
Normalisation by Evaluation for Dependent Types∗

Thorsten Altenkirch1 and Ambrus Kaposi2

1 School for Computer Science, University of Nottingham, Nottingham,
United Kingdom
txa@cs.nott.ac.uk

2 Department of Programming Languages and Compilers, Eötvös Loránd
University, Budapest, Hungary
akaposi@inf.elte.hu

Abstract
We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories.
Our construction is formulated using internal type theory using quotient inductive types. We
use a typed presentation hence there are no preterms or realizers in our construction. NBE for
simple types is using a logical relation between the syntax and the presheaf interpretation. In our
construction, we merge the presheaf interpretation and the logical relation into a proof-relevant
logical predicate. We have formalized parts of the construction in Agda.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases normalisation by evaluation, dependent types, internal type theory, lo-
gical relations, Agda

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.6

1 Introduction

1.1 Specifying normalisation
Normalisation can be given the following specification.

We denote the type of well typed terms of type A in context Γ by Tm ΓA. This type
is defined as a quotient inductive inductive type (QIIT, see [10]): in addition to normal
constructors for terms such as lam and app, it also has equality constructors e.g. expressing
the β computation rule for functions. An equality t ≡Tm ΓA t′ expresses that t and t′ are
convertible.

The type of normal forms is denoted Nf ΓA and there is an embedding from it to terms
p–q : Nf ΓA→ Tm ΓA. Normal forms are defined as a usual inductive type, decidability of
equality is straightforward.

Normalisation is given by a function norm which takes a term to a normal form. It needs
to be an isomorphism:

completeness norm ↓
Tm ΓA
Nf ΓA ↑ p–q stability

If we normalise a term, we obtain a term which is convertible to it: t ≡ pnorm tq. This is
called completeness. The other direction is called stability: n ≡ norm pnq. It expresses that
there is no redundancy in the type of normal forms. This property makes it possible to
establish properties of the syntax by induction on normal forms.

∗ Supported by EPSRC grant EP/M016951/1 and USAF grant FA9550-16-1-0029.

© Thorsten Altenkirch and Ambrus Kaposi;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Normalisation by Evaluation for Dependent Types

NE∆ Σ (TM∆ × J∆K) R∆ NF∆

TM∆

u∆ q∆

p–q p–q
proj

Figure 1 The type of quote and unquote for a context ∆ in NBE for simple types.

Soundness, that is, if t ≡ t′ then norm t ≡ norm t′ is given by congruence of equality. The
elimination rule for the QIIT of the syntax ensures that every function defined from the
syntax respects the equality constructors.

1.2 NBE for simple type theory
Normalisation by evaluation (NBE) is one way to implement this specification. In this
subsection, we summarize the approach of [6]. NBE works by evaluating the syntax in a
presheaf model over the category of renamings REN and with normal forms as interpretation
of the base type. The objects in REN are contexts and morphisms are lists of variables. Note
that for any context Γ one can define the presheaves of terms, neutral terms (the subset of
normal forms where an eliminator is applied to a variable) and normal forms. The action
on objects is just returning substitutions, lists of neutral terms and lists of normal forms,
respectively.

TM∆ : PSh REN NE∆ : PSh REN NF∆ : PSh REN
TM∆ Γ := Tms Γ ∆ NE∆ Γ := Nes Γ ∆ NF∆ Γ := Nfs Γ ∆

To normalise a substitution with codomain ∆, one defines two natural transformations
unquote u∆ and quote q∆ by induction on the structure of contexts and types such that the
diagram in figure 1 commutes. J∆K denotes the interpretation of ∆ in the presheaf model
and R∆ denotes the logical relation at context ∆ between TM∆ and J∆K. The logical relation
is equality at the base type.

Now a substitution σ can be normalised by quote: it needs the substitution itself, the
interpretation JσK and a proof that they are related. This is given by the fundamental
theorem of the logical relation denoted by Rσ which also needs two related elements: these
are given by unquoting the identity renaming (which is neutral).

norm∆ (σ : TM∆ Γ) : NF∆ Γ := q∆ Γ (σ, JσK,Rσ (uΓ Γ idΓ))

Completeness is given by commutativity of the right hand triangle. Stability can be proven
by mutual induction on terms and normal forms.

A nice property of this approach is that the part of unquote and quote which gives J∆K
can be defined separately from the part which gives relatedness, hence the normalisation
function can be defined independently from the proof that it is complete.

1.3 NBE for type theory
In the case of simple type theory, types are closed, so they act like contexts. Quote at a type
A is just a natural transformation.

qA : Σ (TMA × JAK) RA →̇NFA

T. Altenkirch and A. Kaposi 6:3

NE∆ Σ TM∆ J∆K NF∆

TM∆

u∆ q∆

p–q p–q
proj

Figure 2 The type of quote and unquote for a context ∆ in our proof.

In the case of (dependent) type theory, types depend on contexts, so TMΓ`A becomes a
family of presheaves over TMΓ, JΓ ` AK is a family over JΓK and RΓ`A depends on RΓ (and a
term of that type and the interpretation of a term of that type).

TMΓ`A,NEΓ`A,NFΓ`A : FamPSh TMΓ

JΓ ` AK : FamPSh JΓK

RΓ`A : FamPSh
(

Σ
(
Σ (TMΓ × JΓK) RΓ

) (
TMΓ`A × JΓ ` AK

))
We can try to define quote and unquote for this type as a family of natural transformations.
The type of quote and unquote omitting the naturality conditions would be the following.
These types encode the commutativity of the triangles as well.

q(Γ`A) Ψ : (p : RΓ Ψ ρα)(t : TMA ρ)(v : JAKα)→ RA p t v → Σ(n : NFA ρ).t ≡ pnq
u(Γ`A) Ψ : (p : RΓ Ψ ρα)(n : NEA ρ)→ Σ(v : JAKα).RA p pnq v

However there seems to be no way to define quote and unquote this way because quote does
not preserve the logical relation. The problem is that when defining unquote at Π we need
to define a semantic function which works for arbitrary inputs, not only those which are
related to a term. It seems that we need to restrict the presheaf model to only contain such
functions.

