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—— Abstract

We present the first subquadratic algorithms for computing similarity between a pair of point
sequences in R, for any fixed d > 1, using dynamic time warping (DTW) and edit distance,
assuming that the point sequences are drawn from certain natural families of curves. In partic-
ular, our algorithms compute (1 + ¢)-approximations of DTW and ED in near-linear time for

point sequences drawn from x-packed or x-bounded curves, and subquadratic time for backbone
sequences. Roughly speaking, a curve is k-packed if the length of its intersection with any ball of
radius 7 is at most « - r, and it is k-bounded if the sub-curve between two curve points does not
go too far from the two points compared to the distance between the two points. In backbone
sequences, consecutive points are spaced at approximately equal distances apart, and no two
points lie very close together. Recent results suggest that a subquadratic algorithm for DTW or
ED is unlikely for an arbitrary pair of point sequences even for d = 1.

The commonly used dynamic programming algorithms for these distance measures reduce
the problem to computing a minimum-weight path in a grid graph. Our algorithms work by
constructing a small set of rectangular regions that cover the grid vertices. The weights of vertices
inside each rectangle are roughly the same, and we develop efficient procedures to compute the
approximate minimum-weight paths through these rectangles.
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1 Introduction

Motivation. Trajectories are functions from a time interval to R¢, for d > 1, and they
describe how physical systems change over time. Trajectories are recorded and inferred from
numerous sources and are often represented as ordered sequences of points. These sources
include GPS sensors in smart phones and vehicles, surveillance videos, shape-based touch
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screen authentication patterns, hurricane patterns, and time series data. A fundamental task
for analyzing trajectory data is to measure the similarity between trajectories. For example,
computing trajectory similarity is an important step in object segmentation from video
trajectories [11], smart phone authentication using touch screen trajectories [14], and stock
price prediction using historical patterns [29]. In many applications, it is not enough to merely
quantify how similar pairs of trajectories are; we need to compute correspondences between
their sample points as well. These correspondences represent shared structures between
trajectories, which can be present not only in trajectories with physical constraints such as
vehicle trajectories, but also in trajectories representing the movement of pedestrians [19]
or hurricanes [24]. Having an effective way to identify similar portions between a pair of
trajectories can greatly aid in identifying and understanding these shared structures.

Problem statement. Let P = (p1,...,pm) and Q = {(q1,...,qn) be two sequences of
points in R? for some fixed d > 1. We define a correspondence as a pair (piyq;)- A set
C of correspondences is monotone if for any pair of correspondences (p;, ¢;), (pir, gj) with
" > i we have j' > j. We define the cost of C' to be }°, cc |[pql|, where || - || is the
Fuclidean norm. The similar portions of P and @) are represented by a set C' of monotone
correspondences, with the cost of C' quantifying the quality of similarity. The goal is to
compute a monotone set of correspondences with certain properties. While numerous criteria
for computing correspondences have been proposed, we focus on two, which are widely
used: dynamic time warping (DTW) and edit distance (ED). They are used for matching
various types of sequences such as speech signals, DNA and protein sequences, protein
backbones, time-series data, GPS/video trajectories, touch screen authentication trajectories,
ete. [27, 18, 16, 23, 26, 25, 14].

DTW computes a monotone set of correspondences in which every point in P and @
appears at least once, and minimizes the sum of distances of corresponding pairs of points.
Formally, the cost of DTW, denoted by dtw(P, Q), is dtw(P, Q) = ming Z(p,q)ec [lpg||, where
the minimum is taken over all sets C' of monotone correspondences that cover all points of
P and Q. DTW allows a point to appear in multiple correspondences, so it matches two
sequences effectively even if the sampling rates are different.

Edit distance (also called Levenshtein distance) seeks a monotone matching on the
points in P and () of minimum cost; each point in P corresponds to at most one point
in @ and vice versa. It also adds a gap penalty, say g, for each point in P U @ that does
not appear in any correspondence. The cost of ED, denoted by ed(P,Q), is ed(P,Q) =
mine -, yec [pall + g(m + n — 2|C|), where the minimum is taken over all sets C' of
monotone matchings in the complete bipartite graph P x (). More sophisticated gap penalty
functions have been proposed [16], but we focus on the simple linear gap penalty function.
By tuning g correctly, meaningful correspondences can be computed even when faced with
outlier points that arise from measurement errors or short deviations in otherwise similar
trajectories.

Given a parameter ¢ € (0, 1), we wish to develop efficient (14 ¢)-approximation algorithms
for computing dtw(P, Q) and ed(P, Q), i.e., they return a value A such that dtw(P, Q) < A <
(14 e)dtw(P,Q) or ed(P, Q) < A < (1+¢)ed(P,Q). We are also interested in computing
correspondences that realize these distances.

Prior results. Tt is well-known that both dtw(P, Q) and ed(P, @), as well as the relevant
correspondences, can be computed in O(mn) time using dynamic programming [22]. A series
of recent papers show that there exists no algorithm for computing dtw(P, Q) or ed(P, Q)
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in time O(n?~%) for any § > 0 unless the Strong Exponential Time Hypothesis (SETH) of
Impagliazzo and Paturi [21] is false. In particular, Backurs and Indyk [6] showed a conditional
lower bound for edit distance, and Abboud et al. [1] and Bringmann and Kiinnemann [9]
independently showed similar lower bounds for DTW. While most of these lower bounds
were presented for the string versions of their respective problems, the DTW lower bound of
Bringmann and Kiinnemann uses sequences of points in R. Unless SETH is false, there exists
no strictly subquadratic time algorithm for DTW, even in our setting of point sequences
in R%. Similar conditional lower bounds have been shown for other distance and similarity
problems [2, 6, 1, 7, 9]. Some of these results suggest that even strongly subquadratic
approximation schemes seem unlikely [1, 7].

