
Complexity Hierarchies and Higher-Order
Cons-Free Rewriting∗

Cynthia Kop1 and Jakob Grue Simonsen2

1 Department of Computer Science, University of Copenhagen (DIKU),
Copenhagen, Denmark
kop@di.ku.dk

2 Department of Computer Science, University of Copenhagen (DIKU),
Copenhagen, Denmark
{simonsen@di.ku.dk

Abstract
Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-
hand sides of rules are subterms of constructor terms in the left-hand side; the computational
intuition is that rules cannot build new data structures. It is well-known that cons-free program-
ming languages can be used to characterize computational complexity classes, and that cons-free
first-order term rewriting can be used to characterize the set of polynomial-time decidable sets.

We investigate cons-free higher-order term rewriting systems, the complexity classes they
characterize, and how these depend on the order of the types used in the systems. We prove that,
for every k ≥ 1, left-linear cons-free systems with type order k characterize EkTIME if arbitrary
evaluation is used (i.e., the system does not have a fixed reduction strategy).

The main difference with prior work in implicit complexity is that (i) our results hold for
non-orthogonal term rewriting systems with possible rule overlaps with no assumptions about
reduction strategy, (ii) results for such term rewriting systems have previously only been obtained
for k = 1, and with additional syntactic restrictions on top of cons-freeness and left-linearity.

Our results are apparently among the first implicit characterizations of the hierarchy E =
E1TIME (E2TIME (· · · . Our work confirms prior results that having full non-determinism
(via overlaps of rules) does not directly allow characterization of non-deterministic complexity
classes like NE. We also show that non-determinism makes the classes characterized highly
sensitive to minor syntactic changes such as admitting product types or non-left-linear rules.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.2 Grammars and
Other Rewriting Systems

Keywords and phrases higher-order term rewriting, implicit complexity, cons-freeness, ETIME
hierarchy

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.23

1 Introduction

In [14], Jones introduces cons-free programming: working with a small functional programming
language, cons-free programs are exactly those where function bodies cannot contain use
of data constructors (the “cons” operator on lists). Put differently, a cons-free program is

∗ The authors are supported by the Marie Skłodowska-Curie action “HORIP”, program H2020-MSCA-IF-
2014, 658162 and by the Danish Council for Independent Research Sapere Aude grant “Complexity via
Logic and Algebra” (COLA).

© Cynthia Kop and Jakob Grue Simonsen;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Brigitte Pientka and Delia Kesner; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

read-only: data structures cannot be created or altered, only read from the input; and any
data passed as arguments to recursive function calls must thus be part of the original input.

The interest in such programs lies in their applicability to computational complexity: by
imposing cons-freeness, the resulting set of programs can only decide the sets in a proper
subclass of the Turing-decidable sets, indeed are said to characterize the subclass. Jones
goes on to show that adding further restrictions such as type order or enforcing tail recursion
lowers the resulting expressiveness to known classes. For example, cons-free programs with
data order 0 can decide exactly the sets in PTIME, while tail-recursive cons-free programs
with data order 1 can decide exactly the sets in PSPACE. The study of such restrictions and
the complexity classes characterized is a research area known as implicit complexity and has
a long history with many distinct approaches (see, e.g., [4, 6, 5, 7, 8, 12, 17]).

Rather than a toy language, it is tantalizing to consider term rewriting instead. Term
rewriting systems have no fixed evaluation order (so call-by-name or call-by-value can be
introduced as needed, but are not required); and term rewriting is natively non-deterministic,
allowing distinct rules to be applied (“functions to be invoked”) to the same piece of syntax,
hence could be useful for extensions towards non-deterministic complexity classes. Implicit
complexity using term rewriting has seen significant advances using a plethora of approaches
(e.g. [1, 2, 3]). Most of this research has, however, considered fixed evaluation orders (most
prominently innermost reduction), and if not, then systems which are either orthogonal, or
at least confluent (e.g. [2]). Almost all of the work considers only first-order rewriting.

The authors of [11] provide a first definition of cons-free term rewriting without constraints
on evaluation order or confluence requirements, and prove that this class – limited to first-
order rewriting – characterizes PTIME. However, they impose a rather severe partial linearity
restriction on the programs. This paper seeks to answer two questions: (i) what happens if no
restrictions beyond left-linearity and cons-freeness are imposed? And (ii) what if higher-order
term rewriting – including bound variables as in the lambda calculus – is allowed? We obtain
that kth-order cons-free term rewriting exactly characterizes EkTIME. This is surprising
because in Jones’ rewriting-like language, kth-order programs characterize EXPk−1TIME:
surrendering both determinism and evaluation order thus significantly increases expressivity.

An extended version, including appendices with full proofs, is available online [16].

2 Preliminaries

2.1 Computational complexity
We presuppose introductory working knowledge of computability and complexity theory
(corresponding to standard textbooks, e.g., [13]). Notation is fixed below.

Turing Machines (TMs) are triples (A,S, T) where A is a finite set of tape symbols such
that A ⊇ I ∪ {␣}, where I ⊇ {0, 1} is a set of initial symbols and ␣ /∈ I is the special
blank symbol; S ⊇ {start, accept, reject} is a finite set of states, and T is a finite set
of transitions (i, r, w, d, j) with i ∈ S \ {accept, reject} (the original state), r ∈ A (the
read symbol), w ∈ A (the written symbol), d ∈ {L, R} (the direction), and j ∈ S (the
result state). We sometimes write this transition as i r/w d===⇒ j. All TMs in the paper are
deterministic and (which we can assume wlog.) do not get stuck: for every pair (i, r) with
i ∈ S \ {accept, reject} and r ∈ A there is exactly one transition (i, r, w, d, j). Every TM
has a single, right-infinite tape.

A valid tape is a right-infinite sequence of tape symbols with only finitely many not ␣. A
configuration of a TM is a triple (t, p, s) with t a valid tape, p ∈ N and s ∈ S. The transitions
T induce a binary relation ⇒ between configurations in the obvious way.

C. Kop and J. G. Simonsen 23:3

A TM with input alphabet I decides X ⊆ I+ if for any string x ∈ I+, we have x ∈ X
iff (␣x1 . . . xn␣␣ . . . , 0, start)⇒∗ (t, i, accept) for some t, i, and (␣x1 . . . xn␣␣ . . . , 0, start)
⇒∗ (t, i, reject) otherwise (i.e., the machine halts on all inputs, ending in accept or reject
depending on whether x ∈ X). If f : N −→ N is a function, a (deterministic) TM runs in
time λn.f(n) if, for each n ∈ N \ {0} and each x ∈ In: (␣x␣␣ . . . , 0, start) ⇒≤f(n) (t, i, s)
for s ∈ {accept, reject}, where ⇒≤f(n) denotes a sequence of at most f(n) transitions.

Complexity and the ETIME hierarchy

For k, n ≥ 0, let exp0
2(n) = n and expk+1

2 (n) = 2expk
2 (n) = expk2(2n).

IDefinition 1. Let f : N −→ N be a function. Then, TIME (f(n)) is the set of all S ⊆ {0, 1}+

such that there exist a > 0 and a deterministic TM running in time λn.a ·f(n) that decides S
(i.e., S is decidable in time O(f(n))). For k ≥ 1 define: EkTIME ,

⋃
a∈N TIME

(
expk2(an)

)
Observe in particular that E1TIME =

⋃
a∈N TIME

(
exp1

2(an)
)

=
⋃
a∈N TIME (2an) = E

(where E is the usual complexity class of this name, see e.g., [19, Ch. 20]).
Note that for any d, k ≥ 1, we have (expk2(x))d = 2d·expk−1

2 (x) ≤ 2expk−1
2 (dx) = expk2(dx).

Hence, if P is a polynomial with non-negative integer coefficients and the set S ⊆ {0, 1}+ is
decided by an algorithm running in time O(P (expk2(an))) for some a ∈ N, then S ∈ EkTIME.

Using the Time Hierarchy Theorem [20], it is easy to see that E = E1TIME (E2TIME (
E3TIME (· · · . The union

⋃
k∈N EkTIME is the set ELEMENTARY of elementary lan-

guages.