We solve this problem by replacing the presheaf and the logical relation by a proof
relevant logical predicate. We denote the logical predicate at a context ∆ by J∆K. We define
normalisation following the diagram in figure 2.

In the presheaf model, the interpretation of the base type was normal forms of the base
type, and the logical relation at the base type was equality of the term and the normal form.
In our case, the logical predicate at the base type will say that there exists a normal form
which is equal to the term.

1.4 Structure of the proof and the paper
In this section, we give a high level sketch of the proof. Sections 3, 4, 6 are fully formalised
in Agda, sections 5, 7 and 8 are partially formalised [9].

In section 2 we briefly summarize the metatheory we are working in.
In section 3 we define the syntax for type theory as a quotient inductive inductive type

(QIIT) [10]. The arguments of the eliminator for the QIIT form a model of type theory.
In section 4 we define the category of renamings REN: objects are contexts and morphisms

are renamings (lists of variables).
In section 5 we define the proof-relevant Kripke logical predicate interpretation of the

syntax. The interpretation has REN as the base category and two parameters for the
interpretations of U and El. This interpretation can be seen as a dependent version of the
presheaf model of type theory. E.g. a context in the presheaf model is interpreted as a

FSCD 2016

6:4 Normalisation by Evaluation for Dependent Types

presheaf. Now it is a family of presheaves dependent on a substitution into that context.
The interpretations of base types can depend on the actual elements of the base types. The
interpretation of substitutions and terms are the fundamental theorems.

In section 6 we define neutral terms and normal forms together with their renamings and
embeddings into the syntax (p–q). With the help of these, we define the interpretations of U
and El. The interpretation of U at a term of type U will be a neutral term of type U which
is equal to the term. Now we can interpret any term of the syntax in the logical predicate
interpretation. We will denote the interpretation of a term t by JtK.

In section 7 we mutually define the natural transformations quote and unquote. We
define them by induction on contexts and types as shown in figure 2. Quote takes a term
and a semantic value at that term into a normal term and a proof that the normal term is
equal to it. Unquote takes a neutral term into a semantic value at the neutral term.

Finally, in section 8, we put together the pieces by defining the normalisation function
and showing that it is complete and stable. Normalisation and completeness are given by
interpreting the term in the logical predicate model at the identity semantic element and
then quoting. Stability is proved by mutual induction on neutral terms and normal forms.

1.5 Related work

Normalisation by evaluation was first formulated by Schwichtenberg and Berger [11], sub-
sequently a categorical account using presheaf categories was given [6] and this approach
was extended to System F [7, 8] and coproducts [5]. The present work can be seen as a
continuation of this line of research.

The term normalisation by evaluation is also more generally used to describe semantic
based normalisation functions. E.g. Danvy is using semantic normalisation for partial
evaluation [14]. Normalisation by evaluation using untyped realizers has been applied to
dependent types by Abel et al [3, 1, 2]. Danielsson [13] has formalized NBE for dependent
types but he doesn’t prove soundness of normalisation.

2 Metatheory and notation

We are working in intensional Martin-Löf Type Theory with postulated extensionality
principles using Agda as a vehicle [17, 4]. We extend Agda with quotient inductive inductive
types (QIITs, see section 6 of [10]) using axioms. When defining an inductive type A, we
first declare the type by dataA : S where S is the sort, then we list the constructors. For
inductive inductive types we first declare all the types, then following a second data keyword
we list the constructors. We also postulate functional extensionality which is a consequence
of having an interval QIIT anyway. We assume K, that is, we work in a strict type theory.

We follow Agda’s convention of denoting the universe of types by Set, we write function
types as (x : A)→ B or ∀x.B, implicit arguments are written in curly braces {x : A} → B

and can be omitted or given in lower index. If some arguments are omitted, we assume
universal quantification, e.g. (y : B x)→ C means ∀x.(y : B x)→ C if x is not given in the
context. We write Σ(x : A).B for Σ types. We overload names e.g. the action on objects
and morphisms of a functor is denoted by the same symbol.

The identity type is denoted – ≡ – and its constructor is refl. Transport of a term a : P x
along an equality p : x ≡ y is denoted p∗a : P y. We denote (p∗a) ≡ b by a ≡p b. We write ap
for congruence, that is ap f p : f x ≡ f y if p : x ≡ y. For readability, we will omit transports
most of the time (starting from section 5). This makes some terms non-well typed, e.g. we

T. Altenkirch and A. Kaposi 6:5

might write f a where f : A → B and a : A′ but in this case there is an equality in scope
which justifies A ≡ A′.

Sometimes we use Coq-style definitions: we write d (x : A) : B := t for defining d of type
(x : A)→ B by λx.t. We also use Agda-style pattern matching definitions.

3 Object theory

The object theory is the same1 as in [10], we present it as a quotient inductive inductive type
(QIIT). A QIIT is presented by first declaring the types that we define mutually, and then
listing all the constructors.

The syntax constituting of contexts, types, substitutions and terms is declared as follows.

data Con : Set
data Ty : Con→ Set
data Tms : Con→ Con→ Set
data Tm : (Γ : Con)→ Ty Γ→ Set

We use the convention of naming contexts Γ,∆,Θ, types A,B, terms t, u, substitutions
σ, ν, δ.

We define a basic type theory with an uninterpreted base type U, a family over this
type El and dependent function space Π with constructor lam and eliminator app. Our type
theory is given as an explicit substitution calculus, hence the QIIT needs constructors –[–]
for substituted types and terms. The constructors of the QIIT can be summarized as follows.

Substitutions form a category with a terminal object. This includes the categorical
substitution laws for types [id] and [][].

Substitution laws for types U[], El[], Π[].

The laws of comprehension which state that we have the natural isomorphism

π1β, π2β – , – ↓
σ : Tms Γ ∆ Tm ΓA[σ]

Tms Γ (∆, A)
↑ π1, π2 πη

where naturality2 is given by , ◦.

The laws for function space which are given by the natural isomorphism

Πβ lam ↓
Tm (Γ, A)B

Tm Γ (ΠAB)
↑ app Πη

where naturality is given by lam[].

1 Steven Schäfer pointed us to [18] which shows that in the presentation [10] the equalities [id]t and [][]t
(identity and associativity laws of term substitution) can be derived from the others. This is why we
omitted these equalities from this presentation and the formal development.