In view of the recent lower bounds, a natural question to ask is whether near-linear, or
even subquadratic, algorithms exist for certain natural families of point sequences. Aronov
et al. [5] gave subquadratic-time approximation schemes for the discrete Fréchet distance of
k-bounded and backbone point sequences. Discrete Fréchet distance is similar to DTW except
that one uses max instead of sum in the definition. Restricting themselves to these families

of sequences allowed them to subvert the hardness result of Bringmann [7] mentioned above.

Driemel et al. [15] extended the approximation results to the continuous Fréchet distance
and to the family of so-called k-packed curves (defined below); see also [8, 10]. Roughly
speaking, these algorithms guess the value of the (discrete) Fréchet distance, say, A and
simplify the two sequences within an §A error. Only a subquadratic number of entries in
the dynamic-programming table need to be computed when matching each point p in one
sequence with points in the other (simplified) sequence that lie within distance A from p.

We note that while (discrete) Fréchet distance is a reasonable measure to compute the
similarity between two sequences, it is not effective in identifying similar portions of the
sequences, and DTW or edit distance and their variants are more widely used for computing
correspondences. Currently, no subquadratic-time approximation results are known for
DTW, but there are a number of heuristics designed to speed up its exact computation in
practice (see [30]). Subquadratic-time approximation algorithms are known for variants of
edit distance, but these algorithm have at least a polylogarithmic approximation ratio [4].

The aforementioned algorithms for (discrete) Fréchet distance do not extend to DTW
or ED, because these measures add the distances of corresponding pairs instead of taking
their maximum value. As such, we cannot globally simplify the two curves, and we cannot
restrain ourselves to computing a small number of entries in the dynamic-programming table
for each point p € P, because it may be matched with a far away point in Q.

Our results. We present algorithms for computing dtw(P, Q) and ed(P, Q) approximately

which have subquadratic running time for several “well-behaved” families of input sequences.

The correspondences realizing these distances can also be recovered. The two algorithms are
almost identical except a few implementation details. In the worst case, their running time
is quadratic for arbitrary point sequences, but it is near-linear if P and @ are k-packed or
k-bounded sequences and subquadratic when P and @ satisfy the conditions for a backbone
sequence. These are the first approximation algorithms that compute dtw(P, Q) and ed(P, Q)
for such point sequences in subquadratic time.

For z € R? and r € R*, let B(z,r) denote the ball of radius r centered at z. Given
k € RT, a curve v in R? is k-packed if the length of v inside any ball of radius  is bounded
by r [15], and v is k-bounded if for any 0 <t < ¢’ <1, y[t : t'] € B (y(t), £||v(t)y(t')]]) U
B (v(t), 5llv()v()|]) , where v : [0,1] — R and ~[t : ¢] is the portion of v between ~(t)
and y(t') [3]. We say a point sequence P is k-packed (resp. k-bounded) if the polygonal curve
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Figure 1 (a) x-packed curves that are not k-bounded. (b) The top half of the Koch snowflake is
a k-bounded curve that is not x-packed. (c) A backbone sequence that is neither x-bounded nor
k-packed.

that connects points of P is k-packed (resp. k-bounded). A point sequence P = (p1,...,Ppm)
is said to be a backbone sequence if it satisfies the following two conditions: (i) for any
pair of non-consecutive integers i,j € [1,m], ||[pip;|| > 1; (ii) for any integer ¢ in (1,m],
c1 < ||pi—1pil| < c2, where ¢, ¢o are positive constants [5]. These sequences are commonly
used to model protein backbones where each vertex represents a C, atom, connected to
its neighbors via covalent bonds. See Figure 1 for examples of k-packed, xk-bounded, and
backbone curves. We use yp to denote the polygonal curve connecting the points of sequence
P. Our results are summarized in the following theorems.

» Theorem 1. Let P and Q be two point sequences of length at most n in R?, and let

€ (0,1) be a parameter. An (1 4+ €)-approzimate value of dtw(P, Q) can be computed in
O(Znlogn), O(:—jnlogn), and O(%nQil/d logn) time if P,Q are k-packed, k-bounded, and
backbone sequences, respectively.

» Theorem 2. Let P and Q be two point sequences of length at most n in R?, and let

€ € (0,1) be a parameter. An (1 + €)-approzimate value of ed(P,Q) can be computed in
d

O(Znlogn), O(Zznlogn), and O(%n2_1/(d+1) logn) time if P,Q are k-packed, k-bounded,

and backbone sequences, respectively.

Recall that the standard dynamic programming algorithm for computing dtw(P, Q) or
ed(P, Q) constructs a weighted grid V = {(¢,5) | 1 <i <m,1 < j < n} and formulates the
problem as computing a minimum-weight path from (1,1) to (m, n). Based on the observation
that nearby grid points typically have similar weights when P,Q are “well-behaved”, we
construct a small number of potentially overlapping rectangular regions of V, whose union
contains the minimum-weight path in V, such that all grid points within each rectangle
have similar weights; see Figure 2. We construct the rectangles so that the number of
“boundary points” of the rectangles is near linear when P, Q) are x-packed or k-bounded and
subquadratic when they are backbone sequences. We then use an efficient procedure to
compute approximate minimum-weight paths from (1,1) to all boundary points.

