterations to generate the fi before list decoding
again.

Proof of Theorem 6.1. In the case where the number of variables is 2, we are in the setting
of decoding bivariate Reed-Muller codes to near half the minimum distance, which can be
done in near-linear time by Theorem 5.1. Assume now that m ≥ 2 and that we have a
Reed-Muller code in m+ 1 variables.

The decoding algorithm for a m+ 1-variate Reed-Muller code is as follows: In the i-th
iteration, list decode row ri,x, x ∈ Sm to obtain a list Li,x of all degree ≤ d− i polynomials
within radius 1

2 (n−d+ i+ cn) along with their distances from ri,x, where c = (1−α)2

8 . Search
the list to get the degree ≤ d− i polynomial within distance 1

2 (n− d+ i) from ri,x, call it
Di,x(Y ). We use the lists for cn iterations before list decoding again. Construct function
fi : Sm → F × [0, 1] of (leading coefficient, uncertainty) =

(
CoeffY d−i(Di,x), ∆(ri,x,Di,x)

(n−d+i)/2

)
.

Decode fi(X) to a degree i polynomial within radius nm

2

(
1− i+mβ

√
n

n−d+i

)
to get Qi(X).

Proof of Correctness

As before, we want to show that Qi(X) = Pi(X). It is enough to show

∆(fi, Pi) <
nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

We can use a similar analysis of ∆(fi, Pi) to the one in Theorem 6.2 to get to the following
step:

∆(fi, Pi) ≤
∆(r, C)
n− d+ i

.

So we have:

∆(fi, Pi) ≤
nm+1

2

(
1− d+mβ

√
n

n

)
n− d+ i

= nm

2
n− d−mβ

√
n

n− d+ i

= nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

Analysis of Runtime

Decoding the fi over the d+1 values of i can be done in O(nm+1 polylogn) following the same
runtime analysis from Theorem 6.2. For constructing the fi, we do O(nm) Reed-Solomon
list decodings taking O(n polylogn) time each. Within any given list, we need to compute
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Algorithm 5 Decoding Reed-Muller
1: Input: r : Sm+1 → F.
2: Let c = ((1− α)2/8).
3: for j = 0, 1, . . . , d

2cn do
4: Let tj = n−d+j·2cn

2 + cn.
5: Define rj·2cn : Sm × S → F by

rj·2cn(X, Y ) = r(X, Y )−
j·2cn−1∑
i=0

Qi(X)Y d−i.

6: for x ∈ Sm do
7: Define rj·2cn,x : S → F by

rj·2cn,x(Y ) = rj·2cn(x, Y ).

8: Define Lj,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, tj).
9: end for

10: for k = 0, 1, . . . , 2cn− 1 do
11: for x ∈ Sm do
12: Define (Gx(Y ), δx) ∈ Lj,k,x to be the unique codeword (if any) with

δx <
n− d+ j · 2cn+ k

2

13: σx ← CoeffY d−j·2cn−k (Gx).
14: end for
15: Define the weighted function fj·2cn+k : Sm → F× [0, 1] by

fj·2cn+k(x) =
(
σx,min

{
1, δx

(n− d+ j · 2cn+ k)/2

})
.

16: Define Qj·2cn+k : Sm → F by

Qj·2cn+k(X) = RM-UNC-DECODER(
fj·2cn+k(X), j · 2cn+ k,

nm−1

2

(
1− j · 2cn+ k + (m− 1)β

√
n

n− d+ j · 2cn+ k

))
.

17: for x ∈ Sm do
18:

Lj,k+1,x ← {(C −Qj·2cn+k(x)Y d−j·2cn−k, δC,x)
|(C, δC,x) ∈ Lj,k,x,CoeffY d−j·2cn−k (C) = Qj·2cn+k(x)}.

19: end for
20: end for
21: end for

22: Output:
d∑
i=0

Qi(X)Y d−i.
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uncertainties for each element of the list. This also takes O(n polylogn) time for each list.
Finally, we update the lists at each iteration by identifying the elements with the correct
leading coefficient and taking away their leading terms. Since the list size is constant, and
there are O(nm) lists to update in each iteration, the updating takes O(nmd) = O(nm+1)
over d+ 1 iterations. Hence the total runtime is O(nm+1 polylogn) as desired. J

7 Open Problems

We conclude with some open problems.

1. The problem of list-decoding multivariate polynomial codes up to the Johnson radius
is a very interesting open problem left open by our work. Generalizing our approach
seems to require progress on another very interesting open problem, that of list-decoding
Reed-Solomon concatenated codes. See [16] for the state of the art on this problem.

2. It would be interesting to understand the relationship between our algorithms and the
m+ 1-variate interpolation-based list-decoding algorithm of Sudan [9]. Their decoding
radii are incomparable, and perhaps there is some insight into the polynomial method,
which is known to face some difficulties in > 2 dimensions, that can be gained here.

3. It would be interesting to see if one can decode multiplicity codes [17] on arbitrary product
sets upto half their minimum distance. Here too, we know algorithms that decode upto
the minimum distance only in the case when S is very algebraically special (from [18]), or
if the degree d is very small compared to |S| (via an m+ 1-variate interpolation algorithm,
similar to [9]).

Acknowledgments. We are grateful to Madhu Sudan for introducing this problem to us
many years ago.
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A Near-Linear Time Soft Decoding of Reed-Solomon Codes

In this section, we present a near-linear time algorithm to soft decode Reed-Solomon codes
to almost half the minimum distance. This result can be used to achieve near-linear time
decoding of Reed-Muller codes to almost half the minimum distance.

I Lemma A.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.
There is a randomized algorithm FAST-RS-DECODER(r, d) that given a received word with
uncertainties r : S → F× [0, 1], finds the unique polynomial (if it exists) C ∈ F[X] satisfying
deg(C) ≤ d and ∆(r, C) < n−d−

√
n

2 with probability 3/4 in time O(n polylog(n)).

Proof. The near-linear time algorithm for FAST-RS-DECODER(r, d) is based on Forney’s
generalized minimum distance decoding of concatenated codes.

Given a received word r : S → F× [0, 1], suppose there is a polynomial f of degree at most
d such that ∆(f, r) < n−d−

√
n

2 . Let S = {α1, α2, . . . , αn}, and write r(αi) = (βi, ui), i ∈ [n].
We may view r as a set of n points (αi, βi) with uncertainties ui. The general idea of the
algorithm is to erase the i-th point with probability ui, and perform errors and erasures
decoding of the resulting Reed-Solomon code. We denote the errors and erasures Reed-
Solomon decoder by EE-DECODER(r′, d), which takes a received word r′ : S → F×[0, 1]∪{?}
and a degree d and returns the polynomial of degree at most d that is within n−d

2 of r′.

Algorithm 6 Fast Reed-Solomon Decoding with Uncertainties
1: Input: r : S → F× [0, 1].
2: for i = 1, 2, . . . , n do
3: pi ← RANDOM([0, 1]).
4: Define r′ : S → (F ∪ {?}) by

r′(αi) =
{
βi if pi ≤ ui
? if pi > ui

.

5: end for
6: g ← EE-DECODER(r′, d).
7: Output: g.
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We say that a point is an erasure if it is erased by the algorithm. We say that a point
(αi, βi) is an error if (α, β) is not an erasure and f(αi) 6= βi. Let E be the number of errors,
and let F be the number of erasures. As the resulting n− F points form a Reed-Solomon
code of block length n− F and degree d, the algorithm outputs f as long as

2E + F < n− d.

We will use Chebyshev’s inequality to show that 2E + F < n − d with probability at
least 3

4 . To help us compute the expectation and variance of 2E + F , we write E and
F as a sum of indicator random variables. Let A = {i ∈ [n]|f(αi) = βi} be the set of
agreeing indices, and let D = {i ∈ [n]|f(αi) 6= βi} be the set of disagreeing indices. Let
T = {i ∈ [n]|(αi, βi) is erased} be the set of erasure indices.

Then we can write

E =
∑
i∈D

1i/∈T

F =
∑
i∈[n]

1i∈T .

We then can show E[2E + F ] is less than n− d by a significant amount
√
n:

E[2E + F ] = 2
∑
i∈D

(1− ui) +
∑
i∈[n]

ui

= 2
∑
i∈D

(1− ui) +
∑
i∈D

ui +
∑
i∈A

ui

= 2
(∑
i∈D

(
1− ui

2

)
+
∑
i∈A

ui
2

)
= 2∆(f, r)
<n− d−

√
n.

Finally, we show that Var(2E + F ) is small:

Var(2E + F )
= 4Var(E) + 4Cov(E,F ) + Var(F )

= 4
∑
i∈D

ui(1− ui) + 4

E

∑
i∈D

∑
j∈[n]

1i/∈T∩j∈T

−∑
i∈D

(1− ui)
∑
j∈[n]

uj

+
∑
i∈[n]

ui(1− ui)

= 4
∑
i∈D

ui(1− ui) + 4

E

∑
i∈D

∑
j 6=i

(1− ui)uj

−∑
i∈D

∑
j∈[n]

(1− ui)uj

+
∑
i∈[n]

ui(1− ui)

= 4
∑
i∈D

ui(1− ui)− 4
∑
i∈D

ui(1− ui) +
∑
i∈[n]

ui(1− ui)

=
∑
i∈[n]

ui(1− ui)

≤ n

4 .

By Chebyshev’s inequality, Pr(2E+F ≥ n−d) ≤ 1
4 . Hence we have Pr(2E+F < n−d) ≥ 3

4 .
That is, with probability at least 3

4 , the algorithm outputs f .
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We now analyze the runtime of our fast Reed-Solomon decoder. The erasures can be done
in O(n) time. Also, as the EE-DECODER is essentially a Reed-Solomon decoder to half
the minimum distance, it runs in time O(n polylogn) [11, 12]. This gives a total runtime of
O(n polylogn). J

Note that by running the algorithm logn times, we get that with probability at least
1− (1/4)logn = 1− 1/nlog 4, we still find f in O(n polylogn) time.
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Abstract
Affine-invariant codes are codes whose coordinates form a vector space over a finite field and
which are invariant under affine transformations of the coordinate space. They form a natural,
well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon.
A particularly appealing feature of affine-invariant codes is that they seem well-suited to admit
local correctors and testers.

In this work, we give lower bounds on the length of locally correctable and locally testable
affine-invariant codes with constant query complexity. We show that if a code C ⊂ ΣKn is
an r-query locally correctable code (LCC), where K is a finite field and Σ is a finite alpha-
bet, then the number of codewords in C is at most exp(OK,r,|Σ|(nr−1)). Also, we show that
if C ⊂ ΣKn is an r-query locally testable code (LTC), then the number of codewords in C is
at most exp(OK,r,|Σ|(nr−2)). The dependence on n in these bounds is tight for constant-query
LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS’13) construct affine-invariant codes via lift-
ing that have the same asymptotic tradeoffs. Note that our result holds for non-linear codes,
whereas previously, Ben-Sasson and Sudan (RANDOM’11) assumed linearity to derive similar
results.

Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords
corresponding to an affine-invariant LCC/LTC must be far from each other with respect to
Gowers norm of an appropriate order. This then allows us to bound the number of codewords,
using known decomposition theorems which approximate any bounded function in terms of a
finite number of low-degree non-classical polynomials, upto a small error in the Gowers norm.
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code (LTC) if there is a randomized algorithm that, given a received word w, determines
whether w is in the code or whether w is far in Hamming distance from every codeword,
based on queries to a small number of locations of w. The number of positions of the received
word queried is called the query complexity of the LCC or LTC.

The notions of local correctability and local testability have a long history in computer
science by now. Also called “self-correction”, the idea of local correction originated in
works by Lipton [30] and by Blum and Kannan [13] on program checkers. LCCs are closely
related to locally decodable codes (LDCs), where the goal is to recover a symbol of the
underlying message when given a corrupted codeword, using a small number of queries [27].
LDCs and LCCs have found applications in private information retrieval schemes [15, 4]
and derandomization [32]. See [39] for a detailed survey on LDCs and LCCs. Research
on LTCs implicitly started with Blum, Luby, and Rubinfeld’s seminal discovery [14] that
the Hadamard code is an LTC with query complexity 3; they were first formally defined
by Goldreich and Sudan in [20]. LTCs have been used (implicitly and explicitly) in many
contexts, most notably in the construction of PCP’s [2, 1, 16].

In spite of the wide interest in them, some basic questions about LCCs and LTCs remain
unanswered. We restrict ourselves throughout to the setting where the query complexity
is a constant (independent of the length of the code) and consider the tradeoff between
query complexity and code length. The current best constant-query LCCs have exponential
length, while the current best constant-query LTCs have near-linear length but they are
quite complicated [7, 16, 31, 36]. Getting subexponential length LCCs or linear length LTCs
with constant query complexity are major open problems in the area.

Intuitively, for LCCs and LTCs with constant query complexity, there must be a lot of
redundancy in the code, since every symbol of the codeword must satisfy local constraints
with most other symbols in the codeword. A systematic way to generate redundancy is
to make sure that the code has a large group of invariances1. Formally, given a code
C ⊂ ΣN of length N over alphabet Σ, a codeword c ∈ C can be naturally viewed as a
function c : [N ] → Σ. Then, we say that C is invariant under a set2 G ⊂ {[N ] → [N ]} if
for every π ∈ G and codeword c ∈ C, c ◦ π also describes a codeword c′ ∈ C. Now, the key
observation is that if for every codeword c ∈ C, if there is a constraint among c(i1), . . . , c(ik)
for some i1, . . . , ik ∈ [N ], then for every c ∈ C, there must also be a constraint among
c(π(i1)), . . . , c(π(ik)) for any π in the invariance set G, since c ◦ π is itself another codeword.
Hence if G is large, the presence of one local constraint immediately implies presence of
many and suggests the possibility of local algorithms for the code. This connection between
invariance and correctability/testability was first explicitly examined by Kaufman and Sudan
[28]. One is then motivated to understand more clearly the possibilities and limitations of
local correctors/testers for codes possessing natural symmetries.

We focus on affine-invariant codes, for which the domain [N ] is an n-dimensional vector
space Kn over a finite field K and the code C ⊂ {Kn → Σ} is invariant under affine
transformations A : Kn → Kn. Affine invariance is a very natural symmetry for “algebraic
codes” and has long been studied in coding theory [26]. The study of affine-invariant
LCCs and LTCs was initiated in [28] and has been investigated in several follow-up works
[8, 24, 5, 25]. The hope is that because affine-invariant codes have a large group of invariance
and, at the same time, are conducive to non-trivial algebraic constructions, they may contain

1 A quite different way to generate redundancy is through tensoring; see [6]. Invariances and tensoring
are essentially the only two “generic” reasons known to cause local correctability/testability.

2 {A→ B} and BA denote the set of all functions from A to B.
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a code that improves current constructions of LCCs or LTCs.
The current best parameters for constant-query affine-invariant LCCs and LTCs are

achieved by the lifted codes of Guo, Kopparty and Sudan [23]. They construct an affine-
invariant code F ⊂ {Fn2` → F2} with exp(Θ(nr−2)) codewords that is an (r − 1)-query LCC
and an r-query LTC, where r = 2`. The Θ(·) notation hides factors that depend on r but
not n. For LCCs, the same asymptotic tradeoff between query complexity and code length is
achieved by the Reed-Muller code. For every r ≥ 2, the Reed-Muller code of order r− 1 (i.e.,
polynomials over Fq on n variables of total degree ≤ r − 1 with q > r) is an affine-invariant
r-query LCC with exp(Θ(nr−1)) codewords. In fact, even if we drop the affine-invariance
requirement, Reed-Muller codes and the construction of [23] achieve the best known codeword
length for constant query LCCs3.

In this work, we show that the parameters for the lifted codes of [23] are, in fact, tight
for affine-invariant LCCs/LTCs in {Kn → Σ} for any fixed finite field K and any fixed finite
alphabet Σ.

I Theorem 1.1 (Main Result, informal).
(i) Let C ⊂ {Kn → Σ} be an r-query affine-invariant LCC. Then |C| ≤ exp

(
OK,r,|Σ|(nr−1)

)
.

(ii) Let C ⊂ {Kn → Σ} be an r-query affine-invariant LTC. Then |C| ≤ exp
(
OK,r,|Σ|(nr−2)

)
.

1.1 Related Work
Ben-Sasson and Sudan in [8] obtained a similar result as Theorem 1.1, when the code is
assumed to be linear, i.e., when the codewords form a vector space. They showed that if
C ⊂ {Kn → F} is an (r − 1)-query locally correctable or r-query locally testable linear,
affine-invariant code, where K and F are finite fields of characteristic p > 0 with K an
extension of F, then the dimension of C as a vector space over F is at most (n logp |K|)r−2.
When K is fixed (as in [23]’s construction of constant query LCCs/LTCs), the result of [8] is
a very special case of our Theorem 1.1. On the other hand, [8]’s result also applies when the
size of K is growing (as long as K extends F), whereas ours does not.

There are several works which study lower bounds for constant query LCCs [27, 19, 18,
29, 3, 10, 38, 17]. For general (non-affine-invariant) LCCs, tight lower bounds are known only
for 2-query LCCs. Kerendis and deWolf [29] prove that if C ⊂ {{0, 1}n → Σ} is a 2-query
LCC4, then |C| ≤ exp(O(n|Σ|5)). This is tight for constant Σ and achieved by the Hadamard
code. For r-query LCCs where r > 2, the lower bounds known are much weaker. The best
known bounds, due to [29, 37], show that if C ⊂ {{0, 1}n → {0, 1}} is an r-query LCC, then

|C| ≤ exp
(

2n/(1+1/(dr/2e+1))+o(n)
)
.

Higher-order Fourier analysis was applied to other problems in coding theory in [12, 35].

1.2 Proof Overview
Our arguments are based on standard techniques from higher-order Fourier analysis [33], but
they are new in this context. We show that if an affine-invariant code is an r-query LCC,

3 In contrast, there exist non-affine-invariant LTCs of constant query complexity and inverse polyloga-
rithmic rate. This corresponds to an LTC with exp(N/polylog(N)) codewords, where N is the code
length, while the affine-invariant LTC of [23] and Reed-Muller codes have exp(polylog(N)) codewords
for constant query complexity.

4 Their lower bound also holds for the weaker notion of locally decodable dode (LDC).
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then its codewords are far from each other in the Ur-norm, the Gowers norm of order r.
Similarly, we show that the codewords of an affine-invariant r-query LTC are far from each
other in the Ur−1-norm. Therefore, we can upper bound the number of LCC/LTC codewords
in terms of the size of a net that is fine enough with respect to the Gowers norm of an
appropriate order. We bound the size of such a net by explicitly constructing one using a
standard decomposition theorem (analogous to Szemerédi’s regularity lemma): any bounded
function f : Kn → C can be approximated, upto a small error in the Gowers norm, by a
composition of a bounded number of low-degree non-classical polynomials [34].

The way we argue that two codewords f and g of an r-query LCC are far in the Gowers
norm is that if ‖f − g‖Ur < ε, then for small enough ε (with respect to r, |Σ| and correctness
probability), the local corrector when applied to f can act as if it is applied to g. The
argument is, briefly, as follows. On the one hand, the codewords f and g must be far in
Hamming distance, because the definition of LCC implies that there is a unique codeword
close to any string. So, with constant probability over choice of y ∈ Kn, the local corrector’s
guess for f(y) must differ from g(y). On the other hand, we can lower bound by a constant
the probability of the event that the corrector outputs g(y) when it queries coordinates
of f , because f and g are close in the ‖ · ‖Ur norm. This last calculation uses the affine
invariance of the code and the generalized von Neumann inequality, which bounds by ‖f0‖Uk

the expectation over z1, . . . , zm ∈ Kn of the product
∏k
i=0 fi(Li(z1, . . . , zm)), where the Li’s

are arbitrary linear forms so that no two are linearly dependent and fi : Kn → C are arbitrary
functions with |fi| ≤ 1.

The argument for r-query LTCs is similar. Suppose f and g are close in the ‖ · ‖Ur−1

norm. Consider the random function H such that for every x independently, H(x) equals
f(x) with probability 1/2 and g(x) with probability 1/2. H itself is far from a codeword
with high probability. But we show that since the local tester accepts f , it will also accept
H ◦ ` for a random invertible affine map ` : Kn → Kn with good probability. This implies
that with good probability, H ◦ ` is close to a codeword and by affine-invariance, H itself is
close to a codeword which gives a contradiction. To draw this conclusion, we again use the
generalized von Neumann inequality as well as a hybrid argument.

Organization

Section 2 contains preliminaries that lay the foundations of our analysis. Section 3 proves
the first part of our main result about LCCs, while Section 4 proves the second part about
LTCs.

2 Preliminaries

2.1 Error-correcting codes
Let X be a finite set called the set of coordinates and Σ be an other finite set called the
alphabet. Let ΣX denote the set of all functions from X → Σ. A subset C ⊂ ΣX is called a
code and its elements are called codewords.

I Definition 2.1 (Hamming distance). Given f, g ∈ ΣX , we define the normalized Ham-
ming distance between f and g is defined as ∆(f, g) := Prx∈X [f(x) 6= g(x)] where x is
uniformly chosen from X . For a code C ⊂ ΣX , we define the minimum distance of C as
minf,g∈C,f 6=g ∆(f, g).

Let NΣ = {q : Σ→ R≥0 :
∑
i∈Σ q(i) = 1} denote the probability simplex on Σ. We embed

Σ into NΣ by sending i ∈ Σ to ei which is the ith coordinate vector in RΣ. This also lets
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us extend functions f : X → Σ to f̂ : X → NΣ using the embedding. We call f̂ the simplex
extension of f . Now given f, g ∈ ΣX , we can write the Hamming distance between them as

∆(f, g) = 1− Pr
x∈X

[f(x) = g(x)] = 1− Ex∈X 〈f̂ , ĝ〉

where 〈·, ·〉 is the standard inner product in RΣ.

I Definition 2.2 (Affine invariance). Let X be a finite dimensional vector space over some
finite field K, then C ⊂ ΣX is called affine invariant if for every f ∈ C and every invertible
affine map ` : X → X , f ◦ ` ∈ C.

Locally correctable and testable codes are defined formally in Sections 3 and 4 respectively.

2.2 Higher order Fourier analysis
Fix a finite field Fp of prime order p, and let K = Fq where q = pt for a positive integer t. K
is then a vector space of dimension t over Fp. We denote by Tr : K→ Fp the trace function:

Tr(x) = x+ xp + xp
2

+ · · ·+ xp
t−1
.

Also, we use | · | to denote the obvious map from Fp to {0, 1, . . . , p− 1}.
Given functions f, g : Kn → C, we define their inner product as 〈f, g〉 = Ex[f(x)g(x)]

where x is chosen uniformly from Kn. We define ‖ · ‖p-norm on such functions as ‖f‖p =
Ex[|f(x)|p]1/p. We say a function f : Kn → C is bounded if |f | ≤ 1. Let T denote the circle
group R/Z and e : T→ C be the map given by e(x) = exp(2πix).

I Definition 2.3 (Non-classical Polynomials). A non-classical polynomial of degree < d is a
function f : Kn → T if

∀h1, h2 · · · , hd ∈ Kn Dh1Dh2 · · ·Dhd
f = 0

where Dh is the difference operator defined as Dhf(x) = f(x+ h)− f(x). For such an f , the
function e(f) is called a non-classical phase polynomial of degree < d.

Let α1, · · · , αt ∈ K be a basis for K when viewed as a vector space over Fp. It is known
[34, 9] that non-classical polynomials of degree ≤ d are exactly those functions P : Kn → T
which have the following form:

P (x1, . . . , xn)

= θ +
∑
k≥0

∑
0≤di,j<p ∀i∈[n],j∈[t];

0<
∑n

i=1

∑t

j=1
di,j≤d−k(p−1)

cd1,1,...,dn,t,k

∏n
i=1
∏t
j=1 |Tr(αjxi)|di,j

pk+1 (mod 1)

(1)

for some cd1,1,...,dn,t,k ∈ {0, 1, · · · , p − 1} and θ ∈ T. Next, we define the Gowers norm for
arbitrary functions f : Kn → C.

I Definition 2.4 (Gowers uniformity norm [21]). For a function f : Kn → C, the Gowers
norm of order r, denoted by ‖ · ‖Ur , is defined as

‖f‖Ur = (Ex,h1,··· ,hr∈Kn [∆h1∆h2 · · ·∆hr
f(x)])1/2r

where ∆h is the multiplicative difference operator defined as ∆hf(x) = f(x+ h)f(x).
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The Gowers norm is an actual norm when r ≥ 2. It also satisfies a useful monotonicity
property: for any function f : Kn → C,

|E[f(x)]| = ‖f‖U1 ≤ ‖f‖U2 ≤ · · · ≤ ‖f‖Ur ≤ · · · ≤ ‖f‖∞.

See [33] for more on Gowers norm. Observe that if f : Kn → C is a non-classical phase
polynomial of degree < r then ‖f‖Ur = 1. The inverse Gowers theorem is a partial converse
to this. It shows that the Gowers norm of order r of a function is in direct correspondence
with its correlation with non-classical phase polynomials of degree < r. In particular:

I Lemma 2.5 (Inverse Gowers theorem [34]). For any bounded5 f : Kn → C, if ‖f‖Ur > δ

then there exists a non-classical polynomial P of degree < r such that

| 〈f, e(P )〉 | ≥ c(δ,K, r)

where c(δ,K, r) is a constant depending only on δ,K, r.

A linear form on m variables is a vector L = (w1, · · · , wm) ∈ Km that is interpreted as a
function L : (Kn)m → Kn via the map (x1, · · · , xm) 7→

∑m
i=1 wixi. A key reason that the

Gowers norm is useful in applications is that if a function has small Gowers norm of the
appropriate order, then it behaves pseudorandomly in a certain way with respect to linear
forms.

I Lemma 2.6 (Generalized von Neumann inequality (Exercise 1.3.23 in [33])). Let
f0, f1, f2, · · · , fk : Kn → C be bounded functions and let L = {L0,L1, · · · ,Lk} be a system
of k + 1 linear forms in m variables such that no form is a multiple of another. Then

|Ez1,··· ,zm∈Kn [
k∏
i=0

fi(Li(z1, · · · , zm))]| ≤ min
0≤i≤k

‖fi‖Uk .

See Appendix A for proof.

2.3 A net for Gowers norm
The goal of this section is to establish the following claim.

I Theorem 2.7 (ε-net for Ur norm). The metric induced by the ‖ · ‖Ur norm on the space of
all bounded functions {f : Kn → C} has an ε-net of size exp(Oε,K,r(nr−1)).

For the proof, we need the following definitions.

I Definition 2.8 (Polynomial factors). A polynomial factor B is a sequence of non-classical
polynomials P1, ..., Pk : Kn → T. We also identify it with the function B : Kn → Tk
mapping x 7→ (P1(x), ..., Pk(x)). The partition induced by B is the partition of Kn given by
{B−1(y) : y ∈ Tk}. The complexity of B is the number of defining polynomials, |B| = k. The
degree of B is the maximum degree among its defining polynomials P1, · · · , Pk. A function
f : Kn → C is called B-measurable if it is constant in each cell of the partition induced by B
or equivalently f can be written as a τ(P1, · · · , Pk) for some function τ : Tk → C.

5 Note that bounded means |f | ≤ 1.
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I Definition 2.9 (Conditional expectations). Given a polynomial factor B, the conditional
expectation of f : Kn → C over B, denoted by E[f |B], is the B-measurable function defined
by

E[f |B](x) = Ey∈B−1(B(x))[f(y)].

I Definition 2.10 (Factor refinement). Given two polynomial factors B,B′, we say B′ is a
refinement of B, denoted by B′ � B, if every cell in the partition induced by B′ is contained
in some cell in the partition induced by B.

The definition of refinement immediately implies:

I Lemma 2.11 (Pythagoras theorem). Let B,B′ be polynomial factors such that B′ � B, then
for any function f : Kn → C,

‖E[f |B′]‖22 = ‖E[f |B]‖22 + ‖E[f |B′]− E[f |B]‖22.

The next claim shows that any bounded function is “close” to being measurable by a
polynomial factor of bounded complexity. Precisely:

I Lemma 2.12 (Decomposition Theorem). Any bounded f : Kn → C can be approximated in
‖ · ‖Ur by a function of a small number of degree < r non-classical polynomials i.e. for any
ε > 0, there exists non-classical polynomials P1, P2, · · · , Pk of degree < r with Pi(0̄) = 0 ∀i
and a bounded function τ : Tk → C such that

‖f − τ(P1, P2, · · · , Pk)‖Ur ≤ ε

where k = k(ε,K, r) is a constant depending only on ε,K, r.

Proof. The proof is similar to the proof of the Quadratic Koopman-von Neumann decom-
postion which is Prop 3.7 in [22] but using the full Inverse Gowers Theorem (Lemma 2.5)
and similar claims are implicit elsewhere, but for completeness, we give the proof.

The main idea is to approximate the function f using its conditional expectation over a
suitable polynomial factor B of degree < r. We will start with the trivial factor B0 = (1)
and iteratively construct more refined partitions Bi � Bi−1 until we find a factor Bk which
satisfies ‖f − E[f |Bk]‖Ur ≤ ε. To bound the number of iterations needed to achieve this,
we will show that the energy ‖E[f |Bi]‖22 which is bounded above by 1, increases by a fixed
constant in every step.
Suppose that after step i− 1, we still have ‖f − E[f |Bi−1]‖Ur > ε. Let g = f − E[f |Bi−1],
then by the inverse Gowers theorem (Lemma 2.5), we have some non-classical polynomial Pi
of degree < r such that | 〈g, e(Pi)〉 | ≥ κ = c(ε, p, r). We can assume that Pi(0̄) = 0. Refine
the factor Bi−1 by adding the polynomial Pi to obtain Bi � Bi−1. Now consider the energy
increment,

‖E[f |Bi]‖22 − ‖E[f |Bi−1]‖22 = ‖E[f |Bi]− E[f |Bi−1]‖22 = ‖E[g|Bi]‖22
where we used the Pythagoras theorem(Lemma 2.11) and the fact that E

[
E[f |Bi−1]

∣∣Bi] =
E[f |Bi−1] since Bi � Bi−1. So

κ2 ≤ |E[g · e(Pi)]|2 =
∣∣E[E[g · e(Pi)|Bi]

]∣∣2 =
∣∣E[e(Pi)E[g|Bi]

]∣∣2
≤ ‖E[g|Bi]‖21 ≤ ‖E[g|Bi]‖22 = ‖E[f |Bi]‖22 − ‖E[f |Bi−1]‖22.

Thus the energy increases by κ2 every step. But since the energy is bounded above by 1, the
process should end in a finite number of steps k ≤ 1

κ2 . So ‖f − E[f |Bk]‖Ur ≤ ε, but since
E[f |Bk] is Bk-measurable, we can write E[f |Bk] = τ(P1, · · · , Pk) for some function τ with
|τ | = |E[f |Bk]| ≤ |f | ≤ 1. J
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12:8 Lower Bounds for Constant Query Affine-Invariant LCCs and LTCs

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. Recall that K is an extension field of dimension t over a prime field
Fp. The ε-net will be the set N of all functions of the form τ(P1, · · · , Pk) where P1, · · · , Pk
are degree < r non-classical polynomials with zero constant terms, τ : Tk → C is a bounded
function and k = k(ε, p, r) is the constant given by Lemma 2.12. But we will not include all
possible bounded τ : Tk → C. Firstly by Equation 1, P1, · · · , Pk take values only in 1

pr Z/Z.
Next we will discretize the set {z ∈ C : |z| ≤ 1} into the ε-lattice i.e. we will only consider
maps τ : ( 1

pr Z/Z)k → {z ∈ C : |z| ≤ 1} ∩ ε(Z + iZ). The number of such maps is bounded
by (4/ε2)prk .

By Equation 1, a non-classical polynomial of degree < r in n variables with zero constant
term can be represented by ≤

(
nt+r−1
r−1

)
r coefficients in {0, 1, · · · , p− 1}. So the number of

such non-classical polynomials is bounded by exp
(
Or,K(nr−1)

)
. Combining both the bounds,

|N | ≤ exp
(
Or,K(nr−1)

)k · (4/ε2)p
rk

= exp
(
Oε,K,r(nr−1)

)
.

We will now prove that N is a 3ε-net. Given any f : Kn → [−1, 1], using Lemma 2.12,
there is a function τ(P1, · · · , Pk) such that

‖f − τ(P1, P2, · · · , Pk)‖Ur ≤ ε.

If we consider the τ̃ ∈ N by rounding values real and imaginary parts of τ to the nearest
multiple of ε, we get

‖f − τ̃(P1, P2, · · · , Pk)‖Ur

≤ ‖f − τ(P1, P2, · · · , Pk)‖Ur + ‖τ(P1, P2, · · · , Pk)− τ̃(P1, P2, · · · , Pk)‖Ur

≤ ε+ ‖τ(P1, P2, · · · , Pk)− τ̃(P1, P2, · · · , Pk)‖∞ ≤ 3ε. J

3 Locally Correctable Codes

We begin by defining locally correctable codes formally. Note that the definition below differs
from the conventional one in terms of a local correction algorithm and adversarial errors
(see, for instance, [39]); however, our definition is certainly weaker. Therefore, this makes
our lower bounds stronger.

I Definition 3.1 (Locally Correctable Code (LCC)). An (r, δ, τ) LCC is a code C ⊂ ΣX with
the following property:
For each x ∈ X there is a distributionMx over r-tuples of distinct6 coordinates such that
whenever f̃ ∈ ΣX is δ-close to some codeword f ∈ C in Hamming distance,

Pr
(y1,··· ,yr)∼Mx

[Dx,y1,··· ,yr (f̃(y1), f̃(y2), · · · , f̃(yr)) = f(x)] ≥ 1− τ

where Dx,y1,··· ,yr
: Σr → Σ, called the decoding operator, depends only on x, y1, · · · , yr. If

furthermore X is a vector space and C is affine invariant then we call it an affine invariant
LCC.

6 Without loss of generality, we can assume the tuples have distinct coordinates by adding dummy
coordinates and modifying the decoding functions Dx,y1,··· ,yr
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I Remark. Let |Σ| = m, Without loss of generality, we can assume that Σ = {1, 2, · · · ,m}.
Then we can extend functions f : X → Σ to f̂ : X → Nm. The decoding operators
D : Σr → Σ can also be extended to D̂ : Nrm → Nm as follows: For z1, · · · , zr ∈ Nm define

D̂(z1, · · · , zr) =
∑

1≤i1,··· ,ir≤m
eD(i1,··· ,ir)(z1)i1 · · · (zr)ir

where ej stands for the jth coordinate vector in Rm and (zj)i is the ith coordinate of the
vector zj . Now we can rewrite the decoding condition as:

E(y1,··· ,yr)∼Mx

[〈
f̂(x), D̂x,y1,··· ,yr

(f̂(y1), f̂(y2), · · · , f̂(yr))
〉]
≥ 1− τ.

First, we make the observation that any LCC must have good minimum distance.

I Lemma 3.2. Let C ⊂ ΣX be an (r, δ, τ) LCC with τ < 1/2, then the minimum distance of
C is at least 2δ.

Proof. Let f, g ∈ C be two distinct codewords such that ∆(f, g) < 2δ. Let h be the midpoint
of f and g i.e. h is δ-close to both f and g. Let x ∈ X be such that f(x) 6= g(x). By the
LCC property,

Pr
(y1,··· ,yr)∼Mx

[f(x) = Dx,y1,··· ,yr (h(y1), · · · , h(yr))] ≥ 1− τ

Pr
(y1,··· ,yr)∼Mx

[g(x) = Dx,y1,··· ,yr
(h(y1), · · · , h(yr))] ≥ 1− τ.

This is a contradiction when τ < 1
2 . Therefore every two codewords must be at least 2δ

apart. J

Now, we are ready to prove our main result of this section.

I Theorem 3.3 (Lower bound for LCCs). Let C ⊂ ΣKn be an (r, δ, τ) affine-invariant LCC
where τ < 2δ

3 . Then |C| ≤ exp
(
Oδ,K,r,|Σ|(nr−1)

)
.

Proof. Let |Σ| = m. LetN be an ε/2-net for the space of all bounded functions {f : Kn → C}
with the metric induced by ‖ ·‖Ur -norm where ε = 2δ

3mr . Given a bounded f : Kn → C, define

φ(f) := argminh∈N ‖f − h‖Ur

(break ties arbitrarily). Since N is an ε/2 net, we have ‖f − φ(f)‖Ur ≤ ε/2. Define
Ψ : C → Nm as

Ψ(f) := (φ(f̂1), · · · , φ(f̂m))

where f̂i : Kn → R≥0 is the ith coordinate function of the simplex extension f̂ : Kn → Nm
of f . We claim that Ψ is one-one which implies that |C| ≤ |N |m. Now using Theorem 2.7,
the required bound follows. Suppose that Ψ is not one-one. Let f, g ∈ C be two distinct
codewords such that Ψ(f) = Ψ(g). This implies that

∀ i ∈ [m] ‖f̂i − ĝi‖Ur ≤ ‖f̂i − φ(f̂i)‖Ur + ‖ĝi − φ(ĝi)‖Ur ≤ ε.

By affine invariance of C, f ◦ ` ∈ C for all invertible affine maps ` : Kn → Kn. So by the local
correction property,

Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy0,y1,··· ,yr
(f ◦ `(y1), · · · , f ◦ `(yr))] ≥ 1− τ
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where ` ranges uniformly over all invertible affine maps from Kn → Kn and y0 ranges
uniformly over Kn. Now consider the following difference:

Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy0,y1,··· ,yr
(f ◦ `(y1), · · · , f ◦ `(yr))]

− Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr
(f ◦ `(y1), · · · , f ◦ `(yr))]

= E`Ey0E(y1,··· ,yr)∼My0

[〈
f̂ ◦ `(y0), D̂y0,y1,··· ,yr

(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))
〉

−
〈
ĝ ◦ `(y0), D̂y1,··· ,yr

(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))
〉]

= Ey0E(y1,··· ,yr)∼My0

[
E`
[〈
f̂ ◦ `(y0)− ĝ ◦ `(y0), D̂y0,y1,··· ,yr

(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))
〉]]

Now we fix y0, y1, · · · , yr and show that inner expectation is small for each tuple
(y0, y1, · · · , yr). Let us denote D = Dy0,y1,··· ,yr

for brevity. Let t = rank(y0, y1, · · · , yr)7, thus
there exist independent vectors v1, · · · , vt ∈ Kn such that for every 0 ≤ i ≤ r, yi =

∑t
j=1 λijvj

for some fixed λij ∈ K. The action of a random invertible affine map ` can be approximated
by sampling z0, z1, · · · , zt ∈ Kn uniformly and mapping yi 7→ z0 +

∑t
j=1 λijzj since with

probability 1− on(1), z1, · · · , zt will be independent. Therefore,

E`
[〈
f̂ ◦ `(y0)− ĝ ◦ `(y0), D̂y0,y1,··· ,yr

(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))
〉]

= on(1) + Ez0,z1,··· ,zt∈Kn

〈(f̂ − ĝ)(z0 +
t∑

j=1
λ0jzj),

D̂

f̂(z0 +
t∑

j=1
λ1jzj), · · · , f̂(z0 +

t∑
j=1

λrjzj)

〉
(we can ignore the on(1) term)

= Ez0,z1,··· ,zt∈Kn

〈(f̂ − ĝ)(z0 +
t∑

j=1
λ0jzj), ∑

1≤i1,··· ,ir≤m
eD(i1,··· ,ir)

r∏
k=1

f̂ik (z0 +
t∑

j=1
λkjzj)

〉
= Ez0,z1,··· ,zt∈Kn

 ∑
1≤i1,··· ,ir≤m

(f̂ − ĝ)D(i1,··· ,ir)(z0 +
t∑

j=1
λ0jzj) ·

r∏
k=1

f̂ik (z0 +
t∑

j=1
λkjzj)


≤

 ∑
0≤i1,··· ,ir≤m−1

‖(f̂ − ĝ)D(i1,··· ,ir)‖Ur

 ≤ mrε

where the first inequality is obtained by applying generalized von Neumann inequality

7 rank(y0, y1, · · · , yr) is the dimension of the subspace spanned by the vectors y0, y1, · · · , yr.



ArnabBhattacharya and SivakanthGopi 12:11

(Lemma 2.6) to each term. Therefore

Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr
(f ◦ `(y1), · · · , f ◦ `(yr))]

≥ Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy1,··· ,yr
(f ◦ `(y1), · · · , f ◦ `(yr))]−mrε

≥ 1− τ − 2δ/3.

On the other hand,

Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr
(f ◦ `(y1), · · · , f ◦ `(yr))]

≤ Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = f ◦ `(y0)]

+ Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) 6= Dy1,··· ,yr
(f ◦ `(y1), · · · , f ◦ `(yr))]

≤ Pr
x

[f(x) = g(x)] + τ ≤ 1− 2δ + τ (By Lemma 3.2)

This is a contradiction when τ < 2δ
3 . J

4 Locally Testable Codes

We start by defining locally testable codes in a formulation convenient for our use.

I Definition 4.1 (Locally Testable Code (LTC)). An (r, δ, τ) LTC is a code C ⊂ ΣX with
minimum distance at least δ and the following property:
There is a distributionM over r-tuples of distinct8 coordinates such that for each codeword
f ∈ C,

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr (f(y1), f(y2), · · · , f(yr)) = 1] ≥ 3/4

and for every g ∈ ΣX which is τ -far away from every codeword,

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr
(g(y1), g(y2), · · · , g(yr)) = 1] ≤ 1/4

where Dy1,··· ,yr
: Σr → {0, 1}, called the testing operator, depends only on y1, · · · , yr. If

furthermore X is a vector space and C is affine-invariant then we call it an affine invariant
LTC.

I Remark. Let |Σ| = m, Without loss of generality, we can assume that Σ = {1, 2, · · · ,m}.
We can extend f : X → Σ to f̂ : X → Nm. The testing operator D : Σr → {0, 1} can also be
extended to D̂ : Nrm → [0, 1] as follows: For z1, · · · , zr ∈ Nm define

D̂(z1, · · · , zr) =
∑

1≤i1,··· ,ir≤m
D(i1, · · · , ir)(z1)i1 · · · (zr)ir . (2)

Now we can rewrite the probability in terms of expectation as:

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr
(f(y1), · · · , f(yr)) = 1]

= E(y1,··· ,yr)∼M[D̂y1,··· ,yr
(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))].

8 Again, without loss of generality, we can assume the tuples have distinct coordinates by adding dummy
coordinates and modifying the decoding functions Dy1,··· ,yr
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We are now ready to prove the main result of this section.

I Theorem 4.2 (Lower bound for LTC’s). Let C ⊂ ΣKn be an (r, δ, δ/3) affine invariant LTC,
then |C| ≤ exp

(
Oδ,K,r,|Σ|(nr−2)

)
.

Proof. Let |Σ| = m. The proof is very similar to that of Theorem 3.3. Let N be an
ε/2-net for the space of all bounded functions {f : Kn → C} with the metric induced by
‖ · ‖Ur−1 -norm where ε = 1/2rmr. Define Ψ : C → Nm as in the proof of Theorem 3.3, it is
enough to show that Ψ is one-one. Suppose that Ψ is not one-one. Then there exists f, g ∈ C
which are distinct such that Ψ(f) = Ψ(g). This implies that

∀ i ∈ [m] ‖f̂i − ĝi‖Ur−1 ≤ ε.

By affine invariance of C, f ◦ ` ∈ C for all invertible affine maps ` : Kn → Kn. So

E`E(y1,··· ,yr)∼M[Dy1,··· ,yr
(f ◦ `(y1), f ◦ `(y2), · · · , f ◦ `(yr))] ≥ 3/4

where ` ranges over all invertible affine maps from Kn → Kn. Let H ∈ ΣX be a random
word where for each coordinate x ∈ X independently,

H(x) =
{
f(x) with probability 1/2
g(x) with probability 1/2

.

Define ĥ : X → Nm as ĥ(x) = EH [Ĥ(x)] = f̂(x)+ĝ(x)
2 where f̂ , ĝ are the simplex extensions

of the original f, g. So ∀ i ∈ [m] ‖f̂i − ĥi‖Ur−1 = ‖f̂i − ĝi‖Ur−1/2 ≤ ε/2. We will now show
that the test accepts H ◦ ` with good probability when ` is a random invertible affine map
from Kn → Kn.

EHE`E(y1,··· ,yr)∼M[Dy1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))
−Dy1,··· ,yr

(H ◦ `(y1), · · · , H ◦ `(yr))]

= EHE`E(y1,··· ,yr)∼M[D̂y1,··· ,yr
(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

− D̂y1,··· ,yr
(Ĥ ◦ `(y1), · · · , Ĥ ◦ `(yr))]

= E`E(y1,··· ,yr)∼M[D̂y1,··· ,yr
(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

− D̂y1,··· ,yr
(ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))]

(using multilinear expansion of D̂y1,··· ,yr (Equation 2) and taking expectation over H)

= E(y1,··· ,yr)∼M

[
E`
[
D̂y1,··· ,yr

(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

−D̂y1,··· ,yr
(ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))

]]
Now we fix y1, · · · , yr and show that inner expectation is small for each tuple (y1, · · · , yr). Let
us denote D = Dy1,··· ,yr

for brevity. Let t = rank(y1, · · · , yr), thus there exist independent
vectors v1, · · · , vt ∈ Kn such that for every 1 ≤ i ≤ r, yi =

∑t
j=1 λijvj for some fixed

λij ∈ K. The action of a random invertible affine map ` can be approximated by sampling
z0, z1, · · · , zt ∈ Kn uniformly and mapping yi 7→ z0 +

∑t
j=1 λijzj since with probability



ArnabBhattacharya and SivakanthGopi 12:13

1− on(1), z1, · · · , zt will be independent. Therefore,

E`
[
D̂y1,··· ,yr

(f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))− D̂y1,··· ,yr
(ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))

]
= on(1) + Ez0,··· ,zt∈Kn

D̂(f̂(z0 +
t∑

j=1
λ1jzj), · · · , f̂(z0 +

t∑
j=1

λrjzj))

−D(ĥ(z0 +
t∑

j=1
λ1jzj), · · · , ĥ(z0 +

t∑
j=1

λrjzj))


= Ez0,z1,··· ,zt∈Kn

 ∑
1≤i1,··· ,ir≤m

D(i1, · · · , ir)

 r∏
k=1

f̂ik (z0 +
t∑

j=1
λkjzj)−

r∏
k=1

ĥik (z0 +
t∑

j=1
λkjzj)


≤ r ·mr · ε2 = 1

4
where the last line is obtained by forming hybrids i.e. writing

f̂i1 · f̂i2 · · · f̂ir − ĥi1 · ĥi2 · · · ĥir
= (f̂i1 − ĥi1) · f̂i2 · · · f̂ir + ĥi1 · (f̂i2 − ĥi2) · · · f̂ir + · · ·+ ĥi1 · ĥi2 · · · (f̂ir − ĥir )

and using Lemma 2.6 for each term. Therefore

EHE`E(y1,··· ,yr)∼M[Dy1,··· ,yr
(H ◦ `(y1), · · · , H ◦ `(yr))]

≥ E`E(y1,··· ,yr)∼M[Dy1,··· ,yr
(f ◦ `(y1), · · · , f ◦ `(yr))]−

1
4 ≥

3
4 −

1
4 = 1

2 .

By Markov inequality,

1
4 ≤ Pr

H

[
E`E(y1,··· ,yr)∼M[Dy1,··· ,yr

(H ◦ `(y1), · · · , H ◦ `(yr))] ≥
1
3

]
≤ Pr

H

[
∃` E(y1,··· ,yr)∼M[Dy1,··· ,yr

(H ◦ `(y1), · · · , H ◦ `(yr))] ≥
1
3

]
≤ Pr

H

[
∃` ∆(H ◦ `, C)] ≤ δ

3

]
(by the soundness of the tester)

= Pr
H

[
∆(H, C)] ≤ δ

3

]
(since ` is invertible and C is affine invariant)

Let H = Supp(H) be the set of words between f and g i.e. the set of all words e ∈ ΣKn

such that e(x) = f(x) or e(x) = g(x) for all x ∈ Kn. We have |H| = 2∆(f,g)n. Since the
distribution of H is uniform in H, we proved that at least 1

4 fraction of words in H contain
a codeword in their δ/3 neighborhood, let H′ ⊂ H denote this subset. Therefore the δ/6
neighborhoods around the points in H′ must be disjoint or else two distinct codewords will
be < δ close to each other. The number of words in H which lie in a Hamming ball of radius
δ/6 around a point of H′ is

δn/6∑
i=0

(
∆(f, g)n

i

)
≥ 2H(δ/6∆(f,g))∆(f,g)n−o(n) ≥ 2H(δ/6)∆(f,g)n−o(n)

CCC 2016
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where H(·) is the binary entropy function. By a packing argument, we can upper bound the
size of H′ as

|H′| ≤ 2∆(f,g)n

2H(δ/6)∆(f,g)n−o(n) = o(|H|).

This contradicts the fact that |H′| ≥ |H|/4. J

5 Concluding Remarks

In this work, we proved tight lower bounds for constant query affine-invariant LCCs and
LTCs when the number of queries r, underlying field K and the alphabet Σ are constant.
However the constants in the bounds we obtain are of Ackermann-type in r, |K|, |Σ| because
of the use of higher-order Fourier analysis. Improving the dependence on these parameters is
an open problem which might require new ideas. In a recent work, Bhowmick and Lovett [11]
obtain a “bias implies low rank" theorem for polynomials over growing fields. This might
be a first step towards proving a variant of the inverse Gowers theorem (Lemma 2.5) for
growing field size, which could then be used to make our lower bounds extend to the case of
growing field size.

We also remark that our lower bounds work for any LCC or LTC where the queries are
obtained as fixed linear combinations of uniformly chosen points from Kn. Affine-invariant
codes are a natural class of local codes where this is true. Relaxing these conditions to get
lower bounds for a more general class of LCCs or LTCs is an open problem.

Acknowledgements. We thank Madhu Sudan for helpful pointers to previous work. The
second author would like to thank his advisor, Zeev Dvir, for his guidance and encouragement.
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A Proof of generalized von Neumann inequality (Lemma 2.6)

Since the lemma is not stated in the form we want in [33], we will include a proof here for
completeness. To prove Lemma 2.6, we need the following lemma first.

I Lemma A.1 (Exercise 1.3.22 in [33]). Let f : Kn → C be a function, and for each 1 ≤ i ≤ k,
let gi : (Kn)k → C be a bounded function which is independent of the ith coordinate of (Kn)k.
Then,

|Ex1,··· ,xk∈Kn [f(x1 + x2 + · · ·+ xk)
k∏
i=1

gi(x1, · · · , xk)]| ≤ ‖f‖Uk .

Proof. The proof is by induction on k and using Cauchy-Schwarz inequality repeatedly. The
case k = 1 is true by definition of ‖ · ‖U1 .∣∣∣∣∣Ex1,··· ,xk∈Kn

[
f(x1 + x2 + · · ·+ xk)

k∏
i=1

gi(x1, · · · , xk)
]∣∣∣∣∣

=

∣∣∣∣∣Ex2,··· ,xk

[
g1(x1, · · · , xk)Ex1

[
f(x1 + x2 + · · ·+ xk)

k∏
i=2

gi(x1, · · · , xk)
]]∣∣∣∣∣

(since g1 doesn’t depend on x1)

≤

∣∣∣∣∣Ex2,··· ,xk

[
Ex′1

[
f(x′1 + x2 + · · ·+ xk)

k∏
i=2

gi(x′1, x2, · · · , xk)
]

·Ex1

[
f̄(x1 + x2 + · · ·+ xk)

k∏
i=2

ḡi(x1, x2, · · · , xk)
]]∣∣∣∣∣

1/2

(By Cauchy-Schwarz inequality and the fact that |g1| ≤ 1)

http://eccc.hpi-web.de/report/2015/020
http://eccc.hpi-web.de/report/2015/020
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= |Ex1,h1 [Ex2,··· ,xk
[∆h1f(x1 + x2 + · · ·+ xk)

·
k∏
i=2

gi(x1 + h1, x2, · · · , xk)ḡi(x1, x2, · · · , xk)
]]∣∣∣∣∣

1/2

(By substituting x′1 = x1 + h1)

≤
∣∣∣Ex1,h1

[
Eh2,··· ,hk,z [∆hk

· · ·∆h1f(x1 + z)]1/2
k−1]∣∣∣1/2

(By induction hypothesis and the definition of Gowers norm)

≤ |Ex1,h1,h2,··· ,hk,z [∆hk
· · ·∆h1f(x1 + z)]|1/2

k

(By Jensen’s inequality)

= |Eh1,h2,··· ,hk,z [∆hk
· · ·∆h1f(z)]|1/2

k

= ‖f‖Uk

J

Proof of Lemma 2.6. By symmetry, it is enough to show that

|Ez1,··· ,zm∈Kn [f0(L0(z1, · · · , zm))
k∏
i=1

fi(Li(z1, · · · , zm))]| ≤ ‖f0‖Uk .

We will make a linear change of variables so that we can use Lemma A.1 to get the required
bound. For each 1 ≤ i ≤ k, since L0 is not a multiple of Li, there exists a vector vi ∈ Km
such that L0(vi) = 1 and Li(vi) = 0. Now we make the following change of variables:
(z1, · · · , zm) → (x1, · · · , xm) +

∑k
i=1 yiv

T
i where x1, · · · , xm and y1, · · · , yk are the new

variables which range over Kn.

|Ez1,··· ,zm∈Kn [f0(L0(z1, · · · , zm))
k∏
i=1

fi(Li(z1, · · · , zm))]|

=

∣∣∣∣∣∣Ex1,··· ,xm,y1,··· ,yk∈Kn

f0

L0(x1, · · · , xm) +
∑
j∈[k]

yj


∏
i∈[k]

fi

Li(x1, · · · , xm) +
∑

j∈[k]\{i}

yjLi(vj)

∣∣∣∣∣∣
(By change of variables and linearity of Li)

≤ Ex1,··· ,xm∈Kn

∣∣∣∣∣∣Ey1,··· ,yk∈Kn

f0

L0(x1, · · · , xm) +
∑
j∈[k]

yj


∏
i∈[k]

fi

Li(x1, · · · , xm) +
∑

j∈[k]\{i}

yjLi(vj)

∣∣∣∣∣∣


≤ ‖f0‖Uk (By Lemma A.1)

J
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Abstract
The sensitivity of a Boolean function f is the maximum, over all inputs x, of the number of
sensitive coordinates of x (namely the number of Hamming neighbors of x with different f -value).
The well-known sensitivity conjecture of Nisan (see also Nisan and Szegedy) states that every
sensitivity-s Boolean function can be computed by a polynomial over the reals of degree poly(s).
The best known upper bounds on degree, however, are exponential rather than polynomial in s.

Our main result is an approximate version of the conjecture: every Boolean function with
sensitivity s can be ε-approximated (in `2) by a polynomial whose degree is s ·polylog(1/ε). This
is the first improvement on the folklore bound of s/ε. We prove this via a new “switching lemma
for low-sensitivity functions” which establishes that a random restriction of a low-sensitivity
function is very likely to have low decision tree depth. This is analogous to the well-known
switching lemma for AC0 circuits.

Our proof analyzes the combinatorial structure of the graph Gf of sensitive edges of a Boolean
function f . Understanding the structure of this graph is of independent interest as a means of
understanding Boolean functions. We propose several new complexity measures for Boolean
functions based on this graph, including tree sensitivity and component dimension, which may
be viewed as relaxations of worst-case sensitivity, and we introduce some new techniques, such
as proper walks and shifting, to analyze these measures. We use these notions to show that the
graph of a function of full degree must be sufficiently complex, and that random restrictions of
low-sensitivity functions are unlikely to lead to such complex graphs.

We postulate a robust analogue of the sensitivity conjecture: if most inputs to a Boolean
function f have low sensitivity, then most of the Fourier mass of f is concentrated on small
subsets. We prove a lower bound on tree sensitivity in terms of decision tree depth, and show
that a polynomial strengthening of this lower bound implies the robust conjecture. We feel that
studying the graph Gf is interesting in its own right, and we hope that some of the notions and
techniques we introduce in this work will be of use in its further study.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Boolean functions, sensitivity, decision trees, Fourier degree

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.13

1 Introduction

The smoothness of a continuous function captures how gradually it changes locally (according
to the metric of the underlying space). For Boolean functions on {0, 1}n, a natural analog is
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sensitivity, capturing how many neighbors of a point have different function values. More
formally, the sensitivity of f : {0, 1}n → {±1} at input x ∈ {0, 1}n, written s(f, x), is the
number of neighbors y of x in the Hamming cube {0, 1}n such that f(y) 6= f(x). The max
sensitivity of f , written s(f) and often referred to simply as the “sensitivity of f”, is defined
as s(f) = maxx∈{0,1}n s(f, x). Hence we have 0 ≤ s(f) ≤ n for every f : {0, 1}n → {±1};
while not crucial, it may be helpful to consider this parameter as “low” when e.g. either
s(f) ≤ (logn)O(1) or s(f) ≤ no(1) (note that both these notions of “low” are robust up to
polynomial factors).

A well known conjecture, sometimes referred to as the “sensitivity conjecture,” states that
every smooth Boolean function is computed by a low degree real polynomial, specifically of
degree polynomial in its sensitivity. This conjecture was first posed in the form of a question
by Nisan [20] and Nisan and Szegedy [19] but is now (we feel) widely believed to be true:

I Conjecture 1.1 ([20, 19]). There exists a constant c such that every Boolean function f is
computed by a polynomial of degree deg(f) ≤ s(f)c.

Despite significant effort ([17, 1, 2, 3, 4]) the best upper bound on degree in terms
of sensitivity is exponential. Recently several consequences of Conjecture 1.1, e.g. that
every f has a formula of depth at most poly(s(f)), have been unconditionally established
in [11]. Nisan and Szegedy proved the converse, that every Boolean function satisfies
s(f) = O(deg(f)2).

In this work, we make progress on Conjecture 1.1 by showing that functions with low max
sensitivity are very well approximated (in `2) by low-degree polynomials. We exponentially
improve the folklore O(s/ε) degree bound (which follows from average sensitivity and Markov’s
inequality) by replacing the 1/ε error dependence with poly log(1/ε). The following is our
main result:1

I Theorem 1.2. For any Boolean function f : {0, 1}n → {±1} and any ε > 0, there exists a
polynomial p : {0, 1}n → R with deg(p) ≤ O(s(f) · (log(1/ε))3) such that Ex∈{0,1}n [|p(x)−
f(x)|2] ≤ ε.

En route to proving this result, we make two related contributions which we believe are
interesting in themselves:

Formulating a robust variant of the sensitivity conjecture (which would generalize Theo-
rem 1.2).
Defining and analyzing some natural graph-theoretic complexity measures, essential to
our proof and which we believe may hold the key to progress on the original and robust
sensitivity conjectures.

1.1 A robust variant of the sensitivity conjecture
A remarkable series of developments, starting with [20], showed that real polynomial degree
is an extremely versatile complexity measure: it is polynomially related to many other
complexity measures for Boolean functions, including PRAM complexity, block sensitivity,
certificate complexity, deterministic/randomized/quantum decision tree depth, and approxi-
mating polynomial degree (see [6, 15] for details on many of these relationships). Arguably
the one natural complexity measure that has defied inclusion in this equivalence class is

1 In a subsequent version of this work [12] the exponent “3” in Theorem 1.2 is improved to 1, and it is
shown that any further improvement to an exponent strictly less than 1 implies Conjecture 1.1.
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sensitivity. Thus, there are many equivalent formulations of Conjecture 1.1; indeed, Nisan’s
original formulation was in terms of sensitivity versus block sensitivity [20].

Even though progress on it has been slow, over the years Conjecture 1.1 has become a
well-known open question in the study of Boolean functions. It is natural to ask why this is
an important question: will a better understanding of sensitivity lead to new insights into
Boolean functions that have eluded us so far? Is sensitivity qualitatively different from the
other concrete complexity measures that we already understand?

We believe that the answer is yes, and in this paper we make the case that Conjecture 1.1 is
just the (extremal) tip of the iceberg: it hints at deep connections between the combinatorial
structure of a Boolean function f , as captured by the graph Gf of its sensitive edges in the
hypercube, and the analytic structure, as captured by its Fourier expansion. This connection
is already the subject of some of the key results in the analysis of Boolean functions, such as
[16, 9], as well as important open problems like the “entropy-influence” conjecture [10] and
its many consequences.

Given any Boolean function f , we conjecture a connection between the distribution of
the sensitivity of a random vertex in {0, 1}n and the distribution of f ’s Fourier mass. This
conjecture, which is an important motivation for the study in this paper, is stated informally
below:

Robust Sensitivity Conjecture (Informal Statement): If most inputs to a Boolean func-
tion f have low sensitivity, then most of the Fourier mass of f is concentrated on small
subsets.

Replacing both occurrences of most by all we recover Conjecture 1.1, and hence the
statement may be viewed as a robust formulation of the sensitivity conjecture. Theorem 1.2
corresponds to replacing the first most by all. There are natural classes of functions which
do not have low max sensitivity, but for which most vertices have low sensitivity; the robust
sensitivity conjecture is relevant to these functions while the original sensitivity conjecture is
not. (A prominent example of such a class is AC0, for which the results of [18] establish a
weak version of the assumption (that most inputs have low sensitivity) and the results of
[18, 26] establish a strong version of the conclusion (Fourier concentration).)

In order to formulate a precise statement, for a given Boolean function f : {0, 1}n → {±1}
we consider the random experiment which samples from the following two distributions:
1. The Sensitivity distribution: sample a uniform random vertex x ∈ {0, 1}n and let

s = s(f,x).
2. The Fourier distribution: sample a subset T ⊂ [n] with probability f̂(T)2 and let d = |T|.

We conjecture a close relation between the kth moments of these random variables:

I Conjecture 1.3 (Robust Sensitivity Conjecture). For all Boolean functions f and for all
integers k ≥ 1, there is a constant ak such that E[dk] ≤ ak E[sk].

The key here is that there is no dependence on n. To see the connection with the informal
statement above, if a function has low sensitivity for most x ∈ {0, 1}n, then it must have
bounded kth sensitivity moments for fairly large k; in such a case, Conjecture 1.3 implies a
strong Fourier concentration bound by Markov’s inequality. The classical Fourier expansion for
average sensitivity tells us that when k = 1, E[s] = E[d]. It is also known that E[s2] = E[d2]
(see e.g. [7, Lemma 3.5]), but equality does not hold for k ≥ 3. Conjecture 1.3 states that if
we allow constant factors depending on k, then one direction still holds.

It is clear that Conjecture 1.3 (with ak a not-too-rapidly-growing function of k) is
a strengthening of our Theorem 1.2. To see its relation to Conjecture 1.1 observe that
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Conjecture 1.1 implies that for k →∞, E[dk] ≤ ak(E[sk])b for constants a, b. On the other
hand, via Markov’s inequality, Conjecture 1.3 only guarantees Fourier concentration rather
than small degree for functions with small sensitivity. Thus the robust version Conjecture 1.3
seems incomparable to Conjecture 1.1.

It is possible that the reverse direction of the robust conjecture also holds: for every k
there exists a′k such that E[sk] ≤ a′k E[dk]; settling this is an intriguing open question. We
note that the Nisan-Szegedy result that s(f) ≤ O(deg(f)2) implies that as k →∞ we have
E[sk] ≤ Ck E[dk]2 for some constant C.

Both our proof of Theorem 1.2, and our attempts at Conjecture 1.3, follow the same
general path. We apply random restrictions, which reduces these statements to analyzing
some natural new graph-theoretic complexity measures of Boolean functions. These measures
are relaxations of sensitivity: they look for occurrences of various subgraphs in the sensitivity
graph, rather than just high degree vertices. We establish (and conjecture) connections
between different graph-theoretic measures and decision tree depth (see Theorem 5.4, which
relates decision tree depth and the length of “proper walks”, and Conjecture 4.10, which
conjectures a relation between “tree sensitivity” and decision tree depth). These connections
respectively enable the proof of Theorem 1.2 and provide a simple sufficient condition implying
Conjecture 1.3, which suffices to prove the conjecture for k = 3 and 4. We elaborate on this
in the next subsection. We believe that these new complexity measures are interesting and
important in their own right, and that understanding them better may lead to progress on
Conjecture 1.1.

1.2 Random restrictions and graph-theoretic complexity measures
In this subsection we give a high level description of our new complexity measures and
perspectives on the sensitivity graph and of how we use them to approach Conjecture 1.3 and
prove Theorem 1.2. As both have the same conclusion, namely strong Fourier concentration,
we describe both approaches together until they diverge. This leads to analyzing two different
graph parameters (as we shall see, the stronger assumption of Theorem 1.2 allows the use of
a weaker graph parameter that we can better control).

First we give a precise definition of the sensitivity graph: to every Boolean function f we
associate a graph Gf whose vertex set is {0, 1}n and whose edge set E consists of all edges
(x, y) of the hypercube that have f(x) 6= f(y). Each edge is labelled by the coordinate in [n]
at which x and y differ. The degree of vertex x is exactly s(f, x), and the maximum degree
of Gf is s(f).

The starting point of our approach is to reinterpret the moments of the degree and
sensitivity distributions of f in terms of its random restrictions. Let Rk,n denote the
distribution over random restrictions that leave exactly k of the n variables unset and set the
rest uniformly at random. We first show, in Section 3, that the kth moment of the sensitivity
distribution controls the probability that a random restriction fρ of f , where ρ← Rk,n, has
full sensitivity (Theorem 3.1). Similarly, moments of the Fourier distribution capture the
event that fρ has full degree (Theorem 3.2).2

Random restrictions under sensitivity moment bounds

Via Theorems 3.1 and 3.2, Conjecture 1.3 may be rephrased as saying that if a function f
has low sensitivity moments, then a random restriction fρ is unlikely to have full degree. An

2 We note that Tal has proved a result of a similar flavor; [25, Theorem 3.2] states that strong Fourier
concentration of f implies that random restrictions of f are unlikely to have high degree.
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intuition supporting this statement is that the sensitivity graphs of functions with full degree
should be “complex” (under some suitable complexity measure), whereas the graph of fρ is
unlikely to be “complex” if f has low sensitivity moments. More precisely, the fact that Gf
has no (or few) vertices of high degree suggests that structures with many sensitive edges in
distinct directions will not survive a random restriction.

Some evidence for this intuition is given by Theorem 3.1, which tells us that if f has low
sensitivity moments then fρ is unlikely to have full sensitivity. If full degree implied full
sensitivity then we would be done, but this is false as witnessed e.g. by the three-variable
majority function and by composed variants of it. (Conjecture 1.1 asserts that the gap
between degree and sensitivity is at most polynomial, but of course we do not want to invoke
the conjecture!) This leads us in Section 4 to consider our first relaxation of sensitivity, which
we call tree-sensitivity. To motivate this notion, note that a vertex with sensitivity k is simply
a star with k edges in the sensitivity graph. We relax the star requirement and consider
all sensitive trees: trees of sensitive edges (i.e. edges in Gf ) where every edge belongs to a
distinct coordinate direction (as is the case, of course, for a star). Analogous to the usual
notion of sensitivity, the tree sensitivity of f at x is the size of the largest sensitive tree
containing x, and the tree sensitivity of f is the maximum tree sensitivity of f at any vertex.

Theorem 4.11 shows that the sensitivity moments of f control the probability that fρ
has full tree sensitivity. Its proof crucially uses a result by Sidorenko [24] on counting
homomorphisms to trees. Theorem 4.11 would immediately imply Conjecture 1.3 if every
function of degree k must have tree sensitivity k. (This is easily verified for k = 3, 4, which,
as alluded to in the previous subsection, gives Conjecture 1.3 for those values of k.) The
best we can prove, though, is a tree sensitivity lower bound of Ω(

√
k) (Theorem 4.9); the

proof uses notions of maximality and “shifting” of sensitive trees that we believe may find
further application in the study of tree sensitivity. We conjecture that full degree does imply
full tree sensitivity, implying Conjecture 1.3. This is a rare example where having a precise
bound between the two complexity measures (rather than a polynomial relationship) seems
to be important.

Random restrictions under a max sensitivity bound

Next, we aim to prove unconditional moment bounds on the Fourier distribution of functions
with low max sensitivity, and thereby obtain Theorem 1.2. Towards this goal, in Section 5 we
relax the notion of tree sensitivity and study certain walks in the Boolean hypercube that we
call proper walks: these are walks such that every time a coordinate direction is explored for
the first time, it is along a sensitive edge. We show in Theorem 5.4 that having full decision
tree depth implies the existence of a very short (length O(n)) proper walk containing sensitive
edges along every coordinate. In Lemma 5.6, we analyze random restrictions to show that
such a structure is unlikely to survive in the remaining subcube of unrestricted variables.
This may be viewed as a “switching lemma for low-sensitivity functions”, which again may be
independently interesting (note that strictly speaking this result is not about switching from
a DNF to a CNF or vice versa, but rather it upper bounds the probability that a restricted
function has large decision tree depth, in the spirit of standard “switching lemmas”). It yields
Theorem 1.2 via a rather straightforward argument. The analysis requires an upper bound
on the maximum sensitivity because we do not know an analogue of Sidorenko’s theorem for
proper walks.
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1.3 Some high-level perspective

An important goal of this work is to motivate a better understanding of the combinatorial
structure of the sensitivity graph Gf associated with a Boolean function. In our proofs
other notions suggest themselves beyond tree sensitivity and proper walks, most notably
the component dimension of the graph, which may be viewed as a further relaxation of
sensitivity. Better relating these measures to decision tree depths, as well as to each other,
remains intriguing, and in our view promising, for making progress on Conjecture 1.1 and
Conjecture 1.3 and for better understanding Boolean functions in general. We hope that
some of the notions and techniques we introduce in this work will be of use to this goal.

Another high level perspective relates to “switching lemmas”. As mentioned above, we
prove here a new result of this kind, showing that under random restrictions low sensitivity
functions have low decision tree depth with high probability. The classical switching lemma
shows the same for small width DNF (or CNF) formulas (and hence for AC0 circuits as
well). Our proof is quite different than the standard proofs, as it is essentially based on the
combinatorial parameters of the sensitivity graph. Let us relate the assumptions of both
switching lemmas. On the one hand, by the sensitivity Conjecture 1.1 (which we can’t use,
and want to prove), low sensitivity should imply low degree and hence low decision tree
depth and small DNF width. On the other hand, small DNF width (indeed small, shallow
circuits) imply (by [18]) low average sensitivity, which is roughly the assumption of the
robust sensitivity Conjecture 1.3. As it turns out, we can use our combinatorial proof of our
switching lemma to derive a somewhat weaker form of the original switching lemma, and
also show that the same combinatorial assumption (relating tree sensitivity to decision tree
depth) which implies Conjecture 1.3 would yield a nearly tight form of the original switching
lemma. This lends further motivation to the study of these graph parameters.

Another conjecture formalizing the maxim that low sensitivity implies Fourier concentra-
tion is the celebrated Entropy-Influence conjecture of Freidgut and Kalai [10] which posits
the existance of a universal constant C such that H(T) ≤ C E[s] where H(.) denotes the
entropy function of a random variable.3 The conjecture states that functions with low
sensitivity on average (measured by E[s] = E[d]) have their Fourier spectrum concentrated
on a few coefficients, so that the entropy of the Fourier distribution is low. However, unlike
in Conjecture 1.3 the degree of those coefficients does not enter the picture.

Organization

We present some standard preliminaries and notation in Section 2. Section 3 proves The-
orems 3.1 and 3.2 which show that degree and sensitivity moments govern the degree
and sensitivity respectively of random restrictions. In Section 4 we study tree sensitivity.
Section 4.1 relates it to other complexity measures, while Section 4.2 shows how the tree
sensitivity of a random restriction is governed by sensitivity moments. We explore some
consequences of these results in Section 4.3. Section 5 studies proper walks, and shows how
to construct short proper walks. In Section 5.1, we use proper walks to analyze random
restrictions of low-sensitivity functions and prove Theorem 1.2. Section 5 uses results from
Section 4.1 but is independent of the rest of Section 4.

3 Recall that the entropy H(T) of the random variable T is H(T) =
∑

T ⊆[n] Pr[T = T ] log2
1

Pr[T=T ] .
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2 Preliminaries

The Fourier distribution. Let f : {0, 1}n → {±1} be a Boolean function. We define the
usual inner product on the space of such functions by 〈f, g〉 = Ex←{0,1}n [f(x)g(x)]. For
S ⊆ [n] the parity function χS is χS(x) = (−1)

∑
i∈S

xi . The Fourier expansion of f is
given by f(x) =

∑
S⊂[n] f̂(S)χS(x), where f̂(S) = 〈f, χS〉. By Parseval’s identity we have∑

S⊆[n] f̂(S)2 = 1. This allows us to view any Boolean function f as inducing a probability
distribution Df on subsets S ⊆ [n], given by PrR←Df

[R = S] = f̂(S)2. We refer to this
as the Fourier distribution. We define supp(f) ⊆ 2[n] as supp(f) = {S ⊆ [n] : f̂(S)2 6= 0}.
The Fourier expansion of f can be viewed as expressing S as a multilinear polynomial in
x1, . . . , xn, so that deg(f) = maxS∈supp(f) |S|. Viewing Df as a probability distribution on
2[n], we define the following quantities which we refer to as “influence moments” of f :

Ik[f ] = E
R←Df

[
|R|k

]
=
∑
S

f̂(S)2|S|k, (1)

Ik[f ] = E
R←Df

[
k−1∏
i=0

(|R| − i)
]

=
∑
|S|≥k

f̂(S)2
k−1∏
i=0

(|S| − i). (2)

We write degε(f) to denote the minimum k such that
∑
S⊆[n];|S|≥k f̂(S)2 ≤ ε. It is

well known that degε(f) ≤ k implies the existence of a degree k polynomial g such that
Ex[(f(x)− g(x))2] ≤ ε; g is obtained by truncating the Fourier expansion of f to level k.

The sensitivity distribution. We use d(·, ·) to denote Hamming distance on {0, 1}n. The n-
dimensional hypercubeHn is the graph with vertex set V = {0, 1}n and {x, y} ∈ E if d(x, y) =
1. For x ∈ {0, 1}n, let N(x) denote its neighborhood in Hn. As described in Section 1, the
sensitivity of a function f at point x is defined as s(f, x) = |{y ∈ N(x) : f(x) 6= f(y)}|,
and the (worst-case) sensitivity of f , denoted s(f), is defined as s(f) = maxx∈{0,1}n s(f, x).
Analogous to (1) and (2), we define the quantities sk(f) and sk(f) which we refer to as
“sensitivity moments” of f :

sk(f) = E
x←{0,1}n

[
s(f,x)k

]
, sk(f) = E

x←{0,1}n

[
k−1∏
i=0

(s(f,x)− i)
]
. (3)

With this notation, we can restate Conjecture 1.3 (with a small modification) as

I Conjecture (Conjecture 1.3 restated). For every k, there exists constants ak, bk such that
Ik(f) ≤ aksk(f) + bk.

The reason for the additive constant bk is that for all non-negative integers x, we have∏k−1
i=0 (x− i) ≤ xk ≤ ek

∏k−1
i=0 (x− i) + kk. Hence allowing the additive factor lets us freely

interchange Ik with Ik and sk with sk in the statement of the Conjecture. We note that
I1[f ] = I1[f ] = s1(f) = s1(f), and as stated earlier it is not difficult to show that I2[f ] = s2(f)
(see e.g. Lemma 3.5 of [7]). However, in general Ik(f) 6= sk(f) for k ≥ 3 (as witnessed, for
example, by the AND function).

Some other complexity measures. We define dim(f) to be the number of variables that f
depends on and dt(f) to be the smallest depth of a deterministic decision tree computing
f . In particular f : {0, 1}n → {±1} has dim(f) = n iff f is sensitive to every co-ordinate,
and has dt(f) = n iff f is evasive. It is easy to see that deg(f) ≤ dt(f) ≤ dim(f) and
s(f) ≤ dt(f).
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3 Random restrictions and moments of degree and sensitivity

We write Rk,n to denote the set of all restrictions that leave exactly k variables live (unset)
out of n. A restriction ρ ∈ Rk,n is viewed as a string in {0, 1, ?}n where ρi = ? for exactly the
k live variables. We denote the set of live variables by L(ρ), and we use fρ : {0, 1}L(ρ) → {±1}
to denote the resulting restricted function. We use C(ρ) ⊆ {0, 1}n to denote the subcube
consisting of all possible assignments to variables in L(ρ). We sometimes refer to “a random
restriction ρ← Rk,n” to indicate that ρ is selected uniformly at random from Rk,n.

A random restriction ρ ← Rk,n can be chosen by first picking a set K ⊂ [n] of k co-
ordinates to set to ? and then picking ρK̄ ∈ {0, 1}[n]\K uniformly at random. Often we will
pick both x ∈ {0, 1}n and K ⊂ [n] of size k independently and uniformly at random. This is
equivalent to sampling a random restriction ρ and a random point y within the subcube
C(ρ).

The following two theorems show that Ik[f ] captures the degree of fρ, whereas sk(f)
captures its sensitivity.

I Theorem 3.1. Let f : {0, 1}n → {±1}, ρ← Rk,n, and 1 ≤ j ≤ k. Then

sj(f)
nj

≈ sj(f)∏j−1
i=0 (n− i)

≤ Pr
ρ←Rk,n

[s(fρ) ≥ j] ≤
2ksj(f)

(
k
j

)∏j−1
i=0 (n− i)

≈
2ksj(f)

(
k
j

)
nj

. (4)

Proof. Consider the bipartite graph in which the vertices X on the left are all j-edge stars S
in Gf , the vertices Y on the right are all restrictions ρ ∈ Rk,n, and an edge connects S and
ρ if the star S lies in the subcube C(ρ) specified by the restriction ρ. The desired probability
Prρ∈Rk,n

[s(fρ) ≥ j] is the fraction of nodes in Y that are incident to at least one edge.
The number of nodes on the left is equal to

|X| =
∑

x∈{0,1}n

(
s(f, x)
j

)
= 2nsj(f)

j! .

The degree of each node S on the left is exactly
(
n−j
k−j
)
, since if S is adjacent to ρ then j

of the k elements of L(ρ) must correspond to the j edge coordinates of S and the other
k − j elements of L(ρ) can be any of the n− j remaining coordinates (note that the non-?
coordinates of ρ are completely determined by S). On the right, a restriction ρ ∈ Rk,n is
specified by a set L(ρ) of k live co-ordinates where ρi = ?, and a value ρi ∈ {0, 1} for the
other coordinates, so |Y | = |Rk,n| =

(
n
k

)
2n−k. We thus have

Pr
ρ←Rk,n

[s(fρ) ≥ j] ≤ total # of edges into Y
|Y |

=

(
2ns

j(f)
j!

)
·
(
n−j
k−j
)(

n
k

)
2n−k

=
2ksj(f)

(
k
j

)∏j−1
i=0 (n− i)

.

For the lower bound, in order for S to lie in C(ρ) the root of S must belong to C(ρ) (2k
choices) and all edges of S must correspond to elements of L(ρ) (

(
k
j

)
choices), so the maximum

degree of any ρ ∈ Y is 2k
(
k
j

)
. Hence we have

Pr
ρ←Rk,n

[s(fρ) ≥ j] ≥
(total # of edges into Y )
(max degree of any ρ ∈ Y )

|Y |
=

(
2ns

(j)(f)
j!

)
·
(
n−j
k−j
)

2k
(
k
j

)
·
(
n
k

)
2n−k

= sj(f)∏j−1
i=0 (n− i)

.

J
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I Theorem 3.2. 4 Let f : {0, 1}n → {±1} and ρ← Rk,n. Then

Ik(f)
nk

≈ Ik(f)∏k−1
i=0 (n− i)

≤ Pr
ρ←Rk,n

[deg(fρ) = k] ≤ 22k−2 Ik(f)∏k−1
i=0 (n− i)

≈ 22k−2 Ik(f)
nk

. (5)

Proof. We first fix K ⊆ [n] and consider the restricted function fρ that results from a
random choice of y = ρK̄ ∈ {0, 1}[n]\K . The degree k Fourier coefficient of fρ equals f̂ρ(K)
and is given by

f̂ρ(K) =
∑

S⊂[n]\K

f̂(S ∪K)χS(y).

Hence we have

E
y

[f̂ρ(K)2] =
∑

S⊂[n]\K

f̂(S ∪K)2,

and hence over a random choice of K, we have

E
ρ

[f̂ρ(K)2] =
∑
S⊂[n]

E
ρ

[1(K ⊆ S)]f̂(S)2 =
∑
S⊂[n]

∏k−1
i=0 (|S| − i)∏k−1
i=0 (n− i)

f̂(S)2 = Ik[f ]∏k−1
i=0 (n− i)

. (6)

Note that deg(fρ) = k iff f̂ρ(K)2 6= 0. Further, when it is non-zero f̂ρ(K)2 lies in the
range [2−(2k−2), 1], since a non-zero Fourier coefficient in a k-variable Boolean function has
magnitude at least 2−k+1. Hence we have

2−2k+2 Pr
ρ

[f̂ρ(K)2 6= 0] ≤ E
ρ

[f̂ρ(K)2] ≤ Pr
ρ

[f̂ρ(K)2 6= 0] (7)

which gives the desired bound when plugged into Equation (6). J

Conjecture 1.3 revisited: An easy adaptation of the Theorem 3.2 argument gives bounds
on Prρ←Rk,n

[deg(fρ) ≥ j]. Given these bounds, Conjecture 1.3 implies that for any j ≤ k,

Pr
ρ←Rk,n

[deg(fρ) ≥ j] ≤ ak Pr
ρ←Rk,n

[s(fρ) ≥ j] + on(1).

Indeed, by specifying the on(1) term, we can get a reformulation of Conjecture 1.3. This
formulation has an intuitive interpretation: gap examples exhibiting low sensitivity but high
degree are not robust to random restrictions. Currently, we do not know how to upper bound
deg(f) by a polynomial in s(f), indeed we do know of functions f where deg(f) ≥ s(f)2.
But the Conjecture implies that if we hit any function f with a random restriction, the
probability that the restriction has large degree can be bounded by the probability that it
has large sensitivity. Thus the conjecture predicts that these gaps do not survive random
restrictions in a rather strong sense.

Implications for AC0: For functions with small AC0 circuits, a sequence of celebrated
results culminating in the work of Håstad [14] gives upper bounds on Pr[dt(fρ) ≥ j]. Since
Pr[dt(fρ) ≥ j] ≥ Pr[deg(fρ) ≥ j], we can plug these bounds into Theorem 3.2 to get upper

4 The upper bound in the following theorem is essentially equivalent to Theorem 3.2 of [25], while the
lower bound is analogous to [18]. The only difference is in the family of restrictions.
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bounds on the Fourier moments, and derive a statement analogous to [18, Lemma 7], [26,
Theorem 1.1] on the Fourier concentration of functions in AC0.

Similarly Pr[dt(fρ) ≥ j] ≥ Pr[s(fρ) ≥ j], so via this approach Theorem 3.1 gives upper
bounds on the sensitivity moments, and hence sensitivity tail bounds for functions computed
by small AC0 circuits. This can be viewed as an extension of [18, Lemma 12], which bounds
the average sensitivity (first moment) of such functions. For depth 2 circuits, such tail bounds
are implied by the satisfiability coding lemma [21], but we believe these are the first such
bounds for depth 3 and higher. As this is not the focus of our current work, we leave the
details to the interested reader.

4 Tree sensitivity

In this section we study the occurrence of trees of various types in the sensitivity graph
Gf , by defining a complexity measure called tree sensitivity. We study its relation to other
complexity measures like decision tree depth.

I Definition 4.1. A set S ⊆ {0, 1}n induces a sensitive tree T in Gf if (i) the points in S
induce the (non-trivial) tree T in the Boolean hypercube; (ii) every edge induced by S is a
sensitive edge for f , i.e. belongs to E(Gf ); and (iii) each induced edge belongs to a distinct
co-ordinate direction.

Given a fixed function f , a sensitive tree T is completely specified by the set V (T ) of its
vertices. We can think of each edge e ∈ E(T ) as being labelled by the coordinate `(e) ∈ [n]
along which f is sensitive, so every edge has a distinct label. Let `(T ) denote the set of
all edge labels that occur in T . We refer to |`(T )| as the size of T , and observe that it lies
in {1, . . . , n}. We note that |V (T )| = |`(T )| + 1 by the tree property. Further, any two
vertices in V (T ) differ on a subset of coordinates in `(T ). Hence the set V (T ) lies in a
subcube spanned by coordinates in `(T ), and all points in V (T ) agree on all the coordinates
in `(T ) def= [n] \ `(T ).

I Definition 4.2. For x ∈ {0, 1}n, the tree-sensitivity of f at x, denoted ts(f, x), is the
maximum of |`(T )| over all sensitive trees T such that x ∈ V (T ). We define the tree-sensitivity
of f as ts(f) = maxx∈{0,1}n ts(f, x).

Note that a vertex and all its sensitive neighbors induce a sensitive tree (which is a star).
Thus one can view tree-sensitivity as a generalization of sensitivity, and hence we have that
ts(f) ≥ s(f). Lemma A.1 will show that ts(f) can in fact be exponentially larger than both
s(f) and dt(f) (the decision tree depth of f), and thus it cannot be upper bounded by
some polynomial in standard measures like decision tree depth, degree, or block sensitivity.
However, Theorem 4.9, which we prove in the next subsection, gives a polynomial lower
bound.

4.1 Tree sensitivity and decision tree depth
A sensitive tree T is maximal if there does not exist any sensitive tree T ′ with V (T ) ( V (T ′).
In this subsection we study maximal sensitive trees using a “shifting” technique, introduce
the notion of an “orchard” (a highly symmetric configuration of isomorphic sensitive trees
that have been shifted in all possible ways along their insensitive coordinates), and use these
notions to prove Theorem 4.9, which lower bounds tree sensitivity by square root of decision
tree depth.
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The support of a vector v ∈ {0, 1}n, denoted supp(v), is the set {i ∈ [n] : vi = 1}.
For x, v ∈ {0, 1}n, x ⊕ v denotes the coordinatewise xor. Given a set S ⊆ {0, 1}n, let
S ⊕ v = {x⊕ v : x ∈ S}.

I Definition 4.3. Let v be a vector supported on `(T ) where T is a sensitive tree in Gf . We
say that T can be shifted by v if f(x) = f(x⊕ v) for all x ∈ V (T ).

If T can be shifted by v then V (T )⊕ v also induces a sensitive tree which we denote by
T ⊕ v. Mapping x to x⊕ v gives an isomorphism between T and T ⊕ v which preserves both
adjacency and edge labels, and in particular we have `(T ⊕ v) = `(T ).

We have the following characterization of maximality (both directions follow easily from
the definitions of maximality and of shifting by the unit basis vector ei):

I Lemma 4.4. A sensitive tree T is maximal if and only if it can be shifted by ei for all
i ∈ `(T ) (equivalently, if none of the vertices in V (T ) is sensitive to any coordinate in `(T )).

The notion of maximality allows for a “win-win” analysis of sensitive trees: for each
co-ordinate i ∈ `(T ), we can either increase the size of the tree by adding an edge in direction
i, or we can shift by ei to get an isomorphic copy of the tree. Repeating this naturally leads
to the following definition.

I Definition 4.5. Let T be a sensitive tree that can be shifted by every v supported on `(T ).
We refer to the set of all such trees F = {T ⊕ v} as an orchard, and we say that T belongs
to the orchard F .

An orchard guarantees the existence of 2n−`(T ) trees that are isomorphic to T in Gf . It
is a priori unclear that orchards exist in Gf . The following simple but key lemma proves
their existence.

I Lemma 4.6. Let T be a sensitive tree. Either T belongs to an orchard, or there exists a
shift T ⊕ v of T which is not maximal.

Proof. Assume the tree T does not belong to an orchard. Pick the smallest weight vector
v′ supported on `(T ) such that T cannot be shifted by v′ (if there is more than one such
vector any one will do). Since T can trivially be shifted by 0n, we have wt(v′) ≥ 1. Pick any
co-ordinate i ∈ supp(v′), and let v = v′ ⊕ ei so that wt(v) = wt(v′)− 1. By our choice of v′,
T can be shifted by v, but not by v′ = v ⊕ ei. This implies that there exists x ∈ V (T ) so
that f(x) = f(x⊕ v) 6= f(x⊕ v′), hence T ⊕ v is not maximal. J

This lemma directly implies the existence of orchards for every Gf :

I Corollary 4.7. Every sensitive tree T where |`(T )| = ts(f) belongs to an orchard.

The lemma also gives the following intersection property for orchards. Since any two
trees in an orchard F are isomorphic, we can define `(F ) = `(T ) to be the set of edge labels
for any tree T ∈ F .

I Lemma 4.8. Let F1 and F2 be orchards. Then `(F1) ∩ `(F2) 6= ∅.

Proof. Assume for contradiction that `(F1) and `(F2) are disjoint. We choose trees T1 ∈ F1
and T2 ∈ F2, and x ∈ V (T1), y ∈ V (T2) such that f(x) = 1 and f(y) = −1. Now define
z ∈ {0, 1}n where zi equals xi if i ∈ `(T1) and zi equals yi otherwise. Since z agrees with
x on `(T1) = `(F1), it can be obtained by shifting x by z ⊕ x which is supported on `(T1).
Since T1 belongs to an orchard, we get f(z) = f(x) = 1. However, we also have that zi = yi
for all i ∈ `(T2). Hence by similar reasoning, f(z) = f(y) = −1, which is a contradiction. J
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We use this intersection property to lower bound tree sensitivity in terms of decision tree
depth, via an argument similar to other upper bounds on dt(f) (such as the well known
[5, 27, 13] quadratic upper bound on dt(f) in terms of certificate complexity).

I Theorem 4.9. For any Boolean function f : {0, 1}n → {±1}, we have ts(f) ≥
√

2 dt(f)−1.

Proof. We construct a decision tree for f by iterating the following step until we are left
with a constant function at each leaf: at the current node in the decision tree, pick the largest
sensitive tree T in the (restricted) function and read all the variables in `(T ).

Let k be the largest number of iterations before we terminate, taken over all paths in the
decision tree. Fix a path that achieves k iterations and let fi be the restriction of f that is
obtained, at the end of the i-th iteration (and let f0 = f). We claim that ts(fi) ≤ ts(f)− i.
Note that if fi is not constant then ts(fi) ≥ 1, hence this claim implies that k ≤ ts(f).

It suffices to prove the case i = 1, since we can then apply the same argument repeatedly.
Consider all trees in f0 = f of size ts(f). Each of them occurs in an orchard by Corollary 4.7
and by Lemma 4.8 any two of them share at least one variable. Hence when we read all the
variables in some tree T , we restrict at least one variable in every tree of size ts(f), reducing
the size by at least 1. The size of the other trees cannot increase after restriction, since Gf1

is an induced subgraph of Gf . Hence all the sensitive trees in f1 have size at most ts(f)− 1.
It follows that overall we can bound the depth of the resulting decision tree by

dt(f) ≤
k∑
i=1

ts(fi−1) ≤
k∑
i=1

(ts(f)− (i− 1)) ≤ ts(f)(ts(f) + 1)
2 . J

It is natural to ask whether ts(f) is polynomially related to dt(f) and other standard
complexity measures. Lemma A.1 in Appendix A gives an example of a function on n

variables where dt(f) = log(n+ 1) whereas ts(f) = n. In the other direction, it is likely that
the bound in Theorem 4.9 can be improved further. We conjecture that the following bound
should hold:

I Conjecture 4.10. For any Boolean function f : {0, 1}n → {±1}, we have ts(f) ≥ dt(f).

In addition to being a natural question by itself, we will show in Section 4.3 that Conjecture
4.10 would have interesting consequences via the switching lemma in Section 4.2.

4.2 Tree Sensitivity under Random Restrictions
In this subsection we show that the probability of a random restriction of f having large tree
sensitivity is both upper and lower bounded by suitable sensitivity moments of f .

I Theorem 4.11. Let f : {0, 1}n → {±1}, ρ ∼ Rk,n and 1 ≤ j ≤ k. Then we have

sj(f)
nj

≈ sj(f)∏j−1
i=0 (n− i)

≤ Pr
ρ∈Rk,n

[ts(fρ) ≥ j] ≤ (2k)2ksj(f)∏j−1
i=0 (n− i)

≈ (2k)2ksj(f)
nj

.

The lower bound follows from the fact that ts(f) ≥ s(f) and Theorem 3.1. The key
ingedient in the upper bound is Sidorenko’s theorem [24], which bounds the number of
homomorphisms from a graph G to a tree T with j edges in terms of the jth degree moment
of G. For a formal statement of Sidorenko’s theorems, we refer the reader to [24, 8]. Below,
we state the result we will use in our language. We also present an elegant proof due to
Yuval Peres which seems considerably simpler than the known proofs of Sidorenko’s theorem
(though the lemma follows directly from that theorem).
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I Lemma 4.12 ([22]). Let Sj denote the set of sensitive trees of size j in Gf . Then we have
that

|Sj | ≤ j!
∑

x∈{0,1}n

s(f, x)j .

Proof. We consider the set T of all rooted unlabelled trees with j edges. For each tree
t ∈ T we define a labelling of its vertices as follows: each tree t ∈ T has the vertex set
V = {0, . . . , j} where 0 is the root. The adjacency structure is specified by a parent function
pt : {1, . . . , j} → {0, . . . , j − 1} where pt(i) < i is the parent of vertex i. The tree t is
completely specified by the function pt, and hence |T | ≤ j!. For a given t ∈ T , let S(t)
denote the set of sensitive trees T ∈ Gf whose adjacency structure is given by t.

For conciseness let us write stot(f) to denote
∑
x∈{0,1}n s(f, x). Let D denote the distri-

bution on {0, 1}n where

Pr
D

[x] = s(f, x)
stot(f) .

Note that D is supported only on vertices where s(f, x) ≥ 1. Further D is a stationary
distribution for the simple random walk on Gf : if we sample a vertex from D and then walk
to a random neighbor, it is also distributed according to D.

Fix a tree t ∈ T and consider a random walk on Gf which is the following vector
X = (X0, . . . ,Xj) of random variables:

We sample X0 from {0, 1}n according to D.
For i ≥ 1, let Xi be a a random neighbor of Xi′ in Gf where i′ = pt(i) < i.

Note that every Xi is distributed according to D. The vector X = (X0, . . . ,Xj) is such that
(Xi,Xpt(i)) ∈ E(Gf ), but it might contain repeated vertices and edge labels (indeed, this
proof bounds the number of homomorphisms from Gf to t).

A vector x = (x0, . . . , xj) ∈ ({0, 1}n)j+1 will be sampled with probability

Pr[X = x] = Pr[X0 = x]
j∏
i=1

Pr[Xi = xi|X0, . . . ,Xi−1]

= s(f, x0)∑
x∈{0,1}n s(f, x)

j−1∏
i=0

1
s(f, xi)

= 1∑
x∈{0,1}n s(f, x)

j−1∏
i=1

1
s(f, xi)

.

Clearly S(t) lies in the support of X, hence

|S(t)| ≤ supp(X)

≤ E
X

[
1

Pr[X = x]

]

≤ E
X

 ∑
x∈{0,1}n

s(f, x)
j−1∏
i=1

s(f,Xi)


= stot(f)E

X

[
j−1∏
i=1

s(f,Xi)
]

≤ stot(f) E
Y∼D

[
s(f,Y)j−1] (8)
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where the last inequality holds since the Xi’s are identically distributed and each s(f,Xi) is
non-negative (or can be derived via the AM-GM inequality). We bound the moment under
D as follows:

E
Y∼D

[
s(f,Y)j−1] ≤ ∑

y∈{0,1}n

Pr[Y = y]s(f, y)j−1

=
∑

y∈{0,1}n

s(f, y)
stot(f)s(f, y)j−1

=
∑
y∈{0,1}n s(f, y)j

stot(f) .

Plugging this back into Equation (8) gives

|S(t)| ≤
∑

y∈{0,1}n

s(f, y)j

Summing over all possibilities for t, we get

|Sj | ≤
∑
t∈T
|S(t)| ≤ j!

∑
y∈{0,1}n

s(f, y)j .

One can save a factor of (j + 1), since there are j + 1 ways to root each tree in Sj . J

Theorem 4.11 now follows from an argument similar to Theorem 3.1.

Proof of Theorem 4.11. The lower bound follows from (the lower bound in) Theorem 3.1
and the observation that ts(fρ) ≥ s(fρ). We now prove the upper bound.

Similar to Theorem 3.1, consider the bipartite graph where the LHS is the set Sj of all
sensitive trees T of size j in Gf , the RHS is the set Rk,n of all restrictions ρ, and (T, ρ) is
an edge if the tree T lies in the subcube C(ρ) specified by the restriction ρ. The desired
probability Prρ∈Rk,n

[ts(fρ) ≥ j] is the fraction of nodes in Rk,n that are incident to at least
one edge.

We first bound the degree of each vertex on the left. To have T lying in C(ρ),
The edge labels of T must be live variables for ρ.
The values ρi for the fixed coordinates i ∈ [n] \ L(ρ) must be consistent with the values
in V (T ).

The only choice is of the (k − j) remaining live coordinates. Hence T ∈ C(ρ) for at most(
n−j
k−j
)
values of ρ corresponding to choices of the remaining live variables.

The number of vertices in Sj is bounded using Lemma 4.12 by |Sj | ≤ j!
∑
x∈{0,1}n s(f, x)j

= j!2nsj(f), so the total number of edges is at most
(
n−j
k−j
)
2nj!sj(f). A restriction ρ ∈ Rk,n

is specified by a set L(ρ) of k live co-ordinates where ρi = ?, and a value ρi ∈ {0, 1} for the
other coordinates, and hence |Rk,n| =

(
n
k

)
2n−k. Recall that ts(fρ) ≥ j iff C(ρ) contains some

tree from Sj . Hence the fraction of restrictions ρ that have an edge incident to them is

Pr
ρ∈Rk,n

[ts(fρ) ≥ j] ≤
(
n−j
k−j
)
2nj!sj(f)(
n
k

)
2n−k

≤ kj2ksj(f)(
n
j

) . J

4.3 Applications
By combining Theorems 4.9 and 4.11, we get upper and lower bounds on the probability that
a random restriction of a function has large decision tree depth in terms of its sensitivity
moments.
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I Corollary 4.13. Let f : {0, 1}n → {±1}, ρ ∼ Rk,n and 1 ≤ j ≤ k. Then

sj(f)
nj

≈ sj(f)∏j−1
i=0 (n− i)

≤ Pr
ρ∈Rk,n

[dt(fρ) ≥ j] ≤ (2k)2ks
√

2j(f)∏√2j−2
i=0 (n− i)

≈ (2k)2ks
√

2j(f)
n
√

2j−1 .

Note that the denominator in the lower bound is nΩ(j) but for the upper bound, it is
nΩ(
√
j). This quadratic gap comes from Theorem 4.9. However, if Conjecture 4.10 stating

that ts(f) ≥ dt(f) were true, it would imply the following sharper upper bound.

I Corollary 4.14. Let f : {0, 1}n → {±1}, ρ ∼ Rk,n and 1 ≤ j ≤ k. If Conjecture 4.10
holds, then

Pr
ρ∈Rk,n

[dt(fρ) ≥ j] ≤ (2k)2ksj(f)∏j−1
i=0 (n− i)

≈ (2k)2ksj(f)
nj

.

The dependence on n here matches that in the lower bound of Corollary 4.13. Conjec-
ture 1.3 follows from this as an easy consequence (indeed showing ts(f) ≥ deg(f) rather than
Conjecture 4.10 suffices):

I Corollary 4.15. Conjecture 4.10 implies Conjecture 1.3.

Proof. We will prove that Ik(f) ≤ (2k)2ksk(f). Let ρ← Rk,n and consider the event that
deg(fρ) = k. By Theorem 3.2, we can lower bound this probability in terms of the Fourier
moments of f as

Ik(f)∏k−1
i=0 (n− i)

≤ Pr
ρ←Rk,n

[deg(fρ) = k].

To upper bound it, by Corollary 4.14, if Conjecture 4.10 holds, then we have

Pr
ρ∈Rk,n

[deg(fρ) ≥ k] ≤ Pr
ρ∈Rk,n

[dt(fρ) ≥ k] ≤ (2k)2ksk(f)∏k−1
i=0 (n− i)

.

The claim follows by comparing the upper and lower bounds. J

For k = 3, 4, it is an easy exercise to verify that dt(fρ) = k implies ts(fρ) = k. This
implies that Conjecture 1.3 holds for k = 3, 4.

We conclude this section with an application to the class of width-w DNF formulas.
In Section 3 we showed how the switching lemma implies sensitivity moment bounds for
DNFs (and AC0). Here we show the converse, how a version of the switching lemma can be
derived using sensitivity moment bounds. The Satisfiability Coding Lemma of [21] implies
the following moment bounds for DNFs:

I Lemma 4.16. [21] There exists a constant c such that if f has a width-w DNF formula,
then sk(f) ≤ (ckw)k.

([21] proved tail bounds on the sensitivity of small-width DNFs from which a simple calculation
leads to the above moment bound. We refer the reader to [12] for more details, and for an
example showing the tightness of this bound.)

If Conjecture 4.10 holds, plugging these bounds into Corollary 4.14 gives that for any
width-w DNF f , there exists c′, c′′ > 0 such that

Pr
ρ∈Rk,n

[dt(fρ) ≥ k] ≤ (c′k)3kwk∏k−1
i=0 (n− i)

≈
(
c′′k3w

n

)k
.
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This nearly matches the bound one gets from Håstad’s switching lemma (with k3 in place of
k). Thus proving Conjecture 4.10 would give a combinatorial proof of the switching lemma
for DNFs which seems very different from the known proofs of Håstad [14] and Razborov
[23].

5 Proper Walks

Since sj(f) ≤ (s(f))j for all j, one can trivially bound the sensitivity moments of a function in
terms of its max sensitivity. Hence Corollaries 4.14 and 4.15 show that under Conjecture 4.10,
low sensitivity functions simplify under random restrictions. In this section we prove this
unconditionally. The key ingredient is a relaxation of sensitive trees that we call proper walks.

A walk W in the n-dimensional Boolean cube is a sequence of vertices (w0, w1, . . . , wt)
such that wi and wi+1 are at Hamming distance precisely 1. We allow walk to backtrack
and visit vertices more than once. We say that t is the length of such a walk.

Let `(W ) ⊆ [n] denote the set of coordinates that are flipped by walk W . We define
k = |`(W )| to be the dimension of the walk. We order the coordinates in `(W ) as `1, . . . , `k
according to the order in which they are first flipped. For each `i ∈ `(W ), let xi denote the
first vertex in W at which we flip coordinate i.

I Definition 5.1. A walk W is a proper walk for a Boolean function f : {0, 1}n → {±1} if
for each `i ∈ `(W ), the vertex xi is sensitive to `i.

Thus a walk is proper for f if the first edge flipped along a new coordinate direction is
always sensitive. This implies that while walking from xi to xi+1, we are only allowed to flip
a subset of the coordinates {`1, . . . , `i}, hence supp(xi ⊕ xi+1) ⊆ {`1, . . . , `i}. Hence if there
is a proper walk of dimension k then there is one of length at most k(k+ 1)/2, by choosing a
shortest path between xi and xi+1 for each i.

In studying proper walks, it is natural to try to maximize the dimension and minimize the
length. We first focus on the former. The following lemma states that the obvious necessary
condition for the existence of an n-dimensional walk is in fact also sufficient:

I Lemma 5.2. Every Boolean function f : {0, 1}n → {±1} that depends on all n coordinates
has a proper walk of dimension n.

Proof. Pick `1 ∈ [n] arbitrarily and let x1 be any vertex in {0, 1}n which is sensitive
to coordinate `1. Let 1 ≤ i ≤ n. Inductively we assume we have picked coordinates
L = {`1, . . . , `i} and points X = {x1, . . . , xi} so that for every j ≤ i,
1. xj is sensitive to `j .
2. For j ≥ 2, supp(xj−1 ⊕ xj) ⊆ {`1, . . . , `j−1}.
If we visit x1, . . . , xi in that order and walk from each xj to xj+1 along a shortest path, the
resulting walk is a proper walk for f . Let C be the subcube that spans the dimensions in L
and contains X.

Case 1: Some vertex in C is sensitive to a coordinate outside of L. Name this vertex xi+1
and the sensitive co-ordinate `i+1, and add them to X and L repectively. Note that xi⊕xi+1
is indeed supported on {`1, . . . , `i}, so both conditions (1) and (2) are met.

Case 2: No vertex in C is sensitive to a coordinate outside L. So for any co-ordinate j 6∈ L,
we have f(x) = f(x⊕ ej). But this means that the set of points X ⊕ ej and co-ordinates L
also satify the inductive hypothesis (specifically conditions (1) and (2) above).
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Let d denote the Hamming distance from C to the closest vertex which is sensitive to
some coordinate outside L. Let z denote one such closest vertex to C (there could be many)
and pick any coordinate j in which z differs from the closest point in C. If we replace X
by X ⊕ ej , the Hamming distance to z has decreased to d− 1. We can repeat this till the
Hamming distance drops to 0, which puts us in Case (1). J

Given this result, it is natural to try to find full dimensional walks of the smallest possible
length. The length of the walk constructed above is bounded by

∑n
i=1(i − 1) ≤ n2/2.

Lemma A.2 in Appendix A gives an example showing that this is tight up to constants. So
while we cannot improve the bound in general, we are interested in the case of functions with
large decision tree complexity, where the following observation suggests that better bounds
should be possible.

I Lemma 5.3. If ts(f) = n, then f has a proper walk of dimension n and length 2n− 1.

The proof is by doing a pre-order traversal of a sensitive tree of dimension n. Thus if
Conjecture 4.10 were true, it would imply that functions requiring full decision tree depth
have proper walks of length O(n). We now give an unconditional proof of this result (we will
use it as an essential ingredient in our “switching lemma” later).

I Theorem 5.4. If dt(f) = n, then f has a proper walk of dimension n and length at most
3n.

Proof. The proof is by induction on n. The base case n = 2 is trivial since in this case there
exists a proper walk of length 2. Assume the claim holds for all n′ < n. Let f be a function
where dt(f) = n. If ts(f) = n we are done by Lemma 5.3, so we assume that ts(f) = m < n.
By Corollary 4.7, there is an orchard {T ⊕ v} of sensitive trees where dim(T ) = m. Assume
by relabeling that `(T ) = {1, . . . ,m}.

Since dt(f) = n, there exists a setting t1, . . . , tm of variables in [m] such that the restriction
f ′ = f |x1=t1,...,xm=tm on n′ = n −m variables satisfies dt(f ′) = n −m. By the inductive
hypothesis, there exists a proper walk in f ′ of dimension n−m and length 3(n−m) in the
subcube x1 = t1, . . . , xm = tm which starts at some vertex s′ = (t1, . . . , tm, s′m+1, . . . , s

′
n)

and ends at some vertex t′ = (t1, . . . , tm, t′m+1, . . . , t
′
n), which flips all coordinates in [n] \ [m].

Consider the tree T ⊕ v in the orchard such that the coordinates of V (T ⊕ v) in [n] \ [m]
agree with s′. Our walk can be divided into three phases:
1. By Lemma 5.3, we can visit every vertex in T ⊕ v using a proper walk of length at most

2m− 1 that only uses edges in [m]. Assume that this walk starts at a and ends at b. By
our choice of v we have that (bm+1, . . . , bn) = (s′m+1, . . . , s

′
n).

2. From b, we then walk to the vertex s = (t1, . . . , tm, s′m+1, . . . , s
′
n). This only requires

flipping bits in [m], so it keeps the walk proper and adds only m to its length.
3. The inductive hypothesis applied to f ′ allows us to construct a proper walk from s to t

that only walks along edges in [n] \ [m] and has length at most 3(n−m).

Thus the total length of the walk is bounded by 2m− 1 +m+ 3(n−m) < 3n. J

5.1 Random Restrictions of Low Sensitivity Functions
In this section we prove our “switching lemma for low-sensitivity functions,” Lemma 5.6.
The high-level idea is to study the existence of (short) proper walks for a random restriction
fρ of f , and use Theorem 5.4 to transfer a bound on the probability that fρ has such short
proper walks, to a bound on the probability that fρ has full decision tree depth. Similar in
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spirit to Theorem 4.11, the proof proceeds by grouping walks according to their topology,
and showing that fρ is unlikely to contain any of them. We now define the notion of a “walk
topology”:

I Definition 5.5. A walk topology of dimension k and length ` is a sequence wt =
(wt1, . . . ,wt`) of coordinates in [k] (possibly with repetitions), where all elements of [k]
appear in wt, and they first appear in the order 1, . . . , k.

Given a walk topology wt, a starting point x0 ∈ {0, 1}n, and a sequence L = (`1, . . . , `k)
of distinct coordinates in [n], we get a walk W = W (x0, L,wt) on the n-dimensional cube
by starting at x0 and associating label i of w with coordinate `i for i ∈ [k]. The walk W
has length ` and dimension k. Conversely, every walk W gives a unique triple (x0, L,wt)
corresponding to its starting point, order in which coordinates are first flipped, and its
topology.

I Lemma 5.6. Let f : {0, 1}n → {±1}. Then

Pr
ρ∈Rk,n

[dt(fρ) = k] ≤ (2k3s(f))k∏k−1
i=0 (n− i)

.

Proof. Fix a restriction ρ ∈ Rk,n. Theorem 5.4 implies that if dt(fρ) = k, then fρ contains a
proper walk W of dimension k and length 3k. Let T OP denote the set of all walk topologies
of dimension k and length 3k, so that |T OP| ≤ k3k/k!. (Observe that of the k3k strings
in [k]3k, precisely a 1/k! fraction of those in which all k elements appear will have them
appearing first in the order 1, . . . , k.) Let SK denote the set of permutations of the live
variables K of ρ.

Fix wt ∈ T OP. We say that wt is good for ρ ∈ Rk,n if there exists a proper walk
for fρ with topology wt; in other words there exists y ∈ C(ρ) and L ∈ SK such that
W = W (y, L,wt) is a proper walk for f . To bound the probability of this event, we first
show that it suffices to consider the case when y and L are uniformly random: we have that
Prρ∈Rk,n

[wt is good for fρ] equals

Pr
ρ∈Rk,n

[∃y ∈ C(ρ), L ∈ SK s.t. W = W (y, L,wt) is a proper walk for fρ]

≤ k!2k Pr
ρ←Rk,n,y←C(ρ),L←SK

[W (y,L,wt) is a proper walk for fρ], (9)

where the inequality holds since for each outcome ρ of ρ there are 2k points y ∈ C(ρ) and k!
elements L ∈ SK .

Sampling the triple (ρ,y,L) is equivalent to independently sampling x ← {0, 1}n and
L = (`1, . . . , `k) by picking k coordinates uniformly from [n] without replacement. It is easy
to see that this determines (ρ,y,L) and hence the walk W = W (y,L,wt). We can now
define the sequence of points on the walk X = (x1, . . . ,xk) as described earlier so that W is
proper for fρ if xi is sensitive to `i. Hence

Pr
x,L

[W is a proper walk for fρ] = Pr
x,L

[xi is sensitive to `i ∀i ∈ [k]]

=
∏
i≤k

Pr
x,L

[xi is sensitive to `i
∣∣xj is sensitive to `j ∀j < i].

(10)

Let us first sample x ← {0, 1}n, and then sample the elements of L = (`1, . . . , `k) one
at a time without replacement. Observe that xi (the first time on the walk W that we flip
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`i) is a function of x, `1, . . . , `i−1, since x1 = x and supp(xi ⊕ x1) ⊆ {`1, . . . , `i−1} (and
the exact subset is specified by wt). Hence fixing outcomes x, `1, . . . , `i−1 of x, `1, . . . , `i−1
fixes the random variables x1, . . . ,xi and whether xj is sensitive to `j for j < i (the events
that we condition on in Equation 10). We then sample `i uniformly from the coordinates in
[n] \ {`1, . . . , `i−1}; crucially, xi is sensitive to at most s(f) of these coordinates. Hence

Pr
x,L

[xi is sensitive to `i
∣∣xj is sensitive to `j ∀j < i] ≤ s(f)

n− i+ 1 .

Plugging this into Equation (10),

Pr
x,L

[Wis a proper walk for fρ] ≤ (s(f))k∏k−1
i=0 (n− i)

. (11)

Hence by Equation (9),

Pr
ρ∈Rk,n

[wt is good for fρ] ≤ k!2k(s(f))k∏k−1
i=0 (n− i)

. (12)

Taking a union bound over all (at most) k3k/k! possible choices of wt ∈ T OP, we get that

Pr
ρ∈Rk,n

[dt(fρ) = k] ≤ k3k2k(s(f))k∏k−1
i=0 (n− i)

≤ (2k3s(f))k∏k−1
i=0 (n− i)

. J

We note that one can prove a similar bound for Prρ∈Rk,n
[dt(fρ) ≥ j]; here we have

presented only the case j = k both because it is simpler and because it suffices for the
concentration results in Section 5.2.

We would like to replace the (s(f))k term with sk(f), the kth sensitivity moment. The
above proof does not seem to generalize to that case, because we do not have an analogue of
Sidorenko’s result on trees for proper walks.

5.2 Fourier tails of low sensitivity functions
We have the necessary pieces in place to give an upper bound on Ik[f ]:

I Lemma 5.7. For every f : {±1}n → {±1} and every k ≥ 1, we have Ik[f ] ≤ (2k3s(f))k.

Proof. By Theorem 3.2 and Lemma 5.6, we have that

Ik[f ]∏k−1
i=0 (n− i)

≤ Pr
ρ∈Rk,n

[deg(fρ) = k] ≤ Pr
ρ∈Rk,n

[dt(fρ) = k] ≤ (2k3s(f))k∏k−1
i=0 (n− i)

,

which may be rewritten as the claimed bound. J

Next we observe that bounding Ik[f ] yields tail bounds for the Fourier spectrum of f .

I Lemma 5.8. For every f : {±1}n → {±1}, every k ≥ 1, and every ε > 0, we have

degε(f) ≤ max
(
k, e

(
Ik[f ]
ε

)1/k)
.

Proof. We first consider the case when Ik[f ]/k! ≤ ε. In this case,∑
|S|≥k

f̂(S)2 ≤
∑
|S|≥k

f̂(S)2
(
|S|
k

)
= Ik[f ]

k! ≤ ε

so degε(f) ≤ k.

CCC 2016
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So assume that Ik[f ]/k! ≥ ε. It suffices to prove that for

t0 = e

(
Ik[f ]
ε

)1/k

we have∑
|S|≥t0

f̂(S)2 = Pr
R←Df

[|R| ≥ t0] ≤ ε.

Since
(
t
k

)
is strictly incresing for t ≥ k, we have

Pr
R←Df

[|R| ≥ t] = Pr
R←Df

[(
|R|
k

)
≥
(
t

k

)]
.

Now observe that we have

Ik[f ]
k! = E

R←Df

[(
|R|
k

)]
.

Hence for any t such that

t ≥ k
(
Ik[f ]
k!ε

)1/k

≥ k

Markov’s inequality gives

Pr
R←Df

[|R| ≥ t] ≤
ER←Df

[
(|R|
k

)
](

t
k

) ≤ Ik[f ]
k! · (t/k)k ≤ ε,

One can check that t0 satisfies the required bound using Stirling’s approximation. J

Now we are ready to prove Theorem 1.2:

I Theorem 1.2 (restated). For any function f and any ε > 0, we have
degε(f) ≤ O(s(f)(log 1/ε)3).

Proof. Applying Lemma 5.8 and Lemma 5.7, for every f : {±1}n → {±1}, every k ≥ 1, and
every ε > 0, we have

degε(f) ≤ max
{
k, e

2k3s(f)
ε1/k

}
≤ 2es(f) k

3

ε1/k
.

Taking k = log(1/ε), we get that

degε(f) = O(s(f) log(1/ε)3),

as claimed. J

We note that the relations between influence moments and Fourier concentration that
are established in [26, Section 4] can also be used to obtain Theorem 1.2 from Lemma 5.7.
[26, Section 4] also shows that bounded k-th influence moments imply bounded Fourier L1
spectral norm on the k-th level, which in turn implies Fourier concentration on a small number
of Fourier coefficients (smaller than the trivial

(
n
k

)
bound on the number of coefficients up to

degree k). These results can be used with Lemma 5.7 to establish the corresponding Fourier
bounds for functions with bounded max sensitivity.
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6 Additional questions and complexity measures

As stated earlier, we hope that this work will stimulate further research on the sensitivity
graph Gf and on complexity measures associated with it. Towards this end we conclude
with some additional questions and a new complexity measure.

The graph Gf consists of a number of connected components. This component structure
naturally suggests another complexity measure:

I Definition 6.1. For x ∈ {0, 1}n, the component dimension of f at x, denoted cdim(f, x),
is the dimension of the connected component of Gf that contains x (i.e. the number of
coordinates i such that x’s component contains at least one edge in the i-th direction). We
define cdim(f) to be maxx∈{0,1}n cdim(f, x)).

It is easy to see that cdim(f) ≥ ts(f) ≥ s(f), and thus a consequence of Conjecture 4.10
is that cdim(f) ≥ dt(f); however we have not been able to prove a better lower bound for
cdim(f) in terms of dt(f) than that implied by Theorem 4.9. We note that cdim(f) and
ts(f) are not polynomially related, since the addressing function shows that the gap between
them can be exponential.

Lastly, it is an intriguing open question whether the reverse direction of the robust
sensitivity conjecture also holds: for every k, does there exist a′k, b′k such that E[sk] ≤
a′k E[dk] + b′k? Can one relate this question to a statement about graph-theoretic (or other)
complexity measures?
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A Some Examples

I Lemma A.1. Let n = 2k−1. There exists f : {0, 1}n → {±1} for which dt(f) = log(n+1)
whereas ts(f) = n.

Proof. Take a complete binary tree with n internal nodes and n + 1 leaves. The leaves
are alternately labelled 1 and −1 from left to right, while the internal nodes are labelled
with x1, . . . , xn according to an in-order traversal of the tree. The bound on decision tree
depth follows from the definition of f . To lower bound ts(f), we start at the −1n input and
start flipping bits from −1 to 1 in the order x1, . . . , xn. It can be verified that every bit flip
changes the value of the function. J
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I Lemma A.2. There exists a Boolean function f on n variables such that any proper walk
for f has length Ω(n2).

Proof. Assume that n is a power of 2 and fix a Hadamard code of length n/2. We define
an n-variable function f over variables x1, . . . , xn/2 and y1, . . . , yn/2 as follows: if the string
x1, . . . , xn/2 equals the i-th codeword in the Hadamard code of length n/2, then the output
is yi, otherwise the output is 0. Note that for any i 6= j, if n-bit inputs a, b are sensitive to
yi, yj respectively then the Hamming distance between a and b must be at least n/4. Thus
any proper walk must flip at least n/4 bits between any two vertices that are sensitive to
different yis, so the minimum length of any proper walk must be at least n2/8. J
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Abstract
Finding a proper coloring of a t-colorable graph G with t colors is a classic NP-hard problem
when t ≥ 3. In this work, we investigate the approximate coloring problem in which the objective
is to find a proper c-coloring of G where c ≥ t. We show that for all t ≥ 3, it is NP-hard to find a
c-coloring when c ≤ 2t− 2. In the regime where t is small, this improves, via a unified approach,
the previously best known hardness result of c ≤ max{2t − 5, t + 2bt/3c − 1} [9, 21, 13]. For
example, we show that 6-coloring a 4-colorable graph is NP-hard, improving on the NP-hardness
of 5-coloring a 4-colorable graph.

We also generalize this to related problems on the strong coloring of hypergraphs. A k-uniform
hypergraph H is t-strong colorable (where t ≥ k) if there is a t-coloring of the vertices such that
no two vertices in each hyperedge of H have the same color. We show that if t = d3k/2e, then
it is NP-hard to find a 2-coloring of the vertices of H such that no hyperedge is monochromatic.
We conjecture that a similar hardness holds for t = k + 1.

We establish the NP-hardness of these problems by reducing from the hardness of the Label
Cover problem, via a “dictatorship test” gadget graph. By combinatorially classifying all possible
colorings of this graph, we can infer labels to provide to the label cover problem. This approach
generalizes the “weak polymorphism” framework of [3], though interestingly our results are “PCP-
free” in that they do not require any approximation gap in the starting Label Cover instance.
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1 Introduction

A t-coloring of a graph G = (V,E) is a coloring of its vertices with t colors such that the
endpoints of every edge receive distinct colors, i.e., a map c : V → {1, 2, . . . , t} such that or
every (u, v) ∈ E, c(u) 6= c(v). The chromatic number of a graph G, denoted χ(G), is the
minimum t for which G admits a t-coloring. A graph G is said to be t-colorable if χ(G) ≤ t.
For t ≥ 3, finding a t-coloring of a t-colorable graph is one of the classic NP-hard problems.
The problem remains difficult even when one is allowed to use many more colors. In fact, the
best known efficient algorithms to color a 3-colorable graph require nΩ(1) colors. However,
the known NP-hardness results only rule out coloring a 3-colorable graph with a mere 4
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colors [21, 13]. By an easy reduction on this implies the NP-hardness of coloring a t-colorable
graph with t + 2bt/3c − 1 colors. The work of Garey and Johnson [9] gave an elegant
reduction from 3-colorability using Kneser graphs to show NP-hardness of (2t− 5)-coloring
a t-colorable graph, for all t ≥ 6.1 Much stronger hardness results are known for larger t,
and as well as conditional hardness results for t = 3, 4 under variants of the Unique Games
conjecture; we review some of the literature on inapproximability of graph/hypergraph
coloring in Section 1.1.

In this work, we prove the following NP-hardness result for coloring t-colorable graphs
which improves the previous best known result in the challenging regime where t is small.
The result holds for graphs whose degree is bounded by a function of t, which can be taken
to be 5t6.

I Theorem 1.1. For every t ≥ 3, it is NP-hard to distinguish, given an input graph G,
whether χ(G) ≤ t or χ(G) ≥ 2t − 1. In particular, (2t − 2)-coloring a t-colorable graph is
NP-hard.

While the above does not improve the state of affairs for t = 3, it does yield new results
for other small t, such as the NP-hardness of 6-coloring a 4-colorable graph.2 We also note
that by plugging in the NP-hardness of telling if χ(G) ≤ 3 or χ(G) ≥ 5 from [21, 13] as
the starting point in the reduction of Garey and Johnson [9], together with bounds for
multicoloring Kneser graphs [26], one can show that it is NP-hard to 2t−3-color a t-colorable
graph for t ≥ 6 (improving the 2t− 5 bound in [9]).

The improvement in Theorem 1.1 is quantitatively modest, but we feel our proof method-
ology reveals insights into the source of the hardness, and also gives results stronger than
previous works for small t in a unified manner. Our reduction is inspired by techniques used
to show hardness of constraint satisfaction problems and employs dictatorship gadgets in a
modular fashion, and the analysis hinges on combinatorial arguments to classify colorings
of the gadget (more about our techniques in Section 1.2). It is worth pointing out that
Theorem 1.1, as well as our results for hypergraph coloring below, are “PCP-free” in that
they reduce from standard NP-hardness results for decision problems (as opposed to promise
problems with an approximation gap in the optimal value). This is also true of the hardness
results in [9, 13].

Hypergraph coloring. We also prove new hardness results for coloring hypergraphs. We
will be interested in k-uniform hypergraphs for small k where each hyperedge has exactly k
vertices. A hypergraph is t-colorable if its vertices can be colored with t colors so that there
is no monochromatic hyperedge. We say that a hypergraph is t-strong colorable (or t-partite)
if its vertices can be t-colored so that every hyperedge has no two vertices of the same color;
in other words, it is “t-partite” with vertices partitioned into t parts so that every hyperedge
has at most one vertex from each part. Note that t-strong coloring is equivalent to t-coloring
the graph obtained by converting each hyperedge into a clique.

Compared to graph coloring, the situation for hardness results for hypergraph coloring is
much better. We know that it is NP-hard to color a 2-colorable 3-uniform hypergraph with
any constant number of colors [7], and a recent line of work has led to quasi-NP-hardness

1 The applicability of this result to graphs with small chromatic number seems to have been somewhat
overlooked in the literature.

2 Note that the NP-hardness of 6-coloring 4-colorable graphs would immediately follow from the (as yet
unknown) NP-hardness of 5-coloring a 3-colorable graph by adding a new vertex adjacent to all nodes
in the graph.
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of coloring 2-colorable n-vertex hypergraphs of O(1)-uniformity with exp(Ω(log0.1−o(1) n))
colors [5, 11, 24, 27, 20], which is approaching the ballpark of polynomially many colors
needed by current algorithms.

The 2-coloring problem is easy on hypergraphs H = (V,E) which admit balanced partial
colorings. Namely, if there are subsets A,B ⊂ V such that for each e ∈ E, |e ∩A| = |e ∩B|,
then one can efficiently find a 2-coloring of H that leaves no hyperedge monochromatic [25].
In particular, a t-uniform t-partite hypergraph, is easy to 2-color. However, even a slight
relaxation of the perfect balance condition seems to render 2-coloring intractable. For
example, with the promise that there is a near-balanced 2-coloring, finding a 2-coloring
without monochromatic edges is still NP-hard [3], and further even c-coloring is NP-hard for
any constant c [14].

It will be really interesting to establish further powerful hardness results that show in
some formal sense that 2-coloring is hard unless the perfect balance promise is met. Towards
this end, the following ultra-strong conjecture postulates that the generally believed hardness
of O(1)-coloring 3-colorable graphs extends to all strongly colorable hypergraphs with one
more color than uniformity (i.e., just beyond the case of a perfectly balanced strong coloring).

I Conjecture 1.2. For all k, c ≥ 2, (k, c) 6= (2, 2), given a k + 1-strongly colorable k-
uniform hypergraph, it is NP-hard to find a c-coloring of its vertices that leaves no hyperedge
monochromatic.

Note that a k-uniform hypergraph that is strongly colorable with k + 1 colors is also
2-colorable, so the problem in the above conjecture makes sense for any c ≥ 2. Note the
conjecture would immediately yield as a corollary the NP-hardness of telling if a graph G
has χ(G) ≤ t or χ(G) > c for all c, t ≥ 3, so in this form the conjecture might be well beyond
current techniques. However, proving it for c = 2 would already be very interesting and
this challenge might be within reach by developing more sophisticated analysis tools in the
broader framework employed in this paper.

In this work, we prove the following hardness result for 2-coloring strongly colorable
hypergraphs, which is the first such result for any promise of strong coloring that implies
2-colorability. Note that a k-uniform hypergraph that is t-strongly colorable for t ≤ 2k− 2 is
also 2-colorable (as one can partition the 2k − 2 colors into two groups of k − 1 and each
hyperedge must have colors from both groups).

I Theorem 1.3. For k ≥ 3, given a k-uniform hypergraph, it is NP-hard to tell if it is
d 3k

2 e-strongly colorable or if it is not 2-colorable. Further, for k = 3, 4, it is NP-hard to
2-color a k + 1-strongly colorable k-uniform hypergraph.

The proofs of this theorem can be found in Sections 3.1.1, 3.3, 4, and A.2. In addition, in
Appendix A.3, using a simple Fourier-analytic argument, we note the hardness of a variant of
[k, k+ 1, 2], k-odd, in which the sought after two-coloring must be balanced (have discrepancy
1) — note that such a balanced 2-coloring exists if the hypergraph is k + 1-partite.

1.1 Prior related work
Towards describing the previous related results in a compact and easy to reference manner,
we introduce the following expressive notation, which we will also use in the body of the
paper. A k-uniform hypergraph is said to be t-rainbow colorable (for some t ≤ k) if its vertices
can be t-colored so that every hyperedge has vertices of every color (note that 2-rainbow
colorability is the same as 2-colorability, and for larger t the notion gives a more structured
coloring).

CCC 2016
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I Definition 1.4. Let t, k, c ≥ 2 be positive integers. Define [k, t, c]-coloring to be the
following decision problem: Given a be a k-uniform hypergraph H, distinguish between the
following two cases.

YES: If t < k, G is t-rainbow colorable; or if t ≥ k, G is t-strongly colorable. (Note that
when t = k, t-rainbow and t-strong colorability are the same notion.)
NO: H is not c-colorable.

Note that when k = 2, this is the well-known problem of deciding whether a graph can
be colored with at most t colors or requires more than c colors. The algorithm to 2-color a
hypergraph in the presence of a balanced partial coloring [25] shows that [t, t, 2]-coloring is
polynomial time solvable for all t ≥ 2. The known results on the complexity of [k, t, c]-coloring
are tabulated below. We will not discuss rainbow coloring further in the paper, but include it
in the table below, which also includes two conjectures that 2-coloring is hard if the t-uniform
t-strong/rainbow colorability is relaxed for either strong/rainbow coloring. The table does
not include algorithmic results for graph/hypergraph coloring where the number of colors
used is a function of the number of vertices, or recent hardness results which show hardness
of hypergraph coloring with super-polylogarithmically many colors.

Problem Parameters Known Hardness References

Graph coloring [2, t, 2t− 5] NP-hard [9]
[2, t, t + 2b t

3c − 1] NP-hard [21, 13]
[2, t, 2Ω(t1/3)], large t NP-hard [19]
[2, t, c], c ≥ t ≥ 3 UG-variant-hard [6, 8]
[2, t, 2t− 2] NP-hard this paper

k-uniform hypergraph coloring [k, k, 2] in P [25, 2]
[k, 2, c], k ≥ 4, c ≥ 2 NP-hard [12]
[3, 2, c], c ≥ 2 NP-hard [7]

t-strong hypergraph coloring [3, 4, 2], [4, 5, 2], [b 2t
3 c, t, 2], t ≥ 6 NP-hard this paper

[t− 1, t, 2], t ≥ 6 NP-hard (conjectured) this paper
t-rainbow coloring [2t, t, c], t ≥ 2, c ≥ 2 NP-hard [14]

[t + 1, t, 2], t ≥ 3 NP-hard (conjectured) this paper

Note that we prove the hardness of [3, 4, 2] and [4, 5, 2] coloring separately, for t ≥ 6, the
challenge of proving hardness of [t− 1, t, 2] coloring remains open.

We believe that our techniques can also be used to show that [4, 3, 2]-coloring and some
other problems in the setting of rainbow coloring are NP-hard, but for simplicity and a
focused presentation we decided to restrict our study to strong coloring in this version of the
paper.

1.2 Techniques
Previous hardness results for approximate coloring of graphs with chromatic number bounded
by a constant t fall into three categories:

NP-hardness for small t, e.g. the 2t − 5-coloring hardness in [9], or the hardness of
4-coloring for t = 3: these are based on clever ad hoc reductions from some NP-hard
coloring/independent set exact optimization problem (in [21] an approximation version
was needed, but the later proof in [13] required only hardness of exact independent set).
NP-hardness of f(t)-coloring for large constant t, such as f(t) = tΩ(log t) [22] or the current
record f(t) = exp(Ω(t1/3)) [19]: these are based on designing a PCP with very good
query vs. soundness error trade-off and reducing to graph coloring via the FGLSS graph.
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These results also show that finding an independent set of density 1/f(t) is NP-hard, but
they don’t kick in until t is reasonably large.
Hardness of O(1)-coloring for t = 3, 4 based on variants of the Unique Games Conjec-
ture [6]: these design a 2-query verifier checking the Not-Equal predicate that directly
corresponds to graph coloring, and the soundness analysis, which shows that there is no
large independent set, relies on appropriate invariance principles. The results showing
hardness of O(1)-coloring hypergraphs [12, 17, 23, 7] also proceed along this route, but
since the Not-All-Equal predicate makes more than two queries, the PCP can be analyzed
unconditionally using Fourier analytic tools of the sort pioneered by Håstad [16].

The primary method used to obtain the hardness results in this work departs from the
above approaches. We treat coloring as a constraint satisfaction problem (CSP), and our
approach is inspired by techniques in the CSP dichotomy literature, where NP-hardness
emerges due to the lack of non-dictator “polymorphisms” for the predicate. A polymorphism
gives a way to combine several assignments satisfying the predicate into another satisfying
assignment. Formally, for an arity k predicate P ⊆ Dk over domain D, a polymorphism for
P is a function f : DL → D (for some arity L) such that for all a1, a2, . . . , aL ∈ P , applying
f coordinate-wise to the i’th coordinates of a1, . . . , aL for 1 ≤ i ≤ k, yields b ∈ Dk that also
belongs P . The dictator functions f(z) = zj for j = 1, . . . , L are trivially polymorphisms. If
there are no other polymorphisms, then the associated CSP is NP-hard (this connection is
folklore, and is mentioned in [4] in a more algebraic language). For instance, if P ⊆ Z2

3 (for
domain Z3 = {0, 1, 2}) is the predicate {(x, y) | x 6= y}, then the only polymorphisms are
dictators (this is a nice exercise, and we will prove stronger forms of this for our results). As
a result, the associated CSP, which is simply graph 3-colorability, is NP-hard.

Since we seek hardness even when one is allowed more colors, we work in the framework
of “weak polymorphisms” from the recent work [3] on hardness of satisfiability even when
a near-balanced satisfying assignment exists. Here, the objects of study are relaxations
of polymorphisms that map assignments satisfying a predicate P into those that satisfy a
weaker predicate Q. For instance, to show hardness of 4-coloring 3-colorable graphs, we
study functions f : ZL3 → Z4 satisfying f(x) 6= f(y) whenever xi 6= yi ∀i ∈ {1, 2, . . . , L} (in
other words, we study 4-colorings of a dictatorship gadget graph with vertex set ZL3 where
two nodes are adjacent precisely when they differ in every coordinate). With 4 colors we
can no longer say that f must depend on only coordinate — indeed, we can start with a
dictator 3-coloring and corrupt it by recoloring any independent set with the 4’th color. We
prove that in fact this is the only thing that can happen — for some c ∈ Z4, f restricted to
ZL4 \ f−1(c) is a dictator. For t-colorable graphs, we prove a similar statement classifying
functions f : ZLt → Z2t−2 as comprising of a dictator function for t colors corrupted with
t− 2 independent sets.

Our proof of Theorem 1.1 follows the common paradigm of reducing from Label Cover,
with dictatorship gadgets at each node and cross edges testing the projection constraints.
However, our analysis ensures that one can decode, based on a (2t − 2)-coloring of the
resulting graph, a unique label to each vertex that satisfies all the label cover constraints.
Therefore, as a starting point, we only need the NP-hardness of deciding if a Label Cover
instance is satisfiable, and do not need a gap version based on PCPs. For the results in [3],
the functions which satisfy the dictatorship test are juntas which depend on few variables.
This requires starting the reduction from a gap version of Label Cover, as the decoding
of labels is not unique. On the other hand, the functions which pass the dictatorship test
in [3] are either exact juntas or very close to one, which interfaces nicely with the Label
Cover reduction. The challenge in our setting is that the characterization reveals a dictator
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14:6 New Hardness Results for Graph and Hypergraph Colorings

function corrupted with a large amount of “noise.” This is because we have to test functions
f : ZLt → Zc with a larger range (with c > t, for graph coloring), and for hypergraph
coloring, the weak 2-coloring predicate is much weaker than the strong t-coloring promise.
For example, for our hardness result for (2t − 2)-coloring t-colorable graphs, the dictator
could be corrupted on almost a 1− 2/t fraction of the hypercube by t− 2 independent sets.
However, the non-noisy portion has a nice structure which helps ensure that the decoded
dictatorial coordinate is unique, and further satisfies the projection constraints in the Label
Cover instance.

We also abstract a notion of robust decoding of a dictatorship test, which makes the
interface with Label Cover more modular, and might help with future reductions based on
dictatorship tests.

1.3 Discussion and Limitations
Although the techniques developed produce some new hardness results, there are technical
limitations which prevent us from proving better hardness results. For graph coloring,
there seem to be fundamental barriers preventing our robust decoding framework from
being extended to [2, t, 2t]. The primary challenge is that many colorings of the [2, t, 2t]
dictatorship test involve nontrivial dependence in multiple coordinates. For example, consider
f1 : ZLt → Z2t and f2 : ZLt → Z2t defined by f1(x) = x1 and f2(x) = x2 + t. Since the
colorings of f1 and f2 use separate color sets, any ‘interleaving’ f : ZLt → Z2t, for which
we choose f(x) = f1(x) or f(x) = f2(x) arbitrarily for each x, is a valid coloring of this
dictatorship test, too. Furthermore, in Appendix B, we formalize this intuition, we show
that there exists no robust decoder for the [2, 3, 6]-coloring gadget, which implies that our
current methods cannot be used directly to show the NP-hardness of [2, 3, 6]-coloring. For
similar but more subtle reasons, it also seems likely that no robust decoder exists for the
[2, 3, 5]-coloring gadget either.

On possible remedy to this technical challenge would be to use a stronger variant of Label
Cover known as smooth Label Cover. In smooth Label Cover, the edges and projection maps
are guaranteed to have pseudorandom properties, allowing for weaker inner verifiers to obtain
NP-hardness results. This variant of label cover has been able to prove the NP-hardness
of approximation of problems for which the basic variant does not appear to suffice, (e.g.,
[23, 15, 18, 14]). Currently though, smooth Label Cover does not seem to be sufficient in
itself to overcome these technical challenges.

On the other hand, to generalize hypergraph coloring, the primary challenge appears to be
the opposite problem. For certain instances, such as [5, 6, 2]-coloring, we have a conjectured
robust decoder which interfaces well with multipartite Label Cover, but at this time we are
unable to determine a combinatorial proof that the robust decoder captures all colorings
of the [5, 6, 2] dictatorship test. We conjecture, albeit less confidently, that the situation is
similar for [t− 1, t, 2]-coloring for t ≥ 6

1.4 Paper Organization
Section 2 constructs the dictatorship gadgets and formally defines the notion of a robust
decoder of a gadget. Section 3 combinatorially proves the existence of robust decoders for a
variety of gadgets. Section 4 uses label cover reductions similar to that of [3] to prove the main
theorems. Appendix A contains proofs omitted from Section 3, including a combinatorial
classification of the [4, 5, 2]-dictatorship test. Appendix B shows that our techniques cannot
directly obtain the NP-hardness of 6-coloring a 3-colorable graph.
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2 Preliminaries

2.1 The [k,t,c]-coloring Gadget
Adapting the techniques of [3], to prove hardness results we use a label cover reduction with a
combinatorial gadget as an inner-verifier long code test. Generalizing the Boolean hypercube,
we construct our long code with the tensor product of hypergraphs (e.g., [1]).

I Definition 2.1. Let G = (VG, EG) and H = (VH , EH) be a k-uniform hypergraphs. The
tensor product G⊗H of G and H is the k-uniform hypergraph on vertex set VG × VH such
that for all (g1, . . . , gk) ∈ EG and (h1, . . . , hk) ∈ EH and for all permutations σ : [k]→ [k],
((g1, hσ(1)), . . . , (gk, hσ(k))) is an edge of G⊗H.

We let ⊗nG to denote the tensor product of n copies of G. The most common graph
we will be taking the tensor product of is the complete k-uniform hypergraph on t vertices
(when k ≤ t), which we denote Kk

t . We identify the vertices of Kk
t with Zt and the edges

with k-element subsets of Zt.

I Definition 2.2 (Dictatorship test gadget). Let k, t, c ≥ 2 be positive integers such that
k ≤ t c ≥ t/(k − 1) and let L ≥ 1 be an integer. The dictatorship gadget for [k, t, c] on L

labels is the k-uniform hypergraph ⊗LKk
t , the vertices of which we identify with ZLt . A valid

coloring of the dictatorship gadget is a function f : ZLt → Zc such that for all k element
subset S ⊆ ZLt which corresponds to an edge of ⊗LKk

t , |{f(x) : x ∈ S}| ≥ 2. If f is a valid
coloring, then we say that f satisfies the [k, t, c]-coloring gadget.

The constraint c ≥ t/(k− 1) guarantees that a k-uniform, t-strongly colorable hypergraph
has a c-coloring. Note that if c < t/(k − 1), then Kk

t is not c-colorable.
We can identify the hyperedges of ⊗LKk

t with the k-tuples (x(1), . . . , x(k)) of ZLt such
that for all i ∈ [L] = {1, 2, . . . , L}, x(1)

i , . . . , x
(k)
i are all distinct. Since it is tedious to refer

to the underlying graph of a gadget coloring, we formulate a simple syntactic way to check if
f satisfies the [k, t, c]-coloring gadget. First, we define the notion of being disjoint which
captures the idea of strong coloring.

I Definition 2.3. Let L ≥ 1. A subset S ⊆ ZLt is disjoint if |S| ≤ t and for all i ∈ [L], |{xi :
x ∈ S}| = |S|. Similarly, we say that x, y ∈ ZLt are disjoint if {x, y} is a disjoint subset.

It is easy to verify that the following definition of a coloring of the dictatorship gadget is
equivalent.

I Proposition 2.4. Let k, t, c ≥ 2 and L ≥ 1 be positive integers such that k ≤ t, c ≥ t/(k−1).
Let f : ZLt → Zc be a function. We have that f satisfies the [k, t, c]-coloring gadget if and
only if for all S ⊂ ZLt such that |S| = k and S is disjoint, we have that |{f(x) : x ∈ S}| ≥ 2.

In our label cover reduction (see Lemma 4.5), a [k, t, c]-coloring gadget will be a long
code test for a specific vertex of the label cover instance. To represent the edges, we need to
construct a [k, t, c]-coloring co-gadget. This co-gadget is analogous to the edge constraints of
[3].

I Definition 2.5. Let k, t, c, L be positive integers such that k ≤ t, c ≥ t/(k − 1). Let
f1, f2 : ZLt → Zc be functions. We say that {f1, f2} satisfy the [k, t, c] co-gadget if for all
disjoint A ⊆ ZLt such that |A| = k, and for all partitions3 A = A1 ∪A2,

|{f1(x) : x ∈ A1} ∪ {f2(x) : x ∈ A2}| ≥ 2.

3 Some sets in the partition may be empty.
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14:8 New Hardness Results for Graph and Hypergraph Colorings

Notice that if f and g satisfy the [k, t, c] co-gadget, then f and g must both satisfy the
[k, t, c] gadget.

2.2 Decoding of Gadgets
With the dictatorship gadgets formulated, we move on to define what it means to decode the
coloring of a gadget. Toward this, we need to formally define what dictators and juntas are.

I Definition 2.6 (Dictators). A function f : ZLt → Zc is a dictator if there exists i ∈ [L] and
g : Zt → Zc such that f(x) = g(xi) for all x ∈ ZLt .

I Definition 2.7 (Juntas). A function f : ZLt → Zc is a `-junta if there exists a S ⊆ [L] with
|S| = ` and g : ZSt → Zc such that f(x) = g(x|S) for all x ∈ ZLt , where x|S is the restriction
of x to entries indexed by S.

If f satisfies the [k, t, c] gadget and is a dictator we would like to decode f into some
small subset S ⊆ [L] of coordinates which dictate f ’s behavior the most. In general though,
f is not necessarily a dictator or an `-junta for small `, but it will often be quite close to one.
This motivates the following definition.

I Definition 2.8. For a fixed choice of k, t, c ≥ 2, A decoder is a family4 of functions
Dec = {DecL[k,t,c] : (ZLt → Zc)→ P([L]) : L ∈ N} satisfying the following properties.

(nontrivial) For all f : ZLt → Zc satisfying the [k, t, c] gadget, Dec(f) 6= ∅.
(sensible) If f depends on the coordinates S ⊆ [L], then Dec(f) ⊆ S. In particular, if f
is dictated by the ith coordinate, then Dec(f) = {i}.
(compatible) For all pairs f, g : ZLt → Zc, which satisfy the [k, t, c] co-gadget, Dec(f) ∩
Dec(g) 6= ∅.
(bounded) There exists a constant C = C(k, t, c) independent of L, such that |Dec(f)| ≤ C
for all choices of f .

We say that Dec(f) is the decoding of f .

Due to the technical details of our label cover reduction, to obtain NP-hardness results we
need our decoder to have one additionally property, that the decoding of f needs to compose
nicely with projections.

I Definition 2.9. Let f : ZLt → Zc be a function. Let π : [L]→ [L] be a projection. Define
the restriction of f with respect to π, denoted f�π : ZLt → Zc to be the unique map satisfying

(f�π)(x) = f(y) where yi = xπ(i) for all i ∈ [L].

In other words, f�π applies f after ‘copying’ coordinates in the image of π to coordinates
with that projection.

Note that if f satisfies the [k, t, c] gadget, then f�π also satisfies the [k, t, c] gadget for
all π.

I Definition 2.10. We say that a decoder Dec = Dec[k,t,c] is robust if for all f : ZLt → Zc
satisfying the [k, t, c] gadget and all projections π : [L]→ [L], Dec(f�π) ⊆ π[Dec(f)].

4 For f : ZL
t → Zc, we use Dec(f) or Dec[k,t,c](f) as a shorthand for DecL

[k,t,c](f).
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3 Colorings of Dictatorship Gadgets

Now that have constructed our dictatorship gadgets/co-gadgets and defined the notion of
a robust decoder, we proceed to demonstrate to prove that a number of [k, t, c]-coloring
gadgets indeed have robust decoders.

3.1 Small Examples
To better understand gadget colorings, we often examine subsets S ⊆ ZLt such that no pair
of elements of S are disjoint. We call such an S an independent set. For any S ⊆ ZLt we let
the clique number ω(S) denote the size of the largest disjoint subset of S. The following fact
relates the clique number of S to the density of S in ZLt .

I Claim 3.1. For any S ⊆ ZLt ,

|S|
|ZLt |

≤ ω(S)
t

(1)

with equality if and only if the indicator function for S is a dictator.

I Remark. For independent sets (ω(S) = 1), this claim is well-known (e.g., [10]). See [1] for
a particularly elegant proof involving Fourier analysis.

Proof. See Appendix A. J

3.1.1 Strong coloring: [3,4,2] gadget
Using Claim 3.1, we may easily classify the colorings of [3, 4, 2] gadget. Recall that this
gadget corresponds to the 2-coloring of 3-uniform 4-strong colorable graphs.

I Claim 3.2. Let f : ZL4 → Z2 satisfy the [3, 4, 2]-coloring gadget. Then, there exists i ∈ [n]
and S ⊂ Z4 such that |S| = 2 and for all x ∈ ZL4 , f(x) = 0 iff xi ∈ S.

Proof. From the definition of the gadget ω(f−1(0)), ω(f−1(1)) ≤ 2. Thus, |f−1(0)|, |f−1(1)|
≤ 1

2 |Z
L
4 |. Since ZL4 = f−1(0)∪ f−1(1), we must have that |f−1(0)| = |f−1(1)| = 1

2 |Z
L
4 |. Thus,

the indicator function for |f−1(1)| must be a dictator in the ith coordinate, implying that f
is a dictator in the ith coordinate. This implies the conclusion of the claim. J

Since any f which satisfies this gadget must be a dictator, the natural choice for a decoder
Dec[3,4,2] is to decode the index of the dictatorial coordinate.

I Claim 3.3. There exists a robust decoder Dec = Dec[3,4,2] for [3, 4, 2]-coloring.

Proof. Let Dec(f) = {i}, where i is the coordinate that f is a dictator. Clearly Dec is
nontrivial, sensible, and bounded. To establish that Dec is compatible, assume for sake of
contradiction f1 and f2 satisfy the [3, 4, 2]-coloring co-gadget, but f1 and f2 are dictated by
different coordinates. Without loss of generality, we may assume that f1 is dictated by the
first coordinate, and f2 is dictated by the second coordinate. Furthermore, we may assume
without loss of generality that f1(x) = 0 if and only if x1 ∈ {0, 1} and that f2(x) = 0 if and
only if x2 ∈ {0, 1}. But then, we may select A1 = {(0, 2, 0, 0, . . . , 0), (1, 3, 1, 1, . . . , 1)} and
A2 = {(2, 0, 2, 2, . . . , 2)} such that A1 ∪A2 is disjoint, but f1(A1) ∪ f2(A2) = {0}, violating
the [3, 4, 2]-coloring co-gadget, a contradiction. Thus, Dec is indeed compatible. Therefore,
Dec is a decoder.
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Note that if f is a dictator in coordinate i, then for any projection π : [L]→ [L], f�π is
a dictator in coordinate π(i). Thus, Dec(f�π) ⊆ π(Dec(f)), establishing that Dec is robust,
as desired. J

If we combine Claim 3.3 with Lemma 4.5, we have that [3, 4, 2]-coloring is NP-hard.
In Appendix A.2, we give a combinatorial classification of the [4, 5, 2] dictatorship gadget.

3.1.2 Graph coloring: [2,3,4] gadget

Next, we classify the [2, 3, 4] gadget which corresponds to problem of coloring a 3-colorable
graph with 4 colors. This will form the base case for our more general [2, t, 2t− 2]-hardness
result in Section 3.2. The following lemma is a key ingredient in the proof of our main result.

I Lemma 3.4. Let f : ZL3 → Z4 satisfy the [2, 3, 4] gadget. Then, there exists a ∈ Z4 such
that f restricted to ZL3 \ f−1(a) is a dictator.

Proof. We say that three points x, y, z ∈ ZL3 form an axis-parallel line if x, y, z differ in
exactly one coordinate.

I Claim 3.5. There does not exist x ∈ ZL3 and lines {x, y, z} and {x, y′, z′} such that both
lines are axis-parallel to the coordinate axes and each line takes on 3 distinct values with
respect to f .

For ease of notation, when referring to a subset of ZL3 we may concatenate digits to
indicate an ordered tuple. For example,

012 is the ordered tuple (0, 1, 2).
12{0, 1}2 is the set {(1, 2, 0, 0), (1, 2, 0, 1), (1, 2, 1, 0), (1, 2, 1, 1)}
{12, 21} × {0} is {(1, 2, 0), (2, 1, 0)}.

Proof. If L = 1, the claim is trivial. Assume for sake of contradiction that such an x exists.
Without loss of generality, such x is 0 . . . 0 the two axis-parallel lines differ in the first and
second coordinates. Thus, we may assume without loss of generality that

f(0 . . . 0) = 0 f(10 . . . 0) = 1 f(20 . . . 0) = 2 .

We may also assume without loss of generality that

f(010 . . . 0) = 1.

Since 01 and 10 are disjoint, L = 2 is impossible. Now we have two cases.

Case 1, f(020 . . . 0) = 2. Notice that we may then deduce that

f(12{1, 2}L−2) = 3 f(21{1, 2}L−2) = 3 .

Since there are disjoint elements in {12, 21} × {1, 2}L−2, we have a contradiction.
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Case 2, f(020 . . . 0) = 3. Now, we may deduce that

f(11{1, 2}L−2) = 1 (2)
f(12{1, 2}L−2) = 3 (3)
f(21{1, 2}L−2) = 2. (4)

Notice that this implies that

f(00ZL−2
3 ) = 0. (5)

From this, we may deduce that

f({22} × ZL−2
3 ) ⊆ {2, 3}. [using (2) and (5)]

If there exists, x, y ∈ {0, 1}2 × ZL−2
3 such that f(x) = 2 and f(y) = 3, then there is some

z ∈ {22} × ZL−2
3 that is disjoint from both x and y, a contradiction. Notice then, due to

symmetry, we may assume without loss of generality that

f(x) 6= 2, x ∈ {0, 1}2 × ZL−2
3 . (6)

Therefore, we have that

f(01ZL−2
3 ) ⊆ {0, 1}. [using (3) and (6)]

Thus, similar logic, there cannot be x, y ∈ {10} × ZL−2
3 such that f(x) = 0 and f(y) = 1.

Since f(10 . . . 0) = 1, we have that

f(x) 6= 0, x ∈ {10} × ZL−2
3 . (7)

Therefore,

f({10} × ZL−2
3 ) ⊆ {1, 3}. [using (4) and (7)]

But, this is at odds with f(020 . . . 0) = 3 and f(010 . . . 0) = 1, leading to a contradiction.
J

I Claim 3.6. If there exist x0, x1, x2 ∈ ZL3 which each differ in exactly one coordinate (that
is, form a line parallel to an axis) and f(x0) 6= f(x1) = f(x2), then f satisfies the conclusion
of Lemma 3.4.

Proof. Assume without loss of generality that x0 = 0 . . . 0, x1 = 10 . . . 0, and x2 = 20 . . . 0,
and

f(x0) = f(0 . . . 0) = 0 f(x1) = f(10 . . . 0) = 1 f(x2) = f(20 . . . 0) = 1 .

From this, we may deduce that

f({1, 2}L) ⊆ {2, 3}. (8)

Additionally, any two disjoint points of {1, 2}L must take on different values with f . Consider
any y0, y1 ∈ {1, 2}L which differ in exactly one coordinate but also differ with respect to f :

f(y0) = 2, f(y1) = 3.
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Let y2 be the third point on the axis-parallel line between y0 and y1, and let y′0 and y′1 be
the points of {1, 2}L disjoint from y0 and y1, respectively. Thus,

f(y′0) = 3, f(y′1) = 2.

Since y2 is disjoint from both y′0 and y′1, we have that

f(y2) ∈ {0, 1}.

Hence, we have deduced that for any y0, y1 ∈ {1, 2}L which differ in exactly one coordinate
and also differ with respect to f , the third point on the line between them must also differ
with respect to f . Therefore, by Claim 3.5, we necessarily have that for all y ∈ {1, 2}L, there
is at most one z ∈ {1, 2}L differing with f in exactly one coordinate with f(y) 6= f(z).
From this fact, we can assign a function g : {1, 2}L → [L]∪{None} such that if y, z ∈ {1, 2}L
are neighbors but f(y) 6= f(z) then g(y) = g(z) is the coordinate they differ in. Furthermore,
if g(y) 6= None, we claim that for all w ∈ {1, 2}L which differ by y in exactly one coordinate,
g(y) = g(w). If it were the case g(y) 6= g(w), let y0, w0 ∈ {1, 2}L which differ from y and w
in the g(y)th coordinate. Then f(y) = f(w) = f(w0) 6= f(y0), implying that g(y0) should be
both g(y) (due to y0)and g(w) (due to w0), a contradiction.
Since the Hamming graph on {1, 2}L connected and f takes on multiple values in {1, 2}L, we
have that g takes on a non-None value at at least one point and since the Hamming graph
is connected, we must have that g is a constant function. Thus, f restricted to {1, 2}L is a
dictator. Let i be the coordinate in which f restricted to {1, 2}L is a dictator. And assume
without loss of generality due to (8) that

x ∈ {1, 2}L, f(x) = 2 if and only if xi = 1.

From this and (8), we may deduce that for a general x ∈ ZL3 ,

xi = 0 then f(x) ∈ {0, 1}
xi = 1 then f(x) ∈ {0, 1, 2}
xi = 2 then f(x) ∈ {0, 1, 3}.

Notice that if there are x, y ∈ ZL3 (not necessarily disjoint) with xi, yi 6= 0 such that f(x) = 0
and f(y) = 1, then we can identify at least one z ∈ ZL3 with zi = 0 such that z is disjoint
from x and y, implying that f(z) 6∈ {0, 1}, a contradiction. Thus, without loss of generality,
we can say that f(x) 6= 1 if xi 6= 0. Therefore, f restricted to ZL3 \ f−1(0) is a dictator in the
ith coordinate (f(xi) = xi + 1), as desired. J

(Back to proof of Lemma 3.4) Assume for sake of contradiction that there is a counterexample.
From Claim 3.6, we know that no three of y0, y1, y2 ∈ ZL3 differing in exactly one coordinate
which take on two distinct values with respect to f . But, we also know from Claim 3.5 that
no x ∈ ZL3 has two axis-parallel lines through it that take on 3 different values. This implies
that for each x ∈ ZL3 , there is at most coordinate for which changing x changes the value of
f . As in the proof of Claim 3.6, we may construct g : ZL3 → [L] ∪ {None} such that if x and
x′ are neighbors which differ then g(x) = g(x′) is the coordinate they differ in. Again, for all
x ∈ ZL3 such that g(x) 6= None, we have that all the neighbors (at Hamming distance 1) of x
must take on the same value for g. Since f is not constant, g takes on at least one non-None
value. Thus by a flood-fill argument, g must be a constant function. Hence, f must be a
dictator, implying that there is no counterexample, as desired. J

We wait to show that the [2, 3, 4] gadget has a robust decoder until we establish the
generalization for the [2, t, 2t− 2] gadget.
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3.2 Graph coloring: The general case
I Lemma 3.7. Let f : ZLt → Z2t−2 satisfy the [2, t, 2t− 2]-colorability gadget where t ≥ 3.
Then there exists S ⊂ Z2t−2 such that |S| = t − 2 and f restricted to ZLt \ f−1(S) is a
dictator.

Since by Claim 3.1, we have that for all c ∈ Z2t−2, |f−1(c)| ≤ tL−1. Thus, by ‘discarding’
only t− 2 of the colors, we have an understanding of the structure of at least 2/t fraction of
the coloring. This is enough structure to obtain NP-hardness in our label cover reduction in
Section 4.

Proof. We proceed by induction on t. The base case t = 3 follows from Lemma 3.4.

I Claim 3.8. If t ≥ 4 and f restricted to ZLt−1 satisfies the [2, t− 1, 2t− 4]-colorability gadget
and we assume the result is true for t− 1, then f satisfies the conclusion of the lemma.

Proof. From the inductive hypothesis, we have that there is S′ ⊆ Z2t−4 with |S′| = (t− 1)−
2 = t− 3 such that f restricted to ZLt−1 \ f−1(S′) is a dictator. Since (t− 1) + (t− 3) = 2t− 4,
there is a subset S = Z2t−4 \ S′ ⊆ Z2t−4 of size t− 1 such that f restricted to f−1(S)∩ZLt−1
is a dictator in some coordinate. Assume without loss of generality that S = {0, 1, . . . , t− 2}.
Additionally, we may assume that f(x) = x1 when x ∈ f−1(S) ∩ ZLt−1. Thus, f in this
restricted domain is a dictator in the first coordinate.

Still working in ZLt−1, we let Ti be the set of colors in the image of f with respect to the
set of points where the first coordinate is i. More formally, Ti = {f(x) : x ∈ ZLt−1, x1 = i}.
Since Ti ⊂ Z2t−4 and by our assumption Ti ∩ S = {i}, we have that |Ti| ≤ t − 2 for all
i ∈ Zt−1.

As a key part of our inductive step, for each i ∈ Zt−1, we seek to select a color ci ∈ Ti
such that for all x ∈ ZLt , f(x) = ci implies that x1 = i. Note that it might be the case that
ci 6= i. Assume for sake of contradiction that there exists i ∈ Zt such that for all c ∈ Ti, there
is x(c) ∈ ZLt with x(c)

1 6= i but f(x(c)) = c. Since |Ti| ≤ t− 2, there must z ∈ ZLt−1 which is
disjoint from every element of the set {x(c) : c ∈ Ti}. Since we stipulated that x(c)

1 6= i for all
c ∈ Ti, we may select that z1 = i. Since z ∈ ZLt−1 and x1 = i, by definition of Ti, f(z) ∈ Ti.
But, by definition of z, z is disjoint from x(f(z)), so f(z) 6= f(xf(z)) = f(z), a contradiction.
Thus, for all i ∈ Zt−1, we can find an exclusive color ci; that is, f(x) = ci implies x1 = i for
all x ∈ ZLt .

To complete the claim, it suffices to find a color ct−1 such that f(x) = ct−1 implies
x1 = t − 1. Let Tt−1 = Z2t−2 \ {ci : i ∈ Zt−1}. That is, Tt−1 is set of colors that are not
already exclusive. Thus, if x ∈ ZLt and x1 = t− 1, then we must have that f(x) ∈ Tt−1. It is
easy to see that |Tt−1| = 2t− 2− (t− 1) = t− 1. Assume for sake of contradiction that an
exclusive color ct−1 does not exist. Thus, for all c ∈ Tt−1, there is y(c) such that f(y(c)) = c

but y(c)
1 6= t− 1. Thus, we may select z ∈ ZLt disjoint from every element of {y(c) : c ∈ Tt−1}.

Furthermore, since y(c)
1 6= t − 1 for all c ∈ Tt−1, we can let z1 = t − 1. By choice of z, we

have that f(z) 6∈ Tt−1. Thus, f(z) ∈ Z2t−2 \ Tt−1 = {ci : i ∈ Zt−1}. Thus, f(z) = ci for
some i ∈ Zt−1, implying that z1 = i, a contradiction. Therefore, there is ct−1 ∈ Tt−1 such
that f(x) = ct−1 implies that x1 = t− 1, as desired.

Hence, f restricted to f−1({ci : i ∈ Zt}) is a dictator, as desired. J

Consider any axis-parallel line ` of ZLt . If there exists x, y, z ∈ ` such that f(x) 6= f(y) =
f(z), then the (t−1)L subgrid disjoint from x cannot have either f(x) or f(y) in the image of
f . Thus this subgrid satisfies the [2, t− 1, 2t− 4] gadget and then we are done by Claim 3.8.
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Thus, every axis-parallel line must be entirely distinct or entirely the same. Next, we
seek to show that any counterexample cannot contain two perpendicular axis-parallel lines
which take on entirely distinct values. Without loss of generality, we may assume that
for all i ∈ Zt, f(i0 . . . 0) = i. We may also assume that f(010 . . . 0) = c ∈ {1, . . . t − 1}
since there are only t − 2 values in {t, . . . , 2t − 3} and f(0 . . . 0) = 0. Now notice that
f(c2{1, . . . , t − 1}L−2) ⊆ {t, t + 1, . . . , 2t − 3} Thus, this (t − 1)L−2 grid can only take on
t− 2 values. In order for every axis-parallel line to be completely the same or completely
distinct, we must have that f(c2ZL−2

t ) = c2 for some c2 6∈ Zt. Similarly, f(c`ZL−2
t ) = c`

for some c` 6∈ Zt. Since f(c0 . . . 0) = c, we cannot have any two ci be equal. Thus, we may
assume without loss of generality that ck = t+ k− 2 for all k ≥ 2. Since t ≥ 4, we must have
that f(c1{1, . . . , t− 1}L−2) cannot take on any element in {t, . . . , 2t− 3} without forcing a
non-distinct, non-homogeneous axis-parallel line. Thus, f(c1{1, . . . , t− 1}L−2) can only take
on the value c. Since every axis-parallel line through at least two points in c1{1, . . . , t−1}L−2

must take on the value c, by an inductive argument we can deduce that f(c1ZL−2
t ) = c.

Hence, f(c0 . . . 0) = f(c10 . . . 0) = c but f(c20 . . . 0) = c2 6= c, a contradiction. Thus, any
counterexample cannot contain two perpendicular axis-parallel lines taking on distinct values.

Clearly f cannot be constant. Thus, there is an least one distinct line. Using an argument
quite similar to the one in the proof of Lemma 3.4, for any x in this line, the neighbors of
x (those at Hamming distance at most 1 away) must also be on an axis-parallel-line in the
same direction. Thus, f is forced to be a dictator, as desired. J

Now that we understand the [2, t, 2t− 2] gadget well, we can now establish the existence
of robust decoders.

I Lemma 3.9. For all t ≥ 3, the [2, t, 2t− 2] gadget has a robust decoder Dec.

Proof. For any f : ZLt → Z2t−2, let Dec(f) ⊆ [L] be the set of coordinates i such that there
is a t-element subset S ⊂ Z2t−2 such that f restricted to f−1(S) is a dictator. We call S a
witness for i. We now show that our decoder meets all of the conditions of Definitions 2.8
and 2.10.

nontrivial: From Lemma 3.7, we know that Dec(f) 6= ∅.
sensible: If i ∈ Dec(f), let S be a witness for i. For every x ∈ f−1(S) and all x′ such
that x′ and x only differ in the ith coordinate, f(x) 6= f(x′). Thus, f has dependence in
the ith coordinate.
bounded: We claim that |Dec(f)| = 1 always, implying boundedness. Assume that there
exist i 6= j such that i, j ∈ Dec(f). Let Si and Sj be the subsets of t colors such that f
restricted to f−1(Si) and f−1(Sj) are dictators in the ith and jth coordinate respectively.
Let A = Si ∩ Sj . Clearly |A| ≥ |Si| + |Sj | − |Z2t−2| = 2. Let Bi = {xi : f(x) ∈ A}
and Bj = {xj : f(x) ∈ A}. It is easy to see that |Bi| = |Bj | = |A|. Now consider
K = {x ∈ ZLt : xi ∈ Bi, xj ∈ Bj}. It is easy to see that |K|/|ZLt | = |Bi||Bj |/t2 = |A|2/t2.
By definition of i and j, we can see that K is disjoint from f−1((Si ∪ Sj) \A).
We claim that for any color c ∈ Z2t−2, |f−1(c)∩K| ≤ |K|/|A|. The proof of this is similar
to the proof of Claim 3.1. Without loss of generality, assume that Bi = Bj = Z|A|. We
then can see the following is a partition of K into disjoint cliques of size K⋃

x∈K,xi=0
{(x, x+ (1, . . . , 1), . . . , x+ (|A| − 1, . . . , |A| − 1))},

where addition in the ith and jth coordinates is modulo |A|.
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Also, for any c ∈ A, it is apparent that |f−1(c) ∩K| ≤ |K|/|A|2. Combining these two
facts, |f(K)| ≥ 2|A| − 1 (the |A| colors in A and the additional |A| − 1 colors needed by
the bound above). Thus, 2t− 2 ≥ |f(K)|+ |(Si ∪ Sj) \A| ≥ 2|A| − 1 + 2t− 2|A| = 2t− 1,
a contradiction. Thus, |Dec(f)| = 1, as desired.
compatible: Consider any f, g : ZLt → Z2t−2 which satisfy the [2, t, 2t− 2] co-gadget. We
claim that Dec(f) = Dec(g). Consider h : ZL+1

t → Z2t−2 such that h(x, 0) = f(x) and
h(x, i) = g(x) for all i ∈ Zt \ {0}. Since f and g satisfy the [2, t, 2t − 2] co-gadget, h
satisfies the [2, t, 2t − 2] gadget. Thus, we can decode h in a unique coordinate i. Let
S be the witness for i of h. If i = L + 1, then h(ZLt × {0}) = f(ZLt ) can only have
2t− 2− (t− 1) = t− 1 colors, a contradiction. Thus, i ∈ [L]. It is easy then to see that
S is also a witness for f and g. Thus, due to unique decoding, Dec(f) = Dec(g) = {i}, as
desired.
robust: Consider any projection π : [L] → [L]. For {i} = Dec(f), let S our witness.
Since f is a dictator with respect to f−1(S), f�π is a dictator in coordinate π(i) respect
to (f�π)−1(S). Thus, S is a witness of π(i) for f�π, Dec(f�π) = {π(i)}. Thus,
Dec(f�π) ⊆ π(Dec(f)).

Hence, the [2, t, 2t− 2] gadget has a robust decoder. J

3.3 [k,d3k/2e,2] combinatorial characterization
To obtain hardness results for our hypergraph coloring problem, we first prove a characteri-
zation of the two-colorings of the strong hypergraph coloring dictatorship gadget.

I Lemma 3.10. Let f : ZLt → Z2 satisfy the [k, t, 2] gadget, where dt/2e+ 1 ≤ k ≤ b2t/3c.
Then, there exists i ∈ [L] and dictator-bounding Dj ⊆ Zt for all j ∈ [L] such that
|Dj | = 2t− 2k + 2 for all j ∈ [L]
there is a function g : Di → Z2 such that for all x ∈ ZLt such that xj ∈ Dj for all j,
f(x) = g(xi). Furthermore |g−1(0)| = |g−1(1)| = t− k + 1.

To motivate the structure of the proof, we first handle the special case t = 2k − 2.

Proof of t = 2k − 2 case. We seek to show that f must be a dictator with an even split of
0s and 1s. Assume without loss of generality that

f(00 . . . 0) = 0, f(10 . . . 0) = 1

Now, consider f restricted to S = {2, . . . , t− 1} × {1, . . . , t− 1}L−1. If this is not a dictator
in the first coordinate, then we may select axis parallel x, y ∈ S which are the same in the
first coordinate such that f(x) = 0, f(y) = 1. It is easy to see that there is a disjoint set
of size t − 3 = 2k − 5 which is disjoint from all of {0 . . . 0, 10 . . . 0, x, y}. Thus are at least
d(t− 3)/2e = k− 2 points in this disjoint set which are of the same value. Adding to this set
either {0 . . . 0, x} or {10 . . . 0, y}, we have that there is a disjoint set of size k all of which
take on the same value with respect to f , a contradiction. Thus, f restricted to S must be a
dictator in the first coordinate. In order to avoid any disjoint sets of size k, we must have
that f restricted to S has an equal number of 1s and 0s.

Now, take any axis-parallel pair x, y ∈ S differing in the first coordinate such that
f(x) = 0 and f(y) = 1. Using the same argument (where we replace 00 . . . 0 with x and
10 . . . 0 with y), we have that the set of points disjoint from x and y must be a dictator in the
first coordinate. Applying this fact to every such x and y in S, we can see that f restricted
to {0, 1} × ZL−1

t is a dictator in the first coordinate with f(0ZL−1
t ) = 0 and f(1ZL−1

t ) = 1.
Next, if we consider all axis-parallel pairs x ∈ {0} × ZL−1

t , y ∈ {1} × ZL−1
t , we may deduce
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Figure 1 Illustration of the proof of Lemma 3.10 in the case L = 2, k = 4, t = 6. The grids

represent values deduced of f : Z2
6 → {0, 1}. Left: if f(00) = f(21) = 0 and f(10) = f(22) = 1, it is

impossible to fill in the values of {3, 4, 5}2 without forcing a monochromatic 4-uniform hyperedge.
Right: if f(00) = 0, f(10) = 1, and f : {2, 3, 4, 5} × {1, 2, 3, 4, 5} → {0, 1} is a ‘balanced’ dictator in
the first coordinate, then in order to avoid a monochromatic 4-uniform hyperedge, f(0x) = 0 and
f(1x) = 1 for all x ∈ {1, 2, 3, 4, 5}.

that f restricted to {2, . . . , t − 1} × ZL−1
t is a dictator in the first coordinate. Thus, f is

a dictator in the first coordinate with an equal number of 0 and 1s (in order to avoid a
(t/2 + 1)-sized monochromatic hyperedge), as desired. J

Full argument. We proceed by strong induction on t. Our base case k = 4, t = 6 is handled
above.

Let x1 = 0 . . . 0, y1 = 10 . . . 0. Assume without loss of generality that f(x1) = 0, f(y1) = 1.
Now, consider the subgrid T = {2, . . . , t− 1} × {1, . . . , t− 1}L−1 which is disjoint from x1

and y1.

I Claim 3.11. There exists D′j ⊆ Zt (j ∈ [L]) such that |D′j | ≥ 2t− 2k for all j, f restricted
to the Cartesian product×j∈LD

′
j ⊆ T is a dictator in some coordinate `. Furthermore,

exactly t− k values of D′` set f to 0.

Proof. First, assume we can find axis-parallel x2, y2 ∈ T such that f(x2) = 0, f(y2) = 1,
but the coordinate x2 and y2 differ in is not the first coordinate. Without loss of generality
assume that x2 = 21 . . . 1 and y2 = 221 . . . 1. Now consider T ′ = {3, . . . t − 1}L which is
disjoint from x1, x2, y1, and y2. Clearly f restricted to T ′ satisfies the [k− 2, t− 3, 2] gadget
since if f were to have a disjoint set of size k − 2 in T ′, either {x1, x2} or {y1, y2} could be
augmented to yield a disjoint set of size k which is constant with respect to f . Clearly if
b2t/3c ≥ k then b2(t− 3)/3c ≥ k− 2. The last thing we need to check to apply the induction
hypothesis is that t− 3 ≥ 6. We can find a disjoint set of size d(t− 3)/2e which is constant
with respect to f , so k − 2 > d(t − 3)/2e. It is easy to check this is false if t < 9 since
k ≤ b2t/3c, yielding a contradiction. Thus, t ≥ 9, so t− 3 ≥ 6 so we may use the induction
hypothesis to find D′j which satisfy the claim.

Now, assume that no such x2, y2 ∈ T exist. Then, f restricted to T is a dictator in the
first coordinate. All we need to check is that there are at least t − k choices for the first
coordinate so that f restricted to T is equal to 0 (respectively 1) in the first coordinate.
If we cannot find t − k choices for, without loss of generality 0, then there are at least
(t− 2)− (t− k − 1) = k − 1 choices for 1. Since there are at least t− 2 (which is at least
k− 1) choices in each of the other coordinates, we can select k− 1 disjoint points which take
on the value 1 within T . If we add in y1, we have a set of k disjoint points which take on the
value 1 within T . J

Thus, we have that f restricted to T ′ =×j∈[L]D
′
j is a dictator in the `th coordinate for

`. We would like to let D′j = Zt in every coordinate except `. If this is not the case, then
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there exists x ∈ ZLt such that x` ∈ D′`, but f(x) is not equal to the the common value of
f(y) where y ∈ T ′ and x` = y`. Let Tx be the subset of ZLt disjoint from x. We claim that f
restricted to Tx satisfies the [k − 1, t− 1, 2] gadget. If there were a disjoint set of size k − 1
within Tx which all take on the value f(x), then adding in x, we get a disjoint set of size k
which all take on the value f(x), a contradiction. Now, consider the case when there is a
disjoint set of size k − 1 within Tx which all take on the value 1− f(x), Since b2t/3c ≥ k,
2(t− k) > k − 1, and no point in this set take on the value x` in the `th coordinate, there
exists y ∈ T ′ such that y` = x` which is disjoint from every element of this set. Since
f(y) = 1−f(x), we have that there then is a disjoint of size k such that f takes on a constant
value, yielding a contradiction. Thus, f restricted to Tx satisfies the [k − 1, t− 1, 2] gadget.
Since k − 1 > d(t − 1)/2e and k − 1 ≤ b2(t − 1)/3c, we have by the induction hypothesis
there is a grid of width at least 2((t− 1)− (k − 1)) + 2 = 2(t− k) + 2 which has the desired
properties. Thus, we are done.

Hence, we may now assume that D′j = Zt for all j 6= `. Since 2(t− k) ≥ 2, we may select
x`, y` such that f(x`) = 0, f(y`) = 1 and x``, y`` ∈ D′`. Repeating the same argument where
we replace x1, y1 with x`, y` we may deduce that either we have the desired conclusion or
there exists a set D′′m ⊂ Zt of size 2(t− k) such that f is a dictator in the mth coordinate
when the mth coordinate is in D′′m If m 6= `, then f(x) must be a function of only xm
(respectively x`) when (xm, x`) ∈ D′′m ×D′`. Since both dictators take on both the value 0
and 1, this is impossible. Thus, ` = m. Let D` = D′` ∪D′′` . Since x``, y`` 6∈ D′′` we have that
|D`| ≥ 2(t− k) + 2, and there are at least t− k+ 1 values of D` which take on 0 with respect
to f (respectively 1). For the other Dj ’s we can select an arbitrary 2(t − k) + 2 element
subset of Zt. J

I Corollary 3.12. If k ≤ d2t/3e, then the choice of i is unique.

Proof. For sake of contradiction, imagine that there are i 6= i′ and and families Dj and
D′j satisfying the properties of Lemma 3.10. For all j ∈ [L], we have that |Dj ∩ D′j | ≥
|Dj |+ |D′j | − t = 3t− 4k + 4. Note that f restricted to×j

(Dj ∩D′j) is a dictator in i and a
dictator in i′. Thus, f must be a constant function. Since the dictator is evenly split between
0s and 1s, we have that |Di ∩D′i| ≤ t− k + 1. Thus, 3t− 4k + 4 ≤ t− k + 1 or k ≥ 2t/3 + 1,
which contradicts the assumed bound on k. J

Thus, if k ≤ b2t/3c, a natural choice for Dec(f) is this unique i for which there is a large
“sub-dictator.” We now show that this is indeed a dictator.

I Claim 3.13. Let f : ZLt → Z2 satisfy the [k, t, 2] gadget for k ≤ b2t/3c. Let Dec(f) be the
unique i ∈ [L] from Corollary 3.12. Then, Dec is a decoder.

Proof. From Lemma 3.10 and Corollary 3.12, we have that Dec is nontrivial, sensible, and
bounded. It remains to prove that Dec is compatible. Assume for sake of contradiction
that there exists f, g : ZLt → Z2 which satisfy the [k, t, 2] co-gadget, but {i} = Dec(f) 6=
{i′} = Dec(g). Let Dj ⊆ Zt and D′j ⊆ Zt be the sets guaranteed by Lemma 3.10 for f
and g, respectively. Additionally, let T0 ⊂ Di for which f takes on the value 0. Note that
|T0| = t − k + 1, so |D′i \ T0| ≥ (2t − 2k + 2) − (t − k + 1) = t − k + 1. Thus, there exists
disjoint Ag ⊂ ZLt such that |Ag| = t− k + 1, and g[Ag] = {0}. Since |Ag| = t− k + 1 and
ai 6∈ T0 for all ai ∈ Ag, we have that we may select Af ⊂ ZLt such that |Af | = t − k + 1,
f [Af ] = {0}, and Af ∪Ag is disjoint. Since f and g satisfy the [k, t, 2] co-gadget, we have
that k − 1 ≥ |Af ∪Ag| = 2t− 2k + 2. Thus, k ≥ 2t/3 + 1, a contradiction. J

For this decoder to work well with our label cover reduction in Section 4, we need to
show that this decoder is robust.
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I Lemma 3.14. Let f : ZLt → Z2 satisfy the [k, t, 2] gadget for k ≤ b2t/3c. Then for all
projections π : [L]→ [L],

π[Dec(f)] = Dec(f�π).

That is, Dec is robust.

Proof. Assume for sake of contradiction that there exists π and i 6= i′ such that Dec(f) = {i},
Dec(f�π) = {i′} and π(i) 6= i′. Let Dj ⊆ Zt be the family of ‘dictator-bounding’ sets of f
guaranteed by Lemma 3.10, and likewise let D′j ⊆ Zt be the corresponding family of sets for
f�π. Let T0 ⊂ Di be the subsets of values for which f takes on the value 0 in the Cartesian
product of the D`’s. Similarly, let T ′0 ⊂ D′j be the subset of values for which f�π takes on
the value 0 in the Cartesian product of the D′`’s.

Note that |T0| = |T ′0| = t− k+ 1. Thus, |D′π(i) \T0| ≥ 2t− 2k+ 2− (t− k+ 1) = t− k+ 1.
Therefore, we may select a disjoint set S′ ⊆ ZLt such that |S′| = t− k + 1, fπ(s) = 0, and
si ∈ D′π(i) \T0 for all s ∈ S′. Let S0 = {s ∈ ZLt : exists t ∈ S′ such that sj = tπ(j) for all j ∈
[L]}. Note that S0 is also disjoint and |S0| = |S′|. Since for all s ∈ S0, si 6∈ T0, we may select
a disjoint set S1 of size t− k + 1 disjoint from S0 such that f(s) = 0 for all s ∈ S1. Thus,
S0 ∪ S1 is a disjoint set of size 2t− 2k + 2 which takes on only 0s as values. Since f satisfies
the [k, t, 2] gadget, 2t− 2k + 2 ≤ k − 1. Thus, k ≥ 2t/3 + 1, a contradiction. J

4 Hardness of Gadget Decoders

4.1 The projection co-gadget
In our label cover reduction in this section, we need to be able to integrate projections in
our co-gadget constraints. To do that, we generalize the co-gadget to deal with arbitrary
projections. The co-gadget constraints are similar to the edge constraints in [3].

I Definition 4.1. Let k, t, c, ` ≥ 2, L ≥ 1 be positive integers such that k ≤ t, c ≥ t/(k− 1).
Let f, g : ZLt → Zc be a functions and π : [L]→ [L] be a projection. We say that (f, g) satisfy
the [k, t, c] π-co-gadget if for all A ⊂ ZLt disjoint with |A| = k and all partitions A1 ∪A2 = A

such that
(Strong constraint) for all x ∈ A1, y ∈ A2, a ∈ [L], then xa 6= yπ(a)

we have that

|{f(x) : x ∈ A1} ∪ {g(y) : y ∈ A2}| ≥ 2.

From the definition, it is clear that the π-co-gadget constraint can be implemented as a
k-uniform t-strong hypergraph. The following claim is the main motivation for the previous
definition.

I Lemma 4.2. Let k, t, c, L be positive integers such that k ≤ t, c ≥ t/(k − 1). Let f, g :
ZLt → Zc be functions and π : [L]→ [L] a projection. If (f, g) satisfy the [k, t, c] π-co-gadget,
then (f�π, g) satisfy the [k, t, c] co-gadget.

I Remark. It turns out the converse is false: the π-co-gadget between f and g is strictly
stronger than the co-gadget on the projections. In spite of this, the reduction in power is
offset by the modularity achieved by having the robust decoder act as a liaison between the
coloring gadget and the label cover reduction.
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Proof. It suffices to show that every [k, t, c] co-gadget constraint on (f�π, g) is reflected in
a constraint in π-co-gadget for (f, g).

Consider every disjoint A ⊆ ZLt such that |A| = k. Let A1 ∪A2 = A be a partition of A.
We seek to show that

|{(f�π)(x) : x ∈ A1} ∪ {g(y) : y ∈ A2}| ≥ 2.

Define B1 ⊆ ZLt to be

B1 = {z ∈ ZLt : there exists x ∈ A1 such that zj = xπ(j) for all j ∈ [L]}.

For each x ∈ A1, there is a unique corresponding z ∈ B1, and vice versa, so |A1| = |B1| We
claim that (B1, A2) is a hyperedge constraint in Definition 4.1. Clearly |B1|+ |A2| = k since
|A1| = |B1|. For any z ∈ B1, y ∈ A2, we have that there is a x ∈ A1 such that zj = xπ(j) for
all j ∈ [L]. Since (A1, A2) is a valid hyperedge for the co-gadget, xπ(j) 6= yπ(j) for all j ∈ [L].
Thus, zj 6= yπ(j) for all j ∈ [L]. Therefore, (B1, A2) is a valid hyperedge in the π-co-gadget
so

|{f(z) : z ∈ B1} ∪ {g(y) : y ∈ A2}| ≥ 2.

Now, by definition of B1, we have that {f(z) : z ∈ B1} = {(f�π)(x) : x ∈ A1}. Thus,

|{(f�π)(x) : x ∈ A1} ∪ {g(y) : y ∈ A2}| ≥ 2.

Thus, (f�π, g) satisfy this constraint in the co-gadget. Since the choice of this constraint
was arbitrary, we have that (f�π, g) satisfy the [k, t, c] co-gadget, as desired. J

4.2 The main reduction
Like [3], to obtain NP-hardness results, we reduce from Label Cover.

I Definition 4.3. An instance of Label Cover consists of Ψ = (U, V,E, [L], {πe : [L] →
[L]}e∈E) a bipartite graph for which each edge has been assigned a projection constraint.
The constraint satisfaction problem is to find labelings σ1 : U → [L], σ2 : V → [L] of the
vertices such that for all (u, v) ∈ E, π(u,v)(σ1(u)) = σ2(v).

Although label cover is well-known to be hard with a large approximation gap, we only
need that the problem of finding a fully correct labeling is NP-hard.

I Lemma 4.4. It is NP-hard to determine if a Label Cover instance Ψ is satisfiable (whether
a correct labeling exists), where L is a constant.