2 If one direction of an isomorphism is natural, so is the other. This is why it is enough to state naturality
for – , – and not for π1, π2.

FSCD 2016

6:6 Normalisation by Evaluation for Dependent Types

We list the point constructors in the left column and the equality constructors in the right.

data data
· : Con [id] : A[id] ≡ A
– , – : (Γ : Con)→ Ty Γ→ Con [][] : A[σ][ν] ≡ A[σ ◦ ν]
–[–] : Ty ∆→ Tms Γ ∆→ Ty Γ U[] : U[σ] ≡ U
U : Ty Γ El[] : (El Â)[σ] ≡ El (U[]∗Â[σ])
El : Tm Γ U→ Ty Γ Π[] : (ΠAB)[σ] ≡ Π (A[σ]) (B[σA])
Π : (A : Ty Γ)→ Ty (Γ, A)→ Ty Γ id◦ : id ◦ σ ≡ σ
id : Tms Γ Γ ◦id : σ ◦ id ≡ σ
– ◦ – : Tms Θ ∆→ Tms Γ Θ→ Tms Γ ∆ ◦◦ : (σ ◦ ν) ◦ δ ≡ σ ◦ (ν ◦ δ)
ε : Tms Γ · εη : {σ : Tms Γ ·} → σ ≡ ε
– , – : (σ : Tms Γ ∆)→ Tm ΓA[σ]→ Tms Γ (∆, A) π1β : π1 (σ, t) ≡ σ
π1 : Tms Γ (∆, A)→ Tms Γ ∆ πη : (π1 σ, π2 σ) ≡ σ
–[–] : Tm ∆A→ (σ : Tms Γ ∆)→ Tm ΓA[σ] , ◦ : (σ, t) ◦ ν ≡ (σ ◦ ν), ([][]∗t[ν])
π2 : (σ : Tms Γ (∆, A))→ Tm ΓA[π1 σ] π2β : π2 (σ, t) ≡π1β t

lam : Tm (Γ, A)B → Tm Γ (ΠAB) Πβ : app (lam t) ≡ t
app : Tm Γ (ΠAB)→ Tm (Γ, A)B Πη : lam (app t) ≡ t

lam[] : (lam t)[σ] ≡Π[] lam (t[σA])

Note that the equality π2β lives over π1β. Also, we had to use transport to typecheck El[]
and , ◦. We used lifting of a substitution in the types of Π[] and lam[]. It is defined as follows.

(σ : Tms Γ ∆)A : Tms (Γ, A[σ]) (∆, A) := (σ ◦ π1 id), ([][]∗π2 id)

We use the categorical app operator but the usual one (–$–) can also be derived.

< (u : Tm ΓA) > : Tms Γ (Γ, A) := id, [id]−1∗u

(t : Tm Γ (ΠAB))$(u : Tm ΓA) : B[< u >] := (app t)[< u >]

When we define a function from the above syntax, we need to use the eliminator. The
eliminator has 4 motives corresponding to what Con, Ty, Tms and Tm get mapped to and
one method for each constructor including the equality constructors. The methods for
point constructors are the elements of the motives to which the constructor is mapped.
The methods for the equality constructors demonstrate soundness, that is, the semantic
constructions respect the syntactic equalities. The eliminator comes in two different flavours:
the non-dependent and dependent version. In our constructions we use the dependent version.
The motives and methods for the non-dependent eliminator (recursor) collected together form
a model of type theory, they are basically the same3 as Dybjer’s Categories with Families
[15].

As an example we list the motives and a few methods of the dependent eliminator. An
algorithm for deriving them from the constructors is given in [10]. As names we use the
names of the constructors followed by an upper index M.

3 Dybjer uses the usual application operator, we use the categorical one, the projections π1, π2 are defined
differently and Dybjer lists some equations derivable from the others, we omit these. However all the
operators and the laws are inter-derivable.

T. Altenkirch and A. Kaposi 6:7

ConM : Con→ Set
TyM : (ConM Γ)→ Ty Γ→ Set
TmsM : (ConM Γ)→ (ConM ∆)→ Tms Γ ∆→ Set
TyM : (ΓM : ConM Γ)→ TyM ΓM A→ Tm ΓA→ Set
idM : TmsM ΓM ΓM id
– ◦M – : TmsM ΘM ∆M σ → TmsM ΓM ΘM ν → TmsM ΓM ∆M (σ ◦ ν)

◦idM : σM ◦M idM ≡◦id σM

π2β
M : πM

2 (ρM,MtM) ≡π1β
M,π2β tM

Note that the method equality ◦idM lives over the constructor ◦id while the method equality
π2β

M lives both over the method equality π1β
M and the equality constructor π2β.

4 The category of renamings

In this section we define the category of renamings REN. Objects in this category are contexts,
morphisms are renamings (Vars): lists of de Bruijn variables.

We define the types of variables Var and renamings Vars together with their embeddings
into substitutions. This is an inductive-recursive definition as p–q for renamings needs to be
defined mutually with renamings.

data Var : (Ψ : Con)→ Ty Ψ→ Set
vze : Var (Ψ, A) (A[π1 id])
vsu : Var ΨA→ Var (Ψ, B) (A[π1 id])
p–q : Vars Ω Ψ→ Tms Ω Ψ
data Vars : Con→ Con→ Set
ε : Vars Ψ ·
– , – : (β : Vars Ω Ψ)→ Var ΩA[pβq]→ Vars Ω (Ψ, A)

p–q : Var ΨA→ Tm ΨA

pvzeq := π2 id
pvsuxq := pxq[π1 id]
pεq := ε

pβ, xq := pβq, pxq

Variables are typed de Bruijn indices. vze projects out the last element of the context, vsu
extends the context, and the type A : Ty Ψ needs to be weakened in both cases because we
need to interpret it in Ψ extended by another type. Renamings are lists of variables with the
appropriate types. Embedding of variables into terms uses the projections and the identity
substitution, and embedding renamings is pointwise.

We use the names Ψ,Ω,Ξ for objects of REN, x, y for variables, β, γ for renamings.
We need identity and composition of renamings for the categorical structure. To define

them, we also need weakening and renaming of variables together with laws relating their
embeddings to terms. We only list the types as the definitions are straightforward inductions.