The algorithm framework is quite general and can work for a variety of similar distance
measures based on monotone correspondences. For example, our results immediately general-
ize to variants of dynamic time warping and edit distance that use the k-th powers of distance
between points instead of their Euclidean distance for any constant k > 0. Moreover, the
framework may prove useful in designing subquadratic-time algorithms for other problems
that can be solved with standard dynamic programming.

2  Algorithm for DTW

Let P = (p1,...,pm) and Q = (q1,...,qs) be two point sequences in R?. Let ¢ € (0,1) be a
parameter. We present a (1 + ¢)-approximation algorithm for computing dtw(P, Q). Without
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Figure 2 (a) Illustration of our algorithm: compute a small set of rectangles that covers the
optimal admissible path from (1,1) to (m,n) (drawn in bold); (b) partitioning the boundary points
of rectangle R dominated by (3, 7).

loss of generality, assume that m < n and € > 1/n. If ¢ < 1/n, we can simply compute
dtw(P, Q) in O(mn) = O(n/e) time via dynamic programming.

Given positive integers ¢ < i, let [¢ : i'] := {¢,i + 1,...,i'}, and let [i] := [1 : i]. Let
V = [m] x [n] denote a set of grid points! in R?, and define a weight function w : V — Rxq
where w(i, ) is the Euclidean distance between p; and ¢;. Two different grid points in V are
said to be neighboring if they differ by at most 1 in each coordinate. We say (4, j) dominates
(¢,7)if ¢ > ¢ and j > j'. A path 7 is a sequence of neighboring grid points; 7 is admissible
if it is non-decreasing in both coordinates. Define the weight of the path m, w(7), as the
sum of the weights of the grid points along m. Define (i, ) as the minimum weight of an
admissible path from (1,1) to (¢,7). So dtw(P, Q) = pu(m,n).

For 1 <4y <is <mand for 1 < j; < jo < n, the set of grid points [iy : i2] X [j1 : jo] is
called a rectangle. A point (4,j) € V is a boundary point of this rectangle if i € {i1,i5} or
j €4J1,Jj2}. We first outline the algorithm for computing an (1 + €)-approximate value of
p(m,n), and then describe it in detail in Sections 2.1-2.3. Section 2.4 analyzes its running
time for well-behaved point sequences.

(i) Compute an estimate d of dtw(P, Q) such that d < dtw(P, Q) < 4nd. Let d = 4nd.

(i) Compute a set R of (possibly overlapping) rectangles and a weight wg for each rectangle
R € R, such that:
(a) for all R € R and (i,7) € R, |w(i, j) — wr| < § max{wgr,d/2n},
(b) if (4,7) € V and w(i, ) < d, then there exists a rectangle R € R such that (z,7) € R.
Conditions (a) and (b) above ensure that the weights of grid points in each rectangle are
roughly the same, and the minimum-weight admissible path between (1,1) and (m,n) is
contained in the union of the rectangles. See Figure 2(a).
Let B = [Jgrcx IR be the set of boundary points of the rectangles in R. The sizes of R
and B depend on the input sequences P, Q. In the worst case |R|,|B| = ©(mn), but
they are subquadratic if P, Q) are well-behaved.

(iii) For every (i,j) € B, compute a (1 + ¢)-approximate value ji(, j) of u(,7), i.e., p(i,j) <
A(i,3) < (1+ (i, ).

(iv) Return fi(m,n).

1 Note that in this paper, a point can refer to either a grid point in V or a sequence point from P U Q.
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2.1 An O(n) approximation

Let dfr(P, Q) denote the discrete Fréchet distance between P and @, i.e., replace sum with
max in the definition of dtw(P, Q).

» Lemma 3. dfr(P,Q) < dtw(P, Q) < 2n - dfr(P, Q).

Proof. Let 7* be the minimum-weight admissible path from (1,1) to (m,n) corresponding to
dtw(P, Q). Then dfr(P,Q) < max(; jyer- ||pig;l| < Z(i,j)Eﬂ* piq;j]| = dtw(P, Q). Similarly,
let T be the admissible path corresponding to dfr(P, Q). Then, dtw(P, Q) < Z(m)eﬁ lpig;|| <
2nmax(; j)ex ||pigs|| = 2ndfr(P, Q). The second inequality follows because [TNV| < m+n <
2n. |

Aronov et al. [5] gave a near-linear time algorithm for computing the approximate discrete
Fréchet distance between rk-bounded point sequences. Their algorithm directly implies
an O(k%logn)-time 2-approximation algorithm for computing dfr(P,Q) for x-bounded
sequences. They also prove that the same algorithm computes the 2-approximation of the
discrete Fréchet distance between backbone sequences in O(n?~2/4) time. With a slight
modification of their analysis, it turns out that their algorithm also works for k-packed
sequences. We summarize these observations in the following lemma.

» Lemma 4. A 2-approzimation of dfr(P,Q) can be computed in O(knlogn), O(k%nlogn),
and O(nQ_Q/d) time if P,Q are k-packed, k-bounded, and backbone sequences, respectively.

Let dfr(P, Q) be the 2-approximation of dfr(P, Q) computed in Lemma 4; i.e., dfr(P,Q) <
dfr(P,Q) < 2-dfr(P,Q). Set d = dfr(P,Q)/2. By Lemma 3, d < dtw(P, Q) < 4nd.

