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—— Abstract

In the Line Cover problem a set of n points is given and the task is to cover the points using
either the minimum number of lines or at most k lines. In Curve Cover, a generalization of
Line Cover, the task is to cover the points using curves with d degrees of freedom. Another
generalization is the Hyperplane Cover problem where points in d-dimensional space are to be
covered by hyperplanes. All these problems have kernels of polynomial size, where the parameter
is the minimum number of lines, curves, or hyperplanes needed.

First we give a non-parameterized algorithm for both problems in O*(2") (where the O*(:)
notation hides polynomial factors of n) time and polynomial space, beating a previous exponential-
space result. Combining this with incidence bounds similar to the famous Szemerédi-Trotter
bound, we present a Curve Cover algorithm with running time O* ((Ck/ log k)(dfl)k), where C
is some constant. Our result improves the previous best times O*((k/ 1.35)’“) for Line Cover
(where d = 2), O* (kdk) for general Curve Cover, as well as a few other bounds for covering
points by parabolas or conics. We also present an algorithm for Hyperplane Cover in R? with

running time O* ((Ckz/ logl/sk)k>, improving on the previous time of O* ((k2/1.3)k).
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1 Introduction

In the Line Cover problem a set of points in R? is given and the task is to cover them using
either the minimum number of lines, or at most k lines where k is given as a parameter
in the input. It is related to Minimum Bend Euclidean TSP and has been studied in
connection with facility location problems [8, 17]. The Line Cover problem is one of the few
low-dimensional geometric problems that are known to be NP-complete [17]. Furthermore
Line Cover is APX-hard, i.e., it is NP-hard to approximate within factor (14 ¢) for arbitrarily
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small € [15]. Although NP-hard, Line Cover is fixed-parameter tractable when parameterized
by its solution size k so any solution that is “not too large” can be found quickly.

One generalization of the Line Cover problem is the Hyperplane Cover problem, where
the task is to use the minimum number of hyperplanes to cover points in d-dimensional
space. Another generalization is to cover points with algebraic curves, e.g. circles, ellipses,
parabolas, or bounded degree polynomials. These can be categorized as covering points in
an arbitrary dimension space using algebraic curves with d degrees of freedom and at most s
pairwise intersections. We call this problem Curve Cover. The first parameterized algorithm
that was presented for Line Cover runs in time O* (k?¥) [16] (where O*(.) hides polynomial
factors). This algorithm generalizes to generic settings, such as Curve Cover and Hyperplane
Cover, obtaining the running time O* (kdk) where d is the degree of the freedom of the curves
or the dimension of the space for hyperplane cover.

The first improvement to the aforementioned generic algorithm reduced the running time to
O*((k/2.2)%) for the Line Cover problem [10]. The best algorithm for the Hyperplane Cover
problem, including Line Cover, runs in O* (k(d_l)’“/l.3k) time [22]. A non-parameterized
solution to Line Cover using dynamic programming has been proposed with both time and
space O*(2™) [4], which is time efficient when the number of points is O(klog k). Algorithms
for parabola cover and conic cover appear in [21], running in time O*((k/1.38)(¢=D*) and
O*((k/1.15)4=1k) respectively.

Incidence Bounds. Given an arrangement of n points and m lines, an incidence is a point-
line pair where the point lies on the line. Szemerédi and Trotter gave an asymptotic (tight)
upper bound of O((nm)2/3 +n+ m) on the number of incidences in their seminal paper
[20]. This has inspired a long list of similar upper bounds for incidences between points and
several types of varieties in different spaces, e.g. [7, 9, 18, 19].

Our Results. We give a non-parameterized algorithm solving the decision versions of both
Curve Cover and Hyperplane Cover in O*(2™) time and polynomial space. Furthermore
we present parameterized algorithms for Curve Cover and Plane Cover (Hyperplane Cover
in R3). These solve Curve Cover in time O*((Ck/logk)@~P*) and Plane Cover in time

o* ((Ck:2/log1/5k:)k), both using polynomial space. The main idea is to use Szemerédi-

Trotter-type incidence bounds and using the aforementioned O*(2") algorithm as a base case.
We make heavy use of (specialized) incidence bounds and our running time is very sensitive
to the maximum number of possible incidences between points and curves or hyperplanes. In
general, utilization of incidence bounds for constructing algorithms is rare (see e.g. [13, 12])
and to our knowledge we are the first to do so for this type of covering problem. It is generally
believed that point sets that create large number of incidences must have some “algebraic
sub-structure” (see e.g. [11]) but curiously, the situation is not fully understood even in two
dimensions. So, it might be possible to get better specialized incidence bounds for us in
the context of covering points. Thus, we hope that this work can give further motivation
to study specialized incidence bounds. This is a shortened conference version of the paper.
Omitted proofs and pseudocode can be found in the full version [1].

2 Preliminaries

2.1 Definitions

We begin by briefly explaining the concept of fixed-parameter tractability before formally
stating the Curve Cover and Hyperplane Cover problems.
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» Definition 1. A problem is said to be fized-parameter tractable if there is a parameter k
to an instance I, such that I can be decided by an algorithm in time O(f(k)poly(|I|)) for
some computable function f.