FSCD 2016

6:8 Normalisation by Evaluation for Dependent Types

wk : Vars Ω Ψ→ Vars (Ω, A) Ψ pwkq : pβq ◦ π1id ≡ pwk βq
id : Vars Ψ Ψ pidq : pidq ≡ id
– ◦ – : Vars Ξ Ψ→ Vars Ω Ξ→ Vars Ω Ψ p◦q : pβq ◦ pγq ≡ pβ ◦ γq
–[–] : Var ΨA→ (β : Vars Ω Ψ)→ Var ΩA[pβq] p[]q : pxq[pβq] ≡ px[β]q

Renamings form a category, we omit the statement and proofs of the categorical laws.

5 The logical predicate interpretation

In this section, after defining a few categorical notions, we define the proof-relevant Kripke
logical predicate interpretation of the type theory given in section 3. It can also be seen as a
dependent version of the presheaf model of type theory [16].

A contravariant presheaf over a category C is denoted Γ : PSh C. It is given by the
following data: given I : |C|, a set Γ I, and given f : C(J, I) a function Γ f : Γ I → Γ J .
Moreover, we have idP Γ : Γ idα ≡ α and compP Γ : Γ (f ◦ g)α ≡ Γ g (Γ f α) for α : Γ I,
f : C(J, I), g : C(K,J).

Given Γ : PSh C, a family of presheaves over Γ is denoted A : FamPSh Γ. It is given
by the following data 4 : given α : Γ I, a set AI α and given f : C(J, I), a function
Af : AI α → AJ (Γ f α). In addition, we have the functor laws idFA : A id v ≡idP v and
compFA : A (f ◦ g) v ≡compP Ag (Af v) for α : Γ I, v : Aα, f : C(J, I), g : C(K,J).

A natural transformation between presheaves Γ and ∆ is denoted σ : Γ →̇∆. It is given
by a function σ : {I : |C|} → Γ I → ∆ I together with the condition natnσ : ∆ f (σI α) ≡
σJ (Γ f α) for α : Γ I, f : C(J, I).

A section5 from a presheaf Γ to a family of presheaves A over Γ is denoted t : Γ s→ A. It
is given by a function t : {I : |C|} → (α : Γ I)→ AI α together with the naturality condition
natS t α f : Af (t α) ≡ t (Γ f α) for f : C(J, I).

Given Γ : PSh C and A : FamPSh Γ we can define Σ ΓA : PSh C by (Σ ΓA) I := Σ(α :
Γ I).AI α and (Σ ΓA) f (α, a) := (Γ f α,A f a).

Given σ : Γ →̇∆ and A : FamPSh ∆, we define A[σ] : FamPSh Γ by A[σ]I α := AI (σI α)
and A[σ] f a := natnσ∗(Af a) for α : Γ I, a : A[σ]α and f : C(J, I).

The weakening natural transformation wk : Σ ΓA →̇Γ is defined by wkI (α, a) := α.
Lifting of a section t : Γ s→ A by a family of presheaves B : FamPSh Γ is a natural

transformation tB : Σ ΓB →̇Σ (Σ (ΓA))B[wk]. It is defined as tBI (α, b) := (α, tI α, b).
To define the logical predicate interpretation of the syntax, we need to give the motives

and methods for the eliminator. We will denote the interpretation of a syntactic construct t
by JtK. The following table gives the motives of the eliminator.

Γ : Con TMΓ = Tms – Γ : PSh REN JΓK : FamPSh TMΓ

A : Ty Γ TMA = Tm – A[–] : FamPSh TMΓ JAK : FamPSh
(

Σ
(
Σ (TMΓ TMA)

)
JΓK[wk]

)
σ : Tms Γ ∆ TMσ = (σ ◦ –) : TMΓ →̇TM∆ JσK : Σ TMΓ JΓK s→ J∆K[TMσ][wk]

t : Tm ΓA TMt = t[–] : TMΓ
s→ TMA JtK : Σ TMΓ JΓK s→ JAK[TMt

JΓK]

4 Indeed, this is equivalent to a presheaf over the category of elements
∫

Γ.
5 t : Γ s→ A is called a section because it can be viewed as a section of the first projection from Σ ΓA to Γ
but we define it without using the projection.

T. Altenkirch and A. Kaposi 6:9

First we define the syntactic presheaf interpretation TM as given in the table. TM∆ is a
presheaf over REN, the action on morphisms is TM∆ (β : Vars Ω Ψ)σ := σ ◦ pβq. TMA is a
family of presheaves over TMΓ, TMσ is a natural transformation and TMt is a section. The
action on morphisms and the functor laws for TMA and the naturality laws for TMσ and
TMt are straightforward. TM is not a presheaf model, it is just the syntax in a different
structure so that it matches the motives of a presheaf model.

In the logical predicate interpretation, a context ∆ is mapped to a family of presheaves over
TM∆. That is, for every substitution ρ : TM∆ Ψ we have a set J∆KΨ ρ which expresses that the
logical predicate holds for ρ. Moreover, we have the renaming J∆Kβ : J∆K ρ→ J∆K (TM∆ β ρ).

JAK is the logical predicate at a type A. It depends on a substitution (for which the
predicate needs to hold) and a term. JAKΨ (ρ, s, α) expresses that the logical predicate holds
for term s : Tm ΨA[ρ]. It is also stable under renamings.

A : Ty Γ Ψ : |REN| ρ : TMΓ Ψ s : TMA ρ α : JΓKΨ ρ

JAKΨ (ρ, s, α) : Set

JAKβ : JAK (ρ, s, α)→ JAK (TMΓ β ρ,TMA β s, JΓKβ α)

A substitution σ is mapped to JσK which expresses the fundamental theorem of the logical
predicate for σ: for any other substitution ρ for which the predicate holds, we can compose
it with σ and the predicate will hold for the composition. The fundamental theorem is also
natural.