2.2 Computing rectangles R

Let H be an axis-aligned hypercube in R? that contains P U @ and has side length of a
power of 2. Let T be a quadtree, a 2%-way tree, on P U Q. Each node v of T is associated
with an axis-aligned box [J,. The root of T is associated with H. A node v is a leaf if
|0, N (PUQ)| < 1. The boxes associated with the children of a node v are obtained by
partitioning O, into 2% congruent hypercubes — the side length of each resulting box is half
that of OJ,. For a node v € T, let p(v) denote its parent, ch(v) the set of children of v, A(v)
the side length of O0,,, P, = PN0O,, and @, = @ N0O,. Let m, = |P,| and n, = |Q,|. For
two nodes u,v € 7T, let do(u,v) = miny, ,e0, x0, ||Pg|| denote the distance between [J,, and
O,. We say two nodes u, v are neighboring if u and v are of the same level of T and OJ,, and
O, share a facet. We do not construct the entire T but only a portion as described below.
Let r and 7 be powers of 2 such that r < 8%g/2n < 2r and 7 < 4d < 27. We call a node
v of T active if A(v) € [r,7] and m, +n, > 0. Let A denote the set of active nodes of T. We
construct the set A of active nodes of T and the sets P,, @, for each active node v € A. By
definition, the active nodes lie in a portion of the quadtree T of height O(log(7/r)) = O(logn).
Thus, [A] = O(n) and ),  4(my +ny) = O(nlogn). Computing A and P,,Q, for all v € A
takes O(nlogn) time.
To compute the rectangles in R, we first construct a family F = {(u1,v1),..., (us,vs)} of
“well-separated” pairs of active nodes with the following properties:
(P1) For every t < s, max {A(u;), A(vy)} < 175 max {do(us, ve),d/2n}.
(P2) For all pairs (i,5) € V with ||p;q;|| < d, there exists a unique pair (us,v;) such that
p; € Py, and g; € Q,.
Intuitively, (u,v) is well-separated when for any p € O0,, and ¢ € O, we have ||pq|| = do(u, v).
Then, for each pair (us,v;) € F, we construct a small number of rectangles.
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Figure 3 One MCS in [J,, (left) and two MCSs in [J, (middle). Together, two rectangles Ri1, Ria
(right) are created (shaded areas).

Constructing F. Properties (P1) and (P2) are similar to those for the so-called well-
separated pair decomposition (WSPD) of a point set [12] (see also [20]). We therefore adapt
their algorithm. We first describe a recursive procedure PAIRING(u, v), where u, v are two
active nodes, which generates a family of pairs for P,, Q,.

PAIRING(u, v)

if max {A(u),A(v)} < T max {do(u,v),d/2n}
add (u,v) to F; return

if A(u) > A(v), then
Vw € ch(u)  if Py, # &, do PAIRING(w, v)
else Vz € ch(v) if Q. # @, do PAIRING(u, 2)

Let ug be a top-level active node with A(ug) =7 and P,, # @. We call PAIRING (ug, vg) if
Qv, # @ and either vy = up or vy is a neighboring node of ug.

(P1) is obviously true by the termination condition of the PAIRING procedure. (P2) is
true because for each (i,7) € V with ||p;¢;|| < d, it must be that p; and ¢; are contained in
either the same active node or two neighboring active nodes of side length 7. The stopping
criterion ensures that the PAIRING procedure never visits a node v with A(v) < r.

By adapting the analysis of the WSPD algorithm, the following lemma can be proven.

» Lemma 5. If (u,v) € F, then
(i) max {A(u), A(v)} < min {A(p(u)), Alp(v))};
(i) A(uw)/2 < A(v) <2A(u); and
(iii) there is a constant ¢ > 0 such that do(u,v) < $A(u).

Constructing R. We describe how to construct rectangles from each well-separated pair
(u,v) € F. Let [ denote the box concentric to [J with twice the side length of [. The
algorithm visits a subset of points of P in sequential order. The algorithm starts from the
first unvisited point of P, and walks along P until P exits (,; it then repeats this walk by
jumping to the next point of P,; this process stops when all points of P, have been visited.
Each walk corresponds to a maximal contiguous subsequence (MCS) of P in [J,, with the first
point inside O,. Let S, (P) = {[zy : 2{],..., [z, : 2L ]} denote the MCSs as constructed
above. Similarly, we compute S,(Q) = {[y; : v}, -, lys, : y;r]} denoting the MCSs of @ in
[J,. For every pair a € [a,],b € [8,], we define the rectangle Rup = [z, @ 2] x [y, : 3] and
set its weight wr,, = do(u,v). Set Ryy = {Rap [ a € [an],0 € [B,]} and R = U, ,)e5 Ruo-
See Figure 3 for an illustration of the MCSs of S, (P), S,(Q), and the rectangles in R,,.

» Remark. The rectangles in R,,, cover all the grid points corresponding to P, X @Q,, i.e.,
it (pi,q;) € Py X Qy then (4,j) € [JRyy. Since | Ry, may also contain grid points that
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correspond to pairs in (P N (0, \ Ou)) x (Q N (0, \ 0,)), a grid point may lie in multiple
rectangles of R, implying that the rectangles in R may overlap. Had we defined S,,(P), S, (Q)
to be MCSs of P, and @, respectively, the rectangles would have been disjoint, but we might
have ended up creating (n?) rectangles in the worst case. As we will prove in Section 2.4,
by allowing R, to cover extra points, we keep the size of R and B small.

We show that the set of rectangles R satisfies the conditions in step (ii) of the algorithm.

» Lemma 6. R satisfies the following properties:
(i) For allR € R and for all (i,7) € R, |w(i, j) — wr| < § max{wg,d/2n}.
(i) If (i,5) € V and w(i,j) < d, then there exists a rectangle R € R such that (i,7) € R.

Proof.