2.2 Higher-order rewriting
Unlike first-order term rewriting, there is no single, unified approach to higher-order term
rewriting, but rather a number of different co-extensive systems with distinct syntax; for an
overview of basic issues, see [21]. We will use Algebraic Functional Systems (AFSs) [15, 9],
in the simplest form (which disallows partial applications). However, our proofs do not use
any particular features of AFSs that preclude using different higher-order formalisms.

Types and Terms

We assume a non-empty set S of sorts, and define types and type orders as follows: (i) every
ι ∈ S is a type of order 0 ; (ii) if σ, τ are types of order n and m respectively, then σ ⇒ τ is
a type of order max(n+ 1,m). Here ⇒ is right-associative, so σ ⇒ τ ⇒ π should be read
σ ⇒ (τ ⇒ π). A type declaration of order k ≥ 0 is a tuple [σ1 × · · · × σn] ⇒ ι with all σi
types of order at most k − 1, and ι ∈ S; if n = 0 this declaration may simply be denoted ι.

We additionally assume given disjoint sets F of function symbols and V of variables. Each
symbol in F is associated with a unique type declaration, and each variable in V with a
unique type. The set T (F ,V) of terms over F and V consists of those expressions s such
that ` s : σ can be derived for some type σ using the following clauses:

(var) ` x : σ if x : σ ∈ V
(app) ` s · t : τ if s : σ ⇒ τ and t : σ
(abs) ` λx.s : σ ⇒ τ if x : σ ∈ V and s : τ
(fun) ` f(s1, . . . , sn) : ι if f : [σ1 × . . .× σn]⇒ ι ∈ F and s1 : σ1, . . . , sn : σn

Clearly, each term has a unique type. Note that a function symbol f : [σ1 × . . .× σn]⇒ ι

takes exactly n arguments, and its output type ι is a sort. The abstraction construction λx.s
binds occurrences of x in s as in the λ-calculus, and α-conversion is defined for terms mutatis
mutandis; we identify terms modulo α-conversion, renaming bound variables if necessary.

FSCD 2016

23:4 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

Application is left-associative. The set of variables of s which are not bound is denoted
FV (s). A term s is closed if FV (s) = ∅. We say that a term s has base type if ` s : ι ∈ S.

I Example 2. We will often use extensions of the signature Fstring, given by:

true : bool 0 : [string]⇒ string B : string
false : bool 1 : [string]⇒ string

Terms are for instance true, λx.0(1(x)) and (λx.0(x)) · 1(y). The first and last of these
terms have base type, and the first two are closed; the last one has y as a free variable.

A substitution is a type-preserving map from V to T (F ,V) which is the identity on all
but finitely many variables. Substitutions γ are extended to arbitrary terms s, notation sγ,
by using α-conversion to rename all bound variables in s to fresh ones, then replacing each
unbound variable x by γ(x). A context C[] is a term in T (F ,V) in which a single occurrence
of a variable is replaced by a symbol � /∈ F ∪ V. The result of replacing � in C[] by a term
s (of matching type) is denoted C[s]. Free variables may be captured; e.g. (λx.�)[x] = λx.x.
If s = C[t] we say that t is a subterm of s, notation tE s, or tC s if C[] 6= �.

Rules and Rewriting

A rule is a pair `→ r of terms in T (F ,V) with the same sort (i.e. ` ` : ι and ` r : ι for some
ι ∈ S), such that ` has the form f(`1, . . . , `n) with f ∈ F and such that FV (r) ⊆ FV (`). A
rule `→ r is left-linear if every variable occurs at most once in `. We assume given a set R
of rules, and define the one-step rewrite relation →R on T (F ,V) as follows:

C[`γ] →R C[rγ] with `→ r ∈ R, C a context, γ a substitution
C[(λx.s) · t] →R C[s[x := t]]

We may write s→β t for a rewrite step using (beta). Let →+
R denote the transitive closure

of →R and →∗R the transitive-reflexive closure. We say that s reduces to t if s→R t. A term
s is in normal form if there is no t such that s→R t, and t is a normal form of s if s→∗R t

and t is in normal form. An AFS is a pair (F ,R), generating a set of terms and a reduction
relation. The order of an AFS is the maximal order of any type declaration in F .

I Example 3. Recall the signature Fstring from Example 2; let Fcount be its extension with
succ : [string]⇒ string. We consider the AFS (Fcount,Rcount) with the following rules:

(A) succ(B) → 1(B) (B) succ(0(xs)) → 1(xs)
(C) succ(1(xs)) → 0(succ(xs))

This is a first-order AFS, implementing the successor function on a binary number expressed
as a bitstring with the least significant digit first. For example, 5 is represented by 1(0(1(B))),
and indeed succ(1(0(1(B))))→R 0(succ(0(1(B))))→R 0(1(1(B))), which represents 6.

I Example 4. Alternatively, we may define a bit-sequence as a function: let Fhocount be
the extension of Fstring with not : [bool]⇒ bool, ite : [bool× bool× bool]⇒ bool and
all, succ : [(bool⇒ bool)× string]⇒ string. Let Rhocount consist of:

(A) ite(true, x, y) → x (C) not(x) → ite(x, false, true)
(B) ite(false, x, y) → y (D) all(F,B) → F ·B
(E) all(F, a(xs)) → ite(F · a(xs), all(F, xs), false) Jfor a ∈ {0, 1}K
(F) succ(F,B) → not(F ·B)
(G) succ(F, a(xs)) → ite(all(F, xs), not(F · a(xs)), F · a(xs)) Jfor a ∈ {0, 1}K

C. Kop and J. G. Simonsen 23:5

Note that (E) and (G) each represent two rules: one for each choice of a. This AFS is second-
order, due to all and succ. A function F represents a (potentially infinite) binary number,
with the ith bit given by F · t for any bitstring t of length i (counting from i = 0, so t = B).
Thus, the number 0 is represented by, e.g., λx.false, and 1 by ONE ::= λx.succ(λy.false, x).
Indeed ONE · B = (λx.succ(λy.false, x)) · B →β succ(λy.false,B) →R not((λy.false) ·
B)→β not(false)→R true, and ONE · 0k(B)→∗R false for k > 0.

We fix a partitioning of F into two disjoint sets, D of defined symbols and C of constructor
symbols, such that f ∈ D for all f(~̀) → r ∈ R. A term s is a constructor term if it is in
T (C,V) and a proper constructor term if it also contains no applications or abstractions. A
closed proper constructor term is also called a data term. The set of data terms is denoted DA.
Note that data terms are built using only clause (fun). A term f(s1, . . . , sn) with f ∈ D
and each si ∈ DA is called a basic term. A constructor rewriting system is an AFS where
each rule f(`1, . . . , `n)→ r ∈ R satisfies that all `i are proper constructor terms (and f ∈ D).
An AFS is a left-linear constructor rewriting system if moreover each rule is left-linear.

In a constructor rewriting system, β-reduction steps can always be done prior to other
steps: if s has a normal form q and s→β t, then also t→∗R q. Therefore we can (and will!)
safely assume that the right-hand sides of rules are in normal form with respect to →β .

I Example 5. The AFSs from Examples 3 and 4 are left-linear constructor rewriting systems.
In Example 3, C = Fstring and D = {succ}. If a rule 0(B) → B were added to Rcount, it
would no longer be a constructor system, as this would force 0 to be in D, conflicting with
rule (B). A rule such as equal(xs, xs)→ true would break left-linearity.

I Remark. Constructor rewriting systems – typically left-linear – are very common both in
the literature on term rewriting and in functional programming, where similar restrictions
are imposed. Left-linear systems are well-behaved: contraction of non-overlapping redexes
cannot destroy redexes that they themselves are arguments of. Constructor systems avoid
non-root overlaps, and allow for a clear split between data and intermediate terms.

They are, however, less common in the literature on higher-order term rewriting, and the
notion of a proper constructor term is new for AFSs (although the exclusion of abstractions
and applications in the left-hand sides roughly corresponds to fully extended pattern HRSs
in Nipkow’s style of higher-order rewriting [18]).