σ : Tms Γ ∆ Ψ : |REN| ρ : TMΓ Ψ α : JΓKΨ ρ

JσKΨ (ρ, α) : J∆KΨ (σ ◦ ρ)

J∆Kβ (JσK (ρ, α)) ≡ JσK (TMΓ β ρ, JΓKβ α)

A term t is mapped to the fundamental theorem for the term: given a substitution ρ for
which the predicate holds, it also holds for t[ρ] in a natural way.

t : Tm ΓA Ψ : |REN| ρ : TMΓ Ψ α : JΓKΨ ρ

JtKΨ (ρ, α) : JAKΨ (ρ, t[ρ], α)

JAKβ (JtK (ρ, α)) ≡ JtK (TMΓ β ρ, JΓKβ α)

We define the presheaf TMU : PSh REN and a family over it TMEl : FamPSh TMU. The
actions on objects are TMU Ψ := Tm Ψ U and TMEl

Ψ Â := Tm Ψ (El Â). The action on a
morphism β is just substitution –[pβq] for both.

Note that the base category of the logical predicate interpretation is fixed to REN. However
we parameterise the interpretation by the predicate at the base type U and base family El.
These are denoted by Ū and Ēl and have the following types.

Ū : FamPSh TMU

Ēl : FamPSh
(

Σ
(
Σ (TMU TMEl)

)
Ū[wk]

)
Now we list the methods for each constructor in the same order as we have given them in

section 3. We omit the proofs of functoriality/naturality only for reasons of space.
The logical predicate trivially holds at the empty context, and it holds at an extended

context for ρ if it holds at the smaller context at π1 ρ and if it holds at the type which extends
the context for π2 ρ. The second part obviously depends on the first. The action on morphisms
for context extension is pointwise. Here we omitted some usages of –∗ – e.g. JΓKβ α is only

FSCD 2016

6:10 Normalisation by Evaluation for Dependent Types

well-typed in that position when we transport along the equality π1 ρ ◦ pβq ≡ π1 (ρ ◦ pβq).
From now on we will omit transports and the usages of p–q in most cases for readability.

J·KΨ (ρ : TM·Ψ) := >
JΓ, AKΨ (ρ : TMΓ,A Ψ) := Σ(α : JΓKΨ (π1 ρ)).JAKΨ (π1 ρ, π2 ρ, α)
JΓ, AK (β : Vars Ω Ψ) (α, a) := (JΓKβ α, JAKβ a)

The logical predicate at a substituted type is the logical predicate at the type and we need
to use the fundamental theorem at the substitution to lift the witness of the predicate for
the substitution. Renaming a substituted type is the same as renaming in the original type.
The logical predicate at the base type and family says what we have given as parameters.
Renaming also comes from these parameters.

JA[σ]K (ρ, s, α) := JAK (σ ◦ ρ, s, JσK (ρ, α)) JA[σ]Kβ a := JAKβ a

JUK (ρ, s, α) := Ū (U[]∗s) JUKβ a := Ūβ a
JEl ÂK (ρ, s, α) := Ēl (Â[ρ], s, JÂK (ρ, α)) JEl ÂKβ a := Ēlβ a

The logical predicate holds for a function s when we have that if the predicate holds for
an argument u (at A, witnessed by v), so it holds for s$u at B. In addition, we have a
Kripke style generalisation: this should be true for s[β] given a morphism β in a natural
way. Renaming a witness of the logical predicate at the function type is postcomposing the
Kripke morphism by it.

JΠABKΨ (ρ : TMΓ Ψ, s, α)

:= Σ
(

map :
(
β : Vars Ω Ψ

)(
u : TMA (ρ ◦ β)

)(
v : JAKΩ (ρ ◦ β, u, JΓKβ α)

)
→ JBKΩ

(
(ρ ◦ β, u), s[β]$u, (JΓKβ α, v)

))
.∀β, u, v, γ.JBK γ (mapβ u v) ≡ map (β ◦ γ) (u[γ]) (JAK γ v)

JΠABKβ′ (map, nat) := (λβ.map (β′ ◦ β), λβ.nat (β′ ◦ β))

Now we list the methods for the substitution constructors, that is, we prove the fun-
damental theorem for substitutions. We omit the naturality proofs. The object theoretic
constructs map to their metatheoretic counterparts: identity becomes identity, composi-
tion becomes composition, the empty substitution becomes the element of the unit type,
comprehension becomes pairing, first projection becomes first projection.

JidK (ρ, α) := α

Jσ ◦ νK (ρ, α) := JσK (ν ◦ ρ, JνK (ρ, α))
JεK (ρ, α) := tt
Jσ, tK (ρ, α) := JσK (ρ, α), JtK (ρ, α)
Jπ1 σK (ρ, α) := proj1 (JσK (ρ, α))

The fundamental theorem for substituted terms and the second projection is again just
composition and second projection.

Jt[σ]K (ρ, α) := JtK (σ ◦ ρ, JσK (ρ, α))
Jπ2 σK (ρ, α) := proj2 (JσK (ρ, α))

T. Altenkirch and A. Kaposi 6:11

The fundamental theorem for lam and app are more interesting. For lam, the map function
is using the fundamental theorem for t which is in the context extended by the domain
type A : Ty Γ, so we need to supply an extended substitution and a witness of the predicate.
Moreover, we need to rename the substitution ρ and the witness of the predicate α to
account for the Kripke property. The naturality is given by the naturality of the term itself.
Application uses the map part of the logical predicate and the identity renaming.

Jlam tK (ρ, α) :=
(
λβ, u, v.JtK

(
(ρ ◦ β, u), (JΓKβ α, v)

)
, λβ, u, v, γ.natS JtK

(
(ρ ◦ β, u), (JΓKβ α, v)

)
γ
)

Japp tK (ρ, α) := map
(
JtK (π1 ρ, proj1 α)

)
id (π2 ρ) (proj2 α)

Lastly, we need to provide methods for the equality constructors. We won’t list all of
these proofs as they are quite straightforward, but as examples we show the semantic versions
of the laws [][] and π2β. For [][], we have to show that the two families of presheaves JA[σ][ν]K
and JA[σ ◦ ν]K are equal. It is enough to show that their action on objects and morphisms
coincides as the equalities will be equal by K. Note that we use function extensionality to
show the equality of the presheaves from the pointwise equality of actions. When we unfold
the definitions for the actions on objects we see that the results are equal by associativity.

