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Abstract
A rectangle visibility representation (RVR) of a graph consists of an assignment of axis-aligned
rectangles to vertices such that for every edge there exists a horizontal or vertical line of sight
between the rectangles assigned to its endpoints. Testing whether a graph has an RVR is known
to be NP-hard. In this paper, we study the problem of finding an RVR under the assumption
that an embedding in the plane of the input graph is fixed and we are looking for an RVR that
reflects this embedding. We show that in this case the problem can be solved in polynomial
time for general embedded graphs and in linear time for 1-plane graphs (i.e., embedded graphs
having at most one crossing per edge). The linear time algorithm uses a precise list of forbidden
configurations, which extends the set known for straight-line drawings of 1-plane graphs. These
forbidden configurations can be tested for in linear time, and so in linear time we can test whether
a 1-plane graph has an RVR and either compute such a representation or report a negative witness.
Finally, we discuss some extensions of our study to the case when the embedding is not fixed but
the RVR can have at most one crossing per edge.
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1 Introduction

A visibility representation is an appealing method of displaying graphs. It consists of assigning
axis-aligned rectangles to vertices and horizontal or vertical line segments to edges in such a
way that line segments of edges begin and end at the rectangles representing their endpoints
and intersect no rectangles in-between. Equivalently, each edge corresponds to a horizontal or
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vertical line-of-sight between its endpoints; hence the name “visibility”. Edge segments may
cross each other, but any such crossing occurs at a right angle. These right-angle crossings
as well as the absence of bends leads to a high readability of the visualization. See Fig. 1.

Visibility representations were introduced to the Computational Geometry community in
1985, when Wismath [26] showed that every planar graph has a bar-visibility representation,
i.e., where vertices are represented as horizontal bars and edges correspond to vertical
visibilities. (The same result was discovered independently multiple times [10, 17, 19, 23, 24].)

Such bar-visibility representations can exist only for planar graphs, so for representing
non-planar graphs one must use edge segments in both directions. (We use the term
rectangle visibility representation or RVR to distinguish such drawings from bar-visibility
representations.) Clearly not any graph G can have an RVR either; for example G must
have thickness 2 (i.e., be the union of two planar graphs), and, as was shown in [4], it must
have at most 6n− 20 edges. But neither of these conditions is sufficient. In fact, Shermer
showed in 1996 that it is NP-hard to test whether a given graph has an RVR [20].

In this paper, we study the problem of testing whether a graph has a rectangle visibility
representation if some aspects of it are fixed a priori. In previous work by Streinu and
Whitesides [21], it was shown that testing whether a graph has an RVR is polynomial if
the following additional information is given: we know for each edge whether it is drawn
horizontal or vertical, we know the rotational scheme (i.e., the fixed order of edges around
each vertex), and we know which vertices form the outer face of the visibility representation.
Streinu and Whitesides give necessary and sufficient conditions for when such restrictions
can be realized, and show that these can be tested in O(n2) time.

In this paper, we study a slightly different scenario. Like Streinu and Whitesides, we
assume that the rotational scheme and the outer face is fixed. However, we do not require
to know the directions of the edges; instead we must know a priori which edges cross each
other, and the order in which these crossings occur along each edge (if there is more than one
crossing on an edge). In other words, the graph has a fixed embedding (see also Section 2). A
reduction to the topology-shape-metrics approach then allows to test in O(n1.5 logn) time
whether a graph with n vertices has a rectangle visibility representation; see Section 2.2.

As our main result, we then consider the case when any edge contains at most one crossing
(the so-called 1-planar graphs). Previous attempts to create visibility representations for
1-planar graphs had relaxed the restriction that edges must not cross non-incident vertices,
and defined a bar k-visibility drawing to be a bar-visibility drawing where each line of sight
can intersect at most k bars [8]. In other words, each edge can cross at most k vertices.
These crossings are arguably less intuitive than crossings between edges. Brandenburg et
al. [5] and independently Evans et al. [11] prove that 1-planar graphs have a bar 1-visibility
drawing (if we are allowed to change the embedding).

In contrast to these results, we consider in Section 3 embedding-preserving rectangle
visibility representations of embedded 1-planar graphs, also called 1-plane graphs. It is easy to
see that not all 1-plane graphs have such an RVR (see also Section 4). The main contribution
of our paper is to show that for a 1-plane graph it is possible to test in linear time whether
it has an RVR. The approach is entirely different from the topology-shape-metrics above
and reveals much insight into the structure required for an RVR to exist. Specifically, we
consider three configurations (called B-configuration, W-configuration, and the newly defined
T-configuration) and show that a 1-plane graph has an RVR if and only if none of these
three configurations occurs. This mirrors in a pleasing way the result by Thomassen [25],
which shows that a 1-plane graph has a straight-line drawing if and only if it contains no
B-configuration or W-configuration. Our result also provides an answer (in a special case)
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to Shermer’s question of characterizing when graphs have RVRs [20]. Also, we prove that
testing whether a 1-plane graph contains any of the three forbidden configurations can be
done in linear time, and in the absence of them we can compute in linear time an RVR
which fits into a grid of quadratic size. It may be worth recalling that embedding-preserving
straight-line drawings of 1-plane graphs may require exponential area [13]. In Section 4
we show both negative and positive results in the variable embedding setting. Finally, in
Section 5 we conclude with a discussion and open problems.