Deciding problems using rewriting

Like Turing Machines, an AFS can decide a set X ⊆ I+ (where I is a finite set of symbols).
Consider AFSs with a signature F = C ∪ D where C contains symbols B : string, true :
bool, false : bool and a : [string]⇒ string for all a ∈ I. There is an obvious correspon-
dence between elements of I+ and data terms of sort string; if x ∈ I+, we write x for
the corresponding data term. The AFS accepts D ⊆ I+ if there is a designated defined
symbol decide : [string]⇒ bool such that, for every x ∈ I+ we have decide(x)→∗R true
iff x ∈ D. More generally, we are interested in the reductions of a given basic term to a data
term.

We use the acceptance criterion above – reminiscent of the acceptance criterion of non-
deterministic Turing machines – because term rewriting is inherently non-deterministic unless
further constraints (e.g., orthogonality) are imposed. Thus, an input x is “rejected” by
a rewriting system iff there is no reduction to true from decide(x); and as evaluation is
non-deterministic, there may be many distinct reductions starting from decide(x).

FSCD 2016

23:6 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

3 Cons-free rewriting

Since the purpose of this research is to find groups of programs which can handle restricted
classes of Turing-computable problems, we will impose certain limitations. In particular, we
will limit interest to cons-free left-linear constructor rewriting systems.

I Definition 6. A rule `→ r, presented using α-conversion in a form where all binders are
distinct from FV (`), is cons-free if for all subterms s = f(s1, . . . , sn)E r with f ∈ C, we have
sC ` or s ∈ DA. A left-linear constructor AFS (F ,R) is cons-free if all rules in R are.

This definition corresponds largely to the definitions of cons-freeness appearing in [11, 14].
In a cons-free AFS, it is not possible to create more data, as we will see in Section 3.1.

I Example 7. The AFS from Example 3 is not cons-free due to rules (B) and (C). The
AFS from Example 4 is cons-free (in rules (E) and (G), a(xs) is allowed to occur on the
right despite the constructor a, because it also occurs on the left). However, there are few
interesting basic terms, as we do not consider for instance succ(λx.false,B) basic.

I Remark. The limitation to left-linear constructor AFSs is standard, but also necessary: if
either restriction is dropped, our limitation to cons-free AFSs becomes meaningless. In the
case of constructor systems, this is obvious: if defined symbols are allowed to occur within a
left-hand side, then we could simply let D := F and have a “cons-free” system. The case of
left-linearity is a bit more sophisticated; this we will study in more detail in Section 6.

As the first two restrictions are necessary to give meaning to the third, we will consider
the limitation to left-linear constructor AFSs implicit in the notion “cons-free”.

3.1 Properties of Cons-free Term Rewriting
As mentioned, cons-free term rewriting cannot create new data. This means that the set of
data terms that might occur during a reduction starting in some basic term s are exactly the
data terms occurring in s, or those occurring in the right-hand side of some rule. Formally:

I Definition 8. Let (F ,R) be a constructor AFS. For a given term s, the set Bs contains
all data terms t such that (i) sD t, or (ii) r D t for some rule `→ r ∈ R.

Bs is a set of data terms, is closed under subterms and, since we have assumed R to be
fixed, has a linear number of elements in the size of s. The property that no new data is
generated by reducing s is formally expressed by the following result:

I Definition 9 (B-safety). Let B ⊆ DA be a set which (i) is closed under taking subterms,
and (ii) contains all data terms occurring as a subterm of the right-hand side of a rule in R.
A term s is B-safe if for all t with sD t: if t has the form c(t1, . . . , tm) with c ∈ C, then t ∈ B.

I Lemma 10. If s is B-safe and s→R t, then t is B-safe.

Proof Sketch. By induction on the form of s; the result follows trivially by the induction
hypothesis if the reduction does not take place at the root, leaving only the base cases
s = (λx.u) ·v →R u[x := v] = t and s = `γ →R rγ = t. The first of these is easy by induction
on the form of the (B-safe!) term u, the second follows by induction on the form of r (which,
as the right-hand side of a cons-free rule, has convenient properties). J

Thus, if we start with a basic term f(~s), any data terms occurring in a reduction f(~s)→∗R t

(directly or as subterms) are in Bf(~s). This insight will be instrumental in Section 5.

C. Kop and J. G. Simonsen 23:7

I Example 11. By Lemma 10, functions in a cons-free AFSs cannot build recursive data.
To code around this, we might use subterms of the input as a measure of length. Consider
the decision problem whether a given bitstring is a palindrome. We cannot use a rule such as
decide(cs)→ equal(cs, reverse(cs)) since, by Lemma 10, it is impossible to define reverse.
Instead, a typical solution uses a string ys of length k to find ck in c0 . . . cn−1:

decide(cs) → palindrome(cs, cs)
palindrome(cs,B) → true

palindrome(cs, a(ys)) → and(palindrome(cs, ys), chka(cs, ys)) Ja ∈ {0, 1}K
and(true, x) → x chka(a(xs),B) → true Ja ∈ {0, 1}K

and(false, x) → false chka(b(xs),B) → false Ja, b ∈ {0, 1} ∧ a 6= bK
chka(b(xs), c(ys)) → chka(xs, ys) Ja, b, c ∈ {0, 1}K

(The signature extends Fstring, but is otherwise omitted as types can easily be derived.)

Through cons-freeness, we obtain another useful property: we do not have to consider
constructors which take functional arguments.

I Lemma 12. Given a cons-free AFS (F ,R) with F = D∪C, let Y = {c : [σ1× · · · × σn]⇒
ι ∈ C some σi is not a sort}. Define F ′ := F \ Y , and let R′ consist of those rules in R not
using any element of Y in either left- or right-hand side. Then (a) all data and B-safe terms
are in T (F ′, ∅), and (b) if s is a basic term and s→∗R t, then t ∈ T (F ′,V) and s→∗R′ t.

Proof. Since data terms have base type, and the subterms of data terms are data terms, we
have (a). Then, B-safe terms can only be matched by rules in R′, so Lemma 10 gives (b). J

Therefore we may safely assume that all elements of C are at most first-order.

3.2 A larger example
None of our examples so far have taken advantage of the native non-determinism of term
rewriting. To demonstrate the possibilities, we consider a first-order cons-free AFS that solves
the Boolean satisfiability problem (SAT). This is striking because, in Jones’ language in [14],
first-order programs cannot solve this problem unless P = NP, even if a non-deterministic
choose operator is added [10]. The crucial difference is that we, unlike Jones, do not employ
a call-by-value evaluation strategy.

Given n boolean variables x1, . . . , xn and a boolean formula ψ ::= ϕ1 ∧ · · · ∧ ϕn, the
satisfiability problem considers whether there is an assignment of each xi to > or ⊥ such
that ψ evaluates to >. Here, each clause ϕi has the form ai1 ∨ · · · ∨ aiki

, where each literal
aij is either some xp or ¬xp. We represent this problem as a string over I := {0, 1,#, ?}:
the formula ψ is represented by L ::= b1,1 . . . b1,n#b2,1 . . .#bm,1 . . . bm,n#, where each bi,j is
1 if xj is a literal in ϕi, is 0 if ¬xj is a literal in ϕi, and is ? otherwise.

I Example 13. The satisfiability problem for (x1∨¬x2)∧(x2∨¬x3) is encoded as 10?#?10#.

Letting 0, 1,#, ? : [string] ⇒ string, and assuming other declarations clear from
context, we claim that the AFS in Figure 1 can reduce decide(L) to true iff ψ is satisfiable.

In this AFS, we follow some of the same ideas as in Example 11. In particular, any string
of the form bi . . . bn# . . . with each bj ∈ {0, 1, ?} is considered to represent the number i. The
rules for eq are defined so that eq(s, t) tests equality of these numbers, not the full strings.