Proof for completeness. We show that we can take L = 6 by reducing from 3-coloring. Let
G = (V,E) be a graph we seek to three color. We let the U of our Ψ be the set of edges E
and we let V of our Ψ be the vertices V . If our color set is {0, 1, 2}, we identify our label set
with {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}, the six possible colorings of an edge (u, v) ∈ E.
We also identify our label set with {0, 1, 2, 3, 4, 5}. For (u, v) ∈ E, we have edge from (u, v)
to u and one from (u, v) to v. The projection constraints are

π(u,v)→u((c1, c2)) = c1, π(u,v)→v((c1, c2)) = c2

Note that we do not use labels 3, 4, and 5 on the right side of Ψ. Now, it is easy to check
given these constraints that if G has a three coloring γ : V → {0, 1, 2}, then the labelings for
all (u, v) ∈ E and u ∈ V

σ1((u, v)) = (γ(u), γ(v)), σ2(u) = γ(u)

will satisfy Ψ. Conversely, any correct labeling for Ψ will correspond to a proper coloring
from G. Thus, since 3-coloring is NP-complete, Label Cover is NP-hard, as desired. J
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I Lemma 4.5. If the [k, t, c]-coloring gadget (k ≤ t) has a robust decoder Dec = Dec[k,t,c]
such that Dec always decodes into a unique coordinate (C(k, t, c) = 1), then [k, t, c]-coloring
is NP-hard.

Proof. We reduce from label cover. Let Ψ = (U, V,E, [L], {πe : [L] → [L]}e∈E) be our
instance of label cover. Replace each vertex u ∈ U and v ∈ V with [k, t, c]-gadgets whose
colorings are represented by fu and fv, respectively. Replace each (u, v) ∈ E with projection
π(u,v) with the π(u,v)-co-gadget for fu and fv. Call the resulting (hyper)graph GΨ. Since L
is a constant GΨ is polynomial (in fact, linear) in the size of Ψ. To complete the reduction it
suffices to prove the following

I Claim 4.6 (Completeness). If Ψ is satisfiable, then GΨ is t-strong colorable.

Proof. Let σ1 : U → [L] and σ2 : V → [L] be the labelings. For all u ∈ U and v ∈ V and
x ∈ ZLt let

fu(x) = xσ1(u), fv(x) = xσ2(v).

Clearly this is a t-coloring of GΨ. Now, we show that every hyperedge is t-strong colored.
In every [k, t, c]-gadget every two vertices in each hyperedge differ in every coordinate, so
their colors must be different. For any (u, v) ∈ E, if not every [k, t, c] π(u,v)-co-gadget
constraint is t-strongly colored, then there are x, y ∈ ZLt such that fu(x) = fv(y) but
xj 6= yπ(u,v)(j) for all j (we cannot possible have two vertices of the same color in the
same hyperedge on the same side of the bipartite graph). In particular, this implies that
xσ1(u) = fu(x) = fv(y) = yσ2(v) = yπ(u,v)(σ1(u)), contradicting our assumption about the
labeling. Thus, GΨ is indeed t-strong colorable. J

I Claim 4.7 (Soundness). If GΨ is c-colorable, then Ψ is satisfiable.

Proof. From the assumption we know there exist {fu : u ∈ U} and {fv : v ∈ V } which
satisfy the [k, t, c] gadget. Thus, since Dec does unique decoding, we may set

σ1(u) = Dec(fu), σ2(v) = Dec(fv).

It suffices to check for all (u, v) ∈ E that π(u,v)(σ1(u)) = σ2(v). Since fu and fv satisfy the
[k, t, c] π(u,v)-co-gadget (by construction), we have that fu�π(u,v) and fv satisfy the [k, t, c]-
co-gadget. Thus, since Dec is a decoder with unique decoding, Dec(fu�π(u,v)) = Dec(fv).
Because Dec is robust, π(u,v)(Dec(fu)) = Dec(fu�π(u,v)). Thus, π(u,v)(σ1(u)) = σ2(v) for all
(u, v) ∈ E, so Ψ is satisfiable, as desired. J

Thus, we have reduced from Label Cover to [k, t, c]-coloring, so [k, t, c]-coloring is NP-
hard. J

From this, Theorem 1.1 follows from Lemma 3.9. Theorem 1.3 follows from Claim 3.3,
Lemma 3.14, and Lemma 1.6.
I Remark. Using the techniques of [3], we can drop the constraint that C(k, t, c) = 1 by
reducing from Label Cover with an approximation gap.
I Remark. Label Cover is also NP-hard if Ψ has bounded degree. This follows from the
hardness of 3-coloring on bounded-degree graphs and applying the reduction in Lemma 4.4.
Our reduction then shows that bounded degree [k, t, c]-coloring is NP-hard, obtaining a result
similar to that of [13].
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A Combinatorial Gadget Classifications

A.1 Claim 3.1

Proof of Claim 3.1. The proof given is similar to the combinatorial proof in [1] (Claim 4.1).
Let I = {(i, . . . , i) ∈ ZLt : i ∈ Zt}. Clearly I and all of its translates are disjoint, so for all
x ∈ ZLt , |S ∩ (x+ I)| ≤ ω(S). Since |I| = t,

t|S| =
∑
x∈ZL

t

|S ∩ (x+ I)| ≤ |ZLt |ω(S)

which implies (1). Note that equality holds if and only if |S ∩ (x+ I)| = ω(S). In fact, I can
be replaced by any set of t disjoint points in ZLt . It is easy to then see that if S is a dictator,
equality always holds.

Now, we show if equality holds, then S is a dictator. We present a proof using the Fourier
Analysis techniques of [1]. Let f : ZLt → {1,−1} be the indicator function for S in the sense
that f(x) = −1 if and only if x ∈ S. Using the notation of [1], let f̂ : ZLt → C be f ’s Fourier
transform, and consider the following function:

A(f)(x) = 1
(t− 1)L

∑
y∈(Zt\{0})L

f(x+ y)
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Due to the structure proven above, it is easy to see that for all x ∈ ZLt ,

A(f)(x) = 1
t− 1

t−1∑
i=1

f(x+ (i, . . . , i))

= − f(x)
(t− 1) + 1

t− 1

t−1∑
i=0

f(x+ (i, . . . , i))

= − f(x)
(t− 1) + 1

t− 1(t− 2ω(S))

Thus,

Â(f)(0, . . . , 0) = t− 2ω(S)
t− 1 − f̂(0, . . . , 0)

t− 1
and if x 6= (0, . . . , 0),

Â(f)(x) = −f̂(x)/(t− 1).

Let |x| be the number of nonzero coordinates of x. Claim 4.3 of [1] shows though that

Â(f)(x) = f̂(x)
(
−ω(S)
t− 1

)|x|
,

Combining these two, we must have that f̂(x) = 0 unless |x| ≤ 1. Thus, f is nonzero on only
its first two levels which Lemma 2.3 of [1] implies that f is a dictator, as desired.

A.2 Hardness of [4,5,2]-coloring
I Claim 1.1. Consider f : Z3 ×ZL−1

4 → {0, 1} such that for all x, y, z ∈ Z3 ×ZL−1
4 disjoint,

{f(x), f(y), f(z)} = {0, 1}. Then, either there exists a ∈ Z3 such that f(x) is constant for
all x ∈ {a} × ZL−1

4 or f is a dictator in one of the coordinates {2, . . . , L}.

Proof. If L = 1, the claim is obvious. This proof proceeds by casework. If f is constant on
all of coordinates {2, . . . , L}, then we are done. Otherwise, without loss of generality, we are
in one of the following two cases
1. f(0 . . . 00) = f(0 . . . 01) = f(0 . . . 02) = 0, f(0 . . . 03) = 1
2. f(0 . . . 00) = f(0 . . . 01) = 0, f(0 . . . 02) = f(0 . . . 03) = 1

Case 1. If f(1 . . . 1) = 1, then we must have that f(2 . . . 2) = 0 which is “equivalent” to
f(1 . . . 1) = 0. Thus, we only need to consider the case f(1 . . . 1) = 0. Now we have that
following series of implications

f(2{2, 3}L−2{0, 2, 3}) = 1. (9)
f(1{1, 2, 3}L−2{0, 1, 2}) = 0. (10)

f(2{1, 2, 3}L−2{0, 1, 2, 3}) = 1. (11)

If f(1x) = 0 for all x ∈ ZL−1
4 , then we are done. Otherwise, there exists x0 ∈ ZL−1

4 such
that f(1x0) = 1. Using (11), this implies that f(0y) = 0 for all y ∈ ZL−1

4 disjoint from x0.
Furthermore, by (10) we can conclude that f(2z) = 1 for all z ∈ ZL−1

4 where z is disjoint
from y. Since for all z ∈ ZL−1

4 , we can find y0 ∈ ZL−1
4 such that y0 is disjoint from both x0

and z, we must have that f(2z) = 1 for all z ∈ ZL−1
4 , as desired.

CCC 2016



14:24 New Hardness Results for Graph and Hypergraph Colorings

Case 2. First assume that f(1 . . . 1) = 1, then we get that

f(2{2, 3}L−2{0, 2, 3}) = 0. (12)
f(1{1, 2, 3}L−2{0, 1, 2, 3}) = 1. (13)
f(2{1, 2, 3}L−2{0, 1, 2, 3}) = 0. (14)

if f(1x) = 1 for all x ∈ Zl−1
4 , we are done, else f(1x0) = 0 for some x0 ∈ ZL−1

4 . Applying the
same reasoning as in Case 1, we reach the same conclusion.
Now, we may assume that for all x ∈ {1, 2} × {1, 2, 3}L−2 × {0, 1, 2, 3}, f(x) = 0 if and only
if xL ∈ {0, 1}. Otherwise, we fall into a case already covered by permuting the coordinates
or output labels. If f(x) is a dictator in the last coordinate, we are done. Else, we may
assume without loss of generality that there is x ∈ Z3 × ZL−2

4 such that f(x0) = 1. Thus,
f(y{2, 3}) = 0 for all y ∈ Z3 × ZL−2

4 disjoint from x. But we also know that there is some
y′ ∈ {1, 2} × {1, 2, 3}L−2 disjoint from x such that f(y′{2, 3}) = 1, a contradiction. Thus,
we have exhausted all cases. J

I Corollary 1.2. Consider f : Zk3 × ZL−k4 → {0, 1} such that for all x, y, z ∈ Zk3 × ZL−k4
disjoint, {f(x), f(y), f(z)} = {0, 1}. Then, either there exists a ∈ Zk3 such that f(x) is
constant for all x ∈ {a} × ZL−k4 or f is a dictator in one of the coordinates {k + 1, . . . , L}.

Proof. For any three x0, y0, z0 ∈ Zk3 disjoint, construct the map f ′x0,y0,z0 : Z3 × ZL−k4 , such
that for all w ∈ ZL−k4 ,

f ′x0,y0,z0({0}w) = f(x0w)
f ′x0,y0,z0({1}w) = f(y0w)
f ′x0,y0,z0({2}w) = f(z0w).

It is clear that f ′x0,y0,z0 meets the hypothesis of Claim 1.1. Thus, either f ′x0,y0,z0 is a dictator
in of coordinates {2, . . . , L−k+ 1}, or for one of w0 ∈ {x0, y0, z0}, f(w0×ZL−K4 ) is constant.
Since the latter is sufficient to establish the claim, we assume the former in all cases. That
is, for all disjoint {x0, y0, z0} ⊆ Zk3 , f ′x0,y0,z0 is a dictator. Notice that this implies for all
x0 ∈ Zk3 there is ix0 ∈ {k + 1, . . . , L} such that f restricted to {x0} × ZL−k4 . Additionally,
note that for all x0, y0 ∈ Zk3 disjoint we must have that ix0 = iy0 since there exists z0 ∈ Zk3
disjoint from both x0 and y0. Since the “disjoint” property induces a connected graph on Zk3 ,
we have that ix0 is constant for all x0 ∈ Zk3 . Thus, f is a dictator on one of {k + 1, . . . L}, as
desired. J

I Lemma 1.3. For all f : ZL5 → Z2 satisfying the [4, 5, 2] gadget, there exists i ∈ [L] and
a, b ∈ Z5 distinct such that for all x ∈ {x ∈ ZL5 : xi = a or xi = b}, f(x) is constant.

Proof. First, we show (up to symmetry) a wide class of f have this property.

I Claim 1.4. Let f : ZL5 → Z2 satisfy the [4, 5, 2] gadget and assume that f restricted to ZL4
satisfies the [3, 4, 2] gadget. Then f satisfies the conclusion of Lemma 1.3.

Proof. Clearly by Claim 3.2 f restricted to ZL4 is a dictator in one of the coordinates. Assume
without loss of generality that f({0, 1} × ZL−1

4 ) = 0 and f({2, 3} × ZL−1
4 ) = 1. In order for

the claim to not be immediately true, we must have without loss of generality that there
exist x, y ∈ ZL−1

4 such that f(0x) = 1 and f(2y) = 0. Thus, f(4z) = 0 for all z ∈ ZL−1
5

disjoint from x and f(4z) = 1 for all z ∈ ZL−1
5 disjoint from y. Since there are z ∈ ZL−1

5
disjoint from both x and y, we have a contradiction. Thus, the claim is true. J
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Now, we show an even wider class of f satisfy the lemma.

I Claim 1.5. Let f : ZL5 → Z2 satisfy the [4, 5, 2] gadget and assume that f restricted to
{0} × ZL−1

4 is always 0. Then either f restricted to {0} × ZL−1
5 or f satisfies the conclusion

of Lemma 1.3.

Proof. Assume the first conclusion is false. Thus, there is x ∈ ZL−1
5 such that f(0x) = 1.

Consider the hypercube H0x of points disjoint from 0x. If any three disjoint points in H0x
have the same value, we could find a fourth value in ZL−1

5 which is disjoint from all three but
has the same value, a contradiction. Thus, f restricted to H0x satisfies the [3, 4, 2] gadget.
Thus, by Claim 1.4 we have that f satisfies the conclusion of Lemma 1.3. J

Now, we may finish the proof. Clearly f must depend in at least one coordinate. Assume
that f(0 . . . 0) = 0 and f(10 . . . 0) = 1. Thus, f restricted to S = {2, 3, 4} × {1, 2, 3, 4}L−1

meets the hypothesis of Claim 1.1. Therefore, either f restricted to this set is a dictator
or f has be constant on {a} × {1, 2, 3, 4}L−1 for some a ∈ {2, 3, 4}. First, assume that the
former case occurs and that f is dictated by coordinate i ∈ {2, . . . , L}. Now, assume without
loss of generality that f(20 . . . 0) = 1. Thus, f restricted to T = {1, 3, 4} × {1, 2, 3, 4}L−1

also meets the hypothesis of 1.1. Because S and T have a large overlap, it is not possible
for f restricted to T to T to be dictated by any coordinate other than i. But it is possible
for f({1} × {1, 2, 3, 4}L−1) to be constant. In the first case, f restricted to {1, 2, 3, 4}L
is also a dictator. Thus, f restricted to this set satisfies the [3, 4, 2] gadget. Thus, by
Claim 1.4, f satisfies the conclusion. In the second case, by Claim 1.5 f f({1} × ZL−1

5 ) = 1
or else we are done. This yields a contradiction since we can pick x ∈ {1} × ZL−1

5 and
y, z ∈ {3, 4} × {1, 2, 3, 4}L−1 such that x, y, z, and 20 . . . 0 are all disjoint but f(x) = f(y) =
f(z) = f(20 . . . 0) = 1 since f restricted to {3, 4}×{1, 2, 3, 4}L−1 is a dictator in a coordinate
other than than the first.

Thus, we may now assume without loss of generality that f restricted to {2}×{1, 2, 3, 4}L−1

is always 1. By 1.5, we may assume that f({2}×ZL−1
5 is always 1 (or else we are immediately

done). Since f(0 . . . 0) = 0 6= f(20 . . . 0) = 1, we have that f restricted to {1, 3, 4} ×
{1, 2, 3, 4}L−1 also satisfies the [3, 4, 2] gadget. Thus, f({a} × {1, 2, 3, 4}L−1 is constant and
so we may assume that f({a} × ZL−1

5 ) is constant. Clearly if this constant value is 1 we are
done, otherwise Thus, assume that f({a} × ZL−1

5 ) = 0. Therefore, f(a0 . . . 0) = 0. Thus, f
restricted to (Z5\{2, a})×ZL−1

4 also satisfies the [3, 4, 2] gadget. Thus, there is b ∈ Z5\{2, a}
such that f(b× {1, . . . , 4}L−1) is constant, so f(b× ZL−1

5 ) is constant (or else we are done).
Thus, i = 1 and either {a, b} or {1, b} is the desired pair, as desired. J

I Lemma 1.6. The [4, 5, 2]-coloring gadget has a robust decoder.

Proof. We omit the proof. The proof is similar to that of Claim 3.13 and Lemma 3.14. J

A.3 Classification of 〈t− 1, t, 2〉

In this subsection, we examine a balanced variant of the strong hypergraph coloring problem.

I Definition 1.7. Let k, t, c ≥ 2 be positive integers with t ≥ k. Define 〈k, t, c〉-coloring to
be the following promise problem. Let G be a k-uniform hypergraph which is promised to be
t-strong colorable. Can G be efficiently colored with c colors such that the discrepancy is
minimal?
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I Definition 1.8. Let L, k, t, c be positive integers with t ≥ k, and let f : ZLt → Zc be a
function. We say that f satisfies the 〈k, t, c〉 gadget if for all S ⊂ ZLt such that |S| = k and
S is disjoint otherwise, we have that the multiset {f(x) : x ∈ S} is as equi-distributed as
possible.

Note the 〈3, 4, 2〉 is equivalent to [3, 4, 2] (both gadget and problem) and that 〈4, 5, 2〉 is
equivalent to [4, 5, 2]. We now prove a result that holds for 〈t− 1, t, 2〉 for all odd t.

I Lemma 1.9. If f : ZLt → Z2 satisfies the 〈t− 1, t, 2〉 gadget, where t is even, then f is a
dictator.

Proof. We present a proof using the Fourier Analysis techniques of [1]. Using their notation,
remap f so that its output if {−1, 1} instead of {0, 1}, let f̂ : ZLt → C be f ’s Fourier
transform, and consider the following function:

A(f)(x) = 1
(t− 1)L

∑
y∈(Zt\{0})L

f(x+ y)

For combinatorial reasons, it is easy to see in our context that A(f)(x) = −f(x)/(t− 1) for
all x ∈ ZLt . Thus, Â(f)(x) = −f̂(x)/(t− 1). Claim 4.3 of their paper shows though that

Â(f)(x) = f̂(x)
(
−1
t− 1

)|x|
.

Combining these two, we must have that f̂(x) = 0 unless |x| = 1. That is, x has only one
nonzero coordinate. Thus, f is nonzero on only its first two levels which Lemma 2.3 of their
paper implies that f is a dictator, as desired. J

We omit the proof that there exists a robust decoder and the subsequent Label Cover
argument.

IDefinition 1.10. A function f : ZLt → Z2 is an almost dictator if there exists an independent
set I of ZLt (i.e., a subset no two of whose elements are disjoint) such that f restricted to
ZLt \ I is a dictator.

I Conjecture 1.11. If f : ZLt → Z2 satisfies the 〈t− 1, t, 2〉 gadget, where t is odd, then f is
an almost dictator.

This conjecture, with a suitable application of Label Cover, would imply that finding a
discrepancy two 2-coloring of a t-colorable graph is NP-hard. J

B Nonexistence of Robust Decoding of [2, 3, 6]

I Claim 2.1. There does not exist a robust decoding of the [2, 3, 6]-coloring gadget. Even if
the projections considered are p(L)-to-1 for any p(L) = ω(1).

Proof. Assume for sake of contradiction that there exist a robust decoding Dec. Let
p(L) : N→ N be any function in ω(1). For all L ≥ 1, consider f : ZL3 → Z6 with the following
properties.

For any x ∈ ZL3 such that there is s ∈ Z3 such that |{i ∈ [p(L)] : xi = s}| > p(L)/2, then
f(x) = s+ 3.
Otherwise, f(x) = x1.
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As a sanity check, note that for each s ∈ Z6, f−1(s) is an independent set. For each
S ⊆ [p(L)] such that |S| > p(L)/2, let πS be the projection such that πS(i) = minS if i ∈ S
and πS(i) = i otherwise. Since |S| > p(L)/2, f�πS has a range of {3, 4, 5}. Furthermore,
f�πS is a dictator in coordinate minS, so Dec(f�πS) = {minS}. Since Dec is robust,
(πS)−1(minS) = S must have nontrivial intersection with Dec(f). Thus, Dec(f) must have
nontrivial intersection with every S such that |S| > p(L)/2. Thus, |Dec(f)| ≥ p(L)/2 = ω(1)
(since otherwise we could exhibit a non-intersecting S), but |Dec(f)| ≤ C for some constant
C independent of L, a contradiction. J

Note that this arguments suggests that the ‘robust decoder’ techniques could not work,
unless we use a d-to-1 variant of label cover, of which hardness is only conjectured. A similar
argument shows that there does not exist a robust decoding of the [2, t, 2t]-coloring gadget.
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Abstract
The non-linear invariance principle of Mossel, O’Donnell and Oleszkiewicz establishes that if
f(x1, . . . , xn) is a multilinear low-degree polynomial with low influences then the distribution of
f(B1, . . . ,Bn) is close (in various senses) to the distribution of f(G1, . . . ,Gn), where Bi ∈R {−1, 1}
are independent Bernoulli random variables and Gi ∼ N(0, 1) are independent standard Gaussians.
The invariance principle has seen many application in theoretical computer science, including the
Majority is Stablest conjecture, which shows that the Goemans–Williamson algorithm for MAX-
CUT is optimal under the Unique Games Conjecture.

More generally, MOO’s invariance principle works for any two vectors of hypercontractive
random variables (X1, . . . ,Xn), (Y1, . . . ,Yn) such that (i) Matching moments: Xi and Yi have
matching first and second moments, (ii) Independence: the variables X1, . . . ,Xn are independent,
as are Y1, . . . ,Yn.

The independence condition is crucial to the proof of the theorem, yet in some cases we would
like to use distributions (X1, . . . ,Xn) in which the individual coordinates are not independent.
A common example is the uniform distribution on the slice

([n]
k

)
which consists of all vectors

(x1, . . . , xn) ∈ {0, 1}n with Hamming weight k. The slice shows up in theoretical computer
science (hardness amplification, direct sum testing), extremal combinatorics (Erdős–Ko–Rado
theorems) and coding theory (in the guise of the Johnson association scheme).

Our main result is an invariance principle in which (X1, . . . ,Xn) is the uniform distribution
on a slice

([n]
pn

)
and (Y1, . . . ,Yn) consists either of n independent Ber(p) random variables, or of n

independent N(p, p(1− p)) random variables. As applications, we prove a version of Majority is
Stablest for functions on the slice, a version of Bourgain’s tail theorem, a version of the Kindler–
Safra structural theorem, and a stability version of the t-intersecting Erdős–Ko–Rado theorem,
combining techniques of Wilson and Friedgut.

Our proof relies on a combination of ideas from analysis and probability, algebra and combi-
natorics. In particular, we make essential use of recent work of the first author which describes
an explicit Fourier basis for the slice.
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1 Introduction

Analysis of Boolean functions is an area at the intersection of theoretical computer science,
functional analysis and probability theory, which traditionally studies Boolean functions on the
Boolean cube {0, 1}n. A recent development in the area is the non-linear invariance principle
of Mossel, O’Donnell and Oleszkiewicz [11], a vast generalization of the fundamental Berry–
Esseen theorem. The Berry–Esseen theorem is a quantitative version of the Central Limit
Theorem, giving bounds on the speed of convergence of a sum

∑
iXi to the corresponding

Gaussian distribution. Convergence occurs as long as none of the summands Xi is too
“prominent”. The invariance principle is an analog of the Berry–Esseen theorem for low-
degree polynomials. Given a low-degree polynomial f on n variables in which none of the
variables is too prominent (technically, f has low influences), the invariance principle states
that the distribution of f(X1, . . . , Xn) and f(Y1, . . . , Yn) is similar as long as each of the
vectors (X1, . . . , Xn) and (Y1, . . . , Yn) consists of independent coordinates, the distributions of
Xi, Yi have matching first and second moments, and the variables Xi, Yi are hypercontractive.

The invariance principle came up in the context of proving a conjecture, Majority is
Stablest, claiming that the majority function is the most noise stable among functions which
have low influences. It is often applied in the following setting: the Xi are skewed Bernoulli
variables, and the Yi are the matching normal distributions. The invariance principle allows
us to analyze a function on the Boolean cube (corresponding to the Xi) by analyzing its
counterpart in Gaussian space (corresponding to the Yi), in which setting it can be analyzed
using geometric methods. This approach has been used to prove many results in analysis of
Boolean functions (see for example [8]).

The proof of the invariance principle relies on the product structure of the underlying
probability spaces. The challenge of proving an invariance principle for non-product spaces
seems far from trivial. Here we prove such an invariance principle for the distribution over
X1, . . . , Xn which is uniform over the slice

([n]
k

)
, defined as:(

[n]
k

)
= {(x1, . . . , xn) ∈ {0, 1}n : x1 + · · ·+ xn = k}.

This setting arises naturally in hardness of approximation, see e.g. [3], and in extremal
combinatorics (the Erdős–Ko–Rado theorem and its many extensions).

Our invariance principle states that if f is a low-degree function on
([n]
k

)
having low influ-

ences, then the distributions of f(X1, . . . , Xn) and f(Y1, . . . , Yn) are close, where X1, . . . , Xn

is the uniform distribution on
([n]
k

)
, and Y1, . . . , Yn are either independent Bernoulli variables

with expectation k/n, or independent Gaussians with the same mean and variance.
The classical invariance principle is stated only for low-influence functions. Indeed,

high-influence functions like f(x1, . . . , xn) = x1 behave very differently on the Boolean cube
and on Gaussian space. For the same reason, the condition of low-influence is necessary
when comparing functions on the slice and on Gaussian space.

The invariance principle allows us to generalize two fundamental results to this setting:
Majority is Stablest and Bourgain’s tail bound. Using Bourgain’s tail bound, we prove an
analog of the Kindler–Safra theorem, which states that if a Boolean function is close to a
function of constant degree, then it is close to a junta.

As a corollary of our Kindler–Safra theorem, we prove a stability version of the t-
intersecting Erdős–Ko–Rado theorem, combining the method of Friedgut [7] with calculations
of Wilson [12]. Friedgut showed that a t-intersecting family in

([n]
k

)
of almost maximal size

(1 − ε)
(
n−t
k−t
)
is close to an optimal family (a t-star) as long as λ < k/n < 1/(t + 1) − ζ
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(when k/n > 1/(t+ 1), t-stars are no longer optimal). We extend his result to the regime
k/n ≈ 1/(t+ 1).

The classical invariance principle is stated for multilinear polynomials, implicitly relying
on the fact that every function on {0, 1}n can be represented (uniquely) as a multilinear
polynomial, and that multilinear polynomials have the same mean and variance under any
product distribution in which the individual factors have the same mean and variance. In
particular, the classical invariance principle shows that the correct way to lift a low-degree,
low-influence function from {0, 1}n to Gaussian space is via its multilinear representation.

The analogue of the collection of low degree multilinear functions on the discrete cube is
given by the collection of low degree multilinear polynomials annihilated by the operator∑n
i=1

∂
∂xi

. Dunkl [4, 5] showed that every function on the slice has a unique representation
as a multilinear polynomial annihilated by the operator

∑n
i=1

∂
∂xi

. We call a polynomial
satisfying this condition a harmonic function. In a recent paper [6], the first author showed
that low-degree harmonic functions have similar mean and variance under both the uniform
distribution on the slice and the corresponding Bernoulli and Gaussian product distributions.
This is a necessary ingredient in our invariance principle.

Our results also apply for function on the slice that are not written in their harmonic
representation. Starting with an arbitrary multilinear polynomial f , there is a unique
harmonic function f̃ agreeing with f on a given slice. We show that as long as f depends
on few coordinates, the two functions f and f̃ are close as functions over the Boolean cube.
This implies that f behaves similarly on the slice, on the Boolean cube, and on Gaussian
space.

Our proof combines algebraic, geometric and analytic ideas. A coupling argument, which
crucially relies on properties of harmonic functions, shows that the distribution of a low-
degree, low-influence harmonic function f is approximately invariant when we move from
the original slice to nearby slices. Taken together, these slices form a thin layer around the
original slice, on which f has roughly the same distribution as on the original slice. The
classical invariance principle implies that the distribution of f on the layer is close to its
distribution on the Gaussian counterpart of the layer, which turns out to be identical to its
distribution on all of Gaussian space, completing the proof.

A special case of our main result can be stated as follows.

I Theorem 1.1. For every ε > 0 and integer d ≥ 0 there exists τ = τ(ε, d) > 0 such that the
following holds. Let n ≥ 1/τ , and let f be a harmonic multilinear polynomial of degree d
such that with respect to the uniform measure νpn on the slice

([n]
pn

)
, the variance of f is at

most 1 and all influences of f are bounded by τ .
The CDF distance between the distribution of f on the slice νpn and the distribution of f

under the product measure µp with marginals Ber(p) is at most ε: for all σ ∈ R,

| Pr
νpn

[f < σ]− Pr
µp

[f < σ]| < ε.

Subsequent to this work, the first and third author came up with an alternative proof
of Theorem 1.1 [10] which doesn’t require the influences of f to be bounded. The proof
is completely different, connecting the measures µp and νpn directly without recourse to
Gaussian space. While the main result of [10] subsumes the main result of this paper, we
believe that both approaches have merit. Furthermore, the applications of the invariance
principle appearing here are not reproduced in [10].
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Paper organization

An overview of our main results and methods appears in Section 2. Some open problems
are described in Section 3. All proofs have been relegated to the full version of the paper,
available online at http://arxiv.org/abs/1504.01689.

2 Overview

The goal of this section is to provide an overview of the results proved in this paper and the
methods used to prove them. It is organized as follows. Some necessary basic definitions
appear in Subsection 2.1. The invariance principle, its proof, and some standard consequences
are described in Subsection 2.2. Some applications of the invariance principle appear in
Subsection 2.3: versions of Majority is stablest, Bourgain’s theorem, and the Kindler–Safra
theorem for the slice. An application of the Kindler–Safra theorem to extremal combinatorics
is described in Subsection 2.4. Finally, Subsection 2.5 presents results for non-harmonic
multilinear polynomials.

2.1 Basic definitions
Measures

Our work involves three main probability measures, parametrized by an integer n and a
probability p ∈ (0, 1):

µp is the product distribution supported on the Boolean cube {0, 1}n given by µp(S) =
p|S|(1− p)n−|S|.
νpn is the uniform distribution on the slice

([n]
pn

)
= {(x1, . . . , xn) ∈ {0, 1}n : x1 + · · ·+xn =

pn} (we assume pn is an integer).
Gp is the Gaussian product distribution N((p, . . . , p), p(1− p)In) on Gaussian space Rn.

We denote by ‖f‖π the L2 norm of the polynomial f with respect to the measure π.

Harmonic polynomials

As stated in the introduction, we cannot expect an invariance principle to hold for all
multilinear polynomials, since for example the polynomial x1 + · · ·+ xn − pn vanishes on the
slice but not on the Boolean cube or on Gaussian space. We therefore restrict our attention
to harmonic multilinear polynomials, which are multilinear polynomials f satisfying the
differential equation

n∑
i=1

∂f

∂xi
= 0.

(The name harmonic, whose common meaning is different, was lifted from the literature.)
Dunkl [4, 5] showed that every function on the slice

([n]
pn

)
has a unique representation

as a harmonic multilinear polynomial whose degree is at most min(pn, (1 − p)n). This is
the analog of the well-known fact that every function on the Boolean cube has a unique
representation as a multilinear polynomial.

One crucial property of low-degree harmonic multilinear polynomials is invariance of their
L2 norm: for any p ≤ 1/2 and any harmonic multilinear polynomial f of degree d ≤ pn,

‖f‖µp
= ‖f‖Gp

= ‖f‖νpn

(
1±O

(
d2

p(1− p)n

))
.

http://arxiv.org/abs/1504.01689
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This is proved in Filmus [6], and in fact this result (and its applications in the present work)
was the main motivation for [6].

Influences

The classical definition of influence for a function f on the Boolean cube goes as follows.
Define f [i](x) = f(x[i]), where x[i] results from flipping the ith coordinate of x. The ith
cube-influence of f is given by

Infci [f ] = ‖f − f [i]‖2
µp

=
∥∥∥∥ ∂f∂xi

∥∥∥∥2

µp

= 1
p(1− p)

∑
i∈S

f̂(S)2.

This notion doesn’t make sense for functions on the slice, since the slice is not closed under
flipping of a single coordinate. Instead, we consider what happens when two coordinates
are swapped. Define f (ij)(x) = f(x(ij)), where x(ij) results from swapping the ith and jth
coordinates of x. The (i, j)th slice-influence of f is given by

Infsij [f ] = E
νpn

[(f − f (ij))2].

The influence of a single coordinate i is then defined as

Infsi [f ] = 1
n

n∑
j=1

Infsij [f ].

The two definitions are related: in the complete version of the paper we show that if
d = O(

√
n) then

Infsi [f ] = Op

(
d

n
V[f ] + Infsc[f ]

)
.

(The variance can be taken with respect to either the Boolean cube or the slice, due to the
L2 invariance property.)

Noise stability

The classical definition of noise stability for a function f on the Boolean cube goes as follows:

Scρ[f ] = E[f(x)f(y)],

where x ∼ µp and y is obtained from x by letting yi = xi with probability ρ, and yi ∼ µp
otherwise.

The analogous definition on the slice is slightly more complicated. For a function f on
the slice,

Ssρ[f ] = E[f(x)f(y)],

where x ∼ νpn and y is obtained from x by doing Po(n−1
2 log 1

ρ ) random transpositions (here
Po(λ) is a Poisson distribution with mean λ). That this definition is the correct analog can
be seen through the spectral lens:

Scρ[f ] =
∑
d

ρd‖f=d‖2
µp
, Ssρ[f ] =

∑
d

ρd−d(d−1)/n‖f=d‖2
µpn

.

Here f=d is the dth homogeneous part of f consisting of all monomials of degree d.
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2.2 Invariance principle
Our main theorem is an invariance principle for the slice.

I Theorem 2.1. Let f be a harmonic multilinear polynomial of degree d such that with respect
to νpn, V[f ] ≤ 1 and Infsi [f ] ≤ τ for all i ∈ [n]. Suppose that τ ≤ I−dp δK and n ≥ Idp/δK , for
some constants Ip,K. For any C-Lipschitz functional ψ and for π ∈ {Gp, µp},

| E
νpn

[ψ(f)]− E
π

[ψ(f)]| = Op(Cδ).

Proof sketch. Let ψ be a Lipschitz functional and f a harmonic multilinear polynomial of
unit variance, low slice-influences, and low degree d. A simple argument (mentioned above)
shows that f also has low cube-influences, and this implies that

E
νk

[ψ(f)] ≈ E
νpn

[ψ(f)]±Op
(
|k − np|√

n
·
√
d

)
.

The idea is now to apply the multidimensional invariance principle jointly to f and to
S = x1+···+xn−np√

p(1−p)n
, deducing

E
µp

[ψ(f)1|S|≤σ] = E
Gp

[ψ(f)1|S|≤σ]± ε.

Let γp,q be the restriction of Gp to the Gaussian slice {(x1, . . . , xn) ∈ Rn : x1 + · · ·+xn = qn}.
An easy argument shows that since f is harmonic, the distribution of f(Gp) and f(γp,q) is
identical, and so

E
Gp

[ψ(f)1|S|≤σ] = Pr
Gp

[|S| ≤ σ] E
Gp

[ψ(f)].

Similarly,

E
µp

[ψ(f)1|S|≤σ] = Pr
µp

[|S| ≤ σ](E
µp

[ψ(f)]±Op(σ
√
d)).

Since PrGp
[|S| ≤ σ] ≈ Prµp

[|S| ≤ σ] = Θp(σ), we can conclude that

E
νpn

[ψ(f)] ≈ E
Gp

[ψ(f)]±Op
(
σ
√
d+ ε

σ

)
.

By choosing σ appropriately, we balance the two errors and obtain our invariance principle. J

As corollaries, we bound the Lévy and CDF distances between f(νpn), f(µp) and f(Gp):

I Corollary 2.2. Let f be a harmonic multilinear polynomial of degree d such that with
respect to νpn, V[f ] ≤ 1 and Infsi [f ] ≤ τ for all i ∈ [n]. There are parameters Xp, X such
that for any 0 < ε < 1/2, if τ ≤ X−dp εX and n ≥ Xd

p/ε
X then the Lévy distance between

f(νpn) and f(π) is at most ε, for π ∈ {Gp, µp}. In other words, for all σ,

Pr
νpn

[f ≤ σ − ε]− ε ≤ Pr
π

[f ≤ σ] ≤ Pr
νpn

[f ≤ σ + ε] + ε.

I Corollary 2.3. Let f be a harmonic multilinear polynomial of degree d such that with
respect to νpn, V[f ] = 1 and Infsi [f ] ≤ τ for all i ∈ [n]. There are parameters Yp, Y such that
for any 0 < ε < 1/2, if τ ≤ (Ypd)−dεY d and n ≥ (Ypd)d/εY d then the CDF distance between
f(νpn) and f(π) is at most ε, for π ∈ {Gp, µp}. In other words, for all σ,

| Pr
νpn

[f ≤ σ]− Pr
π

[f ≤ σ]| ≤ ε.

The proofs of these corollaries closely follows the proof of the analogous results in [11].
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2.3 Applications
As applications to our invariance principle, we prove analogues of three classical results in
analysis of Boolean functions: Majority is stablest; Bourgain’s theorem; and the Kindler–Safra
theorem:

I Theorem 2.4. Let f :
([n]
pn

)
→ [0, 1] have expectation µ and satisfy Infsi [f ] ≤ τ for all

i ∈ [n]. For any 0 < ρ < 1, we have

Ssρ[f ] ≤ Γρ(µ) +Op,ρ

( log log 1
α

log 1
α

)
+Oρ

(
1
n

)
, where α = min(τ, 1

n ),

where Γρ(µ) is the probability that two ρ-correlated Gaussians be at most Φ−1(µ) (here Φ is
the CDF of a standard Gaussian).

I Theorem 2.5. Fix k ≥ 2. Let f :
([n]
pn

)
→ {±1} satisfy Infsi [f≤k] ≤ τ for all i ∈ [n]. For

some constants Wp,k, C, if τ ≤W−1
p,k V[f ]C and n ≥Wp,k/V[f ]C then

‖f>k‖2 = Ω
(
V[f ]√
k

)
.

I Theorem 2.6. Fix the parameter k ≥ 2. Let f :
([n]
pn

)
→ {±1} satisfy ‖f>k‖2 = ε. There

exists a function h :
([n]
pn

)
→ {±1} of degree k depending on Ok,p(1) coordinates (that is,

invariant under permutations of all other coordinates) such that

‖f − h‖2 = Op,k

(
ε1/C + 1

n1/C

)
,

for some constant C.

The proof of Theorem 2.4 closely follows its proof in [11]. The proofs of the other two
theorems closely follows analogous proofs in [9].

2.4 t-Intersecting families
As an application of our Kindler–Safra theorem, we prove a stability result for t-intersecting
families.

First, a few definitions:
A t-intersecting family F ⊆

([n]
k

)
is one in which |A ∩B| ≥ t for any A,B ∈ F .

A t-star is a family of the form {A ∈
([n]
k

)
: A ⊇ J}, where |J | = t.

A (t, 1)-Frankl family is a family of the form {A ∈
([n]
k

)
: |A∩J | ≥ t+1}, where |J | = t+2.

Ahlswede and Khachatrian [1, 2] proved that if n > (t + 1)(k − t + 1) and F is an
intersecting family, then |F| ≤

(
n−t
k−t
)
, and furthermore equality holds if and only if F is a

t-star. They also proved that when n = (t+ 1)(k − t+ 1) the same upper bound holds, but
now equality holds for both t-stars and (t, 1)-Frankl families.

A corresponding stability result was proved by Friedgut [7]:

I Proposition 2.7 (Friedgut). Let t ≥ 1, k ≥ t, λ, ζ > 0, and λn < k < ( 1
t+1 − ζ)n. Suppose

F ⊆
([n]
k

)
is a t-intersecting family of measure |F| =

(
n−t
k−t
)
− ε
(
n
k

)
. Then there exists a family

G which is a t-star such that

|F4G|(
n
k

) = Ot,λ,ζ(ε).
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Friedgut’s theorem requires k/n to be bounded away from 1/(t+ 1). Using the Kindler–
Safra theorem on the slice rather than the Kindler–Safra theorem on the Boolean cube (which
is what Friedgut uses), we can do away with this limitation:

I Theorem 2.8. Let t ≥ 2, k ≥ t+ 1 and n = (t+ 1)(k − t+ 1) + r, where r > 0. Suppose
that k/n ≥ λ for some λ > 0. Suppose F ⊆

([n]
k

)
is a t-intersecting family of measure

|F| =
(
n−t
k−t
)
− ε
(
n
k

)
. Then there exists a family G which is a t-star or a (t, 1)-Frankl family

such that

|F4G|(
n
k

) = Ot,λ

(
max

((
k

r

)1/C
, 1
)
ε1/C + 1

n1/C

)
,

for some constant C.
Furthermore, there is a constant At,λ such that ε ≤ At,λ min(r/k, 1)C+1 implies that G is

a t-star.

Our proof closely follows the argument of Friedgut [7], transplanting it from the setting
of the Boolean cube to the setting of the slice, using calculations of Wilson [12] in the latter
setting. The argument involves certain subtelties peculiar to the slice.

2.5 Non-harmonic functions
All results we have described so far apply only to harmonic multilinear polynomials. We
mentioned that some of these results trivially don’t hold for some non-harmonic multilinear
polynomials: for example,

∑n
i=1 xi − np doesn’t exhibit invariance. This counterexample,

however, is a function depending on all coordinates. In contrast, we can show that some sort
of invariance does apply for general multilinear polynomials that depend on a small number
of coordinates:

I Theorem 2.9. Let f be a multilinear polynomial depending on d variables, and let f̃ be
the unique harmonic multilinear polynomial agreeing with f on

([n]
pn

)
, where d ≤ pn ≤ n/2.

For π ∈ {µp,Gp} we have

‖f − f̃‖2
π = O

(
d22d

p(1− p)n

)
‖f‖2

π.

Proof sketch. Direct calculation shows that if ω is a Fourier character than

‖ω − ω̃‖2
µp

= ‖ω − ω̃‖2
Gp

= O

(
d2

p(1− p)n

)
,

where ω̃ is defined analogously to f̃ .
We can assume without loss of generality that f depends only on the variables in

[d] = {1, . . . , d}. Since f̃ =
∑
S⊆[d] f̂(S)ω̃S ,

‖f − f̃‖2
π ≤ 2d

∑
S⊆[d]

f̂(S)2O

(
d2

p(1− p)n

)
= O

(
d22d

p(1− p)n

)
‖f‖2

π,

using the Cauchy–Schwartz inequality. J

The idea of the proof is to prove a similar results for Fourier characters for individual
Fourier characters, and then to invoke the Cauchy–Schwartz inequality.
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As a consequence, if we have a multilinear polynomial f depending on a small number of
variables, its harmonic projection f̃ (defined as in the theorem) has a similar expectation, L2
norm, variance and noise stability. This implies, for example, that our Majority is stablest
theorem is tight: the harmonic projection of the majority of a small number of indices serves
as the tight example.

3 Open problems

Our work gives rise to several open questions.

1. Prove (or refute) an invariance principle comparing νpn and γp,p for arbitrary (non-
harmonic) multilinear polynomials.

2. Prove a tight version of the Kindler–Safra theorem on the slice (Theorem 2.6).
3. The uniform distribution on the slice is an example of a negatively associated vector of

random variables. Generalize the invariance principle to this setting.
4. The slice

([n]
k

)
can be thought of as a 2-coloring of [n] with a given histogram. Generalize

the invariance principle to c-colorings with given histogram.
5. The slice

([n]
k

)
has a q-analog: all k-dimensional subspaces of Fnq for some prime power

q. The analog of the Boolean cube consists of all subspaces of Fnq weighted according to
their dimension. Generalize the invariance principle to the q-analog, and determine the
analog of Gaussian space.
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Abstract
In a recent work with Kindler and Wimmer we proved an invariance principle for the slice
for low-influence, low-degree functions. Here we provide an alternative proof for general low-
degree functions, with no constraints on the influences. We show that any real-valued function
on the slice, whose degree when written as a harmonic multi-linear polynomial is o(

√
n), has

approximately the same distribution under the slice and cube measure.
Our proof is based on a novel decomposition of random increasing paths in the cube in terms

of martingales and reverse martingales. While such decompositions have been used in the past
for stationary reversible Markov chains, ours decomposition is applied in a non-reversible non-
stationary setup. We also provide simple proofs for some known and some new properties of
harmonic functions which are crucial for the proof.

Finally, we provide independent simple proofs for the known facts that 1) one cannot dis-
tinguish between the slice and the cube based on functions of o(n) coordinates and 2) Boolean
symmetric functions on the cube cannot be approximated under the uniform measure by functions
whose sum of influences is o(

√
n).
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1 Introduction

The basic motivating question for our work is the following:

I Question 1.1. Assume n is even. How distinguishable are the uniform measure µ on {0, 1}n
and the measure ν given by the uniform measure on {0, 1}n conditioned on

∑
i xi = n/2?

More generally: how distinguishable are the product measure µp on {0, 1}n where each
coordinate takes the value 1 independently with probability p and νpn given by the uniform
measure on {0, 1}n conditioned on

∑
i xi = pn (assuming pn is an integer)?

Note that the two measures are easily distinguished using the simple sum of coordinates
test. However, our interest is in understanding if the two measures are distinguishable using
restricted families of tests, such as low-depth circuits or low-degree polynomials.

We call {0, 1}n the cube, the support of the distribution νpn the slice, and the support of
ν the middle slice. For exposition purposes, the introduction will only discuss the middle
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slice, though all results (previous and ours) extend for the case of µp and νpn for every
fixed p.

1.1 Low-degree polynomials
In a recent joint work with Kindler and Wimmer [6] we provided a partial answer to
Question 1.1 by extending the non-linear invariance principle of [14]. Suppose that f is a low-
degree low-influence multilinear polynomial which satisfies

∑n
i=1

∂f
∂xi

= 0 (such polynomials
are called harmonic1). The invariance principle of [6] establishes that the distribution of f
under the measure ν is close to its distribution under the product measure µ on {0, 1}n, as
well as to its distribution under the product space Rn equipped with the product Gaussian
measure G = N(1/2, 1/4)⊗n.

The restriction to multilinear harmonic functions is quite natural in the slice — as every
function on the slice has a unique representation as a harmonic multilinear function (this
fact, due to Dunkl [3], is proved in Section 3). It is the analog of the implicit restriction to
multilinear polynomial in the original non-linear invariance principle.

Both the invariance principle proven in [14] and the one proven in [6] require that the
functions have low influences. Indeed, a function like x1 has a rather different distribution
under µ compared to G. Similarly the function x1 − x2 has a rather different distribution
under ν compared to G.

However, note that the distribution of x1 − x2 under ν is quite similar to its distribution
under µ. It is natural to speculate that low-degree harmonic functions have similar distribu-
tions under ν and µ. Unfortunately, the proof of the invariance principle in [6] goes through
Gaussian space, rendering the low-influence condition necessary even when comparing ν
and µ.

Our main result in this paper is a direct proof of the invariance principle on the slice
showing that the distribution of a low-degree harmonic function on the slice is close to its
distribution on the corresponding cube. Our results do not require the condition of low
influences.

I Theorem 1.2. Let f : {−1, 1}n → R be a harmonic multilinear polynomial of degree o(
√
n)

and variance 1. Then for any 1-Lipschitz function ϕ (i.e., one satisfying |ϕ(x) − ϕ(y)| ≤
|x− y|),

|E
ν

[ϕ(f)]− E
µ

[ϕ(f)]| = o(1),

and the Lévy distance2 between the distribution of f under µ and the distribution of f under
ν is o(1).

See Section 2 for the definition of harmonic functions and Theorem 4.1 as well as
Corollary 4.2 for a more quantitative bounds and more general statements (which apply in
particular for any i.i.d. measure on the cube and the corresponding slice). In Subsection 4.1
we show that the results cannot be extended to polynomials whose degree is much bigger
than

√
n.

1 This somewhat unfortunate terminology is borrowed from Bergeron [1, Section 8.4], in which an Sn-
harmonic polynomial is one which is annihilated by

∑n

i=1
∂k

∂xk
n
for all k. For multilinear polynomials,

both definitions coincide.
2 The Lévy distance between two real random variables X,Y is the infimal τ such that for all x ∈ R it

holds that Pr[X ≤ x− τ ]− τ ≤ Pr[Y ≤ x] ≤ Pr[X ≤ x+ τ ] + τ .
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Novel proof ingredients

The basic idea of the proof is to use the coupling method by showing that the distribution of
f on different slices of the cube is at most indentical, as long as the slices are of distance at
most roughly

√
n (here the distance between the kth slice and the `th slice is |k − `|). In

fact, for our proof to work we crucially need to allow distances which are somewhat larger
than

√
n.

To construct the coupling, we use a uniform random increasing path to couple level ` to
level k above it. The main novel technique is representing the difference between the two
levels as a difference of two martingales. Such representations have been used before in the
analysis of stationary reversible Markov chains in Banach spaces [15], and even earlier in the
analysis of stochastic integrals [13]. However, all previous decompositions were for stationary
reversible chains while ours is neither. Our novel representation of the differences might be
of interest in other applications.

Properties of harmonic functions

Complementing the analytic techniques, we also provide an elegant self-contained treatment
of harmonic functions on the slice which is independent, simpler, and contains more results
than the first author’s earlier paper [5]. In particular we make crucial use of a two-sided
Poincaré inequality, see e.g. Lemma 3.11.

Applications

Except for the natural interpretation of Theorem 1.2 in terms of distinguishing between
distributions, it can be used to prove results in extremal combinatorics in the same way the
main result of Theorem [6] is used. For example, in Proposition 4.5 we give a proof of the
Kindler–Safra theorem on the slice, first proved in [6].

1.2 Influences, symmetric functions and circuits
We prove a few other results that give partial answers to Question 1.1.

Using direct computation of the total variation distance we prove the following theorem:
I Theorem 1.3. Let f be a function on {0, 1}n depending on o(n) coordinates and
satisfying ‖f‖∞ ≤ 1. Then

|E
ν

[f ]− E
µ

[f ]| = o(1).

We prove that symmetric functions cannot be approximated by functions whose total
influence is o(

√
n).

I Theorem 1.4. There exists a constant δ > 0 such that if f is a symmetric Boolean
function such that 1

3 ≤ Eµp
[f ] ≤ 2

3 then Prµp
[f 6= g] > δ for every Boolean function g

satisfying Inf[g] = o(
√
n).

Since it is well-known [2] based on arguments from [12, 7] that a depth d size m circuit
has total influence at most O((logm)d−1), our result immediately implies circuit lower
bounds for such function. However, much better bounds are known, see e.g. [18] for
general symmetric functions and [16] for the case of the majority function. Nevertheless,
Theorem 1.4 is more general as it holds for functions f that are not necessarily the
majority function and for functions g that are not necessarily in AC0. Moreover, the proof
of Theorem 1.4 is based on a new and simple probabilistic argument.

Exact formulations and proofs of these results appear in the full version of the paper.

CCC 2016
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1.3 Other results comparing the cube to the slice

Question 1.1 is not a new question. So we conclude the introduction with a few classical
results related to this question:

The limiting behavior of the partial sum W (s) = 1√
s

∑s
i=1(xi − 1

2 ) as s → ∞ under
the cube and the slice measures are well-studied. It is well-known that under the cube
measure W (s) converges to brownian motion, while under the slice measure it converges
to a brownian bridge.
It is well-known that the partial sums W (s) are at least as concentrated in the slice as
they are in the cube [8].
It is well-known that Lipchitz function of the random variables x1, . . . , xn are concentrated
both in the cube and in the slice. The results for the slice follow from the hypercontractive
estimates by Lee and Yau [11]. These are also needed in our proofs.

Paper organization

A few useful definitions appear in Section 2. Harmonic functions are defined and analyzed in
Section 3. We outline the proof of our invariance principle for Lipschitz functions in Section 4,
in which we also give an invariance principle for the function ϕ(x) = (|x| − 1)2 and illustrate
it by a proof of a Kindler–Safra theorem for the slice, first proved in [6].

Many proofs have been ommitted from this extended abstract. Complete proofs appear
in the full version of the paper, available online at http://arxiv.org/abs/1507.02713.

2 Definitions

Notation

We employ the falling power notation nk = n(n− 1) · · · (n− k+ 1). The notation 1E equals 1
if the condition E holds, and 0 otherwise. The sign function is denoted sgn. The L2 triangle
inequality is (a+ b)2 ≤ 2(a+ b)2 or its generalization (

∑n
i=1 ai)2 ≤ n

∑n
i=1 a

2
i .

A monomial is squarefree if it is not divisible by a square of a variable. (Thus there are
2n squarefree monomials on n variables.) A polynomial is multilinear if all monomials are
squarefree. A polynomial is homogeneous if all monomials have the same total degree. The
dth homogeneous part of a polynomial f =

∑
cmm, denote f=d, is the sum of cmm over all

monomial m of total degree d. A polynomial f over x1, . . . , xn is harmonic if
∑n
i=1

∂f
∂xi

= 0.
A univariate function f is C-Lipschitz if |f(x)− f(y)| ≤ C|x− y|. A function is Lipschitz

if it is 1-Lipschitz.
The expectation and variance of a random variable are denoted E,V, and ‖ · ‖ denotes its

L2 norm ‖X‖ =
√
E[X2]. To signify that expectation is taken with respect to a distribution

α, we write Eα[X], Vα[x], and ‖ · ‖α. A normal distribution with mean µ and variance σ2 is
denoted N(µ, σ2). A binomial distribution with n trials and success probability p is denoted
B(n, p).

The symmetric group on [n] = {1, . . . , n} is denoted Sn. A distribution on Rn is
exchangeable if it is invariant under the action of Sn (that is, under permutation of the
coordinates); a discrete distribution is exchangeable if the probability of (x1, . . . , xn) depends
only on x1 +· · ·+xn. For a function f on Rn and a permutation π, we define fπ(x1, . . . , xn) =
f(xπ(1), . . . , xπ(n)).

http://arxiv.org/abs/1507.02713
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The slice

The n-dimensional Boolean cube is the set {0, 1}n. For an integer 0 ≤ k ≤ n, the kth slice of
the n-dimensional Boolean cube is the set(

[n]
k

)
=
{

(x1, . . . , xn) ∈ {0, 1}n :
n∑
i=1

xi = k

}
.

Probability measures

Our work involves two main probability measures, where n is always understood:
The uniform measure on the slice

([n]
k

)
is νk.

The product measure µp on the Boolean cube is given by µp(x) = p
∑

i
xi(1− p)

∑
i
(1−xi).

Note that νk, µk/n have the same marginal distributions.

3 Harmonic functions

A basic and easy result states that every function on {−1, 1}n has a unique representation as
a multilinear polynomial, known as the Fourier expansion. It is easy to see that a multilinear
polynomial has the same mean and variance with respect to the uniform measure on {−1, 1}n
and with respect to the standard n-dimensional Gaussian measure. In this section we describe
the corresponding canonical representation on the slice, due to Dunkl [3, 4] and elaborated
by Srinivasan [17] and Filmus [5].

Every function on the slice
([n]
k

)
can be represented as a multilinear polynomial, but this

representation is not unique. However, as found by Dunkl [3, 4], we can make it unique by
demanding that it be harmonic in the sense of the following definition.

I Definition 3.1. A polynomial P over x1, . . . , xn is harmonic if

n∑
i=1

∂P

∂xi
= 0.

In other words, P is harmonic if ∆P = 0, where ∆ is the differential operator
∑n
i=1

∂
∂xi

.

I Definition 3.2. A basic function is a (possibly empty) product of factors xi−xj on disjoint
indices. A function is elementary if it is a linear combination of basic functions.

Most, but not all, of the harmonic polynomials we consider will be multilinear. Here are
some basic properties of harmonic polynomials.

I Lemma 3.3. The set of harmonic polynomials is an algebra of polynomials, and is
closed under partial derivatives, under permutations of the coordinates, and under taking
homogeneous parts. In particular, all elementary functions are harmonic.

Proof. Suppose f, g are harmonic. Then ∆(αf + βg) = α∆f + β∆g = 0; ∆(fg) =
f∆g + g∆f = 0; ∆ ∂f

∂xi
= ∂∆f

∂xi
= 0; and ∆(fπ) = (∆f)π = 0. Finally, since ∆(

∑n
d=0 f

=d) =∑n
d=0 ∆f=d and ∆f=d is homogeneous of degree d− 1, we see that ∆f=d = 0=d−1 = 0. J

I Lemma 3.4. A polynomial f is harmonic if and only if for all x1, . . . , xn, c we have

f(x1 + c, . . . , xn + c) = f(x1, . . . , xn).

CCC 2016
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Proof. Given x1, . . . , xn, define a function

φ(x1, . . . , xn, c) = f(x1 + c, . . . , xn + c).

The chain rule implies that ∂φ
∂c = ∆f . Hence ∆f = 0 iff φ is independent of c. J

Our first theorem states that every function on the slice has a unique representation as a
harmonic multilinear polynomial of degree at most min(k, n− k).

I Theorem 3.5. Let 0 ≤ k ≤ n. Every function on the slice
([n]
k

)
has a unique representation

as a harmonic multilinear polynomial of degree at most min(k, n− k).

Similarly, we can prove that every harmonic multilinear polynomial is elementary.

I Lemma 3.6. A multilinear polynomial is harmonic iff it is elementary. In particular, a
harmonic multilinear polynomial over x1, . . . , xn has degree at most n/2.

As we stated in the introduction to this section, multilinear polynomials enjoy the useful
property of having the same mean and variance with respect to all product measures with
fixed marginal mean and variance. The corresponding property for harmonic multilinear
polynomials is stated in the following theorem, which also follows from the work of the first
author [5].

I Theorem 3.7. Let f, g be homogeneous harmonic multilinear polynomials of degree df , dg,
respectively, and let α be an exchangeable measure. If df 6= dg then Eα[fg] = 0. If df = dg = d

then there exists a constant Cf,g independent of α such that

E
α

[fg] = Cf,g E
α

[(x1 − x2)2 · · · (x2d−1 − x2d)2].

I Corollary 3.8. Let f be a harmonic multilinear polynomial of degree at most d with constant
coefficient f=0. Suppose that α, β are exchangeable measures and C > 0 is a constant that
for t ≤ d satisfies

E
α

[(x1 − x2)2 · · · (x2t−1 − x2t)2] ≤ C E
β

[(x1 − x2)2 · · · (x2t−1 − x2t)2].

Then Eα[f ] = f=0, ‖f‖2α ≤ C‖f‖2β, and Vα[f ] ≤ C Vβ [f ].

The following lemma computes E[(x1 − x2)2 · · · (x2d−1 − x2d)2] for the measures νk, µp.

I Lemma 3.9. Let p = k/n. We have

E
νk

[(x1 − x2)2 · · · (x2d−1 − x2d)2] = 2d k
d(n− k)d

n2d = (2p(1− p))d
(

1±O
(

d2

p(1− p)n

))
,

E
µp

[(x1 − x2)2 · · · (x2d−1 − x2d)2] = (2p(1− p))d.

This straightforward computation appears in [5, Theorem 4.1] and [6, Lemma 2.9].
Qualitatively, the lemma states that the norm of a low degree basic function is similar in
both νk and µp. This is not surprising: the coordinates in the slice are almost independent,
and a low degree basic function depends only on a small number of them.

We proceed by stating the so-called two-sided Poincaré inequality, starting with the
following fact.
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I Lemma 3.10. Let f be a harmonic multilinear polynomial. Then

∑
i<j

f (i j) =
n/2∑
d=0

[(
n

2

)
− d(n− d+ 1)

]
f=d,

where f=d is the dth homogeneous part of f .

I Lemma 3.11. Let f be a harmonic multilinear polynomial of degree at most d. Then with
respect to any exchangeable measure,

nV[f ] ≤ 1
2
∑
i<j

‖f − f (i j)‖2 ≤ d(n− d+ 1)V[f ].

Finally, we state another two-sided Poincaré inequality, this time for derivatives. We
start with the following surprising corollary of Theorem 3.7.

I Lemma 3.12. Let f, g be homogeneous harmonic multilinear polynomials of degree d. Then
for any exchangeable measure α,∑n

i=1 Eα
[
∂f
∂xi

∂g
∂xi

]
Eα[fg] = 2dEα[(x1 − x2)2 · · · (x2d−3 − x2d−2)2]

Eα[(x1 − x2)2 · · · (x2d−1 − x2d)2] .

We deduce the following two-sided Poincaré inequality.

I Lemma 3.13. Let f be a multilinear polynomial of degree d, and let α be an exchangeable
measure. Suppose that for 1 ≤ t ≤ d we have

m ≤ 2tEα[(x1 − x2)2 · · · (x2t−3 − x2t−2)2]
Eα[(x1 − x2)2 · · · (x2t−1 − x2t)2] ≤M.

Then also

mV[f ] ≤
n∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥2
≤M V[f ].

The following lemma computes m,M for the measures νk, µp.

I Lemma 3.14. Let p = k/n. We have

2dEνk
[(x1 − x2)2 · · · (x2d−3 − x2d−2)2]

Eνk
[(x1 − x2)2 · · · (x2d−1 − x2d)2] = d

(n− 2d+ 2)(n− 2d+ 1)
(k − d+ 1)(n− k − d+ 1)

= d

p(1− p)

(
1±O

(
d

p(1− p)n

))
,

2d
Eµp [(x1 − x2)2 · · · (x2d−3 − x2d−2)2]
Eµp

[(x1 − x2)2 · · · (x2d−1 − x2d)2] = d

p(1− p) .

4 Invariance principle

In this section we state and outline the proof of an invariance principle showing that the
distribution of a low-degree function on a slice

([n]
k

)
is similar to its distribution on the

Boolean cube with respect to the measure µk/n. For convenience, we analyze the similarity
in distribution via Lipschitz test functions, and derive similarity in more conventional terms
as a corollary. The basic idea is to show that the distribution of a low degree function on a
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given slice
([n]
k

)
is similar to its distribution on nearby slices

([n]
`

)
. If we can show this for all

slices satisfying |k− `| ≤ B for some B = ω(
√
n), then the invariance follows by decomposing

the Boolean cube as a union of slices.
Here is the formal statement of our invariance principle.

I Theorem 4.1. There exists a constant K > 0 such that the following holds.
Let f be a harmonic multilinear polynomial of degree d satisfying d2 ≤ K p(1−p)n

log[p(1−p)n] such
that V[f ]νpn = 1. For any Lipschitz function ϕ,

| E
νpn

[ϕ(f)]− E
µp

[ϕ(f)]| = O

(√
d√

p(1− p)n
log1/2

√
p(1− p)n
d

)
.

As a corollary, we can estimate the Lévy distance between f(νpn) and f(µp), along the
lines of [14, Theorem 3.19(28)].

I Corollary 4.2. Let f be a harmonic multilinear polynomial of degree d satisfying d2 ≤
K p(1−p)n

log[p(1−p)n] such that V[f ]νpn = 1, where K > 0 is the constant from Theorem 4.1. The
Lévy distance between f(νpn) and f(µp) is at most

ε = O

(
4

√
d√

p(1− p)n
log1/2

√
p(1− p)n
d

)
.

That is, for all y it holds that

Pr
νpn

[f ≤ y − ε]− ε ≤ Pr
µp

[f ≤ y] ≤ Pr
νpn

[f ≤ y + ε] + ε.

We conjecture that f(νpn) and f(µp) are also close in CDF distance, but unfortunately
the method of proof of [14, Theorem 3.19(30)] fails in this case.

The complete proof of Theorem 4.1 appears in the full version of the paper. In the
remainder of this section, we explain the intuition behind the proof.

Our argument concerns the following objects:
A harmonic multilinear polynomial f of degree d and unit norm. We think of d as “small”.
A Lipschitz functional ϕ.
A slice

([n]
pn

)
. We think of p as constant, though the argument even works for subconstant

p.
Our goal is to show that Eµp

[ϕ(f)] ≈ Eνpn
[ϕ(f)]. The first step is to express µp as a mixture

of ν` for various `:

E
µp

[ϕ(f)] =
n∑
`=0

(
n

`

)
p`(1− p)n−` E

ν`

[ϕ(f)].

Applying the triangle inequality, this shows that

| E
µp

[ϕ(f)]− E
νpn

[ϕ(f)]| ≤
n∑
`=0

(
n

`

)
p`(1− p)n−`| E

ν`

[ϕ(f)]− E
νpn

[ϕ(f)]|.

In general we expect |Eν`
[ϕ(f)]− Eνpn

[ϕ(f)]| to grow with |`− pn|, and our strategy would
be to consider separately slices close to pn, say |pn − `| ≤ δ, and slices far away from pn,
say |pn− `| > δ. We will bound the contribution of slices close to pn directly. If δ is large
enough then we expect the contribution of slices far away from pn to be small, essentially
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since µp is concentrated on slices close to pn. For this argument to work, we need to choose
δ so that δ = ω(

√
n).

It remains to bound |Eν`
[ϕ(f)]− Eνpn

[ϕ(f)]| for ` close to pn. One strategy to obtain
such a bound is to bound instead |Eνs

[ϕ(f)]−Eνs+1 [ϕ(s)]| for various s, and use the triangle
inequality. To this end, it is natural to consider the following coupling: let (X(s),X(s+ 1)) ∈([n]
s

)
×
( [n]
s+1
)
be chosen uniformly at random under the constraint X(s) ⊂ X(s+ 1). We can

then bound

| E
νs

[ϕ(f)]− E
νs+1

[ϕ(s)]| = |E[ϕ(f(X(s)))− ϕ(f(X(s+ 1)))]| ≤

E[|ϕ(f(X(s)))− ϕ(f(X(s + 1)))|] ≤ E[|f(X(s))− f(X(s + 1))|].

Denoting π(s+ 1) = X(s+ 1) \X(s) and using the mulilinearity of f , this shows that

| E
νs

[ϕ(f)]− E
νs+1

[ϕ(s)]| ≤ E
[∣∣∣∣ ∂f

∂xπ(s+1)
(X(s))

∣∣∣∣] = E

 1
n− s

∑
i/∈X(s)

∣∣∣∣ ∂f∂xi (X(s))
∣∣∣∣
 .

While we cannot bound
∑
i |
∂f
∂xi
| directly, Lemma 3.13 implies that

∑
i

(
∂f
∂xi

)2 = O(d).
Applying Cauchy–Schwartz, we get that for s close to pn,

| E
νs

[ϕ(f)]− E
νs+1

[ϕ(s)]| ≤ 1
Θ(n) E

[
n∑
i=1

∣∣∣∣ ∂f∂xi (X(s))
∣∣∣∣
]

≤ 1
Θ(n) E

√n
√√√√ n∑

i=1

∂f

∂xi
(X(s))2

 = O

(√
d

n

)
.

Recall now that our original goal was to bound |Eν`
[ϕ(f)] − Eνpn

[ϕ(f)]| for |` − pn| ≤ δ,
and our intended δ satisfied δ = ω(

√
n). Unfortunately, the idea just described only gives a

bound of the form |Eν`
[ϕ(f)]−Eνpn

[ϕ(f)]| = O(δ
√
d/n), which is useless for our intended δ.

One way out is to take δ = C
√
n. This allows us to obtain meaningful bounds both

on the contribution of slices close to pn and on the contribution of slices far away from
pn. Although this only gives a constant upper bound on |Eµp [ϕ(f)]− Eνpn [ϕ(f)]| if applied
directly, this idea can be used in conjuction with the invariance principle for the Boolean
cube [14] to give an invariance principle for the slice, and this is the route chosen in the
prequel [6]. One drawback of this approach is that the invariance principle for the Boolean
cube requires all influences to be small.

Our approach, in contrast, considers a coupling (X(0), . . . ,X(n)) of all slices. Analogous
to f(X(s+ 1))− f(X(s)), we consider the quantity

C(s) = (n− s)(f(X(s+ 1))− f(X(s)))− s(f(X(s− 1))− f(X(s))).

As before, we can bound E[|C(s)|] = O(
√
dn). Moreover,

t∑
u=s

C(u) = (n− t)f(X(t+ 1)) + (t− 1)f(X(t))− (n− s− 1)f(X(s))− sf(X(s− 1)),

and so we can bound |Eν`
[ϕ(f)]− Eνpn [ϕ(f)]| by bounding the expectation of

∑`
u=pn C(u)

or of
∑pn
u=` C(u). The triangle inequality gives |

∑t
u=s C(u)| = O(|s− t|

√
dn), which suffers
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from the same problem that we encountered above. However, by expressing C(s) as a
difference of two martingales, we are able to improve on the triangle inequality, showing that∣∣∣∣∣

t∑
u=s

C(u)

∣∣∣∣∣ = O(
√
|s− t|dn),

a bound which is useful for |s− t| = o(n/d) rather than for |s− t| = o(
√
n/d) as before.

In more detail, we define

U(u) = f(X(u+ 1))− f(X(u))− E[f(X(u+ 1))− f(X(u))|X(u)],
D(u) = f(X(u− 1))− f(X(u))− E[f(X(u− 1))− f(X(u))|X(u)],

both martingales by construction, U(u) for increasing u, and D(u) for decreasing u. We claim
that C(u) = (n− u)U(u)− uD(u). If this holds, then using the fact that E[U(u)U(v)] =
E[D(u)D(v)] = 0 for u 6= v and the L2 triangle inequality (a+ b)2 ≤ 2a2 + 2b2, we get

E

( t∑
u=s

C(u)
)2 ≤ 2E

( t∑
u=s

(n− u)U(u)
)2+ 2E

( t∑
u=s

uD(u)
)2

= 2
t∑

u=s
(n− u)2 E[U(u)2] + 2

t∑
u=s

u2 E[D(u)2].

This shows that E[(
∑t
u=s C(u))2] scales linearly in t− s rather than quadratically in t− s,

which is what we would get if we just applied the triangle inequality. Since the L1 norm is
bounded by the L2 norm, we conclude that E[|

∑t
u=s C(u)|] = O(

√
|s− t|dn).

Finally, let us explain why C(u) = (n − u)U(u) − uD(u). In view of our previous
expression for C(u), this boils down to proving that

(n− u)E[f(X(u+ 1))− f(X(u))|X(u)]− uE[f(X(u− 1))− f(X(u))|X(u)] = 0.

We can rewrite the left-hand side as

E

 ∑
i/∈X(u)

[f(X(u) ∪ {i})− f(X(u))]−
∑

i∈X(u)

[f(X(u) \ {i})− f(X(u))]

 .
Since f is multilinear, we can replace the differences with derivatives:

E

 ∑
i/∈X(u)

∂f

∂xi
(X(u))−

∑
i∈X(u)

− ∂f
∂xi

(X(u))

 = E

[
n∑
i=1

∂f

∂xi
(X(u))

]
.

However, the last expression clearly vanishes, since f is harmonic. This completes the outline
of the proof.

4.1 High-degree functions
Theorem 4.1 requires that d = o(

√
p(1− p)n). Indeed, Lemma 3.9, which implies that the

norm of a low degree function is approximately the same under both µp and νpn, already
requires the degree to be o(

√
p(1− p)n). For d = ω(

√
p(1− p)n) and constant p 6= 1/2 we

exhibit below a 0/± 1-valued function f which satisfies ‖f‖µp = 1 while ‖f‖νpn = o(1). This
shows that for constant p 6= 1/2 the dependence on the degree is essential in Theorem 4.1,
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since |Eνpn [|f |] − Eµp [|f |]| = ‖f‖2µp
− ‖f‖2νpn

= 1 − o(1). We do not know whether this
dependence is necessary for p = 1/2. Indeed, Lemma 3.9 can be extended above

√
n in this

case, as the calculation below shows.
Let d = ω(

√
p(1− p)n), and assume further that d = o((p(1− p)n)2/3). We consider the

function f = (2p(1 − p))−d/2(x1 − x2) · · · (x2d−1 − x2d), whose µp-norm is 1 according to
Lemma 3.9. The lemma also gives its νk-norm (where k = pn) as

‖f‖2νk
= (p(1− p))−d k

d(n− k)d

n2d .

We estimate this expression using Stirling’s approximation, starting with kd:

kd = k!
(k − d)! =

(
k

k − d

)k−d+1/2
kd

ed
eO(1/k)−O(1/(k−d)) =

(
1 + d

k − d

)k−d
kd

ed
(1± o(1)).

The Taylor series log(1 + x) = x− x2/2 +O(x3) shows that(
1 + d

k − d

)k−d
= exp

[
d− d2

2(k − d) + o(1)
]

= exp
[
d− d2

2k + o(1)
]
,

and so kd = kde−d
2/2k(1±o(1)). We can similarly estimate (n−k)d = (n−k)de−d2/2(n−k)(1±

o(1)) and n2d = n2de−2d2/n(1± o(1)), concluding that

‖f‖2νk
= (p(1− p))−d k

d(n− k)d

n2d e−d
2/2k−d2/2(n−k)+2d2/n(1± o(1))

= exp
[

d2

2p(1− p)n (−1 + 4p(1− p))± o(1)
]
.

If p 6= 1/2 is fixed, we immediately conclude that ‖f‖νk
= o(1).

4.2 Approximately Boolean functions
Theorem 4.1 only applies to Lipschitz test functions, but in many applications we are
interested in functions which grow faster, for example the distance-from-{−1, 1} function
ϕ(x) = (|x| − 1)2. Using hypercontractivity, we can obtain an invariance principle for
ϕ(x) = (|x| − 1)2.

I Theorem 4.3. Let f be a harmonic multilinear polynomial of degree d satisfying d2 ≤
K p(1−p)n

log[p(1−p)n] such that ‖f‖νpn = 1, where K is the constant in Theorem 4.1. We have

| E
νpn

[(|f | − 1)2]− E
µp

[(|f | − 1)2]| = O

(
d1/4 log1/8 n

n1/8 (p(1− p))−O(d)

)
.

As an illustration of this theorem, we give an alternative proof of [6, Theorem 7.5], a
Kindler–Safra theorem for the slice.

I Definition 4.4. A function f on a given domain is Boolean if on the domain it satisfies
f ∈ {±1}. If the domain is a cube, we use the term cube-Boolean. If it is a slice, we use the
term slice-Boolean.

I Proposition 4.5. Let f be a multilinear polynomial of degree d such that Eµp
[(|f |−1)2] = ε.

There exists a cube-Boolean function g on (p(1− p))−O(d) coordinates such that ‖f − g‖2µp
=

O((p(1− p))−O(d)ε).
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Proof. This is essentially proved in [10, 9]. Explicitly, they prove the same result without
the guarantee that g is cube-Boolean. In order to get our version, let F = sgn f and
G = sgn g. By definition ‖F − f‖2 = ε, and so ‖F − g‖2 = O((p(1 − p))−O(d)ε). Since
F is cube-Boolean, this implies that ‖F − G‖2 = O((p(1 − p))−O(d)ε). We conclude that
‖f −G‖2 = O((p(1− p))−O(d)ε). J

I Theorem 4.6. For every d > 0 there is a parameter Nd,p depending continuously on p

such that if n > Nd,p then the following holds.
Let f be a slice-Boolean harmonic multilinear polynomial such that ‖f>d‖2νpn

= ε, where
f>d =

∑
i>d f

=i. There exists a slice-Boolean harmonic multilinear polynomial g that
depends on (p(1− p))−O(d) coordinates (invariant to permutations of the other coordinates)
satisfying

‖f − g‖2νpn
≤ O((p(1− p))−O(d)ε) + Õ

(
1

n1/8

)
,

where Õ hides polylogarithmic factors.

Proof. Let f̃ = f≤d (that is, f̃ =
∑
i≤d f

=i), so that Eνpn [(|f̃ | − 1)2] ≤ Eνpn [(f̃ − f)2] = ε.
Notice that f̃ is a harmonic multilinear polynomial of degree at most d. Theorem 4.3 implies
that

E
µp

[(|f̃ | − 1)2] ≤ ε+O

(
d1/4 log1/8 n

n1/8 (p(1− p))−O(d)

)
︸ ︷︷ ︸

ε1

.

Proposition 4.5 implies that there exists a cube-Boolean function g on a set J of M =
O((p(1 − p))−O(d)) coordinates such that ε2 , Eµp

[(f̃ − g)2] = O((p(1 − p))−O(d)ε1). The
function g is also slice-Boolean, but it is not necessarily harmonic. Let h be the unique
harmonic multilinear function of degree at most min(k, n− k) that agrees with g on

([n]
pn

)
.

Note that h also depends only on the coordinates in J , and in particular it has degree at
most M (in fact, [6, Lemma 3.1] implies that deg h ≤ deg g). Invoking [6, Theorem 3.3], we
see that ‖g − h‖2µp

= O( M22M

p(1−p)n ), and so

ε3 = ‖f̃ − h‖2µp
= O

(
M22M

p(1− p)n + ε2

)
.

Corollary 3.8 and Lemma 3.9 imply that ‖f̃−h‖2νpn
= O(ε3), using the fact that deg(f̃−h) ≤

M . The proof is completed by noticing that ‖f − h‖2νpn
= O(ε+ ε3). J

The proof of [6, Theorem 7.5] contains an additional argument guaranteeing that deg g ≤ d.
The same argument can be applied here.
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1 Introduction

1.1 Approximation of functions on the boolean hypercube by
polynomials

Classical approximation theory studies how well a function f : R→ R can be approximated by
simpler functions, most commonly by polynomials of bounded degree. Approximation theory
has found applications throughout complexity theory, for example in learning theory [21, 23],
query complexity [22, 1], communication complexity [29, 30], and more.

An important special case is the investigation of the best approximation to a real boolean
function f : {0, 1}n → R in `∞-distance by a degree-d polynomial in the n variables x1, . . . , xn.
Nisan and Szegedy [22] initiated this study, showing that any polynomial that approximates
the OR function with constant error in `∞-norm on {0, 1}n has degree Ω(

√
n). They also

showed this bound is tight by constructing an O(
√
n)-degree approximating polynomial for

the OR function from a Chebyshev polynomial. Paturi [25] followed this by characterizing the
approximate degree of any symmetric boolean function, i.e., any function f : {0, 1}n → {0, 1}
which only depends on the number of ones |x| in the n-bit input x, and not on their locations.
To get a feel for Paturi’s theorem, consider the special case of a function gk : {0, 1}n → {0, 1}
where gk(x) = 0 unless |x| = k in which case gk(x) = 1. Paturi’s theorem says that the
1
4 -error approximate degree of gk, denoted by deg1/4(gk), is Θ(

√
k(n− k)). Later, the `∞-

approximate degree of symmetric boolean functions was characterized for all approximation
errors ε by [28, 34]. Again in the special case of gk, these results say that the degree of a
polynomial that approximates gk up to error ε ≥ 2−n is Θ(

√
k(n− k) +

√
n log(1/ε)).

1.2 Our results on sum-of-squares approximation
Here we study the representation of non-negative functions on the boolean hypercube by sums
of squares of polynomials. More precisely, a non-negative boolean function f : {0, 1}n → R+
has an (exact) degree-d sum-of-squares (sos) representation if there exist degree-d polynomials
h1, . . . , hr over the reals such that for all x ∈ {0, 1}n,

f(x) = h1(x)2 + · · ·+ hr(x)2.

Let sos-deg(f) be the minimum d such that a non-negative function f has a degree-d sum-of-
squares representation.1 This sos degree is an important quantity that arises in the context
of optimization and proof complexity, as also witnessed by our applications below.

The obvious fact that a sum of squares of polynomials is globally non-negative is remark-
ably useful. For example, for a graph G = ([n], E), if f(x1, . . . , xn) = c−

∑
(i,j)∈E(xi − xj)2

has an sos representation on the boolean cube, then c ≥
∑

(i,j)∈E(xi−xj)2 for all x ∈ {0, 1}n,
and hence G has no cut of size larger than c. Moreover if f has a degree-d sos representation
for small d, then this provides a small certificate (of size nO(d)) that f has no cut of size
larger than c. Such certificates can in fact be found by means of semidefinite programming;
these observations are the basis of the semidefinite programming hierarchies of Lasserre and
Parrilo [31, 18, 24] that have been the subject of intense study in approximation algorithms.

While exact sum-of-squares degree of functions on the boolean hypercube has been
previously studied, there has been little work on the approximation of such functions by sos
polynomials. This is the focus of our paper, and we prove a number of tight bounds on the

1 Note that the degree of the polynomial representing f will actually be 2d.
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approximate sum-of-squares degree of functions on the hypercube. We consider two notions
of approximation in this paper. The most familiar is `∞-approximation: an sos polynomial
h ε-approximates a function f : {0, 1}n → R+ in `∞-distance if |f(x) − h(x)| ≤ ε for all
x ∈ {0, 1}n. We let sos-degε(f, `∞) denote the minimum degree of an sos polynomial that
ε-approximates f in `∞-distance. The other notion is `1-approximation: an sos polynomial
h ε-approximates f in `1-distance if

∑
x∈{0,1}n |f(x)− h(x)| ≤ ε, and we let sos-degε(f, `1)

denote the minimum degree of an sos polynomial that ε-approximates f in `1-distance. Note
that ε = δ2n corresponds to average approximation error δ.2

For much of this paper we will focus on understanding the approximate sos degree of the
symmetric quadratic functions fk : {0, 1}n → R+ defined as fk(x) = (|x| − k)(|x| − k − 1)
for k = 0, 1, 2, . . . , n− 1. Our study of these functions is motivated by several reasons. First,
these functions have a close connection to the proof complexity of the knapsack problem [12],
and have recently been used to show lower bounds on semidefinite extension complexity [19];
we survey these two applications in Section 1.3 below. Furthermore, while the fk may look
very special, they are not too far from a general symmetric quadratic polynomial with real
coefficients that is nonnegative on the hypercube, for the following reason. Any symmetric
quadratic polynomial on the hypercube is of the form p(|x|) for a quadratic univariate
polynomial p. The polynomial p will have two roots. If the roots are complex they must
come in a conjugate pair and p is already sos; if the roots are real, and not both ≤ 0 or ≥ n,
then they must lie in an interval [k, k + 1], for some k ∈ {0, 1, . . . , n}, just as with fk.

In our first set of results, we give lower and upper bounds on the `∞-approximate sos
degree of the functions fk.

I Theorem 1.1 (`∞ sos approximations of fk). For all integers n ≥ 0, k ∈ {1, . . . , n − 2},
and ε = ε(n) satisfying 0 < ε < 1/50, we have
1. sos-degε(fk, `∞) = Ω(

√
k(n− k))

2. sos-degε(fk, `∞) = O(
√
k(n− k) +

√
n log(1/ε))

We expect the lower bound can be improved for the case of small ε to match the upper
bound, but have been unable to show that so far. Observe that in the case of constant error,
we obtain the tight bound of sos-deg1/50(fk, `∞) = Θ

(√
k(n− k)

)
. While we are not aware

of any previous work on `∞-approximate sos degree, techniques of Grigoriev [12] can be used
to show that, for n odd, any degree-(n− 1)/2 sos polynomial has error at least Ω(1/ logn)
for approximating fbn/2c. This derivation is given in Appendix D.

The similarity between our `∞ bounds for fk and Paturi’s bound for the 0/1-valued
functions gk defined above is striking. For the upper bound, the connection can be seen as

2 Also note that the existence of a degree-d sos approximation in either of these notions can be formulated
as the feasibility of a semidefinite program of size polynomial in the domain size 2n, as follows. For
x ∈ {0, 1}n, let mx be the column vector of dimension D =

∑d

i=0

(
n
i

)
indexed by sets S ⊆ [n]

of size ≤ d, with entry mx,S =
∏

i∈S
xi. Let Mx be the D × D rank-1 matrix mxm

T
x . Suppose

p(x) =
∑

S:|S|≤d
pS

∏
i∈S

xi is a multilinear polynomial of degree d, where with slight abuse of notation
we use p also to denote the D-dimensional vector of real coefficients pS . Then p(x) is the inner product
of p and mx, so p(x)2 = Tr(ppTMx). Accordingly, every sos polynomial h of degree ≤ d corresponds to
a psd matrix Z such that h(x) = Tr(ZMx) for all x ∈ {0, 1}n (Z can be written as

∑r

i=1 pip
T
i , so the

rank r of Z would be the number of squared polynomials that h sums over). Hence the existence of an
sos polynomial h of degree ≤ d that ε-approximates f in `∞-distance, is equivalent to the existence
of a psd matrix Z such that |Tr(ZMx)− f(x)| ≤ ε for all x ∈ {0, 1}n. The latter corresponds to the
feasibility of an SDP with 2n constraints, which (up to issues of precision) can be solved in time 2O(n).
However, we won’t use this fact in this paper.
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follows: we can construct an ε-approximation to fk in `∞-distance by finding a univariate
polynomial e(z) such that h(z) = (z − k)(z − k − 1) + e(z) is globally nonnegative (i.e.,
h(z) ≥ 0 for all z ∈ R), and |e(i)| ≤ ε on integer points i ∈ {0, 1, . . . , n}. As h(z) is a globally
nonnegative univariate polynomial, it is sos, and furthermore h(|x|) is an ε-approximation
to fk. What are the requirements on e? It must be large enough to “cancel out” the
negative values of (z − k)(z − k − 1) in the interval (k, k + 1), but small on all integer points
0, 1, . . . , n. This is very similar to looking for an ε-approximation of gk, and techniques
similar to those used by Paturi show that there is an e satisfying these requirements of
degree O(

√
k(n− k)+

√
n log(1/ε)). Note that this is slightly weaker than what Theorem 1.1

claims; we will soon discuss how to bring the log(1/ε) inside the square-root.
This upper bound argument shows that fk can be approximated by a polynomial h(|x|)

where h is globally nonnegative. For the lower bound, it is not clear at all why the optimal
approximating polynomial should be of this form. Any symmetric polynomial f(x1, . . . , xn)
on the hypercube is of the form f(x1, . . . , xn) = p(|x|) for a univariate polynomial p. Even if
f is sos, however, this does not mean that p will be globally nonnegative.

For the lower bound, we use an elegant recent result of Blekherman [2] that gives a
characterization of the possible form of univariate polynomials p such that f(x1, . . . , xn) =
p(|x|) when f is a sos and symmetric real-valued boolean function. This structural theorem
allows us to reduce the analysis of the approximate sos degree of fk to the approximate
degree of a symmetric function on the boolean hypercube, for which we can apply Paturi’s
lower bound.

Interestingly, for small ε we can show a better upper bound than that given by the
argument sketched above. To get the better upper bound of Theorem 1.1, we take advantage
of a recent characterization of the sos degree of a non-negative real-valued boolean function as
the quantum query complexity of computing that function in expectation (see Section 1.3.3).
We explicitly design a quantum algorithm to approximately compute fk in expectation with
query complexity O(

√
k(n− k) +

√
n log(1/ε)), which by the characterization implies the

same upper bound on sos-degε(fk, `∞). This again parallels the situation for symmetric
boolean-valued functions, where the tight upper bound of O(

√
k(n− k) +

√
n log(1/ε)) on

degε(gk) was first shown by the construction of a quantum query algorithm [34].
We also study sos `1-approximations of fk:

I Theorem 1.2 (sos `1-approximations of fk). Let n be odd and k = bn/2c. Then

sos-degδ2n(fk, `1) ≤
⌈

3
√
n√

2δ
ln
(

1
δ

)⌉
,

for any 8/
√

2n ≤ δ ≤ 1/4. For k < 0.49n, we have sos-degδ2n(fk, `1) = O

(
ln
(

1
δ

))
.

The proof of this theorem follows the same plan sketched above for the upper bound in
the `∞ case. We construct a low-degree univariate polynomial e(z) such that h(z) =
(z − k)(z − k − 1) + e(z) is globally nonnegative and ε =

∑n
i=0
(
n
i

)
|e(i)| is relatively small.

Then h(|x|) gives the desired sos approximation to fk in `1-norm. We discuss the applications
of this theorem to the lower bounds on semidefinite extension complexity of [19] below in
Section 1.3.1.

1.3 Applications in complexity theory
Here we describe complexity-theoretic consequences of such sos bounds in three different
settings.
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1.3.1 Positive semidefinite extension complexity
The approximation of boolean functions by sos polynomials has played an important role in
inapproximability results. Our first application is to the analysis of the positive semidefinite
extension complexity of polytopes. The recent breakthrough work of Lee, Raghavendra and
Steurer [19] showed that any semidefinite program whose feasible region projects to the
correlation polytope must have size 2Ω̃(n2/11). By reduction this in turn implies a 2Ω̃(n1/11) lower
bound for the polytope corresponding to the Traveling Salesman Problem on n-vertex graphs,
showing (roughly speaking) that TSP cannot be solved by small semidefinite programs.

The argument of [19] shows that lower bounds on the degree of sos polynomials that
approximate a function fk(x) = (|x|−k)(|x|−k−1) in `1-distance on the boolean cube imply
lower bounds on the semidefinite extension complexity of the correlation polytope. They
build on the work of Grigoriev [12] to show that, for odd n and k = bn/2c, any sum of squares
of degree-bn/2c polynomials has `1-error at least 2n−2/

√
n in approximating fbn/2c.3 Our

Theorem 1.2 shows that this bound is tight, up to logarithmic factors. Further, our upper
bound on sos-degδ2n(fk, `1) throughout the full range of error implies, roughly speaking, that
the quantitative bounds of [19] cannot be improved simply by showing better sos degree
lower bounds on fk.

1.3.2 Proof complexity
Our second result is in proof complexity. Grigoriev and Vorobjov [14] introduced a proof
system based on the Positivstellensatz [32]. We explain this proof system in the context of
the knapsack problem. In this instance, the knapsack problem can be phrased as looking for
a solution x ∈ Rn to the system of equations

n∑
i=1

xi − r = 0, x2
1 − x1 = 0, . . . , x2

n − xn = 0 (1)

where r ∈ R. When r is not an integer, this system obviously has no solution. One way to
certify that there is no solution, is to find polynomials g, g1, . . . , gn and sos polynomial h
such that

g(x) ·
(

n∑
i=1

xi − r

)
+

n∑
i=1

gi(x) · (x2
i − xi) = 1 + h(x) . (2)

Such a collection of polynomials constitutes a Positivstellensatz refutation of the statement
that (1) has a solution: if a ∈ Rn satisfied

∑n
i=1 ai − r = 0, and a2

i − ai = 0 for i = 1, . . . , n,
then the left-hand side of (2) would evaluate to 0 on a, while the right-hand side would
evaluate to 1 + h(a) ≥ 1, a contradiction.

Grigoriev and Vorobjov define the Positivstellensatz refutation degree of the system (1) as

max
{

deg
(
g(x) ·

(
n∑
i=1

xi − r

))
,max
i∈[n]
{deg(gi(x) · (x2

i − xi))}, deg(h(x))
}
,

3 The initial version of [19] only claimed a lower bound on the `1-error of Ω(2n/n3/2). However, their
argument actually shows a bound of Ω(2n/

√
n) after a computational error is corrected. This improves

the bound on the psd extension complexity of the correlation polytope from the 2Ω̃(n2/13), of their paper,
to the 2Ω̃(n2/11) quoted here.
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maximized over all sets of polynomials satisfying (2). Grigoriev [12] shows that if k < r < k+1
for a nonnegative integer k < (n − 3)/2, then any Positivstellensatz refutation of (1) has
degree at least 2k + 4. We provide a simple proof of this in Appendix C using Blekherman’s
theorem. Kurpisz et al. [17] independently also give an alternative proof of Grigoriev’s lower
bound, by showing a more general theorem that reduces the analysis of dual certificates
for very symmetric sos proof systems (such as for knapsack) to the analysis of univariate
polynomials.

Grigoriev’s lower bound shows the weakness of the Positivstellensatz-based proof system:
even to refute such easy instances it already needs polynomials of fairly high degree. We prove
here that Grigoriev’s lower bound is exactly tight, answering an open question from [12].

I Theorem 1.3. Let k < r < k + 1 for a nonnegative integer k. The Positivstellensatz
refutation degree of (1) with this value of r is at most 2k + 4.

1.3.3 Quantum query complexity of approximating a function in
expectation

The third application is to quantum algorithms. Kaniewski et al. [16] observed a very close
connection between the sos degree of a function f : {0, 1}n → R+ and a variant of quantum
query complexity: sos-deg(f) is exactly equal to the optimal query complexity among all
quantum algorithms with non-negative outputs whose expected output on input x equals
f(x).4 This model of query complexity in expectation is motivated by similar models of
communication complexity that arose in the study of extension complexity of polytopes [9].

However, as [16] note, this model has some intrinsic interest and motivation as well.
Suppose we want to approximate F (x) =

∑m
i=1 fi(x), where each fi is a non-negative

function of x ∈ {0, 1}n. Then we can just compute, for each i, a random variable whose
expected value is fi(x) and then output the sum of those random variables. By linearity of
expectation, the output will have the correct expectation F (x). It will be tightly concentrated
around its expectation if the individual random variables have a variance that is not too
large. Thus in some cases it suffices to compute the fi(x) in expectation only, rather than to
compute the values fi(x) themselves (which may be much more expensive). In this example,
it is actually not even necessary to compute each fi(x) exactly in expectation. If the ith
random variable has an expectation that is within εi of fi(x), then the expected value of our
output is within

∑m
i=1 εi of the correct value F (x).

The same proofs that Kaniewski et al. [16] used to equate sos-deg(f) and quantum query
complexity in expectation also work in the approximate case. For example, sos-degε(f, `∞)
is the optimal query complexity among all quantum algorithms with non-negative outputs
whose expected output on input x differs from f(x) by at most ε, for every x ∈ {0, 1}n, and
the analogous statements hold for approximation using the other norms. Accordingly, our
above results about approximate sos degree immediately translate to results about quantum
query complexity of algorithms that approximate f in expectation.

1.4 Organization
The rest of the paper is organized as follows. In Section 2, we prove our sos `∞-approximation
bounds (Theorem 1.1). In Section 3 we prove upper bounds on the degree of sos `1-ap-

4 To avoid potential confusion: for each fixed x the expectation is taken over the internal randomness of
the algorithm; it is not an expectation over different inputs x.
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proximations to fbn/2c (Theorem 1.2), and show that the lower bound of [19] on the extension
complexity of the correlation polytope cannot be improved by obtaining better sos `1-
approximate degree lower bounds. In Section 4 we prove Theorem 1.3, showing tightness of
Grigoriev’s knapsack lower bound.

2 Sum-of-squares approximation in `∞-norm

In this section we give lower and upper bounds on the `∞-approximate sos degree of the
function fk(x) = (|x| − k)(|x| − k − 1) to prove Theorem 1.1.

I Remark. Throughout this section, we will assume that k ≤ n/2. Letting x̄ denote the bitwise
complement of x, we see that fk(x) = (|x̄|−(n−k−1))(|x̄|−(n−k)) = (|x̄|−`)(|x̄|−`−1) where
` = n− k− 1. Thus if k > n/2, then ` ≤ n/2 and fk(x) = f`(x̄). For any h : {0, 1}n → R the
functions h(x) and h(x̄) have the same sos degree, so it suffices to work with fk for k ≤ n/2.

2.1 Lower bound preliminaries
The following lemma is implicit in Paturi [25].

I Lemma 2.1 (Paturi [25]). Let p : R → R be a univariate polynomial and suppose that
0 ≤ p(i) ≤ c for all i ∈ {0, 1, . . . , n}. If |p′(α)| ≥ δ for some 0 ≤ α ≤ n, then deg(p) =
Ω( δc

√
α(n− α)).

We give a simple, but convenient, application of this lemma to the case where p is bounded
on {0, 1, . . . , n}, except possibly for a small set S near where p is known to be small.

I Lemma 2.2. Let p : R → R be a univariate polynomial, S ⊆ {0, 1, . . . , n}, and suppose
that the following bounds are known.
|p(i)| ≤ c for all i ∈ {0, 1, . . . , n} \ S, for a constant c.
p(α) ≤ ε, for some α ∈ {0, 1, . . . , bn/2c}.
p(β) ≥ a where |α− β| ≤ d1, for a constant d1.
maxi∈S |i− α| ≤ d2, for a constant d2.

If a ≥ c > ε, then deg(p) = Ω(
√
α(n− α)), where the constant in the Ω(.) depends on

c, d1, d2.

Proof. If |p(i)| ≤ c for all i ∈ S, then applying Paturi’s lemma directly we obtain a bound of

Ω
(
a− ε
d1c

√
(α− d1)(n− α+ d1)

)
.

Otherwise, suppose the maximum of |p(i)| over i ∈ {0, 1, . . . , n} is attained at j ∈ S. Then
the derivative of p is at least (|p(j)| − ε)/d2. Applying Paturi’s lemma in this case gives a
bound of

Ω
(
|p(j)| − ε
d2|p(j)|

√
(α− d2)(n− α+ d2)

)
≥ Ω

(
1
d2

(
1− ε

c

)√
(α− d2)(n− α+ d2)

)
. J

We will also need the following elegant theorem of Blekherman [2]. Recall that a symmetric
real-valued boolean function f : {0, 1}n → R satisfies f(x) = f(π(x)) for all x ∈ {0, 1}n
and π ∈ Sn, where the permutation π acts as π((x1, . . . , xn)) = (xπ(1), . . . , xπ(n)). For any
symmetric boolean function f of degree d, there is a univariate polynomial f̃ of degree d
such that f(x1, . . . , xn) = f̃(x1 + · · ·+ xn).
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I Theorem 2.3 (Blekherman [2]). Let f : {0, 1}n → R+ be a symmetric non-negative real-
valued boolean function and f̃ a univariate polynomial such that f(x1, . . . , xn) = f̃(x1 + · · ·+
xn). If f can be written as the sum of squares of n-variate polynomials of degree d ≤ n/2,
then we can write

f̃(z) = qd(z) + z(n− z)qd−1(z) + z(z − 1)(n− z)(n− 1− z)qd−2(z) + · · ·
· · ·+ z(z − 1) · · · (z − d+ 1)(n− z)(n− 1− z) · · · (n− d+ 1− z)q0(z) (3)

where each qt(z) is a univariate sos polynomial with sos-deg(qt) ≤ t.

In Appendix B we include a proof of Blekherman’s theorem. In Appendix C, we use
Blekherman’s theorem to provide a simple proof of Grigoriev’s lower bound [12] on the degree
of Positivstellensatz refutations for the knapsack problem.

2.2 Lower bound for exact sos degree
To illustrate our proof technique, we first show how the above tools can be used to prove a
bound of Ω(

√
k(n− k)) on the exact sos degree of f(x) = (|x| − k)(|x| − k − 1). In the next

section, we will extend this proof to also work for the approximate case.

I Theorem 2.4. Let fk : {0, 1}n → R+ be defined as fk(x) = (|x| − k)(|x| − k − 1) for an
integer 1 ≤ k ≤ n− 2. Then sos-deg(fk) = Ω(

√
k(n− k)).

Proof. Following Remark 2, if we show the theorem for 1 ≤ k ≤ n/2, then it will also imply
the theorem for 1 ≤ k ≤ n− 2. We thus assume 1 ≤ k ≤ n/2.

Let d be the sos degree of f . We may assume d ≤ n/2 as otherwise the theorem holds.
Let f̃ be a univariate polynomial of degree ≤ 2d such that f̃(x1 + · · ·+ xn) = f(x1, . . . , xn).
Write f̃(z) = g1(z) + g2(z) where g1(z) = qd(z) + z(n − z)qd−1(z) + · · ·+ z(z − 1) · · · (z −
(k− 1))(n− z)(n− 1− z)(n− (k− 1)− z)qd−k(z) is the first k+ 1 terms in the representation
of f̃ of Theorem 2.3, and g2(z) is the remaining part of that representation.

Our first claim is that (z − k) is a factor of both g1 and g2. Notice that f̃(k) =
g1(k) + g2(k) = 0. Furthermore each term of g1 and g2 is nonnegative on integer points
between 0 and n, which means that each individual term of g1 and g2 must evaluate to 0 at
k.

Consider now a general term z(z − 1) · · · (z − t)(n − z)(n − 1 − z)(n − t − z)qd−t−1(z)
of Blekherman’s representation. If t ≥ k then this term obviously has a factor of z − k. If
t < k then the prefactor z(z− 1) · · · (z− t)(n− z)(n− 1− z)(n− t− z) is non-zero for z = k,
so it must be the case that qd−t−1(k) = 0. Since qd−t−1(z) is a univariate sum-of-squares
polynomial, even (z − k)2 divides qd−t−1(z).

By the choice of the breakpoint between g1 and g2, this shows that (z − k)2 is a factor of
g1 and z − k is a factor of g2. By the same argument, (z − (k + 1))2 is also a factor of g1,
and (z − (k + 1)) is a factor of g2.

In light of this, we can write g1(z) = (z−k)(z−k−1)h1(z), g2(z) = (z−k)(z−k−1)h2(z)
so that

(z − k)(z − k − 1) = f̃(z) = (z − k)(z − k − 1)(h1(z) + h2(z)) .

This means that h1(i) + h2(i) = 1 for all i ∈ {0, 1, . . . , n} \ {k, k + 1}. Furthermore,
h1(k) = h1(k + 1) = 0 as h1 still has roots at k, k + 1 (as g1 had double roots there),
and h2(i) = 0 for i ∈ {0, . . . , k − 1} because each term in h2 includes the prefactor z(z −
1) · · · (z − k+ 1). Combining these observations with the fact that h1(i) ≥ 0, h2(i) ≥ 0 for all
i ∈ {0, 1, . . . , n} \ {k, k + 1} gives the following:
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1. 0 ≤ h1(i) ≤ 1 for all i ∈ {0, 1, . . . , n}.
2. h1(i) = 1 for i ∈ {0, . . . , k − 1}.
3. h1(k) = h1(k + 1) = 0.
Applying Lemma 2.2 to h1 now gives the desired result. J

2.3 Lower bound for `∞-approximate sos degree
Now we show the lower bound of Theorem 1.1.

I Theorem 2.5. Let f : {0, 1}n → R+ be defined as f(x) = (|x| − k)(|x| − k − 1) for some
integer 1 ≤ k ≤ n− 2. Then sos-deg1/50(f, `∞) = Ω(

√
k(n− k)).

Proof. We now describe how the above proof can be modified to work for `∞-approximate
sum-of-squares degree. We again assume 1 ≤ k ≤ n/2. Suppose that h : {0, 1}n → R is a sum
of squares of degree-d ≤ n/2 polynomials that satisfies |h(x)− f(x)| ≤ ε for all x ∈ {0, 1}n,
for some ε < 1/4 to be determined later. Let h̃ be the univariate polynomial such that
h̃(x1 + · · ·+ xn) = h(x1, . . . , xn). Note that h̃ satisfies |h̃(i)− (i− k)(i− k − 1)| ≤ ε for all
i ∈ {0, 1, . . . , n}. We again use Blekherman’s theorem to decompose h̃(z) = g1(z) + g2(z)
where, as before, g1(z) = qd(z) + z(n− z)qd−1(z) + · · ·+ z(z − 1) · · · (z − k + 1)(n− z)(n−
1− z)(n− k + 1− z)qd−k(z). The polynomial g1 has the following properties.
1. g1(i) = h̃(i) for i ∈ {0, 1, . . . , k}, because all terms of g2 are zero on these points.
2. g1(i) ≤ h̃(i) for i ∈ {0, 1, . . . , n}. This follows as g2(i) is nonnegative on integer points in
{0, 1, . . . , n}.

3. g1(i) ≥ 0 for i ∈ [k− 1, n− k+ 1]. Each term of g1 is nonnegative in this interval because
the prefactor is.

We will consider two cases based on the value of g1(k + 3/2). First consider the case
g1(k + 3/2) > ε. In this case, consider a point α ∈ argminz{g1(z) : k − 1 ≤ z ≤ k + 3/2}.
Let g1(α) = δ. By item (3) above and as g1(k − 1), g1(k + 3/2) > ε and g1(k), g1(k + 1) ≤ ε
we have 0 ≤ δ ≤ ε and also g′1(α) = 0.

Now consider the function p1 = g1 − δ. As p1(α) = p′1(α) = 0 it follows that p1 has
a double root at α. Define q1 by p1(z) = (z − α)2q1(z). Note that q1 has the following
properties.
1. q1(i) ≤ 6 + ε for i ∈ {0, 1, . . . , n} \ {k − 1, k, k + 1, k + 2}.
2. q1(k − 1) ≥ 2−2ε

9 .
3. As either |α− k| ≥ 1/2 or |α− k − 1| ≥ 1/2 we have either q1(k) ≤ 4ε or q1(k + 1) ≤ 4ε.
Applying Lemma 2.2 then gives the desired lower bound in this case as long as ε < 1/19.

Now we consider the second case, that g1(k + 3/2) ≤ ε. In this case, we modify g1 by
adding a function that is shaped like a “smile.” Let p1(z) = g1(z) + 8ε(x− k − 1)(x− k − 2).
Note that p1 satisfies p1(k + 1) ≥ 0, p1(k + 3/2) ≤ −ε, and p1(k + 2) ≥ 0. Thus p1(z) has
two roots α, β in [k+ 1, k+ 2], with α ≤ β. Let p1(z) = (z−α)(z−β)r1(z). Then r1 satisfies
the following properties.
1. r1(i) ≤ 2 for i ∈ {0, 1, . . . , n} \ {k + 1, k + 2}.
2. r1(k − 1) ≥ 2

9 + 5ε.
3. |r1(k)| ≤ 16ε.
Applying Lemma 2.2 then gives the desired lower bound as long as ε < 2/99. J

2.4 Upper bound for `∞-approximate sos degree
In this section we show that the lower bound in Theorem 2.5 is tight. To do this, we use
the characterization of the sos degree of a function f : {0, 1}n → R+ as the quantum query
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complexity of computing f in expectation [16]. In this model, a quantum algorithm A makes
a number T of quantum queries to the hidden input x, and outputs a non-negative real
number. We say that the algorithm A computes f in expectation if the expected value of the
output of the algorithm A on input x is exactly equal to f(x). We will use QE(f) to denote
the minimum number of quantum queries T needed by such an algorithm to compute f in
expectation. Kaniewski et al. [16] show that QE(f) exactly captures the sos degree of f :

I Theorem 2.6 ([16]). Let f : {0, 1}n → R+. Then QE(f) = sos-deg(f).

Thus, in order to prove an upper bound on the (approximate) sos degree of a function f ,
it suffices to construct a quantum query algorithm that (approximately) computes f in
expectation. The only knowledge of quantum query complexity needed to understand the
algorithm is Theorem 2.6 above, and the existence of the following quantum algorithms, all
of which are variants of Grover search.

Regular Grover [15, 4]: If |x| ≥ t then there is a quantum algorithm (depending on t)
using O(

√
n/t) queries that finds an i such that xi = 1 with probability at least 1/2.

ε-error Grover [5]: There is a quantum algorithm using O(
√
n log(1/ε)) queries that

finds an i such that xi = 1 with probability at least 1− ε if |x| ≥ 1.
Exact Grover [4]: If |x| = t then there is a quantum algorithm (depending on t) using
O(
√
n/t) queries that finds an i such that xi = 1 with certainty.

The algorithm consists of three subroutines, which we now describe. We begin with the
simplest procedure, SAMPLE(x, S), which motivates the basic plan of the algorithm.

Algorithm 1 Given x ∈ {0, 1}n and S ⊆ [n], samples two entries of x outside of S
1: procedure Sample(x, S)
2: Randomly choose i 6= j ∈ [n] \ S. Output xixj · (n− |S|)(n− |S| − 1)
3: end procedure

I Claim 2.7. The procedure SAMPLE(x, S) makes two queries and the expected value of its
output is (|x| − |S|)(|x| − |S| − 1).

The procedure SAMPLE suggests the following high-level idea for an algorithm for
computing fk(x) = (|x| − k)(|x| − k − 1). For simplicity we describe the high-level idea for
the case where k ≤ n/2 and where we want to compute a constant-error ε-approximation of
fk, in expectation.

First we try to find a set S of k ones in x assuming that |x| > 2k, using a procedure HIGH.
If we find such a set S then we run SAMPLE(x, S) and output f(x) exactly, in expectation.
If the procedure HIGH fails to find such a set S, then we run a procedure LOW. This uses
exact Grover search to determine the Hamming weight of x with certainty if |x| ≤ 2k. Once
we know the Hamming weight of x we can correctly output f(x), deterministically. Both the
procedures HIGH and LOW can be done with O(

√
kn) queries, in the constant error ε case.

The only case where the algorithm may err is if |x| > 2k but the procedure HIGH fails to
find k ones in x. The most subtle part of the algorithm is tuning the parameters such that
this error is at most ε in expectation. We now describe the procedures HIGH and LOW.

I Lemma 2.8. Fix δ and let M = max{k, dlog(1/δ)e}. Suppose that |x| ≥ t > 2k. Then
procedure HIGH(x, t, δ) makes O(M

√
n/t) queries and returns a set S with |S| = k and

xi = 1 for all i ∈ S with probability at least 1− δ.
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Algorithm 2 Find k ones in x with probability 1− δ, assuming |x| ≥ t > 2k
1: procedure High(x, t, δ)
2: S = ∅
3: ` = 1
4: while ` ≤ 5 max(k, dlog(1/δ)e) and |S| < k do
5: `← `+ 1
6: Grover search assuming |x| ≥ t/2.
7: if find xi = 1 then S ← S ∪ i, x← x \ xi
8: end if
9: end while
10: return S

11: end procedure

Proof. As each Grover search requires O(
√
n/t) queries, in total the procedure makes

O(M
√
n/t) queries. Let us now estimate the probability that it exits without finding a set

S of size k.
As we are given that initially |x| ≥ t > 2k, if less than k ones are found then throughout

the algorithm there remain at least t/2 ones in x. Thus each run of Grover has probability
of success at least 1/2. The probability to have fewer than k successes among the 5M runs
is therefore at most

1
25M

k−1∑
i=0

(
5M
i

)
≤ 2−(1−H(k/5M))5M ≤ 2−M ≤ 2− log(1/δ) = δ,

where H(·) denotes binary entropy, and we used that 1−H(k/5M) ≥ 1−H(1/5) ≥ 1/5. J

Next we give the algorithm LOW.

Algorithm 3 Outputs (|x| − k)(|x| − k − 1) with certainty if |x| ≤ t
1: procedure Low(x, t)
2: S = ∅
3: for i = t to 1 do
4: Exact Grover search assuming |x| = i

5: if find xi = 1 then S ← S ∪ i, x← x \ xi
6: end if
7: end for
8: Output (|S| − k)(|S| − k − 1).
9: end procedure

I Claim 2.9. If |x| ≤ t, then LOW(x,t) outputs (|x| − k)(|x| − k − 1) and makes O(
√
tn)

queries.

Proof. The number of queries is
t∑
i=1

O(
√
n/i) = O(

√
tn) .

Next we show that if |x| ≤ t, then LOW(x, t) will find all of the ones in x (this is similar
to [11]). Initially the index i = t and thus i ≥ |x|. This invariant is maintained throughout
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the algorithm. If ever i = |x| then we will find all the remaining ones in x as our guess for
the number of ones is always correct after this point. On the other hand, if the algorithm
terminates with i = 1 > |x| then we have found all the ones in the original input x. J

With these procedures in place, we can describe the main algorithm and prove its
correctness.

Algorithm 4 Main
1: procedure Main(x, ε)
2: m = max(k, dlog(1/ε)e)
3: for i = 1 to blog(n/m)c do
4: t← 2im
5: δ ← ε/(4t2)
6: S=HIGH(x, t, δ)
7: if |S| = k then
8: SAMPLE(x, S)
9: Exit
10: end if
11: end for
12: LOW(x, 2m)
13: end procedure

I Theorem 2.10. For every x ∈ {0, 1}n, the expected value of Main(x, ε) differs from
(|x| − k)(|x| − k − 1) by at most ε. The algorithm makes at most O(

√
kn +

√
n log(1/ε))

queries.

Proof. Following Remark 2 we may assume that k ≤ n/2. First we verify the stated
complexity of the algorithm. Note that by definition of m in the main Algorithm 4, it suffices
to show that the algorithm makes O(

√
nm) queries. By Claim 2.9 the call to LOW(x, 2m)

makes O(
√
mn) queries, and by Claim 2.7 there are at most 2 queries made by SAMPLE as

this is called at most once. Finally, the number of queries in the call to HIGH when t = 2im
and δ = ε/(4t2) is at most

O

(
k

√
n

2im + log(22i+2m2/ε)
√

n

2im

)
= O

(√
kn

2i +
√
n log(1/ε)

2i + log(22i+2m2)
√

n

2im

)
where we have used the fact that m ≥ k and m ≥ log(1/ε). The sum of the first two terms
over i ≥ 1 is O(

√
kn+

√
n log(1/ε)) as desired. As for the sum of the third term, we have∑

i≥1
O

(
log(22i+2m2)

√
n

2im

)
= O

(
log(m)

√
n

m

)
= O(

√
n) .

We now verify correctness. If |x| ≤ 2m then the algorithm will output (|x| − k)(|x| − k − 1)
in expectation exactly: if k ones are found in x by a call to HIGH then this will be done
by SAMPLE, otherwise all ones in x will be found with certainty by LOW, which will
then output correctly. If |x| > 2m and a call to HIGH succeeds in finding k ones in x,
the algorithm will also output (|x| − k)(|x| − k − 1) exactly, in expectation. Let p be the
probability that this does not happen, i.e., that the output on x is given by the procedure
LOW. Then the expected value of the output on x is

(1− p)(|x| − k)(|x| − k − 1) + p · E[LOW(x, 2m)] ,
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and the deviation from the desired output (|x| − k)(|x| − k − 1) is

p · (E[LOW(x, 2m)]− (|x| − k)(|x| − k − 1)) .

Now LOW(x, 2m) will always output a value 0 ≤ (`− k)(`− k− 1) for some ` ∈ [2m], which
is always at most the correct value (|x| − k)(|x| − k − 1) as |x| ≥ 2m > k. Therefore the
largest difference between these is when LOW(x, 2m) outputs 0, giving

|p · (E[LOW(x, 2m)]− (|x| − k)(|x| − k − 1))| ≤ p · (|x| − k)(|x| − k − 1) ≤ p · |x|2 .

We now finally upper bound this error by giving an upper bound on p. Let i and t = 2im
be such that t ≤ |x| < 2t. For this value of t and δ = ε/(4t2) the call to HIGH(x, t, δ) fails
to find a set S of size k with probability at most δ ≤ ε/|x|2. Thus p · |x|2 ≤ δ · |x|2 ≤ ε, as
desired. J

By Theorem 2.6, the characterization of sos degree in terms of quantum query complexity
in expectation (Theorem 2.10) gives the upper bound in Theorem 1.1

3 Sum-of-squares approximation in `1-norm

In this section, we show upper bounds on the sos degree of polynomials to approximate fk
in `1-norm. In this section we focus on the case where k is bn/2c. When k < 0.49n the
function fk is quite easy to approximate in `1-norm: there is an sos polynomial of degree
O(ln(1/δ)) which gives a δ2n-approximation. We omit the details. 5 Our main result on
`1-approximation is the following.

I Theorem 3.1. Let n be odd and k = bn/2c. Then for any 8/
√

2n ≤ δ ≤ 1/4

sos-degδ2n(fk, `1) ≤
⌈

3
√
n√

2δ
ln
(

1
δ

)⌉
.

Lee, Raghavendra, and Steurer [19], building on work of Grigoriev [12], show that in this
case sos-deg2n/

√
n(f, `1) ≥ (n− 1)/2. This lower bound was then plugged into their general

theorem to lift `1-approximate sos degree lower bounds to lower bounds on semidefinite
extension complexity. By taking δ = 3 ln(n)/

√
2n, Theorem 3.1 shows that this lower bound

on the `1-error is tight, up to a logarithmic factor. Also, taking δ to be a small additive
constant shows that there is a degree-O(

√
n) sos polynomial which, on average, disagrees with

fk by only a small constant. Taken as a whole, Theorem 3.1 implies that the quantitative
bounds on the semidefinite extension complexity of the correlation polytope of [19] cannot
be improved simply by improving the sos degree lower bounds on the fk. We now describe
the connection to [19] in greater detail.

3.1 The theorem of Lee, Raghavendra, and Steurer
For a function f : {0, 1}n → R and an integer N ≥ n, let Mf

N :
(
N
n

)
× {0, 1}N → [0, 1] be

the matrix where Mf
N (S, x) = f(x|S). The pattern matrix of f , introduced in the work of

5 One way to construct such an sos polynomial is to construct a polynomial e as mentioned after
Theorem 1.2 from a classical sampling algorithm: query O(ln(1/δ)) randomly chosen input bits; output
some large number if the observed ratio of 1s is very close to k/n, output 0 otherwise. This induces an
sos polynomial with the right properties.
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Sherstov [29], is a submatrix of Mf
N . The main theorem of Lee, Raghavendra, and Steurer

is the following statement. Here a degree-d pseudo-density D is a function D : {0, 1}n → R
such that Ex[D(x)] = 1 and Ex[D(x)g(x)2] ≥ 0 for all polynomials g of degree at most d/2
on the boolean cube, with the expectation over a uniformly random x ∈ {0, 1}n. We use
‖D‖∞ to denote maxx∈{0,1}n |D(x)|.

I Theorem 3.2 ([19]). Let f : {0, 1}n → [0, 1]. If there exists an ε ∈ (0, 1] and a degree-d
pseudo-density D : {0, 1}n → R satisfying Ex[D(x)f(x)] < −ε, then for every N ≥ 2n

rkpsd(Mf
N ) ≥

(
cεN

dn2‖D‖∞ logn

)d/4(
ε

‖D‖∞

)3/2√
Exf(x) ,

where c > 0 is a universal constant.

We do not formally define here the positive semidefinite (psd) rank of a matrix (denoted
by rkpsd above), but remark that psd rank lower bounds are equivalent to semidefinite
extension complexity lower bounds. Lee, Raghavendra, and Steurer proved Theorem 3.2 en
route to their breakthrough result on superpolynomial size lower bounds for semidefinite
programming relaxations of hard optimization problems.

The more pertinent aspect of Theorem 3.2 to us is the role of the degree-d pseudo-
density D. Note that, once we fix the degree of the pseudo-density, the bound only depends
on the ratio Ex[D(x)f(x)]/‖D‖∞. The largest such ratio that a degree-d pseudo-density can
achieve is closely related to the best `1-approximation of f by degree-d/2 sos polynomials.
The following claim follows from strong duality of semidefinite programming.

I Claim 3.3. Let f : {0, 1}n → R. Then sos-degδ2n(f, `1) > d if and only if there exists a
“witness” function ψ : {0, 1}n → R satisfying Ex[f(x)ψ(x)] > δ, and Ex[p2(x)ψ(x)] ≤ 0 for
all polynomials p of degree at most d, and ‖ψ‖∞ = 1.

For n odd and k = bn/2c Lee et al. [19], building on work of Grigoriev [12], show that there
is a degree-(n − 1) pseudo-density D such that Ex[D(x)fbn/2c]/‖D‖∞ < − 1

4
√
n
. Plugging

f = fbn/2c/n
2 (with this normalization the range is in [0, 1]) into Theorem 3.2 gives a lower

bound of 2Ω̃(N2/11) on the psd rank of Mf
N for N = Õ(n11/2). As Mf

N is a submatrix of the
slack matrix of the correlation polytope, this gives the desired lower bound on the semidefinite
extension complexity of the correlation polytope.

In light of Claim 3.3, if sos-degδ2n(f, `1) ≤ d, then there can be no degree-2d pseudo-
density with Ex[D(x)f(x)]/‖D‖∞ < −δ. The `1-approximate sos degree upper bounds of
Theorem 3.1 therefore imply the non-existence of pseudo-densities with good properties for
Theorem 3.2. It can be verified that 2Ω̃(N2/11) is in fact the best quantitative bound that
Theorem 3.2 can show on rkpsd(Mfk

N ) over all the functions fk and tradeoffs between δ and
sos-degδ2n(fk, `1).

3.2 Proof of Theorem 3.1
Throughout this proof we set f = fbn/2c. The main idea of the proof of Theorem 3.1 is
to construct a univariate polynomial p such that h(z) = (z − bn/2c)(z − dn/2e) + p(z) is
globally nonnegative (and therefore sos) and

∑n
i=0
(
n
i

)
|p(i)|, which is the `1-error of h(|x|)

in approximating f , is reasonably small. We will construct p using Chebyshev polynomials.
Similar constructions to what we need have been done before, see for example [28]; as our
requirements are somewhat specific, however, we do the construction from scratch.

Let Td be the Chebyshev polynomial of degree d. We first recall some basic facts about
Chebyshev polynomials [27].
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I Fact 3.4. Let Td(z) be the Chebyshev polynomial of degree d. Then
1. |Td(z)| ≤ 1 for z ∈ [−1, 1].
2. Td(z) = 1

2
(
(z −

√
z2 − 1)d + (z +

√
z2 − 1)d

)
.

3. Td+1(z) = 2zTd(z)− Td−1(z).
4. Td(z) is monotonically increasing for z ≥ 1, and if d is even Td(z) ≥ 1 for z ∈ R \ [−1, 1].

I Theorem 3.5. Let n ≥ 1 be an integer, ε ∈ (0, 1/4] an error parameter, and let a ∈ R
satisfy 1/

√
2 ≤ a ≤

√
n/8. There is a polynomial p of degree at most⌈

3n
4
√

2 a
ln
(

1
2ε

)⌉
+ 1

with the following properties:
1. p(z) ≥ 1

4 − z
2 for all z.

2. |p(z)| ≤ ε for z ∈ [−n2 ,−a] ∪ [a, n2 ].
3. |p(z)| ≤ 2 for z ∈ [−n2 ,−

1
2 ] ∪ [ 1

2 ,
n
2 ].

Proof. Note that we require in particular that p(0) ≥ 1/4. Roughly speaking, p should have
a ‘peak’ around 0 and then quickly calm down and be bounded on either side of this peak
once |z| ≥ a. The difficulty in constructing p is that its peak is in between the intervals on
which is bounded. To get around this, we note that is suffices to let p(z) = εq(z2), where q
has the properties
1. q(z) ≥ 1

4ε −
z
ε for z ≥ 0.

2. |q(z)| ≤ 1 for z ∈ [a2, n
2

4 ].
3. |q(z)| ≤ 2

ε for z ∈ [ 1
4 ,

n2

4 ].

Now q(z) is ripe for a construction with Chebyshev polynomials, and this is what we do.
For notational convenience, let L = n/2. Define the mapping s(z) = −2(z−a2)/(L2−a2) + 1
that takes the interval [a2, L2] to [−1, 1]. Note that this mapping takes L2 to −1 and a2 to
1. Let Td be the Chebyshev polynomial of even degree d (to be chosen later) and define

q(z) = Td(s(z)) .

As |Td(z)| ≤ 1 for z ∈ [−1, 1] by Fact 3.4 item (1), it follows that q(z) satisfies condition (2).
We now turn to item (1) and handle the easy cases first. For z ≥ 1

4 we have 1
4ε −

z
ε ≤ 0,

so in this region we just need to check that q(z) is not too negative. If z ∈ [ 1
4 , a

2], then
s(z) ≥ 1 and therefore q(z) ≥ 1. Likewise, as we take d to be even, q(z) ≥ 1 for z ≥ L2.
For z ∈ [a2, L2], we have |q(z)| ≤ 1. Thus item (1) will be satisfied in this region so long as
a2 ≥ 1

4 + ε. This holds as in the theorem statement ε ≤ 1/4 and a ≥ 1/
√

2.
With these easy cases taken care of, we turn to verify the first item for z ∈ [0, 1

4 ]. To
do this it suffices to choose d such that q(1/4) ≥ 1

4ε as q(z) is monotonically decreasing in
the interval [0, 1/4], since Td(y) is monotonically increasing for y ≥ 1 by Fact 3.4 item (4).
This condition is at odds with item (3). As the maximum of q(z) in the interval [1/4, L2] is
attained at z = 1/4, we can simultaneously satisfy item (3) by ensuring q(1/4) ≤ 2

ε . Thus
we choose d = d∗ to be the least even number such that

q(1/4) = Td∗

(
1 + 2(a2 − 1/4)

L2 − a2

)
≥ 1

4ε .

By this choice, item (1) is now satisfied. To verify item (3), we use Fact 3.4 item (3) to see
the inequality Ts+2(z) ≤ 4z2Ts(z), valid for z ≥ 1. Applying this we have

Td∗

(
1 + 2(a2 − 1/4)

L2 − a2

)
≤ 1
ε

(
1 + 2(a2 − 1/4)

L2 − a2

)2

≤ 2
ε
,

as Td∗−2

(
1 + 2(a2−1/4)

L2−a2

)
< 1

4ε by definition, and a ≤
√
n/8.
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Finally, we upper bound d∗. Let µ = 2(a2 − 1/4)/(L2 − a2). We want Td(1 + µ) ≥ 1
4ε . Using

the fact that Td(1 + µ) ≥ (1/2)(1 +
√

2µ)d for µ ≥ 0 by Fact 3.4 item (2), it suffices to take
d ≥ ln( 1

2ε )/ ln(1 +
√

2µ).
As ln(1 + y) ≥ 2y/(2 + y) for y ≥ 0 and

√
2µ ≤ 1, it suffices to take d ≥ 3 ln( 1

2ε )/(2
√

2µ).
Since a ≥ 1/

√
2, and therefore a2 − 1/4 ≥ a2/2, we have µ ≥ a2/L2 = 4a2/n2. Hence there

is a d such that Td(1 + µ) ≥ 1
4ε satisfying

d ≤
⌈

3n
4
√

2 a
ln
(

1
2ε

)⌉
.

We add 1 in the theorem statement for the additional requirement that the degree is even. J

Proof of Theorem 3.1. Fix 8/
√

2n ≤ δ ≤ 1/4, and let ε = δ/2 and a = ε
√
n/4. Note that

1/
√

2 ≤ a ≤
√
n/8 with these choices. Thus by Theorem 3.5, there is a polynomial p of

degree at most d 6
√
n√

2δ ln( 1
δ )e+ 1 satisfying the three conditions of Theorem 3.5 with this value

of a, ε.
Let g(z) = (z − n/2)2 − 1/4 + p(z − n/2) be a univariate polynomial, and consider the

approximation to f given by g(|x|). By construction g is globally nonnegative and thus (as
it is univariate) is a sum of squares of polynomials of degree at most d 3

√
n√

2δ ln( 1
δ )e. Let us

examine the `1-error of the function g(|x|) in approximating f . We divide the error into two
cases: the error on strings whose Hamming weight is at most n/2 − a or at least n/2 + a

(type I), and those whose Hamming weight is in the interval [n/2− a, n/2 + a] (type II).
As p is bounded by ε for z ∈ [−n/2,−a]∪ [a, n/2] the `1-error over type I inputs is at most

ε · 2n. The number of type II inputs is at most (2a/
√
n)2n, and the error on each is at most 2

as p(z) ≤ 2 for z ∈ [−n/2, n/2]. Thus the total `1-error is 2n
(
ε+ 4a√

n

)
= 2n · 2ε = δ2n. J

4 Proof complexity: Positivstellensatz refutations

Say that we have a system of polynomial equalities

f1 = · · · = fm = 0, x2
1 − x1 = · · · = x2

n − xn = 0 (4)

where each fi ∈ R[x1, . . . , xn]. Because of the presence of the equalities x2
i − xi = 0 (which

force xi ∈ {0, 1}), this is referred to as the boolean setting.
The Positivstellensatz [32] implies that the system (4) has no common solutions in Rn if

and only if there are polynomials g1, . . . , gm+n ∈ R[x1, . . . , xn] and a sos polynomial h such
that

m∑
i=1

figi +
n∑
i=1

(x2
i − xi)gm+i = 1 + h . (5)

Grigoriev and Vorobjov [14] define a proof system based on this principle.

I Definition 4.1. A Positivstellensatz refutation of the system (4) is given by a set of
polynomials {g1, . . . , gm+n, h} which satisfy (5) and where h is a sum of squares. The degree
of this refutation is

max{deg(h),max
i∈[m]

deg(figi),max
i∈[n]

deg((x2
i − xi)gm+i)} .

By the Positivstellensatz, this proof system is sound and complete: a system is unsatisfiable
if and only if it has a refutation of a certain degree. One may view the degree of a refutation
as a measure of complexity.
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4.1 Knapsack
The knapsack system is given by the equations

f =
∑
i

xi − r = 0, x2
j − xj = 0 for j = 1, . . . , n . (6)

If r is not an integer then this system has no solution: Grigoriev [12] shows the following
theorem.

I Theorem 4.2 (Grigoriev [12]). Let 0 ≤ k ≤ (n− 3)/2 be an integer. If k < r < n− k, then
any Positivstellensatz refutation of the system (6) has degree at least 2k + 4.

We provide a simple proof of this in Appendix C using Blekherman’s theorem.
Note that the equations for non-integer r correspond to a trivially easy (and obviously

unsatisfiable) instance of the knapsack problem, where all items have weight 1. As mentioned
in the introduction, this shows the weakness of the Positivstellensatz-based proof system:
even to refute such easy instances it already needs polynomials of fairly high degree.

Grigoriev asked if this upper bound of 2k+ 4 was tight. Later work of Grigoriev et al. [13]
showed that the proof technique of [12] could not show a larger lower bound than 2k + 4.
We show that there actually exist Positivstellensatz refutations of (6) of degree 2k + 4.

I Theorem 4.3. Let 0 ≤ k ≤ n/2 be an integer. For k < r < k + 1, the system (6) has a
Positivstellensatz refutation of degree 2k + 4.

Let x = (x1, . . . , xn) and |x| =
∑n
i=1 xi. A key role in the proof will be played by the

polynomials

Ak(x) = |x|(|x| − 1)(|x| − 2) · · · (|x| − k + 1) .

The function Ak can be computed with k queries by a natural extension of the Sampling
Algorithm 1 and thus can be written as a sum-of-squares on the boolean cube of total degree
2k. We go ahead and record this formally in the next lemma. Recall that the kth elementary
symmetric polynomial is defined as

ek(x1, . . . , xn) =
∑

i1<i2<···<ik

xi1xi2 · · ·xik .

I Lemma 4.4. There exist polynomials gi(x) of degree at most 2k − 2 such that

Ak(x) =
n∑
i=1

(x2
i − xi)gi(x) + (k!)ek(x2

1, . . . , x
2
n) .

We give the proof of this in Appendix A.

Proof of Theorem 4.3. Rearranging Equation (5), we are looking for functions g, g1, . . . , gn
of low degree and a low-degree sum-of-squares h such that

g(x)(|x| − r)− 1 = h+
∑
i

gi(x)(x2
i − xi) .

Notice that, for any g, the left-hand side will be negative when |x| = r. By Lemma 4.4, Ak+2
is of the form of the right-hand side. Since Ak+2 has degree 2k + 4, and is also negative
when |x| = r, we try to find a polynomial g(x) of degree at most 2k + 3 such that

g(x) (|x| − r)− b = Ak+2(x)

for a positive constant b. Dividing g and Ak+2 by b will then give us the required solution.
Let b = −r(r − 1) · · · (r − k)(r − k − 1) > 0. Then |x| − r divides Ak+2(x) + b and we can
write Ak+2(x) + b = g(x) (|x| − r) for some polynomial g of degree 2k + 3. J

CCC 2016
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5 Future work

We list a few questions for future work:
Can we improve the lower bound of Theorem 1.1 for small ε? To match the upper bound
for all k, it would suffice to show that sos-degε(f1, `∞) = Ω(

√
n log(1/ε)), which is very

plausible by analogy with what is known for the n-bit OR function.
Can we extend our results to all symmetric quadratic functions, or to even larger classes
of symmetric functions?
Can we find more applications of Blekherman’s theorem (Theorem 2.3), in complexity
theory, in quantum computing, or in optimization? Kurpisz et al. [17, Section 5] used
their general reduction to univariate polynomials (already mentioned in Section 1.3.2),
to show that strengthening the knapsack polytope with Wolsey’s “Knapsack Covering
Inequalities” and applying nearly logn rounds of the Lasserre hierarchy does not produce
an SDP with integrality gap below 2− o(1) (which is the integrality gap of the natural
LP relaxation). Similar results may be obtainable using Blekherman’s theorem.
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A Proof of Lemma 4.4

Recall that

Ak(x1, . . . , xn) = |x|(|x| − 1) · · · (|x| − k + 1) .

We first prove two claims.

I Claim A.1. There exist polynomials gi(x) of degree at most k − 1 such that

Ak(x1, . . . , xn) =
n∑
i=1

(x2
i − xi)gi(x) + (k!)ek(x) .

Proof. We prove the claim by induction on k. When k = 1 then A1 = e1, and the claim
follows by setting all gi to be 0.

Now suppose the claim is true up to k. Then, using the induction hypothesis to rewrite
Ak,

Ak+1(x) = Ak(x) · (e1(x)− k) =
(

n∑
i=1

(x2
i − xi)gi(x) + k!ek(x)

)
(e1(x)− k)

=
n∑
i=1

(x2
i − xi)hi(x) + k!ek(x)(e1(x)− k) ,

where each hi(x) = gi(x) · (e1(x)− k) is of degree at most k. We now focus on

ek(x)(e1(x)− k) =
∑
S⊆[n]
|S|=k

∏
i∈S

xi · (e1(x)− k) .

A term in this sum corresponding to the subset S can be rewritten as

∏
i∈S

xi

∑
i∈S

xi +
∑
i6∈S

xi − k

 =
∑
i∈S

(x2
i − xi)

∏
j∈S,j 6=i

xj +
∑
i 6∈S

xi
∏
j∈S

xj

Summing over all terms of this form gives (k + 1)!ek+1(x) +
∑
i(x2

i − xi) · fi(x), where fi(x)
is of degree at most k − 1, proving the claim. J

To complete the proof, we now need to show that ed(x) is a sum of squares of total
degree 2d modulo the ideal 〈x2

1 − x1, . . . , x
2
n − xn〉. To do this, it suffices to show the same

for
∏d
i=1 xi, which we do in the next claim.

I Claim A.2. Fix a natural number d. Then there are polynomials gi ∈ R[x1, . . . , xd] for
i = 1, . . . , d such that

d∏
i=1

x2
i −

d∏
i=1

xi =
d∑
i=1

(x2
i − xi)gi(x1, . . . , xd) ,

and each gi is of degree at most 2d− 2.
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Proof. We write x2
1x

2
2 · · ·x2

d − x1x2 · · ·xd as a telescoping sum. We use the convention that
the product over the empty set is 1.

d∏
i=1

x2
i −

d∏
i=1

xi =
d∑
j=1

∏
i<j

xi
∏
i≥j

x2
i −

∏
i≤j

xi
∏
i>j

x2
i


=

d∑
j=1

(x2
j − xj)

∏
i<j

xi
∏
i>j

x2
i

This is of the desired form, and it can be seen that each multiplier of x2
j − xj is of degree at

most 2d− 2. J

We put these claims together to prove Lemma 4.4, which we restate here.

I Lemma A.3. There exist polynomials gi(x) of degree at most 2k − 2 such that

Ak(x) =
n∑
i=1

(x2
i − xi)gi(x) + (k!)ek(x2

1, . . . , x
2
n) .

Proof. By Claim A.1 we can write Ak(x1, . . . , xn) =
∑n
i=1(x2

i − xi)gi(x) + (k!)ek(x) where
each gi(x) is of degree at most k − 1. Now by Claim A.2

ek(x) = ek(x2
1, . . . , x

2
n) +

n∑
i=1

(x2
i − xi) · fi(x) ,

where each fi(x) is of degree at most 2k − 2. This proves the lemma. J

B Blekherman’s theorem

Blekherman and Riener [3] made a general study of the relationship between symmetric
nonnegative forms and symmetric sums of squares. Subsequently, Blekherman [2] considered
the special case of polynomials that are nonnegative on the hypercube, and gave a very useful
decomposition of such polynomials. We include a proof here of a special case of his theorem.

The technique used for our proof is a novel decomposition of functions on the hypercube
using the kernels of certain differential operators. A similar decomposition was independently
discovered by Filmus and Mossel [8] who use it to prove an invariance principle for low-degree
functions on slices of the boolean hypercube.

Let [n] denote the set of integers {1, 2, . . . , n}. The ideal I := 〈x2
i −xi : i ∈ [n]〉 consists of

polynomials that are identically zero on the hypercube H = {0, 1}n. Let Lt = R[x]t/I be the
space of degree-t homogeneous multilinear polynomials on n variables. The

(
n
t

)
monomials

xS where S ⊆ [n], |S| = t, form a basis for Lt. The correspondence between set S and
monomial xS can be used to map degree-t polynomials to linear combinations of t-subsets of
[n]. Here polynomial p(x) corresponds to the

(
n
t

)
-dimensional vector of the coefficients of its

monomials, say in lexicographic order.
Let Mt = R[x]≤t/I denote the space of n-variate polynomials of degree at most t on the

hypercube. Given x ∈ Rn, the sum
∑
i∈[n] xi is denoted by |x|.

CCC 2016
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B.1 Kernels of the operators Wt

For t ≥ 0, define the linear operator Wt that acts by summing over the partial derivatives of
a degree-t polynomial,

Wtp(x) =

∑
i∈[n]

∂

∂xi

 p(x) . (7)

For t ≥ 1 the operator Wt : Lt → Lt−1 is represented by a matrix with rows and columns
indexed by S, T ⊂ [n] with |S| = t − 1 and |T | = t respectively, and entry (Wt)S,T = 1 if
S ⊂ T and 0 otherwise. The adjoint operator WT

t : Lt−1 → Lt acts as multiplication by
|x| − t+ 1 on each degree-(t− 1) monomial (and by linear extension on all of Lt−1),

WT
t x

S =
∑
i 6∈S

xS∪{i} = xS(|x| − t+ 1) . (8)

Note that we used the hypercube constraints x2
i = xi to derive the second equality in

Equation (8). Our goal in this section is to bound the dimension of Ker(Wt) and find an
explicit basis for these spaces.

We relate Ker(Wt) to the eigenspaces of the Johnson graphs. The Johnson graph J(n, t)
has

(
n
t

)
vertices corresponding to the t-subsets S ⊂ [n], |S| = t, with subsets S, T connected

by an edge if and only if |S ∩ T | = t − 1. The adjacency matrix of J(n, t) is denoted by
AJ (n, t). The following lemma computes the spectrum of AJ (n, t); it can be found in Godsil’s
notes [10], but we include a proof here as these notes are no longer online.

I Theorem B.1. The eigenvalues of AJ(n, t) are t(n − t) − i(n + 1 − i) with multiplicity(
n
i

)
−
(
n
i−1
)
for i = {0, 1, . . . , t} and t ≤ (n+ 1)/2.

Proof. We proceed by induction on n and t. For the base case, note that the Johnson graph
J(n, 1) is the complete graph on n vertices. The corresponding adjacency matrix AJ(n, 1)
has eigenvalue −1 with multiplicity (n− 1) and (n− 1) with multiplicity 1, thus the theorem
is true for n = 1.

We obtain the spectrum of AJ (n, t) in terms of the spectrum of AJ (n, t− 1). Computing
the entries of WT

t Wt and WtW
T
t it follows that,

WT
t Wt = tI +AJ(n, t)

WtW
T
t = (n− t+ 1)I +AJ(n, t− 1) . (9)

The non-zero eigenspaces of WT
t Wt correspond to those of WtW

T
t , so if v is an eigenvector

for AJ(n, t− 1) with eigenvalue λi then WT
t v is an eigenvector for AJ(n, t) with eigenvalue

λi + n− 2t+ 1. By the induction hypothesis, (t− 1)(n− t+ 1)− i(n+ 1− i) is an eigenvalue
for AJ(n, t − 1) with multiplicity

(
n
i

)
−
(
n
i−1
)
for i ∈ [t − 1]. Adding n − 2t + 1, it follows

that t(n− t)− i(n+ 1− i) is an eigenvalue for AJ(n, t) with the same multiplicity.
The induction hypothesis also implies that WtW

T
t = (n− t+ 1)I +AJ (n, t− 1) has rank(

n
t−1
)
as it is positive semidefinite and the smallest eigenvalue is n − 2t + 2 > 0. Hence

the
(
n
t

)
-dimensional matrix WT

t Wt has rank
(
n
t−1
)
, so its kernel has dimension

(
n
t

)
−
(
n
t−1
)
.

This implies that AJ(n, t) has an eigenspace of dimension
(
n
t

)
−
(
n
t−1
)
with eigenvalue

−t = t(n− t)− t(n+ 1− t). J

The following corollary computes the dimension of Ker(Wt).

I Lemma B.2. Dim(Ker(Wt)) =
(
n
t

)
−
(
n
t−1
)
for t ≤ (n+ 1)/2.
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Proof. Dim(Ker(Wt)) =
(
n
t

)
− rank(WT

t ) by definition, and from the above proof it follows
that rank(WT

t ) = rank(WtW
T
t ) =

(
n
t−1
)
for t ≤ (n+ 1)/2. J

We next compute an explicit basis for Ker(Wt), viewed as a subspace of Lt. We recall the
notion of a standard Young tableau of shape (n− t, t) to describe the basis.

I Definition B.3. A standard Young tableau U of shape (n− t, t) is an arrangement of [n]
in an array with two rows of size n− t and t respectively, such that each row and column is
sorted in ascending order.

The basis for Ker(Wt) described by the following theorem will be used for computations in
the following sections. Note that polynomials pU in this basis evaluate to 0 for all x ∈ {0, 1}n
with |x| ∈ {0, 1, . . . , t− 1} ∪ {n, n− 1, . . . , n− t+ 1}.

I Theorem B.4. For t ≤ n/2 and A = (a(1), a(2), . . . , a(2t)) an array of distinct elements
a(i) ∈ [n], define the polynomial pA(x) :=

∏
i∈[t](xa(2i−1) − xa(2i)).

The polynomials pU (x), where (u(2i − i), u(2i)) for i ∈ [t] are the entries of the i-th
column of a standard (n− t, t) Young tableau U , form a basis for Ker(Wt).

Proof. We first show that for all |A| = 2t, the degree-t polynomial pA(x) belongs to the
kernel of Wt. Computing the partial derivatives of pA(x),

∂

∂xj
pA(x) =


pA(x)/(xa(2i−1) − xa(2i)) if j = a(2i− 1)
−pA(x)/(xa(2i−1) − xa(2i)) if j = a(2i)
0 otherwise

(10)

Summing over the partial derivatives and using Equation (7) it follows that WtpA(x) = 0.
The set of polynomials {pA(x) : |A| = 2t} is not linearly independent. The straightening

algorithm for Young tableaux (see for example Section 10.5 in [6]) shows that the polynomials
pU (x) where (u(2i− i), u(2i)) for i ∈ [t] are entries of the i-th column of a standard (n− t, t)
Young tableau U form a basis for Span{pA(x) : |A| = 2t}. A simple counting argument
or the hook length formula [6] shows that the number of such U is

(
n
t

)
−
(
n
t−1
)
. These pU

together thus span a space of dimension
(
n
t

)
−
(
n
t−1
)
, which is Dim(Ker(Wt)) by Lemma B.2.

Hence the pU form a basis for Ker(Wt). J

B.2 Polynomial decompositions
The action of the operators Wt yields the decomposition Lt = Ker(Wt)⊕ Im(WT

t ). Applying
this decomposition iteratively we obtain the following theorem,

I Theorem B.5. A polynomial p(x) ∈ Lt can be decomposed as

p(x) = pt(x) + (|x| − t+ 1)pt−1(x) + · · ·+ (|x| − t+ 1) · · · (|x| − 1)|x|p0(x)

= pt(x) +
t∑
i=1

pt−i(x)
i∏

j=1
(|x| − t+ j) (11)

where pt−i(x) ∈ Ker(Wt−i).

Proof. We proceed by induction on t. For the base case t = 0, observe that a degree-0
polynomial belongs to Ker(W0). For the inductive step, a polynomial p(x) ∈ Lt can be
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written as pt(x) + q(x) where pt(x) ∈ Ker(Wt) and q(x) ∈ Im(WT
t ). The action of WT

t on
polynomials in Lt−1 is described by Equation (8): for all g(x) ∈ Lt−1 we have

WT
t g(x) = (|x| − t+ 1)g(x) . (12)

As q(x) ∈ Im(WT
t ), it can be factored as q(x) = (|x| − t+ 1)h(x) where h(x) ∈ Lt−1. The

result follows using the induction hypothesis for g(x). J

Applying the above theorem to the subspaces Lj (j ∈ {0, . . . , t}) that are contained in Mt

and collecting the terms corresponding to Ker(Wj), we obtain the following decomposition
for polynomials in Mt.

I Corollary B.6. A polynomial p(x) ∈Mt can be decomposed as p(x) =
∑t
j=0 qj(x), where

qj(x) =
∑

0≤i≤t−j
|x|ipij(x) (13)

such that each pij(x) ∈ Ker(Wj).

Proof. A polynomial p(x) ∈Mt can be written as p(x) =
∑t
i=0 pi(x) where pi(x) ∈ Li is the

homogeneous degree-i component of p. Applying Theorem B.5 to each pi(x) and collecting
all the terms over the Equations (11) with prefactors in Ker(Wj), we obtain a decomposition
p(x) =

∑
j∈[t] q

′
j(x) such that

q′j(x) = p′jj(x) + p′j+1,j(x)(|x| − j) + p′j+2,j(x)(|x| − j)(|x| − j + 1) + · · ·
· · ·+ p′t,j(x)(|x| − j)(|x| − j + 1) · · · (|x| − t+ 1) . (14)

Note that the indices in the above equation increase, because Ker(Wj) occurs in the de-
compositions of pi(x) for i ≥ j. Let pij(x) be the coefficient of |x|i for 0 ≤ i ≤ t− j in the
above expression. This pij(x) is a linear combination of polynomials p′ij(x) ∈ Ker(Wj) and
therefore also lies in Ker(Wj). The decomposition in Equation (13) follows. J

B.3 Symmetrization and Blekherman’s theorem
The symmetric group Sn acts on the polynomial ring Mn by permuting the indices of the
monomials. The subspace of symmetric polynomials in Mn that are invariant under the
action of Sn is denoted by Λn. The operator Sym : Mn → Λn maps a polynomial to its
symmetrization,

Sym(p)(x) := 1
n!
∑
σ∈Sn

p(σx) . (15)

The symmetrization of degree k monomials evaluates to a univariate polynomial in |x| over
Mn.

I Lemma B.7. Let mk(x) = x1x2 · · ·xk be a degree-k monomial, then the following identity
is true in the ring Mn,

Sym(mk)(x) = |x|(|x| − 1) · · · (|x| − k + 1)
n(n− 1) · · · (n− k + 1) . (16)
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Proof. We proceed by induction on k, for k = 1 the result is clearly true. Let xS be
an arbitrary degree k monomial. There are k!(n − k)! permutations σ ∈ Sn such that
σ(x1x2 · · ·xk) = xS , thus Sym(mk)(x) evaluates to

Sym(mk)(x) = 1(
n
k

) ∑
|S|=k

xS . (17)

In order to to express Sym(mk)(x) in terms of Sym(mk−1)(x), we write the above equation
in terms of the operator W t

k from Section B.1,

Sym(mk)(x) = 1(
n
k

)WT
k

1
k

∑
|U |=k−1

xU

 = (|x| − k + 1)
(n− k + 1) Sym(mk−1)(x) . (18)

The second equality follows from Equation (8) and the expression for Sym(mk−1) in Equa-
tion (17). The result follows from the induction hypothesis. J

The above lemma shows that Sym(p) for polynomials p ∈Mn can be viewed as a univariate
polynomial in |x| by extending the mapping given by Lemma B.7 to all p ∈Mn. We denote
the univariate polynomial thus obtained by Symuni(p) to disambiguate from the multivariate
polynomial in Equation (15).

We can define an inner product on polynomials p, q ∈ Lt by treating them as vectors of
coefficients: if p(x) =

∑
|S|=t pSx

S and q(x) =
∑
|S|=t qSx

S then

〈p|q〉 :=
∑

S⊆[n],|S|=t

pSqS . (19)

The symmetrization of the product of polynomials in Ker(Wt) can be expressed in terms of
this inner product.

I Lemma B.8. If p, q ∈ Ker(Wt) for some t ≤ n/2, then:

Sym(pq)(x) = 〈p|q〉 (n− 2t)!
n!

∏
0≤i<t

(|x| − i)(n− |x| − i) . (20)

Proof. Theorem B.4 shows that Ker(Wt) has a basis consisting of polynomials pU (x) such
that pU (x) = 0 for all x ∈ {0, 1}n with |x| ∈ {0, 1, . . . , t − 1} ∪ {n, n − 1, . . . , n − t + 1}.
Consider such an x. Evaluating Sym(pq) at x using Equation (15) by expanding p and q in
the basis given by Theorem B.4, it follows that Symuni(pq)(α) = 0 for all α ∈ {0, 1, . . . , t−
1} ∪ {n, n− 1, . . . , n− t+ 1}. Lemma B.7 shows that Sym(pq)(x) is a univariate polynomial
Symuni in |x| of degree at most 2t, hence

Sym(pq)(x) = λ
∏

0≤i<t
(|x| − i)(n− |x| − i) . (21)

for some λ ∈ R. Below we determine λ by evaluating Sym(pq) for x ∈ {0, 1}n such that
|x| = t.

We compute Sym(pq)(x) by evaluating the sum
∑
σ∈Sn

p(σx)q(σx) in Equation (15). As
p, q are homogeneous degree-t polynomials, for each x with |x| = t there is a unique S ⊂ [n],
|S| = t, such that p(x) = pS and q(x) = qS . In other words, x sets exactly one degree-t
monomial xS to 1 and all others to 0. There are t!(n− t)! different σ ∈ Sn such that σ(x)
sets the same monomial to 1. The symmetrization Sym(pq)(x) therefore evaluates to

Sym(pq)(x) = 1
n!
∑
σ∈Sn

p(σx)q(σx) = t!(n− t)!
n!

∑
|S|=t

pSqS . (22)
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Sym(pq)(x) also evaluates to λ
∏

0≤i<t(t − i)(n − t − i). Equating the two expressions we
have:

λt!
∏

0≤i<t
(n− t− i) = 〈p|q〉t!(n− t)!

n! (23)

which implies λ = 〈p|q〉(n−2t)!
n! , and the theorem follows. J

We next show that the symmetrization of the product of polynomials p ∈ Ker(Wt), q ∈
Ker(Wt′) evaluates to 0 if t 6= t′. The following lemma is used for the proof in Lemma B.10.

I Lemma B.9. If p(x) =
∏
i∈[k](xi − xi+1)q(x) for some odd k, and q(x) is a polynomial

that does not depend on variables x1, . . . , xk+1, then Sym(p) = 0.

Proof. It suffices to show that Sym(p)(x) = 0 for all x ∈ {0, 1}n, because a multilinear
polynomial that is 0 on the hypercube is identically equal to 0. Define the involution σ → σ

on Sn by setting σ(i) = σ(i+ 1) if i ∈ [k + 1] is odd, σ(i) = σ(i− 1) if i ∈ [k + 1] is even,
and σ(i) = σ(i) for i > k + 1. It follows that σ is an involution as k + 1 is even and it acts
by swapping the pairs (σ(2i − 1), σ(2i)) for i ∈ [(k + 1)/2]. This involution partitions Sn
into pairs (σ, σ), and hence

Sym(p)(x) = 1
n!
∑
(σ,σ)

(p(σx) + p(σx)) = 0. (24)

The second equality follows as p(σx) = −p(σx) for all x ∈ {0, 1}n and σ ∈ Sn. J

I Lemma B.10. If p ∈ Ker(Wt) and q ∈ Ker(Wt′) for n/2 ≥ t > t′, then Sym(pq) = 0.

Proof. It suffices to prove the statement for polynomials p = pU and q = qV belonging to
the bases for Ker(Wt) and Ker(Wt′) constructed in Theorem B.4. The arrays U ,V define
matchings M(U) =

⋃
i∈[t](u(2i − 1), u(2i)) and M(V) =

⋃
i∈[t′](v(2i − 1), v(2i)) on [n] of

size t and t′ respectively. The product pUqV =
∏

(a,b)∈M(U)∪M(V)(xa − xb). If M(U) ∪M(V)
contains an odd-length path as an induced subgraph, then we can use Lemma B.9 to conclude
that Sym(pUqV) = 0.

It suffices to show that the union of two matchings of different sizes contains an odd-length
path as an induced subgraph. The connected components of a union of two distinct matchings
on [n] either form even-length cycles or paths. Color the edges in M(U) red and the edges in
M(V) blue. The number of red edges t is greater than blue edges t′, so there must be at
least one connected component that is an odd-length path, as even-length paths and cycles
have an equal number of red and blue edges. J

The preceding lemmas allow us to give a proof of Blekherman’s result [2] on the sym-
metrization of sum-of-squares polynomials on the hypercube.

I Theorem B.11 (Blekherman). The symmetrization of the square of polynomial p ∈Mt for
t ≤ n/2 can be decomposed as

Sym(p2)(x) =
t∑

j=0
pt−j(|x|)

 ∏
0≤i<j

(|x| − i)(n− |x| − i)

 (25)

where pt−j is a univariate polynomial that is the sum of squares of polynomials of degree at
most t− j.
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Proof. Consider the representation of the polynomial p(x) =
∑t
j=0 qj(x) given by Corol-

lary B.6,

qj(x) =
∑

0≤k≤t−j
|x|kpkj(x) (26)

where the polynomials pkj(x) ∈ Ker(Wj). Lemma B.10 shows that Sym(pkjpk′j′) = 0 if
j 6= j′, hence Sym(p2) can be decomposed as

Sym(p2) =
t∑

j=0
Sym

(
q2
j

)
. (27)

Expanding the term Sym
(
q2
j

)
using Lemma B.8, we have

∑
0≤k,l≤t−j

Sym(|x|k+lpkjplj) = c

 ∏
0≤i<j

(|x| − i)(n− |x| − i)

 ∑
0≤k,l≤t−j

〈pkj |plj〉|x|k+l

= c

 ∏
0≤i<j

(|x| − i)(n− |x| − i)

xTPx (28)

where c is a constant independent of |x|, P ∈ R(t−j+1)×(t−j+1) is the matrix with entries
Pkl = 〈pkj |plj〉, and x ∈ Rt−j+1 is the vector with entries (1, |x|, |x|2, . . . , |x|t−j). The matrix
P is positive semidefinite, hence the polynomial pt−j(|x|) corresponding to the quadratic
form xtPx is a sum of squares of polynomials in |x| of degree at most t− j. The theorem
follows. J

Note that the proof is constructive, as it provides a way to compute the terms in the
decomposition by projecting onto the eigenspaces Wt of the Johnson scheme. For example,
the first term pt(|x|) in (25) is in fact Symuni(p)2 as the Sym operator maps Ker(Wj) to 0
for all j > 0.

I Corollary B.12. The polynomial pt(|x|) in Theorem B.11 is Symuni(p)2.

A symmetric function f that is the sum of squares of polynomials of degree d ≤ n/2 is a sum
of terms Sym(p2) for n-variate polynomials p of degree d ≤ n/2. Applying Theorem B.11 for
t = d we obtain Blekherman’s result as stated in Theorem 2.3.

Note that Theorem B.11 applies to the setting where deg(p(x)) ≤ n/2, this suffices for
our applications. Blekherman’s theorem in [2] is valid for all degrees modulo the ideal
I = 〈

∏
0≤i≤n(|x| − i)〉.

C Grigoriev’s knapsack lower bound

We now see how Blekherman’s theorem can be easily used to reprove Grigoriev’s lower bound
on the degree of Positivstellensatz refutations of knapsack (Theorem 4.2). A Positivstellensatz
refutation of the knapsack system of equations (1) with parameter r consists of polynomials
g, g1, . . . , gn and a sos polynomial h such that

g(x) ·
(

n∑
i=1

xi − r

)
+

n∑
i=1

gi(x) · (x2
i − xi) = 1 + h(x) . (29)
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I Theorem C.1 (Grigoriev [12]). Let 0 ≤ k ≤ (n− 3)/2 be an integer. If k < r < n− k, then
any Positivstellensatz refutation of the knapsack system of equations with parameter r, as
in Equation (29), has degree at least 2k + 4.

Proof. Grigoriev constructs a functional Gr : R[x1, . . . , xn] → R such that: when Gr is
applied to the left-hand side of Equation (29) it evaluates to 0, provided that the total
degree of the left-hand side is at most n; and when Gr is applied to the right-hand side
of Equation (29) it is at least 1, provided the total degree of the right-hand side is at most
2k + 2. This leads to a contradiction, hence constructing such a functional Gr suffices to
prove that a Positivstellensatz refutation must have degree at least min{n, 2k + 4}. The
theorem then follows, with the additional observation that if min{n, 2k+ 4} = n is odd, then
we can actually obtain a lower bound of n+ 1 (since any sum-of-squares polynomial must
have even degree).

The functional Gr is first defined on the quotient ring A = R[x1, . . . , xn]/〈x2
1−x1, . . . , x

2
n−

xn〉. For p ∈ A define

Gr(p) = Symuni(p)(r).

In other words, Gr looks at the univariate polynomial formed from the symmetrization of
p over the symmetric group, and evaluates it at the point r. Explicitly, for a monomial
xS =

∏
i∈S xi with |S| = t we see by Lemma B.7 that Gr(xS) = Bt where

Bt = r(r − 1) · · · (r − t+ 1)
n(n− 1) · · · (n− t+ 1) . (30)

For p ∈ R[x1, . . . , xn] let p̄ be its canonical multilinear representative in A. The definition
of the functional Gr is extended from A to the polynomial ring by letting Gr(p) := Gr(p̄) for
p ∈ R[x1, . . . , xn].

Grigoriev’s theorem now follows from the following four observations about Gr:
1. Gr (g(x) · (

∑
i xi − r)) = 0 for all polynomials g with deg(g) < n. It suffices to show this

for g(x) = xS =
∏
i∈S xi for some S ( [n] with |S| = t < n. In this case, by Equation (30),

Gr(xS(
∑
i xi − r)) = (n− t)Bt+1 + (t− r)Bt = 0.

2. Gr
(
gi(x)(x2

i − xi)
)

= 0 for all polynomials gi. This is because the canonical multilinear
representative of gi(x)(x2

i − xi) in the quotient ring A is the constant-0 polynomial, and
Symuni(0)(r) = 0.

3. Gr(1) = 1 for all values of r. The symmetrization of the constant-1 polynomial is itself,
and the constant-1 polynomial always evaluates to 1.

4. Gr
(
p2(x)

)
≥ 0 if p is a polynomial of degree at most k+1. By Blekherman’s Theorem 2.3,

if p ∈ A and d = deg(p) then

Symuni(p2)(x) = qd(x) + x(n− x)qd−1(x) + x(x− 1)(n− x)(n− 1− x)qd−2(x) + · · ·
+x(x− 1) · · · (x− d+ 1)(n− x)(n− 1− x) · · · (n− d+ 1− x)q0(r) .

(31)

It follows that Symuni(p2)(x) ≥ 0 for x ∈ [d− 1, n− d+ 1]. Thus if k < r < n− k, then
Gr(p2) ≥ 0 for any p of degree ≤ k + 1. By linearity this extends to any h that is a sum
of squares of polynomials of degree ≤ k + 1.

The first two observations imply that the left-hand side of Equation (29) evaluates to 0
under Gr (provided the total degree of the left-hand side is at most n), while the last two
observations imply that the right-hand side evaluates to at least 1 (provided the total degree
on the right is at most 2k + 2). J
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D Application of Grigoriev’s bound to `∞-error sos degree

Let n be odd and let f = fbn/2c, that is f(x) = (|x| − n/2)2 − 1/4. Our Theorem 1.1 gives
that any sos polynomial approximating f with `∞-error at most 1/50, needs degree Ω(n).
The functional Gr defined by Grigoriev (see discussion above Equation (30)) can be used
to show an incomparable result: any sos polynomial of degree (n− 1)/2 has error at least
Ω(1/ logn) in approximating f in `∞-norm.

I Theorem D.1. Let n be odd and f : {0, 1}n → R be defined as f(x) = (|x| − n/2)2 − 1/4.
Any sos polynomial of degree (n− 1)/2 has error at least

(1−O(1/n)) π4
1

ln((n+ 1)/2) + γ + ln(16)

in approximating f in `∞ norm. Here γ ≈ 0.577 is the Euler-Mascheroni constant.

Proof. Let h : {0, 1}n → R be a sos polynomial of degree (n− 1)/2 approximating f with
`∞-error ε. Write h(x) = f(x) + e(x) where e is the function of “errors” satisfying |e(x)| ≤ ε
for all x ∈ {0, 1}n. Let δy : {0, 1}n → {0, 1} be the delta function on the boolean cube, where
δy(x) = 1 if and only if x = y. Recall that Gn/2(f) = Symuni(f)(n/2) = (n/2−n/2)2−1/4 =
−1/4. By linearity of Gn/2 we have

Gn/2(f + e) = −1/4 + Gn/2(e) = −1/4 + Gn/2

 ∑
y∈{0,1}n

e(y)δy


≤ −1/4 + ε

∑
y∈{0,1}n

|Gn/2(δy)| .

On the other hand, Gn/2(f + e) ≥ 0 as f + e is a sum-of-squares of polynomials of degree at
most (n− 1)/2 (property 4 in the proof of Theorem C.1). Thus

ε ≥

4
∑

y∈{0,1}n

|Gn/2(δy)|

−1

. (32)

The main part of the proof will be to evaluate this sum.
Let Li : R→ R be the degree-n polynomial uniquely defined by

Li(z) =
{

1 z = i

0 z ∈ {0, 1, 2, . . . , n} \ {i}
.

Then we see that Gn/2(δy) = L|y|(n/2)/
(
n
|y|
)
, and so

∑
y∈{0,1}n

|Gn/2(δy)| =
n∑
k=0
|Lk(n/2)| .
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To do this sum, let us first simplify the summand

|Lk(n/2)| =
∏n
a=0,a6=k |n/2− a|∏n
a=0,a6=k |k − a|

=
∏n
a=0 |n/2− a|

k!(n− k)!|n/2− k|

= 1
2n+1

n!!n!!
k!(n− k)!|n/2− k|

= n!
22n−1

(
n−1

2
)
!2

(
n

k

)
1

|n− 2k|

= n

22n−1

(
n− 1

(n− 1)/2

)(
n

k

)
1

|n− 2k| ,

where n!! is defined as
∏dn/2e−1
j=0 (n − 2j), and we used n! = n!! · 2(n−1)/2 · ((n − 1)/2)! for

odd n in the penultimate equality.
For what comes next, it will be more convenient to express |Lk(n/2)| in terms of m =

(n− 1)/2. In this way, we obtain an expression defined for all m, rather than just odd n.

|Lk(m+ 1/2)| = 2m+ 1
24m+1

(
2m
m

)(
2m+ 1
k

)
1

|2m− 2k + 1|

Let A(m) denote the sum over k = 0, . . . , n = 2m+ 1, which is

A(m) = 2m+ 1
24m+1

(
2m
m

) 2m+1∑
k=0

1
|2m− 2k + 1|

(
2m+ 1
k

)
.

By symmetry of the binomial coefficients we can multiply by 2 and sum over only half of
them, thereby removing the absolute values.

A(m) = 2m+ 1
42m

(
2m
m

) m∑
`=0

1
2`+ 1

(
2m+ 1
`+m+ 1

)
Now we look at the difference between consecutive A(m):

I Claim D.2.

A(m+ 1)−A(m) =
((2(m+1)

m+1
)

4m+1

)2

Proof. It is somewhat cumbersome to verify this claim directly. We take the following
approach. Let A(m) = B(m)C(m), where

B(m) = 2m+ 1
42m

(
2m
m

)
, C(m) =

m∑
k=0

1
2k + 1

(
2m+ 1
k +m+ 1

)
.

Note that
B(m+ 1)
B(m) = 2m+ 3

8(m+ 1) .

Since B(0) = 1, this resolves to

B(m+ 1) = (2m+ 3)!!
8m+1(m+ 1)! = 2m+ 3

42(m+1)

(
2(m+ 1)
m+ 1

)
.
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By Zeilberger’s algorithm [26] we find a recurrence satisfied by the summand of C(m).

2m+ 3
2k + 1

(
2m+ 3
k +m+ 2

)
− 8(m+ 1)

2k + 1

(
2m+ 1
k +m+ 1

)
=
(

2(m+ 1)
m+ k + 1

)
−
(

2(m+ 1)
m+ k + 2

)
.

Summing this recurrence over k = 0, . . . ,m+ 1 we find

(2m+ 3)C(m+ 1)− 8(m+ 1)C(m) =
(

2(m+ 1)
m+ 1

)
.

This means that

A(m+ 1)− 8(m+ 1)
2m+ 3 B(m+ 1)︸ ︷︷ ︸

B(m)

C(m) = B(m+ 1)
2m+ 3

(
2(m+ 1)
m+ 1

)
,

and in turn

A(m+ 1)−A(m) = 1
42(m+1)

(
2(m+ 1)
m+ 1

)2
.

J

As A(0) = 1 this gives

A(m) =
m∑
i=0

((2i
i

)
4i

)2

.

Luckily, the latter sum has already been asymptotically evaluated in the study of the
quantum adversary bound for the ordered search problem [7]. There it is shown that

N∑
i=0

((2i
i

)
4i

)2

= 1
π

(ln(N + 1) + γ + ln(16)) +O(1/N) ,

where γ ≈ 0.577 is the Euler-Mascheroni constant.
This gives

∑
y∈{0,1}n

|Gn/2(δy)| = A((n− 1)/2) =
(n−1)/2∑
i=0

((2i
i

)
4i

)2

= 1
π

(ln((n+ 1)/2) + γ + ln(16)) +O(1/n) .

Plugging this into Equation (32) gives the theorem. J
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Abstract
The Minimum Circuit Size Problem (MCSP) is known to be hard for statistical zero knowledge
via a BPP-Turing reduction (Allender and Das, 2014), whereas establishing NP-hardness of MCSP
via a polynomial-time many-one reduction is difficult (Murray and Williams, 2015) in the sense
that it implies ZPP 6= EXP, which is a major open problem in computational complexity.

In this paper, we provide strong evidence that current techniques cannot establish NP-
hardness of MCSP, even under polynomial-time Turing reductions or randomized reductions:
Specifically, we introduce the notion of oracle-independent reduction to MCSP, which captures
all the currently known reductions. We say that a reduction to MCSP is oracle-independent if the
reduction can be generalized to a reduction to MCSPA for any oracle A, where MCSPA denotes
an oracle version of MCSP. We prove that no language outside P is reducible to MCSP via an
oracle-independent polynomial-time Turing reduction. We also show that the class of languages
reducible to MCSP via an oracle-independent randomized reduction that makes at most one
query is contained in AM ∩ coAM. Thus, NP-hardness of MCSP cannot be established via such
oracle-independent reductions unless the polynomial hierarchy collapses.

We also extend the previous results to the case of more general reductions: We prove that
establishing NP-hardness of MCSP via a polynomial-time nonadaptive reduction implies ZPP 6=
EXP, and that establishing NP-hardness of approximating circuit complexity via a polynomial-
time Turing reduction also implies ZPP 6= EXP. Along the way, we prove that approximating
Levin’s Kolmogorov complexity is provably not EXP-hard under polynomial-time Turing reduc-
tions, which is of independent interest.
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1 Introduction

The Minimum Circuit Size Problem (MCSP) asks, given a truth-table T ∈ {0, 1}2n and
a size-parameter s, whether there exists a circuit on n variables of size at most s whose
truth-table is T . Although it is easy to see that MCSP is in NP, MCSP is not known to be
NP-hard.

MCSP is closely related to circuit complexity by its definition, and hence it is one of the
central problems in computational complexity. There are a number of formal connections
from the complexity of MCSP to important open problems of computational complexity:
for example, if MCSP ∈ P then EXPNP 6⊆ P/poly [14]; if MCSP ∈ coNP then MA can
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18:2 Limits of Minimum Circuit Size Problem as Oracle

be derandomized (MA = NP) [1]. Therefore, it is important to determine the structural
complexity of MCSP.

While there is substantial evidence that MCSP is not tractable in the sense that MCSP 6∈
BPP, it remains open whether MCSP is the hardest problem in NP, that is, NP-hard or
not. In this paper, we will discuss why it is so difficult to establish NP-hardness of MCSP.
We note that, when discussing relative hardness of a problem, there are several types of
reductions. Our main focus will be general and powerful reductions such as polynomial-time
Turing reductions and randomized reductions. That is, what problems (e.g., SAT) can we
solve by using MCSP as an oracle?

1.1 Background

In the seminal paper by Kabanets and Cai [14], on one hand, they exhibited evidence that
MCSP is intractable; namely, they proved that factoring Blum integers can be solved faster
than any known algorithms, assuming that MCSP ∈ P. On the other hand, they also proved
that establishing NP-hardness of MCSP is difficult: if MCSP is NP-hard under a certain
type of restricted polynomial-time reductions, then some circuit lower bounds hold (and, in
particular, EXP 6⊆ P/poly); thus, establishing NP-hardness of MCSP (under the restricted
reductions) is at least as difficult as proving EXP 6⊆ P/poly. To summarize, MCSP is “harder”
than factoring Blum integers, whereas establishing NP-hardness is difficult.

These two sides have been significantly pushed forward. On the positive side on hardness
of MCSP, Allender, Buhrman, Koucký, van Melkebeek and Ronneburger [1] proved crypto-
graphic problems, such as the discrete logarithm problem and integer factoring, can be solved
in BPPMCSP (i.e., these problems reduce to MCSP under BPP-Turing reductions). Allender
and Das [2] strengthened these results by showing that every language in statistical zero
knowledge is in BPPMCSP.

The negative side on hardness of MCSP was considerably strengthened by Murray and
Williams [17]. They showed that, if MCSP is NP-hard under polynomial-time many-one
reductions, then EXP 6= NP ∩ P/poly (and, in particular, EXP 6= ZPP), which is one of
the central open problems in computational complexity. Thus, it is difficult to establish
NP-hardness of MCSP under (general) polynomial-time many-one reductions. Moreover,
they showed that, under local reductions (i.e., that cannot look at a whole input), MCSP
is provably not hard even for PARITY. Allender, Holden, and Kabanets [4] showed similar
results for an oracle version of MCSP. For example, they showed that PSPACE is provably
not reducible to MCSPQBF via a log space reduction; here, for an oracle A, MCSPA denotes
a problem of asking the smallest size of a circuit with A-oracle gates.

Thus, the current status of our understanding of MCSP is as follows: under the re-
stricted reductions (e.g., local reductions), MCSP is not “hard” at all, which suggests that
such restricted reductions are insufficient to discuss the relative hardness of MCSP; under
polynomial-time many-one reductions, it is difficult to establish NP-hardness of MCSP; nev-
ertheless, BPP-Turing reductions to MCSP are powerful enough to solve every problem in
statistical zero knowledge.

Therefore, it is very interesting to investigate whether one can push the positive side and
establish NP-hardness of MCSP, or else the negative side can be pushed: More specifically,
can we prove NP-hardness of MCSP under general reductions, such as BPP reductions? Can
we extend the results of Murray and Williams [17] (as well as [4]) to more general reductions?
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1.2 Oracle-independent Reductions
In this paper, we push the negative side further, and show that current techniques cannot
be easily extended to show NP-hardness of MCSP. Specifically, we observe that current
techniques do not rely on any inherent property of MCSP and instead rely on common
properties that MCSPA shares for an arbitrary oracle A. We thus introduce the notion of
oracle-independent reductions to MCSP and then give upper bounds on classes of languages
that reduces to MCSP via such reductions. We say that a reduction to MCSP is oracle-
independent if the reduction can be generalized to MCSPA for an arbitrary oracle A. In other
words, the reduction exploits only properties common to MCSPA for any oracle A (instead
of unrelativizing properties of MCSP).

All the known efficient reductions to MCSP are oracle-independent. The main ingredient
used by almost all the reductions [1, 2] is the construction from a one-way function to a
pseudorandom generator by Håstad, Impagliazzo, Levin, and Luby [12]: Specifically, since
the output of a pseudorandom (function) generator is efficiently computable, the output
regarded as a truth-table has significantly low circuit complexity, compared to that of a
truth-table chosen from a uniform distribution. Thus, MCSP constitutes a statistical test
that distinguishes a pseudorandom distribution from a uniform distribution, which enables
us to break a one-way function on average, thanks to [12]. This argument exploits only the
fact that MCSP constitutes a statistical test. It is easy to see that an oracle version MCSPA

can also constitute a statistical test, and hence such reductions are oracle-independent.
Recently, new types of reductions to MCSP that do not rely on breaking a one-way

function have been developed by Allender, Grochow, and Moore [3]. Based on new ideas,
they showed that a certain graph isomorphism problem is reducible to MCSP via a randomized
reduction with zero-sided error. We will see that their reductions are also oracle-independent.

A high-level reason why these reductions are oracle-independent is as follows: We are
prone to rely on the fact that a randomly chosen truth-table requires high circuit complexity,
because it is in general difficult to obtain a circuit lower bound on an explicit function. The
fact that many truth-tables require high circuit complexity remains unchanged for any oracle
version MCSPA, and hence a reduction that only exploits this fact (as a circuit lower bound)
is inevitably oracle-independent.

We provide strong evidence that NP-hardness of MCSP cannot be shown via such oracle-
independent reductions. For deterministic reductions, we prove that nothing interesting is
reducible to MCSP via an oracle-independent reduction:

I Theorem 1.1. No language outside P can reduce to MCSP under polynomial-time Turing
oracle-independent reductions. In other words, if a language L polynomial-time-Turing-reduces
to MCSPA for any oracle A, then L ∈ P; it can be also simply stated as⋂

A

PMCSPA = P.

In contrast to previous work [14, 17, 4] which shows that NP-hardness of MCSP implies
surprising consequences (e.g., EXP 6⊆ P/poly), we emphasize that this theorem gives us an
inherent limitation of a deterministic oracle-independent reduction. One implication is that
NP-hardness of MCSP cannot be shown via a deterministic oracle-independent reduction
unless P = NP.

We note that this precisely captures the limit of what we can deterministically reduce
to MCSP. Indeed, currently no (nontrivial) deterministic reduction to MCSP is known at
all. The theorem suggests one reason behind this fact: in order to construct a deterministic
reduction to MCSP, we need to use a property of MCSP that cannot be generalized to MCSPA

CCC 2016
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for all A, which appears very difficult due to our few knowledge about nonrelativizing circuit
lower bounds.

It should be also noted1 that Theorem 1.1 implies that there exists an oracle A such that
MCSP 6≤pT MCSPA (unless MCSP ∈ P). At first glance (mainly due to its notation), it might
be counterintuitive that an oracle version MCSPA becomes “easier” than MCSP. The point
is that the oracle A in the notation MCSPA refers to the fact that a circuit that is minimized
has oracle access to A, but this does not necessarily increase the computational difficulty of
minimizing such an A-oracle circuit.

Indeed, we exploit this fact to prove Theorem 1.1. Roughly speaking, for any oracle-
independent reduction to MCSP, we adversarially choose an oracle A so that any query that
the reduction makes has circuit complexity of O(logn). Specifically, let T1, . . . , TnO(1) be
the truth-tables queried by the reduction (on some computation path); we encode these
truth-tables into A so that the truth-table of A(i, -) is equal to Ti for any i. For this oracle,
the reduction cannot query any truth-table that has high circuit complexity (relative to
oracle A) because the size of the circuit that outputs A(i, x) on input x is O(logn) for any i.
We then simulate the reduction by exhaustively2 search small circuits of size up to O(logn).

We also prove that even randomized oracle-independent reduction is not sufficient to
establish NP-hardness of MCSP:

I Theorem 1.2. If a language L is reducible to MCSP via an oracle-independent randomized
reduction with negligible error that makes at most one query, then L ∈ AM ∩ coAM. In other
words,⋂

A

BPPMCSPA[1] ⊆ AM ∩ coAM.

Here, BPPB[1] denotes the class of languages reducible to an oracle B via a randomized
reduction with negligible error that makes at most one query.

In particular,
⋂
A BPPMCSPA[1] does not contain NP unless NP ⊆ coAM (and in particular

the polynomial hierarchy collapses [7]). Therefore, it is impossible to establish NP-hardness
of MCSP via such reductions (unless the polynomial hierarchy collapses).

Oracle-independent Reductions vs. Relativization
We note that an oracle-independent reduction is different from simple relativization. In a
relativization setting, Ko [15] showed the existence of a relativized world where MCSP is an
NP-intermediate problem: MCSP is neither in coNP nor is NP-complete under polynomial-
time Turing reductions. Specifically, he constructed an oracle A such that NPA is not
contained in PMCSPA, A, thereby showing a relativized world where MCSP cannot be NP-hard
under polynomial-time Turing reductions. This shows the computational limit of MCSP in a
relativized world.

In contrast, we discuss the computational limit of MCSP in a real world when MCSP is
used by oracle-independent reductions. Technically, by exploiting the fact that NP-machines
have an oracle access, Ko [15] constructed an oracle A so that some NPA-computation

1 This observation was given by one of the referees of CCC 2016 in the review report.
2 When the “size” of a circuit refers to the number of its wires, we cannot enumerate all such circuits in

polynomial time since there are O(log n)O(log n) = nO(log log n) possible circuits of size less than O(log n),
which gives only a weak upper bound. We will thus regard the “size” of a circuit as its description
length, and also require that we can encode a truth-table into an oracle efficiently.



S. Hirahara and O. Watanabe 18:5

would go beyond the class PMCSPA, A. On the other hand, we construct an oracle A so that
PMCSPA -computation cannot be strong; in fact, it is essentially the same as P.

1.3 Reductions to MCSP Imply Separations of Complexity Classes
We also extend the results of Murray and Williams [17] to the case of polynomial-time
nonadaptive reductions and polynomial-time Turing reductions. In the former case, we prove
that the same (in fact, slightly stronger) consequence can be obtained:

I Theorem 1.3. It holds that PMCSP
|| ∩ P/poly 6= EXP (unconditionally). As a consequence,

if MCSP is NP-hard via a polynomial-time nonadaptive reduction, then PNP
|| ∩ P/poly 6= EXP.

Here, PMCSP
|| denotes the class of languages reducible to MCSP via a polynomial-time non-

adaptive reduction.
Our proof is based on the firm links between circuit complexity and resource-bounded

Kolmogorov complexity, which were established by a line of work [1, 5]. In fact, the proof
is so simple that we can include a proof sketch here: Allender, Koucký, Ronneburger and
Roy [5] showed that Levin’s Kolmogorov complexity [16] (denoted by Kt) is polynomially
related to circuit complexity if and only if EXP ⊆ P/poly; thus, assuming that EXP ⊆ P/poly,
circuit complexity is essentially equal to Kt-complexity. Moreover, it is well-known that
EXP 6= PKt

|| (since a polynomial-time algorithm cannot output any strings of high Kt-
complexity). Thus, assuming that EXP ⊆ P/poly, we also have EXP 6= PMCSP

|| . This implies
that EXP 6= PMCSP

|| ∩ P/poly (as otherwise we may assume EXP ⊆ P/poly). Therefore, at the
core of the proof of the unconditional separation in Theorem 1.3 is EXP 6= PKt

|| .
Now we would like to extend the argument above into the case of polynomial-time Turing

reductions. Unfortunately, we could not prove EXP 6= PKt (and this is an open problem since
[1]). Nevertheless, we prove that a promise problem of approximating Kt within additive error
ω(logn) is not EXP-hard under polynomial-time Turing reductions, which is of independent
interest:

I Theorem 1.4. For any nondecreasing function g(n) = ω(logn), let GapgKt denote a
promise problem that asks for approximating Kt(x) within additive error g(|x|) on input x.
Then, EXP 6= PGapgKt.

We note that, for a fixed exponential time t(n) ≥ 2n2 , Buhrman and Mayordomo [8] proved
that Kt is not EXP-hard under polynomial-time Turing reductions. Here, Kt denotes resource-
bounded Kolmogorov complexity such that a universal Turing machine that outputs x is
required to run in time t(|x|).

Now we can translate the property of Kt-complexity into that of MCSP, under the
assumption that EXP ⊆ P/poly. As a consequence, we obtain:

I Theorem 1.5. Let GapkMCSP be a promise problem that asks for approximating the
logarithm of circuit complexity within a factor of k. Then, there exists a constant k ≥ 1 such
that EXP 6= PGapkMCSP ∩ P/poly. In particular, if a language L is reducible to GapkMCSP
via a polynomial-time Turing reduction for all k ≥ 1, then PL ∩ P/poly 6= EXP.

In particular, establishing NP-hardness of GapkMCSP via a polynomial-time Turing reduction
requires separating PNP ∩ P/poly from EXP.

Interestingly, as observed in [5], the BPP-reductions of [1, 2] are extremely robust in
terms of approximation. Specifically:

CCC 2016
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I Theorem 1.6 (Analogous to [5, Theorem 19]). For all k ≥ 1, every language in statistical
zero knowledge is reducible to GapkMCSP via a BPP-Turing reduction.

These two results exhibit a striking contrast between BPP-reductions and polynomial-time
Turing reductions: BPP-reductions enable us to base hardness of approximating circuit
complexity on hardness of statistical zero knowledge, whereas derandomizing the BPP-
reduction requires a separation of complexity classes.

Organization

The rest of the paper is organized as follows. In Section 2, we introduce some notation and
the definition of circuit complexity. In Section 3, we observe that the known reductions
to MCSP are oracle-independent. We prove Theorem 1.1 in Section 4, and outline a proof
of Theorem 1.2 in Section 5 (see the full version for the whole proof of Theorem 1.2). In
Section 6, we extend the results of Murray and Williams [17] into the case of more general
reductions.

2 Preliminaries

Since we need to specify an exact definition of circuit complexity in order to discuss some
subtle details, we specify how to encode two strings into one string:

I Definition 2.1. For two strings x, y ∈ {0, 1}∗, define the pairing function as 〈x, y〉 :=
1|x|0xy.

We often write (x, y) instead of (〈x, y〉). We also abbreviate 〈x, 〈y, z〉〉 as 〈x, y, z〉. Note that
| 〈x, y〉 | = 2|x|+ |y|+ 1.

An oracle A is a subset of strings (i.e., A ⊆ {0, 1}∗). We identify a subset A of strings
with its characteristic function A : {0, 1}∗ → {0, 1}. When we use diagonalization arguments,
it is convenient to have the notion of finite oracle:

I Definition 2.2.
1. We say that A0 is a finite oracle if A0 : {0, 1}∗ → { 0, 1,⊥} and A0(x) = ⊥ for all but

finitely many strings x ∈ {0, 1}∗, where ⊥ means “undefined.”
2. For an oracle A ⊆ {0, 1}∗ and a finite oracle A0, we say that A is consistent with A0 if

A(x) = A0(x) for any x ∈ {0, 1}∗ such that A0(x) 6= ⊥.
3. Similarly, for l ∈ N, we say that A and A0 are consistent up to length l if it holds that

A(x) = 1 if and only if A0(x) = 1 for all strings x ∈ {0, 1}∗ of length at most l.

For a nonnegative integer n ∈ N, we write [n] := { 1, · · · , n }. For a string x ∈ {0, 1}n
and i ∈ [n], we denote by xi the ith bit of x. We also denote by in an integer i padded to
length n. More specifically:

I Definition 2.3. For n ∈ N and i ∈ [2n], let in denote the ith string of {0, 1}n in the
lexicographic order.

For a set R, we write r ∈R R to indicate that r is a random sample from the uniform
distribution on R. For a distribution D, we write r ∼ D to indicate that r is a random
sample from D.
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2.1 Definition of Circuit Size
Throughout this paper, we regard the description length of a circuit as its size. Thus, it is
convenient to define the size of a circuit in terms of Kolmogorov complexity.

I Definition 2.4. Let U be a Turing machine. The Kolmogorov complexity KU (x) of a string
x ∈ {0, 1}∗ with respect to U is defined as KU (x) := min{ |d| | U(d) = x }.