2 Definitions and Basic Results

We only consider simple graphs, i.e., graphs with neither loops nor multiple edges. A drawing
Γ of a graph G maps each vertex to a point of the plane and each edge to a Jordan arc
between its two endpoints. We only consider simple drawings, i.e., drawings such that the
arcs representing two edges have at most one point in common, which is either a common
endpoint or a common interior point where the two arcs properly cross. A drawing is planar
if no two arcs cross. A drawing divides the plane into topologically connected regions, called
faces. The unbounded region is called the outer face. For a planar drawing the boundary of
a face consists of vertices and edges, while for a non-planar drawing the boundary of a face
may contain vertices, crossings, and edges (or parts of edges). An inner face/edge/vertex is
a face/edge/vertex that is not (part of) the outer face. A rotational scheme of a graph G
consists of assigning at each vertex a cyclic order of the edges incident to that vertex. A
drawing is said to respect a rotational scheme if scanning around the vertex in clockwise order
encounters the edges in the prescribed order. We say that a graph has a fixed embedding
if the graph comes with a rotational scheme, a fixed order of crossings along each edge,
and with one face indicated to be the outer face. (One can show that fixing the rotational
scheme and the order of crossings fixes all faces.) Given a graph G with a fixed embedding,
the planarization Gp of G is the graph obtained by replacing each crossing of G with a
dummy-vertex. The vertices of G in Gp are called original vertices to avoid confusion. The
planarization Gp is a plane graph, i.e., a planar graph with a fixed embedding without
crossing.

A visibility representation (also called rectangle visibility representation or RVR for short)
of a graph G is an assignment of disjoint axis-aligned rectangles to the vertices in such a way
that for every edge there exists a horizontal or vertical line of sight between its endpoints
(not all such line of sights give rise to an edge). We follow a commonly adopted model where
the lines of sight are thick, i.e., have non-zero area (see e.g. [16, 21, 23, 26]). Thus we may
assume that each edge is routed as a (horizontal or vertical) line segment, attaching at each
end at a point that is not a corner of the rectangle of that vertex. In what follows, when this
leads to no confusion, we shall use the same term edge to indicate both an edge of a graph,
the line of sight between two rectangles, and the line segment representing the edge, and we
use the same term vertex for both the vertex of a graph and the rectangle that represents
it. We observe that if we have an RVR, then we can naturally extract a drawing from it as
follows. Place a point for each vertex v inside the rectangle representing v and connect it to
all the attachment points of incident edges of v inside the rectangle; this adds no crossing.
We say that an RVR Γ of a graph G respects the embedding of G if applying this operation
to Γ results in the same embedding.

2.1 Topology-shape-metrics
The topology-shape-metrics approach is a well-known method introduced by Tamassia [22] to
create orthogonal drawings of graphs, i.e., drawings where all vertices are points and edges
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Figure 1 A visibility representation of a graph, the orthogonal representation obtained from it,
and the orthogonal representation used to compute it. We show only selected non-zero bend-counts.

are curves with horizontal and vertical segments. In this section, we briefly review how any
RVR can be expressed as an orthogonal-shape-metric; this is quite straightforward but has
to our knowledge not been used before. We will use such metrics twice in our paper: once to
determine whether a given embedded graph has an RVR, and once to store an RVR obtained
for 1-plane graphs so that they can be manipulated efficiently.

Consider an RVR R and interpret it as a PSLG, i.e., a planar straight-line graph in the
computational geometry sense, by replacing corners, attachment points and crossings by
nodes as in Fig. 1. We get a planar graph that has special properties:

I Definition 1. An orthogonal representation is a plane graph H with maximum degree 4,
an assignment of an angle α(v, f) ∈ {90◦, 180◦, 270◦} to any vertex-face-incidence (between
vertex v and face f) of H, and a bend-count b(e, f) ∈ {0,+1,−1,+2,−2, . . . } to any edge-
face-incidence (between edge e and face f) of H, such that the following is satisfied:

at every vertex v, the angles at v sum to 360◦,
at every edge e, the two bend-counts sum to 0,
for every inner face f with k vertices, the angles and bend-counts (multiplied by 90◦) at
f sum to (k − 2)180◦.
the angles and bend-counts (multiplied by 90◦) at the outer face sum to (k + 2)180◦,
where k is the number of vertices on the outer face.

I Observation 2. If G has an RVR Γ, then construct a plane graph H by replacing every
crossing, every edge-vertex attachment point and every corner of a vertex-rectangle of Γ with
a node in H. The resulting graph then has an orthogonal representation where all bend-counts
are 0.

Tamassia showed [22] that for any orthogonal representation, one can reconstruct a planar
orthogonal drawing of the graph that respects these angles and bend-counts. Tamassia also
showed how to compute for a given plane graph H some angle-assignment and bend-counts
such that the result is an orthogonal representation. This is done via a flow-approach; see
[22] or [9] for details. This approach allows also to specify upper and lower bounds on angles
and edge-counts.