The key idea new to this example is that we use terms not in normal form to represent a
set of numbers. If we are interested in numbers in {1, . . . , n}, then a set X ⊆ {1, . . . , n} is

FSCD 2016

23:8 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

eq(#(xs),#(ys)) → true eq(#(xs), a(ys)) → false
eq(a(xs), b(ys)) → eq(xs, ys) eq(a(xs),#(ys)) → false

}
Jfor a, b ∈ {0, 1, ?}K

decide(cs) → assign(cs,B,B, cs)
assign(#(xs), s, t, cs) → main(s, t, cs)
assign(a(xs), s, t, cs) → assign(xs, either(a(xs), s), t, cs)
assign(a(xs), s, t, cs) → assign(xs, s, either(a(xs), t), cs)

}
Jfor a ∈ {0, 1, ?}K

either(xs, q) → xs either(xs, q) → q

main(s, t, ?(xs)) → main(s, t, xs)
main(s, t, 0(xs)) → test(s, t, xs, eq(t, 0(xs)), eq(s, 0(xs)))
main(s, t, 1(xs)) → test(s, t, xs, eq(s, 1(xs)), eq(t, 1(xs)))

main(s, t,B) → true test(s, t, xs, true, z) → main(s, t, skip(xs))
main(s, t,#(xs)) → false test(s, t, xs, z, true) → main(s, t, xs)
skip(#(xs)) → xs

skip(a(xs)) → skip(xs) Jfor a ∈ {0, 1, ?}K

Figure 1 A cons-free first-order AFS solving the satisfiability problem.

encoded as a pair (s, t) of terms such that, for i ∈ {1, . . . , n}: s→∗R q for some representation
q of i if and only if i ∈ X, and t→∗R q for some representation q of i if and only if i /∈ X.

This is possible because we do not use a call-by-value or similar reduction strategy: an
evaluation of this AFS is allowed to postpone reducing such terms, and we focus on those
reductions. The AFS is constructed in such a way that reductions which evaluate these “sets”
too eagerly simply end in an irreducible, non-data state.

Now, an evaluation starting in decide(L) first non-deterministically constructs a “set”X
containing those boolean variables assigned true: decide(L) →∗R main(s, t, L). Then, the
main function goes through L, finding for each clause a literal that is satisfied by the
assignment. Encountering for instance bij = 1, we determine if j ∈ X by comparing both a
reduct of s and of t to j. If s→∗R “j” then j ∈ X, if t→∗R “j” then j /∈ X; in either case, we
continue accordingly. If the evaluation state is incorrect, or if s or t both non-deterministically
reduce to some other term, the evaluation gets stuck in a non-data normal form.

I Example 14. To solve satisfiability of (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3), we reduce decide(L),
where L = 10?#?10#. First, we build a valuation; the choices made by the assign rules
are non-deterministic, but a possible reduction is decide(L) →∗R main(s, t, L), where s =
either(10?#?10#,B) and t = either(?#?10#, either(0?#?10#,B)). Recall that, since
n = 3, 10?#?10# represents 1 while ?#?10# and 0?#?10# represent 3 and 2 respectively.
Thus, this corresponds to the valuation [x1 := >, x2 := ⊥, x3 := ⊥].

Then, the main loop recurses over the problem. Note that s reduces to a term 10?# . . . and
t reduces to both ?# . . . and 0?# Therefore, main(s, t, L) = main(s, t, 11?#?01#) →∗R
main(s, t, skip(1?#?01#)) →∗R main(s, t, ?01#): the first clause is confirmed since x1 is
mapped to >, so the clause is removed and the loop continues with the second clause.
Next, the loop passes over those variables whose assignment does not contribute to verifying
this clause, until the clause is confirmed by x3: main(s, t, ?01#) →R main(s, t, 01#) →∗R
main(s, t, 1#)→∗R main(s, t, skip(#))→R main(s, t,B)→R true.

Using non-determinism, the term in Example 14 could easily have been reduced to false
instead, simply by selecting a different valuation. This is not problematic: by definition,

C. Kop and J. G. Simonsen 23:9

the AFS accepts the set of satisfiable formulas if decide(L)→∗R true if and only if L is a
satisfiable formula: false negatives or reductions which do not end in a data state are allowed.

A longer example derivation is given in Appendix B of the full version of the paper.

4 Simulating EkTIME Turing machines

In order to see that cons-free term rewriting captures certain classes of decidable sets, we will
simulate Turing Machines. For this, we use an approach very similar to that by Jones [14].
We introduce constructor symbols a : [string] ⇒ string for all a ∈ A (including the
blank symbol, which we shall refer to as B) along with B and the booleans, s : state for
all s ∈ S ∪ {fail}, L, R : direction and action : [string × direction × state] ⇒ trans,
end : [state]⇒ trans, NA : trans. We will introduce defined symbols and rules such that,
for any string c ∈ (A \ {␣})∗ – represented as the term cs := c1(c2(· · · cn(B) · · ·)) – we have:

decide(cs)→∗R true if and only if (␣c␣␣ . . . , 0, start)⇒∗ (t, i, accept) for some t, i;
decide(cs)→∗R false if and only if (␣c␣␣ . . . , 0, start)⇒∗ (t, i, reject) for some t, i.

As rules may be overlapping, it is possible that decide(cs) will have additional normal forms,
but only one normal form will be a data term.

The rough idea of the simulation is to represent non-negative integers as terms and let
tape(n, p) reduce to the symbol at position p on the tape at the start of the nth step, while
state(n, p) returns the state of the machine at time n, provided the tape head is at position
p. If the tape head of the machine is not at position p at time n, then state(n, p) should
return fail instead; this makes it possible to test the position of the tape head at any given
time. As the machine is deterministic, we can devise rules to compute these terms from
earlier configurations.

Finding a suitable representation of integers and corresponding manipulating functions is
the most intricate part of this simulation, where we may need both higher-order functions
and non-deterministic rules. Therefore, let us first assume that this can be done. Then, for a
Turing machine which is given to run in time bounded above by λx.P (x), we define the AFS
in Figure 2. Note that, by construction, any occurrence of cs can only be instantiated by the
input string during evaluation.

Counting

The goal, then, is to find a representation of numbers and functionality to do four things:
calculate [P (|cs|)] or an overestimation (as the machine cannot move from its final state);
test whether a “number” represents 0;
given [n], calculate [n− 1], provided n > 0 – so it suffices to determine [max(n− 1, 0)];
given [n], calculate [n+ 1], provided n+ 1 ≤ P (|cs|) as necessarily transition(cs, [n], [p])
→R NA when n < p and n never increases – so it suffices to determine [min(n+1, P (|cs|))].

Moreover, these calculations all occur in the right-hand side of a rule containing the initial
input list cs on the left, which they can therefore use (for instance to recompute P (|cs|)).

Rather than representing a number by a single term, we will use tuples of terms (which are
not terms themselves, as a pairing constructor would conflict with cons-freeness). To illustrate
this, suppose we represent each number n by a pair (n1, n2). Then the predecessor and
successor function must also be split, e.g. pred1(cs, n1, n2)→∗R n′1 and pred2(cs, n1, n2)→∗R
n′2 for (n′1, n′2) some tuple representing n− 1. Thus, for instance the first test rule becomes:

test(fail, cs, n1, n2, p1, p2)→ findanswer(cs, n1, n2, pred1(cs, p1, p2), pred2(cs, p1, p2))

FSCD 2016

23:10 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

ifelseι(true, y, z) → y

ifelseι(false, y, z) → z

}
Jfor ι ∈ {string, state}K

get(B, [i], q) → q

get(a(xs), [i], q) → ifelsestring([i = 0], a(B), get(xs, [i− 1], q)) Jfor all a ∈ IK
inputtape(cs, [p]) → ifelsestring([p = 0], B(B), get(cs, [p− 1], B(B)))

tape(cs, [n], [p]) → ifelsestring([n = 0], inputtape(cs, [p]), tapex(cs, [n− 1], [p]))
tapex(cs, [n], [p]) → tapey(cs, [n], [p], transition(cs, [n], [p]))

tapey(cs, [n], [p], action(q, d, s)) → q tapey(cs, [n], [p], NA) → tape(cs, [n], [p])
tapey(cs, [n], [p], end(s)) → tape(cs, [n], [p])

state(cs, [n], [p]) → ifelsestate([n = 0], state0(cs, [p]), statex(cs, [n− 1], [p]))
state0(cs, [p]) → ifelsestate([p = 0], start, fail)

statex(cs, [n], [p]) → statey(transition(cs, [n], [p− 1]), transition(cs, [n], [p]),
transition(cs, [n], [p+ 1]))

statey(action(q, R, s), y, z) → s statey(NA, action(q, d, s), z) → fail
statey(action(q, L, s), y, z) → fail statey(NA, NA, action(q, L, s)) → s

statey(end(s), y, z) → fail statey(NA, NA, action(q, R, s)) → fail
statey(NA, end(s), z) → s statey(NA, NA, end(s)) → fail

transition(cs, [n], [p]) → transitionhelp(state(cs, [n], [p]), tape(cs, [n], [p]))
transitionhelp(fail, q) → NA
transitionhelp(s, r(B)) → action(w(B), d, t) Jfor all s

r/w d
===⇒ t ∈ T K

transitionhelp(s, q) → end(s) Jfor s ∈ {accept, reject}K

decide(cs) → findanswer(cs, [P (|cs|)], [P (|cs|)])
findanswer(cs, [n], [p]) → test(state(cs, [n], [p]), cs, [n], [p])

test(fail, cs, [n], [p]) → findanswer(cs, [n], [p− 1])
test(accept, cs, [n], [p]) → true
test(reject, cs, [n], [p]) → false

Figure 2 Simulating a deterministic Turing Machine running in λx.P (x) time.

