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Abstract
Suzuki et al. showed that properly oriented, right-stable, orthogonal, and oriented conditional
term rewrite systems with extra variables in right-hand sides are confluent. We present our
Isabelle/HOL formalization of this result, including two generalizations. On the one hand, we
relax proper orientedness and orthogonality to extended proper orientedness and almost orthog-
onality modulo infeasibility, as suggested by Suzuki et al. On the other hand, we further loosen
the requirements of the latter, enabling more powerful methods for proving infeasibility of con-
ditional critical pairs. Furthermore, we formalized a construction by Jacquemard that employs
exact tree automata completion for non-reachability analysis and apply it to certify infeasibility
of conditional critical pairs. Combining these two results and extending the conditional conflu-
ence checker ConCon accordingly, we are able to automatically prove and certify confluence of an
important class of conditional term rewrite systems.
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1 Introduction

Today there are a number of tools in existence which allow us to conveniently check various
properties of standard term rewrite systems (TRSs). To not just rely on the trustworthiness
and programming-prowess of the tool-authors, these tools are progressively accompanied
by certifiers, that is, computer-verified programs which rigorously assure correctness of a
tool’s output with respect to a given input. The prevalent procedure for the development of
certifiers comprises the following two phases: First, employ a proof assistant (in our case
Isabelle/HOL [9]) in order to formalize the underlying theory, resulting in a formal library
(in our case IsaFoR,1 an Isabelle/HOL Formalization of Rewriting). Then, verify a program
using this library, resulting in the actual certifier (in our case CeTA [17]).

Just for clarification, by formalizing the underlying theory, we mean that we take known
proofs and definitions from the literature as well as our own results, scrutinize them, fill in the
gaps, and provide such a level of detail that we arrive at a mechanized proof that is accepted
by a proof assistant. Against common belief, such mechanized proofs are not necessarily
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inscrutable to humans. On the contrary, especially Isabelle/HOL’s proof documents are highly
structured and, provided some practice, are sometimes easier to follow than their paper-
originals (for the best reading experience we recommend Isabelle/jEdit [19] for browsing).
More often than not, at least some minor inaccuracies and sometimes even proper errors in
published proofs are exposed during the process of formalization (e.g., in previous work [14]
one of the authors detected a missing left-linearity assumption in some of his yet earlier work
[11]). So the benefits of formalization are threefold:
1. By scrutinizing known results, we gain a better understanding and clarify inaccuracies

and sometimes even correct errors.
2. We obtain computer-checkable theories which may be used to generate certifiers for the

underlying results as well as to build new results on top of them.
3. Using such certifiers we are able to increase the reliability of tools that build on the

formalized theory and also expose errors in the tools themselves.

As mentioned earlier the formalization of standard term rewriting is ongoing work since
almost a decade, with many widely used results.

Ultimately we strife to establish the same state of the art for conditional term rewrite
systems (CTRSs). We already embarked on this journey in [12] and further this enterprise
by generalizing and extending our previous work.

The developments we describe in this article are part of the IsaFoR library and are freely
available for inspection, see theories Conditional_Rewriting/Level_Confluence.thy and
Tree_Automata/Exact_Tree_Automata_Completion.thy and their *_Impl.thy variants.

Contribution. The following three tasks are the original contributions of this work. We
already formalized the result that right-stable, properly oriented, almost orthogonal, oriented
3-CTRSs are confluent by Suzuki et al. [16] in previous work [12]. (1) Here, we extend
the syntactical part of the criterion to be applicable to extended properly oriented CTRSs.
Moreover, we revisit the definition of almost orthogonality and relax it in a way that we
now may employ new infeasibility criteria (Sections 3 and 4.3). Moreover, we shortly revisit
non-reachability and non-joinability via tcap (Section 4.1) with an eye towards certification.
(2) Additionally, we formalized the known result that reachability is decidable for linear and
growing TRSs by Jacquemard [8] (Section 4.2). We use this to check for infeasibility of
conditional critical pairs. (3) Finally, we incorporated the above findings in the certifier CeTA
(Section 4.3) as well as the conditional confluence checker ConCon [15] (Section 5), so we are
able to certify a large portion of the confluence proofs which are generated by ConCon.

Related Work. Felgenhauer and Thiemann [3] formalize so called state-compatible automata
and thereby also show that it is decidable if a regular tree language is closed under rewriting.
This is also part of IsaFoR and loosely related to our work. In the yearly confluence
competition2 confluence checkers for various flavors of term rewriting (like CO3, CoScart,
and ConCon for conditional rewriting [18]) compete in different categories. However, at the
time of writing none of the other conditional confluence tools supports certification.

2 Preliminaries

We assume familiarity with the basic notions of (conditional) term rewriting [2, 10], but
shortly recapitulate terminology and notation that we use in the remainder.