The function f is allowed to be any computable function, but for NP-complete problems
can be expected to be at least single exponential. The name refers to the fact that these
algorithms run in polynomial time when k is (bounded by) a constant. Within this paper I
will typically be a set of points and k is always a solution budget: the maximum allowed size
of any solution of covering objects, but not necessarily the size of the optimal such solution.

Let P be a set of n points in any dimension, and d, s be non-negative integers.

» Definition 2. A set of algebraic curves € are called (d, s)-curves if (i) any pair of curves
from C intersect in at most s points and (ii) for any d points there are at most s curves in €
through them. The parameter d is the degrees of freedom and s is the multiplicity-type.

The set € could be an infinite set corresponding to a family of curves, and it is often defined
implicitly. We assume two geometric predicates: First, we assume that given two curves
c1,c2 € C, we can find their intersecting points in polynomial time. Second, we assume that
given any set of up to s + 1 points, in polynomial time, we can find a curve that passes
through the points or decide that no such curve exists. These two predicates are satisfied
in the real RAM model of computation for many families of algebraic curves and can be
approximated reasonably well in practice.

We say that a curve covers a point, or that a point is covered by a curve, if the point lies
on the curve. A set of curves H C C covers a set of points P if every point in P is covered
by a curve in H, furthermore, H is a k-cover if |H| < k.

» Definition 3 (Curve Cover Problem). Given a family of (d, s)-curves €, a set of points P,
and an integer k, does there exist a subset of € that is a k-cover of P?

Now let P be a set of points in R%. A hyperplane covers a point if the point lies on the
hyperplane. A set H of hyperplanes covers a set of points if every point is covered by some
hyperplane; H is a k-cover if |H| < k. In R?, a j-flat is a j-dimensional affine subset of the
space, e.g., O-flats are points, 1-flats are lines and (d — 1)-flats are called hyperplanes.

» Definition 4 (Hyperplane Cover Problem). Given an integer k and a set P of points in R%,
does there exist a set of hyperplanes that is a k-cover of P?

For d = 3 we call the problem Plane Cover. To make our parameterized Plane Cover
algorithm work, we need to introduce a third generalization: a version of Hyperplane Cover
where the input contains any type of flats. A hyperplane covers a j-flat for j < d — 2 if the
flat lies on the hyperplane; further notation follows naturally from the above.

» Definition 5 (Any-flat Hyperplane Cover Problem). For k € N and a tuple P = (P, ..., Py_2),
where P; is a set of i-flats in R?, does there exist a set of hyperplanes that is a k-cover of P?

We stress that our non-parameterized algorithm in Section 3 solves Any-flat Hyperplane
Cover while the parameterized algorithm in Section 5 solves Plane Cover. Line Cover is a
special case of both Curve Cover and Hyperplane Cover. Since Line Cover is known to be
both NP-hard [17] and APX-hard [15], the same applies to its three generalizations as well.

2.2 Kernels

Central to parameterized complexity theory is the concept of polynomial kernels. A para-
meterized problem has a polynomial kernel if an instance (P, k) in polynomial time can
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be reduced to an instance (P’, k') where |P’| and k' are bounded by k™" and (P, k) is a
yes-instance if and only if (P’ k') is a yes-instance. Problems with polynomial kernels are
immediately fixed-parameter tractable: simply use brute force on reduced instance.

» Lemma 6. For a family € of (d, s)-curves, Curve Cover has a size sk? kernel where no
curve in C covers more than sk points.

Proof. See the full version of the paper. <

For Any-flat Hyperplane Cover a size k? kernel is presented in [16]. It uses a group-
ing operation, removing points and replacing them with higher dimension flats, which is
not acceptable for a Hyperplane Cover input. We present an alternative, slightly weaker
hyperplane kernel containing only points; in R? it contains at most k2 + k2 points.

» Lemma 7. Hyperplane Cover in R, d > 2, has a size I{:2(Zf;02 k') = O(k?) kernel where
for j < d—2 any j-flat covers at most Y 1_, k' = O(kj) points and any hyperplane covers
at most k 25;02 = O(k*=2) points.

Proof. See the full version of the paper. <

Our algorithms will use both properties of the kernels. Kratsch et al. [14] showed that
these kernels are essentially tight under standard assumptions in computational complexity.

» Theorem 8 (Kratsch et al. [14]). Line Cover has no kernel of size O(k*~¢) unless coNP
C NP/poly.

2.3 Incidence bounds

Consider the Line Cover problem. Obviously, if the input of n points are in general position,
then we need n/2 lines to cover them. Thus, if & < %, we expect the points to contain “some
structure” if they are to be covered by k lines. Such “structures” are very relevant to the
study of incidences. For a set P of points and a set L of lines, the classical Szemerédi-Trotter
[20] theorem gives an upper bound on the number of point-line incidences, I(L, P), in R2.

» Theorem 9 (Szemerédi and Trotter [20]). For a set P of n points and a set L of m lines in
the plane, let I(L,P) = |{(p,{) |p€ PN{,L € L}|. Then I(L,P) = O((nm)?3 +n+m).

The linear terms in the theorem arise from the cases when there are very few lines compared
to points (or vice versa). In the setting of Line Cover these cases are not interesting since
they are easy to solve. The remaining term is therefore the interesting one. Since it it
large, it implies there are many ways of placing a line such that it covers many points;
this demonstrates the importance of incidence bounds for covering problems. We introduce
specific incidence bounds for curves and hyperplanes in their relevant sections.