Following Jones [14], we use the notion of a counting module which provides an AFS with
a representation of a counting function and a means of computing. Counting modules can
be composed, making it possible to count to greater numbers. Due to the laxity of term
rewriting, our constructions are technically quite different from those of [14].

I Definition 15 (Counting Module). Write F = C ∪D for the signature in Figure 2. For P a
function from N to N, a P -counting module of order k is a tuple Cπ ::= (~σ,Σ, R,A, 〈·〉) s.t.:

~σ is a sequence of types σ1 × · · · × σa where each σi has order at most k − 1;
Σ is a kth-order signature disjoint from F , with designated symbols zeroπ : [string×~σ]⇒
bool and, for 1 ≤ i ≤ a with σi = τ1 ⇒ . . . ⇒ τm ⇒ ι symbols prediπ, suciπ, inviπ :
[string× ~σ × ~τ]⇒ ι and seediπ : [string× ~τ]⇒ κ;
R is a set of cons-free rules f(~̀)→ r with f ∈ Σ, each `i ∈ T (C,V) and r ∈ T (C ∪ Σ,V);
for every string cs ⊆ I+, the set Acs ⊆ {(s1, . . . , sa) ∈ T (C ∪Σ)a |` sj : σj for 1 ≤ j ≤ a};
for every string cs, 〈·〉cs is a surjective mapping from Acs to {0, . . . , P (|cs|)− 1};
writing e.g. prediπ[~s] : σi for the term λ~y.prediπ(~s, ~y), the following properties are satisfied:

(seed1
π[cs], . . . , seedaπ[cs]) ∈ Acs and 〈(seed1

π[cs], . . . , seedaπ[cs])〉cs = P (|cs|)− 1
and for all (s1, . . . , sa) ∈ Acs with 〈(s1, . . . , sa)〉cs = m:

C. Kop and J. G. Simonsen 23:11

(pred1
π[cs, ~s], . . . , predaπ[cs, ~s]) and (suc1

π[cs, ~s], . . . , sucaπ[cs, ~s]) and (inv1
π[cs, ~s], . . . ,

invaπ[cs, ~s]) are all in Acs
〈(pred1

π[cs, ~s], . . . , predaπ[cs, ~s])〉cs = max(m− 1, 0)
〈(suc1

π[cs, ~s], . . . , sucaπ[cs, ~s])〉cs = min(m+ 1, P (|cs|)− 1)
〈(inv1

π[cs, ~s], . . . , invaπ[cs, ~s])〉cs = P (|cs|)− 1−m
zeroπ(cs, ~s)→∗R true iff m = 0 and zeroπ(cs, ~s)→∗R false iff m > 0
if each si →∗R ti and (t1, . . . , ta) ∈ Acs, then also 〈(t1, . . . , ta)〉cs = m.

It is not hard to see how we would use a P -counting module in the AFS of Figure 2; this
results in a kth-order AFS for a kth-order module. Note that this works even if some number
representations (s1, . . . , sa) are not in normal form: even if we reduce ~s to some tuple ~t, the
result of the zero test cannot change from true to false or vice versa. Since the algorithm
relies heavily on these tests, we may safely assume that terms representing numbers are
reduced in a lazy way – as we did in Section 3.2 for the arguments s and t of main.

I Lemma 16. There is a first-order (λn.2n+1)-counting module.

Proof. Like in Section 3.2, we will represent a set of numbers – or rather, its encoding as a
bit-sequence – by a pair of terms. We let Ce := (string× string,Σ, R,A, 〈·〉), where:

Acs contains all pairs (s, t) such that (a) all data terms q such that s →∗R q or t →∗R q

are subterms of cs, and (b) for each q E cs either s→∗R q or t→∗R q, but not both.
Writing cs = cN (. . . (c1(B)) . . .), we let cs0 = B, cs1 = c1(B) and so on. We let
〈(s, t)〉cs =

∑N
i=0{2N−i | s →∗R csi}. That is, 〈(s, t)〉cs is the number represented by

the bit-sequence b0 . . . bN where bi = 1 iff s→∗R csi, iff not t→∗R csi (with bN the least
significant digit).
Σ consists of the defined symbols introduced in R, which we construct below.

As in Section 3.2, we use non-deterministic selection functions to construct (s, t):

either(x, y) → x either(x, y) → y ⊥ → ⊥

The symbol ⊥ will be used for terms which do not reduce to any data (the ⊥ → ⊥ rule is
used to force ⊥ ∈ D). For the remaining functions, we consider bitvector arithmetic. First,
2N+1 − 1 corresponds to the bit-sequence where each bi = 1:

seed1
e(cs) → all(cs,⊥) all(B, q) → either(B, q)

seed2
e(cs) → ⊥ all(a(xs), q) → all(xs, either(a(xs), q)) Jfor a ∈ IK

Here, I = {a | a ∈ I}. The inverse function is obtained by flipping the sequence’s bits:

inv1
e(cs, s, t) → t inv1

e(cs, s, t) → s

In order to define zeroe, we must test the value of all bits in the sequence. This is done by
forcing an evaluation from s or t to some data term. This test is constructed in such a way
that both true and false results necessarily reflect the state of s and t; any undesirable
non-deterministic choices lead to the evaluation getting stuck.

eqLen(B,B) → true eqLen(B, a(ys)) → false
eqLen(a(xs), b(ys)) → eqLen(xs, ys) eqLen(a(xs),B) → false

}
Jfor a, b ∈ IK

bitset(xs, s, t) → test(eqLen(xs, s), eqLen(xs, t)) test(true, x) → true
test(x, true) → false

Then zeroe simply tests whether the bit is unset for each sublist.

zeroe(xs, s, t) → zo(xs, s, t, bitset(xs, s, t)) zo(xs, s, t, true) → false
zo(a(xs), s, t, false) → zeroe(xs, s, t) Jfor a ∈ IK zo(B, s, t, false) → true

FSCD 2016

23:12 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

For the predecessor function, note that the predecessor of a bit-sequence b0 . . . bi−1b10 . . . 0
is b0 . . . bi−101 . . . 1. We first define a helper function copy to copy b0 . . . bi−1:

copy(xs, s, t, false) → maybeadd(xs, bitset(xs, s, t), copy(tl(xs), s, t, empty(xs)))
copy(xs, s, t, true) → ⊥ maybeadd(xs, true, q) → either(xs, q)

maybeadd(xs, false, q) → q
empty(B) → true tl(B) → B

empty(a(x)) → false Jfor a ∈ IK tl(a(x)) → x Jfor a ∈ IK

Then copy(xsmax(i−1,0), s, t, [i = 0]) reduces to those xsj with 0 ≤ j < i where bj = 1, and
copy(xsmax(i−1,0), t, s, [i = 0]) to those with bj = 0. This works because s and t are each
other’s complement. To define pred, we first handle the zero case:

predi
e(cs, s, t) → pzi(cs, s, t, zeroe(cs, s, t)) Jfor i ∈ {1, 2}K

pz1(cs, s, t, true) → s pz1(cs, s, t, false) → pmain1(cs, s, t, bitset(cs, s, t))
pz2(cs, s, t, true) → t pz2(cs, s, t, false) → pmain2(cs, s, t, bitset(cs, s, t))