2 http://coco.nue.riec.tohoku.ac.jp
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Given two arbitrary binary relations →α and →β , we write α←, →+
α , →∗α for the inverse,

the transitive closure, and the reflexive transitive closure of →α, respectively. Moreover, the
relations ∗α← · →∗β and →∗β · ∗α← are called meetability and joinability. We say that →α and
→β commute whenever ∗α← · →∗β ⊆ →∗β · ∗α← holds. The same property is called confluence,
in case α and β coincide. Given a set B we define the set of ancestors with respect to →α by
(→α)[B] = {a | ∃b ∈ B. a→α b}.

We use V(·) to denote the set of variables occurring in a given syntactic object, like a
term, a pair of terms, a list of terms, etc. The set of terms T (F ,V) over a given signature
of function symbols F and set of variables V is defined inductively: x ∈ T (F ,V) for all
variables x ∈ V, and for every n-ary function symbol f ∈ F and terms t1, . . . , tn ∈ T (F ,V)
also f(t1, . . . , tn) ∈ T (F ,V). A term t is called ground if V(t) = ∅. The set of ground
terms over F is denoted by T (F) and the set of ground instances of a term t over a fixed
signature is denoted by Σ(t). We say that terms s and t unify, written s ∼ t, if sσ = tσ

for some substitution σ. For brevity, we speak about non-reachability, non-meetability, and
non-joinability of two terms s and t, when we actually mean that the respective property
holds for arbitrary substitution instances sσ and tτ . The tcap function [6] approximates the
topmost part of a term, its “cap,” that does not change under rewriting (we defer a formal
definition until Section 4.1). It is well known that tcap(s) 6∼ t implies non-reachability of t
from s.

For the purposes of this paper a rewrite rule (or just rule) is a pair of terms, written
` → r, whose left-hand side is not a variable (meaning that extra variables in right-hand
sides are explicitly allowed). A conditional rewrite rule is additionally equipped with a list
of pairs of terms, written c = s1 ≈ t1, . . . , sk ≈ tk, and called its conditions. Let ci denote
the first i conditions of c and ci,j the list of conditions si ≈ ti, . . . , sj ≈ tj . A (conditional)
term rewrite system R is a set of (conditional) rewrite rules. A CTRS which allows for
extra variables in right-hand sides of rules is called a 3-CTRS (formally, V(r) ⊆ V(`, c) for
all ` → r ⇐ c ∈ R). We restrict our attention to oriented CTRSs, i.e., where conditions
are interpreted as reachability requirements. The rewrite relation induced by an oriented
CTRS R is structured into levels. For each level i, a TRS Ri is defined recursively as follows:
R0 = ∅, and Ri+1 = {`σ → rσ | ` → r ⇐ c ∈ R,∀s ≈ t ∈ c. sσ →∗Ri

tσ}. For brevity, we
write →n for the rewrite relation of Rn whenever R is clear from the context. Furthermore,
we write σ, n ` c, whenever sσ →∗n tσ for all s ≈ t in c. By dropping all conditions from a
CTRS R we obtain its underlying TRS, denoted Ru. Note that →R ⊆ →Ru

.
Two variable-disjoint variants of rules `1 → r1 ⇐ c1 and `2 → r2 ⇐ c2 in R such that

`1|p /∈ V and `1|pµ = `2µ with most general unifier (mgu) µ, constitute a conditional overlap.
A conditional overlap that does not result from overlapping two variants of the same rule at
the root, gives rise to a conditional critical pair (CCP) r1µ ≈ r1[r2]pµ⇐ c1µ, c2µ. A CCP
s ≈ t⇐ c is said to be infeasible if its conditions cannot be satisfied by any substitution σ.
We sometimes use rules, overlaps, critical pairs, etc. without the addendum “conditional.”

We consider bottom-up non-deterministic finite tree automata (TA) A = 〈F , Q,Qf ,∆〉
where F is a signature, Q a set of states disjoint from the signature, Qf ⊆ Q the set
of final states, and ∆ a set of transitions of the shape f(q1, . . . , qn) → q with f ∈ F
and q1, . . . , qn, q ∈ Q or q → p with q, p ∈ Q. The language of a TA A is given by
L(A) = {t ∈ T (F) | ∃q ∈ Qf . t →∗A q}. We say that a set of ground terms E is regular if
there is a TA A such that L(A) = E. A substitution from variables to states is called a state
substitution. A TRS R is called growing if for all ` → r ∈ R the variables in V(`) ∩ V(r)
occur at depth at most 1 in ` (cf. [8]). Given a TRS R the linear growing approximation [8]
is defined as any linear growing TRS obtained from R by linearizing the left-hand sides,
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renaming the variables in the right-hand sides that occur at a depth greater than one in the
corresponding left-hand side, and finally also linearizing the right-hand sides.