JA[σ][ν]K (ρ, s, α)

= JAK
(
σ ◦ (ν ◦ ρ), s, JσK

(
ν ◦ ρ, JνK (ρ, α)

))
≡ JAK

(
(σ ◦ ν) ◦ ρ, s, JσK

(
ν ◦ ρ, JνK (ρ, α)

))
= JA[σ ◦ ν]K (ρ, s, α)

The actions on morphisms are equal by unfolding the definitions.

JA[σ][ν]Kβ a = JAKβ a = JA[σ ◦ ν]Kβ a

For π2β we need to show that two sections Jπ2 (σ, t)K and JtK are equal, and again, the law
parts of the sections will be equal by K.

Jπ2 (σ, t)K (ρ, α) = proj2
(
Jσ, tK (ρ, α)

)
= JtK (ρ, α)

6 Normal forms

We define η-long β-normal forms mutually with neutral terms. Neutral terms are terms where
a variable is in a key position which precludes the application of the rule Πβ. Embeddings
back into the syntax are defined mutually in the obvious way. Note that neutral terms and
normal forms are indexed by types, not normal types.

data Ne : (Γ : Con)→ Ty Γ→ Set data Nf
data Nf : (Γ : Con)→ Ty Γ→ Set neuU : Ne Γ U→ Nf Γ U
p–q : Nf ΓA→ Tm ΓA neuEl : Ne Γ (El Â)→ Nf Γ (El Â)
data Ne lam : Nf (Γ, A)B → Nf Γ (ΠAB)

var : Var ΓA→ Ne ΓA p–q : Ne ΓA→ Tm ΓA
app : Ne Γ (ΠAB)→ (v : Nf ΓA)

→ Ne Γ (B[< pvq >])

FSCD 2016

6:12 Normalisation by Evaluation for Dependent Types

We define lists of neutral terms and normal forms. X is a parameter of the list, it can stand
for both Ne and Nfs.

data –s (X : (Γ : Con)→ Ty Γ→ Set) : Con→ Con→ Set
p–q : Xs Γ ∆→ Tms Γ ∆
dataXs
ε : Xs Γ ·
– , – : (τ : Xs Γ ∆)→ X ΓA[pτq]→ Xs Γ (∆, A)

We also need renamings of (lists of) normal forms and neutral terms together with lemmas
relating their embeddings to terms. Again, X can stand for both Ne and Nf.

–[–] : X ΓA→ (β : Vars Ψ Γ)→ X ΨA[pβq] p[]q : pnq[pβq] ≡ pn[β]q
– ◦ – : Xs Γ ∆→ Vars Ψ Γ→ Xs Ψ ∆ pτq ◦ pβq ≡ pτ ◦ βq

Now we can define the presheaf XΓ and families of presheaves XA for any A : Ty Γ where X
is either NE or NF. The definitions follow that of TM.

Γ : Con XΓ : PSh REN XΓ Ψ := Xs Ψ Γ XΓ β τ := τ ◦ β
A : Ty Γ XA : FamPSh TMΓ XA (ρ : TMΓ Ψ) := X ΨA[ρ] XA β n := n[β]

We set the parameters of the logical predicate at the base type and family by defining Ū
and Ēl. The predicate holds for a term if there is a neutral term of the corresponding type
which is equal to the term. The action on morphisms is just renaming.

Ū : FamPSh TMU

ŪΨ (Â : Tm Ψ U) := Σ(n : Ne Ψ U).Â ≡ pnq

Ēl : FamPSh
(

Σ
(
Σ (TMU TMEl)

)
Ū[wk]

)
ĒlΨ (Â, t : Tm Ψ (El Â), p) := Σ(n : Ne Ψ (El Â)).t ≡ pnq

Now we can interpret any term in the logical predicate model over REN with base type
interpretations Ū and Ēl. We denote the interpretation of t by JtK.

7 Quote and unquote

By the logical predicate interpretation using Ū and Ēl we have the following two things:
terms at the base type and base family are equal to a normal form,
this property is preserved by the other type formers — this is what the logical predicate
says at function types and substituted types.

We make use of this fact to lift the first property to any type. We do this by defining a
quote function by induction on the type. Quote takes a term which preserves the predicate
and maps it to a normal form that it is equal to it. Because of function spaces, we need a
function in the other direction as well, mapping neutral terms to the witness of the predicate.

More precisely, we define the quote function q and unquote u by induction on the structure
of contexts and types. For this, we need to define a model of type theory in which only the
motives for contexts and types are interesting.

T. Altenkirch and A. Kaposi 6:13

First we define families of presheaves for contexts and types which express that there is
an equal normal form. The actions on objects are given as follows.

NF≡∆ : FamPSh TM∆ NF≡A : FamPSh (Σ TMΓ TMA)
NF≡∆ (ρ : TM∆ Ψ) := Σ(ρ′ : NF∆ Ψ).ρ ≡ pρ′q NF≡A (ρ, s) := Σ(s′ : NFA ρ).s ≡ ps′q

We use these to write down the motives for contexts and types. We use sections to express
the commutativity of the diagram in figure 2. We only write Σ once for iterated usage.

u∆ : NE∆
s→ J∆K[p–q] uA : Σ TMΓ NEA (JΓK[wk]) s→ JAK[id, p–q, id]

q∆ : Σ TM∆ J∆K s→ NF≡∆[wk] qA : Σ TMΓ TMA (JΓK[wk]) JAK s→ NF≡A[wk][wk]

Unquote for a context takes a neutral substitution and returns a proof that the logical
predicate holds for it. Quote takes a substitution for which the predicate holds and returns a
normal substitution together with a proof that the original substitution is equal (convertible)
to the normal one (embedded into substitutions by p–q). The types of unquote and quote for
types are more involved as they depend on a substitution for which the predicate needs to
hold. Unquote for a type takes such a substitution and a neutral term at the type substituted
by this substitution and returns a proof that the predicate holds for this neutral term. The
natural transformation id, p–q, id is defined in the obvious way, it just embeds the second
component (the neutral term) into terms. Quote for a type takes a term of this type for
which the predicate holds and returns a normal form at this type together with a proof that
it is equal to the term. Here again, another substitution is involved.