While we follow this standard definition, we use Kolmogorov complexity in a somewhat
nonstandard way for discussing circuit complexity. We assume that a string x for which we
consider its Kolmogorov complexity is a truth-table of a Boolean function. Thus, |x| is 2n
for some n ∈ N. We use a circuit interpreter for U instead of a universal Turing machine. In
particular, for technical reasons, throughout this paper we will use a specific interpreter I
that is defined below.

We first fix our standard (oracle) circuit interpreter. We assume any standard way to
encode circuits by binary strings. Note that a circuit may be an oracle circuit that can use
oracle gates outputting A(z) for a given input z to the gate when a circuit is used with
oracle A. Let I0 denote a circuit interpreter for this encoding: that is, for any oracle A and
a given description d of an oracle circuit C, the interpreter IA0 (d) yields the truth-table of
CA. (Thus, |IA0 (d)| = 2n for some n and IA0 (d) = CA(1n) · · ·CA(2nn).)

We will use the following facts that the standard circuit interpreter IA0 should have:
1. IA0 (d) is computable in time polynomial in |d| and |IA0 (d)|, given oracle access to A.
2. For all but finitely many truth-tables T ∈ {0, 1}∗ (where |T | is a power of 2), there exists

a circuit description of size less than |T |2: that is, KI0
(T ) < |T |2.

3. Any oracle circuit C whose description length is at most m cannot query to an oracle any
string of length greater than m. Thus, the output of CA only depends on the membership
in A of strings of length at most m.

We modify the standard circuit interpreter I0 so that we can describe some type of circuits
succinctly. For any n ∈ N and d ∈ {0, 1}∗, let CAn,d(x) be an oracle circuit that computes
A(x, d) (i.e., A(〈x, d〉)) for a given input x ∈ {0, 1}n, by using a single oracle gate with input
〈x, d〉.

I Definition 2.5. Define an interpreter IA as follows:

IA(0d) := IA0 (d),
IA(1n, d) := IA0 (CAn,d) = A(1n, d)A(2n, d) · · ·A(2nn, d),

for any n ≥ 1 and d ∈ {0, 1}∗. For the other strings d (e.g., d = 1101), leave IA(d) undefined.
For A = ∅, we write I instead of I∅.

I Remark.
1. Recall that 〈1n, d〉 = 1n01nd; hence IA is well-defined. Also, the definition of IA ensures

that the description length of a circuit CAn,d is at most | 〈1n, d〉 | = 2n+ |d|+ 1, which is
exactly equal to the length of a query 〈in, d〉 to oracle A.

2. For A = ∅, we have KI (x) = KI0
(x) + 1 for any x ∈ {0, 1}∗ \ {0}∗; hence, there is

essentially no difference between our circuit complexity measure KI (x) and a standard
description length KI0

(x). In particular, the results of Section 6 hold under any standard
circuit complexity (e.g., that counts the number of gates or wires).

3. For a general oracle A, since we assumed that the circuit CAn,d can be described succinctly,
we cannot guarantee that minimizing our complexity measure KIA is computationally
equivalent to minimizing standard circuit complexity. However, all of the previous work
(e.g., [15, 4]) that we are aware of holds under our encoding scheme.
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We define the minimum oracle circuit size problem MCSPA by using IA as a circuit
interpreter:

I Definition 2.6. The minimum oracle circuit size problem MCSPA relative to an oracle
A ⊆ {0, 1}∗ takes a truth-table T ∈ {0, 1}∗ and a size-parameter s ∈ N, and decides if
KIA(T ) ≤ s.

3 Why Are the Known Reductions Oracle-independent?

In this section, we argue that the known reductions to MCSP are oracle-independent. We
observe that the existing reductions only exploit (as a circuit lower bound) the fact that
many truth-tables require high (unrelativized) circuit complexity. Indeed, in the case of the
reductions [1, 2] that rely on breaking a one-way function, the following holds:

I Theorem 3.1 (Allender and Das [2]; see also [5, 1]). Let ε ∈ (0, 1) be a constant and let B be
an oracle of polynomial density such that KI (x) ≥ |x|ε for any x ∈ B (i.e., B is a statistical
test that accepts “random” strings) . Then, every language in statistical zero knowledge is
reducible to B via a BPP-reduction.

Here, we say that an oracle B is of polynomial density if there exists a polynomial p such
that Prx∈R{0,1}n [x ∈ B] ≥ 1/p(n) for any n ∈ N.

It is easy to see that such an oracle B can be computed, given oracle access to MCSP:
indeed, define B := {x ∈ {0, 1}∗ | KI (x) ≥ |x|1/2 }; it is obvious that B ∈ PMCSP; moreover,
since there are at most 2

√
n+1 strings that have circuit complexity at most

√
n for any n ∈ N,

almost all strings of length n are in B. Therefore, every language in statistical zero knowledge
is reducible to MCSP via a BPP-reduction.

This argument is still valid in the case of an oracle version MCSPA: indeed, we may
define an oracle BA as {x ∈ {0, 1}∗ | KIA(x) ≥ |x|1/2 } (∈ PMCSPA ); since KI (x) ≥ KIA(x)
for any x ∈ {0, 1}∗, the hypothesis of the theorem remains satisfied.

Next, we show that an oracle-independent one-query reduction to MCSP allows us to
convert a randomized algorithm with two-sided error into a randomized algorithm with
zero-sided error. Moreover, the error probability is negligible.

I Theorem 3.2 (Kabanets and Cai [14]). BPP ⊆
⋂
A ZPPMCSPA[1].

Proof Sketch. Pick a truth-table T uniformly at random. By making a query to MCSPA,
check if KIA(T ) = nΩ(1). (Note that this also implies that KI (T ) = nΩ(1).) Now, if we
successfully found a truth-table T that requires high circuit complexity, then we can use
the pseudorandom generator by Impagliazzo and Wigderson [13] to derandomize a BPP
computation. See [14] for the details. J

Finally, we observe that the new reductions by Allender, Grochow, and Moore [3] are
oracle-independent. In fact, their reductions are not known to work under a usual definition
of circuit size; instead, they presented reductions to a minimum circuit size problem, where
“circuit size” here refers to KT-complexity. Let us recall KT-complexity briefly:

I Definition 3.3 (KT-complexity [1]). Fix a universal (oracle) Turing machine U . For an
oracle A, the KTA-complexity of a string x is defined as

KTA(x) := min{ |d|+ t | UA,d(i) = xi in t steps for all i ∈ [|x|+ 1] }.

Here, x|x|+1 is defined as ⊥ (a stop symbol).
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It is known that KTA-complexity is polynomially related to circuit complexity relative
to A; hence, we may regard KTA as a version of circuit complexity. In order to capture
KT-complexity by our notation, we define a circuit interpreter IA0 as follows: On input
1t0d, run the universal Turing machine UA,d(i) for each i ≥ 1 one by one in time at most
t. Let n be the minimum i such that UA,d(i) outputs ⊥. Output the concatenation of
UA,d(1), · · · , UA,d(n − 1). This definition ensures that KIA0

(x) = KTA(x) + 1, and that
KIA(x) ≤ KIA0

(x) + 1 = KTA(x) + 2.
For this particular interpreter IA, we prove:

I Theorem 3.4 (Allender, Grochow, and Moore [3]). For any oracle A, the rigid graph
isomorphism problem is reducible to MCSPA via a one-query BPP-reduction.

Proof Sketch. We only observe why their reduction still works for MCSPA, where A denotes
an arbitrary oracle A. See [3] for the details.

Given two graphs (G0, G1), they constructed a string x′ whose length is a power of 2 and
a threshold θ that satisfy the following: If the graphs are isomorphic, then KT(x′)� θ with
probability 1. If the graphs are rigid and not isomorphic, then x′ contains information about
a uniformly chosen random string of length at least θ, and hence KT(x′) ≥ KU (x′)� θ with
high probability. (Here, KU (x′) denotes the time-unbounded Kolmogorov complexity.)

Now consider an arbitrary oracle A. We claim that the rigid graph isomorphism problem
reduces to checking if (x′, θ) ∈ MCSPA. Suppose that the graphs are isomorphic; in this
case, we have KIA(x′) ≤ KTA(x′) + 2 ≤ KT(x′) + 2� θ. On the other hand, suppose that
the graphs are rigid and not isomorphic. Since x′ contains information about a uniformly
chosen random string, an information-theoretic argument shows that KUA(x′)� θ with high
probability (even relative to A). By the universality of U , we have KUA(x′) ≤ KIA(x′)+O(1).
Therefore, KIA(x′) ≥ KUA(x′)−O(1)� θ. J

To summarize, on one hand, relativization does not increase circuit complexity (KIA(x′) ≤
KI (x′)); on the other hand, we are prone to rely on the fact that a uniformly chosen random
string requires high circuit complexity, which remains true for any MCSPA.

We mention that, for a specific oracle A, an efficient reduction to MCSPA is known.
Allender, Buhrman, Koucký, van Melkebeek and Ronneburger [1] showed that PSPACE ⊆
ZPPMCSPQBF

. Since their proof relies on the fact that QBF is PSPACE-complete, the proof
cannot be generalized to a reduction to MCSP; hence, their reduction cannot be regarded as
an oracle-independent reduction to MCSP.

4 Limits of Oracle-independent Turing Reductions to MCSP

We show upper bounds for classes of languages that reduce to MCSP in an oracle-independent
manner (i.e., in a way that one does not use a property of MCSP rather than that of a
relativized version MCSPA). For example, we consider a situation where a language L is
reducible to MCSPA for any A via a polynomial-time Turing reduction; more precisely,
for every A, there exists a polynomial-time Turing reduction from L to MCSPA, i.e., L ∈⋂
A PMCSPA . That is, only properties common to MCSPA for any oracle A are used to show

that L is in PMCSPA . We would like to show that L is relatively easy in such situations.
In fact, we can indeed show that any language L in

⋂
A PMCSPA is in P.

I Theorem 1.1 (restated). Let L ⊆ {0, 1}∗ be a language such that for any oracle A, there
exists a polynomial-time Turing reduction from L to MCSPA. Then L is in P. In short,⋂
A PMCSPA = P.
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We will prove this theorem as follows: We will argue that, for each polynomial-time
reduction M , we can adversarially choose an oracle AM so that the reduction M cannot
query any truth-table of high circuit complexity (by encoding the truth-tables queried by M
into the oracle AM ). However, the assumption of the theorem states that a reduction M can
depend on an oracle A, and hence A cannot depend on M . We first get around this difficulty
by swapping the order of quantifiers: we reduce our theorem to the following lemma, in
which a machine M cannot depend on A.

I Lemma 4.1. Let L ⊆ {0, 1}∗ be a language and A0 be an arbitrary finite oracle. Suppose
that there exists a polynomial-time oracle Turing machine M such that MMCSPA(x) = L(x)
for any x ∈ {0, 1}∗ and any oracle A consistent with A0. Then, L ∈ P.

Note that, in this lemma, a single machine M is required to compute L with respect to every
oracle version MCSPA. We will later prove this lemma by choosing, for each reduction M
and input x, an oracle AM,x so that the reduction M to MCSPAM,x can be simulated in
polynomial time. Before its proof, we show that Lemma 4.1 implies Theorem 1.1 by using a
simple diagonalization argument.

Proof of Theorem 1.1 based on Lemma 4.1. We prove the contraposition: Assuming L 6∈
P, the aim is to construct an oracle A such that L 6∈ PA. Such an oracle A =

⋃
eBe is

constructed in stages. Let all the polynomial-time oracle Turing machines be {M1,M2, · · · }.
At stage e, we construct a finite oracle Be. At stage 0, set B0(y) := ⊥ for all y ∈ {0, 1}∗.

At stage e ≥ 1, we apply Lemma 4.1 for M = Me and A0 = Be−1: by the assumption
that L 6∈ P, there exist some string xe and some oracle Be consistent with Be−1 such
that MMCSPBe

e (xe) 6= L(xe). We may assume that Be is a finite oracle: indeed, since the
computation of MMCSPBe

e on input xe makes a finite number of queries to MCSPBe , the
answers of the queries also depend on a finite portion of Be. Define an oracle A as the union
of all the oracles Be whose ⊥ is replaced by 0.

Since A is consistent with Be, it holds that MMCSPBe
e (xe) = MMCSPA

e (xe) for each e ≥ 1.
By the definition of xe, we have MMCSPBe

e (xe) 6= L(xe). Therefore, MMCSPA
e (xe) 6= L(xe)

holds for any e, and hence L 6∈ PMCSPA . J

Now we give a proof of Lemma 4.1. The idea is as follows: For any reduction M and any
input x, we simulate the reduction M by answering M ’s query by exhaustively searching all
the circuits of size at most O(logn). On this specific computation path of M , we claim that
there exists some oracle AM,x such that the simulated computation path coincides with the
computation path of the reduction M to MCSPAM,x , thereby showing that the output of the
simulation of M is L(x): Since M is a polynomial-time machine, the number of the queries
on the computation path is at most nO(1). Thus, the index i of the queries can be described
in O(logn) bits, and hence the description length of the oracle circuit CAM,x(j) := AM,x(j, i)
is at most O(logn). By defining AM,x(j, i) := Tij for each truth-table Ti queried by M , any
truth-table Ti admits a circuit of size at most O(logn).

Let us turn to a formal proof. Let M be a polynomial-time oracle machine that computes
L given oracle access to MCSPA in time nc for some constant c, where A denotes an arbitrary
oracle consistent with A0. We define a polynomial-time machine M0 that simulates M
without using MCSPA as follows: On input x ∈ {0, 1}∗ of length n, simulate M on input x,
and accept if and only if M accepts. If M makes a query (T, s), then we try to compute the
circuit complexity KIA0 (T ) of the truth-table T relative to a finite oracle A0, by an exhaustive
search up to size at most 4c logn. (More specifically, we compute the shortest description d of
length at most 4c logn such that IA0(d) = T , where we regard A0 ⊆ {0, 1}∗ as an oracle by
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replacing ⊥ by 0 in finite oracle A0.) If the circuit complexity KIA0 (T ) has turned out to be
greater than 4c logn, then define s′ := 4c logn; otherwise define s′ := KIA0 (T ) (≤ 4c logn ).
(i.e., s′ := min{ 4c logn, KIA0 (T ) }.) Answer “Yes” to the query if and only if s′ ≤ s.

It is easy to see thatM0 is indeed a polynomial-time machine, since there are only 2O(logn)

circuits of size at most O(logn). (Recall that we regard a circuit size as a description length.)
Thus, it is sufficient to prove the following:

I Claim 4.2. For all sufficiently large n and all inputs x of length n, there exists an oracle
AM,x consistent with A0 such that M0(x) = MMCSPAM,x (x).

Note that the assumption of Lemma 4.1 implies that MMCSPAM,x (x) = L(x). Thus, the claim
implies that M0(x) = L(x) and hence L ∈ P.

Proof of Claim 4.2. Fix n sufficiently large and an input x ∈ {0, 1}n. For i ∈ [nc], let Ti be
the truth-table in the ith query that M makes on the computation path simulated by M0 on
input x.

We define an oracle AM,x = A as follows (here, AM,x is abbreviated as A for notational
convenience): For any string q ∈ {0, 1}∗ of length less than 4c logn, define A(q) = 1 if
and only if A0(q) = 1. For strings of length 4c logn, we encode Ti into oracle A so that
the circuit complexity of Ti relative to A is at most 4c logn: Specifically, we would like
to define a description di of length (exactly equal to) 4c logn so that IA(di) = Ti. To
this end, let ai := log |Ti| and define di :=

〈
1ai , iki

〉
, where ki ∈ N is defined so that

|di| = 2ai + 1 + ki = 4c logn. Here, iki is well-defined: indeed, we have ai = log |Ti| ≤ c logn,
which implies that ki := 4c logn− 2ai − 1 ≥ c logn, and thus i ≤ 2c logn ≤ 2ki . Now define
A(j

ai
, iki) := Tij for each j ∈ [2ai ]. By the definition of IA, the truth-table Ti can be

described succinctly: IA(di) = A(1ai , iki) · · ·A(2aiai , iki) = Ti; thus, the circuit complexity
KIA(Ti) of Ti is at most |di| = 4c logn.

It remains to show that, for each query (Ti, s) that M makes on the computation
path simulated by M0, circuit complexity s′ ( = min{ 4c logn, KIA0 (Ti) } ) calculated by
M0 coincides with KIA(Ti); note that this implies that M0(x) = MMCSPA(x), because the
computation path simulated by M0 coincides with that of M relative to MCSPA. In order
to see KIA(Ti) = min{ 4c logn, KIA0 (Ti) }, first we note that A and A0 are consistent up
to length 4c logn− 1; thus, for small circuits, circuit complexity relative to A remains the
same with circuit complexity relative to A0, because small circuits cannot query long strings
of length 4c logn. Formally, suppose that KIA0 (Ti) < 4c logn (i.e., s′ = KIA0 (Ti)). In
this case, there exists some description d of length less than 4c logn such that IA0(d) = Ti.
Since the circuit described by d cannot make any query of length greater than |d|, it holds
that IA0(d) = IA(d). Thus KIA(Ti) ≤ KIA0 (Ti) < 4c logn. Similarly, we have KIA0 (Ti) ≤
KIA(Ti), and hence KIA(Ti) = KIA0 (Ti) = s′. Now suppose that KIA0 (Ti) ≥ 4c logn (i.e.,
s′ = 4c logn). We claim that KIA(Ti) = 4c logn. Since we have KIA(Ti) ≤ 4c logn by the
definition of A, it is sufficient to show that KIA(Ti) < 4c logn is not true. Assume, by way
of contradiction, that KIA(Ti) < 4c logn. By the same argument above, it must be the case
that KIA(Ti) ≥ KIA0 (Ti) ≥ 4c logn, which is a contradiction. J

This completes the proof of Lemma 4.1.

I Remark. If we regard a size of a circuit as the number of its wires, then the upper bound P
becomes DTIME(nO(log logn)). Specifically, let MCSP′A denotes a version of MCSPA in which
a size of a circuit is measured by the number of its wires. Then we have

⋂
A PMCSP′A ⊆

DTIME(nO(log logn)). This can be proved by simply changing M0 in the proof above so that
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M0 exhaustively search all the circuits of at most O(logn) wires in time O(logn)O(logn) =
nO(log logn).

5 Limits of Oracle-independent Randomized Reductions to MCSP

In this section, we discuss the limits of a randomized reduction to MCSP that can be
generalized to a reduction to MCSPA for an arbitrary oracle A. Our focus is a randomized
reduction with negligible two-sided error that can make at most one query:

I Definition 5.1. Let L,B ⊆ {0, 1}∗ be a language and an oracle, respectively. We say
that L reduces to B via a one-query BPP-reduction and write L ∈ BPPB[1] if there exist
polynomial-time machines M,Q and a negligible function ε such that, for any x ∈ {0, 1}∗,

Pr
r∈{0,1}|x|O(1)

[M(x, r,B(Q(x, r))) = L(x)] ≥ 1− ε(|x|).

Here, we say that a function ε is negligible if for all polynomials p, for all sufficiently large
n ∈ N, the function is bounded by the inverse of p: that is, ε(n) < 1

p(n) .

Note that we require the error probability to be negligible. Since the number of queries
is restricted to one, we cannot apply the standard error-reduction argument; hence, this
definition may be stronger than a definition whose error probability is a constant. We leave
as an open problem improving our result to the case when the error probability is a constant.

We prove that there is no language outside AM ∩ coAM that can reduce to MCSPA for
an arbitrary oracle A via a one-query randomized reduction:

I Theorem 1.2 (restated). Let L ⊆ {0, 1}∗ be a language such that for any oracle A, there
exists a one-query BPP-reduction from L to MCSPA. Then L is in AM ∩ coAM. In short,⋂

A

BPPMCSPA[1] ⊆ AM ∩ coAM.

As with Theorem 1.1, we first swap the order of quantifiers. However, in order to swap the
order of quantifiers, we need to enumerate all the negligible functions, which is not countably
many; thus, we sidestep this by requiring that the error probability is an inverse polynomial
1/q in the running time of machines M and Q. Also, since a one-query BPP-reduction is
closed under complement, we only have to show that the target language is in AM.

I Lemma 5.2. There exists some universal polynomial q (specified later) that satisfies the
following: Let L,A0 be a language and a finite oracle, respectively. Suppose that there exist
a polynomial p and Turing machines M,Q such that M and Q run in time p(n) and

Pr
r∈{0,1}p(n)

[M(x, r,MCSPA(Q(x, r))) = L(x)] ≥ 1− 1
q(p(n))

for any x ∈ {0, 1}∗ of length n and any oracle A ⊆ {0, 1}∗ consistent with A0. Then, we
have L ∈ AM.

We prove that Lemma 5.2 implies Theorem 1.2:

Proof of Theorem 1.2 based on Lemma 5.2. We prove the contraposition: Assuming L 6∈
AM, we will construct an oracle A such that L 6∈ BPPMCSPA[1] by diagonalization.

Enumerate all the tuples { (Me, Qe, ce) }e≥1, where Me and Qe are polynomial-time
machines and ce ∈ N. We assume that, for each tuple (Me, Qe, ce), there exist infinitely
many e′ ∈ N such that (Me, Qe, ce) = (Me′ , Qe′ , ce′).
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At stage e ≥ 1, we construct a finite oracle Be that fools a one-query BPP reduc-
tion (Me, Qe) that runs in time nce : If Me or Qe does not run in time nce , then we
define Be := Be−1. Otherwise, we can apply the contraposition of Lemma 5.2 to Me

and Qe: there exist some input xe and some oracle Be consistent with Be−1 such that
Prr[Me(xe, r,MCSPBe(Qe(xe, r))) = L(xe)] < 1 − 1

q(nce ) . We can make Be a finite oracle,
since Me depends on only a finite portion of Be. This completes stage e. Define A as the
union of all the oracles Be whose ⊥ is replaced by 0.

We claim that L 6∈ BPPMCSPA[1]. Assume otherwise. Then there exist a constant c > 1, a
negligible function ε, and machines M and Q that run in time nc such that

Pr
r

[M(x, r,MCSPA(Q(x, r))) = L(x)] ≥ 1− ε(|x|) (1)

for all x ∈ {0, 1}∗. Fix a sufficiently large n0 ∈ N such that ε(n) < 1
q(nc+1) for all n ≥ n0. Let

M ′ be the Turing machine3 that, on input x, outputs a hardwired answer L(x) if |x| ≤ n0,
and simulates M otherwise. Note that the running time of M ′ is at most nc+1.

By the construction above, there exists e ≥ n0 such that (Me, Qe, ce) = (M ′, Q, c+ 1).
By the definition of xe, we have Prr[M ′(xe, r,MCSPA(Q(xe, r))) = L(xe)] < 1 − 1

q(|xe|c+1) .
Moreover, since M ′ outputs a correct answer with probability 1 on input x of length at most
n0, it holds that |xe| > n0; thus, we have ε(|xe|) < 1

q(|xe|c+1) ; in addition, the machine M ′
behaves in the same way with M . Hence, the success probability of (M,Q) on input xe is
equal to that of (M ′, Q) on input xe, which is bounded above by 1− 1

q(|xe|c+1) < 1− ε(|xe|).
This contradicts (1). J

Now we outline the proof of Lemma 5.2.
We will first show that we may assume that all the queries that Q makes have a truth-

table of a fixed length 2t and a fixed size-parameter s for some t, s ∈ N. There is no loss
of generality in assuming this because there are only polynomially many possibilities: the
number of all the possible lengths of a truth-table and size-parameters is at most nc for some
c. Moreover, we may fix how to use the answer of a query: specifically, for a random choice
r, define f : {0, 1} → {0, 1} (which has 4 possible choices) so that f(b) = M(x, r, b). (For
example, f(b) = b means that M accepts if and only if the query is a positive instance of
MCSPA.)

We classify the set of random choices r into Rf,t,s according to these parameters (f, t, s).
If x ∈ L, then there must exist some (f, t, s) such that f(MCSPA(Q(x, r))) = 1 with high
probability over the choice of r ∈R Rf,t,s. On the other hand, if x 6∈ L, then any (f, t, s)
must satisfy f(MCSPA(Q(x, r))) = 0 with high probability. Therefore, it is sufficient to prove
that, for a specific (f, t, s), there exists an AM protocol that checks if f(MCSPA(Q(x, r))) = 1
with high probability conditioning on r ∈ Rf,t,s.

Let us assume that f(b) = b for simplicity. Then, it is sufficient to estimate the probability

Pf,t,s := Pr
r∈RRf,t,s

[f(MCSPA(Q(x, r))) = 1] = Pr
r∈RRf,t,s

[Q(x, r) ∈ MCSPA]

by an AM protocol. If the probability Pf,t,s is close to 1, then the distribution induced by
Q(x, r) concentrates on a limited number of instances: indeed, since there are at most 2s+1

3 M ′ can be implemented by a Turing machine as follows: Read the first n0 + 1 bits of the input (if any).
If the input length is at most n0, then output the hardwired answer. Otherwise, move the head of the
input tape to the initial position, and continue the computation of M . This implementation costs at
most 2n0 additional steps.
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positive instances in MCSPA for a size-parameter s, the query Q(x, r) must be one of such
instances with probability at least Pf,t,s. Conversely, suppose that the query distribution
Q(x, r) concentrates on a limited number of instances { (T1, s), (T2, s), · · · }; we may encode
Ti into an oracle A and force these instances to be positive (i.e., (Ti, s) ∈ MCSPA); as a
result, the probability Pf,t,s is not small (since the instances (Ti, s) are positive). Therefore,
the task reduces to checking whether the query distribution concentrates on a limited number
of instances.

To this end, we will use the heavy samples protocol [6]. We say that an instance (T, s)
is β-heavy if the probability that (T, s) is queried (i.e., (T, s) = Q(x, r)) is at least β. The
heavy samples protocol allows us to estimate the probability that Q(x, r) is β-heavy.

I Lemma 5.3 (The heavy samples protocol; Trevisan and Bogdanov [6]). Let D = {Dn }n∈N
be a polynomial-time samplable distribution. There exist a universal constant c (c = 211

will do) and an AM ∩ coAM protocol that solves the following promise problem: Given
input 1n and a threshold β ∈ [0, 1], accept if Pry∼Dn [ y is cβ-heavy ] ≥ 3

4 , and reject if
Pry∼Dn [ y is β-heavy ] ≤ 1

4 .

This lemma follows from the lower bound protocol (Goldwasser and Sipser [10]) and the
upper bound protocol (Fortnow [9]).

Due to space constraints, we defer the formal proof to the full version.

6 Hardness of MCSP Implies Separations of Complexity Classes

In this section, we give a reinterpretation of the results of Murray and Williams [17] by using
Levin’s Kolmogorov complexity, and extend these results to the case of polynomial-time
nonadaptive reductions and polynomial-time Turing reductions. Our proofs are based on the
firm links between circuit complexity and resource-bounded Kolmogorov complexity, which
have been established by a line of work [1, 5]. First, we introduce Levin’s Kt-complexity.

I Definition 6.1 (Levin’s Kolmogorov Complexity [16]). Fix an efficient universal Turing
machine U . The Levin’s Kolmogorov complexity Kt(x) of a string x is defined as

Kt(x) := min{ |d|+ log t | U(d) outputs x in time t }.

Our proof is principally based on the fact that EXP ⊆ P/poly if and only if circuit
complexity KI is polynomially related to Levin’s Kolmogorov complexity Kt.

I Lemma 6.2 (Allender, Koucký, Ronneburger and Roy [5]). EXP ⊆ P/poly if and only if
there exists a polynomial poly in two variables such that KI (x) ≤ poly(Kt(x), log |x|).

We would like to separate the class of languages reducible to MCSP from EXP, under
the assumption that EXP ⊆ P/poly. Under this assumption, Lemma 6.2 suggests that
circuit complexity and Kt-complexity are essentially the same (in the sense that these are
polynomially related to each other). Therefore, we will first separate the class of languages
reducible to Kt from EXP, and then, based on Lemma 6.2, translate the property of Kt into
that of MCSP, assuming EXP ⊆ P/poly.

6.1 The Case of Nonadaptive Reductions
In the case of polynomial-time nonadaptive reductions, it is well known that PKt

|| 6= EXP.

I Proposition 6.3 (folklore). EXPKt
|| = EXP. (Here, Kt is identified with the oracle { (x, s) ∈

{0, 1}∗ × N | Kt(x) ≤ s }.)



S. Hirahara and O. Watanabe 18:15

Note that this implies PKt
|| 6= EXP by the time hierarchy theorem.

Proof. Let M be any EXPKt
|| machine. Given input x ∈ {0, 1}∗ of length n, let Q(x) be

the set of queries (without size-parameter s) that M makes. Since M is a nonadaptive
oracle machine, Q(x) can be computed in exponential time. Therefore, any query q ∈ Q(x)
can be described by the input x and an index i ∈ [2nO(1) ] in exponential time; hence,
Kt(q) ≤ |x|+ nO(1) + log 2nO(1) = nO(1).

Given the fact that Kt(q) ≤ nO(1), we may compute Kt(q) by an exhaustive search in
exponential time. Thus, by answering M ’s queries by the exhaustive search, we can compute
M ’s output in exponential time. J

Under the assumption that EXP ⊆ P/poly, we can translate the property of Kt into that
of circuit complexity:

I Theorem 6.4. If EXP ⊆ P/poly then EXPMCSP
|| = EXP.

Proof Sketch. Let (T, s) be any query of an EXPMCSP
|| machine. Since Kt(T ) is nO(1), the

circuit complexity KI (T ) of T is also bounded above by nO(1) by Lemma 6.2. Thus, the
circuit complexity of all the queries can be computed by an exhaustive search in time
exponential in n. J

This theorem allows us to obtain a nontrivial separation of PMCSP
|| ∩ P/poly from EXP:

I Corollary 6.5. PMCSP
|| ∩ P/poly 6= EXP.

Proof. Assume, by way of contradiction, that PMCSP
|| ∩ P/poly = EXP. In particular, EXP ⊆

P/poly. Thus, by Theorem 6.4, we have EXPMCSP
|| = EXP. Therefore, EXPMCSP

|| = EXP =
PMCSP
|| , which contradicts the (relativized) time hierarchy theorem [11]. J

This result exhibits a singular property of MCSP. In particular, reducing a language L
to MCSP via a polynomial-time nonadaptive reduction implies a separation of PL|| ∩ P/poly
from EXP.

I Corollary 6.6. If L ≤ptt MCSP, then PL|| ∩ P/poly 6= EXP.

Proof. The hypothesis implies that PL|| ⊆ PMCSP
|| , and by the previous corollary it holds that

EXP 6⊆ PMCSP
|| ∩ P/poly, from which the result follows. J

We give some specific remarks:

I Remark.
1. If MCSP is ZPP-hard under polynomial-time nonadaptive reductions, then ZPP 6= EXP,

which is a notorious open problem.
2. If MCSP is NP-complete under polynomial-time nonadaptive reductions, then PNP

|| ∩
P/poly 6= EXP. (The consequence is also a tiny improvement of Murray and Williams [17],
who showed that NP ∩ P/poly 6= EXP under the assumption that NP ≤pm MCSP.)
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6.2 On Hardness of Approximating Kt-complexity and Circuit
Complexity

Now we turn to the case of polynomial-time Turing reductions. We first introduce some
definitions about promise problems:

I Definition 6.7.
1. A promise problem Π = (ΠY ,ΠN ) is a pair of disjoint languages ΠY and ΠN , where ΠY

is the set of YES instances and ΠN is the set of NO instances.
2. We say that an oracle A satisfies the promise of Π = (ΠY ,ΠN ) if, for any x ∈ {0, 1}∗, it

holds that x ∈ ΠY implies x ∈ A, and that x ∈ ΠN implies x 6∈ A.
3. We say that a language L is reducible to a promise problem Π via a polynomial-time

Turing reduction M and write L ≤pT Π if MA(x) = L(x) for any x ∈ {0, 1}∗ and any
oracle A that satisfies the promise of Π.

We show that approximating Kt-complexity within additive error g(n) = ω(logn) is not
EXP-complete under polynomial-time Turing reductions. We denote such a promise problem
by GapgKt:

I Definition 6.8. For a function g : N→ N, define a promise problem GapgKt := (ΠY ,ΠN )
by

ΠY := { (x, s) ∈ {0, 1}∗ × N | Kt(x) ≤ s },
ΠN := { (x, s) ∈ {0, 1}∗ × N | Kt(x) > s+ g(|x|) }.

For this promise problem, we prove:

I Theorem 1.4 (restated). For any nondecreasing function g(n) = ω(logn), it holds that
PGapgKt 6= EXP.

The proof is similar to a simplified proof in [1, Corollary 40] showing that resource-
bounded Kolmogorov complexity Kt for a fixed exponential time t(n) ≥ 2n2 is not EXP-hard
(originally proved by Buhrman and Mayordomo [8]).

Proof. It is sufficient to prove that every unary language in PGapgKt can be solved in a fixed
exponential time. Indeed, by the time hierarchy theorem, there exists a unary language in
EXP that requires time complexity larger than the fixed exponential time, which implies that
PGapgKt 6= EXP.

We first note that Kt(x) ≤ |x|+O(log |x|) for any x ∈ {0, 1}∗, since every string can be
described by itself in polynomial time. Let l(n) be such a (nondecreasing) upper bound (i.e.,
l(n) = n+O(logn)).

Let L ⊆ {0}∗ be an arbitrary unary language in PGapgKt, and M be a polynomial-time
machine that witnesses L ∈ PGapgKt.

The proof idea is as follows: We would like to simulate M on input 0n without oracle
access to GapgKt in time 22n � 2nO(1) . To this end, we try to answer M ’s query q by
exhaustively searching up to Kt-complexity l(n). While we cannot obtain the correct value
Kt(q) for a query q such that Kt(q) > l(n), we guess the value Kt(q) to be l(n). Then, we
will argue that each query q can be computed efficiently and hence Kt(q) is relatively small;
therefore, the guessed value of Kt-complexity gives a good approximation. A formal proof
follows.

We define a machineM0 that simulatesM on input 0n (without oracle access to GapgKt):
On input 0n, M0 simulates M on the same input, and accepts if and only if M accepts. If
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the machine M makes a query (q, s) ∈ {0, 1}∗ × N to a GapgKt oracle, then we perform
an exhaustive search up to Kt-complexity l(n), which allows us to compute σn(q) :=
min{Kt(q), l(n) }. (Namely, for each d ∈ {0, 1}∗ of length at most l(n), run the universal
Turing machine U on input d for time 2l(n)−|d|, which takes overall 2l(n)nO(1) time.) We answer
“Yes” to the query q if and only if σn(q) ≤ s. The machine M0 runs in time 2l(n)nO(1) ≤ 22n

(i.e., a fixed exponential time). Hence, it remains to prove that, for each n ∈ N, there exists
an oracle A that satisfies the promise of GapgKt such that M0(0n) = MA(0n), which in
particular implies that M0(0n) = L(0n).

A crucial observation here is that each query that M makes on the computation path
simulated by M0 can be described succinctly in terms of Kt-complexity: Specifically, fix an
input 0n and define the set Qn = { (q1, s1), · · · , (qm, sm) } of queries that M makes on the
computation path simulated byM0, where m = nO(1) is the number of the queries. Then, the
ith query (qi, si) can be described by n and an index i ∈ [m] in time 2l(n)nO(1). Therefore, it
holds that Kt(qi) ≤ O(logn) + log 2l(n)nO(1) = l(n) +O(logn). By the assumption, we have
O(logn) ≤ g(n) for all large n; hence, Kt(qi) ≤ l(n) + g(n). This means that the difference
between Kt(qi) and the threshold l(n) up to which we performed an exhaustive search is at
most g(n).

Now, for each n ∈ N, define an oracle A as follows: (q, s) ∈ A if and only if σn(q) ≤ s

for any (q, s) ∈ Qn, and (q, s) ∈ A if and only if Kt(q) ≤ s for any (q, s) 6∈ Qn. (Here,
σn(q) denotes min{Kt(q), l(n) }.) By this definition, it holds that MA(0n) = M0(0n); thus
all that remains is to show that A satisfies the promise of GapgKt (which implies that
MA(0n) = L(0n)).

Namely, for all (q, s) ∈ Qn, we would like to claim that (q, s) ∈ A holds if (q, s) is a YES
instance of GapgKt (i.e., Kt(q) ≤ s), and that (q, s) 6∈ A holds if (q, s) is a NO instance of
GapgKt (i.e., Kt(q) ≥ s+ g(|q|)). Note that if Kt(q) ≤ l(n) then σn(q) = Kt(q); hence in
this case, the claim is obviously satisfied. In what follows, we may assume that Kt(q) > l(n)
(and thus σn(q) = l(n)). In particular, this implies that n ≤ |q|: indeed, by the definition
of l(n), we have Kt(q) ≤ l(|q|), which implies l(n) < Kt(q) ≤ l(|q|); hence, n ≤ |q| follows.
Therefore, Kt(q) ≤ l(n) + g(n) ≤ l(n) + g(|q|). Now assume that Kt(q) > s + g(|q|) (i.e.,
(q, s) is a NO instance). This implies that σn(q) = l(n) ≥ Kt(q) − g(|q|) > s, and hence
(q, s) 6∈ A as desired. On the other hand, if Kt(q) ≤ s (i.e., (q, s) is an YES instance), then
we have σn(q) ≤ Kt(q) ≤ s, and hence (q, s) ∈ A. J

Next, assuming that EXP ⊆ P/poly, we translate the property of Kt-complexity into that
of MCSP. However, since these two measures are just polynomially related, the narrow gap of
Kt does not seem to be translated into a narrow gap of MCSP. Thus, we define GapkMCSP
as a promise problem that asks for approximating the logarithm of circuit complexity within
a factor of k:

I Definition 6.9. For a constant k ≥ 1, define a promise problem GapkMCSP := (ΠY ,ΠN )
by

ΠY := { (T, s) ∈ {0, 1}∗ × N | log KI (T ) ≤ s },
ΠN := { (T, s) ∈ {0, 1}∗ × N | log KI (T ) > ks }.

We can apply the same proof idea to GapkMCSP. In fact, thanks to the fact that the
gap between ΠY and ΠN is wide, we can prove a somewhat strong consequence:

I Theorem 6.10. If EXP ⊆ P/poly, then for any ε > 0, there exists a constant k ≥ 1 such
that PGapkMCSP ⊆ DTIME(2nε). In particular, EXP 6= PGapkMCSP ∩ P/poly for some k.
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Proof. The proof idea is exactly the same with that of Theorem 1.4: We first simulate
a PGapkMCSP machine by answering its query T by an exhaustive search up to circuit
complexity l(n) for some l(n). Then, since any query T can be described succinctly in terms
of Kt-complexity, the circuit complexity KI (T ) of the query T is also relatively small by
Lemma 6.2; hence, the incomplete exhaustive search gives a somewhat good approximation.
While the theorem can be proved based on Lemma 6.2, we incorporate a proof of Lemma 6.2
and give an entire proof below for completeness.

Let us define an EXP-complete language B ⊆ {0, 1}∗ as all the tuples 〈Q, x, t〉 such that
the Turing machine Q accepts x in time t. Since B ∈ EXP ⊆ P/poly, there exist some
constant k0 ∈ N and some family of circuits {Cm }m∈N of size at most mk0 that computes B
on input length m.

Fix a small constant ε > 0. Define k := (k0 + 1)/ε. Let L ∈ PGapkMCSP and M be a
polynomial-time oracle machine that witnesses L ∈ PGapkMCSP.

Define l(n) := nε. As in the proof of Theorem 1.4, we define a machine M0 that simulates
M (without oracle access to GapkMCSP) as follows: M0 takes input x ∈ {0, 1}∗ of length
n, simulates M on input x, and accepts if and only if M accepts. If M makes a query
(T, s), then answer to the query by an exhaustive search up to circuit size l(n). (Specifically,
compute σx(T ) := min{KI (T ), l(n) } and answer “Yes” if and only if σx(T ) ≤ s.) The
machine M0 runs in time 2l(n)nO(1) ≤ 2n2ε for all large n.

Fix input x ∈ {0, 1}∗ of length n. Let Qx = { (T1, s1), · · · , (TnO(1) , snO(1)) } be the set of
all the queries that M makes on the computation path simulated by M0. We claim that for
each (Ti, si) ∈ Qx, the circuit complexity KI (Ti) is relatively small: Indeed, each truth-table
Ti in Qx can be computed in time t(n) := 2n2ε , by simulatingM in the same way withM0. Let
Q be the Turing machine that takes as input x ∈ {0, 1}∗ of length n and indices i, j ∈ [nO(1)],
and outputs Tij . By the definition of B, it holds that B(Q, 〈x, i, j〉 , t(n)) = Q(x, i, j) = Tij .
Also, by the definition of Cm, we have B(Q, 〈x, i, j〉 , t(n)) = Cm(Q, 〈x, i, j〉 , t(n)) for m =
| 〈Q, 〈x, i, j〉 , t(n)〉 |. Note that m = 4n + O(logn) + log t(n) ≤ 5n for all large n. Now let
us fix x ∈ {0, 1}n and i ∈ [nO(1)]: namely, define Dx,i(j) = Cm(Q, 〈x, i, j〉 , t(n)); then, the
truth-table of Dx,i coincides with Ti. Therefore,

KI (Ti) ≤ |Dx,i| ≤ |Cm| ≤ mk0 ≤ (5n)k0 ≤ nkε = l(n)k

for all large n. (Here, |Cm| denotes the circuit size of Cm.)
Now we claim that σx(Ti) = min{KI (Ti), l(n) } approximates KI (Ti) for all (Ti, si) ∈ Qx:

specifically, we claim that log σx(Ti) ≤ log KI (Ti) < k log σx(Ti). If KI (Ti) ≤ l(n), then
σx(Ti) = KI (Ti) and the claim is obvious. Now assume that KI (Ti) > l(n), which implies
that σx(Ti) = l(n). Thus we have σx(Ti) = l(n) < KI (Ti) < l(n)k = σx(Ti)k.

From the inequalities above, for all but finitely many x ∈ {0, 1}∗, it is easy to see that
there exists an oracle A such that A satisfies the promise of GapkMCSP and M0(x) =
MA(x) = L(x). J

As in Corollary 6.6, we obtain:

I Corollary 6.11. If L ≤pT GapkMCSP for all k ≥ 1, then PL ∩ P/poly 6= EXP.

Proof. The hypothesis implies that PL ⊆ PGapkMCSP for all k ≥ 1, and Theorem 6.10 shows
EXP 6⊆ PGapkMCSP ∩ P/poly for some k ≥ 1, from which the result follows. J

I Remark.
1. As in the case of nonadaptive reductions, establishing NP-hardness of GapkMCSP for all

k ≥ 1 via a polynomial-time Turing reduction implies that PNP ∩ P/poly 6= EXP.
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2. One interesting consequence is that if MCSP itself is reducible to GapkMCSP for all k ≥ 1
via a polynomial-time Turing reduction, then PMCSP ∩ P/poly 6= EXP, which we do not
know how to prove. Thus, establishing such “robustness” of MCSP via a polynomial-time
Turing reduction is at least as hard as separating PMCSP ∩ P/poly from EXP.

Finally, we observe that every language in statistical zero knowledge is reducible to
GapkMCSP via a BPP-reduction. As observed in [5], hardness of statistical zero knowledge
implies hardness of approximating the minimum circuit complexity of a truth-table T within
a factor of |T |1−ε for any ε ∈ (0, 1). Similarly, it implies hardness of GapkMCSP for all k ≥ 1
(i.e., a problem of approximating the logarithm of the circuit complexity within an arbitrary
constant factor).

I Theorem 1.6 (restated). For all k ≥ 1, every language in statistical zero knowledge is
reducible to GapkMCSP via a BPP-Turing reduction.

Proof. Let A be an arbitrary oracle that satisfies the promise of GapkMCSP. Let s(n) :=
1
2k logn. Define an oracle B := {x ∈ {0, 1}∗ | (x, s(|x|)) 6∈ A }. It is sufficient to show that
B satisfies the hypothesis of Theorem 3.1.

First, we claim that B does not contain any string of low circuit complexity. Suppose that
x ∈ B. Then we have (x, s(|x|)) 6∈ A, which implies that (x, s(|x|)) is not an YES instance of
GapkMCSP. This means that log KI (x) > s(|x|); hence, KI (x) > |x|1/2k.

Next, we claim that the oracle B is of polynomial density. It is sufficient to prove that
{x ∈ {0, 1}∗ | KI (x) > |x|1/2 } ⊆ B: Indeed, suppose that KI (x) > |x|1/2 for a string
x ∈ {0, 1}∗; then we have log KI (x) > ks(|x|), which implies that (x, s(|x|)) is a NO instance
of GapkMCSP; hence, x ∈ B. J
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Abstract
We strengthen the nondeterministic hierarchy theorem for non-deterministic polynomial time to
show that the lower bound holds against sub-linear advice. More formally, we show that for any
constants d and d′ such that 1 6 d < d′, and for any time-constructible bound t = o(nd), there is
a language in NTIME(nd) which is not in NTIME(t)/n1/d′ . The best known earlier separation of
Fortnow, Santhanam and Trevisan could only handle o(log(n)) bits of advice in the lower bound,
and was not tight with respect to the time bounds.

We generalize our hierarchy theorem to work for other syntactic complexity measures between
polynomial time and polynomial space, including alternating polynomial time with any fixed
number of alternations. We also use our technique to derive an almost-everywhere hierarchy
theorem for non-deterministic classes which use a sub-linear amount of non-determinism, i.e.,
the lower bound holds on all but finitely many input lengths rather than just on infinitely many.

As one application of our main result, we derive a new lower bound for NP against NP-uniform
non-deterministic circuits of size O(nk) for any fixed k. This result is a significant strengthening
of a result of Kannan, which states that not all of NP can be solved with P-uniform circuits of
size O(nk) for any fixed k. As another application, we show strong non-uniform lower bounds
for the complexity class RE of languages decidable in randomized linear exponential time with
one sided error.
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1 Introduction

One of the fundamental questions in complexity theory is whether resource hierarchies exist,
i.e., whether having more of a resource allows us to solve more computational problems.
Hierarchies are known for many fundamental resources, including deterministic time [11, 12],
deterministic space [18] and non-deterministic time [6, 17, 20, 8].

Hierarchy theorems yield the only unconditional separations we know against polynomial-
time classes, and thus it is of interest to investigate how strong we can make these separations.
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Ideally, we would like the separations to work against non-uniform classes, not just uniform
ones. The notion of advice allows us to interpolate between the uniform and the non-uniform
settings, and then the question becomes how much advice we can handle in the lower bound
when proving a hierarchy theorem.

This question is interesting for at least a couple of different reasons. First, the amount
of non-uniformity in the lower bound is closely tied to the question of derandomization. If
we could show that for any fixed k, there is a language in deterministic polynomial time
which cannot be solved in deterministic time O(nk) with O(nk) bits of advice, we could
conclude that every language in probabilistic polynomial time can be solved infinitely often
in deterministic sub-exponential time, using the hardness-randomness tradeoffs of [15, 3]. A
similar derandomization result for the class MA follows from the assumption that there is a
language in NP which cannot be solved in non-deterministic time O(nk) with O(nk) bits of
advice.

Second, from a technical point of view, hierarchy theorems are used in many of the
important separation results in complexity theory [2, 7, 19]. Improved hierarchy theorems
open the way to stronger versions of these results.

The traditional proofs of hierarchy theorems yield only uniform lower bounds. However,
the proof of the deterministic time hierarchy theorem [11, 12] can easily be adapted to
yield separations against n − ω(1) bits of advice. This adaptation exploits the closure of
deterministic time under complementation.

The situation is very different for resources such as non-deterministic time which are not
known to be closed under complementation. The best hierarchy theorem known for this
case in terms of the advice handled by the lower bound is due to [10]. They adapt Zak’s
proof of the non-deterministic time hierarchy [20] to show that NP 6⊆ NTIME(nc)/ log(n)1/2c

for any c > 0. Not much more can be expected of adaptations of classical proofs of the
non-deterministic time hierarchy theorem [6, 17, 20]. Since such proofs consider exponentially
many input lengths when diagonalizing against a single machine, they’re incapable of handling
advice more than O(log(n)).

1.1 Our Results
Our main result is a significant improvement of the non-deterministic time hierarchy theorem
in terms of the advice handled in the lower bound.

I Theorem 1.1. Let d > 1 and d′ > d be any constants, and let t be a time-constructible
time bound such that t = o(nd). Then NTIME(nd) 6⊆ NTIME(t)/n1/d′ .

Theorem 1.1 improves on known results handling advice in two respects. First, the
amount of advice in the lower bound can be as high as nΩ(1), in contrast to earlier results
in which it was limited to be O(log(n)). Second, the hierarchy is provably tight in terms of
the time bounds, while earlier results handling advice could only separate NTIME(nd) from
NTIME(nc) with advice, where c < d.

The ideas of the proof of Theorem 1.1 also enable us to make progress on another direction
in which hierarchy theorems can be strengthened: showing that hierarchy theorems hold
almost everywhere. By this we mean that the lower bound holds on all but finitely many input
lengths, rather than just on infinitely many. While it is well-known that the deterministic
time hierarchy theorem can be adapted to hold almost everywhere, it is a long-standing open
problem whether this adaptation can be done for the non-deterministic hierarchy theorem.
It is shown in [5] that any adaptation has to be non-relativizing.
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We make progress on this question by showing that almost-everywhere hierarchies do
hold for a very natural sub-class of non-deterministic time: non-deterministic time with
bounded non-determinism. Given functions t and g, let NTIMEGUESS(t, g) denote the class
of languages accepted by non-deterministic machines running in time t(n) and using at most
g(n) non-deterministic bits on any input of length n. Note that most natural NP-complete
problems, such as SAT and CLIQUE, belong to NTIMEGUESS(poly(n), o(n)). We show the
following.

I Theorem 1.2. Let d > 1 be any constant, and let t be a time-constructible function
such that t(n) = o(nd). Let g(n) = o(n) be any function computable in time O(n). Then
NTIMEGUESS(nd, 2g) 6⊆ i.o.NTIMEGUESS(t, g).

We are able to use Theorem 1.1 to derive a new circuit lower bound for NP, improving a
30-year old result of Kannan [14].

I Theorem 1.3. Let k > 1 be any constant. NP does not have NP-uniform non-deterministic
circuits of size O(nk).

We are also able to use Theorem 1.1 to derive improved non-uniform lower bounds for
the complexity class RE of problems solvable in randomized linear exponential time with
one-sided error. Previously only a separation against a logarithmic amount of advice was
known [5].

I Theorem 1.4. For any constant c, RE 6⊆ RTIME(nc)/n1/2c.

Finally, we consider the question of whether Theorem 1.1 can be extended to complexity
measures other than NTIME. We show that for a wide variety of complexity measures,
including all the alternating time classes with a bounded number of alternations, the analogue
of Theorem 1.1 holds. Since the statements of these results are somewhat technical, we refer
the reader to Section 7.

1.2 Techniques
We now attempt to give some intuition for the ideas in our proofs.

Recall that we are attempting to give hierarchies for non-deterministic time where the
upper bound is uniform, but the lower bound allows as large an amount of non-uniformity as
possible. Tradtional proofs of uniform non-deterministic time hierarchy theorems [6, 17, 20]
use the delayed diagonalization technique. We illustrate this technique through Zak’s proof,
which is arguably the simplest. Suppose we wish to define a non-deterministic machine M

running in time nd which diagonalizes against some non-deterministic machine Mi running
in time t = o(nd). Rather than diagonalizing against Mi on some fixed input x depending on
i as in the proof of the deterministic time hierarchy theorem [11, 12], we diagonalize against
Mi on some interval Ii of input lengths, meaning that we are guaranteed M differs from Mi

on some input of length in Ii. The interval Ii is of the form [ni, 2nd
i ] for some ni depending

on i, though we overload the notation Ii to also represent the set of strings whose length is
in that interval. The diagonalization proceeds via a “copying” mechanism. On an input x in
Ii of length less than 2nd

i , M on x simply simulates Mi on x0, accepting iff Mi accepts. On
an input of the form x02nd

i −ni , where |x| = ni, M determines Mi(x) by brute force search,
accepting iff Mi rejects. By assumption on t and assuming ni is large enough, M can be
defined to run in time nd on all inputs in Ii.

Assume, for the purpose of contradiction, that M and Mi define the same language. Then
M and Mi agree on all inputs with lengths in Ii, which by the copying mechanism of M ,
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implies that Mi(x) agrees with Mi(x0j) for each x of length ni and each j ∈ [0, 2nd
i − ni].

But then M cannot agree with Mi on x02nd
i −ni , as M on that input does the opposite of

what Mi does on x. Note that we cannot guarantee that M differs from Mi on any specific
input, merely that it differs from Mi on some input in Ii. Also note that the interval Ii is
exponentially long. Intuitively, M bides its time for exponentially many input lengths, until
it has enough resources to do the opposite of what Mi does on x.

With an appropriate choice of intervals Ii, the above argument yields a uniform hierarchy
theorem. It was adapted by Fortnow, Santhanam and Trevisan [9] to show a hierarchy
with advice, but the advice which the adaptation can handle is very low: o(log(n)). To
handle advice, M needs to simulate Mi with advice in the copying phase. The advice used
is extracted from x in a deterministic way, so that considering all possible strings x of a
certain length enables us to diagonalize against all possible advice strings of a smaller length.
However, the fact that Zak’s argument uses exponentially many input lengths hurts us in
terms of the amount of advice we can handle. First, using a naive copying argument requires
an exponential amount of information (advice bits for all input lengths in the interval) to be
encoded into the starting input x, which is impossible. This is dealt with in [9] by only using
sub-logarithmically input lengths in an exponentially long interval Ii, namely input lengths
of the form nck

i , where c is a large enough constant and k varies, and “jumping” from one
input length m to a polynomially larger one mc during the copy phase. The cost paid for
the way this issue is dealt with in [9] is that the time bounds in the hierarchy theorem are
polynomially separated rather than just being asymptotically separated as in the proof of
the uniform non-deterministic time hierarchy. There is also a second issue, which is that for
Zak’s form of delayed diagonalization to work, advice for the final input length in the interval
must be encoded into x. This constrains the advice that can be handled in this argument to
sub-logarithmic, as the final input length in the interval is exponentially larger than x.

This second issue is a bottleneck for all delayed diagonalization arguments using expo-
nentially long intervals, which includes all the traditional arguments [6, 17, 20]. Recently,
Fortnow and Santhanam [8] gave a new proof of the non-deterministic time hierarchy theo-
rem, which unlike previous proofs, critically uses the definition of non-deterministic time
using polynomial-time verifiability. This new argument has the benefit that it uses only a
polynomially long interval, and is a natural starting point for an attempt to handle more
advice in the non-deterministic time hierarchy.

Intuitively, rather than “copying along a line” as in Zak’s argument, the Fortnow-
Santhanam proof “copies down a tree”. Suppose we wish to define a non-deterministic
machine M running in time nd which diagonalizes against some non-deterministic machine
Mi running in time t = o(nd). We again define some interval Ii of input lengths for achieving
this, but now Ii = [ni, ni + nd

i ] is only polynomially long. For any input y ∈ I of length less
than ni + nd

i , M copies the behaviour of Mi on two different inputs of length one larger, by
accepting iff both Mi(x0) and Mi(x1) accept. On input of the form xw, |x| = ni, |w| = nd

i ,
M simulates Mi on x with witness w and does the opposite. Thus this diagonalization phase
actually use the non-deterministic nature of Mi, rather than simply doing brute force search.
It is again easy to see that if Ii is chosen appropriately, M can be made to run in time nd.

Now assume, for the purpose of contradiction, that M agrees with Mi on all inputs in
Mi. If Mi accepts on x, then by the copying behaviour of M , Mi accepts on all inputs in
the interval I. But this implies that for all candidate witnesses w of size nd

i , Mi rejects on
x with witness w, which is a contradiction, as Mi would then reject on x itself. The case
where Mi rejects on x is argued similarly.

By using only a polynomially long interval, the argument above, which we term witness-
based diagonalization, gives hope for handling a sub-polynomial amount of advice in the



L. Fortnow and R. Santhanam 19:5

lower bound. However, there are again obstacles to adapting the argument to advice. Even
if the argument uses a polynomially long interval, it still uses all input lengths within that
interval. A naive adaptation of the argument would require advice for all these input lengths
to be encoded into x, which would be impossible as the number of input lengths is larger
than x.

We could try using jumps again, so that fewer input lengths within the interval are used.
However, it is unclear how to do this with witness-based diagonalization, as every jump only
contributes to one bit in the witness, and therefore with a small number of jumps, we are
unable to build a witness which we can use in the diagonalization process at the last input
length in the interval.

We solve the problem by hybridizing between delayed diagonalization and witness-based
diagonalization. The idea is that witness-based diagonalization can be “simulated” within
a single input length, namely the last input length in the interval. However, in order to
perform this simulation, we need to copy from the first input length in the interval to the
last one. This can be done using jumps again, but how we use jumps critically affects the
parameters in the final hierarchy results. The fewer the jumps used, the more advice we can
handle, but the larger the gap between the time upper bound and the time lower bound.
We need to choose the jump mechanism appropriately to get an optimal tradeoff between
the quality of the ensuing hierarchy theorem in terms of time bounds and the quality of the
ensuing hierarchy theorem in terms of advice. This gets somewhat technical, but we are able
to prove Theorem 1.1 using these ideas.

The proof of Theorem 1.1 still uses a polynomially long interval for diagonalization.
Suppose we wish to prove an almost-everywhere hierarchy for non-deterministic time, i.e.,
a hierarchy theorem where the lower bound holds for almost all input lengths rather than
for infinitely many lengths1. It is known [5] that this cannot be done in a relativizing way.
We show in this paper that an almost-everywhere hierarchy can be obtained for a natural
subclass of non-deterministic time, namely non-deterministic time with sub-linear witnesses.
The key observation is that when the amount of non-determinism is sub-linear, a variant of
the witness-based diagonalization argument can be carried out within a single input length,
meaning that we can diagonalize against any fixed machine on any large enough input length.
This yields an almost-everywhere hierarchy.

The proof of Theorem 1.3 is substantially different. It uses an indirect diagonalization
technique due to [16], where the presumed existence of a simulation of a class C with weakly
uniform circuits of fixed polynomial size is used multiple times to derive a simulation of C in
a small amount of time with sub-linear advice, as long as the uniformity condition is in some
sense stronger than the class C. We require a variant of this argument which uses a census
technique, and then an application of Theorem 1.1 completes the proof.

The proof of Theorem 1.4 uses a win-win analysis. Either Satisfiability has efficient
randomized algorithms with sub-polynomial advice, or it does not. We show that the
statement of Theorem 1.4 holds in either case, with the argument in the first case depending
on Theorem 1.1. Note that the proof technique of Theorem 1.1 is not directly applicable
to classes such as randomized polynomial time for which computable enumerations of the
languages in the class are not known, however we are still able to use indirect arguments to
derive interesting lower bounds for such classes.

For the extensions to other complexity measures, we abstract out the properties required

1 Note that this notion of almost-everywhere separations is different from the related notion considered
by [1], who give a negative relativization result
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of the complexity measure using the notion of leaf languages introduced by Bovet, Crescenzi
and Silvestri [4]. This enables us to establish analogues of Theorem 1.1 for the levels of the
polynomial-time hierarchy, as well as counting classes such as C=P.

2 Preliminaries

2.1 Complexity Classes, Promise Problems and Advice
We assume a basic familiarity with complexity classes. The Complexity Zoo (which can
be found at http://qwiki.caltech.edu/wiki/ComplexityZoo) is an excellent resource for
basic definitions and statements of results. We use the multitape Turing machine model and
assume all our functions are time constructible as described in a standard textbook [13].

We require some classes defined by simultaneous resource bounds. Let t : N→ N be a time
bound, and g : N→ N be a bound on the amount of non-determinism used. The complexity
class NTIMEGUESS(t, g) is the class of all languages L for which there is a non-deterministic
machine M deciding L which runs in time O(t(n)) and uses at most g(n) guess bits on any
input of length n.

Given a complexity class C, coC is the class of languages L such that L̄ ∈ C. Given
a function s : N → N, SIZE(s) is the class of Boolean functions f = {fn} such that for
each n, fn has Boolean circuits of size O(s(n)). Given a language L and an integer n,
Ln = L ∩ {0, 1}n. Given a class C, i.o.C is the class of languages L for which there is a
language L′ ∈ C such that Ln = L′n for infinitely many length n.

In order to deal with promise classes in a general way, we take as fundamental the notion
of a complexity measure. A complexity measure CTIME is a mapping which assigns to each
pair (M, x), where M is a time-bounded machine (here a time function tM (x) is implicit) and
x an input, one of three values “0” (accept), “1” (reject) and “?” (failure of CTIME promise).
We distinguish between syntactic and semantic complexity measures. Syntactic measures
have as their range {0, 1} while semantic measures may map some machine-input pairs to “?”.
The complexity measures DTIME and NTIME are syntactic (each halting deterministic or
non-deterministic machine either accepts or rejects on each input), while complexity measures
such as BPTIME and MATIME are semantic (a probabilistic machine may accept on an input
with probability 1/2, thus failing the bounded-error promise). For syntactic measures, any
halting machine defines a language, while for semantic measures, only a subset of halting
machines define languages.

Let t : N→ N be a time function, and a : N→ N be an advice function. A language L is
in CTIME(t)/a if there is a machine M halting in time t(·) taking an auxiliary advice string
of length a(·) such that for each n, there is some advice string bn, |bn| = a(n) such that M

fulfils the CTIME promise for each input x with advice string bn and accepts x iff x ∈ L.
We will need standard notions of uniformity for circuits. The direct connection language

for a sequence of circuits C = {Cn}, where Cn is on n input bits, is the language LC

consisting of all tuples of the form 〈1n, g, h, r〉, where g and h are indices of gates, r is the
type of g (AND/OR/NOT/INPUT, and in case of INPUT, which of the n input bits g is,
with an additional bit to specify whether g is the designated output gate), and h is a gate
feeding in to g in case the type r is not INPUT. Other encodings of the direct connection
language are of course possible, but our results are insensitive to the details of the encoding.

Given a class C of languages and a function s : N → N, a language L is said to have
C-uniform circuits of size s(n) if there is a size-s(n) circuit family {Cn} such that its direct
connection language is computable in C. By a description of a circuit Cn, we mean the list
of tuples in LC corresponding to gates in Cn.

http://qwiki.caltech.edu/wiki/ComplexityZoo
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The complexity measure RTIME corresponds to randomized time with one-sided error,
defined by probabilistic machines which, for each input, either accept with probability
at least 1/2 or reject with probability 1. The class RE = RTIME(2O(n)). We also use
E = DTIME(2O(n)).

3 Hierarchies for Non-deterministic Time against Sublinear Advice

In this section, we prove the following general theorem, and then show how it implies
Theorem 1.1.

As described in the Introduction section, the proof involves a hybrid of delayed diagonal-
ization and witness-based diagonalization. We think of the diagonalization as proceeding in
two phases: the jump phase where copying occurs, and the witness-gathering phase where
the witness is built and witness-based diagonalization is performed.

We need some preliminary notation. Let f : N → N be a function such that f(n) is
computable in O(polylog(n)) time and f(n) > n for all n. We will use f to parameterize the
jumps in the diagonalization. Given a time function t1, for any n, let g(n) be the minimum i

such that f (i)(n) > n + 2t1(n) + 2 where f (i) is f applied to itself i times. Note that for each
n, g(n) exists, using the monotonicity of f . For a string w of length r, we define Enc(w) to
be the 2r-bit string whose even bits are all 0, and whose i’th odd bit is the i’th bit of w, for
each i ∈ [r].

I Theorem 3.1. Let t1 and t2 be increasing time-constructible functions, with t1, t2 = Ω(n).
Let f, g : N→ N be functions as defined above, and let a : N→ N be an advice function such
that a(n) is computable in time O(polylog(n)). Suppose n =

∑g(n)
l=0 a(f (l)(n)) + ω(1), and

t1(f(m)) + g(m)polylog(m) = o(t2(m)). Then NTIME(t2) 6⊆ NTIME(t1)/a

Proof. Define a non-deterministic machine M as follows. On input x of length m, M

first calculates t2(m). It then tries to decompose x = 1i01j0z110k, where i, j > 0, k > 0,
z ∈ {0, 1}∗. Note that such a decomposition is unique if it exists. If M succeeds in finding
such a decomposition, it sets n = i+j + |z|+4, and checks if m = f l(n) for some 0 6 l 6 g(n),
and if |z| >

∑g(n)
l=0 a(f (l)(n)). This check can be done in time at most g(n)polylog(n) and

hence time at most g(m)polylog(m), by assumption on f and g. If this check doesn’t succeed,
M rejects. If it succeeds, there are two cases: l < g(n) and l = g(n). In the first case,
M decomposes z = z0z1 . . . zl+1z′, where for each i, 0 6 i 6 l + 1, |zi| = a(f (i)(n)) and
z′ ∈ {0, 1}∗. Note that by assumption on n and a, such a decomposition can be performed for
n large enough – if it cannot be performed, M halts and rejects. M simulates Mi on x0f(m)−m

with advice zl+1, accepting iff Mi accepts. In the second case, where l = g(n), M decomposes
z = z0z1 . . . zlz

′, where for each i, 0 6 i 6 l, |zi| = a(f (i)(n)) and z′ ∈ {0, 1}∗. Note that by
assumption on n and a, such a decomposition can be performed for n large enough – if it
cannot be performed, M halts and rejects. It also calculates q = k − 2t1(n)− 2. Note that q

is non-negative by the assumptions on f and g. M simulates Mi on 1i01j0z11Enc(0t1(n)1)0q

with advice zl, accepting iff Mi accepts. Throughout M maintains an internal clock, and if
it detects that it has been running for more than t2(m) steps after the calculation of t2(m),
it halts and rejects.

The operation of M above corresponds to the jump phase.
Now suppose M does not succeed in finding a decomposition as above. It then tries to

decompose x = 1i01j0z11Enc(0s1w)0q, where i, j > 0, s, q > 0, z, w ∈ {0, 1}∗ and moreover,
setting n = i + j + |z|+ 4, the conditions that m = f (g(n))(n) and |z| >

∑g(n)
l=0 a(f (l)(n)) are

satisfied. Note that such a decomposition is unique if it exists. If this decomposition attempt
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fails, M halts and rejects. If it succeeds, M decomposes z = z0z1 . . . zlz
′, where for each

i, 0 6 i 6 l, |zi| = a(f (i)(n)) and z′ ∈ {0, 1}∗. Note that by assumption on n and a, such a
decomposition can be performed for n large enough – if it cannot be performed, M halts
and rejects. Now there are two cases: s > 0 and s = 0. In the first case, M simulates Mi

on 1i01j0z11Enc(0s−11w0)0q with advice zl and 1i01j0z11Enc(0s−11w1)0q with advice zl,
accepting iff both computations accept. In the second case, M simulates Mi on 1i01j0z11
with non-deterministic sequence w and advice z0, rejecting iff Mi accepts. Throughout M

maintains an internal clock, and if it detects that it has been running for more than t2(m)
steps after the calculation of t2(m), it halts and rejects.

The operation of M above corresponds to the witness-gathering phase.
By definition of M , it halts in time O(t2(m)). Moreover, using the various assumptions

on computability of f, a, t1, t2, all the checks and calculations of M , as well as the final
simulation step, can be completed in time O(t2(m)) for m large enough.

We now proceed to show that L(M) 6∈ NTIME(t1(m))/a(m). Suppose, to the contrary,
that Mi is a non-deterministic advice taking machine accepting L(M) using a(m) bits of
advice. We derive a contradiction.

Choose j and n large enough so that all the checks, calculations and simulation of M can
be completed in time O(t2(m)) for any m such that there is an input of length m which can
be successfully decomposed with the corresponding n and j, and so that n >

∑g(n)
l=0 a(f (l)(n)).

Let z0, z1, . . . zg(n) be the correct advice strings for Mi at lengths n, f(n) . . . fg(n)(n), and let
z = z0z1 . . . zg(n). Consider the input x = 1i01j0z11. By assumption, M on x agrees with
Mi on x with advice z0 (since |x| = n). By the behaviour of M in the jump phase, we have
that M on x0fi(n)−n agrees with Mi on x0fi(n)−n with advice zi, for each i ∈ [0, g(n)]. By
the behaviour of M in the witness-gathering phase, we have that M accepts x0fi(n)−n iff M

accepts xEnc(0s1w)0q for each s, 0 6 s 6 t1(n), w of length t1(n)−s and q = m−n−2t1(n)−2
iff Mi accepts xEnc(0s1w)0q with advice zg(n) for each s, 0 6 s 6 t1(n), w of length t1(n)−s

and q = m− n− 2t1(n)− 2. But for each w of length tn(n), again by the behaviour of M in
the witness-gathering phase, M accepts xEnc(1w)0q, q = m− n− 2t1(n)− 2 iff Mi rejects
x with witness w and advice z0. This happens iff Mi rejects x with advice z0, which is a
contradiction to the assumption that M on x agrees with Mi on x with advice z0. J

We now show how to derive Theorem 1.1 from the more general Theorem 3.1 above. This
allows us to get the “best of both worlds” for non-deterministic time hierarchies with advice:
time bounds only asymptotically separated, and advice in the lower bound which is nΩ(1).

Proof. Proof ofTheorem 1.1 Apply Theorem 3.1 with t2 = nd, t1 = t, f(n) = 2n, a(n) = n1/d′ .
In this case, g(n) = O(log(n)), and it can be checked easily that the conditions on f, g, a in
terms of t1, t2, n all hold. The theorem follows. J

4 An Almost-everywhere Hierarchy Theorem

Ideally, we would like to prove almost-everywhere hierarchy theorems, i.e., show that reducing
the amount of time available makes languages harder to compute on all but finitely many
input lengths. Almost-everywhere hierarchy theorems are known for classes closed under
complementation such as deterministic time and deterministic space, but not for non-
deterministic time. It is shown in [5] that there is an oracle relative to which NEXP ⊆ i.o.NP,
therefore non-standard techniques would be required even to show an almost-everywhere
separation of NEXP from NP.
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We consider non-deterministic classes with sub-linear non-determinism, i.e., the non-
deterministic machine is allowed to use only o(n) non-deterministic bits. These classes
contain most commonly studied problems in NP including SAT, CLIQUE, V C etc. when
the input is encoded in the standard way. Thus showing an almost-everywhere hierarchy for
such classes is of interest.

The following theorem immediately implies Theorem 1.2.

I Theorem 4.1. Let g(n) = o(n) be any sub-linear function computable in time O(n). Let t1
and t2 be time-constructible functions such that n 6 t1 = o(t2). Then NTIMEGUESS(t2, 2g(n)) 6⊆
i.o.NTIMEGUESS(t1, g(n)).

Proof. Define a non-deterministic machine M as follows. On input x of length n, M first
tries to decompose x = 1i01k0z, where i, k > 1. If x cannot be decomposed in this manner, or
if it can but |z| > g(n), M immediately rejects. If |z| = g(n), M runs the non-deterministic
Turing machine Mi on 1i01n−i−20 for at most t2(n) steps, using z as the sequence of guess
bits for the simulation of the machine. If the machine Mi does not halt within time t2(n),
or if it uses more than g(n) guess bits, M rejects. Otherwise, it does the opposite of Mi,
accepting if Mi rejects and rejecting otherwise.

If |z| < g(n), M runs Mi on x1 = 1i01k−100z and x2 = 1i01k−101z, accepting iff both
simulations halt and accept within time t2(n), and each uses at most g(n) guess bits.

M runs in time O(t2(n)) and uses at most 2g(n) guess bits on any input of length n. We
show that L(M) 6∈ i.o.NTIMEGUESS(t1(n), g(n)).

Suppose, to the contrary, that L(M) ∈ i.o.NTIMEGUESS(t1(n), g(n)), and let Mi be a
non-deterministic machine running in time ct1(n) for some constant c, and with g(n) guess
bits, such that L(Mi) coincides with L(M) on infinitely many input lengths. Let I be an
infinite set of input lengths such that L(Mi) coincides with L(M) on each input length in I.
Choose n ∈ I large enough such that M can complete its simulations of Mi on all inputs
of length n of the form 1i0y for some y. That such an n exists follows from the facts that
n 6 t1(n) = o(t2(n)).

By the assumption that M agrees with Mi on length n, we have that Mi accepts
1i01n−i−20 iff M accepts 1i01n−i−20 iff Mi accepts 1i01n−i−300 and 1i01n−i−310... Contin-
uing inductively, we have that Mi accepts 1i01n−i−20 iff M accepts all strings of the form
1i01n−g(n)−i−20z iff Mi does not accept on 1i01n−i−20 for any guess sequence z of length
g(n). But then we have that Mi accepts 1i01n−i−20 iff Mi does not accept 1i01n−i−20, which
is a contradiction. J

By combining the ideas in the proof of Theorem 4.1 with the ideas of the proof of
Theorem 3.1, we get the following almost-everywhere hierarchy against advice. We omit
the proof because it contains no new ideas beyond those in the proofs of Theorem 4.1 and
Theorem 3.1.

I Theorem 4.2. Let a : N → N be an advice function and g : N → N a guess func-
tion, both computable in time O(n), such that a(n) + g(n) = n − ω(1). Then for any
time-constructible functions t1 and t2 such that n 6 t1 = o(t2), NTIMEGUESS(t2, 2g) 6⊆
i.o.NTIMEGUESS(t1, g)/a.

5 A Lower Bound against Weakly Uniform Circuits

While it is a major open problem to show that NP does not have linear size circuits, one
could hope to show lower bounds when there is some uniformity condition on the circuits. A
result of this form was shown by [14].
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I Theorem 5.1 ([14]). For every k, NP does not have P-uniform circuits of size O(nk).

We strengthen this lower bound in two ways. First, we allow the circuits to be NP-uniform
rather than P-uniform. Second, we allow the circuits to be non-deterministic rather than
deterministic. The following is a re-statement of Theorem 1.3.

I Theorem 5.2. For every k > 1, NP does not have NP-uniform non-deterministic circuits
of size O(nk).

Proof. Assume NP has NP-uniform non-deterministic circuits of size O(nk). Let L ∈ NP
be arbitrary. We will show that L can be simulated in non-deterministic time n2k+2 with
n1/(4k) bits of advice, which will yield a contradiction to Theorem 3.1 when t2 = n4k and
t1 = n2k+2.

By assumption, L has non-deterministic circuits of size O(nk), so there is a non-
deterministic circuit family {Cn} for L of size at most c ·nk for some constant c. Furthermore,
by NP-uniformity, the direct connection language Ldc for {Cn} (see Section 2 for the defini-
tion) is in NP. We consider a “succinct” version Lsucc of the language Ldc, defined as follows.
Letting Bin(n) be the binary representation of n, define

Lsucc = {〈Bin(n)01dn
1/(5k2)e, g, h, r〉 | 〈1n, g, h, r〉 ∈ Ldc}.

Intuitively, Lsucc is an “unpadded” version of Ldc.
Observe that Lsucc ∈ NP. Given an input y for Lsucc, our non-deterministic polynomial-

time algorithm first checks if y can be parsed as a “valid” tuple 〈z, g, h, r〉, where z =
Bin(n)01dn1/(5k2)e for some positive integer n, g and h are valid gate indices between 1 and
c · nk, and r is a valid gate type. If this check fails, reject. Otherwise, the algorithm runs the
non-deterministic polynomial-time machine deciding Ldc on 〈1n, g, h, r〉, and accepts if and
only if this machine accepts. Note that this algorithm for Lsucc runs in time polynomial in
|y|, since we only simulate the machine for Ldc when n1/(5k2) 6 |y| 6 n and the machine for
Ldc runs in time polynomial in n.

Now we apply the assumption that NP has NP-uniform circuits of size O(nk) for a
second time. Since Lsucc ∈ NP, there is a non-deterministic circuit family {Dm} of O(mk)
size for Lsucc. Given an integer n, let m(n) be the least integer such the size of the tuple
〈Bin(n)01dn1/(5k2)e, g, h, r〉 is at most m(n) for any valid gate indices g and h for Cn and any
valid gate type r. Using a standard encoding of tuples, we can assume, for large enough n,
that m(n) 6 n1/(4.5k2), since g, h, r can all be encoded with O(log n) bits each.

We now describe a simulation of L in time O(n2k+2) with n1/(4k) bits of advice. Let M

be an advice-taking machine which operates as follows. On input x of length n, M receives
an advice string of length O(n1/4k). It interprets this advice as consisting of two parts: the
description of a non-deterministic circuit Dm for the language Lsucc on inputs of length
m(n) 6 n1/(4.5k2), and an O(log(n)) bit string representing the census value, i.e., the number
of inputs in Lsucc of that length. For every possible pair of gate indices g and h of Cn and
every possible gate type r, M simulates the circuit Dm on 〈Bin(n)01dn1/(5k2)e, g, h, r〉 to
decide whether gate h is an input to gate g and whether the type of gate g is r. Each such
simulation can be done in time O(n1/2k), as the size of Dm is O(n1/4k). There are at most
O(n2k+1) such simulations that M performs, since there are at most that many relevant
triples 〈g, h, r〉. Note that since the circuit Dm is non-deterministic, M cannot know for sure
the answer to a given simulation. Instead, it performs all the simulations and then checks
that the number of YES answers is equal to the census value encoded in the advice string.
In such a case, it knows that the answers to all simulations are correct; otherwise, it rejects.
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In the case where answers to all simulations are correct, M has a full description of the
non-deterministic circuit Cn. It simulates Cn on x, and accepts if and only if Cn(x) outputs
1. This simulation can be done in time O(n2k) since the circuit Cn is of size O(nk). The
total time taken by M is O(n2k+2), and M uses O(n1/4k) bits of advice. By our assumptions
on Cn and Dm, the simulation is correct. Thus L ∈ NTIME(n2k+2)/O(n1/4k).

However, as L ∈ NP was chosen to be arbitrary, we have NP ⊆ NTIME(n2k+2)/O(n1/4k),
which for k > 1 contradicts Theorem 3.1. J

The proof of Theorem 5.2 above is closely related to a proof of Santhanam andWilliams [16],
who generalized Theorem 5.1 in a different direction, by showing that for any k, P does not
have P-uniform circuits of size O(nk). The additional ingredients in the proof of Theorem 5.2
in comparison to the previous paper are the use of Theorem 3.1 and the use of a census
technique to deal with NP-uniformity.

6 A Lower Bound for Randomized Time against Advice

In this section, we use Theorem 3.1 to prove a strong lower bound for randomized exponential
time against sub-polynomial advice. Though the proof technique of Theorem 3.1 exploits
the syntactic nature of the complexity measure NTIME by using an enumeration of non-
deterministic machines, we show that the result is useful even for studying semantic classes
such as randomized exponential time.

Buhrman, Fortnow and Santhanam [5] prove various lower bounds for semantic exponential-
time classes against polynomial time with advice. Though they obtain strong lower bounds
for MATIME and BPTIME, their result for RTIME is fairly weak – their proof techniques
only yield that RE 6⊆ RP/O(log(n)). Using the new hierarchy for non-deterministic time
against advice, we obtain a significant strengthening of their result. The theorem below is a
re-statement of Theorem 1.4 in the introduction.

I Theorem 6.1. For any constant c, RE 6⊆ RTIME(nc)/n1/2c.

Proof. Let SAT denote the satisfiability problem for CNF formulae. SAT is NP-complete
by the Cook-Levin theorem, and the brute-force search algorithm for SAT implies SAT in
E, using a standard encoding where the number of variables in the formula is at most the
length of the encoding of the formula.

We consider two cases. Either SAT is in BPP/n1/2c, or it is not. In the first case,
using downward self-reducibility of SAT to eliminate the advice, we have that SAT is
in BPTIME(2n1/2cpoly(n)). Again using downward self-reducibility to find witnesses for
satisfiable SAT instances and thereby eliminating error in the case where the formula is
unsatisfiable, we get that SAT is in RTIME(2n1/2cpoly(n)). Using the fact that every language
in NTIME(n1.5c) has a polynomial-time reduction to SAT where the output length of the
reduction is O(n1.5cpolylog(n)), we have that NTIME(n1.5c) ⊆ RE. In this case, it follows
from Theorem 3.1 that RE 6⊆ NTIME(nc)/n1/c, and hence that RE 6⊆ RTIME(nc)/n1/c.

In the other case, we have that SAT is not in BPP/n1/2c, and hence that SAT is not in
RP/n1/2c. Since SAT is in E, we have that E 6⊆ RP/n1/2c, and since E ⊆ RE, we derive that
RE 6⊆ RP/n1/2c in this case.

Thus, in either case, we have that RE 6⊆ RTIME(nc)/n1/2c. J

Theorem 6.1 is close to the best we can hope to show without settling long-standing
open questions in computational complexity. If the advice in the lower bound could be
strengthened from n1/2c to nc, we would have that NEXP 6⊆ SIZE(poly), which would be a
breakthrough circuit lower bound result.
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7 Generalizing to Other Syntactic Classes

In this section we show how to generalize Theorem 3.1. We first show how to generalize the
robustly-often time hierarchy of [8], and then sketch how to use the ideas of the proof to
generalize Theorem 3.1.

First, we define robustly-often simulations.
Let S be a subset of positive integers. S is robust if for each positive integer k, there is a

positive integer m > 2 such that n ∈ S for all m 6 n 6 mk.
Let L be a language, C a complexity class, and S a subset of the positive integers. We

say L ∈ C on S if there is a language L′ ∈ C such that Ln = L′n for any n ∈ S.
Given a language L and complexity class C, L ∈ r.o.C if there is a robust S such that

L ∈ C on S. In such a case, we say that there is a robustly-often (r.o.) simulation of L in C.
We extend this notion to complexity classes in the obvious way – given complexity classes B
and C, B ⊆ r.o.C if there for each language L ∈ B, L ∈ r.o.C.

Now we describe a general framework in which we can show robustly-often hierarchies
and hierarchies with sub-linear advice.

Let N be a nondeterministic polynomial-time Turing machine where on input x of length
n, N(x) has 2p(n) computation paths indexed by strings z ∈ {0, 1}p(n). We can also think of
z as representing an integer between 1 and 2p(n) in a standard way.

Define OUTPUT(N, x) to be the string w of length 2p(n) such that zth bit of w is 1 if
N(x) accepts on the path indexed by z and 0 otherwise.

Let A ⊆ Σ∗. We define the class LEAF(A) as the class of languages L such that for some
nondeterministic polynomial-time Turing machine N , x ∈ L if and only if OUTPUT(N, x) ∈ A.
For example if A is the set of strings with at least one 1 then LEAF(A) = NP. We can also
define LEAFTIME(A, t) where we restrict N to run in time O(t).

We say a class C is closed under linear-time monotone 2-query transductions if for every
language L′ ∈ C and every deterministic linear-time oracle machine O making at most 2
queries to its oracle and outputting a monotone function of the answers to the queries,
L(OL′) ∈ C. This definition might seem involved, but in fact any natural complexity arising
from a leaf language satisfies this property, e.g., the levels of the polynomial-time hierarchy.

We can generalize the robustly-often hierarchy for non-deterministic time [8] as follows.

I Theorem 7.1. Suppose A is computable by a family of DLOGTIME-time uniform NC1

circuits. If t1 and t2 are functions such that t1 is time-constructible and
t1(n + 1) = o(t2(n)),
n 6 t1(n) 6 nc for some constant c, and
LEAFTIME(A, t1(n)) is uniformly closed under linear-time monotone 2-query transduc-
tions,

then LEAFTIME(A, t2(n)) 6⊆ r.o.LEAFTIME(A, t1(n)).

Proof. Without loss of generality assume A is computed by fan-in 2 circuits where every
path has length d log n and negations are only on the inputs.

Let M1, M2, . . . be an enumeration of multitape nondeterministic machines that run in
time t1(n). For an input x of length n, OUTPUT(Mi, x) will have length 2t1(n) and the
circuit C used to determine if OUTPUT(Mi, x) is in A will have depth dt1(n). C has 2t1(n))

inputs which we express as yz for z ∈ {0, 1}t1(n).
Define a nondeterministic Turing machine M that on input 1i01m0w does as follows:
If |w| < dt1(i + m + 2) consider the gate g that is reached in C by following the path
w. The type of the gate g can be determined in linear time, using the fact that A is
computed by DLOGTIME-uniform log-depth circuits.



L. Fortnow and R. Santhanam 19:13

If g is an OR gate then accept if both Mi(1i01m0w0) and Mi(1i01m0w1) accepts.
If g is an AND gate then accept if either Mi(1i01m0w0) or Mi(1i01m0w1) accepts.

If |w| = dt1(i + m + 2) consider the input variable yz.
If the variable is not negated then accept if Mi(1i01m0) rejects on the path specified
by z.
If the variable is negated then accept if Mi(1i01m0) accepts on the path specified by z.

Since we can universally simulate t(n)-time nondeterministic multitape Turing machines
on an O(t(n))-time 2-tape nondeterministic Turing machine and LEAFTIME(A, t1) is closed
under linear-time monotone 2-query transductions, L(M) ∈ LEAFTIME(A, O(t1(n + 1))) ⊆
LEAFTIME(A, t2(n)).

Suppose LEAFTIME(A, t2(n)) ⊆ r.o.LEAFTIME(A, t1(n)). Pick a C such that dt1(n)�
nc for all n large enough. By the definition of r.o. there is some n0 and a language
L ∈ LEAFTIME(t1(n)) such that L(M) = L on all inputs of length between n0 and nC

0 . Fix
i such that L(x) = A(OUTPUT(Mi, x)) with n0 6 |x| 6 nC

0 . Then z ∈ L(Mi)⇔ z ∈ L(M)
for all z = 1i01n00w for w 6 t1(i + n0 + 2).

By induction on the gates Mi(1i01n00) accepts iff C(OUTPUT(Mi, 1i01n00)) outputs
false and thus iff OUTPUT(Mi, 1i01n00) is not in A. This contradicts our assumption that
L(1i01n00)) = A(OUTPUT(Mi, 1i01n00)). J

I Corollary 7.2. Let t1, t2 : N → N be functions such that t1 is time-constructible and
t1(n + 1) = o(t2(n)). For every integer k > 1, Σk − TIME(t2) 6⊆ r.o.Σk − TIME(t1), and
Πk − TIME(t2) 6⊆ r.o.Πk − TIME(t1).

We can combine the proofs of Theorem 7.1 and Theorem 3.1 to generalize Theorem 1.1
for LEAFTIME.

I Theorem 7.3. Suppose A′ is computable by DLOGTIME-time uniform NC1 circuits. Let
d > 1 and e > d be arbitrary constants. If t1 is a time-constructible function such that

t1(n) = o(nd),
LEAFTIME(A′, t1(n)) is closed under linear time monotone 2-query transductions,

then LEAFTIME(A′, nd) 6⊆ LEAFTIME(A′, t1(n))/n1/e.

Proof Sketch. We show how to modify the proof of Theorem 3.1 for LEAFTIME.
The jump phase will remain exactly the same. In the witness gathering phase, we need

to change things a little. The string w obtained from a successful decomposition of the input
x in the witness-gathering phase will now correspond to a path in the circuit C accepting
the leaf language which determines the answer of Mi on x. Again, we will assume without
loss of generality that C is a balanced logarithmic-depth circuit, where all input-output
paths are of the same length. There are two cases: w encodes a maximum-length path in
C, or it does not. In the former case, let g be the gate that is reached following the path
described by w. If g is an OR gate, then M simulates Mi on 1i01j0z11Enc(0s−11w0)0q with
advice zl and 1i01j0z11Enc(0s−11w1)0q with advice zl, accepting iff both computations
accept. If g is an AND gate, M simulates Mi on 1i01j0z11Enc(0s−11w0)0q with advice zl

and 1i01j0z11Enc(0s−11w1)0q with advice zl, accepting iff either computation accepts. If w

encodes a maximum-length path, let yz be the variable pointed to by w, where z is a witness
for M on x. If yz is un-negated, M does the opposite of Mi on x using witness z with advice
z0, and if yz is negated, M does the same as Mi on x using witness z with advice z0.

We now get a contradiction following an argument similar to the proof of Theorem 3.1. J

I Corollary 7.4. For any reals 1 6 r < s and every integer k > 1, Σk − TIME(ns) 6⊆
Σk − TIME(nr)/n1/s and Πk − TIME(ns) 6⊆ Πk − TIME(nr)/n1/s.
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Abstract
Recently, [Li, Nguyen, Woodruff, STOC’2014] showed any 1-pass constant probability streaming
algorithm for computing a relation f on a vector x ∈ {−m,−(m− 1), . . . ,m}n presented in the
turnstile data stream model can be implemented by maintaining a linear sketch A · x mod q,
where A is an r×n integer matrix and q = (q1, . . . , qr) is a vector of positive integers. The space
complexity of maintaining A · x mod q, not including the random bits used for sampling A and
q, matches the space of the optimal algorithm1.

We give multiple strengthenings of this reduction, together with new applications. In partic-
ular, we show how to remove the following shortcomings of their reduction:
1. The Box Constraint. Their reduction applies only to algorithms that must be correct even if
‖x‖∞ = maxi∈[n] |xi| is allowed to be much larger thanm at intermediate points in the stream,
provided that x ∈ {−m,−(m − 1), . . . ,m}n at the end of the stream. We give a condition
under which the optimal algorithm is a linear sketch even if it works only when promised
that x ∈ {−m,−(m − 1), . . . ,m}n at all points in the stream. Using this, we show the first
super-constant Ω(logm) bits lower bound for the problem of maintaining a counter up to
an additive εm error in a turnstile stream, where ε is any constant in (0, 1

2 ). Previous lower
bounds are based on communication complexity and are only for relative error approximation;
interestingly, we do not know how to prove our result using communication complexity. More
generally, we show the first super-constant Ω(logm) lower bound for additive approximation
of `p-norms; this bound is tight for 1 ≤ p ≤ 2.

2. Negative Coordinates. Their reduction allows xi to be negative while processing the stream.
We show an equivalence between 1-pass algorithms and linear sketches A ·x mod q in dynamic
graph streams, or more generally, the strict turnstile model, in which for all i ∈ [n], xi ≥ 0 at
all points in the stream. Combined with [Assadi, Khanna, Li, Yaroslavtsev, SODA’2016], this
resolves the 1-pass space complexity of approximating the maximum matching in a dynamic
graph stream, answering a question in that work.

3. 1-Pass Restriction. Their reduction only applies to 1-pass data stream algorithms in the
turnstile model, while there exist algorithms for heavy hitters and for low rank approximation
which provably do better with multiple passes. We extend the reduction to algorithms which
make any number of passes, showing the optimal algorithm is to choose a new linear sketch
at the beginning of each pass, based on the output of previous passes.

1 Note the [LNW14] reduction does not lose a log m factor in space as they claim if it maintains A ·x mod q
rather than A · x over the integers.
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1 Introduction

In the turnstile streaming model [6, 10], there is an underlying n-dimensional vector x which
is initialized to ~0. The data stream consists of updates of the form x← x+ ei or x← x− ei,
where ei is the i-th standard unit vector in Rn. The goal of a streaming algorithm is to make
one or more passes over the stream and use limited memory to approximate a function of x
with high probability.

1.1 Linear Sketches and Simultaneous Communication Complexity
All known algorithms for problems in the turnstile model have a similar form: they first
choose a (possibly random) integer matrix A, then maintain the “linear sketch” A · x in
the stream, and finally output a function of A · x. Li et al. [9] showed that any 1-pass
constant probability streaming algorithm for approximating an arbitrary function f of x in
the turnstile model can be reduced to an algorithm which, before the stream begins, samples
a matrix A uniformly from O(n logm) hardwired integer matrices, then maintains the linear
sketch A · x mod q, where q = (q1, . . . , qr) is a vector of positive integers and r is the number
of rows of A. Furthermore, the logarithm of the number of all possibilities for A · x mod q,
as x ranges over {−m,−(m− 1), . . . ,m}n, plus the number of random bits for sampling A,
is larger than the space used by the original algorithm for approximating f by at most an
additive O(logn+ log logm) bits. Here the extra O(logn+ log logm) bits are used only for
sampling A and q. We refer to this as the LNW reduction2.

The LNW reduction is non-uniform, i.e., the space complexity does not count the number
of bits to store the O(n logm) hardwired possible sketching matrices A, nor does it count
the space to compute the output given A · x. The space counts only the space of storing
A · x. Thus, the LNW reduction is mostly useful in proving lower bounds, which only become
stronger by not counting some parts in the space complexity. A widely used technique for
proving lower bounds on the space of streaming algorithms is communication complexity
[15]. One can get a 1-pass space lower bound for any streaming algorithm A by constructing
a communication problem in which the players create data streams based on their inputs
and run A on these streams sequentially. At the end of each stream, the current player
passes the memory contents of A to the next player, and the next player continues with the
received intermediate state. If A outputs the correct answer for the communication problem
with constant probability at the end of the stream of the last player, then the space of A is
at least the one-way communication complexity of the communication problem divided by
(the number of players− 1).

The LNW reduction makes it possible to instead consider the simultaneous communication
model. Compared to one-way communication, the simultaneous communication model is a

2 In [9] the linear sketch of the form A · x mod q is further reduced to the form A · x, which leads to a
multiplicative O(log m) factor loss in the space complexity, assuming m = poly(n); we do not consider
that further reduction in this paper.

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.20
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more restrictive model in which each player can only send a single message to an additional
player called the referee, who receives no input in the communication problem. The referee
then announces its output. By reducing an algorithm in an arbitrary form to a linear sketch
and exploiting the linearity of matrix multiplication, the LNW reduction shows that to obtain
lower bounds in the turnstile model, it suffices to consider the simultaneous communication
model. This technique was applied in the original paper [9] and followup work for estimating
frequency moments [13].

1.2 Shortcomings of the LNW Reduction
The LNW reduction has several drawbacks, which we now describe.

The Box Constraint. First, the reduction can only be performed under the assumption that
the algorithm works as long as the underlying vector x belongs to {−m,−(m− 1), . . . ,m}n
at the end of the stream, while in certain settings a more natural requirement may be that x
belongs to {−m,−(m − 1), . . . ,m}n at all intermediate points of the stream. We refer to
the restriction that the algorithm must be correct (with constant probability) provided that
x ∈ {−m,−(m− 1), . . . ,m}n at the end of the stream, even if ‖x‖∞ > m at an intermediate
point, as the box constraint. It is possible that there are more space-efficient algorithms,
not based on linear sketches, which abort if ‖x‖∞ ever becomes larger than m. Due to this
reason, the lower bounds obtained via simultaneous communication complexity only apply
to the class of streaming algorithms assuming the box constraint.

Negative Coordinates. The second drawback is that the reduction works only in the
turnstile model which allows negative frequencies, and does not work in the strict turnstile
model in which the underlying vector always has no negative entries. For graph problems, a
multi-graph with n vertices is defined as a stream in which each update corresponds to the
addition or the deletion of an edge between two vertices. The multiplicity of every edge is
naturally required to be always non-negative, so the strict turnstile model is standard for
graph problems. The input for graphs in this model is called a dynamic graph stream. Similar
to the turnstile model, linear sketching is the only existing technique for designing streaming
algorithms in dynamic graph streams. It is unknown whether there is an equivalence between
linear sketches and single-pass algorithms in the strict turnstile model.

1-Pass Restriction. Another shortcoming of the LNW reduction is that it only applies to
1-pass data stream algorithms in the turnstile model, while there exist algorithms for heavy
hitters and for low rank approximation which provably do better with multiple passes. It is
unknown if there exists a similar characterization for multi-pass algorithms.

1.3 Our Contributions
We make significant progress on removing the above shortcomings of the LNW reduction.

The Box Constraint. We give a condition under which the box constraint on the algorithm
can be removed. Under this condition, we show that the streaming algorithm can be reduced
to a linear sketch if it is correct with constant probability for streams whose underlying
vector x always belongs to {−m,−(m − 1), . . . ,m}n at any point in the stream. In other
words, we do not require algorithms to be correct when ‖x‖∞ > m at intermediate points in
the stream. Consequently, when our condition is satisfied, the lower bounds obtained via
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simultaneous communication complexity are stronger since the box constraint on algorithms
is removed. Our condition for removing the box constraint is that the algorithm has space
complexity at most O((logm)/n); so it is most useful when m� n or n = O(1). Note that
while this does not apply to a number of data stream problems, it does apply to some very
fundamental ones, described below, such as maintaining a counter in a stream, for which
n = 1. We also show our condition that the space be O((logm)/n) bits is tight in the sense
that for larger space algorithms, the LNW reduction fails unless one allows ‖x‖∞ > m at
intermediate points. That is, we give an example of an algorithm with Ω((logm)/n) bits of
space for which if one applies the LNW reduction, to argue correctness one needs ‖x‖∞ > m.

Negative Coordinates. We show in the strict turnstile model, there is a reduction from a
general 1-pass algorithm to a linear sketch, that is, the optimal algorithm is a linear sketch
even if promised that xi ≥ 0 at all points in the stream. Here we assume the space complexity
of the algorithm depends only on n, even if the underlying vector is allowed to have very
large entries at intermediate points in the stream. This assumption is suitable for graph
problems for which the desired lower bounds are usually in terms of n [2]. Note that for
graph and multi-graph problems with edge weight multiplicity bounded by poly(n), such a
condition does not affect known upper bounds. Indeed, known algorithms are linear sketches,
for which each coordinate can be maintained modulo poly(n).

1-Pass Restriction. We extend the reduction to algorithms which make any number of
passes, showing the optimal algorithm is to choose a new linear sketch at the beginning of
each pass, based on the output of previous passes. We note that in [7], significantly better
bounds for finding `2-heavy hitters were found using multiple passes, while in [3] the 2-round
protocol in the arbitrary partition model there can be implemented as a 2-pass streaming
algorithm with better space than possible of any 1-pass algorithm [14].

1.4 Applications
Norm Approximation and Maintaining a Counter

A fundamental problem in the turnstile streaming model is norm approximation [1], in which
the goal is to output an approximation of the `p-norm ‖x‖p = (

∑n
i=1 |xi|p)

1
p , for given p > 0.3

In particular, we are interested in proving space lower bounds for any 1-pass algorithm
that outputs additive error approximation of the `p-norm: for x ∈ {−m,−(m− 1), . . . ,m}n,
the algorithm outputs a number in

[
‖x‖p − εn1/pm, ‖x‖p + εn1/pm

]
with high probability.

Since we have ‖x‖p ≤ n1/pm for all x ∈ {−m,−(m − 1), . . . ,m}n, a (1 ± ε)-relative error
approximation implies an (±εn1/pm)-additive error approximation; however, an additive
error approximation is much weaker. In some applications, relative error is too restrictive
and one may only be interested in the value of a norm if it is sufficiently large. However, all
previous lower bounds, e.g., [8], only apply if the norm is allowed to be very small, that is,
they do not apply to additive error approximation.

We obtain the first super-constant Ω(logm) lower bound for approximating ‖x‖p up to
an additive εn1/pm error in the turnstile model, without any assumptions such as the box
constraint, where ε is any constant in (0, 1/2). Our lower bound of Ω(logm) bits is optimal
for the important case of p ∈ [1, 2], which includes the Manhattan and Euclidean norms.

3 For 0 < p < 1, ‖x‖p is not a norm, though it is still a well-defined function.
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Indeed, for p ∈ [1, 2] one can obtain a relative error approximation using O(logm) bits of
space [1, 5].

Previous lower bound techniques are based on two-player communication complexity
in which the players, Alice and Bob, hold inputs x ∈ {−m,−(m − 1), . . . ,m}n and y ∈
{−m,−(m− 1), . . . ,m}n respectively, and should output an approximation to ‖x− y‖p. But
for an additive error approximation, it suffices for Alice to send the most significant O(1)
bits of x to Bob, and thus only an Ω(1) lower bound can be proved via communication
complexity.

For the special case of n = 1, the data stream is composed of +1’s and −1’s and
the underlying vector x is an integer, i.e., a “counter”. When x is promised to stay in
{−m,−(m− 1), . . . ,m}, we are interested in the space complexity of maintaining |x| up to
an additive εm error, for constant ε ∈ (0, 1/2). Surprisingly, the space complexity of this
problem in the turnstile model with additive error was previously unknown. There is an
obvious O(logm) upper bound for this problem because the algorithm can just maintain
x. The question is whether this upper bound is tight. By removing the box constraint of
the LNW reduction, we give the first tight Ω(logm) bits lower bound for this fundamental
problem. As a simple corollary, we show that outputting the most significant bit of |x| in a
turnstile stream requires Ω(logm) bits of space. Here we let |x| take (blogmc+ 1) bits so its
most significant bit can be 0. Note that this is in sharp contrast to maintaining the least
significant O(1) bits, which can be done with O(1) bits of space. Indeed, if one is interested
in the C least significant bits, it suffices to maintain a counter modulo 2C .

Matching Problems

Matching problems are among the most studied graph problems in the streaming model. In a
recent work [2], Assadi et al. give a 1-pass algorithm using Õ(n2−3ε) bits of space to recover
an nε-approximate maximum matching in dynamic graph streams. They also show a lower
bound of n2−3ε−o(1) bits for any linear sketch that approximates the maximum matching to
within a factor of O(nε). Their bounds are essentially tight for linear sketches, but it remains
to see whether they are also tight for general 1-pass algorithms.

Our result for non-negative streams implies that the upper and lower bounds in [2] for
approximating maximum matching are tight not only for linear sketches, but for all 1-pass
algorithms. Thus the space complexity of approximating maximum matching in dynamic
graph streams is resolved.

2 Preliminaries

We present some notations and definitions in this section.

Data Streams in the Turnstile Model. Let ei be the i-th standard unit vector in Rn. In the
turnstile streaming model, the input x ∈ Zn is represented as a data stream σ = (σ1, σ2, . . .)
in which each element σi belongs to Σ = {e1, . . . , en,−e1, . . . ,−en} and

∑
i σi = x.

The frequency of a stream σ is denoted by freq σ =
∑
i σi. For two streams σ and τ , let

σ ◦ τ be the stream obtained by concatenating τ to the end of σ. The inverse stream of σ,
denoted by σ−1, is defined inductively by e−1

i = −ei, (−ei)−1 = ei and (σ ◦ τ)−1 = τ−1 ◦σ−1.
Let Λm = {σ | ‖ freq σ‖∞ ≤ m} and Γm = {σ | for any prefix σ′ of σ, ‖ freq σ′‖∞ ≤ m};

the former is the set of input streams without the removal of the box constraint, and the
latter the set of input streams when the box constraint is removed.
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The Strict Turnstile Model. In the strict turnstile model, there is an additional requirement
that the underlying vector should not have negative coordinate at any intermediate point.
In other words, this model allows input streams in Λ∗m = {σ | ‖ freq σ‖∞ ≤ m, and for any
prefix σ′ of σ, σ′ ≥ ~0}.

Stream Automata. A stream automaton A is a Turing machine that uses two tapes, a
unidirectional read-only input tape and a bidirectional work tape. The input tape contains
the input stream σ. After processing its input, the automaton writes an output, denoted
by φA(σ), on the work-tape. A configuration of A is determined by its state of the finite
control, head position and contents on the work tape. We often use the word “state” to
mean a configuration. The computation of A can be described by a transition function
⊕ : C × Σ→ C, where C is the set of all possible configurations. For a configuration c ∈ C
and a stream σ, we also denote by c⊕ σ the configuration after processing σ on c. The set of
configurations of A that are achievable by some input stream σ ∈ Γm is denoted by C(A,m).
The space of A with stream parameter m is then defined to be S(A,m) = log |C(A,m)|.

A problem P is characterized by a family of binary relations Pn ⊆ Zp(n) × Zn, where
n ≥ 1 and p(n) is the dimension of the output. We say an automaton A solves a problem
P (with domain size n) on a distribution Π if (φA(σ), freq σ) ∈ Pn with probability 1− δ,
where the probability is over σ ∼ Π (and where δ is a small positive constant specified when
needed).

Path-Reversible Automata and Path-Independent Automata. An automaton is said to
be path-reversible if for any configuration c and any input stream σ, c⊕ (σ ◦ σ−1) = c. An
automaton is said to be path-independent if for any configuration c and any input stream σ,
c⊕ σ depends only on freq σ and c.

Transition Graph. The transition graph of an automaton A is a directed graph GA = (V,E),
where the vertex set V is the set of configurations of A, and the arcs in E describe the
transition function of A: there is an arc a from vertex c1 to c2 if and only if there is an
update u ∈ Σ such that c1 ⊕ u = c2, and we denote this update u by fa. Note that every
vertex in V has 2n outgoing arcs, each of which corresponds to a possible update in Σ.

Zero-Frequency Path and Zero-Frequency Graph. In a transition graph GA = (V,E), a
path p of length k from v1 to vk+1 is a sequence of k arcs (v1, v2), (v2, v3), . . . , (vk, vk+1). Let
fp =

∑k
i=1 f(vi,vi+1) be the frequency of path p, which is the frequency of the stream along p.

A path p is called a zero-frequency path if fp = ~0. The zero-frequency graph G′A = (V ′, E′)
based on GA = (V,E) is a directed graph with V ′ = V and E′ = {(v1, v2) | there exists a
zero-frequency path from v1 to v2 in GA}.

Randomized Stream Automata. A randomized stream automaton is a deterministic au-
tomaton with one additional tape for the random bits. The random bit string R is initialized
on the random bit tape before any input token is read; then the random bit string is used in
a bidirectional read-only manner. The rest of the execution proceeds as in a deterministic
automaton. A randomized automaton A is said to be path-independent (reversible) if,
for each possible randomness R, the deterministic instance AR is path-independent (re-
versible). The space of a randomized automaton A with stream parameter m is defined as
S(A,m) = maxR (|R|+ S(AR,m)).
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Multi-Pass Stream Automata. A p-pass (p ≥ 2) deterministic automaton A consists of
automata of p layers (passes), in which (i) the 1-st pass automaton A1 which contains a
starting state, when reading an input stream σ and arriving at state s, outputs a second-pass
deterministic automaton A2

s; (ii) for 2 ≤ q ≤ p− 1, a q-th pass automaton Aq, when reading
input σ and arriving at a state s, outputs a (q + 1)-th pass deterministic automaton Aq+1

s ;
(iii) a p-th pass automaton Ap, when reading input σ and arriving at a state s, outputs a final
answer for the input σ. When the context is clear, we also use σ to mean the terminating
state of the automaton when reading stream σ, e.g., A2

σ is the same as A2
o⊕σ, where o is the

initial state of A2.
For an input stream σ, a sequence of automata will be generated, A1,A2

s1
, . . . ,Apsp−1

,
where si (1 ≤ i ≤ p− 1) is the terminating state of Aisi−1

(where A1
s0

= A1) on reading σ. A
p-pass deterministic automaton A solves a problem P on input stream σ if the output of
Apsp−1

on σ is an acceptable answer for σ. We say that the answer is acceptable for σ in this
case. The space complexity S(A,m) is defined as S(A,m) = maxσ:‖ freq(σ)‖∞≤m{S(A1,m) +
S(A2

s1
,m) + . . .+ S(Apsp−1

,m)}.
A p-pass automaton is said to be path-independent if all of its constituent automata

are path-independent. A p-pass randomized automaton is defined similarly as a 1-pass
randomized automaton.

3 Removing the Box Constraint and Application to Additive Error
Norm Approximation

In this section, we give a condition under which the box constraint can be removed. As an
application, we obtain an Ω(logm) bit lower bound for the additive error `p-norm ‖x‖p(p > 0)
estimation in the turnstile streaming model.

First of all, we remark that the LNW reduction in [9] can be simplified. The LNW
reduction consists of three main steps: (i) reduction from a general automaton to a path-
reversible automaton; (ii) reduction from a path-reversible automaton to a path-independent
automaton; (iii) reduction from a path-independent automaton to a linear sketch A · x.4 We
notice that step (ii) is not necessary, since the automaton obtained after step (i), which was
shown to be path-reversible in [9], is already path-independent. The proof of this fact in
given in Appendix A.

3.1 Removing the Box Constraint in the Turnstile Model
In the LNW reduction, given a problem P , if an algorithm A solves P on Λm, then it is
reduced to a linear sketch that solves P on Λm. (Recall that Λm is the set of all streams σ
with ‖freq σ‖∞ ≤ m.) Our goal is to remove the box constraint, i.e., to apply the reduction
to algorithms that solve P on Γm, which is the set of streams σ such that ‖freq σ′‖∞ ≤ m
for any prefix of σ′ of σ. We will show that if A uses space S(A,m) ≤ c · logm

n for some fixed
constant c > 0 and solves P on Γm, then it can be reduced to a linear sketch that solves
P on Γm/2. The reason why the LNW reduction requires A to solve the problem on Λm
instead of Γm comes from the step of reducing a general automaton to a path-independent
automaton. Given a certain deterministic instance of the general automaton A, the transition
graph GA = (V,E) and the zero-frequency graph G′A = (V ′, E′) are built. The states of

4 Note that a path-independent automaton is equivalent to maintaining a linear sketch A · x mod q [4, 9].
The only goal of step (iii) is to remove the “mod q”.
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a corresponding deterministic instance of the new automaton B are defined to be all the
terminal strongly connected components5 of G′A. The transition function of B is then defined
based on the original transition function of A. When the final state in B is a strongly
connected component C of G′A, B chooses a vertex v from C according to the stationary
distribution πC of a random walk in C, and then outputs what A outputs when its state is
v. We note that when a stream σ is executed by B, what essentially happens is that some
zero-frequency streams (corresponding to moving along arcs in G′A) are inserted into σ to
form a new stream σ′ which will be executed by A. We have that σ ∈ Λm implies σ′ ∈ Λm;
but when σ ∈ Γm, the frequency of some prefix of σ′ could be very large. Thus A is required
to solve the problem on Λm to make the reduction work.

Define L to be the maximum length of the shortest zero-frequency path connecting a pair
of vertices. Here the maximum is taken over all pairs of vertices that are connected by at least
one zero-frequency path. Note that the zero-frequency streams inserted into σ correspond
to taking a walk in the zero-frequency graph G′A. Thus we can assume that the lengths of
inserted zero-frequency streams are at most L: this can be achieved by always choosing the
shortest zero-frequency paths between pairs of vertices. Then it is easy to see that σ ∈ Γm/2
implies σ′ ∈ Γm/2+L/2. Hence, if L ≤ m, we will be able to perform the reduction from an
initial algorithm for input streams in Γm to a linear sketch for input streams in Γm/2.

Note that the reduction we use here is the same as step (i) in the LNW reduction. We
obtain a path-independent automaton regardless of what input streams we are considering.
What changes is that we have argued, when L ≤ m is satisfied, the path-independent
automaton we obtain will be correct on Γm/2 if the original automaton is correct on Γm.
Now it remains to find a sufficient condition for L ≤ m.

We will prove an upper bound on L in terms of n and the number of vertices s = |V | in
order to obtain a condition for removing the box constraint. The idea to upper bound L
is to build linear equations based on the graph GA such that the equations have a positive
integer solution if and only if there exists a zero-frequency path from a given state to another.
Then, Lemma 3.1 below enables us to find a positive integer solution of small magnitude
if there exists one. Finally, we convert the bound on the magnitude of the solutions to the
bound on the length of the path. In the LNW reduction, one way to obtain a finite bound
on L as mentioned in that work is to build a system of linear equations in terms of simple
paths and simple cycles, though an exact bound is not given in [9]. We note that an upper
bound sO(s+n) on L can be obtained via this approach. (See Appendix B.) Unfortunately the
bound sO(s+n) is not strong enough for our applications. Here in Lemma 3.3 we propose a
better way to build the linear equations, which gives us a tighter bound of poly(sn) · ( sn + 1)n.
Instead of writing the linear equations in terms of simple cycles, we write them in terms of
arcs.

I Lemma 3.1. Let A be an m× n integer matrix and b ∈ Zm. Suppose that M1 is an upper
bound on the absolute value of any sub-determinant of the matrix

(
A b

)
. If Ax = b has a

positive integer solution, then it has one whose all coordinates are at most (n+ 1)2M1.

Proof. We make use of a result in [12]. Let C be a p × n integer matrix and d ∈ Zp.
Let r be the rank of A. Suppose that M is an upper bound on the absolute value of any

sub-determinant of the matrix
(
A b

C d

)
, which contains at least r rows from

(
A b

)
. The

5 A strongly connected component is said to be terminal if there is no arc coming from it to the rest of
the graph.
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following upper bound is shown on the magnitude of an integer solution to the linear system
{Ax = b, Cx ≥ d}:

I Lemma 3.2 ([12]). If Ax = b and Cx ≥ d have a common integer solution, then they have
one whose coordinates have absolute values at most (n+ 1)M .

Now we let p = n, C = In, and d = ~1 = (1, . . . , 1)> and invoke Lemma 3.2. Then we
know that Ax = b has a positive integer solution whose coordinates are at most (n+ 1)M ,
where M is an upper bound on the absolute value of any sub-determinant of the matrix(
A b

In ~1

)
, which contains at least r rows from

(
A b

)
.

Then it suffices to prove M ≤ (n+ 1)M1. Consider an arbitrary submatrix T of
(
A b

In ~1

)
,

which contains at least r rows from
(
A b

)
. Note that all entries of

(
In ~1

)
are in {0, 1} and

that there are n+ 1 ways to choose one non-zero entry from each row of
(
In ~1

)
such that

no two entries are in the same column. Thus, after expanding the determinant of T along its
rows from

(
In ~1

)
, det(T ) can be written as the sum of no more than n+ 1 sub-determinants

(multiplied by ±1) of
(
A b

)
. Therefore |det(T )| is at most n+ 1 times the largest absolute

value of any sub-determinant of
(
A b

)
, which implies M ≤ (n+ 1)M1. J

I Lemma 3.3. Let s = |V | be the number of vertices in the transition graph GA = (V,E).
Then L ≤ 2ns(2ns + 1)2 · ( sn + 1)n, where L is the maximum length of the shortest zero-
frequency path between any two vertices connected by at least one zero-frequency path.

Proof. Consider any two vertices o1, o2 ∈ V such that there exists a zero-frequency path
from o1 to o2. We fix a subset of edges E′ = {(u1, v1), (u2, v2), . . . , (ut, vt)} satisfying the
following condition: it is possible to use and only use (u1, v1), . . . , (ut, vt) to reach o2 from
o1. For every possible E′ satisfying this condition, we build a linear system as follows.

Let x ∈ Zt+ be the variable whose i-th coordinate xi represents the number of times
the arc (ui, vi) occurs in the path from o1 to o2. We will need two types of constraints
to write the linear equations: (1) the frequency of the path is ~0; (2) for each node v,
the number of times we go out from v minus the number of times we go into v is 1 if
v = o1, is −1 if v = o2, and is 0 otherwise.6 Then each positive integer solution x to
the above constraints corresponds to a zero-frequency path from o1 to o2 using the arcs
in E′. It is easy to see that the above constraints can be written as linear equations

Ax = b, where A =
(
f(u1,v1) f(u2,v2) . . . f(ut,vt)
eu1 − ev1 eu2 − ev2 . . . eut − evt

)
is an (n + s) × t matrix, and

b =
(

~0
eo1 − eo2

)
∈ Rn+s. Here ev is the standard unit column vector in Rs with the non-zero

coordinate corresponding to node v. (Note that there are s nodes in total so we can map
every node to a coordinate.) The upper n rows guarantee the frequency of the path is 0. Here,
recall that f(ui,vi) ∈ Rn is the positive or negative standard unit column vector which is the
update corresponding to the arc (ui, vi). The lower s rows are the network flow constraints.
Note that all entries in

(
A b

)
are in {−1, 0, 1}.

Since there exists a zero-frequency path from o1 to o2, at least one such system of the
linear equations (i.e., for at least one fixing of E′) has a positive integer solution. Next, we
consider such a fixing of E′ that leads to a positive integer solution to the corresponding linear

6 These are called the network flow constraints.
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system. By Lemma 3.1, if there exists a positive integer solution to Ax = b, then there exists
such a solution x satisfying ‖x‖∞ ≤ (t+ 1)2M1, where M1 is the largest possible absolute
value of any sub-determinant of

(
A b

)
. This solution x corresponds to a zero-frequency

path of length ‖x‖1 ≤ t‖x‖∞ ≤ t(t+ 1)2M1.

Let S be an arbitrary square submatrix of
(
A b

)
. We write S as S =

(
X

Y

)
, where

X comes from the top n rows and Y comes from the bottom s rows of
(
A b

)
. Let the

size of X be h × w, and the size of Y be (w − h) × w. (Clearly, we have h ≤ n and
w ≤ s + h.) We expand det(S) along its rows in X. Since each column in X has at most
one non-zero entry (±1), the rows of X have support on disjoint subsets of columns, and
thus X has at most w non-zero entries in total. Then, by the AM-GM inequality, the
number of ways to choose one non-zero entry from each row of X such that no two of
them are in the same column is at most

(
w
h

)h ≤ ( s+hh )h =
(
1 + s

h

)h ≤ (1 + s
n

)n. Then
we have that |det(S)| is at most

(
1 + s

n

)n times the maximum absolute value of any sub-
determinant of Y . Let C = (cij)k×k be any submatrix of Y , which is also a submatrix of(
eu1 − ev1 eu2 − ev2 . . . eut − evt eo1 − eo2

)
.

We show that det(C) ∈ {0, 1,−1}. Note that C has at most two non-zero entries in
each column, and if a column of C has two non-zero entries, they must be 1 and −1. If all
columns in C have two non-zero entries, then (1, 1, . . . , 1) · C = (0, 0, . . . , 0), which implies
det(C) = 0. If there exists a column in C without non-zero entries, then we also have
det(C) = 0. Otherwise we can find a column with exactly one non-zero entry cij , and
then we have det(C) = (−1)i+jcij det(Dij), where Dij is formed by deleting row i and
column j from C. By induction, we have det(C) ∈ {−1, 0, 1}. Therefore, we know that
|det(S)| ≤

(
1 + s

n

)n · 1 =
(
1 + s

n

)n.
Since S is arbitrary, we have M1 ≤

(
1 + s

n

)n. Note that there are at most 2ns arcs in
the graph, so we have t ≤ 2ns. Then we can bound the length of a zero-frequency path by
t(t+ 1)2M1 ≤ 2ns(2ns+ 1)2 (1 + s

n

)n. J

Let r = |C(A,m)|. Note that we only care about the correctness of A on input streams
from Γm. Thus we can, without loss of generality, combine all states not in C(A,m) (if there
are any) into an “irreversible crash” state: the automaton will stay in this state after leaving
C(A,m). This modification will not affect the correctness of A on Γm. Therefore, we can
assume s ≤ r + 1. Then Lemma 3.3 implies L ≤ 2n(r + 1)(2n(r + 1) + 1)2 · ( r+1

n + 1)n.
Assume r > 1. Then we have L ≤ (4nr)3 · (r+ 2)n ≤ rc1n for a sufficiently large constant

c1 > 0. Recall that we want L ≤ m. Taking logarithms on both sides of the desired inequality
rc1n ≤ m, we equivalently want c1n log r ≤ logm, i.e., log r ≤ logm

c1n
. Therefore, when we

have S(A,m) = log r ≤ logm
c1n

for some fixed constant c1 > 0, the condition L ≤ m will
be satisfied. In this case, according to our analysis, the box constraint can be removed.
Combining this condition and [9, Theorem 10] (with minor correction), we summarize our
results on removing the box constraint as the following theorem.

I Theorem 3.4 (Removing the box constraint). Suppose that a randomized 1-pass streaming
algorithm A solves a problem P on any stream in Γm with probability at least 1 − δ, and
that the space used by any deterministic instance of A is no more than c · logm

n , where c > 0
is a universal constant. Then there exists an algorithm B implemented by maintaining a
linear sketch A · x mod q in the stream, where A is a random r× n integer matrix and q is a
random positive integer vector of length r, such that B solves P on any stream in Γm/2 with
probability 1− 6δ and that S(B,m/2) ≤ S(A,m) +O(logn+ log logm+ log 1

δ ).7

7 The extra O(log n + log log m + log 1
δ ) bits are used only for the randomness for sampling A and q.
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Figure 1 An illustrative example.

3.2 Tightness of Our Condition
In Lemma 3.3, we show that an upper bound of L is poly(ns) · (1 + s

n )O(n). Now we give
an example of an automaton to show this upper bound is essentially tight (assuming s is
much larger than n). In our example, there exist two vertices in the transition graph of
the automaton so that the length of the shortest zero-frequency path between them is at
least ( sn )Ω(n). The matching upper bound and lower bound on L eliminate the possibility
of getting any further improvement in the condition for removing the box constraint, if the
same reduction in [9] is used.

An illustrative example of our construction with n = 4 and s = 12 is given in Figure
1. Here each dashed arc represents all remaining outgoing arcs from a vertex. Consider
the shortest zero-frequency path from o1 to o2. (Note that there exists one such path.)
After going from o1 to o2 by the arc with +e1 update, the path needs to go through the
cycle o2 → o3 → o4 → o5 → o2 one time in order to make the first coordinate of the
frequency vector x equal to 0. However, that causes the second coordinate to be 3 and
the path then needs to go through the cycle o5 → o6 → o7 → o8 → o5 three times for
compensation. That further causes the third coordinate to be 32 and the path needs to go
through o8 → o9 → o10 → o11 → o8 a total of 32 times. Finally, the path needs to go through
the self-loop at o11 with −e4 update a total of 33 times. Note that the number of times the
shortest zero-frequency path from o1 to o2 passes through each cycle goes up exponentially.

I Lemma 3.5. There exists an automaton A such that the transition graph GA = (V,E)
satisfies L = ( sn )Ω(n), where s = |V | is the number of vertices, and L is the maximum
length of the shortest zero-frequency path between any two vertices connected by at least one
zero-frequency path.

Proof. We assume n > 3, s− 3 > 3(n− 1) and (n− 1) | (s− 3). For (n− 1) - (s− 3), we can
decrease s until (n− 1) | (s− 3) is satisfied. We construct a transition graph GA = (V,E)
whose structure is similar to the example in Figure 1. Let V = {o1, o2, . . . , os}. There are
2n outgoing arcs from each of the vertices in V . We write oi ⊕±ek = oj to stand for an arc
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(oi, oj) in E where f(oi,oj) = ±ek. Let len = (s− 3)/(n− 1) + 1. The arcs in E are defined
as follows:

o1 ⊕+e1 = o2.
os−1 ⊕−en = os−1.
For i ≡ 2 mod (len− 1) and i 6= s− 1, oi ⊕−edi/(len−1)e = oi+1.
For i ≡ 2 mod (len− 1) and i 6= 2, oi ⊕+edi/(len−1)e = oi−(len−1).
For i 6≡ 2 mod (len− 1), i 6= 1 and i 6= s, oi ⊕+ebi/(len−1)c+1 = oi+1.
For a vertex oi and e ∈ {+e1, . . . ,+en,−e1, . . . ,−en} where oi ⊕ e is undefined from
above, oi ⊕ e = os.

There are n − 1 cycles each of which has length len. The i-th cycle consists of nodes
o(i−1)(len−1)+2, o(i−1)(len−1)+3, . . . , oi(len−1)+2. Among the arcs in the i-th cycle, there is one
arc with −ei update, and all other len − 1 arcs are with +ei+1 update. In this case, any
zero-frequency path from o1 to o2 passes through the i-th cycle at least (len−1)i−1 times, and
thus its length is at least

∑n−1
i=1 len · (len−1)i−1 = len · (len−1) · (len−1)n−1−1

len−2 = ( sn )Ω(n). J

In fact, for our example we can have a stronger statement that along any zero-frequency
path from o1 to o2, some coordinate of the underlying vector achieves at least ( sn )Ω(n). This
is the reason why the underlying vector could escape from {−m,−(m− 1), . . . ,m}n at the
middle of the stream after inserting zero-frequency streams in the reduction. In order to
remove the box constraint, there must be some constants C1, C2 such that ( sn )C1n ≤ C2m,
i.e., log s ≤ logm+logC2

C1n
+ logn. When m is sufficiently large and n is fixed, this implies

log s ≤ C logm
n for some constant C. Hence our condition for removing the box constraint is

tight.

3.3 Space Lower Bounds for Additive Error Norm Approximation
We consider the problem of estimating the `p-norm ‖x‖p(p > 0) in the turnstile streaming
model, where the underlying vector x is promised to be in {−m,−(m− 1), . . . ,m}n at all
points in the stream (i.e., without the box constraint). We prove an Ω(logm) bit space lower
bound for approximating ‖x‖p up to an additive εn1/pm error, where ε ∈ (0, 1

2 ) is a constant.
Our proof makes use of the LNW reduction with the box constraint removed.

A Norm Decision Problem. First we consider the following promise problem: we are given
the promise that the input x ∈ {−m,−(m − 1), . . . ,m}n satisfies either ‖x‖p ≤ αn1/pm

or ‖x‖p ≥ βn1/pm, where 0 < α < β < 1 are constants, and need to decide whether
‖x‖p ≤ αn1/pm or ‖x‖p ≥ βn1/pm. We first prove that this problem has an Ω(logm) space
lower bound.

I Theorem 3.6 (Norm decision problem). For any constants p > 0, 0 < α < β < 1 and
0 ≤ δ < min{α,1−β}

6(α+1−β) , any 1-pass streaming algorithm which, for any input x ∈ {−m,−(m−
1), . . . ,m}n, decides whether ‖x‖p ≤ αn1/pm or ‖x‖p ≥ βn1/pm (provided that x satisfies
one of them) with probability at least 1− δ in the turnstile model uses Ω(logm) bits of space.

Proof. We assume without loss of generality that n = 1, since one can always use an
algorithm for larger n to solve the problem for n = 1 by assigning all n coordinates the same
value. Suppose that the theorem does not hold. Then for any sufficiently small constant
ε > 0, there exists m and an algorithm A such that A uses less than ε logm bits of space and
solves the given problem (with parameters m and n = 1) with probability 1− δ. Since the
space used by A is less than ε logm

n bits (using n = 1), from Theorem 3.4 we know that there
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is an algorithm B that maintains a linear sketch A · x mod q and solves the same problem8

with probability 1− 6δ. Furthermore, the space used by any deterministic instance of B is
also less than ε logm bits.

Let U1 = {0, 1, . . . , bαmc} and U2 = {dβme, dβme + 1, . . . ,m}. Let Π be the uniform
distribution on U = U1∪U2. By Yao’s minimax principle, there exists a fixing of A and q that
solves the problem for x drawn from Π (i.e., decides if x is in U1 or U2) with probability at least
1 − 6δ. Since n = 1, we can write Ax mod q = (a1x mod q1, a2x mod q2, . . . , arx mod qr),
where a1, . . . , ar ∈ Z and q1, . . . , qr ∈ Z+. Without loss of generality, we assume gcd(ai, qi) =
1 for i = 1, . . . , r. (If gcd(ai, qi) = d > 1, we can let a′i = ai/d, q

′
i = qi/d and then there is a

one-to-one correspondence between aix mod qi and a′ix mod q′i. So ai and qi can be replaced
by a′i and q′i.) Let l = lcm(q1, . . . , qr).

We now prove l = Ω(m). Suppose that l < min{α, 1− β} ·m (otherwise we already have
l = Ω(m)). The input space U can be partitioned into l groups Gi = {j ∈ U

∣∣(i− j) mod l =
0}(i = 0, 1, . . . , l − 1). Note that the algorithm outputs the same answer for inputs from
the same group. Within group Gi, the algorithm outputs the correct answer for at most
a max{|Gi∩U1|,|Gi∩U2|}

|Gi| fraction of inputs. For i ∈ {0, 1, . . . , l − 1} we have |Gi ∩ U1| =
bαm−il c+1 ∈ (αml −1, αml +1] and |Gi∩U2| = bm−il c−d

βm−i
l e+1 ∈ ( (1−β)m

l −1, (1−β)m
l +1].

Thus

max{|Gi ∩ U1|, |Gi ∩ U2|}
|Gi|

≤
max{αml + 1, (1−β)m

l + 1}
(αml − 1) + ( (1−β)m

l − 1)
=

max{α, 1− β}ml + 1
(α+ 1− β)ml − 2 .

The above is an upper bound of the success probability on Π, so we must have 1 − 6δ ≤
max{α,1−β}ml +1

(α+1−β)ml −2 , which means l ≥ (1−6δ)(α+1−β)−max{α,1−β}
3−12δ m. Since δ < min{α,1−β}

6(α+1−β) , we
have (1− 6δ)(α+ 1− β)−max{α, 1− β} > 0. Therefore l = Ω(m).

Next we show that as x varies in {1, 2, . . . , l}, A ·x mod q takes l distinct values. Suppose
that there are x, y ∈ {1, 2, . . . , l}(x 6= y) such that A · x mod q = A · y mod q. Then for
all i ∈ {1, . . . , r} we have ai(x − y) mod qi = 0, which means (x − y) mod qi = 0 since
gcd(ai, qi) = 1. Therefore (x − y) mod (lcm(q1, . . . , qr)) = 0, i.e., (x − y) mod l = 0, a
contradiction. So A · x mod q takes l distinct values as x varies in {1, 2, . . . , l}. This means
that as x varies in {1, 2, . . . ,m}, A · x mod q takes min{m, l} distinct values, so the space
complexity of maintaining A · x mod q is at least Ω(log(min{m, l})) = Ω(logm), which is a
contradiction. J

The following Ω(logm) lower bounds are corollaries of Theorem 3.6.

I Theorem 3.7 (Additive error norm approximation). For any constants p > 0 and 0 ≤ ε < 1
2 ,

any 1-pass streaming algorithm which, for any input x ∈ {−m,−(m− 1), . . . ,m}n, outputs
an approximation of ‖x‖p in the interval

[
‖x‖p − εn1/pm, ‖x‖p + εn1/pm

]
with probability

greater than 11
12 in the turnstile model uses Ω(logm) bits of space.

Proof. Suppose that the theorem does not hold. Then for any sufficiently small constant
η > 0, there exists m and an algorithm A such that A uses less than η logm bits of space
and estimate ‖x‖p (for any x ∈ {−m,−(m− 1), . . . ,m}n) up to additive εn1/pm error with
probability 1− δ, where 0 ≤ δ < 1

12 . Below, we make use of A to solve the norm decision
problem in η logm bits of space and thus reach a contradiction to Theorem 3.6.

8 According to Theorem 3.4, B can only solve the problem with parameter m/2 instead of m. Since we
are proving an Ω(log m) lower bound, we can replace m/2 by m for simplicity.
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We invoke A to solve the norm decision problem with parameters α < 1
2 − ε, β >

1
2 + ε,

and δ. We can choose α and β such that α = 1− β, then we have δ < 1
12 = min{α,1−β}

6(α+1−β) as
required in Theorem 3.6. When ‖x‖p ≤ αn1/pm, a successful estimate for ‖x‖p given by A
will be at most (α+ ε)n1/pm; when ‖x‖p ≥ βn1/pm, a successful estimate for ‖x‖p given by
A will be at least (β − ε)n1/pm. Since α+ ε < 1

2 < β − ε, by looking at the most significant
O(1) bits of the output of A, we are able to tell whether the output is at most (α+ ε)n1/pm

or at least (β − ε)n1/pm, and thus to decide whether ‖x‖p ≤ αn1/pm or ‖x‖p ≥ βn1/pm

(with probability at least 1− δ). This solves the norm decision problem using η logm bits of
space, contradicting Theorem 3.6. J

I Theorem 3.8 (Approximating a counter up to additive error). For any constant 0 ≤ ε < 1
2 ,

any 1-pass algorithm which, for any input x ∈ {−m,−(m − 1), . . . ,m}, outputs |x| up to
additive εm error with probability larger than 11

12 in the turnstile model uses Ω(logm) bits of
space.

Proof. This is a special case of Theorem 3.7 with n = 1. J

I Theorem 3.9 (Maintaining the most significant bit of a counter). Any 1-pass algorithm
which, for any input x ∈ {−m,−(m− 1), . . . ,m}, outputs the most significant bit of |x| with
probability larger than 11

12 in the turnstile model uses Ω(logm) bits of space.

Proof. Without loss of generality, we assume m = 2k − 1(k ∈ Z+). In this case |x| has k
bits. If an algorithm can output the most significant bit of |x|, it must be able to distinguish
whether |x| ≤ 1

4m or |x| ≥ 3
4m: the most significant bit of |x| is 0 in the former case, and is

1 in the latter case. Then the Ω(logm) lower bound follows from Theorem 3.6. J

4 Reduction to Linear Sketches in the Strict Turnstile Model

In this section, we show that in the strict turnstile model, there is also an equivalence between
general algorithms and linear sketches, similar to the LNW reduction for the turnstile model.
We will consider algorithms that allow input streams from Λ∗m, which is the set of streams
such that the underlying vector never has a negative entry and is in {0, 1, . . . ,m}n at the
end of the stream. We further assume that the algorithms have space complexity depending
only on the dimension n, which is suitable when we want to prove lower bounds as functions
of n, such as in graph problems.

The following theorem is an adaptation of [9, Theorem 10] for the strict turnstile model.
It implies that to obtain lower bounds depending only on dimension in the strict turnstile
model, it suffices to consider linear sketches, or the simultaneous communication model.

I Theorem 4.1 (Reduction in the strict turnstile model). Suppose that a randomized algorithm
A solves a problem P on any stream in Λ∗m with probability at least 1 − δ, and that the
space complexity of A depends only on n. Then there exists an algorithm B implemented by
maintaining a linear sketch A · x mod q in the stream, where A is a random r × n integer
matrix and q is a positive integer vector of length r, such that B solves P on any stream in
Λ∗m with probability at least 1− 6δ and that the space used by any deterministic instance of B
is no more than the space used by A.

Proof. We modify the reduction from general automaton to path-independent automaton
(which was only claimed to be path-reversible in [9], as mentioned in the beginning of this
section).
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We view A as an automaton. Since the space used by A depends only on n, there is a
function g such that the number of states of every deterministic instance of A is no more
than g(n). As in Section 3.1, let L be the maximum length of the shortest zero-frequency
path between any two states in the transition graph of any deterministic instance of A. From
Lemma 3.3 we know that L ≤ h(n) for some function h.

Let γ be a fixed stream with frequency (h(n), . . . , h(n)), which consists of only positive
updates (i.e., +ei’s). We construct another automaton A′ as follows: for any randomness,
(1) A′ has the same transition graph as A; (2) the starting state of A′ is o⊕ γ, where o is
the starting state of A; (3) for any state u, the output of A′ on u is the output of A on the
state u⊕ γ−1.

It is easy to see that executing a stream σ on A′ is equivalent to running the stream
γ ◦ σ ◦ γ−1 on A. Since A succeeds in solving P on any stream in Λ∗m with probability
at least 1 − δ, we know that A′ solves P on a stream σ with probability 1 − δ as long as
γ ◦ σ ◦ γ−1 ∈ Λ∗m, i.e., A′ solves P on any stream in the set Φ = {‖freq σ‖∞ ≤ m, freq σ ≥ ~0,
and the frequency of any prefix of σ has all its coordinates at least −h(n)} with probability
1− δ.

Now we invoke the LNW reduction from A′ to a path-reversible automaton C. According
to Appendix A, C is as well a path-independent automaton. Recall that when a stream
σ ∈ Λ∗m is executed by C, equivalently another stream σ′ is executed by A′, where σ′ is
obtained by inserting zero-frequency streams into σ. Note that we can assume that all the
inserted zero-frequency streams have length at most L ≤ h(n), and then σ ∈ Λ∗m implies
σ′ ∈ Φ. Therefore we have a path-independent automaton C solving P on any stream in Λ∗m
(with high probability). J

Maximum Matching. In a recent work [2], tight upper and lower bounds are shown for
turnstile algorithms that approximate maximum matching in dynamic graph streams, but the
lower bound is only proved in the simultaneous communication model. Using Theorem 4.1,
we are able to conclude that their results hold for any 1-pass algorithm and thus to resolve the
1-pass space complexity of this problem. Namely, to compute an nε-approximate maximum
matching, Θ(n2−3ε) bits of space is both sufficient and necessary (up to polylogarithmic
factors), where n is the number of vertices.

5 Reduction for Multi-Pass Automata

Our main result in this section is that the LNW reduction can be extended to multi-pass
automata, i.e., that a randomized p-pass automaton can be reduced to a path-independent
one without blowing up the space complexity. Throughout this section p is a constant.

The main difficulty of this reduction is that when we consider an automaton in the i-th
pass, for i > 1, we have to restrict to a subset of input streams that lead to the same state in
the automaton processing the previous pass. Fortunately there is still sufficient randomness
remaining even with this restriction so that the padding argument with zero-frequency
streams in the LNW reduction still works.

I Theorem 5.1 (Reduction of p-pass automata). Let A be a p-pass randomized automaton
that solves P with probability ≥ 1− δ. Let ε > 0. For any distribution Π over streams, there
exists a p-pass path-independent deterministic automaton B that solves P over input drawn
from Π with probability ≥ 1− δ − ε. Furthermore, S(B,m) ≤ S(A,m).

Proof for p = 2. We first give a detailed proof for the case p = 2. The same method can be
easily generalized to larger p.
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Let S0 be a set of zero-frequency streams such that whenever o1 and o2 are two states
of A1 or of any automaton A2

s, there exists σ ∈ S0 such that o1 ⊕ σ = o2, where ⊕ is the
transition function of the corresponding automaton.

Define a distribution Π′ as follows. For a stream σ ∼ Π and σ0 = (σ1, . . . , σ2W ) ∼
Unif(S2W

0 ), we include σ⊗ σ0 := σ1 ◦ . . . ◦ σW ◦ σ ◦ σW+1 . . . ◦ σ2W in Π′. Here for any set S,
Unif(S) is defined to be the uniform distribution over S. We shall choose W to be sufficiently
large so that certain conditions are satisfied. The conditions will be described explicitly later
in the proof.

By Yao’s minimax principle, we can pick a deterministic instance of A, also denoted by
A, which is correct on input distribution Π′ with probability ≥ 1 − δ. Henceforth in the
proof A refers to this deterministic instance. Everything is similar to [9] so far.

For a state s of A1, denote by Π′(s) the marginal distribution of Π′ on the event that
reading the input stream in A1 ends at state s. By the correctness assumption of A, it holds
that

E
σ′∈Π′

1{
φA2

σ′
(σ′) is acceptable for σ′

} ≥ 1− δ,

or, equivalently,

E
s∼µ

E
σ′∼Π′(s)

1{
φA2

σ′
(σ′) is acceptable for σ′

} ≥ 1− δ,

where µ the distribution over the states of A1 induced by Π′.
For each second-pass automaton A2

s (s is a state in A1), we reduce it to a path-independent
automaton B2

s with the same transition functions as in the LNW reduction. Since A2
s will

only be run on the input streams in supp(Π′(s)), we may assume that the states of B2
s are

all the terminal equivalence classes 〈τ ′〉 of A2
s, where τ ′ ∈ supp(Π′(s)).

To specify the output on the terminal equivalence class, we need the following proposition,
whose proof is postponed to the end of this section.

I Proposition 5.2. Let ε > 0 and W be a sufficiently large integer. Suppose that σ =
σ1 ◦ . . . ◦ σW ∼ Unif(SW0 ) and C is a terminal equivalence class of some automaton. Let s0
and s be arbitrary states in C and let event E = {s0 ⊕ σ = s}. There exist a positive integer
L ≤W and a distribution D over SW−L0 (both L and D are independent of s0 and s) such
that

dTV (L(σL+1 ◦ . . . ◦ σW |E),D) ≤ ε,

where L(σL+1 ◦ . . . ◦ σW |E) is the conditional distribution of σL+1 ◦ . . . ◦ σW on the event
E. Furthermore, there exists an integer R ∈ [L,W ] independent of s0 and s such that
dTV (L(σL+1 ◦ . . . ◦ σR|E),Unif(SR−L0 )) ≤ ε, and R− L can be made arbitrarily large.

Now we specify the output of B2
s . Let 〈t〉 be a terminal class of A2

s and Π′(s, 〈t〉) be the
marginal distribution of Π′(s) on the streams terminating in 〈t〉. The random output on 〈t〉
is defined as φA2

s
(τ ′) with τ ′ ∼ Π′(s, 〈t〉).

For a stream prefix ρ, we denote by Π′(s, ρ) the marginal distribution of Π′(s) on the
streams with prefix ρ.

We choose W sufficiently large such that the following two conditions hold.
(A) With probability ≥ 1− ε over σ′ ∼ Π′, the second-pass automaton A2

σ′ arrives at a state
in a terminal equivalence class on input stream σ′.
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(B) Conditioned on (A), for any second-pass automaton A2
s, and for any stream prefixes

ρ1 and ρ2 of streams in supp(Π′(s)) that satisfy (i) ρi has the form σ1 ◦ . . . ◦ σW ◦ σ ◦
σW+1 ◦ . . . ◦ σW+ni for some 0 ≤ ni ≤W (i = 1, 2) and (ii) ρ1 and ρ2 arrive in the same
equivalence class of A2

s, the induced distribution on the terminating states of streams in
Π′(s, ρ1) and that on the terminating states of streams in Π′(s, ρ2) are ε-close in total
variation distance.

Condition (A) is possible by Proposition 5.2, which indicates that there is a sufficiently long
random walk in A2

s, so starting from a node outside any terminating equivalence class, it
will arrive at a state in a terminal equivalence class with a high probability; then take a
union bound. We shall be conditioned on (A). Condition (B) is possible again because of
Proposition 5.2. The streams with prefix ρ1 and the streams with prefix ρ2 will be close to
Unif(SL0 ) on a segment of length L (where L can be made arbitrarily large) so they will first
mix in the terminal equivalence class and the streams have similar distribution afterwards.
Therefore, the induced distribution on the terminating states of streams in Π′(s, ρ) is close
to that induced by Π′(s, 〈ρ〉).

Furthermore, when W is large enough, the random zero-padding σ1 ◦ . . . ◦ σW before
σ ∼ Π always leads to a state in a (random) equivalence class in A2

s. Choose the initial state
of B2

s according to the induced distribution on the terminal equivalence classes by streams
drawn from Π′(s). It follows that on reading σ′ ∼ Π′, the distribution on the terminating
equivalence classes in A2

σ′ is ε-close to the distribution on the corresponding states in B2
σ′ .

They are not necessarily the same distribution because we choose a random initial state in
B2
s . This is called the terminal class property.
To show the correctness of B, we need to show (we may rescale ε if necessary)

E
σ∼Π

E
randomness of B

1{φB(σ) is acceptable for σ} ≥ 1− δ −O(ε). (1)

We have

E
σ∼Π

E
randomness of B

1{φB(σ) is acceptable for σ}

= E
σ∼Π

E
s∼Stationary(〈σ〉)

E
randomness of B2

s

1{φB2
s
(σ) is acceptable for σ}

≥ E
σ∼Π

E
σ0∼Unif(S2W

0 )
E

randomness of B2
σ⊗σ0

1{
φB2

σ⊗σ0
(σ) is acceptable for σ

} − ε
≥ E
σ∼Π

E
σ0∼Unif(S2W

0 )
E

τ ′∼Π′(σ⊗σ0,〈σ⊗σ0〉)
1{

φA2
σ⊗σ0

(τ ′) is acceptable for σ
} − 2ε. (2)

In the above, line 2 follows from the random output of B1, line 3 from the fact that σ ⊗ σ0
with σ0 is ε-close to the stationary distribution on 〈σ〉, line 4 from the definition of the
random output of B2 and the terminal class property.

The event of the indicator function in (2) has a slight mismatch: the input stream is τ ′
while we only know the automaton’s correctness on σ. To overcome this, we break up the
streams in supp(Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉)) according to the frequency vectors v. We say freq(τ ′)
is admissible for τ ′ ∈ supp(Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉)). Further conditioned on admissible v, the
conditional distribution of Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉) is denoted by Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉, v). By
condition (B), when W is sufficiently large, for any admissible v, the distribution of states in
〈σ ⊗ σ0〉 induced by Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉, v) is close to that induced by Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉).
It therefore holds that∣∣∣∣ E

τ ′∼Π′(σ⊗σ0,〈σ⊗σ0〉)
f(τ ′)− E

τ ′∼Π′(σ⊗σ0,〈σ⊗σ0〉,freq(σ))
f(τ ′)

∣∣∣∣ ≤ ε, (3)
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for all (measurable) f with ‖f‖∞ ≤ 1. Now we can continue from (2):

E
σ∼Π

E
randomness of B

1{φB(σ) is acceptable for σ}

≥ E
σ∼Π

E
σ0∼Unif(S2W

0 )
E

τ ′∼Π′(σ⊗σ0,〈σ⊗σ0〉,freq(σ))
1{

φA2
σ⊗σ0

(τ ′) is acceptable for σ
} − 3ε (using (3))

= E
σ′∼Π′

E
τ ′∼Π′(σ′,〈σ′〉,freq(σ′))

1{
φA2

σ′
(τ ′) is acceptable for τ ′

} − 3ε (correctness depends only on freq. vec.)

= E
s∼µ

E
σ′∼Π′(s)

E
τ ′∼Π′(s,〈σ′〉,freq(σ′))

1{
φA2

s
(τ ′) is acceptable for τ ′

} − 3ε

≥ E
s∼µ

E
σ′∼Π′(s)

E
τ ′∼Π′(s,〈σ′〉)

1{
φA2

s
(τ ′) is acceptable for τ ′

} − 4ε (using (3))

= E
s∼µ

E
τ ′∼Π′(s)

1{
φA2

s
(τ ′) is acceptable for τ ′

} − 4ε

≥ 1− δ − 4ε.

Removing the conditioning on (A) causes a further loss of ε in the success probability, that is,

E
σ∼Π

E
randomness of B

1{φB(σ) is acceptable for σ} ≥ 1− δ − 5ε.

This completes the proof of (1).
Finally, by an averaging argument, there exists a deterministic automaton B achieving

success probability at least as high as that of the randomized B. The claim of space complexity
follows from the same argument as in [9]. J

Proof of Theorem 5.1 for general p. We only describe the major changes on the proof for
the special case p = 2. Here we choose W sufficiently large such that:
(A) With probability ≥ 1−Θ(ε) over σ′ ∼ Π′, the automaton Aqσ′ for all 2 ≤ q ≤ p arrives

at a state in a terminal equivalence class on input stream σ′.
(B) Over σ′ ∼ Π′, for any q-th pass automaton Aqσ′ (2 ≤ q ≤ p), the induced distribution on

terminating states of Aqσ′ is Θ(ε)-close to that on corresponding states of B2
σ′ on reading

σ′. This is the terminal class condition.
(C) (Conditioned on (A)) For any q-th pass automaton Aqs, and for any stream prefixes ρ1

and ρ2 of streams ending at the same state s of Aq−1 such that both ρ1 and ρ2 arrive in
the same equivalence class of Aqs, the induced distribution on the terminating states of
streams with prefix ρ1 and that on the terminating states of streams with prefix ρ2 are
Θ(ε)-close in total variation distance.

The random output is drawn from the stationary distribution on the associated equivalence
class for the first-pass automaton, and is, for all subsequent passes i ≥ 2, drawn from the
induced distribution on the states of Ais by the conditional distribution of the streams
terminating at s in the automaton of pass i− 1. A similar argument to that in the case of
p = 2 gives the result. J

After we have Theorem 5.1, similar to [9], we can use Yao’s minimax principle to conclude
the existence of a randomized p-pass automaton that succeeds with probability ≥ 1− δ − ε
on any input, and can further use Newman’s argument [11] to reduce the number of random
bits to O(logn+ log logm+ log 1

ε ).
Now we give the proof of Proposition 5.2.
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Proof of Proposition 5.2. Let π be the stationary distribution on C under the transition
probability induced by Unif(S0). Note that

Pr{σL+1 ◦ . . . ◦ σW = τ |s0 ⊕ σ1 ◦ . . . ◦ σW = s}

=
∑
t∈C

Pr{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s, s0 ⊕ σ1 ◦ . . . ◦ σL = t}·

Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t}

=
∑
t∈C

Pr{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s} · Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t}

=
∑
t∈C

Pr{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s} ·
(
π(t)± ε

|C|

)
,

where line 3 follows from the Markov property of the process, line 4 follows from the fact
that L can be chosen large enough so that s0 ⊕ σ1 ◦ . . . ◦ σL mixes on C. Furthermore, L
can be chosen independent of s0 because there are only finitely many distinct s0’s. Define
the probability distribution D as

Pr
σL+1◦...◦σW∼D

{σL+1 ◦ . . . ◦ σW = τ}

= E
t∼π

Pr
σL+1◦...◦σW∼Unif(SW−L0 )

{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s}.

It is easy to verify that D is indeed a probability distribution. It follows that

dTV (L(σL+1 ◦ . . . ◦ σW = τ |s0 ⊕ σ1 ◦ . . . ◦ σW = s),D)

≤ ε

|C|
∑
t∈C

∑
τ

Pr{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s}

= ε

|C|
· |C| = ε.

For the second part, note that we have (similar to the above)

Pr{σL+1 ◦ . . . ◦ σR = τ |s0 ⊕ σ1 ◦ . . . ◦ σW = s}

=
∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ τ = t′, s0 ⊕ σ1 ◦ . . . ◦ σL = t, t′ ⊕ σR+1 ◦ . . . ◦ σW = s}·

Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t, t′ ⊕ σR+1 ◦ . . . ◦ σW = s}

Now, t is the last state of a random walk from s0 and t′ is the last state of a random walk
from s. The latter random walk is the reverse of σR+1 ◦ . . . ◦ σW with all edges reversed in
C (denoted the edge-reversed component by C ′). It is clear that C ′ is strongly connected.
Let π′ be the stationary distribution on C ′ under the transition induced by Unif(Sr0), where
Sr0 denotes the reverse streams of S0. If L� 1 and R�W , both walks σ1 ◦ . . . ◦ σW and
σrW ◦ . . . ◦ σrR+1 will mix. By Markov property,

Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t, t′ ⊕ σR+1 ◦ . . . ◦ σW = s}
= Pr{t′ ⊕ σR+1 ◦ . . . ◦ σW = s|s0 ⊕ σ1 ◦ . . . ◦ σL = t} · Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t}
= Pr{t′ ⊕ σR+1 ◦ . . . ◦ σW = s}Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t}

which can be made close to π(t)π′(t) with an additive error at most ε/|C|2 with choice of
L and R uniformly over s0 and s, as there are only finitely many distinct s0’s and s’s. It
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follows that∣∣∣∣Pr{σL+1 ◦ . . . ◦ σR = τ |s0 ⊕ σ1 ◦ . . . ◦ σW = s} − 1
|S0|R−L

∣∣∣∣
≤

∣∣∣∣∣∣
∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ σL+1 ◦ . . . ◦ σR = t′}π(t)π′(t′)− 1
|S0|R−L

∣∣∣∣∣∣
+ ε

|C|2
∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ σL+1 ◦ . . . ◦ σR = t′}

= ε

|C|2
∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ σL+1 ◦ . . . ◦ σR = t′},

where we use the fact that∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ σL+1 ◦ . . . ◦ σR = t′}π(t)π′(t′) = 1
|S0|R−L

.

To see this, imagine that σL+1 ◦ . . . ◦σR is a part of a two-sided infinitely long zero-frequency
sequence. Finally, similar to before,

dTV (L(σL+1 ◦ . . . ◦ σR|E),Unif(SR−L0 )) ≤ ε

|C|2
· |C|2 = ε. J
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A The LNW Reduction

We show that the reduction from a general automaton to a path-reversible automaton,
presented in [9, Theorem 5], actually gives us a path-independent automaton.

The reduction works as follows. Let A be the original automaton, G′A be its zero-frequency
graph, and ⊕ be its transition function. The states of the new automaton B are defined to
be the terminal strongly connected components of G′A. (A strongly connected component
is terminal if there is no arc from it to the rest of the graph.) For each strongly connected
component v of G′A, let rep(v) be a (fixed) arbitrary vertex in v, and α(v) be a (fixed)
arbitrary terminal strongly connected component reachable from v. For each vertex u in G′A,
let com(u) be the strongly connected component it belongs to. Then the transition function
⊕′ of B is defined as

v ⊕′ ±ei = α(com(rep(v)⊕±ei)),

where v is a state of B, i.e., a terminal strongly connected component of G′A.
It is shown in [9, Lemma 6] that B is path-reversible:

I Lemma A.1 (Lemma 6 in [9]). For any state u of B and any i ∈ [n], we have u⊕′ei◦−ei = u.

We show a stronger result below, which implies B is path-independent.

I Lemma A.2. For any state u of B and any zero-frequency stream σ, we have u⊕′ σ = u.

Proof. Let σ = (σ1, . . . , σt) (σi ∈ Σ) and v = u⊕′σ. Then there exist zero-frequency streams
γ1, γ2, . . . , γt such that

rep(u)⊕ σ1 ◦ γ1 ◦ σ2 ◦ γ2 ◦ ... ◦ σt ◦ γt = rep(v).

Note that freq(σ1 ◦ γ1 ◦ σ2 ◦ γ2 ◦ ... ◦ σt ◦ γt) = freq(σ1 ◦ σ2 ◦ ... ◦ σt) = freq σ = ~0. Since
rep(u) belongs to a terminal strongly connected component u, rep(v) has to be in the same
terminal strongly connected component. Hence u = com(rep(u)) = com(rep(v)) = v. J
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B An Alternative Upper Bound on the Length of Shortest
Zero-Frequency Paths

I Lemma B.1. Let s = |V | be the number of vertices in the transition graph GA. Then
L ≤ eO((s+n) log s), where L is the maximum length of the shortest zero-frequency path between
any two vertices connected by at least one zero-frequency path.

Proof. Consider two vertices o1, o2 ∈ V such that there exists a zero-frequency path from
o1 to o2. We fix a tuple (p, C) satisfying the following condition: every vertex in c1, . . . , ct
can be reached from o1 via arcs in c1, . . . , ct and p. Here p is a simple path from o1 to o2
and C = {c1, c2, . . . , ct} is a set of simple cycles in GA. For every possible (p, C) satisfying
this condition, we build a linear system Ax = b and want a positive integer solution. Here
A =

(
fc1 fc2 . . . fct

)
is an n× t matrix and b = −fp ∈ Rn. The i-th row in the equations

guarantees the i-th component in the frequency of the path is 0. Each positive integer solution
x of the equations corresponds to a zero-frequency path from o1 to o2 using the simple path
p and simple cycles in C. The path p is passed through exactly once and each cycle ci is
passed through xi times.

By Lemma 3.1, if there exists a positive integer solution, then there exists such a solution
x so that ‖x‖∞ ≤ (t+ 1)2M1, where M1 is the largest possible absolute value of any sub-
determinant of

(
A b

)
. Since c1, . . . , ct and p are simple, they all have length at most s.

Thus, the sum of the absolute values of entries in any column of
(
A b

)
is bounded by s.

By the Gershgorin circle theorem, the eigenvalues of any submatrix of
(
A b

)
have absolute

value at most s. Therefore, M1 is at most sn. On the other hand, for the number of simple
cycles in a graph with s vertices, we have t = |C| ≤ sO(s). Therefore

‖x‖∞ ≤ (sO(s) + 1)2 · sn = sO(n+s).

Thus, the length of the corresponding path is bounded by

s‖x‖1 ≤ st‖x‖∞ ≤ s · sO(s) · sO(n+s) = sO(n+s).

Since there exists a zero-frequency path from o1 to o2, we can decompose it into the sum
of a simple path from o1 to o2 and a linear combination of simple cycles. This leads to the
existence of a positive integer solution for the equations Ax = b when we fix this path as
p and this set of cycles as C. Therefore, there exists a zero-frequency path from o1 to o2
whose length is at most sO(n+s). J
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Abstract
Over the last two centuries there have been tremendous scientific and mathematical advances in
our understanding of evolution, life and its mysteries. Recently, the relatively new and powerful
tool of computation has joined forces to develop this understanding further: the underlying
tenet is that several natural processes, including evolution itself, can be viewed as computing or
optimizing something – evolution is computation. Furthermore, as in computation, efficiency is
an important consideration in evolution. As many of these evolutionary processes are described
using the language of dynamical systems, this entails understanding how quickly such systems can
attain their equilibria. This endeavor not only has the potential to give us fundamental insights
into life, it holds the promise that we will unveil new computational models and techniques. In
this talk we will see some vignettes of this interplay between evolution and computation.
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Abstract
Nash equilibria always exist, but are widely conjectured to require time to find that is exponential
in the number of strategies, even for two-player games. By contrast, a simple quasi-polynomial
time algorithm, due to Lipton, Markakis and Mehta (LMM), can find approximate Nash equilibria,
in which no player can improve their utility by more than ε by changing their strategy. The
LMM algorithm can also be used to find an approximate Nash equilibrium with near-maximal
total welfare. Matching hardness results for this optimization problem were found assuming
the hardness of the planted-clique problem (by Hazan and Krauthgamer) and assuming the
Exponential Time Hypothesis (by Braverman, Ko and Weinstein).

In this paper we consider the application of the sum-squares (SoS) algorithm from convex
optimization to the problem of optimizing over Nash equilibria. We show the first unconditional
lower bounds on the number of levels of SoS needed to achieve a constant factor approximation
to this problem. While it may seem that Nash equilibria do not naturally lend themselves to
convex optimization, we also describe a simple LP (linear programming) hierarchy that can find
an approximate Nash equilibrium in time comparable to that of the LMM algorithm, although
neither algorithm is obviously a generalization of the other. This LP can be viewed as arising
from the SoS algorithm at logn levels – matching our lower bounds. The lower bounds involve
a modification of the Braverman-Ko-Weinstein embedding of CSPs into strategic games and
techniques from sum-of-squares proof systems. The upper bound (i.e. analysis of the LP) uses
information-theory techniques that have been recently applied to other linear- and semidefinite-
programming hierarchies.
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1 Introduction

1.1 Motivation and background
Game theory, broadly speaking, seeks to explain the decision-making of interacting, self-
interested agents. Mathematically it can be seen as a generalization of optimization problems
in which the goal is to minimize or maximize some function. Instead each player wishes
to maximize its own payoff, which in general will depend on the actions of the other
players as well. The standard solution concept here is a Nash equilibrium, meaning a set
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of (uncoordinated) mixed strategies for which no player can unilaterally increase their own
payoff by changing strategy. Here “mixed strategy” means a probability distribution over
the basic “pure strategies” of the game and “uncoordinated” means that these distributions
are uncorrelated. A related notion is a “correlated equilibrium” where again players cannot
unilaterally improve their payoffs, but this time a “signal” random variable is broadcast to all
the players who are free to choose their strategy based on the common signal; e.g. consider
the role of a traffic light in suggesting that one car stop and another car drive.

As with optimization problems, the practical applicability of Nash equilibria and correlated
equilibria depend on their computational complexity. Nash’s 1950 existence theorem proved
that Nash equilibria exist under very general conditions [24, 25] but turning the proof
into an algorithm results in an exponential runtime. Indeed, finding a Nash equilibrium is
PPAD-complete, meaning that it is as hard as solving an abstract fixed-point problem [10].
If we instead consider the problem of maximizing a linear function (e.g. total payoff) over
the space of Nash equilibria then the problem becomes NP-complete [10]. The difference in
complexity (PPAD vs NP) reflects the fact that the former is a problem of searching for a
solution that is known to exist whereas the latter problem is to determine whether a solution
exists. Finding a correlated equilibrium, by contrast, can be achieved in poly time with
linear programming.

One could reasonably argue that exact Nash equilibria are implausible models of rational
behavior and that deviating from an equilibrium strategy might only happen in practice
when the benefit is greater than zero by some non-negligible amount. An ε-approximate
Nash equilibrium (aka. ε-ANE) is thus defined to be a set of uncorrelated strategies for
which no player can improve their payoff by more than ε by changing strategies. It turns
out that the complexity of finding ε-ANEs is significantly lower than that of exact Nash
equilibria. In 2003, Lipton, Markakis and Mehta [21] gave an algorithm for finding an ε-ANE
in quasipolynomial time, e.g. nO(log(n)/ε2) for two-player games where both strategy sets have
size n. Their algorithm was based on enumeration over a suitably chosen net of strategies.
This net-based framework has been refined in [2, 6] to yield PTASs in some special cases.
On the hardness side, Braverman, Ko and Weinstein [9] recently showed that finding the
best (i.e. highest total payoff) ε-ANE in no(logn) time would violate the Exponential Time
Hypothesis (ETH). (The ETH posits that 3-SAT instances on n variables require exp(Ω(n))
time.)

1.2 Main results
Our paper investigates ε-ANE from the perspective of convex optimization. Since the sets of
Nash equilibria and ε-ANE are not convex, it is not immediately obvious how to relate the
problem of finding an ANE to a convex optimization problem. To this end, we can consider
the convex hull of all ε-ANE, for a given set of payoff functions. Optimizing a linear function
over one of these sets is equivalent to optimizing a linear function over the set of ε-ANE.
Note that these sets can be far from the much-more-tractable set of correlated equilibria;
additionally, even though it is easy to test whether a strategy is an ε-NE, this does not
extend to a test for whether a strategy is in the convex hull of ε-ANE (and likewise for
Nash equilibria). Indeed, standard arguments mean that optimizing a linear function over or
testing membership in these sets have approximately the same complexity [13].

Our first main result is a no-go theorem for a family of approximation algorithms based on
semidefinite programming (SDP), called the sum of squares (SoS) hierarchy. In particular we
show that in order to achieve a constant-factor approximation for 0.1-ANE, one must go to a
level of at least Ω(logn/poly log logn) in the SoS hierarchy (where n is the size of the game).
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This translates to an SDP of size Ω(nlogn). Unlike all previous results on the hardness of
NE and ANE, our result is unconditional; i.e. does not depend on any assumptions about
the hardness of 3-SAT, planted clique or other problems. Our result is also surprising in
part because the best results for planted clique, an apparently comparable problem [16], only
extend to ruling out SDPs arising from the SoS hierarchy of size O(n4) [17].

I Theorem 1.1 (informal). Given a game of size N with payoffs bounded by a constant,
deciding whether either (1) there exists a Nash equilibrium with average payoff ≥ 1 or
(2) all 0.1-approximate Nash equilibria have average payoff at most δ requires at least
Ω(logN/poly log logN) levels in the SoS hierarchy.

Our proof makes use of a classic result of Grigoriev [12], showing hardness for the problem
3XOR in the SoS model. We use reductions (with some properties as discussed below) to
extend the hardness of 3XOR to ANE. There have been quite a few examples using reductions
to prove the hardness in the SoS model (e.g., [34, 27]). However, each proof requires slightly
different properties about reductions and there is no explicit unified framework for doing so.
We follow a recent result in [15], which aims to serve as one such framework to facilitate the
proof of hardness in the SoS model.

To obtain integrality gaps in the SoS model, one needs to show that (a) the SoS solution
believes the value is large up to some high level (degree), and (b) the true value is actually
small. To achieve (a), we follow the notion of low-degree reductions [15], in which one requires
the reductions preserve a SoS solution for the reduced problems with almost the same value
and a small amount of loss of the degree1. To achieve (b), we need the reductions to have
some kind of soundness.

Our specific reduction is a variant of the one used in proving the ETH-hardness of ANE
by Braverman, Ko and Weinstein [9], with tweaks to ensure it has low-degree, soundness, and
embedding properties. Our hardness analysis is also inspired by a recent result of ours [15]
that extends the SoS lower bounds to quantum information problems. This connection is
natural given the intimate relationship between [1] and quantum information, which serves
as the first step in the reduction of [9].

We also make use of the explicit construction of a two-player strategic game for which
the optimal payoff of a Nash equilibrium is related to the value of a constraint satisfaction
problem, in the second step of [9]. In their game, the two players each specify an assignment
to a subset of

√
n variables from the CSP, and receive a payoff if they are consistent with each

other and satisfy the clauses. There are further penalties that ensure that each player must
choose their subset close to uniformly at random. It is then proven that if the underlying
CSP is satisfiable, the optimal Nash equilibrium is an “honest” strategy, where both players
answer according to a fixed assignment to the variables. This establishes reductions with good
completeness and soundness from CSPs to HonestNash of optimizing over honest strategies
to this game. We prove that their reduction is also low-degree and pseudosolution-preserving,
which allows us to obtain an SoS hardness result for HonestNash.

However, this game is not convenient for obtaining hardness for ApproximateNash,
since not all honest strategies are in fact Nash equilibria. The problem is that Alice and
Bob are punished for honest strategies that do not satisfy clauses. Additionally, the game
depends on underlying CSP. We fix both problems at once by giving Alice and Bob a payoff

1 This roughly refers to the “Vector Completeness” in [34] and “SoS Completeness” in [27]. It explicitly
requires the existence of a mapping that is a polynomial of low-degree, which maps a SoS solution of
the original problem to a SoS solution of the reduced one.
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simply for answering consistently, independent of the clauses. We then offload all dependence
on clause structure into our objective function.2 Our objective function is 0 whenever Alice
or Bob output sets of variables that do not contain enough clauses and otherwise equals the
fraction of satisfied clauses. Maximizing this objective function over ε-ANE is then roughly
equivalent to maximizing the number of satisfied clauses, which completes our reduction.

Our second main result is a linear programming (LP) lift of NE with dimension nO(log(n)/ε2),
matching our above lower bound. We describe lifts formally in Section 4, but intuitively
an approximate lift of dimension D is a polytope in RD whose projection onto some lower-
dimensional space includes all Nash equilibria, but ideally not too many additional points.
In Section 4 we prove the following theorem (more formally stated in Theorem 4.1).

I Theorem 1.2 (informal). Consider a two-player game with strategy sets of size n1, n2
and payoffs in [−1, 1]. There exists a polytope in RD with D = exp(O(log(n1) log(n2)/ε2))
such that its projection onto Rn1n2 contains all Nash equilibria and is contained in the ε-
neighborhood of the convex hull of all ε-ANE. This polytope has an explicit efficient description,
so that we can find an ε-ANE in time poly(D); or if f is an efficiently computable concave
function, we can estimate its maximum value over the NE efficiently.

The same result holds for m-player games where each player has a strategy set of size n
if we set D = exp(O(m3 ln2(n)/ε2)).

In fact, the set of correlated equilibria can already be seen as an LP relaxation of Nash
equilibria, since Nash equilibria can be alternately defined as correlated equilibria that are
product distributions. This relaxation can be useful [28], but in general correlated equilibria
can be far from Nash equilibria. Our lift can be thought of as a systematic hierarchy of
successive refinements of the set of correlated equilibria. Inspired by [31, 7], our idea is
to replace the player Bob with k replicas: Bob-1, Bob-2, . . ., Bob-k. We will impose the
constraint that the strategies of Alice and Bob-j form a correlated equilibrium, even when
conditioned on the strategies of Bobs-1, . . . , j − 1. This approach prevents Alice from being
simultaneously correlated with all of the Bobs. Indeed, if Alice were correlated with Bob-1,
then conditioning on his strategy would reduce Alice’s entropy. Continuing in this way we
find that Alice must have low correlation with most of the Bobs, implying that if we choose
j randomly from {1, . . . , k} and condition on the random strategies of Bobs-1, . . . , j − 1,
then the resulting distribution on Alice and Bob-j will be nearly product. This means the
resulting correlated equilibrium can be easily rounded to an ε-ANE.

The LP we obtain can be viewed as arising from the SoS hierarchy at level logN , with
the omission of the positive semidefinite constraint. Thus, our analysis of the LP also implies
that SoS is able to solve approximate ApproximateNash to constant accuracy at level
logN , matching our SoS lower bound.

Our LP relaxation is not the first approximation algorithm for ANE. In fact, a nearly
identical runtime was achieved by Lipton, Markakis and Mehta in 2003 [21] using an
algorithm that exhaustively searched over a set of sparse strategies. Using Chernoff bounds
it is possible to show that any NE can be approximated in this way. By now we have seen
a series of examples where net-based algorithms and LP/SDP hierarchies give very similar
approximation guarantees, often in the regime of PTASs or quasipolynomial-time algorithms.
These examples are summarized in Table 1 of [8] and include (1) optimizing polynomials over

2 This has the advantage of making our results compatible with the framework of extension complexity,
where one considers a polytope of feasible solutions (e.g. the matching polytope) that is independent of
the function being maximized.
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the simplex, (2) optimizing polynomials over the unit sphere, (3) free two-player games, (4)
unique games, (5) small-set expansion and (6) optimizing linear functions over unentangled
quantum states (see [8] for specific references). Despite this series of coincidences, it is still an
open question to find a common explanation of the performance of both types of algorithms.
Indeed our algorithm differs from that of LMM in ways that suggest there is no obvious way
to map one onto the other. If there is a sparse NE then LMM will find it, while our algorithm
may not. On the other hand, while both algorithms can freely add linear constraints (e.g. on
the total payoff), only ours can add convex constraints, such as maximizing entropy. Indeed,
if there exists an NE with entropy ≥ c log(n) then our algorithm will always find a nearby
ε-ANE with entropy ≥ (c−O(ε)) log(n), while by construction, LMM will only find ε-ANE
with entropy ≤ log log(n/ε) +O(1). We further compare the algorithms in Section 5.

1.3 Open problems
Extension complexity. Our results show limitations on approximating Nash equilibria
using the SoS hierarchy. But what about more general SDPs? Is it possible to find
an nΩ(logn) lower bound on the extension complexity of ε-ANE? The approach of Lee,
Raghavendra, and Steurer [20] does not apply directly here because our problems do not
have the same self-embedding property that CSPs do. However, it seems likely that the
[20] framework can be extended to cover ε-ANE.
Special cases. While our results address the complexity of ε-ANE in the worst case,
there are many special cases where it should be possible to find more efficient convex
relaxations. Under various conditions on the payoff matrices, net-based algorithms can
run more quickly [2, 6]. Without any further modification, our algorithm is already more
effective when Alice has low entropy in all correlated equilibria. This condition can be
checked quickly (since correlated equilibria form a polytope and entropy is a concave
function) but appears incomparable to the conditions under which [21, 2, 6] outperform
their worst-case guarantees. More generally we would like to know scenarios under which
our algorithms or variants of them can perform significantly better.
Semidefinite and convex constraints. A related question is whether SDP or other convex
constraints give additional benefits not already captured by LP hierarchies. We could also
add concave objective functions, such as entropy maximization. Do these have further
application?
Search vs. optimization. A major theme in work on the complexity of finding Nash
equilibrium is the distinction between NP and PPAD. PPAD is an example of TFNP
(“total function NP”) which is the class of search problems for which an answer is
guaranteed to exist and can be efficiently verified. All known algorithms for finding Nash
equilibria can also perform (or approximate) the optimization versions of the problem, and
the extension complexity model (by contrast with earlier hardness-based lower bounds)
collapses the difference between the search and optimization versions. Is there a natural
computational model which separates the complexity of these tasks?
Densest subgraph. Techniques for proving upper and lower bounds on the complexity
of the approximate Nash equilibrium problem have also been applied to the problem of
finding the densest k-subgraph of a given graph. The lower bound of [16] rules out a PTAS
for additive approximations to this problem on bipartite graphs, while the algorithm
of [6] achieves a quasipolynomial algorithm. Can we match these results in the SoS or
extension complexity settings? One barrier is that the hardness of [16] uses a reduction
from the planted clique problem, for which SoS lower bounds are not as well understood
as they are for CSPs.
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1.4 Overview
In Section 2, we introduce some basic definitions and give a more technical overview of our
contribution. In Section 3, we prove a lower bound on SoS relaxations for the set of two-player
approximate Nash equilibria. Following this, in Section 4, we introduce an LP relaxation for
approximate Nash that matches our lower bound as well as handling multiplayer games, and
in Section 5, we compare its performance to the LMM algorithm. The appendices contain
further background on SoS proofs (Appendix A), reductions for SDPs (Appendix B ) and
information theory (Appendix C).

2 Definitions and Preliminaries

2.1 Games
Consider a two-player game with strategy sets [n1], [n2] and payoff vectors f1, f2 ∈ Rn1n2 . A
Nash equilibrium is a pair of probability distributions p1 ∈ ∆n1 , p2 ∈ ∆n2 such that

〈ex ⊗ p2, f1〉 ≤ 〈p1 ⊗ p2, f1〉 ∀x ∈ [n1] (2.1a)
〈p1 ⊗ ey, f2〉 ≤ 〈p1 ⊗ p2, f2〉 ∀y ∈ [n2] (2.1b)

Here [n] = {1, . . . , n}, ∆n = {p ∈ Rn : p(x) ≥ 0,
∑
x p(x) = 1}, ex is the vector with a one in

position x and zeroes elsewhere and p⊗ q is the vector with x, y entry equal to p(x)q(y).
Nash proved that (2.1) always has a solution (known as a Nash equilibrium, or NE), but

finding one is known to be PPAD-complete (or NP-complete in some cases when additional
constraints or optimizations are added) [10] . For this reason, it is natural to consider instead
approximate NE. Assume for the rest of the paper that maxi maxx |fi(x)| ≤ 1. We say that
the distributions p1, p2 (or equivalently the joint distribution p1 ⊗ p2) are an ε-approximate
NE (or ε-ANE) if they satisfy

〈ex ⊗ p2, f1〉 ≤ 〈p1 ⊗ p2, f1〉+ ε ∀x ∈ [n1] (2.2a)
〈p1 ⊗ ey, f2〉 ≤ 〈p1 ⊗ p2, f2〉+ ε ∀y ∈ [n2] (2.2b)

From these expressions, we can see that the problem of optimizing over Nash equilibria is
a polynomial optimization problem, where the variables are the probabilities p and q. The
constraints are the simplex constraints and the Nash conditions ((2.2)).

We consider also correlated equilibria, first proposed by Aumann in 1974 [3]. Let qXY
denote a probability distribution in ∆n1n2 . Then we say that q is a correlated equilibrium if
q satisfies the following analogue of (2.1):∑

y∈[n2]

q(x, y)(f1(x′, y)− f1(x, y)) ≤ 0 ∀x, x′ ∈ [n1] (2.3a)

∑
x∈[n1]

q(x, y)(f2(x, y′)− f2(x, y)) ≤ 0 ∀y, y′ ∈ [n2] (2.3b)

Since (2.3) is an LP, we can find correlated equilibria efficiently; i.e. in time poly(n1, n2).
While our hardness results will focus on the two-player case, we also describe algorithms

for finding ε-ANE for games with more than two players. Consider an m-player game, where
the players have strategy sets S1 = [n1], . . . , Sm = [nm] (with S = S1 × · · · × Sm), and
payoff tensors f1, . . . , fm ∈ Rn1 ⊗ · · · ⊗Rnm . This means that if players use mixed strategies
p1 ∈ ∆n1 , . . . , pm ∈ ∆nm , then player i receives payoff

〈p1 ⊗ · · · ⊗ pm, fi〉 =
∑

x=(x1,...,xm)∈S

p1(x1) · · · pm(xm)fi(x).
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Let N :=
∏m
i=1 ni. A distribution p ∈ ∆N is a correlated equilibrium if∑

x−i∈S−i

p(xi, x−i)(fi(x′i, x−i)− fi(xi, x−i)) ≤ 0 ∀i ∈ [m],∀xi, x′i ∈ Si. (2.4)

Here the notation S−i indicates the strategy set S1× · · · ×Si−1×Si+1× · · ·Sm of all players
except player i, and similarly x−i := (x1, . . . , xi−1, xi+1, . . . , xm). A Nash equilibrium is a
correlated equilibrium that is also a product distribution: i.e. such that p = pX1 ⊗ · · · ⊗ pXm .

2.2 Norms
Define the 1-norm and ∞-norm of vectors to be

‖v‖1 :=
∑
x

|v(x)| and ‖v‖∞ = max
x
|v(x)|.

For two probability distributions p, q, the 1-norm distance ‖p−q‖1 is also called the variational
distance, because of the following special case of Hölder’s inequality:

〈v, w〉 ≤ ‖v‖1‖w‖∞ with equality holding iff v = λw for λ ≥ 0. (2.5)

2.3 Optimization
Both our upper and lower bounds apply to relaxations of the convex optimization problem
ApproximateNashε. The promise version of this problem is as follows:

I Definition 2.1. The problem (a, b)−ApproximateNashε,m(f) is to determine, given a
game G over m players, where each player has at most n deterministic strategies, and a
function h (called the “externality”) mapping strategies to real numbers, whether either

there exists an exact Nash equilibrium strategy for G for which h ≥ a, or
for every ε-approximate Nash equilibrium to G, h is at most b.

given the promise that one of these cases holds. Here b < a are constant parameters. As an
important special case, we write ApproximateNashε to refer to the case when m = 2.

3 SoS Lower Bound

Braverman et al. [9] show a reduction from 3SAT to approximate Nash equilibrium, which
shows hardness for this problem conditional on ETH. We are able to use their reduction
to show an unconditional hardness result for the SoS hierarchy for approximate Nash.
We follow the approach of [15], who show how to SoS hardness for several continuous-
variable optimization problems arising in quantum information. The proof consists of two
steps: a pseudo-solution-preserving reduction from 3XOR over n variables to the intermediate
optimization problem HonestNash over {±1}n, followed by a reduction from HonestNash
to approximate ApproximateNash. The following schematic diagram illustrates this:

3XOR =⇒ HonestNash =⇒ ApproximateNash.

The problem HonestNash is a polynomial optimization problem over the boolean
hypercube {±1}n. The objective function hφ(x) is the total expected externality of two
players in a particular strategic game, whose strategies are specified by the input variables
x; the externality function is induced by a CSP instance φ. We consider the strategic
game introduced by [9], for which this objective function is a polynomial of degree Õ(

√
n).

This game, in turn, is based on a free game introduced by [1].
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3.1 Framework of Deriving SoS Lower Bounds
Our proof makes extensive use of reductions between optimization problems. Here, we will
briefly give definitions of some useful notions, while we defer a full description to Appendix B.
Throughout this section, we will use the so-called ±1 notation for boolean variables: that is,
we encode FALSE as 1 and TRUE as −1.

We derive all of our integrality gaps from the following foundational result of Grigoriev
for the problem 3XOR (defined in Section B.3):

I Proposition 3.1 (Theorem 3.1 of [5], due to Grigoriev). For any ε > 0, for every n

there exists a 3XOR instance Φn with n variables and m = O(n/ε2) clauses, such that
OPT(Φn) ≤ 1

2 + ε, but there exists a degree-Ω(n) value-1 pseudo-solution Ẽ.
Here “value 1” means that for every clause xixjxk = aijk, it holds that Ẽ[(xixjxk −

aijk)p(x)] = 0 for all polynomials p(x) with degree at most d− 3.

The instance of Φn produced by Grigoriev has a constraint graph which is a good expander.
However, there is no upper bound on the degree of the constraint graph, i.e. the number of
clauses each variable can participate in. We remedy this issue by transforming the instance
to an instance Φ′n of the problem 3XOR+EQ, where we allow both 3XOR constraints and
equality constraints between pairs of variables.

I Proposition 3.2. For every n, there exists an instance Φ′n of 3XOR+EQ on O(n) variables
where the constraint graph is (δn, α)-expanding and has degree at most d, for constants
δ < 1, α > 1, d, such that the maximum fraction of clauses satisfiable is ω(Φ′n) ≤ 1

2 + ε.
Furthermore, there exists a degree-Ω(n), value-1 pseudo-solution to Φ′n. That is, there exists
a pseudo-expectation operator Ẽ[·] with degree D = Ω(n), such that Ẽ[C(x)q(x)] = 1 for every
clause C(x) in the instance Φ′n and every polynomial q(x) with degree deg(C(x)q(x)) ≤ D.

Proof. We start with the instance Φn in Proposition 3.1, and then apply the degree reduction
procedure of [29] to produce the new instance Φ′n. This procedure consists of replacing
each high-degree variable in the original instance with many copies, connected by equality
constraints laid out according to an expander graph. It is shown in [29] that this procedure
has constant soundness, so ω(Φn) ≤ 1

2 + ε for some constant ε. Now, to produce the
desired pseudosolution, we define Ẽ[p(x)] for any polynomial p(x) to be what we get by
first identifying all of the replicated variables with each other, and then evaluating the
pseudoexpectation according to the operator Ẽ[·] produced by Proposition 3.1. J

3.2 Consistent Sample Game
Inspired by the construction in [9], we now present a game called the Consistent Sample
Game, whose Nash equilibria will be easy to characterize. As a warm-up, consider the
following simple game

I Definition 3.3 (Consistent Bit Game). The consistent bit game is a two-player strategic
game, where Alice and Bob are each allowed to play a single bit 0 or 1. They win if they
their bits agree and lose otherwise.

It is easy to see that this game has exactly two Nash equilibria: either Alice and Bob both
play 0, or both play 1. Our consistent sample game is a scaled up version of this game,
where Alice and Bob have access to n-bit strings. However, the strategies they play consist
of assignments to a subset of the variables of size

√
n. To force the players to choose their

subsets with close to uniform probability, we also add a zero-sum uniformity test. This test
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and its analysis are one of the main technical contributions of [9], and fortunately we will be
able to mostly reuse their analysis without change.

I Definition 3.4 (Consistent Sample Game). For a given size n, the consistent sample game
Gn,k,`,d is specified by the following:

The set of Alice’s possible pure strategies consists of: all tuples (S, s) consisting of a
subset S of k variables and an assignment s to these variables, and all subsets Y of ρ

√
n

variables. We refer to the former as “tuple strategies” and the latter as “subset strategies.”
The set of Bob’s possible pure strategies consist of: all tuples (T, t) consisting of a subset
T of ` variables and an assignment t to the variables in T , and all subsets Z of ρ

√
n

clauses. We likewise refer to these two types of strategies as “tuple strategies” and “subset
strategies.”
The payoff matrix has a block structure. If both players play with tuple strategies (S, s)
and (T, t), the payoff for Alice is 1, and the payoff for Bob is

f ′(S, T, s, t) =
{
βT f(S, T, s, t) if |S ∩N (T )| > d

10(ε∗)2

0 otherwise
,

where the notation N (T ) denotes the neighbors of the variables in T in the constraint
graph, i.e. the set of clauses involving variables in T . Here, f(S, T, s, t) is 1 if there are
no inconsistencies in Alice and Bob’s assignments to the variables and 0 otherwise, and
βT ≡ 1

Pr[|S∩N (T )|> d
10(ε∗)2 ] .

If Alice plays with a tuple strategy (S, s) and Bob plays with a subset strategy Z, then
if S ∩ Z 6= ∅, Bob receives a payoff of K and Alice receives −K. Likewise, if Bob plays
with a tuple strategy (T, t) and Alice plays with a subset strategy Y , then if T ∩ Y 6= ∅,
Alice receives a payoff of K and Bob receives −K.
If both players play with a subset strategy, they both receive a payoff of 0.

In the above, K > 1 and ε∗ < 1
2 are constant parameters, and ρ = (ε∗)/(c2 ·K) where c2 is

an appropriately chosen constant.

As in Braverman et al., we choose k and ` to be Θ(
√
n). The parameter d is equal to

the degree of the constraint graph of the CSP φ, which we will use later to construct our
externality function. Henceforth, we will denote the game simply by Gn. An important
difference between our game and the one in Braverman et al. is that in our construction,
when both players use tuple strategies, Alice always receives a payoff of 1.

We now define a Boolean optimization problem HonestNash by considering a restricted
subset of strategies which we call “honest strategies.” We assume a fixed CSP instance φ
that is known to both players.

I Definition 3.5. For every x ∈ {±1}n, we define the honest strategy according to x for Gn
by the following prescription

Alice follows a mixed strategy: she chooses her subset of variables S to be k/3 clauses
chosen uniformly at random from φ, and her assignment s to be that given by x.
Bob also follows a mixed strategy: he chooses his subset T of ` variables uniformly at
random from φ, and his assignment t to be that given by x.

I Definition 3.6. For every 3XOR instance φ, the problem HonestNashφ is a Boolean
optimization problem maxx∈{±1}n hφ(x), where the objective function hφ(x) is the expected
value of the following externality function over the honest strategy induced by x (note that
in an honest strategy, Alice and Bob always play tuple strategies):
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22:10 Tight SoS-Degree Bounds for Approximate Nash Equilibria

The externality is 1 if both players’ assignments are consistent with each other and all of
Alice’s assignments satisfy their respective clauses in φ.
The externality is 0 otherwise.