2.2 Testing embedded graphs for RVRs
Now presume that we are given a graph G with a fixed embedding. In this section, we will
show how to test whether G has an RVR that respects its embedding using the topology-
shape-metrics approach. Note that the embedding tells us nearly the entire graph H of the
orthogonal representation of a (putative) RVR of G. The only thing unknown is the location
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of the corners of each rectangle of a vertex. We can now interpret these corners as bends
(rather than as nodes) in the topology. Hence define a graph H as follows (see also Fig. 1):

Start with the planarization Gp of G.
For any original vertex v of G, define a cycle Cv with deg(v) nodes in H. Attach the
(parts of) edges incident to v to the nodes of cycle Cv in the specified order of the planar
embedding, in such a way that the interior of the cycle forms a face. In other words, form
a cycle that can represent the boundary of the rectangle of v.
Impose an upper and lower bound of 0 onto the bend-counts of all (parts of) edges of G.
In other words, we do not allow any bends for the original edges.
Impose a lower bound of 0 onto each bend-count b(e, fv) where e is an edge of some cycle
Cv and fv is the face formed by cycle Cv. In other words, cycle Cv may have bends, but
all such bends must form 90◦ angles towards fv.
If a is a node of Cv, then impose an upper and lower bound of 180◦ onto the angle
α(a, fv), where fv as before is the face inside Cv. In other words, at attachment points
of edges face fv must not have a corner.

I Theorem 3. Let G be a with a fixed embedding and n vertices and crossings. Then we
can test in O(n1.5 logn) time whether G has an RVR that respects this embedding.

Proof. Build the graph H as described above. It should be obvious that if we can find an
orthogonal representation of H that respects these constraints, then it gives rise to an RVR
of G. Indeed, for any vertex v the cycle Cv must form a rectangle: It cannot have a bend
at any attachment-point, and any bend that it has provides an angle of 90◦, hence by the
condition it has exactly four such bends. At any dummy-vertex the four angles must be
90◦ since its degree is four. All edges of H that came from edges of G are drawn straight,
and continue straight at any crossing, so give rise to a line of sight. We then use Tamassia’s
flow-approach to test whether an orthogonal representation of H exists that satisfies all
constraints. This takes O(n1.5 logn) time [7]. J

3 Embedded 1-planar graphs

While the topology-shape-metrics approach gives a polynomial way to test whether a graph
has an RVR, its black-box approach is somewhat unsatisfactory. In particular, in case of
a negative answer, we obtain no good insights as to which parts of the graph prevented
the existence of a representation. In this section, we therefore turn our attention to 1-
planar graphs. We chose this graph class for two reasons. One is that they are known
to have thickness 2 and at most 4n − 8 edges [18], and so they are good candidates for
always having an RVR. (We will, however, see that this is not the case.) Secondly, 1-planar
graphs have been studied widely in the graph theory and graph drawing communities (see
e.g. [1, 5, 11, 13, 18, 25]), and visibility representations of 1-planar graphs hence should be
of interest.

3.1 Background
A graph is 1-planar if it has a drawing with at most one crossing per edge. A 1-plane graph
is a 1-planar graph with a fixed embedding. Recall that this means that we have a fixed
order of edges at each vertex, it is fixed which pairs of edges cross, and we know what the
faces are and which one of them is the outer face. A 1-plane graph G is called triangulated
1-plane if all faces are triangles. In a 1-plane graph, no two crossings can be adjacent and so
a triangle is composed of three vertices or two vertices and a crossing point.

SoCG 2016
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Figure 2 Possible crossing configurations in a 1-plane graph G. (a) A B-configuration. (b) A
(subgraph) of a kite. The dashed edges either do not exist or define faces. (c) A W-configuration.
(d) A T-configuration.

Let e = (a, c) and e′ = (b, d) be two edges of G that cross at a point p. We say that e, e′
induce a B-configuration if there exists an edge between their endpoints (say edge (a, b))
such that (in the induced drawing of {a, b, c, d}) the triangle {a, b, p} contains vertices c and
d inside (see also Fig. 2a).

If the crossing is not in a B-configuration, then there are two further possibilities for edge
(a, b). The triangle (a, b), (b, p), (p, a) may be an interior face, or it could have other vertices
inside. If, for all pairs in {a, c} × {b, d}, there either is no edge between the vertices or the
triangle that it forms is a face, then we could add the edges that did not exist previously,
routing them along the crossing, and then obtain a kite, i.e., a crossing with a 4-cycle among
its endpoints such that removing the crossing turns the 4-cycle into a face.

Let (a, c) and (b, d) be two edges of G that cross at a point p, and let (a, f) and (b, e)
be two further edges of G that cross at a point q. The four edges induce a W-configuration
if vertices c, d, e, f lie inside the closed region delimited by the edge segments (a, p), (b, p),
(a, q), and (b, q) (see also Fig. 2c).