(i) Suppose R is constructed from some well-separated pair (u:,v:) € F. By construction,
if (i,7) € R, then p; € ﬂut and ¢; € |jvt. Therefore, w(i,j) = ||pig;|| < dolug, ve) +
Vd(A(uy) + Avy)). By property (P1) and wg = dg(ue, ve), we have w(i,j) < wr +
2[4—\5/3 max{wr,d/2n} < wr + §max{wr,d/2n}. Similarly, we can prove w(i,j) >
WR — 5 max{wr,d/2n}.

(ii) By property (P2), there must exist a pair (u,v) € F such that p, € P, and ¢; € Q.
Since |J Ry “covers” P, x @, there is a rectangle R € R, that contains the grid point
(/1:7 j)' <

The time taken to construct the set R is O(|R]|) plus the time taken to generate F. We
bound the latter quantity in Section 2.4.

2.3 Computing admissible paths

We now describe an algorithm that for each (i,5) € B computes (1 + €)-approximate value
(i, 7) of u(i, ) in amortized constant time.

We say a point (i,75) € V hits a rectangle R = [i1 : 2] X [j1 : jo] if i1 < @ < ig
and j; < j < jo, i.e., (4,7) € R but not on its left or bottom boundary. The algorithm
sets fi(1,1) = w(1,1), and processes the points of B from bottom to top and from left to
right in a row. Suppose the current point is (4,5). There are two cases:

(i) If (4,7) does not hit any rectangle in R, we set

fuli, ) = min{a(i — 1, 5), a(i,j — 1), i(i = 1,5 = 1)} + w(i, j), (1)

where fi(a,b) = oo if (a,b) ¢ B.

(ii) Let R= [z~ : 2%] x [y~ : y*] be a rectangle hit by (4, 7). Let N(i,5) be the set of points
on the left and bottom boundaries of R that are dominated by (4, 7). Then the optimal
path from (1,1) to (7, ) has to pass through a point of N(i,7). We temporarily set the
weight of all points inside R to be wg. We therefore set

i(i,j) = min  j(a,b) + max{i —a,j — b} wr. 2
fii, ) (a,b)EN(i,j)u( ) { J—blwr (2)

The following lemma states that our algorithm returns a (1 4 ¢)-approximation of

dtw(P, Q).
» Lemma 7. For each (i,5) € B, if u(i,5) < d, then

(i, g) = p(i, g)| < 5 (i, J) + (i +5)d/2n).

N | ™
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Proof. By induction on the order in which the fi values of points in B are computed, we
prove fi(i,j) — p(i,5) < 5(u(i,j) + (i + j)d/2n). The lemma is obviously true for (1,1).
Assume it is true for all points of B processed before (i, 7). We prove it is also true for (i, j).

If (i,7) does not hit any rectangle in R, then (i, j) is computed using (1). Let (a,b) €
{(i—1,7),(,5—1),(i — 1,5 — 1)} be the predecessor of (i,5) in the optimal admissible path
from (1,1) to (i,5). Then u(i,5) = u(a,b) + w(i,j). Since p(a,b) < p(i,j) < d, there is a
rectangle R containing (a,b). Since (4, j) does not hit any rectangle, (a,b) must actually lie
on the boundary of R, and thus in B. So by induction hypothesis,
(u(a,b) + (a+b)d/2n) <

A, §) — p(i, j) = fi(a, b) — p(a,b) < (n(i,5) + (i + j)d/2n).

N ™

In the second case, let R € R be the rectangle hit by (4,j) and used to compute fi(s, j).
Let (a,b) be the intersection of the optimal admissible path from (1,1) to (i,7) and the
boundary of R. Then by (2),

a(i, j) < ila,b) + max{i — a,j — bjwr

w(a,b) + %(,u(a7 b) + (a+ b)d/2n) + max{i — a,j — b}wr

IN

.. € .. . .
pli, j) + 5w, §) + (i + 5)d/2n).
The last inequality is satisfied, because wr < w(h, k)+§ max{w(h, k),d/2n} for any (h, k) € R
by Lemma 6. Similarly, we can prove that p(i,7) — fu(i,7) < §(u(i,7) + (i + j)d/2n), and
the lemma follows. <

» Corollary 8. |ji(m,n) — dtw(P, Q)| < edtw(P, Q).

We now describe how to implement the algorithm for computing each fi(7, j) efficiently.

Sorting points in B. Using radix sort, we sort the points of B in (y,x) lexicographical
order, where x and y denote the first and second coordinates of points, so that they are
sorted in the order in which they are processed. We also perform the same radix sort for
(z,y) and (y — z, z) lexicographical orderings. For each point in B, we add a pointer to the
previous point in each of the three sorted orders, namely, a pointer to the first point below,
to the left of, and on the lower-left diagonal of the current point. These pointers are used to
identify the fi values required in (1).

Finding a rectangle hit by a point. The algorithm also needs to determine whether there
exists a rectangle of R hit by (7, ). This can be achieved by maintaining the rectangle with the
right-most right boundary when we traverse each row. More precisely, when processing the
point (¢,7) € B, we maintain a rectangle R.,, that is hit by (7, j) and whose right boundary
spans the farthest; we denote the xz-coordinate of the right boundary of Reyyr by &eyrr. If DO
rectangle hits (i, 7), we set Ry = NULL. We update Reyrr, Ecurr while processing (i, 7) as
follows: If (i, ) is the left boundary point of a rectangle R with £ being the a-coordinate of
its right boundary and if £ > &.ypr, we set Reyrr = R and &y = €. Otherwise, if (4, 7) is
the right boundary point of Reyyr, i.€., i = Eeyrr, We set Reyrr = Eeurr = NULL. The total
time spent at (4, j) is O(1).