This objective function is a degree-O(
√
n) polynomial in the variables x.

To see why the function hφ is a degree O(
√
n) polynomial, note that h can be written as

an average of terms, where each term corresponds to the externality for a specific choice of
S and T . This is a boolean function depending on only the O(

√
n) variables that appear

in S and T . So the whole function hφ(x) can be written as a sum of terms for each S, T ,
each of which has degree O(

√
n). Below in the proof of theorem 3.8, we will give an explicit

expression for hφ(x).

I Theorem 3.7. If φ is satisfiable, then there exists an honest strategy for Gn that is an exact
Nash equilibrium, and achieves expected externality 1. Moreover, there are fixed constants
δ, ε∗ < 1/2 independent of ε, such that if at most (1 − δ)-fraction of the clauses of φ are
satisfiable, then all ε∗-approximate Nash equilibria for Gn have expected externality at most
O(ε).

Proof. This is the main result of [9]; we need to argue that is preserved under our modification
of the payoff function. Because of the similarity between our proof and theirs, we only sketch
our proof. For the completeness case, the desired Nash equilibrium is simply the honest
strategy playing according to the satisfying assignment of φ. The argument presented in
Lemma 3.2 of [9] goes through without change.

For the soundness, we again follow the proof strategy of [9]. In particular, we note that
the proof of Lemma 3.4, which states that all Nash equilibria must choose the subsets S, T
with roughly uniform probability over the clauses in φ, holds unchanged with our payoff
function. Thus, we can reproduce the argument of Lemma 3.5 with our modified payoff
function, to upper bound Bob’s externality by O(ε). Moreover, the same argument applied
to our payoff function upper-bounds Alice’s externality by O(ε). Thus, we obtain an average
payoff of O(ε) as desired. J

I Theorem 3.8. For φ be the 3XOR+EQ instance from Proposition 3.2, there exists a
degree-Ω(n) pseudosolution to HonestNash with externality hφ achieving value 1.

Proof. Let Ẽ[·] be the degree-Ω(n) pseudoexpectation operator associated with a value-1
pseudosolution for our 3XOR+EQ instance φ. (Such a pseudosolution exists by proposi-
tion 3.2.) We claim that this yields a value-1 pseudosolution for HonestNash. To prove this,
let us examine the objective function fφ(x) for this problem. First, define the polynomial

AND(x1, x2, . . . , xk) = 1 + 1
2k−1 (1− x1)(1− x2) . . . (1− xk)

This polynomial evaluates to −1 when all of the input variables are −1, and 1 otherwise.
Next, we define a polynomial function for gC(x) for each clause C = axixjxk:

gC(x) = 1− 1
2(xixjxk − a)2

This evaluates to −1 when the clause is satisfied and 1 otherwise. By our definition of honest
strategies, the consistency tests always pass with probability 1. So the objective function
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fφ(x) is a function of just the clauses {C1, · · · , Ck} appearing in the random sets of variables
S and T :

fφ(x) = 1
2 −

1
2 E
S
E
T
βT AND(gC1(x), gC2(x), . . . , gCk(x)) = 1

2 −
1
2k E

S

k∏
i=1

(1− Ci(x)).

Here the expectations are taken over the uniform distribution over sets S, T of the appropriate
size. Note that k = Θ(

√
n). Now, we know that Ẽ′[Ci(x)q(x)] = 0 for all q(x) such that

deg(q(x)) ≤ d where d = Ω(n). Therefore,

Ẽ′[AND(gC1(x), gC2(x), . . . , gCk(x))] = 1.

So Ẽ′[fφ(x)] = ES ET βT = 1. J

3.3 Embedding HonestNash in ApproximateNash
We now pass from HonestNash to ApproximateNash by broadening the space of strategies
searched over to include all mixed strategies, not just honest ones. In order to preserve our
SoS lower bound, it will help to show that every feasible point of HonestNash corresponds
to a feasible point of ApproximateNash achieving exactly the same value.

I Theorem 3.9. Every honest strategy for Gn is a Nash equilibrium.

Proof. First, we will show that there is no incentive for either player to switch to another
tuple strategy. We will then invoke the soundness analysis of Braverman et al. [9] to show
that there is no incentive to switch to subset strategies either.

For tuple strategies, there are two cases the consider. First, let’s suppose we fix Alice’s
strategy and allow Bob’s strategy to deviate. Bob’s payoff depends only on whether Alice’s
clauses are satisfied, and whether Alice and Bob are inconsistent on any variables. If Bob
were to deviate from the honest strategy, the number of satisfied clauses would be unaffected,
and the chance of inconsistencies can only go up. So Bob has no incentive to deviate. Now, if
we fix Bob’s strategy and allow Alice to deviate, note that Alice’s payoff is always 1 regardless
of which strategy she chooses, so she has no incentive to deviate either.

Now, we need to show that neither party has an incentive to switch to a subset strategy.
We will use the following fact, which is shown in the course of the proof of Lemma 3.2 of [9].

I Fact 3.10. Suppose Alice plays honestly and Bob plays with a (deterministic) subset
strategy Z. Then Bob’s expected payoff is upper bounded by

v = K E
S∼U

1(S ∩ Z 6= ∅) ≤ 2
0.9 · c2

.

So for c2 > 2/(0.9ε∗), Bob has no incentive to deviate. A symmetric argument applies to
Alice. J

We note that the previous theorem would be false in the original version of the game given
by [9], without the modification to Alice’s payoff. This is because for any honest assignment
to the variables with 3XOR value at least 1

2 + ε, Alice can find some subset S′ of
√
n clauses

that are perfectly satisfied by that assignment. So Alice will always have an incentive to
switch to the deterministic strategy that always answers with S′: this strategy would achieve
a payoff of 1 for Alice. We are able to remove this incentive by making Alice’s payoff 1
independent of her choice of strategy.
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It turns out that the preceding argument to show that each honest strategy is a Nash
equilibrium can be itself converted into a sum of squares proof. This enables us to “lift” the
SoS pseudosolution we constructed for HonestNash to one for ApproximateNash, and
achieve our main lower bound.

I Theorem 3.11. There exists a constant ε∗ < 1
2 such that for any constant ε < 1

2 , there
exists a game Gn of size N = O(n

√
n) and externality function h such that the expected

value of h is at most ε over all ε∗-Nash equilibria. At the same time, there is a degree-
Ω(logN) pseudosolution that satisfies all the Nash equilibrium constraints for Gn and achieves
externality value 1.

Proof. Choose Gn to be the consistent sample game, and take the externality function h
to be the one induced by the 3XOR+EQ instance from Proposition 3.2. Then it follows
from Theorem 3.7 that the expected value of h is at most ε over all ε∗-Nash equilibria.
Now, to construct the pseudosolution, first, let us define a polynomial formulation of the
problem ApproximateNash. Our variables will be p(S,s), representing the probability that
Alice plays the tuple strategy (S, s); pY , representing the probability that Alice plays the
subset strategy Y ; q(T,t) representing the probability that Bob plays the tuple strategy (T, t),
and qZ representing the probability that Bob plays the subset strategy Z. Let Ẽ[·] be the
pseudosolution for HonestNash derived in Theorem 3.8, which is defined up to degree
D = Ω(

√
n). We need to lift this to a pseudoexpectation Ẽ′[·] on variables p, q. We do

so as follows: when evaluating a pseudoexpectation Ẽ′[p . . . pq . . . q] of a monomial term,
first perform the following substitutions, and then evaluate the resulting polynomial in x
according to Ẽ[·]:

Replace pY or qZ with 0 (this is because honest strategies have no support over subset
strategies).
Replace p(S,s) by ca AND(xS1 = s1, . . . , xSk = sk), where ca is the probability of Alice
choosing the subset S. This term evaluates to ca if the assignment in s matches the
assignment in x, and 0 otherwise.
Likewise, replace q(T,t) by cb AND(xT1 = t1, . . . , xTk = tk), where cb is the probability of
Bob choosing the subset T .

This pseudoexpectation “automatically” satisfies the positive semidefinite constraint, since
it arises from a valid pseudoexpectation for x. Moreover, under the substitution process,
the degree of a polynomial can only increase by a multiplicative fact of at most O(

√
n), so

Ẽ′[·] is defined up to degree Ω(D/
√
n) = Ω(

√
n). It remains to check that it satisfies the

Nash constraints, and gives a high objective value for the externality function. To check the
former, we need to show that the pseudoexpectation of the advantage gained by switching
to any other strategy, multiplied by any squared polynomial, is non-positive. First, let us
consider Bob. Suppose Bob switches to a tuple strategy (T ′, t′). The advantage gained can
be written as

advantage =
∑

(S,s),(T,t)

p(S,s)q(T,t)(f(S,s),(T ′,t′) − f(S,s),(T,t)). (3.1)

The term f(S,s),(T,t) checks whether the assignments s and t are consistent, so it is a degree-
O(
√
n) polynomial in the variables x (essentially the AND of a number of equality checks).

We want to check that

Ẽ′[advantage · P 2(p, q)] ≤ 0

for an arbitrary polynomial P (p, q). By the construction of the honest strategies, all (S, s, T, t)
in the support of the strategy are consistent and so Ẽ′[(f(S,s),(T,t) − 1)Q(p, q)] = 0 for any
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such (S, s, T, t) and any polynomial Q(p, q). Another way to see this is that any inconsistent
tuples (S, s, T, t) should disagree on some bit xi, meaning that one AND term contains a
1 + xi and the other AND term contains a 1− xi. In this case

Ẽ′[p(S,s)q(T,t)Q(p, q)] = Ẽ[(1− xi)(1 + xi)Q′(x)] = 0

where Q′(x) is some other polynomial of x1, . . . , xn and the last equality comes from the
x2
i = 1 constraint satisfied by the original pseudoexpectation Ẽ. Thus the second term in

(3.1) always evaluates to Ẽ′[P 2] under the pseudoexpectation. On the other hand we claim
the first term is ≤ Ẽ′[P 2]. Here the constraint AND2 = 1 is implied by the x2

i = 1 constraints,
thus we have the SOS proof

1−AND = 1− 2 AND + AND2

2 = (1−AND)2

2 ≥ 0.

This implies that Ẽ[AND2 P 2] ≤ Ẽ[P 2], as desired.
Next, suppose Bob switches to a subset strategy Z. Then his advantage is

advantage =
∑

(S,s),(T,t)

p(S,s)q(T,t)(f(S,s),Z − f(S,s),(T,t)). (3.2)

Note that the first term in the difference is independent of s. Indeed the second term is
as well, since f(S,s),(T,t) = 1 whenever p(S,s)q(T,t) are not constrained to equal 0 by our
construction. Thus we can rewrite the advantage as

advantage =
∑
S,T

pSqT (K1(S ∩ Z 6= ∅)− 1), (3.3)

with pS :=
∑
s p(S,s) and likewise for qT . We now claim that these terms factor out of a

pseudoexpectation; i.e. that

Ẽ′[pSP (p, q)] = Ẽ′[pS ] Ẽ′[P (p, q)] (3.4)

for any P (p, q) (and likewise for qT ). To see this observe that our substitution replaces pS
with∑

s1,...,sk

ca(1 + 1
2k−1 (1− s1x1)(1− s2x2) . . . (1− skxk)) = 2kca.

Thus for any polynomial P (p, q) we have

Ẽ′[advantage · P 2(p, q)] = Ẽ′[advantage] Ẽ′[P 2(p, q)]. (3.5)

The first term is nonpositive due to Fact 3.10 and the second term is nonnegative, as we
have argued above, because it equals Ẽ[P̃ 2(x)] for some polynomial P̃ and because Ẽ is a
pseudoexpectation.

We conclude that Ẽ′ satisfies the Nash equilibrium constraints. It achieves externality
value 1 because it inherits the property from Ẽ of satisfying all the 3XOR constraints. J

4 Approximate Nash equilibria via linear programming

In this section we will describe an LP hierarchy for ANE.

CCC 2016



22:14 Tight SoS-Degree Bounds for Approximate Nash Equilibria

We first introduce a new form of equilibrium, called an ε-correlated equilibrium. If p is a
correlated equilibrium for some m-player game f then we say it is an ε-correlated equilibrium
if

‖pX1...Xm − pX1 ⊗ · · · ⊗ pXm‖1 ≤ ε. (4.1)

Denote the set of Nash equilibria for game f by Nf , the ε-correlated Nash equilibria by Ñf,ε
and the ε-ANE by Nf,ε. Of course Nf = Nf,0 = Ñf,0. These will allow us to state a result
that will imply Theorem 1.2.

I Theorem 4.1.
1. Fix a two-player game f = (f1, f2) with strategy sets of size n1, n2 and all payoffs in

[−1, 1]. Let D = exp(O(ln(n1) ln(n2)/ε2)). There exists a polytope Pf ⊂ RD such that its
projection onto Rn1n2 , called Qf , satisfies

Nf ⊆ Qf ⊆ conv(Ñf,ε).

Pf is defined by poly(D) explicit constraints and thus we can test membership in it in
time poly(D).

2. Now fix an m-player game with strategy sets of size n1, . . . , nm and payoffs in [−1, 1].
Choose positive integers k1, . . . , km. Then the same result holds with D = nk1

1 n
k2
2 · · ·nkmm

and

ε =

√√√√2
∑

1≤i<j≤m

ln(ni)
kj

max
i∈[m]
x∈S

|fi(x)|. (4.2)

If we specialize to n1 = · · · = nm =: n then we can take D = exp(O(m3 ln2(n)/ε2))

I Corollary 4.2. Use the same parameters as in Theorem 4.1 and let h be an efficiently
computable concave function such that |h(p)−h(q)| ≤ η‖p−q‖1 for p, q any pair of probability
distributions over joint strategies. Then given some threshold T and in time DO(η2) we can
distinguish between the cases

maxp∈Nf h(p) ≥ T ; or
maxp∈Nf,ε h(p) ≤ T − ε. (We could equivalently replace this with maxp∈Ñf,ε h(p) ≤ T − ε.)

Corollary 4.2 follows from Theorem 4.1 and the fact that optimizing over a convex set
has a poly-time reduction to the problem of testing membership in that set [13, Theorem
4.3.2 and Remark 4.2.5].

4.1 Proof for two players
While the two-player proof is a special case of the multiplayer proof, and uses very similar
ideas, the notation is much simpler and it is a good warmup to the general case.

First we observe that any ε-correlated equilibrium q can be rounded to an ε-approximate
NE by replacing q with the pair of marginal distributions qX , qY , i.e.

qX :=
∑

x∈[n1],y∈[n2]

〈ex ⊗ ey, q〉ex and qY :=
∑

x∈[n1],y∈[n2]

〈ex ⊗ ey, q〉ey . (4.3)

Call this “marginal rounding.”
In general marginal rounding can produce pairs of strategies that are far from equilibria.

One situation in which it works well is when q is already nearly of product form; i.e. when
‖q − qX ⊗ qY ‖1 is small.
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I Lemma 4.3. If q is a correlated equilibrium then (qX , qY ) is an ε-approximate NE for

ε = ‖q − qX ⊗ qY ‖1 ·max{‖f1‖∞, ‖f2‖∞}. (4.4)

Proof. From (2.5) we have

〈q − qX ⊗ qY , f1〉 ≤ ‖q − qX ⊗ qY ‖1 ‖f1‖∞ ≤ ε.

Combining with (2.3a) yields (2.2a). Repeating the argument for f2 yields (2.2b). J

To obtain uncorrelated q, we will consider a variant of correlated equilibria in which there
are k copies of player 2 for some positive integer k. If q ∈ ∆n1nk2

then we can interpret q as
a probability distribution on random variables X,Y1, . . . , Yk. We use the abbreviations:

Y<j := Y1, . . . , Yj−1

Y>j := Yj+1, . . . , Yk

Y−j := Y<j , Y>j

For y<j ∈ [n2]j−1, let qXYjY<j=y<j be the distribution on XYj obtained by conditioning on
Yi = yi for i < j. Explicitly

q
XYj
Y<j=y<j (x, yj) = qXY≤j (x, y<j , yj)∑

x′,y′
j
qXY≤j (x′, y<j , y′j)

. (4.5)

Now define the “k-extendable relaxation” of NE to be the following LP:

q ∈ ∆n1nk2
(4.6a)

q
XYj
Y<j=y<j satisfies (2.3) ∀j ∈ [k],∀y<j ∈ [n2]j−1 such that qY<j (y<j) > 0 (4.6b)

This is a linear program since (4.6b) is equivalent to the following uglier-but-manifestly-linear
conditions:∑

x∈[n1]
yj∈[n2]

y>j∈[n2]k−j

q(x, y)(f1(x′, yj)− f1(x, yj)) ≤ 0 ∀x′ ∈ [n1],∀j ∈ [k],∀y<j ∈ [n2]j−1 (4.7a)

∑
x∈[n1]
yj∈[n2]

y>j∈[n2]k−j

q(x, y)(f2(x, y′j)− f2(x, yj)) ≤ 0 ∀yj ∈ [n2],∀j ∈ [k],∀y<j ∈ [n2]j−1 (4.7b)

In other words, we ask for a distribution on XY1 . . . Yk such that each XYj are in a
correlated equilibrium even when conditioned on the actions of Y<j . To see that this is
indeed a relaxation, observe that if p1, p2 is a NE, then q = p1 ⊗ p⊗k2 is a valid solution to
(4.6). Along with Nash’s theorem, this also implies that the LP is always feasible.

The rounding algorithm is as follows.
1. Enumerate over all j ∈ [k] and y<j ∈ [n]j−1.
2. For each j, y<j , let p1 = qXY<j=y<j and p2 = q

Yj
Y<j=y<j .

3. Output the (p1, p2) that is an ε-ANE for the lowest value of ε.
In the final step, we are using the fact that given p1, p2, it is easy to find the smallest value
of ε for which (p1, p2) is an ε-ANE.

I Theorem 4.4. The above procedure returns a
√

2 ln(n1)
k -approximate NE.
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Thus, setting k = 2 ln(n1)/ε2 yields an algorithm that finds an ε-ANE and runs in time
poly(mnk) = exp(O(ln(n1) ln(n2)/ε2)). To prove Theorem 4.4 we will need a few basic facts
from information theory, reviewed in Appendix C.

Proof of Theorem 4.4. Let qXY1...Yk be a solution of (4.6). Observe that

ln(n1) ≥ H(X)q ≥ I(X;Y1 . . . Yk)q =
k∑
j=1

I(X;Yj |Y1 . . . Yj−1). (4.8)

Introduce the abbreviations α = (j, y<j) for y<j ∈ [n2]j−1 and qα = qXYj |Y<j=y<j . Then we
can rewrite (4.8) as

E
j∈[k]

E
y<j∼qY<j

I(X;Y )qα ≤
ln(n1)
k

. (4.9)

Thus there is a choice of α = (j, y<j) for which I(X;Y )qα ≤
ln(n1)
k . By Pinsker’s inequality

(specifically (C.3)), we have

‖qXYα − qXα ⊗ qYα ‖1 ≤
√

2 ln(n1)
k

. (4.10)

Finally (4.6b) forces qα to be a valid correlated equilibrium so we can use Lemma 4.3 to
obtain that (qXα , qYα ) is a

√
2 ln(n1)

k -approximate NE. J

In the above algorithm, we could have chosen j, y<j randomly instead of enumerating over
all possibilities. However, this would not improve the asymptotic runtime. We also could have
replaced (4.6b) with the stronger constraint that qXYjY−j=y−j is a correlated equilibrium, with
no asymptotic increase in run-time, but also without any provable performance improvement.

4.2 Proof for multiplayer games
We can quantify the distance of a distribution p to a product distribution by using the
multipartite mutual information (which was first proposed in 1954, but has since been
reinvented multiple times [23, 35, 22]

I(X1 : · · · : Xm)p :=
m∑
i=1

H(Xi)p −H(X1 . . . Xm)p (4.11a)

= D(pX1...Xm‖pX1 ⊗ · · · ⊗ pXm) (4.11b)

=
m∑
i=2

I(X<i : Xi)p (4.11c)

Due to (4.11b) and Pinsker’s inequality (see (C.1) in Appendix C), we can use the multipartite
mutual information to bound the distance of a distribution to product:

‖pX1...Xm − pX1 ⊗ · · · ⊗ pXm‖1 ≤
√

2I(X1 : · · · : Xm). (4.12)

To define the relaxation we will need to introduce some more notation. Let k1, . . . , km
be positive integers that we will choose later. Define ~k = (k1, . . . , km) and ~n = (n1, . . . , nm).
Introduce random variables Y ji with i ∈ [m] and j ∈ [ki]. Let ~n~k := [n1]k1 × · · · × [nm]km
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and let q ∈ ∆~n~k be a distribution on Y := (Y 1
1 , . . . , Y

nm
m ). Define Φ~k = [k1]× · · · × [km]. If

φ = (φ1, . . . , φm) ∈ Φ~k, then we define

Y φ := Y φ1
1 . . . Y φmm

Y
φ<j
<j := Y φ1

1 . . . Y
φj−1
j−1

Y <φ := Y <φ1
1 . . . Y <φmm

Y
<φ−j
−j := Y <φ1

1 . . . Y
<φj−1
j−1 Y

<φj+1
j+1 . . . Y <φmm

Yj := Y 1
j . . . Y

kj
j

It will also be convenient to define

~n<φ := [n1]φ1−1 × · · · × [nm]φm−1

and likewise for ~nφ, ~n≥φ, etc. We can now define the LP relaxation:

q ∈ ∆Ñ (4.13a)

q
Yφ
Y<φ=y<φ is a correlated equilibrium ∀φ ∈ Φ~k,∀y<φ ∈ ~n

<φ (4.13b)

Again the constraint (4.13b) is only defined when we condition on an event with positive
probability.

The rounding algorithm is similar to the bipartite case:
1. Enumerate over all φ ∈ Φ~k and y<φ ∈ [n1]φ1−1 × · · · [nm]φm−1.
2. For each φ, y<φ, let

p =
m⊗
i=1

q
Y
φi
i

Y<φ=y<φ .

3. Output the p that is an ε-ANE for the lowest value of ε.

I Theorem 4.5. The above procedure returns an ε-approximate NE, where

ε =

√√√√2
∑

1≤i<j≤m

ln(ni)
kj

max
i∈[m]
x∈S

|fi(x)|. (4.14)

Proof. We begin by bounding

E
φ∈Φ~k

I(Y φ1
1 : · · · : Y φmm |Y <φ)p (4.15a)

= E
φ∈Φ~k

m∑
j=2

I(Y φ<j<j : Y φjj |Y
<φ)p using (4.11c) (4.15b)

=
m∑
j=2

E
φ−j

E
φj
I(Y φ<j<j : Y φjj |Y

<φj
j Y

<φ−j
−j )p writing φ = (φj , φ−j) (4.15c)

=
m∑
j=2

E
φ−j

1
kj
I(Y φ<j<j : Yj |Y

<φ−j
−j )p chain rule (C.6) (4.15d)

≤
m∑
j=2

ln(n1 · · ·nj−1)
kj

=
∑

1≤i<j≤m

ln(ni)
kj

(4.15e)
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Thus there exists a φ and a y<φ for which

I(Y φ1
1 : · · · : Y φmm )p

Y<φ=y<φ
≤

∑
1≤i<j≤m

ln(ni)
kj

. (4.16)

Set qX1...Xm := p
Y
φ1

1 ...Y φmm
Y <φ=y<φ . Then (4.12) implies that

‖pX1...Xm − pX1 ⊗ · · · ⊗ pXm‖1 ≤

√√√√2
∑

1≤i<j≤m

ln(ni)
kj

= ε. (4.17)

Enumerating over all φ will find a φ satisfying (4.16) and thereby also (4.17). (While this
suffices for our purposes, note that concavity of the square root means that (4.17) holds in
expectation even if φ and y<φ is randomly chosen.) By an easy generalization of Lemma 4.3,
we conclude that the marginal distributions of p form an ε-approximate Nash equilibrium. J

I Corollary 4.6. For an m-player game where each player has a strategy set of size n and
maxi∈[n] maxx∈S |fi(x)| ≤ 1, an ε-ANE can be found in time exp(O(m3 ln2(n)/ε2)).

Proof. Set kj = κ
√
m− j in Theorem 4.5 for κ to be chosen later. The error is

≤

√√√√2
m∑
j=1

(m− j) ln(n)
κ
√
m− j

≤
√

2m3/2 ln(n)
κ

.

For this to be ≤ ε, we set κ = 2m3/2 ln(n)
ε2 . The size of the LP is

nk1+...+km = exp

ln(n)κ
m∑
j=1

√
m− j

 ≤ exp
(

2m3 ln2(n)
ε2

)
,

and the run-time of the algorithm is polynomial in this dimension. J

5 Comparison to the LMM algorithm for approximate NE

Lipton, Markakis and Mehta [21] gave a method to find an ε-ANE in quasipolynomial time;
specifically exp(O(log(n1) log(n2)/ε2)). Their strategy was to prove that for any NE (p1, p2),
there exists an ε-ANE (p̂1, p̂2) of the form

p̂1 = 1
|SX |

∑
x∈SX

ex and p̂2 = 1
|SY |

∑
y∈SY

ey (5.1)

for some multisets SX , SY satisfying |SX | = d12 log(n2)/ε2e, |SY | = d12 log(n1)/ε2e. (Their
paper states a bound that is slightly worse when n1 and n2 are far apart, but it is not hard
to improve their analysis here.) Indeed, SX , SY can be obtained by randomly sampling from
p1, p2 respectively. Such SX , SY can be found deterministically by checking (2.2) for all
possible choices of SX , SY . This requires time

O(n|SX |1 n
|SY |
2 ) ≤ O(exp(24 log(n1) log(n2)/ε2)),

which matches the performance of our algorithm up to the constant term in the O().
In the multiplayer case, let us consider for simplicity the case of m players each with n

strategies. Here LMM find that an ε-ANE exists with all probabilities integer multiples of 1/k
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with k = 3m2 ln(m2n)/ε2. The resulting runtime is O(nmk) = exp(O(m3 ln(n) ln(mn)/ε2)).
Our run-time is essentially the same, but with the ln(mn) term replaced by a ln(n) term.
(However, we note that when m � n the algorithm of [4] achieves a better runtime of
exp(O(m(ln(n) + ln(m)))).)

Our algorithm can be used to achieve a slightly different and stronger notion of approxi-
mation than [21]. Specifically, it could be used to output an ε-correlated equilibrium. By
Lemma 4.3, this can be used to obtain an ε-ANE, but the reverse direction is not known.

On the other hand, if a Nash equilibrium exists with small support, then LMM will find
it exactly. It does not appear that our method would take advantage of the existence of
small-support Nash equilibria. Our method would outperform its worst-case bounds under a
somewhat different condition: if Alice’s strategy had low entropy in all correlated equilibria.
Fortunately, this can be checked quickly, since correlated equilibria form a polytope and
entropy is a concave function that we can maximize efficiently using standard techniques.
Unfortunately, this condition does not seem to be a very natural one. As mentioned in the
introduction, both methods are compatible with maximizing linear objective functions (LMM
works because a Chernoff bound can also be used to show the value of the objective function
can be approximated by sparse solutions), but only our method works for maximizing general
concave functions, such as entropy. Entropy maximization has been discussed before in the
context of games [14], but we are not aware of algorithmic implications of this.

Our algorithm also has the disadvantage (compared with LMM) of requiring quasipolyno-
mial space, whereas LMM requires only polynomial space. On the other hand, it is possible
that our LP could be approximately solved using the multiplicative weights method to reduce
this space requirement.
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A Polynomial Optimization and Sum-of-Squares Proofs

In this section, we lay out the basics of the sum-of-squares (SoS) optimization algorithms.
They were introduced in [33, 26, 30, 18] and reviewed in [19, 5].

A.1 Polynomials
Let R[x] := R[x1, . . . , xn] be the set of real-valued polynomials over n variables, and let R[x]d
be the subspace of polynomials of degree ≤ d. The set of polynomials R[x]d can be viewed
as
⊕

d′≤d′ Symd′ Rn, where Symd′ V denotes the symmetric subspace of V ⊗d′ .

A.2 Polynomial optimization
Given polynomials f, g1, . . . , gm ∈ R[x], the basic polynomial optimization problem is to find

fmax := sup
x∈Rn

f(x) subject to g1(x) = · · · = gm(x) = 0. (A.1)

Equivalently we could impose inequality constraints of the form g′i(x) ≥ 0 but we will not
explore this option here.

A.3 Sum-of-Squares (SoS) proofs
Although (A.1) is in general NP-hard to compute exactly, the SoS hierarchy is a general
method for approximating fmax from above. This complements simply guessing values of x or
(ρ,X) which provides lower bounds on fmax when they satisfy the constraints. A SoS proof
is a bound that makes use of the fact that p(x)2 ≥ 0 for any p ∈ R[x]. In particular, a SoS
proof that f(x) ≤ c for all valid f is a collection of polynomials p1, . . . , pk, q1, . . . , qm ∈ R[x]
such that

c− f =
k∑
i=1

p2
i +

m∑
i=1

qigi. (A.2)
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Observe that the RHS is ≥ 0 when evaluated on any x satisfying gi(x) = 0, ∀i; for this reason,
we refer to (A.2) as a Sum-of-Squares (SoS) proof, in particular, a proof that c− f(x) ≥ 0
whenever gi(x) = 0 for all i. This is a degree-d SoS proof if each term p2

i and qigi is in
R[x]d. Finding an SoS proof of degree ≤ d can be done in time nO(d)mO(1) using semidefinite
programming [19].

If we find the minimum c for which (A.2) holds, then we obtain a hierarchy of upper
bounds on fmax, referred to as the SoS hierarchy or the Lasserre hierarchy. Denote this upper
bound by fdSoS. Given mild assumptions on the constraints g1, . . . , gm one can prove that
limd→∞ fdSoS = fmax [19]. The tradeoff between degree d and error (fdSoS − fmax) is the key
question about the SoS hierarchy. We can also express this tradeoff by defining degsos(c− f)
to be the minimum d for which we can find a solution to (A.2). Note that degsos has an
implicit dependence on the g1, . . . , gm.

A.4 Pseudo-expectations

We will work primarily with a dual version of SoS proofs that have an appealing probabilistic
interpretation. A degree-d pseudo-expectation Ẽ is an element of R[x]∗d (i.e. a linear map
from R[x]d to R) satisfying

Normalization. Ẽ[1] = 1.
Positivity. Ẽ[p2] ≥ 0 for any p ∈ R[x]d/2.

We further say that Ẽ satisfies the constraints g1, . . . , gm if Ẽ[giq] = 0 for all i ∈ [n] and all
q ∈ R[x]d−deg(gi). Then SDP duality3 implies that

fdSoS = max{Ẽ[f ] : Ẽ is a degree-d pseudo-expectation satisfying g1, . . . , gm}. (A.3)

The term “pseudo-expectation” comes from the fact that for any distribution µ over Rn
we can define a pseudo-expectation Ẽ[f ] := Ex∼µ[f(x)]. Thus the set of pseudo-expectations
can be thought of as the low-order moments that could come from a “true” distribution µ or
could come from a “fake” distribution. Indeed an alternate approach (which we will not use)
proceeds from defining “pseudo-distributions” that violate the nonnegativity condition of
probability distributions but in a way that cannot be detected by looking at the expectation
of polynomials of degree ≤ d [20].

A.5 The boolean cube

Throughout this work, we will be interested in the special case of pseudo-expectations over
the boolean cube {±1}n. This set is defined by the constraints x2

i − 1 = 0, i = 1, . . . , n, and
thus we say that Ẽ is a degree-d pseudo-expectation over {±1}n if for any variable xi and
polynomial q of degree at most d− 2,

Ẽ[(x2
i − 1)q] = 0. (A.4)

This means we can define Ẽ entirely in terms of its action on multilinear polynomials.

3 Certain regularity conditions (e.g. the Archimedean condition) are needed for strong duality to hold;
for more details, see section 6.2 of [19]. These conditions hold in particular when the feasible set is a
subset of the Boolean hypercube, which is the only setting we use in this paper.
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B Framework of Deriving Lower Bounds

In this section, for the sake of completeness, we demonstrate our framework of deriving sum-
of-squares (SoS) or semidefinite programming (SDP) lower bounds for optimization problems
formulated in [15]. To this end, we formalize the familiar notions of optimization problem, SDP
relaxations and integrality gaps. Then we show general methods for reducing optimization
problems to each other as well as mapping integrality gaps for one problem/relaxation pair
to another.

B.1 Optimization problems and integrality gaps
To prove a hardness result for an optimization problem, we would like to find instances
where the SoS hierarchy and other SDP relaxations fail. These examples are known as
“integrality gaps,” where the terminology comes from the idea of approximating integer
programs with convex relaxations. For our purposes, an integrality gap will be an example of
an optimization (maximization) problem in which the true answer is lower than the output of
the SDP relaxation. To achieve this, we need to demonstrate a feasible point of the SDP with
a value that is larger than the true answer. These feasible points are called pseudo-solutions,
and we will define them for any polynomial optimization problem as follows.

I Definition B.1 (Pseudo-Solution). Let A be a polynomial optimization problem. Let
ΦAm ∈ ∆A

m be an instance of optimization A for some m. A degree-d value-c pseudo-solution
for ΦAm is a degree-d pseudo-expectation Ẽ satisfying the constraints of PAn such that

Ẽ[ΦAm(x)] ≥ c

A single degree-d value-c pseudo-solution for an instance ΦAm implies the sum-of-squares
approach (up to degree d) believes the optimum value of ΦAm is at least c. If the true optimum
value of ΦAm is smaller than c, then such a pseudo-solution serves as an integrality gap for the
SoS approach, i.e. an example where the SoS hierarchy gives the wrong answer. To refute
the power of the SoS hierarchy, we need to establish such pseudo-solutions as well as small
true optimum values for any large m.

I Definition B.2 (integrality gap). Let A be any polynomial optimization problem. Let
d = d(n), c = c(n), s = s(n) be functions of n such that 0 ≤ s < c ≤ 1. A degree-d value-(c, s)
integrality gap for A is a collection of ΦAn ∈ ∆A

n for each n ≥ n0, s.t.
The true optimum value OPT(ΦAn ) ≤ s.
For each n ≥ n0, there exists a degree-d value-c pseudo-expectation Ẽn for ΦAn such that
Ẽn[ΦAn (x)] ≥ c.

B.2 Reduction between optimization problems
To obtain SoS lower bounds for optimization problems, it suffices to establish integrality
gaps. However, it is not clear how to obtain such integrality gaps in general, which might be
a challenging task by its own. Here, we formulate an approach to establish such integrality
gaps through reductions. Specifically, we start with some optimization problem with known
integrality gaps and reduce it to an optimization problem that we want to establish integrality
gaps.

I Definition B.3 (Reductions). A reduction RA⇒B from optimization problem A to opti-
mization problem B is a map from ∆A to ∆B ; i.e. R(ΦAn ) ∈ ∆B

n . It is called
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(sB , sA)-approximate if for any n and any ΦAn and its corresponding ΦBn = R(ΦAn ), we
have

OPT(ΦAn ) = max
x∈PAn

ΦAn (x) ≤ sA ⇒ OPT(ΦBn ) = max
x∈PBn

ΦBn (x) ≤ sB .

Here sA, sB are understood to be functions of n.
The parameters (sB , sA) can be considered soundness parameters of the reduction.

B.3 3XOR with integrality gap
In this section, we will introduce the source of all hardness we have for this paper, which
is the 3XOR problem first discovered by Grigoriev [12] and subsequently rediscovered by
Schoenebeck [32]. It is analogous to the proof that 3-SAT is NP-hard, from which other
hardness results can be derived by reducing those problems to 3-SAT. In our framework,
3XOR can be formulated as follows.

I Definition B.4 (3XOR). 3XOR is a boolean polynomial optimization problem with the
following restriction:

Instances: for any n, an instance is parameterized by a formula Φn that consists of
m = m(n) 3XOR clauses, the set of which denoted by C, on n boolean variables (i.e.,
each clause is xixjxk = aijk for some combination of (i, j, k) and xi, xj , xk ∈ {±1}.).
Thus, the objective function is

Φn(x) = 1
m

∑
(i,j,k)∈C

1 + aijkxixjxk
2 , x ∈ {±1}n.

Thanks to the x2
i = 1 constraints, these terms are equivalent to ones of the form (1 −

(xixjxk − aijk)2)/2.

Grigoriev’s result [12] (reformulated by Barak [5]) implies the following integrality gaps.
(Note that we have a slightly different formulation from [5] that is slightly stronger but
guaranteed by [12].)

I Proposition B.5 (Theorem 3.1 of [5], due to Grigoriev). For any ε > 0, for every n

there exists a 3XOR instance Φn with n variables and m = O(n/ε2) clauses, such that
OPT(Φn) ≤ 1

2 + ε, but there exists a degree-Ω(n) value-1 pseudo-solution Ẽ.
Here “value 1” means that for every clause xixjxk = aijk, it holds that Ẽ[(xixjxk −

aijk)p(x)] = 0 for all polynomials p(x) with degree at most d− 3.

In our framework, this implies a degree-Ω(n) value-(1, 1
2 +ε) integrality gap for the 3XOR

problem.

C Information Theory

Proof of the claims in this section can be found in any information-theory textbook, such as
[11]. For a distribution p ∈ ∆n define its entropy to be

H(p) = −
∑
x∈[n]

p(x) ln(p(x)).

It can be shown that 0 ≤ H(p) ≤ ln(n).
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Another basic quantity is the relative entropy, which is defined for a pair of distributions
p, q ∈ ∆n to be

D(p‖q) :=
∑
x∈[n]

p(x) ln
(
p(x)
q(x)

)
.

The relative entropy has some distance-like properties. For our purposes, we will need only
Pinsker’s inequality [11, Lemma 11.6.1]:

D(p‖q) ≥ 1
2‖p− q‖

2
1. (C.1)

For a distribution over several random variables e.g. pXY Z ∈ ∆n3 where X,Y, Z are
supported on [n], we write the entropy of the marginals using a notation that emphasizes
the variables rather than the distribution:

H(X)p := H(pX), H(XY )p := H(pXY ), H(XY Z)p := H(p), etc..

Using this notation we can define the mutual information between random variables X,Y
to be

I(X;Y )p := H(X)p +H(Y )p −H(XY )p.

It is straightforward to show that I(X;Y ) ≤ min(H(X), H(Y )). The mutual information is
a measure of correlation, as can be seen by the following alternate characterization:

I(X;Y )p = D(pXY ‖pX ⊗ pY ). (C.2)

This can be verified by a quick calculation. Combined with (C.1), we obtain

‖pXY − pX ⊗ pY ‖1 ≤
√

2I(X;Y )p. (C.3)

Finally we will make use of the conditional mutual information, defined to be

I(X;Y |Z)p := I(X;Y Z)p − I(X;Z)p. (C.4)

The term conditional mutual information refers to the alternate characterization of the
quantity I(X;Y |Z) as the mutual information of conditional distribution XY averaged over
all values of Z; i.e.

I(X;Y |Z)p =
∑
z

p(Z = z)I(X;Y )|pZ=z , (C.5)

where pZ=z(x, y) := p(x, y, z)/
∑
x′,y′ p(x′, y′, z).

We will also find it useful to repeatedly apply (C.4) to obtain the chain rule of mutual
information:

I(X;Y1 . . . Yk) =
k∑
j=1

I(X;Yj |Y1 . . . Yj−1). (C.6)
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Abstract
We consider the problem of finding a fully colored base triangle on the 2-dimensional Möbius
band under the standard boundary condition, proving it to be PPA-complete. The proof is based
on a construction for the DPZP problem, that of finding a zero point under a discrete version
of continuity condition. It further derives PPA-completeness for versions on the Möbius band
of other related discrete fixed point type problems, and a special version of the Tucker problem,
finding an edge such that if the value of one end vertex is x, the other is −x, given a special
anti-symmetry boundary condition.

More generally, this applies to other non-orientable spaces, including the projective plane and
the Klein bottle. However, since those models have a closed boundary, we rely on a version of
the PPA that states it as to find another fixed point giving a fixed point. This model also makes
it presentationally simple for an extension to a high dimensional discrete fixed point problem on
a non-orientable (nearly) hyper-grid with a constant side length.
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1 Introduction

In his seminal work on understanding the time complexity of the parity argument, Papadim-
itriou introduced the now well known class PPAD [27] that has influenced a generation of
algorithmic game theorists in their study of economic computations. In the same paper,
Papadimitriou also defined a more inclusive complexity class PPA (Polynomial Parity Argu-
ment) of search problems whose solution is guaranteed to exist through a proof based on
the fact that “Any undirected graph with an odd-degree vertex must have another one”. In
contrast to PPA, PPAD is based on another straightforward principle: “Any directed graph
that has an unbalanced node must have another”.
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The class PPA is a superset of PPAD, and the intuitive reason is that directions are
helpful: Finding another node of the appropriate kind is harder to solve when there are no
directions; in fact, oracle separation is known [3]. This difference has also reflected in our
understanding in the two classes, especially with regard to their complete problems. The
class PPAD has now many problems that have been shown complete for PPAD such as in
the incomplete list of 25 of them [22] gathered by Kintali. The class PPA-complete, however,
did not fare as well.

On the one hand, there are many interesting existence theorems in Graph Theory,
Combinatorics and Number Theory for which the computational problems are in PPA [27]:
Smith’s theorem [30] and related existentially polytime (graph) theorems [5], Chevalley’s
theorem [10] and Alon’s Combinatorial Nullstellensatz [2], among others. Remarkably, the
problem of factoring an integer has been recently proved to belong to PPA (via randomized
reductions) [21], and the inclusion of this fundamental and critical problem gives the class a
new significance.

On the other hand, we know few PPA-complete problems besides the generic one,
unfortunately. The only exceptions are certain versions of Sperner’s problem for rather
esoteric non-orientable bodies. About ten years after the introduction of the class, Grigni [17]
had the important idea that the right geometric context for PPA are non-orientable bodies,
and showed that a version of the Sperner problem in the non-orientable three dimensional
space is complete in the class. Soon after, Friedl et al. [15] strengthened it to a non-orientable
and locally two-dimensional orientable space.

In general, it would be nice to have a growing strong collection of PPA-complete problems
(like we have for PPAD), which with luck could eventually include factoring. The progress
has been slow: another ten years passed without any progress in our understanding of the
class PPA-complete for this problem many scientists are interested in.

Contributions
Our main results first end the quest for a complete fixed point characterization of the
PPA-complete class. It provides a sharp division on what can be done and what cannot
be done in computing different versions of the fixed point problem on the Möbius band.
In particular, it does so by completing the task started by Friedl et al. [15], to reduce the
next dimension demanded by the seminal result of Grigni [17], with the help of a technique
developed by Chen and Deng [7], on the 2D Möbius version of a zero point problem, referred
to as DPZP and conceptualised in [20, 8, 7, 11]. Together with the results of Grigni and
Friedl, et al., they raise a theoretical connection of computational complexity to topology.
The comparison between the 2D versions makes a strong case for this distinction.

Next, as the past works of Chen and Deng [7] as well as Deng, Qi, Saberi and Zhang [11]
unify the complexity of the various discrete fixed point concepts in principle the above result
implies that the same result holds for all the related discrete fixed points on the Möbius
band. However, this may not always hold in general. We develop a new reduction approach
to derive those results on the Möbius band. In particular, the 2D Tucker on orientable
space were proven PPAD-hard, originally in the first principle by Pálvölgyi [26] and then
by reduction to another discrete fixed point [11]. Both approaches are complicated where
applied to the Möbius version. Our new reduction approach makes it easy to be shown
in both ways of containing and contained in the PPA class. The same holds for the other
discrete fixed point problems.

Third, the simplicity of our 2D version has been handy to make further applications. On
the higher constant dimension non-orientable space, all the discrete fixed point problems
follow from the 2D results to become PPA-complete. Those cannot be easily obtained from
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the past works for the Sperner problem alone. An even bigger challenge here is whether
the PPAD-completeness of the constant side length higher dimensional Sperner’s problem
developed by Chen, et al., [9], can be extended to the non-orientable space. Using a new
(dicephalic snake) embedding lemma, together with a few demanding technical details, a 2D
Sperner version is used to reduce to the higher dimension and constant side length Sperner
problem on non-orientable space, and to prove the PPA-hardness of the latter. The proof
involves quite some technical details but still accessible, which would be extremely difficult
due to the subtlety of the boundary conditions of the non-orientable case if our Sperner
on the 2D Möbius band is constructed differently. The same subtlety applies to the other
discrete fixed point versions.

Fourth, the concept of the index, with modification of mod 2, is helpful both for the
proofs that the above problems are in PPA, It has also be applied to develop algorithmic
solutions for the oracle model of the computational problem. This approach had delivered the
matching algorithmic bound for the oracle models for the fixed point problem in the orientable
space [8], closing a previously almost tight gap [19]. The extension to the non-orientable
space is quite natural by simply taking a mod 2 operation upon that for the orientable
space. But it proves very effective. In comparison, past works have taken the path following
paradigm for the fixed point computation. There are some subtleties in using index for the
non-orientable space. We should not interpret the index and other values in the definitions
as in the orientable space: the sense of direction no longer holds in non-orientable space at
least in one dimension. Even though they are named similarly, we still need to treat them
differently.

Fifth, the techniques for the 3D version may bear some similarity with our 2D version,
it is exactly the articulation or, the simplicity if one prefers, in the 2 dimensional results
that allows better applications to even better understanding in related problems. As we
prove related results for other non-orientable spaces such as the Klein bottle or projective
space, we would have to refer to less natural 3D (in 5 dimensions) Klein solid bottle or
3D projective space, with unbearable complications in the proofs. One such case is in the
beautiful PSPACE proof of the other end of the line for the path following algorithm in
the 2D discrete fixed point proof by Goldberg[16]. In addition, we had 20 years after the
definition of PPA by Papadimitriou, 15 years after Grigni’s 3D non-orientable space Sperner’s
PPA-completeness, and 10 years after the locally 2D Sperner’s PPA-completeness by Friedl,
et al. [15]. It is a time for a better understanding.

Relevance of the Möbius Band
The stories of the Möbius band have been a curiosity out of the Mind, such as a brain’s
toy of German mathematicians August Ferdinand Möbius (and Johann Benedict Listing),
and the fascination art in the parade of ants by a Dutch artist M.C. Escher [13]. In recent
years, it becomes a possibility in scientific discoveries. Scientists made assembled object
created by nano technology [18], proposed technical tool to develop negative refractive index
materials [14], made experimental observation in electromagnetic metamaterial systems [6].
In our work, it plays a role in understanding theoretical complexity of PPA-completeness.
Hopefully, one day, they will become truly useful like other creatures of human imagination,
if one so demands.

Related Literatures
The standard Sperner’s problem, 3D-Sperner, is among the first natural problem proved
to be PPAD-complete by Papadimitriou [27]. The problem 2D-Sperner is proved to be
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PPAD-complete by Chen and Deng [7]. In [17], Grigni proposed the brilliant idea using
non-orientable space to model the 3D-Sperner as a PPA-complete problem. The only other
known PPA-complete problem is the Sperner problem on a sophisticated locally 2D structure
by Friedl, Ivanyos, Santha and Verhoeven [15].

Lemke-Howson’s algorithm [24] for Nash equilibrium computation has started a path
following paradigm. However, a worst case exponential lower bound was known for this
algorithm by Savani and von Stengel [28]. It was shown that the other PPAD-complete
problems demand, under the oracle model, exponential time including the fixed point problem
by Hirsch, Papadimitriou and Vavasis [19]. It was further shown to have a tight exponential
time by Chen and Deng [8], which was extended to include several discrete versions of the
fixed point problem by Deng, Qi, Saberi and Zhang [11].

For the PPA class, the path following method was known to take an exponential time for
the Smith problem by Krawczyk [23, 4]. It has been extended to related problems, such as
an exponential time bound for finding the second perfect matching on Eulerian graphs by
Edmonds and Sanita [12]. An extensive discussion on related problems can be found in [5].
Subsequently, Aisenberg et. al. [1] improved our result — proving that general version for
2D-Tucker is PPA-complete using an elegant trick.

Organization of Presentation
We prove that the natural Möbius band versions of the problems, Sperner, DPZP and Tucker
to be PPA-complete. A neat reduction allows the problem of finding one fixed point be
extended to given-one-find-another types of PPA problems. Along with several important
technical details, a dicephalic snake lemma is crucial for the padding and folding to create a
higher dimensional fixed point on a non-orientable grid in order to reduce the problem to
one of constant side lengths.

The paper is laid out as follows: In Section 2, we will show some necessary definitions and
notations. In Section 3, we show a key result, the proof of PPA-completeness of the problem
mn-DPZP and its applications. In Section 4, we extend our work to prove a high-dimensional
non-orientable version of fixed point. In Section 5, we applies our main result to other
non-orientable spaces, including the projective plane and the Klein bottle. We prove the
PPA-completeness of the problem of finding another fixed point on the projective plane and
on the Klein bottle. In Section 6, we discuss the generality of the results obtained here in
related settings. Finally we discuss potential future works. Because of the space limitation,
we put most of our proofs in the Appendix.

2 Preliminaries and Definitions

PPA, (in its complete form, the Polynomial Parity Argument class), is a class of search
problems based on an exponential size graph consisting of nodes of maximum degree two,
with a given node of degree one. The problem asks for an output of another node of degree
one, which is guaranteed to exist by the parity argument. More formally, we define it by a
complete problem, named AEUL as follows:

I Definition 2.1 (Another End of Undirected Lines). Given an input circuit Tn of polynomial
size in n which takes as input u in the configuration space Cn = {0, 1}n, returns as
output Tn(u) in the form 〈v, w〉, 〈v〉, or 〈〉 where v > w and v, w ∈ Cn \ {u}. 0n is a
given configuration of one tuple, i.e., |Tn(0n)| = 1. The search problem is to find another
configuration v, v 6= 0n such that |Tn(v)| = 1. We should write it as AEUL for short.
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Möbius Band
It is obtained from a rectangle by merging its left and right sides after twisting it 180
degrees (counter)-clockwise to form a one-boundary and one-surface band. Therefore, it is
non-orientable. More formally,

I Definition 2.2 (Möbius Band). Let VN,M = {p = (p1, p2) ∈ Z2 : −N ≤ p1 ≤ N,−M ≤
p2 ≤M}. A Möbius band is obtained by twisting VN,M 180 degrees clockwise and then joining
every vertex (N, y) with (−N,−y) to form a loop. We denote it by BN,M . A function f is
defined on the Möbius band BN,M iff ∀y : −M ≤ y ≤M , we have f((N, y)) = f((−N,−y))
on VN,M .

I Definition 2.3 (Standard Triangulation). For each i, j ∈ Z : −N ≤ i < N,−M ≤ j < M ,
we link (i, j) with (i+ 1, j + 1) on the grids VN,M and BN,M .

We call every unit square in the standard triangulated grid VN,M a base square, every
unit side length triangle of it a base triangle, its every edge a base edge.

Index
We now define the index [29, 31] but adopt it for the non-orientable space BN,M .

Consider a coloring by {0, 1, 2} of vertices in BN,M , one vertex is assigned by one color.
If a base triangle δ has all three colors, we define its index as 1. Otherwise, the index is 0.
Alternatively, we define an edge index to be 1 if it is colored by both 1 and 2. The index of
a base triangle is the sum of indices of its three edges, mod 2. It prepares us to define the
index on Möbius band.

I Definition 2.4 (Index of a Non-orientable Triangulated Möbius Grid BN,M ). Given a tri-
angulated Möbius grid BN,M , a coloring φ : BN,M → {0, 1, 2} of its vertices. The index of
BN,M is defined as

index(BN,M , φ) :=
∑

δ is a base triangle ∈BN,M

index(δ, φ) (mod 2) .

Immediately, one derive the following lemma about indices on the Möbius band.

I Lemma 2.5.

index(BN,M , φ) =
∑

e∈∂BN,M

index(e, φ) (mod 2),

where ∂BN,M is the boundary of BN,M , that is, ∂BN,M := {(p1,±M) ∈ Z2 : −N ≤ p1 ≤ N}.

DPZP
We should introduce several concepts to prepare its definition as a numeric version of the
original direction preserving zero point.

I Definition 2.6 (Möbius Numeric Feasible Function). A function f : BN,M → {0,±1,±2} is
feasible if it satisfies the Möbius condition, f((N, y)) = f((−N,−y)),∀y ∈ Z,−M ≤ y ≤M .

I Definition 2.7 (Möbius Numeric Direction-preserving Function). A function f : BN,M →
{0,±1,±2} is direction-preserving if for any p,q ∈ BN,M where ||p−q||∞ = 1 and f(p) 6= 0,
we have f(p) + f(q) 6= 0.
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I Definition 2.8 (Zero Point Base Triangle). Given a function f : BN,M → {0,±1,±2}, a
base triangle δ of a triangulated Möbius Grid is called a zero point base triangle of f if
{f(p) : p ∈ δ} = {0, 1, 2}.

I Definition 2.9 (Admissible Boundary Condition). A function F : BN,M → {0,±1,±2} is
called admissible if it satisfied the following boundary conditions:

F ((0,M)) = −2; F ((0,−M)) = 2
F ((i,M)) = F ((−i,−M)) = −1, for every i ∈ Z: 0 < i ≤ N
F ((−i,M)) = F ((i,−M)) = 1, for every i ∈ Z: 0 < i ≤ N

I Definition 2.10 (Numeric Möbius DPZP). Given as input, a triangulated Möbius Grid
BN,M , and a polynomial-time machine F , which generates a numeric direction-preserving
feasible admissible function f on BN,M : f(p) ∈ {0,±1,±2},∀p ∈ BN,M , we are required to
output p : f(p) = 0.

As the function F (·, ·) for mn-DPZP has five values, the index defined above does not
apply. We should introduce a new definition of index for mn-DPZP.

I Definition 2.11 (Index of a Base Edge and a Base Triangle in mn-DPZP). Given an mn-
DPZP grid BN,M , a coloring F : BN,M → {0,±1,±2}, of its vertices. The index of an edge
is 1 if the colors of its two end vertices are {1, 2}, 0 otherwise. The index of a base triangle
is the sum of the indices of its three edges (mod 2).

I Definition 2.12 (Index of mn-DPZP). Given a mn-DPZP grid BN,M , a coloring F :
BN,M → {0,±1,±2}, of its vertices. The index of BN,M is defined as

index(BN,M , F ) :=
∑

δ is a base triangle ∈BN,M

index(δ, F ) (mod 2) .

We have the following lemma on the Möbius grid.

I Lemma 2.13. index(δ, F ) = 1 if and only if F (δ) = {0, 1, 2}. Furthermore, index(BN,M , F ) =∑
e∈∂BN,M

index(e, F ) (mod 2), where ∂BN,M is the boundary of BN,M .

Using the index on non-orientable surfaces, it is immediately that:

I Lemma 2.14. The Numeric Möbius DPZP with the admissible boundary always has a zero
point. Finding a zero point is a PPA problem.

We should next list the results for other related discrete fixed point concepts. We call
the problem of finding a fully colored base triangle on Möbius band BN,M the m-Sperner
problem.

I Definition 2.15 (m-Sperner). Consider a triangulated Möbius grid BN,M and a polynomial-
time machine G, which generates a function g on BN,M : g(p) = G(p) ∈ {0, 1, 2},∀p ∈ BN,M .
Further, we require that g(·) satisfies the m-Sperner boundary condition, defined as follows.

G((0,M)) = 0; G((0,−M)) = 2
G((i,M)) = G((−i,−M)) = 0, for every i ∈ Z: 0 < i ≤ N
G((−i,M)) = G((i,−M)) = 1, for every i ∈ Z: 0 < i ≤ N

The required output is a base triangle which contains all three colors.

I Lemma 2.16. On any admissible triangulated Möbius band BN,M for an m-Sperner
instance, the number of Sperner base triangles is odd. Finding one of those is in PPA.
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Proof. As m-Sperner has index 1, the oddness follows. The reduction to an AEUL is similar
to the above for the mn-DPZP problem. J

We define the simple Möbius version of Tucker as follows.

I Definition 2.17 (sm-Tucker). Consider a triangulated Möbius grid BN,M and a polynomial-
time machineG, which generates a function g onBN,M : g(p) = G(p) ∈ {±1,±2},∀p ∈ BN,M .
Further, we require that g(·) satisfies the special antipodal boundary condition, defined as
follows:

g((0,M)) = −2; g((0,−M)) = 2
g((i,M)) = g((−i,−M)) = −1, for every i ∈ Z: 0 < i ≤ N
g((−i,M)) = g((i,−M)) = 1, for every i ∈ Z: 0 < i ≤ N

and Möbius boundary condition which is g((N, y)) = g((−N,−y)). The required output is a
complementary edge.

I Lemma 2.18. On sm-Tucker, there is always a complementary edge. Finding one is in
PPA.

Proof. Changing the colors {−1,−2} of the vertices in sm-Tucker into 0, we reduce the
problem to m-Sperner. As the boundary of the m-Sperner has index 1, there is always a
fully colored base triangle δ. The vertex colored 0 in δ was originally either −1 or −2 in the
sm-Tucker, we obtain a complementary edge in the sm-Tucker. The claims follow. J

3 PPA-completeness of mn-DPZP and Its Applications

We have already proven that mn-DPZP is in PPA in the last section. We now prove the PPA-
hardness of the mn-DPZP. For any input to AEUL(Tn, Cn, 0n), we construct an mn-DPZP
instance in polynomial time so that each zero point in the mn-DPZP instance maps back to
an end vertex for some lines in the original instance of AEUL(Tn, Cn, 0n), and vice versa.

Our proof embeds the AEUL(Tn, Cn, 0n) graph on the Möbius band. The reduction is
motivated by the original proof of 2D Sperner being PPAD-complete by Chen and Deng [7].

Given a simple undirected graph G = (V,E), let |V | = N = 2n, we define G∗ = (V ∗, E∗),
where V ∗ = V12N2,24N . , and E∗ = {(p,p′) : ‖p− p′‖1 = 1}, i.e., (p,p′) is an edge in G∗ if
and only if their L1 distance is 1. For every p ∈ V ∗, letKp =

{
q : qi ∈ {pi, pi+1}

}
, i = 1, 2 to

be the vertex set containing all 4 vertices in the base square having p at the left bottom corner,
and E1

p = {{p,p+(0, 1)}, {p+(1, 0),p+(1, 1)}}, E2
p = {{p,p+(1, 0)}, {p+(0, 1),p+(1, 1)}}

to be its two subsets of edges of Kp. For p,q ∈ V ∗, if pi = qi, i = 1 or 2, let u1,u2, . . . ,um ∈
Z2 be all the integer internal points on segment pq which are labeled along pq, where u1 = p
and um = q. We say Kp and Kq are connected iff edges set ∪mk=1E

i
uk ⊆ E∗, we denote it by

KpKq.
On the Möbius band, we also allow that K(12N2−1,y) and K(−12N2,−y−1),−24N ≤

y ≤ 24N − 1 can be connected, that is E2
(12N2−1,y) ∪ E

2
(−12N2,−y−1) ⊆ E∗. If we have

Ku1Ku2 ,Ku2Ku3 , . . . ,Kum−1Kum , but these points u1,u2, · · · ,um don’t share the same x-
coordinate nor y-coordinate, hence the edges introduced need to make turns in its directions
to connect u1 to um. We make a special note that, at a turn on Ku toward the right-upper
direction, the edges {{u, u + (0, 1)}, {u + (0, 1), u + (1, 1)}} will be removed to make the
nodes along the paths be of degree no more than two.

Intuitively, G∗ is a plannar embedding of the graphG for AEUL with vertices {0, 1, . . . , N−
1}. The construction is motivated by and has some similar details to that of Chen and
Deng [7]. Making it work on the Möbius band requires new ideas.
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Figure 1 Connecting vertices.

For every i : 0 ≤ i < N , vertex i of G maps to a vertex set Si = ∪24i+11
k=24i {K(0,k)}. That

is, we create a fixed-length “tube” Si for the vertex i in G. We call it a “vertex tube".
Every such tube has two ends, called up and down, dependent on their values of the second
coordinates on V ∗, denoted by Supi = K(0,24i+11) and Sdowni = K(0,24i). We make a change
in the embedding of the starting node 0n: for i = 0, S0 = ∪(24i+11)

k=−24N{K(0,k)} in G∗.
Edge ij appears in G iff there is an undirected path between one of {Supi , Sdowni } and

one of {Supj , Sdownj }. Let ij ∈ E and ik ∈ E be the two edges connected to j and k from i.
If j > k we call j the bigger neighbour and k the smaller neighbour of the vertex i.

For each vertex tube, we connect its up end to its bigger neighbour (if the degree of the
vertex is 1, we also take it as the bigger one), and its down end to the smaller neighbour (if
any).

If (i, j) is an edge in G, let yi, yj be the y-coordinates of the ends of tube i and j where
need to be linked together. Let t = 12(N ·max{i, j}+ min{i, j}). We consider two different
connection cases:
1. Supi − Sdownj or Sdowni − Supj : we add edges K(0,yi)K(t,yi), K(t,yi)K(t,yj), K(t,yj)K(0,yj)

into E∗.
2. Supi −S

up
j or Sdowni −Sdownj : w.l.o.g., we assume that i < j, we add edgesK(0,yi)K(12N2−1,yi),

K(12N2−1,yi)K(−12N2,−yi−1), K(−12N2,−yi−1)K(−t−1,−yi−1), K(−t−1,−yi−1)K(−t−1,yj) and
K(−t−1,yj)K(0,yj) into E∗.

Case 1 is illustrated in Figure 1, which is a normal case. The crucial difference that
would involve in the Möbius band structure B12N2,24N is case 2, illustrated in Figure 2.
For example, if degree of i is 2, i.e. T (n, i) = 〈j, k〉, k > i, j, also we assume that i > j

and T (n, j) = 〈k, i〉. Let t = 10(n · i + j), we will link Sdowni and Sdownj by adding
edges K(0,24i)K(12N2−1,24i), K(12N2−1,24i)K(−12N2,−24i−1), K(−12N2,−24i−1)K(−t−1,−24i−1),
K(−t−1,−24i−1)K(−t−1,24j), K(−t−1,24j)K(0,24j).

The remaining difficulties of the reduction are how to color the vertices of G∗ according
to the requirements for Möbius DPZP and how to handle crossing paths. We should present
techniques to handle them in the proof.

I Lemma 3.1. mn-DPZP is PPA-hard.

We conclude that Möbius DPZP and Möbius Tucker are PPA-complete.
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Figure 2 Connecting vertices 2.

I Theorem 3.2. mn-DPZP is PPA-complete.

Proof. By Lemma 2.14, mn-DPZP is in PPA. By Lemma 3.1, mn-DPZP is PPA-hard. The
claim follows. J

I Theorem 3.3. sm-Tucker is PPA-complete.

Proof. sm-Tucker is in PPA by Lemma 2.18.
For PPA-hardness, we use the same construction as the proof of Lemma 3.1, except that

we change vertices colored 0 to color −2. Therefore, at each vertex of color 0 in Lemma 3.1,
we have an edge of color +2 and −2; and vice versa. The reduction follows.

Therefore, the theorem holds. J

Finally we show that m-Sperner is PPA-complete.

I Theorem 3.4. m-Sperner is PPA-complete.

Proof. First, m-Sperner is in PPA by Lemma 2.16.
To prove it is PPA-hard, we simply replace vertices colored {−1,−2} to color 0 in the

instance constructed in the PPA-hardness proof of mn-DPZP. Finding a fully colored triangle
δ in the m-Sperner instance will imply a true zero point in the mn-DPZP instance because
the direction preserving condition, Definition 2.7, for mn-DPZP will prevent another vertex
in the same base triangle of color∈ {−1,−2}.

The claim follows. J

4 High Dimensional Non-orientable Discrete Fixed Point

In the above, some 2D fixed point problems on the Möbius band are proven PPA-complete.
The generalized problem in higher dimension space with all constant side lengths is considered
in this section. The proof is motivated by a construction in [9]. To handle the non-orientable
space, the key changes are on the snake lemma. We need a dicephalic snake version.
Considerable changes and new ideas are required to make it through. To avoid tedious
details, we should present a version of the construction and the proof. To observe the page
limit, we place all the proofs and some lemmas at the appendices.
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4.1 Uniform Boundary Discrete Fixed Points on Möbius Band
We introduce a version here for which the boundary of the 2D Möbius band consists vertices
all of the same color. Every instance of the problem has index 0. This naturally leads to a
version of the fixed point problem where one fixed point is given and another is sought after.
We call such a case the uniform boundary coloring.

More precisely, the coloring function f is of uniform boundary on Möbius band BN,M
if it satisfies that: (1) f((x,±M)) = 0,∀x ∈ Z,−N ≤ x ≤ N . (2) Möbius condition, i.e.
f((N, y)) = f((−N,−y)),∀y ∈ Z,−M ≤ y ≤M . Then the Möbius Sperner problem can be
defined as follows.

I Definition 4.1 (Möbius Sperner). The input is a polynomial-time machine F that generates
a uniform boundary 3-coloring function f on BN,M : F (p) = f(p) ∈ {0, 1, 2},∀p ∈ BN,M ,
as well as a panchromatic base triangle. The required output is another panchromatic base
triangle on BN,M .

Note that index(BN,M , f) is zero for a color function of uniform boundary on the Möbius
band. According to Lemma 2.5, we have the following lemma:

I Lemma 4.2. For any uniform boundary 3-coloring of the triangulated Möbius band BN,M ,
the number of panchromatic base triangles is even. Given one panchromatic base triangle,
finding another is a PPA-complete problem.

4.2 High Dimensional Möbius Sperner
We extend the 2-dimensional uniform boundary Möbius Sperner proven PPA-complete in
the above to higher dimension. First we define the well-behaved function.

I Definition 4.3 (Well-behaved Function [9]). A polynomial-time computable integer function
f is well-behaved, if ∃n0 > 0 such that ∀n ≥ n0 3 ≤ f(n) ≤ n/2.

Define Kp =
{

q ∈ Zd | qi = pi or pi + 1,∀1 ≤ i ≤ d
}
.

For a positive integer d and a vector r ∈ Zd+, let

Adr =
{

p ∈ Zd | −ri+1 ≤ pi ≤ ri−1,∀1 ≤ i ≤ d
}

be the hyper grid with side length r (note that is 2(ri − 1) in the i-th dimension because of
symmetry with respect to ri = 0). Note that its boundary is, in one dimension, intentionally
left open,

∂Adr =
{

p ∈ Adr | pi = −ri+1 or ri−1,∃2 ≤ i ≤ d
}
.

I Definition 4.4 (The Valid Boundary Condition). A coloring function C : Adr → {0, 1, . . . , d}
is valid on Adr if it satisfies the following Boundary Conditions:
1. (Uniform color boundary) For any p ∈ ∂Adr , C(p) = 0
2. (Reversing face consistency) C((r1−1, x2, x3, . . . , xd)) = C((−r1+1,−x2, x3, . . . , xd)) for

all xi, where i = 2, 3, . . . , d. Note that it is equivalent to merging (r1 − 1, x2, x3, · · · , xd)
and (−r1 + 1,−x2, x3, · · · , xd) into one vertex.

The point set {(±(r1−1), x2, . . . , xd) : −ri < xi < ri, i = 2, 3, . . . , d} are called reversing face.
Even though they are not on the boundary, we include (2) here to make sure the consistency
of function values on the non-orientable space. Fixing other variables, x3, x4, · · · , xd, we
have a reversing plane for the variables x1 and x2.
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For any well-behaved function f , we define a corresponding Möbius-Sperner fixed point
problem as follows.

I Definition 4.5 (Möbius Spernerf ). For a well-behaved function f and a parameter n, let
m = f(n) and d = dn/f(n)e. An input instance of Möbius Spernerf is a pair (C, 0n) where
C is a valid coloring function with parameter d and r where ri = 2m,∀i : 1 ≤ i ≤ d. Given
a point p ∈ Adr where Kp is of degree one, i.e., contains one panchromatic simplex in its
triangulation, the output of this problem is another point q 6= p, such that Kq contains
another panchromatic simplex.

We have the following theorem.

I Theorem 4.6. The problem Möbius Spernerf is PPA-complete for any well-behaved
function f .

One can show that this problem is in PPA. To prove the hardness, similar to the orientable
space [9], we embed an instance of Möbius Spernerf2 , known in PPA-complete, into one
dimensional higher space iteratively till Möbius Spernerf . We should show that the process
can be done in a polynomial number of state transformations. In Subsection B, we show
three crucial lemmas for our reduction. In Subsection C, we employ these three lemmas
iteratively to build up our construction. Please see the Appendix for the detail proofs.

5 Discrete Fixed Points on Projective Space and Klein Bottle

The results we have discussed above extend to other non-orientable spaces. The general
idea is to slice out a Möbius band from the more complicated non-orientable space and to
color it properly, then to patch the rest of the space. Two of the most interesting ones are
the projective space and Klein Bottle. While the Möbius band can be embedded into 3D
Euclidean space, neither the projective space nor the Klein bottle can. In this section, we
make a reduction from DPZP to both the Möbius band and the projective plane for the
PPA-hardness. As usually, as both cases are two dimensional objects, it is easy to triangulate
them and to develop a path following algorithm.

We have discussed two types of discrete fixed point problems in the above. 1. finding
one, and 2. (given one) finding another, dependent on the boundary conditions. As both
the Projective space and the Klein bottle are closed without a boundary, we need to use the
second version.

Our presentation will focus on the mn-DPZP version of the problems. The same applies
to other types of discrete fixed point concepts discussed above. We omit them here as the
results are similar.

I Theorem 5.1. Given a triangulated projective plane with vertices labelled {0,±1,±2}. It
is PPA-complete to find another zero point.

I Theorem 5.2. Given a triangulated Klein bottle with vertices labelled {0,±1,±2}. It is
PPA-complete to find another zero point.

6 Remarks and Discussion

We have discussed two types of discrete fixed point problems on the Möbius band: finding
one, and (given one) finding another, dependent on the boundary conditions. We show both
problems are PPA-complete for several versions of discrete fixed point models, including the
Sperner’s problem on the two dimensional Möbius band.
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Our first step focuses on the 2D version. We start with mn-DPZP, which finds a zero
point of a discrete version of the continuous functions. Based on this result, we derive
PPA-completeness proof of several other related fixed point problems on the Möbius band.
We discuss finding another for Möbius Sperner and Index1-Brouwer on Möbius Band. We
discuss finding one for sm-Tucker and mn-DPZP. They are switchable into the other types.
For example, we can change all negative colored vertices to color 0 in mn-DPZP to obtain a
“finding one" version for Möbius Sperner. We leave those cases out in this version and only
exemplify useful structures and techniques choosing the most typical cases.

In this work, the link between non-orientable topological space and undirected path
following computational paradigm, started by Grigni in [17], is further ratified by the simple
structure of 2D Möbius band. It deepens our understanding of the computational complexity
difference between the two classes PPAD and PPA in terms of the underlying topological
structures.

The simplicity of our construction allows itself to extend beyond the 2D Möbius band
to more general cases. For example, the PPA completeness of the finding another fixed
point version extends naturally to the Klein Bottle, the projective space, and to other
non-orientable surfaces [32]. Simplicity has played a role in raising further curiosities from
the 2D Sperner work [7] in the orientable space, such as in [25, 16].

Further the results extend to higher dimensions, even for the case where each side is of a
constant length. One such high dimension non-orientable space case of finding-another fixed
point is presented in Section 4. The result extends to different related solution concepts as
in the previous related concepts.

Note that the discrete fixed point problems in our discussion has an exponential size
configuration. Otherwise, we can enumerate the space to find a solution by brute force.
To compute colors and function values, a polynomial size circuit is given as an input.
Alternatively, an oracle model returns those values in a unit oracle time [19]. It is known that
there is an asymptotic matching bound for finding the Brouwer’s fixed point in Euclidean
space [8], which extends to other discrete fixed point models [11]. The same holds for the non-
orientable space we discuss here. The lower bound holds simply because the problem is harder
in the non-orientable space. The upper bound follows by the standard divide-and-conquer
on the index adopted for the non-orientable space.

We would like to see the natural 2D Möbius Sperner will encourage more constructive
works to develop a better knowledge of the PPA-complete class. In particular, as had
suggested by Grigni [17], we would like to see the computational complexity of the Smith’s
Theorem, known in the class of PPA, be eventually resolved.
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is an odd number of zero point base triangles on the Möbius grid. Therefore, there is always
a zero point inside the Möbius grid.

For the construction of the AEUL, we take the boundary edge (2, 1) as the origin vertex
of AEUL. Two such edges of mn-DPZP are connected in AEUL if they are in the same base
triangle. Any such edge in mn-DPZP is an leaf node in AEUL if it is the single {1, 2} edge
in a base triangle.

Therefore, an end of lines of the AEUL instance is a base triangle of the mn-DPZP.
Finding a zero point base triangle is an AEUL problem, and in PPA. J

Proof of Lemma 3.1. Using the main structure presented above, we show how to color
B12N2,24N , so that for any zero point of this mn-DPZP, we can get a corresponding solution
for the search problem AEUL.

The circuit Tn of AEUL generates an undirected graph G = (Cn, E), where Cn = {0, 1}n.
An edge (u, v) appears in E iff u ∈ Tn(v) and v ∈ Tn(u).

So given any G, we construct an instance (f,G∗) for mn-DPZP problem where f is a
coloring function for the generated G∗ = B12N2,24N . We should also use T12N2,24N to refer
to G∗ in case of no ambiguity, with the understanding that (−12N2, y) and (12N2,−y) are
the same vertex.

In constructing the coloring function f for G∗, we make use of the input circuit of Tn, to
identify edges connecting a node to another, and vice versa, and to identify the degree one
node of the AEUL graph.

We define the coloring function as follows:
1. Color vertices on the boundary according to the admissible conditions, Definition 2.9.
2. Color the long vertex tube: ∀j : −24N ≤ j < 12, set f((0, j)) = 2, f((1, j)) = 1, which is

a long vertex tube for the given degree one vertex 0.
3. Coat the long vertex tube (to protect positive colored 1 and 2 inside tube): ∀j : −24N ≤

j < 12, set f((−1, j)) = −1 and f((2, j)) = −2.
4. Color the other vertex tubes: ∀i : 0 < i < N , set f((0, 24i + k)) = 2, f((1, 24i + k)) =

1, k = 0, 1, 2, . . . , 11. We need to make some modifications in the colors for the case k = 0
later.

5. Coat vertex tubes (to protect positive colored 1 and 2 inside tube): ∀i : 0 < i < N :
f((−1, 24i+ k)) = −1, f((2, 24i+ k)) = −2, k = 0, 1, 2, . . . , 11.

6. Make feasible: fill in the the rest of the interior vertices by color −2. Some of those
vertices will be re-colorred in the following steps.

7. Direction preserving on end of lines: For a leaf vertex i : 0 < i < N , we have f(0, 24i) =
f(1, 24i) = 0.

8. Build an edge path: Given an edge (i, j) ∈ E, w.l.o.g., assume that i < j, we construct a
path between i and j in G∗. Let (i′, j) ∈ E and (i, j′) ∈ E. If j > j′, then the upper end
of tube for i is connected to that of j, else the lower end of the tube for i is connected to
that of j. Therefore, there are four possibilities one end of the vertex tube is connected
to another vertex tube.
a. i > i′ and j < j′: Lower end of vertex tube for i is connected to the upper end of the

vertex tube for j. See Figure 1.
b. i < i′ and j > j′: Upper end of vertex tube for i is connected to the lower end of the

vertex tube for j. See Figure 1.
c. i < i′ and j < j′: Lower end of vertex tube for i is connected to the lower end of the

vertex tube for j. See Figure 2.
d. i > i′ and j > j′: Upper end of vertex tube for i is connected to the upper end of the

vertex tube for j. Similar to item (c).
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Figure 3 Connection Crossing: four cases are listed as Case 1, Case 2, Case 3, Case 4 as the
normal order.

We should make appropriate adjustments so that the colorings consistently link two
vertex tubes.

9. We need parallel paths of width 4, making the colors crossing it to be 〈−1, 2, 1,−2〉
(or 〈−2, 1, 2,−1〉, dependent on the direction we are moving) to maintain the direction
preserving conditions. The vertex tubes for i and j connected in the four ways specified
above will maintain it, that their colorings are consistent.
Note that if the path will pass through the direction-reversing line, it must satisfy the
Möbius condition, that is, the four vertices crossing the path reverse their colors from
from 〈−1, 2, 1,−2〉 to 〈−2, 1, 2,−1〉 (or vice versa) after crossing the reversing direction
boundary.

The colorings along the parallel paths satisfy our condition of direction preserving, as
well as feasibility and admissibility conditions, except the problem where two paths cross
each other. We resolve it in the same way originated from [7], shown in Figure 3. All the
changes are local and can be decided using the local information with a constant bounded
number of uses of the circuit T . Now we have provided the admissible coloring function that,
given any point in B12N2,24N , provides its coloring in polynomial time using the polynomial
time circuit T .

Note that vertices of color 0 in G∗ only appear in the mapping from G to G∗ from a
vertex of degree one in G.

Therefore, finding a vertex of color 0 in G∗ is equivalent to find the AEUL solution in G.
Hence we have proven that mn-DPZP is PPA-hard. J

Proof of Lemma 4.2. Clearly, the degree of any instance is 0. Therefore, there is an even
number of the fully colored base triangles. Given one fully colored Sperner base triangle, the
existence of another follows by the above lemma.

The problem is in PPA because the relationship of two edges on a base triangle of colors
(1,2) still holds and the uniform color boundary condition prevents the paths in the underlying
AEUL going out of boundary.

On the other direction, m-Sperner can be easily reduced to Uniform-Color-Boundary
Möbius Sperner by coating an extra layer of vertices outside of the boundary and coloring
them all zero. More specifically, for each instance of m-Sperner, we create a Uniform-Color-
Boundary Möbius Sperner by adding new vertices {(i,±(M + 1)) : −N ≤ i ≤ N} with all
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Figure 5 The Möbius Band.

color 0. After this construction, we have an instance of Uniform-Color-Boundary Möbius
Sperner. There is a fully colored base triangle given ({(0,−M − 1), (0,−M), (1,−M)}). Our
goal is to find another which is also one for the original m-Sperner instance. J

The Proof of Theorem 5.1. We make a reduction from mn-DPZP to the same problem on
the projective space. We will define the DPZP on the projective plane. Then, we make a
reduction of mn-DPZP to the DPZP on the projective plane.

First, a 2D projective plane can be obtained from the sphere of a 3D unit ball by
identifying two points share the same diameter. In other words, (x, y, z) and (−x,−y,−z) in
B = {(x, y, z) : x2 + y2 + z2 = 1} are merged into one point.

Next, it can be decomposed into a Möbius band and a disc as follows. M = {(x, y, z) : |z| ≤
1/2 : (x, y, z) ∈ B} and D+ = {(x, y, z) ∈ B : z ≥ 1/2} D− = {(x, y, z) ∈ B : z ≤ −1/2}.
Here D+ and D− merge into one. We color the disc as in the central figure, at the center of
the disk we place a zero point Figure 4.

Further, let M+ = {(x, y, z) ∈ M : x ≥ 0 and M− = {(x, y, z) ∈ M : x ≤ 0. We have
M+ is a Möbius band and so is M−. Moreover, the interior of M− maps into that of M+ in
a 1-1 mapping. They have a shared boundary on x = 0 that corresponds to the direction
reversing line discussed in the above. Using the standard mn-DPZP boundary condition 2.9,
we can embed an mn-DPZP instance on M+ as in Figure 5.

Connecting the Möbius band on M+ with the disk D+ along their boundaries, we
construct a triangulated projective plane that has a zero point on D+ with the task of finding
another zero point, which can only be on M+. As M+ is equivalent to an mn-DPZP instance,
it follows that the task is a PPA-complete problem. J
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Figure 6 Grid Views: Möbius band, Klein bottle and Projective plane.
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Figure 7 Embed DPZP on to Klein bottle.

The Proof of Theorem 5.2. Similarly, the PPA completeness of the finding another fixed
point version extends naturally to the Klein Bottle [32]. Here again, the Klein Bottle can
only be embedded in the four dimensional space. It is rather awkward to present it in the 3D
world we live. Here we present by a 2D view with some amendments for ease of discussion in
Figure 6. All the three non-orientable 2D spaces are represented uniformly in the 2D grid,
with their boundaries merged with the opposite sides as illustrated.

This clear presentation allows a simple embedment of the DPZP grid on to the Klein
bottle as presented in the following Figure 7.

Here we merge the top line and the bottom line. On it, there is a zero point in the middle.
We are asked to find another zero point on the Klein bottle constructed from this grid. If
we remove the top 4 lines and the bottom four lines, we obtain a mn-DPZP on the Möbius
band where the only other zero points could be hidden.

Therefore, given the top zero point, finding another is to find a zero point in the mn-DPZP
for the Möbius band in the middle. J

B Three Technical Lemmas

A triple T = (C, d, r) is a coloring triple if r ∈ Zd with ri ≥ 3 for all 1 ≤ i ≤ d and C is a
valid coloring function with parameters d and r. Let Size [C] denote the number of gates
plus the number of input and output variables in a function C.

The embedding is carried out by a sequence of three polynomial-time transformations:
L1(T, t, u), L2(T, u), and L3(T, t, a, b). L1(T, t, u) increases the t-th dimension size of the
hyper grid from rt to u (requiring u > rt). L2(T, u) extend the colouring into a space one
dimension higher. L3(T, t, a, b) folds a Möbius grid T to T ′ so that one more side length in a
dimension is reduced to a constant size. At the same time, from every panchromatic simplex
of T ′, one can find a panchromatic simplex of T efficiently. We should use ei as the vector
for the i-coordinate.
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L1(T, t, u): {Input: T = (C, d, r), t, u} {Output: (C ′, d, r′), r′ = r + (u− rt)et}

1. if p ∈ ∂Adr′ then C ′(p) = 0
2. else if −rt < pt < rt then C ′(p) = C(p)
3. else C ′(p) = 0

Figure 8 How L1(T, t, u) extends the coloring triple T = (C, d, r).

I Lemma 2.1 (L1(T, t, u): Padding a Dimension). Given a coloring triple T = (C, d, r) and
two integers 1 ≤ t ≤ d and u > rt, L1 constructs a new coloring triple T ′ = (C ′, d, r′) that
satisfies the following two conditions:
(A) r′t = u, and r′i = ri for all other i ∈ [d]. In addition, there exists a polynomial g1(n) such

that Size [C ′] = Size [C] +O(g1(Size [r′])), and T ′ can be computed in time polynomial
in Size [C ′]. We write T ′ = L1(T, t, u);

(B) From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic
simplex P of T in polynomial time.

Proof. Property A immediately follows from Figure 8. For Property B, let P ′ be a
panchromatic simplex of T ′, and Kp be the hypercube containing P ′. We first note that
−rt + 1 ≤ pt < rt− 1, because if pt ≥ rt− 1 or pt < −rt + 1, all colors on Kp will be 0 by the
color assignment. As C ′(q) = C(q) for all q ∈ Adr . Thus P ′ is also a panchromatic simplex
of the coloring triple T . J

Next, we add a dimension to the grid.

I Lemma 2.2 (L2(T, u): Adding a Dimension). Given a coloring triple T = (C, d, r) and
integer u ≥ 3, L2 constructs a new coloring triple T ′ = (C ′, d+ 1, r′) satisfying the following
conditions:
(A) r′d+1 = u, and r′i = ri for all i ∈ [d]. Moreover, there exists a polynomial g2(n) such

that Size [C ′] = Size [C] + O(g2(Size [r′])). T ′ can be computed in time polynomial in
Size [C ′]. We write T ′ = L2(T, u);

(B) From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic
simplex P of T in polynomial time.

Proof. For each point p ∈ Ad+1
r′ , we use p̂ to denote the point z ∈ Adr with zi = pi, ∀i ∈ [d].

The color assignment of C ′ is given in Figure 9. Clearly, Property A is true.
To prove Property B, we let P ′ ⊂ Kp be a panchromatic simplex of T ′. We note that

pd+1 = 0. For otherwise, Kp contains color d+ 1 only if pd+1 = −1, in which case, it only
contains color d+ 1 and 0, a contradiction. Therefore, the panchromatic simplex P ′ must be
in Kp for pd+1 = 0. The rest of vertices, those in p̂, must all be in Kp, which contains all
the colors except d+ 1, is therefore a panchromatic simplex of T . J

I Lemma 2.3 (L3(T, t, a, b): Dicephalic Snake Embedding). Given a coloring triple T =
(C, d, r) and integer 1 ≤ t ≤ d, if rt = a(2b + 1) + 5 for two integers a, b ≥ 1, then L3

constructs a new coloring triple T ′ = (C ′, d+1, r′) that satisfies the following conditions:
(A) r′t = a + 5, r′d+1 = 4b + 3, and r′i = ri for all other i ∈ [d]. Moreover, there exists a

polynomial g3(n) such that Size [C ′] = Size [C] +O(g3(Size [r′])) and T ′ can be computed
in time polynomial in Size [C ′]. We write T ′ = L3(T, t, a, b).

(B) From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic
simplex P of T in polynomial time.
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L2(T, u): {Input: T = (C, d, r), u} {Output: T ′ = (C ′, d + 1, r′), r′d+1 = u, (∀i : 1 ≤ i ≤
d)r′i = ri }

1. if p ∈ ∂Ad+1
r′ then C ′(p) = 0.

2. else if pd+1 = 1 then C ′(p) = C(p̂) where p̂ ∈ Zd satisfying p̂i = pi for all 1 ≤ i ≤ d.
3. else if pd+1 = 0 then C ′(p) = d+ 1.
4. else C ′(p) = 0

Figure 9 How L2(T, u) extends the coloring triple T = (C, d, r).

Figure 10 The two dimensional view of set W ⊂ Ad+1
r′ .

Proof. Consider the domains Adr ⊂ Zd and Ad+1
r′ ⊂ Zd+1 of our coloring triples. The

reduction L3(T, t, a, b) is carried out in three steps. First, we define a d-dimensional set
W ⊂ Ad+1

r′ that is large enough to contain Adr . Second, we define a (many to one) map
ψ from W to Adr that specifies an implicit embedding of Adr into W . Finally, we build a
function C ′ for Ad+1

r′ and show that from each panchromatic simplex of T ′, a panchromatic
simplex of T can be found in polynomial time.

A two dimensional view of W ⊂ Ad+1
r′ is illustrated in Figure 10. We use a (dicephalic)

snake-pattern to realize the longer tth dimension of Adr using the two-dimensional space
defined by a new shorter tth dimension and the (d+1)th dimension (smaller by a multiplicative
factor less than one) of Ad+1

r′ , such that it is roughly rt = r′t ∗ r′d+1 (in fact, rt = O(r′t ∗ r′d+1)).
Formally, W consists of points p ∈ Ad+1

r′ satisfying 1 ≤ pd+1 ≤ 4b+ 1 and
if pd+1 = 1, then 2 ≤ pt ≤ a+ 4 or −(a+ 4) ≤ pt ≤ −2;
if pd+1 = 4b+ 1, then −(a+ 2) ≤ pt ≤ a+ 2;
if pd+1 = 4(b− i)− 1 where 0 ≤ i ≤ b− 1, then 2 ≤ pt ≤ a+ 2 or −(a+ 2) ≤ pt ≤ −2;
if pd+1 = 4(b− i)− 3 where 0 ≤ i ≤ b− 2, then 2 ≤ pt ≤ a+ 2 or −(a+ 2) ≤ pt ≤ −2;
if pd+1 = 4(b− i)− 2 where 0 ≤ i ≤ b− 1, then pt = 2 or −2;
if pd+1 = 4(b− i) where 0 ≤ i ≤ b− 1, then pt = a+ 2 or −(a+ 2).

To build T ′, we embed the coloring triple T into W . The embedding is implicitly
given by a many-to-one map ψ from W to Adr , which will play a vital role in the coloring
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L3(T, t, a, b):
Input: T = (C, d, r), t, a, b, 1 ≤ t ≤ d, rt = a(2b+ 1) + 5, a, b ≥ 1
Output: T ′ = (C ′, d+ 1, r′), r′t = a+ 5, r′d+1 = 4b+ 3, (∀i 6= t, 1 ≤ i ≤ d)r′i = ri

1. if p ∈W then C ′(p) = C(ψ(p))
2. else if p ∈ ∂Ad+1

r′ then C ′(p) = 0
3. else if pd+1 = 0 then C ′(p) = d+ 1.
4. else if pd+1 = 4i where 1 ≤ i ≤ b and 0 ≤ |pt| ≤ a+ 1 then C ′(p) = d+ 1
5. else if pd+1 = 4i+ 1, 4i+ 2 or 4i+ 3 where 0 ≤ i ≤ b− 1 and |pt| ≤ 1 then C ′(p) = d+ 1
6. else C ′(p) = 0

Figure 11 How L3(T, t, a, b) extends the coloring triple T = (f, d, r).

and the analysis of our reduction. For each p ∈ W , we use p[m] to denote the point
q in Zd with qt = m and qi = pi for all other i ∈ [d]. We denote by the function
sgn(x) = 1 if x > 0,−1 if x < 0, 0 if x = 0. We define ψ(p) according to the following cases:

if pd+1 = 1, then ψ(p) = p[2ab · sgn(pt) + pt]
if pd+1 = 4b+ 1, then ψ(p) = p[pt];
if pd+1 = 4(b− i)− 1 where 0 ≤ i ≤ b− 1, then ψ(p) = p[((2i+ 2)a+ 4) · sgn(pt)− pt];
if pd+1 = 4(b− i)− 3 where 0 ≤ i ≤ b− 2, then ψ(p) = p[(2i+ 2)a · sgn(pt) + pt];
if pd+1 = 4(b− i)− 2 where 0 ≤ i ≤ b− 1, then ψ(p) = p[((2i+ 2)a+ 2) · sgn(pt)];
if pd+1 = 4(b− i) where 0 ≤ i ≤ b− 1, then ψ(p) = p[((2i+ 1)a+ 2) · sgn(pt)].

We let ψi(p) denote the ith component of ψ(p).

I Proposition 2.4 (Valid Boundary Condition Preserving). The coloring function C ′ described
in Figure 11 is valid on Ad+1

r′ .

Proof. First we show that C ′ satisfies the uniform color boundary condition (1) for all
p ∈ ∂Ad+1

r′ . We only need to prove every vertex p ∈W ∩ ∂Ad+1
r′ is colored zero, by Step 2 of

Figure 11.
∀p ∈ W ∩ ∂Ad+1

r′ , by the definition of ψ(·), we have pi = ±(r′i−1) if and only if
ψi(p) = ±(ri−1) for (i : d ≥ i ≥ 2). It follows that C ′(p) = C(ψ(p)) = 0 by the valid
boundary condition for C. Therefore, C ′ satisfies the valid boundary condition (1).

Next we show that C ′ satisfies the reversing face boundary condition (2).
If t > 2, obviously, C ′ satisfies the boundary condition (2), since we have no change in x1
nor x2 for any set of other variables.
If t = 1, we consider p = (r′1−1, x2, x3, . . . , xd, xd+1) and p′ =
(−r′1+1,−x2, x3, . . . , xd, xd+1). If xd+1 6= 1, C ′(p) = C ′(p′) = 0. If xd+1 = 1,
then p,p′ ∈ W . Thus C ′(p) = C(ψ(p)), C ′(p′) = C(ψ(p′)). Since C is valid,
C(ψ(p)) = C(ψ(p′))) by definition of ψ(·). Therefore, C ′(p) = C ′(p′).
If t = 2, we consider p = (r1−1, x′2, x3, . . . , xd, xd+1) and p′ =
(−r1+1,−x′2, x3, . . . , xd, xd+1). Because p and p′ are central symmetric on
the reversing plane, they are both in W or both not. If p,p′ ∈ W , then
C ′(p) = C(ψ(p)) = C(ψ(p′)) = C ′(p′)(since C is valid). If p,p′ are not in W ,
we have C ′(p) = C ′(p′) = 0 (where p is outsideW or pd+1 < 0) or C ′(p) = C ′(p′) = d+1
(where p is inside W ).

Therefore, C ′ is a valid coloring function on Ad+1
r′ . J
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Clearly, whether p ∈W or not can be decided in polynomial time by L3. Property A in
Lemma 2.3 follows from the construction in Figure 11.

Next, we establish Property B of Lemma 2.3.
The intuition behind the proof is as follows. In C ′, vertices to the inside of W are colored

in d+1, and vertices to the outside are colored in 0. Every (unit-size) hypercube Kp ⊂ Ad+1
r′

consists of Kp ∩W , whose image ψ(Kp ∩W ) is a (unit-size) hypercube in Adr , and either
vertices to the inside or the outside of W but not both. Let P ′ be a panchromatic simplex
of T ′ in Ad+1

r′ . Let Kp∗ be the hypercube containing P ′. Since hypercubes to the outside of
W do not have a vertex of color d+ 1, Kp∗ must lie to the inside of W . We will show that,
except the vertex of color d+ 1, every vertex p ∈ P ′ either belongs to W ∩Kp∗ , or it can be
mapped to a vertex q ∈W ∩Kp∗ , such that C ′(q) = C ′(p). Thus from P ′, we can recover
d+ 1 points in W ∩Kp∗ with d+ 1 distinct colors {0, 1, . . . , d}. Since C ′(p) = C(ψ(p)) for
all p ∈W , we can apply ψ to get a panchromatic simplex P of T .

Formally, we proceed to prove a collection of claims to cover all the possible cases of the
given panchromatic simplex P ′ of T ′. We use the following notation: For each p ∈ Ad+1

r′ ,
let p[m1,m2] denote the vertex q ⊂ Zd+1 such that qt = m1, qd+1 = m2 and qi = pi for all
other i ∈ [d].

I Claim 2.5. If p∗t = 0, then p∗d+1 = 4b. Furthermore, for every vertex p ∈ P ′ such that
C ′(p) 6= d+ 1, C(ψ(p[pt, 4b+ 1])) = C ′(p).

Proof. For the first part of the claim, we have the following contradictions if p∗d+1 6= 4b and
p∗t = 0.
1. If p∗d+1 = 4b+ 1, Kp∗ does not contain color d+ 1.
2. p∗d+1 < 0: C ′(p) ∈ {0, d+ 1}, the colors of vertices in Kp∗ can only be 0 or d+ 1.
3. p∗d+1 < 4b: p∗t = 0 implies pt ∈ {0, 1}. Therefore, each vertex q ∈ Kp∗ is colored according

one of the conditions in line 3, 4, 5 or 6 of Figure 11. For each q ∈ Kp∗ , C ′(q) = 0 or
d+ 1 from the construction in Figure 11.

Then, Kp∗ cannot be a panchromatic hypercube, contradicting the assumption of the claim.
Putting these cases together, we have p∗d+1 = 4b.

We now prove the second part of the claim. If pd+1 = 4b+ 1, then we are done, because
C(ψ(p)) = C ′(p) according to line 1 of Figure 11. Then pd+1 = 4b is the only other possibility.
Therefore, by the condition C ′(p) 6= d+ 1, according to Line 2 and 4 of Figure 11, we have
p ∈W ∩ ∂Ad+1

r′ and p[pt, 4b+ 1] = p. So we have C(ψ(p[pt, 4b+ 1])) = C ′(p[pt, 4b+ 1]) =
C ′(p), which completes the proof of the claim. J

I Claim 2.6. If p∗t = a+ 2 or a+ 3, then p∗d+1 = 0. In addition, for each vertex p ∈ P ′ such
that C ′(p) 6= d+ 1, C(ψ(p[pt, 1])) = C ′(p).

Proof. Obviously, p∗d+1 ≥ 0. If p∗d+1 > 0, then Kp∗ does not contain color d+ 1, so we have
p∗d+1 = 0. The first half of the claim holds.

For the second half of the claim, first we know that if p ∈ W , the claim follows. We
consider the following three cases:
1. pd+1 = 1: then p is in W , we have C(ψ(p[pt, 1])) = C ′(p).
2. p ∈ Ad+1

r′ \ ∂A
d+1
r′ : recall that C ′(q) = d+ 1 for all q ∈ Ad+1

r′ \ ∂A
d+1
r′ with qd+1 = 0, and

we know that pt ∈ {a+ 2, a+ 3, a+ 4}. So p is also in W in this case.
3. p ∈ ∂Ad+1

r′ : we have p[pt, 1] ∈ ∂Ad+1
r′ , and ψ(p) = ψ(p[pt, 1]), hence C(ψ(p[pt, 1])) =

C(ψ(p)) = C ′(p).
Combine these three cases, the second half of the claim follows. J
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I Claim 2.7. If p∗d+1 = 4b, then 0 ≤ p∗t ≤ a+ 1. Moreover, for each vertex p ∈ P ′ such that
C ′(p) 6= d+ 1, C(ψ(p[pt, 4b+ 1])) = C ′(p).

Proof. If p∗t > a+ 1, then Kp∗ does not contain color d+ 1. So 0 ≤ p∗t ≤ a+ 1. Similar to
the proof of Claim 2.5, we can prove the second part for the case when 0 ≤ pt ≤ a+ 1.

When pt = a+ 2, both p and p[pt, 4b+ 1] are in W , and we have ψ(p) = ψ(p[pt, 4b+ 1]).
Thus, C(ψ(p[pt, 4b+ 1])) = C(ψ(p)) = C ′(p). J

We can similarly prove the following claims.

I Claim 2.8. If p∗d+1 = 4i+ 1 or 4i+ 2 for some 0 ≤ i ≤ b− 1, then p∗t = 1. Moreover, for
each p ∈ P ′ such that C ′(p) 6= d+ 1, C(ψ(p[2, pd+1])) = C ′(p).

I Claim 2.9. If p∗d+1 = 4i for some 1 ≤ i ≤ b − 1, then 1 ≤ p∗t ≤ a + 1. In addition, for
each p ∈ P ′ such that C ′(p) 6= d+ 1, if 2 ≤ pt ≤ a+ 1, then C(ψ(p[pt, 4i+ 1])) = C ′(p); if
pt = 1, then C(ψ(p[2, 4i+ 1])) = C ′(p).

I Claim 2.10. If p∗d+1 = 4i − 1 for some 1 ≤ i ≤ b, then 1 ≤ p∗t ≤ a + 1. Moreover, for
each p ∈ P ′ such that C ′(p) 6= d+ 1, if 2 ≤ pt ≤ a+ 1, then C(ψ(p[pt, 4i− 1])) = C ′(p); if
pt = 1, then C(ψ(p[2, 4i− 1])) = C ′(p).

I Claim 2.11. If p∗d+1 = 0, then 1 ≤ p∗t ≤ a+ 3. In addition, for each vertex p ∈ P ′ such
that C ′(p) 6= d+ 1, if 2 ≤ p∗t ≤ a+ 3, then p ∈W (and thus, C(ψ(p)) = C ′(p)); if p∗t = 1,
then C ′ψ(p[2, 1])) = C ′(p).

In addition,

I Claim 2.12. p∗d+1 6= 4b+ 1.

Proof. If p∗d+1 = 4b+ 1 then Kp∗ does not contain color d+ 1. J

Here we do not list the cases where pt < 0 where they are all the same as the above claims
since W is symmetric (technically, there is one unit-sized bias between the negative and
positive cases about the tth dimension). Notice that p∗d+1 ≥ 0 in our construction of T ′.
Suppose that P ′ is a panchromatic simplex of T ′, and Kp∗ be the hypercube containing
P ′. Then P ′ and p∗ must satisfy the conditions of one of the claims above. By that claim,
we can transform every vertex p ∈ P ′, (aside from the one that has color d+ 1) back to a
vertex q in Adr to obtain a set P from P ′. Since P is accommodated, it is a panchromatic
simplex of t. Thus, with all the claims above, we specify an efficient algorithm to compute a
panchromatic simplex P of T given a panchromatic simplex P ′ of T ′. J

C Proof of The PPA-hardness in Theorem 4.6

Proof. Starting with the two dimensional case, a folding process presented next changes the
size of each dimension one by one to make the size in accordance to that of the well-behaved
functions. Each step uses operations L1(T, t, u), L2(T, u), and L3(T, t, a, b) to achieve this
goal and maintains the validity of boundary conditions by Lemma 2.1, 2.2 and 2.3.

The folding process from Chen et al. [9] can now be copied over by using our versions
of the three basic operations, L1, L2 and L3, introduced above. Only some little changes
are necessary in order to deal with the details for the non-orientable model. We present a
simplified version here.
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The Construction of T 3m′−14 from T 1

1. for any t from 0 to m′ − 6 do
2. let u = (2(m′−t−1)(l−2) − 5)(2l−1 − 1) + 5
3. T 3t+2 = L1(T 3t+1, 1, u)
4. T 3t+3 = L3(T 3t+2, 1, 2(m′−t−1)(l−2), 2l−2 − 1)
5. T 3t+4 = L1(T 3t+3, t+ 3, 2l)

Figure 12 The Construction of T 3m′−14 from T 1.

The Construction of Tw′ from T 3m′−14

1. let t = 0
2. while T 3(m′+t)−14 = (C3(m′+t)−14,m′ + t− 3, r3(m′+t)−14) satisfies r3(m′+t)−14

1 > 2l do
3. let k = d(r3(m′+t)−14

1 − 5)/(2l−1 − 1)e+ 5
4. T 3(m′+t)−13 = L1(T 3(m′+t)−14, 1, (k − 5)(2l−1 − 1) + 5)
5. T 3(m′+t)−12 = L3(T 3(m′+t)−13, 1, k, 2l−2 − 1)
6. T 3(m′+t)−11 = L1(T 3(m′+t)−12,m′ + t− 2, 2l), set t = t+ 1
7. let w′ = 3(m′ + t)− 13 and Tw′ = L1(T 3(m′+t)−14, 1, 2l)

Figure 13 The Construction of T w′ from T 3m′−14.

Formally, let (C, 02n) be an input instance of Möbius Spernerf2 , already proven PPA-
complete. Recall that f2(n) = bn/2c. Let

l = f(11n) ≥ 3,m′ =
⌈

n

l − 2

⌉
, and m =

⌈
11n
l

⌉
.

For any well-behaved function f , we reduce Möbius Spernerf2 to Möbius Spernerf by
iteratively constructing a sequence of coloring triple T = {T 0, T 1, . . . , Tw} for some w =
O(m), where T0 = (C, 2, (2n, 2n)) and Tw = (Cw,m, rw) such that rw ∈ Zm and rwi = 2l for
any i, 1 ≤ i ≤ m. At each phase t, we employ one of the three technical lemmas L1,L2 and L3

described in the previous subsection with appropriate parameters to construct T t+1 from T t.
First, we invoke L1

(
T 0, 1, 2m′(l−2)

)
to get T 1 =

(
C1, 2,

(
2m′(l−2), 2n

))
, where the pre-

condition of L1 holds as m′(l−2) ≥ n. Next we call the procedure in Figure 12. During every
loop, the first component of r decreases by a factor of 2l−2 while the dimension of the space in-
creases by 1 and the new dimension has a size already satisfied the requirement. So when finish-
ing this function, we get a temporary coloring triple T 3m′−14 =

(
C3m′−14, d3m′−14, r3m′−14

)
,

such that

d3m′−14 = m′−3, r3m′−14
1 = 25(l−2), r3m′−14

2 = 2n and r3m′−14
i = 2l, for any i : 3 ≤ i ≤ m′−3.

Next, well invoke the procedure given in Figure 13. Note that the while-loop must terminate
in at most 8 iterations because we start with r3m′−14

1 = 25(l−2). The procedure returns a
coloring triple Tw′ =

(
Cw

′
, dw

′
, rw′

)
that satisfies

w′ ≤ 3m′ + 11, dw
′
≤ m′ + 5, rw

′

1 = 2l, rw
′

2 = 2n, rw
′

i = 2l, for any i : 3 ≤ i ≤ dw
′
.
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Then we repeat the whole process above on the second coordinate and obtain a coloring
triple Tw′′ =

(
Cw

′′
, dw

′′
, rw′′

)
such that

w′′ ≤ 6m′ + 21, dw
′′
≤ 2m′ + 8 and rw

′′

i = 2l, for any i : 1 ≤ i ≤ dw
′′
.

Now follow our initial definition for m and m′, we have

dw
′′
≤ 2m′ + 8 ≤ 2

(
n

l − 2 + 1
)

+ 8 ≤ 2
(
n

l/3

)
+ 10 = 6n

l
+ 10 ≤ 11n

l
≤ m.

Finally, we repeat applying L2 for m − dw′′ times with parameter u = 2l to obtain the
final coloring triple Tw = (Cw) ,m, rw where rwi = 2l for any i, 1 ≤ i ≤ m. It follows our
construction, w = O(m).

Now we prove that the whole construction is indeed a reduction from Möbius Spernerf2

to Möbius Spernerf . Let T i =
(
Ci, di, ri

)
, as sequence

{
Size

[
ri
]}

0≤i≤w is non-decreasing
and w = O(m) = O(n), by Property A of Lemma 2.1, 2.2 and 2.3, there exists a polynomial
g(n) such that Size [Cw] = Size [C]+O(g(n)). By these Properties A again, we can construct
the whole sequence T and in particularly, Tw =

(
Cw,m, r2), in time polynomial in Size [C].

As we know, the pair
(
Cw, 011n) is an input instance of Möbius Spernerf . Given a panchro-

matic simplex P of
(
Cw, 011n), using the algorithm in Property B of Lemma 2.1, 2.2 and 2.3,

we can compute a sequence of panchromatic simplex Pw = P, Pw−1, . . . , P 0 iteratively in
polynomial time, where P t is a panchromatic simplex of T t and can be computed from the
panchromatic simplex P t+1 of T t+1. In the end, we obtain P 0, which is a panchromatic set
of
(
C, 02n). J
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Abstract
Let f(x) = f(x1, . . . , xn) =

∑
|S|≤k aS

∏
i∈S xi be an n-variate real multilinear polynomial of

degree at most k, where S ⊆ [n] = {1, 2, . . . , n}. For its one-block decoupled version,

f̆(y, z) =
∑
|S|≤k

aS
∑
i∈S

yi
∏

j∈S\{i}

zj ,

we show tail-bound comparisons of the form

Pr
[∣∣∣f̆(y, z)

∣∣∣ > Ckt
]
≤ Dk Pr

[
|f(x)| > t

]
.

Our constants Ck, Dk are significantly better than those known for “full decoupling”. For example,
when x,y, z are independent Gaussians we obtain Ck = Dk = O(k); when x,y, z are ±1 random
variables we obtain Ck = O(k2), Dk = kO(k). By contrast, for full decoupling only Ck = Dk =
kO(k) is known in these settings.

We describe consequences of these results for query complexity (related to conjectures of
Aaronson and Ambainis) and for analysis of Boolean functions (including an optimal sharpening
of the DFKO Inequality).
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1 Introduction

Broadly speaking, decoupling refers to the idea of analyzing a complicated random sum
involving dependent random variables by comparing it to a simpler random sum where some
independence is introduced between the variables. For perhaps the simplest example, if
(aij)ni,j=1 ∈ R and x1, . . . ,xn,y1, . . . ,yn are independent uniform ±1 random variables, we
might ask how the moments of

n∑
i,j=1
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compare. The theory of decoupling inequalities developed originally in the study of Banach
spaces, stochastic processes, and U -statistics, mainly between the mid-’80s and mid-’90s;
see [10] for a book-length treatment.

The powerful tool of decoupling seems to be relatively under-used in theoretical computer
science. ([7] proves a variant of Hanson-Wright Inequality using decoupling inequalities with
degree two; a recent work of Makarychev and Sviridenko [31] provides another exception,
though they use a much different kind of decoupling than the one studied in this paper.)
In this work we will observe several places where decoupling can be used in a “black-box”
fashion to solve or simplify problems quite easily.

The main topic of the paper, however, is to study a partial form decoupling that we
call “one-block decoupling”. The advantage of one-block decoupling is that for degree-k
polynomials we can achieve bounds with only polynomial dependence on k, as opposed to
the exponential dependence on k that arises for the standard full decoupling. Although
one-block decoupling does not introduce as much independence as full decoupling does, we
show several applications where one-block decoupling is sufficient.

The applications we describe in this paper are the following:
(Theorem 2.5.) Aaronson and Ambainis’s conjecture concerning the generality of their [5,
Theorem 4] holds. I.e., there is a sublinear-query algorithm for estimating any bounded,
constant-degree Boolean function.
(Theorem 2.8.) The Aaronson–Ambainis Conjecture [2, 4] holds if and only if it holds
for one-block decoupled functions. We also show how the best known result towards
the conjecture can be proven extremely easily (1) in the case of one-block decoupled
functions.
(Corollary 3.5.) An optimal form of the DFKO Fourier Tail Bound [13]: any bounded
Boolean function f that is far from being a junta satisfies

∑
|S|>k f̂(S)2 ≥ exp(−O(k2)).

Relatedly (Corollary 3.4), any degree-k real-valued Boolean function with Ω(1) variance
and small influences must exceed 1 in absolute value with probability at least exp(−O(k2));
this can be further improved to exp(−O(k)) if f is homogeneous.

1.1 Definitions
Throughout this section, let f denote a multilinear polynomial of degree at most k in n

variables x = (x1, . . . , xn), with coefficients aS from a Banach space:

f(x) =
∑
S⊆[n]
|S|≤k

aSxS ,

where we write xS =
∏
i∈S xi for brevity. (The coefficients aS will be real in all of our

applications; however we allow them to be from a Banach space since the proofs are no more
complicated.)

We begin by defining our notion of partial decoupling:

I Definition 1.1. The one-block decoupled version of f , denoted f̆ , is the multilinear
polynomial over 2n variables y = (y1, . . . , yn) and z = (z1, . . . , zn) defined by

f̆(y, z) =
∑
S⊆[n]

1≤|S|≤k

aS
∑
i∈S

yizS\i.

In other words, each monomial term like x1x3x7 is replaced with y1z3z7 + z1y3z7 + z1z3y7.
In case f is homogeneous we have the relation f̆(x, x) = kf(x).

Let us also recall the traditional notion of decoupling:
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I Definition 1.2. The (fully) decoupled version of f , which we denote by f̃ , is a multilinear
polynomial over k blocks x(1), . . . , x(k) of n variables; each x(i) is x(i) = (x(i)

1 , . . . , x
(i)
n ). It is

formed as follows: for each monomial xS in f , we replace it with the average over all ways of
assigning its variables to different blocks. More formally,

f̃(x(1), . . . , x(k)) = a∅ +
∑
S⊆[n]

1≤|S|≤k

(k − |S|)!
k! · aS

∑
injective
b:S→[k]

∏
i∈S

x
(b(i))
i .

The definition is again simpler if f is homogeneous. For example, if f is homogeneous of
degree 3, then each monomial in f like x1x3x7 is replaced in f̃ with

1
6 (w1y2z3 + w1z2y3 + y1w2z3 + y1z2w3 + z1w2y3 + z1y2w3) .

(Here we wrote w, y, z instead of x(1), x(2), x(3), for simplicity.) Note that f̃(x, x, . . . , x) =
f(x) always holds, even if f is not homogeneous.

We conclude by comparing the two kinds of decoupling. Assume for simplicity that f is
homogeneous of degree k. The fully decoupled version f̃(x(1), . . . , x(k)) is in “block-multilinear
form”; i.e., each monomial contains exactly one variable from each of the k “blocks”. This
kind of structure has often been recognized as useful in theoretical computer science; see,
e.g., [24, 29, 21, 5]. By contrast, the one-block decoupling f̆(y, z) does not have such a simple
structure; we only have that each monomial contains exactly one y-variable. Nevertheless
we will see several examples in this paper where having one-block decoupled form is just as
useful as having fully decoupled form. And as mentioned, we will show that it is possible to
achieve one-block decoupling with only poly(k) parameter losses, whereas full decoupling in
general suffers exponential losses in k.

I Remark 1.1. We have also chosen different “scalings” for the two kinds of decoupling.
For example, in the homogeneous case, we have f̃(y, z, z, . . . , z) = 1

k · f̆(y, z) and also
Var[f̃ ] = 1

k·k! Var[f̆ ] for f : {±1}n → R.

1.2 A useful inequality

Several times we will use the following basic inequality from analysis of Boolean functions,
which relies on hypercontractivity; see [33, Theorems 9.24, 10.23].

I Theorem 1.3. Let f(x) =
∑
|S|≤k aSxS be a nonconstant n-variate multilinear polynomial

of degree at most k, where the coefficients aS are real. Let x1, . . . ,xn be independent uniform
±1 random variables. Then

Pr
[
f(x) > E[f ]

]
≥ 1

4e
−2k.

This also holds if some of the xi’s are standard Gaussians.1 Finally, if the xi’s are not
uniform ±1 random variables, but they take on each value ±1 with probability at least λ, then
we may replace 1

4e
−2k by 1

4 (e2/2λ)−k.

1 Although it is not stated in [33], an identical proof works since Gaussians have the same hypercontractivity
properties as uniform ±1 random variables.
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2 Decoupling theorems, and query complexity applications

2.1 Classical decoupling inequalities, and an application in query
complexity

Traditional decoupling inequalities compare the probabilistic behavior of f and f̃ under
independent random variables (usually symmetric ones; e.g., standard Gaussians). The
easier forms of the inequalities compare expectations under a convex test function; e.g.,
they can be used to compare p-norms. The following was essentially proved in [9]; see [10,
Theorem 3.1.1,(3.4.23)–(3.4.27)]:

I Theorem 2.1. Let Φ : R≥0 → R
≥0 be convex and nondecreasing. Let x = (x1, . . . ,xn)

consist of independent real random variables with all moments finite, and let x(1), . . . ,x(k)

denote independent copies of x. Then

E
[
Φ
(∥∥∥f̃ (x(1), . . . ,x(k)

)∥∥∥)] ≤ E
[
Φ
(
Ck ‖f (x)‖

)]
,

where Ck = kO(k) is a constant depending only on k.

I Remark. A reverse inequality also holds, with worse constant Ck = k−O(k2).
Another line of research gave comparisons between tail bounds for f and f̃ . This

culminated in the following theorem from [11, 18]; see also [10, Theorem 3.4.6]:

I Theorem 2.2. In the setting of Theorem 2.1, for all t > 0,

Pr
[∥∥∥f̃ (x(1), . . . ,x(k)

)∥∥∥ > Ckt
]
≤ Dk Pr

[
‖f (x)‖ > t

]
,

where Ck = Dk = kO(k). The analogous reverse bound also holds.

I Remark 2.1. Kwapień [28] showed that when the xi’s are α-stable random variables,
the constant Ck in Theorem 2.1, can be improved to kk/α/k!; this is kk/2/k! for standard
Gaussians. Furthermore, for uniform ±1 random variables Kwapień’s proof goes through
as if they were 1-stable; thus in this case one may take Ck = kk/k! ≤ ek. In the Gaussian
setting with homogeneous f , Kwapień obtains Ck = kk/2/k! and Dk = 2k for Theorem 2.2.

For function f(x) =
∑
|S|≤k aSxS where coefficients aS are real, we denote its p-norm

‖f‖p = E[f(x)p]1/p. Furthermore if f is a bounded function with input x, we denote the
infinity norm

‖f‖∞ = lim
p→∞

‖f‖p = sup
x
|f(x)|.

I Corollary 2.3. In the setting of Theorem 2.1, it holds that ‖f̃‖∞ ≤ kO(k)‖f‖∞. Further,
if f : {±1}n → R then ‖f̃‖∞ ≤ (2e)k‖f‖∞.

Proof. The first statement is an immediate corollary of either Theorem 2.1 (taking Φ(u) = up

and p→∞) or Theorem 2.2 (taking t = ‖f‖∞). The second statement is immediate from
Remark 2.1, with the better constant kk/k! in case f is homogeneous. In the general case,
we use the fact that if f=j denotes the degree-j part of f , then ‖f=j‖∞ ≤ 2j‖f‖∞; this is
also proved by Kwapień [28, Lemma 2]. Then

∥∥∥f̃∥∥∥
∞

=

∥∥∥∥∥∥
k∑
j=0

f̃=j

∥∥∥∥∥∥
∞

≤
k∑
j=0

∥∥∥f̃=j
∥∥∥
∞
≤

k∑
j=0

(jj/j!)
∥∥f=j∥∥

∞ ≤
k∑
j=0

(jj/j!)2j ‖f‖∞

≤ (2e)k‖f‖∞. J
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I Remark. Classical decoupling theory has not been too concerned with the dependence of
constants on k, and most statements like Theorem 2.2 in the literature simply write Dk = Ck
to conserve symbols. However there are good reasons to retain the distinction, since making
Ck small is usually much more important than making Dk small. For example, we can
deduce Corollary 2.3 from Theorem 2.2 regardless of Dk’s value.

Let us give an example application of these fundamental decoupling results. In a
recent work comparing quantum query complexity to classical randomized query complexity,
Aaronson and Ambainis [5] proved2 the following:

I Theorem 2.4. Let f be an N -variate degree-k homogeneous block-multilinear polynomial
with real coefficients. Assume that under uniformly random ±1 inputs we have ‖f‖∞ ≤ 1.
Then there is a randomized query algorithm making 2O(k)(N/ε2)1−1/k nonadaptive queries
to the coordinates of x ∈ {±1}N that outputs an approximation to f(x) that is accurate to
within ±ε (with high probability).

The authors “strongly conjecture[d]” that the assumption of block-multilinearity could be
removed, and gave a somewhat lengthy proof of this conjecture in the case of k = 2, using [13]
. We note that the full conjecture follows almost immediately from full decoupling:

I Theorem 2.5. Aaronson and Ambainis’s Theorem 2.4 holds without the assumption of
block-multilinearity or homogeneity.

Proof. Given a non-block-multilinear f on N variables ranging in {±1}, consider its full
decoupling f̃ on kN variables. By Corollary 2.3 we have ‖f̃‖∞ ≤ (2e)k. Let g = (2e)−kf̃ ,
so that g : {±1}kN → [−1,+1] is a degree-k block-multilinear polynomial with f(x) =
(2e)kg(x, x, . . . , x). Now given query access to x ∈ {±1}N and an error tolerance ε, we apply
Theorem 2.4 to g(x, x, . . . , x) with error tolerance ε1 = (2e)−kε; note that we can simulate
queries to (x, x, . . . , x) using queries to x. This gives the desired query algorithm, and it
makes 2O(k)(kN/ε21)1−1/k = 2O(k)(N/ε2)1−1/k queries as claimed. There is one more minor
point: Theorem 2.4 requires its function to be homogeneous in addition to block-multilinear.
However this assumption is easily removed by introducing k dummy variables treated as +1,
and padding the monomials with them. J

2.2 Our one-block decoupling theorems, and the AA Conjecture
We now state our new versions of Theorems 2.1, 2.2 which apply only to one-block decoupling,
but that have polynomial dependence of Ck on k. Proofs are deferred to Section 4.

As before, let f(x) =
∑
|S|≤k aSxS be an n-variate multivariate polynomial of degree at

most k with coefficients aS in a Banach space; let x = (x1, . . . ,xn) consist of independent
real random variables with all moments finite, and let y, z be independent copies. We
consider three slightly different hypotheses:

H1: x1, . . . ,xn ∼ N(0, 1) are standard Gaussians.
H2: x1, . . . ,xn are uniformly random ±1 values.
H3: x1, . . . ,xn are uniformly random ±1 values and f is homogeneous.

2 Actually, there is a small gap in their proof. In the line reading “By the concavity of the square root
function. . . ”, they claim that ‖X‖1 ≥ ‖X‖2 when X is a degree-k polynomial of uniformly random ±1
bits. In fact the inequality goes the other way in general. But the desired inequality does hold up to a
factor of ek by [33, Theorem 9.22], and this is sufficient for their proof.
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I Theorem 2.6. If Φ : R≥0 → R≥0 is convex and nondecreasing, then

E
[
Φ
(∥∥∥f̆ (y, z)

∥∥∥)] ≤ E
[
Φ
(
Ck ‖f (x)‖

)]
.

Also, if t > 0 (and we assume f ’s coefficients aS are real under H2, H3), then

Pr
[∥∥∥f̆ (y, z)

∥∥∥ > Ckt
]
≤ Dk Pr

[
‖f (x)‖ > t

]
.

Here

Ck =


O(k) under H1,
O(k2) under H2,
O(k3/2) under H3,

Dk =
{
O(k) under H1,
kO(k) under H2, H3.

I Remark. It may seem that for the Φ-inequality in the Gaussian case, Kwapień’s result
mentioned in Remark 2.1 is better than ours, since he achieves full decoupling with a better
constant than we get for one-block decoupling. But actually they are incomparable; the
reason is the different scaling mentioned in Remark 1.1.

I Remark. As we will explain later in Remark 3.1, the bound Ck = O(k) under H1 is best
possible (assuming that Dk ≤ exp(O(k2))).

An immediate consequence of the above theorem, as in Corollary 2.3, is the following:

I Corollary 2.7. If f : {±1}n → R then ‖f̆‖∞ ≤ O(k2)‖f‖∞.

Let us now give an example of how one-block decoupling can be as useful as full decoupling,
and why it is important to obtain Ck = poly(k). A very notable open problem in analysis
of Boolean functions is the Aaronson–Ambainis (AA) Conjecture, originally proposed in
2008 [2, 4]:

AA Conjecture. Let f : {±1}n → [−1,+1] be computable by a multilinear polynomial of
degree at most k, f(x) =

∑
|S|≤k aSxS. Then MaxInf i[f ] ≥ poly(Var[f ]/k).

Here we use the standard notations for influences and variance:

MaxInf i[f ] = max
i∈[n]
{Inf i[f ]} , Inf i[f ] =

∑
S3i

a2
S , Var[f ] =

∑
S 6=∅

a2
S , ‖f‖2

2 =
∑
S

a2
S .

The AA Conjecture is known to imply (and was directly motivated by) the following
folklore conjecture concerning the limitations of quantum computation, dated to 1999 or
before [4]:

Quantum Conjecture. Any quantum query algorithm solving a Boolean decision problem
using T queries can be correctly simulated on a 1 − ε fraction of all inputs by a classical
query algorithm using poly(T/ε) queries.

Because of their importance for quantum computation, Aaronson has twice listed these
conjectures as “semi-grand challenges for quantum computing theory” [1, 3].

The best known result in the direction of the AA Conjecture [4] obtains an influence
lower bound of poly(Var[f ])/ exp(O(k)), using the DFKO Inequality [13]. Here we observe
that there is a “one-line” deduction of this bound under the assumption that f is one-block
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decoupled.3 To see this, suppose that f is indeed one-block decoupled, so it can be written as
f(y, z) =

∑n
i=1 yigi(z), where gi(z) =

∑
S3i aSzS\i is the ith “derivative” of f . Observe that

‖gi‖2
2 = Inf i[f ] and hence

∑n
i=1 ‖gi‖2

2 ≥ Var[f ]. Also note that for any z ∈ {±1}n we must
have

∑n
i=1 |gi(z)| ≤ 1, as otherwise we could achieve |f(y, z)| > 1 by choosing y ∈ {±1}n

appropriately. Taking expectations we get
∑n
i=1 ‖gi‖1 ≤ 1, and hence

ek−1 ≥ ek−1
n∑
i=1
‖gi‖1 ≥

n∑
i=1
‖gi‖2 ≥

∑n
i=1 ‖gi‖2

2
maxni=1 ‖gi‖2

≥ Var[f ]
maxni=1

√
Inf i[f ]

⇒ MaxInf [f ] ≥ e2−2k Var[f ]2, (1)

where the second inequality used the basic fact in analysis of Boolean functions [33, Theo-
rem 9.22] that ‖g‖2 ≤ ek−1‖g‖1 for g : {±1}n → R of degree at most k − 1.

The above gives a good illustration of how even one-block decoupling can already greatly
simplify arguments in analysis of Boolean functions. We feel that (1) throws into sharp relief
the challenge of improving exp(−O(k)) to 1/poly(k) for the AA Conjecture. We now use
our results to show that the assumption that f is one-block decoupled is completely without
loss of generality.

I Theorem 2.8. The AA Conjecture holds if and only if it holds for one-block decoupled
functions f .

Proof. Suppose f : {±1}n → [−1,+1] has degree at most k. By Corollary 2.7 we get that
‖f̆‖∞ ≤ Ck = O(k2). Now g = C−1

k f̆ is one-block decoupled and has range [−1,+1]. Assum-
ing the AA Conjecture holds for it, we get some i ∈ [2n] such that Inf i[g] ≥ poly(Var[g]/k).
Certainly this implies Inf i[f̆ ] ≥ poly(Var[f̆ ]/k). It is easy to see that Inf i[f ] = Inf i[f̆ ] and
Inf i[f ] ≥ Inf i+n[f̆ ]/(k − 1) for all i ∈ [n]. Therefore letting i′ = max{i, i − n} ∈ [n], we
have Inf i′ [f ] ≥ Inf i[f̆ ]/(k − 1), and also Var[f̆ ] ≥ Var[f ]. Thus Inf i′ [f ] ≥ poly(Var[f ]/k),
confirming the AA Conjecture for f . J

In particular, by combining this with (1) we recover the known poly(Var[f ])/ exp(O(k))
lower bound for the AA Conjecture as applied to general f .

I Remark. Aaronson and Ambainis [5] recently observed that for the purposes of deriving the
Quantum Conjecture, it suffices to prove the AA Conjecture for fully decoupled f . However
the AA Conjecture is of significant interest in analysis of Boolean functions in and of itself,
even independent of the Quantum Conjecture. Thus we feel Theorem 2.8 is worth knowing,
especially in light of the simple argument (1).

3 Tight versions of the DFKO theorems

This section is concerned with analysis of Boolean functions f : {±1}n → R. We will use
traditional Fourier notation, writing f(x) =

∑
S⊆[n] f̂(S)xS . A key theme in this field is the

dichotomy between functions with “Gaussian-like” behavior and functions that are essentially
“juntas”. Recall that f is said to be an (ε, C)-junta if ‖f − g‖2

2 ≤ ε for some g : {±1}n → R
depending on at most C input coordinates. Partially exemplifying this theme is a family
of theorems stating that any Boolean function f which is not essentially a junta must have
a large “Fourier tail” – something like

∑
|S|>k f̂(S)2 > δ. Examples of such results include

3 This observation is joint with John Wright.
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Friedgut’s Average Sensitivity Theorem [15], the FKN Theorem [17] (sharpened in [19, 33]),
the Kindler–Safra Theorem [27, 25], and the Bourgain Fourier Tail Theorem [8]. The last
of these implies that any f : {±1}n → {±1} which is not a (.01, kO(k))-junta must satisfy∑
|S|>k f̂(S)2 > k−1/2+o(1). This k−1/2+o(1) bound was made more explicit in [23], and the

optimal bound of Ω(k−1/2) was obtained in [26]. These “Fourier tail” theorems have had
application in fields such as PCPs and inapproximability [22, 12], sharp threshold theory [16],
extremal combinatorics [14], and social choice [17].

All of the aforementioned theorems concern Boolean-valued functions; i.e., those with
range {±1}. By contrast, the DFKO Fourier Tail Theorem [13] is a result of this flavor for
bounded functions; i.e., those with range [−1,+1].

DFKO Fourier Tail Theorem. Suppose f : {±1}n → [−1,+1] is not an (ε, 2O(k)/ε2)-junta.
Then∑

|S|>k

f̂(S)2 > exp(−O(k2 log k)/ε).

Most applications do not use this Fourier tail theorem directly. Rather, they use a key
intermediate result, [13, Theorem 3], which we will refer to as the “DFKO Inequality”. This
was the case, for example, in a recent work on approximation algorithms for the Max-kXOR
problem [6].

DFKO Inequality. Suppose f : {±1}n → R has degree at most k and Var[f ] ≥ 1. Let t ≥ 1
and suppose that MaxInf [f ] ≤ 2−O(k)/t2. Then Pr[|f(x)| > t] ≥ exp(−O(t2k2 log k)).

Returning to the theme of “Gaussian-like behavior” versus “junta” behavior, we may add
that the DFKO results straightforwardly imply (by the Central Limit Theorem) analogous,
simpler-to-state results concerning functions on Gaussian space and Hermite tails. We record
these generic consequences here; see, e.g., [33, Sections 11.1, 11.2] for a general discussion of
such implications, and the definitions of Hermite coefficients f̂(α).

I Corollary 3.1. Any f : Rn → [−1,+1] satisfies the Hermite tail bound∑
|α|>k

f̂(α)2 > exp(−O(k2 log k)/Var[f ]).

Furthermore, suppose z is a standard n-dimensional Gaussian random vector and t ≥ 1.
Then any n-variate polynomial f of degree at most k with Var[f(z)] ≥ 1 satisfies Pr[|f(z)| >
t] ≥ exp(−O(t2k2 log k)).

Even though the Gaussian results in Corollary 3.1 are formally easier than their Boolean
counterparts, we are not aware of any way to prove them – even in the case n = 1 – except
via DFKO.

Tightness of the bounds. In [13, Section 6] it is shown that the results in Corollary 3.1
are tight, up to the log k factor in the exponent; this implies the same statement about the
DFKO Fourier Tail Theorem and the DFKO Inequality. The tight example in both cases is
essentially the univariate, degree-k Chebyshev polynomial.4 In the next section we will show

4 Formally speaking, [13, Section 6] only argues tightness of the Boolean theorems, but their constructions
are directly based on the degree-k Chebyshev polynomial applied to a single standard Gaussian.
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how to use our one-block decoupling result to remove the log k in the exponential from both
DFKO theorems. The results immediately transfer to the Gaussian setting, and we therefore
obtain the tight exp(−Θ(k2)) bound for all versions of the inequality.

Our method of proof is actually to first prove the results in the Gaussian setting, where
the one-block decoupling makes the proofs quite easy. Then we can transfer the results to
the Boolean setting by using the Invariance Principle [32]. This methodology – proving the
more natural Gaussian tail bound first, then transferring the result to the Boolean setting
via Invariance – is quite reminiscent of how the optimal form of Bourgain’s Fourier Tail
Theorem was recently obtained [26].

There is actually an additional, perhaps unexpected, bonus of our proof methodology;
we show that the bound in the DFKO Inequality can be improved from exp(−O(t2k2)) to
exp(−O(t2k)) whenever f is homogeneous.

3.1 Proofs of the tight DFKO theorems
We begin with a tail-probability lower bound for one-block decoupled polynomials of Gaus-
sians.

I Lemma 3.2. Suppose f(y, z) =
∑n
i=1 yigi(z) is a one-block decoupled polynomial on n+ n

variables, with real coefficients and degree at most k. Let y, z ∈ N(0, 1)n be independent
standard n-dimensional Gaussians and write

σ2 = Var[f(y, z)] =
n∑
i=1
‖gi‖2

2. (2)

Then for u > 0 we have Pr[|f(y, z)| > u] ≥ exp(−O(k + u2/σ2)).

Proof. Let v(z) =
∑n
i=1 gi(z)2, a polynomial of degree at most 2(k− 1) in z1, . . . , zn. By (2)

we have E[v(z)] = σ2. We now use Theorem 1.3 to get

Pr[v(z) > σ2] ≥ 1
4e
−2(2k−1) = exp(−O(k)).

On the other hand, for any outcome z = z we have that f(y, z) ∼ N(0, v(z)). Thus

v(z) > σ2 =⇒ Pr[|f(y, z)| > u] ≥ Ω(e−u
2/2σ2

).

Combining the previous two statements completes the proof, since y and z are independent.
J

We can now prove an optimal version of the DFKO Inequality in the Gaussian setting. It
is also significantly better in the homogeneous case.

I Theorem 3.3. Let f : Rn → R be a polynomial of degree at most k, and let x ∼ N(0, 1)n
be a standard n-dimensional Gaussian vector. Assume Var[f(x)] ≥ 1. Then for t ≥ 1 it holds
that Pr[|f(x)| > t] ≥ exp(−O(t2k2)). Furthermore, if f is multilinear and homogeneous then
the lower bound may be improved to exp(−O(t2k)).

Proof. For any n-variate polynomial of Gaussians, we can find an N -variate multilinear
polynomial of Gaussians of no higher degree that is arbitrarily close in Lévy distance (see,
e.g., [20, Lemma 15], or use the CLT to pass to ±1 random variables, then Invariance to pass
back to Gaussians). Note, however, that this transformation does not preserve homogeneity.
In any case, we can henceforth assume f is multilinear, f(x) =

∑
|S|≤k aSxS .
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For independent y, z ∼ N(0, 1)n, observe that

Var[f̆(y, z)] =
k∑
j=1

j
∑
|S|=j

a2
S ≥

∑
S 6=∅

a2
S = Var[f(x)] ≥ 1,

and if f is homogeneous we get the better bound Var[f̆(y, z)] ≥ k. By our Theorem 2.6 on
one-block decoupling, we have

Pr
[∣∣∣f (x)

∣∣∣ > t
]
≥ D−1

k Pr
[∣∣∣f̆ (y, z)

∣∣∣ > Ckt
]
,

where Ck = Dk = O(k). The theorem is now an immediate consequence of Lemma 3.2. J

I Remark 3.1. A consequence of this proof is that – assuming Dk ≤ exp(O(k2)) – it is
impossible to asymptotically improve on our Ck = O(k) in Theorem 2.6 in the Gaussian
setting H1. Otherwise, we would achieve a bound of exp(−o(k2)) in Theorem 3.3, contrary
to the example in [13, Section 6].

We can now obtain the sharp DFKO Inequality in the Boolean setting by using the
Invariance Principle.

I Corollary 3.4. Theorem 3.3 holds when x ∼ {±1}n is uniform and we additionally assume
that MaxInf [f ] ≤ exp(−Ct2k2), or just exp(−Ct2k) in the homogeneous case. Here C is a
universal constant.

Proof. This follows immediately from the Lévy distance bound in [32, Theorem 3.19, Hy-
pothesis 4]. We only need to ensure that the Lévy distance is noticeably less than the target
lower bound we’re aiming for. (We also remark that the Invariance Principle transformation
preserves variance and homogeneity.) J

Next, we obtain the sharp DFKO Fourier Tail Theorem. Its deduction from the DFKO
Inequality in [13] is unfortunately not “black-box”, so we will have to give a proof.

I Corollary 3.5. Suppose f : {±1}n → [−1,+1] is not an (ε, 2O(k2/ε))-junta. Then∑
|S|>k

f̂(S)2 > exp(−O(k2)/ε). (3)

Proof. We use notation and basic results from [33]. Given f : {±1}n → [−1,+1], let
J = {i ∈ [n] : Inf≤ki [f ] > exp(−Ak2/ε)}, where A is a large constant to be chosen later.
Since ‖f‖2

2 ≤ 1 it follows easily that |J | ≤ 2O(k2/ε). Now define g = f − f⊆J ; note that
g has range in [−2,+2] since f⊆J has range in [−1,+1], being an average of f over the
coordinates outside J . If ‖g‖2

2 < ε/2 then f is ε/2-close to the 2O(k2/ε)-junta f⊆J and we
are done. Otherwise, ‖g‖2

2 ≥ ε/2 and we let h = g≤k. If ‖h− g‖2
2 > ε/4 then we immediately

conclude that
∑
|S|>k f̂(S)2 > ε/4, which is more than enough to be done. Otherwise

‖h − g‖2
2 ≤ ε/4, from which we conclude ‖h‖2

2 ≥ ε/4. Now h has degree at most k and
satisfies Inf i[h] ≤ exp(−Ak2/ε) for all i 6∈ J . Let h̃ denote the mixed Boolean/Gaussian
function which has the same multilinear form as h, but where we think of the coordinates
in J as being ±1 random variables and the coordinates not in J as being standard Gaussians.
We now “partially” apply the Invariance Principle [32, Theorem 3.19] to h, in the sense that
we only hybridize over the coordinates not in J . We conclude that the Lévy distance between
h and h̃ is at most exp(−Ω(Ak2/ε)). Our goal is now to show that

Pr[|h̃| > 3] ≥ exp(−O(k2/ε)), (4)
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where the constant in the O(·) does not depend on A. Having shown this, by taking A large
enough the Lévy distance bound lets us deduce (4) for h as well. But then since |g| ≤ 2
always, we may immediately deduce ‖g − h‖2

2 ≥ exp(−O(k2)/ε) and hence (3).
It remains to verify (4). For each restriction xJ to the J-coordinates, the function

h̃xJ
is a multilinear polynomial in independent Gaussians with some variance σ2

xJ
. From

Theorem 3.3 we can conclude that Pr[|h̃xJ
| > 3] ≥ exp(−O(k2/σ2

xJ
)). Thus if we can show

σ2
xJ
≥ Ω(ε) with probability at least 2−O(k) when xJ ∈ {±1}J is uniformly random, we will

have established (4). But this follows similarly as in Lemma 3.2. Note that σ2
xJ

= E[h̃2
xJ

],
since h has no constant term. Now σ2

xJ
is a degree-2k polynomial in xJ , and its expectation

is simply ‖h‖2
2 ≥ ε/4, so Theorem 1.3 indeed implies that Pr[σ2

xJ
≥ ε/4] ≥ 2−O(k) and we

are done. J

I Remark. We comment that the dependence of MaxInf [f ] on t in Corollary 3.4, and the
junta size in Corollary 3.5, are not as good as in [13]. This seems to be a byproduct of the
use of Invariance.

A similar (but easier) proof can be used to derive the following Gaussian version of
Corollary 3.5; alternatively, one can use a generic CLT argument, noting that the only “junta”
a Gaussian function can be close to is a constant function:

I Corollary 3.6. Any f : Rn → [−1,+1] satisfies the Hermite tail bound∑
|α|>k

f̂(α)2 > exp(−O(k2)/Var[f ]).

This strictly improves upon Corollary 3.1.

4 Proofs of our one-block decoupling theorems

In this section we prove Theorem 2.6. The key idea of the proof is to express f̆(y, z) as a
“small” linear combination of expressions of the form f(αix+βiy), where α2

i +β2
i = 1 (in the

Gaussian case) or |αi|+ |βi| = 1 (in the Boolean case). The following is the central lemma.

I Lemma 4.1. In the setting of Theorem 2.6, there exists m = O(k) and α, β, c ∈ Rm such
that

f̆(y, z) =
∑m
i=1 cif(αiy + βiz);∑m

i=1 |ci| ≤ Ck;
α2
i + β2

i = 1 for all i ∈ [m] under H1, and |αi|+ |βi| = 1 for all i ∈ [m] under H2, H3;
|αi|, |βi| ≥ 1/O(Ck) for all i ∈ [m].

With Lemma 4.1 in hand, the proof of Theorem 2.6 is quite straightforward in the
Gaussian case, and not much more difficult in the Boolean case. We show these deductions
first.

Proof of Theorem 2.6 under Hypothesis H1. By Lemma 4.1, for any convex nondecreasing
function Φ : R≥0 → R≥0 we have

E
[
Φ
(∥∥∥f̆ (y, z)

∥∥∥)] = E
[
Φ
(∥∥∥ m∑

i=1
cif (αiy + βiz)

∥∥∥)]
≤ E

[
Φ
( m∑
i=1
|ci|
∥∥∥f (αiy + βiz)

∥∥∥)]
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≤
m∑
i=1

|ci|
Ck

E [Φ (Ck‖f(αiy + βiz)‖)]

=
m∑
i=1

|ci|
Ck

E[Φ(Ck‖f(x)‖)]

≤ E[Φ(Ck‖f(x)‖].

Here the inequalities follow from the convexity and monotonicity of Φ, and the second
equality holds because αiy + βz ∼ N(0, 1)n due to α2

i + β2
i = 1.

As for the tail-bound comparison, by Lemma 4.1, whenever y, z are such that ‖f̆(y, z)‖ >
Ckt, the triangle inequality implies that there must exist at least one i ∈ [m] with
‖f(αiy + βiz)‖ > t. It follows that there must exist at least one i ∈ [m] such that

Pr[‖f(αiy + βiz)‖ > t] ≥ 1
m

Pr[‖f̆(y, z)‖ > Ckt].

This completes the proof, since αiy + βiz ∼ N(0, 1)n and m = O(k). J

Proof of Theorem 2.6 under Hypotheses H2, H3. We define ±1 random variables as fol-
lows:

x
(i)
j =

{
sgn(αi)yj with probability |αi|,
sgn(βi)zj with probability |βi|,

for all i ∈ [m] and j ∈ [n] independently. Notice that each x(i) is distributed uniformly on
{±1}n, though they are not independent. To prove the desired inequality concerning Φ, we
can repeat the proof in the Gaussian case, except that we no longer have the identity

E [Φ (Ck‖f(αiy + βiz)‖)] = E[Φ(Ck‖f(x)‖)].

In fact we will show that the left-hand side is at most the right-hand side. Notice that for all
fixed y, z ∈ {±1}n, the multilinearity of f implies that

f(αiy + βiz) = E[f(x(i)) | (y, z) = (y, z)]. (5)

Thus

E [Φ (Ck‖f(αiy + βiz)‖)] = E
y,z

[
Φ
(
Ck

∥∥∥∥ E
x(i)|y,z

[
f(x(i))

]∥∥∥∥)]
≤ E

y,z
E

x(i)

[
Φ
(
Ck‖f(x(i))‖

)]
= E [Φ (Ck‖f(x)‖)] ,

as claimed, where we used convexity again.
As for the tail-bound comparison, recall that we are now assuming f has real coefficients.

As in the Gaussian case there is at least one i ∈ [m] with

Pr[|f(αiy + βiz)| > t] ≥ 1
O(k) Pr[|f̆(y, z)| > Ckt].

Now suppose y, z are such that |f(αiy + βiz)| > t and consider the conditional distribution
on x(i). If we can show that, conditionally, Pr[|f(x(i))| > t] ≥ k−O(k) then we are done. But
from (5) we have that

∣∣E[f(x(i))]
∣∣ > t; therefore the desired result follows from Theorem 1.3

and the fact that min(|αi|, |βi|) ≥ 1/O(Ck) = 1/poly(k). J
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4.1 Proof of Lemma 4.1
The proof of Lemma 4.1 involves minimizing

∑m
i=1 |ci| by carefully setting the ratios of αi

and βi to be a hyperharmonic progression.

Proof of Lemma 4.1. The main work involves treating the homogeneous case.

Homogeneous case. Our goal for homogeneous f is to write

f̆(y, z) =
k+1∑
i=1

cif(αiy + βiz).

Comparing the expressions term by term, it is equivalent to say that for any S ⊆ [n] with
|S| = k,

∑
j∈S

yjzS/j =
k+1∑
i=1

ci
∏
j∈S

(αiyj + βizj).

We can further simplify this to the conditions

k+1∑
i=1

ciα
k−t
i βti =

{
1 if t = k − 1
0 otherwise

(6)

for all integers 0 ≤ t ≤ k. Let us write ∆i = βi

αi
and introduce the Vandermonde matrix

V =


1 1 . . . 1

∆1 ∆2 · · · ∆k+1
· · · · · · · · · · · ·

∆k−1
1 ∆k−1

2 · · · ∆k−1
k+1

∆k
1 ∆k

2 · · · ∆k
k+1

 .

We will also write A for the diagonal matrix diag(αk1 , αk2 , . . . , αkk+1), and write ek for the indi-
cator vector of the kth coordinate, ek = (0, 0, . . . , 0, 1, 0). Then the necessary conditions (6)
are equivalent to the matrix equation V Ac = ek. Assuming all the ∆i’s are different, V
is invertible and there is an explicit formula for its inverse [30]. This yields the following
expression for the c1, . . . , ck+1 in terms of α and β:

ci = (A−1V −1ek)i = 1
αki
·

∆i −
∑k+1
j=1 ∆j∏k+1

j=1,j 6=i(∆i −∆j)
. (7)

The main illustrative case: Hypothesis H1 and k odd. We will now assume that k is odd;
this assumption will be easily removed later. It will henceforth be convenient to replace our
indices 1, . . . , k + 1 with the following slightly peculiar but symmetric set of indices:

I =
{
±1,±2, . . . ,±k−1

2 ,± 1
2
}
.

Now under Hypothesis H1, we will choose

αi = i√
k2 + i2

, βi = k√
k2 + i2

=⇒ ∆i = k

i
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for all i ∈ I. These choices satisfy α2
i + β2

i = 1 and |αi|, |βi| ≥ 1/O(Ck), so it remains to
prove that for c defined by (7) we have

∑
|ci| ≤ O(k).

Let us upper-bound all |ci|. Since it easy to see that |ci| = |c−i| for all i ∈ I, it will suffice
for us to consider the positive i ∈ I. For 1 ≤ i ≤ k−1

2 , we have

∣∣∣∣∣∣
∏

j∈I,j 6=i
(∆i −∆j)

∣∣∣∣∣∣ = (∆1/2 −∆i)(∆i −∆−1/2) ·
(k−1)/2∏
j=1,j 6=i

|∆i −∆j | ·
−1∏

j=−(k−1)/2

(∆i −∆j)

=
(

2k − k

i

)(
2k + k

i

)
·

(k−1)/2∏
j=1,j 6=i

∣∣∣∣ki − k

j

∣∣∣∣ · (k−1)/2∏
j=1

(
k

i
+ k

j

)

= kk
(

4− 1
i2

)
·

(k−1)/2∏
j=1,j 6=i

|j − i|
ij

·
(k−1)/2∏
j=1

j + i

ij

= kk

ik−2

(
4− 1

i2

) (k−1
2 + i

)
!
(
k−1

2 − i
)
!(

k−1
2
)
!2

.

Thus from (7),

|ci| =
(√

k2 + i2

i

)k
· k
i
· i
k−2

kk
· 1

4− 1/i2 ·
(
k−1

2
)
!2(

k−1
2 + i

)
!
(
k−1

2 − i
)
!

= k

i3

(
1 + i2

k2

)k/2 1
4− 1/i2

(
k−1

2
)
!2(

k−1
2 + i

)
!
(
k−1

2 − i
)
!
.

When 1 ≤ i ≤
√
k, we have

|ci| =
k

i3

(
1 + i2

k2

)k/2 1
4− 1/i2

(
k−1

2
)
!2(

k−1
2 + i

)
!
(
k−1

2 − i
)
!
≤ k

i3

(
1 + 1

k

)k/2
≤
√
ek

i3
.

For
√
k ≤ i ≤ k−1

2 , consider the ratio between (i+ 1)3|ci+1| and i3|ci|; it satisfies

(i+ 1)3|ci+1|
i3|ci|

≤ (k2 + (i+ 1)2)k/2

(k2 + i2)k/2 ·
k−1

2 − i
k−1

2 + i+ 1

=
(

1 + 2i+ 1
k2 + i2

)k/2
· k − 1− 2i
k + 1 + 2i

≤
(

1 + 2i+ 1
k2

)k/2
· k − 1− 2i

k

≤ e
2i+1

2k

(
1− 2i+ 1

k

)
≤ 1.

The last inequality holds since ex/2(1−x) ≤ 1 for all 0 ≤ x ≤ 1. Thus we have (i+1)3|ci+1| ≤
i3|ci|, and hence by induction that

|ci| ≤
√
ek

i3
∀ 1 ≤ i ≤ k−1

2 . (8)
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We now need to bound c1/2. Similarly to the above, we have∣∣∣∣∣∣
∏

j∈I,j 6= 1
2

(∆1/2 −∆j)

∣∣∣∣∣∣ = (∆ 1
2
−∆−1/2) ·

(k−1)/2∏
j=1

(∆1/2 −∆j) ·
−1∏

j=−(k−1)/2

(∆ 1
2
−∆j)

= 4k ·
(k−1)/2∏
j=1

(
2k − k

j

)
·

(k−1)/2∏
j=1

(2k + k

j
)

= 4kk ·
(k−1)/2∏
j=1

2j − 1
j
·

(k−1)/2∏
j=1

2j + 1
j

= 4kk (k − 2)!!k!!(
k−1

2
)
!2

Thus from (7) we get

|c1/2| =
(
√
k2 + (1/2)2)k

(1/2)k · 2k · 1
4kk ·

(
k−1

2
)
!2

(k − 2)!!k!!

=
(

1 + 1
4k2

)k/2( (k − 1)!!
(k − 2)!!

)2
≤ 4k. (9)

Now combining (8), (9), we obtain

∑
i

|ci| = 2
(k−1)/2∑
i=1

|ci|+ 2|c1/2| ≤ 2
√
e

(k−1)/2∑
i=1

k

i3
+ 8k ≤ 20k,

as needed.

Handling even k. If k is even, we define our index set to be

I =
{

0,±1,±2, . . . ,±k−2
2 ,± 1

2
}
.

For i ∈ I \{0} we define αi and βi as before; we also define α0 = 1, β0 = 0, and hence ∆0 = 0.
It is easy to check that c0 = 0 (and hence we haven’t actually violated |βi| ≥ 1/O(Ck)), and
the upper bounds for the other |ci| still hold. This completes the proof of the homogeneous
case under Hypothesis H1.

Hypotheses H3. We explain the case of k odd; the same trick as before can be used for
even k. For Hypothesis H3 we use

αi = i

k3/2 + |i|
, βi = k3/2

k3/2 + |i|
=⇒ ∆i = k3/2

i
,

which satisfy |αi|+ |βi| = 1 and |αi|, |βi| ≥ 1/O(k3/2). Analysis similar to before shows that∑
i |ci| ≤ O(k3/2). This completely finishes the proof under Hypothesis H3.

Hypothesis H2, the homogeneous case. Here we do something slightly different. For even
or odd k we let the index set be I = {1, 2, . . . , k, 1

2} and then define

αi = i2

k2 + i2
, βi = k2

k2 + i2
=⇒ ∆i = k2

i2
.

Now we have |αi|+ |βi| = αi + βi = 1 and |αi|, |βi| ≥ 1/O(k2). Again, similar analysis shows
that

∑
i |ci| ≤ O(k2).
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Extending to the non-homogeneous case under H2. Now we need to be concerned with
the terms at degree k′ < k. Here a key observation is that, since αi + βi = 1 for all i, the
following holds for all k′ < k:∑

i

ciα
k′−t
i βti =

∑
i

ciα
k′−t
i βti (αi + βi) =

∑
i

ciα
k′−t+1
i βti +

∑
i

ciα
k′−t
i βt+1

i .

Thus an induction shows that in fact

∑
i

ciα
k′−t
i βti =


k − k′ if t = k′

1 if t = k′ − 1
0 otherwise

for all k′ ≤ k. This is almost exactly what we need to treat the non-homogeneous case using
all the same choices for c, α, β, except for the t = k′ case. But we can use a simple trick to
fix this:

1
2
∑
i

ciα
k′−t
i βti −

1
2
∑
i

ci(−αi)k
′−tβti = 1− (−1)k′−t

2
∑
i

ciα
k′−t
i βti =

{
1 if t = k′ − 1
0 otherwise

From this we get

f̆(y, z) =
m∑
i=1

cif(αiy + βiz)

even in the non-homogeneous case, with all the desired conditions and m = 2(k + 1).

Extending to the non-homogeneous case under H1. The trick here for handling degree
k′ < k is similar. Using the fact that α2

i + β2
i = 1 for all i, we get that for all k′ < k,

∑
i

ciα
k′−t
i βti =

∑
i

ciα
k′−t
i βti (α2

i + β2
i ) =

∑
i

ciα
k′−t+2
i βti +

∑
i

ciα
k′−t
i βt+2

i .

Then by induction, the we conclude that

k+1∑
i=1

ciα
k′−t
i βti =

{
1 if t = k′ − 1
0 otherwise

holds for all 0 ≤ k′ ≤ k such that k − k′ is even. We are therefore almost done: we have
established the H1 case of Lemma 4.1 for all polynomials with only odd-degree terms or only
even-degree terms. Finally, for a general polynomial f we can decompose it as f = fodd+feven,
where fodd (respectively, feven) contains all the terms in f with odd (respectively, even)
degree. We know that there exist some vectors α, β, c and α′, β′, c′ satisfying

f̆odd(y, z) =
k+1∑
i=1

cifodd(αiy + βiz), f̆even(y, z) =
k+1∑
i=1

c′ifeven(α′iy + β′iz),
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and
∑
i |ci|,

∑
i |c′i| ≤ 20k. Thus

f̆(y, z) = f̆odd(y, z) + f̆even(y, z)

=
k+1∑
i=1

cifodd(αiy + βiz) +
k+1∑
i=1

c′ifeven(α′iy + β′iz)

=
k+1∑
i=1

1
2ci(f(αiy + βiz)− f(−αiy − βiz)) +

k+1∑
i=1

1
2c
′
i(f(α′iy + β′iz) + f(−α′iy − β′iz))

=
4(k+1)∑
i=1

c′′i f(α′′i y + β′′i z),

where c′′ = (c/2,−c/2, c′/2, c′/2), α′′ = (α,−α, α′,−α′), β′′ = (β,−β, β′,−β′) and
∑
i |c′′i | ≤

40k. J
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Abstract
We show an equivalence between 1-query quantum algorithms and representations by degree-
2 polynomials. Namely, a partial Boolean function f is computable by a 1-query quantum
algorithm with error bounded by ε < 1/2 iff f can be approximated by a degree-2 polynomial
with error bounded by ε′ < 1/2. This result holds for two different notions of approximation
by a polynomial: the standard definition of Nisan and Szegedy [21] and the approximation by
block-multilinear polynomials recently introduced by Aaronson and Ambainis [1]. The proof uses
Grothendieck’s inequality to relate two matrix norms, with one norm corresponding to polynomial
approximations and the other norm corresponding to quantum algorithms.

We also show two results for polynomials of higher degree. First, there is a total Boolean
function which requires Ω̃(n) quantum queries but can be represented by a block-multilinear
polynomial of degree Õ(

√
n). Thus, in the general case (for an arbitrary number of queries),

block-multilinear polynomials are not equivalent to quantum algorithms.
Second, for any constant degree k, the two notions of approximation by a polynomial (the

standard and the block-multilinear) are equivalent. As a consequence, we solve an open prob-
lem from [1], showing that one can estimate the value of any bounded degree-k polynomial
p : {0, 1}n → [−1, 1] with O(n1− 1

2k ) queries.
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and Juris Smotrovs;
licensed under Creative Commons License CC-BY

31st Conference on Computational Complexity (CCC 2016).
Editor: Ran Raz; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


25:2 Polynomials, Quantum Query Complexity, and Grothendieck’s Inequality

1 Introduction

Many of the known quantum algorithms can be studied in the query model where one
measures the complexity of an algorithm by the number of queries to the input that it makes.
In particular, this model encompasses Grover’s search [17], the quantum part of Shor’s
factoring algorithm (period-finding) [25], their generalizations and many of the more recent
quantum algorithms such as element distinctness [7] and NAND tree evaluation [16, 8, 24].

For proving lower bounds on quantum query algorithms, one often uses a connection to
polynomials [9]. After k queries to an input x1, . . . , xN , the amplitudes of the algorithm’s
quantum state are polynomials of degree at most k in x1, . . . , xN . Therefore, one can prove
that there is no quantum algorithm using fewer than k queries by showing the non-existence
of a polynomial with certain properties.

For example, one can use this approach to show that any quantum algorithm for Grover’s
search algorithm requires Ω(

√
N) queries [9] or to show an optimal quantum lower bound

for finding collisions [4]. In some cases, the lower bounds obtained by polynomials method
are tight, either exactly (for example, for computing the parity of N input bits x1, . . . , xN
[9]) or up to a constant factor (Grover’s search and many other examples). In other cases,
the number of queries to compute a function f(x1, . . . , xN ) is asymptotically larger than the
lower bound which follows from polynomials [6, 3].

In this paper, we discover the first case where we can go in the opposite direction: from
a polynomial to a bounded-error quantum algorithm1. That is, polynomials with certain
properties and quantum algorithms are equivalent!

In more detail, we consider computing partial Boolean functions f(x1, . . . , xn) and show
that the existence of a quantum algorithm that computes f with 1 query is equivalent to the
existence of a degree 2 polynomial that approximates f . This result holds for two different
notions of approximation by a polynomial: the standard one in [21] and the approximation
by block-multilinear polynomials introduced in [1].

To transform a polynomial into a quantum algorithm, we first transform it into the
block-multilinear form of [1] and then use a variant of Grothendieck’s inequality for relating
two matrix norms [23]. One of the two norms corresponds to the constraints on the block-
multilinear polynomials while the other norm corresponds to algorithm’s transformations
being unitary. While Grothendieck’s inequality has been used in the context of quantum
non-locality (e.g. in [5]), this appears to be its first use in the context of quantum algorithms.

We then show two results for polynomials of larger degree:
similarly to general polynomials, block-multilinear polynomials are not equivalent to
quantum algorithms in the general case: one of cheat-sheet functions of [3] requires Ω̃(n)
quantum queries but can be described by a block-multilinear polynomial of degree Õ(

√
n);

for representations by polynomials of degree d = O(1), a partial function f can be
represented by a general polynomial of degree d if and only if it can be represented by a
block-multilinear polynomial of degree d.

We note that the first result does not exclude an equivalence between quantum algorithms
and polynomials for a small number of queries that is larger than 1. For example, 2-query
quantum algorithms could be equivalent to polynomials of degree 4. The second result shows
that, to prove such an equivalence, it suffices to give a transformation from block-multilinear
polynomials to quantum algorithms.

1 In unbounded-error settings, equivalences between quantum algorithms and polynomials were previously
shown by de Wolf [26] and by Montanaro et al. [20].
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Another consequence of the second result is that, if we have a general polynomial
f(x1, . . . , xn) which is bounded (i.e., |f | ≤ 1 for all x1, . . . , xn ∈ {0, 1}), the value of this
polynomial can be estimated with O(n1−1/2d) queries about values of x1, . . . , xn. This
resolves an open problem from [1] and is shown by transforming f into a block-multilinear
form and then using the sampling algorithm of [1] for block-multilinear polynomials. The
second result and this consequence was discovered independently by us and O’Donnell and
Zhao [15].

2 Preliminaries

2.1 Notation
By [a .. b], with a, b being integers, a ≤ b, we denote the set {a, a+ 1, a+ 2, . . . , b}. When
a = 1, notation [a .. b] is simplified to [b].

For a vector x, let ‖x‖p stand for the p-norm; when p = 2, this is the Euclidean norm
and the notation is simplified to ‖x‖. For a matrix A, by ‖A‖p→q we denote

‖A‖p→q = sup
x:‖x‖p 6=0

‖Ax‖q
‖x‖p

= max
x:‖x‖p=1

‖Ax‖q = max
x:‖x‖p≤1

‖Ax‖q .

By ‖A‖ we understand the usual operator norm ‖A‖2→2.
Dx stands for the diagonal matrix with components of x on its diagonal.
By K we denote the (real) Grothendieck’s constant which is defined as the smallest

number with the following property: if A = (aij) is such that
∑
i,j aijxiyj ≤ 1 for any choice

of xi, yj ∈ {−1, 1}, then
∑
i,j aij 〈ui, vj〉 ≤ K for any choice of vectors (with real components)

ui, vj with ‖ui‖ = 1 and ‖vj‖ = 1 for all i, j. It is known [23, 11] that
π

2 ≤ K <
π

2 ln(1 +
√

2)
.

2.2 Quantum query complexity and polynomial degree
We consider computing partial Boolean functions f(x1, . . . , xn) : X → {0, 1} (for some
X ⊆ {0, 1}n) in the standard quantum query model. For technical convenience, we relabel
the values of input variables xi from {0, 1} to {−1, 1}. Then a partial Boolean function f
maps a set X ⊆ {−1, 1}n to {0, 1}.

Let Qε(f) be the minimum number of queries in a quantum algorithm computing f
correctly with probability at least 1− ε, for every x = (x1, . . . , xn) for which f(x) is defined.

I Definition 2.1. d̃egε(f) is the minimum degree of a polynomial p (in variables x1, . . . , xn)
such that
1. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n for which f(x) is defined;
2. p(x) ∈ [0, 1] for all x ∈ {−1, 1}n.
deg(f) denotes d̃eg0(f).

It is well known that Qε(f) ≥ 1
2 d̃egε(f) [9]. We now consider a refinement of this result

due to [1]. We say that a polynomial p of degree k is block-multilinear if its variables
x1, . . . , xN can be partitioned into k blocks, R1, . . . , Rk, so that every monomial of p contains
exactly one variable from each block2

2 In other words, a block-multilinear polynomial is just a multilinear form. We, however, use the word
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I Lemma 2.2. [1, Lemma 20] Let A be a quantum algorithm that makes t queries to a
Boolean input x ∈ {−1, 1}n. Then there exists a degree-2t block-multilinear polynomial
p : R2t(n+1) → R, with 2t blocks of n+ 1 variables each, such that
(i) the probability that A outputs 1 for an input x = (x1, . . . , xn) ∈ {−1, 1}n equals

p(x̃, . . . , x̃), where x̃ := (1, x1, . . . , xn) (with x̃ repeated 2t times), and
(ii) p(z) ∈ [−1, 1] for all z ∈ {−1, 1}2t(n+1).

The first variable in each block (which is set to 1 in the requirement (i)) corresponds to
the possibility that the algorithm is not asking any of the actual variables x1, . . . , xn in a
given query. (Although the statement of Lemma 20 in [1] does not mention such variables
explicitly, they are used in the proof of the Lemma.)

I Definition 2.3. Let the block-multilinear approximate degree of f , or b̃mdegε(f), be the
minimum degree of any block-multilinear polynomial p : Rk(n+1) → R, with k blocks of n+ 1
variables each, such that
(i) p (x̃, . . . , x̃) ∈ [0, 1] and |p (x̃, . . . , x̃)− f(x)| ≤ ε for all x ∈ {−1, 1}n for which f(x) is

defined, and
(ii) p (x1,0, x1,1, . . . , x1,n, x2,0, . . . , xk,n) ∈ [−1, 1] for all x1,0, . . . , xk,n ∈ {−1, 1}k(n+1).
bmdeg(f) denotes b̃mdeg0(f).

As a particular case, this definition includes block-multilinear polynomials p : Rkn → R
which satisfy

∀x ∈ {−1, 1}n |p(x, . . . , x)− f(x)| ≤ ε and ∀z ∈ {−1, 1}kn p(z) ∈ [−1, 1],

because we can view them as polynomials p : Rk(n+1) → R in which each monomial containing
a variable x1,0, x2,0, . . . , or xk,0 has a coefficient zero.

We have d̃egε(f) ≤ b̃mdegε(f) ≤ 2 Qε(f). The first of the two inequalities follows by
taking q(x) = p(x̃, . . . , x̃). If p satisfies the requirements of Definition 2.3, then q satisfies
the requirements of Definition 2.1. The second inequality follows from Lemma 2.2.

2.3 Equivalence between block-multlinear and general polynomials

The two types of polynomial representations (d̃eg and b̃mdeg) are equivalent to one another,
up to some loss in the quality of approximation. This has been shown independently by us
and by O’Donnell and Zhao [15]:

I Theorem 2.4. Let p(x1, . . . , xn) be a polynomial of degree d. Then there is a block-
multilinear polynomial p̃ : R(n+1)d → R such that
1. p̃(x̃, . . . , x̃) = p(x) for any x ∈ {−1, 1}n;
2. |p̃(y)| ≤ Cd for any d ∈ {−1, 1}(n+1)d with Cd being a constant that depends on the degree

d only.

O’Donnell and Zhao [15] show Cd ≤ (2e)d. In the full version of this paper [2], we show
our version of this result with C2 = 3 for d = 2 and Cd = O(3.5911...d).

The result of O’Donnell and Zhao is a special case of the general theory of decoupling
[18, 22] which proves much more general results. In contrast, our bounds are based on explicit

block-multilinear, to emphasize the difference from standard polynomial representations of Boolean
functions which are multilinear but are not multilinear forms.
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combinatorial arguments. These arguments are specific to the problem above but allow us to
obtain better constants Cd.

As a consequence of this theorem, we have

I Corollary 2.5. Let ε be such that 0 ≤ ε < 1
2 and let ε′ = 1

2 −
1
Cd

( 1
2 − ε). Then d̃egε(f) ≤ d

implies b̃mdegε′(f) ≤ d.

Proof. We take the polynomial q which approximates f(x1, . . . , xn) with error ε according
to Definition 2.1 and apply Theorem 2.4 to p(x1, . . . , xn) = q(x1, . . . , xn) − 1

2 . Then the
polynomial 1

2 + p̃ approximates f in the sense of Definition 2.3. J

2.4 Block-multilinear polynomials of degree 2
Let

p(x1, . . . , xn, y1, . . . , ym) =
∑
i∈[n]
j∈[m]

aijxiyj , (1)

be a block-multilinear polynomial of degree 2, with the variables in the first block labeled
as x1, . . . , xn and the variables in the second block labeled as y1, . . . , ym. We say that p is
bounded if |p(x1, . . . , xn, y1, . . . , ym)| ≤ 1 for all x1, . . . , ym ∈ {−1, 1}. Then we have

max
x∈{−1,1}n

y∈{−1,1}m

∣∣∣∣∣∣∣∣
∑
i∈[n]
j∈[m]

aijxiyj

∣∣∣∣∣∣∣∣ ≤ 1.

Let A be the n×m matrix with entries aij , then

p(x, y) = xTAy for all x ∈ Rn, y ∈ Rm

and p being bounded translates to the ∞→ 1 norm of A being at most 1, i.e., ‖A‖∞→1 ≤ 1.

3 Equivalence between polynomials of degree 2 and 1-query
quantum algorithms

Let f be a partial Boolean function. In this section, we show that the following two statements
are equivalent3:
(a) Qε(f) ≤ 1 for some ε with 0 ≤ ε < 1

2 ;
(b) b̃mdegε′(f) ≤ 2 for some ε′ with 0 ≤ ε′ < 1

2 ;

Given (a), Lemma 2.2 implies that (b) holds with ε′ = ε. We now show that (b) implies
(a) with ε = K+ε′

2(K+1) where K is Grothendieck’s constant.
Because of results in Section 2.3, we also get a similar equivalence between Qε(f) ≤ 1

and d̃egε′(f) ≤ 2.

I Theorem 3.1. Let f be a partial Boolean function. If b̃mdegε′(f) ≤ 2, then Qε(f) ≤ 1 for
ε = K+ε′

2(K+1) .

3 The equivalence here involves some loss in the error ε. However, the bound ε on the error probability
of the resulting quantum algorithm only depends on the error of the polynomial approximation from
which we started and does not increase with the number of variables n.
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Proof. We start with two technical lemmas.

I Lemma 3.2. If an n×m complex matrix B satisfies ‖B‖ ≤ C, then there exists a unitary
U (on a possibly larger space with basis states |1〉 , . . . , |k〉 for some k ≥ max(n,m)) such
that, for any unit vector |y〉 =

∑m
i=1 αi |i〉, U |y〉 = B|y〉

C + |φ〉, with |φ〉 consisting of basis
states |i〉, i > n only.

Proof. Without the loss of generality, we can assume that C = 1 (otherwise, we just replace
the matrix B by B

C ).
Let A = I −B†B. Since ‖B‖ ≤ 1, the eigenvalues of B†B are at most 1 and, hence, A

is positive semidefinite. Let A = V †ΛV be the eigendecomposition of A, with V being a
unitary matrix and Λ a diagonal matrix. We take W =

√
ΛV . Then A = W †W and, if we

take the block matrix U =
(

B

W

)
, we get U†U = B†B +W †W = I.

Let k ×m be the size of the matrix U . For any i ∈ {1, . . . ,m}, we have 〈i|U†U |i〉 =
〈i|I |i〉 = 1 and for any i, j ∈ {1, . . . ,m} : i 6= j, we have 〈i|U†U |j〉 = 〈i|I |j〉 = 0. Therefore,
U |1〉 , . . . , U |m〉 are orthogonal vectors of length 1 and we can complete U to a k× k unitary
matrix by choosing U |m+ 1〉 , . . . , U |k〉 so that they are orthogonal (both one to another
and to U |1〉 , . . . , U |m〉) and of length 1. J

I Lemma 3.3. Let A = (aij)i∈[n],j∈[m] be a real matrix with
√
nm‖A‖ ≤ C and let

p(x1, . . . , xn, y1, . . . , ym) =
n∑
i=1

m∑
j=1

aijxiyj .

Then there is a quantum algorithm that makes 1 query to x1, . . . , xn, y1, . . . , ym and outputs
1 with probability

r = 1
2

(
1 + p(x1, . . . , xn, y1, . . . , ym)

C

)
.

Proof. Let B =
√
nmA, A = (aij). Then

‖B‖ = ‖A‖
√
nm ≤ C.

The 1-query quantum algorithm uses a version of the well-known SWAP test [12] for estimating
the inner product |〈ψ |ψ′〉 | of two quantum states |ψ〉 and |ψ′〉. Our test works by preparing
the state

1√
2
|0〉 |ψ〉+ 1√

2
|1〉 |ψ′〉 (2)

and then performing the Hadamard transformation on the first qubit and measuring the first
qubit4. The probability that the result of the measurement is 0 is equal to

r = 1
2 (1 +Re (〈ψ |ψ′〉))

where Re(x) denotes the real part of a complex number x.

4 This test is slightly different from the standard SWAP test in which one prepares both |ψ〉 and
∣∣ψ′
〉

and then performs a SWAP gate conditioned by a qubit that is initially in the 1√
2 |0〉 + 1√

2 |1〉 state.
Because of this difference, we can perform the SWAP test with just 1 query instead of 2 (one for |ψ〉
and one for

∣∣ψ′
〉
). Another result of this difference is that the probability of measuring 0 changes from

1
2 (1 +

∣∣〈ψ ∣∣ψ′
〉∣∣2) for the standard SWAP test to 1

2

(
1 +Re(〈ψ

∣∣ψ′
〉
)
)
for our test.
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By Lemma 3.2, there is a unitary U s.t. for any unit vector |y〉 =
∑m
i=1 αi |i〉 we have

U |y〉 = B|y〉
C + |φ〉, with 〈i |φ〉 = 0 for all i ∈ [n].

The algorithm applies SWAP test to |x〉 = 1√
n

∑n
i=1 xi |i〉 and U |y〉, |y〉 = 1√

m

∑m
i=1 yi |i〉.

Each of those states can be prepared with one query (to xi’s or yi’s). Hence, we can also
prepare the state (2) with one query. The inner product 〈ψ |ψ′〉 that is being estimated is
equal to

〈x|U |y〉 = 1
C
〈x|B |y〉 = 1

C
p(x1, . . . , xn, y1, . . . , ym) . J

Let p(x1, . . . , xn, y1, . . . , ym) =
∑n
i=1
∑m
j=1 aijxiyj be the polynomial from Definition 2.3

which shows that b̃mdegε′(f) = 2. Then as we argued in Section 2.4, the matrix A = (aij)
satisfies ‖A‖∞→1 ≤ 1. Although this does not imply that ‖A‖ is sufficiently small, we can
preprocess the polynomial p so that we achieve

√
n′m′‖A′‖ ≤ K for the n′-by-m′ matrix A′

of coefficients of the polynomial after the preprocessing.
To preprocess the polynomial, we perform an operation called variable-splitting [1]. The

operation consists of taking a variable xj (or yj) and replacing it by m variables, in the
following way. We introduce m new variables xl1 , . . . , xlm , and define p′ as the polynomial
obtained by substituting xl1 +···+xlm

m in the polynomial p instead of xj . If we substitute
xl1 = . . . = xlm = xj , p′ is equal to p(x1, . . . , xn, y1, . . . , ym). Thus, being able to evaluate p′
implies being able to evaluate p (in the same sense of the word “evaluate”).

In Appendix A, we show

I Lemma 3.4. If a polynomial

p(x1, . . . , xn, y1, . . . , ym) =
n∑
i=1

m∑
j=1

aijxiyj

satisfies p(x, y) ∈ [−1, 1] for all x ∈ {−1, 1}n, y ∈ {−1, 1}m, then for every δ > 0 there exists
a sequence of row and column splittings that transforms A = (aij) to an n′ × m′ matrix
A′ = (a′ij) that satisfies

‖A′‖
√
n′m′

‖A′‖∞→1
≤ K + δ.

Then we can apply Lemma 3.3 with C = K + δ to evaluate the polynomial

p′(x′1, . . . , x′n′ , y′1, . . . , y′m′) =
n′∑
i=1

m′∑
j=1

aijx
′
iy
′
j .

for (x′1, . . . , x′n′ , y′1, . . . , y′m′) which corresponds to the point (x1, . . . , xn, y1, . . . , ym) at which
we want to evaluate the original polynomial p(x1, . . . , ym).

If p(x, y) ∈ [0, ε′], then Lemma 3.3 gives r ≤ (1 + ε′

K )/2. If p(x, y) ∈ [1 − ε′, 1], then
r ≥ (1 + 1−ε′

K )/2.
We now consider an algorithm which outputs 0 with probability 1

2K+1 and runs the
algorithm of Lemma 3.3 otherwise (with probability 2K

2K+1 ). Let q be the probability of this
algorithm outputting 1. If p(x, y) ∈ [0, ε′], then q = 2K

2K+1r ≤
K+ε′
2K+1 . If p(x, y) ∈ [1− ε′, 1],

then q = 2K
2K+1r ≥

K+1−ε′
2K+1 . Thus, we have a quantum algorithm with a probability of error

which is at most ε = K+ε′
2K+1 . J
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4 Results on polynomials of higher degrees

4.1 bmdeg and deg vs. Q
The biggest known separation between deg and Q is Qε(f) = Ω̃(deg2(f)), recently shown by
Aaronson et al. [3] using a novel cheat-sheet technique. We extend this result to

I Theorem 4.1. There exists f with Qε(f) = Ω̃(bmdeg2(f)).

Proof. In Appendix B. J

Aaronson et al. [3] also show a separation Qε(f) = Ω̃(d̃eg(f))4) which does not seem
to give Qε(f) = Ω̃(b̃mdeg(f))4). (For the natural way of transforming the approximating
polynomial of [3] into a block-multilinear form, the resulting block-multilinear polynomial
p(z(1), z(2), . . .) can take values that are exponentially large (in its degree) if the blocks
z(1), z(2), . . . are not all equal.)

Because of Theorem 4.1, there is no transformation from a polynomial of degree 2k that
approximates f(x1, . . . , xn) with error ε < 1/2 to a quantum algorithm with k queries and
error ε′ < 1/2, with ε and ε′ independent of k.

However, there may be a transformation from polynomials of degree 2k to quantum
algorithms with k queries, with the error ε′ = g(ε, k) of the resulting quantum algorithm
depending on k but not on function f(x1, . . . , xn) or the number of variables n.

Theorem 4.1 implies the following limit on such transformations:

I Theorem 4.2. There is a sequence of Boolean functions f1, f2, . . . such that, for any
sequence of quantum algorithms A1,A2, . . . computing them with O(bmdeg(fi)) queries, the
probability of correct answer is at most

1
2 +O

(
1

bmdeg(fi)

)
.

Proof. Let f be the function from Theorem 4.1. Then we have bmdeg(f) = Õ(
√
n).

If we have a quantum algorithm A that computes a function f with a probability of
correct answer at least 1

2 + δ, we can use amplitude estimation [10] to estimate whether A
produces answer f = 1 with probability at least 1

2 + δ or with probability at most 1
2 − δ. The

standard analysis of amplitude estimation [10] shows that we can obtain an estimate that is
correct with probability at least 2/3, with O(1/δ) repetitions of A. To avoid a contradiction
with Qε(f) = Ω(n), we must have
√
n

δ
= Ω(n)

which implies δ = O( 1√
n

). J

A result with a weaker bound on the error is, however, possible. For example, it is
possible that d̃eg1/2−δ(f) = 2k or b̃mdeg1/2−δ(f) = 2k implies a quantum algorithm which
makes k queries and has the error probability at most 1

2 − Ω( δ
2k ) or at most 1

2 − Ω( δk2 ).

4.2 Equivalence between general and block-multilinear polynomials

By Corollary 2.5, d̃egε(f) ≤ d implies b̃mdegε′(f) ≤ d with ε′ that depends on ε and d only.
Therefore, if we want to extend the equivalence between quantum algorithms and polynomials
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to larger d = O(1), it suffices to show how to transform block-multilinear polynomials into
quantum algorithms.

Also, Aaronson and Ambainis [1] showed that a quantum algorithm which makes d queries
can be simulated by a classical algorithm making O(n1−1/2d) queries, based on the following
result:

I Theorem 4.3 ([1]). Let h : Rd(n+1) → R be a block-multilinear polynomial of degree d
with |h(y)| ≤ 1 for any y ∈ {−1, 1}d(n+1). Then h(y) can be approximated within precision
±ε with high probability, by querying O(( nε2 )1−1/d)) variables (with a big-O constant that is
allowed to depend on d).

It has been open whether a similar theorem holds for general (not block-multilinear)
polynomials h(x1, . . . , xn). Aaronson and Ambainis [1] showed that this is true for degree
2 (using quite sophisticated tools from Fourier analysis) but left it as an open problem for
higher degrees. With Theorem 2.4, we can immediately resolve this problem.

I Corollary 4.4. Let g : Rn → R be a polynomial of degree d with |g(y)| ≤ 1 for any
y ∈ {−1, 1}d(n+1). Then g(y) can be approximated within precision ±ε with high probability,
by querying O(( nε2 )1−1/d)) variables (with a big-O constant that is allowed to depend on d).

Proof. We apply Theorem 2.4 to construct a corresponding block-multilinear polynomial h
and then use Theorem 4.3 to estimate h with precision ε

B(d) . Since B(d) is a constant for
any fixed d, we can absorb it into the big-O constant. J

This result was independently shown by O’Donnell and Zhao [15] (using their form of
Theorem 2.4) and us (using our version of Theorem 2.4, described in the full version of our
paper [2]).

5 Conclusions

We have shown a new equivalence between quantum algorithms and polynomials: the existence
of a 1-query quantum algorithm computing a partial Boolean function f is equivalent to the
existence of a degree-2 polynomial p that approximates f . Our equivalence theorem can
be seen as a counterpart of the equivalence between unbounded-error quantum algorithms
and threshold polynomials, proved by Montanaro et al. [20], and the equivalence between
nondeterministic quantum algorithms and nondeterministic polynomials, proved by de Wolf
[26].

Our equivalence is, however, much more challenging to prove. A transformation from
polynomials to unbounded-error or nondeterministic quantum algorithms can incur a very
large loss in error probability (for example, it can transform a polynomial p with error 1/3
to a quantum algorithm A with the probability of correct answer 1

2 + 1
2n ). In contrast, our

transformation produces a quantum algorithm whose error probability only depends on the
approximation error of the polynomial p and not on the number of variables n. To achieve
this, we use a relation between two matrix norms related to Groethendieck’s inequality.

Our equivalence holds for two notions of approximability by a polynomial: the standard one
[21] which allows arbitrary polynomials of degree 2 and the approximation by block-multilinear
polynomials recently introduced by [1]. The first notion of approximability is known not to
be equivalent to the existence of a quantum algorithm: there are several constructions of
f for which Qε(f) is asymptotically larger than deg(f) [6, 3], with Qε(f) = Ω̃(deg2(f)) as
the biggest currently known gap [3]. We have shown that a similar gap holds for the second
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notion of approximability. Thus, neither of the two notions is equivalent to the existence of
a quantum algorithm when the degree of a polynomial becomes large.

Three open problems are:
1. Equivalence between quantum algorithms and polynomials for more than 1 query? Is

it true that quantum algorithms with 2 queries are equivalent to polynomials of degree 4?
It is even possible that quantum algorithms with k queries are equivalent to polynomials
of degree 2k for any constant k - as long as the relation between the error of quantum
algorithm and the error of the polynomial approximation depends on k, as discussed in
Section 4.1.

2. From polynomials to quantum algorithms. It would also be interesting to have more
results about transforming polynomials into quantum algorithms, even if such results fell
short of a full equivalence between the two notions. For example, if it were possible to
transform polynomials of degree 3 into 2-query quantum algorithms this would be an
interesting result, even though it would be short of being an equivalence (since 2 query
quantum algorithms are transformable into polynomials of degree 4 and not 3).

3. Other notions of approximability by polynomials? Until this work, there was a hope that
the block-multilinear polynomial degree b̃mdeg(f) may provide a tight characterization
of the quantum query complexity Qε(f). Now, we know that the gap between bmdeg(f)
and Qε(f) can be as large as the best known gap between deg(f) and Qε(f). Can one
come up with a different notion of polynomial degree that would be closer to Qε(f) than
deg(f) or bmdeg(f)?
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A Proof of Lemma 3.4

A.1 Additional Notation
The variables of the polynomial (1) correspond to rows and columns of the coefficient matrix
A = (aij), i ∈ [n], j ∈ [m]. Hence, we can describe variable-splitting in terms of rows and
columns of A, introducing the operations of row-splitting and column-splitting.

Let ai· stand for the ith row (ai1, . . . , aim) of A and similarly a·j stand for the jth
column of A. Row-splitting (into k rows) takes a row ai· and replaces it with k equal rows
ai·/k = (ai1/k, . . . , aim/k). Similarly, column-splitting takes a column a·j and replaces it
with k equal columns a·j/k.

We also denote

‖A‖G = sup
r∈N

sup
pi,qj∈Rr

∀i:‖pi‖=1
∀j:‖qj‖=1

∑
i,j

aij 〈pi, qj〉. (3)

‖·‖G is the dual norm of the factorization norm γ2, see, e.g., [19].
Let λmax(B) denote the maximal eigenvalue of a square matrix B; then

‖A‖2 = λmax
(
ATA

)
= λmax

(
AAT

)
. (4)
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Denote g(A) =
√
nm ‖A‖ / ‖A‖∞→1. By Γ(A) we denote the numerator ‖A‖

√
nm.

We say that a matrix A′ of size n′ ×m′ can be obtained from A if there exists a sequence
of row and column splittings that transforms A to the matrix A′; we denote it by A −→ A′.
Moreover, for simplicity we assume that no row or column is split repeatedly, i.e., if a row
ai· is split into k rows ai·/k, then none of these obtained rows is split again.

Denote by G(A) the infimum of g(A′) over all matrices A′ which can be obtained from A:

G(A) := inf
A′:A−→A′

g(A′).

We have g(A) ≥ 1 for all matrices A. (To see this, observe that ‖Ax‖1
‖x‖∞ ≤

√
n‖Ax‖2
‖x‖2/

√
m

=
√
nm‖Ax‖2

‖x‖2
. Taking maximums over all x on both sides gives ‖A‖∞→1 ≤

√
nm‖A‖ which is

equivalent to g(A) ≥ 1.) Therefore, we also have G(A) ≥ 1.
The assumption that no row or column is split repeatedly does not alter the value of this

infimum; more generally, one could consider weighted splitting of rows (or columns), e.g.,
allowing to replace a row ai· with k rows wjai·, j ∈ [k], where wj are non-negative weights
satisfying w1 + . . .+wk = 1. It is possible to show also in this case that the infimum of g(A′)
over all matrices A′, yielded by permitted splittings, has the same value as G(A).

Let A denote the class of all matrices (with real entries) which do not contain zero rows
or columns. Notice that if A ∈ A and A −→ A′, then also A′ ∈ A. The class An,m contains
all matrices in A of size n×m.

By Rn+ we denote the set of all vectors w ∈ Rn such that wi > 0 for all i ∈ [n].
Using the introduced notation, we can restate Lemma 3.4:

I Lemma A.1. For every matrix A we have

G(A) =
‖A‖G
‖A‖∞→1

≤ K. (5)

The inequality here is due to Grothendieck’s inequality, see, e.g., Theorem 4 of [19]. The
remaining part of this section is devoted to proving the equality in (5).

A.2 Splitting preserves infinity-to-one and Grothendieck’s norms
Here we show that splitting rows or columns does not change the norms ‖·‖∞→1 and ‖·‖G.

I Lemma A.2. For every matrix A ∈ A and every A′ s.t. A −→ A′ we have

‖A‖∞→1 = ‖A′‖∞→1 and ‖A‖G = ‖A′‖G .

Proof. Let a matrix A ∈ An,m be fixed. It is sufficient to show the statement for matrices
A′ that can be obtained by splitting a row ai· of A into l+ 1 rows ai·/(l+ 1) (these rows are
indexed by i, . . . , i+ l in A′). We have

‖A‖∞→1 = max
x:‖x‖∞≤1

‖Ax‖1 = max
x∈{−1,1}n

‖Ax‖1 = max
x∈{−1,1}n

y∈{−1,1}m

xTAy.