We introduce a fourth configuration, called the trillium configuration, or T-configuration
for short, which is illustrated in Fig. 2d. Namely, let (a, c) and (b, d) be a pair of edges of
G that cross at a point p. Let (a, e) and (c, h) be a second pair of edges that cross at a
point q. Let (b, f) and (c, i) be a third pair of edges that cross at a point t. The six edges
induce a T-configuration if vertices d, e, f , g, h, i lie inside the closed region delimited by
the edge segments a− p− b− t− c− q− a. Vertices a, b, c are called the outer vertices of the
T-configuration, while the remaining six vertices are the inner vertices.

3.2 Main result and outline

In this section we prove the following characterization of 1-plane graphs that admit an RVR:

I Theorem 4. A 1-plane graph G admits an RVR if and only if it contains no B-configuration,
no W-configuration, and no T-configuration.

Notably, Theorem 4 extends the characterization for straight-line drawability of 1-plane
graphs given by Thomassen [24], adding the T-configuration to the set of obstructions. We
prove necessity in Section 3.3 and sufficiency in Section 3.4. The latter comes with an
efficient algorithm to construct an RVR Γ of a drawable graph G. Since testing for forbidden
configurations can also be done efficiently (Section 3.5), we get:

I Theorem 5. Let G be a 1-plane graph with n vertices. There exists an O(n)-time algorithm
to test whether G admits an RVR. Also, in the positive case the algorithm computes an RVR
of G that has O(n2) area.
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3.3 Proof of necessary condition
To prove the necessity of Theorem 4, we show a slightly stronger statement:

I Lemma 6. Let G be a graph that admits an RVR Γ and whose outer face is a cycle C.
If while walking along C we encounter k vertices and c crossing points, then k ≥ 3 and
c ≤ 2k − 4.

Proof. Convert Γ into an orthogonal representation (Observation 2) and consider the angles
at the outer face. Since there are k vertices on the outer face, we have 2k edge-attachment
points, and each contributes 90◦. Each of the c crossings contributes 90◦. If b is the number
of rectangle-corners on the outer face, then b ≤ 4k, and each contributes 270◦. In total the
outer face has 2k+c+b nodes and the sum of angles must be 180◦(2k+c+b+2). But we also
know that the angles sum to 90◦(2k+ c) + 270◦b = 180◦(2k+ c+ b+ 2) + 90◦(b− 2k− c− 4).
So b− 2k − c− 4 = 0, hence 4k ≥ b = 2k + c+ 4, hence c ≤ 2k − 4. This implies k ≥ 2, and
in fact k ≥ 3 is required, else c = 0 and the outer face would consist of a double edge. J

Now assume that graph G a B-configuration (W-configuration, T-configuration), and consider
the subgraph G′ induced by that configuration. Then the outer face of this subgraph is a
cycle with k = 2 and c = 1 (k = 2 and c = 2, k = 3 and c = 3). So G′ (and with it, G)
cannot have an RVR and the necessity holds.

3.4 Proof of sufficient condition
We show that the absence of any B-/W-/T-configuration suffices to compute an RVR. Let G
be a 1-plane graph with n vertices and with no B-/W-/T-configuration as a subgraph, see
also Fig. 3a for an example. We describe a drawing algorithm, 1PRVDrawer, which computes
an RVR Γ of G. We assume that G is 3-connected (Sections 3.4.1–3.4.6); an extension to the
general case is proved in the full-length version [2].

3.4.1 Triangulating and planarizing
The first step of algorithm 1PRVDrawer is to triangulate G. This is a well-known operation
for 3-connected 1-plane graphs, see [1, 13]. However, these algorithms all modify the given
1-planar embedding, even if there is no B-configuration or W-configuration. In fact, this
may be required since every crossing must form a kite in a triangulation of G, and so if
an edge between endpoints of a crossing already existed, but did not form a face, then it
must be re-routed. We do not want to change the embedding, and hence cannot triangulate
the 1-plane graph per se. Instead, we combine the triangulation step with a planarization
step to ensure that the result has no multiple edges, yet at all crossings (respectively the
corresponding dummy-vertices) we have kites.

We construct the triangulated planar graph G+ with the following steps:
Let G1 be the planarization of G. Note that dummy-vertices have degree 4 (and we will
maintain this throughout later modifications).
For each dummy-vertex z of G1, let v0, . . . , v3 be the four neighbors in clockwise order.
For i = 0, . . . , 3, consider the face at z between the edges (z, vi) and (z, vi+1) (addition
modulo 4). If this face is the outer face, or an inner face that is not a triangle, then add
the edge (vi, vi+1). Put differently, we add the edges that are needed to turn z into a
kite. (In what follows, we will use the previously defined terms “kite”, “B-configuration”,
“W-configuration” and “T-configuration” for the planarized version as well, i.e., for the

SoCG 2016
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Figure 3 (a) A 1-plane graph G. (b) The triangulated planar graph G+ obtained from G.
Dummy-vertices are pink squares. (c) The 4-block tree T of G+.

same situations with crossings replaced by dummy-vertices.) Call the resulting graph G2.
The following result (proved in [2]) is crucial for our correctness:

I Lemma 7. If G is simple and 3-connected and has no B-configuration, W-configuration
or T-configuration, then G2 has no B-configuration, W-configuration, or T-configuration and
no multiple edges.