Then, pmain(xsN , s, t, [bN = 1]) flips the bits bN , bN−1, . . . until an index is encountered
where bi = 1; this last bit is flipped, and the remaining bits copied. Formally:

pmain1(xs, s, t, true) → copy(tl(xs), s, t, empty(xs))
pmain2(xs, s, t, true) → either(xs, copy(tl(xs), t, s, empty(xs)))

pmain1(xs, s, t, false) → either(xs, pmain1(tl(xs), s, t, bitset(tl(xs), s, t)))
pmain2(xs, s, t, false) → pmain2(tl(xs), s, t, bitset(tl(xs), s, t))

Finally, we observe that x + 1 = N − ((N − x) − 1) and for x = N also min(x + 1, N) =
N−(max((N−x)−1, 0)). Thus, we may define suc(b) as inv(pred(inv(x))). Taking pairing
into account and writing out the definition, this simplifies to:

suc1(cs, s, t) → pred2(cs, t, s) suc2(cs, s, t) → pred1(cs, t, s) J

Having Lemma 16 as a basis, we can define composite modules. Here, we give fewer
details than for Lemma 16 as the constructions use many of the same ideas.

I Lemma 17. If there exist a P -counting module Cπ and a Q-counting module Cρ, both of
order at most k, then there is a (λn.P (n) ·Q(n))-counting module Cπ·ρ of order at most k.

Proof Sketch. Let Cπ ::= ([σ1×· · ·×σa],Σπ, Rπ, Aπ, 〈·〉π) and Cρ ::= ([τ1×· · ·×τb],Σρ, Rρ,
Aρ, 〈·〉ρ). We will, essentially, represent the numbers i ∈ {0, . . . , P (|cs|) ·Q(|cs|)− 1} by a
pair (i1, i2) with 0 ≤ i1 < P (|cs|) and 0 ≤ i2 < Q(|cs|), such that i = i1 ·Q(|cs|) + i2. This
is done by defining Aπ·ρcs = {(u1, . . . , ua, v1, . . . , vb) | (u1, . . . , ua) ∈ Aπcs ∧ (v1, . . . , vb) ∈ Aρcs},
and 〈(~u,~v)〉π·ρcs = 〈(~u)〉πcs ·Q(|cs|) + 〈(~v)〉ρcs. The signature of defined symbols and rules of
Cπ·ρ are straightforwardly defined as well, extending those in Cπ and Cρ; for instance:

zeroπ·ρ(cs, u1, . . . , ua, v1, . . . , vb) → and(zeroπ(cs, u1, . . . , ua), zeroρ(cs, v1, . . . , vb))

and(true, x) → x and(false, y) → false J

I Lemma 18. If there is a P -counting module Cπ of order k, then there is a (λn.2P (n))-
counting module Cp[π] of order k + 1.

Proof Sketch. We represent every bitstring bP (|cs|)−1···b0 as a function of type σ1 ⇒ . . .⇒
σa ⇒ bool. The various functions are defined as bitvector operations. For example:

seedp[π](cs, k1, . . . , ka) → true invp[π](cs, F, k1, . . . , ka) → not(F · k1 · · · ka)

C. Kop and J. G. Simonsen 23:13

zerop[π](cs, F) → zero′p[π](cs, seed1
π[cs], . . . , seedaπ[cs], F)

zero′p[π](cs, k1, . . . , ka, F) → ztestp[π](F · k1 · · · ka, zeroπ(cs, k1, . . . , ka), cs,
k1, . . . , ka, F)

ztestp[π](true, z, cs,~k, F) → false
ztestp[π](false, true, cs,~k, F) → true

ztestp[π](false, false, cs,~k, F) → zero′p[π](cs, pred1
π[cs,~k], . . . , predaπ[cs,~k], F) J

Note that, for instance, seedp[π][cs] is λk1 . . . ka.seedp[π](cs, k1, . . . , ka): the additional para-
meters ki should be seen as indexing the result of the function.

We obtain:

I Theorem 19. Any decision problem in EkTIME can be accepted by a kth-order AFS.

Proof. Following the construction in this section, it suffices if we can find a kth-order counting
module counting up to expk2(a · n) where n is the size of the input and a a fixed positive
integer. Lemma 16 gives a first-order λn.2n+1-counting module, and by iteratively using
Lemma 17 we obtain λn.(2n+1)a = λn.2a(n+1) for any a. Iteratively applying Lemma 18 on
the result gives a kth-order λn.expk2(a · (n+ 1))-counting module. J

5 Finding normal forms

In the previous section we have seen that every function in EkTIME can be implemented by
a cons-free kth-order AFS. Towards a characterization result, we must therefore show the
converse: that every function implemented by a cons-free kth-order AFS is in EkTIME.

To achieve this goal, we will now give an algorithm that, on input any basic term in an
AFS of order k, will output its set of data normal forms in EkTIME in the size of the term.

A key idea is to associate terms of higher-order type to functions. We define:

JιK = P({s | s ∈ B ∧ ` s : ι}) for ι ∈ S (so a set of subsets of B)
Jσ ⇒ τK = JτKJσK (so the set of functions from JσK to JτK)

Intuitively, an element of JιK represents a set of possible reducts of a term s : ι, while
an element of Jσ ⇒ τK represents the function defined by some λx.s : σ ⇒ τ . Since –
as induction on the structure of σ shows – each JσK is finite, we can define the following
algorithm to find all normal forms of a given basic term. In the algorithm, we build
functions Confirmed0,Confirmed1, . . . , each mapping statements f(A1, . . . , An) ≈ t to a value
in {>,⊥}. Intuitively, Confirmedi[f(~A) ≈ t] denotes whether, in step i in the algorithm, we
have confirmed that f(s1, . . . , sn)→∗R t, where each Ai represents the corresponding si.

I Algorithm 20.
Input: A basic term s = g(t1, . . . , tm).
Output: The set of data normal forms of s. Note that this set may be empty.
Set B := Bs. For all f : [σ1 × · · · × σn]⇒ ι ∈ D, all A1 ∈ Jσ1K, . . . , An ∈ JσnK, all t ∈ JιK,

we let Confirmed0[f(A1, . . . , An) ≈ t] := ⊥. Now, for all such f, ~A, t and all i ∈ N:
if Confirmedi[f(~A) ≈ t] = >, then Confirmedi+1[f(~A) ≈ t] := >;
otherwise, for all rules f(`1, . . . , `n)→ r ∈ R, for all substitutions γ on domain FV (f(~̀))\
{~̀} (so on those variables occurring below constructors) such that `jγ ∈ Aj for all j with
`j not a variable (Aj is a set of terms since `j , a non-variable proper constructor term,
must have base type), let η be the function such that for each `j ∈ V, η(`j) = Aj , and
test whether t ∈ NF i(rγ, η). If there are a rule and substitution where this test succeeds,
let Confirmedi+1[f(~A) ≈ t] := >, otherwise let Confirmedi+1[f(~A) ≈ t] := ⊥.

FSCD 2016

23:14 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

Here, NF i(s, η) is defined recursively for B-safe terms s and functions η mapping all variables
x : σ in FV (s) to an element of JσK, as follows:

if s is a data term, then NF i(s, η) := {s};
if s is a variable, then NF i(s, η) := η(s);
if s = f(s1, . . . , sn) with f ∈ D, then NF i(s, η) is the set of all t ∈ B such that
Confirmedi[f(NF i(s1, η), . . . ,NF i(sn, η)) ≈ t] = >;
if s = u · v, then NF i(s, η) = NF i(u, η)(NF i(v, η));
if s =α λx.t : σ ⇒ τ where x /∈ domain(η), then NF i(s, η) := the function mapping
A ∈ JσK to NF i(t, η ∪ [x := A]).

When Confirmedi+1[f(~A) ≈ t] = Confirmedi[f(~A) ≈ t] for all statements, the algorithm ends;
we let I := i+ 1 and return {t ∈ B | ConfirmedI [g({t1}, . . . , {tm}) ≈ t] = >}.