Range-min data structure. If (i, ) hits the rectangle R.y,, we compute fi(4, j) using (2).

Without loss of generality, assume ¢ — =~ > j — y~. We divide the left and bottom
boundary points that are dominated by (¢,7) into three sets: Ny = {(z~,y) |y € [y~ : j]},
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No={(z,y ) |xz€lz”:i—(G—y )—1},and Ns={(x,y") |z €i—(j—y):4]}. See
Figure 2(b).

The optimal admissible path from (1, 1) to (¢, j) must pass through a point in Ny UNoUN3.
So we compute (4, j) as follows:

(i—27)wr  +mingpen, ia,b),
ﬂ(’l’7¢]) = min TWR + min(a,b)ENz (la(a7 b) - CLOJR), . (3)
(J—y7)wr +mingpen, Aa,b)
We compute the minimum value in the intervals Ny, No, and N3 by performing range-min
queries. We use the data structure proposed by Fischer and Heun [17] (see also [28]), which
answers a range-min query in O(1) time after linear time preprocessing. Thus, a range-min
query on Ny or N3 can be answered in O(1) time by constructing a static range-min data
structure on the points on the bottom boundary of R, (all i values for these points have
been computed before visiting any point that hits Rey.). On the other hand, to support
a range-min query on N1, we need a range-min data structure on the left boundary points
of Ry that also supports inserting new points at the end when the i values of the left
boundary points are computed row by row.

We briefly describe the static data structure, and show how to extend it to support
insertion in amortized O(1) time. The input is an array of k real numbers. We say a data
structure has time complexity (p(k), ¢(k)) if the preprocessing takes time O(p(k)) and each
query takes time O(g(k)). The static data structure divides the array into blocks of size
b= ilog2 k. For each block, we construct a naive (b?,1)-time data structure. Fischer and
Heun show that many blocks can share the same data structure, so we create far fewer than
k/b = O(k/logk) copies of the data structure. Next the algorithm computes the minimum
for each block and uses an (klog k, 1)-time “exponential-range” data structure over the block
minimums. We now describe each of the two structures in more detail.

A Cartesian tree of a length-b array stores the minimum element of the array at the
root. The left (resp. right) child of the root is a Cartesian tree on the elements to the left
(resp. right) of the minimum element. It can be built by a linear scan of the elements and
pushing/popping elements into/from a stack at most 2b times; these push/pop operations
serve as a fingerprint of the Cartesian tree. Thus, the number of different Cartisian trees for
a length-b array is bounded by 220 = 4% It turns out that all arrays of length b that have the
same structured Cartesian tree [13] can share the same (b%,1)-time data structure. We thus
build 4° copies of the (b, 1) data structure as follows: We go through each of the O(k/log k)
blocks, and compute the fingerprint of the block in O(b) time; if there is no data structure
corresponding to the fingerprint, we build it in O(b?) time by computing the minimums for
all possible O(b?) ranges.

The exponential-range data structure maintains the minimums of O(log k) ranges starting
at each index i € [k] of exponentially increasing sizes 1,2,22,...,2°¢% Then the minimum
of a range [i,j] can be obtained by taking the minimum of two ranges [i,i + 2% — 1] and
[j —2%+41, 4], where « is the largest integer such that 2% < j —i+ 1. The total preprocessing
time is O((k/b) log(k/b) + 4°b?) = O(k).

To answer a range-min query, we compute the blocks containing the two end points
of the query range; the minimum of the whole blocks in the range can be answered using
the exponential-range data structure in O(1) time; the minimums of the two partial blocks
can also be answered in O(1) time using the naive data structures associated with the two
boundary blocks. So each query takes O(1) time.

We now describe how to support inserting an element to the end of the array in amortized
constant time. If the last block of the array contains less than b elements, the exponential-
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range data structure remains the same, and we just need to update the fingerprint of the last
block. We can encode the fingerprint information (a sequence of pushes and pops) as a path
from the root to an internal node in a full binary tree of depth 2b, where a push corresponds
to branching to the left child and a pop corresponds to branching to the right child. At
each node of the binary tree, we store a pointer to the corresponding naive range-min data
structure. Recall that the Cartesian tree is built by a linear scan of the elements; so inserting
a new element just means going one more level down the binary tree, which takes constant
time. On the other hand, when the last block is already full, the newly inserted element
starts a new block. In this case, we also need to update the exponential-range data structure,
which takes O(log(k/b)) time; but since this only happens every O(b) = O(log k) elements,
the amortized time per insertion is still constant. Therefore, we can insert an element to the
data structure in amortized O(1) time.

» Lemma 9. For all (i,7) € B, f(i,§) can be computed in a total time of O(|B]).

2.4 Running time analysis

We now bound the size of |B|, which by Lemma 9 bounds the running time of step (iii) of
the algorithm. A similar argument bounds the time spent in generating the set F, which in
turn bounds the running time of step (ii).

» Lemma 10. The total number of points in B is O(£nlogn), O(:—anog n), and

O(éng_l/d logn) for k-packed, k-bounded and backbone sequences, respectively.

Proof. Recall that for a node u, [J, is the box of side length 2A(u) and concentric with [J,,.
For any well-separated pair of quadtree nodes (u,v) € F, let 1, = |P N Iju|, ly = QN @v|

Recall that A denotes the set of active nodes of quadtree T, and «,, (resp. 3,) is the number

of maximal contiguous subsequences of P in 0O, (resp. @ in Ijv) computed by our algorithm.