In the plane graph G2 each dummy-vertex is surrounded by a kite by construction. Hence
all faces of G2 that are not triangles contain only original vertices. Triangulate each such
face arbitrarily; this does not create a B-configuration or multiple edges since in a planar
graph this would imply a cutting pair.

The resulting graph G+ is the plane triangulated graph that we use to obtain the RVR. By
construction it has the following crucial properties: It is simple, has no B-configuration,
W-configuration or T-configuration, every dummy-vertex has degree 4, and removing from
G+ all the edges inserted in the above procedure, and replacing each dummy-vertex with a
crossing point, we obtain the original 1-plane graph G.

3.4.2 The 4-block tree and an outline
Algorithm 1PRVDrawer uses a decomposition of G+ into its 4-connected components, i.e., a
4-connected triangulated subgraph of G+. Let the 4-block tree T of G+ be a tree defined as
follows (see also [14] and Fig. 3c). Every 4-connected component Cν of G+ is represented by
a node ν in T . There is an edge between two nodes ν and µ in T , if there is a separating
triangle (i.e., a triangle with vertices both inside and outside) that belongs to both Cν and
Cµ. We root T at the node ρ with the 4-connected component that contains the outer face.
Then for any parent ν and child µ, the separating triangle common to Cν and Cµ is an inner
face in Cν and the outer face of Cµ. It is known that T can be computed in O(n) time [14].

We now give an overview of the remaining steps of algorithm 1PRVDrawer. It first visits T
top-down and determines for each 4-connected component Cν a special edge, called surround-
edge. It also computes an RVR γν of Cν using a so-called rectangular dual representation.
Next, the algorithm visits T bottom-up. Let ν be a node of T with h ≥ 1 children µ1, . . . , µh.
Denote by Gν the graph whose 4-block tree is the subtree of T rooted at ν. The already
computed visibility representations Γµ1 , . . . ,Γµh

of Gµ1 , . . . , Gµh
are suitably merged into

γν and an RVR Γν of Gν is obtained.
At the root we obtain an RVR of Gρ = G+. In order to turn this in an RVR of G, we must

un-planarize, i.e., replace every dummy-vertex by a crossing. For this to be feasible, we need
each dummy-vertex to be drawn in a special way: its rectangle needs to have one incident
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Figure 4 (a) The graph C−ν obtained from Cν in Fig. 3c. (b) A transversal pair of bipolar
orientations for C−ν . (c) The corresponding rectangular dual representation. (d) Retracting the
rectangles and adding the surround-edge.

edge on each side. We call this the 4-sides-condition. Even then converting dummy-vertices
into crossings is non-trivial, since the four edges on the four sides may not be suitably
aligned. To achieve such an alignment, we use the so-called “zig-zag-bend-elimination-slide”
[3], with which we can transform parts of the drawing until edges are aligned and hence each
dummy-vertex can be turned into a crossing point. Since this introduces no other crossings
we obtain an RVR, and deleting the added edges gives the desired RVR of G.

3.4.3 Surround-edges and drawing 4-connected components
Consider a 4-connected component Cν . We want to find an RVR of Cν that satisfies the
4-sides-condition. To be able to merge later, it must satisfy one more property: We pick a
so-called surround-edge e on the outer face beforehand, and we want an RVR such that all
edges incident to an endpoint of e are drawn horizontally.

I Observation 8. If G+ has no B-configuration, W-configuration or T-configuration, then
there exists an edge e on the outer face {u, v, w} of Cν such that the vertex facing e from
inside Cν is an original vertex. Here, the vertex facing e from the inside is the third vertex
on the face fe of G+ that is incident to e and inside {u, v, w}.

If more than one edge of the outer face of Cν satisfies the condition of Observation 8,
then we chose the surround-edge arbitrarily with one exception: If ν has a parent π, and the
surround-edge of Cπ is one of the outer-face edges of Cν , then we use the same edge also as
surround-edge of Cν . Note that whether an edge can be used as surround-edge depends on
its incident face in G+ (not Cπ), and so the surround-edge for Cπ, if it exists in Cν , also
qualifies as surround-edge for Cν . For example, for graph Cφ in Fig. 3c, edge (a, b) must be
chosen as surround-edge, because both (b, c) and (a, c) have a dummy-vertex as third vertex
on the face. Since edge (a, b) also belongs to Cω, it becomes the surround-edge of Cω as well.

I Lemma 9. Cν has an RVR such that every inner vertex of degree 4 satisfies the 4-
sides-condition and all edges incident to an endpoint of the surround-edge of Cν are drawn
horizontally.