3 An Enhanced Criterion for Level-Confluence of CTRSs

Level-confluence of a CTRS R is the property that Rn is confluent for each level n. Clearly,
level-confluence implies confluence (take the maximum of the two levels employed in a peak).

The following purely syntactic criterion for level-confluence of (possibly nonterminating)
oriented CTRSs with extra variables in right-hand sides was given by Suzuki et al.

I Lemma 1 (Suzuki et al. [16, Corollary 4.7]). Orthogonal, properly oriented, right-stable,
and oriented 3-CTRSs are level-confluent. J

In earlier work [12] we formalized Lemma 1 in Isabelle/HOL and extended it from
orthogonal to almost orthogonal CTRSs with infeasible critical pairs. In the following we
present a relaxation of almost orthogonality modulo infeasibility that allows us to conclude
non-meetability from non-joinability when showing infeasibility of conditional overlaps.

I Definition 2 (Almost Orthogonality modulo Infeasibility). A left-linear CTRS R is almost
orthogonal (modulo infeasibility) if each overlap between rules `1 → r1 ⇐ c1 and `2 → r2 ⇐ c2
with mgu µ at position p either
1. results from overlapping two variants of the same rule at the root, or
2. is trivial (i.e., p = ε and r1µ = r2µ), or
3. is infeasible in the following sense: for arbitrary m and n, whenever levels m and n

commute, then it is impossible to satisfy the conditions stemming from the first rule on
level m and at the same time the conditions stemming from the second rule on level n.
More formally: ∀mn. ( ∗m← · →∗n ⊆ →∗n · ∗m← =⇒ @σ.m, σ ` c1µ ∧ n, σ ` c2µ).

Note that without 2 and 3, Definition 2 corresponds to plain orthogonality. Also note
that by dropping 3, Definition 2 reduces to the definition of almost orthogonality given by
Hanus [7]. In our original definition of almost orthogonality modulo infeasibility [12], 3 is
the stronger requirement that the conditions of the resulting critical pair are infeasible (i.e.,
@σ n. n, σ ` c1µ, c2µ). In the following, whenever we talk about almost orthogonality we
mean Definition 2.

Observe that the level-commutation3 assumption of the third alternative in Definition 2
allows us to reduce non-meetability to non-joinability. That this is useful in practice is shown
by the following example.

I Example 3 (Non-Meetability via tcap). Consider the CTRS consisting of the two rules
{f(x) → a ⇐ x ≈ a, f(x) → b ⇐ x ≈ b} which has the critical pair a ≈ b ⇐ x ≈ a, x ≈ b.
Since tcap(cs(x, x)) = cs(y, z) ∼ cs(a, b), where cs is an auxiliary function symbol, we cannot
conclude infeasibility via non-reachability analysis using tcap. However, tcap(a) = a 6∼ b =
tcap(b) shows non-joinability of a and b. By 3 this shows non-meetability of a and b and
thereby infeasibility of the critical pair.

In general it is beneficial to test for non-meetability via non-joinability of conditions with
identical left-hand sides, see also Lemma 21.

Before we can state the main result of this section we have to define two syntactic
properties of conditional rewrite rules.

3 While this is called shallow confluence in the literature, we believe that level-commutation is a better,
since more descriptive, name.
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I Definition 4 (Right-Stable, Extended Properly Oriented). A conditional rule ` → r ⇐ c

with k conditions c = s1 ≈ t1, . . . , sk ≈ tk is called
1. right-stable whenever we have V(ti)∩V(`, ci−1, si) = ∅ and ti is either a linear constructor

term or a ground Ru-normal form, for all 1 6 i 6 k; and
2. extended properly oriented when either V(r) ⊆ V(`) or there is some 0 6 m 6 k such that
V(si) ⊆ V(`, t1, . . . , ti−1) for all 1 6 i 6 m and V(r)∩V(si ≈ ti) ⊆ V(`, t1, . . . , tm) for all
m < i 6 k.

Observe the following property of extended properly oriented rules of 3-CTRSs

V(r) ⊆ V(`, cm) ∪ (V(r) ∩ V(cm+1,k)) (?)

which we will use later and which can be shown by induction on k −m.

I Theorem 5. Almost orthogonal, extended properly oriented, right-stable, and oriented
3-CTRSs are confluent.

Before proving this statement we need an auxiliary definition, where we adopt the convention
that the number of holes of a multihole context is denoted by the corresponding lower-case
letter, e.g., c for C, d for D, e for E etc.

I Definition 6. We say that there is an extended parallel rewrite step at level n from s to t,
written s ↪→∥ n t, whenever we have a multihole context C, and sequences of terms s1, . . . , sc
and t1, . . . , tc, such that s = C[s1, . . . , sc], t = C[t1, . . . , tc], and for all 1 6 i 6 k we have
one of (si, ti) ∈ Rn (that is, a root-step at level n) and si →∗n−1 ti.