Suppose that x ∈ {−1, 1}n , y ∈ {−1, 1}m are such that xTAy = ‖A‖∞→1. Notice that

xTAy =
n∑
k=1

xkak·y.
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Let x′ ∈ {−1, 1}n+l be obtained from x by replacing xi with (xi, xi, . . . , xi) (i.e., the
component xi, corresponding to the split row ai·, is replicated l + 1 times) and these
components are indexed with i, . . . , i+ l in x′. Then

(x′)TA′y =
n+l∑
k=1

x′ka
′
k·y = (l + 1) · xi

ai·
l + 1y +

∑
k 6=i

xkak·y =
n∑
k=1

xkak·y = ‖A‖∞→1 .

This shows that ‖A′‖∞→1 ≥ ‖A‖∞→1.
Suppose that x ∈ {−1, 1}n+l

, y ∈ {−1, 1}m are such that xTA′y = ‖A′‖∞→1 and the
rows a′i′·, i′ ∈ [i .. i+ l], are the rows ai·/(l + 1), obtained from ai·. Let x̃ ∈ Rn be such that

x̃k =


xk k = 1, 2, . . . , i− 1,
xk+l k = i+ 1, i+ 2, . . . , n,
xi+...+xi+l

l+1 , k = i.

Notice that |x̃i| ≤ 1
l+1
∑i+l
k=i |xk| = 1. Thus ‖x̃‖∞ ≤ 1. On the other hand,

x̃TAy =
n∑
k=1

x̃kak·y =

∑
k∈[i .. i+l]

xk

l + 1 ai·y+
i−1∑
k=1

xkak·y+
n∑

k=i+1
xk+lak·y =

n+l∑
k=1

xka
′
k·y = ‖A′‖∞→1 .

Since

‖A‖∞→1 = sup
x∈Rn,y∈Rm,
‖x‖∞≤1,
‖y‖∞≤1

xTAy,

this implies that ‖A‖∞→1 ≥ ‖A′‖∞→1. Hence the two norms are equal.
We can argue similarly with the norm ‖A‖G, see (3). Let unit vectors pk, qj (in Rr for

some r ∈ N) be fixed, k ∈ [n], j ∈ [m]. Choose n+ l unit vectors as follows:

p′k =


pk, k < i,

pk−l, k = i+ l + 1, . . . , n+ l,

pi, k ∈ [i .. i+ l].

Then

‖A′‖G ≥
∑
k,j

a′kj 〈p′k, qj〉 =
∑
k,j

akj 〈pk, qj〉.

Taking supremum over all r and unit vectors pk, qj , we obtain ‖A′‖G ≥ ‖A‖G.
Now, let unit vectors pk, qj (in Rr for some r ∈ N) be fixed, k ∈ [n+ l], j ∈ [m].
Choose n vectors p̃k as follows:

p̃k =


pk, k < i,

pk+l, k = i+ 1, . . . , n,
pi+...+pi+l

l+1 , k = i.

By the triangle inequality ‖p̃i‖ ≤ 1
l+1
∑i+l
k=i ‖pk‖ = 1. Since

‖A‖G = sup
r∈N

sup
pk,qj∈Rr

∀k:‖pk‖=1
∀j:‖qj‖=1

∑
k,j

akj 〈pk, qj〉 = sup
r∈N

sup
pk,qj∈Rr

∀k:‖pk‖≤1
∀j:‖qj‖≤1

∑
k,j

akj 〈pk, qj〉,
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we have
∑
k

∑
j akj 〈p̃k, qj〉 ≤ ‖A‖G.

It follows that

∑
k,j

a′kj 〈pk, qj〉 =
∑

k/∈[i .. i+l]

∑
j

a′kj 〈pk, qj〉+ 1
l + 1

i+l∑
k=i

∑
j

aij 〈pk, qj〉

=
∑
k

∑
j

akj 〈p̃k, qj〉 ≤ ‖A‖G .

Taking the supremum over all r and pk, qj , we obtain ‖A‖G ≥ ‖A′‖G.
Hence the two norms are equal. J

A.3 Characterization of row(column)-splitting
I Lemma A.3. Suppose that A ∈ An,m; for each i ∈ [n] the row ai· is split into ki rows and
for each j ∈ [m] the column a·j is split into lj rows; the resulting matrix is denoted by A′.

Then Γ(A′) =
∥∥Ã∥∥ ‖w‖ ‖v‖, where Ã = (ãij),

ãij = aij
wivj

, i ∈ [n], j ∈ [m],

wi =
√
ki, vj =

√
lj .

Proof. The matrix A′ is of size (k1 + . . . + kn) × (l1 + . . . + lm) = ‖w‖2 ‖v‖2. Hence it is
sufficient to show that ‖A′‖ =

∥∥Ã∥∥.
We begin by showing this statement in case when l1 = l2 = . . . = lm = 1, i.e., only

row-splitting takes place.
Denote Mi = aTi·ai·. By (4),∥∥Ã∥∥2 = λmax(ÃT Ã), ‖A′‖2 = λmax(A′TA′),

Notice that

ÃT Ã =
(
w−1

1 aT1· w−1
2 aT2· . . . w−1

n aTn·
)

w−1
1 a1·

w−1
2 a2·
. . .

w−1
n an·

 =
n∑
i=1

w−2
i Mi.

Similarly it can be obtained that

A′
T
A′ =

n∑
i=1

ki∑
j=1

1
k2
i

Mi.

Since

n∑
i=1

ki∑
j=1

1
k2
i

Mi =
n∑
i=1

1
ki
Mi =

n∑
i=1

w−2
i Mi,

we conclude that A′TA′ = ÃT Ã, which implies
∥∥Ã∥∥ = ‖A′‖.

Now consider the case of arbitrary lj ∈ N. Denote by B the n× (l1 + . . .+ lm) matrix,
obtained from A by splitting each of its columns a·j into lj columns. Then A −→ B −→ A′.
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By the previous arguments, ‖A′‖ =
∥∥B̃∥∥, where B̃ is n× (l1 + . . .+ lm) matrix with ith row

equal to ai1

l1
√
ki︸ ︷︷ ︸

repeated l1 times

ai2

l2
√
ki︸ ︷︷ ︸

repeated l2 times

. . .
aim

lm
√
ki︸ ︷︷ ︸

repeated lm times

 .

Then the transpose of B̃ can be obtained from the m× n matrix C = (Cji),

Cji = aji√
ki
, i ∈ [n], j ∈ [m],

by splitting the jth row of C into lj rows.
By previous argument,

∥∥B̃T∥∥ =
∥∥C̃∥∥, where C̃ = ÃT . Thus we conclude

‖A′‖ =
∥∥B̃∥∥ =

∥∥B̃T∥∥ =
∥∥ÃT∥∥ =

∥∥Ã∥∥ . J

This shows that Γ(A′), for every matrix A′ which can be obtained from A by splitting
rows/columns, can be characterized by vectors w, v (s.t. the squares of components of w, v
are rational numbers). The converse is also true:

I Lemma A.4. Suppose that A ∈ An,m but vectors w ∈ Rn+, v ∈ Rm+ are such that w2
i ∈ Q,

v2
j ∈ Q for all i, j. Then there exist numbers ki ∈ N and lj ∈ N such that splitting A’s
ith row ai· into ki rows and the jth column a·j into lj rows yields a matrix A′ such that
Γ(A′) =

∥∥Ã∥∥ ‖w‖ ‖v‖ where ∥∥Ã∥∥ = (ãij), ãij := aij

wivj
.

Proof. First note that the statement is true if w2
i ∈ N and v2

j ∈ N for all i, j, since then one
takes ki = w2

i and lj = v2
j .

Since w2
i ∈ Q, v2

j ∈ Q, we have w2
i = pi

p′
i
and v2

j = qj

q′
j
for some natural numbers pi, p′i,

qj and q′j . Denote P =
∏
i p
′
i and Q =

∏
j q
′
j . Let ŵi = wi

√
P , v̂j = vj

√
Q and Â = (âij),

where âij = aij/(ŵiv̂j) = ãij/
√
PQ. Then∥∥∥Â∥∥∥ = 1√

PQ

∥∥Ã∥∥ , ‖ŵ‖ =
√
P ‖w‖ , ‖v̂‖ =

√
Q ‖v‖ ,

∥∥Ã∥∥ ‖w‖ ‖v‖ =
∥∥∥Â∥∥∥ ‖ŵ‖ ‖v̂‖ .

Moreover, ŵ2
i ∈ N, v̂2

j ∈ N, thus one can take ki = ŵ2
i and lj = v̂2

j . Now, by performing the
corresponding row/column splitting, one obtains a matrix A′ satisfying

Γ(A′) =
∥∥∥Â∥∥∥ ‖ŵ‖ ‖v̂‖ =

∥∥Ã∥∥ ‖w‖ ‖v‖ . J

We can consider even more general situation:

I Lemma A.5. Suppose that A ∈ An,m and w ∈ Rn+, v ∈ Rm+ .
Then there exist sequences (ki,N )N ⊂ N and (lj,N )N ⊂ N such that

lim
N→∞

Γ(A′N ) =
∥∥Ã∥∥ ‖w‖ ‖v‖ .

Here by Ã we denote the matrix with components ãij = aij

wivj
, but A′N stands for the

matrix which is obtained from A by splitting its ith row ai· into ki,N rows and the jth column
a·j into lj,N rows.

Proof. We choose two sequences of vectors w(1), w(2), . . . and v(1), v(2), . . . so that w(N) ∈ Qn+
and w = limN→∞ w(N) and similarly for v(N) and v. Let Ã(N) be a matrix with entries
ã

(N)
ij = aij

wivj
.
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Then by Lemma A.4, there are matrices A′N such that Γ(A′N ) = ‖Ã(N)‖‖w(N)‖‖v(N)‖.
Let ki,N and li,N be the values of ki and li in the application of Lemma A.4. By continuity,
if N →∞, we have ‖w(N)‖ → ‖w‖, ‖v(N)‖ → ‖v‖, ‖Ã(N)‖ → ‖Ã‖.

Hence, limN→∞ Γ(A′N ) =
∥∥Ã∥∥ ‖w‖ ‖v‖. J

Suppose that A ∈ An,m and w ∈ Rn+, v ∈ Rm+ are fixed. Let Ã be the matrix
with components ãij = aij/(wivj). Notice that Ã = D−1

w AD−1
v . Denote FA(w, v) =∥∥D−1

w AD−1
v

∥∥ ‖w‖ ‖v‖. Then Claims A.3 and A.5 together imply that

inf
A′:A−→A′

Γ(A′) = inf
w∈Rn

+
v∈Rm

+

FA(w, v).

Denote the latter infimum by FTA . In view of Lemma A.2 this means that

G(A) = infA′:A−→A′ Γ(A′)
‖A‖∞→1

= FTA
‖A‖∞→1

. (6)

A.4 Proof of Lemma A.1
We recall the following characterization of matrices with ‖A‖G ≤ 1; for a proof, see [23, p.
239].
I Lemma A.6. For every matrix A (of size n × n), the inequality ‖A‖G ≤ 1 holds iff
there is a matrix Ã (of size n× n) and vectors w, v ∈ Rn with non-negative components s.t.
‖w‖ = ‖v‖ = 1,

∥∥Ã∥∥ ≤ 1 and for all i, j ∈ [n]: aij = ãijwivj.
From this it is easy to obtain the following:

I Lemma A.7. For every matrix A ∈ An,n there exists a matrix Ã ∈ An,n and vectors
w, v ∈ Rn+ s.t. ‖w‖ = ‖v‖ = 1,

∥∥Ã∥∥ = ‖A‖G and Ã = D−1
w AD−1

v . Moreover, w and v

minimize the function FA(·, ·), i.e.,

FTA =
∥∥Ã∥∥ ‖w‖ ‖v‖ = ‖A‖G .

Proof. Suppose that a matrix A ∈ An,n is scaled so that ‖A‖G = 1.
From Lemma A.6 the existence of Ã with

∥∥Ã∥∥ ≤ 1 and w, v ∈ Rn+ with ‖w‖ = ‖v‖ = 1
follows. Notice that wi 6= 0 and vj 6= 0 for all i, j, since otherwise A /∈ A. Similarly, also
Ã ∈ An,n must hold.

We claim that
∥∥Ã∥∥ = 1. Assume the contrary,

∥∥Ã∥∥ = c ∈ (0, 1).
Let B̃ be an n× n matrix with b̃ij = ãij/c, then

∥∥B̃∥∥ = 1 and by Lemma A.6 we have
‖B‖G ≤ 1, where B = A/c. But then ‖A‖G ≤ c < 1, a contradiction. Thus

∥∥Ã∥∥
G

= 1.
To prove the second part of the statement, suppose that there are unit vectors ŵ, v̂ ∈ Rn+

such that FA(ŵ, v̂) = s < 1. Let X̃ = D−1
ŵ AD−1

v̂ /s, then
∥∥X̃∥∥ = 1. By Lemma A.6 we have

‖X‖G ≤ 1, where X = A/s. But then ‖A‖G ≤ s < 1, a contradiction. J

Proof of Lemma A.1.

The case of A ∈ A. Notice that

inf
A′:A−→A′

Γ(A′) = inf
A′:A′′−→A′

Γ(A′),

where A′′ is any matrix s.t. A −→ A′′. This means that FTA = FTA′ , if A −→ A′. To apply
Lemma A.7, transform A into a square matrix A′ by splitting a row or a column. Then

FTA = FTA′
Lemma A.7= ‖A′‖G

Lemma A.2= ‖A‖G
and, by (6), G(A) = ‖A‖G / ‖A‖∞→1, proving (5) for all A ∈ A.

It remains to show that (5) holds for all matrices A.



S. Aaronson, A. Ambainis, J. Iraids, M. Kokainis, and J. Smotrovs 25:17

The case of A /∈ A. Suppose that A is a n×m matrix and there are k zero rows and l
zero columns. W.l.o.g. assume the non-zero rows/columns are the first, then

A =
(

Â 0n−k,l
0k,m−l 0k,l

)
,

where Â ∈ An−k,m−l (and 0a,b stands for the zero matrix of size a× b). Notice that

g(Â) =

∥∥∥Â∥∥∥√(n− k)(m− l)∥∥∥Â∥∥∥
∞→1

=
‖A‖

√
(n− k)(m− l)
‖A‖∞→1

<
‖A‖
√
nm

‖A‖∞→1
= g(A).

By the previous case, we have G(Â) =
∥∥∥Â∥∥∥

G
/
∥∥∥Â∥∥∥

∞→1
= ‖A‖G / ‖A‖∞→1.

Clearly, for every A′ with A −→ A′ we have Â′ s.t. Â −→ Â′ and g(Â′) ≤ g(A′)
(take Â′ to be the minor of A′, obtained by skipping all zero rows or columns). Then
G(Â) ≤ g(Â′) < g(A′). Taking infimum over all A′ s.t. A −→ A′, inequality G(Â) ≤ G(A)
follows.

On the other hand, for every Â′ s.t. Â −→ Â′ we have a sequence (AN )N∈N with
A −→ AN for all N and limN→∞ g(AN ) = g(Â′): take the matrix

B =
(
Â′ 0p,l

0k,q 0k,l

)
,

where Â′ is of size p× q (i.e., B is the matrix obtained by splitting the non-zero part of A in
the same way how we split Â to obtain Â′). Then the matrix AN is obtained by splitting
each row bi·, i ∈ [p] of B, and each column b·j , j ∈ [q] of B into N rows/columns. We have
A −→ B −→ AN and the resulting matrix AN is of size (Np + k) × (Nq + l). We denote
the upper Np×Nq submatrix of AN by BN . Then BN = 1

N2 Â
′ ⊗ JN,N , where JN,N is the

N ×N all-1 matrix.
We have

‖AN‖ = ‖BN‖ =

∥∥∥Â′∥∥∥
N

;

‖AN‖∞→1 = ‖BN‖∞→1 =
∥∥∥Â′∥∥∥

∞→1
;

g(AN ) =
‖AN‖

√
(Np+ k) · (Nq + l)
‖AN‖∞→1

=
‖BN‖

√
(Np+ k) · (Nq + l)
‖BN‖∞→1

=

∥∥∥Â′∥∥∥√pq∥∥∥Â′∥∥∥
∞→1

·

√
Np+ k

Np
· Nq + l

Nq
= g(Â′)

√(
1 + c1

N

)(
1 + c2

N

)
,

where c1 = k/p, c2 = l/q.
We see that G(A) ≤ limN→∞ g(AN ) = g(Â′). Taking infimum over all Â′ s.t. Â −→ Â′,

inequality G(Â) ≥ G(A) follows. Hence the two quantities must be equal. J

B Proof of Theorem 4.1

We use the notion of certificate complexity. Let C be an assignment of values C : S → {0, 1}
for some S ⊆ [n]. We say that x = (x1, . . . , xn) is consistent with C if it satisfies xi = C(i)

CCC 2016



25:18 Polynomials, Quantum Query Complexity, and Grothendieck’s Inequality

for all i ∈ S. We say that C is a certificate for f on an input x if x is consistent with C and,
for any y ∈ {0, 1}n that is consistent with C, we have f(y) = f(x).

The certificate complexity of f on an input x (denoted by C(f, x)) is the smallest |S| in
a certificate C for f on the input x. The certificate complexity of f (denoted C(x)) is the
maximum of C(f, x) over all x ∈ {0, 1}n. (For more information on the certificate complexity
and its connections to other complexity measures, we refer the reader to the survey by
Buhrman and de Wolf [13].)

We use the same function as in the Qε(f) = Ω̃(deg2(f)) result of Aaronson et al. [3]. The
construction of this function [3] starts by designing a function g : {−1, 1}n → {0, 1} with
Qε(g) = Ω̃(n) and C(g) = Õ(

√
n). (We omit the definition of g because Qε(g) = Ω̃(n) and

C(g) = Õ(
√
n) are the only properties of g that we use.)

Then they define f as follows:
1. The first c = 10n logn input variables of f are interpreted as c inputs x(1) ∈ {0, 1}n, . . .,

x(c) ∈ {0, 1}n to the function g.
2. These input variables are followed by 2c groups of variables y(m), m ∈ {0, 1}c, with

each group containing cC(g) logn variables. The content of each y(m) is interpreted as
descriptions for c sets S1, . . . , Sc ⊆ [n] with |Sj | = C(g). A set Sj is interpreted as a
sequence of indices for C(g) variables for the function g(x(j)).

3. f = 1 if and only if, for some m ∈ {0, 1}c, the group y(m) contains descriptions for sets
Si such that, for each i ∈ [c], the variables x(i)

j , j ∈ Si form an mi-certificate.

As shown in [3], f satisfies Qε(f) = Ω̃(n) and deg(f) = Õ(
√
n). A polynomial p of degree

Õ(
√
n) that represents f can be constructed as follows:

1. p =
∑
m∈{0,1}c pm;

2. pm =
∑
S1,...,Sc

pm,S1,...,Sc , with the summation over all tuples (S1, . . . , Sc) such that, for
all i ∈ [c], Si is a possible certificate for g(x) = mi;

3. pm,S1,...,Sc
= qm,S1,...,Sc

∏c
i=1 ri,mi,Si

;
4. qm,S1,...,Sc

= 1 if the contents of y(m) describe sets S1, . . . , Sc and qm,S1,...,Sc
= 0 otherwise;

5. ri,mi,Si = 1 if the values of variables x(i)
j , j ∈ Si certify that g(x(i)) = mi and ri,mi,Si = 0

otherwise.
In the non-block-multilinear case, qm,S1,...,Sc

is the product of 1+y(m)
i

2 ’s (for i’s where we need

y
(m)
i = 1) and 1−y(m)

i

2 ’s (for i’s where we need y(m)
i = −1). ri,mi,Si

is constructed similarly,

by taking a product of 1+x(i)
j

2 ’s and 1−x(i)
j

2 ’s for j ∈ Si, to obtain the condition that x(i)
j take

the values that are necessary so that x(i)
j , j ∈ Si, certify g(x(i)) = mi.

We now modify this construction to obtain bmdeg(f) = Õ(
√
n). Our polynomial has

blocks of variables z(i), for i ∈ [cC(g)(logn+ 1)], with each z(i) consisting of a variable z(i)
0 ,

c subblocks x(i,1), . . . , x(i,c) and 2c subblocks y(i,m) for m ∈ {0, 1}c.
The structure of the polynomial p stays the same and we only modify the constructions

of qm,S1,...,Sc and ri,mi,Si . To construct qm,S1,...,Sc , we use the first cC(g) logn blocks z(i),
taking the value of y(m)

i from the ith block and using z(i)
0 instead of 1 in the terms 1±y(m)

i

2 .
To construct ri,mi,Si

, we use z(k) for k ∈ {(c logn+ (i−1))C(g) + 1, . . . , (c logn+ i)C(g)}

and take ri,mi,Si
to be the average of the desired product of z

(k)
0 +x(k,i)

j

2 ’s and z
(k)
0 −x

(k,i)
j

2 ’s over
all the ways how one could use one term per block z(k).

It is easy to see that, if all blocks z(i) contain the same assignment z, then p(z, . . . , z) is
the same polynomial as in the non-block-multilinear case and is equal to f(z). We now show
that |p| ≤ 1 for any choice of z(1), z(2), . . . in which all the variables are in {−1, 1}.
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For each m, all polynomials qm,S1,...,Sc
use the same variables z(i)

0 and y
(i,m)
i and are

defined so that, for any choice of values for z(i)
0 ’s and y(i,m)

i ’s, at most one of qm,S1,...,Sc
is

±1 and the rest are 0. Let Sm,1, . . . , Sm,c be the sets for which qm,Sm,1,...,Sm,c = ±1 (if such
sets exist). Then p(z(1), . . . , z(cC(g)(logn+1))) is equal to the sum

∑
m∈{0,1}c

am

c∏
i=1

ri,mi,Sm,i
(7)

for some choice of signs am ∈ {−1, 1}. We show

I Lemma B.1. Let Sm,i, m ∈ {0, 1}c, i ∈ [c] be such that Sm,i is an mi-certificate for the
function g. Then∣∣∣∣∣∣

∑
m∈{0,1}c

am

c∏
i=1

ri,mi,Sm,i

∣∣∣∣∣∣ ≤ 1

for any choice of signs am ∈ {−1, 1}.

Proof. By induction on c. For c = 1, this simplifies to

−1 ≤ a0r1,0,S0,1 + a1r1,1,S1,1 ≤ 1 (8)

when S0,1 is a set of variables for a 0-certificate and S1,1 is a set of variables for a 1-
certificate. Since a 0-certificate and a 1-certificate cannot be true at the same time, there
must be j ∈ S0,1 ∩ S1,1 with xj taking one value in the 0-certificate and another value in the
1-certificate.

Let p0 be the probability that, when we choose a block z(i) randomly among the blocks
that are used to define r1,m1,S1 ’s, we get the value of x(i,1)

j which matches the 0-certificate.
Then the probability of getting the value that matches the 1-certificate is 1 − p0 and we
get that r1,0,S0,1 ≤ p0 and r1,1,S1,1 ≤ 1 − p0. This implies (8) for any choice of signs
a0, a1 ∈ {−1, 1}.

For c > 1, we can use the same argument to show that, for any m ∈ {0, 1}c−1, we have
rc,0,Sm0 ≤ pm and rc,1,Sm1 ≤ 1− pm for some pm that depends on m. Therefore, the sum of
Lemma B.1 is upper bounded by

∑
m∈{0,1}c−1

(
pmam0

c−1∏
i=1

ri,mi,Sm0,i
+ (1− pm)am1

c−1∏
i=1

ri,mi,Sm1,i

)
.

We can express this sum as a probabilistic combination of sums

∑
m∈{0,1}c−1

am

c−1∏
i=1

ri,mi,Sm,i (9)

where each Sm,i is either Sm0,i or Sm1,i and each am is either am0 or am1. Each of sums (9)
is at most 1 in absolute value by the inductive assumption. J
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Abstract
Given a problem which is intractable for both quantum and classical algorithms, can we find a
sub-problem for which quantum algorithms provide an exponential advantage? We refer to this
problem as the “sculpting problem.” In this work, we give a full characterization of sculptable
functions in the query complexity setting. We show that a total function f can be restricted
to a promise P such that Q(f |P ) = O(polylogN) and R(f |P ) = NΩ(1), if and only if f has
a large number of inputs with large certificate complexity. The proof uses some interesting
techniques: for one direction, we introduce new relationships between randomized and quantum
query complexity in various settings, and for the other direction, we use a recent result from
communication complexity due to Klartag and Regev. We also characterize sculpting for other
query complexity measures, such as R(f) vs. R0(f) and R0(f) vs. D(f).

Along the way, we prove some new relationships for quantum query complexity: for example,
a nearly quadratic relationship between Q(f) and D(f) whenever the promise of f is small.
This contrasts with the recent super-quadratic query complexity separations, showing that the
maximum gap between classical and quantum query complexities is indeed quadratic in various
settings – just not for total functions!

Lastly, we investigate sculpting in the Turing machine model. We show that if there is any
BPP-bi-immune language in BQP, then every language outside BPP can be restricted to a promise
which places it in PromiseBQP but not in PromiseBPP. Under a weaker assumption, that some
problem in BQP is hard on average for P/poly, we show that every paddable language outside
BPP is sculptable in this way.
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1 Introduction

When are quantum algorithms useful? In general, quantum algorithms are believed to provide
exponential speedups for certain structured problems, such as factoring [18], but not for
unstructured problems like NP-complete problems.

In this work, we ask the question in a new way. Given a problem for which quantum
algorithms are not useful, can we nevertheless find a sub-problem on which they provide an
exponential advantage over classical algorithms? We call this the “sculpting” question: our
goal is to sculpt the original intractable problem into a sub-problem that’s still classically
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intractable, but for which there exists a fast quantum algorithm. The sculpting question
arises, for example, in adiabatic quantum computation: while it is not believed that adiabatic
quantum computing can solve NP-complete problems in polynomial time, a widely discussed
question is whether there is a sub-problem of SAT on which adiabatic computing provides
an exponential advantage over classical algorithms.

We study the sculpting question primarily in the query complexity model. The utility of
the model comes from its relative tractability: for example, in query complexity, Shor’s period
finding algorithm provides a provable exponential speedup over any classical algorithm [8].

In query complexity, we’re given a (possibly partial) function f : {0, 1}N → {0, 1} and an
oracle access to a string x ∈ {0, 1}N . The goal is to evaluate f(x) using as few oracle calls
to the entries of x as possible. The minimum number of queries required by an algorithm
for computing f(x) (over the worst-case choice of x) is the query complexity of f . If the
algorithm in question is deterministic, we denote this by D(f); if it is zero-error randomized,
we denote this by R0(f); if it is (bounded error) randomized, we denote this by R(f); and if
it is (bounded error) quantum, we denote it by Q(f).

In this query complexity setting, the sculpting question can be phrased as follows:
given a total function f : {0, 1}N → {0, 1} for which R(f) and Q(f) are both large (say,
NΩ(1)), is there a promise P ⊆ {0, 1}N such that f |P , the restriction of f to P , has
Q(f |P ) = O(polylogN) and R(f |P ) = NΩ(1)?

For example, if f is the OR function, such sculpting is not possible, as follows from
[1]. As another example, if f is defined to be 1 when Simon’s condition is satisfied and 0
otherwise, then sculpting is possible: the promise will simply restrict to inputs that either
satisfy Simon’s condition or are far from satisfying it; this promise suffices for an exponential
quantum speedup [7].

We fully characterize the functions f for which such a promise exists. In particular, we
show that sufficiently “rich” functions, such as Parity or Majority, are sculptable.

The sculpting problem has been previously studied by Zhan, Kimmel, and Hassidim
[20] for the case where f a recursive function such as the NAND-tree. They constructed
a promise on which this function gives a small super-polynomial speedup (polylog(n) vs.
(logn)Ω(log log logn)). Our results also apply to such recursive functions, and we improve the
speedup to polylogn vs. nΩ(1).

Our sculpting construction uses communication complexity in a novel way. In the other
direction, to prove non-sculptability, we prove new query complexity relationships. As
a corollary, we get nearly quadratic relationships between classical and quantum query
complexities for a wider class of functions than previously known.

Results

H-indices

We introduce a new query complexity measure, H(Cf ), defined as the maximum number
h for which there are 2h inputs to f with certificate complexity at least h. We call this
the H-index of certificate complexity (motivated by the citation H-index sometimes used to
measure research productivity [10]). This quantity measures the number of inputs there are
to a function f that have large certificate complexity. We prove various properties of H(Cf );
most notably, we show that for total functions, it is nearly quadratically related to H(bsf ),
the H-index of block sensitivity. This is analogous to the quadratic relationship between C
and bs.



S. Aaronson and S. Ben-David 26:3

Sculpting in Query Complexity
Our main result is the following theorem, which neatly characterizes sculptability in the
query complexity model in terms of the H-index of certificate complexity.

I Theorem 1.1. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise
P ⊆ {0, 1}N such that R(f |P ) = NΩ(1) and Q(f |P ) = No(1), if and only if H(Cf ) = NΩ(1).
Furthermore, in this case we also have Q(f |P ) = O(log2N).

This theorem follows as an immediate corollary of the following more general characteri-
zation theorem.

I Theorem 1.2. For all total functions f : {0, 1}N → {0, 1} and all promises P ⊆ {0, 1}N ,
we have

R(f |P ) = O(Q(f |P )2 H(Cf )2).

Conversely, for all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N such
that

R(f |P ) = Ω
(

H(Cf )1/6

log11/6N

)
and Q(f |P ) = O(log2 H(Cf )).

We also prove an analogous theorem for D vs. R0, showing that the same H(Cf ) = NΩ(1)

condition also characterizes sculpting D(f) vs. R0(f). On the other hand, we show that
sculpting R0(f) vs. R(f) is always possible: for every total function f with R0(f) = NΩ(1),
there is a promise P such that R0(f |P ) = NΩ(1) and R(f |P ) = O(1).

Query Complexity on Small Promises
On the way to proving Theorem 1.2, we prove the following theorem, providing a quadratic
relationship between Q(f) and D(f) when the domain of f is small. This provides a ironic
twist to the query complexity story: for a long time, it was believed that D(f) and Q(f) are
quadratically related when the domain of f is very large (in particular, for total functions).
This conjecture was recently disproven by [3] (who showed a D(f) ∼ Q(f)4 separation) and
by [2] (who showed an f such that R(f) ∼ Q(f)2.5). Instead, we now show that the quadratic
relationship holds when the domain of f is very small.

I Theorem 1.3. Let f : {0, 1}N → {0, 1} be a partial function, and let Dom(f) denote the
domain of f . Then

Q(f) = Ω
( √

D(f)
log |Dom(f)|

)
.

Query Complexity for Unbalanced Functions
We show two relationships similar to Theorem 1.3 that hold for functions whose domain is
large, but which are unbalanced: they contain very few 0-inputs compared to 1-inputs, or
vice versa.

I Theorem 1.4. Let f : {0, 1}N → {0, 1} be a partial function. Define the measure
Bal(f) ∈ [0, N ] as Bal(f) := 1 + min{log |f−1(0)|, log |f−1(1)|} (or 0 if f is constant). Then

R(f) = O(Q(f)2 Bal(f))

D(f) = O(R0(f) Bal(f)).
A similar polynomial relationship between R0(f) and R(f) does not hold in general.
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New Relationship for Total Functions
We prove the following new query complexity relationship for total functions, generalizing
the known relationship D(f) = O(Q(f)2 C(f)).

I Theorem 1.5. Let f : {0, 1}N → {0, 1} be a total function. Then

D(f) = O(Q(f)2 H(
√

Cf )2).

Here H(
√

Cf ) denotes the H-index of the square root of certificate complexity; this is the
maximum number h such that there are at least 2h inputs to f for which

√
C(f) is at least

h. We note that H(
√

Cf )2 ≤ C(f) for all total functions, so this is an improvement over the
relationship D(f) = O(Q(f)2 C(f)). Moreover, when f = OR, we have H(

√
Cf )2 = 1 and

C(f) = N , so this improvement is strict.
We remark that this result could let us improve the relationship D(f) = O(Q(f)6) if we

could show H(
√

Cf )2 = o(Q(f)4). Theorem 1.5 therefore provides a new approach for this
long-standing open problem.

Sculpting in the Turing Machine Model
In Section 8, we examine sculpting in the Turing machine model. We say that a language
L is sculptable if there is a promise set P such that the promise problem of deciding if an
input from P is in L is in PromiseBQP but not in PromiseBPP. We prove two sculptability
theorems, both of them providing evidence that most or all languages outside of BPP are
sculptable.

I Theorem 1.6. Assume PromiseBQP is hard on average for P/poly. Then every paddable
language outside of BPP is sculptable.

I Theorem 1.7. Assume there exists a BPP-bi-immune language in BQP. Then every
language outside of BPP is sculptable.

For the definitions of paddability and bi-immunity, see Section 8. These theorems assume
very little about BQP and BPP, and analogous statements hold for other pairs of complexity
classes.

2 Preliminaries

For a (possibly partial) function f : {0, 1}N → {0, 1}, we use D(f), R0(f), R(f), and
Q(f) to denote the deterministic query complexity, zero-error randomized query complexity,
bounded-error randomized query complexity, and bounded-error quantum query complexity
of f , respectively. For the definitions of these measures, see [6].

A partial assignment is a string p in {0, 1, ∗}N that represents partial knowledge of a
string in {0, 1}N . For x ∈ {0, 1}N , we say that p is a partial assignment of x if x extends p;
that is, if x and p agree on all the non-∗ entries of p. A partial assignment p for x is called a
certificate for x if all strings that extend p have that same value under f as x; that is, if for
all y ∈ {0, 1}N that extend p, we have f(y) = f(x). The certificate complexity of f on input
x, denoted by Cf (x), is the minimum number of bits in any certificate of x with respect to
f . The certificate complexity of f , denoted by C(f), is defined as the maximum of Cf (x)
over all strings x in the domain of f .
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The certificate complexity Cf (x) can be thought of as the deterministic query complexity
of f given the promise that the input is either x or else an input y such that f(x) 6= f(y).
Motivated by this observation, Aaronson [1] defined the randomized certificate complexity of
x, denoted by RCf (x), to be the (bounded-error) randomized query complexity of f on this
promise. He defined the quantum certificate complexity QCf (x) analogously. As with C,
we use RC(f) to denote the maximum of RCf (x) over all x in the domain of f , and define
QC(f) similarly.

For any string x ∈ {0, 1}N and set of bits B ⊆ {1, 2, . . . , N}, denote by xB the string x
with the bits in B flipped. For any f : {0, 1}N → {0, 1}, if f(x) 6= f(xB), we say that B is a
sensitive block for x with respect to f . The block sensitivity of x, denoted by bsf (x), is the
maximum number of disjoint sensitive blocks for x. Note that the block sensitivity is the
packing number of the collection of sensitive blocks of x. It can be seen that Cf (x) can be
interpreted as the hitting number of that collection (the minimum number of bits in a set
that has non-empty intersection with all the blocks).

The linear programming relaxation of the packing problem is the dual of the linear
programming relaxation of the hitting problem. We call the optimum of this LP the
fractional block sensitivity (or fractional certificate complexity). As it happens, this measure
is equal to RCf (x). This observation is implicit in [1], and was made explicit in [13].

Actually, the fractional block sensitivity differs by a constant factor from Aaronson’s
original definition of RC. In this work we will use RC to denote the fractional block sensitivity.
Another property of RC that we will need is that 1/RCf (x) is equal to the minimum infinity-
norm distance between x and the convex hull of the set of inputs y such that f(y) 6= f(x).
That is, if f(x) = 0 and S = f−1(1), we have

1
RCf (x) = min

µ∈∆S

max
i

Pr
y∼µ

[xi 6= yi],

where ∆S is the set of all probability distributions over S (equivalently, the convex hull of S).
In particular, this minimum is attained, so there is a probability distribution µ over f−1(1)
such that for all i = 1, 2, . . . , n, if we sample y ∼ µ we get Pr[yi 6= xi] ≤ 1/RCf (x).

Clearly, for all f : {0, 1}N → {0, 1} we have

{QC(f), bs(f)} ≤ RC(f) ≤ {C(f),R(f)} ≤ R0(f) ≤ D(f),

with Q(f) lying between QC(f) and R(f). Aaronson [1] showed that RCf (x) = Θ(QCf (x)2)
for all f and x, so in particular, RC(f) = Θ(QC(f)2). In addition, when f is total, we can
relate all these measures to each other: we have

D(f) = O(bs(f)3) = O(RC(f)3) = O(QC(f)6) = O(Q(f)6),

with the first equality following from [4].

Balance and H Indices
We will use Dom(f) to denote the domain of a partial function f . We define Bal(f) to be 0 if
f is constant, and otherwise, to be the minimum of 1 + log |f−1(0)| and 1 + log |f−1(1)| (we
use log to denote logarithm base 2). Note that since |f−1(0)|+ |f−1(1)| = |Dom(f)| ≤ 2N ,
we have Bal(f) ≤ N . Thus Bal(f) ∈ [0, N ].

We will use a new set of query complexity measures called H-indices (the name is motivated
by the H-index measure of citations, a common metric for research output). For a given
function g : {0, 1}N → [0,∞), we will define the H-index of g, denoted by H(g), as the
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maximum number h such that there are at least 2h inputs with g(x) ≥ h. Alternatively,
the H-index of g can be defined as the minimum number h such that there are at most 2h
inputs with g(x) > h. It is not obvious that these definitions are equivalent (or even that the
minimum and maximum are attained); we prove this in Appendix A.

Note that H(g) ∈ [0, N ], and H(g) ≤ maxx g(x). Also, if g(x) ≥ g′(x) for all x ∈ {0, 1}N ,
we have H(g) ≥ H(g′).

We’ll primarily be interested in measures like H(Cf ), H(RCf ), and H(bsf ). We have
H(Cf ) ≤ C(f), H(RCf ) ≤ RC(f), and H(bsf ) ≤ bs(f). We also have

H(bsf ) ≤ H(RCf ) ≤ H(Cf ).

The H-index of certificate complexity can be much smaller than the certificate complexity
itself. For example, the OR function has only one certificate of size greater than 1, so
H(COR) = 1, even though C(OR) = n.

In Appendix A we show that if α : [0,∞)→ [0,∞) is an increasing function, then

H(α ◦ g) ≤ max{H(g), α(H(g))}.

In particular, this will imply H(C2
f ) ≤ H(Cf )2.

Shattering and the Sauer-Shelah Lemma
For a set of indices A ⊆ {1, 2, . . . , N}, let S|A ⊆ {0, 1}|A| be the set of restrictions of each
string in S to the indices in A. We say A is shattered by S if S|A = {0, 1}|A|. In other words,
A is shattered by S if S has all possible behaviors on A. The Sauer-Shelah lemma [16, 17] is
a classic result that upper-bounds the size of S in terms of the size of A. We will use the
following corollary of it.

I Lemma 2.1. Let S ⊆ {0, 1}N be a collection of strings. Then there is a shattered set of
indices of size at least

log |S|
log(N + 1) .

Lemma 2.1 follows straightforwardly from the Sauer-Shelah lemma, as we prove in
Appendix B. We will often use the weaker bound log |S|

2 logN instead, which holds for N ≥ 2.
This will sometimes lead to simpler formulas.

3 Non-Sculptability Theorems

In this section, we prove the non-sculptability direction of Theorem 1.2. The proof has
two parts: in Section 3.1, we prove a relationship between randomized and quantum query
complexities for “unbalanced” functions, and in Section 3.2, we use this to prove a sculpting
lower bound in terms of the H-index of certificate complexity.

3.1 Query Complexity for Unbalanced Functions
We wish to show a nearly-quadratic relationship between randomized and quantum query
complexities for functions f for which Bal(f) is small. Note that this is a generalization of the
relation RCf (x) = O(Qf (x)2) from [1]. That is, [1] showed that for the task of distinguishing
one input from a (possibly large) set of alternatives, randomized and quantum algorithms
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are quadratically related. We want a similar relationship for the task of distinguishing a
small set of inputs from a (possibly large) set of alternatives.

We start with the following lemma.

I Lemma 3.1. Let f : {0, 1}N → {0, 1} be a partial function. For a /∈ f−1(0), let fa,0 be the
problem of distinguishing a from f−1(0). That is, fa,0 is the function fa,0 : {a} ∪ f−1(0)→
{0, 1} with f(x) = 1 iff x = a. For a /∈ f−1(1), define fa,1 analogously. Then for all
a ∈ {0, 1}N , we have either R(fa,0) = O(Q(f)2) or R(fa,1) = O(Q(f)2).

Note that this holds even when a is not in the promise of f . The constant in the big-O
notation is a universal constant independent of a, f , and N .

Proof. Let Q be the quantum algorithm that achieves Q(f) quantum query complexity in
determining the value of f on a given input. When run on any a ∈ f−1(0), Q will output 0
with probability at least 2/3, and when run on a ∈ f−1(1), it will output 1 with probability
at least 2/3.

Consider running Q on an input a /∈ Dom(f). Then Q will output 0 with some probability
p and output 1 with probability 1− p. If p ≥ 1/2, then Q distinguishes a from f−1(1) with
constant probability. If p ≤ 1/2, then Q distinguishes a from f−1(0) with constant probability.
Thus for all a ∈ {0, 1}N , we have either Q(fa,0) = O(Q(f)) or Q(fa,1) = O(Q(f)). From
[1], we have RC(g) = O(QC(g)2) = O(Q(g)2) for all functions g, so we conclude that either
RC(fa,0) = O(Q(f)2) or RC(fa,1) = O(Q(f)2).

Finally, note that for a problem of distinguishing one input from the rest, randomized query
complexity equals randomized certificate complexity. Thus we get that for all a ∈ {0, 1}N ,
either R(fa,0) = O(Q(f)2) and or R(fa,1) = O(Q(f)2). J

We’re now ready to prove the desired relationship between R and Q.

I Theorem 3.2. Let f : {0, 1}N → {0, 1} be a partial function. Then

R(f) = O(Q(f)2 Bal(f)).

Proof. Without loss of generality, assume |f−1(0)| ≤ |f−1(1)|. We use Lemma 3.1 to
construct a randomized algorithm for determining f(x) given oracle access to x, assuming
that f−1(0) is small. The idea is to keep track of the subset Z ⊆ f−1(0) of strings that the
input x might feasibly be (consistent with the queries seen so far). We then construct a
string a from a majority vote of the elements of Z; that is, for each index i ∈ [n], ai will be
the majority of yi over all y ∈ Z (with ties broken arbitrarily).

This string a need not be in Dom(f). The important property of it is that if we query an
index i of the input x and discover that xi 6= ai, we can eliminate at least half of the strings
from Z, since they are no longer feasible possibilities for x.

We then get the following randomized algorithm for evaluating f(x):
Initialize Z = f−1(0).
While Z 6= ∅:
1. Calculate a from the entry-wise majority vote of Z.
2. Determine b ∈ {0, 1} such that R(fa,b) = O(Q(f)2) (this exists by Lemma 3.1).
3. Run the randomized algorithm evaluating fa,b on x with some amplification

(to be specified later).
4. If its output is 1 (i.e. the algorithm thinks x = a rather than x ∈ f−1(b)),

output 1− b and halt.
5. If its output is 0, a bit i was queried to reveal xi 6= ai, so update Z

(removing at least half its elements).
If Z = ∅, output 1.
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We note a few things about this algorithm. First, in step 3, notice that x need not be in
the domain of fa,b. However, we may still run the randomized algorithm that evaluates fa,b,
and use the fact that if x does happen to be in the domain (in particular, if x ∈ f−1(b)),
then the algorithm will work correctly. This is exactly what we use in step 4: if the algorithm
that distinguishes a from f−1(b) says that x is equal to a, it need not mean that x is in fact
equal to a, but it does mean that x /∈ f−1(b).

Secondly, step 5 assumes that the randomized algorithm for evaluating fa,b will only
conclude that an input x is not equal to a if it finds a disagreement with a. This is a safe
assumption, as argued in Lemma 5 of [1].

Finally, we determine the number of queries this algorithm uses. The outer loop happens
at most blog |f−1(0)|c+ 1 ≤ Bal(f) times. Step 3 in the loop is the only one which queries
the input string. Since the loop repeats at most Bal(f) times, we can safely amplify the
algorithm in step 3 O(log Bal(f)) times. This gives a query complexity of O(Q(f)2 log Bal(f))
for step 3, so the overall number of queries is O(Q(f)2 Bal(f) log Bal(f)).

We can get rid of the log factor by being more careful with the amplification. Note that
if we ever find a disagreement with a when running the algorithm, we may immediately stop
amplifying and proceed to step 5. We keep a count c0 of how many times we had to amplify
in step 3 for functions of the form fa,0, and a count c1 for functions of the form fa,1.

If c0 ever reaches 2 Bal(f), we output 1 and halt. Similarly, if c1 ever reaches 2 Bal(f),
we output 0 and halt. This ensures the total amplification is O(Bal(f)), so the total query
complexity of the algorithm is O(Q(f)2 Bal(f)).

Note that if f(x) = 0 and the output of the algorithm was 1, it means that we ran the
algorithm evaluating fa,0 (for varying values of a) 2 Bal(f) times, and at most Bal(f) of
those times the algorithm said that x ∈ f−1(0). For each individual run, the probability is
at least 2/3 that the algorithm would say that x ∈ f−1(0). An application of the Chernoff
bound shows that the probability of this happening is exponentially small. Similarly, the
probability of the algorithm giving 0 when in actuality f(x) = 1 is also exponentially small.

We conclude that R(f) = O(Q(f)2 Bal(f)), as desired. J

3.2 Application to Non-Sculptability
Theorem 3.2 immediately gives the following non-sculptability result, which says that unbal-
anced functions cannot be sculpted.

I Corollary 3.3. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N ,
we have

R(f |P ) = O(Q(f |P )2 Bal(f)).

Proof. Note that Bal(f |P ) ≤ Bal(f) for any f and P . Then, by Theorem 3.2, we have

R(f |P ) = O(Q(f |P )2 Bal(f |P )) = O(Q(f |P )2 Bal(f)). J

We extend this result by showing that any function with a small number of large certificates
also cannot be sculpted. This gives us a non-sculptability result in terms of the H-index of
certificate complexity.

I Theorem 3.4. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N ,
we have

R(f |P ) = O(Q(f |P )2 H(C2
f )).
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Proof. We design a deterministic algorithm that reduces the set of possibilities for the input
to an unbalanced set. Specifically, the algorithm will reduce the possibilities for the input
to a set S ⊆ {0, 1}N such that Bal(f |S) ≤ H(C2

f ) + 1. We then use Theorem 3.2 to get the
desired non-sculptability result.

Note that every 1-certificate of f must conflict with every 0-certificate of f in at least one
bit. Therefore, by querying all non-∗ entries of a 0-certificate, we reveal at least one entry of
each 1-certificate.

We design a deterministic algorithm for computing f on an input from P . The algorithm
proceeds as follows: it repeatedly picks a 0-certificate p for f of size at most

√
H(C2

f ) that
is consistent with all the entries of the input that were revealed so far. It then queries all
the non-∗ entries of p. This is repeated

√
H(C2

f ) times, or until there are no 0-certificates of

size at most
√

H(C2
f ) (whichever happens first). Finally, the algorithm returns the set S of

strings that are consistent with the revealed entries of the input.
This algorithm uses at most H(C2

f ) queries. We check its correctness by examining the
set S. Clearly, the input is in S. Furthermore, if any certificate of f was revealed, then f is
constant on S, so S contains either no 0-inputs or no 1-inputs.

There are at most 2H(C2
f ) inputs with certificate complexity larger than

√
H(C2

f ).
If the algorithm terminated because there were no consistent 0-certificates, then the only

0-inputs in S have certificates of size larger than
√

H(C2
f ). There are at most 2H(C2

f ) of them,

so S has at most 2H(C2
f ) 0-inputs to f . Conversely, if the algorithm went through

√
H(C2

f )

iterations of querying consistent 0-certificates, then it must have revealed
√

H(C2
f ) entries

of each 1-certificate to f . If no 1-certificate was discovered, it means the revealed entries
contradicted all 1-certificates of size at most

√
H(C2

f ). Thus the only 1-inputs in S have

certificate size greater than
√

H(C2
f ), from which it follows that there are less than 2H(C2

f ) of
them.

We conclude that S contains either at most 2H(C2
f ) 0-inputs to f or at most 2H(C2

f )

1-inputs to f . This gives Bal(f |S) ≤ H(C2
f ) + 1.

We design a randomized algorithm for f |P as follows. First, we run the above deterministic
algorithm to reduce the problem of computing f |P to the problem of computing f |S∩P . This
costs H(C2

f ) queries. By Theorem 3.2, there is a randomized algorithm that uses

O(Q(f |S∩P )2 Bal(f |S∩P )) = O(Q(f |P )2 Bal(f |S)) = O(Q(f |P )2 H(C2
f ))

queries to compute f |S∩P . Running this algorithm allows us to compute f |P . The total
number of queries used was

O(Q(f |P )2 H(C2
f ) + H(C2

f )) = O(Q(f |P )2 H(C2
f )). J

Note that Theorem 3.4 completes the first part of the proof of Theorem 1.2, since
H(C2

f ) ≤ H(Cf )2. It is natural to wonder whether Theorem 3.4 is always at least as strong
as Corollary 3.3. In Theorem 5.2, we will show that it is, up to a quadratic factor and a
logN factor.

4 Sculpting from Communication Complexity

In this section, we show that if a function f has many inputs with large randomized certificate
complexity then it can be sculpted: there is a promise P so that f |P exhibits a large quantum
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speedup. This means that if H(RCf ) is large, the function f can be sculpted. In Section 5,
we will relate H(RCf ) to H(Cf ), thereby completing the proof of Theorem 1.2.

Our sculptability proof will rely on the solution to a problem we call the “extended
queries problem,” which might be of independent interest. The solution to this problem will
in turn use results from communication complexity.

4.1 The Extended Queries Problem
We usually let an algorithm for computing a (possibly partial) function f : {0, 1}N → {0, 1}
query the bits of the input x. But what happens if we let the algorithm make other types of
queries? For example, if x is a Boolean string, we can let the algorithm query the parity
of x. How does this extra power affect the query complexity of f? In particular, is there
some special set of additional queries such that if a randomized algorithm is allowed to make
the special queries, it can simulate any quantum algorithm? If so, how many special queries
suffice for this property to hold?

To formalize this question, we need a few definitions.

I Definition 4.1. An extension function with extension G is an injective total function
φ : {0, 1}N → {0, 1}G (in particular, we need G ≥ N).

An extension function specifies, for each input x ∈ {0, 1}N , the types of queries an
algorithm is allowed to make on x. In other words, we will let algorithms query from φ(x)
instead of from x. Note that the extension function may provide easy access to information
about x that is hard to obtain otherwise (such as its parity).

I Definition 4.2. Let f : {0, 1}N → {0, 1} be a partial function, and let φ be an extension
function. The extended version of f with respect to φ is the partial function fφ : φ(Dom(f))→
{0, 1} defined by fφ(x) = f(φ−1(x)).

Note that fφ is a partial function from {0, 1}G to {0, 1}. We can consider D(fφ), R(fφ),
Q(fφ), and so on. To pose the extended queries problem, we will need a notion of the
complexity of a set of functions, defined as the maximum complexity of any function in that
set.

I Definition 4.3. For any set of functions S, we define D(S) := maxf∈S D(f). We define
R(S), Q(S), etc. similarly. Further, we define DG(S), the extended query complexity of S
with extension G, to be the minimum, over all extension functions φ with extension G, of
maxf∈S D(fφ). We define RG(S), QG(S), etc. similarly.

In other words, for any set of functions, the extended query complexity of the set with
G extension is the number of queries required to compute all functions in the set given the
best possible extension. We observe that if G ≥ |S|, the extended query complexity DG(S)
is 1, since the extension φ(x) for a given input x could simply specify the values of all the
functions in S on x. We also observe that for all G ≥ N , we have DG(S) ≤ D(S), since
the identity function is always a valid extension function. Moreover, the extended query
complexity of a set is decreasing in G. We now ask the following question.

The Extended Queries Problem. Is there a set of functions S for which Q(S) is small but
RG(S) is large, even when the extension G is exponentially large in the input size N? We
can also ask this question for other complexity measures, such as R(S) vs. RG

0 (S) or R0(S)
vs. DG(S).
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It turns out that a positive solution to the extended queries problem implies a sculptability
result in terms of H(RCf ), as the following theorem shows.

I Theorem 4.4. Let f : {0, 1}N → {0, 1} be a total function. Let A = H(RCf )
4 logN , and let S be

any set of partial functions from {0, 1}A to {0, 1}. Then there is a promise P ⊆ {0, 1}N such
that

Q(f |P ) = O(Q(S)), R(f |P ) = Ω(RN (S)).

Analogous statements hold for other pairs of complexity measures, such as D and R0 or R0
and R.

We delay the proof of Theorem 4.4 to Section 4.3. First, we settle the extended queries
problem for R vs. Q: Theorem 4.6 will provide an exponential lower bound on G by reducing
the extended queries problem to a problem in communication complexity.

4.2 Reducing Extension to Communication Complexity
For a partial function f : {0, 1}N1 × {0, 1}N2 → {0, 1}, we will denote the communication
complexities of f by DCC(f), RCC(f), QCC(f), and RCC

0 (f). We will use the following
definition.

I Definition 4.5. Let f : {0, 1}N1 × {0, 1}N2 → {0, 1} be a partial function. For any
x ∈ Dom(f), we write x = xAxB, with xA ∈ {0, 1}N1 and xB ∈ {0, 1}N2 . Let DomA(f) =
{xA : x ∈ Dom(f)} and DomB(f) = {xB : x ∈ Dom(f)}. For any a ∈ DomA(f), we
define the marginal of f with respect to a to be the partial function fa : {0, 1}N2 → {0, 1}
defined by fa(b) := f(a, b) for all b ∈ {0, 1}N2 such that (a, b) ∈ Dom(f). We define
Mar(f) = {fa : a ∈ DomA(f)} to be the set of all marginal functions for f .

We now connect communication complexity to the extended queries problem.

I Theorem 4.6. Let f : {0, 1}N1 × {0, 1}N2 → {0, 1} be a partial function. Then for all
G ≥ N ,

RG(Mar(f)) = Ω
(

RCC(f)
logG

)
.

Similarly, we also have DG(Mar(f)) = Ω(DCC(f)/ logG), RG
0 (Mar(f)) = Ω(RCC

0 (f)/ logG),
and QG(Mar(f)) = Ω(QCC(f)/ logG).

Proof. We prove the theorem for R. The statements for D, R0, and Q will follow analogously.
Let φ : {0, 1}N2 → {0, 1}G be the best possible extension function, so that RG(Mar(f)) =
maxg∈Mar(f) R(gφ).

We now describe a randomized communication protocol for computing f . Alice receives a
string a, and must compute f(a, b), where b is Bob’s string. This is equivalent to computing
fa(b). Since Alice knows fa, she also knows fφa . Let R a randomized algorithm that computes
fφa using at most RG(Mar(f)) queries. Alice will run this algorithm, and for each query,
she will send the index of that query to Bob (as a number between 1 and G). Bob will
reply with the corresponding bit of φ(y) (as a bit in {0,1}). This allows Alice to compute
fa(b) = f(a, b).

The total communication in this protocol is at most (dlogGe + 1) RG(Mar(f)). Since
this upper-bounds the randomized communication complexity of f (using private coins), the
desired result follows. J
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Theorem 4.6 allows us to use communication complexity as a tool for lower-bounding
the extended query complexity of certain sets of functions. To use it to solve the extended
queries problem, we need a function f that has large randomized communication complexity
but for which Q(Mar(f)) is small. To construct such a function, we start from a simple
function that was recently shown to separate randomized from quantum communication
complexity, called the Vector in Subspace problem.

The Vector in Subspace Problem. In this problem, Bob gets a unit vector v ∈ Rn, and
Alice gets a subspace H of Rn of dimension n/2. It is promised that either v ∈ H or v ∈ H⊥;
the task is to determine which is the case. We assume for simplicity that n is a power of 2.

This problem was first studied in [12] and was also described in [15]. Klartag and
Regev [11] showed that this problem has randomized communication complexity Ω(n1/3).
In addition, it is easy to see that the one-way quantum communication complexity of the
problem is at most logn: Bob can send a superposition over logn bits with amplitudes
determined by v; Alice can then apply the projective measurement given by (H,H⊥).

To apply this function to the extended queries problem, we need a few modifications.
First, we need a discrete version of the problem. [11] showed that a lower bound of Ω(n1/3)
for randomized communication complexity applies to a discrete version of the problem in
which each real number is described using O(logn) bits; that is, Alice’s subspace is given
using n/2 vectors of length n, whose entries are specified using O(logn) bits, and Bob’s
vector is specified using n real numbers of O(logn) bits each.

Mar(f) is the set of functions where we know Alice’s subspace H, and are allowed to
query from Bob’s input vector. However, phrased this way, it is not clear how to use a
quantum algorithm to compute such functions using few queries. To solve this problem, we
modify the way Bob’s input is specified. Instead of specifying only the entries to the vector,
Bob’s input string also lists some “partial sums” of the vector entries.

The idea is for Bob’s vector to allow Alice to use the following algorithm to construct
the state with amplitudes specified by v. We interpret v as specifying a superposition over
strings of length logn. Alice starts by querying the probability p that the first bit of this
string is 0 when this state is measured. Alice will now place a √p amplitude on querying
the probability that the second bit is 0 conditioned on the first bit being 0, and a

√
1− p

amplitude on querying the probability that the second bit is 0 conditioned on the first bit
being 1. Alice keeps going in this way, until she gets to the final bit of the string of length
logn, at which point she queries the phase. This allows her to construct the state determined
by the amplitudes in v.

Of course, for this to work, Bob’s input must provide all of these conditional probabilities.
There is one such probability to specify for the first bit, two for the second, four for the third,
and so on. Since there are logn bits, Bob’s input needs to specify only O(n) probabilities.
Each can be specified with O(logn) precision, so Bob’s total input size is O(n logn). Moreover,
Alice constructs the desired state after O(logn) queries to the probabilities, or O(log2 n)
queries to the bits of Bob’s input.

We thus get the following theorem.

I Theorem 4.7. For all A ∈ N, there is a set S of partial functions from {0, 1}A to {0, 1}
such that for all G ≥ A,

Q(S) = O(log2A), RG(S) = Ω
(

A1/3

log1/3A · logG

)
.
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Proof. Let f be the function described above with n = A/ logA, and let S = Mar(f). Then
Q(S) = O(log2 n) = O(log2A) and RCC(f) = Ω(n1/3) = Ω(A1/3/ log1/3A). By Theorem 4.6,
we get RG(S) = Ω(A1/3/(log1/3A · logG)). J

Together with Theorem 4.4, this implies that any function with large H(RCf ) can be
sculpted, simply by plugging S from Theorem 4.7 into Theorem 4.4 and setting G = N .

4.3 Reducing Sculpting to Extended Query Complexity
We now prove Theorem 4.4, restated here for convenience.

I Theorem 4.4. Let f : {0, 1}N → {0, 1} be a total function. Let A = H(RCf )
4 logN , and let S be

any set of partial functions from {0, 1}A to {0, 1}. Then there is a promise P ⊆ {0, 1}N such
that

Q(f |P ) = O(Q(S)), R(f |P ) = Ω(RN (S)).

Analogous statements hold for other pairs of complexity measures, such as D and R0 or R0
and R.

Proof. There are at least 2H(RCf ·2 logN) inputs x with RCf (x) ≥ H(RCf ·2 logN)/(2 logN).
Let the set of such inputs be C. By Lemma 2.1, if N ≥ 2, there is a set B of

H(RCf ·2 logN)
2 logN ≥ H(RCf )

2 logN

indices in {1, 2, . . . , N} that is shattered by the inputs in C. We’ll restrict B to have size at
most H(RCf )/(4 logN), so |B| = A. Let φ : {0, 1}A → {0, 1}N be defined by mapping each
string x ∈ {0, 1}A to a string z in C such that restricting z to A gives x. This is an injective
mapping, so φ is an extension function with extension size N .

Next, consider the set S of partial Boolean functions from {0, 1}A to {0, 1}. Let Sφ =
{gφ : g ∈ S}. Then R(Sφ) ≥ RN (S). It follows that there is some function gφ ∈ Sφ such
that R(gφ) ≥ RN (S).

We will use the function gφ to define the desired promise P . The domain of gφ is contained
in C. Let x be in this domain, so that RCf (x) ≥ H(RCf ·2 logN)/(2 logN) ≥ 2A. Let µx
be a distribution over inputs y such that f(x) 6= f(y), with the property that for any bit
i, Pr[yi 6= xi] ≤ 1/RCf (x) ≤ 1/(2A). Then for all x ∈ C, a randomized algorithm has a
hard time distinguishing between x and µx. For each such x, let µ′x be the distribution µx
conditioned on the sampled input agreeing with x on the bits in B. Since the probability
of an input sampled from µx disagreeing with x on B is at most |B| · 1/(2A) ≤ 1/2, the
distribution µ′x is not too far from µx. In particular, any randomized algorithm that finds
a disagreement with x on an input sampled from µ′x with probability p will also find a
disagreement with x on an input sampled from µx with probability at least p/2. It follows
that a randomized algorithm must use Ω(A) queries to distinguish x from µ′x.

We construct the promise P as follows. Start with P = ∅. For each x ∈ Dom(gφ), we
add x to P if f(x) = gφ(x); otherwise, we add the support of µ′x to P .

It remains to lower-bound R(f |P ) and to upper-bound Q(f |P ). We start with the upper
bound. Let y ∈ P , and consider the value of y on B. If x is an input of the domain of gφ
that caused y to be added, then x and y agree on B. Further, the values of x on B are
simply φ−1(x) ∈ {0, 1}|B|, and g(φ−1(x)) = gφ(x) = f(y). This means g(y|B) = f(y). We
now have the quantum algorithm work only with the bits of y|B, ignoring the rest. The
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algorithm need only compute g(y|B). Since g ∈ S, we get Q(f |P ) ≤ Q(g) ≤ Q(S), as desired.
A similar argument would upper-bound other complexity measures, such as R, R0, or D.

For the lower bound, consider the hard distribution µ on inputs to gφ obtained from Yao’s
minimax principle [19]. This distribution has the property that any randomized algorithm
for gφ that succeeds with probability at least 2/3 on inputs sampled from µ must use R(gφ)
queries. We construct a new distribution µ′ over P by generating an element x ∈ Dom(gφ)
according to µ, and then outputting either x or a sample from µ′x, depending on which
of them was added to P . We lower-bound the number of queries a randomized algorithm
requires to compute f on an input sampled from µ′ by a reduction from either computing gφ
on inputs sampled from µ, or else distinguishing x from µ′x.

Let R be a randomized algorithm for f |P . Let x ∼ µ. We wish to compute gφ(x).
Although x may not be in P , consider running R on x anyway. The algorithm will correctly
output gφ(x) with some probability p, depending on both the internal randomness of R and
on µ. If p ≥ 3/5, we could amplify R a constant number of times to turn it into an algorithm
for g that works on inputs sampled from the hard distribution µ, which means R must use
Ω(R(gφ)) = Ω(RN (S)) queries. So suppose that p ≤ 3/5.

Next, given x ∼ µ, we let yx be either x or a sample from µ′x, as µ′ dictates. Then running
R on yx gives f(yx) = gφ(x) with probability at least 2/3. On the other hand, running R on
x gives output gφ(x) with probability at most 3/5. That is, we have

Pr
R,x∼µ

[R(x) = gφ(x)] = E
x∼µ

[
Pr
R

[R(x) = gφ(x)]
]
≤ 3/5

Pr
R,x∼µ,yx

[R(yx) = gφ(x)] = E
x∼µ

[
Pr
R,yx

[R(yx) = gφ(x)]
]
≥ 2/3

From which it follows that

E
x∼µ

[
Pr
R,yx

[R(yx) = gφ(x)]− Pr
R

[R(x) = gφ(x)]
]
≥ 1/15.

This means there must be some specific input x̂ such that the probability of R outputting
gφ(x̂) when run on yx̂ is at least 1/15 more than the probability of R outputting gφ(x̂) when
run on x̂. In particular, we must have yx̂ 6= x̂, so yx̂ is a sample from µ′x̂. Therefore, R
distinguishes x̂ from µ′x̂ with constant probability, so it uses at least Ω(A) queries.

We conclude that R(f |P ) = Ω(min{RN (S), A}). Since the domain of the functions in S
is {0, 1}A, their query complexity is at most A. Thus R(f |P ) = Ω(RN (S)), as desired. A
similar argument lower-bounds other complexity measures, such as R0 or D. J

This proof uses the fact that RC lower-bounds R, so it would not work on complexity
measures that are not lower-bounded by RC (for example, C(1)). For Q, it might be possible
to use a similar argument and suffer a quadratic loss, since Q is lower-bounded by

√
RC.

However, since there is no hard distribution for a quantum query complexity problem, this
might be trickier to prove (we will not need it in this paper).

We can use the previous theorems to get a sculptability result for R vs. Q in terms of the
H-index of randomized certificate complexity.
I Corollary 4.8. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise
P ⊆ {0, 1}N such that

Q(f |P ) = O(log2 H(RCf )), R(f |P ) = Ω
(

H(RCf )1/3

log5/3N

)
.

Proof. This follows from Theorem 4.4 together with Theorem 4.7. J

To complete the proof of Theorem 1.2, all that remains is relating H(RCf ) to H(Cf ).
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5 Relating H(Cf), H(RCf), and H(bsf)

In this section, we relate H(Cf ) to H(RCf ), completing the characterization of sculpting.
Actually, we will prove a relationship between H(Cf ) and H(bsf ), which implies the desired
relationship since H(bsf ) ≤ H(RCf ). The proof is somewhat involved, but splits naturally
into three parts. In Lemma 5.1, we show a relationship between Cf (x) and RCf (x) in terms of
the number of 0- and 1-inputs of f . In Theorem 5.2, we show that H(Cf ) = O(Bal(f) logN).
Finally, Theorem 5.3 gives the desired relationship between H(Cf ) and H(bsf ).

I Lemma 5.1. Let f : {0, 1}N → {0, 1} be a partial function, and let x ∈ Dom(f). If
f(x) = 0, then

Cf (x) ≤ RCf (x)(1 + log |f−1(1)|)

and if f(x) = 1, then

Cf (x) ≤ RCf (x)(1 + log |f−1(0)|).

Proof. For x ∈ f−1(1), we wish to upper-bound Cf (x) in terms of RCf (x), assuming f−1(0)
is small. A certificate for x consists of a partial assignment of x that contradicts all the
elements of f−1(0).

Consider the greedy strategy for certifying x, which works by repeatedly choosing the bit
of x that contradicts as many of the 0-inputs as possible, and adding it to the certificate. By
definition, this strategy produces a certificate for x of size at least Cf (x).

Let pi be the fraction of the remaining inputs which are contradicted by the i-th bit of the
greedy algorithm. The number of remaining inputs during the run of the greedy algorithm is
then

|f−1(0)|, |f−1(0)|(1− p1), |f−1(0)|(1− p1)(1− p2), . . .

The number of remaining inputs in the greedy algorithm will be upper-bounded by
a geometric sequence that starts at |f−1(0)| and has ratio 1 − mini pi. Such a sequence
decreases to 1 after at most

−1
log(1−mini pi))

(1 + log |f−1(0)|) ≤ 1 + log |f−1(0)|
mini pi

steps. It follows that

Cf (x) ≤ 1 + log |f−1(0)|
mini pi

.

It remains to show that RCf (x) = Ω(1/mini pi). Let j be the step of the greedy algorithm
that achieves this minimum, i.e. pj = mini pi. Then before the jth step of the algorithm,
there is a non-empty set S of 0-inputs for f such that for any bit of the input, at most a pj
fraction of the elements of S disagree with x on that bit. In other words, x is entry-wise very
close to the “average” of the elements of S. If we give each element of S weight 1/(pj |S|),
we would get a feasible set of fractional blocks with total weight 1/pj . Thus RCf (x) ≥ 1/pj ,
so Cf (x) ≤ RCf (x)(log |f−1(0)| + 1). An analogous argument works when x is a 0-input
to f . J

I Theorem 5.2. Let N ≥ 2, and let f : {0, 1}N → {0, 1} be a total function. Then

H(Cf ) ≤ 10 Bal(f) logN.
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Proof. Without loss of generality, suppose |f−1(0)| ≤ |f−1(1)|. The number of 0-inputs with
large certificates is at most |f−1(0)| ≤ 2Bal(f). Let S be the set of 1-inputs with certificates
of size greater than 5 Bal(f). We wish to show that S is small. Lemma 2.1 implies there
is a set B = {i1, i2, . . . , i|B|} of indices of the input of size at least log |S|/(2 logN) that is
shattered by S. Therefore, to show that S is small, it suffices to show that B is small.

From Lemma 5.1, we have Cf (x) ≤ RCf (x) Bal(f) for any 1-input x, so for all x ∈ S, we
have RCf (x) ≥ Cf (x)/Bal(f) > 5. This means for all x ∈ S, there is a distribution µx over
0-inputs such that for each i, the probability that yi 6= xi when y is sampled from µx is less
than 1/5.

Let µB be the uniform distribution over B. Let δ(b, c) = 1 if b 6= c and 0 otherwise. We
then write

1
5 > E

i∼µB

(
E

y∼µx

δ(xi, yi)
)

= E
y∼µx

(
E

i∼µB

δ(xi, yi)
)
.

We can conclude that for any x ∈ S, there exists a 0-input yx that differs from x in less than
one fifth of the bits of B. In other words, the distance between x|B and yx|B is less than
|B|/5. The idea is now to upper-bound |B| by using the fact that for every string in {0, 1}|B|
there is a 0 input y such that y|B is close to that string, and there are few 0-inputs overall.
Indeed, the number of strings in {0, 1}|B| is 2|B|, and each 0-input can only be of distance less
than |B|/5 from 2H(1/5)|B| of them (where H(1/5) denotes the entropy of 1/5). Therefore,
to cover all the strings in {0, 1}|B|, there must be more than 2(1−H(1/5))|B| 0-inputs. Then

Bal(f) ≥ log |f−1(0)| > (1−H(1/5))|B| ≥ (1−H(1/5)) log |S|
2 logN ,

so

log |S| < 2 Bal(f) logN
1−H(1/5) ≤ 8 Bal(f) logN.

This means there are less than 28 Bal(f) logN 1-inputs with certificate size at least 5 Bal(f).
There are also at most 2Bal(f) 0-inputs with certificate size at least 5 Bal(f) (because
there are at most that many 0-inputs in total). Thus the log of the total number of
inputs with certificates larger than 5 Bal(f) is at most 10 Bal(f) logN . It follows that
H(Cf ) ≤ 10 Bal(f) logN . J

I Theorem 5.3. Let f : {0, 1}N → {0, 1} be a total function. Then

H(Cf ) = O(H(bsf )2 logN).

Proof. Let A be the set of inputs that have certificate size more than H(Cf ). Let A0 be the
set of 0-inputs in A, and let A1 be the set of 1-inputs in A. Let B be the set of inputs that
have block sensitivity more than b, with b =

√
H(Cf )/2. Let B0 be the set of 0-inputs in B,

and let B1 be the set of 1-inputs in B. Without loss of generality, assume |A0| ≥ |A1|. Since
|A| ≥ 2H(Cf ), we have |A0| ≥ 2H(Cf )−1.

Now, let g : {0, 1}N → {0, 1} be the total function defined by g(x) = 1 if and only if
x ∈ B1. Suppose x is an element of A0\B0. Consider certifying that x is a 0-input for g; let
p be the smallest such certificate. Then p is consistent with x but inconsistent with all the
strings in B1. We claim that this certificate must be large: its size must be greater than
H(Cf ) − b2 = H(Cf )/2. To show this, we show that we can turn p into a certificate for x
with respect to f (instead of with respect to g) by adding only b2 bits to it.
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Let q be a minimal sensitive block of x (with respect to f) that is disjoint from p. Since
x is a 0-input for f , xq is a 1-input for f . Since q is disjoint from p, xq is consistent with p,
so xq /∈ B1. Thus the block sensitivity of xq is at most b. However, since q was a minimal
sensitive block, the sensitivity of xq is at least |q|; thus |q| ≤ b. It follows that all minimal
sensitive blocks of x that are disjoint from p must have size at most b.

In addition, since x ∈ A0\B0, the block sensitivity of x is at most b. We can now construct
a certificate for x by taking a maximal set of minimal disjoint sensitive blocks for x, all of
which are disjoint from p. There will be at most b such blocks, and each will have size at
most b. Therefore, this certificate for x has size at most |p| + b2. Since x ∈ A0, we must
have |p|+ b2 > H(Cf ), or |p| > H(Cf )− b2 = H(Cf )/2. We have shown that the elements of
A0\B0 all have certificate size greater than H(Cf )/2 even with respect to g.

Now, by Theorem 5.2, the number of inputs x that have certificate size more than
10(1 + log |B1|) logN with respect to g is at most 210(1+log |B1|) logN . It follows that either
H(Cf )/2 ≤ 10(1 + log |B1|) logN (so that the theorem doesn’t apply), or else |A0\B0| ≤
210(1+log |B1|) logN .

In the former case, we have

log |B| ≥ log |B1| ≥
H(Cf )

20 logN − 1.

In the latter case, we have

2H(Cf )−1 ≤ |A0| ≤ |B0|+ 210(1+log |B1|) logN = |B0|+ (2|B1|)10 logN ≤ (2|B|)10 logN ,

so in that case,

log |B| ≥ H(Cf )− 1
10 logN − 1.

Thus, in both cases,

log |B| ≥ H(Cf )− 1
20 logN − 1 = Ω

(
H(Cf )
logN

)
.

This means there are 2Ω(H(Cf )/ logN) inputs with block sensitivity more than
√

H(Cf )/2.
We thus have

H(bsf ) = Ω
(

min
{

H(Cf )
logN ,

√
H(Cf )

})
= Ω

(√
H(Cf )
logN

)
. J

Theorem 1.2 now follows from Theorem 3.2 (the non-sculptability theorem in terms
of H(C2

f )), Corollary 4.8 (the sculptability result in terms of H(RCf )), and Theorem 5.3
(relating H(bsf ) to H(Cf )), together with the properties that H(C2

f ) ≤ H(Cf )2 and that
H(bsf ) ≤ H(RCf ). We restate Theorem 1.2 here for convenience.

I Theorem 1.2. For all total functions f : {0, 1}N → {0, 1} and all promises P ⊆ {0, 1}N ,
we have

R(f |P ) = O(Q(f |P )2 H(Cf )2).

Conversely, for all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N such
that

R(f |P ) = Ω
(

H(Cf )1/6

log11/6N

)
and Q(f |P ) = O(log2 H(Cf )).

Theorem 1.1 follows as a corollary. This completes the proof of our main result.

CCC 2016



26:18 Sculpting Quantum Speedups

6 Sculpting Randomized Speedups

Now that we’ve characterized sculpting quantum query complexity, we turn our attention to
sculpting other measures. Recall that

Q(f) ≤ R(f) ≤ R0(f) ≤ D(f).

We showed that sculpting R(f) vs. Q(f) is possible if and only if f has a large number of
large certificates. We now show that the exact same condition characterizes sculpting D(f)
vs. R0(f). On the other hand, we show that R0(f) vs. R(f) behaves differently: it’s always
possible to sculpt a function f to a promise P such that R(f |P ) is constant and R0(f |P ) is
almost as large as R0(f).

We start by characterizing sculpting for D vs. R0.

6.1 Sculpting D vs. R0

The proof of this characterization will follow that of Theorem 1.2. For the non-sculptability di-
rection, we need an analogue of Theorem 3.2, relating deterministic and zero-error randomized
query complexities in terms of Bal(f). We prove the following theorem.

I Theorem 6.1. Let f : {0, 1}N → {0, 1} be a partial function. Then

D(f) ≤ 2R0(f) Bal(f).

Proof. Consider the zero-error randomized algorithm that takes R0(f) expected queries to
evaluate f . By Markov’s inequality, if we let this algorithm make 2 R0(f) queries on input x,
it will succeed in computing f(x) (and provide a certificate for x) with probability at least
1/2. This gives us a probability distribution µ over deterministic algorithms, each of which
makes 2 R0(f) queries, such that for each input x the probability that an algorithm sampled
from µ finds a certificate when run on x is at least 1/2.

For a deterministic algorithm D and an input x, let c(D,x) = 1 if D finds a certificate
for x, and c(D,x) = 0 otherwise. Let Z ⊆ {0, 1}N . Then

E
D∼µ

[∑
x∈Z

c(D,x)
]

=
∑
x∈Z

E
D∼µ

[c(D,x)] ≥
∑
x∈Z

(1/2) = |Z|2 .

It follows that there is a deterministic algorithm DZ that makes 2 R0(f) queries and finds a
certificate when run on half the inputs in Z.

Suppose without loss of generality that |f−1(0)| ≤ |f−1(1)|. Now, on input x, set
Z = f−1(0), and run DZ on x. If it fails to find a certificate, then we have eliminated half of
Z as possibilities for the input. Repeating this blog |f−1(0)|c+ 1 ≤ Bal(f) times suffices to
eliminate all of f−1(0) as possibilities for x, and hence to determine the value of f(x). The
total number of queries used is at most 2 R0(f) Bal(f). J

Note that Theorem 6.1 and Theorem 3.2 together complete the proof of Theorem 1.4.
Next, we turn Theorem 6.1 into a non-sculptability theorem in terms of H(Cf ). The

argument in Theorem 3.4 follows verbatim, and we get the following sculpting lower bound.

I Corollary 6.2. Let f : {0, 1}N → {0, 1} be a total function. For any promise P ⊆ {0, 1}N ,
we have

D(f |P ) = O(R0(f |P ) H(Cf )2).
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We now prove the other direction: we show that sculpting is possible when H(RCf ) is
large. Using the arguments from Section 4, it suffices to solve the extended queries problem
for D vs. R0. We do this using the reduction to communication complexity in Theorem 4.6.

I Theorem 6.3. For all N ∈ N, there is a set of partial functions S from {0, 1}N to {0, 1}
such that for all G ≥ N ,

R0(S) = O(1), DG(S) = Ω
(

N

logG

)
.

Proof. We start with Equality, in which Alice and Bob are each given an n-bit string and
wish to know if their strings are equal. This problem has deterministic query complexity
Ω(n), but small randomized query complexity. To make the zero-error randomized query
complexity small as well, we give Alice and Bob two strings each, with the promise that
either their first strings are equal and the second strings are not, or vice versa. The goal will
be to determine which is the case. It is not hard to see that the deterministic communication
complexity of this problem is still Ω(n).

We need to get the zero-error randomized query complexity of the marginal functions to
be small. To do this, we introduce another modification: we encode each of Bob’s strings
using a fixed random code of length 3n. This code will have the property that the distance
between any pair of codewords is Ω(n). To compute a marginal function fa1,a2 indexed
by Alice’s strings, we can simply randomly sample from each of Bob’s strings; after O(1)
samples, we will discover which of his strings do not match the codeword corresponding to
a1 and a2.

This construction gives us a function f : {0, 1}2n ×{0, 1}6n → {0, 1} such that DCC(f) =
Ω(n) and R0(Mar(f)) = O(1). Setting N = 6n and using Theorem 4.6 finishes the proof. J

Putting this together, we get the following sculpting theorem which, together with
Corollary 6.2, is analogous to Theorem 1.2.

I Theorem 6.4. For all total functions f : {0, 1}N → {0, 1}, there is a promise P ⊆ {0, 1}N
such that

D(f |P ) = Ω
(√

H(Cf )
log5/2N

)
and R0(f |P ) = O(1).

Proof. This follows from Theorem 6.3 together with Theorem 4.4 and Theorem 5.3. J

We also get the following corollary, analogous to Theorem 1.1.

I Corollary 6.5. Let f : {0, 1}N → {0, 1} be a total function. Then there is a promise
P ⊆ {0, 1}N such that D(f |P ) = NΩ(1) and R0(f |P ) = No(1), if and only if H(Cf ) = NΩ(1).
Futhermore, in this case we also have R0(f |P ) = O(1).

6.2 Sculpting R0 vs. R
While it is possible to use the above argument to get a sculptability result for R0 vs. R, we
can get a stronger result by a direct argument. In fact, unlike R vs. Q or D vs. R0, sculpting
R0 vs. R is always possible (there is no dependence on any H-index).

I Theorem 6.6. Let f : {0, 1}N → {0, 1} be a non-constant total function. Then there is a
promise P ⊆ {0, 1}N such that

R(f |P ) = 1, R0(f |P ) ≥ R0(f)1/3

6 .
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Proof. We actually prove a stronger result, finding a promise P such that R(f |P ) = 1 and
R0(f |P ) ≥ bs(f)/6. We then use the known relationship R0(f) ≤ bs(f)3 for total functions
to get the desired result. Note that finding P with R(f |P ) = 1 and R0(f |P ) ≥ bs(f)/6 is
trivial when bs(f) ≤ 6; thus we assume bs(f) > 6.

Let x ∈ {0, 1}N be such that bsf (x) = bs(f). Assume without loss of generality that
f(x) = 0. Let S1 be the set of all 1-inputs with Hamming distance at least (2/3)N from x.
For any partial assignment p consistent with x, let Sp1 ⊆ S1 be the set of all inputs y in S1
that are consistent with p.

There are two cases. If Sp1 is non-empty for all partial assignments p consistent with
x of size less than bsf (x)/6, then we can pick the promise to be P = {x} ∪ S1. It then
follows that certifying that f |P is 0 on input x takes at least bsf (x)/6 queries, whence
R0(f |P ) ≥ bsf (x)/6. On the other hand, a randomized algorithm can make 1 query to check
if the input differs from x. Thus R(f |P ) = 1.

The other case is that there is some partial assignment p of size less than bsf (x)/6 such
that Sp1 is empty. We restrict our attention to inputs consistent with p. Since x has bsf (x)
disjoint sensitive blocks, it has at least (5/6) bsf (x) disjoint sensitive blocks that do not
overlap with p. We exclude blocks of size larger than N/3. Since there are at most 2 such
blocks, this leaves at least (5/6) bsf (x)− 2. Let B be the set of inputs we get by flipping
one of these blocks of x. Then B contains only 1-inputs to f that are consistent with p, all
of which have Hamming distance at most N/3 from x. Since bsf (x) = bs(f) > 6, we have
B 6= ∅.

Let S be the set of inputs consistent with p that have Hamming distance at least (2/3)N
from x. Since Sp1 is empty, S contains only 0-inputs to f . Let P = B ∪ S. Now, consider
certifying that an input y to f |P is a 1-input. Since all inputs of Hamming distance at least
(2/3)N from x that are consistent with p are 0-inputs, this requires showing at least N/3−|p|
bits of y. Since |p| < bsf (x)/6 ≤ N/6, this is at least N/6. Thus R0(f |P ) ≥ N/6 ≥ bs(f)/6.

On the other hand, a bounded-error randomized algorithm can simply query a bit of the
input at random, and check for agreement with x. If the bit agrees, the algorithm can output
1, and if the bit disagrees, the algorithm can output 0. This works because 0-inputs have
distance at least (2/3)N from x, while all 1-inputs have distance at most N/3 from x (since
the sensitive blocks used to construct B were of size at most N/3). Thus R(f |P ) = 1. J

7 Other Query Complexity Results

We can use some of the tools introduced in the previous sections to prove some new relations
in query complexity. In Section 7.1, we prove a quadratic relationship between D(f) and
Q(f) for partial functions f that have small domain. In Section 7.2, we prove a quadratic
relationship between D(f) and Q(f) for total functions f for which H(Cf ) is small.

7.1 Query Complexity on Small Promises

We prove Theorem 1.3, which we restate for convenience.

I Theorem 1.3. Let f : {0, 1}N → {0, 1} be a partial function, and let Dom(f) denote the
domain of f . Then

Q(f) = Ω
( √

D(f)
log |Dom(f)|

)
.
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Proof. We follow the proof of Theorem 3.2. The randomized algorithm used in that proof
relies only on the existence of a randomized algorithm distinguishing a string a ∈ {0, 1}N from
either f−1(0) or f−1(1), which is in turn guaranteed by Lemma 3.1. To make that algorithm
deterministic, we only need to turn this distinguishing algorithm into a deterministic one.
By Lemma 5.1, we have Cf (x) = O(RCf (x) log |Dom(f)|). On the task of distinguishing a
single input from a set of inputs, certificate complexity equals deterministic query complexity.
Using this observation, we can modify the proof of Theorem 3.2 to get the result

D(f) = O(Q(f)2 Bal(f) log |Dom(f)|) = O(Q(f)2 log2 |Dom(f)|),

from which the desired result follows. J

7.2 Relationship for Total Functions
We can use H-indices to improve some of the relationships between complexity measures on to-
tal functions, proving Theorem 1.5. Recall that for total functions, we have D(f) ≤ C(f) bs(f)
and bs(f) = O(Q(f)2), from which we have D(f) = O(Q(f)2 C(f)). We strengthen this result
to D(f) = O(Q(f)2 H(

√
Cf )2) for total Boolean functions. Since H(

√
Cf ) ≤

√
C(f), this

result is always stronger. In addition, since C(OR) = n and H(COR) = 1, this improvement
is sometimes very strong.

We restate Theorem 1.5 for convenience.

I Theorem 1.5. Let f : {0, 1}N → {0, 1} be a total function. Then

D(f) = O(Q(f)2 H(
√

Cf )2).

Proof. The proof follows the proof that D(f) ≤ C(f) bs(f) [4]. We start by reviewing this
proof. The deterministic algorithm repeatedly picks possible 0-certificates that are consistent
with the input observed so far, and queries the entries of these certificates. If the queried
entries match the 0-certificate, the algorithm is done (the value of f(x) is known to be 0). If
ever there are no additional 0-certificates consistent with the observed part of the input, the
value of the function is known to be 1.

The key insight is that if this process repeats k times, then the block sensitivity of the
function is at least k. Indeed, let p be the partial assignment revealed after k iterations. Pick
a 1-input y for f that is consistent with p. Let Bi be the set of entries queried in the i-th
iteration of the algorithm. Then for each i, there is a way to change only the variables in Bi
to form a 0-certificate for f . It follows that each Bi contains a sensitive block for y. Since
the Bi sets are disjoint, we get bsf (y) ≥ k, so bs(f) ≥ k.

We modify the algorithm as follows. In each step, we only allow the algorithm to
pick 0-certificates that are of size at most H(

√
Cf )2. Thus the algorithm uses at most

bs(f) H(
√

Cf )2 queries before it gets stuck. When it gets stuck, either the value of f on the
input is determined, or else there are no more 0-certificates that are small enough.

Next, we repeat the same process with 1-certificates instead of 0-certificates. If the value
of f is not yet determined, it means that the input is not consistent with any small enough
certificates, so the certificate complexity of the input x is greater than H(

√
Cf )2. This gives√

Cf (x) > H(
√

Cf ).
By definition of the H-index, there are now at most 2H(

√
Cf ) possibilities for the input.

We’ve therefore restricted f to a small domain P . We now use Theorem 1.3 to evaluate f
using

O(Q(f)2 log2 |Dom(f |P )|) = O(Q(f)2 H(
√

Cf )2)
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deterministic queries. This is added to the bs(f) H(
√

Cf )2 queries from before. Using
bs(f) = O(Q(f)2), we get

D(f) = O(Q(f)2 H(
√

Cf )2). J

8 Sculpting in the Computational Complexity Model

In this section, we examine sculpting in the computational complexity model. We start
with some notation. Given a language L ⊆ {0, 1}∗, we let L(x) ∈ {0, 1} be its characteristic
function. Also, given a language L together with a promise P ⊆ {0, 1}∗, we let L|P be the
promise problem of distinguishing the set P ∩ L from the set P \ L.

Now, we call the language L sculptable if there exists a promise P , such that the promise
problem L|P is in PromiseBQP but not in PromiseBPP. We will use the following definition.

I Definition 8.1 ([5]). A language L is called paddable, if there exists a polynomial-time
function f(x, y) such that
1. f is polynomial-time invertible, and
2. for all x, y, we have x ∈ L ⇐⇒ f(x, y) ∈ L.

In other words, L is paddable if it is possible to “pad out”any input x with irrelevant
information y, in an invertible way, without affecting membership in L.

The paddable languages were introduced by Berman and Hartmanis [5], as part of their
exploration of whether all NP-complete languages are polynomial-time isomorphic: they
showed that the answer was ‘yes’ for all paddable NP-complete languages. Under strong
cryptographic assumptions, we now know that there exist NP-complete languages that are
neither paddable nor isomorphic to each other [14]. Nevertheless, it remains the case that
almost all the languages that “naturally arise in complexity theory” are paddable.

Next, let us say that PromiseBQP is hard on average for P/poly if there exists a promise
problem H|S ∈ PromiseBQP, as well as a family of distributions {Dn}n with support on the
promise set S, such that
1. Dn is samplable in classical poly(n) time, and
2. there is no family of classical circuits {Cn}n, of size poly(n), such that for all n,

Pr
y∼Dn

[Cn(y) = H(y)] ≥ 3
4 .

So for example, because of Shor’s algorithm [18], combined with the worst-case/average-
case equivalence of the discrete log problem, we can say that if discrete log is not in P/poly,
then PromiseBQP is hard on average for P/poly.

We now prove Theorem 1.6, which we restate here for convenience.

I Theorem 1.6. Assume PromiseBQP is hard on average for P/poly. Then every paddable
language outside of BPP is sculptable.

Proof. Let L be a paddable language, and let f be the padding function for L. Also, let H|S
be any problem in PromiseBQP that is hard on average for P/poly, and let {Dn}n be the
associated family of hard distributions. Then we need to construct a promise, P ⊆ {0, 1}∗,
such that the promise problem L|P is in PromiseBQP but not in PromiseBPP.

Our promise P will simply consist of all inputs of the form f(x, y, a) such that y ∈ S and

L(x) ≡ H(y) + a (mod 2) .
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Here a ∈ {0, 1} is a single bit, which we think of as concatenated onto the end of y.
Clearly, L|P is in PromiseBQP: just invert f to extract the “comment”(y, a), then compute

H(y) + a (mod 2).
We need to show that L|P is not in PromiseBPP. Suppose by contradiction that it was,

and let A be the algorithm such that A(x) = L(x) for all x ∈ P . Then we’ll show how to
either
1. decide L in BPP (with no promise), or
2. decide H in P/poly, with high probability over Dn.

Given an arbitrary input x ∈ {0, 1}n, imagine we do the following: first sample y ∼ Dn,
then run A on the inputs f(x, y, 0) and f(x, y, 1). There are two cases: first suppose

A (f(x, y, 0)) = A (f(x, y, 1)) .

Now, one of the two inputs f(x, y, 0) and f(x, y, 1) must belong to P . If f(x, y, 0) ∈ P , then
A (f(x, y, 0)) = L(x), while if f(x, y, 1) ∈ P , then A (f(x, y, 1)) = L(x). Either way, then,
we have learned whether x ∈ L, and we know we have learned this.

Second, suppose

A (f(x, y, 0)) 6= A (f(x, y, 1)) .

Then assuming y ∈ S:

x ∈ L, y ∈ H =⇒ A (f(x, y, 0)) = 1 =⇒ A (f(x, y, 1)) = 0,
x ∈ L, y /∈ H =⇒ A (f(x, y, 1)) = 1 =⇒ A (f(x, y, 0)) = 0,
x /∈ L, y ∈ H =⇒ A (f(x, y, 1)) = 0 =⇒ A (f(x, y, 0)) = 1,
x /∈ L, y /∈ H =⇒ A (f(x, y, 0)) = 0 =⇒ A (f(x, y, 1)) = 1.

Thus, regardless of whether x ∈ L, we have learned whether y ∈ H, and again we know we
have learned this.

Now suppose there were an input x ∈ {0, 1}n, such that running A as above told us
whether y ∈ H with probability more than (say) 1/2 over the choice of y ∼ Dn. Then let Cn
be a polynomial-size circuit that hardwires x, and that given an input y ∈ S:

Simulates both A (f(x, y, 0)) and A (f(x, y, 1)).
Outputs H(y) whenever it successfully learns the value of H(y).
Guesses a hardwired value for H(y) (whichever of {0, 1} is more probable) whenever it
does not.

Then

Pr
y∼Dn

[Cn(y) = H(y)] ≥ 3
4 ,

violating the assumption that no such circuit exists.
So we conclude that for every x ∈ {0, 1}n, we must instead learn whether x ∈ L with

probability at least 1/2 over the choice of y ∼ Dn. This, in turn, means that by simply
generating y’s randomly until we succeed, we can decide L in PromiseBPP. J

Next, given a language H ⊆ {0, 1}∗, we say H is BPP-bi-immune if neither H nor its
complement H has any infinite subset in BPP. The notion of immunity was introduced by [9].
Here is a useful alternative characterization:

I Lemma 8.2. A language H is BPP-bi-immune if and only if there is no infinite set
S ∈ BPP, such that the promise problem H|S is solvable in PromiseBPP.
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Proof. First, suppose H is not BPP-bi-immune, so that either H or H has an infinite subset
S ∈ BPP. Then clearly, S itself is an infinite set in BPP such that the promise problem H|S
is trivial (the answer is either always 0 or always 1).

Conversely, suppose there exists an infinite set S ∈ BPP such that H|S is solvable in
polynomial time. Then clearly S ∩H and S ∩H are both in BPP, and at least one of the
two must be infinite. So H is not BPP-bi-immune. J

We now suggest what, as far as we know, is a new conjecture in quantum complexity
theory.

I Conjecture 8.3. There exists a BPP-bi-immune language in BQP.

Conjecture 8.3 is extremely strong. Note, in particular, that none of the “standard”BQP
languages, such as languages based on factoring or discrete log, will be BPP-bi-immune,
because they all have infinite special cases that are classically recognizable and easy (for
example, the powers of 2, in the case of factoring). Nevertheless, we believe Conjecture 8.3 is
plausible. As a concrete candidate for a BPP-bi-immune language in BQP, let g : {0, 1}∗ →
{0, 1}∗ be some strong pseudorandom generator. Then consider the language

L = {x : g(x), interpreted as an integer, has an odd number of distinct prime factors} .

We now prove Theorem 1.7, restated here for convenience.

I Theorem 1.7. Assume Conjecture 8.3. Then every language outside of BPP is sculptable.

Proof. Assume by way of contradiction that L /∈ BPP is non-sculptable. Also, let H be a
BPP-bi-immune language in BQP. Then consider the set

S := {x : L(x) = H(x)} .

By our assumption, S is a promise on which no superpolynomial quantum speedup is possible
for L, and S is another such promise. Hence, there must be a BPP algorithm, call it AS ,
that solves the promise problem H|S , which (by the definition of S) is equivalent to solving
L|S . And there must be another polynomial-time classical algorithm, call it AS , that solves
H|S , which (again by the definition of S) is equivalent to solving L|S .

Now, given an input x, suppose we run both AS and AS . Then as in the proof of
Theorem 1.6, there are two possibilities. If AS(x) = AS(x), then x ∈ S implies H(x) = AS(x)
while x /∈ S implies H(x) = AS(x), so either way we have learned H(x) (and we know that
we have learned it). On the other hand, if AS(x) 6= AS(x), then x ∈ S implies L(x) = AS(x)
while x /∈ S implies L(x) = 1 − AS(x). So, merely by seeing that AS(x) and AS(x) are
different, we have learned L(x) (and we know that we have learned it).

In summary, there is a BPP algorithm B that, for every input x ∈ {0, 1}∗, correctly
outputs either H(x) or L(x), and that moreover tells us which one it output.

Now let Q be the set of all x such that B(x) outputs H(x). Then there are two possibilities:
if Q is finite, then B decides L on all but finitely many inputs. Hence L ∈ BPP, contrary to
assumption. If, on the other hand, Q is infinite, then H|Q is an infinite promise problem in
PromiseBPP. So H was not BPP-bi-immune, again contrary to assumption. J

In Theorem 1.6 and Theorem 1.7, there is almost nothing specific to the complexity
classes BQP and BPP, apart from some simple closure properties. Thus, one can prove
analogous sculpting theorems for many other pairs of complexity classes. In some cases, we
do not even need an unproved conjecture. For example, we have:
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I Theorem 8.4. For every language L /∈ P, there exists a promise S such that L|S is solvable
in exponential time, but is not solvable in polynomial time.

Proof. The proof of Theorem 1.7 follows through for P and EXP instead of BPP and BQP.
In addition, it is known that there is a P-bi-immune language in EXP [5]. The desired result
follows. J

9 Concluding Remarks and Open Problems

In this work, we gave a full characterization of the class of Boolean functions f that can be
sculpted into a promise problem with an exponential quantum speedup in query complexity.
We similarly characterized sculptability for R0 vs. R and D vs. R0. Along the way, we
showed that Q is polynomially related (indeed, quadratically related) to D and R for a much
wider set of promise problems than was previously known. Finally, we studied sculpting in
computational complexity, giving a strong conjecture under which every language outside
BPP is sculptable into a superpolynomial quantum speedup, and a weaker conjecture under
which every paddable language outside BPP is sculptable.

One might object that many of our sculpted promise problems are somewhat artificial.
This is particularly clear in the case of paddable languages, where (in essence) one uses
the paddability to append to each instance x, as a “comment,” an instance of a hard BQP
problem (such as factoring) that is promised to have the same answer as x. Even in the
query complexity setting, however, one can observe by direct analogy that the property of
being sculptable is not closed under the removal of dummy variables. So for example, we saw
before that the N -bit OR function is not sculptable. By contrast, observe that the function

f(x1, . . . , x2N ) := OR(x1, . . . , xN )

is sculptable. This follows as an immediate consequence of Theorem 1.1: just by adding
dummy variables to the OR function, we have vastly increased the number of inputs x that
have large certificate complexity, from 1 to 2N . However, an even simpler way to see why f
is sculptable, is that we can embed (say) Simon’s problem into the variables xN+1, . . . , x2N ,
and then impose the promise that

OR(x1, . . . , xN ) = Simon(xN+1, . . . , x2N )

(in addition to the Simon promise itself).
Of course, most Boolean functions do not contain such dummy variables, so the problems

of sculpting them, and deciding whether they are sculptable at all, are much more complicated,
as we saw in this paper.

Now, it might feel like “cheating” to sculpt a promise problem with a large quantum/clas-
sical gap by using dummy variables to encode a different, unrelated problem. If so, however,
that points to an interesting direction for future research: namely, can we somehow formalize
what we mean by a “natural” special case of a problem, and can we then understand which
problems are “naturally” sculptable?

Here are some more specific open problems.

Some of our inequalities could be off by polynomial factors; it would be nice to tighten
them (or prove separations). For example, it may be possible to improve Theorem 1.3 to
Q(f) = Ω(

√
D(f)/ log |Dom(f)|), quadratically improving the log |Dom(f)| factor.
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Can our results – and specifically, Theorem 1.5 – be used to improve the relation
D(f) = O(Q(f)6) due to Beals et al. [4]?
Can we give a characterization of the sculptable Boolean functions in communication
complexity – analogous to this paper’s characterization of sculptability in query complex-
ity?
Is there any natural pair of complexity classes C ⊆ D, for which C is known or believed to
be strictly contained in D, and yet it is plausible that no languages in D are C-bi-immune,
and (related to that) there exist languages L /∈ C that cannot be sculpted into a promise
problem in D \ C?
One can, of course, consider sculpting for many other pairs of computational models,
besides R vs. Q or R0 vs. R or D vs. R0. One interesting case is sculpting versus certificate
complexity – for example, D vs. C. What is the correct characterization there?

We make some observations on the last problem. It’s easy to see that D(OR|P ) = C(OR|P )
for any promise P , so sculpting D vs. C is not always possible. On the other hand, sculpting
D vs. C is sometimes possible even when H(Cf ) is small. To see this, consider the function f
with f(x) = 1 if and only if the Hamming weight of x is 1, and the single ‘1’ bit occurs on the
left half of the input string. This function can be sculpted to D(f |P ) = N/2 and C(f |P ) = 1
by setting P to the set of inputs with Hamming weight 1. However, H(Cf ) = O(logN) for
this function, since all inputs with Hamming weight at least 2 have small certificates (just
display two ‘1’ bits).

This means something qualitatively different happens with D vs. C than what was found
in this paper.

Acknowledgements. We thank Robin Kothari for many helpful discussions.
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A Properties of H Indices

I Lemma A.1. Let g : {0, 1}n → [0,∞). Define

H(g) := inf
{
h ∈ [0,∞) : |{x ∈ {0, 1}n : g(x) > h}| ≤ 2h

}
.

Then
1. H(g) ∈ [0, n]
2. H(g) ≤ maxx g(x)
3. The number of x ∈ {0, 1}n for which g(x) > H(g) is at most 2H(g) (equivalently, the

infimum in the definition of H(g) is actually a minimum)
4. If g′ : {0, 1}n → [0,∞) is such that g(x) ≤ g′(x) for all x ∈ {0, 1}n, then H(g) ≤ H(g′)
5. If α : [0,∞)→ [0,∞) is an increasing function, then H(α ◦ g) ≤ max{H(g), α(H(g))}.
6. There are at least 2H(g) inputs x ∈ {0, 1}n with g(x) ≥ H(g).

Proof. Let Sg(h) = {x ∈ {0, 1}n : g(x) > h} and let Hg = {h ∈ [0,∞) : |Sg(h)| ≤ 2h}.
Then H(g) = inf Hg. Part 1 follows from noticing that for all h, Sg(h) ⊆ {0, 1}n, so
|Sg(h)| ≤ 2n, whence n ∈ Hg. Part 2 follows from noticing that Sg(maxx g(x)) is empty, so
maxx g(x) ∈ Hg.

To show 3, we show that Hg contains its infimum. Consider an infinite decreasing sequence
h1, h2, . . . ∈ Hg that converges to H(g). Then the sequence |Sg(h1)|, |Sg(h2)|, . . . is a non-
decreasing sequence of integers which is bounded above by 2n. In addition, Sg(hi) ⊆ Sg(hi+1)
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for all i. It follows that there is some ` such that Sg(hi) = Sg(h`) for all i ≥ `. For each
x ∈ Sg(h`), we have g(x) > h` > H(g), and for each x /∈ Sg(h`), we have g(x) ≤ hi for all i.
It follows that g(x) ≤ H(g) for each x /∈ Sg(h`), so Sg(H(g)) = {x ∈ {0, 1}n : g(x) > H(g)} =
Sg(hi) for all i ≥ `. Finally, since hi ∈ Hg for all i, we have |Sg(H(g))| = |Sg(hi)| ≤ 2hi for
all i ≥ `. From this it follows that |Sg(H(g))| ≤ limi→∞ 2hi = 2H(g), so H(g) ∈ Hg.

We now show 4. If g′ is point-wise greater or equal to g, then Sg(H(g′)) ⊆ Sg′(H(g′)).
Since H(g′) ⊆ Hg, we have |Sg′(H(g′))| ≤ 2H(g′), so |Sg(H(g′))| ≤ 2H(g′). Thus H(g′) ∈ Hg,
so H(g) = inf Hg ≤ H(g′).

We prove 5. Let α be an increasing function. We have

Sg(H(g)) = {x ∈ {0, 1}n : g(x) > H(g)} = {x : α ◦ g(x) > α(H(g))} = Sα◦g(α(H(g)).

Thus

|Sα◦g(max{H(g), α(H(g))})| ≤ |Sα◦g(α(H(g))| = |Sg(H(g))| ≤ 2H(g) ≤ 2max{H(g),α(H(g))}

so max{H(g), α(H(g))} ∈ Hα◦g. Hence H(α ◦ g) ≤ max{H(g), α(H(g))}.
Finally, we show 6. If it was false, there would be less than 2H(g) inputs with g(x) ≥ H(g).

Thus there is some ε > 0 such that there are less than 2H(g)−ε inputs with g(x) ≥ H(g) >
H(g)− ε. But this implies H(g)− ε ≥ H(g), a contradiction. J

B Proof of Lemma 2.1

I Lemma B.1. Let S ⊆ {0, 1}N be a collection of strings. Then there is a shattered set of
indices of size at least

log |S|
log(N + 1) .

Proof. Let d be the size of the largest set that is shattered by S. Then the Sauer-Shelah
lemma [16] states

|S| ≤
d∑
i=0

(
N

i

)
.

A well-known bound states
d∑
i=0

(
N

i

)
≤ 2H(d/N)N ,

where H(d/N) is the binary entropy of d/N . Then

log2 |S| ≤ H(d/N)N = d log2(N/d) + (N − d) log2(1 + d/(N − d))

≤ d log2(N/d) + d log2 e = d log2N − d log2(d/e) ≤ d log2N

(if d ≥ e). Thus

d ≥ log |S|
logN

unless d ≤ 2.
The Sauer-Shelah lemma implies |S| ≤ 1 when d = 0 and |S| ≤ N2 when d = 2 (assuming

N ≥ 2). The only problematic case is d = 1 and |S| = N + 1. Thus, in all cases, we have
d ≥ log |S|/ log(N + 1), as desired. J
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Abstract
The Boolean constraint satisfaction problem 3-SAT is arguably the canonical NP-complete prob-
lem. In contrast, 2-SAT can not only be decided in polynomial time, but in fact in deterministic
linear time. In 2006, Bravyi proposed a physically motivated generalization of k-SAT to the
quantum setting, defining the problem “quantum k-SAT”. He showed that quantum 2-SAT is
also solvable in polynomial time on a classical computer, in particular in deterministic time
O(n4), assuming unit-cost arithmetic over a field extension of the rational numbers, where n is
the number of variables. In this paper, we present an algorithm for quantum 2-SAT which runs
in linear time, i.e. deterministic time O(n+m) for n and m the number of variables and clauses,
respectively. Our approach exploits the transfer matrix techniques of Laumann et al. [QIC,
2010] used in the study of phase transitions for random quantum 2-SAT, and bears similarities
with both the linear time 2-SAT algorithms of Even, Itai, and Shamir (based on backtracking)
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1979].
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1 Introduction

Boolean constraint satisfaction problems lie at the heart of theoretical computer science.
Among the most fundamental of these is k-SAT, in which one is given a formula φ on n

variables, consisting of a conjunction φ(x) = C1∧C2∧ · · · ∧Cm of m clauses, each of which is
a disjunction of k literals, e.g. (xh ∨ x̄i ∨ xj) for 1 ≤ h, i, j ≤ n. The problem is to determine
whether there exists an assignment x ∈ {0, 1}n which simultaneously satisfies all of the
constraints Ci, i.e. for which φ(x) = 1. While 3-SAT is NP-complete [6, 22, 16], 2-SAT
admits a number of polynomial time algorithms (e.g. [7, 20, 10, 2, 23]), the fastest of which
require just linear time [10, 2].

In 2006, Bravyi [3] introduced k-QSAT, a problem which generalizes k-SAT, as follows.
In place of clauses Ci, acting on k-bit substrings of n bit strings x ∈ {0, 1}n, one considers
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orthogonal projectors Π̄i which act on k-qubit subsystems of an n-qubit system |ψ〉 ∈ H⊗n,
where H := C2. (A sketch of how k-SAT can be embedded into k-QSAT is given in Section 2.)
These projectors extend to act on states |ψ〉 by defining Πi = Π̄i ⊗ I, so that Πi acts as
the identity on all tensor factors apart from those qubits on which Π̄i is defined. One then
considers |ψ〉 to “satisfy” the 2-QSAT instance if Πi |ψ〉 = 0 for all i. This formulation may
be motivated, e.g., by problems in many-body physics [9, 4]. While 3-QSAT is complete
for QMA1 [3, 13] (a quantum generalization1 of NP), 2-QSAT is solvable in deterministic
polynomial time [3], using O(n4) field operations over C.

Given the existence of linear time algorithms for classical 2-SAT, this raises the natural
question: Can 2-QSAT also be solved in linear time? Our main result in this paper is as
follows.

I Theorem 1.1. There exists a deterministic algorithm SOLVEQ which, given an instance
of 2-QSAT, outputs a representation of a satisfying assignment if one exists (presented as a
list of one- and two-qubit unit vectors to be taken as a tensor product), and rejects otherwise.

SOLVEQ halts in time O(n + m) on inputs on n qubits with m projectors (assuming
unit-cost operations over C).
Furthermore, SOLVEQ can produce its output using O((n+m)M(n)) bit operations,
where M(n) is the asymptotic upper bound on the cost of multiplying two n bit numbers;
If the projectors are all product projectors, the algorithm SOLVEQ requires only O(n+m)
bit operations regardless of what computable subfield F ⊂ C the projector coefficients range
over.

In particular, the setting of product constraints above includes classical 2-SAT: in this case
the bit-complexity of our algorithm matches optimal 2-SAT algorithms [10, 2].

I Remark. For general instances of 2-QSAT, the O((m + n)M(n)) bit-complexity of our
algorithm compares favourably with the complexity of extracting a satisfying assignment
using Bravyi’s 2-QSAT algorithm, which requires O(n4M(n)) bit operations if one uses
similar algebraic algorithms to ours. In “Significance and open questions” below, we discuss
the question of field-operation-complexity vs. bit-complexity, as well as whether our algorithm
is tight in terms of bit complexity.

Techniques employed

The origin of this work is the observation that Bravyi’s 2-QSAT algorithm can be thought
of as an analogue of Krom’s 2-SAT algorithm [20], which involves computing the transitive
closure of directed graphs. Krom’s algorithm repeatedly applies a fixed inference rule for
each pair of clauses sharing a variable. The repeated application of the inference rule leads
to an O(n3) time to determine satisfiability and an O(n4) time to compute a satisfying
assignment. Bravyi’s algorithm has the same runtimes, measured in terms of the number of
field operations.

This work aims to develop a quantum analogue of Aspvall, Plass, and Tarjan’s (APT)
linear time 2-SAT algorithm [2], which reduces 2-SAT to computing the strongly connected
components of a directed graph. Note that classically (α ∨ β) is equivalent to (ᾱ⇒ β) and
(β̄ ⇒ α), for literals α and β. APT constructs an implication graph G of a 2-SAT instance

1 Here, Quantum Merlin Arthur (QMA) is the quantum analogue of Merlin-Arthur (MA) in which the
proof and verifier are quantum, and QMA1 is QMA with perfect completeness. Unlike the classical
setting, in which MA is known to admit perfect completeness [27, 12], whether QMA=QMA1 remains
open (see e.g. [15]).
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φ, with vertices labelled by literals xi and x̄i for each i, and edges ᾱ→ β and β̄ → α for
each clause (α ∨ β). Then, they show that φ is satisfiable if and only if xi and x̄i are not
in the same strongly connected component of G for any i [2]. As the strongly connected
components of G can be computed in linear time [25], this yields a linear time algorithm for
2-SAT.

In the quantum setting, not all n-qubit states can be described by assignments to
individual qubits (e.g., entangled states). Fortunately, Chen et al. [4] show that we may
reduce any instance of 2-QSAT to an instance which is satisfiable if and only if there is a
satisfying state, in which qubits have separate assignments (see Section 2 for details). In
this setting, there is a natural analogue of the equivalence (xi ∨ xj) ≡ (x̄i ⇒ xj) ∧ (x̄j ⇒ xi)
in terms of so-called “transfer matrices” (e.g. [3, 21]). For any rank-1 quantum constraint
Πij ∈ L

(
C2 ⊗ C2) on qubits i and j, there exists a transfer matrix Tij ∈ L

(
C2), such

that for any assignment |ψi〉 to qubit i such that Tij |ψi〉 6= 0, the state on qubit j for
which the constraint Πij is satisfied is given by Tij |ψi〉.2 (Conversely, for any Tij ∈ L

(
C2),

there is a unique rank-1 orthogonal projector Πij ∈ L
(
C2 ⊗ C2) whose nullspace is spanned

by |ψi〉 ⊗ Tij |ψi〉 for |ψi〉 ranging over C2.) This suggests a quantum analogue G of an
implication graph: For each possible assignment |ψ〉 to a qubit i, we define a vertex (i, |ψ〉),
and include a directed edge (i, |ψ〉)→ (j, |φ〉) if there is a transfer matrix Tij (corresponding
to some constraint Πij) such that Tij |ψ〉 = c |φ〉 for some c 6= 0. We then ask if for each
qubit i, there is a vertex (i, |ψi〉) which cannot reach any (i, |ψ′i)〉 where |ψi〉 6∝ |ψ′i〉. If there
are such paths (i, |ψi〉)→ · · · → (i, |ψ′i)〉 for all |ψi〉, this is analogous to xi and x̄i being in a
common strong component in the APT algorithm.

As it stands, this approach has a shortcoming: In the quantum regime, each qubit has a
continuum of possible assignments (rather than two), which may generate unbounded orbits
in an APT-style algorithm. However, by applying techniques of Laumann et al. [21] from
the study of phase transitions in random 2-QSAT, we may in some cases reduce the set of
possible assignments for a qubit i to one or two. Consider the interaction graph G′ of a
2-QSAT instance, in which vertices correspond to qubits, and two vertices are connected
by an (undirected) edge if the corresponding qubits i and j are subject to a constraint Πij .
Suppose C = (v1, . . . , vt, v1) is a cycle in G′, with transfer matrices Tvivi+1 arising from each
constraint Πvivi+1 , and compute TC := Tvtv1 · · ·Tv2v3Tv1v2 . If TC has a non-degenerate
spectrum, then the only possible satisfying assignments for v1 are eigenvectors of TC [21]
(see also Lemma 2.2). In effect, computing TC “simulates” uncountably many (!) traversals
(i, |α〉)→ · · · → (i, |β〉) in G; restricting to the eigenvectors of TC corresponds to ignoring
vertices in G which are infinitely far from the top of any topological order of G. If we hence
describe cycles C with non-degenerate TC as discretizing, this suggests the approach of
finding a discretizing cycle at each qubit i, and using it to reduce the number of possible
states on i to one or two. This simple principle is the starting point of our work.

Despite this simplicity, some obstacles must be addressed to obtain a linear-time algorithm.
In the setting of random 2-QSAT [21], every cycle C is a discretising cycle with probability
one, as there is zero probability that either a transfer matrix is singular, or that a product of
them has a degenerate spectrum. This allows one to quickly reduce the space of assignments
possible for a qubit. In contrast, in our setting (i.e., worst case analysis), we cannot assume

2 The usual convention is to describe quantum states by unit vectors in C2, albeit up to equivalence
under multiplication by z ∈ C for |z| = 1. However, vectors produced via transfer matrices might not
be normalised. As we are not explicitly concerned with the probabilities of any measurement outcomes
obtained from quantum processes, we represent quantum states by vectors which are equivalent up to
multiplication by arbitrary (non-zero) scalar factors.
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such a distribution of transfer matrices arising from a 2-QSAT instance. For instance, any
constraint Πij corresponding to a product operator (e.g., a classical 2-SAT constraint) has
a singular transfer matrix, which when multiplied with other singular matrices may give
rise to a singular cycle matrix. Even if a discretising cycle C does exist using some of the
edges jk, k`, . . . , we may have to traverse those edges multiple times to discover C, which is
worrisome for a linear-time algorithm. Furthermore, we must address the case in which there
are no discretising cycles at all to get a discrete algorithm started. In order to demonstrate a
linear-time algorithm for 2-QSAT in the spirit of APT, these problems must be carefully
addressed.

Our approach to resolve these issues is as follows. In an instance of 2-QSAT in which
all transfer matrices are non-singular, we show that discretising cycles are easy to find if
they exist, and that the absence of discretising cycles allows one to easily obtain a satisfying
state. If, on the other hand, singular transfer matrices are present, the corresponding product
constraints Πij = |α〉〈α|i ⊗ |β〉〈β|j themselves impose a different discretising influence: If
|α⊥〉 and |β⊥〉 are states orthogonal to |α〉 and |β〉 respectively, then at least one of the
assignments (i, |α⊥〉) or (j, |β⊥〉) is required for a satisfying assignment. This leads us to
adopt an approach of “trial assignments” which is highly reminiscent of another linear-time
2-SAT algorithm due to Even-Itai-Shamir [10], which attempts to reduce to an instance
of 2-QSAT with fewer product constraints by determining partial assignments satisfying
Πij . (For simplicity, we also adopt the approach of trial assignments for qubits whose state-
space have been reduced by discretizing cycles.) This leads us to our algorithm SOLVEQ
(Figure 1, in Section 4), which combines elements of both the Even-Itai-Shamir [10] and
Apsvall-Plass-Tarjan [2] linear-time 2-SAT algorithms as described above.

Our approach can be summarised as follows. Following Chen et al. [4], we first preprocess
our input instance Π and either determine that Π is unsatisfiable, or obtain a new 2-QSAT
instance Π′ which is satisfiable by a product state if Π is satisfiable at all. From this point
on, our algorithm uses the central notion of a chain reaction (CR) (see Section 3): this
roughly models the idea that given an assignment |ψi〉 to qubit i, following a sequence
of transfer operators according to the implication graph of Π′ deterministically results in
assignments to a subset of other qubits in the instance. In particular, what we are interested
in is finding conflict-free CRs, which are CRs that terminate without reassigning a value to
a qubit j which conflicts with a previous assignment for j. To exploit conflict-free CRs, we
first show a Set-and-Forget Theorem (Theorem 3.6), which essentially says the following:
if Π′ is satisfiable, then any choice of assignments to a subset S which is prescribed by a
conflict-free CR, is also consistent with a global satisfying assignment. Thus, given such a
conflict-free CR, we can remove the qubits in S and all constraints acting on it from Π′,
reducing to a smaller 2-QSAT instance Π′′ which is satisfiable if and only if Π′ is. Hence,
the problem of deciding Π is reduced to the task of repeatedly finding conflict-free CRs. To
show that the discovery of conflict-free CRs may be done in linear time, we use three key
ideas. First, for any product constraint in the graph, there are two associated CRs C1 and
C2; we show that at least one of these must be conflict-free, or Π is not satisfiable. Second,
once all product constraints have been exhausted, our next source of conflict-free CRs is the
notion of discretizing cycles. In general, it is not true that running a depth-first search in the
constraint graph of Π′′ will yield a discretizing cycle, even if such a cycle exists! However,
we show that if all constraints are entangled, then a single depth-first search (per connected
component of the interaction graph) indeed suffices to find the discretizing cycle. Third and
finally, if no discretizing cycles exist in Π′′, then we show that it is easy to find a conflict-free
CR. The resulting algorithm, SOLVEQ, is presented in Figure 1.
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Previous work

There is a long history of polynomial time solutions for classical 2-SAT [24, 7, 20, 10, 2, 23],
ranging from time O(n4) to O(n+m). As we mention above, the most relevant of these to
our setting are the algorithms of Even, Itai, and Shamir [10] (based on limited backtracking)
and Aspvall, Plass, Tarjan [2] (based on strongly connected component detection).

In contrast, little work has been performed in the quantum setting. Until recently, Bravyi’s
algorithm was the only explicitly articulated algorithm for 2-QSAT, and requires O(n4) field
operations and O(n4M(n)) bit operations. Other work on 2-QSAT instead concerns either
the structure of the solution space of instances of 2-QSAT [21, 9, 4], or bounds on counting
complexity [14, 8].

Propagation of assignments using transfer matrices is present already in Bravyi [3], and
the results of Laumann et al. [21] allow us to restrict the possibly satisfying states on single
qubits by finding discretising cycles. We incorporate these into efficient discrete algorithms
for testing possible assignments, and provide a cost analysis in terms of field operations and
bit operations. In contrast to the random 2-QSAT setting of [21], we do not assume any
particular distribution on constraints.

Note: Very recently, Arad et al. [1] independently and concurrently presented an algorithm
for 2-QSAT, which also runs in O(n+m) time using unit-cost field operations. The overall
structure of our algorithm appears similar to theirs, though our treatment of the key issue of
2-QSAT instances with only entangled constraints appears to use different techniques (in
particular, Ref. [1] appears to be based on results of Ji, Wei, Zeng [14] which modify the
instance itself, whereas we use ideas of [21] to tackle the existing instance via the concept
of discretizing cycles). As well as obtaining an upper bound on field operations matching
Ref. [1], we also include an analysis of the bit complexity of our algorithm SOLVEQ, and in
particular indicate how our algorithm matches the asymptotic bit complexity of the best
algorithms on classical instances of 2-SAT.

Significance and open questions

From a complexity theoretic perspective, just as k-SAT and MAX-k-SAT are canonical
NP-complete problems, Quantum k-SAT and its optimization variant, k-LOCAL HAMIL-
TONIAN [19], are canonical QMA1- and QMA-complete problems for k ≥ 3 and k ≥ 2
respectively [3, 13, 19, 17], thus making their study central to quantum complexity theory.
From a many-body physics perspective, quantum k-SAT deals with the study of ground states
of frustration-free local Hamiltonian systems. Such systems include Kitaev’s well-known
Toric code Hamiltonian [18] (which is 4-local), whose ground space encodes logical qubits of
a topological quantum error correcting code. Our work can hence be viewed as aiming to
understand which classical techniques for k-SAT can be generalized to explore the ground
spaces of such frustration-free systems.

Bit complexity. We now discuss the number of field operations used by our algorithm,
O(m+ n), versus the number of bit operations, O((m+ n)M(n)), in Theorem 1.1. There is
no such distinction in the complexity of existing 2-SAT algorithms: As bits have only a finite
range of values, traversing a chain of implications in the implication graph poses no precision
issues. In the quantum setting, however, such a traversal involves computing products of O(n)
transfer matrices over some field extension of the rationals. Trial assignments resulting from
these products may require O(n) bits per entry to represent; testing whether two possible
assignments are equivalent may involve multiplying pairs of n-bit integers. This is the source
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27:6 A Linear Time Algorithm for Quantum 2-SAT

of the M(n) term in the bit complexity estimate of Theorem 1.1. To compare, similar
considerations applied to Bravyi’s 2-QSAT algorithm gives an upper bound of O(n4M(n))
bit operations.

It is not obvious that a faster runtime in terms of bit complexity should be possible in
general. As we show in Section 6, it is simple to construct a 2-QSAT instance with m ∈ O(n)
and whose unique product state solution requires Θ(n2) bits to write down. Thus, among
algorithms which explicitly output the entire solution, our algorithm is optimal up to log
factors, taking time O(nM(n)) ∈ Õ(n2) forM(n) ∈ O(n log(n) 2O(log∗(n))) [11]. Furthermore,
as we also show in Section 6, for any algorithm A for 2-QSAT which produces the marginal of
a satisfying solution (if one exists) on a single qubit in reduced terms3, there is a linear-time
reduction from multiplication of n bit integers to the problem solved by A. It follows that
such an algorithm A must run in time Ω(M(n)). As discussed in Section 6, this implies that
unless M(n) ∈ O(n), there is no general algorithm for 2-QSAT with linear bit complexity if
the output is required to be in reduced form.

Linear bit complexity. Theorem 1.1 gives a setting in which our algorithm does have linear
bit complexity – when all constraints are product operators. This special case still has
essentially quantum features, such as satisfiable instances requiring two-qubit entanglement
(which our algorithm treats using techniques described in Section 2), and phase-transitions
for satisfiability and counting complexity in randomly sampled instances which match those
of 2-QSAT rather than classical 2-SAT [8]. It also includes the classical 2-SAT instances, for
which our algorithm has optimal bit-complexity.

Open questions. Our algorithm uses results of Chen et al. [4], which shows that any
satisfiable instance of 2-QSAT has a solution which is “almost” a product state (our algorithm
finds such solutions). In the degenerate case, however, there may also exist satisfying states
with long-range entanglement, which may also be of interest to find. As our aim here is to
study the optimal computational complexity of 2-QSAT, as opposed to seeking particular
types of solutions, we leave this as an open question. We also ask: Is the bit-complexity of
O((n+m)M(n)) for producing explicit assignments optimal? Is there an O(M(n)) upper
bound for producing representations of marginals of satisfying assignments?

Organization of this paper

In Section 2, we give notation, definitions, and the basic framework for our analysis (including
transfer matrices). Section 3 presents a series of lemmas and theorems to demonstrate how to
overcome the obstacles presented in this introduction, and which form the basis of a proof of
correctness for our algorithm SOLVEQ. Section 4 states SOLVEQ. Section 5 sketches bounds
on the runtime of SOLVEQ in terms of the field operations and bit operations. Additional
technical details are deferred to the full version of this paper. Section 6 discusses lower
bounds on the bit complexity of 2-QSAT.

2 Preliminaries

We begin by setting notation, stating definitions, and laying down the basic framework for
our algorithm, including details on transfer matrices.

3 N.B. Our algorithm SOLVEQ is not such an algorithm, as the output may include cancellable factors in
its representation.
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Notation

The notation := denotes a definition and [n] := {1, . . . , n}. The vector space of (possibly
non-normalised) single-qubit pure states is denoted H := C2. For a string x = x1x2 · · ·xn ∈
{0, 1}n, we write |x〉 := |x1〉 ⊗ · · · ⊗ |xn〉. For a vector space X over C, we write L (X ) for
the set of linear operators on X . The nullspace of an operator A is denoted ker(A). For
vectors |ψ〉 and |φ〉, we write |ψ〉 ∝ |φ〉 if |v〉 = c |w〉 for non-zero c ∈ C; if we wish to also
allow c = 0, we write |ψ〉 ∝∗ |φ〉 instead. The latter two definitions extend straightforwardly
to matrices. Given |ψ〉 ∈ H, we write |ψ⊥〉 for the unique vector (up to scalar factors) which
is orthogonal to |ψ〉.

2.1 Quantum 2-SAT

We now present a formal definition of quantum k-SAT (or k-QSAT).

I Definition 2.1 (Quantum k-SAT [3]). Let n ≥ k be an integer, and {Πi}mi=1 ⊂ L
(
H⊗k

)
be

a set of k-local orthogonal projection operators (i.e., of the form I⊗ Π̄i for k-qubit projectors
Π̄i) with coefficients over some number field F.

Decision problem. Does there exist a state |ψ〉 ∈ H⊗n such that Πi |ψ〉 = 0 for all i ∈ [m]?

Search problem. Produce a description of such a state |ψ〉 if it exists.
For precision reasons, we require in particular that the coefficients are drawn from a

number field (a finite-degree field extension F = Q[ω]). We suppose that F is also specified as
part of the input by means of a minimal polynomial p ∈ Q[x] for which F ∼= Q[x]/p, together
with a specification of how F embeds into C [5]. (More details are given in the full version,
where the runtime of the algorithm is carefully analyzed.) In the literature for 2-QSAT, one
is usually more interested in how the structure of the placement of the projectors Πi affects
the solution space, rather than the complexity of the specification of F or the coefficients.
We therefore suppose that there is some constant K which bounds from above the size of
the specification of F, and of the coefficients of the operators Πi.

We next sketch how a 2-SAT instance φ can be embedded into 2-QSAT (cases k > 2 are
similar). For each clause C on boolean variables (xa, xb), we define an operator ΠC ∈ L

(
H⊗2)

of the form ΠC := |ca〉〈ca| ⊗ |cb〉〈cb|, where ca = 1 if the variable xa is negated in C, and
ca = 0 otherwise; we fix cb similarly. Then ΠC is satisfied by |xaxb〉 ∈ H⊗2 if and only
if C is satisfied by xaxb ∈ {0, 1}2. We extend ΠC to an operator on H⊗n by taking its
tensor product with I2 ∈ L

(
H⊗n−2) on all tensor factors i apart from a, b ∈ [n]. Performing

this for all clauses yields an instance of 2-QSAT, {ΠC}, in which all of the projectors are
product operators (as mentioned in Section 1), and which imposes the same constraints on
standard-basis vectors |x〉 as the clauses C impose on x ∈ {0, 1}n. Furthermore, as each ΠC

is positive semidefinite and diagonal, any |ψ〉 for which ΠC |ψ〉 = 0 for all clauses C must
be a linear combination of vectors |x〉 which also satisfy ΠC |x〉 = 0 for all C. Thus this
instance of 2-QSAT is satisfiable if and only if the original instance of 2-SAT is, in which
case there is a bijection between the solution space of the 2-SAT instance and a basis for the
solution-space of the 2-QSAT instance.

Finally, for a given 2-QSAT instance, we denote by G its (potentially infinite) implication
graph (defined in Section 1), and by G′ its interaction graph, whose vertices are labelled by
qubits, and with a distinct edge between vertices i, j for each projector acting on them.
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Reduction to cases satisfied by product states

We mainly consider product-state solutions to instances of 2-QSAT, in spite of instances
(such as those described in “Significance and open questions” in Section 1) in which no
product state can be a solution. A paradigmatic example is given by a single constraint
Π∗ = I4 − |Ψ−〉〈Ψ−|, where |Ψ−〉 := (|01〉 − |10〉)/

√
2; the unique satisfying assignment is

the entangled state |Ψ−〉. Chen et al. [4] nevertheless show that all instances of 2-QSAT are
“almost” product-satisfiable in the following sense: The only pairs of qubits (i, j) which are
entangled for all satisfying states are those for which the sum of all constraints on (i, j) is
an operator Sij of rank 3 (as with Π∗ above). We may treat such pairs by imposing the
unique assignment |ψij〉 ∈ ker(Sij), and considering what restrictions this imposes on other
qubits k as a result of constraints on (i, k) or (j, k). If we find no conflicts as a result of all
such assignments, we obtain a sub-problem which is either unsatisfiable, or satisfiable by a
product state. (We describe this reduction in more detail in Section 4.)

Reduction to rank-1 instances

We may require that all constraints have rank 1 (but possibly with multiple constraints
on pairs of qubits), by decomposing projectors Πij of higher rank into rank-1 projectors
Πij,1 , Πij,2 , . . . , for which Πij =

∑
k Πij,k. By the preceding reduction to product-satisfiable

constraints, there will then be at most two independent constraints acting on any pair (i, j).

2.2 Transfer matrices
A central tool in this work is the transfer matrix, which for product states generalizes
the equivalence between (xi ∨ xj) and (x̄i ⇒ xj) ∧ (x̄j ⇒ xi) for bits. Consider a rank-1
constraint Πij = |φ〉〈φ| on qubits i and j, where |φ〉 has Schmidt decomposition |φ〉 =
α |a0〉 |b0〉+β |a1〉 |b1〉. Then, the transfer matrices Tφ,ij ,Tφ,ji ∈ L

(
C2) from i to j and from

j to i are respectively given by:

Tφ,ij = β |b0〉〈a1| − α |b1〉〈a0| , Tφ,ji = β |a0〉〈b1| − α |a1〉〈b0| . (1)

(When the state |φ〉 is clear from context, we simply write Tij and Tji.) Given any assignment
|ψi〉 ∈ C2 on qubit i, the transfer matrix Tφ,ij prescribes which single-qubit states |ψj〉 on j
are required to satisfy Πij , via the constraint |ψj〉 ∝∗ Tφ,ij |ψi〉 . If Tφ,ij |ψi〉 6= 0, then |ψj〉
is uniquely determined (up to equivalence by a scalar factor). This is guaranteed when |φ〉
has Schmidt rank 2, as Tφ,ij then has full rank. On the other hand, if Tφ,ij |ψi〉 = 0, then
Πij is satisfied for any assignment on j, so that j remains unconstrained. This situation may
only occur if |φ〉 is a product constraint, so that Tφ,ij has a nullspace of dimension 1. This
generalises the effect in the classical setting, that assigning xi := 1 satisfies the constraint
C = (xi ∨ xj), regardless of the value of xj : the corresponding constraint and transfer matrix
are |φ〉 = |00〉 and Tφ,ij = − |1〉〈0|, respectively.

Walk and cycle matrices

We take the closure of the transfer matrices, under composition along walks in the graph.
For any walk W = (v1, v2, . . . vk) in a graph G = (V,E), multiplying the transfer matrices
Tvk–1vk

· · ·Tv2v3Tv1v2 yields a new transfer matrix TW , which we call the walk matrix of W
(or path matrix, if W is a path). For such a walk W , define WR := (vk, vk−1, . . . , v2, v1). If a
transfer matrix TW has singular value decomposition TW = s0 |`0〉〈r0|+ s1 |`1〉〈r1|, one may
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show by induction on the length of W that

TW R = ±
(
s0 |r1〉〈`1|+ s1 |r0〉〈`0|

)
, (2)

where the sign depends on whether W has odd or even length. In particular, this implies that
TWTW R = ±s0s1I. Thus TWTW R ∝∗ I for all walks W , with a proportionality factor of zero
if and only if TW is singular. In particular, walk operators can sometimes be composed to
represent “cancellation” of edges: For walks U1 = W ′W and U2 = WRW ′′, if TW is invertible,
we have TW ′W ′′ ∝ TW ′′TW RTWTW ′ = TU1U2 , representing a form of composition of walks
in which repeated edges (ij)(ji) cancel.

For C = (v, u1, u2, . . . , uk, v) a cycle in G, the cycle matrix of C at v is just the walk
operator TC arising from the walk from v to itself along C. We consider the cycles C and
(e.g.) C ′ = (u1, u2, . . . , uk, v, u1) to be distinct as walks; in particular, C and C ′ may give
rise to distinct cycle matrices TC′ 6∝ TC , which in any case represent operators on the
state-spaces of distinct qubits.

Walk operators (and cycle operators in particular) allow us to more easily express
long-range constraints implicit in the original projectors Πij (as one may show by induction):

I Lemma 2.2 (Inconsistency Lemma). Let W = (v, v1, v2, . . . , v`, w) be a walk in G′ with
walk operator TW , and let |Ψ〉 ∈ H⊗n be a product of single-qubit states |ψv〉 for each v ∈ [n].
If |ψw〉 6∝∗ TW |ψv〉, then at least one constraint Πij corresponding to an edge in W is not
satisfied by |Ψ〉.

3 Efficient reductions via trial assignments in 2-QSAT

As outlined in Section 2, we consider rank-1 instances of 2-QSAT which either have a product
solution or are unsatisfiable. In this section, we describe a means to incorporate transfer
matrices into an efficient algorithm for 2-QSAT via the notion of a chain reaction: An
EIS-style subroutine for trial assignments.

As in Section 1, we define the implication graph of a 2-QSAT instance to be an (infinite)
directed graph G = (V,E), where V is the set of pairs (i, |ψ〉) for qubits i and (distinct)
states |ψ〉 ∈ H. There is a directed edge (i, |ψ〉)→ (j, |φ〉) if and only if there is a constraint
Πij with transfer matrix Tij such that Tij |ψ〉 ∝ |φ〉. A “chain reaction” is a depth-first
exploration of the nodes of G:

I Definition 3.1 (Chain reaction (CR)). For a qubit i and state |ψi〉 ∈ H, to induce a chain
reaction (CR) at i with |ψi〉 means to “partially traverse” G, starting from (i, |ψi〉) and keeping
a record of the vertices (u, |ψu〉) seen for each u. This traversal is governed by a depth-first
search (DFS) in the interaction graph G′, as follows. For each vertex (u, |ψu〉) visited and
each edge {u, v} in G′, compute Tuv |ψu〉. If this vector is non-zero, let |ψv〉 := Tuv |ψu〉,
and traverse to (v, |ψv〉) in G. For any vertex (v, |ψv〉) visited by the CR, we say that the
CR assigns |ψv〉 to v. In the sequence of vertices in G visited by the CR, we may refer to
instances of vertices (v, |ψ〉) for a given v ∈ V as the first assignment, the second assignment,
etc. made to v by the CR.

Edges of G′ (and walks in G′) which are traversed by the depth-first search (DFS) governing
a chain reaction, are also said to be traversed by the chain reaction (CR) itself.

The role of CRs in our analysis is to reveal constraints imposed by transfer matrices in
an efficient manner. Specifically, if the DFS in G′ which governs the CR encounters a cycle,
it will visit a vertex v in G′ twice, and so makes “assignments” to v more than once. If these
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27:10 A Linear Time Algorithm for Quantum 2-SAT

assignments do not match, we say the CR has a conflict. If no such conflicts occur, the CR
is called conflict-free. (In either case, it does not continue the traversal of the CR from the
second, third, etc. assignments.) We formalise the intuitive significance of conflicts as follows:

I Lemma 3.2 (Conflict Lemma). If a CR induced at v with |ψv〉 ∈ H has a conflict, then no
product state |Ψ〉 ∈ H⊗n for which the state of v is |ψv〉 is a satisfying assignment.

Proof. A conflict in the CR indicates the presence of two walks W1 andW2 in the interaction
graph G′, from v to some vertex w, for which TW1 |ψv〉 6∝∗ TW2 |ψv〉. It follows from the
Inconsistency Lemma (Lemma 2.2) that any product state in which v takes the state |ψv〉 is
not satisfying. J

With the concept of CRs in hand, we can present the key ideas used by our algorithm.
First, conflict-free CRs yield partial assignments, which preserve the satisfiability of the
instance defined on the remaining unassigned qubits. Second, if a 2-QSAT instance is
satisfiable, then a conflict-free CR can be found efficiently. Our algorithm (presented in
Figure 1) essentially operates by repeatedly finding conflict-free CRs, and removing the
qubits given assignments by each CR, until either a conflict is detected (in which case we
reject), or no unassigned qubits remain (in which case we accept).

3.1 Using conflict-free chain reactions to remove qubits
The main result in this Section is Theorem 3.6 (Set-and-Forget Theorem), which is essentially
the converse of Lemma 3.2, and allows us to reduce instances of 2-QSAT by providing partial
solutions obtained from a CR induced on a single qubit.

We begin by proving a correspondence between CRs and walk operators, in the sense
that if there is a walk W = (v, v1, v2, . . . , w) in G′, and if |ψv〉 /∈ ker(TW ), a CR induced at
v with a state |ψv〉 should assign TW |ψv〉 to w. The obstacle here is that the CR might not
traverse any of the edges of W before assigning a state to w; we must then relate W to other
walks in G′. We do so as follows.

I Lemma 3.3 (Unique Assignment Lemma). Suppose there exists a state |ψ〉 and a walk W
in G′ from v to w such that TW |ψ〉 ∝ |φ〉. Then, for any conflict-free CR induced on v with
|ψ〉, w is assigned |φ〉.

Proof. We show that there is a walk W̃ in G′ which is followed by the CR, for which
TW̃ |ψ〉 ∝ |φ〉. Suppose W = (v, u`, . . . , u1, u0) for u0 := w. For each i ≥ 0, let Wi denote
the segment (v, u`, . . . , ui) of the walk W . Let m be the smallest integer such that the CR
traverses Wm. If m = 0, then we may take W̃ = W is the walk followed by the CR from v

to w. Otherwise, we show a reduction to “deform” W , to obtain walks W ′, W ′′, . . . , and
a decreasing sequence m > m′ > m′′ > · · · , for which the CR follows the walks Wm, W ′m′ ,
W ′′m′′ , etc.. These walks have successively shorter “tails” of edges which are not followed by
the CR: the final such walk W̃ is then one which is completely followed by the CR.

Given that m > 0, let |ψm〉 = TWm
|ψ〉. By hypothesis, the CR does not traverse

the edge (um, um−1), either because Tumum–1 |ψm〉 = 0, or because of an assignment on
um−1. The former implies TW |ψ〉 = 0 6∝ |φ〉, contrary to hypothesis. Then there is a walk
W ′m−1 = (v, u′r, · · · , u′m, um−1) in G′, which is followed by the CR to make the assignment to
um−1. (Note that the assignments to um−1 made by both W and W ′m−1 are proportional to
one another, as otherwise the CR would have detected a conflict when attempting to traverse
edge (um, um−1) during its breadth-first search.) We extend the walk W ′m−1 to a walk
W ′ = (v, u′r, . . . , u′m, um−1, . . . , u1, w). The CR has traversed W ′ at least as far as the vertex
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um−1, missing out fewer edges at the end than it does for W . Furthermore, as the CR is
conflict-free, we have Tu1wTu2u1 · · ·Tumum–1 |ψm〉 ∝ TW ′ |ψ〉, so that |φ〉 ∝ TW |ψ〉 ∝ TW ′ |ψ〉
by construction.

Repeating the reduction above yields a walk W̃ in G′ which is completely followed by
the CR, for which TW̃ |ψ〉 ∝ |φ〉 by induction. Then |φ〉 is the assignment made to w by the
CR. J

Note that the above result holds regardless of which walk W we consider from v to w, so
long as TW |ψ〉 6= 0. Thus a conflict-free CR induced at v depends on a consistency between
all walk operators, from v to any other given w, relative to the initial assignment |ψv〉. For
the case w = v, we then have:

I Lemma 3.4 (Circuit Lemma). Let W be a closed walk starting and ending at v. If |ψv〉 is
not an eigenvector of TW , then inducing a CR at v with |ψv〉 yields a conflict.

Proof. By definition, the CR assigns |ψv〉 to v. If the CR is conflict-free, then either
TW |ψv〉 = 0 or TW |ψv〉 ∝ |ψv〉, by Unique Assignment (Lemma 3.3). Thus, if |ψv〉 is not an
eigenvector of TW , such a CR will have a conflict. J

Lemma 3.3 also allows us to decouple the set of vertices given assignments by a CR, from
the rest:

I Lemma 3.5 (Unilateral Lemma). For any state |ψ〉 and vertex v, suppose that a CR C1
induced at v with |ψ〉 is conflict-free. Let A denote the set of vertices given an assignment by
C1, and |ψa〉 denote the assignment made by C at a given a ∈ A. Then, for any constraint
Πab for a ∈ A and b ∈ V \A and for any |φ〉 ∈ H, Πab

(
|ψa〉 ⊗ |φ〉

)
= 0.

Proof. For a ∈ A, the CR C1 must discover a walk W = (v, v1, v2, . . . , v`) for v` := a,
such that for any sub-walk Wi = (v, v1, . . . , vi) for 1 ≤ i ≤ `, we have TWi |ψ〉 6= 0. The
assignment made to a by C1 is then |ψa〉 := TW |ψ〉 by construction. Conversely, as b /∈ A, it
follows by the Unique Assignment (Lemma 3.3) that all walks W∗ in G′ from v to w satisfy
TW∗ |ψ〉 = 0: this holds in particular for the walk W ′ = (v, v1, . . . , a, b). Then Tab |ψa〉 = 0,
which is to say that Πab

(
|ψa〉 ⊗ |φ〉

)
= 0 for all |φ〉. J

The Unilateral Lemma allows us to treat conflict-free CRs as “set-and-forget” subroutines,
in which we establish partial assignments on a set of qubits which we may remove from
an instance P = {Πij}ij∈E of 2-QSAT, obtaining a simpler, equivalent instance P′ ⊂ P.
Formally, we have the following.

I Theorem 3.6 (Set-and-Forget Theorem). Let P = {Πij}ij∈E be an instance of 2-QSAT with
interaction graph G′ = (V,E). Suppose that C is a conflict-free CR induced at v ∈ V with
|ψv〉 ∈ H, and let A denote the set of vertices given assignments by C. Let P′ be a 2-QSAT
instance obtained from P by removing all constraints acting on A. Then P is satisfiable by
product states if and only if P′ is.

Proof. For a given a ∈ A, let |ψa〉 denote the assignment made by C to a. By construction,
the states |ψa〉 jointly satisfy all constraints between vertices in a; and by the Unilateral
Lemma (Lemma 3.5), the states |ψa〉 also unilaterally satisfy constraints between vertices
in A and vertices in V \ A. If P′ is satisfiable by a state |Φ〉 =

⊗
v∈V \A |φa〉, then P is

satisfiable by |Ψ〉 =
[⊗

a∈A |ψa〉
]
⊗ |Φ〉. For the converse, suppose that P is satisfiable by

some state |Ψ′〉 =
⊗

v∈V |ψ′v〉 (which may not agree with the assignments made by C). Define
|Ψ〉 =

[⊗
a∈A |ψa〉

]
⊗
[⊗

v∈V \A |ψ′v〉
]
. Again, |Ψ〉 satisfies all constraints acting on vertices

a ∈ A, and by construction it also satisfies all constraints internal to V \A. Then |Ψ〉 also
satisfies P, and its restriction to V \A satisfies P′. J
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3.2 How to find conflict-free chain reactions efficiently
The Set-and-Forget Theorem (Theorem 3.6) provides us with the following approach to find
a product assignment for an instance P of 2-QSAT: (i) pick an unassigned vertex v, (ii) find
|ψv〉 such that the CR induced at v with |ψv〉 is conflict-free, and (iii) use this CR to produce
a partial assignment, reducing to an instance P′ with fewer qubits. It remains to attempt to
find such a state |ψv〉, or determine that none exist, from the continuum H of single-qubit
states.

As we describe in Section 1, and as shown by the Circuit Lemma (Lemma 3.4), it suffices
for us to restrict our search for |ψ〉 to the eigenvectors of TW for a closed walk W , e.g. a
cycle. Define a discretizing cycle as a directed cycle C (starting and ending at some vertex
v) with cycle matrix TC 6∝∗ I. For such cycles, the Circuit Lemma allows us to narrow down
our search for |ψv〉 to the eigenvectors of TC , of which there are at most two. This raises two
questions: (1) How to find discretizing cycles efficiently, and (2) how to deal with variables
which are not on any discretizing cycle.

As noted in Section 1, product operators complicate the task of detecting discretising
cycles, but also provide a second way to narrow the search for assignments |ψv〉 leading to
conflict-free CRs.

I Lemma 3.7 (Product Constraint Lemma). In a product-satisfiable instance of 2-QSAT with
a rank-1 product constraint projecting onto a state |φuv〉 = |γu〉 ⊗ |γv〉, at least one of the
CRs at vertex u or v with states |γ⊥u 〉 or |γ⊥v 〉, respectively, is conflict-free.

Proof. Suppose that the instance is product satisfiable, but that a CR starting at qubit
u with state |γ⊥u 〉 has a conflict. Then by the Conflict Lemma (Lemma 3.2), for any
satisfying product state |ψ〉 =

⊗
v∈V |ψv〉, we have |ψu〉 6∝ |γ⊥u 〉. By construction, we have

|ψv〉 ∝ Tuv |ψu〉 = |γ⊥v 〉 6= 0. Thus a CR induced at v with |γ⊥v 〉 will be conflict-free (as
otherwise |ψ〉 cannot be a satisfying assignment, again by the Conflict Lemma). J

Using Lemma 3.7 together with the Set-And-Forget Theorem (Theorem 3.6), we may find
a partial assignment satisfying any given product constraint; repeating this for all product
constraints will either (i) reveal that the original 2-QSAT instance is unsatisfiable, (ii) yield
a satisfying assignment for the entire instance, or (iii) yield an equivalent instance of 2-QSAT
in which all constraints are projectors onto entangled states.

Let us call an instance of 2-QSAT irreducible if it has a connected interaction graph G′,
and all of its constraints are rank-1 projectors onto entangled states. In such an instance of
2-QSAT, all transfer matrices are invertible. A conflict-free CR induced at any vertex will
yield assignments for every other vertex; thus, a single discretizing cycle suffices to determine
whether or not the instance is satisfiable. We show that when a discretising cycle is present
in such an instance of 2-QSAT, it is easily found:

I Lemma 3.8. Suppose G′ is an interaction graph of an irreducible instance of 2-QSAT,
which contains a discretizing cycle C. Let T ⊂ G′ be a tree which contains all of the vertices
of C. Then there is at least one edge e in C, such that the (unique) cycle in the graph T ∪{e}
is a discretizing cycle.

Proof. In the tree T , there is a unique path Pvw from any given vertex v ∈ V to any
other connected vertex w. Furthermore, by the irreducibility of the 2-QSAT instance,
TPvw

is non-singular in each case. Suppose that C = (v1, v2, . . . , v`, v1) is a discretizing
cycle in the implication graph G. Consider the closed walk from v1 to itself in T , given
by W = Pv1v2Pv2v3 · · ·Pv`v1 . By induction, we may show that the truncated walk W ′ =
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Pv1v2Pv2v3 · · ·Pv`−1v`
satisfies TW ′ ∝ TPv1v`

∝ T−1
Pv`v1

for each `: thus TW ∝ I. However,
TC = Tv`v1 · · ·Tv2v3Tv1v2 6∝ I by hypothesis. Then there is an edge vw in C for which
Tvw 6∝ TPvw

. Then the unique cycle C ′ in T ∪ {vw} contains the path Pvw from v to w, as
well as the edge vw, and has cycle matrix TC′ = TwvTPvw ∝ T−1

vwTPvw 6∝ I. J

I Theorem 3.9 (Cycle Discovery Theorem). Suppose G′ is the interaction graph of an
irreducible instance of 2-QSAT, and contains a discretizing cycle C. Then a depth-first search
from any vertex v ∈ V , in which each edge is traversed at most once, suffices to discover a
discretizing cycle C ′.

Proof. Consider a DFS starting from any vertex v ∈ V . Define a tree T ⊂ G, in which each
edge e traversed by the DFS is included if and only if e is traversed for the first time some
vertex is visited. As the DFS reaches each vertex w, it also computes the path operator TPvw

for the path taken from v to w. Each time the DFS traverses an edge uw from some vertex
u to a vertex w which it has previously visited, it tests whether TPvu

∝ TwuTPvw
. If so, it

continues the DFS from w. Otherwise the cycle C ′ consisting of PR
vuPvw followed by wu is

discretizing, as TC′ ∝ TuwTPvu
T−1
Pvw
6∝∗ I. Conversely by Lemma 3.8, if G has a discretizing

cycle, the DFS must eventually traverse such an edge. J

Implicit in Theorem 3.9 is a linear-time algorithm for finding discretising cycles in an
irreducible instance of 2-QSAT, when one is present. It remains to describe how to treat
irreducible instances which have no discretizing cycles. The absence of any means of
discretising the state-space of any qubit in such an instance actually represents freedom of
choice in this case; while this is implicit in Refs. [3, 21, 9], we prove it here for the sake of
completeness.

I Lemma 3.10 (Free Choice Lemma). In an irreducible instance of 2-QSAT with no dis-
cretizing cycles, any choice of single-qubit state |ψv〉 for some v in the component gives rise
to a conflict-free CR.

Proof. Let G′ be the interaction graph. Consider a CR induced at v with |ψv〉, and consider
the paths Pvw to each vertex w, by which the CR makes its first assignment |ψw〉 := TPvw

|ψv〉
to w. If P ′vw is another walk from v to w, we have TP R

vw
TP ′vw

∝ I, from the hypothesis
that there are no discretising cycles; then TP ′vw

∝ TPvw
. Thus, regardless of the choice of

|ψv〉, a consistent assignment TP ′vw
|ψv〉 is computed every time the CR traverses an edge to

visit w. J

4 A linear-time 2-QSAT algorithm

We finally present our 2-QSAT algorithm in Figure 1, whose correctness follows immediately
by combining the results of Section 3. Following [10], we implement CRs (corresponding to
their trial assignments) in parallel to ensure a linear bound on run-time; this is expanded
upon in Section 5.

Preprocessing stage to impose input constraints

For conciseness, we present SOLVEQ in Figure 1 with restrictions on the inputs it takes.
As we indicate in Section 2, following Chen et al. [4], these restrictions ensure that the
instance presented to SOLVEQ is either satisfiable by a product state or unsatisfiable. These
restrictions can be imposed through a pre-processing phase, as follows. For each pair {u, v}
subject to multiple constraints, sum the projectors to obtain positive semidefinite operator
Suv. Then perform the following:
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Input: An instance of 2-QSAT consisting of rank-1 projectors P = {Πij} with
interaction graph G′ = (V,E), with at most two parallel edges (u, v) per
distinct {u, v} ⊂ V .

1. Discretize on product constraints – While there exists a projector Πij = |φij〉〈φij |
such that |φij〉 = |γi〉 ⊗ |γj〉 is a product state: simulate CRs at each v ∈ {i, j} with∣∣γ⊥v 〉, in parallel.
a. If conflicts arise in both CRs, halt and output “unsat”.
b. Fix the assignments for the first conflict-free CR that terminates, remove the set
A of vertices that it visited from G′, and go to Step 1.

2. Discretize on cycles – While there exists v ∈ V : search for a discretizing cycle C ⊆ G′
in the same connected component of v.

If such a cycle C is found at a vertex u: Let TC be its cycle matrix, and S denote
the set of eigenvectors of TC . Simulate CRs at u with each |ψu〉 ∈ S, in parallel.
a. If conflicts arise in both CRs, halt and output “unsat”.
b. Fix the assignments for the first conflict-free CR that terminates, remove the

set A of vertices that it visited from G′, and go to Step 2.
If no such cycle is found: Induce a CR at v with |ψv〉 := |0〉. Fix assignments
made by the CR, remove the set A of vertices that it visits from G′, and go to
Step 2.

3. Normalize – For each qubit v, compute whether the assignment |ψv〉 is normalised:
if not, compute a normalised version |ψv〉 := |ψv〉

/√
〈ψv |ψv〉 .

Output: “unsat”, or unit vectors |ψv〉 ∈ H for each v ∈ V which jointly satisfy P.

Figure 1 An algorithm for 2-QSAT, denoted SOLVEQ.

1. If any pair {u, v} has rank(Suv) = 4, halt with output unsat (as ker(Suv) contains no
states).

2. For each pair {u, v} with rank(Suv) = 2, replace the constraints on {u, v} with Πuv,1 =
|η1〉〈η1| and Πuv,2 = |η2〉〈η2|, for linearly independent columns |η1〉 , |η2〉 of Suv.

3. For each pair {u, v} with rank(Suv) = 3, record the unique state |ψuv〉 which spans
ker(Suv) as a joint assignment to (u, v), and remove the constraints on {u, v}. If |ψuv〉 =
|ψu〉 ⊗ |ψv〉, record |ψu〉 and |ψv〉 as assignments to u and v respectively. (If any qubit is
subject to conflicting assignments, halt with output unsat.)

4. For each pair {u, v} given an assignment |ψuv〉 in the preceding step:
If |ψuv〉 = |ψu〉 ⊗ |ψv〉, induce CRs (sequentially) at u with |ψu〉 and at v with |ψv〉.
If not, and there are non-product constraints Πiu or Πiv for any i, halt with output un-
sat (as any state of i is compatible only with product states on {u, v}). Otherwise, for
each Πiu = |γi〉〈γi| ⊗ |γu〉〈γu| or Πiv = |γi〉〈γi| ⊗ |γv〉〈γv|, induce a CR (sequentially)
at i with |γ⊥i 〉.

For any CR induced, halt (with output unsat) either if the CR has a conflict, or if it
makes an assignment to some other qubit w which has been given a different assignment
as a result of a rank-3 constraint. If no conflict is detected, record the assignments, and
remove the set A of qubits given assignments from G′.

This preprocessing phase involves much the same subroutines as SOLVEQ itself, and does
not contribute to the asymptotic run-time. (We include these steps in our detailed runtime
analysis in the full version.)
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5 Runtime analysis

We briefly sketch the runtime analyses for SOLVEQ in terms of field operations over C and
bit operations, and discuss an optimization for the setting of product state constraints. A
more in-depth treatment is given in the full version. We assume a random-access machine, so
that memory access takes unit time. The constraints Πi are specified as 4× 4 matrices with
coefficients from a finite-degree field extension F :Q, whose specification is also part of the
input; arithmetic operations over such number fields can be performed efficiently [5]. From
this representation we extract the basis vectors |ηi〉 for the image of Πi by taking columns
of Πi, and omit normalisation: SOLVEQ then uses |ηi〉 to represent Πi. Vectors are only
normalised as the final step of the algorithm.

Field operations

SOLVEQ requires O(n + m) operations over C, for n and m the number of variables and
clauses, respectively. As each vector |ηi〉 is in C4, operations on them (such as determining if
|ηi〉 is a product constraint in Step 1) require O(1) field operations. Following EIS [10], we
simulate CRs in parallel by interleaving their steps, terminating both simulations as soon
as one of them is found to be conflict-free. In the preprocessing phase and in Step 1b, this
ensures that the number of vertices and edges removed (upon completion of a conflict-free
CR) is proportional to the number of vertices and edges visited during the parallel CRs.
Hence, the total number of edge-traversals of SOLVEQ is O(m). Finally, by Step 2, the
instance has been simplified to a disjoint union of irreducible instances. Theorem 3.9 ensures
that if a discretizing cycle exists in any of the components, it can be found by a depth-first
search; moreover, a single conflict-free CR suffices to assign satisfying states to all vertices in
each component.

Bit operations

The bit-complexity of SOLVEQ differs from the field-operation complexity, for the simple
reason that multiplying k transfer matrices yields a path matrix with O(k)-bit entries. Thus,
operations such as determining the eigenvectors of such matrices, or whether |ψ〉 ∝ |φ〉 for
vectors in the image of these matrices, can take time O(M(k)), where M(k) is the time
to multiply two k-bit integers. This follows from the fact that computing

√
D ∈ Z for

a perfect square D ∈ Z can be performed in O(M(n)) time using Newton’s method (see
e.g. Theorem 9.28 of Ref. [26]); and that equality testing over Q is bounded by O(M(n)),
for rationals r, s ∈ Q with n bit representations as ratios. (To test whether a

b and c
d are

equal, one tests whether ad− bc = 0.) Since the number of times we might need to compute
eigenvectors or decide proportionality may scale as m+ n, the runtime of O((m+ n)M(n))
follows.

It may be necessary for SOLVEQ to represent its output using further field extensions
E :F, for instance, when solving the characteristic polynomial det(λI −TC) of a cycle matrix
TC , if the discriminant D = (Tr TC)2 + 4(det TC) is not a perfect square in F. However, by
the Set and Forget Theorem 3.6, any extension required by a CR will be independent of the
CRs involved in the assignments made by other CRs; furthermore, the extensions involved in
each CR is only quadratic, and specifically by a square root

√
D of an element D ∈ F.

The approach taken to the quadratic extensions by SOLVEQ is unconventional. Specif-
ically, unless D ∈ Q, we do not evaluate whether or not

√
D is in F before defining the

(possibly trivial) “extension” E = F[
√
D]. That is, we allow representations of number fields
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Fk := Q[ω1, ω2, . . . , ωk] in which ωj = √αj for some αj ∈ Fj−1 (possibly including the case
ω1 =

√
s for s ∈ Q), and where it may come to pass that ωj ∈ Fj−1. This prevents us from

easily presenting coefficients in a normal form: crucially however, it is still possible for us
to perform equality tests and arithmetic operations in time O(M(n)), for α ∈ Fk expressed
as 1

µf(ω1, . . . , ωk) for µ ∈ Z and f ∈ Z[x] with coefficients of size O(n), provided that k is
bounded by a constant. (In the case of SOLVEQ, we bound k ≤ 3.)

Thus while the output of SOLVEQ may not be reduced, it nevertheless presents exact,
normalised, satisfying states by means of tensor factors. Complete details are to be found in
the full version.

Reduced complexity of 2-QSAT for product constraints

Using a simple optimization which exploits product constraints, SOLVEQ can in fact accept
inputs over any field extension F:Q (algebraic or otherwise), and solve them with O(n+m)
bit operations provided that all projectors are product operators. This requires only that
arithmetic operations and equality testing against 0 can be performed in F in O(1) time
on inputs with representations of size O(1). Specifically: the transfer matrix of a product
constraint Πuv = |γu〉〈γu| ⊗ |γv〉〈γv| is Tuv ∝ |γ⊥v 〉〈γu|, whose image is spanned by |γ⊥v 〉. For
any assignment |ψu〉 to u, if Tu,v |ψu〉 6= 0, we can set v to |γ⊥v 〉 (which by assumption on the
input requires O(1) bits), as opposed to the potentially more complex vector Tu,v |ψu〉 ∝ |γ⊥v 〉.
Thus, in Step 1, the complexity of the assignments made by a CR are no more complex
than the vectors of the projectors Πuv in the input, so that all algebraic operations may
be performed in Θ(1) time rather than O(M(n)) time. In particular, for classical 2-SAT
instances, we recover an O(m+n) upper bound on the bit-complexity of SOLVEQ, matching
the asymptotic performance of the APT and EIS algorithms [2, 10].

6 On lower bounds for bit complexity

Most investigations into 2-QSAT are presented in terms of unit-cost operations over some
algebraic number field F. As a result, no restrictions are usually put on how the output of a
classical solution to 2-QSAT is represented. To consider lower bounds on the bit-complexity
of presenting a solution to 2-QSAT, it becomes necessary to consider what restrictions to
impose on the output, as without such restrictions the notion of what form the output may
take becomes ill-defined. We impose the restriction of outputs which are rationalised, as
follows. Let F = Q[ω] be an algebraic number field, so that ω is an algebraic number whose
minimal polynomial p is a monic polynomial over Z. An element α ∈ F is presented in
rationalised form by an expression of the form f(ω)/D = α, where D > 0 is an integer
and f ∈ Z[x] is an polynomial such that deg(f) < deg(p). Despite the unconventional
representation described in Section 5, this is one constraint which the output of SOLVEQ
respects.

There are further restrictions which one might consider, such as the output state vectors
being normalised (which SOLVEQ satisfies), and that they be reduced: that the coefficients
α = f(ω)/D satisfy gcd(f,D) = 1. Consider, for instance, an algorithm which produces its
output in minimal form: each state that it outputs is normalised, in reduced rationalised form,
and involves the minimal field extension F:Q necessary to do so, represented as F = Q[ω]
where the minimal polynomial of ω is a monic polynomial over the integers. While SOLVEQ
does not compute outputs in minimal form (e.g., it may fail to produce outputs in reduced
form), we show that the multiplication time O(M(n)) for n bit integers is a relevant lower
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bound for algorithms which do, suggesting that the role of M(n) in the upper bound of
SOLVEQ is not merely accidental.

I Lemma 6.1. There exist instances of 2-QSAT on n vertices and m ∈ O(n) clauses, such
that exhibiting a requested tensor factor of a satisfying solution, in minimal form, requires
Ω(M(n)) bit operations in in the worst case.

Proof. LetM and N be positive, odd n-bit integers, with binary expansionsM =
∑n−1
t=0 2tMt

and N =
∑n−1
t=0 2tNt, where Mi, Ni ∈ {0, 1} for each 0 ≤ i < n. We construct an instance of

2-QSAT whose unique product state solution is one in which one of the qubits q is assigned
a state

|ψq〉 := M√
D
|0〉+ 2n +MN√

D
|1〉 = M

√
D

D
|0〉+ (2n +MN)

√
D

D
|1〉 , (3)

where D = M2 + (2n+MN)2. Either the middle or the right-hand expression in Eqn. (3) is
in rationalised and normalised form, depending on whether D is a perfect square. As M ,
2n +MN , and D are coprime, that rationalised expression is in reduced form, if F = Q[

√
D].

If D is neither a perfect square nor square-free, it may be that
√
D is represented as

δ
√
D′ ∈ Q[

√
D′], where D = D′δ2. In this case, by hypothesis, a representation of |ψq〉 in

reduced form would be identical (up to signs) to

|ψq〉 = M
√
D′

D′δ
|0〉+ (2n +MN)

√
D′

D′δ
|1〉 . (4)

In any case, the minimal form representation would provide a specification of the extension
element

√
D′, the denominators D′δ, and the numerators A = M and B = 2n + MN (or

A = −M and B = −2n −MN , which yields an equivalent vector in Q[
√
D′]). From such a

representation, one could compute MN simply as B − 2n (or −B − 2n respectively), which
requires time O(n).

The instance we construct is on a chain of 2n+ 2 qubits, labelled v ∈ {0, 1, 2, . . . , 2n+1},
as follows. For 1 ≤ i ≤ n, we define matrices

Ti−1,i =
(

1 0
Mn−i 2

)
, Tn+i,n+1+i =

(
1 0

Nn−i 2

)
; (5)

and also two matrices Tn,n+1 and T′0,1:

Tn,n+1 =
(

0 1
1 0

)
, T′0,1 =

(
0 1
0 Mn−1

)
. (6)

For each i ∈ {0, 1, 2, . . . , 2n}, we include a constraint Πi,i+1 between qubits i and i+ 1, with
transfer matrix Ti,i+1; and we also include a second constraint Π′0,1 between 0 and 1, with
transfer matrix T′0,1. The resulting instance of 2-QSAT has two rank-1 constraints between
qubits 0 and 1, and one rank-1 constraint between all other consecutive pairs of qubits. By
Chen et al. [4], this instance is then satisfiable by a product state if it is satisfiable at all. It
is easy to show that all of the projectors have rational coefficients in this case, so we take the
field of the representation to be Q itself.

We show that there is a unique product state which satisfies the above instance of 2-QSAT.
It is easy to show that the opposite transfer operator to T′0,1 is

T′1,0 ∝
(
−Mn−1 1

0 0

)
(7)
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so that T′1,0T0,1 ∝ |0〉〈1|. The only eigenvector of this operator is |0〉, which is therefore the
only single-qubit state on qubit 0 which is consistent with a satisfying solution. As all other
transfer operators are non-singular, this determines a unique assignment for all other qubits i
in the chain, determined by the first column of the walk operator T[0,i] := Ti−1,i · · ·T1,2T0,1.
It is easy to show for 1 ≤ i ≤ n that

T[0,i] =

 1 0∑
1≤t≤i

Mn−t2i−t 2i

 , (8)

and that in particular

T[0,n] =
(

1 0
M 2n

)
; (9)

from this we easily obtain

T[0,n+1] =
(
M 2n
1 0

)
; (10)

from which point we may prove by induction for 1 ≤ i ≤ n that

T[0,n+1+i] =

 M 2n

2i +M
∑

1≤t≤i
Nn−t2i−t 2n

∑
1≤t≤i

Nn−t2i−t

 ; (11)

so that

T[0,2n+1] =
(

M 2n
2n +MN 2nN

)
. (12)

Let q be qubit 2n + 1. The only assignment to this qubit which is consistent with a
satisfying assignment is then the state given by the first column of T[0,2n+1], which is
M |0〉+ (2n +MN) |1〉; the vector given by Eqn. (3) is the normalised version of this vector.

Using the techniques of Laumann et al. [21], we may show that the space of satisfying
assignments of this instance has dimension 2, spanned by the product solution above, and an
entangled solution on all of the qubits. Considering all projectors except for Π′0,1, there is an
invertible (non-unitary) local transformation mapping all projectors Πi−1,i to |Ψ−〉〈Ψ−|, the
two-qubit antisymmetric projector. Thus the satisfying states for these projectors are the
symmetric subspace on S = 2n+ 2 qubits, which is spanned by any collection of states of
the form |αi〉⊗2n+2, for S + 1 = 2n+ 3 distinct states |αi〉. Any state in this space which
is not a product state, is entangled across the entire chain of qubits. Undoing this change
of local co-ordinates, it follows that any state which satisfies the above instance of 2-QSAT
which is not a product state, is also entangled across the entire chain of qubits (i.e., it cannot
be factorized across any cut). Since we require each factor to be explicitly written in the
standard basis, such a solution would then require explicitly writing out the standard basis
elements of a vector of dimension 22n+2; such solutions would require vectors of dimension
22n+2 to represent. Any algorithm which in polynomial time exhibits one of the tensor
factors of the solution, must therefore exhibit factors of the product solution. In particular,
it must compute |ψq〉 if this is the required tensor factor. As we have already shown an O(n)
reduction from computing the product MN to computing the minimal representation of |ψq〉,
it follows that there is an Ω(M(n)) lower bound for such an algorithm in the worst case. J
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I Corollary 6.2. If there does not exist a Θ(n)-time algorithm for multiplying two n-bit
integers, then there does not exist an O(m+n)-time algorithm to present single-qubit marginals
of satisfying solutions to instances of 2-QSAT.

We would also like to show lower bounds for algorithms such as SOLVEQ, which do not
necessarily compute its output in reduced form, but which does compute an explicit output,
in the sense of presenting a complete description of a satisfying solution via tensor factors.
We may obtain such lower bounds even for algorithms which produce non-normalised outputs,
as follows.

I Lemma 6.3. There exist instances of 2-QSAT on n vertices and m ∈ O(n) clauses, such
that an explicit rationalised (but not necessarily normalised) assignment for a satisfying state
requires Ω(n2) bits.

Proof. We may simplify the construction of Lemma 6.1 by omitting the qubits n+ 1, . . . ,
2n + 1 and the projectors which act on them. This yields an instance in which there is a
unique product solution (with all other solutions requiring a vector of dimension 2n+1 to
represent). In this product state, the qubit n is in a state |ψn〉 ∝ |0〉+M |1〉. More generally,
each qubit 1 ≤ i ≤ n is in a state

|ψi〉 ∝ |0〉+M (i) |1〉 (13)

where M (i) =
∑i
t=1 Mn−t2i−t. As Mn−1Mn−2 · · ·M2M1 ∈ {0, 1}n−1 may be an arbitrary

n − 1 bit string, and as we require the tensor factors on the qubits i to be presented
independently of one another, the integers M (i) cannot be represented any more succinctly in
the worst case; at best, by applying arbitrary scalar factors, we may consider representations
|ψi〉 = 1

αi
|0〉 + M(i)

αi
|1〉, in which the representation of the |1〉 component of |ψi〉 may be

reduced if αi divides M (i), but at the cost of increasing the size of the representation of
the |0〉 component. (More formally, if the pair (1/αi,M (i)/αi) has asymptotically smaller
Kolmogorov complexity than the pair (1,M (i)), we would have a contradiction, since the
former allows us to extract M (i) – thus, we would have a shorter description of M (i) than its
Kolmogorov complexity allows.) Thus, for any constant 0 < α < 1, the qubits bαnc < i < n

all require Ω(n) bits to represent, yielding a total lower bound of Ω(n2). J

I Corollary 6.4. Up to Ω(log(n)1+o(1)) factors, SOLVEQ is optimal among algorithms which
present explicit expressions for satisfying assignments.
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Abstract
We classify two-qubit commuting Hamiltonians in terms of their computational complexity. Sup-
pose one has a two-qubit commuting Hamiltonian H which one can apply to any pair of qubits,
starting in a computational basis state. We prove a dichotomy theorem: either this model is
efficiently classically simulable or it allows one to sample from probability distributions which
cannot be sampled from classically unless the polynomial hierarchy collapses. Furthermore, the
only simulable Hamiltonians are those which fail to generate entanglement. This shows that
generic two-qubit commuting Hamiltonians can be used to perform computational tasks which
are intractable for classical computers under plausible assumptions. Our proof makes use of new
postselection gadgets and Lie theory.

1998 ACM Subject Classification F.1.2 Modes of Computation F.1.3 Complexity Measures and
Classes

Keywords and phrases Quantum Computing, Sampling Problems, Commuting Hamiltonians,
IQP, Gate Classification Theorems

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.28

1 Introduction

Quantum computers hold the promise of performing computational tasks which cannot
be simulated efficiently using classical computers. A hallmark example of this is Shor’s
quantum factoring algorithm [33] for which no classical analog is known. However, proving
that quantum computers hold an advantage over classical ones when it comes to factoring
or any other decision problem would show that P 6= PSPACE, which is well beyond our
current reach. Therefore, we aim to establish quantum advantage under widely accepted
complexity assumptions like P 6= NP, non-collapse of the polynomial hierarchy PH, and
others. In this submission we show that generic two-qubit commuting Hamiltonians can be
used to perform computational tasks which are intractable for classical computers unless PH
collapses. Since commuting gate sets allow for easier fault-tolerant implementation [5], our
results offer the possibility to experimentally perform classically intractable computations
even before achieving universal quantum computation.

1.1 Problem statement and results
The evolution of a quantum system is determined by its Hamiltonian, which corresponds to
a Hermitian matrix H. If we apply a Hamiltonian for time t, then this applies the unitary
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gate eiHt to the system. The Hamiltonian of a system is governed by its underlying physics,
so oftentimes in quantum computing experiments (e.g. in superconducting qubits) it is
easy to apply certain Hamiltonians but not others. From this perspective it is natural to
study the computational power of a fixed Hamiltonian H that can be applied to different
ordered subsets of qubits for arbitrarily chosen amounts of time. Here we consider the
model where we have a fixed two-qubit1 Hamiltonian H which we can apply to any ordered
pair of qubits, where we initialize our system in a computational basis state and perform
a computational basis measurement at the end. Now it is natural to ask: What is the
computational power of this model for a fixed H? It is known that almost any choice of H
in this model yields universal quantum computation [16, 40, 13, 7], but the classification
of such universal Hamiltonians remains an open problem. Curiously, there exist subsets of
Hamiltonians that do not seem to offer the full power of BQP but nevertheless are hard to
simulate classically under plausible complexity assumptions [32, 10, 30].

We focus on a particular family of Hamiltonians H which, even though incapable of
universal quantum computation, can perform computations that are hard for classical
computers and might offer easier experimental implementation. Specifically, we study
Hamiltonians H that can only give rise to mutually commuting gates, so the order in which
the gates are applied is irrelevant:

I Definition 1.1. We say that a two-qubit Hamiltonian H is commuting if [H⊗I, I⊗H] = 0
and [H ⊗ I, I ⊗ (THT )] = 0 and [H,THT ] = 0, where T is the gate which exchanges two
qubits, and [A,B] denotes the quantity AB −BA. In other words, H commutes with itself
when applied to any pair of qubits.

We are interested in classifying which commuting two-qubit Hamiltonians H allow us to
perform computational tasks that are hard for classical computers. In particular, we want
to understand when H gives rise to probability distributions which are hard to simulate
classically:

I Definition 1.2. We say that a family of probability distributions {Dx}x∈{0,1}∗ are hard to
sample from classically if there exists a constant c > 1 such that no BPP machine M can
satisfy

1
c

Pr[M(x) outputs y] ≤ Dx(y) ≤ cPr[M(x) outputs y]

for all y in the sample space of Dx.

Clearly, if a commuting H is not capable of creating entanglement from any computational
basis state then the system will remain in a product state, so this model will be efficiently
classically simulable. Surprisingly, we show that in all the remaining cases H can perform
sampling tasks which cannot be simulated classically unless PH collapses.

I Theorem 1.3 (Main Result). If a commuting two-qubit Hamiltonian H is capable of creating
entanglement from a computational basis state, then it gives rise to probability distributions
that are hard to sample from classically unless PH collapses.

Additionally, given such an H, our result provides an algorithm which describes the
experimental setup required to sample from these hard distributions.

1 One-qubit Hamiltonians cannot create entanglement, so are efficiently classically simulable in this model.
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Experimental implications

Universal quantum computers have proved challenging to implement in practice as they
require large overheads for fault-tolerance. As a result, some skeptics have questioned if
quantum devices will ever be able to demonstrate an advantage over classical computers
[24, 26].

One response to this challenge is to study weaker models of quantum computation which
are incapable of universal quantum computation, but still demonstrate an advantage over
classical computation [2, 10, 23, 25, 28, 37]. Aliferis et al. [5] have shown that commuting
gate sets may be easier to implement fault-tolerantly with superconducting qubits than
universal gate sets, and provided numerical evidence that they may admit lower fault-tolerance
thresholds. Therefore, commuting computations form a good candidate for providing the
first “proof of concept" demonstration of quantum supremacy over classical computation
[2]. Our Theorem 1.3 says that almost any commuting Hamiltonian could be used for
this demonstration, and additionally provides the experimentalist with a straightforward
criterion to determine whether a commuting Hamiltonian can be used to sample from hard
distributions.

1.2 Proof ideas
Our proof proceeds in several steps. First, we use that fact that any commuting two-qubit
Hamiltonian H is locally diagonalizable:

I Lemma 1.4 ([14, Lemma 33]). For any commuting two-qubit Hamiltonian there exists a
one-qubit unitary U and a diagonal matrix D such that H = (U ⊗ U)D(U† ⊗ U†).

The proof of this follows from expanding H in the Pauli basis, and deducing relationships
between the Pauli coefficients.

Next, we use postselection gadgets to construct a family of one-qubit operations L(t) :
C2 → C2 for t ∈ R that that can be applied to the input state using postselection. We then
show that these gadgets are universal on a qubit whenever H generates entanglement, so
long as H is not some exceptional subcase. The exceptional subcase is H = X(θ) ⊗X(θ)
where X(θ) =

(
0 eiθ/2

e−iθ/2 0

)
.

I Lemma 1.5. If H is capable of creating entanglement from a computational basis state
and H is not X(θ)⊗X(θ) for some θ, then it is possible to construct any one-qubit gate by
taking products of the L(t) gadgets.

The main difficulty in proving this fact is that the maps L(t) are in general non-unitary.
Furthermore since they are generated with postselection, it is unclear how to invert them,
so a priori they might not even form a group. Fortunately, we find new (and somewhat
complicated) postselection gadgets to construct the L−1 operations, thus allowing us to apply
group-theoretic and Lie-theoretic techniques to address this problem.

The rest of the proof follows from standard techniques in complexity. Since one-qubit
gates plus any entangling Hamiltonian form a universal gate set [17, 9], our model can
perform universal quantum computation under postselection.

I Lemma 1.6. If H is capable of creating entanglement from a computational basis state
and H is not X(θ)⊗X(θ) for some θ, then postselected circuits involving H are universal
for BQP.

CCC 2016
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The proof of this statement uses a non-unitary version of the Solovay-Kitaev theorem proven
by Aharonov et al. [4] to show our choice of gate set is irrelevant.

Next, a result of Aaronson [1] tells us that postselecting our circuits further enables us to
solve PP-hard problems. It then follows by the complexity arguments put forth by Bremner,
Jozsa, and Shepherd [10] and Aaronson [2] that a randomized classical algorithm cannot
sample from the probability distributions produced by our circuits unless the polynomial
hierarchy collapses.

This completes the classification for all cases except the case H = X(θ)⊗X(θ). Hard-
ness of sampling from these Hamiltonians was previously shown by Fefferman, Foss-Feig,
and Gorshkov [18] using a construction which embeds permanents directly in the output
distributions of such Hamiltonians. Hardness then follows from the arguments of Aaronson
and Arkhipov [2]. We provide a summary of their hardness result for completeness.

1.3 Relation to prior work
Our work is inspired by Bremner, Jozsa, and Shepherd [32, 10, 30], who showed that
certain computations with commuting gates are hard to simulate classically unless the
polynomial hierarchy collapses. In particular, they show hardness of simulating the gate set
comprised of HZH, (H ⊗H)(controlled-Z)(H ⊗H), and HPH, where P is the π/8-phase
gate. Similarly, Shepherd [31, 30] considers the power of applying quantum Hamiltonians
which are diagonal in the X basis, where the Hamiltonians can be applied only for discrete
amounts of time θ; he describes the values of θ for which the resulting circuits are efficiently
classically simulable or hard to weakly simulate (that is, to sample from the output probability
distribution with a classical computer). Our work differs from these in several ways. First,
We consider Hamiltonians rather than gates, and show hardness of generic or average-case
commuting Hamiltonians, rather than showing hardness for worst-case commuting operations.
Furthermore, we fully classify the computational complexity of all commuting Hamiltonians,
and prove a dichotomy between hardness and classical simulability.

The hardness results we obtain in this paper (as well as those in [10, 31, 30]) are based on
the difficulty of sampling the output probability distribution on all n output qubits. A number
of other works have considered the power of computations with commuting Hamiltonians,
where one only considers the output distribution on a small number of output qubits. For
example, Bremner, Jozsa and Shepherd [10] showed that computing the marginal probability
distributions on O(log(n)) qubits of their model is in P. Ni and Van den Nest [29] showed
that this holds for arbitrary 2-local commuting Hamiltonians, but also showed there exist
3-local commuting Hamiltonians for which this task is hard. Hence the problem of strongly
simulating the output distributions (that is, being able to compute the probability of any
event) of arbitrary k-local Hamiltonians is hard for k ≥ 3. Along a similar line of thought,
Takahashi et al. [35] showed that there is a system of 5-local commuting Hamiltonians for
which weakly simulating the output on O(log(n)) bits is hard.

Additionally, a number of other authors have also considered “weak" models of quantum
computation which can sample from difficult probability distributions. Some examples
include the one clean qubit model [25, 28], the boson sampling model [2], the quantum fourier
sampling model [19], constant depth quantum circuits [37], and temporally unstructured
quantum computing [10]. Like many of these models (e.g. [28, 10]), we prove it is difficult
for a classical computer to sample from the distribution output by the quantum device with
multiplicative error on every output probability. For some of these models, the authors
prove stronger hardness results for sampling the output distribution with additive error (as
measured in trace distance) [2, 11, 19], but at the cost of making additional complexity-
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theoretic assumptions which are not as widely accepted. In comparison with boson sampling,
one clean qubit sampling, and quantum fourier sampling, our model has the advantage of
possibly having lower fault-tolerance thresholds for implementation [5].

Finally, other works have addressed the classification of universal two-qubit gates and
Hamiltonians. Childs, Leung, Mančinska, and Ozols [13] classified the set of two-qubit
Hamiltonians which give rise to SU(4) when acting on two qubits, and are hence universal.
Lloyd [27] and others [16, 40, 13, 7] have shown that a Haar-random two-qubit gate is
universal with probability 1. Our work differs from these in that our Hamiltonians only
become universal under postselection. Additionally, Cubitt and Montanaro [14] previously
classified the complexity of two-qubit Hamiltonians in the Local Hamiltonian Problem setting.
Specifically, given a two qubit Hamiltonian H, they classify the computational complexity
of determining the ground state energy of Hamiltonians of the form

∑
ij cijHij for real

coefficients cij . This is incomparable with our classification, since we are studying the power
of the Hamiltonian dynamics (in which the system is not in the ground state), rather than
the complexity of their ground states.

2 Preliminaries and statement of Main Theorem

A two-qubit Hamiltonian H is a 4× 4 Hermitian matrix. Let T denote the SWAP gate which
exchanges two qubits, i.e.

T =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


so T maps the state a|00〉+ b|01〉+ c|10〉+ d|11〉 to the state a|00〉+ c|01〉+ b|10〉+ d|11〉.
Given H, we assume that one can apply either H or THT to any pair of qubits. In other
words, we can apply the Hamiltonian oriented from qubit i to qubit j, or from qubit j to qubit
i. We will use Hij to denote the Hamiltonian applied from qubit i to qubit j. Additionally,
we will assume we can apply −H as well, i.e., we can perform the inverse Hamiltonian.2

Suppose we are given some input string x ∈ {0, 1}n, and we want to define a distribution
on n′ = poly(n) bits which we can efficiently sample from using H. Suppose we initialize a
system of n′ qubits in a computational basis state |y〉 for y ∈ {0, 1}n′ , apply each Hamiltonian
Hij for time tij ∈ R, and then measure all the qubits in the computational basis. (Here the
times tij and the string y may depend on x.) This will induce some probability distribution
Dx over bit strings of length n′ on the output bits. Intuitively, these are the sorts of
distributions one can efficiently sample from using H, using circuits which start and end in
the computational basis.

However, this definition does not quite suffice to capture a realistic model of computation,
because we have not specified how the initial state y and the times tij are chosen. To
fix this, we will require that one could use a classical computer to efficiently calculate
the experimental setup for each n. In other words, we will require that there exists a
polynomial-time algorithm which, given x ∈ {0, 1}∗, computes the values of y and tij used

2 If we had only assumed access to H and positive time evolution, we could always approximate the
action of −H; this follows from compactness of the unitary group and was shown e.g. in Appendix A
of [13]. However, here we are assuming we have exact access to −H; this will be useful when arguing
about post-selected versions of these circuits.
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in the experiment. Furthermore, we will require that the times tij can be represented with
polynomially many bits, and that they are all bounded in magnitude by a polynomial in
n. This ensures that as the size of the system grows, the amount of time one needs to run
the Hamiltonian does not grow too quickly. In complexity theory this is called a uniformity
condition. This requirement ensures that any advantage over classical computation arising
from this model comes from the power of the quantum computation performed, not the
computation of the experimental setup.

This is stated more formally as follows:

I Definition 2.1. Let samp-IQP(H) denote those families of probability distributions {Dx}
for which there exists a classical poly-time algorithm A which, given an input x ∈ {0, 1}n,
outputs the specifications for a quantum circuit using H whose output distribution family is
{Dx}. In particular, A specifies a number of qubits n′ = poly(n), a string y ∈ {0, 1}n′ and
and a series of times tij ∈ R, such that running a quantum circuit starting in the state |y〉,
applying the operator eitijHij for each (i, j), and then measuring in the computational basis
will yield a sample from Dx. Each tij must be specifiable with poly(n) bits and be bounded
in magnitude by a polynomial in n.