Proof Sketch. If Cν is K4, then such an RVR is easily obtained (see also Fig. 7b), so we
assume that Cν has at least 5 vertices. Remove the surround-edge from Cν to obtain graph
C−ν . Since Cν is 4-connected, C−ν is internally 4-connected. Such a graph is known to have
a transversal pair of bipolar orientations, which directs and colors each inner edge either
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e

e′

D

rW

rE

e′e

Figure 5 A zig-zag-slide (adapted from [3]). Black points move upward while white points remain
stationary. With this amount of sliding, edges e and e′ become aligned.

red or blue1 such that the following holds: (i) For each inner vertex v, the clockwise order
of edges around v contains outgoing blue edges, then outgoing red edges, then incoming
blue edges, then incoming red edges, and none of these sets is empty. (ii) If vN , vE , vS , vW
are the four vertices on the outer face in clockwise order, then all inner edges incident to
vN/vE/vS/vW are blue incoming/red incoming/blue outgoing/red outgoing. See Fig. 4b.
Such a transversal pair of bipolar orientations always exists and can be computed in linear
time [12, 15]. Their proof allows us to specify vE and vW to be the ends of the surround-edge,
and to color all outer face edges red. In the same papers it was also shown that from this
coloring and orientation, we can obtain a rectangular dual representation, i.e., an assignment
of interior-disjoint rectangles to vertices such that the union of these rectangles is a rectangle
without holes. For each edge (v, w), the rectangles of v and w share a positive-length part
of their boundaries. Moreover, if the edge is directed v → w, then the rectangle of v is left
(below) w if and only if the edge is red (blue). See Fig. 4c.

We can now obtain an RVR of C ′ν easily: use the rectangular dual representation of
C ′ν , and retract the rectangles a bit. The 4-sides-condition holds since rectangles of inner
vertices have neighbors on all sides. Since outer face edges are red and the surround-edge was
(vW , vE), all incident edges of vW and vE are horizontal. Finally we add the surround-edge
after lengthening the rectangles of vW , vE and obtain the desired RVR. See Fig. 4d. J

3.4.4 Zig-zag-slides
Both for the merging step and for un-doing the planarization, we need a method of modifying
the drawing such that some items are moved while others are stationary. This can be achieved
with a zig-zag-bend-elimination-slide (or zig-zag-slide for short) [3]. Assume that Γ is an
RVR and we have a dividing curve D as follows: D consists of some vertical line segment s
that intersects no horizontal element of the drawing (i.e., neither a horizontal edge nor a
horizontal boundary of a rectangle). At the top end of s, attach a leftward horizontal ray
rW . At the bottom end of s, attach a rightward horizontal ray rE . No conditions are being
put onto rW and rE . Define the region above D be all points that are in the x-range of rW
and strictly above rW , and all points in the x-range of rE and on or above rE .

Now slide all points in the region above D upwards by some amount δ > 0. This maintains
a visibility representation, after lengthening vertical edges and rectangle borders, since no
horizontal segments cross s. See Fig. 5. Similar define zig-zag-slides for the three other
shapes of D achieved by flipping the picture horizontally and/or rotating 90◦.

1 In all figures of the paper red edges appear in lighter gray than blue edges when printed b/w.
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Figure 6 (a) Illustration of γµ and γ′µ. (b) Illustration for the proof of Lemma 10. (c–e)
Illustration for the proof of Lemma 11. (c) u has two vertical edges. (d) y has two vertical edges, u
has a higher top than z. (e) Slide so that u has a higher top than z.

3.4.5 Merging components
Let µ be a child of ν in T , and recall that we already obtained drawings γν of Cν and
(recursively) γµ of the graph Gµ consisting of Cµ and the components at its descendants. The
common vertices {u, y, z} of Gµ and Cν form the outer face of Gµ. See Fig. 3c. The outer
face of C−µ , consists of {u, y, z} as well as a fourth vertex, say x′; after possible renaming
of {u, y, z} we may assume that the order around the outer face of C−µ is u, y, x′, z. In
particular, drawing γµ contains (up to rotation) node u on the top, node y on the right,
the surround-edge (y, z) and node x′ at the bottom, and node z on the left. Let γ′µ be the
drawing obtained from γµ by deleting u, y, z. It suffices to merge γ′µ, since u, y, z and the
edges between them are represented in γν already. See Fig. 6a.

Triangle {u, y, z} is an inner face of Cν . The challenge is now to find a region inside
where this face is drawn in γν into which γ′µ will “fit”. Put differently, we want to find a
region within γν inside the face {u, y, z} that is (after possible rotation) below u, to the left
of y and to the right of z. We call such a region, a feasible region for γµ in γν . As we have
no control over how triangle {u, y, z} is drawn in γν , the existence of a feasible region is
non-trivial, and may in fact require modifying γν slightly. We start with a special case that
will be needed later:

I Lemma 10. Assume that the surround-edge of Cν also belongs to Cµ. Then there exists a
feasible region for γµ in γν .

Proof. If the surround-edge e of Cν belongs to Cµ, then by our choice of surround-edge we
also used e as the surround-edge for Cµ. That is, (y, z) is the surround-edge for both Cµ and
Cν . In γν , (y, z) was drawn (after possible rotation) bottommost, with u above it. A feasible
region is now found in the small strip above the drawing of edge (y, z). See Fig. 6b. J

I Lemma 11. A feasible region for γµ in γν always exists, possibly after modifying γν without
changing angles or incidences.