The motives for substitutions and terms are the constant unit families.
We will list the methods for contexts and types excluding the naturality proofs for brevity.
Unquote and quote for the empty context are trivial, for extended contexts they are

pointwise. ap, is the congruence law of substitution extension – , –.

u· (τ : NE·Ψ) : > := tt
q·
(
(σ : TM·Ψ), (α : >)

)
: Σ(ρ′ : NF·Ψ).ρ ≡ pρ′q := (ε, εη)

u∆,A
(
(τ, n) : NE∆,A Ψ

)
: Σ
(
α : J∆K (π1 pτ, nq)

)
.JAK (π1 pτ, nq, π2 pτ, nq, α)

:= u∆ τ, uA (pτq, n, u∆ τ)
q∆,A

(
(ρ : TM∆ Ψ), (α, a) : J∆, AK ρ

)
: Σ(ρ′ : NF∆,A Ψ).ρ ≡ pρ′q

:= let (τ, p) := q∆ (π1 ρ, α); (n, q) := qA (π1 ρ, π2 ρ, α, a) in
(
(τ, n), (ap, p q)

)
(Un)quoting a substituted type is the same as (un)quoting at the type and using the

fundamental theorem at the substitution to lift the witness of the predicate α. As expected,
unquoting at the base type is simply returning the neutral term itself and the witness of the
predicate will be reflexivity, while quote just returns the witness of the predicate.

uA[σ] (ρ, n, α) : JAK
(
σ ◦ ρ, pnq, JσK (ρ, α)

)
:= uA

(
σ ◦ ρ, n, JσK (ρ, α)

)
qA[σ] (ρ, s, α, a) : Σ(s′ : NFA[σ] ρ).s ≡ ps′q := qA

(
σ ◦ ρ, s, JσK (ρ, α), a

)
uU
(
(ρ : TMΓ Ψ), (n : Ne Ψ U[ρ]), α

)
: Σ(n′ : NFU id).pnq ≡ pn′q := neuU (U[]∗n), refl

qU

(
ρ, t, α,

(
a : NF≡U (id, t)

))
: NF≡U (ρ, t) := U[]∗a

uEl Â
(
(ρ : TMΓ Ψ), (n : Ne Ψ (El Â[ρ])), α

)
: Σ(n′ : NFEl Â id).pnq ≡ pn′q

:= neuEl (El[]∗n), refl

qEl Â

(
ρ, t, α,

(
a : NF≡El Â (id, t)

))
: NF≡El Â (ρ, t) := El[]∗a

FSCD 2016

6:14 Normalisation by Evaluation for Dependent Types

We only show the mapping part of unquoting a function. To show that n preserves the
predicate, we show that it preserves the predicate for every argument u for which the predicate
holds (by v). We quote the argument, thereby getting it in normal form (m), and now we
can unquote the neutral term (appn[β]m) to get the result. We also need to transport the
result along the proof p that u ≡ pmq.

map
(

uΠAB

(
(ρ : TMΓ Ψ), (n : NEΠAB ρ), α

))(
β : Vars Ω Ψ

)(
u : TMA (ρ ◦ pβq)

)
(
v : JAKΩ (ρ ◦ pβq, u, JΓKβ α)

)
: JBKΩ

(
(ρ ◦ pβq, u), (pnq[pβq])$u, (JΓKβ α, v)

)
:= let (m, p) := qA (ρ ◦ pβq, u, JΓKβ α, v) in uB

(
(ρ ◦ pβq, u), (p∗appn[β]m), (JΓKβ α, v)

)
The normal form of a function t is lamn for some normal form n which is in the extended
context. We get this n by quoting app t in the extended context. f is the witness that
t preserves the relation for any renaming, and we use the renaming wk id to use f in the
extended context. The argument of f in this case will be the zero de Bruijn index vze and
we need to unquote it to get the witness that it preserves the logical predicate. This is the
place where the Kripke property of the logical relation is needed: the base category of the
Kripke logical relation needs to minimally include the morphism wk id.

qΠAB (ρ, t, α, f) : Σ(t′ : NFΠAB ρ).t ≡ pt′q
:= let a := uA (ρ ◦ pwk idq, var vze, JΓK (wk id)α)

(n, p) := qB
(
ρA, app t, (JΓK (wk id)α, a),map f (wk id) pvzeq a

)
in (lamn,Πη−1 � ap lam p)

We have to verify the equality laws for types. Note that we use function extensionality to
show that the corresponding quote and unquote functions are equal. The naturality proofs
will be equal by K.

(Un)quote preserves [id] by the left identity law.

uA[id] (ρ, n, α) = uA (id ◦ ρ, n, α) ≡ uA (ρ, n, α)
qA[id] (ρ, s, α, a) = qA (id ◦ ρ, s, α, a) ≡ qA (ρ, s, α, a)

(Un)quote preserves [][] by associativity for substitutions.

uA[σ][ν] (ρ, n, α)
= uA

(
σ ◦ (ν ◦ ρ), n, JσK (ν ◦ ρ, JνK (ρ, α))

)
≡ uA

(
(σ ◦ ν) ◦ ρ, n, JσK (ν ◦ ρ, JνK (ρ, α))

)
= uA[σ◦ν] (ρ, n, α)

qA[σ][ν] (ρ, s, α, a)
= qA

(
σ ◦ (ν ◦ ρ), s, JσK (ν ◦ ρ, JνK (ρ, α)), a

)
≡ qA ((σ ◦ ν) ◦ ρ, s, JσK (ν ◦ ρ, JνK (ρ, α)), a)
= qA[σ◦ν] (ρ, s, α, a)

The semantic counterparts of U[] and El[] are verified as follows.

uU[σ] (ρ, n, α) = uU
(
σ ◦ ρ, n, JσK (ρ, α)

)
= (n, refl) = uU (ρ, n, α)

qU[σ] (ρ, t, α, a) = qU
(
σ ◦ ρ, t, JσK (ρ, α), a

)
= a = uU (ρ, t, α, a)

u(El Â)[σ] (ρ, n, α) = uEl Â
(
σ ◦ ρ, n, JσK (ρ, α)

)
= (n, refl) = uEl (Â[σ]) (ρ, n, α)

q(El Â)[σ] (ρ, t, α, a) = qEl Â
(
σ ◦ ρ, t, JσK (ρ, α), a

)
= a = uEl (Â[σ]) (ρ, t, α, a)

T. Altenkirch and A. Kaposi 6:15

For reasons of space, we only state what we need to verify for Π[]. It is enough to show that
the mapping parts of the unquoted functions are equal and that the first components of the
results of quote are equal because the other parts are equalities.

map
(
u(ΠAB)[σ] (ρ, n, α)

)
≡ map

(
uΠA[σ]B[σA] (ρ, n, α)

)
proj1

(
q(ΠAB)[σ] (ρ, t, α, f)

)
≡ proj1

(
qΠA[σ]B[σA] (ρ, t, α, f)

)
The methods for substitutions and terms (including the equality methods) are all trivial.