3 Inclusion-exclusion algorithm

This section outlines an algorithm INCLUSION-EXCLUSION that for both problems decides
the size of the minimum cover, or the existence of a k-cover, of a point set P in O*(2") time
and polynomial space. Our algorithm improves over the one from [4] for Line Cover which
finds the cardinality of the smallest cover of P with the same time bound but exponential
space. The technique is an adaptation of the one presented in [3]; their paper immediately
gives either O*(3™)-time polynomial-space or O*(2")-time O*(2")-space algorithms for our
problems. We give full details of the technique for completeness; to do so, we require the
intersection version of the inclusion-exclusion principle.
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» Theorem 10 (Folklore). Let Ay,..., A, be a number of subsets of a universe U. Using the
notation that A=U\ A and (;cq Ai = U, we have:

n A N

i€{l,...,n} 1€X

i€l

- > X

XC{1,...,n}

3.1 Curve Cover

Let P be the input set of points and € be the family of (d, s)-curves under consideration.
Although we are creating a non-parameterized algorithm, we nevertheless assume that we
have access to the solution parameter k. This assumption will be removed later. We say a
set @ is a coverable set in P (or is coverable in P) if @ C P and @ has a 1-cover.

Let a tuple (in P) be a k-tuple (@1, ..., Q) such that Vi : Q; is coverable in P. Note
that there is no restriction on pairwise intersection between two coverable sets in a tuple.
Define U as the set of all tuples. For p € P, let A, = {(Q1,...,Qx) | p € U, @i} CU be the
set of all tuples where at least one coverable set contains p.

ﬂpEP Ap’ Z L.

» Lemma 11. P has a k-cover if and only if

Proof. Take a tuple in ﬂpG p Ap. For each coverable set () in the tuple, place a curve that
covers (). Since the tuple was in the intersection, every point is in some coverable set, so
every point is covered by a placed curve. Hence we have a k-cover.

Take a k-cover C and from each curve ¢ € C construct a coverable set of the points covered
by c¢. Form a tuple out of these sets and observe that the tuple is in the intersection ﬂpG pAp,
hence its cardinality is at least 1. |

Note that several tuples may correspond to the same k-cover, so this technique cannot
be used for the counting version of the problem. Theorem 10 and Lemma 11 reduce the
problem of deciding the existence of k-covers to computing a quantity |ﬂl€ x X,| The key
observation is that A, is the set of tuples where no coverable set contains p and ;. x 4i
is the set of tuples that contain no point in X, i.e. the set of tuples in P\ X. The
remainder of this section shows how to compute the size of this set in polynomial time. Let
c(X)=|{Q | Q C X,Q is coverable in X}| be the number of coverable sets in a point set X.
A tuple in P\ X is k coverable sets drawn from a size ¢(P\ X) pool (with replacement), hence
there are ¢(P\ X)* such tuples. To compute ¢(X) we introduce the notion of representatives.
Let 7 be an arbitrary ordering of P. The representative R = {ry,...,r;} of a coverable set
Q is the min(|@Q|, s + 1) first points in @ as determined by the order w. Note that for any
coverable set @, it holds that R C Q. Let ¢(X, 7, R) be the number of coverable sets that
have the representative R.

» Lemma 12. ¢(X, 7, R) can be computed in O(|X|) time and O(log|X]|) space.

Proof. If R is not a valid representative, ¢(X,7,R) = 0. If |R| < s, ¢(X,7,R) = 1. If

|R| = s+ 1, let U be the union of every coverable set with representative R, and X' = U \ R.
The number of subsets of X’ is the number of coverable sets with representative R, i.e.

(X, 7, R) = 21Xl For any p € P with 7(p) > w(r;), p € X' if and only if there is a curve
¢ € € such that ¢ covers {rq,...,r;,p}. Since i < s+ 1 the time complexity is O(]X|). The
space complexity is logarithmic since we need only maintain |X’| rather than X’. <

» Lemma 13. ¢(X) can be computed in O(|X|*T2) time and O(|X|) space.

60:5
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Proof. Fix an ordering w. As every coverable set in X has exactly one representative under
7, we get that ¢(X) =", q(X, 7, R). There there are only O((sl)ﬂ)) = O(|X|**!) choices
of R for which ¢(X,m, R) > 0, and by Lemma 12 each term of the sum is computable in
O(|X|) time and logarithmic space. The space complexity is therefore dominated by the

space to store m which is linear. |

» Theorem 14. There exists a k-cover of curves from C for P if and only if

N4 = S XN A = 3 ()¥leP\ x)F > 1.

pEP XCP peX XCP

This comparison can be performed in O(2"n**2) time and O(nk) bits of space.

Proof. Since ¢(P\ X)* < 2"* for any X it can be stored in nk bits. The absolute value of
the partial sum can be kept smaller than 2"* by choosing an appropriate next X. The rest
follows from Theorem 10, Lemma 11 and Lemma 13. |

Finally, we remove the assumption that we have the parameter k. Any input requires at
most n curves. Since k is only used to compute ¢(X)* we can try k = 1,2,...,n and return
the first k with a positive sum. This increases the time by an O(n) factor. Alternatively, we
can run n simultaneous sums, since the parameter k is only accessed when computing c(X)¥.
This increases the space by factor O(n) and the time by a lower-order additive term.