In short, the class samp-IQP(H) captures the set of probability distributions one can
efficiently sample from using H. In our work, we will show that a classical randomized
algorithm cannot sample from this same set of distributions. More precisely, we say that a
classical randomized algorithm “weakly simulates" a quantum circuit if its output distribution
is close to the output distribution of the quantum circuit. To derive our hardness result, we
will consider classical circuits which produce every output with approximately the correct
probability, up to multiplicative error:

I Definition 2.2. A BPP (bounded-error probabilistic polynomial time) machine M weakly
simulates a family of probability distributions {Px : x ∈ {0, 1}∗}, where Px is a distribution
over {0, 1}|x|, with multiplicative error c ≥ 1 if, for all y ∈ {0, 1}n,

1
c

Pr[M(x) outputs y] ≤ P (x) ≤ cPr[M outputs y].

We can now more precisely state our Main theorem: that our commuting circuits cannot
be weakly simulated unless the polynomial hierarchy PH collapses:

I Theorem 2.3 (Main Theorem). If H is capable of generating entanglement from the compu-
tational basis, then BPP machines cannot weakly simulate samp-IQP(H) with multiplicative
error c <

√
2 unless PH collapses to the third level.

In other words, there is a dichotomy: either computations which H are efficiently
classically simulable, or else they cannot be efficiently simulated unless the polynomial
hierarchy collapses. As the non-collapse of the polynomial hierarchy is a widely accepted
conjecture in computational complexity, this is strong evidence that samp-IQP(H) circuits
are not efficiently classically simulable.

2.1 Complexity Preliminaries
Before proceeding to a proof of the Main Theorem, we will introduce some of the complexity-
theoretic preliminaries necessary to understand our proof. We assume the reader is familiar
with the standard complexity classes such as P, BPP, and NP, as well as oracle notation; for
background we refer the reader to Arora and Barak [6] for details. Those readers already
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familiar with the complexity theoretic techniques of Bremner, Jozsa, and Shepherd [10] and
Aaronson and Arkhipov [2] may wish to skip to the proof of the Main Theorem.

In order to reason about the computational complexity of samp-IQP(H) distributions,
we will need to introduce the idea of postselected circuits, which we will relate to classical
complexity classes such as PP. A postselected quantum circuit is a circuit where one specifies
the value of some measurement results ahead of time, and discards all runs of the experiment
which do not obtain those measurement outcomes. This is not something one can realistically
do in a laboratory setting, because the measurement outcomes you specify may occur
extremely infrequently—in fact, they may be exponentially unlikely. However, postselection
can help you examine the conditional probabilities found in the output distribution of your
circuit. In particular, if you can show that those conditional probabilities can encode the
answers to very difficult computational problems, then this can provide evidence against the
ability to classically simulate such circuits. Therefore, we will now define what it means for a
set of probability distributions to decide a problem under postselection. The basic idea is that
if some of the conditional probabilities of the system encode the answer to a problem, then we
say that problem can be decided by postselected versions of these probability distributions.
We define this more formally below:

I Definition 2.4. Let PostIQP(H) be the set of languages L ⊆ {0, 1}∗ for which there exists
a family of samp-IQP(H) circuits {Dx} and a classical poly-time algorithm which, given an
input length n, outputs a subset B of qubits and a string z ∈ {0, 1}|B| such that

If x ∈ L, then Pr[ Dx outputs 1 on its first bit | bits B take value z ] ≥ 2/3.
If x /∈ L, then Pr[ Dx outputs 1 on its first bit | bits B take value z ] ≤ 1/3.

In other words, there exists a poly-time algorithm which outputs an experimental setup
and a postselection scheme such that the conditional probabilities of Dx encode the answer
to the problem. In general, the choice of constants 1/3 and 2/3 in the above definition might
matter. For instance, when PostIQP(H) is not capable of universal classical computation, it is
unclear how to take the majority vote of many repetitions to amplify the success probability.
However, we only consider the class PostIQP(H) in cases where PostIQP(H) can perform
universal classical computation, and thus the choice of constants 1/3 and 2/3 is arbitrary.

One can likewise define the classes PostBQP and PostBPP3 which capture the power of
postselected quantum computation and postselected randomized computation, respectively.

Finally, we introduce the polynomial hierarchy. The ith level of the polynomial hierarchy,
denoted ∆i, is defined as follows: let ∆1 = P, let ∆2 = PNP, let ∆3 = PNPNP , let ∆4 = PNPNPNP

,
and so on. Here, we write AB to refer to computations that can be performed with an
A machine which has been augmented with the ability to solve problems in B in a single
timestep. The polynomial hierarchy, denoted PH, is defined as PH =

⋃
i∈N ∆i. It is widely

conjectured that each level of the polynomial hierarchy is distinct; in other words, ∆i ( ∆i+1
for all i ∈ N. This can be seen as a generalization of the conjecture that P 6= NP.

One of the main technical tools we will use in our proof is the following lemma, which
was first shown by Bremner, Jozsa, and Shepherd [10], but which we will make extensive use
of in our paper:

I Lemma 2.5. Suppose that PostBQP ⊆ PostIQP(H) for some H. Then BPP machines
cannot weakly simulate samp-IQP(H) with multiplicative error c <

√
2 unless PH collapses to

the third level.

3 PostBPP is more commonly known as BPPpath.
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In other words, if postselected commuting Hamiltonian circuits are capable of performing
(postselected) universal quantum computation, then they cannot be weakly simulated by a
classical computer under plausible complexity assumptions. The fundamental reason this is
true is that the class PostBQP is substantially more powerful than the class PostBPP. In
particular, Aaronson [1] showed that PostBQP = PP. Here PP (which stands for Probabilistic
Polynomial-time) is the set of languages L decidable by a poly-time randomized algorithm
M , such that

If x ∈ L, then Pr[M(x) accepts] > 1/2;
otherwise, Pr[M(x) accepts] ≤ 1/2.

In other words, the class PP represents the class of problems solvable by randomized
algorithms, where the probability of acceptance of “yes" and “no" instances is different, but
may only differ by an exponentially small amount4. A famous result in complexity, known
as Toda’s Theorem [38], states that PH ⊆ PPP. In other words, the class PP is nearly as
powerful as the entire polynomial hierarchy.

On the other hand, the class PostBPP is far weaker; it lies in the third level of the
polynomial hierarchy. So if one assumes that PH does not collapse to the third level, then
PostBPP 6= PostBQP; i.e. PostBQP is a stronger complexity class than PostBPP.

From this, we can now state why the inclusion PostBQP ⊆ PostIQP(H) implies there
cannot exist an algorithm to simulate PostIQP(H) circuits. Suppose there were a BPP
algorithm to weakly simulate such circuits. Then, by postselecting this BPP algorithm, we
could solve a PostBQP-hard problem in PostBPP, which would imply the collapse of the
polynomial hierarchy. A more formal statement of this proof is given below:

Proof of Lemma 2.5. The proof of this corollary is given in [10] Theorem 2 and Corollary
1, but we provide a summary for completeness. Suppose that a BPP machine M can weakly
simulate samp-IQP(H) circuits to multiplicative error c <

√
2. Then for any individual

output string x, we have 1
c Pr[M outputs x] ≤ P (x) ≤ cPr[M outputs x]. Since PostBQP ⊆

PostIQP(H), and PostBQP = PP [1], this can be shown to imply PP ⊆ PostBPP. But
PostBPP ⊆ PostBQP = PP, so this implies PostBPP = PP. Hence by Toda’s theorem [38],
we have PH ⊆ PPP = PPostBPP ⊆ ∆3, where ∆3 is the third level of the polynomial hierarchy.
Hence PH = ∆3 as claimed. J

Note that in certain cases, Fujii et al. [20] showed that this hardness of simulation result
could be improved to imply the collapse of PH to the second level rather than the third, using
a different complexity-theoretic argument involving the class NQP. However, their argument
is gate-set dependent, so does not apply to our model for arbitrary commuting Hamiltonians.

We now proceed to a proof of the Main Theorem.

3 Proof of Main Theorem

The basic idea is to use postselection gadgets to show that postselected samp-IQP(H)
circuits are capable of performing universal quantum computation. Hence, adding further
postselections allows one to decide any language in PostBQP. By Lemma 2.5, this proves
hardness of weakly simulating such circuits unless PH collapses.

4 Note the difference is probabilities is always at least 2−poly(n), because a PP algorithm can only make
polynomially many coin flips.
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Proof of Theorem 2.3. Suppose we have a commuting two-qubit Hamiltonian H. The first
step in our proof is to characterize the structure of such H. It is clear that if H is diagonal
under a local change of basis, i.e. H = (U ⊗ U)D(U† ⊗ U†) for some one-qubit U ∈ SU(2)
and diagonal matrix D, then H is commuting. However, it is possible a priori that there
exist commuting Hamiltonians which are not of this form. If T is the gate that swaps two
qubits, then the fact that H is commuting implies that H ⊗ I, (THT ) ⊗ I, I ⊗ H, and
I⊗ (THT ) are all simultaneously diagonalizable. However, it might be that this simultaneous
diagonalization can only happen under a non-local change of basis. Fortunately, it turns out
this is not possible - any commuting Hamiltonian must be locally diagonalizable. This was
first shown by Cubitt and Montanaro [14].

I Claim 3.1 ([14, Appendix B, Lemma 33]). If H is a 2-local commuting Hamiltonian, then
H = (U ⊗ U)D(U† ⊗ U†) for some one-qubit U ∈ SU(2) and diagonal matrix D.

We provide a proof of Claim 3.1 in Appendix A, which uses expansion in the Pauli basis.
One can also prove this fact using linear algebra, but the proof becomes complicated in the
case of degenerate eigenvalues. We thank Jacob Taylor for pointing us to this simplified
proof, and Ashley Montanaro for pointing us to the proof in reference [14].

By Claim 3.1, we know that H = (U ⊗ U) diag(a, b, c, d)(U† ⊗ U†) for some one-qubit
unitary U =

(
α −β∗
β α∗

)
and some real parameters a, b, c, d. The trace of H contributes an

irrelevant global phase to the unitary operator it generates, so without loss of generality we
can assume H is traceless, i.e., a+ b+ c+ d = 0.

Note that if a = d = −1, b = c = 1, and |α| = |β|, then we have that H = X(θ)⊗X(θ),
where eiθ = α/β. As mentioned previously, these Hamiltonians are hard to simulate by
an independent hardness result of Fefferman et al. [18], so in the rest of our proof, we will
assume we are not in the case a = d = −1, b = c = 1 and |α| = |β|. For completeness we will
provide a summary of their work at the end of this proof.

We now consider the conditions under which computations withH are efficiently classically
simulable. First, if H is diagonal in the computational basis, then it is obviously classically
simulable, because it cannot generate entanglement from the computational basis. This
corresponds to the case that α = 0 or β = 0. So we can assume for the result of the proof
that α 6= 0 and β 6= 0.

Another way that H can fail to generate entanglement from the computational basis is if
b+ c = a+ d. Since we are assuming the Hamiltonian is traceless this is equivalent to the
condition b+ c = 0. Indeed if H satisfies b+ c = 0, and H is traceless so a+ d = 0, then it is
easy to check that eiHt is nonentangling for all t ∈ R. So we can assume in the rest of the
proof that b+ c 6= 0.

We now show that for all remaining H, we have PostBQP ⊆ PostIQP(H). To do so, we
break into two cases. Either b = c, so H = THT and the Hamiltonian is identical when
applied from qubit 1 to 2 vs. from 2 to 1, or b 6= c so H 6= THT . For clarity of presentation,
we will prove our main theorem in the case b = c, as this proof uses simpler notation. An
analogous proof holds for the case b 6= c, which we provide in Appendix D.

Now in the case b = c, consider the rescaled Hamiltonian H ′ = H/b. Since b+ c 6= 0 and
b = c this Hamiltonian is well-defined, and we have H ′ = (U ⊗ U) diag(a′, 1, 1, d′)(U† ⊗ U†)
for some real parameters a′ and d′ which obey a′ + d′ = −2. Now consider the two-qubit
unitary V (t) we obtain from running H ′ for time t ∈ R

V (t) = eitH
′

= (U⊗2)D(t)(U†⊗2),
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where D(t) , diag(eia′t, eit, eit, eid′t). Here we have used the fact that if U is an arbitrary
unitary, then eUH′U† = UeH

′
U†.

A samp-IQP(H) circuit is specified by times tij for all unordered5 pairs of qubits (i, j), as
well as an initial basis state |y〉 for y ∈ {0, 1}poly(n). The circuit consists of applying V (tij)
to each pair of qubits (i, j) to |y〉, and then measuring in the computational basis. This can
be easily seen to be equivalent to the following circuit: Start in the state |y〉, apply U to
every qubit, then apply D(tij) to each pair of qubits; finally, apply U† to every qubit and
measure in the computational basis. (This is true because all factors of U and U† in the
circuit cancel except those at the beginning and end).

We will now show how to make post-selected gates of this form perform universal quantum
computing. The basic idea is that we already have a two-qubit entangling Hamiltonian at
our disposal. Therefore, if we could show how to perform arbitrary one-qubit gates using
post-selection, this would form a universal gate set for quantum computing by the result
of Dodd et al. [17] or Bremner et al. [9]. Following the method of Bremner, Jozsa, and
Shepherd [10], we consider the following post-selection gadget, denoted L(t), which performs
an operation on a single qubit state |ψ〉:

|ψ〉
D(t)

U† 〈0|

|0〉 U |ψ′〉

The postselection is denoted in the circuit by 〈0|. Note that this gadget preserves the
property that every line begins with U |0〉, and ends with U† and a measurement. Hence, if
we could use these postselection gadgets to perform arbitrary single-qubit gates, then we
could perform universal quantum computing under postselection as follows: Given a target
quantum circuit to simulate, compile the circuit out of gates of the form D(t) and single-qubit
gates. Additionally, add a UU† (which is the identity) at the beginning and end of every line,
so that each line starts with a U and ends with a U†. Now this circuit consists of applying
a column of U ’s, then a series of diagonal gates D(t) and one-qubit gates, followed by a
column of U†s. This almost has the form of a samp-IQP(H) circuit, with the exception of
the one-qubit gates (note that these include both the gates U† in the second column and
the gates U in the second to last column). Now for each one-qubit gate g, replace it with
its implementation using postselection gadgets L(t). After this transformation, each line
begins with a U , ends with a U†, and contains only diagonal gates D(t) in the interior of
the circuit. However, now we’ve additionally specified some postselection bits, so we have
created a PostIQP(H) circuit which simulates universal quantum computing.

Let us examine what transformation L(t) actually performs on the qubits involved. The
gadget performs some linear transformation on the input state |ψ〉. In particular, it acts on
|ψ〉 by

L(t) = 1
|α||β|

√
−2i sin(2t)

(
|α|2eia′t αβ∗eit

α∗βeit |β|2eid′t)

)
.

This is a non-unitary transformation, so it does not preserve the norms of vectors. Since we
only care about how L(t) behaves on the projective Hilbert space of quantum states, we can
choose the overall normalization so that L(t) ∈ SL(2,C). Note that this operator is well-
defined only if the denominator above is non-zero, so we will require that t ∈ (0, π) ∪ (π, 2π).

5 This is because we are considering the case b = c i.e. H = THT .
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In addition to being able to perform the transformation L(t) as t ranges over t ∈
(0, π)∪(π, 2π), we can also perform products of such transformations. In fact, we can perform
any operation in the set

S , 〈{L(t) : t ∈ (0, π) ∪ (π, 2π)}〉.

Here the angled brackets 〈A〉 denote the set of all matrices obtained by finite products of
elements of A. The bar above 〈A〉 means that we take the closure of this set in SL(2,C); in
other words, we include all matrices that one can obtain by taking limits of sequences of
finite products of A, so long as the limit point belongs to SL(2,C).

If the matrices L(t) were in a compact space such as SU(2), then it would immediately
follow that S contains inverses of all its elements.6 Therefore we would know that S is a
group, and we could apply tools from group theory to categorize S. However, our matrices are
in the non-compact space SL(2,C). Therefore it is not clear whether S is closed under taking
inverses, so S might not be a group! Furthermore, since L is obtained under post-selection,
the assumption that we can perform the inverse of H does not imply we can perform L−1.

To fix this problem, we find additional gadgets which allow us to construct L−1 by adding
additional postselections to our circuit. In particular, we will show that for each L(t), there
exists a postselection gadget of finite size which performs L(t)−1 exactly. An important
restriction on this construction is that this inverse must be efficiently computable. Specifically,
for each L(t) the size of the postselection gadget required to invert L(t) is of constant size.
Additionally, the construction of the postselection gadget will in general contain several time
parameters which one needs to set in order to obtain L(t)−1. We also require that we can
set these times so that we obtain L−1 to accuracy ε in polylog(kL1/ε) time, where kL is a
constant which depends on L(t) only. Furthermore, the amount of time needed to run the
Hamiltonians in the inverse gadget are bounded above by a polynomial. For convenience we
will refer to these properties as “the construction is efficiently computable."

At first glance it might sound like this definition of “efficiently computable" is too
weak, because the inverses of arbitrary L matrices might require large postselection gadgets.
However, later in our construction we will use the fact that for any fixed Hamiltonian H,
we will only need to invert a finite set of L matrices. Hence for fixed H, the size of the
postselection gadgets which appear in our circuit will be upper bounded by a constant
depending on H only, but not on the size of the problem we are solving under postselection.
Furthermore, for fixed H, we can compute the times in the inversion gadgets to invert the
relevant L matrices to exponential accuracy in polynomial time. This ability to invert the L
matrices to exponential precision will later be crucial for our hardness of sampling result.

Furthermore, note that in the case that H 6= THT , the construction of these gadgets can
be made substantially simpler. In particular, the gadgets to construct L−1(t) are of size 4 for
any t, and the times used in running the Hamiltonians are trivially efficiently computable to
polynomial digits of accuracy. From a practical experimental perspective these circuits would
be easier to construct, and since H 6= THT is the generic case for commuting Hamiltonians,
would be applicable for almost all commuting Hamiltonians. We include this construction in
Appendix D.

6 To see this, take an element s ∈ S. If s has finite order, than its inverse is clearly in S. If s has infinite
order, consider the sequence 1, s, s2, . . .. Since the matrices are in a compact space T , the sequence
of powers must have a convergent subsequence, i.e. there must be positive n1, n2, n3 . . . such that
n1 < n2 < . . . and sn1 , sn2 , . . . approach some element t ∈ T . Therefore the sequence sn2−n1 , sn3−n2 , . . .
must approach the identity, and the sequence sn2−n1−1, sn3−n2−1, . . . must approach s−1.
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I Claim 3.2. For any given L(t), where t ∈ (0, π)∪ (π, 2π), it is possible to construct L(t)−1

by introducing a constant number of postselections and a constant number of ancillas into
the circuit. Furthermore, this construction is efficiently computable in the manner described
above.

The proof of Claim 3.2 can be found in Appendix B, and is somewhat involved.
We now redefine S so that its base set contains these inverses:

S , 〈{L(t) : t ∈ (0, π) ∪ (π, 2π)} ∪ {L(t)−1 : t ∈ (0, π) ∪ (π, 2π)}〉.

Using this definition, we can now show using standard techniques that S is a Lie group—this
is essentially a consequence of Cartan’s closed subgroup theorem [12] and the fact that
inversion is a continuous operation in the matrix entries on SL(2,C). Once we know that S
has the structure of a Lie group, we can apply the theory of Lie algebras to identify what set
of matrices are in S. In particular, we can show that S generates all of SL(2,C).

I Claim 3.3. S = SL(2,C).

The proof of this claim is a tedious but straightforward calculation using Lie algebras and
properties of the exponential map on SL(2,C). The proof uses the fact that we are not
in one of the cases excluded by our theorem (i.e. H does generate entanglement and is
not X(θ) ⊗X(θ) for some θ) - in these cases one does not find that S = SL(2,C) as one
would expect. In certain special cases, the gadgets L(t) alone do not generate SL(2,C),
specifically when a′ = ±1 or a′ = −3. In these cases, we show that one can add additional
postselection gadgets, which are closed under taking inverses, which boost the power of the
L(t) transformations to cover all of SL(2,C). This simply reflects that for very particular
Hamiltonians, our L matrices need additional help to span all 1-qubit operations. We include
the proof in Appendix C.

Now that we have shown density in SL(2,C), as well as the fact that we can produce
inverses of the gates in our generating set, our proof of yielding PP under postselection
follows almost immediately. In particular, we will invoke the following theorem by Aharanov,
Arad, Eban and Landau [4]:

I Theorem 3.4 ([4, Theorem 7.6], adapted to our case). There exists a constant ε0 > 0
such that, for any G = {g1 . . . gk} ⊂ SL(2,C) which is an ε0-net over B, where B is the set
of operations in SL(2,C) which are 2.1-far from the identity (which in particular contains
SU(2)), then for any unitary U ∈ SU(2,C), there is an algorithm to find an ε-approximation
to U using polylog(1/ε) elements of G and their inverses which runs in polylog(1/ε) time.

In the above theorem, when we say an operation is “ε-far" from another, we are referring to
the operator norm.

From this, we can immediately prove the main theorem. Suppose we wish to compute
a language L0 ∈ PP, and we have a commuting Hamiltonian H of the form promised in
Theorem 2.3. By Aaronson’s result that PP ⊆ PostBQP [1], there is an efficiently computable
postselected quantum circuit C composed of Hadamard and Toffoli gates which computes
L. Additionally, by Claim 3.3 there exists a finite set G of products of L’s and L−1’s which
form an ε0-net over B (which can be computed in finite time). Hence by Theorem 3.4 there
is a poly-time algorithm which expresses single-qubit gates as products of elements of G
to exponential accuracy. Likewise, since H is entangling, we can generate some entangling
two-qubit gate g, as well as its inverse g−1 (by applying −H). Since g and single-qubit gates
are universal [9], by the usual Solovay–Kitaev theorem [15], we can express the circuit C in
terms of g, g−1, and single-qubit gates to exponential accuracy with polynomial overhead.
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Combining these, we can express the circuit C as a polynomial sized product of g’s, g−1’s,
L’s, and L−1’s , which we can express as a PostIQP(H) circuit using the gadgets described
previously. Hence this PostIQP(H) circuit decides the language L0.

Note that in this construction, it is crucial that we only ever need to invert a finite number
of L(t) matrices. This ensures that the size of the postselection gadgets involved to construct
the L−1 operations are upper bounded by a constant depending on the choice of H only.
Additionally, it is important that we can construct the L−1 matrices exponential accuracy.
This is crucial because in order to perform PostBQP under postselection, one needs to be able
to simulate Aaronson’s algorithm to exponential accuracy 7. Fortunately our construction
allows us to simulate the algorithm to high accuracy, and hence these Hamiltonians can
be used to sample from probability distributions which are not possible to simulate with a
classical computer unless the polynomial hierarchy collapses.

This completes the proof in all cases except the exceptional case H = X(θ)⊗X(θ). This
has a separate hardness of sampling result which was shown by Fefferman, Foss-Feig, and
Gorshkov [18]. In particular, they showed the following:

I Theorem 3.5 (Fefferman et al. [18]). If H = X(θ) ⊗ X(θ) for some θ, then a BPP
machine cannot weakly simulate samp-IQP(H)with any constant multiplicative error unless
PH collapses to the third level.

Their proof makes use of that fact that using such Hamiltonians, for any matrix A ∈
{0,±1}n, one can perform a unitary U on a system of O(n) qubits such that 〈1n|U |0n〉 =
k (Perm(A) + ε), where k is independent of A and exponentially small in n, Perm(A) denotes
the permanent of A, and ε is a term with norm o(2−n). Note that Perm(A)2 is #P-hard
to compute with any constant multiplicative error [2]. Therefore Theorem 3.5 immediately
follows by the techniques of Aaronson and Arkhipov [2] - because if there were an efficient
classical simulation of such circuits, then using approximate counting [34], one could approxi-
mate Perm(A)2 to multiplicative error

(
1 + 1

poly(n)

)
in BPPNP. But BPPNP ⊆ ∆3, so again

by Toda’s theorem [38] this implies the collapse of PH to the third level.
This completes the last remaining case, and hence completes the proof. J

4 Open Problems

Our results leave a number of open problems.
1. An interesting open problem is to classify all Hamiltonians in terms of their computa-

tional power under this model. Childs et al. [13] previously classified which two-qubit
Hamiltonians can perform any unitary on two qubits. However, this does not classify
which Hamiltonians are computationally universal for two reasons. First, as Childs et
al. point out in their paper, it is possible that H fails to generate all unitaries on two
qubits, but does generate all unitaries on three qubits (i.e. adding ancillas helps one
attain universality). It remains open to classify which two-qubit H generate all unitaries
on sufficiently large systems. Second, even if a Hamiltonian H does not generate all
unitaries, it is still possible that H is computationally universal. For example, H could be
universal on an encoded subspace. Classifying which Hamiltonians are universal under an
encoding seems to be a challenging task. We conjecture that the power of any two-qubit
Hamiltonian obeys a dichotomy: either H is efficiently classicaly simulable in this model,

7 This is because the algorithm postselects on an exponentially unlikely event, so to maintain polynomial
accuracy after postselection we require exponential accuracy prior to postselection.
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or it is universal under postselection and hence cannot be weakly simulated unless PH
collapses. This is true of all known two-qubit Hamiltonians, and our classification proves
this result rigorously in the case of commuting Hamiltonians.

2. In this paper we considered the power of quantum circuits with commuting Hamiltonians.
A more difficult related problem is classify the power of quantum circuits with commuting
gate sets. The challenge in solving this problem would be to classify when a discrete set
of L’s generates a continuum of gates. There are some sufficient conditions under which
this holds (see e.g. Aharonov et al. [4], Corollary 9.1). However, finding necessary and
sufficient conditions under which a finite set of operators densely generates a continuous
subgroup of SL(2,C) seems very difficult, in part because there is no complete, explicit
classification of discrete subgroups of SL(2,C). Indeed, discrete subgroups of SL(2,C) are
related to the theory of Möbius transformations [8], where they are known as “Kleinian
subgroups," and they are the subject of a deep area of mathematical research.
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A Commuting Hamiltonians are locally diagonalizable

To establish Claim 3.1, we prove the following stronger statement.

I Claim A.1. If H is a two-qubit Hamiltonian and [H⊗I, I⊗H] = 0, then (U⊗U)H(U⊗U)†
is diagonal for some one-qubit unitary U .

This is actually slightly stronger than Lemma 33 of [14], which shows that if [H⊗I, I⊗H] =
[H ⊗ I, I ⊗ THT ] = [THT ⊗ I, I ⊗H] = 0, then H is locally diagonalizable. Here we merely
require that [H ⊗ I, I ⊗H] = 0.

Proof. As a first step we expand H in Pauli basis and let αAB be the coefficient at A⊗B
term for any A,B ∈ {I,X, Y, Z}. Also, for all A ∈ {I,X, Y, Z}, let

~cA := (αXA, αY A, αZA)T and ~rA := (αAX , αAY , αAZ)T . (1)

Given a vector ~v = (vx, vy, vz)T ∈ R3, we adopt a commonly used notation and write ~v · ~σ to
denote the linear combination vxX + vyY + vzZ.

Since (H ⊗ I)(I ⊗H) = (I ⊗H)(H ⊗ I), we know that both products must have the
same expansion in Pauli basis. Let us fix A,B ∈ {I,X, Y, Z} and consider the terms of the
form A⊗ ⊗B in the Pauli expansion of each of the products.

First, for (H ⊗ I)(I ⊗H) we notice that, when restricted to terms of the form A⊗ ⊗B,
its Pauli expansion is given by(

A⊗ (αAII + ~rA · ~σ)⊗ I
)(
I ⊗ (αIBI + ~cB · ~σ)⊗B

)
= (2)

A⊗
(
αAIαIBI + (αAI~cB + αIB~rA) · ~σ + (~rA · ~σ)(~cB · ~σ)

)
⊗B = (3)

A⊗
(
(αAIαIB + ~rA · ~cB)I + (αAI~cB + αIB~rA + i(~rA × ~cB)) · ~σ

)
⊗B, (4)

where we have applied the identity (~v · ~σ)(~w · ~σ) = (~v · ~w)I + i(~v × ~w)~σ in the last step.
Next, we consider the product (I ⊗H)(H ⊗ I) and similarly obtain that, when restricted

to terms of the form A⊗ ⊗B, its the Pauli expansion is given by(
I ⊗ (αIBI + ~cB · ~σ)⊗B

)(
A⊗ (αAII + ~rA · ~σ)⊗ I

)
= (5)

A⊗
(
(αAIαIB + ~cB · ~rA)I + (αAI~cB + αIB~rA + i(~cB × ~rA)) · ~σ

)
⊗B. (6)
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Since the coefficients in the Pauli expansions of (H ⊗ I)(I ⊗H) have to coincide with those
in the expansion of (I ⊗H)(H ⊗ I), we know that the difference between expressions (4)
and (6) equals zero. Considering the middle tensor and canceling some therms gives

(~rA × ~cB) · ~σ = (~cB × ~rA) · ~σ. (7)

Since ~v × ~w = −~w × ~v, we obtain that ~rA × ~cB = 0. This further implies that ~rA and ~cB are
collinear, that is, dim(span{~rA,~cB}) ≤ 1. Since we can choose arbitrary A,B ∈ {I,X, Y, Z},
it must be that all the vectors ~rA and ~cB must lie in the same one-dimensional subspace, i.e.,

dim
(

span
{
~rA,~cB : A,B ∈ {I,X, Y, Z}

})
≤ 1. (8)

Let us now consider a 3× 3 matrix M whose rows and columns are indexed by Pauli matrices
X,Y and Z and its entries are defined via MAB = αAB . Then the vectors ~cA are the columns
ofM and ~rB are its rows. From Equation (8), we see thatM has rank at most one. Moreover,
the row and column spaces of M must coincide as

span
(
{~rX , ~rY , ~rZ}

)
= span

(
{~cX ,~cY ,~cZ}

)
. (9)

These two observations imply that M = ~v~vT for some ~v ∈ R3. So we can express our
Hamiltonian H as

H = αIII ⊗ I + (a~v · ~σ)⊗ I + I ⊗ (b~v · ~σ) + (~v · ~σ)⊗ (~v · ~σ), (10)

where a, b ∈ R are such that ~rI = a~v and ~cI = b~v. If we pick a unitary U that diagonalizes
~v · ~σ, then from Equation (10) we see that U ⊗ U diagonalizes our Hamiltonian H. This
concludes the proof. J

B Inverting L matrices using postselection gadgets

We now prove Claim 3.2.

Proof. We will need two additional gadgets for our construction. First, consider a modifica-
tion of the gadget for L(t), where we start the qubit in the |1〉 state and postselect on the
|1〉 state:

|ψ〉
D(t)

U† 〈1|

|1〉 U |ψ′〉

By a direct calculation, one can show the linear transformation performed on |ψ〉 is given by

M(t) = 1
|α||β|

√
e−2it − e2it

(
|β|2eia′t −αβ∗eit
−α∗βei |α|2eid′t

)
.

This is tantalizingly close to the inverse of L, which is

L(t)−1 = 1
|α||β|

√
e−2it − e2it

(
|β|2eid′t −αβ∗eit
−α∗βeit |α|2eia′t

)
.

The only thing that is off is that the phase of the upper left and bottom right entries
are incorrect. We now break into three cases to describe how to correct the phases in each.
(Recall that d′ = −2− a′ as our without loss of generality our Hamiltonian is traceless).
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Case 1: a′ = d′ = −1. In this case we already have M(t) = L−1(t), so we have found the
inverse.

Case 2: a′ = 1, d′ = −3 OR a′ = −3, d′ = 1. We will prove the case a′ = 1; an
analogous proof holds for a′ = −3.

To correct the phases in M(t), we need to introduce an additional gadget:

|ψ〉
D(t)

|ψ′〉

|0〉 U U† 〈1|

In other words, instead of using the gate in a teleportation-like protocol, we instead use it to
apply phases to |ψ′〉. This gate performs the following transformation on the input state:

N(t) = 1√
(eit − eia′t)(eid′t − eit)

(
eit − eia′t 0

0 eid
′t − eit

)
.

In the case that a′ = 1, this gadget becomes singular, and hence it performs the operation(
0 0
0 1

)
In other words, this gadget postselects the qubit involved on the state |1〉. This holds in
particular for t = π/4. (In fact it holds for any t such that e−3it 6= eit, in which case it
becomes undefined).

By composing N(π/4) with other gadgets, this now empowers us to create gadgets in
which we postselect on |1〉 on lines which do not end in U†. For instance, we can create the
following gadget:

|ψ〉
D(t)

|ψ′〉

|0〉 U 〈1|

Which one can easily check is equivalent to the following circuit, which maintains the property
that every line begins and ends with U and U†.

|ψ〉
D(t)

|ψ′〉

|0〉 U
D(π/4)

U†

|0〉 U U† 〈1|

This is simply composing the gadget with N(π/4). (Here the output of the middle qubit is
an independent sample from measuring the state U†|1〉 in the computational basis).

This gadget performs the following operation on |ψ〉:

P (t) ∝
(
eit 0
0 e−3it

)
∝
(
e2it 0
0 e−2it

)
In other words, the matrix P (t) is a phase gate by phase θ = 2t.

The construction of arbitrary phase gates suffices to correct the diagonal phases of M(t),

because for any matrix
(
a b

c d

)
we have that

(
eiθ/2 0

0 e−iθ/2

)(
a b

c d

)(
eiθ/2 0

0 e−iθ/2

)
=
(
aeiθ b

c de−iθ

)
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Hence by choosing θ = (d′ − a′)t, and multiplying M(t) by this matrix on both sides, we
obtain L−1(t) as desired. Clearly this construction is efficient, i.e. the postselection gadget
is of constant size, and one can efficiently compute the times to run the Hamiltonians in the
gadget to high precision. This completes the proof.

Case 3: a′ 6= ±1,−3. To correct the phases in M(t), we need to consider the same gadget
N(t) which we used in Case 2:

|ψ〉
D(t)

|ψ′〉

|0〉 U U† 〈1|

In other words, instead of using the gate in a teleportation-like protocol, we instead use it to
apply phases to |ψ′〉. This gate performs the following transformation on the input state:

N(t) = 1√
(eit − eia′t)(eid′t − eit)

(
eit − eia′t 0

0 eid
′t − eit

)

Since N is a diagonal matrix, the only physical quantity that matters is the ratio r(t) of its
two entries, which is a complex number given by

r(t) = eit − eia′t

eid′t − eit
.

If r(t) takes on a certain value, then it immediately follows that N(t) = ±
(√

r 0
0
√
r−1

)
,

because of our normalization. Furthermore, if we compose N(s)N(t), then the ratio of the
resulting diagonal matrix is r(s)r(t). Note the ±1 term is an irrelevant global phase, so we
omit it in the further calculations.

We will now show that for any complex phase eiθ, where θ 6= 0, π, there exists a finite set
of times t1, t2, ...tk, s1, s2, ...sk′ such that

N(t1)N(t2)...N(tk)N(s1)N(s2)...N(sk′) =
(
eiθ/2 0

0 e−iθ/2

)
As previously mentioned in Case 2, the construction of such matrices suffices to correct

the diagonal phases of M(t), because for any matrix
(
a b

c d

)
we have that

(
eiθ/2 0

0 e−iθ/2

)(
a b

c d

)(
eiθ/2 0

0 e−iθ/2

)
=
(
aeiθ b

c de−iθ

)
Hence by choosing θ = (d′ − a′)t, and multiplying M(t) by this matrix on both sides, we
obtain L−1(t) as desired and this will complete the proof.

To prove this, we will prove two separate facts. First, we will show that given θ, there

exists a sequence t1, t2, ...tk such that N(t1)N(t2)...N(tk) =
(
ceiθ/2 0

0 1
c e
−iθ/2

)
for some

c ∈ R+. Next, we will show that for any c ∈ R, there exists a sequence s1, s2, ...sk′ of times

such that N(s1)N(s2)...N(sk′) =
(

1/c 0
0 c

)
. Together these imply the claim.

Moreover, we will show this construction is efficiently computable. More specifically,
suppose you want to find invert L. The for each L the size of the postselection gadget
required to invert L is of constant size. Additionally, the amount of computational time
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required to compute the values of ti and si to ensure that we find L−1 to accuracy ε scales as
polylog(kL ∗ 1/ε), where kL is a constant which depends on L. Furthermore, the times ti and
si are upper bounded by a constant which only depends on the value of a′. For convenience
we will refer to these properties as "the construction is efficiently computable."

At first glance it might sound like this definition of “efficiently computable" is too weak,
because the inverses of arbitrary L matrices might require large postselection gadgets, or
might require a long time to compute the values of the ti and si to sufficient accuracy.
However, later in our construction we will use the fact that for any fixed Hamiltonian H,
we will only need to invert a fixed number of L matrices. Hence for fixed H, the size of
the postselection gadgets which appear in our circuit will be upper bounded by a constant
depending on H only, but not on the size of the problem we are solving under postselection.
Furthermore, for fixed H, we can compute the times ti, si required to invert the relevant L
matrices to exponential accuracy in polylog(1/epsilon) time (where a hidden constant kL
depending on L has been absorbed into the big-O notation).

I Claim B.1. For any θ ∈ (0, 2π), there exists a sequence t1, t2, ...tk such that

N(t1)N(t2)...N(tk) =
(
ceiθ/2 0

0 e−uθ/2/c

)
for some c ∈ R+. Furthermore, this construction is computationally efficient.

Proof. To see this, consider the expression for the ratio

r(t) = eit − eia′t

eid′t − eit
= −1− ei(a′−1)t

1− ei(d′−1)t .

Let Phase(c) denote the phase of c modulo 2π. Then by direct calculation we have that

Phase(r(t)) = π + Phase
(

1− ei(a′−1)t

1− ei(−3−a′)t

)
= π + Phase

(
1− ei(a

′−1)t
)
− Phase

(
1− ei(−3−a′)t

)
= π + Phase

(
1− ei(a

′−1)t
)

+ Phase
(

1− ei(3+a′)t
)

=
(
π +

(
(a′ − 1)t

2 mod π

)
+
(

(3 + a′)t
2 mod π

))
mod 2π

= (π + (t′ mod π) + (Rt′ mod π)) mod 2π

Where t′ = (a′ − 1)t/2 and R = (3+a′)
(1−a′) . Since we are in the case that a′ 6= ±1,−3, we are

promised that R is well-defined and R 6= 0, 1. Also note that we cannot have that R = −1
because this would imply 3 = −1, a contradiction.

Suppose R > 0 (an analogous proof holds for R < 0). Then for t′ ∈ [0,min(π, π/R)], we
know that Phase(r(t′)) = π+ (R+ 1)t′, because in this range t′ is sufficiently small such that
both t′ mod π = t′ and Rt′ mod π = Rt′. Hence using t′ in this interval, we can achieve
any phase in (π, π + s) where s = (R + 1) min(π, π/R). For any R 6= 0,−1 this range is
of constant size. Thus by multiplying together 1/s phases in the range (π, π + s), one can
achieve any phase in (0, 2π), as desired.

Note that this construction is manifestly efficient; the ti’s are upper bounded by a constant
min(π, π/R) which is a function of H only, and computing them to polynomially many digits
requires polynomial time, as it just requires simple addition. J
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I Claim B.2. For any c ∈ R+ − {1}, there exists a finite sequence s1, s2, ...sk such that

N(s1)N(s2)...N(sk) =
(

1/c 0
0 c

)
.

Proof. Consider products of matrices of the form N(s)N(−s) for s ∈ R+. Let f(s) =
r(s)r(−s). One can check by direct calculation that

f(s) = 1− cos((1− a′)s)
1− cos((3 + a′)s)

In other words, the product of the ratios is real and positive, hence the resulting matrix

N(s)N(−s) is of the form
(

1/` 0
0 `

)
for some ` ∈ R+. Note since we are in the case

a′ 6= ±1,−3 this ratio is well-defined.
If we redefine s′ = s/(1− a′), and set R = (1− a′)/(3 + a′), then this ratio becomes

1− cos s′

1− cosRs′ .

We know R 6= 0, 1 because we have a′ 6= ±1, 3, and furthermore R 6= −1 as well, since this
would imply 1 = −3, a contradiction.

For clarity of explanation assume R > 0; an analogous proof holds for the case R < 0.
Next we claim that the range of f(s) as s varies over R includes the interval

(min(R−2, R2),max(R−2, R2)).

Since R 6= 1 this is an interval of constant size around 1. To see this, we will break into two
cases.

First, assume R > 1. Consider the value of this function when s′ ∈ (0, π/R). The function
f(s′) in continuous in this range. Additionally lims′→0 f(s′) = 1/R2 by L’Hôpital’s rule, and
lims′→π/R = +∞. Hence the range of f covers (R−2,+∞) = (min(R−2, R2),+∞) by the
mean value theorem.

Next, assume 0 < R < 1. Now consider the value of the function when s′ ∈ (0, π). Again
the function is continuous in this range, and we have lims′→0 f(s′) = 1/R2 by L’Hôpital’s
rule, and lims′→π = 0. Hence the range of f covers (0, R−2) = (0,max(R−2, R2)) by the
mean value theorem.

Hence in either case, by choosing an appropriate value of s′, we can set f(s) to be any
real value in a finite-length interval containing 1. Hence for any target ratio c2 ∈ R+, one
can take a finite product of O(log(c)) values of f(s) such that f(s1)f(s2)...f(sk) = c2. This
implies the claim.

Note that this construction is efficient. First, the times si are upper bounded by
min(π, π/R), which is a constant which depends on the Hamiltonian H only. Second, to
compute each individual time si, one simply needs to solve the problem

1− cos s′

1− cosRs′ = k

For some k ∈ (min(R−2, R2),max(R−2, R2)) and s′ in (0,min(π, π/R)). In the region of s
where the value of this function is between min(R−2, R2) and max(R−2, R2)) , the derivatives
of this function are bounded by a function of R only. Furthermore, the derivatives of these
terms are computable to accuracy ε in time polylog(1/ε) time using the Taylor series for sine
and cosine. Hence Newton’s method can be used to solve this problem, and will achieve
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quadratic convergence, i.e. for each step you run Newton’s method, the error is squared, and
the number of digits of accuracy achieved doubles. Hence one can compute each time ti to
accuracy ε in polylog(1/ε) time as desired. Furthermore, since inverting any particular L
only requires inverting some fixed c ∈ R+ using Claim B.2, an error ε in an individual N(si)
matrices contributes cε error to the operator norm8 of N(s1)...N(sk), and hence cε error to
the operator norm of L−1. Hence this construction is “computationally efficient" for each
fixed L as defined previously. J

This completes the proof in Case 3 and hence the entire proof. J

C Showing density in SL(2,C)

We now prove Claim 3.3.

Proof of Claim 3.3. To show that S = SL(2,C), we will first show that S is a group, and
then show S is a Lie group.

I Claim C.1. S is a group.

Proof. Clearly, if we only took finite products of these elements, the resulting set of matrices
would be a group, because we have the inverses of every element in the generating set. So
what we need to show is that taking the closure of this set of matrices still yields a group. To
see this, suppose that some element s ∈ S ⊆ SL(2,C) is the limit of a sequence L1, L2, . . .

where each Li is a finite product of element of the form L(D(t1, t2)), and limi→∞ Li = s.
Now consider the sequence L−1

1 , L−1
2 , . . .. We claim that limi→∞ L−1

i = s−1. To see this,
simply note that for a 2× 2 matrix

(
a b
c d

)
∈ SL(2,C), its inverse is given by

(
d −b
−c a

)
. Since

the limit point s exists in SL(2,C), the limit of each matrix entry of the Li’s must converge
as well to the entries of s. Hence the entries of the sequence L−1

i converges to the entries of
s−1. J

Note that it is critical that we’ve taken the closure in SL(2,C); if we took the closure in the
set of 2× 2 complex matrices, this would not necessarily be true.

We have now established that S is a group. Furthermore, S is a closed subgroup of
SL(2,C) by construction, and SL(2,C) is a Lie group. We now invoke a well-known theorem
from Lie theory.

I Theorem C.2 (Cartan’s Theorem [12] or the Closed Subgroup Theorem). Any closed subgroup
of a Lie group is a Lie group.

I Corollary C.3. S is a Lie group.

Now that we know S is a Lie group, we can use facts from Lie theory to show S = SL(2,C).
We will summarize the basics here, but a more complete treatment can be found in e.g. [21]
or a more advanced textbook on Lie groups.

A Lie group is a continuous manifold which is also a group, for which the group operations
are smooth. In this work we will only consider matrix groups, i.e. continuous groups of
complex matrices. For any Lie group G, one can define the Lie algebra of G, denoted Lie(G),
to be the tangent space to the group G at the identity. More concretely, suppose that you

8 This is because for non-unitary matrices, the norm of the singular values are not one. Hence when
considering the product AB, where λmax is the largest singular value of A, an ε error in B will induce
an λmaxε error in AB.
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have a smooth path γ(t) : R → G ⊆ GL(n,C) in G, such that γ(0) = I. Then the matrix
∂
∂tγ(t)

∣∣∣
t=0

belongs to the tangent space of G at the identity. One can show that Lie(G) obeys
the following properties [21]:
1. g is a real vector space, i.e. g1, g2 ∈ g⇒ ag2 + bg2 ∈ g for any a, b ∈ R.
2. g is closed under commutators, i.e. g1, g2 ∈ g⇒ [g1, g2] , g1g2−g2g1 ∈ g for any a, b ∈ R.
3. Let exp(A) = I+A+ A2

2 + A3

6 + . . .+ An

n! + . . .. Then we have that for all g ∈ g, exp(g) ∈ G.
In other words, the function exp maps from the Lie algebra into the Lie group.

4. g is closed under taking commutators with the group G. That is, for any G1 ∈ G and
g ∈ g, we have G1gG

−1
1 ∈ g.

To show that S = SL(2,C), we will consider g , Lie(S). We will then show that
g = sl(2,C), which is the Lie algebra of SL(2,C), which consists of all traceless two by two
complex matrices. By property 3, this implies that exp(sl(2,C)) ⊆ S. From this, we will
leverage the following fact:

I Claim C.4. exp(sl(2,C)) is dense in SL(2,C).

Proof. It is well known [21] that exp(sl(2,C)) contains all matrices in SL(2,C) except
matrices A for which Tr(A) = −2 and A 6= −I. This implies the claim. J

Hence to prove Claim 3.3, it suffices to prove the following claim:

I Claim C.5. g , Lie(S) spans sl(2,C), i.e. all 2× 2 traceless matrices.

Proof. Consider elements of the form

M(t, s) , L(t)L(s)−1 .

As t, s vary over (0, π) ∪ (π, 2π), these form continuous paths within S. In particular, at the
point where s = t, this path passes through the identity. Now consider

g(v) , ∂

∂t
[M(t, s)]

∣∣∣
s=t=v

.

These are tangent vectors to paths in S, evaluated as they pass through the identity. Hence
we have that g(v) ∈ g for all v ∈ (0, π) ∪ (π, 2π). By direct calculation, one can show that

g(v) = − 1
2 sin(2v)

(
(a′ + 1)e−2iv α

β (1− a′)ei(1+a′)v

β
α (3 + a′)ei(−1−a′)v −(a′ + 1)e−2iv

)

where we have simplified using the fact that d′ = −2− a′.
We will now break into cases to show that these matrices span the entire Lie algebra. We

begin with the generic case and then give the special cases. In the special cases, we will also
add additional postselection gadgets to our model in order to get single-qubit transformations
which span all traceless matrices. The gadgets introduced are inherently closed under taking
inverses. So this simply reflects that for very particular Hamiltonians, our L matrices need
additional help to span all 1-qubit operations.
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Case 1: a′ 6= ±1,−3. In this case all of the entries of g(v) are non-zero.

g(v) = − 1
2 sin(2v)

(
(a′ + 1)e−2iv α

β (1− a′)ei(1+a′)v

β
α (3 + a′)ei(−1−a′)v −(a′ + 1)e−2iv

)

We can therefore rewrite g(v) with four non-zero parameters k1 ∈ R, k2, k3 ∈ C, and using a
new parameter v′ = −2v:

g(v) ∝
(

ev
′

k2e
ik1v

′

k3e
−ik1v

′ −eiv′

)
Here we omit real coefficients as the Lie algebra is closed under scalar multiplication by R.
The fact that a′ 6= ±1,−3 also implies that k4 6= ±1

Now consider the value of g(v′) for small values of v′. In particular, pick a θ << 1. Then
we have that

g(±θ) ∝
(

(A±Bi) k2(C ±Di)
k3(C ∓Di) −(A±Bi)

)
for some nonzero real coefficients A,B,C,D ∈ R. Taking the sum and difference of these
matrices, we see the following are elements of the Lie algebra:(

A k2C

k3C −A

) (
Bi k2Di

−k3Di −Bi

)
Likewise, by considering taking the sum and difference of g(±2θ), we get there exist nonzero
A′, B′, C ′, D′ ∈ R such that the lie algebra contains.(

A′ k2C
′

k3C
′ −A′

) (
B′i k2D

′i

−k3D
′i −B′i

)
Furthermore, since sine and cosine are nonlinear, and k1 6= 0,±1, the vectors (A,C) and
(A′, C ′) are linearly independent. Likewise the vectors (B,D) and (B′, D′) are linearly
independent. Hence by taking linear combinations of these matrices, we have that any matrix
of the form(

E k2F

k3F
∗ −E

)
is in the Lie algebra for any E,F ∈ C. Hence our Lie algebra spans at least these two
complex dimensions. Now we take the closure of such matrices under commutators. Suppose
A,B,C,D ∈ C. We have that[(

A k2B

k3B
∗ −A

)
,

(
C k2D

k3D
∗ C

)]
=
(
k2k3(BD∗ −B∗D) 2k2(AD −BC)
2k3(B∗C −AD∗) k2k3(B∗D −BD∗)

)
Since we previously showed all traceless diagonal matrices are in the Lie algebra, this implies
the following matrices are in the Lie algebra:(

0 2k2(AD −BC)
2k3(B∗C −AD∗) 0

)
By setting A,D,B,C such that (AD−BC)∗ 6= (B∗C−AD∗), we can see that these matrices
span the remaining two real dimensional space of off-diagonal matrices. Hence our Lie algebra
spans all traceless matrices. This completes the proof in Case 1.
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Case 2: a′ = 1 or a′ = −3. We will prove the claim for a′ = 1; an analogous proof holds
for a′ = −3. (These are the Hamiltonians diag(1, 1, 1,−3) and diag(−3, 1, 1, 1), which are
identical except the role of 0 and 1 is switched.).

In this case we have that

g(v) ∝
(

e−2iv 0
2βαe

−2iv −e−2iv

)
By evaluating g(v) at ±θ and ±2θ for some small value of θ, by the same arguments put
forth in Case 1, these matrices span the space of matrices of the form(

A+Bi 0
2βα (A+Bi) −A−Bi

)
Where A,B ∈ R are arbitrary real parameters.

We will now use another postselection gadget, which is inherently closed under taking
inverses, to boost the span of the algebra to all of sl(2,C). This is the same gadget which
appears in the construction of L−1 in Appendix B.

|ψ〉
D(t)

|ψ′〉

|0〉 U
D(π/4)

U†

|0〉 U U† 〈1|

This gadget performs the operation

P (t) ∝
(
eit 0
0 e−3it

)
∝
(
e2it 0
0 e−2it

)
Hence its Lie algebra spans the space of traceless diagonal imaginary matrices. Combining
this with the previous result, we see the Lie algebra now spans the space(

A+Bi 0
2βα (A+ Ci) −A−Bi

)
Where A,B,C ∈ R are arbitrary real parameters.

Now consider taking commutators of such matrices; one can easily see that for
A,B,C,D,E, F ∈ R,[(

A+Bi 0
2βα (A+ Ci) −A−Bi

)
,

(
D + Ei 0

2βα (D + Fi) −D − Ei

)]
=
(

0 0
4βα (A+ Ci)(D + Ei) 0

)
Hence by appropriate choice of A,C,D,E these commutators span all complex values in the
lower left hand corner. So our Lie algebra now spans(

A+Bi 0
C +Di −A−Bi

)
Where A,B,C,D ∈ R are arbitrary real parameters. In other words we span all traceless
lower triangular matrices.

Next we will use the fact that the Lie algebra is closed under conjugation by the group.
Therefore it must contain all elements of the form

L(t)
(
A 0
B −A

)
L−1(t)

where A,B are now complex parameters

CCC 2016



28:26 Complexity Classification of Two-Qubit Commuting Hamiltonians

Since we already span lower triangular matrices, the only relevant entry of the above
matrix is the upper-right entry, as we can zero out the other entries by adding lower triangular
matrices. This upper left entry is proportional to

i
(
−2αβ∗|α|2e2itA− α2β∗2e2itB

)
Since α and β are non-zero, and setting B = 0, we can see that by choosing A we can set
this value to be any complex number. Hence our Lie algebra must span

L(t)
(
A C

B −A

)
L−1(t)

Where A,B,C ∈ C, that is all of sl(2,C), as desired. This completes the proof of Claim 2.

Case 3: a′ = −1. In this case we have that

g(v) = − 1
sin(2v)

(
0 α

β
β
α 0

)
Thus the matrices g(v) span a one-dimensional space. Since the Lie algebra is closed under
scalar multiplication by reals, the factor of −1

sin(2v) out front is irrelevant, and we will drop
real prefactors in future calculations.

We will now use the fact the Lie algebra is closed under conjugation by the group.
Consider matrices of the form

T (s, v) = L(s)g(v)L(s)−1 ∝ i

(
|β|4 − |α|4 |α|4 αβ e

−2is − αβ∗|β|2e2is

β
α |β|

4e−2is − α∗β|α|2e2is |α|4 − |β|4

)
where the proportionality is over real scalar multiples. Here we have simplified using the fact
we are in the case a′ = d′ = −1. This is well defined for any s and v which are not integer
multiples of π.

Now we break into two subcases:

Subcase A: |α|2 6= |β|2. In this case, the matrix T (s, v) has a nonzero entry on the
diagonals. Hence the matrix T (s, v) has the form

T (s, v) ∝ i
(

k1 k2e
−2is − k3e

2is

k4e
−2is − k5e

2is −k1

)
Where k1 ∈ R is nonzero, k2, k3, k4, k5 ∈ C are nonzero. One can easily check that the
constraint |α|2 6= |β|2 further implies that k2, k3, k4, k5 have four distinct values, i.e. ki 6= kj
for any i 6= j, i, j ≥ 2. For instance, to see that k2 6= k3, note that if k2 = k3 then
|α|4 αβ = αβ∗|β|2, which implies |α|4 = |β|4, a contradiction.

Furthermore, one can show that there cannot exist a constant9 K such that k2 = Kk4 and
k3 = Kk5, because this would imply |K| = |αβ |

6 = |αβ |
2 which is a contradiction if |α| 6= |β|.

Hence the matrices T (s, v) span matrices of the form(
Ai B + Ci

D + Ei −Ai

)

9 If this were the case, the matrices T (s, v) would only span matrices of the form
(

Ai B + Ci
K(B + Ci) −Ai

)
.

Fortunately this does not happen in this case.
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where A,B,C,D,E ∈ R are arbitrary real parameters. Now taking the closure of such
matrices under commutators, one can easily see this spans all traceless matrices. Hence the
Lie algebra spans sl(2,C) as desired.

Subcase B: |α|2 = |β|2 = 1/2. In this case the Hamiltonians generated are of the form
X(θ)⊗X(θ), so are not covered in the scope of this theorem. Note that the Lie alebgra of
the L gadgets here only span a two dimensional subspace of the form(

0 e−iθ(A+Bi)
eiθ(A+Bi) 0

)
where A,B ∈ R. This is closed under conjugation and does not span sl(2,C). J

J

D Proof of postselected universality when b 6= c

Here we consider the postselected universality of circuits with entangling Hamiltonians
for which H 6= THT . The proof in this case will follow analogously to the main proof.
Furthermore, the construction of the inverse gadgets will have a much cleaner construction
than the case H = THT .

Suppose we have a commuting Hamiltonian H such that H 6= THT . By Claim 3.1, we
know that H = (U ⊗ U) diag(a, b, c, d)(U† ⊗ U†) for some one-qubit unitary U =

(
α −β∗
β α∗

)
and some real parameters a, b, c, d. The trace of H contributes an irrelevant global phase to
the unitary operator it generates, so without loss of generality we can assume H is traceless,
i.e., a+ b+ c+ d = 0. Since H 6= THT we have b 6= c. As before, the fact H can generate
entanglement starting from the computational basis implies α 6= 0, β 6= 0, and b+ c 6= 0.

Now consider the Hamiltonians

H1 = 1
c2 − b2 (cH12 − bH21), H2 = 1

b2 − c2 (bH12 − cH21) .

Since we can apply both H, −H, THT , and −THT , this allows us to apply H1 and H2 for
independent amouts of time. Let V (t1, t2) be the two-qubit unitary we obtain from running
H1 for time t1 ∈ R and H2 for time t2 ∈ R. We have

V (t1, t2) = eit1H1eit2H2 = (U⊗2)D(t1, t2)(U†⊗2),

where D(t1, t2) , diag(eia′(t1+t2), eit1 , eit2 , eid
′(t1+t2)).

Now following our previous proof, we consider the following postselection gadget:

|ψ〉
D(t1, t2)

U† 〈0|

|0〉 U |ψ′〉

This performs the following transformation on the input state:

L(t1, t2) = 1

|α||β|
√(

e−i(t1+t2) − ei(t1+t2)
)
(
|α|2eia′(t1+t2) αβ∗eit2

α∗βeit1 |β|2eid′(t1+t2)

)
.

As before, this is a non-unitary transformation, and hence it is unclear how to invert L.
Fortunately, when H 6= THT we have the freedom to apply H1 and H2 for separate times,
and this allows us to make a much simpler postselecting gadget to invert L, as follows:
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I Claim D.1. Given L(t1, t2), where ti ∈ (0, π)∪(π, 2π), it is possible to construct L(t1, t2)−1

by introducing three postselections into the circuit. Furthermore, this construction is efficiently
computable in the manner described above.

Proof. We will need two additional gadgets for our construction. First, consider a modifica-
tion of the gadget for L(t1, t2), where we start the qubit in the |1〉 state and postselect on
the |1〉 state:

|ψ〉
D(t1, t2)

U† 〈1|

|1〉 U |ψ′〉

By a direct calculation, one can show the linear transformation performed on |ψ〉 is given by

M(t1, t2) = 1

|α||β|
√(

e−i(t1+t2) − ei(t1+t2)
)
(
|β|2eia′(t1+t2) −αβ∗eit2
−α∗βeit1 |α|2eid′(t1+t2)

)

This is tantalizingly close to the inverse of L, which is

L(t1, t2)−1 = 1

|α||β|
√(

e−i(t1+t2) − ei(t1+t2)
)
(
|β|2eid′(t1+t2) −αβ∗eit2
−α∗βeit1 |α|2eia′(t1+t2)

)

The only thing that is off is that the phase of the upper left and bottom right entries are
incorrect. To correct these phases, we need to introduce another gadget:

|ψ〉
D(t1, t2)

|ψ′〉

|0〉 U U† 〈1|

In other words, instead of using the gate in a teleportation-like protocol, we instead use it to
apply phases to |ψ′〉. This gate performs the following transformation on the input state:

N(t1, t2) = 1√
(eit1 − eia′(t1+t2))(eid′(t1+t2) − eit2)

(
eit1 − eia′(t1+t2) 0

0 eid
′(t1+t2) − eit2

)

Since N is a diagonal matrix, the only physical quantity that matters is the ratio r(t1, t2) of
its two entries, which is a complex number given by

r(t1, t2) = eit1 − eia′(t1+t2)

eid′(t1+t2) − eit2
.

If r = r(t1, t2) takes on a certain value, then it immediately follows that N(t1, t2) =(√
r 0

0
√
r−1

)
, because of our normalization.

We will now show that by setting t1 and t2, we can choose r(t1, t2) to be any complex
phase eiθ that we like. In fact, if a

′

d′ is irrational, one can also show that one can choose t1, t2
to approximate any complex number; however, this will not be necessary for our construction,
so we omit this here.

I Claim D.2. For any θ ∈ (0, 2π), there exist t1, t2 ∈ R such that r(t1, t2) = eiθ.

Proof. Set t1 = θ and t2 = −θ. We immediately have

r(θ,−θ) = eiθ − 1
1− e−iθ = eiθ − 1

e−iθ(eiθ − 1) = eiθ.
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Note that this only works if eiθ 6= 1 - this is why we have omitted θ = 0 from our range of
θ. In other words, this gadget can be used to perform any diagonal matrix other than the
identity. J

Putting this all together, we now show how to invert L(t1, t2). Set s1 = i(d′(t1 + t2)−
a′(t1 + t2)) and s2 = −s1. Then we have10

N(s1, s2) =
(
e
i
2 (d′(t1+t2)−a′(t1+t2)) 0

0 e−
i
2 (d′(t1+t2)−a′(t1+t2))

)
Now one can easily check that

L(t1, t2)−1 = N(s1, s2)M(t1, t2)N(s1, s2) .

And therefore the following gadget performs L(t1, t2)−1:

|0〉 U
D(s2, s1)

U† 〈1|

|ψ〉
D(t2, t2)

U† 〈1|

|1〉 U
D(s1, s2)

|ψ′〉

|0〉 U U† 〈1|

(Note that s1 and s2 are switched in the first diagonal matrix, as we have switched the usual
order of the qubits.)

Hence using these postselection gadgets, we can generate not only L(t1, t2), but also its
inverse. Furthermore, this construction is manifestly efficient, since s1 and s2 are efficiently
computable given t1 and t2. J

We can therefore apply both L(t1, t2) and L(t1, t2)−1 in our postselected circuits. This
once again allows us to apply Lie theory to determine which subset of transformations can
be applied by taking products of L matrices. Following our proof of the main theorem, we
now show the Lie algebra of the L matrices spans sl(2,C). This completes the proof of
postselected universality in this case in analogy with the main theorem.

I Claim D.3. The Lie algebra of the L matrices spans sl(2,C) in the case where T 6= THT .

Proof. Consider elements of the form

M(t1, t2, s1, s2) , L(D(t1, t2))L(D(s1, s2))−1.

As t1, t2, s1, s2 vary over the set

{t1, t2 : t1 + t2 ∈ (0, π) ∪ (π, 2π)} × {s1, s2 : s1 + s2 ∈ (0, π) ∪ (π, 2π)} ,

these form continuous paths within S. In particular, at the point where s1 = t1 and s2 = t2,
this path passes through the identity. Now consider

g(v1, v2) , ∂

∂t1
[M(t1, t2, s1, s2)]

∣∣∣s1=t1=v1
s2=t2=v2

10This is possible as long as ei(d′(t1+t2)−a′(t1+t2)) 6= 1. If this quantity is one, then L(t1, t2)−1 = M(t1, t2),
so no additional gadgets are necessary to obtain inverses.
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and

h(v1, v2) , ∂

∂t2
[M(t1, t2, s1, s2)]

∣∣∣s1=t1=v1
s2=t2=v2

.

These are tangent vectors to paths in S, evaluated as they pass through the identity. Hence
we have that g(v1, v2) and h(v1, v2) ∈ g for all v1, v2 ∈ {v1, v2 : v1 + v2 ∈ (0, π) ∪ (π, 2π)}.
By direct calculation, one can show that

g(v1, v2) = − 1
2 sin(v1 + v2)

(
a′e−i(v1+v2) + cos(v1 + v2) −αβ a

′ei(a
′v1+(a′+1)v2)

β
α (2 + a′)ei((d′+1)v1+d′v2) −a′e−i(v1+v2) − cos(v1 + v2)

)
and

h(v1, v2) = − 1
2 sin(v1 + v2)

(
a′e−i(v1+v2) − i sin(v1 + v2) α

β (1− a′)ei(a′v1)+(a′+1)v2

β
α (1 + a′)ei((d′+1)v1+d′v2) −a′e−i(v1+v2) + i sin(t+ 1 + v2)

)
where we have simplified using the fact that d′ = −1− a′. Now suppose that we evaluate
these matrices at the points where v1 = θ and v2 = π

2 − θ for some real parameter θ; this
ensures that v1, v2 are in the allowed set, and simplifies the above expressions to

g(θ) = −1
2

(
−a′i −αβ a

′ei(−θ+(a′+1)π2 )

β
α (2 + a′)ei(θ+d′ π2 ) a′i

)

= −1
2

(
−a′i −αβ a

′eiθ
′

β
α (2 + a′)e−iθ′ a′i

)
,

here we define θ′ = −θ + (a′ + 1)π2 ; this follows from the fact that d′ = −1− a′. Likewise,
we can consider h(v1, v2) evaluated when v1 = θ and v2 = π

2 − θ; this evaluates to

h(θ) = −1
2

(
−ia′ − i α

β (1− a′)ei(−θ+(a′+1)π2 )

β
α (1 + a′)ei(θ+d′ π2 ) ia′ + i

)

= −1
2

(
−i(a′ + 1) α

β (1− a′)eiθ′
β
α (1 + a′)e−iθ′ i(a′ + 1)

)
.

By setting the value of θ in the range [0, 2π), we can select any values of θ′ we like; hence we
will work with θ′ from this point forward.

For now we will assume that a′ 6= 0 and a′ 6= 1; we will handle the cases a′ = 0 and
a′ = −1 separately. The proof of the general case is the most difficult one.

Case 1: a′ 6= 0 and a′ 6= −1. We know that g(θ′) ∈ g and h(θ′) ∈ g . Furthermore, since
g is a real Lie algebra, it is closed as a vector space over R. Hence we must also have that

j(θ1, θ2) , − 2
(

1
a′ + 1h(θ2)− 1

a′
g(θ1)

)

=

 0 α
β

(
1−a′
1+a′ e

iθ2 + eiθ1
)

β
α

(
e−iθ2 − 2+a′

a′ e
−iθ1

)
0

 ∈ g

Where we have used the assumption that a′ 6= 0 and a′ 6= −1. We will now show that as
we vary θ1 and θ2, these elements j(θ1, θ2) span all two by two matrices of the form

( 0 c1
c2 0

)
,

where c1, c2 ∈ C.
To prove this, we will break into two subcases. For convenience, define

k = a′ − 1
a′ + 1 .
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Subcase A: a′ > 0, i.e., −1 < k < 1. In this subcase, consider the matrices

−a′(1 + a′)
4

[
j
(

arcsin k, π2

)
+ j

(
π − arcsin k, π2

)]
=
(

0 0
β
α i 0

)
(11)

1 + a′

4
√
a′

[
j
(

arcsin k, π2

)
− j

(
π − arcsin k, π2

)]
=
(

0 α
β

−β
α

2+a′
a′ 0

)
(12)

and

a′(1 + a′)
4 [j (arccos k, 0) + j (− arccos k, 0)] =

(
0 0
β
α 0

)
(13)

1 + a′

4
√
a′

[j (arccos k, 0)− j (− arccos k, 0)] =
(

0 α
β i

β
α

2+a′
a′ i 0

)
. (14)

These are well-defined as we have a′ > 0 in this case. Clearly matrices (11) and (13) span
the space of all matrices with a single complex entry in the bottom left hand corner. Hence,
when combined with matrices (12) and (14), they clearly span the space of all matrices with
complex entries in the off diagonal elements.

Subcase B: a′ < 0 and a′ 6= −1, i.e., −1 < 1/k < 1. This subcase follows similarly;
consider the matrices

a′(1− a′)
4

[
j

(
π

2 , arcsin 1
k

)
+ j

(
π

2 , π − arcsin 1
k

)]
=
(

0 0
β
α i 0

)
(15)

1 + a′

4
√
−a′

[
j

(
π

2 , arcsin 1
k

)
− j

(
π

2 , π − arcsin 1
k

)]
=
(

0 α
β

−β
α

1+a′
1−a′ 0

)
(16)

and

−a′(1− a′)
4

[
j

(
0, arccos 1

k

)
+ j

(
0,− arccos 1

k

)]
=
(

0 0
β
α 0

)
(17)

1 + a′

4
√
−a′

[
j

(
0, arccos 1

k

)
− j

(
0,− arccos 1

k

)]
=
(

0 α
β i

β
α

1+a′
1−a′ i 0

)
. (18)

These are well-defined as we have a′ < 0 in this case, as well as a′ 6= −1. Again, clearly
we have that (15) and (17) span all matrices with a single complex entry in the bottom left
of the matrix. Hence, adding in (16) and (18), we span all off-diagonal complex matrices,
which is what we wanted to show.

In either subcase, our j matrices span all matrices of the form(
0 A+Bi

C +Di 0

)
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where A,B,C,D ∈ R. Additionally, our g and h matrices are also in g, and clearly combining
these with the j matrices increases the span to(

Ei A+Bi

C +Di −Ei

)
where A,B,C,D,E ∈ R. This is a five-dimensional subspace of sl(2,C). Now to show that we
can span all 6 dimensions of sl(2,C), we invoke the fact that g is closed under commutation,
so g contains [( 0 1

0 0 ) , ( 0 0
1 0 )] =

( 1 0
0 −1

)
. Hence g must include all matrices of the form(

F + Ei A+Bi

C +Di −F − Ei

)
where A,B,C,D,E, F ∈ R. In other words, g = sl(2,C).

We’ve now shown Claim C.5 in the case where a′ 6= 0 and a′ 6= −1. We now prove the
claim in these remaining two cases.

Case 2: a′ = 0. In this case we have

g(θ′) = −1
2

(
0 0

β
α2e−iθ′ 0

)
As θ varies these matrices clearly span all matrices a single complex number in the bottom
left entry. Now in this case we also have that

h(θ′) = −1
2

(
−i α

β e
iθ′

β
αe
−iθ′ i

)

Since g is closed under addition and scalar multiplication by R, and applying

h(θ′)− h(θ′′) = −1
2

(
0 α

β (eiθ′ − eiθ′′)
β
α (e−iθ′ − eiθ′′) 0

)
∈ g

Now adding in multiples of g, we have that g contains matrices of the form(
0 α

β (eiθ′ − eiθ′′)
0 0

)

which clearly span all matrices with a complex entry in the upper right corner. Hence we
span all off-diagonal matrices. Now adding in h(θ) for any θ, we span all matrices of the

form
(

Ei A+Bi

C +Di −Ei

)
where A,B,C,D,E ∈ R. As discussed in Case 1, by taking the

closure of these under commutation we have that g = sl(2C) as desired, which completes the
proof of Case 2.

Case 3: a′ = −1. This case follows very similarly to Case 2. When a′ = −1 we have that

h(θ′) = −1
2

(
0 α

β 2eiθ′

0 0

)
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which clearly span all complex matrices with a single entry in the upper right corner. In this
case, we also have that

g(θ′) = −1
2

(
i −αβ − e

iθ′

β
αe
−iθ′ −i

)
,

By considering the difference g(θ′)− g(θ′′), and noting that we already span matrices with a
single entry in the upper right corner, this shows that we span all off-diagonal matrices. Now

adding in g(θ′) for any θ′ we see that we span all matrices of the form
(

Ei A+Bi

C +Di −Ei

)
where A,B,C,D,E ∈ R. As discussed in Case 1, by taking the closure of these under
commutation we have that g = sl(2,C) as desired. This completes the proof of Case 3, hence
the proof of the claim. J
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Abstract
We give improved hitting-sets for two special cases of Read-once Oblivious Arithmetic Branching
Programs (ROABP). First is the case of an ROABP with known variable order. The best hitting-
set known for this case had cost (nw)O(logn) where n is the number of variables and w is the
width of the ROABP. Even for a constant-width ROABP, nothing better than a quasi-polynomial
bound was known. We improve the hitting-set complexity for the known-order case to nO(logw).
In particular, this gives the first polynomial time hitting-set for constant-width ROABP (known-
order). However, our hitting-set works only over those fields whose characteristic is zero or large
enough. To construct the hitting-set, we use the concept of the rank of partial derivative matrix.
Unlike previous approaches whose starting point is a monomial map, we use a polynomial map
directly.

The second case we consider is that of commutative ROABP. The best known hitting-set for
this case had cost dO(logw)(nw)O(log logw), where d is the individual degree. We improve this
hitting-set complexity to (ndw)O(log logw). We get this by achieving rank concentration more
efficiently.
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1 Introduction

The polynomial identity testing (PIT) problem asks if a given multivariate polynomial is
identically zero. The input to the problem is given via an arithmetic model computing a
polynomial, for example, an arithmetic circuit or an arithmetic branching program. These
are arithmetic analogues of boolean circuits and boolean branching programs, respectively.
The degree of the given polynomial is assumed to be polynomially bounded in the circuit size.
Usually, any such circuit or branching program can compute a polynomial with exponentially
many monomials (exponential in the circuit size). Thus, one cannot compute the polynomial
explicitly in an efficient way. However, given such an input, it is possible to efficiently evaluate
the polynomial at a point in the field. This property enables a randomized polynomial identity
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test with one-sided error. It is known that evaluating a small-degree nonzero polynomial
over a random point gives a nonzero value with a good probability [8, 22, 23]. Thus, the
randomized test is to just evaluate the input polynomial, given as an arithmetic circuit or an
arithmetic branching program at a random point.

Finding an efficient deterministic algorithm for PIT has been a major open question in
complexity theory. The question is also related to arithmetic circuit lower bounds [1, 12, 15].
The PIT problem has been studied in two paradigms: (i) blackbox test, where one can only
evaluate the polynomial at a chosen point, (ii) whitebox test, where one has access to the
input circuit or arithmetic branching program. A blackbox test is essentially the same as
finding a hitting-set – a set of points such that any nonzero polynomial evaluates to a nonzero
value on at least one of the points in the set. This work concerns finding hitting-sets for a
special model, called read-once oblivious arithmetic branching programs (ROABP).

An arithmetic branching program (ABP) is a directed layered graph, with edges going
from a layer of vertices to the next layer. The first and the last layers have one vertex
each, called the source and the sink. Each edge of the graph has a label, which is a simple
polynomial, for example a univariate polynomial. For any path p, its weight is defined to
be the product of labels on all the edges in p. The ABP is said to compute a polynomial
which is the sum of weights of all the paths from the source to the sink. ABPs are a
strong model for computing polynomials. It is known that for any arithmetic circuit with
polynomially bounded degree, one can find an ABP of quasi-polynomial size computing the
same polynomial (see for example [17]). Apart from its size, another important parameter
for an ABP is its width. The width of an ABP is the maximum number of vertices in any
layer of the associated graph. Even when the the width is restricted to a constant, the ABP
model is quite powerful. Ben-Or and Cleve [6] have shown that width-3 ABPs have the same
expressive power as arithmetic formulas.

An ABP is called a read-once oblivious ABP or ROABP if every variable occurs in
at most one layer of edges in the ABP. For an ROABP, one can assume without loss of
generality that any variable occurs in exactly one layer of edges. The order of the variables
in consecutive layers is said to be the variable order of the ROABP. The read-once property
severely restricts the power of the ABP. There are polynomials known which can be computed
by a simple depth-3 (ΣΠΣ) circuit but require an exponential size ROABP [16]. Also note
that there are polynomials which have a small ROABP in one variable order but require
exponential size in another variable order. Nisan [19] gave the exact characterization of the
polynomials computed by width-w ROABPs in a certain variable order. In particular, they
gave exponential lower bounds for this model. Their work is actually on non-commutative
ABPs but the same results also apply to ROABP.

The question of whitebox identity testing of ROABPs has been settled by Raz and
Shpilka [21], who gave a polynomial time algorithm for this. However, though ROABPs
are a relatively well-understood model, we still do not have a polynomial time blackbox
algorithm. The blackbox question is studied with two variations: one where we know the
variable order of the ROABP and the other where we do not know it. For known-order
ROABPs, Forbes and Shpilka [10] gave the first efficient blackbox test with (ndw)O(logn)

time complexity, where n is the number of variables, w is the width of the ROABP, and, d is
the individual degree bound of each variable. For the unknown-order case, Forbes et al. [9]
gave an nO(d logw logn)-time blackbox test. Observe that their complexity is quasi-polynomial
only when d is small. Subsequently, Agrawal et al. [2] removed the exponential dependence on
the individual degree. They gave an (ndw)O(logn)-time blackbox test for the unknown-order
case. Note that these results remain quasi-polynomial even in the case of constant width.
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Studying ROABPs has also led to PIT results for other computational models, for example,
sub-exponential size hitting-sets for depth-3 multilinear circuits [7] and sub-exponential time
whitebox test for read-k oblivious ABPs [4]. It is possible that the results and techniques for
ROABPs can help solve the PIT problem for more general models.

Another motivation to study ROABPs comes from their boolean analogues, called read-
once ordered branching programs (ROBP). ROBPs have been studied extensively, with
regard to the RL versus L question (randomized log-space versus log-space). The problem
of finding hitting-sets for ROABP can be viewed as an analogue of finding pseudorandom
generators (PRG) for ROBP. A pseudorandom generator for a boolean function f is an
algorithm which can generate a probability distribution (with a small sample space) with
the property that f cannot distinguish it from the uniform random distribution (see [5]
for details). Constructing an optimal PRG for ROBP, i.e., with O(logn) seed length or
polynomial size sample space, would imply RL = L. This question has similar results as
those for PIT of ROABPs, though no connection is known between the two questions. The
best known PRG is of seed length O(log2 n) (nO(logn) size sample space), when variable
order is known [18, 14, 20]. On the other hand, in the unknown-order case, the best known
seed length is of size n1/2+o(1) [13]. Finding an O(logn)-seed PRG even for constant-width
known-order ROBPs has been a challenging open question.

Our first result addresses the analogous question in the arithmetic setting. We give the
first polynomial time blackbox test for constant-width known-order ROABPs. However, it
works only for zero or large characteristic fields. Our idea is inspired from the pseudorandom
construction of Impagliazzo, Nisan and Wigderson [14] for ROBPs. While their result does
not give better PRGs for the constant-width case, we are able to achieve this in the arithmetic
setting.

I Theorem (Theorem 3.6). Let C be the class of n-variate, individual degree d polynomials
in F[x] computed by a width-w ROABP in the variable order (x1, x2, . . . , xn). Then there is
a dnO(logw)-time hitting-set for C, when char(F) = 0 or char(F) > ndwlogn.

Our test actually works for any width. Its time complexity is better than the previous
results on ROABP, when w < n and is same in the other case. Our main technique uses
the notion of rank of the partial derivative matrix defined by Nisan [19]. We show that for
a nonzero bivariate polynomial f(x1, x2) computed by a width-w ROABP, the univariate
polynomial f(tw, tw + tw−1) is nonzero. Our argument is that any bivariate polynomial
which becomes zero on (tw, tw + tw−1) has rank more than w, while a polynomial computed
by a width-w ROABP has rank w or less. Then, we use the map (x1, x2) 7→ (tw, tw + tw−1)
recursively in logn rounds to achieve the above mentioned hitting-set. Our technique has a
crucial difference from the previous works on ROABPs [9, 10, 2]. The starting point in all the
previous techniques is a monomial map, i.e., each variable is mapped to a univariate monomial.
On the other hand, we argue with a polynomial map directly (where each variable is mapped
to a univariate polynomial). Our approach can potentially lead to a polynomial time hitting-
set for ROABPs. The goal would be to obtain a univariate n-tuple (p1(t), . . . , pn(t)), such
that any polynomial which becomes zero on (p1(t), . . . , pn(t)) must have rank or evaluation
dimension higher than w. We conjecture that (tr, (t+ 1)r, . . . , (t+ n− 1)r) is one such tuple,
where r is polynomially large (Conjecture 3.8).

It is also possible that our ideas for the arithmetic setting can help constructing an
optimal PRG for constant-width ROBP.

Our second result is for a special case of ROABPs, called commutative ROABPs. An
ROABP is commutative if its edge layers can be exchanged without affecting the polynomial
computed. In particular, if all paths from the source to the sink are vertex disjoint, then the
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ROABP is commutative. Note that for a commutative ROABP, knowing the variable order
is irrelevant. Commutative ROABPs have slightly better hitting-sets than the general case,
but still no polynomial time hitting-set is known. The previously best known hitting-set for
them has time complexity dO(logw)(nw)O(log logw) [9]. We improve this to (ndw)O(log logw).

I Theorem (Theorem 4.10). There is an (ndw)O(log logw)-time hitting-set for n-variate
commutative ROABPs with width w and individual degree d.

To get this result we follow the approach of Forbes et al. [9], which uses the notion of
rank concentration. We achieve rank concentration more efficiently using the basis isolation
technique of Agrawal et al. [2]. The same technique also yields a more efficient concentration
in depth-3 set-multilinear circuits (see Section 2 for the definition). However, it is not clear
if it gives better hitting-sets for them. The best known hitting-set for them has complexity
nO(logn) [3].

2 Preliminaries

2.1 Definitions and Notations
N denotes the set of all non-negative integers, i.e., {0, 1, 2, . . . }. [n] denotes the set
{1, 2, . . . , n}. [[d]] denotes the set {0, 1, . . . , d}. x will denote a set of variables, usually the set
{x1, x2, . . . , xn}. For a set of n variables x and for an exponent a = (a1, a2, . . . , an) ∈ Nn,
xa will denote the monomial

∏n
i=1 x

ai
i . The support of a monomial xa, denoted by Supp(a),

is the set of variables appearing in that monomial, i.e., {xi | i ∈ [n], ai > 0}. The support
size of a monomial is the cardinality of its support, denoted by supp(a). A monomial is said
to be `-support if its support size is `. For a polynomial P (x), the coefficient of a monomial
xa in P (x) is denoted by coefP (xa). In particular, coefP (1) denotes the constant term of
the polynomial P .

For a monomial xa,
∑
i ai is said to be its degree and ai is said to be its degree in variable

xi for each i. Similarly for a polynomial P , its degree (or degree in xi) is the maximum
degree (or maximum degree in xi) of any monomial in P with a nonzero coefficient. We
define the individual degree of P to be indv-deg(P ) = maxi{degxi

(P )}, where degxi
denotes

degree in xi.
To better understand polynomials computed by ROABPs, we often use polynomials over

an algebra A, i.e., polynomials whose coefficients come from A. Matrix algebra is the vector
space of matrices equipped with the matrix product. Fm×n represents the set of all m× n
matrices over the field F. Note that the algebra of w × w matrices, has dimension w2.

We often view a vector/matrix with polynomial entries, as a polynomial with vector/matrix
coefficients. For example,

D(x, y) =
(

1 + x y − xy
x+ y 1 + xy

)
=
(

1 0
0 1

)
1 +

(
1 0
1 0

)
x+

(
0 1
1 0

)
y +

(
0 −1
0 1

)
xy.

Here, the coefD operator will return a matrix for any monomial, for example, coefD(y) =(
0 1
1 0

)
. For a polynomial D(x) ∈ A[x] over an algebra, its coefficient space is the space

spanned by its coefficients.
For a matrix R, R(i, j) denotes its entry in the i-th row and j-th column.
As mentioned earlier, a deterministic blackbox PIT is equivalent to constructing a hitting-

set. A set of points H ∈ Fn is called a hitting-set for a class C of n-variate polynomials if for
any nonzero polynomial P in C, there exists a point in H where P evaluates to a nonzero
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value. An f(n)-time hitting-set would mean that the hitting-set can be generated in time
f(n) for input size n.

2.2 Arithmetic Branching Programs

An ABP is a directed graph with q + 1 layers of vertices {V0, V1, . . . , Vq} and a start node u
and an end node t such that the edges are only going from u to V0, Vi−1 to Vi for any i ∈ [q]
and Vq to t. The edges have univariate polynomials as their weights and as a convention, the
edges going from u and those coming to t have weights from the field F. The ABP is said to
compute the polynomial C(x) =

∑
p∈paths(u,t)

∏
e∈pW (e), where W (e) is the weight of the

edge e.
The ABP has width w if |Vi| ≤ w for all i ∈ [[q]]. Without loss of generality we can assume

|Vi| = w for each i ∈ [[q]].
It is well-known that the sum over all paths in a layered graph can be represented by an

iterated matrix multiplication. To see this, let the set of nodes in Vi be {vi,j | j ∈ [w]}. It is
easy to see that the polynomial computed by the ABP is the same as UT(

∏q
i=1 Di)T , where

U, T ∈ Fw×1 and Di is a w × w matrix for 1 ≤ i ≤ q such that

U(`) = W (u, v0,`) for 1 ≤ ` ≤ w
Di(k, `) = W (vi−1,k, vi,`) for 1 ≤ `, k ≤ w and 1 ≤ i ≤ q
T (k) = W (vq,k, t) for 1 ≤ k ≤ w

2.2.1 Read-once Oblivious ABP

An ABP is called a read-once oblivious ABP (ROABP) if the edge weights in different layers
are univariate polynomials in distinct variables. Formally, the entries in Di come from
F[xπ(i)] for all i ∈ [q], where π is a permutation on the set [q]. Here, q is the same as n, the
number of variables. The order (xπ(1), xπ(2), . . . , xπ(n)) is said to be the variable order of the
ROABP.

Viewing Di(xπ(i)) ∈ Fw×w[xπ(i)] as a polynomial over the matrix algebra, we can write
the polynomial computed by an ROABP as

C(x) = UTD1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n))T .

An equivalent representation of a width-w ROABP can be

C(x) = D1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n)) ,

where D1 ∈ F1×w[xπ(1)], Di ∈ Fw×w[xπ(i)] for 2 ≤ i ≤ n− 1 and Dn ∈ Fw×1[xπ(n)].

2.2.2 Commutative ROABP

An ROABP UT (
∏q
i=1 Di)T is a commutative ROABP, if all Dis are polynomials over

a commutative subalgebra of the matrix algebra. For example, if the coefficients in the
polynomials Dis are all diagonal matrices. Note that the order of the variables becomes
insignificant for a commutative ROABP. A polynomial computed by a commutative ROABP
can be computed by an ROABP in any variable order.
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2.2.3 Set-multilinear Circuits
A depth-3 set-multilinear circuit is a circuit of the form

C(x) =
k∑
i=1

li,1(x1) li,2(x2) · · · li,q(xq) ,

where li,js are linear polynomials and x1,x2, . . . ,xq form of partition of x. It is known that
these circuits are subsumed by ROABPs [9]. However, they are incomparable to commutative
ROABPs. Consider the corresponding polynomial over a k-dimensional algebra

D(x) = D1(x1)D2(x2) · · ·Dq(xq),

where Dj = (l1,j , l2,j , . . . , lk,j) and the algebra product is coordinate-wise product. It is easy
to see that C = (1, 1, . . . , 1) · D. Note that the polynomials Dis are over a commutative
algebra. Hence, some of our techniques for commutative ROABPs also work for set-multilinear
circuits.

3 Hitting-set for Known-order ROABP

3.1 Bivariate ROABP
To construct a hitting-set for ROABPs, we start with the bivariate case. Recall that a
bivariate ROABP is of the form UTD1(x1)D2(x2)T , where U, T ∈ Fw×1, D1 ∈ Fw×w[x1]
and D2 ∈ Fw×w[x2]. It is easy to see that a bivariate polynomial f(x1, x2) computed by a
width-w ROABP can be written as f(x1, x2) =

∑w
r=1 gr(x1)hr(x2). To give a hitting-set for

this, we will use the notion of a partial derivative matrix defined by Nisan [19] in the context
of lower bounds. Let f ∈ F[x1, x2] have its individual degree bounded by d. The partial
derivative matrix Mf for f is a (d+ 1)× (d+ 1) matrix with

Mf (i, j) = coeff (xi1x
j
2) ∈ F,

for all i, j ∈ [[d]]. It is known that the rank of Mf is equal to the smallest possible width of
an ROABP computing f [19].

I Lemma 3.1 (rank≤ width). For any polynomial f(x1, x2) =
∑w
r=1 gr(x1)hr(x2), rank(Mf ) ≤

w.

Proof. Let us define fr = grhr, for all r ∈ [w]. Clearly, Mf =
∑w
r=1 Mfr , as f =

∑w
r=1 fr.

We will show that rank(Mfr
) ≤ 1, for all r ∈ [w]. As fr = gr(x1)hr(x2), its coefficients can

be written as a product of coefficients from gr and hr, i.e.,

coeffr
(xi1x

j
2) = coefgr

(xi1) coefhr
(xj2) .

Now, it is easy to see that

Mfr
= urv

T
r ,

where ur, vr ∈ Fd+1 with ur = (coefgr (xi1))di=0 and vr = (coefhr (xi2))di=0.
Thus, rank(Mfr

) ≤ 1 and rank(Mf ) ≤ w. J

One can also show that if rank(Mf ) = w then there exists a width-w ROABP computing f .
We skip this proof as we will not need it. Now, using the above lemma we give a hitting-set
for bivariate ROABPs.
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I Lemma 3.2. Let char(F) = 0, or char(F) > d. Let f(x1, x2) =
∑w
r=1 gr(x1)hr(x2) be a

nonzero bivariate polynomial over F with individual degree d. Then f(tw, tw + tw−1) 6= 0.

Proof. Let f ′(t) be the polynomial after the substitution, i.e., f ′ = f(tw, tw + tw−1). Any
monomial xi1x

j
2 will be mapped to the polynomial twi(tw + tw−1)j , under the mentioned

substitution. The highest power of t coming from this polynomial is tw(i+j). We will cluster
together all the monomials for which this highest power is the same, i.e., i+ j is the same.
The coefficients corresponding to any such cluster of monomials will form a diagonal in Mf .
The set {Mf (i, j) | i+ j = k} is defined to be the k-th diagonal of Mf , for all 0 ≤ k ≤ 2d.
Let ` be the highest number such that `-th diagonal has at least one nonzero element, i.e.,

` = max{i+ j |Mf (i, j) 6= 0} .

As rank(Mf ) ≤ w (from Lemma 3.1), we claim that the `-th diagonal has at most w nonzero
elements. To see this, let {(i1, j1), (i2, j2), . . . , (iw′ , jw′)} be the set of indices where the `-th
diagonal of Mf has nonzero elements, i.e., the set {(i, j) | Mf (i, j) 6= 0, i + j = `}. As
Mf (i, j) = 0 for any i+ j > `, it is easy to see that the rows {Mf (i1),Mf (i2), . . . ,Mf (iw′)}
are linearly independent. Thus, w′ ≤ rank(Mf ) ≤ w.

Now, we claim that there exists an r with w(` − 1) < r ≤ w` such that coeff ′(tr) 6= 0.
To see this, first observe that the highest power of t which any monomial xi1x

j
2 with i+ j < `

can contribute is tw(`−1). Thus, for any w(`− 1) < r ≤ w`, the term tr can come only from
the monomials xi1x

j
2 with i + j ≥ `. We can ignore the monomials xi1x

j
2 with i + j > ` as

coeff (xi1x
j
2) = Mf (i, j) = 0, when i+ j > `. Now, for any i+ j = `, the monomial xi1x

j
2 goes

to

tw(`−j)(tw + tw−1)j =
j∑
p=0

(
j

p

)
tw`−p .

Hence, for any 0 ≤ p < w,

coeff ′(tw`−p) =
w′∑
a=1

Mf (ia, ja)
(
ja
p

)
.

Writing this in the matrix form we get

[coeff ′(tw`) · · · coeff ′(tw`−w+1)] = [Mf (i1, j1) · · · Mf (iw′ , jw′)]C ,

where C is a w′ × w matrix with C(a, b) =
(
ja

b−1
)
, for all a ∈ [w′] and b ∈ [w]. If all the rows

of C are linearly independent then clearly, coeff ′(tr) 6= 0 for some w(`− 1) < r ≤ w`. We
show the linear independence in Claim 3.3. To show this linear independence we need to
assume that the numbers {ja}a are all distinct. Hence, we need the field characteristic to be
zero or strictly greater than d, as ja can be as high as d for some a ∈ [w′].

I Claim 3.3. Let C be a w × w matrix with C(a, b) =
(
ja

b−1
)
, for all a ∈ [w] and b ∈ [w],

where {ja}a are all distinct numbers. Then C has full rank.

Proof. We will show that for any nonzero vector α := (α1, α2 . . . , αw) ∈ Fw×1, Cα 6= 0.
Consider the polynomial h(y) =

∑w
b=1 αb

y(y−1)···(y−b+2)
(b−1)! . As h(y) is a nonzero polynomial

with degree bounded by w− 1, it can have at most w− 1 roots. Thus, there exists an a ∈ [w]
such that h(ja) =

∑w
b=1 αb

(
ja

b−1
)
6= 0. J

J
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As mentioned above, the hitting-set proof works only when the field characteristic is zero
or greater than d. We given an example over a small characteristic field, which demonstrates
that the problem is not with the proof technique, but with the hitting-set itself. Let the field
characteristic be 2. Consider the polynomial f(x1, x2) = x2

2 +x2
1 +x1. Clearly, f has a width-2

ROABP. For a width-2 ROABP, the map in Lemma 3.2 would be (x1, x2) 7→ (t2, t2 + t).
However, f(t2, t2 + t) = 0 (over F2). Hence, the hitting-set does not work.

Now, we move on to getting a hitting-set for an n-variate ROABP.

3.2 n-variate ROABP
Observe that the map given in Lemma 3.2 works irrespective of the degree of the polynomial,
as long as the field characteristic is large enough. We plan to obtain a hitting-set for general
n-variate ROABP by applying this map recursively. For this, we use the standard divide
and conquer technique. First, we make pairs of consecutive variables in the ROABP. For
each pair (x2i−1, x2i), we apply the map from Lemma 3.2, using a new variable ti. Thus, we
go to n/2 variables from n variables. In Lemma 3.4, we use a hybrid argument to show that
after this substitution the polynomial remains nonzero. Moreover, the new polynomial can
be computed by a width-w ROABP. Thus, we can again use the same map on pairs of new
variables. By repeating the halving procedure logn times we get a univariate polynomial. In
each round the degree of the polynomial gets multiplied by w. Hence, after logn rounds, the
degree of the univariate polynomial is bounded by wlogn times the original degree. Without
loss of generality, let us assume that n is a power of 2.

I Lemma 3.4 (Halving the number of variables). Let char(F) = 0, or char(F) > d. Let
f(x) = D1(x1)D2(x2) · · ·Dn(xn) be a nonzero polynomial computed by a width-w and
individual degree-d ROABP, where D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and Di ∈ Fw×w[xi] for
all 2 ≤ i ≤ n− 1. Let the map φ : x→ F[t] be such that for any index 1 ≤ i ≤ n/2,

φ(x2i−1) = twi ,

φ(x2i) = twi + tw−1
i .

Then f(φ(x)) 6= 0. Moreover, the polynomial f(φ(x)) ∈ F[t1, t2, . . . , tn/2] is computed by a
width-w ROABP in the variable order (t1, t2, . . . , tn/2).

Proof. Let us apply the map in n/2 rounds, i.e., define a sequence of polynomials (f =
f0, f1, . . . , fn/2 = f(φ(x))) such that the polynomial fi is obtained by making the replacement
(x2i−1, x2i) 7→ (φ(x2i−1), φ(x2i)) in fi−1 for each 1 ≤ i ≤ n/2. We will show that for each
1 ≤ i ≤ n/2, if fi−1 6= 0 then fi 6= 0. Clearly this proves the first part of the lemma.

Note that fi−1 is a polynomial over variables {t1, . . . , ti−1, x2i−1, . . . , xn}. As fi−1 6= 0,
there exists a constant tuple α ∈ Fn−i−1 such that after replacing the variables (t1, . . . , ti−1,

x2i+1, . . . , xn) with α, fi−1 remains nonzero. After this replacement we get a polynomial
f ′i−1 in the variables (x2i−1, x2i). As f is computed by the ROABP D1D2 · · ·Dn, the
polynomial f ′i−1 can be written as UTD2i−1(x2i−1)D2i(x2i)T for some U, T ∈ Fw×1. In other
words, f ′i−1 has a bivariate ROABP of width w. Thus, f ′i−1(φ(x2i−1), φ(x2i)) is nonzero
from Lemma 3.2. But, f ′i−1(φ(x2i−1), φ(x2i)) is nothing but the polynomial obtained after
replacing the variables (t1, . . . , ti−1, x2i+1, . . . , xn) in fi with α. Thus, fi is nonzero. This
finishes the proof.

Now, we argue that f(φ(x)) has a width w ROABP. Let D′i := D2i−1(twi )D2i(twi + tw−1
i )

for all 1 ≤ i ≤ n/2. Clearly, D′1D′2 · · ·D′n/2 is an ROABP computing f(φ(x)) in variable
order (t1, t2, . . . , tn/2), as D′1 ∈ F1×w[t1], D′n/2 ∈ Fw×1[tn/2] and D′i ∈ Fw×w[ti] for all
2 ≤ i ≤ n/2− 1. J
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By applying the map φ in Lemma 3.4, we reduced an n-variate ROABP to an (n/2)-
variate ROABP, while preserving the non-zeroness. The resulting ROABP has same width
w, but the individual degree goes up to become 2dw, where d is the original individual
degree. As our map φ is degree insensitive, we can apply the same map again on the variables
{ti}n/2

i=1. It is easy to see that when the map φ is repeatedly applied in this way logn times,
we get a nonzero univariate polynomial of degree ndwlogn. Next lemma puts it formally.
For ease of notation, we use the variable numbering from 0 to n − 1. Let p0(t) = tw and
p1(t) = tw + tw−1.

I Lemma 3.5. Let char(F) = 0, or char(F) ≥ ndwlogn. Let f ∈ F[x] be a nonzero polynomial,
with individual degree d, computed by a width-w ROABP in variable order (x0, x1, . . . , xn−1).
Let the map φ : {x0, x1, . . . , xn−1} → F[t] be such that for any index 0 ≤ i ≤ n− 1,

φ(xi) = pi1(pi2 · · · (pilog n
(t))) ,

where ilogn ilogn−1 · · · i1 is the binary representation of i. Then f(φ(x)) is a nonzero
univariate polynomial with degree ndwlogn.

Note that the map φ crucially uses the knowledge of the variable order. In the last
round when we are going from two variables to one, the individual degree is ndwlogn−1

and Lemma 3.2 requires char(F) to be higher than the individual degree. Thus, having
char(F) ≥ ndwlogn suffices. For a univariate polynomial, the standard hitting-set is to
plug-in distinct field values as many as one more than the degree. Thus, we get the following
theorem.

I Theorem 3.6. For an n-variate, individual degree d and width-w ROABP, there is a
blackbox PIT with time complexity O(ndwlogn), when the variable order is known and the
field characteristic is zero or at least ndwlogn.

From this, we immediately get the following result for constant-width ROABPs. Note
that when w is constant, the lower bound on the characteristic also becomes poly(n).

I Corollary 3.7. There is a polynomial time blackbox PIT for constant width ROABPs, with
known variable order and field characteristic being zero (or polynomially large).

As mentioned earlier, our approach can potentially lead to a polynomial time hitting-set
for ROABPs. We make the following conjecture for which we hope to get a proof on the
lines of Lemma 3.2.

I Conjecture 3.8. Let char(F) = 0. Let f(x) ∈ F[x] be an n-variate, degree-d polynomial
computed by a width-w ROABP. Then f(tr, (t+ 1)r, . . . , (t+n− 1)r) 6= 0 for some r bounded
by poly(n,w, d).

4 Commutative ROABP

In this section, we give better hitting-sets for commutative ROABPs. Recall that an ROABP
is commutative if the matrices involved in the matrix product come from a commutative
algebra. To elaborate, a commutative ROABP is of the form UTD1D2 · · ·DnT , where
U, T ∈ Fw×1 and Di ∈ Fw×w[xi] is a polynomial over a commutative subalgebra of Fw×w
for each i. In simple words, DiDj = DjDi for any i, j ∈ [n]. As the order of variables does
not matter for a commutative ROABP, we take the standard variable order (x1, x2, . . . , xn).
Here we work with the polynomial D = D1D2 · · ·Dn over the matrix algebra. With an abuse
of notation, we say D1D2 · · ·Dn is an ROABP computing a polynomial over matrices.
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Forbes et al. [9] gave a dO(logw)(nw)O(log logw)-time hitting-set for width-w, n-variate
commutative ROABPs with individual degree bound d. Note that when d is small, this time
complexity is much better than that for general ROABP, i.e., (ndw)O(logn) [2]. However
when d is O(n), the complexity is comparable to the general case. We improve the time
complexity for the commutative case to (ndw)O(log logw). This is significantly better than
the general case for all values of d.

Forbes et al. [9] constructed the hitting-set using the notion of rank-concentration defined
by Agrawal et al. [3].

I Definition 4.1 ([3]). A polynomial D(x) over an algebra is said to be `-concentrated if its
coefficients of (< `)-support monomials span all its coefficients.

Note that for a polynomial in F[x], `-concentration simply means that it has a monomial
of (< `)-support with a nonzero coefficient. For a polynomial which has low-support
concentration, it is easy to construct hitting-sets. However, not every polynomial has a
low-support concentration, for example C(x) = x1x2 · · ·xn. Agrawal et al. [3] observed that
concentration can be achieved by a shift of variables, e.g., C(x+1) = (x1+1)(x2+1) · · · (xn+1)
has 1-concentration. For a polynomial C(x), shift by a tuple f = (f1, f2, . . . , fn) would
mean C(x + f) = C(x1 + f1, x2 + f2, . . . , xn + fn). The first step of Forbes et al. [9] is to
show that for a given commutative width-w ROABP, O(logw)-concentration can be achieved
by a shift with cost ndO(logw). Their second step is to show that if a given commutative
ROABP is O(logw)-concentrated then there is a hitting-set for it of size (ndw)O(log logw).
We improve the first step by giving a shift with cost (ndw)O(log logw), which gives us the
desired hitting-set.

First, we elaborate the first step of Forbes, Saptharishi and Shpilka [9]. To achieve
concentration they use the idea of Agrawal, Saha and Saxena [3], i.e., achieving concentration
in small sub-circuits implies concentration in the whole circuit. For the sake of completeness,
we rewrite the lemma using the terminology of this paper.

I Lemma 4.2 ([3, 9]). Let D(x) = D1(x1)D2(x2) · · ·Dn(xn) be a product of univariate
polynomials over a commutative algebra Ak. Suppose there exists an ` such that for any
S ∈ [n] with |S| = `, the polynomial

∏
i∈S Di has `-concentration. Then D(x) has `-

concentration.

Proof. For any set S ⊆ [n], let us define a sub-circuit DS of D as
∏
i∈S Di(xi). We will

show `-concentration in all the sub-circuits DS of D, using induction on the size of S.

Base Case: DS is trivially `-concentrated if |S| < `. In the case of |S| = `, DS is
`-concentrated from the hypothesis in the lemma.

Induction Hypothesis: DS has `-concentration for any set S with |S| < j.

Induction Step: We will prove `-concentration in DS for a set S with |S| = j. Let
S = {xi1 , xi2 , . . . , xij}. Consider a monomial xa = xa1

i1
xa2
i2
· · ·xaj

ij
with support from the

set S. Without loss of generality let us assume a1 6= 0. Now, let the set S′ = S \ {xi1}
and let the monomial xa′ = xa/xa1

i1
. As |S′| = j − 1, by the inductive hypothesis DS′ is

`-concentrated. Thus,

coefDS′ (xa′
) ∈ span{coefDS′ (xb) | Supp(b) ⊆ S′, supp(b) < `}. (1)
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It is easy to see that for any monomial xb with its support in S′,

coefDS
(xbxa1

i1
) = coefDS′ (xb) coefDi1

(xa1
i1

) .

Thus, by multiplying coefDi1
(xa1
i1

) in (1), we get

coefDS
(xa) ∈ span{coefDS

(xbxa1
i1

) | Supp(b) ⊆ S′, supp(b) < `} .

Hence,

coefDS
(xa) ∈ span{coefDS

(xb) | Supp(b) ⊆ S, supp(b) ≤ `}. (2)

Now, we claim that for any monomial xb with Supp(b) ⊆ S and supp(b) = `,

coefDS
(xb) ∈ span{coefDS

(xc) | Supp(c) ⊆ S, supp(c) < `}. (3)

To see this, let T be the support of the monomial xb. As |T | = `, DT has `-concentration.
Thus,

coefDT
(xb) ∈ span{coefDT

(xc) | Supp(c) ⊆ T, supp(c) < `}. (4)

For any monomial xc with support in T , one can write

coefDS
(xc) = coefDT

(xc)
∏

i∈S\T

coefDi
(1) .

Note that the commutativity of the underlying algebra is crucial for this. Thus, multiplying
(4) by

(∏
i∈S\T coefDi

(1)
)
, we get (3).

By combining (3) with (2), we get

coefDS
(xa) ∈ span{coefDS

(xc) | Supp(c) ⊆ S, supp(c) < `} ,

for any monomial xa with Supp(a) ⊆ S. This proves `-concentration in DS .
Taking S = [n], we get `-concentration in D. J

Now, the goal is just to achieve `-concentration in an `-variate ROABP (computing a
polynomial over the matrix algebra). We would remark here that for an `-variate polynomial
over a k-dimensional algebra, one can hope to achieve `-concentration only when ` ≥ log(k+1).
To see this, consider the polynomial D(x) =

∏`
i=1(1+vixi) over a k-dimensional algebra such

that k > 2` − 1. Suppose the vector vis are such that all the 2` coefficients of the polynomial
D are linearly independent. There are only 2`−1 coefficients of D with (< `)-support. Hence,
they cannot span the whole coefficient space of D, whatever the shift we use.

Agrawal et al. [3] and Forbes et al. [9] achieve `-concentration in arbitrary `-variate
polynomials over a k-dimension algebra for ` = log(k + 1) by a shift with cost dO(`), where d
is the individual degree. Forbes et al. [9] use it to give a single shift on n variables such that
it works for any choice of ` variables. This has cost ndO(`).

We give a new shift with cost (ndw)O(log `) = (ndw)O(log logw), for a width-w, `-variate
ROABP (w2 is the dimension of the underlying algebra). The cost has n as a parameter
because the shift works for any size ` subset of n variables. Like [3, 9], we use a shift by
univariate polynomials in a new variable t. In this case, the concentration is considered
over the field F(t). Note that while the shift of [3, 9] works for an arbitrary `-variate
polynomial, our shift works only for `-variate ROABPs. The univariate map we use is the
basis isolating weight assignment for ROABPs from Agrawal et al. [2]. We simply use the
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fact that for any polynomial over a k-dimensional algebra, shift by a basis isolating map
achieves log(k + 1)-concentration [11].

Let us first recall the definition of a basis isolating weight assignment. LetM denote the set
of all monomials over the variable set x with individual degree ≤ d. Any function w: x→ N
can be naturally extended to the set of all monomials as follows: w(

∏n
i=1 x

γi

i ) =
∑n
i=1 γiw(xi),

for any (γi)ni=1 ∈ Nn. Note that if the variable xi is replaced with tw(xi) for each i, then any
monomial m just becomes tw(m). Ak denotes a k-dimensional algebra.

I Definition 4.3 ([2]). A weight function w: x → N is called a basis isolating weight
assignment for a polynomial D(x) ∈ Ak[x], if there exists a set of monomials S ⊆ M

(k′ := |S| ≤ k) whose coefficients form a basis for the coefficient space of D(x), such that
for any m,m′ ∈ S, w(m) 6= w(m′) and
for any monomial m ∈M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′) < w(m)} .

Gurjar et al. [11, Lemma 5.2] have shown that shifting by a basis isolating weight
assignment achieves concentration.

I Lemma 4.4 (Isolation to concentration). Let A(x) be a polynomial over a k-dimensional
algebra Ak. Let w be a basis isolating weight assignment for A(x). Then A(x + tw) is
`-concentrated, where ` = dlog(k+ 1)e and tw denotes the n-tuple (tw(x1), tw(x2), . . . , tw(xn)).

We now recall the construction of a basis isolating weight assignment for ROABP from
[2]. Here, we present a slightly modified version of their Lemma 8, which easily follows from
it.

I Lemma 4.5. Let x be a set of n variables. Let D(x) = D1(xi1)D2(xi2) · · ·D`(xi`) be
an `-variate polynomial over a k-dimensional algebra Ak. Then we can construct a basis
isolating weight assignment for D(x) with the cost being (poly(k, n, d))log `, where d is the
individual degree.

The construction in [2, Lemma 8] actually gives a family B of (knd)O(log `) weight
assignments such that for any `-variate ROABP, at least one of them is basis isolating.
However, we are interested in a single map which works for every `-variate ROABP. To
get a single shift for every ROABP, we follow the technique of [9, 11] and take a Lagrange
Interpolation of all the n-tuples in the family {tw}w∈B.

Let F = {f1(t),f2(t), . . . ,fN (t)} be this family of n-tuples, where f i = {fi,1(t), fi,2(t), . . . ,
fi,n(t)} for each i. Here, N = (knd)O(log `). Let their degrees be bounded by D, i.e.,
D = max{deg(fi,j) | i ∈ [N ] and j ∈ [n]}. From the construction in [2], D = (knd)O(log `).
Also, the family F can be generated in time (knd)O(log `).

Let L(y, t) ∈ F[y, t]n be the Lagrange interpolation of F . That is, for all j ∈ [n],

Lj =
∑
i∈[N ]

fi,j(t)
∏
i′∈[N ]
i′ 6=i

y − αi′
αi − αi′

,

where {αi}i∈[N ] are distinct field elements (we go to a large enough field extension where these
many elements exist). Note that Lj |y=αi

= fi,j . Thus, L|y=αi
= f i. Also, degy(Lj) = N − 1

and degt(Lj) ≤ D. The following lemma from [11, Lemma 5.5] shows that a shift by the
interpolation works for every polynomial simultaneously.
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I Lemma 4.6. Let A(x) be a polynomial over Ak such that there exists an f ∈ F for which
A′(x, t) = A(x + f) ∈ Ak(t)[x] is `-concentrated. Then, A′′(x, y, t) = A(x + L) ∈ Ak(y, t)[x]
is `-concentrated.

Proof. Let rankF{coefA(xa) | xa ∈ M} = k′, for some k′ ≤ k, and M` = {xa ∈ M |
supp(a) < `}. We need to show that rankF(y,t) {coefA′′(xa) | xa ∈M`} = k′.

Since A′(x) is `-concentrated, we have that rankF(t) {coefA′(xa) | xa ∈M`} = k′. Recall
that A′(x) is an evaluation of A′′ at y = αi, i.e., A′(x, t) = A′′(x, αi, t) for some αi. Thus,
for all xa ∈M , we have coefA′(xa) = coefA′′(xa)|y=αi

.
Let C ∈ F[t]k×|M`| be the matrix whose columns are coefA′(xa), for xa ∈ M`. Let

similarly C ′ ∈ F[y, t]k×|M`| be the matrix whose columns are coefA′′(xa), for xa ∈M`. Then
we have C = C ′|y=αi

.
As rankF(t)(C) = k′, there is a k′ × k′ submatrix in C, say indexed by (R, T ), such that

det(C(R, T )) 6= 0. Since det(C(R, T )) = det(C ′(R, T ))|y=αi , it follows that det(C ′(R, T )) 6=
0. Hence, we have rankF(y,t)(C ′) = k′. Thus, the (< `)-support coefficients of A′′ span its
coefficient space. J

Hence, the Lagrange interpolation gives us a single shift which works for all `-variate
ROABPs.

I Lemma 4.7. Given n, d, w and ` = log(w2 + 1), in time (ndw)O(log `) one can compute
a polynomial tuple f(t) ∈ F[t]n of degree (ndw)O(log `) such that for any `-variate polyno-
mial A(x) ∈ Fw×w[x] of individual degree d that can be computed by an ROABP of width w,
the polynomial A(x + f(t)) is `-concentrated.

Proof. Note that the dimension k of the underlying algebra is bounded by w2. After shifting
the polynomial A(x) by L(y, t) as defined above, its coefficients will be polynomials in y
and t, with degree d′ = dn(ndw)O(log `). Consider the determinant polynomial det(C ′(R, T ))
from the proof of Lemma 4.6. As k′ ≤ k, det(C ′(R, T )) has degree bounded by d′′ := kd′.
So, when we replace y by td′′+1, it does not affect the non-zeroness of the determinant, and
hence, the concentration is preserved. Thus, f = L(td′′+1, t) is an n-tuple of univariate
polynomials in t that fulfils the claim of the lemma. J

Combining Lemma 4.2 and Lemma 4.7 we get the following.

I Lemma 4.8. Given n, d, w, one can compute an n-tuple f(t) with cost (ndw)O(log logw)

such that for any n-variate, individual degree-d polynomial D(x) ∈ Fw×w[x] computed by a
width-w commutative ROABP, D(x + f(t)) is O(logw)-concentrated.

Note that if the polynomial D(x) ∈ Fw×w[x] is `-concentrated then the polynomial
C(x) = UTDT is also `-concentrated, where U, T ∈ Fw×1. This is true because multiplication
by UT and T are linear operations. Recall that for polynomial C(x) ∈ F[x], O(logw)-
concentration means that there is a monomial with O(logw)-support which has a nonzero
coefficient.

Lemma 4.8 gives a shift f(t) of univariate polynomials. To get a constant shift, we substi-
tute (ndw)O(log logw) distinct values for t. As the degree in t is bounded by (ndw)O(log logw),
at least for one value of t, the non-zeroness of the particular coefficient will be preserved.

Now, we move on to the second step of Forbes, Shpilka and Saptharishi [9]. They give an
(ndw)O(log logw)-time hitting-set for an already O(logw)-concentrated commutative ROABP.
They do this by reducing the PIT question to an O(logw)-variate ROABP [9, Lemma 7.6].
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I Lemma 4.9 ([9]). Let C(x) ∈ F[x] be an n-variate, individual degree-d polynomial computed
by a width-w ROABP. Suppose C(x) has an (≤ `)-support monomial with a nonzero coefficient.
Then, there is a poly(n,w, d)-time computable m-variate map φ : x→ F[y1, y2, . . . , ym] such
that C(φ(x)) is a nonzero polynomial with degree < d2n4, where m = O(`2). Moreover,
C(φ(x)) is computed by a width-w, m-variate commutative ROABP.

From the results of [10, 2], we know that an m-variate, width-w commutative ROABP
has an (mdw)O(logm)-time hitting-set. Combining Lemma 4.8 and Lemma 4.9 with this fact
and putting m = O(log2 w), we get the following.

I Theorem 4.10. There is an (ndw)O(log logw)-time hitting-set for n-variate commutative
ROABPs with width w and individual degree d.

Concentration in Set-multilinear Circuits: Similar to Theorem 4.10, it would be interesting
to achieve the same time complexity for set-multilinear circuits. Recall from Section 2.2.3 that
a polynomial computed by a depth-3 set-multilinear circuit can be written as (1, 1, . . . , 1) ·D,
where D = D1(x1)D2(x2) · · ·Dq(xq) is a product of linear polynomials over a commutative
algebra. It is easy to see that the same arguments as for commutative ROABP work here.
Hence, we get the following result analogous to Lemma 4.8.

I Corollary 4.11. Given n, k, one can compute an n-tuple f(t) with cost (nk)O(log log k) such
that for any n-variate polynomial C(x) computed by a depth-3 set-multilinear circuit with
top fan-in k, C(x + f(t)) is O(log k)-concentrated.

However, it is not clear whether the second step of the hitting-set construction can
be done for set-multilinear circuits, i.e., finding a better hitting-set by assuming that the
polynomial is already concentrated (Lemma 4.9).

5 Discussion

For our first result (Theorem 3.6), there are three directions of improvement. Ideally, one
would like to have all three at once.
1. Find a similar hitting-set for the unknown-order case. In fact, we conjecture that the

same hitting-set (Lemma 3.5) works for the unknown-order case as well.
2. Get a hitting-set for all characteristic fields. It is easy to construct examples over small

characteristic fields where our hitting-set does not work.
3. Reduce the time complexity to polynomial time. To achieve this, it seems one has to do

away with the divide and conquer approach.
We conjecture a polynomial-time hitting-set for the unknown-order case in Conjecture 3.8.

As mentioned earlier, the ideas here can help in finding a better PRG for ROBPs. In
particular, it is a big open question to find an O(logn)-seed-length PRG for constant-width
ROBPs (analogous to Corollary 3.7).
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Abstract
Read-k oblivious algebraic branching programs are a natural generalization of the well-studied
model of read-once oblivious algebraic branching program (ROABPs). In this work, we give an
exponential lower bound of exp(n/kO(k)) on the width of any read-k oblivious ABP computing
some explicit multilinear polynomial f that is computed by a polynomial size depth-3 circuit. We
also study the polynomial identity testing (PIT) problem for this model and obtain a white-box
subexponential-time PIT algorithm. The algorithm runs in time 2Õ(n1−1/2k−1

) and needs white
box access only to know the order in which the variables appear in the ABP.
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1 Introduction

Algebraic complexity studies the complexity of syntactically computing polynomials using
arithmetic operations. The most natural model for computing polynomials is an algebraic
circuit, which is a directed, acyclic graph whose leaves are labeled by either variables
from {x1, . . . , xn} or elements from a field F, and whose internal nodes use the arithmetic
operations + and ×. Each node thus computes a polynomial in the natural way. The
associated complexity measures are the size (the number of wires) and the depth (the length
of a longest path from an input node to the output node) of the circuit. A circuit whose
underlying graph is a tree is called a formula.
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Another model of computation, whose power lies between that of circuits and formulas,
is that of an algebraic branching program (ABP). An ABP is a directed layered acyclic graph
with a source node and a sink node, whose edges are labeled by polynomials. An ABP
computes a polynomial in the following way. Every directed source-sink path computes the
polynomial that is obtained from taking the product of all edge labels along the path. The
polynomial computed by the ABP is the sum over all paths of those polynomials.1 Here,
another relevant complexity measure is the width of the program, which is the maximal
number of vertices in a layer (see Section 1.1 for the exact definitions of the models that are
considered in this work).

Two of the most important problems in algebraic complexity are (i) proving exponential
lower bounds for arithmetic circuits (i.e., proving that any circuit computing some explicit
polynomial f must be of exponential size), and (ii) giving an efficient deterministic algorithm
for the polynomial identity testing (PIT) problem. The latter is the problem of given an
arithmetic circuit, formula or ABP, computing a polynomial f , we have to decide whether f
is the identically zero polynomial. PIT has a simple randomized algorithm that follows from
the Schwartz-Zippel-DeMillo-Lipton lemma [59, 70, 17] that says that over a large enough
field, a non-zero polynomial will evaluate to a non-zero value on most points. Hence, in order
to decide whether f is zero it is enough to evaluate the circuit/formula/ABP on a random
point (which can be done efficiently).

We further note that the randomized algorithm described above only needs the ability
to evaluate f at a given point. Such algorithms are called black-box PIT algorithms. It is
readily seen that black-box algorithms are equivalent to producing a small hitting set, which
is a set H of evaluation points that has the property that H contains a non-zero evaluation
point for every non-zero f . Algorithms that are given the computation graph as input are
called white-box algorithms. Naturally, white-box access is much less restrictive and one
expects it will be easier to obtain better algorithms in this case.

Apart from being a very natural problem about arithmetic computation, PIT is one of
the most general problems for which an efficient randomized algorithm is known, but no
deterministic one. Indeed, many other randomized algorithms — e.g. parallel algorithms
for finding matching in graphs [36, 49] or algorithms for polynomial factorization [60, 43] —
reduce to PIT, in the sense that derandomization of PIT would derandomize those as well.

For more background on arithmetic circuits we refer the reader to the survey [62].

At first glance, the two problems described above seem rather different, as one is concerned
with proving lower bounds and the other with providing efficient algorithms. However, a
series of works uncovered an intricate web of connections between the two, both in the
white-box [34, 19] and in the black-box [30, 1] models. That is, derandomizing PIT implies
lower bounds for circuits (which gives a convincing explanation for why this problem is hard),
and conversely, an explicit hard polynomial gives a recipe to “fool” small arithmetic circuits
with respect to non-zeroness, in a very similar manner to the hardness-versus-randomness
paradigm in boolean complexity.

In light of the hardness of proving lower bounds for general circuits, research has focused
on trying to understand the effect that structural restrictions, like constant depth and
multilinearity, have on the expressive power of the model.

One research direction that has attracted a lot of attention considers very shallow depth
arithmetic circuits. Following Valiant et al. [67], Agrawal and Vinay gave a reduction from

1 This is analogous to boolean branching programs. There each path computes the AND of edge labels
and the output is the OR of all path-functions.
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general circuits (whose degree is at most the number of variables) to depth-4 circuits, that
maps subexponential size to subexponential size [3]. This reduction was later improved and
extended in [42, 65, 27]. In a breakthrough work Gupta et al. [28] proved exponential lower
bounds for computing the n× n determinant by depth-4 homogeneous formulas with bottom
fan-in O(

√
n). This is the kind of circuits one gets from the depth reduction. In the works

subsequent to [28], tighter lower bounds for homogeneous depth-4 circuits were proved both
for “hard” polynomials such as the permanent but also for easier polynomials such as the
determinant and the iterated matrix multiplication polynomial [39, 25, 37, 47, 46].

In parallel, a lot of research effort was also focused on PIT for small-depth circuits with
various restrictions such as bounded top fan-in or multilinearity [18, 41, 40, 58, 35, 57, 53].
Similar to the situation with lower bounds, a derandomization of PIT for depth-4 circuits (or,
depth-3 in certain cases) implies a derandomization of the general case [3, 27]. Shpilka and
Volkovich [61] studied the class of sums of read-once arithmetic formulas (here, a read-once
formula is an arithmetic formula in which each variable labels at most one node) and gave
polynomial identity tests for this model [61]. Later, Anderson, van Melkebeek and Volkovich
gave a PIT for multilinear read-k formulas [8].

Another line of work focused on read-once oblivious ABPs (ROABPs, and we again refer
to Section 1.1 for the exact definition). ROABPs were defined by Nisan [50] in the context of
proving lower bounds for non-commutative formulas. While this model seems a bit restrictive,
it was shown that derandomizing PIT for ROABPs implies derandomization of Noether’s
normalization lemma for certain important varieties [48, 23]. It is also not hard to show that
ROABPs are strictly stronger than read-once arithmetic formulas. Another motivation to
study this model is that it is the algebraic analog of a boolean read-once branching program,
which arises in the context of pseudorandomness for small-space computation [51]. Thus, one
could hope for cross-fertilization of ideas between the models that could facilitate progress
on both fronts.

Exponential lower bounds for ROABPs were known since their inception [50], and a
white-box polynomial-time PIT algorithm was given by Raz and Shpilka [54]. In the black-
box setting, hitting sets of quasipolynomial size were obtained in [24, 22, 2], where the last
two papers being applicable even if the order in which the variable are read is unknown (the
hitting of [22] was quasipolynomial sized for bounded individual degree, but the subsequent
hitting set of [2] is quasipolynomial sized for any d = poly(n)). This marks a striking
difference between the algebraic model and the boolean model. Indeed, in the boolean
domain, pseudorandom generators for read-once branching programs in unknown order are
much weaker, in terms of the seed length, than Nisan’s generator [51] which works only if the
order is known. Recently, Gurjar et al. obtained PIT algorithms for sum of ROABPs [29].

In this work, we consider the natural next step, which are read-k oblivious algebraic
branching programs. This model generalizes and extends both the models of ROABPs, of
read-k arithmetic formulas and of sum of ROABPs. We are able to prove exponential lower
bounds and to give subexponential-time PIT algorithms for this model. A summary of our
results appears in Section 1.2.

Prior to our work there were no results known for this model. Some results were known
for the more restricted model of a sum of k ROABPs (e.g. [29]), and we give more details on
those in Section 1.3.

1.1 Computational Models
In this section we define the computational models we consider in this work. We begin with
the definition of Algebraic Branching Programs (ABPs).
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I Definition 1.1 (Algebraic Branching Program, [50]). An Algebraic Branching Program
(ABP) is a directed acyclic graph with one vertex s of in-degree zero (the source) and one
vertex t of out-degree zero (the sink). The vertices of the graph are partitioned into layers
labeled 0, 1, . . . , L. Edges in the graph can only go from layer ` − 1 to layer `, for ` ∈ [L].
The source is the only vertex at layer 0 and the sink is the only vertex at layer L. Each edge
is labeled with a polynomial in the input variables. The width of an ABP is the maximum
number of nodes in any layer, and the size of an ABP is the number of vertices in the ABP.
The degree of an ABP is defined to be the maximal degree of the polynomial edge labels.

Each path from s to t computes the polynomial which is the product of the labels of the
path edges, and the ABP computes the sum, over all s to t paths, of such polynomials.

The expressive power of ABPs lies between arithmetic formulas and arithmetic circuits.
Every formula of size s can be simulated by an ABP of size s. Similarly, an ABP of width s
and depth d can be simulated by an arithmetic circuit of size O(sd2).

In this work we consider a restricted model of ABPs that we call read-k oblivious ABPs.
In an oblivious ABP, in each layer all the labels are univariate polynomials in the same
variable. Furthermore, we also restrict each variable to appear in at most k layers while still
allowing them to label any number of the edges in those layers.

I Definition 1.2 (Read-k Oblivious ABPs, [24]). An algebraic branching program is said to
be oblivious if for every layer `, all the edge labels in that layer are univariate polynomials in
a variable xi` .

Such a branching program is said to be a read-once oblivious ABP (ROABP) if the xi` ’s
are distinct variables. That is, each xi appears in the edge labels in at most one layer.

An oblivious ABP is said to be a read-k if each variable xi appears in the edge labels of
at most k layers.

I nremark 1.3. For the rest of the discussion, it will be convenient to assume that in a read-k
oblivious ABP, every variable x appears in exactly k layers. This assumption can be made
without loss of generality, since if x appears in k′ < k layers, we can add k − k′ “identity”
layers to the program that vacuously read x. This transformation does not increase the
width of the program and increases the length by no more than kn.

A special case of a read-k oblivious ABP is one where the ABP makes “multiple passes”
over the input.

I Definition 1.4 (k-pass ABPs). An oblivious ABP is said to be a k-pass ABP if there exists
a permutation π on n such that the ABP reads variables in the order

xπ(1), . . . , xπ(n), xπ(1), . . . , xπ(n), . . . , xπ(1), . . . , xπ(n)︸ ︷︷ ︸
k times

.

An oblivious ABP is said to be a k-pass varying-order ABP if there are permutations
π1, · · · , πk over n symbols such that the ABP reads variables in the order

xπ1(1), . . . , xπ1(n), xπ2(1), . . . , xπ2(n), . . . , xπk(1), . . . , xπk(n).

1.2 Our Results
We give various results about the class of read-k oblivious ABPs, including lower bounds,
PIT algorithms, and separations.



M. Anderson, M.A. Forbes, R. Saptharishi, A. Shpilka, and B. L. Volk 30:5

1.2.1 Lower Bounds
We show an explicit polynomial f such that any read-k oblivious ABP computing f , for
bounded k, must be of exponential width.

I Theorem 1.5 (proved in Section 4). There exists an explicit polynomial f , which is computed
by a depth-3 polynomial-size multilinear circuit, such that any read-k oblivious ABP computing
f must have width exp(n/kO(k)).

Prior to this work, there were no lower bounds for this model.

1.2.2 Identity Testing
For the class of k-pass ABPs, we provide a black-box PIT algorithm that runs in quasipoly-
nomial time.

I Theorem 1.6 (proved in Subsection 5.1). There exists a black-box PIT algorithm for the class
of n-variate, degree-d, and width-w k-pass oblivious ABPs that runs in time (nw2kd)O(logn).

For the more general class of read-k oblivious ABPs, we provide a white-box PIT algorithm
that runs in subexponential time.

I Theorem 1.7 (proved in Section 5). There exists a white-box PIT algorithm for
the class of n-variate, degree-d, and width-w read-k oblivious ABPs that runs in time
(nwd)Õ(n1−1/2k−1

)·exp(k2). Furthermore, white-box access is only needed to know the order in
which the variables are read. That is, given this order, we construct an explicit hitting set of
the above size for the class of read-k oblivious ABPs that read their variables in that order.

1.2.3 Separations
Recently, Kayal, Nair and Saha [38] constructed a polynomial f that can be computed by
a sum of two ROABPs in different orders, each of constant width, such that any ROABP
computing f must be of width 2Ω(n). Note that sum of two ROABPs is a special case of a
2-pass varying-order ABP.

In order to exemplify the strength of the multiple-reads model, we show a polynomial
that can be computed by a small 2-pass varying-order ABP, but cannot be computed by a
small sum of ROABPs of small width.

I Theorem 1.8 (proved in Section 3). There exists an explicit polynomial f on n2 variables
that is computed by a 2-pass varying-order ABP of constant width, but any sum of c ROABPs
computing f must be of width exp(Ω(

√
n/2c)).

1.3 Related Work

1.3.1 Algebraic Models
As mentioned before, Nisan [50] proved exponential lower bounds for ROABPs, and Raz and
Shpilka [54] gave a white-box polynomial-time PIT algorithm for this model.

Forbes and Shpilka [24] were the first to consider the black-box version of this problem, and
obtained a hitting set of size (nwd)O(logn), for n-variate, degree-d and width-w ROABPs, if
the order in which the variables are read is known in advance. Forbes, Shpilka and Saptharishi
[22] obtained a hitting set of size (nwd)O(d log(w) logn) for unknown order ROABPs. This was
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improved later by Agrawal et al. [2] who obtained a hitting set of size (nwd)O(logn) which
matches the parameters of the known-order case.

For higher number of reads, much less was known. Gurjar et al. [29] considered the model
of a sum of c ROABPs, and obtained a white-box algorithm that runs in time (ndw2c)O(c),
and a black-box algorithm that runs in time (ndw)O(c2c log(ndw)), so that the running time is
polynomial in the former case and quasipolynomial in the latter, when c is constant. A sum
of c ROABPs can be simulated by read-c oblivious ABPs, and we show (in Section 3) that
read-c oblivious ABPs are in fact strictly stronger.

Lower bounds against the model of sums of ROABPs were obtained in a recent work of
Arvind and Raja [9], who showed that for every constant ε > 0, if the permanent is computed
by a sum of n1/2−ε ROABPs, then at least one of the ROABPs must be of width 2nΩ(1) .

We also mention an earlier work of Jansen et al. [33], who also gave white-box and
black-box tests for the weaker model of sum of constantly many read-once ABPs, where in
their definition every variable is allowed to label only a single edge in the ABP.

Another model which is subsumed by oblivious read-k ABPs is that of bounded-read for-
mulas. Shpilka and Volkovich [61] constructed quasipolynomial-size hitting set for read-once
formulas, and Anderson, van Melkebeek and Volkovich [8] extended this result to multilinear
read-k formulas and obtained a polynomial-time white-box algorithm and quasipolynomial-
time black-box algorithm. The natural simulation of read-k formulas by ABPs produces an
ABP in which every variable labels at most k edges, and it can be seen that such programs
can be converted to read-k oblivious ABPs with only a polynomial overhead.

To conclude, earlier results apply only to restricted submodels of read-k oblivious ABPs.

1.3.2 Boolean Models

Let us now make a small detour and consider the boolean analogs for our models. A (boolean)
branching program is a directed acyclic graph with a source node s and two sink nodes, t0
and t1. Each internal node is labeled by a variable xi with two outgoing edges, labeled 0 and
1. The program computes a boolean function on an input (x1, . . . , xn) ∈ {0, 1}n by following
the corresponding path along the program.

A read-k-times boolean branching program is allowed to query every variable at most k
times along every path from the source to the sink. Note that this is more general than our
definition of read-k oblivious branching program. Further distinction is made in the boolean
case between semantic read-k branching programs, in which this restriction is enforced
only on paths that are consistent with some input, and between syntactic read-k branching
programs, in which this restriction applies for all paths (further note that in the read-once
case, there is no distinction between the syntactic and the semantic model).

Exponential lower bounds for read-once branching program for explicit functions are
known since the 1980’s [69, 10, 68], even for functions that are computed by a polynomial
size read-twice branching program.

Okolnishnikova [52], and Borodin, Razborov and Smolensky [14] extended these results
and obtained exponential lower bounds for syntactic read-k-times branching programs, by
giving an explicit boolean function f such that every syntactic read-k-times branching
program for f has size exp(n/2O(k)) (in fact, the lower bound in the second work also holds
for the stronger class of non-deterministic branching programs).

A strong separation result was obtain by Thathachar [66], who showed a hierarchy
theorem for syntactic read-k-times boolean branching program, by giving, for every k, a
boolean function f which is computed by a linear-size syntactic read-(k+ 1)-times branching
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program such that every syntactic read-k-times branching program computing f must have
size exp(Ω(n1/k/2O(k))).

The semantic model seemed more difficult, but nevertheless Ajtai [5] was able to prove
an exponential lower bound for semantic read-k-times programs (when k is constant), which
was extended by Beame at al. [11] to randomized branching programs.

PIT is the algebraic analog of constructing pseudorandom generators (PRGs) for boolean
models. A PRG for a class C of boolean circuits is an easily computable function G : {0, 1}` →
{0, 1}n, such that for any circuit C ∈ C, the probability distributions C(Un) and C(G(U`))
are ε-close (where Um is the uniform distribution over {0, 1}m).

Nisan [51] constructed a PRG for polynomial size read-once oblivious branching programs
with seed length O(log2 n). This was followed by a different construction with the same seed
length by Impagliazzo, Nisan and Wigderson [32]. However, for the constructions to work it
is crucial that the order in which the variables are read is known in advance.

Beyond that, and despite a large body of work devoted to this topic [12, 13, 15, 16, 26, 31,
44, 56, 63, 64], all the results for the unknown order case or for read-k oblivious branching
programs have much larger seed length, unless further structural restrictions are put on the
program (such as very small width, regularity, or being a permutation branching programs).
Specifically, we highlight that even for read-2 oblivious branching programs, the best result
is by Impagliazzo, Meka and Zuckerman [31] who gave a PRG with seed length s1/2+o(1)

for size s branching program (note that the the dependence here is on s rather than on n).
In particular, no non-trivial results are known for general polynomial size read-2 oblivious
boolean branching program.

1.4 Proof Technique
Before delving into the details of our proof, it is perhaps instructive to think again about
read-once branching programs. The main exploitable weakness of these branching programs
is that by the read-once property, their computation can be broken into two subcomputations
over disjoint variables, that communicate with each other only through a small “window” of
width w, the width of the branching program. If w is small it is natural to expect that upon
reaching the middle layer, the branching program must “forget” most of the computation of
the first half so that both subcomputations are “almost independent” in a way. This property
calls for a divide-and-conquer strategy, which was indeed, in very crude terms, the strategy
that was applied both in the boolean model [51] and in the algebraic model [24, 22, 2] (the
details in each case, of course, are much more complicated than this simplistic description).

1.4.1 Evaluation dimension and ROABPs
Unfortunately, the above intuition breaks down when we allow a variable to be read multiple
times, and this model requires a different strategy. Our main starting point is the observation
that, perhaps surprisingly, multiple “passes” over the input variables, in the same order,
do not provide the program with much additional power. That is, a k-pass ABP can be
simulated by a ROABP, with a blow-up which is exponential in k (hence, only a polynomial
blow-up, if k is constant).

This fact can be directly seen through analysis of the evaluation dimension measure.
For a polynomial f(x1, . . . , xn) ∈ F[x1, . . . , xn] and a subset of variables S, we denote by
evalS(f) the subspace of F[x1, . . . , xn] that consists of all the possible polynomials obtained
from f by fixing the variables in S to arbitrary elements in F. The evaluation dimension
of f with respect to a partition S, S, which is denoted evalDimS,S(f) is the dimension of
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evalS(f). Over large enough fields, this dimension equals the rank of the partial derivative
matrix associated with this partition, as defined by Nisan [50]. In many contexts, however, it
is easier to work with the evaluation dimension. We refer to Chapter 4 of [21] for a detailed
discussion on this equivalence, including formal proofs.

The importance of the evaluation dimension measure stems from the fact that f

can be computed by a width-w ROABP in the order x1, x2, . . . , xn, if and only if
evalDim{x1,...,xi},{xi+1,...,xn}(f) ≤ w for every 1 ≤ i ≤ n. Thus, this measure provides
a precise characterization for the amount of resources needed to compute a polynomial in
this model (see Theorem 2.4).

1.4.2 Evaluation dimension and k-pass oblivious ABPs
We are able to adapt the proof of the “only if” part of the above fact in order to show that if
f is computed by a k-pass oblivious ABP (that is, f reads the n variables k times in the
same order) then evalDim{x1,...,xi},{xi+1,...,xn}(f) ≤ w2k for every i ∈ [n]. That is, k passes
over the input in the same order cannot create many independent evaluations. Then, using
the “if” part of the equivalence, it follows that f can also be computed using a ROABP of
width w2k (see Lemma 2.6).

This discussion immediately implies a hitting set of the class of k-pass oblivious ABPs
of size (ndw2k)O(logn) (Theorem 1.6), as well as exponential lower bounds for this model,
simply by applying the results for ROABPs. It is still not clear, however, how to handle the
general case, since even read-2 oblivious ABPs are exponentially stronger than ROABPs
(recall that [38] give an exponential separation between a sum of two ROABPs and ROABPs,
and we separate 2-pass varying-order ABPs from sums of ROABPs).

1.4.3 PIT for read-k oblivious ABPs
Let us focus, for the time being, on the simplest instance of the more general problem,
by considering a 2-pass varying-order ABP computing a non-zero polynomial f . That
is, an ABP of width w that, without loss of generality, reads the variables in the order
x1, x2, . . . , xn, xπ(1), xπ(2), . . . , xπ(n), for some permutation π. As we mentioned, we cannot
possibly hope to simulate any such branching program by a small ROABP. We do, however,
find a large subset of the variables S, such that if we fix all the other variables arbitrarily
(or, equivalently, think of f as a polynomial in the variables of S over the field of rational
functions F(S)), the resulting polynomial has a small ROABP.

By the well-known Erdős–Szekeres Theorem [20], any sequence of distinct integers of length
n contains either a monotonically increasing subsequence of length

√
n, or a monotonically

decreasing subsequence of the same length. Applied to the sequence xπ(1), xπ(2), . . . , xπ(n)
(with the natural order x1 < x2 < · · · < xn) we get a monotone subsequence of variables,
which we might as well — for the sake of this exposition — assume to be monotonically
increasing (the case of a decreasing sequence is, somewhat counter-intuitively, even simpler).
Let S =

{
y1, . . . , y√n

}
be the set of

√
n elements that appear in this monotone subsequence.

Having fixed all the variables in S, we are left, by the monotonicity property, with a branching
program that reads the variables in the order y1, y2, . . . , y√n, y1, y2, . . . , y√n. Observe that
this is exactly a 2-pass branching program! Hence, the previous arguments apply here, and
if f is non-zero, we can efficiently find an assignment to the variables in S from F that keeps
the polynomial non-zero. Having reached this point, we can “resurrect” the variables in
S, but note that we are left with only n −

√
n variables. These are again computed by a

2-pass varying-order ABP, so me may apply the same argument repeatedly. After O(
√
n)



M. Anderson, M.A. Forbes, R. Saptharishi, A. Shpilka, and B. L. Volk 30:9

iterations we are guaranteed to find an assignment to all the variables on which f evaluates
to a non-zero output.

At each stage, we construct a hitting set for width-poly(w) ROABPs, of size (nwd)O(logn).
Since we take a cartesian product over O(

√
n) sets, the total size of the hitting set will

eventually be (nwd)Õ(
√
n), as promised by Theorem 1.7.

Generalizing the argument above for k-pass varying-order ABPs is fairly straightforward,
and is done using repeated applications of the Erdős–Szekeres Theorem to each of the k
sequences in order to obtain a subsequence of a subset of the variables S which is monotone in
every pass and has size only n1/2k−1 , which accounts for most of the loss in the parameters.2
The polynomial, restricted to variables in S, will be computed by a k-pass ABP.

In order to handle general read-k oblivious ABPs, we need more ideas. We observe that
after repeatedly applying the Erdős–Szekeres Theorem to the subsequence of every “read”,
we do not get a k-pass ABP as before, but rather k monotone sequences that are intertwined
together. We next show that by discarding more variables, but not too many, we get a
structure that we call a “k-regularly interleaving sequence”. This is a technical notion which
is presented in full details in Section 5, but the main point is that this definition allows
us to argue that the obtained read-k oblivious ABP has a (small) evaluation dimension
and therefore it can be simulated by a not-too-large ROABP. Obtaining this k-regularly
interleaving property is the main technical difficulty of the proof.

1.4.4 Lower bounds for read-k oblivious ABPs
The arguments above that give PIT algorithms already give lower bounds for read-k oblivious
ABPs. We have shown that if f is computed by a 2-pass varying-order ABP of width w,
then there exist a subset of

√
n variables S such that f is computed by an ROABP of width

w4 over F(S). This implies that if we pick f so that every restriction to
√
n variables has

an exponential (in
√
n) lower bound for ROABPs, we would receive a subexponential lower

bound for computing f in a 2-pass varying-order ABP. (These arguments, again, generalize
to read-k oblivious ABPs.)

In order to get an exponential lower bound (Theorem 1.5), we observe that we do not
need to bound the evaluation dimension for every prefix (namely, to show that a subset of the
variables is computed by a small ROABP), but only to show that the evaluation dimension
is small for some prefix. This is much easier to achieve since we do not need the order of the
reads to be “nicely-behaved” with respect to every prefix, but just with respect to a prefix.

In other words, we invoke a simple averaging argument to show that if f is computed
by a width-w read-k oblivious ABP, then there exist sets of variables S (of size at least
n/kO(k)) and T (of size at most n/100), so that whenever we fix the variables in T we get that
evalDimS,S(g) ≤ w2k, where g is any restriction of f obtained by fixing the variables in T .
We then construct an explicit polynomial whose evaluation dimension with respect to every
set remains large, even after arbitrarily fixing a small set of the variables (see Theorem 4.2).

1.4.5 Separating 2-pass ABPs from sums of ROABPs
In order to prove the separation with a 2-pass varying-order ABPs and sum of c ROABPs
(Theorem 1.8), we use a structural result proved by Gurjar et al. [29] that gives a way

2 This lower bound on the length of a subsequence which is monotone in every pass is the best possible.
This fact is attributed to de Bruijn (unpublished, see [45]), and the actual construction which shows
that the lower bound is tight appears in [6].
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to argue by induction on ROABPs. Given a polynomial f which is computed by a sum
h1 + h2 + · · ·hc of ROABPs of width w, we would like to find a related polynomial f ′ that is
computed by a sum of c− 1 ROABPs of perhaps slightly larger width. Here, the evaluation
dimension plays a role as well. The way to do this is to pick a non-trivial linear combination
of w + 1 partial evaluations of f that make h1 zero, which is possible since h1 has a small
evaluation dimension with respect to prefixes of variables corresponding to the order in which
the variables are read in h1. One can then show that, having eliminated h1, each of the other
summands can still be computed by a ROABP of width w(w + 1).

We provide a simple polynomial computed by a 2-pass varying-order ROABP whose partial
evaluations are complex enough in the sense that they contain many linear independent
evaluations and also a “scaled-down” version of the original polynomial as a projection.
It then follows by induction, using the above arguments, that this polynomial cannot be
computed by a small sum of small ROABPs (see Lemma 3.3).

1.5 Organization
We start with some preliminaries and useful facts about the evaluation dimension in Section 2
that almost all the results in this paper rely on. In Section 3, we present the separation
between the class of 2-pass varying order ABPs and sums of ROABPs. Following that, in
Section 4, we present an exponential lower bound for the class of general read-k oblivious
ABPs. Then in Section 5 we present the white-box PIT for read-k oblivious ABPs. Finally,
we conclude with some open problems in Section 6.

The proofs of some of the results are omitted from this version, and can be found in the
full version of the paper ([7]).

2 Preliminaries

2.1 Notation
For n ∈ N, we denote by [n] the set {1, 2, . . . , n}. We commonly denote by x a set of n
indeterminates {x1, . . . , xn}, where the number of indeterminates n is understood from the
context. As we often deal with prefixes of this set, we denote by x[i] the set {x1, . . . , xi},
and more generally, for any S ⊆ [n], xS denotes the set {xi | i ∈ S}.

For a polynomial f ∈ F[x], a set S ⊆ [n] and vector a = (a1, . . . , a|S|) ∈ F|S|, we denote
by f |xS=a the restriction of f obtained by fixing the j-th element in S to aj .

For a subset S ⊆ x of variables, we denote its complement by S. For disjoint subsets
S, T ⊆ [n] we denote by S t T their disjoint union.

In our PIT algorithm, we need to combine hitting sets for smaller sets of variables.
Hence, for a partition of [n], S1 t S2 t · · · t Sm = [n], and sets Hi ⊆ F|Si|, we denote by
HS1

1 × · · · × HSm
m the set of all vectors in Fn whose restriction to the Si coordinates is an

element of Hi, that is

HS1
1 × · · · × HSm

m = {v ∈ Fn | ∀i ∈ [m], v|Si
∈ Hi}.

We will also use the following theorem that gives a construction of a hitting set for
ROABPs.

I Theorem 2.1 (Hitting Set for ROABPs, [2]). There exists a hitting set H for the class of
n-variate polynomials computed by width-w individual-degree-d ROABPs of size (nwd)O(logn),
in any variable order. H can be constructed in time poly(|H|).
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2.2 ABPs and iterated matrix products
The computation of an ABP corresponds to iterated multiplication of matrices of polynomials.
In the case of oblivious branching programs, the ABP computes an iterated matrix product
of univariate matrices. We record this fact as a lemma, and refer to [21] for a proof and a
detailed discussion on this subject.

I Lemma 2.2. Suppose f is a polynomial computed by an oblivious ABP A of width w and
length `, that reads the variables in some order xi1 , xi2 , . . . , xi` . Then f is the (1, 1) entry of
a matrix of the form

A1(xi1) ·A2(xi2) · · ·A`(xi`)

where for every j ∈ [`], Aj ∈ F[xij ]w×w is a w×w matrix in which each entry is a univariate
polynomial in xij .

2.3 Evaluation dimension and ROABPs
We now define a complexity measure for polynomials that we will use frequently when
analyzing read-k oblivious ABPs.

I Definition 2.3 (Evaluation dimension). Let f ∈ F[x1, . . . , xn] be a polynomial, and S =
{xi1 , . . . , xir} be subset of variables. We define evalS(f) to be

evalS(f) = span {f |xS=a : a ∈ Fr} ⊆ F[S],

which is the space of polynomials spanned by all partial evaluations of the S variables in f .
If x = S t T t R we define the evaluation dimension of f with respect to S t T over

F(xR), which shall be denoted by evalDimS,T ;R(f), as the dimension of the space evalS(f)
when taken over the field of rational functions F(xR). That is, we first “move” the variables
xR into the field and treat them as constants, and then consider the dimension of evalS(f)
over F(xR).

In the special case where R = ∅, we shall just use the notation evalDimS,T (f).

If |F| > deg(f), then evalDimS,T (f) is the rank of the partial derivative matrix with
respect to S,T , as defined by Nisan [50]. The rows of the partial derivative matrix are indexed
by monomials mS in S and its columns are indexed by monomials mT in T . The (mS ,mT )
entry is the coefficient of mSmT in the polynomial f . Although these two perspectives are
equivalent, the formulation via evaluations is sometimes easier to work with. The evaluation
dimension measure is useful when arguing about ROABPs since it characterizes the width
needed to compute a polynomial f using a ROABP.

I Theorem 2.4 ([50], and see also [21]). Let f be a polynomial on x = {x1, . . . , xn} and
suppose for every i ∈ [n] we have evalDimx[i],x[i](f) ≤ w. Then, there is a ROABP of width
w in the order x1, . . . , xn that computes f .

Conversely, if evalDimx[i],x[i](f) = w, then in any ROABP that computes f in the order
x1, x2, . . . , xn, the width of the i-th layer must be at least w.

Let us give an example of a polynomial which has large evaluation dimension with respect
to a specific subset. This example will be helpful not only because it is simple to argue
about, but also because all of our constructions of hard polynomials later on will ultimately
be based on a reduction to this case.
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I Lemma 2.5. Let f(u,v,w) be a polynomial of the form

f =
(

t∏
i=1

(`i(v) + `′i(u))
)
· g(u,w),

where:
1. For every a ∈ F|u|, it holds that g|u=a = g(a,w) 6≡ 0.
2. {`i}ti=1 is a set of linearly-independent linear functions , and so is {`′i}

t
i=1.

Then evalDimu,vtw(f) ≥ 2t.

The proof of Lemma 2.5 appears in the full version of the paper [7].
The following simple lemma is an illustration of using the evaluation dimension of a

polynomial to obtain a small ROABP for that polynomial.

I Lemma 2.6. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a k-pass ABP of width
w, according to the order π. Then f can be computed by a width-w2k read-once ABP in the
order π.

Proof. Let A be the k-pass ABP computing f . We may assume without loss of generality
that the k passes of A read the variables in the order x1, . . . , xn. Recall that for any i ∈ [n],
we denote x[i] = {x1, . . . , xi}. By Theorem 2.4, it is enough to show that for any i ∈ [n],

evalDimx[i],x[i] ≤ w
2k.

By the assumption on f and by Lemma 2.2, for every i ∈ [n] and j ∈ [k] there exists a matrix
M i,j ∈ Fw×w such that the entries of M i,j are univariate polynomials in xi and

f =
(
M1,1(x1)M2,1(x2) · · ·Mn,1(xn)M1,2(x1)M2,2(x2) · · ·Mn,k(xn)

)
1,1 .

Fix i ∈ [n], and consider any assignment of the form x[i] = a for a = (a1, . . . , ai) ∈ Fi.
Having fixed x[i], we get that for some k matrices N1(a), . . . , Nk(a), that depend on a,

f |x[i]=a =
(
N1(a) ·M i+1,1(xi+1) · · ·Mn,1(xn) ·N2(a) ·M i+1,2(xi+1)Mn,2(xn)

· · · Nk(a) ·M i+1,k(xi+1) · · ·Mn,k(xn)
)

1,1 . (1)

It follows that any polynomial g(xi+1, . . . , xn) ∈ evalx[i](f) is completely determined by
N1, . . . , Nk which have w2 entries each. More precisely, let {B1, . . . , Bw2} be a basis for
Fw×w. For each j ∈ [k], we can write Nj(a) ∈ Fw×w in (1) as a linear combination of
{B1, . . . , Bw2}. Then, by expanding the matrix product in (1), we see that every polynomial
of the form f |x[i]=a (and as a consequence, every polynomial in evalx[i](f)) is spanned by
the w2k polynomials of the form(

Bσ1 ·M i+1,1(xi+1) · · ·Mn,1(xn) ·Bσ2 ·M i+1,2(xi+1)Mn,2(xn) · · ·
Bσk
·M i+1,k(xi+1) · · ·Mn,k(xn)

)
1,1

for σ1, . . . , σk ∈ [w2], which implies that evalDimx[i],x[i](f) ≤ w2k.
By Theorem 2.4, the claim follows. J

In fact, the proof of Lemma 2.6 permits a slight generalization of the lemma, by requiring
weaker assumptions on the ABP, which is captured by the following definition.
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x1 x2 x3 x4 x1 x2 x1 x2 x3 x4 x3 x4

Figure 1 An ABP that reads the variables in this (left-to-right) order is a read-3 ABP that has
the 2-gap property with respect to {x1, x2}.

I Definition 2.7. Let A be an ABP that computes a polynomial f ∈ F[x1, . . . , xn]. We
say that A has the k-gap property with respect to {x1, . . . , xi}, if there exist k matri-
ces M1, . . . ,Mk ∈ Fw×w[xi+1, . . . , xn] such that for every a ∈ Fi, there exists k matrices
N1(a), . . . , Nk(a) ∈ Fw×w such that

f |xi=a =
(
N1(a) ·M1(xi+1, . . . , xn) ·N2(a) ·M2(xi+1, . . . , xn)

· · · Nk(a) ·Mk(xi+1, . . . , xn)
)

1,1 . (2)

A is said to simply have the k-gap property if it has this property with respect to x[i], for
every i ∈ [n].

Figure 1 provides a pictorial explanation for the choice of this terminology.
Using the exact same arguments as in the proof of Lemma 2.6, we obtain the following

lemma.

I Lemma 2.8. Let f ∈ F[x1, . . . , xn] be a polynomial computed by an ABP of width w with
the k-gap property. Then f can be computed by a width-w2k read-once ABP.

3 Separating 2-pass ABPs from sums of ROABPs

Recall that every sum of c ROABPs can be realized by an oblivious read-c ABP. In order to
motivate our study of read-k oblivious ABP, we begin by showing a polynomial that can be
computed by a constant-width, 2-pass varying-order ABP, and yet cannot be computed by a
small sum of polynomial-size ROABPs. Thus, even a weak, but non-trivial, form of read-k
oblivious ABPs, for k = 2, is already stronger than sums of ROABPs.

Suppose x = {x1,1, . . . , xn,n} is a set of n2 variables. It is useful to think of x as an n×n
matrix X such that xi,j appears in the (i, j)-th entry. For every m ∈ [n], define

rowSumm =
∑
j

xm,j and colSumm =
∑
i

xi,m.

Let

Pn(x) =
(

n∏
i=1

rowSumi

)
·

 n∏
j=1

colSumj

 . (3)

Observe that for all i, j, rowSumi and colSumj can be computed by width-2 ROABPs.
Moreover, both

∏n
i=1 rowSumi and

∏n
j=1 colSumj can be as well. Indeed, their product Pn

is computed by a 2-pass varying-order ABP.

I Theorem 3.1. Let Pn(x1,1, . . . , xn,n) be the n2-variate polynomial defined in (3). For
every c > 0, any sum of c ROABPs that computes it must have width exp(

√
n/2c).

The proof, which can be found in the full version of this paper, exploits the structure of
a sum of few ROABPs that Gurjar, Korwar, Saxena and Thierauf [29] used for constructing
hitting sets. The following lemma is essentially present implicitly in their result.
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I Lemma 3.2 ([29]). Let f = h1+· · ·+hc where each hi is computed by a width-w ROABP in
possibly different orders. Then, for every 0 < t < n, there exists a subset S of t variables such
that for every set of w + 1 partial assignments a1, . . . ,aw+1 ∈ Ft, there is some non-trivial
linear combination of {f |xS=ai}

t
i=1 that is computable by a sum of c− 1 ROABPs of width

w(w + 1) in possibly different orders. That is, there exists α1, . . . , αw+1 ∈ F, not all zero,
such that

w+1∑
i=1

αi · f |xS=ai
= f ′1 + · · ·+ f ′c−1

where each f ′i is a ROABP of width at most w(w + 1).

The following lemma shows that the polynomial Pn defined in (3) has many linearly
independent partial evaluations.

I Lemma 3.3. Let S be any subset of x = {x1,1, . . . , xn,n} of size t < n. Then there
exists r ≥ 2

√
t partial evaluations a1, · · · ,ar ∈ {0, 1}t ⊆ Ft such that the polynomials

{Pn|xS=a1 , . . . , Pn|xS=ar} are linearly independent.
Furthermore, for any g ∈ span{Pn|xS=ai

| i ∈ [r]}, there is a set y ⊆ x \S of (n− t− 1)2

variables, such that Pn−t−1(y) can be obtained as a projection of g: namely, for z = x\(y∪S)
we can find a ∈ Fn−|S|−|y| such that g|z=a = Pn−t−1(y).

4 Lower bounds for read-k oblivious ABPs

In this section we show an explicit polynomial that has a polynomial-size depth-3 multilinear
circuit and yet cannot be computed efficiently by a read-k oblivious ABP.

4.1 An explicit polynomial with large evaluation dimension
Raz and Yehudayoff [55] constructed an explicit multilinear polynomial f(x) with evaluation
dimension as high as possible with respect to any partition S, S. Our requirements are
slightly different, as we would need some “robustness” property, namely, we would want to
argue that the evaluation dimension of the polynomial remains high even when we fix a
small constant fraction (say, n/10) of the variables. Later, in Theorem 4.3, we show why
this property implies hardness for read-k oblivious ABPs.

Our construction is inspired by a recent similar construction of Kayal, Nair and Saha [38].
Consider the complete bipartite graph Kn,n with n vertices on each side. We shall label

the left vertices as x1, . . . , xn and the right vertices as y1, · · · , yn. We can write Kn,n as
a union of n edge-disjoint perfect matchings M1 ∪ · · · ∪Mn, where for every i ∈ [n], Mi

contains all edges of the form (xj , yj+i mod n) for j ∈ [n]. Define the polynomial Qn as

Qn(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) =
n∑
i=1

zi
∏

(j,k)∈Mi

(xj + yk)

=
n∑
i=1

zi

n∏
j=1

(xj + yj+i mod n). (4)

By its definition, it is clear that Qn is computed by a depth-3 polynomial-size circuit.
We now show that even if we fix a small fraction of the variables in x ∪ y, Qn retains a large
evaluation dimension with respect to any partition of the variables we have not fixed.
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I Lemma 4.1. Let S, T be two disjoint subsets of x ∪ y such that |S t T | ≥ 0.9 · 2n. Let
R = x ∪ y \ (S ∪ T ). Then,

evalDimS,T ;R(Qn) ≥ exp(Ω(min(|S|, |T |))).

Proof. Assume without loss of generality that |S| ≤ |T |, and that SL := S ∩ x satisfies
|SL| ≥ |S|/2. Since (S ∪ T ) ∩ y ≥ 0.8n, |T ∩ y| ≥ (0.8n − |S|/2) ≥ 0.3n. Thus, there are
Ω(n · |S|) edges between S and T in Kn,n. By averaging, some matching Mi must include at
least Ω(|S|) of these edges. Consider the polynomial fi =

∏
(j,k)∈Mi

(xj + yk). As Ω(|S|) of
the edges in Mi go between S and T , we can write

fi =
t∏

m=1
(um + vm) · g(w),

where for every m ∈ [t] we have that um ∈ S, vm ∈ T , and t = Ω(|S|) (we have “pushed” to
g all the factors that correspond to edges in the matching which do not go between S and T ).

By Lemma 2.5, evalDimS,T ;R(fi) ≥ 2Ω(|S|). Since fi is a projection of Qn (under the
setting zi = 1 and zj = 0 for all j 6= i) it follows that evalDimS,T ;R(Qn) ≥ evalDimS,T ;R(fi) ≥
exp (Ω(|S|)). J

4.2 Upper bound on evaluation dimension for read-k oblivious ABPs
In this section we show that if f is computed by a read-k oblivious ABP of width w, then we
can fix a “small” subset of variables such that the remaining variables can be partitioned into
two carefully chosen “large” subsets, under which the evaluation dimension is at most w2k.
We then apply this result to the polynomial Qn (from (4)) to show that if Qn is computed
by a width-w read-k oblivious ABP, then w ≥ exp(n/kO(k)).

I Theorem 4.2. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a width-w read-k
oblivious ABP. Then, there exist three disjoint subsets U t V tW = [n], such that
1. |U |, |V | ≥ n/kO(k),
2. |W | ≤ n/10, and
3. evalDimU,V ;W (f) ≤ w2k.

Proof. Consider an ABP A that computes f . Divide the kn layers into r equal-sized
contiguous blocks of kn/r layers (where r shall be set shortly). For each variable, consider
the (at most) k blocks that its k reads fall in (if the number of such blocks is strictly smaller
than k, we can fill up to k blocks arbitrarily). By a simple averaging, there must exist k
blocks B1, . . . , Bk that contain all k reads of a set U of at least n/

(
r
k

)
variables. Let W be

the set of variables in B1 ∪B2 ∪ · · · ∪Bk that are not in U , and V be the set of all remaining
variables. As each block is of size kn/r, we have that |W | ≤ k2n/r, which is at most n/10 if
we set r = 10k2. Observe that |V | ≥ n− k2n/r ≥ 9n/10. Let us ignore the variables in W
by considering the ABP over the field F(xW ).

We now claim that evalDimU,V ;W (f) ≤ w2k. Having moved the variables inW to the field,
each of the r blocks is either entirely contained in U or entirely contained in V . Therefore,
since the reads comprise of at most k alternating blocks of variables in U and V , the resulting
branching program has the k-gap property with respect to U . It follows immediately from
Lemma 2.8 that evalDimU,V ;W (f) is at most w2k. J

We now show that Qn (defined in (4)) is hard to compute for read-k oblivious ABPs.
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I Theorem 4.3. Let A be a width-w, read-k oblivious ABP computing the polynomial Qn
(defined in (4)). Then w ≥ exp(n/kO(k)).

Proof. First observe that we can eliminate the z variables by considering the ABP over the
field F(z) so that it now computes a polynomial in the variables x ∪ y.

By Theorem 4.2, there exists a partition U t V tW of x ∪ y with the prescribed sizes as
in the statement of the theorem, such that evalDimU,V ;W (Qn) ≤ w2k.

Since |W | ≤ 2n/10, Lemma 4.1 implies that evalDimU,V ;W (f) = exp(Ω(min(|U |, |V |))).
Using the fact that min(|U |, |V |) ≥ n/kO(k), we get that w2k ≥ exp(n/kO(k)), which

implies w ≥ exp(n/kO(k)) as well. J

5 Identity tests for read-k oblivious ABPs

5.1 Identity tests for k-pass ABPs
In this section we give PIT algorithms for the class of read-k oblivious ABPs. First, observe
that Lemma 2.6 immediately implies a black-box algorithm for the subclass of k-pass ABPs,
as those can be simulated efficiently by a ROABP.

I Corollary 5.1. There is a hitting set of size (ndw)O(k logn) for the class of n-variate k-pass
ABPs of width w and degree d.

Proof. Follows directly from Lemma 2.6 and the (ndw′)O(logn)-sized hitting set for width
w′ read-once ABPs from Theorem 2.1. J

We now turn to general read-k oblivious ABPs. We again omit the proofs, which can be
found in [7].

5.2 From read-k to per-read-monotone and regularly-interleaving
sequences

In this section we show that given any read-k oblivious ABP over x = {x1, . . . , xn} computing
a polynomial f , we can find a “large” subset of variables y ⊆ x such that f has a “small”
ROABP when we think of f as a polynomial in the y variables over the field F(y). This
process, in fact, involves only finding the correct subset y (without rewiring any part of the
ABP). Therefore, in order to avoid technical overhead it is useful to think in terms sequences
over abstract sets of elements, which correspond to the order in which the ABP reads the
variables, and not in terms of variables in branching programs.

Let X be a set, and let n = |X|. Let S ∈ Xm be an sequence of elements from X. We say
S is read-k if each element x ∈ X occurs k times in S (in this case we also have m = nk). As
mentioned in Remark 1.3, we will restrict ourselves to considering sequences that are read-k
for some k. For i ∈ [k], we denote by S(i) the subsequence of S which consists of the i-th
occurrences of elements in X. That is, S(i) is a permutation of the elements of X, according
to the order in which they appear in S for the i-th time. Similarly, for i 6= j ∈ [k], we use
the notation S(i,j) for the subsequence of S which consists of the i-th and j-th occurrences
of elements in X.

For a subset X ′ ⊆ X, let S|X′ denote the restriction of S to the set X ′ that is the result
of dropping all elements of X \X ′ from S. Thus, S|X′ ∈ Xm′ for m′ = |X ′|k.

In order to save on excessive notation and multiple indexing, we will assume without loss
of generality that S(1) = (x1, . . . , xn), that is, that the variables in x are already labeled
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according to the order of their first occurrence. This can be ensured by renaming variables,
if necessary.

Next we define a special subclass of read-k sequences which we work with throughout
this section.

I Definition 5.2. Let S ∈ Xnk be a read-k sequence. We say S is per-read-monotone if
for every i ∈ [k], S(i) is monotone (that is, the variables all appear in either increasing or
decreasing order).

The following well-known theorem asserts that any long enough sequence contains a large
monotone subsequence:

I Theorem 5.3 (Erdős–Szekeres Theorem, [20, 4]). Let S be a sequence of distinct integers
of length at least m2 + 1. Then, there exists a monotonically increasing subsequence of S of
length m+ 1, or a monotonically decreasing subsequence of S of length m+ 1.

As an immediate corollary of Theorem 5.3, we get the following lemma:

I Lemma 5.4. Let S be a read-2 sequence over X = {x1, . . . , xn}. Then, there exists a
subset X ′ ⊆ X with |X ′| ≥

√
n− 1 + 1 ≥

√
n such that the subsequence S′ = S|X′ is

per-read-monotone.

We can generalize Lemma 5.4 to read-k sequences, at the cost of settling for a weaker
lower bound of only n1/2k−1 on the length of the subsequence:

I Lemma 5.5. Let S be a read-k sequence over X = {x1, . . . , xn}. Then, there exists a subset
X ′ ⊆ X with |X ′| ≥ n1/2k−1 such that the subsequence S′ = S|X′ is per-read-monotone.

We now show how to prune per-read-monotone read-2 sequences even further, trading a
constant fraction of their size for stronger structural properties. We begin by stating the
property we look for.

I Definition 5.6. Let S be a read-2 sequence over a set of elements X. We say S is 2-
regularly-interleaving if there exists a partition of X to blocks {Xi}i∈[t] such that for every
i ∈ [t]:

For every c ∈ {1, 2}, all the c-th occurrences of the block Xi appear consecutively in S.
The interval containing the second occurrences of the block Xi immediately follows the
interval containing the first occurrences of Xi.

A read-k sequence S is said to be k-regularly-interleaving if for any i 6= j ∈ [k], the subsequence
S(i,j) is 2-regularly-interleaving. That is, S is k-regularly-interleaving if restricted to any
two reads it is 2-regularly-interleaving.

To get a better intuitive sense of the definition, the reader may consult Figure 2.
An example of a read-k sequence that is k-regularly interleaving is 121212343456563456.

The following lemma is used to simplify some of the later arguments. It shows that in
a read-k per-read-monotone sequence, the monotonically increasing subsequences cannot
intersect with monotonically decreasing subsequences.

I Lemma 5.7. Let S be a read-k, per-read-monotone sequence over X = {x1, . . . , xn}.
Suppose S(1) is monotonically increasing. Then we can write S as a concatenation S =
(T1, T2, . . . , Tt), such that:
1. for every j ∈ [t], Tj is a read-kj sequence for kj ≤ k.
2. for every i ∈ [k] there exists j ∈ [t] so that S(i) is contained in Tj.
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1st occurrences of X1

2nd occurrences of X1

1st occurrences of X2

2nd occurrences of X2

· · ·

1st occurrences of Xt

2nd occurrences of Xt

Figure 2 A 2-regularly-interleaving sequence.

3. for every odd j ∈ [t], all the subsequences S(i) that appear in Tj are monotonically
increasing, and for any even j, all are monotonically decreasing.

4. for every j ∈ [t− 1], the last element that appears in Tj equals the first element appearing
in Tj+1, and this element can be either xn (if Tj contains monotonically increasing
subsequences and Tj+1 contains monotonically decreasing subsequences) or x1 (in the
opposite case).

In other words, we can partition S into t disjoint contiguous subsequences, such that every
S(i) is completely contained in exactly one subsequence, and in every subsequence, either all
reads are increasing or all reads are decreasing, with the pattern alternating.

The following lemma shows that given a 2-read per-read-monotone sequence, we can find
a large subsequence which is also 2-regularly interleaving.

I Lemma 5.8. Let S be a read-2 per-read-monotone sequence over X = {x1, . . . , xs}. Then
there is a subset X ′ ⊆ X with |X ′| ≥ s/3 such that the sequence S′ = S|X′ is per-read-
monotone and 2-regularly-interleaving.

Viewed as an algorithmic process, the proof of Lemma 5.8 is a procedure that, given a
per-read-monotone sequence S over X, decides which elements of X should be erased in
order to be left with a 2-regular-interleaving sequence S′ = S|X′ . It can also be noted that
both properties of being per-read-monotone and being 2-regularly interleaving are downward-
closed, in the sense that if we now take a subset X ′′ ⊆ X ′ and look at S′′ = S′|X′′ , it will
maintain both properties. Hence, if we are given a read-k per-read-monotone sequence S, by
repeatedly applying the algorithmic process of Lemma 5.8 separately on each subsequence
S(i,j) for i 6= j ∈ [k] (maintaining a constant fraction of the elements on each application),
we get the following corollary:

I Corollary 5.9. Let S be a read-k per-read-monotone sequence over X = {x1, . . . , xs}.
Then there is a subset X ′ ⊆ X with |X ′| ≥ s/3k2 such that the sequence S′ = S|X′ is
per-read-monotone and k-regularly-interleaving.

5.3 ROABPs for regularly interleaving sequences
In this section we show that if a polynomial f is computed by a small-width read-k oblivious
ABP A such that the sequence S of the reads in A is per-read-monotone and k-regularly-
interleaving, then f can in fact also be computed by a small-width ROABP A′ (in the same
order as S(1)). We show this by proving that A has the k-gap property with respect to that
order, and then applying Lemma 2.8.

I Lemma 5.10. Let f ∈ F[x1, . . . , xn] be computed by a read-k oblivious ABP A of width w,
and let S be the sequence of variables read by A. Suppose further that S is per-read-monotone
(with respect to the order x1 < x2 < · · · < xn) and k-regularly-interleaving. Then A has the
k-gap property.
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It now immediately follows that any read-k oblivious ABP the reads the variables in a
per-read-monotone and k-regularly-interleaving fashion can be simulated by a small ROABP.
We record this fact in the following corollary.

I Corollary 5.11. Let f ∈ F[x1, . . . , xn] be computed by a read-k oblivious ABP A of width w,
and let S be the sequence of variables read by A. Suppose further that S is per-read-monotone
(with respect to the order x1 < x2 < · · · < xn) and k-regularly-interleaving. Then for any
i ∈ [n], evalDimx[i],x[i](f) ≤ w2k. In particular, f is computed by a ROABP of width at most
w2k in the variable order x1, x2, . . . , xn.

5.4 Identity testing for read-k oblivious ABPs
In this section we give our white-box identity testing algorithm for read-k oblivious ABPs.
Before giving the proof, let us first give an overview of the algorithm for the slightly simpler
read-2 case.

Given a read-2 oblivious ABP A with read sequence S which computes a polynomial f ∈
F[x1, . . . , xn], Lemma 5.8 shows how to find a read-2 subsequence on a set y = {y1, . . . , y√n}
of roughly

√
n variables, such that when we think of f as a polynomial in the y variables over

the field F(y), it has a small ROABP. We can then use a hitting set for ROABPs in order to
find an assignment (from F) to the y variables that keeps the polynomial non-zero. Having
done that, we are left with a non-zero polynomial over a smaller set of n −

√
n variables,

which is again computed by a read-2 oblivious ABP, so we may repeat this process. After at
most O(

√
n) iterations we find an assignment for all the variables that keeps the polynomial

non-zero. We note that a very similar “hybrid argument” that uses a hitting set for ROABPs
appears both in [2] and [53].

The argument for read-k is identical, apart from the loss in the parameters incurred by
Corollary 5.9.

I Theorem 5.12. There is a white-box polynomial identity test for read-k oblivious ABPs of
width w and degree d on n variables that runs in time poly(n,w, d)n1−1/2k−1

exp(k2) polylog(n).
Furthermore, given only the order in which the variables are read, we can con-
struct a hitting set for such ABPs that read their variables in this order, of size
poly(n,w, d)n1−1/2k−1

exp(k2) polylog(n).

Our PIT algorithm is presented in Algorithm 1.

Algorithm 1 : PIT for read-k oblivious ABPs
Input: a read-k oblivious ABP A computing a polynomial f ∈ F[x1, . . . , xn].

1: x = {x1, . . . , xn}, i = 1
2: while x 6= ∅ do
3: Pick a subset yi ⊆ x of size at least |x|1−1/2k−1

/3k2 , such that the subsequence that
reads only the yi variables is per-read-monotone and k-regularly-interleaving (such a
subset exists by Lemma 5.5 and Corollary 5.9).

4: Construct a set Hi ⊆ F|yi| of size (nw2kd)O(logn) that hits ROABPs of width w2k in
the yi variables, using Theorem 2.1.

5: x← x \ yi, i← i+ 1
6: end while
7: return the set H = Hy1

1 × · · · × H
yt

t (where t is the number of iterations of the loop).
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6 Conclusions and Open Problems

In this work, we have obtained the first non-trivial lower bounds and identity testing
algorithms for read-k oblivious ABPs. We briefly mention some directions that we find worth
pursuing for future research.

The most natural open problem we pose is designing an identity testing algorithm for
read-k oblivious ABPs with better running time than the algorithm we presented in this
paper. Since for ROABPs (the k = 1 case) there exist a white-box polynomial time and
black-box quasipolynomial-time algorithms, it seems reasonable to hope that the deterioration
in the parameters would not be as sharp when k > 1 (the flip side of this argument, however,
is the relative lack of progress in the analogous question in the boolean domain).

Another open problem is obtaining a complete black-box test for read-k oblivious ABPs,
in any variable order (that is, without knowing the order in which the variable appear). As
we mentioned, for ROABPs there exist a black-box hitting set that works for any variable
order [2], whose size is essentially the same as that of the hitting set that was obtained earlier
for the known order case [24]. In our construction, we need to know the order so that we can
pick the per-read-monotone and k-regularly-interleaving sequences to which we assign the
hitting sets for ROABPs, and simply “guessing” those sets would require exponential time.
Still, given the progress in obtaining hitting sets in any order for ROABPs, it might be the
case that such a construction could follow from our strategy, even using known techniques.

Finally, we turn back to boolean complexity, and ask whether our ideas and techniques
can be adapted to attack the problem of constructing pseudorandom generators for read-k
oblivious boolean branching program with sublinear seed length.
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Abstract
Reconstruction of arithmetic circuits has been heavily studied in the past few years and has
connections to proving lower bounds and deterministic identity testing. In this paper we present
a polynomial time randomized algorithm for reconstructing ΣΠΣ(2) circuits over F (char(F) = 0),
i.e. depth−3 circuits with fan-in 2 at the top addition gate and having coefficients from a field
of characteristic 0.

The algorithm needs only a blackbox query access to the polynomial f ∈ F[x1, . . . , xn] of
degree d, computable by a ΣΠΣ(2) circuit C. In addition, we assume that the “simple rank” of
this polynomial (essential number of variables after removing the gcd of the two multiplication
gates) is bigger than a fixed constant. Our algorithm runs in time poly(n, d) and returns an
equivalent ΣΠΣ(2) circuit (with high probability).

The problem of reconstructing ΣΠΣ(2) circuits over finite fields was first proposed by Shpilka
[24]. The generalization to ΣΠΣ(k) circuits, k = O(1) (over finite fields) was addressed by Karnin
and Shpilka in [15]. The techniques in these previous involve iterating over all objects of certain
kinds over the ambient field and thus the running time depends on the size of the field F. Their
reconstruction algorithm uses lower bounds on the lengths of Linear Locally Decodable Codes
with 2 queries. In our settings, such ideas immediately pose a problem and we need new ideas
to handle the case of the characteristic 0 field F.

Our main techniques are based on the use of Quantitative Sylvester Gallai Theorems from
the work of Barak et al. [3] to find a small collection of “nice” subspaces to project onto. The
heart of our paper lies in subtle applications of the Quantitative Sylvester Gallai theorems to
prove why projections w.r.t. the “nice” subspaces can be “glued”. We also use Brill’s Equations
from [8] to construct a small set of candidate linear forms (containing linear forms from both
gates). Another important technique which comes very handy is the polynomial time randomized
algorithm for factoring multivariate polynomials given by Kaltofen [14].

1998 ACM Subject Classification G.1.1 Interpolation, I.4.5 Reconstruction

Keywords and phrases Reconstruction, ΣΠΣ(2), Sylvester-Gallai, Brill’s Equations

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.31

1 Introduction

The last few years have seen significant progress towards interesting problems dealing with
arithmetic circuits. Some of these problems include Deterministic Polynomial Identity Testing,
Reconstruction of Circuits and recently Lower Bounds for Arithmetic Circuits. There has
also been work connecting these three different aspects. In this paper we will primarily be
concerned with the reconstruction problem. Even though it’s connections to Identity Testing
and Lower Bounds are very exciting, the problem in itself has drawn a lot of attention
because of elegant techniques and connections to learning. The strongest version of the
problem requires that for any f ∈ F[x1, . . . , xn] with blackbox access given one wants to
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construct (roughly) most succint representation i.e. the smallest possible arithmetic circuit
computing the polynomial. This general problem appears to be very hard. Most of the work
done has dealt with some special type of polynomials i.e. the ones which exhibit constant
depth circuits with alternating addition and multiplication gates. Our result adds to this by
looking at polynomials computed by circuits of this type (alternating addition/multiplication
gates but of depth 3). Our circuits will have variables at the leaves, operations (+,×) at
the gates and scalars at the edges. We also assume that the top gate has only two children
and the “simple rank” of this polynomial (essential number of variables after removing the
gcd of the two multiplication gates) is bigger than a constant. The bottom most layer has
addition gates and so computes linear forms, the middle layer then multiplies these linear
forms together and the top layer adds two such products. Later in Remark 1.1 we discuss
that we may assume the linear forms computed at bottom level to be homogeneous and the
in-degree of all gates at middle level to be the same (= degree of f). Therefore these circuits
compute polynomials with the following form:

f(x1, . . . , xn) = G(x1, . . . , xn)(T0(x1, . . . , xn) + T1(x1, . . . , xn))

where Ti(x1, . . . , xn) =
M∏
j=1

lij and G(x1, . . . , xn) =
d−M∏
j=1

Gj with the lij ’s and Gj ’s being

linear forms for i ∈ {0, 1}. Also assume gcd(T0, T1) = 1. Our condition about the essential
number of variables (after removing gcd from the multiplication gates) is called “simple rank”
of the polynomial and is defined as dimension of the space

sp{lij : i ∈ {0, 1}, j ∈ {1, . . . ,M}}

When the underlying field F is of characteristic 0 (Q,R or C for simplicity), we give
an efficient randomized algorithm for reconstructing the circuit representation of such
polynomials. Formally our main theorem reads:

I Theorem 1.1 (ΣΠΣF(2) Reconstruction Theorem). Let f = G(T0 + T1) ∈ F[x1, . . . , xn]
be any degree d, n− variate polynomial (to which we have blackbox access) which can be
computed by a depth 3 circuit with top fan-in 2 (i.e. a ΣΠΣ(2) circuit) i.e. G,Ti being products
of affine forms. Assume gcd(T0, T1) = 1 and span{l : l | T0T1} is bigger than s+ 1 (a fixed
constant defined below). We give a randomized algorithm which runs in time poly(n, d) and
computes the cicuit for f with high probability.

I Definition 1.2. We fix s to be any constant > max(C2k−1 + k, cF(4)) where:
1. cF(l) = 3l2 is the rank lower bound (see Theorem 1.7) that guarantees non-zeroness of

any simple, minimal, ΣΠΣ(l) circuit with rank > cF(l).
2. k = cF(3) + 2.
3. δ is some fixed number in (0, 7−

√
37

6 ).
4. Ck = Ck

δ the constant that appears in Theorem B.4.

From our discussion before the theorem about Remark 1.1, we can assume in the above
theorem that the polynomial and all linear forms involved are homogeneous.

As per our knowledge this is the first algorithm that efficiently reconstructs such circuits
(over the char 0 fields). Over finite fields, the same problem has been considered by [24] and
our method takes inspiration from their work. They also generalized this finite field version
to circuits with arbitrary (but constant) top fan-in in [15]. However we need many new tools
and techniques as their methods don’t generalize at a lot of crucial steps. For example:
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They iterate through linear forms in a finite field which we unfortunately cannot do.
They use lower bounds for Locally Decodable Codes given in [7] which again does not
work in our setup.

We resolve these issues by
Constructing candidate linear forms by solving simultaneous polynomial equations ob-
tained from Brill’s Equations (Chapter 4, [8]).
Using quantitative versions of the Sylvester Gallai Theorems given in [3] and [6]. This
new method enables us to construct nice subspaces, take projections onto them and glue
the projections back to recover the cicuit representation.

1.1 Previous Work and Connections
Efficient Reconstruction algorithms are known for some concrete class of circuits. We list
some here:

Depth-2 ΣΠ circuits (sparse polynomials) in [20]
Read-once arithmetic formulas in [25]
Non-commutative ABP’s [2]
ΣΠΣ(2) circuits over finite fields in [24], extended to ΣΠΣ(k) circuits (over finite fields)
with k = O(1) in [15].
Random Multilinear Formular in [11]
Depth 4 (ΣΠΣΠ) multilinear circuits with top fan-in 2 in [10]
Random Arithmetic Formulas in [12]

All of the above work introduced new ideas and techniques and have been greatly appreciated.

It’s straightforward to observe that a polynomial time deterministic reconstruction
algorithm for a circuit class C also implies a polynomial time Deterministic Identity Testing
algorithm for the same class. From the works [1] and [13] it has been established that
blackbox Identity Testing for certain circuit classes imply superpolynomial circuit lower
bounds for an explicit polynomial. Hence the general problem of deterministic reconstruction
cannot be easier than proving superpolynomial lower bounds. So one might first try and
relax the requirements and demand a randomized algorithm. Another motivation to consider
the probabilistic version comes from Learning Theory. A fundamental question called the
exact learning problem using membership queries asks the following: Given oracle access to a
Boolean function, compute a small description for it. This problem has attracted a lot of
attention in the last few decades. For e.g. in [18][9] and [17] a negative result stating that
a class of boolean circuits containing the trapdoor functions or pseudo-random functions
has no efficient learning algorithms. Among positive works [23], [4], [19] show that when f
has a small circuit (inside some restricted class) exact learning from membership queries is
possible. Our problem is a close cousin as we are looking for exact learning algorithms for
algebraic functions. Because of this connection with learning theory it makes sense to also
allow randomized algorithms for reconstruction.

1.2 Depth-3 Arithmetic Circuits
We will use the definitions from [16]. Let C be an arithmetic circuit with coefficients in the
field F. We say C is a ΣΠΣ(k) circuit if it computes an expression of the form:

C(x̄) =
∑
i∈[k]

∏
j∈[d]

li,j(x̄) .
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li,j(x̄) are linear forms of the type li,j(x̄) =
∑
s∈[n]

asxs where (a1, . . . , an) ∈ Fn and

(x1, . . . , xn) is an n− tuple of indeterminates. For convenience we denote the multiplication
gates in C as

Ti =
∏
j∈[d]

li,j(x̄) .

k is the top fanin of our circuit C and d is the fanin of each multiplication gate Ti. With
these definitions we will say that our circuit is of type ΣΠΣF(k, d, n). When most parameters
are understood we will just call it a ΣΠΣ(k) circuit.

I Remark 1.1. Note that we are cosidering homogeneous circuits. There are two basic
assumptions:
1. li,j’s have no constant term i.e. they are linear forms.
2. Fanin of each Ti is equal to d.
If these are not satisfied we can homogenize our circuit by considering Zd(C(X1

Z , . . . ,
Xn

Z )).
Now both the conditions will be taken care of by reconstructing this new homogenized circuit.
We need a rank condition on our polynomial which remains essentially unchanged even after
this substitution.

I Definition 1.3 (Minimal Circuit). We say that the circuit C is minimal if no strict non
empty subsets of the ΠΣ polynomials {T1, . . . , Tk} sums to zero.

I Definition 1.4 (Simple Circuit and Simplification). A circuit C is called Simple if the gcd
of the ΠΣ polynomials gcd(T1, . . . , Tk) is equal to 1 (i.e. is a unit). The simplification of a
ΣΠΣ(k) circuit C denoted as Sim(C) is the ΣΠΣ(k) circuit obtained by dividing each term
by the gcd of all terms i.e.

Sim(C) def=
∑
i∈[k]

Ti
gcd(T1, . . . , Tk) .

I Definition 1.5 (Rank of a Circuit). Identifying each linear form l(x̄) =
∑
s∈[n]

asxs with the

vector (a1, . . . , an) ∈ Fn, we define the rank of C to be the dimension of the vector space
spanned by the set {li,j |i ∈ [k], j ∈ [d]}.