8 Normalisation

Now we can define the normalisation function and show that it is complete as follows.

normA (t : Tm ΓA) : Nf ΓA := proj1
(

qA
(
id, [id]−1∗t, uΓ id, JtK (id, uΓ id)

))
complA (t : Tm ΓA) : t ≡ pnormA tq := proj2

(
qA
(
id, [id]−1∗t, uΓ id, JtK (id, uΓ id)

))
We prove stability by mutual induction on neutral terms and normal forms.

n : Ne ΓA
JpnqK (id, uΓ id) ≡ uA (id, n, uΓ id)

n : Nf ΓA
normA pnq ≡ v

As our normal forms are indexed by types, we need decidability of equality of types to
show decidability of equality of normal forms. For this, we need to define a model of normal
forms where types are mapped to normal types (which exclude substituted types). We leave
this as future work.

9 Conclusions and further work

We proved normalisation for a basic type theory with dependent types by the technique
of NBE. We evaluate terms into a proof relevant logical predicate model. The model is
depending on the syntax, we need to use the dependent eliminator of the syntax. Our
approach can be seen as merging the presheaf model and the logical relation used in NBE
for simple types [6] into a single logical predicate. This seems to be necessary because of
the combination of type indexing and dependent types: the well-typedness of normalisation
depends on completeness. Another property to note is that we don’t normalise types, we
just index normal terms by not necessarily normal types.

We are currently working on completing the formalisation6 [9]. Most of the work here
is equality reasoning. QIITs make it possible to define the syntax of type theory in a very
concise way, however because of missing computation rules, reasoning with them involves
lots of boilerplate. We expect that a cubical metatheory [12] with its systematic way of
expressing equalities depending on equalities and its additional computation rules would
significantly reduce the amount of boilerplate.

Another challenge is to extend our basic type theory with inductive types, universes and
large elimination. Also, it would be interesting to see how the work fits into the setting of
homotopy type theory (without assuming K). We would also like to investigate whether the
logical predicate interpretation can be generalised to work over arbitrary presheaf models
and how the syntactic model fits here.

6 The current status of formalisation is that we formalised most main constructions but the functoriality
and naturality properties are left as holes.

FSCD 2016

6:16 Normalisation by Evaluation for Dependent Types

Acknowledgements. We would like to thank the anonymous reviewers for their helpful
comments and suggestions.

References
1 Andreas Abel. Towards normalization by evaluation for the βη-calculus of constructions.

In Functional and Logic Programming, pages 224–239. Springer, 2010.
2 Andreas Abel. Normalization by Evaluation: Dependent Types and Impredicativity. PhD

thesis, Habilitation, Ludwig-Maximilians-Universität München, 2013.
3 Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-

Löf type theory with typed equality judgements. In Logic in Computer Science, 2007. LICS
2007. 22nd Annual IEEE Symposium on, pages 3–12. IEEE, 2007.

4 The Agda Wiki, 2015. Available online.
5 Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. Normalization by

evaluation for typed lambda calculus with coproducts. In 16th Annual IEEE Symposium
on Logic in Computer Science, pages 303–310, 2001.

6 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction
of a reduction free normalization proof. In David Pitt, David E. Rydeheard, and Peter
Johnstone, editors, Category Theory and Computer Science, LNCS 953, pages 182–199,
1995.

7 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalisa-
tion for a polymorphic system. In 11th Annual IEEE Symposium on Logic in Computer
Science, pages 98–106, 1996.

8 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalisa-
tion for system F . Manuscript, 1997. URL: http://www.cs.nott.ac.uk/~txa/publ/f97.
pdf.

9 Thorsten Altenkirch and Ambrus Kaposi. Agda formalisation for the paper Normalisation
by Evaluation for Dependent Types, 2016. Available online at the second author’s website.

10 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient in-
ductive types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, pages 18–29, New York, NY, USA,
2016. ACM. doi:10.1145/2837614.2837638.

11 Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for
typed λ-calculus. In Logic in Computer Science, 1991. LICS’91., Proceedings of Sixth
Annual IEEE Symposium on, pages 203–211. IEEE, 1991.

12 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
a constructive interpretation of the univalence axiom. Manuscript, December 2015.

13 Nils Anders Danielsson. A formalisation of a dependently typed language as an inductive-
recursive family. In Types for Proofs and Programs, pages 93–109. Springer, 2006.

14 Olivier Danvy. Type-directed partial evaluation. Springer, 1999.
15 Peter Dybjer. Internal type theory. In Types for Proofs and Programs, pages 120–134.

Springer, 1996.
16 Martin Hofmann. Syntax and semantics of dependent types. In Extensional Constructs in

Intensional Type Theory, pages 13–54. Springer, 1997.
17 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD

thesis, Chalmers University of Technology, 2007.
18 Steven Schäfer, Gert Smolka, and Tobias Tebbi. Completeness and decidability of de Bruijn

substitution algebra in Coq. In Proceedings of the 2015 Conference on Certified Programs
and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015, pages 67–73. ACM, 2015.

http://www.cs.nott.ac.uk/~txa/publ/f97.pdf
http://www.cs.nott.ac.uk/~txa/publ/f97.pdf
http://dx.doi.org/10.1145/2837614.2837638

	Introduction
	Specifying normalisation
	NBE for simple type theory
	NBE for type theory
	Structure of the proof and the paper
	Related work

	Metatheory and notation
	Object theory
	The category of renamings
	The logical predicate interpretation
	Normal forms
	Quote and unquote
	Normalisation
	Conclusions and further work