3.2 Any-flat Hyperplane Cover

Here we treat all flats in the instance (P, ..., Pyj—2) as atomic objects and P as a union
U?;oz P;. This algorithm is very similar to that of Section 3.1, so we only describe their
differences. A set of flats Q C P is a coverable set in P if there exists a hyperplane that
covers every p € Q. The representative of @) is (), and the representative of a non-empty
coverable set @ is a set R = {rq,...,r;}. Let 7 be the first flat in @ and for j > 2, r; is
defined if the affine hull of {rq,...,7;_1} has lower dimension than the affine hull of Q. If

so, let r; be the first flat in @ that is not covered by the affine hull of {ry,...,7;_1}.
» Lemma 15. ¢(X, 7, R) can be computed in O(|X|) time and O(log |X]) space.

Proof. If R is not a valid representative, ¢(X,m, R) = 0. Otherwise, let U be the union all
coverable sets with the representative R, and X’ =U \ S. For every p € X \ R, let j be the
highest index such that 7(r;) < m(p). Then p € X' if and only if p is on the affine hull of

{7'1,...,7‘]‘}. |

There are O((g)) representatives R with ¢(X, 7, R) > 0 so the following two results hold;
their proofs are analogous to Lemma 13 and Theorem 14.

» Lemma 16. ¢(X) may be computed in O(|X|*T) time and O(|X|) space.

» Theorem 17. There exists a hyperplane k-cover for P if and only if

N A =D DX A = Y (—)Fle(P\ X)F > 1.

peP XCP peX XCP

This comparison may be performed in (’)(2"nd+1) time and O(nk) bits of space.
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4 Curve Cover

Recall that we are considering (d, s)-curves, where d and s are constants. Since we have a
kernel of up to sk? points, INCLUSION-EXCLUSION used on its own runs in time O* 25k’
which is too slow to give an improvement. We improve this by first using a technique that
reduces the number of points in the input, and then using INCLUSION-EXCLUSION. To
describe this technique and the intuition behind it, we first provide a framework based on
the following theorem by Pach and Sharir.

» Theorem 18 (Pach and Sharir [18]). Let P be a set of n points and L a set of m (d, s)-curves
in the plane. The number of point-curve incidences between P and L is

I(P,L) = O(nd/(Qd—l)m(Qd—2)/(2d—1) T+ m) .

Note that the above holds for curves in arbitrary dimension. This can be seen by projecting
the points and curves onto a random plane, which will keep the projection of distinct points,
and prevent the curves from projecting to overlapping curves.

» Definition 19. Let a candidate be any curve in C that covers at least 1 point in P. Define
its Tichness with respect to P as the number of points it covers. A candidate is ~y-rich if its
richness is at least v, and -poor if its richness is at most ~.

Recall that from the kernel in Lemma 6, every candidate is sk-poor. The following gives a

bound on the number of 4-rich candidates and is an immediate consequence of Theorem 18.

» Lemma 20 (Folklore). Let P be a set of n points in some finite dimension space R*. The

number of y-rich candidates in P is O(W%d,l + %)

Intuition for algorithm. We exploit the following observation: given a k-cover C, some
curves in C might be significantly richer than others. The main idea of our technique is to try
to select (i.e. branch on) these rich curves first. Since they cover “many” points, removing

these decreases the ratio |P|/k and calling INCLUSION-EXCLUSION eventually becomes viable.

The idea to branch on rich curves first has another important consequence. Suppose we
know that no candidate in € covers more than v points in P. This immediately implies that
if there are strictly more than k~ points in P, it is impossible to cover P. Therefore we have
|P|/k < ~. Now look at the set of 3-rich candidates and decide for each whether to include
it in the cover or not. By the earlier observation, including such a candidate is good for
reducing the ratio |P|/k. But excluding such a candidate has essentially the same effect,
because that candidate will not be considered again (remove it from C). Any remaining
candidates in C now cover at most 3 points; we must have |P|/k < 7 (or the instance is not
solvable) and have strengthened the bound on the ratio. Regardless of which choice we make,
we make progress towards being able to call the base case.

This strategy also makes sense from a combinatorial point of view, because from Lemma 20
it follows that the search space is small for rich curves. Switching to INCLUSION-EXCLUSION
early enough lets us bypass the potentially very large search space of poor candidates.

The Algorithm. Let r be a parameter. The exact value is set in the proof of Theorem 25,
for now it is enough that r = ©(log k). For a budget k let (k1,...,k;) with }°, k; =k be a
budget partition. We describe a main recursive algorithm CC-RECURSIVE (see full paper for
pseudocode) that takes 4 arguments: the point set P, the class of curves €, a budget partition
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{ki,...,k,), and a recursion level i. For convenience we define v; = sk/2!. A simple top-level
procedure CURVECOVER tries all budget partitions and calls the recursive algorithm with
that partition at recursion level 1.

At every recursion depth i, let K; = E;:Z k; be the remaining budget and P; the
remaining point set. That means earlier levels have created a partial solution C;_; of k — K
curves covering the points P\ P;. The recursive algorithm will try to cover the remaining
points using ~y;_1-poor curves. Specifically, at depth i let S be the set of candidates from C
that are ;-rich and ~;_1-poor. Since from depth ¢ and onward it has a remaining budget of

K; and cannot pick candidates that are (v;_; + 1)-rich, the algorithm rejects if strictly more
(d-1)
2

than K;7v;_; remain. If fewer than K;log k points remain, the sub problem is solved
with inclusion-exclusion.