Proof. We already argued this for the case where {u, y, z} includes the surround-edge e of
Cν , so assume that this is not the case. Then face {u, y, z} of Cν is also a face of C ′ν = Cν−e.
The drawing of C ′ν was obtained via the transversal pair of bipolar orientations of C ′ν , with
red/blue edges corresponding to horizontal/vertical edges. It is well-known that any inner
face in a transversal pair of bipolar orientations has at least one red and at least one blue
edge. So {u, y, z} is drawn with at least one horizontal and at least one vertical edge, say
two edges are vertical and one is horizontal (the other case is similar). Now consider which
vertex of {u, y, z} is the one where both incident edges of triangle {u, y, z} are vertical.

If vertex u has two incident vertical edges (u, y) and (u, z), then (y, z) is drawn horizontally.
We can then find a feasible region within the thick line of sight of edge (y, z). See Fig 6c.
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Figure 7 Illustration for the proof of Observation 12.

Now assume that y has two incident vertical edges (y, u) and (y, z) (the case of vertex z
is symmetric). For ease of description, assume that y is above u and z, and u is to the left
of z. If the top side of u is strictly above the top side of z, then it is easy to find a feasible
region within the thick line of sight of edge (y, z) into which we can merge γ′ν after rotating
it; see Fig. 6d. If the top side of u is below (or at the same height) of the top side of z, then
we modify the drawing to create a suitable region using a zig-zag-slide. The dividing curve
D is defined as follows. Insert a vertical edge just left of z, ranging from just above (u, z)
(hence below the top of u since we have thick lines of visibility) to just above the top of z.
Expand it with a horizontal ray leftward from the lower end and a horizontal ray rightward
from the upper end. By sliding upward sufficiently far, we hence achieve that the top of u is
above the one of z, which allows us to find a feasible region as previously. See Fig 6e. J

By Lemma 11, for every child µ of ν we can find a feasible region into which we merge
(after suitable scaling) the drawing γµ−{u, y, z}. This gives the RVR of Cν ∪Gµ. It remains
to prove the 4-sides-condition for an inner vertex v of Cν ∪Gµ. This holds clearly if v was
an inner vertex of either Cν or Gµ. If it is neither, then one can argue that v is involved
in two separating triangles and with our choice of surround-edge the merging ensures the
4-sides-condition. See Fig. 7 and [2] for details. So we have:

I Observation 12. In the RVR of Cν ∪Gµ, the 4-sides-condition holds for every dummy-
vertex that is an inner vertex of Cν ∪Gµ.

3.4.6 Undoing the planarization
Once all merging is completed, the drawing Γρ at the root gives an RVR of G+. To turn
this into an RVR of G, we must undo the planarization, hence remove the dummy-vertices
and replace them with a crossing. Since dummy-vertices are surrounded by a kite, none of
them is on the outer face of G+. So any dummy-vertex z is an inner vertex of G+ and its
rectangle Rz satisfies the 4-sides-condition. Let eW , eN , eE and eS be the four edges incident
at the west/north/east and south side of Rz. If eW and eE have the same y-coordinate, and
eN and eS have the same x-coordinate, then we can simply remove Rz, extend the edges,
and obtain the desired crossing.

So assume that eW and eE have different y-coordinates, with (say) the y-coordinate yW
of eW larger than the y-coordinate yE of eE . Construct a dividing curve D by starting with
a vertical line segment inside Rz, ranging from y-coordinate yW + ε to y-coordinate yE − ε,
where ε > 0 is chosen small enough that the segment is inside Rz. Attach a leftward horizontal
ray at the top and a rightward horizontal ray at the bottom. Now apply a zig-zag-slide of
length yW − yE . This moves eE upward while keeping eW stationary, and hence aligns the
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two edges. See also Fig. 5, where this is illustrated for eW = e and eE = e′. With another
zig-zag-slide (with the dividing curve using a horizontal line segment and vertical rays), we
similarly can align eN and eS , if needed. After this, remove the dummy-vertex to obtain
the crossing. Repeating this at all dummy-vertices, and finally deleting all added edges,
gives the RVR of G, as no crossings are created except where dummy-vertices were removed.
This ends the description of algorithm 1PRVDrawer. We remark that with minor changes
1PRVDrawer can also handle general (not 3-connected) 1-plane graphs, see [2].

I Lemma 13. Let G be a 1-plane graph G and with no B-/W-/T-configuration as a subgraph.
Then algorithm 1PRVDrawer computes an RVR of G.

Lemma 13 shows the sufficieny of Theorem 4.