I Definition 1.6 (Simple Rank of a Circuit). For a ΣΠΣ(k) circuit C we define the Simple
Rank of C as the rank of the circuit Sim(C).

Before we go further into the paper and explain our algorithm we state some results
about uniqueness of these circuits. In a nutshell for a ΣΠΣF(2, d, n) circuit C, if one assumes
that the Simple rank of C is bigger than a constant (cF(4) : defined later) then the circuit is
essentially unique.

1.3 Uniqueness of Representation
Shpilka et al. showed the uniqueness of circuit representation in [24] using rank bounds for
Polynomial Identity Testing. The bound they used were from the work of Dvir et al. in [7].
It essentialy states that the rank of a simple, minimal ΣΠΣ(k) circuit (d ≥ 2, k ≥ 3) which
computes the identically zero polynomial is ≤ 2O(k2) logk−2 d. For circuits over char 0 fields
improved rank bounds were given by Kayal et al. in [16].

In a series of following work the rank bounds for identically zero ΣΠΣ(k) circuits got
further improved. The best known bounds over char 0 fields were given by Saxena et al. in
[22]. We rewrite Theorem 1.5 in [22] here for completion.
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I Theorem 1.7 (Theorem 1.5 in [22]). Let C be a ΣΠΣ(k, d, n) circuit over field F that is
simple, minimal and zero. Then, rk(C) < 3k2.

Let cF(k) = 3k2. This gives us the following version of Corollary 7, Section 2.1 in [24].

I Theorem 1.8 ([24]). Let f(x̄) ∈ F[x] be a polynomial which exhibits a ΣΠΣ(2) circuit

C = G(A+B) .

A =
∏

j∈[M ]
Aj , B =

∏
j∈[M ]

Bj , G =
∏

i∈[d−M ]
Gi, where Ai, Bj , Gk ∈ LinF[x̄]. gcd(A,B) = 1,

and Sim(C) = A+B has rank ≥ cF(4) + 1 then the representation is unique. That is if:

f = G(A+B) = G̃(Ã+ B̃)

where A,B, Ã, B̃ are ΠΣ polynomials over F and gcd(Ã, B̃) = 1 then we have G = G̃ and
(A,B) = (Ã, B̃) or (B̃, Ã) (upto scalar multiplication).

Proof. Let g = gcd(G, G̃) and let G = gG1, G̃ = gG̃1. Then gcd(G1, G̃1) = 1 and we get

G1A+G1B − G̃1Ã− G̃1B̃ = 0

This is a simple ΣΠΣ(4) circuit with rank bigger than cF(4)+1 and is identically 0 so it must
be not minimal. Considering the various cases one can easily prove the required equality. J

1.4 Notation
[n] denotes the set {1, 2, . . . , n}. Throughout the paper we will work over the field F. Let
V be a finite dimensional F vector space and S ⊂ V , sp(S) will denote the linear span of
elements of S. dim(S) is the dimension of the subspace sp(S). If S = {s1, . . . , sk} ⊂ V is a
set of linearly independent vectors then fl(S) denotes the affine subspace generated by points
in S (also called a (k − 1)− flat or just flat when dimension is understood). In particular:

fl(S) = {
k∑
i=1

λisi : λi ∈ F,
k∑
i=1

λi = 1} .

Let W ⊂ V be a subspace, then we can extend basis and get another subspace W ′ (called
the complement of W ) such that W ⊕W ′ = V . Note that the complement need not be
unique. Corresponding to each such decomposition of V we may define orthogonal projections
πW , πW ′ onto W,W ′ respectively. Let v = w + w′ ∈ V,w ∈W,w′ ∈W ′:

πW (v) = w, πW ′(v) = w′ .

(x̄) will be used for the tuple (x1, . . . , xn).

LinF[x̄] = {a1x1 + . . .+ anxn : ai ∈ F} ⊂ F[x̄]

is the vector space of all linear forms over the variables (x1, . . . , xn). For a linear form
l ∈ LinF[x̄] and a polynomial f ∈ F[x] we write l | f if l divides f and l - f if it does not.
We say ld || f if ld | f but ld+1 - f .

ΠΣdF[x̄] = {l1(x̄) . . . ld(x̄) : li ∈ LinF[x̄]} ⊂ F[x̄]
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is the set of degree d homogeneous polynomials which can be written as product of linear
forms. This collection for all possible d is called the set

ΠΣF[x̄] =
⋃
d∈N

ΠΣdF[x̄]

also called ΠΣ polynomials for convenience. Let f(x̄) ∈ F[x] then Lin(f) ∈ ΠΣF[x̄] denotes
the product of all linear factors of f(x̄). Let L(f) denote the set of all linear factors of f .
For any set of polynomials S ⊂ C[x̄], we denote by V(S), the set of all complex simultaneous
solutions of polynomials in S (this set is called the variety of S), i.e.

V(S) = {a ∈ C : for all f ∈ S, f(a) = 0} .

Let B = {b1, . . . , bn} be an ordered basis for V = LinF[x̄]. We define maps φB : V \{0} →
V as

φB(a1b1 + . . .+ anbn) = 1
ak

(a1b1 + . . .+ anbn)

where k is such that ai = 0 for all i < k and ak 6= 0.

A non-zero linear form l is called normal with respect to B if l ∈ ΦB(V ) i.e. the first
non-zero coefficient is 1. A polynomial P ∈ ΠΣF[x̄] is normal w.r.t. B if it is a product of
normal linear forms. For two polynomials P1, P2 ∈ ΠΣF[x̄] we define:

gcdB(P1, P2) = P ∈ ΠΣF[x̄], P normal w.r.t. B such that P | P1, P | P2

When a basis is not mentioned we assume that the above definitions are with respect to
the standard basis.

We can represent any linear form in LinF[x̄] as a point in the vector space Fn and vice
versa. To be precise we define the cannonical map Γ : LinF[x̄]→ Fn as

Γ(a1x1 + . . .+ anxn) = (a1, . . . , an) .

Γ is a linear isomorphism of vector spaces LinF[x̄] and Fn. Because of this isomorphism we
will interchange between points and linear forms whenever we can. We choose to represent
the linear form a(x̄) = a1x1 + . . .+ anxn as the point a = (a1, . . . , an).

LI will be the abbreviation for Linearly Independent and LD will be the abbreviation
for Linearly Dependent.

I Definition 1.9 (Standard Linear Form). A non zero vector v is called standard with respect
to basis B = {b1, . . . , bn} if the coefficient of b1 in v is 1. When a basis is not mentioned we
assume we’re talking about the standard basis. (Equivalently for linear forms the coefficient
of x1 is 1). A ΠΣ polynomial will be called standard if it is a product of standard linear
forms.

We close this section with a lemma telling us when can we replace the span of some
vectors with the affine span or flat. We’ve used this several times in the paper.

I Lemma 1.10. Let l, l1, . . . , lt ∈ LinF[x̄] be standard linear forms w.r.t. some basis
B = {b1, . . . , bn} such that l ∈ sp({l1, . . . , lt}) then

l ∈ fl({l1, . . . , lt}) .
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Proof. Since l ∈ sp({l1, . . . , lt}), we know that l =
∑
i∈[t]

αili for some scalars αi ∈ F. All

linear forms are standard w.r.t. B ⇒ comparing the coefficients of b1 we get that
∑
i∈[t]

αi = 1

and therefore l ∈ fl({l1, . . . , lt}). J

Let T ⊂ Fn, By a scaling of T we mean a set where all vectors get scaled (possibly by
different scalars).

1.5 Summary of Technical Ideas
This Subsection includes the very broad technical ideas we used. First we explain a technique
to reconstruct points from their projections. Then we give an overview of the Project-
Reconstruct-Lift algorithm and how we plan to execute it. After that we illustrate the
algorithm in quite generality. In this illustration we keep a lot of technicalities aside and try
to motivate and picturize the algorithm through geometric intiuition.

1.5.1 A Simple Reconstruction Technique
We describe a method to recover points from their projections. A more rigorous treatment is
in Appendix C. It also contains details and proofs of the Algorithm that is used in this paper.
Suppose we have two disjoint sets of points A = {a1, a2}, B = {b1, . . . , bd} in the projective
space Pn+1 such that:

We know the set A.
We know the projections of points in B w.r.t. a1 and a2 i.e we know lines joining
Li,j =

−−−→
ai, bj for i ∈ [2] and j ∈ [d].

We want to use lines Li,j =
−−→
aibj to find the set {b1, . . . , bt} in O(poly(d)) time. Note that

there are ≤ d lines through a1 and ≤ d lines through a2. The bj ’s lie at the intersection of
these lines and so we have ≤ d2 intersections. These intersections form a set of candidate
points for B but it is very hard to cutdown this set to B in poly(d) time. There is a trivial
O(
(
d2

d

)
) algorithm - Go through all d points in these intersection points, make the lines and

check if you get the same set of lines. This will give all sets of size d which could generate
this configuration. Here is how the entire point configuration looks like. The green points
cj ’s are intersections of our lines which do not belong to B.

CCC 2016



31:8 Reconstruction of Real Depth-3 Circuits with Top Fan-In 2

However if one assumes some restrictions then a subset of B might be found in poly(d)
time. Assume that for some t ∈ [d]:
{a1, a2, b1} are affinely independent.
fl{a2, b1} ∩B = {b1, . . . , bt}.
fl{a1, a2, b1} ∩B = {b1, . . . , bt}.

That is we have a sub configuration that looks like:

Here is an algorithm to recover all {b1, . . . , bt} ⊂ B such that the above conditions are
satisfied.

We iterate through all lines passing through a2.
For each such line L, find the set of lines SL through a1 which intersects L. Clearly all
lines in SL and L are co-planar.
If this plane does not contain any other line through a2, output the intersections of lines
in SL with L.

It is more or less straightforward that this algorithm works. The line L we choose has
to have some bj on it. Now all lines L̃ ∈ SL that intersect L have to intersect it in some
bi otherwise L̃ has some other bs on it but then the plane of SL, L will have another line−−→
a2bs passing through a2 on it which is a contradiction. The algorithm actually finds all such
configurations {b1, . . . , bt} ⊂ B.

1.5.2 General Overview of the Algorithm
The broad structure of our algorithm is similar to that of Shpilka in [24] however our
techniques are different. We first restrict the blackbox inputs to a low (O(1)) dimensional
random subspace of Fn and interpolate this restricted polynomial. Next we try to recover
the ΣΠΣ(2) structure of this restricted polynomial and finally lift it back to Fn. The random
subspace and unique ΣΠΣ(2) structure will ensure that the lifting is unique. Similar to [24]
we try to answer the following questions. However our answers (algorithms) are different
from theirs:
1. For a ΣΠΣ(2) polynomial f over r = O(1) variables, can one compute a small set of

linear forms which contains all factors from both gates?



G. Sinha 31:9

2. Let V0 be a co-dimension k subspace(k = O(1)) and V1, . . . , Vt be co-dimension 1 subspaces
of a linear space V . Given circuits Ci (i ∈ {0, . . . , t}) computing f |Vi

(restriction of f to
Vi) can we reconstruct from them a single circuit C for f |V ?

3. Given co-dimension 1 subspaces V ⊂ U and circuits f |V when is the ΣΠΣ(2) circuit
representations of lifts of f |V to f |U unique?

Our first question is easily solved using Brill’s equations (See Chapter 4 [8]). These
provide a set of polynomials whose simultaneous solutions completely characterize coefficients
of complex ΠΣ polynomials. A linear form l = x1−a2x2− . . .−arxr divides one of the gates
of f(x1, . . . , xr) ⇒ f(a2x2 + . . .+ arxr, x2, . . . , xr) is a ΠΣ polynomial modulo l. When this
is applied into Brill’s equation (see Corollary A.2) we recover possible l’s which obviously
include linear factors of gates. We can show that (see Claim E.2) the extra linear forms
we get are not too many (poly(d)) and also have some special structure. We call this set C
of linear forms as Candidate linear forms and non-deterministically guess from this set. It
should be noted that we do all this when our polynomial is over O(1) variables.

We deal with the second question while trying to reconstruct the ΣΠΣ(2) representation
of the interpolated polynomial f |V , where V is the random low dimensional subspace. We
divide the algorithm into Easy Case, Medium Case and a Hard Case.

For the Easy Case our algorithm tries to reconstruct one of the multiplication gates of f |V
by first looking at it’s restriction to a special co-dimension 1 subspace V1. If f = A+B

with A,B being ΠΣ polynomials, the projection of one of the gates (say A) with respect
to V1 will be 0 and the other (say B) will remain unchanged giving us B and therefore
both gates by factoring f |V −B.
In the Medium Case we have alteast two extra dimensions in one of the gates. This can
be used to show that the only linear factors of f|V are those coming from G. Now we
can recover G by factoring f and then use Easy Case for the remaining polynomial. An
important consequence of this case is that in the Hard Case we may now assume that
both gates are high dimensional which is very crucial.
In the Hard Case we will first need V0, a co-dimension k (where k = O(1)) subspace and
then iteratively select co-dimension 1 subspaces V1, . . . , Vt. For some gate (say B), all
pairs (V0, Vi) (i ∈ [t]) will reconstruct some linear factors of B. This process will either
completely reconstruct B or we will fall into the Easy Case. Once B is known we can
factor f |V −B to get A.

The restrictions that we compute always factor into product of linear forms and can be
easily computed since we know f |V explicitly. They can then be factorized into product of
linear forms using the factorization algorithms from [14]. It is the choice of the subspaces
V0, V1, . . . , Vt where our algorithm differs from that in [24] significantly. Our algorithm selects
V0 and iteratively selects the Vi’s (i ∈ [t]) such that (V0, Vi) have certain “nice” properties
which help us recover the gates in f |V . The existence of subspaces with “nice” properties is
guaranteed by Quantitative Sylvester Gallai Theorems given in [3]. To use the theorems we
had to develop more machinery that has been explained later.

The third question comes up when we want to lift our solution from the random subspace
V to the original space. This is done in steps. We first consider random spaces U such that
V has co-dimension 1 inside them. Now we reconstruct the circuits for f |V and f |U . The
ΣΠΣ(2) circuits for f |V and f |U are unique since the simple ranks are high enough (because
U, V are random subspaces of high enough dimension) implying that the circuit for f |V lifts
to a unique circuit for f |U . When this is done for multiple U ’s we can find the gates exactly.
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1.5.2.1 Project-Reconstruct-Lift Algorithm

Here is a broad outline of the three aspects. This technique is quite common. Details of
Project and Lift are in Section 4 and that of Reconstruct is in Section 3.

1.5.2.2 Project

Input:f ∈ F[x1, . . . , xn] as blackbox
Choose random basis {y1, . . . , yn} of Fn, V = sp({y1, . . . , ys}), Vi = sp({v1, . . . , vs, vi})
for i ∈ {s+ 1, . . . , n}.
Define f0(y1, . . . , ys) = f|V , fi(y1, . . . , ys, yi) = f|Vi

.
Consider sets H ⊂ V,Hi ⊂ Vi with |H| ≥ ds, |Hi| ≥ ds+1 and interpolate to find f0, fi.

1.5.2.3 Reconstruct

Reconstruct to get f0 = M0+M1 and fi = M i
0+M i

1 withM0,M1 ∈ ΠΣ[y1, . . . , ys],M i
0,M

i
1 ∈

ΠΣ[y1, . . . , ys, yi].

1.5.2.4 Lift

Use M0,M1,M
i
0,M

i
1 to compute gates N0, N1 such that f = N0 +N1.

If the reconstruction was successful return it, else return failed.

2 An Illustrative Example

Let x̄ denote the variables (x1, . . . , xr) where r is a constant (we will fix this constant later).
Consider the following polynomial f(x̄) ∈ F[x1, . . . , xr]

f(x̄) = T0(x̄) + T1(x̄) .

Such that:
1. T0(x̄) = A1 . . . Ad, T1(x̄) = B1 . . . Bd with Ai, Bj linear forms
2. gcd(Ai, Bj) = 1 for all 1 ≤ i, j ≤ d.
3. dim({Ai, Bj : i, j ∈ [d]}) = r i.e. there are no redundant variables.
Define the sets A = {A1, . . . , Ad}, B = {B1, . . . , Bd}. We are going to view the points in A
and B as points in the space Fr. We also identify (keep only one copy) linear forms which
are scalar multiples of each other.

I Theorem 2.1. Consider f(x̄) from above and assume f(x̄) =
∑
λ∈Λ

cλxλ where λ =

(λ1, . . . , λr) and xλ = xλ1
1 . . . xλr

r . Suppose we know all the coefficients cλ then in time
poly(d) we can reconstruct T0(x̄), T1(x̄) with high probability.

We will describe an algorithm which proves the above theorem. At many points during the
algorithm we will need results that are mentioned later in the paper. For better understanding
we encourage the reader to first go through this algorithm assuming all the claims mentioned.
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2.1 Candidate Linear Forms

Our job in this algorithm is to reconstruct T0(x̄), T1(x̄) i.e. Ai’s and Bj ’s. Let us first observe
a property these linear forms satisfy. One can see that for l ∈ {Ai, Bj : i, j ∈ [d]} the
following holds:

f|l=0 is a non-zero product of linear forms .

Can we use this to reconstruct Ai, Bj? The two questions that pop up are:
1. Are there linear forms other than Ai, Bj that satisfy the above condition?
2. If yes, can we find out some structure of the bad l’s ( which are not Ai, Bj)?
3. Can we bound the total number of such l’s by a polynomial in d?
4. Can we construct this set efficiently?
The answer to all the above questions is a YES!

I Example 2.2. Consider f(x1, . . . , xr) = (x1 + x2)(x1 + x3) . . . (x1 + xr) + x2 . . . xr. We
can see that f|x1=0 = x2 . . . xr but x1 is not a factor of any of the gates.

The next claim contains the information structure of the bad l’s and their number. Proof
will be given later in the paper in Appendix E.

I Claim 2.3. Consider the set C = {l : f|l=0 is a non zero product of linear forms } and let
{l1, . . . , lk} ⊂ Ti be a set of LI linear forms where k = cF(3) + 2 (rank bound for ΣΠΣ(3)
circuits) then
1. {Ai, Bj : i, j ∈ [d]} ⊆ C
2. |C| ≤ O(d4)
3. If l ∈ C \ {Ai, Bj , i, j ∈ [d]}, then there exists i ∈ [k] and j ∈ [d] such that {l, Ai, Bj} are

linearly dependent i.e. for every LI set {A1, . . . , Ak}, a bad l will match one of these Ai
(i ∈ [k]) to some Bj.

Moreover the above set C can be constructed in time poly(d). This is done by solving
a set of multivariate polynomial equations of poly(d) degree in O(1) variables. Please see
Appendix E for details.

2.2 Reconstruction Algorithm

Before going to the core of the algorithm let’s explain an easy case. Recall A = {A1, . . . , Ad}
and B = {B1, . . . , Bd}. Also color the points in A red and the points in B blue.

2.2.1 Easy Case

For this case we assume

sp(A) ( sp(B) .

So let’s say A1 /∈ sp(B). The main advantage of such an A1 is that on setting A1 to 0
no linearly independent {Bi, Bj} become dependent. Geometrically we have the following
picture:
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We guess a basis {l1, . . . , lr} of linear forms from the set C. While doing this we assume:
l1 = A1
l2, . . . , lt is a basis for B
lt+1, . . . , . . . , lr are the rest of the basis vectors

If our guess was actually a basis we define an invertible linear transformation T sending li to
xi. We apply T to f(x̄) by applying it to each variable in the most natural way. If our guess
was correct we get

f ′(x̄) = f(T (x̄)) = x1A
′
2 . . . A

′
d +B′1 . . . B

′
d .

Note that if our assumption for the basis is correct then none of the B′i’s contain x1. So we
can compute f ′|x1=0

= B′1 . . . B
′
d. Then we can apply T−1 and get back T1(x̄) = B1, . . . , Bd.

We remind the reader that everything is recovered upto a scalar multiple but that is not
a problem since that can be merged into one scalar for the gate B(x̄) which can be easily
recovered. We then factorize f − T1(x̄) and check if it factors into a product of linear forms
and recover T0(x̄). Note that during the process we will guess the basis correctly atleast once.
Also the last step checks if we actually get a ΣΠΣ(2) circuit and therefore the reconstruction
will be complete. The case where sp(B) ( sp(A) is symmetrical and is handled in the same
way. Next we deal with the hard case.

2.2.2 Hard Case
The other case i.e. sp(A) = sp(B) is much harder but high dimensionality enables us to
apply the Quantitative version of Sylvester Gallai Theorems from [3]. Let’s first just give
some consequences of the Quantitative Sylvester Gallai theorem (from [3]) which will be
useful for us. A slightly more general version with proof can be found in Appendix B.

I Corollary 2.4. Let S = {s1, . . . , sn} ⊆ Cd be a set of points. Assume dim(S) > Ω(Ck) for
some constant C, then there exists a set of linearly independent points {s1, . . . , sk} and a
set T ⊂ S with |T | ≥ 0.99n, such that fl({s1, . . . , sk, t}) is an elementary k − flat for every
t ∈ T . That is:

t /∈ fl({s1, . . . , sk})
fl({s1, . . . , sk, t}) ∩ S = {s1, . . . , sk, t}.

I Lemma 2.5 (Bichromatic semi-ordinary line). Let X and Y be disjoint finite sets in Cd
satisfying the following conditions.
1. dim(Y ) > Ω(C4) where C is the constant in the above corollary.
2. |Y | ≤ 99|X|
Then there exists a line l such that |l ∩ Y | = 1 and |l ∩X| ≥ 1.
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At this point we would like to mention that the constants 99, 0.99 and the one hidden
in Ω(Ck) have more general values given by a parameter δ. For the time being we’ve fixed
them for better exposition. Please see Appendix B for more details.

Using high dimensionality of A,B and the above mentioned corollaries we are able to
prove the following theorem which forms the backbone of our algorithm.

I Theorem 2.6. For some product gate (say A), there exists k = O(1) points S =
{A1, . . . , Ak} and a large set D ⊂ A such that on projecting D,B to the subspace W

defined by {A1 = 0, . . . , Ak = 0} (and throwing away zeros):
There exists a lines L =

−−−→
B′1D

′
1 where B′1 and D′1 are projections of B1, D1 onto W . Also

if B′ is the projection of B onto W then L ∩ B′ = {B′1}, so the line is a bichromatic
semi-ordinary which were discussed in the lemma above.

Let’s pick one of these lines and see what would have happened in Fr which led us to
this line in W .

In the picture above the inner triangle denotes sp(S) and the outer parallelogram denotes
sp(S ∪ {B1}). The line in the previous picture i.e. projecting the points onto W has only
one blue point implying:

sp(S ∪ {B1}) ∩B = sp(S ∪ {B1})
sp(S ∪ {B1} ∪ {D1}) ∩B = sp(S ∪ {B1})

Note that this looks very similar to what we had in Subsection 1.5.1. We used this kind
of a configuration to recover points using their projections. A similar method is implemented
here. Given that such a configuration exists we can come up with the following algorithm.
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1. From the set C guess the set S = {A1, . . . , Ak} mentioned in the theorem above.
2. Using condition (3) in Claim 2.3 obtain a set X such that D ⊂ X ⊂ A. This can be done

as explained in Algorithm 4. The reader should just assume this at the moment. We
need to make sure that D1 comes from A because the algorithm is iterative and we don’t
want a spurious linear form in C give any reconstruction. We always want to set some
Ai’s to 0 so that we only recover Bj ’s.

3. Iterate over this set X and guess D1.
4. By projecting f to the subspaces {A1 = 0, . . . , Ak = 0} and {D1 = 0} we get B′1 and

(B1)|D1=0 . Because of the diagram above these two projections can be matched and used
to reconstruct B1.

5. If no D1 ∈ X worked then go to Easy Case since dimension should have fallen.

Basically the algorithm just exploits the existence of the line mentioned in the previous
theorem and reconstructs the corresponding B1 (whose projection lies on the line). This
reconstruction was possible because this line had only one blue point. After finding B1 we
declare it known so that in the next iteration we can remove it’s projection when required.
We will continue to get such bichromatic semi-ordinary lines till the unkown linear forms in
the B set have high dimension. If at any stage this reconstruction is not possible then this
dimension would have fallen and we can use the Easy Case.

2.2.2.1 Return Type

In all our algorithms we wish to return the reconstructed form of f . Since f and the two gates
T0, T1 are to be returned we define an object for it. We call this object Decomposition. We
assume having a data type polynomial for general polynomials and pi_sigma for polynomials
which are product of linear forms. We use C++ syntax to define our structure.

frameframe
frameframeframe frame frames t r u c t decomposit ion {
frameframeframe frame framebool i s c o r r e c t ; // i s c o r r e c t w i l l be t rue i f f = M_0 + M_1
frameframeframe frame framepolynomial f ;
frameframeframe frame framepi_sigma M_0;
frameframeframe frame framepi_sigma M_1;
frameframeframe frame frame
frameframeframe frame frame// Constructor when a r e c o n s t r u c t i o n i s found
frameframeframe frame framedecomposit ion ( polynomial g , pi_sigma A, pi_sigma B){
frameframeframe frame framei s c o r r e c t =true ;
frameframeframe frame framef=g ;
frameframeframe frame frameM_0=A;
frameframeframe frame frameM_1=B;
frameframeframe frame frame}
frameframeframe frame frame
frameframeframe frame frame// Constructor when no r e c o n s t r u c t i o n i s found
frameframeframe frame framedecomposit ion ( ){
frameframeframe frame framei s c o r r e c t=f a l s e ;
frameframeframe frame frame}
frameframeframe frame frame} ;

frameframe

3 Reconstruction for low rank

Let’s recall Definition 1.2 following Theorem 1.1 in Section 1.

I Definition 3.1. We fix s to be any constant > max(C2k−1 + k, cF(4)) where:
1. cF(l) = 3l2 is the rank lower bound (see Theorem 1.7) that guarantees non-zeroness of

any simple, minimal, ΣΠΣ(l) circuit with rank > cF(l).
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2. k = cF(3) + 2.
3. δ is some fixed number in (0, 7−

√
37

6 ).
4. Ck = Ck

δ the constant that appears in Theorem B.4.

Let r be any constant ≥ s (In our application we need s and s+ 1). Our main theorem
for this section therefore is:

I Theorem 3.2. Let r be as defined above. Consider f(x̄) ∈ F[x̄], a multivariate homogeneous
polynomial of degree d over the variables x̄ = (x1, . . . , xr) which can be computed by a ΣΠΣ(2)
circuit C over F. Assume that rank of the simplification of C i.e. Sim(C) = r. We give a
poly(d) time randomized algorithm which computes C given blackbox access to f(x̄).

We assume f has the following ΣΠΣ(2) representation:

f = G̃(α̃0T̃0 + α̃1T̃1)

where G̃, T̃i ∈ ΠΣF[x̄] are normal (i.e. leading non-zero coefficient is 1 in every linear factor)
and α̃0, α̃1 ∈ F with gcd(T̃0, T̃1) = 1. The rank(Sim(C)) = r condition then becomes

sp(L(T̃0) ∪ L(T̃1)) = LinF[x̄] .

Consider the set T = L(G̃) ∪ L(T̃0) ∪ L(T̃1). By abuse of notation we will treat these
linear forms also as points in Fr. Since linear factors of G̃, T̃i are normal, two linear factors
of G̃, T̃i are LD iff they are same.

Random Transformation and Assumptions

Let Ω,Λ be two r × r matrices such that their entries Ωi,j and Λi,j are picked independently
from the uniform distribution on [N ]. Here N = 2d. We begin our algorithm by making a
few assumptions. All of these assumptions are true with very high probability and we assume
them in our algorithm. These assumptions make our work easy by removing redundancy
in the co-ordinates. The idea is to move vectors randomly thereby introducing non-zero
coefficients in them. Consider the standard basis of Fr given as S = {e1, . . . , er}. Let
Ej = sp({e1, . . . , ej}) and E′j = sp({ej+1, . . . , er}), clearly Fr = Ej ⊕ E′j . Let πWEj

be the
orthogonal projection onto Ej w.r.t. this decomposition. Note that T is a finite set of vectors
in Fr.

Assumption 0: Ω is invertible. This is just the complement of event E0 in Section D and
so occurs with high probability.
Assumption 1: For all t ∈ T , πWE1

(Ω(t)) 6= 0 i.e. [Ω(t)]1S 6= 0 (coefficient of e1 is non-zero).
This is the complement of event E1 in Section D. and so occurs with high probability.
Assumption 2: For all LI sets {t1, . . . , tr} ⊂ T , {Ω(t1), . . . ,Ω(tr)} is LI. This essentially
means that Ω is invertible. This is the complement of E2 in Section D and so occurs with
high probability.
Assumption 3: Fix a k < r. For all LI sets {t1, . . . , tr} ⊂ T, {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1),
. . . ,ΛΩ(td)} is LI i.e. is a basis. This is the complement of event E3 in Section D and so
occurs with high probability. It’ll be used later in this paper.
Assumption 4: Fix a k < r. For all LI sets T̃ = {t1, . . . , tr} ⊂ T , define the set
B = {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)}. By Assumption 3 this is a basis. Consider
any t ∈ T such that Ω(t) /∈ sp({Ω(t1), . . . ,Ω(tk)}). Then [Ω(t)]k+1

B 6= 0. This event is
the complement of E5 and so it occurs with high probability. We want non-zeroness of
co-ordinates even after projecting to a codimension-k subspace. That is where this will
be useful.
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From now onwards we will assume that all the above assumptions are true. Since all of them
occur with very high probability, their complements occur with very low probability and by
union bound the union of their complements is a low probability event. So intersection of the
above assumptions occurs with high probability and we assume all of them are true. Note
that the assumptions will continue to be true if we scale all linear forms (possibly different
scaling for different vectors, but non-zero scalars) in T i.e. if the assumptions were true for
T then they would have been true had we started with a scaling of T .

The first step of our algorithm is to apply Ω to f . We have a natural identification
between linear forms and points in Fr. This identification converts Ω into a linear map on
LinF[x̄] which can be further converted to a ring homomorphism on polynomials by assuming
that it preserves the products and sums of polynomials. So Ω gets applied to all linear forms
in the ΣΠΣ(2) representation of f . Since f is a degree d polynomial in r variables it has
atmost poly(dr) coefficients. Applying Ω to each monomial and expanding it takes poly(dr)
time and gives poly(dr) terms. So computing Ω(f) takes poly(dr) time and has poly(dr)
monomials.

Now we try and reconstruct the circuit for Ω(f). If this reconstruction can be done
correctly, we can apply Ω−1 and get back f . Note that Assumption 1 tells us that the
coefficient of x1 in Ω(l) is non-zero for all l in T . Let X = {x1, . . . , xr} and x̄ is used for the
tuple (x1, . . . , xr). From this discussion we know that:

Ω(f) = Ω(G̃)(α̃0Ω(T̃0) + α̃1Ω(T̃1)) = G(α0T0 + α1T1)

where αi are chosen such that linear factors ofG,Ti have their first coefficient( that of x1) equal
to 1. So they are standard ΠΣ polynomials. Note that we’ve used Assumption 1 here. Since
we’ve moved constants to make linear forms standard we can assume G = λΩ(G̃), Ti = λiΩ(T̃i)
with λ, λi ∈ F. Consider some scaling Tsc of T such that X = L(G) ∪ L(T0) ∪ L(T1) is
= Ω(Tsc). All above assumptions are true for Tsc and so we may use the conclusions about
Ω(Tsc) i.e. X . Also since Ω is invertible gcd(T0, T1) = 1.

Let

Ti =
∏
j∈[M ]

lij , i = 0, 1 and G =
∏

k∈[d−M ]

Gk

with lij , Gk linear forms (so d = deg(f) ).

For simplicity from now onwards we call Ω(f) by f and try to reconstruct it’s circuit.
Once this is done we may apply Ω−1 to all the linear forms in the gates and get the circuit
for f . This step clearly takes poly(dr) time in the same way as applying Ω took. Since r is a
constant, the steps described above take poly(d) time overall.

Known and Unknown Parts

We also define some other ΠΣ polynomials Ki, Ui, i = 0, 1 which satisfy

Ki | αiGTi, Ui = αiGTi
Ki

.

with the extra condition

gcd(Ki, Ui) = 1.
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Ki are the known factors of αiGTi and Ui the unknown factors. The gcd condition just
means that that known and unknown parts of αiGTi don’t have common factors. In other
words linear forms in αiGTi are known with full multiplicity. We initialize Ki = 1 and during
the course of the algorithm update them as and when we recover more linear forms. At the
end Ki = αiGTi and so we know both gates.

3.1 Outline of the algorithm
1. Set C of Candidate Linear Forms: We compute a poly(d) size set C of linear forms which

contains L(Ti), i = 0, 1. We will non-deterministically guess from this set C making only
a constant number of guesses everytime(thus polynomial work overall). It is important
to note that the uniqueness of our circuit guarantees that our answer if computed can
always be tested to be right. For more details on this please see Appendix E. We also
give an efficient algorithm to construct this set. See Algorithm 8.

2. Easy Case: L(T1−i) ( sp(Ui), for some i ∈ {0, 1}
So T1−i has a linear factor l(1−i)1 such that

sp({l(1−i)1}) ∩ sp(Ui) = {0} (1)

Let W = sp({l(1−i)1}) and extend to a basis of V and in the process obtain another
subspace W ′ ⊂ V such that W ⊕W ′ = V . We can see from Equation 1 that LI linear
forms in Ui remain LI when we project to W ′. We use this to compute Ui and then
since KiUi = αiGTi we know one of the gates. To find the other gate simply factorize
f − αiGTi. If it factors into a product of linear forms we have the reconstruction.

3. Medium Case: dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 for some i ∈ {0, 1}
This case is just to facilitate the Hard Case. We know that T1−i has two linear factors
l(1−i)1, l(1−i)2 such that sp({l(1−i)1, l(1−i)2})∩ sp(Ti) = {0}. We show that the only linear
factors of f are those which appear in G. So we can first factorize f using Kaltofen’s
factoring ([14]) and obtain G. Update Kj = G, j = 0, 1. So Uj = αjTj for j = 0, 1.
Clearly we also have L(T1−i) ( sp(Ti) = sp(Ui) and we can go to Easy Case above with
Ki = G.

4. Hard Case: L(T1−i) ⊆ sp(Ui), for i = 0 and 1
We know that we are not in Medium Case and so dim(sp(T0) + sp(T1)) − sp(Ti) ≤ 1
for i = 0, 1. Also dim(sp(T0) + sp(T1)) = r by assumption on the simple rank of our
polynomial. So this guarantees that dim(sp(T1−i)) ≥ r − 1⇒ (by the condition of this
hard case) dim(sp(Ui)) ≥ r − 1 for i = 0, 1. This enables us to use the Quantitative
Sylvester Gallai theorems on both sets L(Ti),L(Ui).

Our first step is to identify a certain “bad” ΠΣ factor I of G and get rid of it to get
G = G

I and thus f = f
I . The factors of I don’t satisfy certain properties we need later

and so we remove them. Thankfully we have an efficient algorithm to recover I. Our
algorithm uses something we call a Detector Pair (See 3.4) whose existence is shown
using the Quantitative Sylvester Galai Theorems mentioned above.
So now our job is to reconstruct f with known (and unknown resp.) parts as K?

0 ,K
?
1

(U?0 , U?1 resp.).
If sp(U1−i) becomes low dimensional we may fall in Easy Case and recover the circuit
for f directly. Otherwise the same detector pairs then provide certain “nice” subspaces
corresponding to linear forms in Ti. Projection of U1−i onto these subspaces can be
easily glued together to recover some linear factors(with multiplicities) of U1−i, which
will then be multiplied to K?

1−i.
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The process continues as long as sp(U1−i) remains high dimensional. As soon as this
condition fails we end up in Easy Case and the gates are recovered.

We give algorithms for Easy and Medium cases. Hard Case will require more prepration
and will be done after these subsections. From now onwards we assume that we have
constructed a poly(d) sized set of linear forms C which contains L(Ti) for i = 0, 1. We have
other structural results about linear forms in this set. See Appendix E for more details and
algorithms. Algorithm 8 constructs this set in poly(d) time.

3.2 Easy Case

L(T1−i) ( sp(Ui), for some i ∈ {0, 1}

I Claim 3.3. Suppose for some i ∈ {0, 1}, L(T1−i) ( sp(Ui) then we can reconstruct f .

FunctionName :EasyCase
input : f ∈ ΣΠΣF(2)[x̄],K0 ∈ ΠΣF[x̄],K1 ∈ ΠΣF[x̄], C ⊂ LinF[x̄])
output :An object of type decomposition

1 for i← 0 to 1 do
2 for each LI set {l1, l2, . . . , lr} ⊂ C do
3 Define K ′i ← Ki;
4 Find t such that lt1 || f ;
5 // i.e. lt1 | f && lt+1

1 - f
6 W ← sp({l1}),W ′ ← sp({l2, . . . , lr});
7 if lt1 || K ′i then
8 f̃ = f

lt1
; K̃i = K′i

lt1
;

9 if Ui = πW ′ (f̃)
πW ′ (K̃i)

∈ ΠΣF[x̄] && f −KiUi ∈ ΠΣF[x̄] then Ki = KiUi,
K1−i = f −KiUi;

10 return decomposition(f,K0,K1);
11 end
12 end
13 end
14 return decomposition();

Algorithm 1: Easy Case Reconstruction.

Explanation and Correctness Analysis

The first for loop just guesses the gate with extra dimensions i.e. it’s not contained in
span of the unknown part of the other gate.
If for some basis {l1, . . . , lr} ⊂ C the algorithm actually computes a ΣΠΣ(2) representation
in the end then it ought to be correct since the last ’if’ also checks if it is correct.
If our guess for i is correct, we show that there exists a basis {l1, . . . , lr} ⊂ C for which all
conditions will be satisfied and we actually arrive at a ΣΠΣ(2) representation in the end.
Since L(T1−i) ( sp(Ui) and L(T1−i),L(Ui) ⊂ C there exists l1 ∈ L(T1−i) \ sp(Ui) ⊂ C.
Choose a basis {l2, . . . , ls} of sp(Ui), then {l1, . . . , ls} is an LI set. Now extend this to
a basis {l1, . . . , ls, ls+1, . . . , lr} ⊂ C of V . We go over all choices of basis in C and will
arrive at the right one.
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We initialize a dummy polynomial K ′i to represent Ki since we do not want to update
Ki till we actually have a solution. Let’s assume lt1 || f i.e. lt1 | f and lt+1

1 - f . We know
l1 | T1−i ⇒ l1 - Ti ⇒ l1 - αiTi + α1−iT1−i. Therefore lt1 || G⇒ lt1 || αiGTi = KiUi. Also
l1 /∈ sp(Ui)⇒ l1 - Ui thus lt1 || Ki ⇒ lt1 || K ′i. We remove lt1 from both f,K ′i to get f̃ , K̃i.
Let W = sp({l1}) and W ′ = sp({l2, . . . , lr}), therefore V = W ⊕W ′. Note that since
l1 ∈ L(T1−i)

πW ′(f̃) = πW ′(Ui)πW ′(K̃i)

Since πW ′(K̃i) 6= 0, we get πW ′(Ui) = πW ′ (f̃)
πW ′ (K̃i)

. If Ui = u1 . . . us with uj ∈W ′, we see that
πW ′(Ui) = πW ′(u1) . . . πW ′(us) = u1 . . . us = Ui. So we get Ui and hence αiGTi = KiUi.
Once αiGTi is known we factorize f − αiGTi to get α1−iGT1−i. For the correct choice of
our basis this will factorize completely into a ΠΣ polynomial. Now we update Ki = KiUi
and K1−i = f−KiUi and an object decomposition(f,K0,K1). Throughout the algorithm
we use Kaltofen’s factoring [14] wherever necessary.
If we were not able to find the ΣΠΣ(2) representation then we return an object
decomposition().

Time Complexity

We can see above all loops run only poly(d) many times. The most expensive step is choosing
r vectors from C. But recall that r is a constant and so this also takes only polynomial time
in d. Other steps like factoring polynomials (using Kaltofen’s factoring algorithm from [14]),
taking projection onto known subspaces, divding by polynomials require poly(d) time (r is a
constant) as has been explained multiple times before.

3.3 Medium Case
dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 for some i ∈ {0, 1}

I Claim 3.4. If dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 then L(αiTi + α1−iT1−i) = φ.

Proof. dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2⇒, there exists l′1, l′2 ∈ L(T1−i) \ sp(Ti) be such that
dim({l′1, l′2} ∪ L(Ti)) = dim(L(Ti)) + 2. Assume there exist l ∈ L(αiTi + α1−iT1−i).

l | αiTi + α1−iT1−i ⇒ l - Ti and l - T1−i (since they are coprime)

0 6= αi
∏
j∈[M ]

lij = −α1−i
∏
j∈[M ]

l(1−i)j (mod {l}).

Thus there exist l1, l2 ∈ L(Ti) and scalars γj , δj , j ∈ [2] such that l = γj lj + δj l
′
j . Since

l - T0, l - T1 we get γj , δj are non zero.
δ1, δ2 6= 0⇒,

l′1, l
′
2 ∈ sp({l} ∪ L(Ti))⇒ dim({l′1, l′2} ∪ L(Ti)) ≤ dim(L(Ti)) + 1

which is a contradiction. So L(αiTi + α1−iT1−i) = φ.

Therefore the only linear factors of f are present in G, which can now be correctly found
by using Kaltofen’s algorithm [14] and identifying the linear factors. Update Kj = G for
j = 0, 1, therefore Uj = Tj . Also this case implies that L(T1−i) ( sp(Ti) = sp(Ui), and so
we can use Easy Case. J
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So we have the following claim:

I Claim 3.5. If the condition in Medium Case is true, the following algorithm reconstructs
f , if there is a reconstruction.

FunctionName :MediumCase
input : f ∈ ΣΠΣF(2)[x̄], C ⊂ LinF[x̄])
output :An object of type decomposition

1 L← Lin(f);
2 // Use Kaltofen’s factoring from [14] to compute Lin(f) def= product of

all linear factors of f

3 if EasyCase(f, L, L, C)→ iscorrect then
4 return EasyCase (f, L, L, C);
5 end
6 return decomposition();

Algorithm 2: Medium Case Reconstruction

The above algorithm does exactly what has been explained in the preceeding paragraph.
It works in poly(d) time if EasyCase(f,K0,K1, C) works in poly(d) time. Kaltofen’s factoring
and all other steps are poly(d) time.

Now we need to handle the Hard Case. This is quite technical and so we do some more
preparation. We devise a technique to get rid of some factors of f to get a new polynomial
f without destroying the ΣΠΣ(2) structure. If Easy Case holds for f we stop there itself.
Otherwise we will use combination of different subspaces of V , project f onto them and glue
projections to get gates for f .

3.4 Detector Pair, Reducing Factors, Hard Case Preparation
Let’s recall:

g = f

G
= α0T0 + α1T1

We outline an approach to identify some factors of f . These factors will divide G but
won’t divide g. This is going to be useful in the Hard Case. The linear factors left after
removing these identified factors will have very strong structural properties and so will be
instrumental in reconstruction. The main tool in this identification is a pair (S,D) (defined
below) inside one of the L(Ti)’s. This pair will be called a “Detector Pair”. It will also
decide the subspaces on which we take projections of f and glue back to get the gates.

Detector Pairs (S,D)

Fix k = cF(3) + 2 (See Theorem 1.7 for definition of cF(m)). Let S = {l1, . . . , lk} ⊂ L(Ti) be
an LI set of linear forms. Let D( 6= φ) ⊆ L(Ti). We say that (S,D) is a “Detector Pair” in
L(Ti) if the following are satisfied for all lk+1 ∈ D:
{l1, . . . , lk, lk+1} is an LI set. Let F = fl({l1, . . . , lk, lk+1}). F is elementary in L(Ti)
i.e. F ∩ L(Ti) = {l1, . . . , lk, lk+1}. See Definition B.1.
F ∩ L(T1−i) ⊆ fl({l1, . . . , lk}) i.e. F contains only those points from L(T1−i) which lie
inside fl({l1, . . . , lk}).
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3.4.1 Identifying Some Factors Which Don’t Divide g
The two claims below give results about structure of linear forms which divide g. The proofs
are easy but technical and so we move them to the appendix.

I Claim 3.6. Let (S = {l1 . . . , lk}, D) be a Detector set in L(Ti). Let lk+1 ∈ D. For a
standard linear form l ∈ V , if l | g then l /∈ sp({l1, . . . , lk}).

Proof. See F.1 in appendix. J

I Claim 3.7. Let l ∈ LinF[x̄] be standard such that l | g and C be the candidate set. Assume
(S = {l1, . . . , lk}, D( 6= φ)) is a Detector pair in L(Ti). Then |L(T1−i)∩(fl(S∪{l})\fl(S))| ≥
2. That is the flat fl({l1, . . . , lk, l}) contains atleast two distinct points from L(T1−i)(⊆ C)
outside fl({l1, . . . , lk}).

Proof. See F.2 in appendix. J

I Claim 3.8. Suppose (S = {l1, . . . , lk}, D( 6= φ)) is a Detector Pair in L(Ti). The following
algorithm identifies some factors in L(G) \ L(g). It returns the product of all linear forms
identified.

FunctionName : IdentifyFactors
input : f ∈ ΣΠΣF(2)[x̄], C ⊂ LinF[x̄], S = {l1, . . . , lk} ⊂ LinF[x̄])
output : a ΠΣF[x̄] polynomial

1 I = 1, bool flag;
2 for each factor l of f do
3 flag = false;
4 if l, l1, . . . , lk are LI then
5 for l′1 6= l′2 ∈ C \ fl({l1, . . . , lk}) do
6 if l′1, l′2 ∈ sp({l, l1, . . . , lk}) then flag = true;
7 break;
8 end
9 end

10 if !flag then
11 I = I×l;
12 end
13 end
14 return I;

Algorithm 3: Identify Factors.

Proof. The proof of the claim is a part of Lemma 3.9 below. J

3.4.1.1 Time Complexity

Since C has size poly(d) and deg(f) = d, the nested loops run poly(d) times. k, r are constants
so checking linear independence of k + 1 linear forms in r variables takes constant time.
Checking if some vectors belong to a k + 1 dimensional space also takes constant time.
Multiplying linear forms to I takes poly(d) time. So overall the algorithm runs in poly(d)
time.
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So the above algorithm identified a factor I of G for us. Let us define new polynomials

G = G

I =
∏
t∈[N1]

Gt

and

f = f

I = G(α0T0 + α1T1)

I Lemma 3.9. The following are true:
1. If l | I (i.e. l was identified) then l ∈ L(G) \ L(g).
2. If l | G (i.e. l was retained) then (fl({l1, . . . , lk, l})\ fl({l1, . . . , lk}))∩ (L(T1−i)∪ (L(Ti)\

D)) 6= φ that is:
(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) contains a point from L(Ti) \D or L(T1−i).

3. If l | G and lk+1 ∈ D then l /∈ sp({l1, . . . , lk, lk+1}).

Proof. See F.3 in appendix. J

3.4.2 Overestimating the set D of the detector pair (S,D)

Lemma 3.9 is going to help us actually find an overestimate of D corresponding to S =
{l1, . . . , lk} in the detector pair (S,D) as described in the lemma below. This will be
important since we need D during our algorithm for the Hard Case.

I Lemma 3.10. Let (S = {l1, . . . , lk}, D) be a detector in L(Ti). For each (l, lj) ∈ C × S
define the space U{l,lj} = sp({l, lj}). Extend {l, lj} to a basis and in the process obtain U ′{l,lj}
such that V = U{l,lj} ⊕ U ′{l,lj}. Define the set:

X = {l ∈ C : πU ′{l,lj}
(f) 6= 0, for all lj ∈ S}

Then D ⊂ X ⊂ L(Ti).

Proof. See F.4 in appendix. J

This set X is an overestimate of D inside L(Ti) and also easy to compute. Given S we
may easily construct X in time poly(d) because of it’s simple description. Let’s give an
algorithm to compute X given f, S, C.

I Claim 3.11. Algorithm 4 computes the overestimate X of D as discussed above.

3.4.2.1 Time Complexity

Inside the inner for loop we look for (r − 2) linear forms from C. |C| = poly(d) and r is
a constant and so this step only needs poly(d) time. The nested loops run polynomially
many times. Checking linear independece of r linear forms and projecting to known constant
dimensional subspaces also take poly(d) time as has been discussed before. So the algorithm
runs in poly(d) time.
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FunctionName :OverestimateDetector
input : f ∈ ΣΠΣF(2)[x̄], S = {l1, . . . , lk} ⊂ LinF[x̄], C ⊂ LinF[x̄])
output : Set of linear forms

1 bool flag;
2 Define X ← φ;
3 for each l ∈ C do
4 flag = true;
5 for each lj ∈ S with {l, lj} LI do
6 Find {l′1, . . . , l′r−2} ⊂ C such that {l, lj , l′1, . . . , l′r−2} is LI;
7 U ← Fl ⊕ Flj ;U ′ ← Fl′1 ⊕ . . .⊕ Fl′r−2;
8 if πU ′(f) == 0 then
9 flag = false;

10 break;
11 end
12 end
13 if flag then
14 X ← X ∪ {l};
15 end
16 end
17 return X;

Algorithm 4: Overestimate Detector.

3.5 Hard Case
L(T1−i) ⊆ sp(Ui), for i = 0 and 1

This subsection will involve the most non trivial ideas. We handled
dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 in the Medium Case (see Subsection 3.3) completely, so
let’s assume dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≤ 1 ⇒ dim(L(T1−i) ∪ L(Ti)) ≤ dim(L(Ti)) + 1 for
both i = 0, 1. We already know that rank(f) = r, implying dim(L(Ti) ∪L(T1−i)) = r. Thus
for i = 0, 1; dim(L(Ti)) ≥ r − 1. This works in our favour for applying the quantitative
version of the Sylvester Gallai theorems given in [3]. To be precise we will use Lemma B.6
from Appendix B in this paper.

1. Our first application (see Lemma 3.13) of Quantitative Sylvester Gallai will help us
prove the existence of a Detector pair (S = {l1, . . . , lk}, D) in L(Ti) with k = cF(3) + 2
(See definition of cF(.) in Theorem 1.7) and large size of D. For this we will only
need dim(L(Ti)) ≥ C2k−1 for i = 0, 1 (see Appendix B for definition of C2k−1). From
Definition 1.2 we know that this is true with k = cF(3) + 2.

2. The above point shows the existence of a detector pair (S,D) in L(Ti) with large |D|. So
now we go back to Subsection 3.4 and remove some factors of f to get f = G(α0T0 +α1T1)
such that linear factors of G satisfy properties given in Lemma 3.9. We also compute
the overestimate X of D using Algorithm 4. Let the known and unknown parts of f
be K?

0 ,K
?
1 and U?0 , U

?
1 respectively. If for some i ∈ {0, 1}, L(Ti) ( sp(U1−i) then we

are in Easy Case for f and can recover the gates for f . Otherwise for both i = 0, 1;
L(Ti) ⊆ sp(U1−i)⇒ dim(L(U1−i)) ≥ r − 1 and we continue with reconstruction below.

3. Next to actually reconstruct linear forms in U1−i, we will use it’s high-dimensionality
(≥ r − 1 ≥ C2k−1) discussed above. Lemma B.6 from Appendix B will enable us to
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prove the existence of a d1 ∈ D which together with the set S found above will give the
existence of a “Reconstructor” (see Claim C.4 and Algorithm 7) which recovers some
linear factors of U1−i with multiplicity (see Theorem 3.14).

3.5.1 Large Size of Detector Sets
W.l.o.g. we assume |L(T0)| ≤ |L(T1)|. First we point out a simple calculation that will be
needed later. For δ ∈ (0, 7−

√
37

6 ) and θ ∈ ( 3δ
1−δ , 1− 3δ), let v(δ, θ) be defined as follows:

v(δ, θ) =
{

1− δ − θ if |L(T0)| ≤ θ|L(T1)|
(1− δ)(1 + θ)− 1 if θ|L(T1)| < |L(T0)| ≤ |L(T1)|

I Claim 3.12. The following is true

(2− v(δ, θ))
v(δ, θ) ≤ 1− δ

δ
.

Proof. See G.1 in appendix. J

I Lemma 3.13. Let k = cF(3)+2 (see defn of cF(m) in Theorem 1.7). Fix δ, θ in range given
in Claim 3.12 above. Then for some i ∈ {0, 1} there exists a Detector (S = {l1, . . . , lk}, D)
in L(Ti) with |D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|).

Proof. See G.2 in appendix. J

3.5.2 Assuming L(Ti) ⊆ sp(L(U1−i)) and reconstructing factors of
U1−i

Let’s begin by stating our main reconstruction theorem for this Subsubsection. We will go
through several steps to prove it:

I Theorem 3.14. There exist pairwise disjoint LI sets S0, S1, S2 with S0 ∪ S1 ∪ S2 being a
basis of V = LinF[x1, . . . , xr] ' Fr, and non constant polynomials P,Q dividing U1−i such
that P | Q and (Q,P, S0, S1, S2) is a Reconstructor.

Once we know this result we actually recover P by computing πW ′0(Q) and πW ′1(Q) and
then using Algorithm 7. We state this in the following corollary. Proof is given as Algorithm 5

I Corollary 3.15. Using f,K1−i, S0, S1, S2 from above we can compute πW ′0(Q), πW ′1(Q) for
Q defined in the proof above.

Before going to the proof let’s do some more more preparation.
Consider the set of linear forms X = L(G) ∪ L(T0) ∪ L(T1). We know that sp(X ) = V =

LinF[x̄] ' Fr (By abuse of notation we will use linear forms as points in Fr wherever required).
Let (S0 = {l1, . . . , lk}, D) be a detector in L(Ti) with |D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|) as
obtained in the preceeding discussion.

DefineW0 = sp(S0) and extend S0 to a basis {l1, . . . , lk, l′k+1, . . . , l
′
r}. Now it’s time to use

the other random matrix Λ. Since we had applied Ω in the beginning, {Ω−1(l1), . . . ,Ω−1(lk)}
are linear forms in our input polynomial for this section. By Assumption 3 we know that the
set

{Ω(Ω−1l1), . . . ,Ω(Ω−1lk),ΛΩ(Ω−1l′k+1), . . . ,ΛΩ(Ω−1l′r)}
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is LI. Let lj = Λl′j , j ∈ {k + 1, . . . , r}. So B = {l1, . . . , lr} is a basis. and define
W⊥0 = sp({lk+1, . . . , lr}). Clearly V = W0 ⊕W⊥0 .

By Assumption 4 for any l ∈ X \W0, [l]k+1
B 6= 0. We re-normalize all linear forms in

X \W0 making sure that the coefficient of lk+1 is 1 in them. From now onwards this will be
assumed.

With this notation we proceed towards detecting linear factors of the unknown parts.
But first let’s show that even after projecting onto W⊥0 , the detector is larger in size (upto a
function of δ) compared to one of the unknown parts.

I Lemma 3.16. The following are true:
1. dim(πW⊥0 (L(U1−i))) > C4
2. πW⊥0 (L(U1−i)) ∩ πW⊥0 (D) = φ

3. |πW⊥0 (L(U1−i)) \ {0}| ≤ 1−δ
δ |πW⊥0 (D)|

Proof. See G.3 in appendix. J

This lemma enables us to apply Lemma B.6 from Appendix B. Consider the sets
Y = πW⊥0 (L(U1−i)) \ {0} and X = πW⊥0 (D). We’ve shown all conditions in Lemma 2.5, so
there exists a line ~L (called a “semiordinary bichromatic” line) in W⊥0 such that |~L ∩ Y | = 1
and |~L ∩X| ≥ 1.

Let’s prove another short lemma which is useful for technical reasons.

I Lemma 3.17. For any subspace W ′0 such that V = W0 ⊕W ′0 = W0 ⊕W⊥0 there is a line
~L ⊂W ′0 such that
1. |~L ∩ πW ′0(D)| ≥ 1
2. |~L ∩ (πW ′0(L(U1−i)) \ {0})| = 1

Proof. We have the following commutative diagram:
V

W ′0 W⊥0

πW ′0
πW⊥0

πW ′0

Let v = w + w⊥ ∈ V where w ∈W0, w
⊥ ∈W⊥0 , then

πW ′0(πW⊥0 (v)) = πW ′0(w⊥) = πW ′0(w⊥) + πW ′0(w) = πW ′0(v)

So πW ′0 = πW ′0 ◦ πW⊥0

Next let T : V → V be any bijection then T (A ∩ B) = T (A) ∩ T (B) and therefore
|A ∩ B| = |T (A) ∩ T (B)|. Since the maps above are projections one can easily see that
πW ′0 : W⊥0 →W ′0 is an isomorphism where the inverse of any w′ ∈W ′0 is given as πW⊥0 (w′).
Call this map T . Now any linear isomorphism between vector spaces also preserves affine
dependence since:

T (λu+ (1− λ)v) = λT (u) + (1− λ)T (v) .

So image of a line is a line. Let ~L be the line obtained in Lemma 3.16.

T (~L) is a line in W ′0.
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|T (~L) ∩ πW ′0(D)| = |T (~L) ∩ T (πW⊥0 (D))| = |~L ∩ πW⊥0 (D)| ≥ 1
|T (~L) ∩ πW ′0(L(U1−i))| = |T (~L) ∩ T (πW⊥0 (L(U1−i)))| = |~L ∩ πW⊥0 (L(U1−i))|

Since T is a linear isomorphism 0 ∈ πW⊥0 (L(U1−i))⇔ 0 ∈ T (πW⊥0 (L(U1−i))) = πW ′0(L(U1−i))
and 0 ∈ ~L⇔ 0 ∈ T (~L), therefore the third condition above is same as

|T (~L) ∩ (πW ′0(L(U1−i)) \ {0})| = |~L ∩ (πW⊥0 (L(U1−i)) \ {0})| = 1

So the lemma is true with ~L being the line T (~L) obtained in this proof. J

Finally it’s time to give the proof of Theorem 3.14. Let d1 ∈ D such that πW⊥0 (d1) ∈ ~L
where ~L was the line obtained rightafter Lemma 3.16. Since coefficient of lk+1 is non-zero
in d1, {l1, . . . , lk, d1, lk+2, . . . , lr} is also a basis. Define S0 = {l1, . . . , lk}, S1 = {d1}, S2 =
{lk+2, . . . , lr},Wi = sp(Si),W ′i =

⊕
j 6=i

Wj . Note this implies V = W0⊕W ′0 and so Lemma 3.17

above can be used. Let ~L be the line the Lemma 3.17 gives. By re-normalization we also
assume that all linear forms in X \W ′0 have coefficient of d1 equal to 1.

Proof of Theorem 3.14

We show this in steps:
Let S0, S1, S2 be as defined in the discussion above.
Let Q be the largest factor of U1−i such that for all linear forms q | Q, πW2(q) 6= 0.
So πW2(Q) 6= 0 and if u? | U1−i

Q is a linear form then πW2(u?) = 0. Let P be the ΠΣ
polynomial with the largest possible degree such that for all linear factors p of P , πW ′0(p) ∈
~L∩ (πW ′0(L(U1−i)) \ {0}). Clearly P is non constant since |~L∩ (πW ′0(L(U1−i)) \ {0})| = 1.
Clearly πW ′0(P ) 6= 0⇒ P | Q. Then (Q,P, S0, S1, S2) is a Reconstructor (See Subsection C
for definition) for P . Let’s check this is true:
πW2(Q) 6= 0 - By definition of Q we know this for all it’s factors and therefore for Q
itself.
πW ′0(P ) = πW ′0(p)t, for some linear form p | P (since |~L ∩ (πW ′0(L(U1−i)) \ {0})| = 1).
Let q | QP such that gcd(πW2(P ), πW2(q)) 6= 1 ⇒ there exists some linear factor
p | P such that πW2(p), πW2(q) are LD. {πW2(p), πW2(q)} are LD and non-zero implies
q ∈ sp({l1, . . . , lk, d1, p}) ⇒ πW ′0(q) ∈ sp({πW ′0(d1), πW ′0(p)}) = sp({d1, πW ′0(p)}). So
clearly πW ′0(q) ∈ sp({d1, πW ′0(p)}). Since coefficient of d1 in πW ′0(q), d1, and πW ′0(p) is
1, and therefore using Lemma 1.10 it’s easy to see that πW ′0(q) ∈ fl({d1, πW ′0(p)}) = ~L.
Since Q | U1−i we have πW ′0(q) ∈ πW ′0(L(U1−i))\{0} ⇒ πW ′0(q) ∈ ~L∩ (πW ′0(L(U1−i))\
{0}) = {πW ′0(p)} which can’t be true since P is the largest polynomial dividing Q
where linear factors have this property and q - P . So such a q does not exist.

Now we give the algorithm for reconstruction in this case, see Algorithm 5.

3.5.2.1 Correctness

Let’s assume we returned an object obj of type decomposition.
1. If obj → iscorrect == true: then we ought to be right since we check if obj → f =

obj →M0 + obj →M1. Since the representation is unique this will be the correct answer.
2. If obj → iscorrect == false: Let’s assume f actually has a ΣΠΣ(2) representation. If

we were in Easy Case or Medium Case we would have already found the circuit using
their algorithms. So we are in the Hard Case. So by Lemma 3.13 there exists i such that
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FunctionName : HardCase
Fix : k = cF(3) + 2
input : f ∈ ΣΠΣF(2)[x̄], C ⊂ LinF[x̄],Λ ∈ Fr×r

output : An object of type decomposition
1 for i← 0 to 1 do
2 for each LI B′ = {l1, . . . , lk, l′k+1, . . . , l

′
r} ⊂ C do

3 S0 = {l1, . . . , lk};
4 for j ← k + 1 to r do
5 lj ← Λ(l′j);
6 end
7 if B = {l1, . . . , lr} is LI then
8 I ← IdentifyFactors(f, C, S0);
9 if I | f then

10 f ← f
I

, K?
0 = 1,K?

1 = 1, X ← OverestDetector(f?, C, S0);
11 while deg(K?

1−i) < deg(f) do
12 if EasyCase(f,K?

0 ,K
?
1 , C)→ iscorrect then

13 return object decomposition(f, IK?
0 , IK

?
1 );

14 end
15 else
16 for each d1 ∈ X do
17 if B2 = {l1, . . . , lk, d1, lk+2, . . . , lr} is LI then
18 Vj = Flj , j ∈ [r] \ {k + 1}, Vk+1 = Fd1, V ′j =

⊕
t∈[r]\{j}

Vt;

19 S0 = {l1, . . . , lk}, S1 = {uk+1}, S2 = {lk+2, . . . , lr};
20 Wj = sp(Sj),W ′j =

⊕
j1 6=j

Wj1 for j ∈ {0, 1, 2};

21 Q0 =
πV ′1

(f)

πV ′1
(K?

1−i
) , Q1 =

πW ′1
(f)

πW ′1
(K?

1−i
) ;

22 if Q0, Q1 ∈ ΠΣ[x̄] and non-zero then
23 for q0 | Q0 && q0 ∈W ′2, q1 | Q1 && q1 ∈W ′2 do
24 Q0 = Q0

q0
, Q1 = Q1

q1
;

25 end
26 Q0 = πW ′0 (Q0);
27 if deg(Reconstructor(Q0, Q1, S0, S1, S2)) ≥ 1 then
28 K?

1−i ← K?
1−i ×Reconstructor(Q0, Q1, S0, S1, S2);

29 end
30 end
31 end
32 end
33 end
34 end
35 if f − IK?

1−i ∈ ΠΣ[x̄] then
36 M0 = IK?

1−i, M1 = f −M0, return new object
decomposition(f,M0,M1);

37 end
38 end
39 end
40 end
41 end
42 return decomposition();

Algorithm 5: Hard Case Reconstruction.
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L(Ti) has a detector pair (S0, D) with |D| large. For this i there exists such an S0, so
sometime during the algorithm we would have guessed the correct i and the correct S0.
Now let’s analyze what happens inside the while and the third for loop when the first two
guesses are correct. Note that this also implies that the I we have identified is correct
and now we need to solve for

f = G(α0T0 + α1T1)

Let K?
0 ,K

?
1 (initialized to 1) be the known parts of the gates for this polynomial f

and U?0 , U?1 be the unknown parts. Note that T0, T1 are same for both polynomials so
rank(f) = rank(f) and for j = 0, 1; Kj | GTj .

Assume until the mth iteration of the while loop K?
t | GTt for t ∈ {0, 1}, we show that

after the (m+ 1)th iteration, this property continues to hold and deg(K?
1−i) increases.

If after the mth iteration of the while loop for some j ∈ {0, 1}, L(Tj) ( sp(L(U?1−j)) we
are in Easy Case for f . The first step in while loop is to call EasyCase(f, C,K?

0 ,K
?
1 ).

This will clearly recover the circuit for f and return true since K?
t | GTt for t ∈ {0, 1}.

However this does not happen so for both j = 0, 1, we have L(Ti) ( L(U1−i). This
means that we can use the ideas in Subsection 3.5.2, specifically Theorem 3.14.
The first two guesses are correct imply that D ⊆ X ⊆ L(Ti).
If d gets rejected then Kt, t ∈ {0, 1} remain unchanged. If some d1 does not get
rejected then since d1 ∈ L(Ti), Q0 = πV ′1 (U1−i) is a non zero ΠΣ polynomial. Then
some factors (the ones ∈W ′2) are removed from Q0. Also on projecting to W ′0 this still
remains non-zero (as d1 was not rejected).
We know that d1 ∈ L(Ti) and d1 not getting rejected implies that Q1 = πW ′1(U1−i)
is a non-zero ΠΣ polynomial. We again remove some factors (i.e. the ones in W ′2)
from Q1. The non-zeroness of Q0, Q1 imply that Q0 = πW ′1(Q), Q1 = πW ′1(Q) i.e. they
are projections of the same polynomial Q which is the largest factor of U1−i with the
property that any linear form q | Q is not in W ′2 = W0 ⊕W1.
d1 was not rejected implies that Reconstructor(Q0, Q1, S0, S1, S2) returned a non-
trivial polynomial P . This has to be a factor of Q by Claim C.6 following Algorithm 7
and therefore a factor of U1−i.
Proof of Theorem 3.14 implies that in every iteration atleast some d1 will not be
rejected.
So clearly the new K?

1−i = K?
1−i×P divides GT1−i. Ki remains unchanged. Therefore

even after the (m + 1)th iteration Kt | GTt for both j = 0, 1 but degree of K?
1−i

increases.

So the while loop cannot run more than deg(f) times and in the end GT1−i will be
reconstructed completely and correctly and we should have returned obj with obj →
iscorrect = true. Therefore we have a contradiction and so f did not have a ΣΠΣ(2)
circuit and we correctly returned false.

Running Time

First for loop runs twice.
Inside it chossing r linear forms from C (|C| = poly(d)) takes poly(d) time.
Applying Λ to r − k vectors takes poly(r) = O(1) time.
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Checking if a set of size r inside Fr is LI takes poly(r) = O(1) time since it is equivalent
to computing determinant.
IdentifyFactors() takes poly(d) time and computing f also takes poly(d) time.
OverestDetector() runs in poly(d) time.
while loop runs atmost d times
EasyCase runs in poly(d) time and so does polynomial multiplication.
X ⊆ L(Ti) and |L(Ti)| ≤ deg(f) and so for loop runs d times.
Change of bases in Fr and application to a polynomial of degree d takes poly(d) time.
Therefore projecting to subspaces also takes poly(d) time.
Reconstructor() runs in poly(d) time (since r is a constant) and so does polynomial
multiplication and factoring by [14].

Since all of the above steps run in poly(d) time, nesting them a constant number of times
also takes poly(d) time. Therefore the running time of our algorithm is poly(d).

3.6 Algorithm including all cases
The algorithm we give here will be the final algorithm for rank r ΣΠΣ polynomials. It will
use the previous three cases. Our input will be a ΣΠΣ(2) polynomial f(x1, . . . , xr) and
output will be a circuit computing the same.

FunctionName :RECONSTRUCT
input : f ∈ ΣΠΣF(2)[x̄]
output :An object of type decomposition

1 decomposition obj;
2 (Ωi,j), (Λi,j), r × r matrices with entries chosen uniformly randomly from [N ];

3 Li(x̄)←
r∑

k=1
Ωi,kxk;

4 f(x1, . . . , xr)← f(L1(x̄), . . . , Lr(x̄));
5 C ← Candidates(f(x1, . . . , xr));
6 if MediumCase(f, C))→ iscorrect then
7 obj ← MediumCase(f, C);
8 end
9 else if EasyCase(f,K0,K1, C)→ iscorrect then

10 obj ← EasyCase(f,K0,K1, C);
11 end
12 else
13 obj ← HardCase(f, C,Λ);
14 end
15 Apply Ω−1 to obj→ f, obj→M0, obj→M1;
16 return obj;

Algorithm 6: Reconstruction in low rank.

Explanation

Here we explain every step of the given algorithm:
The function RECONSTRUCT(f) takes as input a polynomial f ∈ ΣΠΣF(2)[x̄] of
rank = r and outputs two polynomials K0,K1 ∈ ΠΣF[x̄] which are the two gates in it’s
circuit representation.
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Steps 2, 3 picks a random matrix Ω and transforms each variable using the linear transfor-
mation this matrix defines. With high probability this will be an invertible transformation.
We do the reconstruction for this new polynomial since the linear factors of it’s gates
satisfy some non-degenerate conditions(because they have been randomly transformed)
our algorithm needs. We apply Ω−1 after the reconstruction and get back our original f .
The next step constructs the set of candidate linear forms C. We’ve talked about the size,
construction and structure of this set in Section E.
We first assume Medium Case. It that was not the case we check for Easy Case. If both
did not occur we can be sure we are in the Hard case.
We apply Ω−1 to polynomials in obj and return it.

4 Reconstruction for arbitrary rank

This section reduces the problem from ΣΠΣ(2) Circuits with arbitrary rank n (> s) to one
with constant rank r (still > s). Also once the problem has been solved efficiently in the low
rank case we use multiple instances of such solutions to lift to the general ΣΠΣ(2) circuit.
The idea is to project the polynomial to a small (polynomial) number of random subspaces
of dimension r, reconstruct these low rank polynomials and then lift back to the original
polynomial. The uniqueness of our circuit’s representation plays a major role in both the
projection and lifting steps. Let

f = G(α0T0 + α1T1)

G,Ti are normal ΠΣ polynomials. All notations are borrowed from the previous section.
It is almost identical to the restriction done in [24] except that the dimension of random
subspaces is different. For more details see Section 4.2.1 and 4.2.3. in [24]. Since all proofs
have been done in detail in [24] we do not spend much time here. A clear sketch with some
proofs is however given.

4.1 Projection to a Random Low Dimensional Subspace
We explain the procedure of projecting to the random subspace below. In this low dimensional
setup we can get coefficient representation of πV (f), also some important properties of f are
retained by πV (f). Proofs are simple and standard so we discuss them in the appendix at
end.

Pick n vectors vi, i ∈ [n] with each co-ordinate chosen independently from the uniform
distribution on [N ]. Let V = sp({vi : i ∈ [r]}) and V ′ = sp{vi : i ∈ {r + 1, . . . , n}}. Then
V ⊕ V ′ = Fn Let πV denote the orthogonal projection onto V . With high probability the
following hold:
1. {vi : i ∈ [n]} is linearly independent (see Appendix H.1 for proof).
2. Let {l1, . . . , lr} be a set of r linearly independent linear forms in L(T0) ∪ L(T1). Then

πV ({l1, . . . , lr}) is linearly independent with high probability. So rank(πV (f)) = r (see
Appendix H.2 for Proof).

3. Let l01 ∈ L(T0), l11 ∈ L(T1), then πV (l01), πV (l11) are linearly independent with high
probability and so gcd(πV (T0), πV (T1)) = 1.

Pick large number of (≥ dr) random points pi, i = 1, . . . , dr in the space V . Use the values
{f(pi)} and get a coefficient representation for πV (f). With high probability over the choice
of points interpolation will work (See Appendix H.3 for Proof). We will effectively be solving
a linear system. Note that the number of coefficients in f |V = O(dr). Now this coefficient
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representation of πV (f) is reconstructed using the algorithm in Section 3. A number of such
reconstructions are then glued to reconstruct the original polynomial.

4.2 Lifting from the Random Low Dimensional Subspace
1. Consider spaces Vi = V ⊕ Fvi for i = r + 1, . . . , n.
2. Reconstruct πVi

(f) and πV (f) for each i ∈ {r + 1, . . . , n}.

3. Let l =
n∑
i=1

aivi be a linear form dividing one of the gates of f say T0. πV (l) =
r∑
i=1

aivi

and πVi(l) =
r∑
j=1

ajvj + aivi. Using our algorithm discussed in Section 3 we would have

reconstructed πV (f) and πVi
(f). So we know the triples (πV (G), πV (T0), πV (T1)) and

(πVi
(G), πVi

(T0), πVi
(T1))

On restricting Vi to V :
a. Only Factors become factors with high probability so we can easily find the correspon-

dence between πV (G) and πVi(G).
b. πV (πVi(T0)) = πV (T0) and 6= πV (T1) because of uniqueness of representation and

therefore we get the correspondence between gates.
c. Now to get correspondence between linear forms. Let πV (l) have multiplicity k in
πV (T0). Then with high probability l has multiplicity k in T0 Since two LI vectors
remain LI on projecting to a random subspace of dimension ≥ 2 (again see Appendix H.2
for proof). Therefore πVi

(l) has multiplicity k and is the unique lift of πV (l) for all i.
Let πVi(l) = πV (l) + aivi. Then l = πV (l) +

∑n
i=r+1 aivj . This finds G,T0, T1 for us

4.3 Time Complexity
Interpolation to find coefficient representation πV (f) which is a degree d polynomial
over r variables clearly takes poly(dr) time (accounts to solving a linear system of size
poly(dr)).
Solving n− r instances of the low rank problem (simple ranks r and r+ 1) takes npoly(dr)
time.
The above mentioned approach to glue the linear forms in the gates clearly takes poly(n, d)
time.
Overall the algorithm takes poly(n, d) time since r is a constant.

5 Conclusion and Future Work

We described an efficient randomized algorithm to reconstruct circuit representation of
multivariate polynomials which exhibit a ΣΠΣ(2) representation. Our algorithm works for
all polynomials with rank(number of independent variables greater than a constant r). In
future we would like to address the following:

Reconstruction for Lower Ranks: As can be seen in the paper, rank of the polynomial
for uniqueness (i.e. cF(4)) and the rank we’ve assumed in the low rank reconstruction
(i.e. r) are both O(1) but cF(4) is smaller than r. Since one would expect a reconstruction
algorithm whenever the circuit is unique we would like to close this gap.
ΣΠΣ(k) circuits: The obvious next step would be to consider more general top fan-in.
In particular we could consider ΣΠΣ(k) circuits with k = O(1).
Derandomization: We would like to derandomize the algorithm as it was done in the
finite field case in [15].
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of the output. Note that all polynomials are over the field of complex numbers C and all
computations are also done for the complex polynomial rings.

Let x̄ = (x1, . . . , xr) and ȳ = (y1, . . . , yr) be variables. For any homogeneous polynomial
f(x̄) of degree d, define

fx̄k (x̄, ȳ) = (d− k)!
d! (

∑
i

xi
∂

∂yi
)kf(ȳ)

Expanding (
∑
i

xi
∂
∂yi

)k as a polynomial of differentials takes O((r + k)r) time and has

the same order of terms in it. f(ȳ) has O((r + k)r) terms. Taking partial derivatives of each
term takes constant time and therefore overall computing (

∑
i

xi
∂
∂yi

)kf(ȳ) takes O((r + k)2r)

time. Also the expression obtained will have atmost O((r + k)2r) terms. Computing the
external factor takes poly(d) time and so for an arbitrary f(x̄) computing all fx̄k (x̄, ȳ) for
0 ≤ k ≤ d takes poly((r + d)r) time and has poly((r + d)r) terms in it. From Section E.,
Chapter 4 in [8] we also know that fx̄k (x̄, ȳ) is a bihomogeneous form of degree k in x̄ and
degree d− k in ȳ. It is called the kth polar of f .

Next we define an � opeartion between homogeneous forms. Let f(x̄) and g(x̄) be
homogeneous polynomials of degrees d, define

(f � g)(x̄, ȳ) = 1
d+ 1

d∑
k=0

(−1)k
(
d

k

)
fȳk (ȳ, x̄)gx̄k (x̄, ȳ)

From the discussion above we know that computing fȳk (ȳ, x̄)gx̄k (x̄, ȳ) takes poly((r+ d)r)
time and it is obvious that this product has poly((r + d)r) terms. Rest of the operations
take poly(d) time and therefore computing (f � g)(x̄, ȳ) takes poly((r + d)r) time and has
poly((r+d)r) terms. From the discussion before we may also easily conclude that the degrees
of x̄, ȳ in (f � g)(x̄, ȳ) are poly(d). The form (f � g) is called the vertical(Young) product of
f and g. See Section G., Chapter 4 in [8].

Next for k ∈ {0, . . . , d} and z̄ = (z1, . . . , zr) consider homogeneous forms:

ek =
(
d

k

)
fx̄k (x̄, z̄)f(z̄)k−1

Following arguments from above, it’s straightforward to see that computing ek takes poly((r+
d)r) time and has poly((r + d)r) terms. Each ek is a homogeneous form in x̄, z̄ and f . It has
degree k in x̄, degree k(d− 1) in z, and k in coefficients of f . See Section H. of Chapter 4 in
[8]. Let’s define the following function of x̄ with parameters f, z

Pf,z(x̄) = (−1)dd
∑

i1+2i2+...+rir=d
(−1)(i1+...+ir) (i1 + . . .+ ir − 1)!

i1! . . . ir!
ei11 . . . eirr

Note that {(i1, . . . , ir) : i1 + 2i2 + . . . + rir = d} ⊆ {(i1, . . . , ir) : i1 + i2 + . . . + ir ≤ d}
and therefore the number of additions in the above summand is O(poly(r + d)r). For every
fixed (i1, . . . , ir) computing the coefficient (i1+...+ir−1)!

i1!...ir! takes O(poly((r + d)r)) time using
multinomial coefficients. Each ek takes poly((r + d)r) time to compute. There are r of them
in each summand and so overall we take O(poly((r + d)r)) time. A similar argument shows
that number of terms in this polynomial is O(poly((r + d)r)). Some more analysis shows
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that Pf,z(x̄) is a form of degree d in x̄ whose coefficients are homogeneous polynomials of
dedgree d in f and degree d(d− 1) in z̄. Let

Bf (x̄, ȳ, z̄) = (f � Pf,z)(x̄, ȳ)

By the arguments given above calculating this form also takes time poly((r + d)r) and it
has poly((r+d)r) terms. This is a homogeneous form in (x̄, ȳ, z̄) of multidegree (d, d, d(d−1))
and it’s coefficients are forms of degree (d+1) in the coefficients of f . See Section H., Chapter
4 in [8]. So in time poly((r + d)r) we can compute Bf (x̄, ȳ, z̄) explicitly.

Now we arrive at the main theorem

I Theorem A.1 (Brill’s Equation – see 4.H, [8]). A form f(x̄) is a product of linear forms if
and only if the polynomial Bf (x̄, ȳ, z̄) is identically 0.

We argued above that computing Bf (x̄, ȳ, z̄) takes O(poly((r+ d)r)) time. It’s degrees in
x̄, ȳ, z̄ are all poly(d) and so the number of coefficients when written as a polynomial over
the 3r variables

(x1, . . . , xr, y1, . . . , yr, z, . . . , zr) is poly((r + d)r). We mentioned that each coefficient is a
polynomial of degree (d+ 1) in the coefficients of f . Therefore we have the following corollary.

I Corollary A.2. Let

I
def= {(α1, . . . , αn) : ∀i : αi ≥ 0,

∑
i∈[r]

αi = d}

be the set capturing the indices of all possible monomials of degree exactly d in r variables
(x1, . . . , xr). Let fa(y1, . . . , yr) =

∑
α∈I aαyα denote an arbitrary homogeneous polynomial.

The coefficient vector then becomes a = (aα)α∈I . Then there exists an explicit set of
polynomials F1(a), . . . , Fm(a) on poly((r + d)r) variables (a = (aα)α∈I), with m = poly((r +
d)r), deg(Fi) ≤ poly(d) such that for any particular value of a, the corresponding polynomial
fa(y) ∈ ΠΣd

F[ȳ] if and only if F1(a) = . . . = Fm(a) = 0. Also this set {Fi, i ∈ [m]} can be
computed in time poly((r + d)r) time.

Proof. Clear from the theorem and discussion above. J

Note that in our application r = O(1) and so poly((d+ r)r) = poly(d).

B Tools from Incidence Geometry

Later in the paper we will use the quantitative version of Sylvester-Gallai Theorem from [3].
In this subsection we do preparation for the same. Our main application will also involve a
corollary we prove towards the end of this subsection.

I Definition B.1 ([3]). Let S be a set of n distinct points in complex space Cr. A k − flat
is elementary if its intersection with S has exactly k + 1 points.

I Definition B.2 ([3]). Let S be a set of n distinct points in Cr. S is called a δ − SGk
configuration if for every independent s1, . . . , sk ∈ S there are atleast δn points t ∈ S

such that either t ∈ fl({s1, . . . , sk}) or the k−flat fl({s1, . . . , sk, t}) contains a point in
S \ {s1, . . . , sk, t}.

I Theorem B.3 ([3]). Let S be a δ − SGk configuration then dim(S) ≤ 2Ck

δ2 . Where C > 1
is a universal constant.
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This bound on the dimension of S was further improved by Dvir et al. in [6]. The latest
version now states

I Theorem B.4 ([6]). Let S be a δ − SGk configuration then dim(S) ≤ Ck = Ck

δ . Where
C > 1 is a universal constant.

I Corollary B.5. Let dim(S) > Ck then S is not a δ − SGk configuration i.e. there exists a
set of independent points {s1, . . . , sk} and ≥ (1− δ)n points t such that fl({s1, . . . , sk, t}) is
an elementary k − flat. That is:

t /∈ fl({s1, . . . , sk})
fl({s1, . . . , sk, t}) ∩ S = {s1, . . . , sk, t}.

Right now we set δ to be a constant < 0.5, Ck = Ck

δ . Note that Ci < Ci+1. Using the above
theorem we prove the following lemma which will be useful to us later

I Lemma B.6 (Bichromatic semi-ordinary line). Let X and Y be disjoint finite sets in Cr
satisfying the following conditions.
1. dim(Y ) > C4.
2. |Y | ≤ c|X| with c < 1−δ

δ .
Then there exists a line l such that |l ∩ Y | = 1 and |l ∩X| ≥ 1

Proof. We consider two cases:

Case 1: c|X| ≥ |Y | ≥ |X| Since dim(Y ) > C1, using the corollary above for S = X∪Y, k = 1
we can get a point s1 ∈ X ∪ Y for which there exist (1 − δ)(|X| + |Y |) points t in X ∪ Y
such that t /∈ fl{s1} and fl{s1, t} is elementary. If s1 ∈ X then (1− δ)(|X|+ |Y |)− |X| ≥
(1 − 2δ)|X| > 0 of these flats intersect Y and thus we get such a line l. If s1 ∈ Y then
(1− δ)(|X|+ |Y |)− |Y | ≥ ((1− δ)( 1

c + 1)− 1)|Y | > 0 of these flats intersect X giving us the
required line l with |l ∩X| = 1 and |l ∩ Y | = 1.

Case 2: |Y | ≤ |X| Now choose a subset X1 ⊆ X such that |X1| = |Y |. Now using
the same argument as above for S = X1 ∪ Y there is a point s1 ∈ X1 ∪ Y such that
(1− δ)(|X1|+ |Y |) = 2(1− δ)|Y | = 2(1− δ)|X1| flats through it are elementary in X1 ∪ Y .
If s1 ∈ Y (1− 2δ)|Y | > 0 of these flats intersect X1. If s1 ∈ X1, (1− 2δ)|X1| > 0 of these
flats intersect Y . In both these above possibilities the flat intersects Y and X1 in exactly
one point each. But it may contain more points from X \X1 so we can find a line l such
that |l ∩ Y | = 1 and |l ∩X| ≥ 1. J

C A Method of Reconstructing Linear Forms

In a lot of circumstances one might reconstruct a linear form (upto scalar multiplication)
inside V = LinF[x̄] from it’s projections (upto scalar multiplication) onto some subspaces
of V . For example consider a linear form L = a1x1 + a2x2 + a3x3(∈ LinF[x1, x2, x3]) with
a3 6= 0, and assume we know scalar multiples of projections of L onto the spaces Fx1 and
Fx2 i.e. we know L1 = α(a2x2 + a3x3) and L2 = β(a1x1 + a3x3) for some α, β ∈ F. Scale
these projections to L̃1 = x3 + a2

a3
x3 and L̃2 = x3 + a1

a3
x3. Using these two define a linear

form x3 + a1
a3
x1 + a2

a3
x2. This is a scalar multiple of our original linear form L. We generalize

this a little more below.

Let x̄ ≡ (x1, . . . , xr), B = {l1, . . . , lr} be a basis for V = LinF[x1, . . . , xr]. For i ∈ {0, 1, 2},
let Si be pairwise disjoint non empty subsets of B such that S0∪S1∪S2 = B. LetWi = sp(Si)
and W ′i =

⊕
j 6=i

Wj . Clearly V = W0 ⊕W1 ⊕W2 = Wi ⊕W ′i , i ∈ {0, 1, 2}.
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I Lemma C.1. Assume L ∈ V is a linear form such that
πW2(L) 6= 0
For i ∈ {0, 1}, Li = βiπW ′

i
(L) are known for some non-zero scalars βi.

Then L is unique upto scalar multiplication and we can construct a scalar multiple L̃ of L.

Proof. Let L = a1l1 + . . .+ arlr, ai ∈ F. Since πW2(L) 6= 0, there exists lj ∈ S2 such that
aj 6= 0. Let L̃ = 1

aj
L. For i ∈ {0, 1}, re-scale Li to get L̃i making sure that coefficient of lj

is 1 in them. Thus for i = 0, 1

πW ′
i
(L̃) = L̃i .

Since W ′0 = W1 ⊕W2 and W ′1 = W0 ⊕W2 by comparing coefficients we can get L̃. J

Algorithm Assume we know S0, S1, S2 and therefore the basis change matrix to convert
vector representations from S to B. It takes poly(r) time to convert [v]S to [v]B. Given Li
in the basis B it takes poly(r) time(by a linear scan) to find lj ∈ S2 with aj 6= 0. This lj
has a non zero coefficient in both L0, L1. After this we just rescale Li to get L̃i such that
coefficient of lj is 1. Then since L̃i = πW ′

i
(L̃) the coefficient of lt in L̃ is as follows:

=


coefficient of lt in L̃1 : lt ∈ S0
coefficient of lt in L̃0 : lt ∈ S1
coefficient of lt in L̃0 = coefficient of lt in L̃1 : lt ∈ S2

Finding the right coefficients using this also takes poly(r) time.

Next we try and use this to reconstruct ΠΣ polynomials. This case is slightly more
complicated and so we demand that the projections have some special form. In particular
the projections onto one subspace preserves pairwise linear independence of linear factors
and onto the other makes all linear factors scalar multiples of each other.

I Corollary C.2. Let Si,Wi, i ∈ {0, 1, 2} be as above and P ∈ ΠΣF[x1, . . . , xr] such that
1. πW2(P ) 6= 0
2. For i ∈ {0, 1} there exists βi( 6= 0) ∈ F such that P0 = β0πW ′0(P ) = pt and P1 =

β1πW ′1(P ) = d1 . . . dt. are known i.e. p, dj (j ∈ [t]) and t are known.
Then P is unique upto scalar multiplication and we can construct a scalar multiple P̃ of P .

Proof. Let P = L1 . . . Lt with Li ∈ LinF[x̄]. There exists βji , i ∈ {0, 1}, j ∈ [t], such that
βj0πW ′0(Lj) = p and βj1πW ′1(Lj) = dj . Since p, dj are known by above Lemma C.1 we find
a scalar multiple L̃j = βjLj of Lj and therefore find a scalar multiple P̃ = L̃1 . . . L̃t of P .
Note that this method also tells us that such a P is unique upto scalar multiplication. Since
we’ve used the above Algorithm C at most t times with t ≤ deg(P ), it takes poly(deg(P ), r)
time to find P̃ . J

This corollary is the backbone for reconstructing ΠΣ polynomials from their projections.
But first we formally define a “Reconstructor”:

I Definition C.3 (Reconstructor). Let Si,Wi, i ∈ {0, 1, 2} be as above. Let Q be a standard
ΠΣ polynomial and P be a standard ΠΣ polynomial dividing Q with Q = PR. Then
(Q,P, S0, S1, S2) is called a Reconstructor if:

πW2(P ) 6= 0.
πW ′0(P ) = αpt, for some linear form p.
Let l | R be a linear form and πW2(l) 6= 0 then gcd(πW2(P ), πW2(l)) = 1.
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Note: Let L1, L2 be two LI linear forms dividing P , then one can show

L1, L2 are LI ⇔ πW ′1(L1), πW ′1(L2) are LI

To see this first observe that the second bullet implies for i ∈ [2], Li ∈W0+p⇒ sp({L1, L2}) ⊆
W0 + p.

If πW ′1(L1), πW ′1(L2) are LD then

sp({L1, L2}) ∩W1 6= {0}

⇒ (W0 + p) ∩W1 6= {0}. Since W0 ∩W1 = {0} we get that p ∈W0 ⊕W1 = W ′2 ⇒ πW2(p) =
0⇒ πW2(P ) = 0 contradicting the first bullet.

Geometrically the conditions just mean that all linear forms dividing P have LD projection
(= γp for some non zero γ ∈ F) w.r.t. the subspace W ′0 and LI linear forms p1, p2 dividing
P have LI projections (w.r.t. subspace W ′1). Also no linear form l dividing R belongs to
fl(S0 ∪ S1 ∪ {p}).

We are now ready to give an algorithm to reconstruct P using πW ′0(Q) and πW ′1(Q) by
gluing appropriate projections corresponding to P . To be precise:

I Claim C.4. Let Q,P be standard ΠΣ polynomials and P | Q. Assume (Q,P, S0, S1, S2) is
a Reconstructor. If we know both πW ′0(Q) and πW ′1(Q). Then we can reconstruct P .

Proof. See Algorithm 7. J

C.1 Explanation
The algorithm takes as input projections πW ′0(Q) and πW ′1(Q) along with the sets Si, i =
0, 1, 2 which form a partition of a basis B. We know that there exists a polynomial P | Q
such that (Q,P, S0, S1, S2) is a reconstructor and so we try to compute the projections
πW ′0(P ), πW ′1(P ).
If one assumes that πW ′0(Q) = γ

∏
i∈[s]

cmi
i with the ci’s co-prime, then by the properties of

a reconstructor the projection (of a scalar multiple of P ) onto W ′0 say P0 = β0πW ′0(P )
(for some β0) has to be equal to cmi

i for some i. We do this assignment inside the first for
loop.
The third property of a reconstructor implies that when we project further to W2, it
should not get any more factors and so we check this inside the second for loop by going
over all other factors cj of πW ′0(Q) and checking if ci, cj become LD on projecting to W2
(i.e. by further projecting to W ′1).
Now to find (scalar multiple of) the other projections i.e. P1 = β1πW ′1(P ) (for some β1),
we go through πW ′1(Q) and find dk such that {πW ′1(ci), πW ′0(dk)} are LD (i.e. they are
projections of the same linear form). We collect the product of all such dk’s. If the choice
of ci were correct then all dk’s would be obtained correctly.
The last “if ” statement just checks that the number of dk’s found above is the same as
mi since P0 = cmi

i tells us that the degree of P was mi. We recover a scalar multiple of
P using the algorithm explained in Corollary C.2 and then make it standard to get P .

C.2 Correctness
The corectness of our algorithm is shown by the lemma below.
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input : πW ′0(Q) ∈ ΠΣ[x̄], πW ′1(Q) ∈ ΠΣ[x̄], S0, S1, S2
output : a ΠΣ polynomial P | Q

1 boolflag, ΠΣ polynomial P0, P1;;
2 Factor πW ′0(Q) = γ

∏
i∈[s]

cmi
i , ci’s pairwise LI and normal, γ ∈ F;

3 Factor πW ′1(Q) = δd1 . . . dm, δ ∈ F and dj normal;
4 for i ∈ [s] && πW ′1(ci) 6= 0 do
5 flag = true, P0 = cmi

i ;
6 // Assuming projection w.r.t. W ′0 to be cmi

i .
7 for j ∈ [s] && j 6= i && πW ′1(cj) 6= 0 do
8 if gcd(πW ′1(ci), πW ′1(cj)) 6= 1 then
9 flag = false;

10 end
11 end
12 if flag == true then
13 P1 = 1;
14 end
15 for j ∈ [m] do
16 if πW ′0(dj) 6= 0 & & {πW ′0(dj), πW ′1(ci)} are LD then
17 P1 = P1dj ;
18 // This steps collects projection w.r.t. W ′1 in P1.
19 end
20 end
21 if (deg(P1) = mi) && (P0, P1) give P̃ = βP using Corollary C.2 then
22 Make P̃ standard w.r.t. the standard basis S to get P ;
23 Return P ;
24 end
25 end
26 Return 1;

Algorithm 7: Reconstructing Linear Factors.

I Claim C.5. If (Q,P, S0, S1, S2) is a reconstructor for non-constant P , then Algorithm re-
freconalgo returns P .

Proof. (Q,P, S0, S1, S2) is a reconstructor therefore
πW2(P ) 6= 0
πW ′0(P ) = δpt

q | QP ⇒ gcd(πW2(q), πW2(P )) = 1

1. It is clear that for one and only one value of i, ci divides p. Fix this i. Let Q = PR,
if cmi

i - πW ′0(P ) then ci | l for some linear form l | πW ′0(R). Condition 3 in definition of
Reconstructor implies that gcd(πW2(P ), πW2(l)) = 1 but πW2(ci) divides both of them
giving us a contradiction. Since πW ′0(P ) has just one linear factor ⇒ πW ′0(P ) is a scalar
multiple of cmi

i for some i.
2. Assume the correct cmi

i has been found. Now let dj | πW ′1(Q) such that {πW2(ci), πW2(dj)}
are LD. then we can show that dj | πW ′1(P ). Assume not, then for some linear form
l | R = Q

P , dj | πW ′1(l). πW ′0(dj) 6= 0 (which we checked) ⇒ πW2(l) 6= 0. So we get
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πW2(ci) | πW2(l)(6= 0) and so πW2(ci) | gcd(πW2(P ), πW2(l)) which is therefore 6= 1 and
condition 3 of Definiton C.3 is violated. So whatever dj we collect will be a factor of
πW ′1(P ) and we will collect all of them since they are all present in πW ′1(Q).

3. We know from proof of Corollary C.2 that if we know ci,mi and dj ’s correctly then
we can recover a scalar multiple of P correctly. But Q,P are standard so we return P
correctly. J

In fact we can show that if we return something it has to be a factor of Q.

I Claim C.6. If Algorithm 7 returns a ΠΣ polynomial P , then P | Q.

If the algorithm returns 1 from the last return statement, we are done. So let’s assume it
returns something from the previous return statement.
So flag has to be true at end⇒ there is an i ∈ [s] such that P0 = cmi

i with the conditions
that πW ′1(ci) 6= 0 and gcd(ci, cj) = 1 for j 6= i. It also means that for exactly mi of the
dj ’s (say d1, . . . , dmi

) {πW ′1(ci), πW ′0(dj)} are LD and P1 = d1 . . . dmi
.

Since cmi
i | πW ′0(Q), there exists a factor P̃ | Q of degree mi such that πW ′0(P̃ ) =

cmi
i and πW ′1(ci) 6= 0. This ⇒ πW2(P̃ ) 6= 0. Clearly πW ′1(P̃ ) | πW ′1(Q) = d1 . . . dm,
hence for all linear factors p̃ of P̃ , πW ′1(p̃) should be some dj with the condition that
{πW ′0((π′W1

)(p̃)), πW ′1(ci)} should be LD. The only choice we have are d1, . . . , dmi
. So

πW ′0(P̃ ) = d1 . . . dmi
. All conditions of Corollary C.2 are true and so P̃ is uniquely defined

(upto scalar multiplication) by the reconstruction method given in Corollary C.2. So
what we returned was actually a factor of Q.

C.3 Time Complexity
Factoring πW ′0(Q), πW ′1(Q) takes poly(d) time (using Kaltofen’s Factoring from [14]). The
nested for loops run ≤ d3 times. Computing projections with respect to the known decompo-
sition W0 ⊕W1 ⊕W2 = Fr of linear forms over r variables takes poly(r) time. Computing
gcd and linear independence of linear forms takes poly(r) time. The final reconstruction of
P using (P0, P1) takes poly(d, r) time as has been explained in Corollary C.2. Multiplying
linear forms to ΠΣ polynomial takes poly(dr) time. Therefore overall the algorithm takes
poly(dr) time. In our application r = O(1) and therefore the algorithm takes poly(d) time.

D Random Linear Transformations

This section will prove some results about linear independence and non-degeneracy under
random transformations on Fr. This will be required to make our input non-degenerate.
From here onwards we fix a natural number N ∈ N and assume 0 < k < r. Let T ⊂ Fr be a
finite set with dim(T ) = r. Next we consider two r × r matrices Ω,Λ. Entries Ωi,j ,Λi,j are
picked independently from the uniform distribution on [N ]. For any basis B of Fr and vector
v ∈ Fr, let [v]B denote the co-ordinate vector of v in the basis B. If B = {b1, . . . , br} then
[v]iB denotes the i-th co-ordinate in [v]B. Let S = {e1, . . . , er} be the standard basis of Fr.
Let Ej = sp({e1, . . . , ej}) and E′j = sp({ej+1, . . . , er}), then Fr = Ej ⊕E′j . Let πWEj

be the
orthogonal projection onto Ej . For any matrix M , we denote the matrix of it’s co-factors by
co(M). We consider the following events:
E0 = {Ω is not invertible }
E1 = {∃t( 6= 0) ∈ T : πWE1

(Ω(t)) = 0}
E2 = {∃{t1, . . . , tr} LI vectors in T : {Ω(t1), . . . ,Ω(tr)} is LD }
E3 = {∃{t1, . . . , tr} LI vectors in T : {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)} is LD }
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When ti,Λ,Ω are clear we define the matrix M = [M1 . . .Mr] with columns Mi given as:

Mi =
{

[Ω(ti)]S : i ≤ k
[ΛΩ(ti)]S : i > k

M corresponds to the linear map

ei 7→ Ω(ti) for i ≤ k and ei 7→ ΛΩ(ti) for i > k

E4 = {{∃{t1, . . . , tr} LI vectors in T and t ∈ T \sp({t1, . . . , tk}) : [co(M)[Ω(t)]S ]k+1
S = 0}

E5 = E4 | Ec3

Next we show that the probability of all of the above events is small. Before doing that
let’s explain the events. This will give an intuition to why the events have low probabilities.
E0 is the event where Ω is not-invertible. Random Transformations should be invertible.
E1 is the event where there is a non-zero t ∈ T such that the projection to the first
co-ordinate (w.r.t. S) of Ω applied on t is 0. We don’t expect this for a random linear
transformation. Random Transformation on a non-zero vector should give a non-zero
coefficient of e1.
E2 is the event such that Ω takes a basis to a LD set i.e. Ω is not invertible (random
linear operators are invertible).
E3 is the event such that for some basis applying Ω to the first k vectors and ΛΩ to the
last n− k vectors gives a LD set. So this operation is not-invertible. For ranrom maps
this should not be the case.
E4 is the event that there is some basis {t1, . . . , tr} and t outside sp(t1, . . . , tk) such
that the (k + 1)th co-ordinate of co(M)[Ω(t)]S w.r.t the standard basis is 0. If M were
invertible, clearly the set B = {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)} would be a basis
and co(M) will be a scalar multiple of M−1. So we are asking if the (k+ 1)th co-ordinate
of Ω(t) in the basis B is 0. For random Ω,Λ we would expect M to be invertible and this
co-ordinate to be non-zero.

Now let’s formally prove everything. We will repeatedly use the popular Schawrtz-Zippel
Lemma which the reader can find in [21].

I Claim D.1. Pr[E1] ≤ |T |N .

Proof. Fix a non-zero t =


a1
.

.

ar

 with ai ∈ F and let Ω = (Ωi,j), 1 ≤ i, j ≤ r. Then

the first co-ordinate of Ω(t) is Ω1,1a1 + Ω1,2a2 + . . . + Ω1,rar. Since t 6= 0, not all ai are
0 and this is therefore not an identically zero polynomial in (Ω1,1, . . . ,Ω1,r). Therefore
by Schwartz-Zippel lemma Pr[[Ω(t)]1S = 0] ≤ 1

N . Using a union bound inside T we get
Pr[∃t(6= 0) ∈ T : [Ω(t)]1S = 0] ≤ |T |N . J

I Claim D.2. Pr[E2] ≤ r
N .

Proof. Clearly E2 ⊆ E0 and so Pr[E2] ≤ Pr[E0]. E0 corresponds to the polynomial equation
det(Ω) = 0. det(Ω) is a degree r polynomial in r2 variables and is also not identically zero,
so using Schwartz-Zippel lemma we get Pr[E2] ≤ Pr[E0] ≤ r

N . J

I Claim D.3. Pr[E3] ≤
(|T |
r

) 2r
N .
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Proof. Fix an LI set t1, . . . , tr. The set {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . .ΛΩ(tr)} is LD iff the
r× r matrix M formed by writing these vectors (in basis S) as columns (described in part D
above) has determinant 0. M has entries polynomial (of degree ≤ 2) in Ωi,j and Λi,j and
so det(M) is a polynomial in Ωi,j ,Λi,j of degree ≤ 2r. For Ω = Λ = I (identity matrix)
this matrix just becomes the matrix formed by the basis {t1, . . . , tr} which has non-zero
determinant and so det(M) is not the identically zero polynomial. By Schwartz-Zippel lemma
Pr[det(M) = 0] ≤= 2r

N . Now we vary the LI set {t1, . . . , tr}, there are ≤
(|T |
r

)
such sets and

so by a union bound Pr[E3] ≤
(|T |
r

) 2r
N . J

I Claim D.4. Pr[E4] ≤
( |T |
r+1
) 2r−1

N .

Proof. Fix an LI set t1, . . . , tr and a vector t /∈ sp({t1, . . . , tk}). Let t =
r∑
i=1

aiti.

Since t /∈ sp({t1 . . . , tk}), as 6= 0 for some s ∈ {k + 1, . . . , r}. Let B =
{Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . .ΛΩ(tr)}. Let M be the matrix whose columns are from
B (Construction has been explained in part D above). We know that the co-factors of a
matrix are polynomials of degree ≤ r− 1 in the matrix elements. In our matrix M all entries
are polynomials of degree ≤ 2 in Ωi,j ,Λi,j , so all entries of co(M) are polynomials of degree

≤ 2r − 2 in Ωi,j ,Λi,j . Thus [co(M)[Ω(t)]S ]k+1
S =

r∑
i=1

co(M)k+1,i[Ω(t)]iS is a polynomial of

degree ≤ 2r − 1. This polynomial is not identically zero. Define Ω to be the matrix (w.r.t.
basis S) of the linear map Ω(ti) = ei and Λ to be the matrix (w.r.t. basis S) of the map

Λ =


Λ(ei) = ei : i /∈ {s, k + 1}
Λ(es) = ek+1
Λ(ek+1) = es

With these values the set B becomes {e1, . . . , ek, es, ek+2, . . . , es−1, ek+1, es+1, . . . , er}. If one
now looks at M i.e. the matrix formed using entries of B as columns it’s just the permutation
matrix that flips es and ek+1. This matrix is the inverse of itself and so has determinant = ±1,

thus co(M) = ±M−1 = ±M . Therefore co(M)[Ω(t)]S = ±M


a1
.

.

ar

 = ±



a1
.

ak
as
ak+2
.

as−1
ak+1
.as+1
.

ar



.

Since as 6= 0, we get [co(M)[Ω(t)]S ]k+1
S 6= 0. So the polynomial is not identically zero and

we can use Schwartz-Zippel Lemma to say that Pr[[co(M)[Ω(t)]S ]k+1
S = 0] ≤ 2r−1

N . Now we
vary {t1, . . . , tr, t} inside T and use union bound to show Pr[E4] ≤

( |T |
r+1
) 2r−1

N . J

Even though this is just basic probability we include the following:

I Claim D.5. Pr[E5] ≤
(|T |
r

) 2r−1
N−(|T |r )2r

.

Proof. Pr[E5] = Pr[E4 | Ec3 ] = Pr[E4∩Ec
3 ]

Pr[Ec
3 ] ≤

Pr[E4]
Pr[Ec

3 ] ≤
( |T |
r+1
) 2r−1

N

1−(|T |r ) 2r
N

=
( |T |
r+1
) 2r−1
N−(|T |r )2r

. J
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In our application of the above r = O(1), |T | = poly(d), N = 2d and so all probabilities are
very small as d grows. So we will assume that none of the above events occur. By union bound
that too will have small probability and so with very high probability E0, E1, E2, E3, E4, E5 do
not occur.

E Set C of Candidate Linear Forms

This section deals with constructing a poly(d) size set C which contains each lij , (i, j) ∈
{0, 1} × [M ]. First we define the set and prove a bound on it’s size.

E.1 Structure and Size of C
Let’s recall f = G(α0T0 + α1T1) and define two other polynomials:

g = f

G
= α0T0 + α1T1

h = f

Lin(f) = g

Lin(g)
Assume deg(h) = dh:

I Definition E.1. Our candidate set is defined as:

C def= {l = x1−a2x2−. . .−arxr ∈ LinF[x̄] : h(a2x2+. . .+arxr, x2, . . . , xr) ∈ ΠΣdh

F [x2, . . . , xr]}

(for definition of ΠΣdh

F [x2, . . . , xr] see Section 1.4).

In the claim below we show that linear forms dividing polynomials Ti, i = 0, 1 are actually
inside C (first part of claim). The remaining linear forms in C (which we call “spurious”)
have a nice structure (second part of claim). In the third part of our claim we arrive at a
bound on the size of C. Recall the definition of cF(k) from Theorem 1.7.

I Claim E.2. The following are true about our candidate set C.
1. L(Ti) ⊆ C, i = 0, 1.
2. Let k = cF(3) + 2 and suppose {lj ; j ∈ [k]} ⊂ L(Ti) are LI. Then for any l ∈ C \ (L(T0) ∪
L(T1)), there exists j ∈ [k] such that fl({l, lj}) ∩ L(T1−i) 6= φ i.e. the line joining l and
lj does not intersect the set L(T1−i).

3. |C| ≤M4 + 2M ≤ d4 + 2d.

Proof. Let’s first recall the definition of our candidate set

C def= {l = x1−a2x2−. . .−arxr ∈ LinF[x̄] : h(a2x2+. . .+arxr, x2, . . . , xr) ∈ ΠΣdh

F [x2, . . . , xr]}

Also recall that

h = g

Lin(g) = f

Lin(f) .

1. Let l = x1 − a2x2 − . . . − arxr ∈ L(T1−i). Let’s denote the tuple v ≡ (a2x2 + . . . +
arxr, x2, . . . , xr). Since gcd(T0, T1) = 1 and l | T1−i we know that l - Ti and therefore
Lin(g)(v) 6= 0. We can then compute

h(v) = αiTi(v)
Lin(g)(v) = αiH1(v) . . . Hdh

(v) ∈ ΠΣdh

F [x2, . . . , xr]

where Hj ∈ LinF[x2, . . . , xr]. So L(Ti) ⊆ C for i = 0, 1.
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2. Consider l = x1 − a2x2 − . . .− arxr ∈ C \ (L(T0) ∪ L(T1)) and assume that sp({l, lj}) ∩
L(T1−i) = φ for all j ∈ [k]. We know that

g(v) = Lin(g)(v)H1(v) . . . Hdh
(v) = α0T0(v) + α1T1(v) .

Let g′ be the following identically zero ΣΠΣ(3)[x2, . . . , xr] polynomial (with circuit C′)

g′ = Lin(g)(v)H1(v) . . . Hdh
(v)− α0T0(v)− α1T1(v) .

We know

C′ = gcd(C′)Sim(C′)⇒ Sim(C′) ≡ 0 .

Recall that lj(v) | Ti(v), therefore the lj(v) cannot be factors of gcd(C′) because if they
did then there exist pair lj , l(1−i)t such that {lj(v), l(1−i)t(v)} is LD or in other words
sp({l, lj}) ∩ L(T1−i) 6= φ and we have a contradiction. Also the set {lj(v) : j ∈ [k]} has
dimension ≥ k − 1 since the dimension could fall only by 1 when we go modulo a linear
form (project to hyperplane). This means that rank(Sim(C′)) ≥ k − 1 ≥ cF(3) + 1.
If Sim(C′) were not minimal ⇒ C′ is not minimal ⇒ one of it’s gates would be 0. Since
l /∈ L(T0) ∪ L(T1)⇒ α0T0(v) + α1T1(v) ≡ 0⇒ for every j ∈ [k] there exist l(1−i)j | T1−i
such that l(1−i)j(v), lj(v) are LD. ⇒ sp({l, lj}) ∩ L(T1−i) 6= φ for j ∈ [k], a contradiction
to our assumption.
If Sim(C′) were minimal, we have an identically zero simple minimal circuit Sim(C′) with
rank(Sim(C′)) ≥ cF(3) + 1 contradicting Theorem 1.7.
So our assumption is wrong and sp({l, lj}) ∩ L(T1−i) 6= φ for some j ∈ [k].

3. Let l ∈ C \ (L(T0)∪L(T1)). Consider a set {l1, . . . , lk+2} ⊂ L(Ti) of k+ 2 LI linear forms.
By the above argument there exist three distinct elements in this set say l1, l2, l3 such that
sp({lj , l}) ∩ L(T1−i) 6= φ for j ∈ [3]. Let {l′1, l′2, l′3} ⊂ L(T1−i) such that l′j ∈ sp({lj , l})
for j ∈ [3]. Then gcd(lj , l′j) = 1 implies that l ∈ sp({lj , l′j}) for j ∈ [3]. Since l, lj , l′j are
all standard (coefficient of x1 is 1), Lemma 1.10 tells us

l ∈ fl({lj , l′j})

for j ∈ [3]. So l lies on the lines ~Lj = fl({lj , l′j}) for j ∈ [3]. Atleast two of these lines
should be distinct otherwise dim({l1, l2, l3}) ≤ 2 which is a contradiction. So l is the
intersection of these two lines. There are M2 such lines and so M4 such intersections. If
l ∈ L(T0) ∪ L(T1) we have ≤ 2M other possibilities. So |C| ≤M4 + 2M = O(d4). J

Let’s now give an algorithm to construct this set.

E.2 Constructing the set C
Here is an algorithm, Algorithm 8, to construct the set C. An explanation is given in the
lemma below.

I Lemma E.3. Given a polynomial f ∈ F[x1, . . . , xr] of degree d in r independent vari-
ables which admits a ΣΠΣF(2)[x1, . . . , xr]-representation : f =

∏
i∈[d−M ]

Gi(α0
∏

j∈[M ]
l0j +

α1
∏

k∈[M ]
l1k) such that Gt, lij(t ∈ [d−M ], i ∈ {0, 1}, j ∈ [M ]) are standard w.r.t. the stan-

dard basis {x1, . . . , xn} then we can find in deterministic time poly(d), the corresponding
candidate set C (see Definition E.1) described above.
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FunctionName :Candidates
input : f ∈ ΣΠΣF(2)[x̄]
output : Set C of Linear Forms

1 Define C = φ;;
2 Use polynomial factorization from [14] to find Lin(f);
3 Consider polynomial h = f

Lin(f) ;
4 Let a2, . . . , ar be variables.;
5 Compute coefficient vector b of h(a2x2 + . . .+ arxr, x2, . . . , xr).;
6 Consider the polynomials {Fi, i ∈ [m]} constructed in Corollary A.2.;
7 Using your favorite algorithm (e.g. Buchberger’s [5]) to solve polynomial equations,

find all complex solutions to the system {Fi(b) = 0, i ∈ [m]}.;
8 For each solution (a2, . . . , ar) ∈ Fr do : C = C ∪ {(1, a2, . . . , ar)};
9 return C;

Algorithm 8: Set C of candidate linear forms

Proof. The proof also contains an explanation of the algorithm above
Let l = x1 − a2x2 − . . .− arxr ∈ C be a candidate linear form. We know that h(a2x2 +
. . .+ arxr, x2, . . . , xr) ∈ ΠΣdh

F [x2, . . . , xr] ⊂ ΠΣdh

C [x1, . . . , xr].
Using Theorem A.2 we know that h(a2x2 + . . .+ arxr, x2, . . . , xr) ∈ ΠΣdh

C [x2, . . . , xr]⇔
for the coefficient vector b of h(a2x2 + . . .+ arxr, x2, . . . , xr) inside C[x2, . . . , xr] satisifes
F1(b) = . . . = Fm(b) = 0 for the polynomials {Fi : i ∈ [m]} obtained in Corollary A.2.
For any t ≤ dh, computing (a2x2+. . .+arxr)t requires poly(tr) time and it also has poly(tr)
terms and degree t. Multiplying such powers to other variables and adding poly(drh) many
such expressions also requires poly(drh) time. Hence computing the coefficient vector b
takes polynomial time since r is a constant. Each co-ordinate of this coefficient vector is
a polynomial in r − 1 variables (a2, . . . , ar) of degree poly(drh).
Now we think of the ai’s as our unknowns and obtain them by solving the polynomial
system {Fi(b) = 0, i ∈ [m]}. The number of polynomials is m = poly(dr) and degrees
are poly(d). Fi’s are polynomials in poly(dr) variables. Expanding Fi(b) will clearly
take poly(dr) time and now we will have poly(dr) polynomials in r variables of degrees
poly(dr). Note that r = O(1) and so we need to solve poly(d) polynomials of degree
poly(d) in constant many variables. Also Claim E.2 implies that the number of solutions
≤M4 + 2M = O(poly(d)). So using Buchberger’s algorithm [5] we can solve the system
for (a2, . . . , ar) in poly(d) time. Once we have the solutions we consider only those linear
forms which are in F[x1, . . . , xr] and add them to C. J

F Proofs from Subsection 3.4

I Claim F.1. Let (S = {l1 . . . , lk}, D) be a Detector pair in L(Ti). Let lk+1 ∈ D. For a
standard linear form l ∈ V , if l | g then l /∈ sp({l1, . . . , lk}).

Proof. Assume l | g and l ∈ sp({l1, . . . , lk}). Let W = sp({l}), extend it to a basis and in
the process obtain W ′ such that W ⊕W ′ = V . We get

πW ′(α0T0 + α1T1) = 0 .

πW ′(αiTi) 6= 0 (i.e. l - T0T1), otherwise l divides both T0, T1 and gcd(T0, T1) won’t be 1. So
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31:46 Reconstruction of Real Depth-3 Circuits with Top Fan-In 2

we have an equality of non zero ΠΣ polynomials

α0

M∏
j=1

πW ′(l0j) = −α1

M∏
j=1

πW ′(l1j) .

Therefore there exists a permutation θ : [M ]→ [M ] such that {πW ′(l(1−i)j), πW ′(liθ(j))}
are LD ⇒ l ∈ sp({l(1−i)j , liθ(j)}). Since l - T0T1 this also means that l(1−i)j ∈ sp({l, liθ(j)})
and liθ(j) ∈ sp({l, l(1−i)j}).

In particular there is an l′k+1 ∈ L(T1−i) such that l′k+1 ∈ sp({l, lk+1}) and lk+1 ∈
sp({l, l′k+1}).

Since l ∈ sp({l1, . . . , lk}) ⇒ l′k+1 ∈ sp({l1, . . . , lk, lk+1}). All linear forms here are
standard(i.e. coefficient of x1 is 1) and so by Lemma 1.10, l′k+1 ∈ fl({l1, . . . , lk, lk+1}). Below
we use the definition of detector pair and get

l′k+1 ∈ fl({l1, . . . , lk, lk+1}) ∩ L(T1−i) ⊆ fl({l1, . . . , lk}) .

And lk+1 ∈ sp({l, l′k+1})⇒ lk+1 ∈ sp({l1, . . . , lk}) which is a contradiction to (S,D) being a
detector pair. J

I Claim F.2. Let l ∈ LinF[x̄] be standard such that l | g and C be the candidate set. Assume
(S = {l1, . . . , lk}, D( 6= φ)) is a Detector pair in L(Ti). Then |L(T1−i)∩(fl(S∪{l})\fl(S))| ≥
2. That is the flat fl({l1, . . . , lk, l}) contains atleast two distinct points from L(T1−i)(⊆ C)
outside fl({l1, . . . , lk}).

Proof. From the previous claim we know that {l1, . . . , lk, l} is an LI set. Also like above
we know there exists l′j ∈ L(T1−i), j ∈ [3] such that lj ∈ sp({l, l′j}), l′j ∈ sp({l, lj}). Since
{l1, l2, l3} are LI, atleast two of the l′j ’s, j ∈ [3] must be distinct, otherwise sp({l1, l2, l3}) ⊂
sp({l, l′1}) which is not possible as LHS has dimension 3 and RHS has dimension 2. Thus there
exist two distinct l′1, l′2 ∈ sp({l1, l2, l3, l}) ⊂ sp({l1, . . . , lk, l}). Note that l1, . . . , lk, l, l′1, l′2 are
all standard (i.e. coefficient of x1 is 1) and so by Lemma 1.10

l′j ∈ fl({l1, . . . , lk, l})

for j ∈ [2].

If for any j ∈ [2], l′j ∈ sp({l1, . . . , lk}) then l ∈ sp({lj , l′j})⇒ l ∈ sp({l1, . . . , lk}) which is
a contradiction. This also shows that l′j /∈ fl({l1, . . . , lk}) for j ∈ [2].

From what we showed above we may conclude:

l′j ∈ fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})

for j ∈ [2]. Hence proved. J

I Lemma F.3. The following are true:
1. If l | I (i.e. l was identified) then l ∈ L(G) \ L(g).
2. If l | G (i.e. l was retained) then (fl({l1, . . . , lk, l})\ fl({l1, . . . , lk}))∩ (L(T1−i)∪ (L(Ti)\

D)) 6= φ that is
(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) contains a point from L(Ti) \D or L(T1−i).

3. If l | G and lk+1 ∈ D then l /∈ sp({l1, . . . , lk, lk+1}).
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Proof.
1. Assume l | I (i.e. l was identified) and l | g. Then by Claim 3.6 we know that {l1, . . . , lk, l}

are LI and so the first “if ” condition is true. By Claim 3.7 we know that there are
two other points {l′1, l′2} ⊂ C ∩ (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})), so the second “if ”
condition will also be true and thus l will not be identified which is a contradiction.
Therefore l ∈ L(G) \ L(g).

2. Assume l | G (i.e. l was not identified). This means both “if ” statements were true for
l. Thus {l1, . . . , lk, l} is LI. Also there exist distinct {l′1, l′2} ∈ C ∩ (fl({l1, . . . , lk, l}) \
fl({l1, . . . , lk})). If

l′1 ∈ (L(T1−i) ∪ (L(Ti) \D)) or l′2 ∈ (L(T1−i) ∪ (L(Ti) \D))

we are done so assume both are in

C \ ((L(T1−i) ∪ (L(Ti) \D)))) = (C \ (L(Ti) ∪ L(T1−i))) ∪D

If one of them say l′1 ∈ C \ (L(Ti) ∪ L(T1−i)), then by Part 2 of Claim E.2, for some
j ∈ [k], sp({l′1, lj}) ∩ L(T1−i) 6= φ. Let l̃j ∈ sp(l′1, lj) ∩ L(T1−i)⇒

l̃j ∈ sp({l′1, lj}) ⊆ sp({l1, . . . , lk, l})

Since all linear forms l̃j , l1, . . . , lk, l are standard (coefficient of x1 is 1) by Lemma 1.10

l̃j ∈ fl({l1, . . . , lk, l})

Also l̃j , lj are LI and l̃j ∈ sp({l′1, lj}) together imply l′1 ∈ sp({lj , l̃j}). Note that l′1 /∈
fl({l1, . . . , lk})⇒ l′1 /∈ sp({l1, . . . , lk}) which along with l′1 ∈ sp({lj , l̃j}) will then give

l̃j /∈ sp({l1, . . . , lk})

So we found l̃j ∈ L(T1−i) ∩ (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) and we are done.

So the only case that remains now is that l′1, l′2 ∈ D. Let’s complete the proof in the
following steps
l′1 ∈ fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})⇒ l ∈ sp({l1, . . . , lk, l′1})
Using the above bullet, l′2 ∈ fl({l1, . . . , lk, l}) ⇒ l′2 ∈ sp({l1, . . . , lk, l′1}). Linear
forms l′2, l1, . . . , lk, l are standard (coefficient of x1 is 1) so using Lemma 1.10, l′2 ∈
fl({l1, . . . , lk, l′1})
l′2 ∈ D ⇒ l′2 /∈ fl({l1, . . . , lk})
The above two bullets and {l′1, l′2} ⊂ L(Ti) tell us that fl({l1, . . . , lk, l′1}) is not
elementary which is a contradiction.

So atleast one of l′1, l′2 is inside L(T1−i) ∪ (L(Ti) \D)
3. Let lk+1 ∈ D and l ∈ sp({l1, . . . , lk, lk+1}). Since l, l1, . . . , lk, lk+1 are standard, by

Lemma 1.10, l ∈ fl({l1, . . . , lk, lk+1}). Clearly l /∈ fl({l1, . . . , lk}) otherwise it would
get identified at the first “if ”. Therefore l ∈ fl({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk}) By
Part 2 above let l′1 ∈ (fl({l1, . . . , lk, l}) \ fl({l1 . . . , lk})) ∩ (L(T1−i) ∪ (L(Ti) \D)). So
l′1 ∈ L(T1−i) or l′1 ∈ L(Ti) \D.

This tells us that l′1 ∈ sp({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk}). All linear forms
l′1, l1, . . . , lk, lk+1 are standard (i.e. coefficients of x1 is 1) so by Lemma 1.10 we get
that l′1 ∈ fl({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk}). Now using the definition of detector
pair l′1 /∈ L(T1−i) since fl({l1, . . . , lk, lk+1}) ∩ L(T1−i) ⊆ fl({l1, . . . , lk}). The flat
fl({l1, . . . , lk, lk+1}) is elementary in L(Ti), so l′1 can belong here only if l′1 = lk+1
which is not possible since l′1 /∈ D. So we have a contradiction. Hence proved. J
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I Lemma F.4. Let (S = {l1, . . . , lk}, D) be a detector in L(Ti). For each (l, lj) ∈ C × S
define the space U{l,lj} = sp({l, lj}). Extend {l, lj} to a basis and in the process obtain U ′{l,lj}
such that V = U{l,lj} ⊕ U ′{l,lj}. Define the set:

X = {l ∈ C : πU ′{l,lj}
(f) 6= 0, for all lj ∈ S}

Then D ⊂ X ⊂ L(Ti).

Proof. (D ⊂ X) : Consider lk+1 ∈ D. Since D ⊂ L(Ti)⇒ lk+1 ∈ C. Assume lk+1 /∈ X, so
there exists a j ∈ [k] such that πU ′{lk+1,lj}

(f) = 0. That is:

πU ′{lk+1,lj}
(G(α0T0 + α1T1)) = 0.

So ∏
t∈[N1]

πU ′{lk+1,lj}
(Gt)(α0

∏
s∈[M ]

πU ′{lk+1,lj}
(l0s) + α1

∏
s∈[M ]

πU ′{lk+1,lj}
(l1s)) = 0

Now

lj ∈ L(Ti)⇒ πU ′{lk+1,lj}
(Ti) = 0⇒

∏
t∈[N1]

πU ′{lk+1,lj}
(Gt)

∏
s∈[M ]

πU ′{lk+1,lj}
(l(1−i)s) = 0.

Since Gt | G, by Part (3) of Lemma 3.9 πU ′{lk+1,lj}
(Gt) 6= 0 for all t ∈ [N1]. If for some s ∈ [M ],

πU ′{lk+1,lj}
(l(1−i)s) = 0 then l(1−i)s ∈ sp({lj , lk+1}) ⇒ l(1−i)s ∈ sp({l1, . . . , lk, lk+1}) ⇒

l(1−i)s ∈ sp({l1, . . . , lk}) (by definition of Detector Pair in 3.4).

l(1−i)s ∈ sp({lj , lk+1}) and {l(1−i)s, lj} LI ⇒ lk+1 ∈ sp({l(1−i)s, lj})

This means lk+1 ∈ sp({l1, . . . , lk, l(1−i)s}) ⊂ sp({l1, . . . , lk}) which is a contradiction to
lk+1 ∈ D. So πU ′{lk+1,lj}

(f) 6= 0 for all j ∈ [k]⇒ lk+1 ∈ X. Therefore D ⊂ X.

(X ⊂ L(Ti)): Consider l ∈ X. We need to show l ∈ L(Ti). We already know l ∈ C.
If l ∈ L(T1−i), then πU ′{l,lj}

(f) = 0 for all j ∈ [k] since l | T1−i and lj | Ti. Contradiction
to l ∈ X.
If l ∈ C \ (L(Ti) ∪ L(T1−i)) by Part 2 of Claim E.2 we know that there exists j ∈ [k]
such that sp({lj , l}) ∩ L(T1−i) 6= φ. Let l′j ∈ sp({lj , l}) ∩ L(T1−i). We show that
sp({l′j , lj}) = sp({lj , l}) = U{lj ,l}.
l′j ∈ sp({lj , l})⇒ sp({l′j , lj}) ⊂ sp({lj , l}).
Let l′j = αlj + βl. We know that {lj , l′j} are LI since lj ∈ L(Ti) and l′j ∈ L(T1−i). So
β 6= 0⇒ l ∈ sp({l′j , lj})⇒ sp({l, lj}) ⊂ sp({l′j , lj})⇒ sp({l, lj}) = sp({l′j , lj}).

Use the same extension for sp({l, lj}) = sp({l′j , lj}) = U{lj ,l} to get πU ′{l,lj}
(f) =

πU ′
{l′

j
,lj}

(f) = 0 (since l′j | T1−i and lj | Ti). Contradiction to l ∈ X.

Therefore l ∈ L(Ti)⇒ X ⊂ L(Ti). J

G Proofs from Subsection 3.5

I Claim G.1. The following is true

(2− v(δ, θ))
v(δ, θ) ≤ 1− δ

δ
.



G. Sinha 31:49

Proof. Note that

(2− v(δ, θ))
v(δ, θ) =

{
1+δ+θ
1−δ−θ if |L(T0)| ≤ θ|L(T1)|

3−(1−δ)(1+θ)
(1−δ)(1+θ)−1 if θ|L(T1)| < |L(T0)| ≤ |L(T1)|

By simple computation δ ∈ (0, 7−
√

37
6 ) gives

3δ2 − 7δ + 1 > 0⇒ 0 < 3δ
1− δ < 1− 3δ < 1⇒ 1 + δ + θ

1− δ − θ <
1− δ
δ

Also

θ >
3δ

1− δ ⇒
3− (1− δ)(1 + θ)
(1− δ)(1 + θ)− 1 <

1− δ
δ

J

I Lemma G.2. Let k = cF(3) + 2 (see definition of cF(k) in Theorem 1.7). Fix δ, θ in
range given in Claim 3.12 above. Then for some i ∈ {0, 1} there exists a Detector Pair
(S = {l1, . . . , lk}, D) in L(Ti) with |D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|).

Proof. We assume |L(T0)| ≤ L(T1). The other case gives the same result for(maybe) a
different value of i. We will consider linear forms as points in the space Fr. Let’s consider
the two cases used in the definition of v(δ, θ).

Case 1: |L(T0)| ≤ θ|L(T1)| (i.e. L(T0) is much smaller )⇒ v(δ, θ) = 1−δ−θ Since
dim(L(T1)) ≥ r − 1 ≥ C2k−1 > Ck (see Appendix B for definition of Ck) by Corollary B.5
there exists a set S of k LI points say S = {l1, . . . , lk} ⊆ L(T1) and a set Z ⊆ L(T1) of size
≥ (1− δ)|L(T1)| such that for any lk+1 ∈ Z

lk+1 /∈ fl({l1, . . . , lk}).
fl({l1, . . . , lk, lk+1}) is elementary in L(T1).

Next we define our set D according to the condition we needed in the definition of detector
(See Subsection 3.4).

D
def= {lk+1 ∈ Z : fl({l1, . . . , lk, lk+1}) ∩ L(T0) ⊂ fl({l1, . . . , lk})}

In the following lines we will show that this set D has large size, to be precise:

|D| ≥ (1− δ − θ)|L(T1)|

We do this in steps:
1. First we define a special subset of Z

Z̃ = {lk+1 ∈ Z : (fl({l1, . . . , lk+1}) \ fl({l1, . . . , lk})) ∩ L(T0) 6= φ}

We claim that Z \ Z̃ ⊂ D. Let lk+1 ∈ Z \ Z̃ ⇒ (fl({l1, . . . , lk+1}) \ fl({l1, . . . , lk})) ∩
L(T0) = φ⇒ fl({l1, . . . , lk+1}) ∩ L(T0) ⊂ fl({l1, . . . , lk}) and so lk+1 ∈ D.

2. Next we show that for distinct lk+1, l̃k+1 ∈ Z(⊆ L(T1))

(fl({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk})) ∩ (fl({l1, . . . , lk, l̃k+1}) \ fl({l1, . . . , lk})) = φ

If not then there exist scalars µj , νj , j ∈ [k + 1] such that

ν1l1 + . . . νklk + νk+1lk+1 = µ1l1 + . . . µklk + µk+1 l̃k+1

with νk+1 6= 0 implying that lk+1 ∈ sp({l1, . . . , lk, l̃k+1}). Since all linear forms are
standard this implies lk+1 ∈ fl({l1, . . . .lk, l̃k+1}) (see Lemma 1.10). Also lk+1 ∈
Z ⇒ lk+1 /∈ fl({l1, . . . , lk}). Together this means that lk+1 ∈ fl({l1, . . . , lk, l̃k+1}) \
fl(l1, . . . , lk) and we arrive at a contradiction to fl({l1, . . . , lk, l̃k+1}) being elementary.
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3. From what we showed above every l ∈ L(T0) can belong to atmost one of the sets
fl({l1, . . . , lk+1}) \ fl({l1, . . . , lk}) with lk+1 ∈ Z (since intersection between two such
sets is φ) and therefore there can be atmost |L(T0)| such lk+1’s in Z̃ ⇒ |Z̃| ≤ |L(T0)|.

So we get:

|D| ≥ |Z| − |L(T0)| ≥ (1− δ − θ)|L(T1)|

(S,D) is a detector pair in L(T1) by the choice of Z and D.

Case 2: θ|L(T1)| < |L(T0)| ≤ |L(T1)| (i.e. sizes are comparable ) ⇒ v(δ, θ) =
(1− δ)(1 + θ)− 1 Since dim(L(T0)∪L(T1)) = r > C2k−1, by Corollary B.5 we know that
there exist 2k−1 independent points l1, . . . , l2k−1 ∈ L(T0)∪L(T1) and a set Z ⊆ L(T0)∪L(T1)
of size ≥ (1− δ)(|L(T0)|+ |L(T1)|) such that for all l ∈ Z

l /∈ fl({l1, . . . , l2k−1}).
fl({l1, . . . , l2k−1, l}) is elementary in L(T0) ∪ L(T1).

By pigeonhole principle, k of the {lj}2k−1
j=1 points must belong to either L(T0) or L(T1).

Let’s assume they belong to L(Ti) (for some i ∈ {0, 1}) (say the points are l1, . . . , lk), then
consider D = Z ∩ L(Ti). Clearly for every l ∈ D, l /∈ fl({l1, . . . , lk}) and fl({l1, . . . , lk, l}) is
elementary in L(T0) ∪ L(T1). This immediately tells us that (S = {l1, . . . , lk}, D) satisfies
all properties of being a detector pair in L(Ti). We defined D = Z ∩ L(Ti). Since Z ⊆
L(Ti) ∪ L(T1−i) we have Z = (Z ∩ L(Ti)) ∪ (Z ∩ L(T1−i)) ⊂ D ∪ L(T1−i) giving

|D|+ |L(T1−i)| ≥ |Z| ⇒ |D| ≥ |Z| − |L(T1−i)| ≥ (1− δ)(|L(T0)|+ |L(T1)|)− |L(T1−i)|

≥ ((1− δ)(1 + θ)− 1) max(|L(T0)|, |L(T1)|)

Combining the two cases we see that for some i ∈ {0, 1} there exists a Detector set
(S = {l1, . . . , lk}, D) in L(Ti) with |D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|). J

I Lemma G.3. The following are true:
1. dim(πW⊥0 (L(U1−i))) > C4
2. πW⊥0 (L(U1−i)) ∩ πW⊥0 (D) = φ

3. |πW⊥0 (L(U1−i))| ≤ 1−δ
δ |πW⊥0 (D)|

Proof.
1. Since dim(L(U1−i)) ≥ r − 1 we get dim(πW⊥0 (L(U1−i))) ≥ r − 1− k > C4.
2. Assume ∃ d1 ∈ D,u ∈ L(U1−i) such that πW⊥0 (d) = πW⊥0 (u) ⇒ ∃λ, ν ∈ F such that

νd1 + λu ∈ W⊥0 . Since πW̃0
(d1) 6= 0 both ν, λ 6= 0. Thus u ∈ sp({l1, . . . , lk, d1}) ⇒ u ∈

fl({l1, . . . , lk, d1}) (using Lemma 1.10 since all linear forms involved are standard i.e. have
coefficient of x1 equal to 1). Also u ∈ L(GT1−i) ⇒ u ∈ fl({l1, . . . , lk, d1}) ∩ (L(G) ∪
L(T1−i)). We know from Part (2) of Lemma 3.9 that fl({l1, . . . , lk, d1}) ∩ L(G) = φ⇒
u ∈ fl({l1, . . . , lk, d1})∩L(T1−i) ⊆ fl{l1, . . . , lk} because (S,D) was a detector pair. But
u ∈ fl({l1, . . . , lk})⇒ d1 ∈ sp({l1, . . . , lk}) which is a contradiction because d1 ∈ D and
(S,D) is a detector pair.

3. We first plan to show πW⊥0 (L(U1−i)) ⊂ πW⊥0 (L(T1−i)) ∪ πW⊥0 (L(Ti) \D). Clearly U1−i |
GT1−i ⇒ L(U1−i) ⊂ L(GT1−i) ⇒ πW⊥0 (L(U1−i)) ⊂ πW⊥0 (L(GT1−i)) ⊂ πW⊥0 (L(G)) ∪
πW⊥0 (L(T1−i)). Now consider any l ∈ L(G). We know that (S0 = {l1, . . . , lk}, D) is a
detector pair, so by Part (2) of Lemma 3.9 we get

(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) ∩ (L(T1−i) ∪ (L(Ti) \D)) 6= φ
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So there exists l′ ∈ L(T1−i)∪(L(Ti)\D) such that πW⊥0 (l), πW⊥0 (l′) are both non-zero and
are LD ⇒ πW⊥0 (l) = πW⊥0 (l′) implying that πW⊥0 (L(G)) ⊂ πW⊥0 (L(T1−i) ∪ (L(Ti) \D))
giving us πW⊥0 (L(U1−i)) ⊂ πW⊥0 (L(T1−i)) ∪ πW⊥0 (L(Ti) \D) and therefore

|πW⊥0 (L(U1−i))| ≤ |πW⊥0 (L(T1−i))|+ |πW⊥0 (L(Ti) \D)|

Now we try to show |πW⊥0 (L(Ti) \D)| = |πW⊥0 (L(Ti))| − |D|
a. It’s straightforward to see πW⊥0 (L(Ti)) = πW⊥0 (D) ∪ πW⊥0 (L(Ti) \D). Also
πW⊥0 (L(Ti) \D) ∩ πW⊥0 (D) = φ. If not then there exists l′ ∈ L(Ti) \D, l′′ ∈ D such
that 0 6= πW⊥0 (l′′) = πW⊥0 (l′) ⇒ πW⊥0 (l′′), πW⊥0 (l′) are LD ⇒ l′ ∈ sp{l1, . . . , lk, l′′} \
sp{l1, . . . , lk} ⇒ (by Lemma 1.10), l′ ∈ fl{l1, . . . , lk, l′′} \ fl{l1, . . . , lk} which is
a contradiction to the flat being elementary inside L(Ti). So |πW⊥0 (L(Ti))| =
|πW⊥0 (D)|+ |πW⊥0 (L(Ti) \D)|.

b. πW⊥0 is injective on D. Let πW⊥0 (l′) = πW⊥0 (l′′) for LI forms {l′, l′′} ⊂ D, then
l′ ∈ sp({l1, . . . , lk, l′′}) ⇒ (by Lemma 1.10), l′ ∈ fl({l1, . . . , lk, l′′}) and clearly l′ /∈
fl{l1, . . . , lk} (since it’s inD), which is again a contradiction to the flat being elementary
, thus |πW⊥0 (D)| = |D| = |D| (since D is a set of normal linear forms ).

Combining these with Claim 3.12 and Lemma 3.13 we get

|πW⊥0 (L(U1−i))| ≤ 2 max(|L(T0)|, |L(T1)|)− |D| ≤ (2− v(δ, θ)) max(|L(T0)|, |L(T1)|)

⇒

|πW⊥0 (L(U1−i))|
|πW⊥0 (D)| ≤ (2− v(δ, θ))

v(δ, θ) ≤ 1− δ
δ

J

H Proofs from Section 4

Our field F has characteristic zero. For simplicity let’s assume it is an extension of Q and
therefore contains Z. All random selections are done from the set [N ] = {1, . . . , N}.

I Lemma H.1. Let Fn be the n dimensional vector space over F. Suppose vi : i ∈ [n] are
vectors in Fn with each co-ordinate chosen independently from the uniform distribution on
[N ]. Consider the event

E = {{v1, . . . , vn} are LI } .

Then Pr[E ] ≥ 1− n
N .

Proof. Each vi ∈ Fn is chosen such that each co-ordinate is chosen uniformly randomly from
the set [N ]. Let vi be the vector (Vi,1, . . . , Vi,n). Consider the matrix Ṽ = (Vi,j). The vi’s
will be linearly independent if and only if Ṽ is invertible i.e. det(Vi,j) 6= 0. Note that det(Vi,j)
is not the zero polynomial since the monomial V1,1V2,2 . . . Vn,n has coefficient 1. Now we can
use Schwartz-Zippel Lemma [21] on this polynomial to yield:

Pr[det(Ṽ ) = 0] . ≤ n

N

Therefore Pr[E ] = Pr[det(Ṽ ) 6= 0] ≥ 1− n
N . J

I Lemma H.2. Assume conditions in the previous lemma. For a fixed r, consider the
subspaces V = sp{v1, . . . , vr} and V ′ = sp{vr+1, . . . , vn}. Let’s assume that that E occurs
i.e. {v1, . . . , vn} are LI. So dim(V ) = r. We know Fn = V ⊕ V ′. Let πV : Fn → V be the
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orthogonal projection onto V under this decomposition. Let T ⊂ Fn be finite. Consider the
event

F = {∃ an LI set {l1, . . . , lr} ⊂ T such that {πV (l1), . . . , πV (lr)} is LD } .

Then Pr[F ] ≤
(|T |
r

)
{ nN + r(n−1)

N }.

Proof. Fix {l1, . . . , lr} ⊂ T an LI set. Extend it to get a basis {l1, . . . , ln} of Fn. Let
li =

∑
j∈[n]

Li,jej and L be the matrix (Li,j). From the discussion above we have Ṽ = (Vi,j).

Now let Pr be the n× n matrix

Pr =
[

Ir 0r,n−r
0n−r,r 0n−r,n−r

]
where Ir is the r × r identity matrix and 0p,q is the p × q matrix with all 0 entries. Also
for any n× n matrix A, define Mr(A) to be the principal r × r minor of A. Consider the
equation given by

det(Mr(PrLco(Ṽ ))) = 0

where co(Ṽ ) is the co-factor matrix of Ṽ . Since entries of co(Ṽ ) are polynomials in the
Vi,j ’s and L is a fixed matrix, the entries of PrLco(Ṽ ) are polynomials in Vi,j ’s. So
det(Mr(PrLco(Ṽ ))) is a polynomial in Vi,j ’s. This polynomial can’t be identically 0. Choose
Vi,j = Li,j , then since Ṽ is invertible, Lco(Ṽ ) = det(L)I giving PrLco(Ṽ ) = det(L)Pr ⇒
det(Mr(PrLco(Ṽ ))) = det(L) 6= 0. Degree of the polynomial det(Mr(PrLco(Ṽ ))) is clearly
≤ r(n− 1). Therefore by Schwartz Zippel Lemma

Pr[det(Mr(PrLco(Ṽ ))) = 0] ≤ r(n− 1)
N

.

Consider the set

S({l1, . . . , lr}) = {(Vi,j) : det(Ṽ ) 6= 0, det(Mr(PrLco(Ṽ )) 6= 0} .

On this set S({l1, . . . , lr}), {v1, . . . , vn} is a basis and we have the following matrix equations:
v1
.

.

vn

 = Ṽ


e1
.

.

en

 and


l1
.

.

ln

 = L


e1
.

.

en

⇒

l1
.

.

ln

 = LṼ −1


v1
.

.

vn


and soπV (l1)

.

πV (lr)

 = 1
det(Ṽ )

Mr(PrLco(Ṽ ))

v1
.

vr


Therefore {πV (l1), . . . , πV (lr)} is an LI set. Now S({l1, . . . , lr})c = {(Vi,j) : det(Ṽ ) = 0

or det(MrLco(M)) = 0} ⇒ Pr[S({l1, . . . , lr})c] ≤ n
N + r(n−1)

N . Next we vary {l1, . . . , lr}
and apply union bound to get

Pr[F ] ≤
∑

{l1,...,lr}⊂T

S({l1, . . . , lr})c ≤
(
|T |
r

){
n

N
+ r(n− 1)

N

}
.

In our application |T | = poly(d) and r is a constant, so we choose N = 2d+n and make
this probability very small. J
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I Lemma H.3. Let f |V (X̄) =
∑

{ᾱ:|ᾱ|=d}
aᾱX̄

ᾱ be a homogeneous multivariate polynomial of

degree d in r variables X1, . . . , Xr. Let pi : 1 ≤ i ≤
(
d+r−1
r−1

)
be randomly chosen points in V (

dimension r random subspace of Fn chosen in the above lemmas). Then with high probability
one can find all the aᾱ.

Proof. We evaluate the polynomial at each of the pi’s. So we have
(
d+r−1
r−1

)
evaluations. The

number of coefficients is also
(
d+r−1
r−1

)
so we get a linear system in the coefficients where

the matrix (X) entries are just monomials evaluated at the pi’s. Since f is not identically
zero clearly there exist values for the points pi’s such that the determinant of this matrix
is non zero polynomial so it cannot be identically zero. Now the degree of the determinant
polynomial is bounded by d

(
d+r−1
r−1

)
≤ poly((d+ r)r). So by Schwarz Zippel lemma

Pr[aᾱ is recovered correctly ] = Pr[det(X) 6= 0] ≥ 1− poly(dr)
N

J
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Abstract
We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS),
the algebraic proof system recently proposed by Grochow and Pitassi [26], where the circuits
comprising the proof come from various restricted algebraic circuit classes. This mimics an
established research direction in the boolean setting for subsystems of Extended Frege proofs
whose lines are circuits from restricted boolean circuit classes. Essentially all of the subsystems
considered in this paper can simulate the well-studied Nullstellensatz proof system, and prior
to this work there were no known lower bounds when measuring proof size by the algebraic
complexity of the polynomials (except with respect to degree, or to sparsity).

Our main contributions are two general methods of converting certain algebraic lower bounds
into proof complexity ones. Both require stronger arithmetic lower bounds than common, which
should hold not for a specific polynomial but for a whole family defined by it. These may be
likened to some of the methods by which Boolean circuit lower bounds are turned into related
proof-complexity ones, especially the “feasible interpolation” technique. We establish algebraic
lower bounds of these forms for several explicit polynomials, against a variety of classes, and infer
the relevant proof complexity bounds. These yield separations between IPS subsystems, which
we complement by simulations to create a partial structure theory for IPS systems.

Our first method is a functional lower bound, a notion of Grigoriev and Razborov [25], which
is a function f̂ : {0, 1}n → F such that any polynomial f agreeing with f̂ on the boolean cube
requires large algebraic circuit complexity. We develop functional lower bounds for a variety
of circuit classes (sparse polynomials, depth-3 powering formulas, read-once algebraic branching
programs and multilinear formulas) where f̂(~x) equals 1/p(~x) for a constant-degree polynomial
p depending on the relevant circuit class. We believe these lower bounds are of independent
interest in algebraic complexity, and show that they also imply lower bounds for the size of the
corresponding IPS refutations for proving that the relevant polynomial p is non-zero over the
boolean cube. In particular, we show super-polynomial lower bounds for refuting variants of the
subset-sum axioms in these IPS subsystems.

Our second method is to give lower bounds for multiples, that is, to give explicit polyno-
mials whose all (non-zero) multiples require large algebraic circuit complexity. By extending
known techniques, we give lower bounds for multiples for various restricted circuit classes such
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32:2 Proof Complexity Lower Bounds from Algebraic Circuit Complexity

sparse polynomials, sums of powers of low-degree polynomials, and roABPs. These results are of
independent interest, as we argue that lower bounds for multiples is the correct notion for instan-
tiating the algebraic hardness versus randomness paradigm of Kabanets and Impagliazzo [31].
Further, we show how such lower bounds for multiples extend to lower bounds for refutations in
the corresponding IPS subsystem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Complexity
of Proof Procedures, F.2.1 Numerical Algorithms and Problems, I.1.1 Expressions and their
Representation

Keywords and phrases Proof Complexity, Algebraic Complexity, Nullstellensatz, Subset-Sum

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.32

1 Introduction

Propositional proof complexity aims to understand and analyze the computational resources
required to prove propositional tautologies, in the same way that circuit complexity studies
the resources required to compute boolean functions. A typical goal would be to establish,
for a given proof system, super-polynomial lower bounds on the size of any proof of some
propositional tautology. The seminal work of Cook and Reckhow [13] showed that this goal
relates quite directly to fundamental hardness questions in computational complexity such as
the NP vs. coNP question: establishing super-polynomial lower bounds for every propositional
proof system would separate NP from coNP (and thus also P from NP). We refer the reader
to Krajíček [35] for more on this subject.

Propositional proof systems come in a large variety, as different ones capture different
forms of reasoning, either reasoning used to actually prove theorems, or reasoning used by
algorithmic techniques for different types of search problems (as failure of the algorithm
to find the desired object constitutes a proof of its nonexistence). Much of the research in
proof complexity deals with propositional proof systems originating from logic and from
geometry. Logical proof systems include such systems as resolution (whose variants are
related to popular algorithms for automated theory proving and SAT solving), as well as
the Frege proof system (capturing the most common logic text-book systems) and its many
subsystems. Geometric proof systems include cutting-plane proofs, capturing reasoning used
in algorithms for integer programming, as well as proof systems arising from systematic
strategies for rounding linear- or semidefinite-programming such as the lift-and-project or
sum-of-squares hierarchies.

In this paper we focus on algebraic proof systems, in which propositional tautologies
(or rather contradictions) are expressed as unsatisfiable systems of polynomial equations
and algebraic tools are used to refute them. This study originates with the work of Beame,
Impagliazzo, Krajíček, Pitassi and Pudlák [6], who introduced the Nullstellensatz refutation
system (based on Hilbert’s Nullstellensatz), followed by the Polynomial Calculus system
of Clegg-Edmonds-Impagliazzo [10], which is a “dynamic version” of Nullstellensatz. In
both systems the main measures of proof size that have been studied are the degree and
sparsity of the polynomials appearing in the proof. Substantial work has lead to a very good
understanding of the power of these systems with respect to these measures (see for example
[9, 50, 23, 30, 8, 4] and references therein).

However, the above measures of degree and sparsity are rather rough measures of a
complexity of a proof. As such, Grochow and Pitassi [26] have recently advocated measuring
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the complexity of such proofs by their algebraic circuit size and shown that the resulting
proof system can polynomially simulate strong proof systems such as the Frege system. This
naturally leads to the question of establishing lower bounds for this stronger proof system,
even for restricted classes of algebraic circuits.

In this work we establish such lower bounds for previously studied restricted classes of
algebraic circuits, and show these lower bounds are interesting by providing non-trivial upper
bounds in these proof systems for refutations of interesting sets of polynomial equations. This
provides what are apparently the first examples of lower bounds on the algebraic circuit size
of propositional proofs in the ideal proof system (IPS) framework of Grochow and Pitassi [26].

We note that obtaining proof complexity lower bounds from circuit complexity lower
bounds is an established tradition, and takes many forms. Most prominent are the lower
bounds for susbsystems of the Frege proof system defined by low-depth Boolean circuits,
and lower bounds on Resolution and Cutting Planes system using the so-called feasible
interpolation method [44]. We refer the reader again to the monograph [35] for more details.
Our approach here for algebraic systems shares features with both of these approaches.

The rest of this long introduction is arranged as follows. In Subsection 1.1 we give
the necessary background in algebraic proof complexity, and explain the IPS system. In
subsection 1.2 we define the algebraic complexity classes that will underlie the subsystems
of IPS we will study. In subsection 1.3 we state our results and explain our techniques, for
both the algebraic and proof complexity worlds.

2 Algebraic Proof Systems

We now describe the algebraic proof systems that are the subject of this paper. If one has
a set of polynomials (called axioms) f1, . . . , fm ∈ F[x1, . . . , xn] over some field F, then (the
weak version of) Hilbert’s Nullstellensatz shows that the system f1(~x) = · · · = fm(~x) = 0 is
unsatisfiable (over the algebraic closure of F) if and only if there are polynomials g1, . . . , gm ∈
F[~x] such that

∑
j gj(~x)fj(~x) = 1 (as a formal identity), or equivalently, that 1 is in the ideal

generated by the {fj}j .
Beame, Impagliazzo, Krajíček, Pitassi, and Pudlák [6] suggested to treat these {gj}j as a

proof of the unsatisfiability of this system of equations, called a Nullstellensatz refutation. This
is particular relevant for complexity theory as one can restrict attention to boolean solutions to
this system by adding the boolean axioms, that is, adding the polynomials {x2

i −xi}ni=1 to the
system. As such, one can then naturally encode NP-complete problems such as the satisfiability
of 3CNF formulas as the satisfiability of a system of constant-degree polynomials, and a
Nullstellensatz refutation is then an equation of the form

∑m
j=1 gj(~x)fj(~x) +

∑n
i=1 hi(~x)(x2

i −
xi) = 1 for gj , hi ∈ F[~x]. This proof system is sound (only refuting unsatisfiable systems over
{0, 1}n) and complete (refuting any unsatisfiable system, by Hilbert’s Nullstellensatz).

Given that the above proof system is sound and complete, it is then natural to ask what is
its power to refute unsatisfiable systems of polynomial equations over {0, 1}n. To understand
this question one must define the notion of the size of the above refutations. Two popular
notions are that of the degree, and the sparsity (number of monomials). One can then show
(see for example Pitassi [43]) that for any unsatisfiable system which includes the boolean
axioms, there exist a refutation where the gj are multilinear and where the hi have degree
at most O(n + d), where each fj has degree at most d. In particular, this implies, when
d = O(n), that for any unsatisfiable system there is a refutation of degree O(n) and involving
at most exp(O(n)) monomials. This intuitively agrees with the fact that coNP is a subset of
non-deterministic exponential time.
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Building on the suggestion of Pitassi [43], Grochow and Pitassi [26] have recently consid-
ered more succinct descriptions of polynomials where one measures the size of a polynomial
by the size of an algebraic circuit needed to compute it. This is potentially much more
powerful as there are polynomials such as the determinant which are of high degree and
involve exponentially many monomials and yet can be computed by small algebraic circuits.
They named the resulting system the Ideal Proof System (IPS) which we now define.

I Definition 2.1 (Ideal Proof System (IPS), Grochow-Pitassi [26]). Let f1(~x), . . . , fm(~x) ∈
F[x1, . . . , xn] be a system of polynomials. An IPS refutation for showing that the poly-
nomials {fj}j have no common solution in {0, 1}n is an algebraic circuit C(~x, ~y, ~z) ∈
F[~x, y1, . . . , ym, z1, . . . , zn], such that
1. C(~x,~0,~0) = 0.
2. C(~x, f1(~x), . . . , fm(~x), x2

1 − x1, . . . , x
2
n − xn) = 1.

The size of the IPS refutation is the size of the circuit C. If C is of individual degree
≤ 1 in each yj and zi, then this is a linear IPS refutation (called Hilbert IPS by Grochow-
Pitassi [26]), which we will abbreviate as IPSLIN . If C is of individual degree ≤ 1 only in the
yj then we say this is a IPSLIN′ refutation. If C comes from a restricted class of algebraic
circuits C, then this is a called a C-IPS refutation, and further called a C-IPSLIN refutation if
C is linear in ~y, ~z, and a C-IPSLIN′ refutation if C is linear in ~y.

Notice also that our definition here adds the equations {x2
i − xi}i to the system {fj}j .

For convenience we will often denote the equations {x2
i − xi}i as ~x2 − ~x. One need not add

the equations ~x2 − ~x to the system in general, but this is the most interesting regime for
proof complexity and thus we adopt it as part of our definition.

though it is a complete refutation system for the standard polynomial translation of
unsatisfiable CNFs) but that the IPSLIN′ version is complete.

Grochow-Pitassi [26] proved the following theorem, showing that the IPS system has
surprising power and that lower bounds on this system give rise to computational lower
bounds.

I Theorem 2.2 (Grochow-Pitassi [26]). Let ϕ be a 3CNF. If there is an Extended Frege
proof (Frege proof) that ϕ is unsatisfiable in size-s, then there is an IPS refutation of circuit
(formula) size poly(|ϕ|, s) that is checkable in randomized poly(|ϕ|, s) time. Conversely, if
every IPS refutation requires circuit (formula) size ≥ s then there is an explicit polynomial
(that is, in VNP) that requires ≥ s-size algebraic circuits (formulas).1

I Remark. One point to note is that the transformation from Extended Frege to IPS
refutations yields circuits of polynomial size but without any guarantee on their degree. In
particular, such circuits can compute polynomials of exponential degree. In contrast, the
conversion from Frege to IPS refutations yields polynomial sized algebraic formulas and those
compute polynomials of polynomially bounded degree. This range of parameters, polynomials
of polynomially bounded degree, is the more common setting studied in algebraic complexity.

The fact that C-IPS refutations are efficiently checkable (with randomness) follows from
the fact that we need to verify the polynomial identities stipulated by the definition. That is,
one needs to solve an instance of the polynomial identity testing (PIT) problem for the class
C: given a circuit from the class C decide whether it computes the identically zero polynomial.

1 We note that Grochow and Pitassi [26] proved this for Extended Frege and circuits, but essentially the
same proof relates Frege and formula size.
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This problem is solvable in probabilistic polynomial time (BPP) for general algebraic circuits,
and there are various restricted classes for which deterministic algorithms are known.

Motivated by the fact that PIT of non-commutative formulas2 can be solved deterministi-
cally ([47]) and admit exponential-size lower bounds ([38]), Li, Tzameret and Wang [37] have
shown that IPS over non-commutative polynomials can simulate Frege (they also provided a
quasipolynomial simulation of IPS over non-commutative formulas by Frege; see Li, Tzameret
and Wang [37] for more details).

I Theorem 2.3 (Li, Tzameret and Wang [37]). Let ϕ be a 3CNF. If Frege can prove that
ϕ is unsatisfiable in size-s, then there is a non-commutative IPS refutation of formula size
poly(|ϕ|, s) computing a polynomial of degree poly(|ϕ|, s), where the commutator axioms
xixj − xjxi are also included in the polynomial system being refuted. Further, this refutation
is checkable in deterministic poly(|ϕ|, s) time.

The above results naturally motivate studying C-IPS for various restricted classes of
algebraic circuits, as lower bounds for such proofs then intuitively correspond to restricted
lower bounds for the Extended Frege proof system. In particular, as exponential lower bounds
are known for non-commutative formulas ([38]), this possibly suggests that such methods
could even attack the full Frege system itself.

3 Algebraic Circuit Classes

Having motivated C-IPS for restricted circuit classes C, we now give formal definitions of the
algebraic circuit classes of interest to this paper, all of which were studied independently
in algebraic complexity. Some of them define the state-of-art in our ability to prove lower
bounds and provide efficient deterministic identity tests, so it is natural to attempt converting
these to the proof complexity framework. We define each and briefly explain what we know
about it. As the list is long, the reader may consider skipping to the results (Section 4), and
refer to the definitions of these classes as they arise.

Algebraic circuits and formula (over a fixed chosen field) compute polynomials via addition
and multiplication gates, starting from the input variables and constants from the field. For
background on algebraic circuits in general and their complexity measures we refer the reader
to the survey [54]. We next define the restricted circuit classes that we will be studying in
this paper.

3.1 Low Depth Classes
We start by defining what are the simplest and most restricted classes of algebraic circuits.
The first class simply represents polynomials as a sum of monomials. This is also called the
sparse representation of the polynomial. Notationally we call this model

∑∏
formulas (to

capture the fact that polynomials computed in the class are represented simply as sums of
products), but we will more often call these polynomials “sparse”.

I Definition 3.1. The class C =
∑∏

compute polynomials in their sparse representation,
i.e., as sum of monomials. The graph of computation has two layers with an addition gate at
the top and multiplication gates at the bottom. The size of a

∑∏
circuit of a polynomial f

is the number of monomials in f .

2 These are formulas over a set of non-commuting variables.
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32:6 Proof Complexity Lower Bounds from Algebraic Circuit Complexity

This class of circuits is what is used in the Nullstellensatz proof system. In our terminology∑∏
-IPSLIN is exactly the Nullstellensatz proof system.

Another restricted class of algebraic circuits is that of depth-3 powering formulas (some-
times also called “diagonal depth-3 circuits”). We will sometimes abbreviate this name as
a “
∑∧∑

formula”, where
∧

denotes the powering operation. Specifically, polynomials
that are efficiently computed by small formulas from this class can be represented as sum of
powers of linear functions. This model appears implicitly in Shpilka [53] and explicitly in
the work of Saxena [52].

I Definition 3.2. The class of depth-3 powering formulas, denoted
∑∧∑

, computes
polynomials of the following form

f(~x) =
s∑
i=1

`i(~x)di ,

where `i(~x) are linear functions. The degree of this
∑∧∑

representation of f is maxi{di}
and its size is n ·

∑s
i=1(di + 1).

One reason for considering this class of circuits is that it is a simple, but non-trivial
model that is somewhat well-understood. In particular, the partial derivative method of
Nisan-Wigderson [40] implies lower bounds for this model and efficient PIT algorithms are
known ([52, 3, 21, 22, 19]).

We also consider a generalization of this model where we allow powering of low-degree
polynomials.

I Definition 3.3. The class
∑∧∑∏t computes polynomials of the following form

f(~x) =
s∑
i=1

fi(~x)di ,

where the degree of the fi(~x) is at most t. The size of this representation is
(
n+t
t

)
·
∑s
i=1(di+1).

We remark that the reason for defining the size this way is that we think of the fi as
represented as sum of monomials (there are

(
n+t
t

)
n-variate monomials of degree at most t)

and the size captures the complexity of writing this as an algebraic formula. This model
is the simplest that requires the method of shifted partial derivatives of Kayal [34, 27] to
establish lower bounds, and this has recently been generalized to obtain PIT algorithms
([16]).

3.2 Oblivious Algebraic Branching Programs
Algebraic branching programs (ABPs) form a model whose computational power lies between
that of algebraic circuits and algebraic formulas, and certain read-once and oblivious ABPs
are a natural setting for studying the partial derivative matrix lower bound technique of
Nisan [38].

I Definition 3.4 (Nisan [38]). An algebraic branching program (ABP) with unre-
stricted weights of depth D and width ≤ r, on the variables x1, . . . , xn, is a directed acyclic
graph such that:

The vertices are partitioned in D + 1 layers V0, . . . , VD, so that V0 = {s} (s is the source
node), and VD = {t} (t is the sink node). Further, each edge goes from Vi−1 to Vi for
some 0 < i ≤ D.
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max |Vi| ≤ r.
Each edge e is weighted with a polynomial fe ∈ F[~x].

Each s-t path is said to compute the polynomial which is the product of the labels of its
edges, and the algebraic branching program itself computes the sum over all s-t paths of
such polynomials.

An algebraic branching program is said to be oblivious if for every layer `, all the edge
labels in that layer are univariate polynomials in a variable xi` .
An oblivious branching program is said to be a read-once oblivious ABP (roABP) if
the xi` ’s are distinct variables, so that D = n. That is, each xi appears in the edge
labels in at exactly one layer. The layers thus define a variable order, which will be
x1 < · · · < xn if not otherwise specified.
An oblivious branching program is said to be a read-k oblivious ABP if each variable xi
appears in the edge labels of at most k layers, so that D = kn.
An ABP is non-commutative if it is defined over the ring of non-commuting variables.

Intuitively, roABPs are the algebraic analog of read-once boolean branching program,
the non-uniform model of the class RL. Nisan [38] proved lower bounds for non-commutative
ABPs (and thus also for roABPs, in any order) and in a sequence of papers polynomial
identity testing algorithms were devised for it ([47, 22, 19, 2]). Recently Anderson, Forbes,
Saptharishi, Shpilka, and Volk [5] obtained exponential lower bounds for read-k oblivious
ABPs (when k = o(logn/ log logn)) as well as a slightly subexponential PIT algorithm.

We note that roABPs are known to simulate non-commutative formulas ([38]). Thus, the
result of Li, Tzameret and Wang [37] (see Theorem 2.3) demonstrates the importance of
studying IPS proofs over roABPs (see also Tzameret [56]).

3.3 Multilinear Formulas
The last model that we consider is that of multilinear formulas.

I Definition 3.5 (Multilinear formula). An algebraic formula is a multilinear formula (or
equivalently, multilinear algebraic formula) if the polynomial computed by each gate of the
formula is multilinear (as a formal polynomial, that is, as an element of F[x1, . . . , xn]).

Raz [46, 45] proved quasi-polynomial lower bounds for multilinear formulas and separated
multilinear formulas from multilinear circuits. Raz and Yehudayoff proved exponential lower
bounds for small depth multilinear formulas [49]. Only slightly sub-exponential polynomial
identity testing algorithms are known for small-depth multilinear formulas ([42]).

4 Our Results and Techniques

We now briefly summarize our results and techniques, stating some results in less than full
generality to more clearly convey the result. We present the results in the order that we later
prove them. We start by giving upper bounds for the IPS (Subsection 4.1). We then describe
our functional lower bounds and the IPSLIN lower bounds they imply (Subsection 4.2). Finally,
we discuss lower bounds for multiples and state our lower bounds for IPS (Subsection 4.3).

4.1 Upper Bounds for Proofs within Subclasses of IPS
Grochow and Pitassi [26] showed that the full IPS proof system can simulate powerful
proof systems such as Extended Frege. This left open the extent to which C-IPS can refute
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interesting sets of polynomial equations for restricted classes C. We establish here that even
restricted classes of IPS are powerful, such as being able to refute interesting unsatisfiable
systems of equations arising from particular instances of NP-complete problems.

Our first upper bound is to show that linear-IPS can simulate the full IPS proof system
when the axioms are computationally simple.

I Theorem 4.1. For |F| ≥ poly(d), if f1, . . . , fm ∈ F[x1, . . . , xn] are degree-d polynomials
computable by size-s algebraic circuits and they have a size-t IPS refutation, then they also
have a size-poly(d, s, t) IPSLIN refutation.

This theorem is established by pushing the “non-linear” dependencies on the axioms
into the IPS refutation itself, which is possible as the axioms are assumed to themselves
be computable by small circuits. We note that Grochow and Pitassi [26] showed such a
conversion, but only for IPS refutations computable by sparse polynomials.

We then turn our attention to IPS involving only restricted classes of algebraic circuits,
and show that they are complete proof systems. This is clear for complete models of algebraic
circuits such as sparse polynomials, depth-3 powering formulas 3 and roABPs. For multilinear
formulas this is more subtle as not every polynomial is multilinear, however we can show a
simulation of sparse-IPSLIN by a careful multilinearization.

I Theorem 4.2. The proof systems of sparse-IPSLIN,
∑∧∑

-IPSLIN (in large characteristic
fields), and roABP-IPSLIN are complete proof systems (for systems of polynomials with no
boolean solutions). The multilinear-formula-IPSLIN proof system is not complete, but the
depth-2 multilinear-formula-IPSLIN′ proof system is complete (for multilinear axioms) and
can polynomially simulate sparse-IPSLIN (for low-degree axioms). For standard polynomial
translation of CNFs, multilinear-formula-IPSLIN is complete (even without using the boolean
axioms).

We next consider the equation
∑n
i=1 αixi − β along with the boolean axioms {x2

i − xi}i.
Deciding whether this system of equations is satisfiable is the NP-complete subset-sum
problem, and as such we do not expect small refutations in general (unless NP = coNP).
Indeed, Impagliazzo, Pudlák, and Sgall [30] have shown lower bounds for refutations in the
polynomial calculus system (and thus also the Nullstellensatz system) even when ~α = ~1.
Specifically, they showed that such refutations require both Ω(n)-degree and exp(Ω(n))-
many monomials. In the language of this paper, they gave exp(Ω(n))-size lower bounds
for refuting this system in

∑∏
-IPSLIN (which is equivalent to the Nullstellensatz proof

system). In contrast, we establish here poly(n)-size refutations for ~α = ~1 in the restricted
proof systems of roABP-IPSLIN and depth-3 multilinear-formula-IPSLIN (despite the fact
that multilinear-formula-IPSLIN is not complete).

I Theorem 4.3. Let F be a field of characteristic char(F) > n. Then the system of polynomial
equations

∑n
i=1 xi − β, {x2

i − xi}ni=1 is unsatisfiable for β ∈ F \ {0, . . . , n}, and there are
explicit poly(n)-size refutations within roABP-IPSLIN, as well as within depth-3 multilinear-
formula-IPSLIN.

This theorem is proven by noting that the polynomial p(t) :=
∏n
k=0(t− k) vanishes on∑

i xi modulo {x2
i−xi}ni=1, but p(β) is a non-zero constant. This implies that

∑
i xi−β divides

p(
∑
i xi)− p(β). Denoting the quotient by f(~x), it follows that 1

−p(β) · f(~x) · (
∑
i xi − β) ≡ 1

3 Showing that depth-3 powering formulas are complete (in large characteristic) can be seen from the fact
that any multilinear monomial can be computed in this model, see for example Fischer [15].
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mod {x2
i − xi}ni=1, which is nearly a linear-IPS refutation except for the complexity of

establishing this relation over the boolean cube. We show that the quotient f is easily
expressed as a depth-3 powering circuit. Unfortunately, proving the above equivalence to 1
modulo the boolean cube is not possible in the depth-3 powering circuit model. However, by
moving to more powerful models (such as roABPs and multilinear formulas) we can give
proofs of this multilinearization to 1 and thus give proper IPS refutations.

4.2 Linear-IPS Lower Bounds via Functional Lower Bounds
Having demonstrated the power of various restricted classes of IPS refutations by refuting
the subset-sum axiom, we now turn to lower bounds. We give two paradigms for establishing
lower bounds, the first of which we discus here, named a functional circuit lower bound. This
term appeared in the work of Grigoriev and Razborov [25] as well as in the recent work of
Forbes, Kumar and Saptharishi [18]. We briefly motivate this type of lower bound as a topic
of independent interest in algebraic circuit complexity, and then discuss the lower bounds we
obtain and their implications to obtaining proof complexity lower bounds.

In algebraic complexity one computes polynomials syntactically as objects in the ring
F[x1, . . . , xn]. Thus, even if one is only interested in evaluating the polynomial over the
boolean cube, yielding a function f̂ : {0, 1}n → F, an algebraic computation of the polynomial
necessarily gives a method for evaluating the polynomial over F as well as any extension of
F. However, some polynomials such as the permanent are known in boolean complexity to
have complex behavior as functions even over boolean inputs, so one would expect that any
polynomial f that agrees with the permanent on boolean inputs must require large algebraic
circuits. We call such results functional circuit lower bounds. Prior work ([24, 25, 36]) has
established functional lower bounds over fixed-size finite fields, and the recent work of Forbes,
Kumar and Saptharishi [18] has established some lower bounds for any field.

I Goal 4.4 (Functional Circuit Lower Bound ([25, 18])). Obtain explicit functions f̂ : {0, 1}n →
F such that for any polynomial f ∈ F[x1, . . . , xn] such that f(~x) = f̂(~x) for all ~x ∈ {0, 1}n,
it must be that f requires large algebraic circuits.

While it is natural to hope that existing methods would yield such lower bounds, many
lower bound techniques inherently use that algebraic computation is syntactic. In particular,
techniques involving partial derivatives (which include the partial derivative method of
Nisan-Wigderson [40] and the shifted partial derivative method of Kayal [34, 27]) cannot
as is yield functional lower bounds as knowing a polynomial on {0, 1}n is not enough to
conclude information about its partial derivatives.

We now explain how functional lower bounds imply lower bounds for linear-IPS refutations
in certain cases. Suppose one considers refutations of the unsatisfiable polynomial system
f(~x), {x2

i − xi}ni=1. A linear-IPS refutation would yield an equation of the form g(~x) · f(~x) +∑
i hi(~x) · (x2

i − xi) = 1 for some polynomials g, hi ∈ F[~x]. Viewing this equation modulo
the boolean cube, we have that g(~x) · f(~x) ≡ 1 mod {x2

i − xi}i. Equivalently, since f(~x) is
unsatisfiable over {0, 1}n, we see that g(~x) = 1/f(~x) for ~x ∈ {0, 1}n, as f(~x) is never zero so
this fraction is well-defined. It follows that if the function ~x 7→ 1/f(~x) induces a functional
lower bound then g(~x) must require large complexity, yielding the desired linear-IPS lower
bound.

Thus, it remains to instantiate this program. While we are successful, we should note
that this approach as is seems to only yield proof complexity lower bounds for systems with
one non-boolean axiom and thus cannot encode polynomial systems arising from 3CNFs in a
meaningful way.
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Our starting point is to observe that the subset-sum axiom already induces a weak form
of functional lower bound, where the complexity is measured by degree.

I Theorem 4.5. Let F be a field of a characteristic at least poly(n) and β /∈ {0, . . . , n}.
Then

∑
i xi− β, {x2

i − xi}i is unsatisfiable and any polynomial f ∈ F[x1, . . . , xn] with f(~x) =
1∑

i
xi−β

for ~x ∈ {0, 1}n, satisfies deg f ≥ n.

A lower bound of dn2 e was previously established by Impagliazzo, Pudlák, and Sgall [30],
but the bound of ‘n’ (which is tight) will be crucial for our results.

We then lift this result to obtain lower bounds for stronger models of algebraic complexity.
In particular, by replacing “xi” by “xiyi” we show that the function 1∑

i
xiyi−β

has maximal
evaluation dimension between ~x and ~y, which is some measure of correlation. This measure
is essentially functional, so that one can lower bound this measure by understanding the
functional behavior of the polynomial on finite sets such as the boolean cube. Our lower
bound for evaluation dimension follows by examining the above degree bound. Using known
relations between this complexity measure and algebraic circuit classes, we can obtain lower
bounds for depth-3 powering linear-IPS.

I Theorem 4.6. Let F be a field of characteristic ≥ poly(n) and β /∈ {0, . . . , n}. Then∑n
i=1 xiyi − β, {x2

i − xi}i, {y2
i − yi}i is unsatisfiable and any

∑∧∑
-IPSLIN refutation

requires size ≥ exp(Ω(n)).

The above axiom only gets maximal correlation between a fixed partition of the variables.
By introducing auxiliary variables we can create such correlation between any partition of
(some) of the variables. By again invoking results showing such structure implies computa-
tional hardness we obtain more linear-IPS lower bounds.

I Theorem 4.7. Let F be a field of characteristic ≥ poly(n) and β /∈ {0, . . . ,
(2n

2
)
}. Then∑

i<j zi,jxixj − β, {x2
i − xi}ni=1, {z2

i,j − zi,j}i<j is unsatisfiable, and any roABP-IPSLIN
refutation (in any variable order) requires exp(Ω(n))-size. Further, any multilinear-formula-
IPSLIN′ refutation requires nΩ(logn)-size, and any depth-(2d+ 1) multilinear-formula-IPSLIN′

refutation requires nΩ((n/log n)1/d/d2)-size.

Thus, we show that even though roABP-IPSLIN and depth-3 multilinear formula-IPSLIN′

can refute the subset-sum axiom in polynomial size, slight variants of this axiom do not have
polynomial-size refutations.

4.3 Lower Bounds for Multiples
While the above paradigm can establish super-polynomial lower bounds for linear-IPS, it does
not seem able to establish lower bounds for the general IPS proof system, even for restricted
classes. This is because such systems would induce equations such as h(~x)f(~x)2+g(~x)f(~x) ≡ 1
mod {x2

i − xi}ni=1, where we need to design a computationally simple axiom f so that this
equation implies at least one of h or g is of large complexity. In the linear-IPS case we
could assume h was zero, so that we can uniquely solve for g(~x) for ~x ∈ {0, 1}n. However, in
general knowing f(~x) does not uniquely determine g(~x) or h(~x), which makes this approach
significantly more complicated. Further, even though we can efficiently simulate IPS by
linear-IPS in general, this simulation increases the complexity of the proof so that even if
one started with a C-IPS proof for a restricted circuit class C the resulting IPSLIN proof may
not be in C-IPSLIN.

As such, we introduce a second paradigm, called lower bounds for multiples, which can
yield C-IPS lower bounds for various restricted classes C. We begin by defining this question.
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I Goal 4.8 (Lower Bounds for Multiples). Design an explicit polynomial f(~x) such that for
any non-zero g(~x) we have that g(~x)f(~x) is hard to compute.

We now explain how such lower bounds yield IPS lower bounds. Consider the system
f, {x2

i − xi}i with a single non-boolean axiom. An IPS refutation is a circuit C(~x, y, ~z) such
that C(~x, 0,~0) = 0 and C(~x, f, ~x2 − ~x) = 1, where (as mentioned) ~x2 − ~x denotes {x2

i − xi}i.
Expressing C(~x, f, ~x2 − ~x) as a univariate in f , we obtain that

∑
i≥1 Ci(~x, ~x2 − ~x)f i =

1−C(~x, 0, ~x2−~x) for some polynomials Ci. For many natural measures of circuit complexity
1− C(~x, 0, ~x2 − ~x) has complexity roughly bounded by that of C itself. Though not strictly
necessary for this method, it is worth noting that the complexity of each of the Ci is not
much larger than that of C, as one can compute the Ci by homogenizing or interpolating C
in the variable y (see for example the survey of Shpilka and Yehudayoff [54]). Thus, we see
that a multiple of f has a small circuit, as

(∑
i≥1 Ci(~x, ~x2 − ~x)f i−1

)
·f = 1−C(~x, 0, ~x2−~x).

Thus, if we can show that all multiples of f require large circuits then we rule out a small
IPS refutation.

We now turn to methods for obtaining polynomials with hard multiples. Intuitively
if a polynomial f is hard then so should small modifications such as f2 + x1f , and this
intuition is supported by the result of Kaltofen [32] which shows that if a polynomial has
a small algebraic circuit then so do all of its factors. As a consequence, if a polynomial
requires super-polynomially large algebraic circuits then so do all of its multiples. However,
Kaltofen’s [32] result is about general algebraic circuits, and there are very limited results
about the complexity of factors of restricted algebraic circuits ([14, 41]) so that obtaining
polynomials for hard multiples via factorization results seems difficult.

However, note that lower bound for multiples has a different order of quantifiers than
the factoring question. That is, Kaltofen’s [32] result speaks about the factors of any small
circuit, while the lower bound for multiples speaks about the multiples of a single polynomial.
Thus, it seems plausible that existing methods could yield such explicit polynomials, and
indeed we show this is the case.

We begin by noting that obtaining lower bounds for multiples is a natural instantiation
of the algebraic hardness versus randomness paradigm. In particular, Heintz-Schnorr [28]
and Agrawal [1] showed that obtaining deterministic (black-box) PIT algorithms implies
lower bounds, and we strengthen that connection here to lower bounds for multiples. We
can actually instantiate this connection, and we use slight modifications of existing PIT
algorithms to show that multiples of the determinant are hard in some models.

I Theorem 4.9. Let C be a restricted class of n-variate algebraic circuits. Full derandom-
ization of PIT algorithms for C yields an explicit polynomials all of whose multiples require
exp(Ω(n))-size as C-circuits.

In particular, when C is the class of sparse polynomials, depth-3 powering formulas,∑∧∑∏‰(1) formulas (in characteristic zero), or “every-order” roABPs, then all nonzero
multiples of the n× n determinant are exp(Ω(n))-hard in these models.

The above statement shows that derandomization implies hardness. We also partly address
the converse direction by arguing that hardness-to-randomness construction of Kabanets and
Impagliazzo [31] only requires lower bounds for multiples to derandomize PIT. Unfortunately,
this direction is harder to instantiate for restricted classes as it requires lower bounds for
classes with suitable closure properties.4

4 Although, we note that one can instantiate this connection with depth-3 powering formulas (or even
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Unfortunately the above result is slightly unsatisfying from a proof complexity standpoint
as the (exponential-size) lower bounds for the subclasses of IPS one can derive from the
above result would involve the determinant polynomial as an axiom. While the determinant
is efficiently computable, it is not computable by the above restricted circuit classes (indeed,
the above result proves that). As such, this would not fit the real goal of proof complexity
which seeks to show that there are statements whose proofs must be super-polynomial larger
than the length of the statement. Thus, if we measure the size of the IPS proof and the
axioms with respect to the same circuit measure, the lower bounds for multiples approach
cannot establish such super-polynomial lower bounds.

However, we believe that lower bounds for multiples could lead, with further ideas, to
proof complexity lower bounds in the conventional sense. That is, it seems plausible that by
adding extension variables we can convert complicated axioms to simple, local axioms by
tracing through the computation of that axiom. That is, consider the axiom xyzw. This
can be equivalently written as {a− xy, b− zw, c− ab, c}, where this conversion is done by
considering a natural algebraic circuit for xyzw, replacing each gate with a new variable, and
adding an axiom ensuring the new variables respect the computation of the circuit. While
we are unable to understand the role of extension variables in this work, we aim to give as
simple axioms as possible whose multiples are all hard as this may facilitate future work on
extension variables.

We now discuss the lower bounds for multiples we obtain.5

I Theorem 4.10. We obtain the following lower bounds for multiples.
All non-zero multiples of x1 · · ·xn require exp(Ω(n))-size as a depth-3 powering formula
(over any field), or as a

∑∧∑∏‰(1) formula (in characteristic zero).
All non-zero multiples of (x1 + 1) · · · (xn + 1) require exp(Ω(n))-many monomials.
All non-zero multiples of

∏
i(xi+yi) require exp(Ω(n))-width as a roABPs in any variable

order where ~x precedes ~y.
All non-zero multiples of

∏n
i,j=1(zi,j · (xi+xj +xixj) + (1− zi,j)) require exp(Ω(n))-width

as a roABP in any variable order, as well as exp(Ω(n))-width as a read-twice oblivious
ABP.

We now briefly explain our techniques for obtaining these lower bounds, focusing on the
simplest case of depth-3 powering formulas. It follows from the partial derivative method
of Nisan and Wigderson [39] (see Kayal [33]) that such formulas require exponential size to
compute the monomial x1 . . . xn exactly. Forbes and Shpilka [21], in giving a PIT algorithm
for this class, showed that this lower bound can be scaled down and made robust. That
is, if one has a size-s depth-3 powering formula, it follows that if it computes a monomial
xi1 · · ·xi` for distinct ij then l ≤ O(log s) (so the lower bound is scaled down). One can
then show that regardless of what this formula actually computes the leading monomial
x
ai1
i1
· · ·xai`

i`
(for distinct ij and positive aij ) must have that ` ≤ O(log s). One then notes

that leading monomials are multiplicative. Thus, for any non-zero g the leading monomial of
g ·x1 . . . xn involves n variables so that if g ·x1 . . . xn is computed in size-s then n ≤ O(log s),
giving s ≥ exp(Ω(n)) as desired. One can then obtain the other lower bounds using the same

∑∧∑∏‰(1) formulas) using the lower bounds for multiples developed in this paper, building on
the work of Forbes [17]. However, the resulting PIT algorithms are worse than those developed by
Forbes [17].

5 While we discussed functional lower bounds for multilinear formulas, this class is not interesting for the
lower bounds for multiples question. This is because a multiple of a multilinear polynomial may not be
multilinear, and thus clearly cannot have a multilinear formula.
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idea, though for roABPs one needs to define a leading diagonal (refining an argument of
Forbes-Shpilka [20]).

We now conclude our IPS lower bounds.

I Theorem 4.11. We obtain the following lower bound for subclasses of IPS.
In characteristic zero, for m 6= n, the system of polynomials x1 · · ·xn − 1, x1 + · · ·+ xn −
m, {x2

i − xi}ni=1 is unsatisfiable, any
∑∧∑

-IPS refutation requires exp(Ω(n))-size.
The system of polynomials, 1 +

∏n
i,j=1(zi,j(xi +xj −xixj) + (1− zi,j)), {x2

i −xi}i, {z2
i,j −

zi,j}i,j is unsatisfiable, and any roABP-IPS refutation (in any variable order) must be of
width exp(Ω(n)).

Note that the first result is an encoding that AND(x1, . . . , xn) = 1 but the number of
variables that equal 1 is different than n. The second is not as natural, but contains the simpler
polynomial

∏
i(ui + vi − uivi) + 1 (up to renaming, and after appropriate substitution of the

zi,j to values from {0, 1}), which encodes that AND(OR(u1, v1), · · · ,OR(un, vn)) /∈ {0, 1}.

5 Discussion

In this paper we proved new lower bounds for the Grochow-Pitassi Ideal Proof System
(IPS), for various restricted circuit classes underlying this proof system. The main novelty
here, as compared with essentially all previous work in algebraic proof complexity, is that
lower bounds are proved directly for the most interesting computational complexity measure,
namely circuit size, rather than simpler notions of complexity such as degree and sparsity of
the polynomials involved. This opens up a path to extending our results to IPS over other
circuit classes, in particular ones for which there are already computational lower bounds.
A specific challenge is doing so for IPS using depth-4 arithmetic circuits, for which recent
exciting work using shifted partial derivatives imply superpolynomial computational lower
bounds for natural polynomials.

A different challenge, even for the circuit classes considered here, is that most of our
results apply only when the hard contradiction has a specific, and somewhat unnatural
structure: aside from the Boolean axioms, there is only one more axiom, which involves
all variables (and sometimes also has high degree). Natural tautologies studied in proof
complexity arise from k-CNF formulas, where k = O(1), so the contradiction contains many
polynomials, each on a constant number of variables (and hence also of constant degree).
The techniques in this paper cannot prove IPS lower bounds for such contradictions even
with the simplest circuit classes. It would be extremely interesting to devise techniques able
to handle such contradictions, arising, e.g., from Tseitin tautologies or random CNFs.

A more specific direction to follow arises from our “PIT technique”. In Subsection 4.3
we noted that this technique of using lower bounds for multiples requires including the
determinant as an axiom, and it only works for models that cannot efficiently compute the
determinant. It would be interesting to weaken this requirement. For example, instead of
considering systems that include the determinant as an axiom, one could instead consider
the (algebraic) “hard matrix identities” that were suggested by Cook and Rackoff (cf. [7])
and later studied by Soltys and Cook [55]. Recall that the task at hand is, starting from
the axioms XY − I (where X and Y are symbolic n × n matrices), the goal is to derive
Y X − I in IPS. Here the axioms are easily computable by roABPs, but the derivation is
believed to require computing the determinant, so it should be hard for roABP-IPS (see
Hrubeš-Tzameret [29] and also Appendix B of the arXiv version of Grochow-Pitassi [26] for
more discussion on this.)