If neither a reject (due to too many points) or a base-case call to inclusion-exclusion has
occurred, the algorithm will branch. It does so in (lli ') ways by simply trying all ways of
choosing k; candidates from S. For each such choice, all points in P covered by the chosen
candidates are removed and the algorithm recurses to depth ¢ 4+ 1. If all those branches fail,

the instance is rejected.

4.1 Analysis
» Lemma 21. Algorithm CURVECOVER decides whether P has a k-cover of curves from C.

Proof. Regard CURVECOVER as being non-deterministic. Suppose P has a k-cover C. The
proof is by induction on the recursion. Assume as the induction hypothesis that the current
partial solution C;_; is a subset of C and that C contains no curves that are (y;—1 + 1)-rich
when restricted to P;. The assumption is trivially true for i = 1 as Cq = 0.

By the induction hypothesis, C \ C;_; is a K;-cover for P; using only 7;_1-poor curves.
Therefore |P;| < v;,-1K; and the algorithm does not reject incorrectly. Furthermore, if
INcLUSION-EXCLUSION is called it accepts since we are in the case that a solution exists.

Otherwise, let D C C\ C;_1 be the curves that are ~y;-rich when restricted to P;. The
algorithm non-deterministically picks D from the set of candidates S and constructs C; =
Ci—1 U D. This leaves C; to be a subset of C. Additionally, C; contains all +;-rich curves in C
restricted to P; and hence to P;y; C P;, upholding the induction hypothesis.

Suppose the algorithm accepts the instance (P, k). It can only accept if some call to
INCLUSION-EXCLUSION accepts. Let C, be the set of curves selected by the recursive part
such that INCLUSION-EXCLUSION accepted the instance (P \ C,, k — |C,|). Let C;e be any
(k —|Cy|)-cover of P\ C,. Then C, UC, is a k-cover of P. <

By the nature of the inclusion-exclusion algorithm, CURVECOVER detects the existence
of a k-cover rather than producing one. But since CC-RECURSIVE produces a partial
cover during its execution, it is straight-forward to extend that into a full k-cover by using
INCLUSION-EXCLUSION as an oracle.

Running time. To analyze the running time of the algorithm we see the execution of
CC-RECURSIVE as a search tree 7. Each leaf of the tree is either an immediate reject
or a call to INCLUSION-EXCLUSION. Since the latter is obviously most costly to run, we
must assume for a worst case analysis that every leaf node calls the base case algorithm.
The running time is the number of leaf nodes in the search tree times the running time of
INCLUSION-EXCLUSION. Since the algorithm performs exponential work in these leaf nodes
but not in inner nodes, it is insufficient to reason about the size of the tree. Therefore we
will speak of the “running time of a subtree”, which simply means the running time of the
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recursive call that corresponds to the root of that subtree. We show that in the worst case,
T is a complete tree 71 of depth r. That is, 77 has no leaf nodes at depths less than r.

Let 7; be a complete subtree of 7; rooted at depth j. To prove that 77 is the worst case
for T we prove two things. First we first prove an upper bound on the running time for
arbitrary 7;. Then we prove that the running time of 7; can only improve if an arbitrary
subtree is replaced by a leaf (i.e. a call to INCLUSION-EXCLUSION). The most involved part
is proving an upper bound on the number of leaves of 7.

» Lemma 22. Let L be the number of leaves in T;. Then for some constant co = c2(d, s), L
is bounded by

L< ( cok? )Kjkr
“\(k— k) log?tk '

The proof is long and tedious and left for the appendix of the full version of the paper. To
give an idea of how Lemma 22 is proved, we sketch a simplified worst case analysis for Line
Cover. The analysis can be generalized to Curve Cover and gives (up to a constant in the
base of the exponent) the same running time as the real worst case.

Analysis sketch. The branching of 77 at recursion level ¢ depends on the budget k; that
is being used. That means that the structure of the whole tree depends on the complete
budget partition. From Lemma 20 it follows that the lower the richness the more candidates
there are. Since the richness halves after every recursive call, one could conjecture that the
worst case budget partition would put as much budget in the end. It could e.g. look like
(0,0,...,0,k-_1, k), where k — k. = k,._1 > k,. That is, only in the penultimate and last

recursion level is there any budget to spend. At the deepest level of recursion, the richness

logk
2

efficient). Therefore, at the penultimate recursion level the richness is log k. At this level

considered is strictly less than (because with this richness the base case algorithm is

there are klogk points left and we can apply Lemma 20 to bound the number of log k rich
lines. This yields a bound of ﬁﬂ on the number of candidates. From these we pick k — k,

lines, giving a branching of roughly ((k_k’i%) o (where roughly means up to a constant
in the base of the exponent).

It turns out that the worst case budget partition is in fact (ko2', k22, ..., ko2 1, k) for
some ko. However, to understand where the division by log? ! k comes from in the expression
of Lemma 22, it is sufficient to understand the above analysis sketch. With Lemma 22 in
place, we can prove the following bound on the running time of 7;.