Then >, c 4 < 243 c4my = O(mlogn). Let N(u) = {v | (u,v) € F}. The total
number of rectangle boundary points is

Bl <2 D (hmuBotouin) =2 i > Bu+2Y i Y. o (4)

(u,v)eF u€A vEN (u) vEA u€eN (v)

We show next that for any u € A, 3~ ¢ n(,) Bo = O(k/€) for k-packed sequences, O(k/e?)
for x-bounded sequences, and O(n'~'/?/¢) for backbone sequences. The first part of (4) is
then bounded by O(£nlogn), O(’;—anog n), and O(1n?=1/4logn) for r-packed, r-bounded,
and backbone sequences. Symmetrically, the second part of (4) has the same bound, and the
lemma follows.

We now bound EveN(u) B, for any u € A. By Lemma 5, there exists a constant ¢ such

A

that for any v € N(u), U, is contained in a ball B concentric with [J,, of radius £A(u).
There are two types of maximal contiguous subsequence [y, : y; ] of QN [J, computed by

our algorithm: (i) Qyf = dn is the last point of @, and (ii) Qy 415 the point of ) after the last

point in the MCS lies outside of [J,,. The first type of MCS is bounded by the number of v’s

such that [J, contains the last point of Q, g,. Suppose node u is at level ¢ of the quadtree.

By Lemma 5(ii), such v’s can be from levels ¢t — 1,¢,¢ + 1. Moreover, at each level, ¢, can be
in the 0, of at most 2% v’s. Thus, the number of maximal contiguous subsequences of the
first type is at most 2¢ x 3 = O(1). In the following, we bound the second type separately
for each family of input sequence.
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k-packed sequences. Since the MCS starts inside [J, and leaves [J, before the next MCS
of S,(Q) starts, the length of o between a4y and g+ is at least A(v)/2 (see Figure 3). Let

f/v be the length of yo N ﬂv. Then

L, 4 .
Yo <o+ > Az =W+ 3 > L.

VvEN (u) vEN (u) vEN (u)

The last inequality follows from Lemma 5(ii). Because of the following four conditions—
the side length of [, is twice that of OJ,, the nodes in N (u) belong to three levels of T
(Lemma 5(ii)), the cells of the nodes at the same level of T are disjoint, and ], C B for all
v € N(u)-we can conclude that

3. 2%k

S fu<82%hone) <
vEN (u)

The last inequality follows because P is s-packed sequence. Hence ) N(w) By = O(k/e), as
claimed.

k-bounded sequences. We first show that for any two MCSs [y; : ;] and [y : v,
la,-a,-1l = A(v)/(x + 2). This is because between points ¢ - and g, -, the curve g
1 2 1 2

goes from inside [, to outside [, which spans distance at least A(v)/2. Let ¢ be the
intersection of this portion of yg with the boundary of (J,. By s-boundedness, yo(y; : y5 ) C
B0y 10,0, 1) UB(a, 51,00, - Therefore, (1+5/2)g,a,51 2 llg,call > A0)/2
and the claim follows. By a packing argument, the number of MCSs in [, is bounded by
O(k%). Finally, |N(u)| = O(1/e?) by another packing argument in the ball B. So the number
of second-type MCSs in all (1,’s for v € N (u) is O(xk%/e?).

Backbone sequences. By the property that two consecutive points on a backbone sequence
have distance between ¢; and ¢z, there must exist one point on any MCS in the shell along
the boundary of [J,, with thickness cz. The volume of the shell is O(A(v)? — (A(v) — ¢2)?) =
O(A(v)?~1). Furthermore, any two points on @ are at least distance 1 apart. So the number
of MCSs is bounded by O(A(v)?~1). Since | N (u)| = O(1/e%), the number of MCSs in all [1,’s
for v € N(u) is O(%). On the other hand, each second-type MCS consumes a portion of
vq of length at least A(v)/2; this means that the subsequence contains Q(A(v)/c2) = Q(A(v))
points of Q. Since there are a total of n points in Q, the total number of MCSs in all [1,’s
with (u,v) € Fis O(ﬁ). The worst case happens when the two upper bounds are balanced;

in other words % = (A?v)) or A(v) = en'/?. The total number of second-type MCSs is

O(lnl_l/d). <

S

To bound the running time for constructing the family F for each active node u € A,
we bound the number of times PAIRING(u,v) is called for some v € A. Following the
same argument as in the proof of Lemma 10, we can show that the time for constructing
F is O(%Znlogn), O(’;—jnlogn), and O(%nQ_l/d) for k-packed, k-bounded, and backbone
sequences, respectively. Combining this bound with Lemmas 4, 9, and 10, we obtain
Theorem 1.
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3 Edit Distance

We now show how our DTW algorithm can be extended to compute a (1 + ¢)-approximate
value of ed(P,Q). Define V= [m+ 1] x[n+1]. For i < m+1and j < n+1, we
have w(%,j) = ||pig;||. Otherwise w(s,j) is undefined (e.g., w(m + 1,-) and w(-,n + 1) are
undefined). We add an edge between every pair of neighboring points in V. The weight of a
horizontal or vertical edge is set to g and the weight of a diagonal edge ((i,7), (i + 1,5 + 1))
is set to w(i,j). The weight of an admissible path 7 is defined as the sum of weights of the
edges along 7. As earlier, we define u(,7) to be the minimum weight of an admissible path
from (1,1) to (¢,5). Then ed(P, Q) = u(m + 1,n+ 1).

We compute an approximate value of ed(P, Q) using the same 4-step algorithm as for
dtw(P, @), with a different implementation of each step. Step (ii) of the algorithm remains
the same, except that we add all the points on the (m + 1)-st column and (n + 1)-st row of
V to B. In the following, we give a simple O(n)-approximation for step (i), and point out
modifications needed in step (iii) to compute a value fi(, j) for every (7,7) € B, such that

(i, §) < i, §) < (1+ )i, 5).