As D, B and all JσiK are all finite, and the number of positions at which Confirmedi is >
increases in every step, the algorithm always terminates. The intention is that ConfirmedI

reflects rewriting for basic terms. This result is stated formally in Theorem 22.

I Example 21. Consider the palindrome AFS in Example 11, with starting term s = 1(0(B)).
Then Bs = {1(0(B)), 0(B),B, true, false}. Then we have JboolK = {∅, {true}, {false},
{true, false}} and JstringK is the set containing all eight subsets of {1(0(B)), 0(B),B}.
Thus, there are 8 · 8 · 2 statements of the form palindrome(A,B) ≈ t, 4 · 4 · 2 of the form
and(A,B) ≈ t and so on, totalling 432 statements to be considered in every step.

We consider one step, determining Confirmed1[chk1({1(0(B))}, {0(B),B}) ≈ true]. There
are two viable combinations of a rule and a substitution: chk1(1(xs), 0(ys))→ chk1(xs, ys)
with substitution γ = [xs := 0(B), ys := B] and chk1(1(xs),B) → true with γ = [xs :=
0(B)]. Consider the first. As there are no functional variables, η is empty and we need to
determine whether true ∈ NF1(chk1(0(B),B), ∅). This fails, because Confirmed0[ξ] = ⊥ for
all statements ξ. However, the check for the second rule, true ∈ NF1(true, ∅), succeeds.
Thus, we mark Confirmed1[chk1({1(0(B))}, {0(B),B}) ≈ true] = >.

I Theorem 22. Let f : [ι1 × · · · × ιn] ⇒ κ ∈ D and s1 : ι1, . . . , sn : ιn, t : κ be data terms.
Then ConfirmedI [f({s1}, . . . , {sn}) ≈ t] = > if and only if f(~s)→∗R t.

Proof Sketch. Define a labeled variation of R:

Rlab = {fi+1(~̀)→ labeli(r) | f(~̀)→ r ∈ R∧ i ∈ N} ∪ {fi+1(~x)→ fi(~x) | f ∈ D ∧ i ∈ N}

Here labeli replaces each defined symbol f by a symbol fi. Then Rlab is infinite, and
f(~s)→∗R t iff some fi(~s)→∗Rlab

t. Furthermore, →Rlab is terminating (even if →R is not!) as
is provable using, e.g., the Computability Path Ordering [9]. Thus, →Rlab is a well-founded
binary relation on the set of labeled terms, and we can hence perform induction.

Consider the arguments passed to Confirmedi in the recursive process: NF i is defined
using tests of the form Confirmedi[f(NF i(s1, η), . . . ,NF i(sn, η))] = >, where each η(x) itself
has the form NFj(t, η′). To formally describe this, let an NF-substitution be recursively
defined as a mapping from some (possibly empty) set V ⊆ V such that for each x : σ ∈ V
there are an NF-substitution δ and a term s with ` s : σ such that η(x) = NFj(s, δ)
for some j. For an NF-substitution η on domain V , we define η(x) = x for x /∈ V , and
η(x) = labelj(s)ζ for x ∈ V with η(x) = NFj(s, ζ). Then the following two claims can be
derived by mutual induction on q ordered with→Rlab ∪B (all ηj and ζ are NF -substitutions):

Confirmedi[f(NFj1(s1, η1), . . . ,NFjn(sn, ηn)) ≈ t] = > if and only if
q := fi(labelj1(s1)η1, . . . , labeljn

(sn)ηn)→∗Rlab
t;

C. Kop and J. G. Simonsen 23:15

t ∈ NF i(u, ζ)(NFj1(s1, η1), . . . ,NFjn(sn, ηn)) if and only if
q := (labeli(u)ζ) · labelj1(s1)η1 · · · labeljn

(sn)ηn →∗Rlab
t.

Since, if we refrain from stopping the process in step I, we have ConfirmedI = ConfirmedI+1 =
ConfirmedI+2 = . . . , the theorem follows because f(~s)→∗R t iff some fi(~s)→∗Rlab

t. J

It remains to prove that Algorithm 20 runs sufficiently fast.

I Theorem 23. If (F ,R) has order k, then Algorithm 20 runs in time O(expk2(m · n)) for
some m.

Proof. Write N := |B|. As R and F are fixed, N is linear in the size of the only input, s.
We claim that if k, i ∈ N are such that σ has at most order k, and the longest sequence
σ1 ⇒ . . .⇒ σn ⇒ ι occurring in σ has length n+ 1 ≤ i, then card(JσK) ≤ expk+1

2 (ik ·N).
(Proof of claim.) Observe first that P(B) has cardinality 2N . Proceed by induction on

the form of σ. Note that we can write σ in the form σ1 ⇒ . . .⇒ σn ⇒ ι with n < i and each
σj having order at most k − 1 (as n = 0 when given a 0th-order type). We have:

card(Jσ1 ⇒ . . .⇒ σn ⇒ ιK) = card((· · · (JιKJσnK)Jσn−1K · · ·)Jσ1K) = card(JιK)card(JσnK)···card(Jσ1K)

≤ 2N·card(JσnK)···card(Jσ1K) ≤ 2N·expk
2 (ik·N)···expk

2 (ik·N)(by IH)

= 2N·expk
2 (ik·N)n

≤ 2expk
2 (ik·N·n+N)(by induction on k)

= expk+1
2 (n · ik ·N +N) ≤ expk+1

2 (i · ik ·N) = expk+1
2 (ik+1 ·N)

(because n · ik + 1 ≤ (n+ 1) · ik ≤ i · ik)

(End of proof of claim.)
Since, in a kth-order AFS, all types occurring in type declarations have order at most

k − 1, there is some i (depending solely on F) such that all sets JσK in the algorithm have
cardinality ≤ expk2(ik−1 · N). Writing a for the maximal arity in F , there are at most
|D| · expk2(ik−1 ·N)a ·N ≤ |D| · expk2((ik−1 · a+ 1) ·N) distinct statements f(~A) ≈ t.

Writing m := ik−1 · a+ 1 and X := |D| · expk2(m ·N), we thus find: the algorithm has
at most I ≤ X + 2 steps, and in each step we consider at most X statements ϕ where
Confirmedi[ϕ] = ⊥. For every applicable rule, there are at most (2N)a different substitutions
γ, so we have to test a statement t ∈ NF i(rγ, η) at most X · (X + 2) · |R| · 2aN times. The
exact cost of calculating NF i(rγ, η) is implementation-specific, but is certainly bounded by
some polynomial P (X) (which depends on the form of r). This leaves the total time cost of
the algorithm at O(X · (X + 1) · 2aN · P (X)) = O(P ′(expk2(m ·N))) for some polynomial P ′
and constant m. As EkTIME is robust under taking polynomials, the result follows. J

I Theorem 24. Let k ≥ 1. A set S ⊆ {0, 1}+ is in EkTIME iff there is an AFS of order k
that accepts S.

Proof. If S ∈ EkTIME, Theorem 19 shows that it is accepted by an AFS of order k.
Conversely, if there is an AFS of order k that accepts S, Theorem 23 shows that we can
find whether any basic term reduces to true in time O(expk2(m · n)) for some m, and thus
S ∈ EkTIME. J

I Remark. Observe that Theorem 24 concerns extensional rather than intensional behavior
of cons-free AFSs: a cons-free AFS may take arbitrarily many steps to reduce its input to
normal form, even if it accepts a set that a Turing machine may decide in a bounded number
of steps. However, Algorithm 20 can often find the possible results of an AFS faster than
evaluating the AFS would take, by avoiding duplicate calculations.