» Lemma 23. The time complexity of a complete subtree T; is O*((C4k/ log k‘)(dfl)Ki),
where ¢4 = c4(d, s) is a constant that depends on the family C.

K;—ky,
Proof. By Lemma 22, the number of leaves in 7; is L < (%) / . Observe

that at depth r, INCLUSION-EXCLUSION runs in time O* 255 logk) = O0*(k“= % ). Since

an inner node performs polynomial time work and the leaves perform exponential time work,
this immediately implies that the running time for 7; is

O* < cok? >Kjkr Ltk
(k — k) log? 'k '
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Suppose k — k, = o(k). Then it holds that K; — k, = o(K},) since k > K; > k,. We get

Cgk'd o(K;) d—1 d—1
O ((kk)ldlk) R (K oK) | — o (2o(dKj log k)+ 452 (K; logkfo(klogk))> )
— k) log

With some simple algebra one gets that the exponent is bounded by (d—1) K (log k—loglog k),
giving the desired time bound O* (2(d-DK;(legk—loglogk)) — O*((k/log k)1~ DKy,
If k — k. # o(k), then k — k, > csk for some constant ¢ > 0. The running time solves to:

ok Kj—k, i, ik (d—1)K;
o ( d—1 ) k) =0 (1 k:)
czlog” "k 0g

where ¢4 = (cg/c3)t/ (@1, <

» Lemma 24. Let L; be a depth j < r leaf of T that calls INCLUSION-EXCLUSION. Then
the running time of T; dominates that of L;.

Proof. By Lemma 23, the time complexity of 7; is O* ((c4k/ log k)(d_l)Kf). At depth j the al-
gorithm has K; remaining budget to spend. Since the algorithm called INCLUSION-EXCLUSION

at this depth, at most %1 K; log k points remained and the call takes O* (Q%Kf 10gk> =

o* (k%f@') time, which is bounded by that for 7;. <

» Theorem 25. CURVECOVER decides Curve Cover in time O*((Ck/log k)4=1k) where
C =C(d,s) is a constant that depends on the family C.

Proof. Fix a budget partition (k1,..., k). By Lemma 24, calling INCLUSION-EXCLUSION
at a depth j < r does not increase the running time of the algorithm. Therefore the time
complexity of CC-RECURSIVE is O ((csk/log k) 4=V EY) = (¢sk/log k)41,
CURVECOVER runs CC-RECURSIVE over all possible budget partitions, of which by the
“stars and bars” theorem are only (k+£_1)7 a quasi-polynomial in k. Therefore by letting

C = ¢y +e¢ for any € > 0, the time complexity of CURVECOVER is O*((Ck/logk)(4=DF). <

» Lemma 26. The polynomial time dependency of CURVECOVER is O((klogk)?**) and its
space complexity is O(k:4 log2 k) bits.

Proof. See the full version of the paper. |

5 Hyperplane Cover

One generalization of Line Cover was discussed in the previous section. In this section
we discuss its other generalization Hyperplane Cover, and give an algorithm for the three
dimensional case. We would like to follow the same basic attack plan of using incidence
bounds but here we face significant challenges and we need non-trivial changes in our approach.
One major challenge is the nature of incidences in higher dimensions. For example, the
asymptotically maximum number of incidences between a set of points and hyperplanes in
d-dimensions is obtained by placing half of the points on one two-dimensional plane (see
[2, 5]) which clearly makes it an easy instance for our algorithm (due to kernelization). Thus,
in essence, we need to use specialized incidence bounds that disallow such configurations
of points; unfortunately, such bounds are more difficult to prove than ordinary incidence
bounds (and as it turns out, also more difficult to use).
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5.1 Point-Hyperplane incidence bounds in higher dimensions

The most general bound for point-hyperplane incidences from [2, 6] yields a bound of

,YS
(where the left term is again the significant one). Our method requires that the exponent
is greater in the denominator than in the numerator, so this bound is not usable beyond
R2. As stated before, the constructions that make the upper bound tight are easy cases for
our algorithm; they contain very low dimensional flats that have many points on them. A
specialized bound appears in [7], where the authors study the number of incidences between
points and hyperplanes with a certain saturation.

@(ﬂ + "d;l) on the number of y-rich hyperplanes in d dimensions similar to Lemma 20

» Definition 27. Consider a point set P and a hyperplane h in R?. We say that h is
o-saturated, o > 0, if H N P spans at least o - |[H N P|?~! distinct (d — 2)-flats of F.

For example in three dimensions, a (1 — %)—saturated plane contains no three collinear
points. The main theorem of [7] can be stated as follows.

» Theorem 28 (Elekes and Téth [7]). Let d > 2 be the dimension and o > 0 a real number.
There is a constant Cy(d,o) with the following property. For every set P of n points in RY,
the number of v-rich o-saturated hyperplanes is at most:

nd nd—l
e

The interesting term in this bound has a greater exponent in the denominator, as required.

Unfortunatley it is difficult to verify if a hyperplane is o-saturated. In the same paper, the
authors give another bound based on a more manageable property called degeneracy.

» Definition 29. Given a point set P and a hyperplane h in R?, we say that h is J-degenerate,

0 < d <1,if HN P is non-empty and at most § - |H N P| points of HN P lie in any (d — 2)-flat.