CCC 2016
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Finally, we leave open the question of extending our results from lower bounds on the
“static” IPS to lower bounds on a “dynamic” algebraic proof system like the polynomial
calculus:

I Open Problem 5.1. Can the lower bounds on roABP-IPSLIN and multilinear-formula-
IPSLIN from Theorem 4.7 be extended to (tree-like or dag-like) PC over roABPs ([56]) and
PC over multilinear formulas (fMC from [48]), respectively?
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Abstract
We say that a circuit C over a field F functionally computes a polynomial P ∈ F[x1, x2, . . . , xn]
if for every x ∈ {0, 1}n we have that C(x) = P (x). This is in contrast to syntactically computing
P , when C ≡ P as formal polynomials. In this paper, we study the question of proving lower
bounds for homogeneous depth-3 and depth-4 arithmetic circuits for functional computation. We
prove the following results :

Exponential lower bounds for homogeneous depth-3 arithmetic circuits for a polynomial in
VNP.
Exponential lower bounds for homogeneous depth-4 arithmetic circuits with bounded indi-
vidual degree for a polynomial in VNP.

Our main motivation for this line of research comes from our observation that strong enough
functional lower bounds for even very special depth-4 arithmetic circuits for the Permanent
imply a separation between #P and ACC0. Thus, improving the second result to get rid of
the bounded individual degree condition could lead to substantial progress in boolean circuit
complexity. Besides, it is known from a recent result of Kumar and Saptharishi [9] that over
constant sized finite fields, strong enough average case functional lower bounds for homogeneous
depth-4 circuits imply superpolynomial lower bounds for homogeneous depth-5 circuits.

Our proofs are based on a family of new complexity measures called shifted evaluation dimen-
sion, and might be of independent interest.
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1 Introduction

Arithmetic circuits are one of the most natural models of computation for studying compu-
tation with multivariate polynomials. One of the most fundamental questions in this area
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of research is to show that there are low degree polynomials which cannot be efficiently
computed by small sized arithmetic circuits. However, in spite of the significance of this
question, progress on it has been sparse and our current state of understanding of lower
bounds for arithmetic circuits continues to remain extremely modest.

Most of the research in algebraic complexity theory so far considers arithmetic circuits
and multivariate polynomials as formal objects and studies the complexity of syntactic
representation of polynomials over the underlying field. However, in this work, we aim
to study the semantic or functional analogue of the complexity of computing multivariate
polynomials. We formally define this notion below and then try to motivate the definition
based on our potential applications.

I Definition 1.1 (Functional equivalence). Let F be any field and let D be a subset of F. We
say that two n-variate polynomials P1 and P2 in F[x1, x2, . . . , xn] are functionally equivalent
over the domain Dn if

∀x ∈ Dn , P1(x) = P2(x) .

This definition of functional equivalence naturally extends to the case of arithmetic circuits
functionally computing a family of polynomials, as defined below.

I Definition 1.2 (Functional computation). Let F be any field and let D be a subset of F. A
circuit family {Cn} is said to functionally compute a family of polynomials {Pn} over the
domain Dn if

∀n ∈ N,x ∈ Dn , Cn(x) = Pn(x) .

Having defined functional computation, we will now try to motivate the problem of proving
functional lower bounds for arithmetic circuits.

1.1 Motivation
Improved boolean circuit lower bounds
In the late 80s there was some spectacular progress on the question of lower bounds for
bounded depth boolean circuits. In particular, Razborov and Smolensky [16, 15] showed
exponential lower bounds for constant depth boolean circuits with AND (∧), OR (∨),
Negations (¬) and mod p gates for a prime p (i.e the class of AC0[p] circuits). However,
the question of proving lower bounds for constant depth boolean circuits which also have
mod q gates for a composite q (i.e the class of general ACC0 circuits) remained wide open.
In general, one major obstacle was that the techniques of Razborov and Smolensky failed for
composite moduli, and we could not find alternative techniques which were effective for the
problem. Although it is widely believed that the majority function should be hard for such
circuits, till a few years ago, we did not even know to show that there is such a language in
NEXP (the class of problems in nondeterministic exponential time). In a major breakthrough
on this question, Williams [17] showed that there is a function in NEXP which requires ACC0

circuits of superpolynomial size. Along with the result itself, the paper introduced a new
proof strategy for showing such lower bounds. However, it still remains wide open to show
that there is a function in deterministic exponential time, which requires ACC0 circuits of
superpolynomial size.

One of our main motivations for studying functional lower bounds for arithmetic circuits
is the following lemma which shows that such lower bounds in fairly modest set up would
imply a separation between #P and ACC0. A formal statement and a simple proof can be
found in section 3.
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I Lemma 1.3 (Informal). Let F be any field of characteristic zero or at least
exp (ω (poly(logn))). Then, a functional lower bound of exp (ω (poly(logn))) for the per-
manent of an n× n matrix over {0, 1}n2 for depth-4 arithmetic circuits with bottom fan-in
poly(logn) imply that #P 6= ACC0.

In fact, we show that something slightly stronger is true. It suffices to prove functional
lower bounds for the model of sums of powers of low degree polynomials for the conclusion
in Theorem 1.3 to hold.

At this point, there are two possible interpretations of the statement of Theorem 1.3.
For an optimist, it provides another approach to proving new lower bounds for ACC0, while
for a pessimist it points to the fact that the functional lower bounds for depth-4 arithmetic
circuits could be possibly very challenging. What makes us somewhat optimistic about this
strategy is the fact that in the last few years, we seem to have made substantial progress
on the question of proving lower bounds for homogeneous depth-4 circuits in the syntactic
setting [6, 4, 7, 10]. In particular, even though the depth-4 circuits obtained in the proof of
Theorem 1.3 are not homogeneous, an exponential lower bound for sums of powers of low
degree polynomials is known in the syntactic set up. Therefore, it makes sense to try and
understand if these bounds can be extended to the functional set up as well.

Lower bounds for homogeneous depth-5 circuits
In a recent work by Kumar and Saptharishi [9], it was shown that over constant size finite
fields, average case functional lower bounds for homogeneous depth-4 circuits implies lower
bounds for homogeneous depth-5 circuits1. More precisely, the following lemma was shown:

I Lemma 1.4 ([9]). Let Fq be a finite field such that q = O(1). Let P be a homogeneous
polynomial of degree d in n variables over Fq, which can be computed by a homogeneous
depth-5 circuit of size at most O

(
exp

(
d0.499)). Then, there exists a homogeneous depth-4

circuit C ′ of bottom fan-in O(
√
d) and top fan-in at most O

(
exp

(
d0.499)) such that

Pr
x∈Fn

q

[P (x) 6= C ′(x)] ≤ exp(−Ω(
√
d)) .

Informally, the lemma shows that over small finite fields strong enough average case
functional lower bounds for homogeneous depth-4 arithmetic circuit with bounded bottom
fan-in are sufficient to show superpolynomial lower bounds for homogeneous depth-5 circuits.
Even though in [9], the authors do not take this route to eventually prove their lower bounds,
this connection seems like a strong motivation to study the question of proving functional
lower bounds for bounded depth arithmetic circuits.

Functional lower bounds for bounded depth arithmetic circuits
It is immediately clear from the definition that syntactic computation implies functional
computation, but vice-versa may not be necessarily true. In this sense, proving lower
bounds for functional computation could be potentially harder than proving lower bounds
for syntactic computation. From this point of view, once we have syntactic lower bounds for
a certain class of circuits, it seems natural to ask if these bounds can be extended to the
functional framework as well. The last few years have witnessed substantial progress on the

1 In fact, such lower bounds for homogeneous depth-4 circuits with bounded bottom fan-in suffice for this
application.
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question of proving lower bounds for variants of depth-4 arithmetic circuits, and in this work
we explore the question of whether these bounds can be extended to the functional setting.

Applications to proof complexity lower bounds
Functional lower bounds have recently found applications for obtaining lower bounds for
algebraic proof systems. In particular, Forbes, Shpilka, Tzameret, and Wigderson [3] have
given lower bounds in various algebraic circuit measures for any polynomial agreeing with
certain functions of the form x 7→ 1

p(x) , where p is a constant-degree polynomial (which is
non-zero on the boolean cube). In particular, they used such lower bounds to obtain lower
bounds for the various subclasses of the Ideal Proof System (IPS) of Grochow and Pitassi [5].

In the next section, we explore the connections between syntactic and functional compu-
tation in a bit more detail, and discuss why the techniques used in proving syntactic lower
bounds do not seem conducive to prove lower bounds in the functional setting. Hence, the
problem of proving functional lower bounds might lead us to more techniques for arithmetic
circuit lower bounds.

1.2 Functional vs syntactic computation
We now discuss the differences and similarities between functional and syntactic computation
in a bit more detail. The following observation is easy to see.
I Observation 1.5. The following properties follow from Theorem 1.2:

Any two polynomials P1 and P2 which are syntactically equivalent are also functionally
equivalent for every choice of D.
If two polynomials of individual degrees bounded by d are functionally equivalent over
any domain of size at least d+ 1, then they are also syntactically equivalent.
In particular, any two multilinear polynomials which are functionally equivalent over the
hypercube {0, 1}n are also syntactically equivalent.

For the rest of the paper, our domain of interest will be D = {0, 1} and we will be interested
in polynomials which are functionally the same over the hypercube {0, 1}n. For brevity, for
the rest of the paper, when we say that two polynomials are functionally equivalent, we mean
that the domain is the hypercube. As an additional abuse of notation, when we say that a
circuit C is functionally equivalent to a polynomial P , we mean that for every x ∈ {0, 1}n,
C(x) = P (x). Observe that functional equivalence over the hypercube is precisely the
same as syntactic equivalence when we work modulo the ideal generated by the polynomials
{x2

i − xi : i ∈ [n]}. However, we find the functional view easier and more convenient to work
with.

At this point, one might ask why is the choice of D as {0, 1} a natural one? The
motivation for studying a domain of size 2 stems from the fact that most of the polynomials
for which we have syntactic arithmetic circuit lower bounds, are multilinear. For instance,
the permanent (Perm), the determinant (Det), the Nisan-Wigderson polynomials (NW) and
the iterated matrix multiplication polynomial (IMM) are known to be hard for many natural
classes of arithmetic circuits, homogeneous depth three circuits being one such class. Since
for any D ⊆ F such that |D| ≥ 2, Dn is an interpolating set for multilinear polynomials, it
seems natural to ask if there is a small homogeneous depth three arithmetic circuit which is
functionally equivalent to any of these polynomials.

Another reason why {0, 1}n seems a natural domain to study functional algebraic com-
putation is due to potential connections to boolean circuit lower bounds. It seems natural
to ask if the techniques discovered in the quest for arithmetic circuit lower bounds can be
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adapted to say something interesting about questions in boolean circuit complexity. And,
Theorem 1.3 seems like an encouraging step in this direction.

1.2.1 Functional lower bounds and partial derivatives

Almost all the bounded depth arithmetic circuit lower bounds so far have been proved using
techniques based on the partial derivatives of a polynomial. This includes exponential lower
bounds for homogeneous depth-3 circuits [11] and lower bounds for homogeneous depth-4
arithmetic circuits [6, 4, 7, 10]. At a high level, the proofs have the following structure:

Define a function Γ : F[x] → N, called the complexity measure, which serves as an
indicator of the hardness of a polynomial.
For all small arithmetic circuits in the model of interest, show that Γ has a non-trivial
upper bound.
For the target hard polynomial, show that Γ is large. Comparing this with the upper
bound in step 2 leads to a contradiction if the hard polynomial had a small arithmetic
circuit.

The precise measure Γ used in these proofs varies, but they all build upon the the notion
of partial derivatives of a polynomial. The idea is to define Γ(P ) to be the dimension of a
linear space of polynomials defined in terms of the partial derivatives of P . In the syntactic
set up, if a circuit C computes a polynomial P , then any partial derivative of C must be
equivalent to the corresponding partial derivative of P . This observation along with bounds
on the dimension of the partial derivative based linear spaces, led to circuit lower bounds.

However, this clearly breaks down in the case when our only guarantee is that the circuit
C and the polynomial P agree as functions on all of {0, 1}n. Apriori, it is not clear if we can
say anything meaningful about how the partial derivatives of C and those of P are related
to each other. An extreme case of this is the following example. Let the polynomials P and
Q be defined as follows:

P =
(

n∑
i=1

xi

)n

and

Q = P mod I0

Here I0 is the ideal generated by the polynomials {x2
i − xi : i ∈ [n]}. The following items

follow easily from the definitions:
∀x ∈ {0, 1}n, P (x) = Q(x).
The dimension of the span of partial derivatives of P is at most n+ 1.
The dimension of the span of partial derivatives of Q is at least 2n. This follows from the
fact that the leading monomial of Q is x1 · x2 · · ·xn.

So, clearly the dimension of the partial derivatives of two polynomials which are functionally
the same over {0, 1}n can be wildly different. Thus, it seems tricky to extend the proofs of
syntactic lower bounds to the functional setup. Nevertheless, we do manage to get around
this obstacle in certain cases as our results in the next section show. Moreover, we also show
that a general solution to this question offers a possibility of proving new lower bounds for
boolean circuits, that have so far been beyond our reach so far.
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1.3 Our results
We now state our main results.

As our first result, we show functional lower bounds for homogeneous2 depth-3 circuits. In
the syntactic setting such lower bounds were first shown by Nisan and Wigderson [11] using
the partial derivative of a polynomial as the complexity measure. However, as we discussed
in subsubsection 1.2.1, partial derivative based proofs do not extend to the functional setting
in a straightforward manner. We get around this obstacle by working with a different but
related complexity measure. We now formally state the theorem:

I Theorem 1.6. Let F be any field. There exists a family {Pd} of polynomials of degree
d in n = poly(d) variables in VNP such that any ΣΠΣ circuit of formal degree d which is
functionally equivalent to Pd over {0, 1}n has size at least exp (Ω (d logn)).

As our second result, we show similar functional analogues of the homogeneous depth-
4 lower bounds of [7, 10] but under the restriction that the depth-4 circuit computes a
polynomial of low individual degree. As discussed in the introduction, such lower bounds for
depth-4 circuits with bounded bottom fan-in but unbounded individual degree would imply
that #P 6= ACC0, and would be a major progress on the question of boolean circuit lower
bounds.

I Theorem 1.7. Let F be any field. There exists a family {Pd} of polynomials of degree
d in n = poly(d) variables in VNP such that any ΣΠΣΠ circuit of formal degree d and
individual degree3 O(1) which is functionally equivalent to Pd over {0, 1}n has size at least
exp

(
Ω
(√

d logn
))

.

Our techniques for the proof of Theorem 1.7 are again different from the proofs of
homogeneous depth-4 lower bounds in the syntactic setting. We introduce a family of
new complexity measures, which are functional in their definition (as opposed to partial
derivative based measures), and use them to capture functional computation. The family
of measures, called Shifted Evaluation dimension is a shifted analogue of the well known
notion of evaluation dimension, which has had many applications in algebraic complexity
(for instance, in multilinear formula, circuit lower bounds [13, 12, 14]). We believe that the
measure is of independent interest, and could have other potential applications.

Elementary symmetric polynomials
In their paper [11], Nisan and Wigderson showed an exponential lower bound on the size of
homogeneous depth-3 circuits computing the elementary symmetric polynomials. A curious
consequence of our proof, is that we are unable to show an analogue of Theorem 1.6 for the
elementary symmetric polynomials. One of the reasons for this is the fact that the elementary
symmetric polynomials have a small evaluation dimension complexity (the complexity measure
used for this lower bound), hence our proof technique fails. However, it turns out the at least
over fields of sufficiently large characteristic, there are polynomial sized depth-3 circuits of low

2 Our lower bounds require that the formal degree of the circuit and the degree of the polynomial are
close to each other. Homogeneity guarantees this condition, but is a much stronger condition than what
we need for our proofs to work.

3 The bounds do not extend to the case of individual degree ω(log n), but may still hold for extremely
slowly growing functions of n. However, for clarity of presentation, we work with constant individual
degree throughout this paper.
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formal degree which are functionally equivalent to the elementary symmetric polynomials over
{0, 1}n. The upper bounds are based on the simple observation that for any d and x ∈ {0, 1}n,
the value of Symd(x) (elementary symmetric polynomial of degree d) is equal to

(
h(x)
d

)
, where

h(x) =
∑
i xi is the hamming weight of x. In particular, for d = 1, the polynomial

∑
i xi is

functionally equivalent to Sym1, the polynomial (
∑

i
xi)(
∑

i
xi−1)

2 is functionally equivalent
to Sym2 and so on. In particular, there is a polynomial which is a product of d affine forms
which is equivalent to Symd. However, over fields of low characteristic, the complexity of the
elementary symmetric polynomials for functional computation by depth-3 (or even depth-4)
circuits is not clear to us and is an interesting open question.

Comparison to Kayal, Saha, Tavenas [8]
In a recent independent result, Kayal, Saha and Tavenas showed exponential lower bounds for
depth-4 circuits of bounded individual degree computing an explicit polynomial in VP. Their
proof uses a complexity measure called skew shifted partials which is very similar in spirit to
the notion of shifted evaluation dimension, the complexity measure we use. Even though the
results seem related, none of them subsumes the other. For our proof, we require that the
formal degree of the depth-4 circuit is small (homogeneity), in addition to the individual
degree being small, whereas in [8] the authors only require the individual degree of the circuit
to be small. In this sense, their result is for a more general model than ours. However, for
our lower bounds, we only require the circuit to agree with the target hard polynomial over
{0, 1}n while the proof in [8] is for syntactically computing the hard polynomial. Hence, the
results are incomparable.

1.4 Organization of the paper
We set up some notations to be used in the rest of the paper in section 2. We prove the
connections between functional lower bounds for depth-4 circuits and lower bounds for ACC0

in section 3. We introduce our main complexity measure in section 4. We define and study
the properties of the hard polynomials for our lower bounds in section 5. We present the
proof of Theorem 1.6 in section 6 and the proof of Theorem 1.7 in section 7.

2 Notation

We now setup some notation to be used for the rest of the paper.
Throughout the paper, we shall use bold-face letters such as x to denote a set {x1, . . . , xn}.
Most of the times, the size of this set would be clear from context. We shall also abuse
this notation to use xe to refer to the monomial xe1

1 · · ·xen
n .

The set of formal variables in this paper denoted by x of size n shall often be partitioned
into sets y and z. We shall use x = y t z to denote this and use ny and nz to denote the
sizes of y and z respectively.
For an integer m > 0, we shall use [m] to denote the set {1, . . . ,m}.
We shall use the short-hand ∂xe(P ) to denote

∂e1

∂xe1
1

(
∂e2

∂xe2
2

(· · · (P ) · · ·)
)
.

For a set of polynomials P shall use ∂=k
y P to denote the set of all k-th order partial

derivatives of polynomials in P with respect to y variables only, and ∂≤ky P similarly.
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Also, x=`P shall refer to the set of polynomials of the form xe · P where Deg(xe) = `

and P ∈ P. Similarly x≤`P.
For a polynomial P ∈ F[x] and for a set S ⊆ Fn, we shall denote by EvalS(P ) the vector
of the evaluation of P on points in S (in some natural predefined order like say the
lexicographic order). For a set of vectors V , their span over F will be denoted by Span(V )
and the dimension of their span by Dim(V ).
We use {0, 1}n≤k to denote the set of all boolean vectors of length n which have at most k
ones.

3 Functional lower bounds for depth-4 circuits and ACC0

In this section, we show that strong enough functional lower bounds for even very special
depth-4 arithmetic circuits are sufficient to imply new lower bounds for ACC0. The proof
follows from a simple application of a well known characterization of ACC0 by Yao [18] and
Beigel and Tarui [2]. The following version of the theorem is from Arora-Barak [1].

I Theorem 3.1 ([18, 2]). If a function f : {0, 1}n → {0, 1} is in ACC0, then f can be
computed by a depth 2 circuit with a symmetric gate with quasipolynomial

(
exp(logO(1) n)

)
fan-in at the output level and ∨ gates with polylogarithmic

(
logO(1) n

)
fan-in at the bottom

level.

We now prove the following lemma which shows functional upper bound for ACC0.

I Lemma 3.2. Let F be any field of characteristic zero or at least exp (ω (poly(logn))). If a
function f : {0, 1}n → {0, 1} is in ACC0, then there exists a polynomial Pf ∈ F[x1, x2, . . . , xn]
such that the following are true:

For every x ∈ {0, 1}n, f(x) = Pf (x).
Pf can be computed by a quasipolynomial sized Σ∧ΣΠ circuit with bottom fan-in at most
poly(logn), which are depth-4 circuits where the product gates in the second level4 are
powering gates.

Proof. From Theorem 3.1, we know that there exists a symmetric function h and multilinear
polynomials g1, g2, . . . , gt such that

t = exp(poly(log n)).
For every x ∈ {0, 1}n, f(x) = h(g1(x), g2(x), . . . , gt(x)).
Each gi is a multilinear polynomial in at most poly(logn) variables.
For every x ∈ {0, 1}n and j ∈ [t], gj(x) ∈ {0, 1}.

From the last item above, we know that the gis only take boolean values on inputs from
{0, 1}n. Since h is symmetric, it follows that its value on boolean inputs only depends upon
the hamming weight of its input. Hence, h is in fact a function of

∑
i∈[t] gi. Therefore, over

any field of characteristic zero or larger than t, there exists a univariate polynomial Ph of
degree at most t over reals, such that

∀x ∈ {0, 1}n, h (g1(x), g2(x), . . . , gt(x)) = Ph

∑
i∈[t]

gi(x)

 .

4 Throughout this paper, we will assume that our circuits are levelled with alternating + and × gates.
The output gate is level 1 and its inputs are at level 2 and so on.
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The lemma now follows from the fact that each gi is a multilinear polynomial in poly(logn)
variables. J

Theorem 3.2 now immediately implies the following lemma.

I Lemma 3.3. Let F be any field of characteristic zero or at least exp (ω (poly(logn))).
Then, an exp (ω (poly(logn))) functional lower bound for a function on n variables for
Σ ∧ ΣΠ[poly(logn)] circuits over F would imply that f is not in ACC0.

4 The complexity measure

In the lower bounds for homogeneous depth four circuits [7, 10], the complexity measure
used was the dimension of projected shifted partial derivatives. The following definition is
not the same as used in [7, 10], but this slight variant would be easier to work with for
our applications. We abuse notation to call it “projected shifted partial derivatives” as it
continues to have the essence of the original definition. A discussion on the precise differences
between the following definition and the original definition of [7, 10] is present in Appendix A

I Definition 4.1 (Projected shifted partial derivatives). Let x = y t z with |y| = ny and
|z| = nz, and let S be the set of all strings in {0, 1}ny+nz that are zero on the first ny
coordinates. If k, ` are some parameters, the dimension of projected shifted partial derivatives
for any polynomial P (y, z) ∈ F[y, z], denoted by ΓPSPD

k,` (P ), is defined as

ΓPSPD
k,` (P ) := Dim

{
EvalS

(
z=`∂=k

y (P )
)}

.

The above measure is still syntactic as partial derivatives are not useful in the functional
setting. For the functional setting, we shall use a different measure for our lower bound that
we call the shifted evaluation dimension. We now define the complexity measure that we
shall be using to prove the lower bound. For brevity, we shall assume that our set of variables
x is partitioned into y and z. For our proofs, we shall use a carefully chosen partition. We
now formally define the notion of shifted evaluation dimension of a polynomial below.

I Definition 4.2 (Shifted evaluation dimension). Let ` and k be some parameters and let
x = yt z such that |y| = ny and |z| = nz. For any polynomial P ∈ F[y, z], define Γk,`(P ) as

ΓSED
k,` (P ) := Dim

{
Eval{0,1}nz

(
z=` · {P (a, z) : a ∈ {0, 1}ny

≤k}
)}

.

Informally, for every polynomial P , we fix a partition of the input variables into y and z
and generate a linear space by the following algorithm.

We take the projections of P obtained by setting each of the y variables to 0, 1 such that
the number of y variables set to 1 is at most k.
We shift the polynomials obtained in step 1 by all monomials in variables z of degree `.
Observe that the polynomials obtained at the end of step two are polynomials only in the
z variables. We now look at the evaluation vectors of these polynomials over {0, 1}nz .

The complexity measure of the polynomial P is defined as the dimension of the linear space
generated by the vectors obtained at the end of step 3 in the algorithm above. For our proof,
we will pick a careful partition of the variables x into y and z and look at ΓSED

k,` (P ). The
following lemma highlights the key reason of utility of the above measure to functional lower
bounds.

CCC 2016



33:10 Functional Lower Bounds for Arithmetic Circuits

I Lemma 4.3 (Functional equivalence and shifted evaluation dimension). Let P ∈ F[x] and
Q ∈ F[x] be any two polynomials which are functionally equivalent over {0, 1}n. Then, for
every choice of k, ` and partition x = y t z

ΓSED
k,` (P ) = ΓSED

k,` (Q) .

Proof. The proof easily follows from the fact that the measure ΓSED
k,` (P ) is the dimension

of a linear space which is generated by vectors which correspond to evaluations of P over
subcubes of {0, 1}n. Hence, it would be the same for any two polynomials which agree as
functions over {0, 1}n. J

I Remark. Observe that a lemma analogous to Theorem 4.3 is not true in general for partial
derivative based measures. And hence, the proofs for syntactic lower bounds which are based
on such measures does not immediately carry over to the functional setting.

4.1 Evaluations vs. partial derivatives
In this section, we show that for polynomials of low individual degree, the notion of shifted
evaluation dimension can be used as a proxy for the notion of shifted partial derivatives.
This is the key observation that drives the proofs of Theorem 1.6 and Theorem 1.7. We first
consider the case when the polynomial is set-multilinear in which case derivatives can be
directly related to careful evaluations.

4.1.1 For set-multilinear polynomials
The explicit polynomials we shall be working with in this paper would be set-multilinear.
An example to keep in mind is Detn or Permn where the variables can be partitioned into
rows and each monomial involves exactly one variable from each part.

I Definition 4.4 (Set-multilinear polynomials). A polynomial P is said to be set-multilinear
with respect to the a partition x = x1 t · · · t xr if every monomial of P involves exactly5
one variable from each xi.

We begin with the following simple observation.
I Observation 4.5. Let P ∈ F[x] be a set-multilinear with respect to a partition x = x1t· · ·txr.
Let y = x1 ∪ · · · ∪ xk for some k ≤ r and let z = x \ y. Then, for any degree k monomial ye

that is set-multilinear with respect to x1 t · · · t xk, we have
∂P

∂ye = P (e, z).

Proof. We shall prove this by induction on k. Suppose y = x1 and y1 ∈ x1. Since P is
set-multilinear, we can write P as

P (x1, · · · ,xr) =
∑
yi∈x1

yi · Pi(x2, · · · ,xr).

Hence it follows that ∂y1(P ) equals P1, which is also the partial evaluation of P where y1 is
set to 1 and all other yi ∈ x1 is set to zero. Hence, if y1 = ye, then ∂y1(P ) = P (e,x2, · · · ,xr).
The claim follows by repeating this argument on P (e,x2, · · · ,xr) which continues to be
set-multilinear. J

5 sometimes in the literature the word ‘exactly’ is replaced by ‘at most’ but in this paper we would be
dealing with this definition.
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Theorem 4.5 immediately implies the following corollary, which shows that for set-
multilinear polynomials shifted evaluation dimension and shifted partial derivatives are the
same quantity if we choose our set of derivatives carefully.

I Corollary 4.6. Let P (x) be a set-multilinear polynomial with respect to x = x1 t · · · t xr.
Suppose y = x1 ∪ · · · ∪ xk and z = x \ y. Then if we consider the dimension of projected
shifted partials with respect to set-multilinear monomials in y, we have

ΓPSPD
k,` (P ) ≤ ΓSED

k,` (P ).

4.1.2 For low individual degree polynomials
We now proceed to show that an approximation of the Theorem 4.6 also holds for polynomials
of low individual degree.

I Lemma 4.7. Let P (y, z) be a polynomial with individual degree at most r. Then, for every
choice of parameters k and `{

P (a, z) : a ∈ {0, 1}ny

≤k

}
⊆ Span

((
∂≤rkP

)
y=0

)
.

Proof. For the rest of this proof, we shall think of P as an element Pz(y) ∈ F[z][y]. Let a
be any point in {0, 1}ny . Then by the Taylor’s expansion, we know that

Pz(y + a) =
∑

e
ae · ∂ye(Pz)(y) .

If the support of a is at most k, then for every e such that ‖e‖0 > k, we would have ae = 0.
Moreover, since P is a polynomial of individual degree at most r, it follows that if any
coordinate of e is more than r then

∂ye(Pz) = 0.

In summary, for any a such that ‖a‖0 ≤ k,

Pz(y + a) =
∑

e:‖e‖0≤k,
‖e‖1≤rk

ae · ∂ye(Pz)(y)

=⇒ Pz(a) = P (a, z) =
∑

e:‖e‖0≤k,
‖e‖1≤rk

ae · (∂ye(Pz))y=0 ∈ Span
((
∂≤rkP

)
y=0

)
. J

We are now ready to prove our main technical claim of this section.

I Lemma 4.8. Let P (y, z) be a polynomial with individual degree at most r. Then, for every
choice of parameters k and `,

ΓSED
k,` (P ) ≤ ΓPSPD

rk,` (P )

Proof. From Theorem 4.7, we know that{
P (a, z) : a ∈ {0, 1}ny

≤k

}
⊆ Span

((
∂≤rkP

)
y=0

)
=⇒

{
z=` · P (a, z) : a ∈ {0, 1}ny

≤k

}
⊆ Span

(
z=` ·

(
∂≤rkP

)
y=0

)
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By looking at the evaluation vectors on {0, 1}nz ,{
Eval{0,1}nz

(
z=` · P (a, z)

)
: a ∈ {0, 1}ny

≤k

}
⊆ Span

(
Eval{0,1}nz

(
z=` ·

(
∂≤rkP

)
y=0

))
= Span

(
Eval{0}ny×{0,1}nz

(
z=` · ∂≤rkP

))
Taking the dimension of the linear spans on both sides completes the proof. J

5 Nisan-Wigderson polynomial families

In this section, we formally define the family of Nisan-Wigderson polynomials and mention
some known results about lower bounds on the their projected shifted partials complexity [7,
10, 9]. These bounds will be critically used in our proof.

I Definition 5.1 (Nisan-Wigderson polynomial families). Let d,m, e be arbitrary parameters
with m being a power of a prime, and d, e ≤ m. Since m is a power of a prime, let us identify
the set [m] with the field Fm of m elements. Note that since d ≤ m, we have that [d] ⊆ Fm.
The Nisan-Wigderson polynomial with parameters d,m, e, denoted by NWd,m,e is defined as

NWd,m,e(x) =
∑

p(t)∈Fm[t]
Deg(p)<e

x1,p(1) . . . xd,p(d)

That is, for every univariate polynomial p(t) ∈ Fm[t] of degree less that e, we add one
monomial that encodes the ‘graph’ of p on the points [d].

This is a homogeneous, multilinear polynomial of degree d over dm variables with exactly
me monomials. Furthermore, the polynomial is set-multilinear with respect to x = x1t· · ·txd
where xi = {xi1, · · · , xim}.

We now state the following lemma which shows a lower bound on the ΓPSPD
k,` (NWd,m,e)

for an appropriate choice of parameters. We will then use this bound along with Theorem 4.6
to show a lower bound on ΓSED

k,` (NWd,m,e). The lower bound on ΓPSPD
k,` (NWd,m,e) was shown

in two independent proofs by Kayal et al. [7] and by Kumar and Saraf [10]. The version
stated below is from a strengthening of these bounds by Kumar and Saptharishi [9].

I Lemma 5.2. For every d and k = O(
√
d) there exists parameters m, e, ε such that m =

Θ(d2) and ε = Θ
(

log d√
d

)
with

mk ≥ (1 + ε)2(d−k)

me−k =
(

2
1 + ε

)d−k
· poly(m).

For such a choice of parameters, let x = {xij : i ∈ [d] , j ∈ [m]} = x1 t · · · t xd where
xi = {xi1, . . . , xim}. Let y = x1 t · · · t xk and z = x \ y. If ` is a parameter that satisfies
` = nz

2 (1− ε), then over any field F, we have6

ΓPSPD
k,` (NWd,m,e(y, z)) ≥

(
nz

`+ d− k

)
· exp(−O(log2 d)).

6 We remark that in the calculations in [7, 10, 9], the shifted monomials consist of both the y and
z variables, while here we only shift by z variables. But the calculations still go through since the
parameters continue to satisfy the constraints needed for soundness of the calculation.
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From Theorem 4.6, we immediately have the following crucial lemma.

I Lemma 5.3. Let d,m, e, ` be parameters as defined in Theorem 5.2 and let y and z be the
partition of variables x as in Theorem 5.2. Then,over any field F, we have

ΓSED
k,` (NWd,m,e(y, z)) ≥

(
nz

`+ d− k

)
· exp(−O(log2 d)).

6 Functional lower bounds for depth-3 circuits

In this section, we complete the proof of Theorem 1.6. We start by defining the exact hard
polynomial for which our lower bound is shown.

Hard polynomials for the lower bound
We will prove Theorem 1.6 for the polynomial NWd,m,e for an appropriate choice of the
parameters.

I Lemma 6.1. Let the parameters e and d be chosen so that e = d/2− 1, and let k = e+ 1.
Let the variables x in NWd,m,e be partitioned into y = {xij : i ∈ [k], j ∈ [m]} and z = x \y.
Then

ΓSED
k,0 (NWd,m,e(y, z)) ≥ md/2 .

Proof. Let the set of monomials S be defined as

S =
{

k∏
i=1

xi,ji
: ji ∈ [m]

}
.

Observe that for every monomial xα in S, the partial derivative of NWd,m,e with respect to
xα, is a monomial in z. This is due to the fact that e < d/2 and no two distinct univariate
polynomials of degree d/2 can agree at more than d/2 many points. Moreover for every two
distinct monomials xα and xβ in S,

∂NWd,m,e

∂xα 6= ∂NWd,m,e

∂xβ .

Hence,

ΓPSPD
k,0 (NWd,m,e) = |S| = md/2 .

Since NWd,m,e is a set-multilinear with respect to the rows of variable matrix, by Theorem 4.5,
it follows that

ΓSED
k,0 (NWd,m,e) = md/2 . J

Complexity of the model
I Lemma 6.2. The C(x) be a ΣΠΣ circuit of formal degree d and top fan-in s. Then, for
all choices of k and any partition of x into y and z,

ΓSED
k,0 (C) ≤ s · 2d .
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Proof. Observe that for any choice of k and `, ΓSED
k,` is a subadditive measure. Therefore, it

is enough to upper bound the value of ΓSED
k,0 () for every product gate in C by 2d. Let

Q(y, z) =
d∏
i=1

Li

be any product gate of formal degree at most d in C. Since each Li is a linear form, we can
express it as Li = Lyi + Lzi, where Lyi and Lzi are the parts of Li consisting entirely of y
and z variables respectively. Therefore,

Q(y, z) =
∑
S⊆[d]

∏
i∈S

Lyi ·
∏
j /∈S

Lzj .

Now observe that by

{Q(a, z) : a ∈ {0, 1}ny} ⊆ Span

∏
j /∈S

Lzj : S ⊆ [d]




Therefore,

ΓSED
k,0 (C) ≤ 2d .

The lemma now follows by subadditivity. J

Wrapping up the proof
We are now ready to complete the proof of Theorem 1.6.

I Theorem 6.3. Let F be any field, and let d,m, e be parameters such that e = d/2− 1 and
m = poly(d). Let C be a ΣΠΣ circuit of formal degree d which is functionally equivalent to
the polynomial NWd,m,e. Then

Size(C) ≥ md/2/2d .

Proof. Let k = e+ 1 and consider a partition of variables into y and z where all the variables
in the first k rows of the variable matrix are labelled y and the remaining variables are
labelled z. Now, the theorem immediately follows from Theorem 6.1 and Theorem 6.2. J

7 Functional lower bounds for depth-4 circuits

In this section, we prove Theorem 1.7. We first define the family of polynomials for which
our lower bounds apply.

Hard polynomials for the lower bound
For the proof of Theorem 1.7, we would have to show that a statement in the spirit of
Theorem 5.3 is also true for a random projection of our hard polynomial. Even though we
believe7 that this is true for the polynomial defined in Theorem 5.1, for simplicity, we modify
our hard polynomial and in turn prove a lower bound for the following variant of it.

7 In fact, [7, 10] showed such statements to be true.
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I Definition 7.1 (Hard polynomials for the lower bound). Let d,m, e be parameters as defined
in Theorem 5.1. Let p = p(m, d) be a parameter and let

t = dm

p
.

The polynomial NW ◦ Lin is defined as

NW ◦ Lind,m,e,p = NWd,m,e (L(x1,1), L(x1,2), . . . , L(xd,m))

where for each i ∈ [d], j ∈ [m], L(xi,j) is defined as

L(xi,j) =
t∑

u=1
xi,j,u .

For the rest of this proof, we set p = (md)−0.1, and for brevity, we will indicate
NW ◦ Lind,m,e,(md)0.1 by NW ◦ Lind,m,e. Observe that setting p sets t to be equal to (md)1.1.
We conclude this section with the next lemma where we show that NW ◦ Lind,m,e is robust
under random restrictions where every variable is kept alive with a probability p.

I Lemma 7.2. Let p and t be as stated above and let n = dm. Let P be a random projection
of NW ◦ Lin obtained by setting every variable in {xi,j,h : i ∈ [d], j ∈ [m], h ∈ [t]} to zero with
a probability equal to 1− p. Then, with a probability at least 1− o(1), NWd,m,e is a projection
of P .

Proof. For every i ∈ [d], j ∈ [m], define the set Ai,j as

Aij = {xi,j,h : h ∈ [t]} .

When every variable is being set to zero with a probability 1− p, the probability that there
exists an i ∈ [d] and j ∈ [m] such that all the variables in the set Ai,j are set to zero is
at most dm(1 − p)t. For p = n−0.1, the probability is at most n(̇1 − n−0.1)n1.1 which is
exp(−Ω(n)).

Therefore, with a probability at least 1− exp(−Ω(n)), each of the set Ai,j has at least
one variable alive in P . Now, we set all but one of them to zero for each i, j. Observe that
the resulting projection of P is precisely NWd,m,e up to a relabelling of variables. This proves
the lemma. J

It should be noted that the polynomial NW ◦ Lin continues to remain set-multilinear with
respect to he rows of the variable matrix.

Upper bound on the complexity of the model
We now show the upper bound on ΓSED

k,` (C) when C is a depth-4 circuit of individual degree
at most r and bottom support s. We will use the following upper bound on ΓPSPD

k,` (C) from
[7, 10].

I Lemma 7.3. Let C(y, z) be a depth-4 circuit, of formal degree at most d and bottom
support at most s. Let k and ` be parameters satisfying`+ ks < nz/2. Then

ΓPSPD
k,` (C) ≤ Size(C) ·

(
O
(
d
s

)
+ k

k

)
·
(

nz
`+ ks

)
· poly(n) .

The following lemma now immediately follows from Theorem 7.3 and Theorem 4.8.
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I Lemma 7.4. Let C(y, z) be a depth-4 circuit, of formal degree at most d, individual degree
at most r and bottom support at most s. Let k and ` be parameters satisfying `+ krs < nz/2.
Then

ΓSED
k,` (C) ≤ Size(C) ·

(
O
(
d
s

)
+ kr

kr

)
·
(

nz
`+ krs

)
· poly(nz).

Wrapping up the proof

I Theorem 7.5. Let d,m, e be parameters as defined in Theorem 5.2. Let C be a ΣΠΣΠ
circuit C of formal degree d and individual degree at most r = O(1) over any field F such
that C is functionally equivalent to NW ◦ Lind,m,e. Then,

Size(C) ≥ exp
(

Ω
(√

d log dm
))

.

Proof. If the size of C is larger than exp
(√

d log dm
1000r

)
, then we are already done, else the

size of C is at most exp
(√

d log dm
1000r

)
. Let us set every variable in C and NW ◦ Lind,m,e to

zero independently with a probability 1− (md)−0.1. The following claim easily follows via a
standard application of the union bound.

I Claim 7.6. With probability at least 1− o(1) over the random restrictions as defined above,
every product gate at the bottom level of C with support at least

√
d

100r is set to zero.

From the above claim and from Theorem 7.2, it follows that there is a ΣΠΣΠ circuit C ′
of formal degree d over F which is functionally equivalent to NWd,m,e. Let us relabel the
variables as y and z as described in Theorem 5.2. Let k =

√
d and let ` = nz

2 · (1− ε) where
ε = O

(
log d√
d

)
to be chosen shortly. By Theorem 5.3, we know that for this choice of k and `

ΓSED
k,` (NWd,m,e(y, z)) ≥

(
nz

`+ d− k

)
· exp(−O(log2 d))

≥
(
nz
`

)
· (1 + ε)2d−2k · exp(−O(log2 d))

Moreover, by Theorem 7.4, we know that

ΓSED
k,` (C ′) ≤ (dm)

√
d/1000r ·

(
O
(√

d
r

)
+ kr

kr

)
·
(

nz

`+ k · r ·
√
d

100r

)
· poly(nz)

≤ (dm)
√
d/1000r · 2O(

√
d) ·
(
nz
`

)
· (1 + ε) d

50 · exp(O(log2 d))

≤ exp
(√

d log d/100r
)
· 2O(

√
d) ·
(
nz
`

)
· (1 + ε) d

50 · exp(O(log2 d))

Now, observe that there exists a constant c such that if ε is set to c log d√
d

, then

ΓSED
k,` (NWd,m,e) > ΓSED

k,` (C ′) .

But this is a contradiction since C ′ computes NWd,m,e. This completes the proof. J
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8 Open problems

We end with some open questions:
The main challenge would be to improve Theorem 1.7, and prove it for the model of sums
of powers of low degree polynomials. It is not clear to us if the complexity measure used
in this paper would be useful.
The functional lower bounds proved in this paper are for exact functional computation.
We believe that some of these bounds should also hold in the average case, where the
circuit and the polynomial agree on a random point on {0, 1}n with a high probability. It
is not clear to us if the proof techniques in this paper can be adapted to say something
in the average case setting. The most natural attempt to generalize the proofs seem to
hit a matrix rigidity like obstacle.
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mult
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z=`∂=k

y (P )
)}
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derivatives of P , and reduce them under the relation x2

i = 0, and only then list the coefficients
of the surviving monomials. The rationale for this in [7] was to ensure that non-multilinear
terms do not interact with multilinear terms in the shifted partial derivatives of P . Hence,
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{
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{
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essence ensures that non-multilinear terms do not interact with the relevant multilinear terms
by reducing their degree. We shall denote this by ΓPSPD1

k,` (P ), which is formally defined to be

ΓPSPD1
k,` (P ) := Dim

{
z=`∂=k

y (P ) mod
{

(x2
i − xi) : i ∈ [n]

}}
.

Since any polynomial f has a unique multilinear representation modulo
{
x2
i − xi : i ∈ [n]

}
,

it follows that its evaluations on {0, 1}n completely determine the coefficients of the reduced
polynomial f mod

{
x2
i − xi : i ∈ [n]

}
. Therefore, if ΓPSPD

k,` (P ) is defined as

ΓPSPD2
k,` (P ) := Dim

{
Eval{0,1}n

(
z=`∂=k

y (P )
)}
,

then it follows that

ΓPSPD2
k,` (P ) = ΓPSPD1

k,` (P ).

Finally, if P was set-multilinear with respect to x = x1 t · · · txr and y = x1 t · · · txk, then
all partial derivatives of order k with respect to y would be result in polynomials only in z.
Therefore for such set-multilinear polynomials,

ΓPSPD2
k,` (P ) = Dim

{
Eval{0,1}n

(
z=`∂=k

y (P )
)}

= Dim
{

Eval{0}ny×{0,1}nz

(
z=`∂=k

y (P )
)}

=: ΓPSPD
k,` (P ) as defined in Theorem 4.1.

The explicit polynomials for which we shall be show the lower bounds would indeed be
set-multilinear and hence there is no loss incurred in restricting to only evaluations on
{0}ny × {0, 1}nz .

For polynomials that are not set-multilinear, clearly

ΓPSPD2
k,` (P ) = Dim

{
Eval{0,1}n

(
z=`∂=k

y (P )
)}

≥ Dim
{

Eval{0}ny×{0,1}nz

(
z=`∂=k

y (P )
)}

=: ΓPSPD
k,` (P ).

Hence for the purposes of upper-bounding ΓPSPD
k,` () for say a term in the circuit computing

P , taking fewer evaluations only helps.
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Abstract
In recent years there has been a flurry of activity proving lower bounds for homogeneous depth-4
arithmetic circuits [14, 11, 18, 27], which has brought us very close to statements that are known
to imply VP 6= VNP. It is a big question to go beyond homogeneity, and in this paper we make
progress towards this by considering depth-4 circuits of low algebraic rank, which are a natural
extension of homogeneous depth-4 arithmetic circuits.

A depth-4 circuit is a representation of anN -variate, degree n polynomial P as P =
∑T

i=1Qi1·
Qi2 · · · ·Qit where the Qij are given by their monomial expansion. Homogeneity adds the con-
straint that for every i ∈ [T ],

∑
j degree(Qij) = n. We study an extension where, for every

i ∈ [T ], the algebraic rank of the set of polynomials {Qi1, Qi2, . . . , Qit} is at most some parame-
ter k. We call this the class of ΣΠ(k)ΣΠ circuits. Already for k = n, these circuits are a strong
generalization of the class of homogeneous depth-4 circuits, where in particular t ≤ n (and hence
k ≤ n).

We study lower bounds and polynomial identity tests for such circuits and prove the following
results.
1. Lower bounds: We give an explicit family of polynomials {Pn} of degree n in N = nO(1) vari-

ables in VNP, such that any ΣΠ(n)ΣΠ circuit computing Pn has size at least exp (Ω(
√
n logN)).

This strengthens and unifies two lines of work: it generalizes the recent exponential lower
bounds for homogeneous depth-4 circuits [18, 27] as well as the Jacobian based lower bounds
of Agrawal et al. [2] which worked for ΣΠ(k)ΣΠ circuits in the restricted setting where T ·k ≤ n.

2. Hitting sets: Let ΣΠ(k)ΣΠ[d] be the class of ΣΠ(k)ΣΠ circuits with bottom fan-in at most
d. We show that if d and k are at most poly(logN), then there is an explicit hitting set for
ΣΠ(k)ΣΠ[d] circuits of size quasipolynomial in N and the size of the circuit. This strengthens
a result of Forbes [8] which showed such quasipolynomial sized hitting sets in the setting
where d and t are at most poly(logN).

A key technical ingredient of the proofs is a result which states that over any field of charac-
teristic zero (or sufficiently large characteristic), up to a translation, every polynomial in a set
of algebraically dependent polynomials can be written as a function of the polynomials in the
transcendence basis. We believe this may be of independent interest. We combine this with
shifted partial derivative based methods to obtain our final results.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, I.1.1 Expressions
and Their Representation

Keywords and phrases algebraic independence, arithmetic circuits, lower bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.34

∗ Research supported in part by NSF grant CCF-1350572 and by Simons Graduate Fellowship.
† Research supported by NSF grant CCF-1350572.

© Mrinal Kumar and Shubhangi Saraf;
licensed under Creative Commons License CC-BY

31st Conference on Computational Complexity (CCC 2016).
Editor: Ran Raz; Article No. 34; pp. 34:1–34:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


34:2 Arithmetic Circuits with Locally Low Algebraic Rank

1 Introduction

Arithmetic circuits are natural algebraic analogs of boolean circuits, with the logical operations
being replaced by sum and product operations over the underlying field. Valiant [42] developed
the complexity theory for algebraic computation via arithmetic circuits and defined the
complexity classes VP and VNP as the algebraic analogs of complexity classes P and NP
respectively. We refer the interested reader to the survey by Shpilka and Yehudayoff [37] for
more on arithmetic circuits.

Two of the most fundamental questions in the study of algebraic computation are the
questions of polynomial identity testing (PIT)1 and the question of proving lower bounds for
explicit polynomials. It was shown by structural results known as depth reductions [1, 24, 41]
that strong enough lower bounds or PIT results for just (homogeneous) depth-4 circuits,
would lead to superpolynomial lower bounds and derandomized PIT for general circuits too.
Consequently, depth-4 arithmetic circuits have been the focus of much investigation in the
last few years.

Just in the last few years we have seen rapid progress in proving lower bounds for
homogeneous depth-4 arithmetic circuits, starting with the work of Gupta et al. [14] who
proved exponential lower bounds for homogeneous depth-4 circuits with bounded bottom
fan-in and terminating with the results in [18, 27] which showed exponential lower bounds
for general homogeneous depth-4 circuits. Any asymptotic improvement in the exponent
of these lower bounds would lead to superpolynomial lower bounds for general arithmetic
circuits2. Most of this progress was based on an understanding of the complexity measure
of the family of shifted partial derivatives of a polynomial (this measure was introduced in
[21]), and other closely related measures.

Although we now know how to use these measure to prove such strong lower bounds for
homogeneous depth 4 circuits, the best known lower bounds for non-homogeneous depth
three circuits over fields of characteristic zero are just quadratic [36, 38], and those for
non-homogeneous depth-4 circuits over any field except F2 are just about superlinear [30]. It
remains an extremely interesting question to get improved lower bounds for these circuit
classes.

In sharp contrast to this state of knowledge on lower bounds, the problem of polynomial
identity testing is very poorly understood even for depth three circuits. Till a few years ago,
almost all the PIT algorithms known were for extremely restricted classes of circuits and
were based on diverse proof techniques (for instance, [5, 20, 16, 19, 15, 34, 35, 33, 2, 9, 10, 4]
). The work of [2] gave a unified proof of several of them.

It is a big question to go beyond homogeneity (especially for proving lower bounds) and
in this paper we make progress towards this question by considering depth-4 circuits of low
algebraic rank, which are a natural extension of homogenous depth-4 arithmetic circuits.

A depth-4 circuit is a respresentation of an N -variate, degree n polynomial P as

P =
T∑
i=1

Qi1 ·Qi2 · · · ·Qit

where the Qij are given by their monomial expansion. Homogeneity adds the constraint
that for every i ∈ [T ],

∑
j degree(Qij) = n. We study an extension where, for every i ∈ [T ],

1 Given an arithmetic circuit, the problem is to decide if it computes the identically zero polynomial.
In the whitebox set up, we are allowed to look inside the wirings of the circuit, while in the blackbox
setting, we can only query the circuit at some points.

2 We refer the interested reader to the surveys of recent lower bounds results by Saptharishi [32, 31]
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the algebraic rank of the set of polynomials {Qi1, Qi2, . . . , Qit} is at most some parameter k.
We call this the class of ΣΠ(k)ΣΠ circuits. Already for k = n, these circuits are a strong
generalization of the class of homogeneous depth-4 circuits, where in particular t ≤ n (and
hence k ≤ n).

We prove exponential lower bounds for ΣΠ(k)ΣΠ circuits for k ≤ n and give quasipoly-
nomial time deterministic polynomial identity tests for ΣΠ(k)ΣΠ circuits when k and the
bottom fan-in are bounded by poly(logN). All our results actually hold for a more general
class of circuits, where the product gates at the second level can be replaced by an arbitrary
circuits whose inputs are polynomials of algebraic rank at most k. In particular, our results
hold for representations of a polyonomial P as

P =
T∑
i=1

Ci (Qi1, Qi2, . . . , Qit)

where, for every i ∈ [T ], Ci is an arbitrary polynomial function of t inputs, and the algebraic
rank of the set of polynomials {Qi1, Qi2, . . . , Qit} is at most some parameter k.

1.1 Some background and motivation
Before we more formally define the model and state our results, we give some background
and motivation for studying this class of circuits.

Strengthening of the model of homogenous depth-4 circuits

As already mentioned, we know very strong exponential lower bounds for homogenous depth-4
arithmetic circuits. In contrast, for general (non-homogenous) depth-4 circuits, we know only
barely superlinear lower bounds, and it is a challenge to obtain improved bounds. ΣΠ(k)ΣΠ
circuits with k as large as n (the degree of the polynomial being computed), which is the class
we study in this paper, is already a significant strengthening of the model of homogenous
depth-4 circuits (since the intermediate degrees could be exponentially large). We provide
exponential lower bounds for this model. Note that when k = N , ΣΠ(k)ΣΠ circuits would
capture general depth-4 arithmetic circuits.

Low algebraic rank and lower bounds

In a recent work, Agrawal et al. [2] studied the notion of circuits of low algebraic rank and
by using the Jacobian to capture the notion of algebraic independence, they were able to
show exponential lower bounds for a certain class of arithmetic circuits3. They showed that
over fields of characteristic zero, for any set of polynomials {Q1, Q2, . . . , Qt} of sparsity at
most s and algebraic rank k, any arithmetic circuit of the form C(Q1, Q2, . . . , Qt) which
computes the determinant polynomial for an n× n symbolic matrix must s ≥ exp (n/k). In
particular, if k = Ω(n), then the lower bound becomes trivial. The lower bounds in this
paper strengthen this work in two ways.

(1) Our lower bounds hold for a much richer class of circuits. In the model considered
by [2], one imposes a global upper bound k on the rank of all the Qis feeding into some
polynomial C. In our model, we can take exponentially many different sets of Qis each with
bounded rank, and apply some polynomial function to each of them and then take a sum.

3 Even more significantly they also give efficient PIT algorithms for the same class of circuits.
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34:4 Arithmetic Circuits with Locally Low Algebraic Rank

(2) Our lower bounds are stronger - we obtain exponential lower bounds even when k is as
large as the degree of the polynomial being computed.

Algebraic rank and going beyond homogeneity

Even though we know exponential lower bounds for homogeneous4 depth-4 circuits, the best
known lower bounds for non-homogeneous depth-4 circuits are barely superlinear [30].

In [13, 12, 36], Grigoriev-Karpinski, Grigoriev-Razborov and Shpilka-Wigderson outlined
a program based on “rank" to prove lower bounds for arithmetic circuits. They used the
notion of “linear rank" and used it to prove lower bounds for depth-3 arithmetic circuits
in the following way: Let C =

∑T
i=1
∏t
j=1 Lij be a depth three (possibly nonhomogeneous)

circuit computing a polynomial P of degree n. Now, partition the inputs to the top sum
gate to two halves, C1 and C2 based on the rank of the inputs feeding into it in the following
way. For each i ∈ [T ], if the linear rank of the set of polynomials {Lij : j ∈ [t]} is at most
k (for some threshold k), then include the gate i into the sum C1, else include it into C2.
Therefore,

C = C1 + C2.

Their program had two steps. (1) Show that the subcircuit C1 is weak with respect to some
complexity measure, and thus show a lower bound for C1 (and hence C) when C2 is trivial.
(2) Also since C2 is“high rank", show that there are many inputs for which C2 is identically
zero. Then try to look at restrictions over which C2 is identically zero, and show that the
lower bounds for C1 continue to hold.

The following is the natural generalization of this approach to proving lower bounds for
depth-4 circuits. Let C =

∑T
i=1
∏t
j=1Qij be a depth-4 circuit computing a polynomial P of

degree n. Note that in general, the formal degree of C could be much larger than n. Now,
we partition the inputs to the top sum gate to two halves, C1 and C2 based on the algebraic
rank of the inputs feeding into it in the following way. For each i ∈ [T ], if the algebraic rank
of the set of polynomials {Qij : j ∈ [t]} is at most k (for some threshold k), then we include
the gate i into the sum C1 else we include it into C2. Therefore,

C = C1 + C2.

To implement the G-K, G-R and S-W program, as a first step one would show that the
subcircuit C1 is weak with respect to some complexity measure, and thus show a lower
bound for C1 (and hence C) when C2 is trivial. The second step would be to try to look at
restrictions over which C2 is identically zero, and show that the lower bounds for C1 continue
to hold.

For the case of depth-4 circuits, even the first step of showing lower bounds when C2 is
trivial was not known prior to this work (even for k = 2). Our results in this paper are an
implementation of this first step, as we show exponential lower bounds when the algebraic
rank of inputs into each of the product gates is at most n (the degree of the polynomial
being computed).

Connections to divisibility testing

Recently, Forbes [8] showed that given two sparse multivariate polynomials P and Q, the
question of deciding if P divides Q can be reduced to the question of polynomial identity

4 These results, infact hold for depth-4 circuits with not-too-large formal degree.
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testing for ΣΠ(2)ΣΠ circuits. This question was one of the original motivations for this paper.
Although we are unable to answer this question in general, we make some progress towards it
by giving a quasipolynomial identity tests for ΣΠ(k)ΣΠ circuits when the various Qij feeding
into the circuit have degree bounded by poly(logN) (and we are also able to handle k as
large as poly(logN).)

Low algebraic rank and PIT

Two very interesting PIT results which are also very relevant to the results in this paper are
those of Beecken et al. [3] and those of Agrawal et al. [2]. The key idea explored in both
these papers is that of algebraic independence. Together, they imply efficient deterministic
PIT for polynomials which can be expressed in the form C(Q1, Q2, . . . , Qt), where C is a
circuit of polynomial degree and Q′is are either sparse polynomials or product of linear forms,
such that the algebraic rank of {Q1, Q2, . . . , Qt}5 is bounded. This approach was extremely
powerful as Agrawal et al. [2] show that they can use this approach to recover many of the
known PIT results, which otherwise had very different proofs techniques. The PIT results of
this paper hold for a variation of the model just described and we describe it in more detail
in Section 1.3.2.

Polynomials with low algebraic rank

In addition to potential applications to arithmetic circuit complexity, it seems an interesting
mathematical question to understand the structure of a set of algebraically dependent
polynomials. In general, our understanding of algebraic dependence is not as clear as our
understanding of linear dependence. For instance, we know that if a set of polynomials is
linearly dependent, then every polynomial in the set can be written as a linear combination
of the polynomials in the basis. However, for higher degree dependencies (linear dependence
is dependency of degree 1), we do not know any such clean statement. As a significant core
of our proofs, we prove a statement of this flavor in Lemma 1.6.

We now formally define the model of computation studied in this paper, and then state
and discuss our results.

1.2 Model of computation
We start with the definition of algebraic dependence. See Section 2 for more details.
I Definition 1.1 (Algebraic independence and algebraic rank). Let F be any field. A set of poly-
nomials Q = {Q1, Q2, . . . , Qt} ⊆ F[X1, X2, . . . , XN ] is said to be algebraically independent
over F if there is no nonzero polynomial R ∈ F[Y1, Y2, . . . , Yt] such that R(Q1, Q2, . . . , Qt) is
identically zero.

A maximal subset of Q which is algebraically independent is said to be a transcendence
basis of Q and the size of such a set is said to be the algebraic rank of Q.

We are now ready to define the model of computation.
I Definition 1.2. Let F be any field. A ΣΠ(k)ΣΠ circuit C in N variables over F is a
representation of an N variate polynomial as

C =
T∑
i=1

Qi1 ·Qi2 · · · · , Qit

5 See Section 2 for definitions.
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34:6 Arithmetic Circuits with Locally Low Algebraic Rank

such that for each i ∈ [T ], the algebraic rank of the set of polynomials {Qij : j ∈ [t]} is at
most k. Additionally, if for every i ∈ [T ] and j ∈ [t], the degree of Qij is at most d, we say
that C is a ΣΠ(k)ΣΠ[d] circuit.

We will state all our results for ΣΠ(k)ΣΠ and ΣΠ(k)ΣΠ[d] circuits. However, the results
in this paper hold for a more general class of circuits where the product gates at the second
level can be replaced by a arbitrary polynomials. This larger class of circuits will be crucially
used in our proofs and we define it below. Formally,

I Definition 1.3. Let F be any field. A ΣΓ(k)ΣΠ circuit C in N variables over F is a
representation of an N variate polynomial as

C =
T∑
i=1

Γi(Qi1, Qi2, . . . , Qit)

such that Γi is an arbitrary polynomial in t variables, and for each i ∈ [T ], the algebraic rank
of the set of polynomials {Qij : j ∈ [t]} is at most k. Additionally, if for every i ∈ [T ] and
j ∈ [t], the degree of Qij is at most d, we say that C is a ΣΓ(k)ΣΠ[d] circuit.

The size of a ΣΠ(k)ΣΠ or a ΣΓ(k)ΣΠ circuit C is defined as the maximum of T and the
number of monomials in the set of polynomials {Qij : i ∈ [T ], j ∈ [t]}.

A ΣΠ(k)ΣΠ circuit C for which the polynomials {Qij : i ∈ [T ], j ∈ [t]} are homogeneous
polynomials such that for every i ∈ [T ],∑

j∈[t]

Degree(Qij) = Degree(P )

(where P is the polynomial being computed) and k = Degree(P ) is precisely the class of
homogeneous depth-4 circuits. If we drop the condition of homogeneity, then in general
the value of t could be much larger than Degree(P ) as well as the degrees of the Qij could
also be arbitrarily large. Thus the class of ΣΠ(k)ΣΠ circuits with k equalling the degree of
the polynomial being computed is potentially a much larger class than that of homogenous
depth-4 circuits.

Also note that in the definition of ΣΠ(k)ΣΠ circuits, the bound on the algebraic rank is
local for each i ∈ [T ], and in general, the algebraic rank of the entire set {Qij : i ∈ [T ], j ∈ [t]}
can be as large as N .

1.3 Our results
We now state our results and disucss how they relate to other known results.

1.3.1 Lower bounds
As our first result, we show exponential lower bounds on the size of ΣΠ(k)ΣΠ circuits
computing an explicit polynomial when the algebraic rank (k) is at most the degree (n) of
the polynomial being computed.

I Theorem 1.4. Let F be any field of characteristic zero6. There exists a family {Pn} of
polynomials in VNP, such that Pn is a polynomial of degree n in N = nO(1) variables with
0, 1 coefficients, and for any ΣΠ(k)ΣΠ circuit C, if k ≤ n and if C computes Pn over F, then

Size(C) ≥ NΩ(
√
n) .

6 Sufficiently large characteristic suffices.



M. Kumar and S. Saraf 34:7

I Remark. From our proofs it follows that our lower bounds hold for the more general class
of ΣΓ(k)ΣΠ circuits, but for the sake of simplicity, we state our results in terms of ΣΠ(k)ΣΠ
circuits. We believe it is likely that the lower bounds also hold for a polynomial in VP and it
would be interesting to know if this is indeed true.
I Remark. Even though we state Theorem 1.4 for k ≤ n, the proof goes through as long as
k is any polynomial in n and N is chosen to be an appropriately large polynomial in n.

Comparison to known results

As we alluded to in the introduction, ΣΠ(k)ΣΠ circuits for k ≥ n subsume the class of
homogeneous depth-4 circuits. Therefore, Theorem 1.4 subsumes the lower bounds of [18, 27]
for homogeneous depth-4 circuits. Moreover, it also subsumes and generalizes the lower
bounds of Agrawal et al. [2] since the [2] lower bounds hold only if the algebraic rank of the
entire set of polynomials {Qij : i ∈ [T ], j ∈ [t]} is bounded, while for Theorem 1.4, we only
need upper bounds on the algebraic rank separately for every i ∈ [T ].

1.3.2 Polynomial identity tests
We show that there is a quasipolynomial size hitting set for all polynomials P ∈ ΣΠ(k)ΣΠ[d]

for bounded d and k. More formally, we prove the following theorem.

I Theorem 1.5. Let F be any field of characteristic zero7. Then, for every N , there exists a
set H ⊆ FN such that

|H| ≤ exp(O(logO(1)N))

and for every nonzero N -variate polynomial P over F which is computable by a ΣΠ(k)ΣΠ[d]

circuit with d, k ≤ logN and size poly(N), there exists an h ∈ H such that P (h) 6= 0.
Moreover, the set H can be explicitly constructed in time

exp(O(logO(1)N)).

We now mention some remarks about Theorem 1.5.
I Remark. It follows from our proof that the hitting set works for the more general class of
ΣΓ(k)ΣΠ[d] circuits with d, k ≤ logN , size poly(N) and formal degree at most poly(N).

Comparison to known results

The two known results closest to our PIT result are the results of Forbes [8] and the results
of Agrawal et al. [2]. Forbes [8] studies PIT for the case where the number of distinct
inputs to the second level product gates in a depth-4 circuit with bounded bottom fan-in
is also bounded (which naturally also bounds the algebraic rank of the inputs), and shows
quasipolynomial sized hitting sets for this case. On the other hand, we handle the case where
there is no restriction on the number of distinct inputs feeding into the second level product
gates, but we need to bound the bottom fan-in as well as the algebraic rank. In this sense,
the results in this paper are a generalization of the results in [8].

Agrawal et al. [2] give a construction of polynomial sized hitting sets in the case when
the total algebraic rank of the set {Qij : i ∈ [T ], j ∈ [t]} is bounded, but they can work with

7 Sufficiently large characteristic suffices.
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unbounded d. On the other hand, the size of our hitting set depends exponentially on d,
but requires only local algebraic dependencies for every i ∈ [T ]. So, these two results are
not comparable, although there are similarities in the sense that both of them aim to use
the algebraic dependencies in the circuit. In general, summation is a tricky operation with
respect to designing PIT algorithms (as opposed to multiplication), so it is not clear if the
ideas in [2] can be somehow adapted to prove Theorem 1.5.

1.3.3 From algebraic dependence to functional dependence
Our lower bounds and PIT results crucially use the following lemma, which (informally)
shows that over fields of characteristic zero, upto a translation, every polynomial in a set
of algebraically dependent polynomials can be written as a function of the polynomials in
transcendence basis8. We now state the lemma precisely9.

I Lemma 1.6 (Algebraic dependence to functional dependence). Let F be any field of char-
acteristic zero or sufficiently large characteristic. Let Q = {Q1, Q2, . . . , Qk, Qk+1} be a set
of polynomials in N variables such that the for every i ∈ [t], the degree of Qi is equal to di
and the algebraic rank of Q equals k. Let B = {Q1, Q2, . . . , Qk} be a maximal algebraically
independent subset of Q. Then, there exists an a = (a1, a2, . . . , aN ) in FN and a polynomial
Fk+1 in k variables such that

Qk+1(X + a) = Hom≤dk+1
[
Fk+1(Q1(X + a), Q2(X + a), . . . , Qk(X + a))

]
.

Even though the lemma seems a very basic statement about the structure of algebraically
dependent polynomials, to the best of our knowledge this was not known before. The
proof builds upon a result on the structure of roots of multivariate polynomials by Dvir et
al. [7]. Observe that for linear dependence, the statement analogous to that of Lemma 1.6 is
trivially true. We believe that this lemma might be of independent interest (in addition to
its applications in this paper).

1.4 Proof overview
Even though the results in this paper seem related to the results in [2] (both exploiting some
notion of low algebraic rank), the proof strategy and the way algebraic rank is used are quite
different. We now briefly outline our proof strategy.

We first discuss the overview of proof for our lower bound.
Let Pn be the degree n polynomial we want to compute, and let C be a ΣΠ(k)ΣΠ circuit

computing it, with k = n. Then C can be represented as

C =
T∑
i=1

t∏
j=1

Qij .

From definitions, we know that for every i ∈ [T ], the algebraic rank of the set of polynomials
{Qi1, Qi2, . . . , Qit} is at most k(= n). We want to show a lower bound on the size of C.

8 A transcendence basis of a set of polynomials is a maximal subset of the polynomials with the property
that its elements are algebraically independent. For more on this see Section 2.

9 For any polynomial P , we use Hom≤i[P ] to refer to homogeneous components of P of degree less than
or equal to i.
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Instead of proving our result directly for ΣΠ(k)ΣΠ circuits, it will be very useful for us to
go to the significantly strengthened class of ΣΓ(k)ΣΠ circuits and prove our result for that
class. Thus we think of our circuit C as being expressed as

C =
T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

where the Ci can be arbitrary polynomial functions of the inputs feeding into them. Note
that we define the size of a ΣΓ(k)ΣΠ circuit to be the maximum of the top fan-in T , and the
maximum of the number of monomials in any of the polynomials Qij feeding into the circuit.
Thus we completely disregard the complexities of the various polynomial function gates at
the second level. If we are able to prove a lower bound for this notion of size, then if the
original circuit is actually a ΣΠ(k)ΣΠ circuit then it will also be as good a lower bound for
the usual notion of size.

Our lower bound has two key steps. In the first step we prove the result in the special
case where t ≤ n2. In the second step we show how to “almost" reduce to the case of t ≤ n2.

Step 1: t ≤ n2

In the representation of C as a ΣΓ(k)ΣΠ circuit, the value of t is at most n2. Lower bounds
for this case turn out to be similar to lower bounds for homogeneous depth-4 circuits. In this
case we borrow ideas from prior works [14, 18, 27] and show that the dimension of projected
shifted partial derivatives of C is not too large. Most importantly, we can use the chain rule
for partial derivatives to obtain good bounds for this complexity measure, independent of
the complexity of the various Ci.

Recall however that in our final result, t can be actually much larger than n2. Indeed the
circuit C can be very far from being homogeneous, and for general depth-4 circuits, we do
not know good upper bounds on the complexity of shifted partial derivatives or projected
shifted partial derivatives. Also, in general, it is not clear if these measures are really small
for general depth-4 circuits10. It is here that the low algebraic rank of {Qi1, Qi2, . . . , Qit}
proves to be useful, and that brings us to the crux of our argument.

Step 2 : Reducing to the case where t ≤ n2

A key component of our proof, which is formalized in Lemma 3.5 shows that over any field of
characteristic zero (or sufficiently large characteristic), upto a translation, every polynomial in
a set of algebraically dependent polynomials can be written as a function of the homogeneous
components of the polynomials in the transcendence basis.

More formally, there exists an a ∈ FN such that C(X + a) can be expressed as

C(X + a) =
T∑
i=1

C ′i(Hom[Qi1(X + a)],Hom[Qi2(X + a)], . . . ,Hom[Qik(X + a)]) (1)

where for a degree d polynomial F , Hom[F ] denotes the d+1-tuple of homogeneous components
of F .

The crucial gain in the above transformation is that the arity of each of the polynomials
C ′i is (d + 1) × k and not t (where d is an upper bound on the degrees of the Qij). Now

10 Indeed, as [26] shows, even homogeneous depth-4 circuits can have very large shifted partial derivative
complexity.
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by assumption k ≤ n, and moreover WLOG we can assume d ≤ n since homogeneous
components of Qij of degree larger than n can be dropped since they do not contribute to
the computation of a degree n polynomial. Thus we have essentially reduced to the case
where t ≤ n2.

One loss by this transformation is that the polynomials {C ′i} might be much more complex
and with much higher degrees than the original polynomials {Ci}. However this will not
affect the computation of our complexity measure. Another loss is that we have to deal with
the translated polynomial C(X + a). This introduces some subtleties into our computation
as it could be that Qij(X) is a sparse polynomial but Qij(X + a) is far from being sparse.
Neither of these issues is very difficult to deal with, and we are able to get strong bounds
for the projected shifted partial derivative based measure for such circuits. The proof of
Lemma 3.5 essentially follows from Lemma 1.6, and seems critical for the proof.

The proof of Lemma 1.6 crucially uses a result of Dvir, Shpilka and Yehudayoff [7]
which shows that upto some minor technical conditions (which are not very hard to satisfy),
factors of a polynomial f ∈ F[X1, X2, . . . , XN , Y ] of the form Y − p(X1, X2, . . . , XN ) where
p ∈ F[X1, X2, . . . , XN ] can be expressed as polynomials in the coefficients when viewing
f as an element of F[X1, X2, . . . , XN ][Y ]. This is relevant since a set t of polynomials are
algebraically dependent implies that there is a non-zero t-variate polynomial which vanishes
when composed with this tuple. We use this vanishing to prove the lemma.

The PIT results follows a similar initial setup and use of Lemma 1.6. We then use a
result of [8] to show that the polynomial computed by C has a monomial of small support,
which is then detected using the standard idea of using Shpilka-Volkovich generators [40].

1.5 Organization of the paper
The rest of the paper is organized as follows: In Section 2, we state some preliminary
definitions and results that are used elsewhere in the paper. In Section 3, we describe our
use of low algebraic rank and prove Lemma 3.5. We prove Theorem 1.4 in Section 4 and
Theorem 1.5 in Section 5.

2 Preliminaries

In this section we set up some notations and definitions for the rest of the paper.

Notations

1. For an integer i, we denote the set {1, 2, . . . , i} by [i].
2. By X, we mean the set of variables {X1, X2, . . . , XN}.
3. For a polynomial P and a positive integer i, we represent by Homi[P ], the homoge-

neous component of P of degree equal to i. By Hom≤i[P ] and Hom≥i[P ], we rep-
resent the component of P of degree at most i and at least i respectively. We de-
fine Hom[P ] as the ordered tuple of homogeneous components of P , i.e Hom[P ] =(

Homd[P ],Homd−1[P ], . . . ,Hom0[P ]
)
, where d is the degree of P . If for some i, there are

no non-zero monomials of degree equal to i in P , then Homi[P ] = 0.
4. The support of a monomial α is the set of variables which appear with a non-zero exponent

in α. We denote the size of the support of α by Supp(α).
5. We say that a function f(N) is quasipolynomial in N if there exists a positive absolute

constant c, such that for all N sufficiently large, f(N) < exp(logcN).
6. In this paper, unless otherwise stated, F is a field of characteristic zero.
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7. Given a polynomial P and a valid monomial ordering Π, the leading monomial of P is
the monomial with a nonzero coefficient in P which is maximal according to Π. Similarly,
the trailing monomial in P is the monomial which is minimal among all monomials in P
according to Π.

Algebraic independence

We now formally define the notions of algebraic independence, algebraic rank and transcen-
dence basis which would be widely used in this paper.

I Definition 2.1 (Algebraic independence and algebraic rank). Let F be any field. A set of poly-
nomials Q = {Q1, Q2, . . . , Qt} ⊆ F[X1, X2, . . . , XN ] is said to be algebraically independent
over F if there is no nonzero polynomial R ∈ F[Y1, Y2, . . . , Yt] such that R(Q1, Q2, . . . , Qt) is
identically zero.

A maximal subset of Q which is algebraically independent is said to be a transcendence
basis of Q and the size of such a set is said to be the algebraic rank of Q.

Apriori, it is not even clear that algebraic rank of a set of polynomials is well defined.
But it is known that algebraic independence satisfies the matroid property [29], and therefore
is well defined.

For a tuple Q = (Q1, Q2, . . . , Qt) of algebraically dependent polynomials, we know that
there is a nonzero t variate polynomial R (called a Q-annihilating polynomial) such that
R(Q1, Q2, . . . , Qt) is identically zero. A natural question is to ask, what kind of bounds
on the degree of R can we show, in terms of the degrees of Qi. The following lemma of
Kayal [17] shows an upper bound on the degree of annihilating polynomials of a set of degree
d polynomials. The bound is useful to us in our proof.

I Lemma 2.2 (Kayal [17]). Let F be a field and let Q = (Q1, Q2, . . . , Qt) be a set of
polynomials of degree d in N variables over the field F having algebraic rank k. Then there
exists a Q-annihilating polynomial of degree at most (k + 1) · dk.

Complexity of homogeneous components

We will use the following simple lemma (whose proof is fairly standard using interpolation),
and can be found in [28] for instance. We sketch the proof here for completeness.

I Lemma 2.3. Let F be a field of characteristic zero, and let P ∈ F[X1, X2, . . . , XN ] be a
polynomial of degree at most d, in N variables, such that P can be represented as

P = C(Q1, Q2, . . . , Qt)

where for every j ∈ [t], Qj is a polynomial in N variables, and C is an arbitrary polynomial
in t variables. Then, there exist polynomials {Q′ij : i ∈ [d+ 1], j ∈ [t]}, and for every ` such
that 0 ≤ ` ≤ d, there exist polynomials C ′`,1, C ′`,2, . . . , C ′`,d+1 satisfying

Hom`[P ] =
(d+1)∑
i=1

C ′`,i(Q′i1, Q′i2, . . . , Q′it) .

Moreover,
if each of the polynomials in the set {Qj : j ∈ [t]} is of degree at most ∆, then every
polynomial in the set {Q′ij : i ∈ [d+ 1], j ∈ [t]} is also of degree at most ∆.
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if the algebraic rank of the set of polynomials {Qj : j ∈ [t]} is at most k, then for every
i ∈ [d+ 1], the algebraic rank of polynomials in the set {Q′ij : j ∈ [t]} is also at most k.

Proof. The key idea is to start from P ∈ F[X] and obtain a new polynomial P ′ ∈ F[X][Z]
such that for every ` such that 0 ≤ ` ≤ d, the coefficient of Z` in P ′ equals Hom`[P ]. Here,
Z is a new variable. Such a P ′ is obtained by replacing every occurence of the variable Xj

(for each j ∈ [N ]) in P by Z · Xj . It is not hard to verify that such a P ′ has the stated
property. We now view P ′ as a univariate polynomial in Z with the coefficients coming from
F(X). Notice that the degree of P ′ in Z is at most d. So, to recover the coefficients of a
univariate polynomial of degree at most d, we can evaluate P ′ at d+ 1 distinct values of Z
over F(X) and take an F(X) linear combination. In fact, if the field F is large enough, we
can assume that all these distinct values of Z lie in the base field F and we only take an F
linear combination. The properties in the ‘moreover’ part of the lemma immediately follow
from this construction, and we skip the details. J

Roots of polynomials

We will crucially use the following result of Dvir, Shpilka, Yehudayoff [7].
I Lemma 2.4 (Dvir, Shpilka, Yehudayoff [7]). For a field F, let P ∈ F[X1, X2, . . . , XN , Y ] be
a non-zero polynomial of degree at most k in Y . Let f ∈ F[X1, X2, . . . , XN ] be a polynomial
such that P (X1, X2, . . . , XN , f) = 0 and ∂P

∂Y (0, 0, . . . , 0, f(0, 0, . . . , 0)) 6= 0. Let

P =
k∑
i=0

Ci(X1, X2, . . . , XN ) · Y i .

Then, for every t ≥ 0, there exists a polynomial Rt ∈ F[Z1, Z2, . . . , Zk+1] of degree at most t
such that

Hom≤t[f(X1, X2, . . . , XN )] = Hom≤t[Rt(C0, C1, . . . , Ck)] .

We also use the following standard result about zeroes of polynomials.
I Lemma 2.5 (Schwartz, Zippel, DeMillo, Lipton). Let P be a non-zero polynomial of degree
d in N variables over a field F. Let S be an arbitrary subset of F, and let x1, x2, . . . , xN be
random elements from S chosen independently and uniformly at random. Then

Pr[P (x1, x2, . . . , xN ) = 0] ≤ d

|S|
.

The following corollary easily follows from the lemma above.
I Corollary 2.6. Let P1, P2, . . . , Pt be non-zero polynomials of degree d in N variables over
a field F. Let S be an arbitrary subset of F of size at least 2td, and let x1, x2, . . . , xN be
random elements from S chosen independently and uniformly at random. Then

Pr[∀i ∈ [t], Pi(x1, x2, . . . , xN ) 6= 0] ≥ 1
2 .

Approximations

We will use the following lemma of Saptharishi [32] for numerical approximations in our
calculations.
I Lemma 2.7 (Saptharishi [32]). Let n and ` be parameters such that ` = n

2 (1− ε) for some
ε = o(1). For any a, b such that a, b = O(

√
n),(

n− a
`− b

)
=
(
n

`

)
· 2−a · (1 + ε)a−2b · exp(O(b · ε2))
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3 Utilizing low algebraic rank

Let Q = {Q1, Q2, . . . , Qt} be a set of polynomials in N variables and degree at most d
such that the algebraic rank of Q equals k. Without loss of generality, let us assume that
B = {Q1, Q2, . . . , Qk} are an algebraically independent subset of C of maximal size. We now
show that, in some sense, this implies that all the polynomials in Q can be represented as
functions of polynomials in the set B. We make this notion formal in the following lemma.

I Lemma 3.1 (Algebraic dependence to functional dependence). Let F be any field of char-
acteristic zero or sufficiently large. Let Q = {Q1, Q2, . . . , Qt} be a set of polynomials in N
variables such that the for every i ∈ [t], the degree of Qi is equal to di and the algebraic rank
of Q equals k. Let B = {Q1, Q2, . . . , Qk} be a maximal algebraically independent subset of
Q. Then, there exists an a = (a1, a2, . . . , aN ) in FN and polynomials Fk+1, Fk+2, . . . , Ft in
k variables such that ∀i ∈ {k + 1, k + 2, . . . , t}

Qi(X + a) = Hom≤di
[
Fi(Q1(X + a), Q2(X + a), . . . , Qk(X + a))

]
.

Proof. Let d be defined as maxi{di}. Let us consider any i such that i ∈ {k+ 1, k+ 2, . . . , t}.
From the statement of the lemma, it follows that the set of polynomials in the set B ∪ {Qi}
are algebraically dependent. Therefore, there exists a nonzero polynomial Ai in k + 1
variables such that Ai(Q1, Q2, . . . , Qk, Qi) ≡ 0. Without loss of generality, we choose such
a polynomial with the smallest total degree. From the upper bound on the degree of the
annihilating polynomial from Lemma 2.2, we can assume that the degree of Ai is at most
(k + 1)dk. Consider the polynomial A′i(X,Y ) defined by

A′i(X,Y ) = Ai(Q1(X), Q2(X), . . . , Qk(X), Y ) .

We have the following observation about properties of A′i.

I Observation 3.2. A′i satisfies the following properties:
A′i is not identically zero
The Y degree of A′i is at least one.
Qi(X) is a root of the polynomial A′i, when viewing it as a polynomial in the Y variable
with coefficients coming from F(X).

Proof. We prove the items in sequence:
If A′i is identically zero, then it follows that Q1, Q2, . . . , Qk are algebraically dependent,
which is a contradiction.
If A′i(X,Y ) does not depend on the variable Y , then by definition, it follows that
Ai(Q1, Q2, . . . , Qk, Y ) does not depend on Y . Hence, Ai(Q1, Q2, . . . , Qk, Qi) does not
depend on Qi but is identically zero. This contradicts the algebraic independence of
Q1, Q2, . . . , Qk.
This item follows from the fact that the polynomial obtained by substituting Y by Qi in
A′i equals Ai(Q1, Q2, . . . , Qk, Qi), which is identically zero. J

Our aim now is to invoke Lemma 2.4 for the polynomial A′i, but first, we need to verify
that the conditions in the hypothesis of Lemma 2.4 are satisfied. Let the polynomial A′′i be
defined as the first order derivative of A′i with respect to Y . Formally,

A′′i = ∂A′i
∂Y

.

We proceed with the following claim, the proof of which we defer to the end.
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I Claim 3.3. The polynomial A′′i is not an identically zero polynomial and A′′i |Y=Qi is not
identically zero.

For the ease of notation, we define

Li(X) = A′′i |Y=Qi .

Observe that Li is a polynomial in the variables X which is not identically zero and is
of degree at most (k + 1)dk+1. Let H be a subset of F of size 2t(k + 1)dk+1. Then, for a
uniformly random point ai picked from HN , the probability that Li vanishes at ai is at
most 1/2t. We call the set of all points ai ∈ HN where Li vanishes as bad. Then, with a
probability at least 1− 1/2t, a uniformly random element of HN is not bad. Let ai ∈ FN be
a ‘not bad’ element . We can replace Xj by Xj + aij and then for the resulting polynomial
Li(X + ai), the point (0, 0, . . . , 0) is not bad.

We are now ready to apply Lemma 2.4. Let

A′i(X,Y ) =
(k+1)dk∑
j=0

Cj(X) · Y j .

Here, for every j, Cj(X) = C ′j
(
Q1(X), Q2(X), . . . , Qk(X)

)
is a polynomial in the X

variables and is the coefficient of Y j in A′i(X,Y ) when viewed as an element of F[X][Y ].
From the discussion above, we know that the following are true.
1. The polynomial A′i(X + ai, Qi(X + ai)) is identically zero.
2. The first derivative of A′i(X + ai, Y ) with respect to Y does not vanish at (0, 0, . . . , 0,

Qi(0, 0, . . . , 0)).
Therefore, by Lemma 2.4, it follows that there is a polynomial Gi such that

Qi(X + ai) = Hom≤di
[
Gi(C0(X + ai), C1(X + ai), . . . , C(k+1)dk(X + ai))

]
.

We also know that for every j ∈ {0, 1, . . . , (k + 1)dk}, Cj(X + ai) is a polynomial in the
polynomials Q1(X + ai), Q2(X + ai), . . . , Qk(X + ai). In other words,

Qi(X + ai) = Hom≤di
[
Fi(Q1(X + ai), Q2(X + ai), . . . , Qk(X + ai))

]
for a polynomial Fi.

In order to prove the lemma for all values of i ∈ {k + 1, k + 2, . . . , t}, we observe that we
can pick a single value of the translation a, which works for every i ∈ {k + 1, k + 2, . . . , t}.
Such an a exists because the probability that a uniformly random p ∈ HN is bad for some i is
at most t · 1/2t = 1/2 and the translation corresponding to any such element a in HN which
is not bad for every i will work. The statement of the lemma then immediately follows. J

We now prove Claim 3.3.

Proof of Claim 3.3. We observed from the second item in Observation 3.2 that the degree
of Y in A′i is at least 1. Hence, A′′i is not identically zero. If A′′i |Y=Qi is identically zero,
then it follows that {Q1, Q2, . . . , Qk, Qi} have an annihilating polynomial of degree smaller
than the degree of Ai, which is a contradiction to the choice of Ai, as a minimum degree
annihilating polynomial. J

Lemma 3.1 lets us express all polynomials in a set of polynomials as a function of the
polynomials in the transcendence basis. However, the functional form obtained is slightly
cumbersome for us to use in our applications. We now derive the following corollary, which
is easier to use in our applications.
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I Corollary 3.4. Let F be any field of characteristic zero or sufficiently large. Let Q =
{Q1, Q2, . . . , Qt} be a set of polynomials in N variables such that the for every i ∈ [t], the
degree of Qi is equal to di < d and the algebraic rank of Q equals k. Let B = {Q1, Q2, . . . , Qk}
be a maximal algebraically independent subset of Q. Then, there exists an a = (a1, a2, . . . , aN )
in FN and polynomials Fk+1, Fk+2, . . . , Ft in at most k(d + 1) variables such that ∀i ∈
{k + 1, k + 2, . . . , t}

Qi(X + a) =
[
Fi(Hom[Q1(X + a)],Hom[Q2(X + a)], . . . ,Hom[Qk(X + a)])

]
.

Proof. Let i be such that i ∈ {k + 1, k + 2, . . . , t}. From Lemma 3.1, we know that there
exists an a ∈ FN and a polynomial Wi such that

Qi(X + a) = Hom≤di
[
Wi(Q1(X + a), Q2(X + a), . . . , Qk(X + a))

]
We will now show that Hom≤di

[
Wi(Q1(X + a), Q2(X + a), . . . , Qk(X + a))

]
is actually

a polynomial in the homogeneous components of the various Qj(X + a) by the following
procedure, which is essentially univariate polynomial interpolation.

Let R(X) = Wi(Q1(X + a), Q2(X + a), . . . , Qk(X + a)). We replace every variable Xj in
R by Z ·Xj for a new variable Z. We view the resulting polynomial R′ as an element
of F(X)[Z], i.e a univariate polynomial in Z with coefficients coming from the field of
rational functions in the X variables.
Now, observe that for any `, the homogeneous component of degree ` of R is precisely the
coefficient of Z` in R′. Hence, we can evaluate R′ for sufficiently many distinct values of
Z in F(X), and then take an F(X) linear combination of these evaluations to express the
homogeneous components. Moreover, since F is an infinite field, without loss of generality,
we can pick the values of Z to be scalars in F, and in this case, we will just be taking an
F linear combination.

The catch here is that after replacing Xj by Z ·Xj and substituting different values of Z ∈ F,
the polynomials Qi′(X + a) could possibly lead to distinct polynomials. In general, this
is bad, since our goal is to show that every polynomial in a set of algebraically dependent
polynomials in a function of few polynomials. However, the following observation comes
to our rescue. Let P be any polynomial in F[X] of degree ∆ and let P ′ be the polynomial
obtained from P by replacing Xj by Z ·Xj . Then,

P ′(X + a) =
∆∑
`=0

Z`.Hom`[P (X)]

In particular, the set of polynomials obtained from P ′ for different values of Z are all in the
linear span of homogeneous components of P .

Therefore, any homogeneous component of R can be expressed as a function of the set of
polynomials ∪ki=1Hom

[
Qi(X + a)

]
. This completes the proof of the corollary. J

We now prove the following lemma, which will be directly useful in the our applications
to polynomial identity testing and lower bounds in the following sections.

I Lemma 3.5. Let F be any field of characteristic zero or sufficiently large. Let P ∈ F[X]
be a polynomial in N variables, of degree equal to n, such that P can be represented as

P =
T∑
i=1

Fi(Qi1, Qi2, . . . , Qit)

and such that the following are true
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For each i ∈ [T ], Fi is a polynomial in t variables.
For each i ∈ [T ] and j ∈ [t], Qij is a polynomial in N variables of degree at most d.
For each i ∈ [T ], the algebraic rank of the set of polynomials {Qij : j ∈ [t]} is at
most k and Bi = {Qi1, Qi2, . . . , Qik} is a maximal algebraically independent subset of
{Qij : j ∈ [t]}.

Then, there exists an a ∈ FN and polynomials F ′i in at most k(d+ 1) variables such that

P (X + a) =
T∑
i=1

F ′i (Hom[Qi1(X + a)],Hom[Qi2(X + a)], . . . ,Hom[Qik(X + a)]) . (2)

Proof. The proof would essentially follow from the application of Corollary 3.4 to each of
the summands on the right hand side. The only catch is that the transalations a could
be different for each one of them. Since we are working over infinite fields, without loss
of generality, we can assume that there is a good translation a which works for all the
summands. J

4 Application to lower bounds

In this section , we prove Theorem 1.4. But, first we discuss the definitions of the complexity
measure used in the proof, the notion of random restrictions and the family of hard polynomials
that we work with.

4.1 Projected shifted partial derivatives
The complexity measure that we use to prove the lower bounds in this paper is the notion of
projected shifted partial derivatives of a polynomial introduced in [18] and subsequently used
in a number of following papers [27, 22, 28].

For a polynomial P and a monomial γ, ∂P∂γ is the partial derivative of P with respect to
γ and for a set of monomialsM, ∂M(P ) is the set of partial derivatives of P with respect to
monomials inM. The space of (M,m)-projected shifted partial derivatives of a polynomial
P is defined below.

I Definition 4.1 ((M,m)-projected shifted partial derivatives). For an N variate polynomial
P ∈ F[X1, X2, . . . , XN ], set of monomials M and a positive integer m ≥ 0, the space of
(M,m)-projected shifted partial derivatives of P is defined as

〈∂M(P )〉m
def= F-span{Mult

[∏
i∈S

Xi · g

]
: g ∈ ∂M(P ), S ⊆ [N ], |S| = m} . (3)

Here, Mult[P ] of a polynomial P is the projection of P on the multilinear monomials in
its support. We use the dimension of projected shifted partial derivative space of P with
respect to some set of monomialsM and a parameter m as a measure of the complexity of a
polynomial. Formally,

ΦM,m(P ) = Dim(〈∂M(P )〉m) .

From the definitions, it is straight forward to see that the measure is subadditive.

I Lemma 4.2 (Sub-additivity). Let P and Q be any two multivariate polynomials in
F[X1, X2, . . . , XN ]. Let M be any set of monomials and m be any positive integer. Then,
for all scalars α and β

ΦM,m(α · P + β ·Q) ≤ ΦM,m(P ) + ΦM,m(Q) .
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In the proof of Theorem 1.4, we need to upper bound the dimension of the span of
projected shifted partial derivatives of the homogeneous component of a fixed degree of
polynomials. The following lemma comes to our rescue there.

I Lemma 4.3. Let P be a polynomial of degree at most d. Then for every 0 ≤ i ≤ d, and for
every choice of parameters m, r and a setM of monomials of degree equal to r, the following
inequality is true

φM,m(P ) ≥ φM,m(Homi[P ]) .

Proof. SinceM is a subset of monomials of degree equal to r, all the partials derivatives are
shifted by monomials of degree equal to m and the operation Mult[] either sets a monomial
to zero or leaves it unchanged, it follows that the span of projected shifted partial derivatives
of Homi[P ] coincides with the span of the homogeneous components of degree (i− r)m in
the space of span of projected shifted partial derivatives of P itself. The lemma then follows
from the fact that dimension of a linear space of polynomials is at least as large as the
dimension of the space obtained by restricting all polynomials to some fixed homogeneous
component. J

In the next lemma, we prove an upper bound on the polynomials which are obtained by a
composition of low arity polynomials with polynomials of small support. Gupta et al. [14]
first proved such a bound for homogeneous depth-4 circuit with bounded bottom fan-in.

I Lemma 4.4. Let s be a parameter and Q1, Q2, . . . , Qt be polynomials in F[X] such that
for every i ∈ [t], the support of every monomial in Qi is of size at most s. Then, for every
polynomial F in t variables, every choice of parameters r,m such that m+ rs ≤ N/2, and
every setM of monomials of degree equal to r,

ΦM,m(F (Q1, Q2, . . . , Qt)) ≤
(
t+ r

r

)
·
(

N

m+ rs

)
.

Proof. By the chain rule for partial derivatives, every derivative of order r of F (Q1, Q2, . . . , Qt)
can be written as a linear combination of products of the form(

∂F (Y1, Y2, . . . , Yt)
∂β0

|Yi=Qi
)
·
∏

1≤j≤r

∂Pj
∂βj

where
1. β0 is a monomial in variables Y1, Y2, . . . , Yt of degree at most r
2. for every 1 ≤ j ≤ r, the polynomial Pj is an element of {Q1, Q2, . . . , Qt}, and
3. for every 1 ≤ j ≤ r, βj is a monomial in variables X1, X2, . . . , XN

Since every monomial in each Qi is of support at most s, every monomial in each of the
products

∏
1≤j≤r

∂Pj
∂βj

is of support at most rs. Therefore, for shifts of degree m, the projected
shifted partial derivatives of F (Q1, Q2, . . . , Qt) (with respect to monomials inM which are
of degree r) are in the linear span of polynomials of the form

Mult
[(

∂F (Y1, Y2, . . . , Yt)
∂β0

|Yi=Qi
)
· α
]

where α is a multilinear monomial of degree at most m+ rs. Therefore, the dimension of
this space is upper bounded by the number of possible choices of β0 and α. Hence

ΦM,m(F (Q1, Q2, . . . , Qt)) ≤
(
t+ r

r

)
·
(

N

m+ rs

)
. J
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4.2 Target polynomials for the lower bound
In this section, we define the family of polynomials for which we show our lower bounds.
The family is a variant of the Nisan-Wigderson polynomials which were introduced by Kayal
et al. in [23], and subsequently used in many other results [27, 22, 28]. We start with the
following definition.

I Definition 4.5 (Nisan-Wigderson polynomial families). Let n, q, e be arbitrary parameters
with q being a power of a prime, and n, e ≤ q. We identify the set [q] with the field Fq of q
elements. Observe that since n ≤ q, we have that [n] ⊆ Fq. The Nisan-Wigderson polynomial
with parameters n, q, e, denoted by NWn,q,e is defined as

NWn,q,e(X) =
∑

p(t)∈Fq [t]
Deg(p)<e

X1,p(1) . . . Xn,p(n) .

The number of variables in NWn,q,e as defined above is N = q · n. The lower bounds in
this paper will be proved for the polynomial NW ◦ Lin which is a variant of the polynomial
NWn,q,e defined as follows.

I Definition 4.6 (Hard polynomials for the lower bound). Let δ ∈ (0, 1) be an arbitrary
constant, and let p = N−δ. Let

γ = N

p
.

The polynomial NW ◦ Linq,n,e,p is defined as

NW ◦ Linq,n,e,p = NWq,n,e

(
γ∑
i=1

X1,1,i,

γ∑
i=1

X1,2,i, . . . ,

γ∑
i=1

Xn,q,i

)
.

For brevity, we will denote NW ◦ Linq,n,e,p by NW ◦ Lin for the rest of the discussion.
The advantage of using this trick11 of composing with linear forms is that it becomes

cleaner to show that the polynomial NW ◦ Lin is robust under random restrictions where
every variable is kept alive with a probability p. Since δ is an absolute constant, the number
of variables in NW ◦ Lin is at most NO(1). We now formally define our notion of random
restrictions.

Let V be the set of variables in the polynomial NW ◦ Lin. We now define a distribution
Dp over the subsets of V.

The distribution Dp: Each variable in V is independently kept alive with a probability
p = N−δ.

The random restriction procedure samples a V ← D and then keeps only the variables in
V alive. The remaining variables are set to 0. We denote the restriction of the polynomial
obtained by such a restriction as NW ◦ Lin|V . Observe that a random restriction also results
in a distribution over the restrictions of a circuit computing the polynomial NW ◦ Lin. We
denote by C|V the restriction of a circuit C obtained by setting every input gate in C which
is labeled by a variable outside V to 0.

We now show that with a high probability over restrictions sampled according to Dp,
the projected shifted partial derivative complexity of NW ◦ Lin remains high. We need the
following lower bound on the dimension of projected shifted partial derivatives of NWn,q,e.

11This idea came up during discussions with Ramprasad Saptharishi.
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I Lemma 4.7 ([27, 25]). For every n and r = O(
√
n) there exists parameters q, e, ε such

that q = Ω(n2), N = qn and ε = Θ
(

logn√
n

)
with

qr ≥ (1 + ε)2(n−r)

qe−r =
(

2
1 + ε

)n−r
· poly(q).

For any {n, q, e, r, ε} satisfying the above constraints, for m = N
2 (1− ε), over any field F, we

have

Φ(NWn,q,e) ≥
(

N

m+ n− r

)
· exp(−O(log2 n)).

We will instantiate the lemma above with the following choice of parameters:
ε = 4 logn√

n

r =
√
n

q = n10

Besides, we will set the parameter s =
√
n

100
It is straight forward to check that for the above choice of parameters, there is a choice of e
such that

qr ≥ (1 + ε)2(n−r)

qe−r =
(

2
1 + ε

)n−r
· poly(q).

Therefore, for m = N
2 (1− ε), over any field F, we have

Φ(NWn,q,e) ≥
(

N

m+ n− r

)
· exp(−O(log2 n)).

We are now ready to prove our main lemma for this section.

I Lemma 4.8. With a probability at least 1 − o(1) over V ← Dp, there exists a subset of
variables V ′ ⊆ V such that |V ′| = N and

Φ(NW ◦ Lin|V ′) ≥
(

N

m+ n− r

)
· exp(−O(log2 n)).

Proof. To prove the lemma, we first show that with a high probability over the random
restrictions, the polynomial P |V has the polynomial NWn,q,e as a 0, 1 projection. Combining
this with Lemma 4.7 would complete the proof. We now fill in the details.

Let i ∈ [N ]. Then, the probability that all the variables in the set Ai,j = {Xi,j,` : ` ∈ [γ]}
are set to zero by the random restrictions is equal to (1− p)γ ≤ exp(−Θ(N)). Therefore, the
probability that there exists an i ∈ [n], j ∈ [q] such that all the variables in the set Ai,j are
set to zero by the random restrictions, is at most N · exp(−Θ(N)) = o(1). We now argue
that if this event does not happen (which is the case with probability at least 1− o(1)), then
the dimension of the projected shifted partial derivatives is large.

For every i, j, let A′i,j be the subset of Ai,j which has not been set to zero. We know
that for every i, j, A′i,j is non-empty. Now, for every i, j, we set all the elements of A′i,j to
zero except one. Observe that the polynomial obtained from NW ◦ Lin after this restriction
is exactly the polynomial NWn,q,e upto a relabeling of variables. Now, from Lemma 4.7, our
claim follows. J
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4.3 Proof of Theorem 1.4
To show our lower bound, we show that under random restrictions from the distribution
Dp, the dimension of the linear span of projected shifted partial derivatives of any ΣΠ(n)ΣΠ
circuit C is small with a high probability if the size of the C is not too large. Comparing
this with the lower bound on the dimension of projected shifted partials of the polynomial
NW ◦ Lin under random restrictions from Lemma 4.8, the lower bound follows. We now
proceed along this outline and prove the following lemma.

I Lemma 4.9 (Upper bound on complexity of circuits). Let m, r, s be parameters such that
m+rs ≤ N/2. LetM be any set of multilinear monomials of degree r. Let C be an arithmetic
circuit computing a homogeneous polynomial of degree n such that

C =
T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

where
For each i ∈ [T ], Ci is a polynomial in t variables.
For each i ∈ [T ] and j ∈ [t], Qij is a homogeneous polynomial in N variables.
For each i ∈ [T ], the algebraic rank of the set of polynomials {Qij : j ∈ [t]} is at most k.

For each i ∈ [T ] and j ∈ [t], let Sij be the set of monomials with nonzero coefficients in Qij.
If ∣∣∣∣∣∣

⋃
i∈[T ],j∈[t]

Sij

∣∣∣∣∣∣ ≤ N δs
2

then, with a probability at least 1 − o(1) over V ← Dp12 for all subsets V ′ of V of size at
most N

Φ(C|V ′) ≤ T
(
k(n+ 1) + r

r

)(
N

m+ rs

)
.

Proof. We prove the lemma by first using random restrictions to simplify the circuit into
one with bounded bottom support, and then utilizing the tools tools developed in Section 3
and Section 4.1 to conclude that the dimension of the space of projected shifted partial
derivatives of the resulting circuit is small.

Step 1: Random restrictions

From the definition of random restrictions, every variable is kept alive independently with a
probability p = N−δ. So, the probability that a monomial of support at least s survives the
restrictions is at most N−δs. Therefore, by linearity of expectations, the expected number of
monomials of support at least s in

⋃
i∈[T ],j∈[t] Sij which survive the random restrictions is at

most∣∣∣∣∣∣
⋃

i∈[T ],j∈[t]

Sij

∣∣∣∣∣∣ ·N−δs ≤ N− δs2 .
12This is the distribution defined in Section 4.2, where every variable is kept alive with a probability N−δ

for a constant δ ∈ (0, 1).
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So, by Markov’s inequality, the probability that at least one monomial of support at least
s in

⋃
i∈[T ],j∈[t] Sij survives the random restrictions is o(1). Let V ′ be any subset of the

surviving set of variables of size N . For the rest of the proof, we assume that all the variables
outside the set V ′ are set to zero. Restrictions which kill all monomials in

⋃
i∈[T ],j∈[t] Sij are

said to be good.

Step 2: Using low algebraic rank

In this step, we assume that we are given a good restriction C ′ of the circuit C. Let

C ′ =
T∑
i=1

C ′i(Q′i1, Q′i2, . . . , Q′it)

where for every i ∈ [T ], j ∈ [t], all monomials of Q′ij have support at most s. Observe that
random restrictions cannot increase the algebraic rank of a set of polynomials. Therefore,
for every i ∈ [T ], the algebraic rank of the set of polynomials {Q′ij : j ∈ [t]} is at most k.
For ease of notation, let us assume that the algebraic rank is equal to k. Without loss of
generality, let the set Bi = {Q′i1, Q′i2, . . . , Q′ik} be the set guaranteed by Lemma 3.5. We
know that there exists an a ∈ FN and polynomials {Fi : i ∈ [T ]} such that

C ′(X + a) =
T∑
i=1

F ′i (Hom
[
Q′i1(X + a)

]
,Hom

[
Q′i2(X + a)

]
, . . . ,Hom

[
Q′ik(X + a)

]
) .

Moreover, since C(X) (and hence C ′(X)) is a homogeneous polynomial of degree n, the
following is true:

C ′(X) = Homn

[
T∑
i=1

F ′i (Hom
[
Q′i1(X + a)

]
,Hom

[
Q′i2(X + a)

]
, . . . ,Hom

[
Q′ik(X + a)

]
)
]
.

(4)

An important observation here is that for the rest of the argument, we can assume that
the degree of every polynomial Q′ij(X + a) is at most n. If not, we can simply replace
any such high degree Q′ij(X + a) by Hom≤n

[
Q′ij(X + a)

]
. We claim that the equality 4

continues to hold. This is because the higher degree monomials of Qij do not participate in
the computation of the lower degree monomials. The only monomials which could potentially
change by this substitution are the ones with degree strictly larger than n.

Step 3: Upper bound on ΦM,m(C′(X))

Let R be defined the polynomial

R =
[
T∑
i=1

F ′i (Hom
[
Q′i1(X + a)

]
,Hom

[
Q′i2(X + a)

]
, . . . ,Hom

[
Q′ik(X + a)

]
)
]
.

From Lemma 4.4 and from Lemma 4.2, it is easy to see that

ΦM,m(R) ≤ T
(
k(n+ 1) + r

r

)(
N

m+ rs

)
.

From Lemma 4.3, it follows that

ΦM,m(C ′(X)) ≤ ΦM,m(R) ≤ T
(
k(n+ 1) + r

r

)(
N

m+ rs

)
.
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Observe that steps 2 and 3 of the proof are always successful if the restriction in step 1 is
good, which happens with a probability at least 1− o(1). So, the lemma follows. J

We now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. If the size of the circuit C is at least N δ
2
√
n, then we are done. Else,

the size of C is at most N δ
2
√
n. This implies that the total number of monomials in all the

polynomials Qij together is at most N δ
2
√
n. From Lemma 4.9 and Lemma 4.8, it follows that

with a nonzero probability, there exists a subset V ′ of variables of size N such that both the
following inequalities are true:

ΦM,m(C|V ′) ≤ T
(
k(n+ 1) + r

r

)(
N

m+ rs

)
(5)

and

ΦM,m(NW ◦ Lin|V ′) ≥
(

N

m+ n− r

)
· exp(− log2 n) .

Since C computes NW ◦ Lin, it must be the case that

T ≥
(

N
m+n−r

)
· exp(− log2 n)(

k(n+1)+r
r

)(
N

m+rs
) .

Plugging in the value of the parameters, and approximating using Lemma 2.7, we
immediately get(

N

m+ n− r

)
=
(
N

m

)
· (1 + ε)2(n−r) · exp(O((n− r) · ε2))

and(
N

m+ rs

)
=
(
N

m

)
· (1 + ε)2rs · exp(O(rs · ε2)) .

Moreover,
(
k(n+1)+r

r

)
≤ (nk)r ≤ exp(2

√
n · logn). Taking the ratio and substituting the

values of the parameters, we get

T ≥ exp (Ω(
√
n logN)) . J

5 Application to polynomial identity testing

In this section we give an application of the ideas developed in Section 3 to the question of
polynomial identity testing and prove Theorem 1.5. We start by formally defining the notion
of a hitting set.

Hitting set

Let S be a set of polynomials in N variables over a field F. Then, a set H ⊆ FN is said to
be a hitting set for the class S, if for every polynomial P ∈ S such that P is not identically
zero, there exists a p ∈ H such that P (p) 6= 0.

For our PIT result, we show that any nonzero polynomial P in the circuit class we
consider, has a monomial of low support. A hitting set can then be constructed by the
standard techniques using the Shpilka-Volkovich generator [39].
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I Lemma 5.1 (Shpilka-Volkovich generator [40]). Let F be a field of characteristic zero. For
every `, d,N , there exists a set H ⊆ FN of size at most (O(Nd))` such that for every nonzero
polynomial P of degree at most d in N variables which contains a monomial of support at
most `, there exists an h ∈ H such that P (h) 6= 0. Moreover, the set H can be constructed in
time poly(N, d, `) · (O(Nd))`.

The following lemma is our main technical claim.

I Lemma 5.2. Let F be a field of characteristic zero. Let P be a homogeneous polynomial
of degree ∆ in N variables such that P can be represented as

P =
T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

such that the following are true
For each i ∈ [T ], Ci is a polynomial in t variables.
For each i ∈ [T ] and j ∈ [t], Qij is a polynomial of degree at most d in N variables.
For each i ∈ [T ], the algebraic rank of the set of polynomials {Qij : j ∈ [t]} is at most k.

Then, the trailing monomial of P has support at most

2e3d · (ln (T (∆ + 1)) + (d+ 1)k ln (2(d+ 1)k) + 1) .

Here, e is the Euler’s constant.

In order to prove Lemma 5.2, we follow the outline of proving robust lower bounds for
arithmetic circuits, described and used by Forbes [8]. This essentially amounts to showing
that the trailing monomial of P has small support. We use the following result of Forbes [8]
in a blackbox manner which greatly simplifies our proof.

I Lemma 5.3 (Forbes [8]). Let R(X) be a polynomial in F[X] such that

R(X) =
T∑
i=1

Fi(Qi1, Qi2, . . . , Qit)

and for each i ∈ [T ] and j ∈ [j], the degree of Qij is at most d. Let α be the trailing monomial
of R. Then, the support of α is at most 2e3d(lnT +t ln 2t+1), where e is the Euler’s constant.

We now proceed to prove Lemma 5.2.

Proof of Lemma 5.2. Recall that our goal is to show that the polynomial P , which can be
represented as

P =
T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

has a trailing monomial of small support.
For every i ∈ [T ], let Qi = {Qi1, Qi2, . . . , Qit} and let Qi be of algebraic rank ki. Without

loss of generality, let us assume the sets Bi = {Qi1, Qi2, . . . , Qiki} are the sets guaranteed by
Lemma 3.5. This implies that there exist polynomials F1, F2, . . . , FT and a ∈ FN such that

P (X + a) =
[
T∑
i=1

Fi(Hom[Qi1(X + a)],Hom[Qi2(X + a)], . . . ,Hom[Qiki(X + a)])
]
.
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Since each ki ≤ k, for the ease of notation, we assume that each ki = k. Observe that if P is
a homogeneous polynomial of degree Deg(P ) ≤ ∆, then,

HomDeg(P )[P (X + a)] ≡ P (X) .

So, from Lemma 2.3, it follows that there exist k(d+1) variate polynomials F ′1, F ′2, . . . , F ′T (∆+1)
and a set of polynomials {Q′ij : i ∈ [T (∆ + 1)], j ∈ [k]} such that

P (X) = HomDeg(P )

T (∆+1)∑
i=1

F ′i (Hom[Q′i1(X + a)],Hom[Q′i2(X + a)], . . . ,Hom[Q′ik(X + a)])

 .
Moreover, every polynomial in the set {Q′ij : i ∈ [T (∆ + 1)], j ∈ [k]} has degree at most d.
Now, Lemma 5.3 implies that the trailing monomial α of P (X) has support at most

2e3d · (ln (T (∆ + 1)) + (d+ 1)k ln (2(d+ 1)k) + 1) . J

We are now ready to complete the proof of Theorem 1.5.

Proof of Theorem 1.5. From Definition 1.2, it follows there could be non-homogeneous
polynomials P ∈ C. So, we cannot directly use Lemma 5.2 to say something about them,
since the proof relies on homogeneity. But, this is not a problem, since a polynomial is
identically zero if and only if all its homogeneous components are identically zero. Moreover,
by applying Lemma 2.3 to every summand feeding into the top sum gate of the circuit, we
get that every homogeneous component of P 13 can also be computed by a circuit similar in
structure to that of P at the cost of a blow up by a factor ∆ + 1 in the top fan-in. We can
then apply Lemma 5.2 to each of these homogeneous components to conclude that if P is
not identically zero, then it contains a monomial of support at most

2e3d · (ln
(
T (∆ + 1)2)+ (d+ 1)k ln (2(d+ 1)k) + 1) .

Theorem 1.5 immediately follows by detecting the low support monomial using Lemma 5.2
and Lemma 5.1. J

6 Open questions

We end with some open questions:
One question is to prove the lower bounds in the paper for a polynomial in VP. We believe
this is true, but it seems that we need a strengthening of the bounds in [27]. In particular,
it needs to be shown that the lower bound for IMM (Iterated matrix multiplication)
continues to hold when a depth-4 circuit is not homogeneous but the formal degree is at
most the square of the degree of the polynomial itself.
An intriguing consequence of the proofs in the paper is that the characteristic of the
underlying field needs to be high or zero. In particular, we do not know if Lemma 3.1 is true
over fields of low characteristic. In general, we seem to have a slightly better understanding
of algebraic dependence over fields of large characteristic or characteristic zero. For
instance, as far as we know the results of Agrawal et al. [2] are not known to extend to
fields of low characteristic since the Jacobian condition for algebraic independence fails
there. We wonder if our proof techniques also suffer from a similar technical obstacle.

13Only the top fan-in increases by a factor of ∆ + 1, all other parameters in Definition 1.2 remain the
same.
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It would be interesting to see if there are other applications of Lemma 1.6 to questions in
complexity theory. The Jacobian characterization of algebraic independence has several
very interesting applications [2, 6].

Acknowledgements. Many thanks to Ramprasad Saptharishi for answering numerous
questions regarding the results and techniques in [2]. We are also thankful to Michael Forbes
for sharing a draft of his paper [8] with us. We would also like to thank the anonymous
reviewers at CCC-2016 for their comments which helped improve the presentation of the
paper.
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Abstract
We study the complexity of representing polynomials as a sum of products of polynomials in few
variables. More precisely, we study representations of the form P =

∑T
i=1
∏d
j=1Qij such that

each Qij is an arbitrary polynomial that depends on at most s variables.
We prove the following results.
Over fields of characteristic zero, for every constant µ such that 0 ≤ µ < 1, we give an
explicit family of polynomials {PN}, where PN is of degree n in N = nO(1) variables, such
that any representation of the above type for PN with s = Nµ requires Td ≥ nΩ(

√
n). This

strengthens a recent result of Kayal and Saha [17] which showed similar lower bounds for the
model of sums of products of linear forms in few variables. It is known that any asymptotic
improvement in the exponent of the lower bounds (even for s =

√
n) would separate VP and

VNP [17].
We obtain a deterministic subexponential time blackbox polynomial identity testing (PIT)
algorithm for circuits computed by the above model when T and the individual degree of
each variable in P are at most logO(1)N and s ≤ Nµ for any constant µ < 1/2. We
get quasipolynomial running time when s < logO(1)N . The PIT algorithm is obtained by
combining our lower bounds with the hardness-randomness tradeoffs developed in [6, 14]. To
the best of our knowledge, this is the first nontrivial PIT algorithm for this model (even for
the case s = 2), and the first nontrivial PIT algorithm obtained from lower bounds for small
depth circuits.1

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, I.1.1 Expressions
and Their Representation

Keywords and phrases arithmetic circuits, lower bounds, polynomial identity testing, hardness
vs randomness

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.35

1 Introduction

Arithmetic circuits are the most natural model of computation for a wide variety of algebraic
problems such as matrix multiplication, computing fast fourier transforms etc. The problem

∗ Research supported in part by NSF grants CCF-1350572 and by Simons Graduate Fellowship.
† Research supported by NSF grant CCF-1350572.
1 In a recent independent work, Forbes [7] does blackbox identity testing for another subclass of depth

four circuits using shifted partial derivative based methods. To the best of our understanding, the
results in these two papers are incomparable even though both rely on similar techniques.
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35:2 Sums of Products of Polynomials in Few Variables

of proving lower bounds for arithmetic circuits is one of the most fundamental and interesting
problems in complexity theory. Proving superpolynomial lower bounds for general arithmetic
circuits would resolve the VP versus VNP conjecture [34], the algebraic analog of the P vs
NP conjecture. This is one of the holy grails of complexity theory and has received a lot of
attention, since it is a more structured and potentially easier question to understand and
analyse than the P vs NP problem .

The intimately related problem of polynomial identity testing (PIT) is the problem of
testing if a polynomial, given as an arithmetic circuit is identically zero. In the setting
where the algorithm cannot look inside the circuit, but only has access to evaluations of
the circuit, the problem is referred to as blackbox PIT. There is a very simple randomized
algorithm for this problem - simply evaluate the polynomial at a random point from a large
enough domain. With very high probability, a nonzero polynomial will have a nonzero
evaluation [30, 36]. It is a very important and fundamental question to derandomize the
above algorithm. In a seminal work, Kabanets and Impagliazzo [14] showed that the problem
of proving lower bounds for arithmetic circuits and the problem of derandomizing identity
testing are essentially equivalent2!

These two problems have occupied a central position in complexity theory and despite
much attention, our understanding of general arithmetic circuits is still very limited. Thus
there has been a great deal of effort in understanding the complexity of restricted classes of
arithmetic circuits in an attempt to obtain a better understanding of the general problem.
Low depth arithmetic circuits in particular are one such well studied class.

Lower bounds for homogeneous low depth arithmetic circuits

The last few years have seen a tremendous amount of exciting progress on the problems of
“depth reduction" of general arithmetic circuits to low depth arithmetic circuits, and of proving
lower bounds for low depth arithmetic circuits. Using depth reduction techniques [35, 1, 20, 33]
it was shown that Nω(

√
n) lower bounds (for polynomials in N variables and of degree n) for

just homogeneous depth 4 arithmetic circuits of bottom fan-in
√
n would suffice to separate

VP from VNP and imply superpolynomial lower bounds for general arithmetic circuits. At
the same time there was a very exciting line of works proving NΩ(

√
n) lower bounds for the

same model of arithmetic circuits (and in fact for even the more general class of homogeneous
depth 4 arithmetic circuits with no restriction on bottom fan-in) [11, 10, 19, 21, 15, 22].

Lower bounds for non-homogeneous low depth arithmetic circuits

Despite all this remarkable progress, and some very strong lower bounds for homogeneous low
depth arithmetic circuits, in the nonhomogenous world much less is understood. Only mild
lower bounds are known when we drop the condition of homogeneity, even for very simple
classes of low depth arithmetic circuits. For depth 3 circuits over fields of characteristic 0,
only quadratic lower bounds known [31, 32], and there has been no progress on this question
in more than a decade now.

In a beautiful depth reduction result over fields of characteristic 0, Gupta et al [13] showed
that Nω(

√
n) lower bounds (for polynomials in N variables and of degree n) for the class of

non-homogeneous depth 3 circuits would already separate VP from VNP. It was recently
observed by Kayal and Saha [17] 3 that in fact it suffices to prove such lower bounds for
depth 3 circuits with bottom fan-in

√
n.

2 They non-trivially transferred such known tradeoffs from the boolean world to the arithmetic world[25].
3 They attribute the observation to Ramprasad Saptharishi.
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Till recently (in particular till the work of [17]), the best known lower bounds for depth
3 circuits even with bottom fan-in 2 were still just quadratic. In a very nice recent result,
Kayal and Saha [17] showed an exponential lower bound for depth 3 circuits over fields of
characteristic 0, whose bottom fan-in is at most Nµ, where N is the number of variables and
0 ≤ µ < 1 is an arbitrary constant. More precisely, they prove the following.

I Theorem 1.1 (Kayal-Saha [17]). Let F be a field of characteristic zero. Then, for every
constant 0 ≤ µ < 1 there is a family {PN} of degree n polynomials in N = nOµ(1) variables
over F in VNP such that any depth three circuit of bottom fan-in at most Nµ computing PN
has top fan-in at least NΩµ(

√
n).

Our Model

In this work, we consider the model of sums of products of polynomials in few variables. More
formally, we consider representations of polynomials P (degree n in N = nO(1) variables) in
the form

P =
T∑
i=1

d∏
j=1

Qij (1)

where each Qij is an arbitrary polynomial (of arbitrarily high degree) in at most s variables.
We call this the model of ΣΠ (ΣΠ)[s] circuits.

Observe that the model is more general than that considered in [17]. The model in [17]
corresponds to sums of products of linear forms in few variables. In our case, the Qij no
longer have to be linear forms, but can be general polynomials of arbitrarily high degree.
Prior to this work, even for the case when s = 2, there were no nontrivial lower bounds
known for this model.

ΣΠ (ΣΠ)[s] circuits for s ≥ 2 can also be seen as a generalization of the model of sums of
products of univariate polynomials (which corresponds to ΣΠ (ΣΠ)[s] circuits with s = 1),
which has been very well studied in the arithmetic circuit complexity literature. Lower
bounds for ΣΠ (ΣΠ)[1] circuits follow from works of Nisan [24] and Saxena [29]. Over the
last few years, there have been some very nice results giving quasipolynomial time blackbox
identity testers for ΣΠ (ΣΠ)[1] circuits [8, 9, 3]. ΣΠ (ΣΠ)[s] circuits can also be seen as a
generalization of the widely studied model of diagonal circuits, since polynomials computable
by diagonal circuits can be represented as a ΣΠ (ΣΠ)[1] circuit without much blow up in the
size of the representation [29].

Although ΣΠ (ΣΠ)[1] circuits seem fairly well understood from the point of view of lower
bounds and derandomization of polynomial identity testing, if one considers the model of
sums of products of bivariate polynomials (ΣΠ (ΣΠ)[2] circuits), then our understanding
changes completely. Although only seemingly a mild generalization of ΣΠ (ΣΠ)[1] circuits,
the known proof techniques for lower bounds for ΣΠ (ΣΠ)[1] circuits (which were proved
using evaluation dimension techniques of [24, 27]) seem to completely break down in this
setting. In fact, Forbes [7] was able to confirm this, showing that there is a polynomial which
is a sum of product of bivariates which has exponentially large evaluation dimension under
all possible partitions of variables. Thus, studying this model seems like an interesting next
step towards understanding non-homogeneous small depth algebraic computation. As far as
we are aware there are also (not surprisingly) no nontrivial PIT results for the model. We
are now ready to state our results.
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35:4 Sums of Products of Polynomials in Few Variables

1.1 Our results
Lower bounds

We show an exponential lower bound for the model of ΣΠ (ΣΠ)[s], when s is at most Nµ

for any constant 0 ≤ µ < 1 (N is the number of variables). More precisely, we show the
following.

I Theorem 1.2. Let F be a field of characteristic zero and µ be any constant such that
0 ≤ µ < 1. There exists a family {PN} of polynomials over F in VNP, where PN is of degree
n in N = nOµ(1) variables, such that for any representation of PN of the form

PN =
T∑
i=1

d∏
j=1

Qij

where each Qij is polynomial in at most s = Nµ variables, it must be true that

T · d ≥ nΩµ(
√
n) .

Given the depth reduction results of [13] and the observation mentioned earlier from [17],
it is known that any asymptotic improvement in the exponent of the lower bound (even for
s = O(

√
n)) would imply VNP is different from VP.

As discussed in the introduction, even though this model seems a natural generalization
of the model of sums of products of univariate polynomials, our lower bound technique is very
different from those used in proving lower bounds for sums of products of univariates. Our
lower bound proof is based on ideas developed in the course of investigating homogeneous
depth four arithmetic circuits [15, 22].

Blackbox PIT

We also consider the problem of PIT for the model of ΣΠ (ΣΠ)[s] circuits. For general sums
of products of even bivariate polynomials, this question seems quite difficult, and as of now
we are not even able to obtain subexponential time PIT. However, as a consequence of our
lower bounds and by suitably adapting hardness randomness tradeoffs for arithmetic circuits
developed in [14] and [6], we are able to obtain PIT results in the setting where the top
fan-in of the circuit is bounded, and when we have the promise that the circuit computes a
polynomial of low individual degree.

Our understanding of blackbox PIT for depth four circuits is very limited, and the results
known are in very restricted settings. Saraf and Volkovich [28] gave blackbox PIT algorithms
for multilinear depth 4 circuits with bounded top fan-in. To the best of our knowledge,
the idea in [28] does not extend to the case of non-multilinear depth 4 circuits, even when
the individual degree of each of the variables is at most 2. Recently, Oliveira et al [5]
gave a subexponential time blackbox PIT for all depth four multilinear circuits4. In the
non-multilinear setting, Agrawal et al. [2] gave PIT algorithms for constant depth formulas
in which the number of occurences of each variable is bounded. Without going into the
technical details, we remark that the notion of bounded occur is a generalization of the well
studied notion of bounded reads. The most closely related results to those in this paper that
we are aware of are the recent papers of Gupta [12] and Mukhopadhyay [23], which give

4 The running time increases with the size of the circuit, and in particular, it is subexponential time for
polynomial sized depth four multilinear circuits.
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blackbox PIT results for sums of products of low degree polynomials, where the top sum
fan-in is bounded and the circuits satisfy certain algebraic geometric restrictions.

So, the question of getting PIT results for general depth four circuits (even with bounded
top and bottom fan-in) remains wide open. For instance we still do not know any nontrivial
PIT results for a sum of constant many products of degree 2 polynomials. Though we still
don’t know how to deal with this question, when we replace the polynomials of low degree
with polynomials of few variables (but of arbitrarily large degree), then we are able to obtain
quasipolynomial PIT results. There is one added caveat however, that the final polynomial
computed needs to be of low individual degree (as seems necessary for PIT results obtained
from the known hardness-randomness tradeoffs for bounded depth circuits [6]). We now
formally state the theorem.

I Theorem 1.3. Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2, and
let F be a field of characteristic zero. Let C be the set of polynomials P in N variables and
individual degree at most k over F, with the property that P can be expressed as

P =
T∑
i=1

d∏
j=1

Qij

such that
1. T < logcN
2. k < logcN
3. d < N c

4. each Qij depends on at most Nµ variables
Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting
set of size exp(N ε) for C which can be constructed in time exp(N ε).

Moreover, from our proof, it also follows that if each of polynomial Qij depends only on
logO(1)N variables, then both the size of the hitting set and the time to construct it, are
upper bounded by a quasipolynomial function in N .

Independent work

In a simultaneous independent work, Kayal and Saha [18] employ very similar techniques and
ideas to show an analog of Theorem 1.2 for the iterated matrix multiplication polynomial
(an entry in the product of n generic matrices of dimension poly(n)× poly(n)) when each of
the polynomials Qij depends on at most

√
n variables.

Organisation of the paper

We provide an overview of the proofs in Section 2. We describe some definitions and
preliminaries in Section 3. We present the proof of the lower bound in Section 4. We describe
the application to blackbox PIT in Section 5 and conclude with some open problems in
Section 6.

2 Proof overview

In this section, we provide an overview of the main ideas in proofs of Theorem 1.2 and
Theorem 1.3.

CCC 2016



35:6 Sums of Products of Polynomials in Few Variables

2.1 Overview of proof of Theorem 1.2
We restate Theorem 1.2 for the sake of clarity.

I Theorem 1.2 (restated). Let F be a field of characteristic zero and µ be any constant
such that 0 ≤ µ < 1. There exists a family {PN} of polynomials over F in VNP, where PN
is of degree n in N = nOµ(1) variables, such that for any representation of PN of the form
PN =

∑T
i=1
∏d
j=1Qij where each Qij is polynomial in at most s = Nµ variables, it must be

true that

T · d ≥ nΩµ(
√
n) .

The key difference between proving the above lower bound and the lower bounds for
homogeneous depth four circuits is that the formal degree of the circuit in the above case
could be much larger than the degree of the polynomial, which is n. In fact, even the
fan-in of the product gates at level 2, that is d could be much larger than n. Therefore, a
straightforward application of homogeneous depth four circuit lower bounds does not seem to
work. Our proof is in two steps and at a high level follows the strategy of the lower bound for
non-homogeneous depth three circuits with bounded bottom fan-in by Kayal and Saha [17]
with some key differences.

In the first step, we obtain another representation of PN , as

PN =
Td2O(

√
n)∑

i=1

n∏
j=1

Q′ij

where every monomial in each of the Q′ij has support5 at most s, although each Q′ij
could now depend on all the variables. The key property that we have gained from
this transformation is that the fan-in of the product gates at level two is bounded by n
now, which is the degree of PN . However, we have no bound on the degree of the Q′ij .
Moreover, we have blown up the top fan-in a bit, but we will be able to tolerate this loss
if s is small.
In the second step, the strategy can be seen in two stages. If µ was very small, say 0.001,
then we could have taken advantage of the fact that in the representation obtained in the
first step above, the product fan-in is at most n and the support of every monomial in each
of the Q′ij is small, to prove an upper bound on the dimension of the space of projected
shifted partial derivatives of the above representation. Comparing this dimension with
that of our hard polynomial gives us our lower bound. For larger values of µ, we use
random restrictions to ensure that all the monomials of large support in Q′ij are set to zero.
At the end of such a procedure, we are back to the low support case. This step of the
proof is closely along the lines of the proof of homogeneous depth four arithmetic circuit
lower bounds in [15, 22] although in the present case, formal degree of the circuit could
be as large as n2, which is much larger than the degree of the polynomial PN . For such
large formal degrees, in general we do not even know lower bounds for non-homogeneous
depth three circuits.

We would like to point out that the first step of the proof above is similar to the homogenization
step in the proof of lower bounds for general depth three circuits with bounded bottom fan-in
by Kayal and Saha [17]. The key difference is that while the circuit they obtain at the end of

5 A monomial is said to have support support s if it depends on at most s distinct variables.
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this step is a strictly homogeneous circuit of formal degree n, we are unable to get a similar
structure. The complication stems from the fact that when Qij are not affine forms, they
could contain monomials of varying degrees. In this case, it seems difficult to obtain a strict
homogenization with a small blow up in size. We get around this deficiency by a more subtle
analysis in the second step, where we show a lower bound for a circuit which has a formal
degree much larger than the degree of the polynomial being computed, but has some added
structure. This step critically uses that the fact that the product fan-in at level two of these
circuits is at most n, and the support of every monomial in each of the Q′ij is small.

2.2 Overview of proof of Theorem 1.3

We first restate Theorem 1.3.

I Theorem 1.3 (restated). Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2,
and let F be a field of characteristic zero. Let C be the set of polynomials P in N variables
and individual degree at most k over F, with the property that P can be expressed as
P =

∑T
i=1
∏d
j=1Qij such that

1. T < logcN
2. k < logcN
3. d < N c

4. each Qij depends on at most Nµ variables
Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting
set of size exp(N ε) for C which can be constructed in time exp(N ε).

The construction of the hitting set is based on the well known idea of using hard functions
for derandomization. Our goal is to reduce the number of variables from N to at most Nδ

for some constant δ < 1, while maintaining the zeroness/nonzeroness of the polynomial
being tested [14, 6]. Once we have done this, we take a brute force hitting set of size
(Degree + 1)Number of variables as given by Lemma 5.5. To reduce the number of variables, we
use the framework introduced by Kabanets and Impagliazzo [14].

The key technical step of the proof is to show that for a non-zero polynomial P as defined
above, if there exists a polynomial f ∈ F[X1, X2, . . . , Xi−1, Xi+1, Xi+2, . . . , XN ] such that
Xi − f divides P , then f can also be expressed as a sum of products of polynomials in few
variables of reasonably small size. This step crucially uses a statement about complexity of
roots of polynomials computed by low depth circuits from [6]. Therefore, if f is a polynomial
which does not have a small representation as a sum of products of polynomials in few
variables, then Xi − f does not divide P . This observation guarantees that the construction
of hitting sets from hard polynomials given by [14] works for this class of circuits.

3 Notation and Preliminaries

We now introduce some notation and preliminary notions that we use in the rest of the
paper.

Computational model

In this work, we consider the model of sums of products of polynomials in few variables. More
formally, we consider representations of polynomials P (degree n in N = nO(1) variables) in

CCC 2016



35:8 Sums of Products of Polynomials in Few Variables

the form

P =
T∑
i=1

αi ·
d∏
j=1

Qij (2)

where each Qij is an arbitrary polynomial (of arbitrarily high degree) in at most s variables
and each αi is a field constant. We call this the model of ΣΠ (ΣΠ)[s] circuits. We use the
quantity Td as a measure of the size of a ΣΠ (ΣΠ)[s] circuit. Without loss of generality,
we can assume that the degree zero term in each of the Qij is either zero or one. If it is a
non-zero constant other than 1, we can extract it out and absorb it in αi. For each of the
product gates, the fan-in could be different, but we can assume without loss of generality
that all the product fan-ins are equal to d. Observe that the d could be much larger than
the degree of the polynomial P . Throughout this paper, we will be working over a field of
characteristic zero.

Some basic notations

1. For an integer i, we denote the set {1, 2, . . . , i} by [i].
2. By X, we mean the set of variables {X1, X2, . . . , XN}.
3. For a polynomial P and a positive integer i, we represent by Homi[P ], the homogeneous

component of P of degree equal to i. By Hom≤i[P ] and Hom≥i[P ], we represent the
component of P of degree at most i and at least i respectively.

4. The support of a monomial α is the set of variables which appear with a non-zero exponent
in α. We denote the size of the support of α by Supp(α).

5. Throughout the paper, we say that a function f(N) is subexponential in N if there exists
a positive real number ε, such that ε < 1 and for all N sufficiently large, f(N) < exp(N ε).

6. We say that a function f(N) is quasipolynomial in N if there exists a positive absolute
constant c, such that for all N sufficiently large, f(N) < exp(logcN).

7. In this paper, we only consider layered arithmetic circuits and we will be counting levels
from top to bottom, starting with the output gates being at level one.

8. By a ΣΠΣ∧ circuit, we refer to a depth four circuit with all the product gates at the
lowest level being replaced by powering (∧) gates. Similarly, by a ΣΠΣ ∧ ΣΠ circuit,
we mean a depth six circuit all of whose product gates at level four from the top are
powering gates.

Hitting set

Let C be a set of polynomials in N variables over a field F. Then, a set H ⊆ FN is said to be
a hitting set for the class C, if for every polynomial P ∈ C such that P is not the identically
zero polynomial, there exists a p ∈ H such that P (p) 6= 0.

Elementary symmetric polynomials

For variables X = {X1, X2, . . . , XN} and any integer 0 ≤ l ≤ N , the elementary symmetric
polynomial of degree l on variables X is defined as

ESYMl(X) =
∑

S⊆[N ],|S|=l

∏
j∈S

Xj .
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Projected shifted partial derivatives

A key idea behind the recent progress on lower bounds is the notion of shifted partial
derivatives introduced in [16]. In this paper, we use a variant of the measure, called projected
shifted partial derivatives introduced in [15] and subsequently used in [22]. Although we never
explicitly do any calculations with the measure in this paper, we provide a brief introduction
to it below since the bounds are based on it.

For a polynomial P and a monomial γ, ∂γ(P ) is the partial derivative of P with respect
to γ. For every polynomial P and a set of monomials M, ∂M(P ) is the set of partial
derivatives of P with respect to monomials inM. The space of (M,m)-projected shifted
partial derivatives of a polynomial P is defined below.

I Definition 3.1 ((M,m)-projected shifted partial derivatives). For an N variate polynomial
P ∈ F[X1, X2, . . . , XN ], set of monomials M and a positive integer m ≥ 0, the space of
(M,m)-projected shifted partial derivatives of P is defined as

〈∂M(P )〉m
def= F-span{σ(

∏
i∈S

Xi · g) : g ∈ ∂M(P ), S ⊆ [N ], |S| = m} (3)

Here, σ(P ) of a polynomial P is the projection of P on the multilinear monomials in its
support. The measure of complexity of a polynomial that we use in this paper, is the
dimension of projected shifted partial derivative space of P with respect to some set of
monomialsM and a parameter m. Formally,

ΦM,m(P ) = dim(〈∂M(P )〉m) .

From the definitions, it is straight forward to see that the measure is subadditive.

I Lemma 3.2 (Sub-additivity). Let P and Q be any two multivariate polynomials in
F[X1, X2, . . . , XN ]. Let M be any set of monomials and m be any positive integer. Then,
for all scalars α and β

ΦM,m(α · P + β ·Q) ≤ ΦM,m(P ) + ΦM,m(Q) .

Approximations

We will refer to the following lemma to approximate expressions during our calculations.

I Lemma 3.3 ([11]). Let a(n), f(n), g(n) : Z>0 → Z>0 be integer valued functions such that
(f + g) = o(a). Then,

log (a+ f)!
(a− g)! = (f + g) log a±O

(
(f + g)2

a

)
.

In the proofs in this paper, we use Lemma 3.3 only in situations where (f + g)2 will
be O(a). In this case, the error term will be bounded by an absolute constant. So, up to
constant factors, (a+f)!

(a−g)! = a(f+g). We use the symbol ≈ to indicate equality up to constant
factors.

Complexity of coefficients and homogeneous components

We now summarise two simple lemmas which are useful for our proof. The first lemma
summarises that given a circuit C for a polynomial P ∈ F[X1, X2, . . . , XN , Y ] of degree at
most d, for every 0 ≤ i ≤ d, the coefficient of Y i in P (when viewing P as a polynomial in
F[X1, X2, . . . , XN ][Y ]) can also be computed by a circuit of size not much larger than the
size of C.

CCC 2016



35:10 Sums of Products of Polynomials in Few Variables

I Lemma 3.4. Let P ∈ F[X1, X2, . . . , XN , Y ] be a polynomial of degree at most d in Y over
a field F of characteristic zero, such that P is computable by an arithmetic circuit C of size
|C|. Let

P =
d∑
i=0

Qi(X1, X2, . . . , XN ) · Y i

for polynomials Qi(X1, X2, . . . , XN ) ∈ F[X1, X2, . . . , XN ]. Then, for every i such that
0 ≤ i ≤ d, the polynomial Qi can be computed by an arithmetic circuit C ′ of size at most
|C| · (d+ 1). Moreover, if the output gate of C is a + gate, then the depth of C ′ is equal to
the depth of C. Else, the depth of C ′ is at most 1 more than the depth of C.

Proof. We can view P as a univariate polynomial of degree at most d in Y with the coefficients
coming from F(X). From the classical Lagrange interpolation, we know that the coefficient
of Y i in P can be written as an F(X) linear combination of the evaluations of P at d+ 1
distinct values of Y taken from F(X). In fact, more strongly, we can evaluate P at d + 1
values of Y all chosen from F itself, in which case the constants in the linear combination are
also from F. So, Qi can be computed by a circuit obtained from taking d+ 1 circuits each
obtained from P by substituting Y by a scalar in F, and taking their linear combination. Let
this circuit be C ′. Clearly the size of C ′ is at most (d+ 1) times the size of C. If the output
gate of C was an addition gate, then the outer addition for the linear combination can be
absorbed into it, and the depth remains the same. Else, the depth increases by one. J

The second lemma stated below essentially says that the circuit complexity of homogeneous
components of a polynomial is not much larger than the circuit complexity of the polynomial
itself.

I Lemma 3.5. Let P be a polynomial of degree at most d in N variables over a field F of
characteristic zero, such that P is computable by an arithmetic circuit C of size |C|. Then,
for every i such that 0 ≤ i ≤ d, the homogeneous component of degree i of P can be computed
by an arithmetic circuit C ′ of size at most |C| · (d+ 1). Moreover, if the output gate of C is
a + gate, then the depth of C ′ is equal to the depth of C. Else, the depth of C ′ is at most 1
more than the depth of C.

Proof. Let P ′(t) be the polynomial obtained from P by replacing every variable X in P by
X · t for a new variable t. We can view P ′ to be a univariate polynomial of degree at most d
in t with the coefficients coming from F(X). Observe that for every i such that 0 ≤ i ≤ d,
the homogeneous component of P of degree equal to i is equal to the coefficient of ti in P ′.
The proof now follows from Lemma 3.4. J

4 Proof of the lower bound

In this section, we give the proof of Theorem 1.2. We prove the lower bound for a variant of
the well known family of Nisan-Wigderson polynomials defined by Kayal and Saha [17].

4.1 Target polynomials for the lower bound
We now define the family of polynomials of degree n in N variables for which we prove
the lower bounds. The family is a variant of the Nisan-Wigderson polynomials which were
introduced by Kayal et al in [19] in the context of lower bounds for homogeneous depth four
circuits. The particular variant we use in the paper is due to Kayal and Saha [17].
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The tradeoff between the number of variables N and the degree n will be parameterized
by the parameter µ where 0 ≤ µ < 1. First we need some parameters, which we define below.
1. δ = (1− µ)/2 is a positive real number such that µ+ δ < 1.
2. γ = 2(µ+δ)+1

1−µ−δ .
3. N is chosen such that N/n is a prime number between n1+γ and 2n1+γ . Such a prime

number always exists from the Bertrand-Chebychev theorem. Without loss of generality,
we pick the smallest one.

4. ρ = (µ+ δ) logN
logn

5. D = γ+ρ
2(1+γ) · n , where D − 1 is the degree of the underlying univariate polynomials in

the definition of NWn,µ.
Let ψ be the prime number equalling N/n. We are now ready to restate the definition of
NWn,µ from [17].

I Definition 4.1 (Nisan-Wigderson Polynomials [17]). Let µ be a real number such that
0 ≤ µ < 1. For a given µ and n, let N , D, ψ be as defined above. For the set of N variables
{Xij : i ∈ [n], j ∈ [ψ]}, we define the degree n homogeneous polynomial NWn,µ as

NWn,µ =
∑

f(z)∈Fψ[z]
deg(f)≤D−1

∏
i∈[n]

Xif(i) .

From the definition, we can observe the following properties of NWn,µ.
1. The number of monomials in NWn,µ is exactly ψD = nO(D).
2. Each of the monomials in NWn,µ is multilinear.
3. Each monomial corresponds to evaluations of a univariate polynomial of degree at most

D − 1 at all points of Fψ. Thus, any two distinct monomials agree in at most D − 1
variables in their support.

We will also need the following lemma in our proof.

I Lemma 4.2. Let µ be a non-negative real number less than 1. Given q ∈ FN , µ, n, we
can evaluate the polynomial NWn,µ at q in time NO(n).

Proof. Given n and µ, we first find D, ψ as given by the choice of parameters. Once we have
D, we iterate through every monomial α of degree n in the X variables which is supported
on all the rows of the variable matrix and check if it is in the polynomial NWn,µ by trying
to find a univariate polynomial f(z) ∈ Fψ[z] such that degree of f is at most D − 1 and∏
i∈[n]Xif(i) = α. The interpolation takes only Poly(n) time, and the total number of

monomials to try is at most Nn. So, we get the lemma. J

We now proceed with the proof as outlined in Section 2.1.

4.2 Reducing the product fan-in at level two
Let P be a homogeneous polynomial in N variables of degree n which has a ΣΠ (ΣΠ)[s]

circuit of top fan-in T and product fan-in d at the second level. In other words, there exist
polynomials {Qij : i ∈ [T ], j ∈ [d]} in at most s variables each, such that

P =
T∑
i=1

αi ·
d∏
j=1

Qij . (4)

Recall that without loss of generality, we can assume that the constant term in each of the
Qij is either 0 or 1. We have the following lemma.
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I Lemma 4.3. Let F be a field of characteristic zero. Let P be a homogeneous polynomial
of degree n in N variables over F as defined above. For each i, 1 ≤ i ≤ T define the set

Si = {j : 1 ≤ j ≤ d and Hom0[Qij ] = 1} .

Then,

P =
T∑
i=1

αi · Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

 . (5)

Proof. To prove the lemma, we will try to extract out the homogeneous part of degree n of
each product gate

∏d
j=1Qij . Together with the fact that the polynomial P is homogeneous

of degree n, we get the lemma. Every Qij with a non-zero constant term can be written as
Hom≥1[Qij ] + 1, since the constant term in each Qij is either 0 or 1. Now,

d∏
j=1

Qij =
∏
j /∈Si

Qij ×
∏
j∈Si

(Hom≥1[Qij ] + 1) . (6)

Decomposing the product
∏
j∈Si(Hom≥1[Qij ] + 1) further, we have

∏
j∈Si

(Hom≥1[Qij ] + 1] =
|Si|∑
l=0

∑
U⊆Si:|U |=l

∏
j∈U

Hom≥1[Qij ] . (7)

Now, observe that the degree of every monomial in
∏
j∈U Hom≥1[Qij ] is at least as large as the

size of U . So, for every subset U of size larger than n,
∏
j∈U Hom≥1[Qij ] is a polynomial of de-

gree strictly larger than n. Also, for any fixed l, the expression
∑
U⊆Si:|U |=l

∏
j∈U Hom≥1[Qij ]

is precisely the elementary symmetric polynomial of degree l in the set of variables {Hom≥1[Qij ] :
j ∈ Si}. Therefore,

Hom≤n
∏
j∈Si

(Hom≥1[Qij ] + 1)

 = Hom≤n
[

n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})
]
. (8)

Therefore,

Homn

 d∏
j=1

Qij

 = Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

 . (9)

Summing up for all i, we get the lemma. J

The lemma above has in some sense helped us locate the monomials of degree n in the
circuit, which otherwise has a much higher formal degree. We now combine the above lemma
with the well known fact that elementary symmetric polynomial of degree l in k variables can
be computed by homogeneous ΣΠΣ∧ circuits of size at most k2O(

√
l) to obtain a ΣΠΣ ∧ ΣΠ

circut C ′ such that the fan-in of the product gates at level two is at most n. We use the
following theorem (Theorem 5.2) by Shpilka and Wigderson [31].

I Theorem 4.4 (Shpilka-Wigderson [31]). For every set of variables {Y1, Y2, . . . , Ym} and a
positive integer l, ESYMl({Y1, Y2, . . . , Ym}) can be computed by a homogeneous ΣΠΣ∧ circuit
of size m2O(

√
l).
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We now prove the following lemma.

I Lemma 4.5. Let F be a field of characteristic zero. Let P be a polynomial of degree n in
N variables over F which is computable by an ΣΠ (ΣΠ)[s] circuit C of top fan-in T and the
degree of product gates at level two being d. So, P can be represented as

P =
T∑
i=1

αi ·
d∏
j=1

Qij .

Then, P can be represented as the homogeneous component of degree n of a polynomial
computed by a ΣΠΣ ∧ ΣΠ circuit C ′′ with the following properties :
1. The inputs to the ∧ gates are the polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤ j ≤ d}
2. The fan-in of the × gates at the second level from the top is at most n
3. The top fan-in of C ′′ is at most Tdn2O(

√
n).

Proof. From Lemma 4.3, we know that for the set Si defined as

Si = {j : 1 ≤ j ≤ d and Hom0[Qij ] = 1}

the polynomial P can be written as

P =
T∑
i=1

αi · Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})


which is the same as

P = Homn

 T∑
i=1

αi ·
∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

 .
Observe that the polynomial

∏
j /∈Si Qij has degree at least d − |Si|. We remark that if

d− |Si| is larger than n, then such product gates do not contribute anything to the degree n
component of the polynomial and hence can be discarded without loss of generality; hence we
assume n− (d− |Si|) > 0. So, we could confine the inner sum from l = 0 to l = n− (d− |Si|),
and still preserve the degree n part of the polynomial, which is what we are interested in.
From Theorem 4.4, we know that for every 0 ≤ l ≤ n, we can compute the polynomial
ESYMl({Hom≥1[Qij ] : j ∈ Si}) by a ΣΠΣ∧ circuit of top fan-in at most d × 2O(

√
l) which

takes as input the polynomials {Hom≥1(Qij) : 1 ≤ j ≤ d}. From the homogeneity of the
circuits given by Theorem 4.4, it follows that the product gates at level two of these circuits
have fan-in at most the degree of polynomial they compute, which is at most n− (d− |Si|).
So, it follows that the polynomial

P̃ =

 T∑
i=1

αi ·
∏
j /∈Si

Qij ×
n−(d−|Si|)∑

l=0
ESYMl({Hom≥1[Qij ] : j ∈ Si})


can be computed by a ΣΠΣ∧ΣΠ circuit, with top fan-in at most Tdn ·2O(

√
n), which satisfies

the conditions in the lemma. J

Finally, given the circuit C ′′ constructed above, we can construct a circuit which computes
the polynomial P as given by Lemma 3.5. For this, observe that the monomials of degree
strictly larger than n in any of the Qij do not contribute to degree n part of P̃ . So, we can
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drop them, while still preserving the degree n part of P̃ . Therefore, the degree of P̃ can be
upper bounded by n2d. We can recover the degree n part of P̃ by interpolation which blows
up the top fan-in by a factor of at most n2d.

In this process, the fan-in of the product gates at level two remains unchanged. Strictly
speaking, inputs to the powering gate ∧ at level four may no longer be the polynomials
Hom≥1[Qij ], since in the process of interpolation, we replaced every variable Xi by Xi.t

in P̃ and looked at the resulting polynomial P̃ ′ as a univariate polynomial in t over the
function field F(X). We then evaluated P̃ ′ at sufficiently many values of t ∈ F and then took
their F linear combination. So, each of the polynomials Hom≥1[Qij ] gives rise to many other
polynomials, one each for different values of t. We will call them the siblings of Hom≥1[Qij ].
The key observation for our proof is that the set of variables in the siblings of Hom≥1[Qij ] is
the same as the set of variables in Hom≥1[Qij ]. From the lemma and the discussion above,
we have the following corollary.

I Corollary 4.6. Let F be a field of characteristic zero. Let P be a polynomial of degree n in
N variables over F which is computable by an ΣΠ (ΣΠ)[s] circuit C of top fan-in T and the
degree of product gates at level two being d. So, P can be represented as

P =
T∑
i=1

αi ·
d∏
j=1

Qij .

Then, P can be computed by a ΣΠΣ ∧ ΣΠ circuit C ′′ with the following properties :
1. The inputs to the ∧ gates are the siblings of polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤

j ≤ d}
2. The fan-in of the × gates at the second level from the top is at most n
3. The top fan-in of C ′′ is at most Td2n32O(

√
n).

4.3 Random Restrictions
From the definition, it follows that the total number of variables in NWn,µ is N . Let the set
of all these variables be V. We now define our random restriction procedure by defining a
distribution D over subsets V ⊂ V. The random restriction procedure will sample V ← D
and then keep only those variables “alive" that come from V and set the rest to zero. We
will denote the restriction of the polynomial obtained by such a restriction as NWn,µ|V .
Observe that a random restriction also results in a distribution over all circuits computing
the polynomial NWn,µ. We denote by C|V the restriction of a circuit C obtained by setting
every input gate in C which is labelled by a variable outside V to 0.

The distribution Dp: Each variable in V is independently kept alive with a probability p.
We will choose the value of p based on the parameter µ.

4.4 Analysing the circuit under random restrictions
Let C be a ΣΠ (ΣΠ)[Nµ] circuit computing the polynomial NWn,µ. Let the top fan-in of C
be T and the product fan-in at the second level be d. So, we have the following expression:

NWn,µ =
T∑
i=1

αi ·
d∏
j=1

Qij

where each Qij depends on at most Nµ variables.
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Recall that from the choice of parameters δ = (1− µ)/2. Let s be a parameter, which we
later set such that s = Θ(

√
n). If T · d ≥ N δ

4 s, then we already have the desired lower bound
of nΩ(

√
n) on the size of C and we are done. Therefore, for the rest of this discussion, we will

assume that T · d ≤ N δ
4 s. We now apply the transformation to C given by Corollary 4.6 to

obtain a ΣΠΣ ∧ ΣΠ circuit C ′′, which has the following properties:
1. The inputs to the ∧ gates are the siblings of polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤

j ≤ d}
2. The fan-in of the × gates at the second level from the top is at most n
3. The top fan-in of C ′′ is at most Td2n32O(

√
n).

We now analyse the effect of the random restrictions on the circuit C ′′. We will choose a
parameter p = N−µ−δ and keep every variable alive with a probability p. The circuit C ′′
can be represented as

C ′′ =
∑
u

∏
v

Duv .

Here, each Duv is a sum of powers of the siblings of Hom≥1[Qij ]. Our goal is to argue that
under random restrictions, all the monomials in each of the Duv are of small support (support
at most s).

For any polynomial P in Nµ variables and any integers t, t0 such that t0 < t, observe
that P t can be written as

P t = P0 +
∑
α

α · Pα

where P0 is the part of P consisting of monomials of support strictly less than t0. The inner
sum is over all multilinear monomials α of support equal to t0. Such a decomposition may not
be unique, but for this application, it would suffice to work with any one such decomposition.
The number of such monomials α is at most

(
Nµ

t0

)
. The probability that one such monomial

survives the random restriction procedure is equal to pt0 . So, the expected number of such
multilinear monomials α surviving the random restriction procedure is at most

(
Nµ

t0

)
· pt0 .

The crucial observation is that if no such monomials survive, then only the monomials in P0
survive, all of which have support at most t0 − 1.

Now, observe that each of the Duv are a sum of powers of the siblings of polynomials
in the set {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤ j ≤ d}. Define B to be the set of all multilinear
monomials of support equal to s, supported entirely on variables in any of the polynomials
Qij for some 1 ≤ i ≤ T, 1 ≤ j ≤ d. From the discussion in the paragraph above, the following
observation follows.

I Observation 4.7. Let the polynomials Duv, Qij and the set B be as defined above. Then,
|B| ≤ T · d ·

(
Nµ

s

)
If none of the monomials in B survive under some random restrictions, then each of the
polynomials D′uv obtained as a restriction of Duv has all monomials of support at most s.

Proof. The bound on the size trivially follows from the fact that each of the Qij depends on
at most Nµ variables. For the second item, observe that each of the Duv is a sum of powers
of siblings of the Hom≥1[Qij ] and all the siblings are supported on the same set of variables.
If all the monomials in the set B are set to zero, then the surviving monomials in any power
of any of the siblings of Hom≥1[Qij ] has support at most s. J

We now estimate the probability that at least one of the monomials in the set B survives
the random restriction procedure. We have the following lemma.
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I Lemma 4.8. Let δ be a positive real number such that δ = (1− µ)/2 and let p = N−µ−δ.
Then

PrV←Dp [|B|V | ≥ 1] ≤ N−3/4·δ·s .

Proof. We know that

|B| ≤ T · d ·
(
Nµ

s

)
and the probability that any fixed monomial in B survives the random restriction procedure
is at most ps. So

EV←Dp [|BV |] ≤ T · d ·
(
Nµ

s

)
· ps .

Now, observing that the value of T · d is at most N δ
4 s and p = N−µ−δ, the expected value is

at most

N
δ
4 s

(
Nµ

s

)
·N−(µ+δ)s ≤ N−3/4·δ·s .

The lemma then follows by Markov’s inequality. J

As a corollary of Lemma 4.8 and Observation 4.7, we get the following lemma.

I Lemma 4.9. Let δ be a positive real number such that δ = (1− µ)/2 and let p = N−µ−δ.
Then with probability at least 1−N−3/4·δ·s over random restrictions V ← Dp, the polynomial
computed by the circuit C ′′|V can be written as

∑T ′

u=1
∏n
v=1D

′
uv, where each of the monomials

in each of the polynomials D′uv has support at most s.

4.5 Upper bound on the complexity of C
In order to upper bound the dimension of the projected shifted partial derivatives (under
random restrictions) of the ΣΠ (ΣΠ)[s] circuit C, Corollary 4.6 implies that it suffices to upper
bound the dimension of the space of projected shifted partial derivatives of the ΣΠΣ ∧ ΣΠ
circuit C ′′ given by Corollary 4.6. In some sense, C ′′ is more structured than C and this lets
us prove a better upper bound.

Recall that we are under the assumption that for the circuit C, the product of the top
fan-in and the product fan-in at level two is at most N δ

4 ·s, else we are already done. From
Lemma 4.9, we know that with a high probability, under random restrictions, we are left
with a circuit of the form

∑T ′

u=1
∏n
v=1D

′
uv where each of the monomials in each of the

polynomials D′uv has support at most s. The upper bound on the complexity of the projected
shifted partial derivatives of

∑T ′

u=1
∏n
v=1D

′
uv then just follows from the upper bound for

homogeneous depth four circuits of bounded bottom support proved in [15, 22]. We restate
the bound from [22].

I Lemma 4.10. Let C be a depth 4 circuit with the fan-in or product gates at level two
bounded by n, the bottom support bounded by s and computing a polynomial in N variables.
LetM be a set of monomials of degree equal to r and let m be a positive integer. Then,

ΦM,m(C) ≤ Top fan-in(C)
(
n+ r

r

)(
N

m+ rs

)
for any choice of m, r, s,N satisfying m+ rs ≤ N/2.
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The upper bound for ΣΠ (ΣΠ)[Nµ] circuits, follows easily form the above lemma after
random restrictions, and we formalize this in the lemma below.

I Lemma 4.11. Let µ be a positive real number such that 0 ≤ µ < 1. Let δ = (1− µ)/2 and
let p = N−µ−δ and let F be a field of characteristic zero. Let P be a polynomial of degree n
in N variables over F which is computed by an ΣΠ (ΣΠ)[Nµ] circuit C of top fan-in T and
degree of product gates at level two at most d, i.e P can represented as

P =
T∑
i=1

αi ·
d∏
j=1

Qij

where αi are field constants. Let m and r be positive integers satisfying m+ rs ≤ N/2 and
M be any subset of multilinear monomials of degree equal to r. If Td ≤ N

s·δ
4 , then with

probability at least 1−N−3/4·δ·s over random restrictions V ← Dp,

ΦM,m(C|V ) ≤ Td2n3 · rs · 2O(
√
n) ·
(

N

m+ rs

)
·
(
n+ r

r

)
.

Proof. The lemma follows immediately from Corollary 4.6, Lemma 4.9 and Lemma 4.10. J

4.6 Nisan-Wigderson polynomial under random restrictions
To complete the proof of Theorem 1.2, we need a lower bound on the dimension of the space
of projected shifted partial derivatives of the polynomial NWn,µ, under random restrictions.
To this end, we will use the lower bound proved by Kayal and Saha [17]. We first enumerate
our choice of parameters. Recall that δ = (1− µ)/2 is a positive real number.
1. γ = 2(µ+δ)+1

1−µ−δ
2. N is such that N/n is set equal to the smallest prime number between n1+γ and 2n1+γ .
3. ρ = (µ+ δ) logN

logn

4. D = γ+ρ
2(1+γ) · n , where D − 1 is the degree of the underlying univariate polynomials in

the definition of NWn,µ.
5. r, s which are the order of derivative and the bound on bottom support of the circuit

after random restrictions respectively, are chosen such that r = ε1 ·
√
n, s = ε2 ·

√
n. Here,

ε1 and ε2 are small enough positive real numbers satisfying ε1 · ε2 = 0.001n.
6. m = N

2 (1− r lnn
n ) is the degree of the shifts.

7. p = N−(µ+δ) is the probability with which each variable is independently kept alive.
8. M is the set of all multilinear monomials of degree r. We take partial derivatives with

respect to monomials in this set.
We are now ready to state the lower bound on the dimension of projected shifted partial
derivatives as in [17].

I Lemma 4.12 (Kayal-Saha [17]). Let NWn,µ be Nisan-Wigderson polynomials as defined in
Definition 4.1. Let F be any field of characteristic zero. Then, for the choice of parameters
defined above

ΦM,m(NWn,µ|V ) ≥ 1
nO(1)min

(
pr

4r ·
(
N

r

)
·
(
N

m

)
,

(
N

m+ n− r

))
with probability at least 1− 1

nθ(1) over random restrictions V ← Dp.
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4.7 Wrapping up the proof of Theorem 1.2
From Lemma 4.12 and Lemma 4.9, we know that with a non-zero probability over the random
restrictions V from the distribution Dp, the following two conditions hold.
1. ΦM,m(NWn,µ|V ) ≥ 1

nO(1) min
(
pr

4r ·
(
N
r

)
·
(
N
m

)
,
(

N
m+n−r

))
.

2. ΦM,m(C|V ) ≤ Td2n3 · rs · 2O(
√
n) ·
(

N
m+rs

)
·
(
n+r
r

)
.

If C computed the polynomial NWn,µ, then

Td2n3 · rs ≥
1

nO(1) min
(
pr

4r ·
(
N
r

)
·
(
N
m

)
,
(

N
m+n−r

))
2O(
√
n) ·
(

N
m+rs

)
·
(
n+r
r

) .

From the calculations in Appendix A, it follows that for our choice of parameters, the
ratio is at least exp(

√
n logn). So, we have the following theorem.

I Theorem 4.13. Let µ be an absolute constant such that 0 ≥ µ < 1 and F be a field of
characteristic zero. For 1 ≤ i ≤ T and 1 ≤ j ≤ d, if there exist polynomials Qij, each
dependent on only s = Nµ variables, such that

NWn,µ =
T∑
i=1

d∏
j=1

Qij .

Then

T · d ≥ nΩµ(
√
n) .

As a remark, we mention here that the lower bound above also holds for any translation
NWn,µ(X + a) of the polynomial NWn,µ(X). This is because the highest degree term of
NWn,µ(X + a) equals the polynomial NWn,µ(X) and from Lemma 3.5, the homogeneous
components of a polynomial computable by small sized ΣΠ (ΣΠ)[s] circuits also have small
sized ΣΠ (ΣΠ)[s] circuits. We leave the details to the interested reader.

5 Application to polynomial identity testing

In this section, we prove Theorem 1.3. We are interested in identity testing for ΣΠ (ΣΠ)[s]

circuits, i.e for polynomials in N variables {X1, X2, . . . , XN} which can be expressed in the
form

P =
T∑
i=1

d∏
j=1

Qij

such that
1. The individual degree in P of every variable is at most k
2. Each Qij depends on at most s variables
For the case of this application, we will think of k, T being polynomial in (logN) and s being
N1/2−ε for a positive constant ε. Observe that the bound on individual degree lets us upper
bound the total degree of the polynomials by Nk.

We describe the construction of the hitting set in Section 5.2 and prove its correctness in
Section 5.3. We go over some preliminaries that we need in our proof in the next section.
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5.1 Some preliminaries
In the following lemma, we prove some properties of the model of ΣΠ (ΣΠ)[s] circuits, which
will be useful in the proof of the identity testing result.

I Lemma 5.1. Let F be a field of characteristic zero. Let P be a non-zero polynomial in N
variables and individual degree at most k over F, which is computed by a ΣΠ (ΣΠ)[s] circuit
C of top fan-in T and product fan-in d at level two, i.e P can be expressed as

P =
T∑
i=1

d∏
j=1

Qij

such that for each i ∈ [T ] and j ∈ [d], Qij depends on at most s variables. Then, the following
are true.
1. For every variable y and integer 1 ≤ j ≤ k, ∂

jP
∂yj can be computed by a circuit of the form

∂jP

∂yj
=

T ′∑
i=1

d∏
j=1

Q′ij

where T ′ ≤ T · (k + 1)2 and each of the polynomials Q′ij depends on at most s variables.
2. For any a ∈ FN , P (X + a) can be computed by a circuit of the form

P (X + a) =
T∑
i=1

d∏
j=1

Q′′ij

where each of the polynomials Q′′ij depends on at most s variables.

Proof. The proof of the second item is immediate from the definitions. The only thing that
changes due to a translation is the number of monomials in the Qij . The number of variables
that each Qij depends on remains unchanged, and so does the fan-in of the top sum gate
and the product gates at level two.

We now prove the first item. Let the set of variables in P be X = X ′ ∪{y} where X ′ is of
size N − 1. Since the individual degree of P is at most k, we can write P =

∑k
i=0 Ci(X ′) · yi.

Here, Ci(X ′) are polynomials only in the X ′ variables and are the coefficient of yi, when
viewing P as an element of F[X ′][y]. Now, for every 0 ≤ i ≤ k, we can compute each of
Ci by a ΣΠ (ΣΠ)[s] circuit with top fan-in at most T · (k + 1) by interpolation as given by
Lemma 3.4. All the partial derivatives of P with respect to y are linear combinations of the
terms of the form Cj1 · yj2 . And so, the result follows. J

We will also need the following simple fact about polynomials.

I Lemma 5.2. Let F be a field of characteristic zero. Let R ∈ F[y] be a non-zero polynomial
of degree at most t over the field F. Then, for every a ∈ F such that R(a) = 0, there exists a
j such that 0 ≤ j ≤ t− 1 and ∂jR

∂yj (a) = 0 and ∂j+1R
∂yj+1 (a) 6= 0.

Proof. Let the degree of R in y be equal to t′. This means that the coefficient of highest
degree term yt

′ in R is non-zero. Let us call the coefficient of yt′ in R(y) as Ct′ . We know
that Ct′ is nonzero. Consider j = t′ − 1. The lemma immediately follows. J

We will crucially use the following result of Dvir, Shpilka, Yehudayoff [6] in the analysis
of the hitting set constructed in this paper.
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I Lemma 5.3 (Dvir, Shpilka, Yehudayoff [6]). For a field F, let P ∈ F[X1, X2, . . . , XN , Y ] be
a non-zero polynomial of degree at most k in Y . Let f ∈ F[X1, X2, . . . , XN ] be a polynomial
such that P (X1, X2, . . . , XN , f) = 0 and ∂P

∂Y (0, 0, . . . , 0, f(0, 0, . . . , 0)) 6= 0. Let

P =
k∑
i=0

Ci(X1, X2, . . . , XN ) · yi .

Then, for every t ≥ 0, there exists a polynomial Rt ∈ F[Z1, Z2, . . . , Zk+1] of degree at most t
such that

Hom≤t[f(X1, X2, . . . , XN )] = Hom≤t[Rt(C0, C1, . . . , Ck)] .

A key technical idea in the proof will be the notion of Nisan-Wigderson designs introduced
in [26]. We will use the following lemma.

I Lemma 5.4 (Nisan-Wigderson [26]). For every a, b ∈ N, b < 2a, there exists a family of
sets S1, S2, . . . , Sb ⊆ {1, 2, . . . , l} such that
1. l ∈ O(a2/ log b)
2. for all i, |Si| = a

3. for all i 6= j, |Si ∩ Sj | ≤ log b
Moreover, such a set family can be constructed in time polynomial in b and 2l.

We will also use the following lemma of Alon [4] very crucially in our proof.

I Lemma 5.5 (Combinatorial Nullstellensatz [4]). Let P be a non-zero polynomial of individual
degree at most d in N variables over a large enough field F. Let S be an arbitrary subset of
F of size d+ 1. Then, there exists a point p in SN such that P (p) 6= 0.

5.2 Blackbox PIT for ΣΠ (ΣΠ)[s] circuits
In this section, we prove the following theorem.

I Theorem 5.6. Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2, and
let F be a field of characteristic zero. Let C be the set of polynomials P in N variables and
individual degree at most k over F, with the property that P can be expressed as

P =
T∑
i=1

d∏
j=1

Qij

such that
1. T < logcN
2. k < logcN
3. d < N c

4. each Qij depends on at most Nµ variables
Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting
set of size exp(N ε) for C which can be constructed in time exp(N ε).

From our proof, it also follows that if each of polynomial Qij depends only on logO(1)N

variables, then both the size of the hitting set and the time to construct it, are upper bounded
by a quasipolynomial function in N . In the rest of the section, we prove Theorem 5.6. We
start by describing the construction of the hitting set H.
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5.2.1 Construction of hitting sets for ΣΠ (ΣΠ)[Nµ] circuits for
0 ≤ µ < 1/2

Given µ such that 0 ≤ µ < 1/2, we pick the parameter µ′ such that 0 < µ′ < 1 and 2µ
µ′ is a

positive constant strictly smaller than 1. We construct a family of Nisan-Wigderson designs
as described in Lemma 5.4 with the following parameters:
1. b, the number of sets is set equal to N .
2. a, the size of each of the sets Si is set equal to N

µ

µ′ log
1
µ′ N .

3. l, the size of the universe is chosen large enough in order to satisfy the hypothesis of
Lemma 5.4. From Lemma 5.4, it follows that we can pick l which is not too large
(l ∈ O(a2/ log b)). For the above chosen values of a, b, there is a choice of l such that l is
at most N

2µ
µ′ log

2
µ′−1

N .
Recall that our goal is to construct a hitting set for ΣΠ (ΣΠ)[Nµ] circuits. Observe that the
choice of parameters l, a, b satisfy the hypothesis of Lemma 5.4. So, we get a collection of N
subsets S1, S2, . . . , SN of {1, 2, 3, . . . , l} satisfying
1. for all 1 ≤ i ≤ N , |Si| = a

2. for all 1 ≤ i < j ≤ N , |Si ∩ Sj | ≤ logN
Moreover, these sets can be constructed in time polynomial in b and 2l. We identify the
set {1, 2, 3, . . . , l} with the set of new variables Y = {Y1, Y2, . . . , Yl}. Before we proceed
further, we need some notation. We will pick δ = (1− µ′)/2 to be a non-negative constant.
Given, a, µ′, δ, we define γ = 2(µ′+δ)+1

1−(µ′+δ) . Then, we define q to be the smallest prime number
between (a/2)

1+γ
2+γ and 2 · (a/2)

1+γ
2+γ . Also, we set a′ to be equal to (a/2)

1
2+γ . Observe that

a/2 ≤ a′q ≤ a.
For each i, such that 1 ≤ i ≤ N , let Si′ be an arbitrary subset of Si of size equal to a′q.

For brevity, we rename the sets S′i as Si 6. Let ρ = (µ′ + δ) log a′q
log a′ and D = γ+ρ

2(1+γ) · a
′.

Often for the ease of notation we will identify the set Si of {1, 2, . . . , l} with the set
of variables {Yj : j ∈ Si}. We will think of the variables {Yj : j ∈ Si} to be arranged
in a a′ × q matrix V (i), with the variables placed in the matrix in some order. For every
i ∈ {1, 2, 3, . . . , N}, we define NWa′,µ′(Si) as

NWa′,µ′(Si) =
∑

f(z)∈Fq [z]
deg(f)≤D−1

∏
j∈[a′]

V (i)jf(j) .

For a point p = (p1, p2, . . . , pl) ∈ Fl, we denote by NWa′,µ′(Si)|p, the evaluation of
NWa′,µ′(Si) when the variable Yj is set to pj .

Let G be an arbitrary subset of F of size Nka′+ 1. We define the hitting set H as follows.

I Definition 5.7 (Definition of the hitting set H).
H =

{
(NWa′,µ′(S1) | p,NWa′,µ′(S2) | p, . . . , NWa′,µ′(SN ) | p) : p ∈ Gl

}
.

We now proceed to prove the correctness of the construction. We first prove the following
lemma which shows that H is explicit and has the correct size as per Theorem 5.6.

I Lemma 5.8. The set H as defined in Definition 5.7 has size at most (Nka′ + 1)l and all
its elements can be enumerated in time aa′ · (Nka′ + 1)l ·NO(1).

6 We have replaced the family {S1, S2, . . . , SN} by the set family {S′
1, S′

2, . . . , S′
N} such that for each

i ∈ [N ], S′
i ⊆ Si. Observe that the design based properties of the original system continue to hold. The

only thing that changes is that the size of S′
i could be smaller than the size of Si, by at most a factor 2.
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Proof. The size of the set H is equal to |G|l = (Nka′ + 1)l. The set H can be enumerated
by enumerating through the points p in Gl in some natural order (say lexicographic order)
and evaluating the tuple (NWa′,µ′(S1)|p,NWa′,µ′(S2)|p, . . . , NWa′,µ′(SN )|p) at each of these
points. For every point p and subset Si, the polynomial NWa′,µ′(Si) can be evaluated in
time at most aa′ × Poly(N) from Lemma 4.2. So, the second part of the lemma follows. J

Observe that for our choice of parameters, the above bounds on the size and the time of
enumeration are bounded by a function which is subexponential in N .

We now show that for every non-zero polynomial P in the class C, as defined in the
statement of Theorem 5.6, there exists a point p ∈ H, such that P (p) is non-zero. We show
this in Lemma 5.9 below. That will complete the proof of Theorem 5.6.

5.3 Correctness of the construction
For the rest of this section, we denote Nµ by s.

I Lemma 5.9. Let P be a non-zero polynomial in the set C as defined in the statement of
Theorem 5.6, and let H be the set defined in Definition 5.7. Then, there is a point p in the
set H such that P (p) 6= 0.

Proof. We define

Pi(X,Y ) := P (NWa′,µ′(S1), NWa′,µ′(S2), . . . , NWa′,µ′(Si), Xi+1, Xi+2, . . . , XN )

to be the polynomial obtained from P by substituting the variables Xj by NWa′,µ′(Sj), for
every 1 ≤ j ≤ i.

From the construction of our hitting set, it follows that it would suffice to argue that the
polynomial PN (X,Y ) is non-zero. If this was true, then the lemma above will follow from
Lemma 5.5, since the degree of any variable P (X,Y ) is at most Nka′.

We proceed via contradiction. If possible, let PN (X,Y ) be identically zero. Since
P = P0(X,Y ) is non-zero to start with, by a hybrid argument it follows that there is an
index i, such that Pi(X,Y ) is non-zero while Pi+1(X,Y ) is identically zero. Observe that Pi
is a polynomial in the variables Y and Xi+1, Xi+2, . . . , XN . In going from Pi to Pi+1, we
substituted the variable Xi+1 by the polynomial NWa′,µ′(Si+1). Since Pi(X,Y ) is non-zero
by assumption above, there exists a substitution c of all variables apart from {Yj : j ∈ Si+1}
and Xi+1, which keeps the polynomial non-zero. Let the polynomial resulting after this
substitution be P ′i . From the definitions, it follows that

P ′i = P (NWa′,µ′(S1)|c,NWa′,µ′(S2)|c, . . . , NWa′,µ′(Si)|c,Xi+1, Xi+2|c, . . . ,XN |c) .

Observe that each of the polynomials NWa′,µ′(Sj)|c depends only on the variables in the
set Sj ∩Si+1. From the properties of Nisan-Wigderson designs, and the choice of parameters,
the size of this intersection is at most logN . From the definition of Pi and the choice of c,
P ′i is not identically zero. We will think of P ′i as a polynomial in Xi+1 with the coefficients
being polynomials in the variables in the set {Yj : j ∈ Si+1}. Now, we know that the the
polynomial P ′i+1 obtained by substituting Xi+1 by NWa′,µ′(Si+1) is identically zero. Hence,
it must be the case that Xi+1 −NWa′,µ′(Si+1) is a factor of P ′i .

To proceed further, we need the following claim.

I Claim 5.10. P ′i as defined above can be represented as

P ′i =
T∑
r=1

d∏
j=1

Q′rj

such that each of the polynomials Q′rj depends on at most s logN variables.
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Proof. Recall that P can be represented as

P =
T∑
i=1

d∏
j=1

Qij

where each Qij is a polynomial in at most s = Nµ variables. In going from P to P ′i , we have
substituted each of the variables outside the set {Yj : j ∈ Si+1}∪{Xi+1} by either a constant
or by the polynomial NWa′,µ′(Sj)|c (which is a polynomial in at most |Sj ∩ Si+1| ≤ logN
variables) for some j. In either case, after substitution, the polynomials Q′rj obtained from
Qrj depends on at most s logN variables, since Qrj depended on at most s variables. This
completes the proof of the claim. J

Moreover, since the individual degree of variables in P is at most k, the individual degree
of Xi+1 in P ′i is at most k. The goal now is to invoke Lemma 5.3, which would imply that
NWa′,µ′(Si+1) also has a small circuit as a sum of product of polynomials in few variables,
and together with the lower bound from Theorem 4.13, this would lead to a contradiction.
We essentially follow this outline. Formally, we use the following claim to complete the proof
of Lemma 5.9. We defer the proof of the claim to the end.

I Claim 5.11. If (Xi+1 −NWa′,µ′(Si+1)) divides P ′i , then NWa′,µ′(Si+1) can be written as

NWa′,µ′(Si+1) =
I′∑
r=1

d′∏
j=1

Γrj

where
1. I ′ ≤ (da′2 + 1) ·

(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1
,

2. d′ ≤ d · a′, and
3. each Γrj depends on at most s logN variables.

From our choice of parameters, recall that

a = Nµ/µ′ · log1/µ′ N

and

s = Nµ .

Therefore, s logN ≤ Nµ · logN ≤ aµ
′ . To complete the proof, we observe that by

Theorem 4.13, we must have

I ′d′ ≥ (a′)Ω(
√
a′) .

But, for our choice of parameters,
1. I ′ ≤ (da′2 + 1) ·

(
k+a′
k

)
×
(
T ·(k+1)3+a′

a′

)k+1
≤ daO(Tk4) ≤ da′

O(Tk4) (since a and a′ are
polynomially related)

2. d′ ≤ da′

This implies that I ′d′ ≤ d2aO(Tk4). From our choice of parameters, s logN < aµ
′ and

Tk4 + 2 log d ∈ o(
√
a′). This contradicts that I ′d′ ≥ (a′)Ω(

√
a′). This completes the proof of

Lemma 5.9 assuming Claim 5.11. J

We now give a proof of Claim 5.11.
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Proof of Claim 5.11. From Claim 5.10, we know that

P ′i =
T∑
r=1

d∏
j=1

Q′rj

such that each Q′rj depends on at most s logN variables. Since P ′i is not identically zero
and NWa′,µ′(Si+1) is a root of P ′i , it follows from Lemma 5.2 that there is an integer λ such
that 0 ≤ λ ≤ k − 1 and,

∂λP ′i
∂Xλ

i+1
(NWa′,µ′(Si+1)) = 0

and

∂λ+1P ′i
∂Xλ+1

i+1
(NWa′,µ′(Si+1)) 6= 0 .

From Lemma 5.1 it follows that P̃ ′i = ∂λP ′i
∂Xλ

i+1
can also be expressed as

P̃ ′i =
T ′∑
r=1

d∏
j=1

Q̃ij

where T ′ ≤ T · (k + 1)2 and each of the Q̃rj depends on at most s logN variables.
Observe that, P̃ ′i vanishes when NWa′,µ′(Si+1) is substituted for Xi+1, while its derivative

with respect to Xi+1 does not vanish identically at Xi+1 = NWa′,µ′(Si+1). So, in particular,
there is a substitution of the Y variables where the derivative ∂P̃ ′

i

∂Xi+1
is nonzero. Since

the class of ΣΠ (ΣΠ)[s] circuits is closed under translations of variables (from item 2 in
Lemma 5.1), we can assume without loss of generality that the derivative is nonzero when
all the variables in Y are set to zero. Also observe that by this variable translation, we have
actually obtained a polynomial NW ′a′,µ′(Si+1) from NWa′,µ′(Si+1). Moreover, the degree of
NW ′a′,µ′(Si+1) is equal to a′ and the homogeneous component of degree a′ of NW ′a′,µ′(Si+1)
is equal to NWa′,µ′(Si+1). Let the polynomial obtained after the variable translation from
P̃ ′i as P̃ ′′i . At this point, the hypothesis of Lemma 5.3 is satisfied by P̃ ′′i .

Let P̃ ′′i =
∑k
j=0 Cj(Y ) ·Xj

i+1. Here, Cj(Y ) is a polynomial only in the Y variables and is
the coefficient of Xj

i+1, when viewing P̃ ′′i as an element of F[Y ][Xi+1]. From Lemma 3.4, we
know that each of the polynomials Cj can be expressed as a polynomial of the form

Cj =
Tj∑
r=1

d∏
l=1

Q′′rl

where Tj ≤ T ′ · (k + 1) ≤ T · (k + 1)3 and each Q′′rl depends on at most s logN variables.
Hence, by Lemma 5.3, for every t ≥ 0, there exists a polynomial Rt ∈ F[Z1, Z2, . . . , Zk+1]

of degree at most t such that

Hom≤t[NW ′a′,µ′(Si+1)] = Hom≤t[Rt(C0, C1, . . . , Ck)] .

The goal now is to obtain a representation of NWa′,µ′(Si+1) as a sum of products of
polynomials in few variables and show that this contradicts the lower bound in Theorem 4.13.
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NW ′a′,µ′(Si+1) is a polynomial of degree at most a′. So, there is a polynomial Ra′ of degree
at most a′ in k + 1 variables such that

NW ′a′,µ′(Si+1) = Hom≤a
′
[Ra′(C0, C1, . . . , Ck)] .

From the discussion on the relation between NW ′a′,µ′(Si+1) from NWa′,µ′(Si+1), we also
know that

NWa′,µ′(Si+1) = Homa′ [NW ′a′,µ′(Si+1)] = Homa′ [Ra′(C0, C1, . . . , Ck)] .

Since Ra′ is a polynomial in k + 1 variables of degree a′, the number of monomials in Ra′ is
at most

(
a′+k+1
k+1

)
. Therefore, we can represent Ra′(C0, C1, . . . , Ck) as a sum of products of

the Cj ’s, with the sum fan-in at most
(
a′+k+1
k+1

)
and the product fan-in at most a′. Moreover,

each of the product gates in this representation takes the polynomials Cj ’s as inputs. We
know that each Cj can be written as

Cj =
Tj∑
r=1

d∏
l=1

Q′′rl

where each Q′′rl is a polynomial in at most s logN variables, and the top sum fan-in Tj is at
most T · (k + 1)3. For any t, the polynomial Ctj , has a similar representation with the top
sum fan-in at most

(
T ·(k+1)3+t

t

)
. Therefore, any product of fan-in at most a′ in the Cj ’s can

be written as a sum of product of polynomials in at most s logN variables, with top fan-in
at most(

T · (k + 1)3 + a′

a′

)k+1

since each Cj is raised to a power of at most a′ and there are k + 1 such Cj ’s. Therefore,
Ra′(C0, C1, . . . , Ck) can be written as

Ra′(C0, C1, . . . , Ck) =
I∑
r=1

d′∏
j=1

Γ′rj

such that
1. I ≤

(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1

2. d′ ≤ d · a′
3. Each Γ′rj depends on at most s logN variables
We would now like to extract the homogeneous part of degree a′ of Ra′(C0, C1, . . . , Ck), which
we know is equal to NWa′,µ′(Si+1). We do this by a standard application of Lemma 3.5.
Since we are interested only in the homogeneous part of degree a′, we can assume without
loss of generality that each of the polynomials Γ′rj is of degree at most a′ (we can discard
all monomials of degree larger than a′ in each of the Γ′rj , since they do not contribute to
the homogeneous component of degree a′ of Ra′(C0, C1, . . . , Ck) ). Hence, the degree of
Ra′(C0, C1, . . . , Ck) is upper bounded by da′ · a′. So, from Lemma 3.5, we can extract the
homogeneous component of degree a′ of Ra′(C0, C1, . . . , Ck) by blowing up the top fan-in by
a factor of at most da′2 + 1. Hence, NWa′,µ′(Si+1) can be expressed as

NWa′,µ′(Si+1) =
I′∑
r=1

d′∏
j=1

Γrj

where
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1. I ′ ≤ (da′2 + 1) ·
(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1
,

2. d′ ≤ d · a′, and
3. each Γrj depends on at most s logN variables. J

We remark that if the value of s was logO(1)N to start with, the same proof as above
goes through with l and a being set to polynomials of sufficiently high degree in logN . The
size of the hitting set and the time to construct it in this case are upper bounded by a
quasipolynomial function in N .

6 Open problems

We conclude with some open problems.
1. An intriguing open question is to obtain PIT for ΣΠ (ΣΠ)[s] circuits without the restriction

on the individual degree. The strategy in this paper relies on hardness randomness
tradeoffs for bounded depth circuits [6]. The tradeoffs in [6] crucially use the fact that
the individual degree is bounded.

2. Another related question would be to get any non-trivial PIT (even subexponential) for
the sum of constant many products of degree two polynomials.

3. A related question of interest is to obtain non-trivial PIT for sums of products of
polynomials in few variables with bounded individual degree but without a restriction on
the top fan-in.

4. It would also be interesting to understand if one could obtain any non-trivial PIT for
slightly non-multilinear depth four circuits (say individual degree at most 2) with bounded
top fan-in. A natural strategy for this question would be to reduce it to the case of
ΣΠ (ΣΠ)[s] circuits by either expanding out the polynomials Qij which depend on too
many variables or use a partial derivative like trick, as in [5]. The immediate challenge in
this case is that the top fan-in seems to increase by any of these tricks and the calculations
in this paper seem to not work out.
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Here, we used Lemma 3.3 in the second step and substituted p = N−(δ+µ) in the last step.
Now, substituting 2n2+γ ≥ N ≥ n2+γ , the exponent is at least

r lnn(−(µ+ δ)(2 + γ)− 2.01rs/n+ (1 + γ)) .

This is at least

r lnn(−(µ+ δ)(2 + γ)− 2.01rs/n+ (1 + γ)) .

Now, plugging back the value of γ, the exponent is at least (2− 2.01rs/n)r lnn. We have
chosen rs such that rs/n < 0.001. Therefore, the ratio we set out to lower bound is at least
exp(Ω(

√
n lnn)).
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