FSCD 2016

23:16 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

⊥::t → t rnd → I translate(0(xs)) → O :: translate(xs)
rnd → O rnd → B translate(1(xs)) → I :: translate(xs)

translate(B) → B :: translate(B)
rndtape(x)→ B translate(B) → B
rndtape(x)→ rnd :: rndtape(x) equal(xl, xl) → true

start(cs) → run(startstate,B, B, translate(cs))
run(s, xl, r, yl) → shift(t, xl, w, yl, d) Jfor every transition s

r/w d
===⇒ tK

shift(s, xl, c, yl, d) → shift1(s, xl, c, yl, d, rnd, rndtape(O), rndtape(I))
shift1(s, xl, c, yl, d, b, t, t) → shift2(s, xl, c, yl, d, b, t) Jfor every b ∈ {O, I, B}K

shift2(s, xl, c, yl, R, z, t) → shift3(s, c :: xl, z, t, equal(yl, z :: t))
shift2(s, xl, c, yl, L, z, t) → shift3(s, t, z, c :: yl, equal(xl, z :: t))
shift3(s, xl, c, yl, true) → run(s, xl, c, yl)

Figure 3 A first-order non-left-linear AFS that simulates a Turing machine.

6 Changing the restrictions

In the presence of non-determinism, minor syntactical changes can make a large difference in
expressivity. We briefly consider two natural changes here.

6.1 Non-left-linearity

Recall that we imposed three restrictions: the rules in R must be constructor rules, left-
linear and cons-free. Dramatically, dropping the restriction on left-linearity allows us to
decide every Turing-decidable set using first-order systems. This is demonstrated by the
first-order AFS in Figure 3 which simulates an arbitrary Turing Machine on input alphabet
I = {0, 1}. Here, a tape x0 . . . xn␣␣ . . . with the tape head at position i is represented by a
triple (xi−1:: · · · ::x0, xi, xi+1:: · · · ::xn), where the “list constructor” :: is a defined symbol,
ensured by a rule which never fires. To split such a list into a head and tail, the AFS
non-deterministically generates a new head and tail, makes sure they are fully evaluated, and
uses a non-left-linear rule to test whether their combination corresponds to the original list.

6.2 Product Types

Unlike AFSs, Jones’ minimal language in [14] employs a pairing constructor, essentially
admitting terms (s, t) : ι× κ if ` s : ι and ` t : κ are data terms or themselves pairs. This is
not in conflict with the cons-freeness requirement due to type restrictions: it does not allow
the construction of an arbitrarily large structure of fixed type. In our (non-deterministic)
setting, however, pairing is significantly more powerful. Following the ideas of Section 4, one
can count up to arbitrarily large numbers: for an input string xn(. . . (x1(B))) of length n,

the counting module C0 represents i ∈ {0, . . . , n} by a substring xi(. . . (x1(B))) : string;
given a (λn.expk2(n + 1))-counting module Ck, we let Ck+1 represent a number b with
bit representation b0 . . . bN (for N < expk2(n+ 1)) as the pair (s, t) – a term! – where s
reduces to representations of those bits set to 1, and t to representations of bits set to 0.

Then for instance a number in {0, . . . , 22n+1 − 1} is represented by a pair (s, t) : (string×
string)× (string× string), where s and t themselves are not pairs; rather, they are both

C. Kop and J. G. Simonsen 23:17

terms reducing to a variety of different pairs. A membership test would take the form

elem2(k, (s, t))→ elemtest(equal1(k, s), equal1(k, t))
elemtest(true, x)→ true elemtest(x, true)→ false

with the rule for equal1 having the form equal1((s1, t1), (s2, t2)) → r. That is, the rule
forces a partial evaluation. This is possible because a “false constructor” (i.e., a syntactic
structure that rules can match) is allowed to occur above non-data terms.

7 Future work

In this paper, we have considered the expressive power of cons-free term rewriting, and seen
that restricting data order results in characterizations of different classes. A natural direction
for future work is to consider further restrictions, either on rule formation, reduction strategy,
or both. Following Jones [14], we suspect that restricting to innermost evaluation will give
the hierarchy P ⊆ EXPTIME ⊆ EXP2TIME (· · · . Furthermore, we conjecture that a
combination of higher-order rewriting and restrictions on rule formation, possibly together
with additions such as product types, may yield characterizations of a wide range of classes,
including non-deterministic classes like NP or very small classes like LOGTIME.

References
1 M. Avanzini, N. Eguchi, and G. Moser. A new order-theoretic characterisation of the

polytime computable functions. In APLAS, volume 7705 of LNCS, pages 280–295, 2012.
doi:10.1007/978-3-642-35182-2_20.

2 M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime
computability. In RTA, volume 6 of LIPIcs, pages 33–48, 2010. doi:10.4230/LIPIcs.RTA.
2010.33.

3 M. Avanzini and G. Moser. Polynomial path orders. LMCS, 9(4), 2013. doi:10.2168/
LMCS-9(4:9)2013.

4 P. Baillot. From proof-nets to linear logic type systems for polynomial time computing. In
TLCA, volume 4583 of LNCS, pages 2–7, 2007. doi:10.1007/978-3-540-73228-0_2.

5 P. Baillot, M. Gaboardi, and V. Mogbil. A polytime functional language from light
linear logic. In ESOP, volume 6012 of LNCS, pages 104–124, 2010. doi:10.1007/
978-3-642-11957-6_7.

6 P. Baillot and U. Dal Lago. Higher-Order Interpretations and Program Complexity. In
CSL, volume 16 of LIPIcs, pages 62–76, 2012. doi:10.4230/LIPIcs.CSL.2012.62.

7 S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime
functions. Computational Complexity, 2:97–110, 1992. doi:10.1007/BF01201998.

8 S. Bellantoni, K. Niggl, and H. Schwichtenberg. Higher type recursion, ramification and
polynomial time. Annals of Pure and Applied Logic, 104(1–3):17–30, 2000. doi:10.1016/
S0168-0072(00)00006-3.

9 F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering: The end of a
quest. In CSL, volume 5213 of LNCS, pages 1–14, 2008.

10 G. Bonfante. Some programming languages for logspace and ptime. In AMAST, volume
4019 of LNCS, pages 66–80, 2006. doi:10.1007/11784180_8.

11 D. de Carvalho and J. Simonsen. An implicit characterization of the polynomial-time
decidable sets by cons-free rewriting. In RTA-TLCA, volume 8560 of LNCS, pages 179–
193, 2014.

12 M. Hofmann. Type systems for polynomial-time computation, 1999. Habilitationsschrift.

FSCD 2016

http://dx.doi.org/10.1007/978-3-642-35182-2_20
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.33
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.33
http://dx.doi.org/10.2168/LMCS-9(4:9)2013
http://dx.doi.org/10.2168/LMCS-9(4:9)2013
http://dx.doi.org/10.1007/978-3-540-73228-0_2
http://dx.doi.org/10.1007/978-3-642-11957-6_7
http://dx.doi.org/10.1007/978-3-642-11957-6_7
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.62
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1016/S0168-0072(00)00006-3
http://dx.doi.org/10.1016/S0168-0072(00)00006-3
http://dx.doi.org/10.1007/11784180_8

23:18 Complexity Hierarchies and Higher-Order Cons-Free Rewriting

13 N. Jones. Computability and Complexity from a Programming Perspective. MIT Press,
1997.

14 N. Jones. The expressive power of higher-order types or, life without CONS. JFP, 11(1):55–
94, 2001.

15 J. Jouannaud and A. Rubio. The higher-order recursive path ordering. In LICS, pages
402–411, 1999.

16 C. Kop and J. Simonsen. Complexity hierarchies and higher-order cons-free rewriting
(extended version). Technical report, University of Copenhagen, 2016. Available online at
the authors’ homepages.

17 L. Kristiansen and K. Niggl. On the computational complexity of imperative programming
languages. TCS, 318(1–2):139–161, 2004. doi:10.1016/j.tcs.2003.10.016.

18 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. TCS, 192(1):3–
29, 1998.

19 C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
20 M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2006.
21 F. van Raamsdonk. Higher-order rewriting. In Term Rewriting Systems, Chapter 11.

Cambridge University Press, 2003.

http://dx.doi.org/10.1016/j.tcs.2003.10.016

	Introduction
	Preliminaries
	Computational complexity
	Higher-order rewriting

	Cons-free rewriting
	Properties of Cons-free Term Rewriting
	A larger example

	Simulating E^kTIME Turing machines
	Finding normal forms
	Changing the restrictions
	Non-left-linearity
	Product Types

	Future work