For example in R3, any 1-degenerate plane might have all its points lying on a single line,
and a plane with degeneracy strictly less than 1 must have at least 3 points not on the same
line. As such it is an easy property to test.

» Theorem 30 (Elekes and Téth [7]). For any set of n points in R3, the number of y-rich
d-degenerate planes is at most

(= (54 5))

This bound is usable and relies on an easily-tested property, but unfortunately only applies
to the R? setting.

5.2 Algorithm for Plane Cover

In this section we present our algorithm PC-RECURSIVE that solves Plane Cover using the

bound from Theorem 30. This algorithm is similar to that for Curve Cover, and it is assumed

that the reader is sufficiently familiar with CC-RECURSIVE before reading this section.
Recall that by Lemma 7, Plane Cover has a kernel of size k3 + k? where no plane contains

more than k(k+1) < 2k? points and no two planes pairwise intersect in more than k+1 points.

For convenience we define 79 = k?+k and ; = k2/2! for i > 0. We inherit the basic structure
of the CC-RECURSIVE algorithm, such that every recursion level considers ~;-rich-v;_1-poor
candidates. Additionally, any candidate considered must be not-too-degenerate:
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» Definition 31. Let §; = 1 — 771/5. A ~;-rich-7;_1-poor plane is called not-too-degenerate

if it is d;-degenerate, and too-degenerate otherwise.

It is of no consequence that the definition does not cover all candidates considered on depth 1.
The main extension of PC-RECURSIVE compared to CC-RECURSIVE is to first use a different
technique to deal with too-degenerate candidates, which then allows normal branching on
the not-too-degenerate ones. The key observation is that any too-degenerate candidate has
at least v;0; = v; — %4/5 points on a line and at most v;,—1(1 — 9;) = 27;1/5 points not on it.

Suppose a k-cover contains some too-degenerate plane h. By correctly guessing its very
rich line £ and removing the points on the line, the algorithm makes decent progress in terms
of shrinking the instance. The points on h but not ¢ will remain in the instance even though
the budget for covering them has been paid. These are called the ghost points of h (or of ),
and £ is called a degenerate line. The ghost points must be removed by extending the line
£ into a full plane. But the ghost points are few enough that the algorithm can delay this
action until a later recursion level. Specifically, for a line ¢ guessed at depth i, we extend
¢ into a plane at the first recursion depth which considers 2~y;l / 5—poor candidates, i.e. the
depth j such that v;_, > 27?/5 > ;.

Therefore the algorithm keeps a separate structure £ of lines that have been guessed to
be degenerate lines on some planes in the solution. Augment £ to remember the recursion
depth that a line was added to it. At any recursion depth, the algorithm will deal with
old-enough lines in £, then guess a new set of degenerate lines to add to £ before finally
branching on not-too-degenerate planes.

The algorithm Let r = O(log k) as before. Let (hq,01,. ..,y Cp) with Y i hi+¢; = k be
a budget partition. The recursive algorithm PC-RECURSIVE takes 4 arguments: the point
set P, a set of lines £, the budget partition, and a recursion level 7. A top level algorithm
PLANECOVER tries all budget partitions and calls PC-RECURSIVE accordingly.

Let the current recursion depth be ¢, and let K; = Z;:i h; +¢; be the remaining budget.
The sub-budget h; will be spent on not-too-degenerate planes, and ¢; on degenerate lines.
Let £ be an augmented set of lines as described above. This means that earlier levels have
already created a partial solution of k — (K; 4 |£]|) planes, and a set £ of lines that still need
to be covered by a plane. If strictly more than (K; + |£])v;—1 points remain, the algorithm
rejects. If at most K log k points remain, the algorithm switches to INCLUSION-EXCLUSION
passing on the instance (P U L, K; + |L]).

Let f = [w—‘. Let A be the set of all lines in £ that were added at depth f

or earlier. Remove A from L. For each way of placing |A| planes H such that every plane
contains one line in A and at least one point in P, let P’ = P\ (P NH) be the point set not
covered by these planes. For a P’ let H be the set of not-too-degenerate planes and L the
set of degenerate lines too-degenerate candidates.

For every P’ and every way of choosing h; planes from H and ¢; lines from L, branch
depth i 4+ 1 by removing the covered points from P and adding the chosen lines of L to L.

5.3 Analysis

Correctness. To prove that the algorithm is correct, we follow a similar strategy as for
CURVECOVER. We build on the notion that the algorithm is building up a partial solution of
planes. Removing the points covered by the partial solution yields a “residual problem” just
as in CURVECOVER. A partial solution is correct if it is a subset of some k-cover. Correctness
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of the algorithm follows from proving that a k-cover exists if and only if one branch maintains
a correct partial solution until it reaches INCLUSION-EXCLUSION.

The difference here is that the residual problem is an instance of Any-flat Plane Cover
and not Plane Cover. Therefore, we simply consider the original problem to be an instance
of Any-flat Plane Cover, namely Ry = (P,0)). We say that C covers (P, L) if C covers both P
and £. What needs to be established is that there is a correct way to replace points with
lines (Observation 32) and, conversely, that there is a correct way to extend a line in £;
(Observation 33). The proofs for these are elementary and we omit them. Given these two
facts, we can easily show that the algorithm will call INCLUSION-EXCLUSION on appropriate
instances.