3.5 Area, time complexity and testing
Algorithm 1PRVDrawer does not obviously have linear run-time, since we repeatedly change
the entire drawing, especially when applying zig-zag-slides. Also, coordinates may get
very small when merging, resulting (after re-scaling to be integral) in a very large area.
However, both of these become non-issues if we store RVRs implicitly, using the orthogonal
representations of Observation 2. Using this approach, no zig-zag-slide needs to be performed,
since these only change edge lengths (but not angles or adjacencies) and hence give rise
to exactly the same orthogonal representation. Therefore, all that is required to merge a
subgraph at a separating triangle {u, y, z} is to find, for each of w ∈ {u, y, z}, the appropriate
segment along the boundary of the rectangle of w in Cµ, and to merge here the list of
adjacencies and angles that w has in the PSLG of Cν . This takes constant time for w, hence
constant time for merging at one separating triangle, and hence linear time overall. All
other parts of the algorithm (such as finding separating triangles, computing 4-connected
components, finding a transversal pair of bipolar orientations, and finding the rectangular
dual representation) take linear time as well. The final conversion of the PSLG into an
RVR also takes linear time, and gives linear integral coordinates. Here “linear” measures the
size of the PSLG, which in our case is proportional to the number of vertices, edges, and
crossings. For 1-planar graphs this is O(n) since 1-planar graphs have at most 4n− 8 edges
[18]. Thus the final RVR has linear coordinates and the area is O(n2). We conclude:

I Lemma 14. Let G be a 1-plane graph G with n vertices and with no B-/W-/T-configuration
as a subgraph. Then there exists an O(n)-time algorithm that computes an RVR Γ of G that
has O(n2) area.

We finally sketch how to test whether a given 1-plane graphG contains any B-configuration,
any W-configuration, or any T-configuration. Hong et al. [13] show an algorithm to detect
and report every possible B-configuration and W-configuration in O(n) time, where n is
the number of vertices of G. Thus, in what follows we describe how to detect and report
a T-configuration, assuming that G contains no B-configuration and no W-configuration.
Let G+ be the plane triangulated graph obtained from G by applying the planarization
and triangulation step described in Section 3.4. Recall that G+ contains a T-configuration
if and only if G does. Suppose G+ contains a T-configuration t with outer vertices a, b, c
and inner vertices d, e, f, g, h, i, as in Fig. 2d. Since we added a kite around each crossing,
vertices a, b, c induce a triangle in G+. Thus to detect a T-configuration in G+, we first list
all triangles of G+. The triangle is a T-configuration if and only the three faces on the inside
have dummy-vertices as their third vertex, which can be tested in O(1) time per triangle.
The only difficulty is hence to list all triangles efficiently. If G is 3-connected, then G+ is
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simple and this can be done in O(n) time (see e.g. [6]). The case when G is not 3-connected
is described in [2]. This, together with Lemma 14, implies Theorem 5.

4 Variable Embedding Setting

Alam et al. [1] proved that if G is 3-connected, then it is possible to reroute its edges so as
to remove all B-configurations and W-configurations but at most one and hence obtain a
straight-line 1-planar drawing. We can show that this is not true for visibility representations.
All the proofs for this section can be found in [2].

I Theorem 15. Let k ≥ 1 be an integer. There exists a 3-connected 1-planar graph Gk with
n = 6k vertices with at least k − 1 T-configurations in every possible 1-planar embedding.

The following stronger corollary can also be proved.

I Corollary 16. Let k ≥ 1 be an integer value. There exists a 3-connected 1-planar graph
Gk with n = 6k vertices that does not admit any 1-planar embedding that can be represented
as an RVR unless we delete at least k = n/6 edges.

On the positive side, we can mirror the results of Alam et al. for visibility representations
by increasing the connectivity one more.

I Theorem 17. Every 4-connected 1-planar graph G admits a 1-planar embedding that can
be represented as an RVR, except for at most one edge.

I Corollary 18. Every optimal 1-plane graph (i.e., a 1-plane graph with 4n− 8 edges) admits
an RVR, except for one edge.

5 Conclusions and Open Problems

In this paper, we studied rectangle visibility representations of non-planar graphs with a
fixed embedding. We showed that we can test in polynomial time whether a graph has
such a representation. Of special interest to us were 1-planar graphs; here we can give a
linear-time algorithm to test the existence of visibility representations if the embedding
is fixed. Moreover, in case of a negative answer the algorithm provides a witness in form
of either a B-configuration, W-configuration, or T-configuration. We also briefly studied
1-planar graphs without fixed embeddings.

The most pressing open problem is whether we can restrict the drawings less and still
test for the existence of visibility representations? Most importantly, if we fix the rotational
scheme and outer face, but not order in which crossing occur (and perhaps not even which
edges cross), is it possible to test whether a visibility representation respecting the rotational
scheme and outer face exists? The NP-hardness proof of Shermer [20] does not hold if the
rotational scheme is fixed, since it uses a reduction from linear-arboricity-2, and fixing the
rotational scheme would severely restrict the possible ways of splitting a graph into two
linear forests. The orthogonal representation approach utterly fails if the order of crossings
is not fixed, since it requires planarization as a first step.

Secondly, can we characterize for more graph classes exactly when they have a rectangle
visibility representation? Notice that Lemma 6 does not use 1-planarity, and hence gives
a necessary condition for any subgraph of a graph G (with a fixed embedding) to have an
RVR. A second necessary condition stems from that as soon as edges may have 2 or more
crossings, the edge-parts between the crossings may be non-trivial and have cycles; clearly
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the graph formed by these crossings must be bipartite if G has a visibility representation.
Are these two conditions sufficient, and if not, can we find necessary and sufficient conditions,
at least for some restricted graph classes such as 2-planar and fan-planar graphs?
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