O(n)-approximation. If m = n and the monotone path 7 = {(1,1),(2,2),...,(n+1,n+1))
has total weight at most g, then it is returned as the optimal path. Otherwise, ed(P, Q) > ¢,
and we set d = g. Since ed(P, Q) is no larger than the weight of an all-gap admissible path
from (1,1) to (m + 1,n + 1), we have ed(P, Q) < 2(m +n)g < d = 4nd.

Computing admissible paths. We describe how to compute (7, j), for all (¢,7) € B, in the
same row by row order. The main difference from DTW is that, since ED allows gaps, it is
possible for the optimal admissible path between (1,1) and (7, j) to have rectilinear subpaths
through grid points that are not covered by any rectangle. As in Section 2.3, we consider
whether there there exists a rectangle hit by (i, ).

First, assume there exists a rectangle R = [z~ : 7] x [y~ : y7] € R hit by (¢,5). Similar
to DTW, we divide the relevant points on the left and bottom boundaries of R into three
disjoint subsets Ny, Ny and N3. If 2g < wg, it is always preferable to take a rectilinear path
inside R. Thus we can assume the admissible path to (i, j) goes through either (z7, ) or
(i,y7), and we set fi(4,5) = min{a(z—,j) + (G —27), @i,y )+ (G —y~ )} If 29 > wg, the
minimum-weight path inside R should take as many diagonal steps as possible. So we set

jWR + (7’ - j)g + min(a,b)GNl (ﬂ(a?b) + (g - WR)b)v
ﬂ(za]) = min Jwr + (7’ - j)g + min(a,b)GNz (ﬂ(a? b) + (g - WR>b - CLg),
Z-WR + (] - Z)g + min(a,b)€N3 (ﬂ(aa b) + (g - OJR)a)

We use the same range-min data structure of Fischer and Heun to compute each (7, j) in
amortized O(1) time. The key used for the data structure is fi(a,b) + (g — wr)b, f(a,b) +
(9 — wr)b — ag, and fi(a,b) + (g9 — wr)a for N1, Na, and N3, respectively.

Next, assume (4, j) does not hit any rectangle in R. If {(i—1, j), (¢,7—1), (i—1,7—1)} C B,
and thus their i values have been computed, it is trivial to compute fi(Z,7) in O(1) time. We
now focus on the case where one of the predecessors of (i, j) is not in B. Let U = [Jgcx R
denote the union of all rectangles in R. A point (h, k) € U is on the boundary of U, denoted
by U, if (h,k) does not lie in the interior of any rectangle of R; so at least one point of
{(h—=1,k),(h+1,k),(h,k—1),(h,k+1)} is not in U. Consider any admissible path 7 from
(1,1) to (i, ) whose total weight is at most d. Let (a,b) denote the last point of B on 7 before
reaching (%, 7). The subpath of 7 between (a, b) and (i, j) must be outside U, and it can only
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contain gaps since the weight of any point outside U is greater than d, except the first step
out of (a,b), which costs w(a, b) if it is diagonal. Let (ig,j) (resp. (4, Jo)) be the first point of
B to the left of (resp. below) (i, j) on row j (resp. column ¢). Let OU;; = [i — 1] x [j —1]NOU
denote the points on QU that are lower-left of (i,5). We set

ﬁ(ZOLJ) + (Z - 7:0)97
min(a,b)E@Uij (ﬂ(a7 b) + (7’ +] —a- b)g + min(oa w(aa b) - 29))

To compute [i(i, j), we use a different and simpler range-min data structure for U with key
i(a,b) — (a+b)g + min(0, w(a, b) — 2g), that supports the decrease-key and query operations
in O(logn) time each. More specifically, we maintain a minimum over points of U in each
column as we traverse B row by row. We maintain the column minimums in a complete
binary tree where each leaf corresponds to a column and an internal node stores the minimum
over the leaves of the subtree rooted at that node. Note that the column minimums are
always non-increasing while we perform the row by row computations. When the minimum of
a column corresponding to some leaf v gets decreased, we update the minimum information
stored at each node along the path from v to the root of the binary tree. This takes O(logn)
time. The last term in (5) can be computed by querying the the complete binary tree with
range [i —1] in O(logn) time. Following similar arguments to those in the proof of Lemma 10,
we can show the following lemma.

» Lemma 11. The number of points on OU is O(%n), O(';—Zn), and O(an_l/(d+l))
for k-packed, k-bounded, and backbone sequences, respectively.

Both the number of updates and the number of queries in the binary tree are bounded by
|0U|, and each update or query takes O(logn) time. Moreover, the case when there exists a
rectangle hit by the current point takes the same time as for DTW. Theorem 2 follows.

4 Conclusion

In this paper, we presented (1 + ¢)-approximate algorithms for computing the dynamic
time warping (DTW) and edit distance (ED) between a pair of point sequences. The
running time of our algorithms is near-linear when the input sequences are k-packed or
k-bounded, and subquadratic when the input sequences are protein backbone sequences. Our
algorithms are the first near-linear or subquadratic-time algorithms known for computing
DTW and ED for “well-behaved” sequences. One interesting open question is whether there
exists a near-linear algorithm for computing DTW and ED for backbone sequences in R2.
Another interesting open problem is to identify other dynamic-programming based geometric
optimization problems that can be solved using our approach, i.e., visiting a small number of
entries of the dynamic programming table using geometric properties of the input.
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