» Observation 32. Let ¢ be a line and C a set of planes such that some plane h € C covers
L. Then C is a cover for (P, L) if and only if C is a cover for (P \ £, LU{(}).

» Observation 33. Let ¢ be a line, L > ¢ be a set of lines, and C be a set of planes such that
some h € C covers £ but not any other line £’ € L. Then C is a cover for (P, L) if and only

if C\ {h} is a cover of (P\ h, L\ {(}).

The conditions for Observation 33 might seem overly restrictive. But as the following lemma
shows, that situation arises when £ contains only correctly guessed degenerate lines.

» Lemma 34. Let h be a too-degenerate plane with degenerate line £ such that h\ € is
a too-degenerate plane with degenerate line ¢'. Then at no point during the execution of
PC-RECURSIVE will L contain £ and ¢'.

Proof sketch. The candidate h \ ¢ is too poor to be considered before the recursion depth
where ¢ gets removed from L and extended to h. Full proof in full version of the paper. <«

» Lemma 35. If L contains only the degenerate lines of some too-degenerate planes in a
k-cover, the number of ghost points at depth i is at most |L]y;—1.

Proof. See full version of the paper. |
» Lemma 36. Algorithm PLANECOVER decides whether P has a k-cover of planes.

Proof. View the algorithm as being non-deterministic. Suppose P has a k-cover. Observa-
tion 32, Observation 33 and Lemma 34 guarantee that there is a correct path, and Lemma 35
guarantees that the point set is not erroneously rejected. Therefore the algorithm will send a
yes-instance to INCLUSION-EXCLUSION and accept.

Suppose P has no k-cover. If the conditions for Observation 33 are not satisfied, removing
¢ from £ and pairing it up with points but not with another ¢ € £ can only reduce the
number of solutions. Therefore the algorithm detects no cover and rejects. |

We can now state our main theorem for PLANE-COVER.

» Theorem 37. PLANECOVER decides Plane Cover in O((C’k2/log1/5 k)k) time for some
constant C'.

Proof. See the full version of the paper. <

To give an idea of how to prove the above theorem, we give a sketch of the analysis that
reflects the core of the real analysis. As before, we assume a (slightly incorrect) worst case
for the budget partition where all the budget is assigned to the two deepest recursion levels.
This gives a bound analogous to that in Lemma 22. After achieving this bound, the same
arguments as for CURVECOVER can be applied to achieve the bound from Theorem 37.
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Analysis sketch. The branching of the analysis is twofold. First there is the branching done
on picking not-too-degenerate planes. Secondly, we have the branching on too-degenerate
planes. This branching is actually a combination of picking the rich lines in too-degenerate
planes, and the branching done by covering these lines with planes later on.

We sketch a proof for two extreme cases: either (i) Vi, k; = h; or (ii) Vi,¢; = k;. For

]{,‘3
(k—Fk,)log!/% k
The full proof for Theorem 37 shows that if the budget is distributed between these cases,

then taking the product of the worst case running times of both cases is roughly the same as
what we present here. As it turns out, the first case is (up to the incidence theorem used)
identical to the curve case.

both cases the branching can be bounded by ( ) o (compare to Lemma 22).

For case (ii) we again assume a (slightly incorrect) worst case budget partition where
kr_1+ k. =k and k,._1 > k.. By the same arguments as in the analysis sketch of Section 4
we have the following two parameters at recursion level » — 1: the number of of points
remaining is n = klog k and the richness v,_; is log k. The algorithm picks 7;1-rich lines at
level i, and these lines are matched with points at later level j where v; = 'yf /® The cost
for branching at level j is charged to level ¢, so that we can more easily analyze the total
branching on lines selected at level <. With the budget partition as stated above, we can now
bound the branching done at level r — 1. By the Szemerédi-Trotter theorem, there are at most

ﬁ = % candidates, from which we select k — &, lines. This yields a total branching of
2 k—k,
(kléTk‘), which is roughly (m) . We then need to mach these k — k,. lines with

klog/® k points, yielding a further branching of (k log?/® k)F=kr. Taking the product of both

: : k2 k—kr 4/5 1 \k—k K> .
these branching factors gives (m) - (klog™” k)—Fr = <W) .
» Lemma 38. The polynomial time dependency of PLANECOVER is (’)(k:4 log® k) and its
space complexity is O(k6 log? k:) bits.

Proof. See the full version of the paper. |

6 Discussion

We have presented a general algorithm that improves upon previous best algorithms for
all variations of Curve Cover as well as for the Hyperplane Cover problem in R3. Given
good incidence bounds it should not be difficult to apply this algorithm to more geometric
covering problems. However, such bounds are difficult to obtain in higher dimensions and
for Hyperplane Cover the bound (’)(nd /73) is tight when no constraints are placed on the
input, but it is too weak to be used even in R?. The bound by Elekes and Téth works when
the hyperplanes are well saturated, but the convenient relationship between saturation and
degeneracy on hyperplanes does not extend past the R? setting. Our hyperplane kernel
guarantees a bound on the number of points on any j-flat. This overcomes the worst-case
constructions for known incidence bounds, which involve placing very many points on the
same line. An incidence bound for a kernelized point set might provide the needed foundation
for similar Hyperplane Cover algorithms in higher dimensions.
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