Proof of Theorem 5. Let R be a CTRS satisfying all required properties. Instead of directly
proving the above statement, we prove the commuting diamond property, m←↩∥ · ↪→∥ n ⊆
↪→∥ n · m←↩∥ , for all m and n and a suitable relation →n⊆↪→∥ n⊆→∗n which is called extended
parallel rewriting. This yields commutation of →∗m and →∗n for all m and n, and thereby
level-confluence, which in turn ensures confluence.

We proceed by complete induction on m + n. By induction hypothesis (IH) we may
assume the result for all m′ + n′ < m + n. Now consider the peak t m←↩∥ s ↪→∥ n u. If
any of m and n equals 0, we are done (since ↪→∥ 0 is the identity relation). Thus we may
assume m = m′ + 1 and n = n′ + 1 for some m′ and n′. By the definition of extended
parallel rewriting, we obtain multihole contexts C and D, and sequences of terms s1, . . . , sc,
t1, . . . , tc, u1, . . . , ud, v1, . . . , vd, such that s = C[s1, . . . , sc] and t = C[t1, . . . , tc], as well as
s = D[u1, . . . , ud] and u = D[v1, . . . , vd]; and (si, ti) ∈ Rm or si →∗m′ ti for all 1 6 i 6 c, as
well as (ui, vi) ∈ Rn or ui →∗n′ vi for all 1 6 i 6 d.

It is relatively easy to define the greatest lower bound C uD of two contexts C and D by
a recursive function (that simultaneously traverses the two contexts in a top-down manner
and replaces subcontexts that differ by a hole) and prove that we obtain a lower semilattice.
Now we identify the common part E of C and D, employing the semilattice properties of
multihole contexts, that is, E = C uD. Then C = E[C1, . . . , Ce] and D = E[D1, . . . , De]
for some multihole contexts C1, . . . , Ce and D1, . . . , De such that for each 1 6 i 6 e we
have Ci = � or Di = �. This also means that there is a sequence of terms s′1, . . . , s′e such
that s = E[s′1, . . . , s′e] and for all 1 6 i 6 e, we have s′i = Ci[ski

, . . . , ski+ci−1] for some
subsequence ski

, . . . , ski+ci−1 of s1, . . . , sc (we denote similar terms for t, u, and v by t′i, u′i,
and v′i, respectively). Moreover, note that by construction s′i = u′i for all 1 6 i 6 e. Since
extended parallel rewriting is closed under multihole contexts, it suffices to show that for
each 1 6 i 6 e there is a term v such that t′i ↪→∥ n v m←↩∥ v′i, in order to conclude the proof.
We concentrate on the case Ci = � (the case Di = � is completely symmetric). Moreover,

FSCD 2016
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note that when we have s′i →∗m′ t′i, the proof concludes by IH (together with some basic
properties of the involved relations), and thus we remain with (s′i, t′i) ∈ Rm. At this point
we distinguish the following cases:
1. (Di = �). Also here, the non-root case u′i →∗n′ v′i is covered by the IH. Thus, we may

restrict to (u′i, v′i) ∈ Rn, giving rise to a root overlap. Since R is almost orthogonal,
this means that either the resulting conditions are not satisfiable or the resulting terms
are the same (in both of these cases we are done), or two variable disjoint variants of
the same rule ` → r ⇐ c with conditions c = s1 ≈ t1, . . . , sj ≈ tj were involved, i.e.,
u′i = `σ1 = `σ2 for some substitutions σ1 and σ2 that both satisfy all conditions in c.
Without extra variables in r, this is the end of the story (since then rσ1 = rσ2); but we
also want to cover the case where V(r) 6⊆ V(`), and thus have to reason why this does not
cause any trouble. Together with the fact that ` → r ⇐ c is extended properly oriented
we obtain a 0 6 k 6 j such that (1) V(si) ⊆ V(`, t1, . . . , ti−1) for all 1 6 i 6 k and (2)
V(r) ∩ V(si ≈ ti) ⊆ V(`, t1, . . . , tk) for all k < i 6 j by Definition 4.2. Then we prove by
an inner induction on i 6 j that there is a substitution σ such that
a. σ(x) = σ1(x) = σ2(x) for all x in V(`), and
b. σ1(x) ↪→∥ ∗n′ σ(x) and σ2(x) ↪→∥ ∗m′ σ(x) for all x in V(`, cmin{i,k}) ∪ (V(r) ∩ V(ck+1,i)).
In the base case σ1 satisfies the requirements. So suppose i > 0 and assume by IH that
both properties hold for i − 1 and some substitution σ. If i > k we are done by (2).
Otherwise i 6 k. Now consider the condition si ≈ ti. By (1) we have V(si) ⊆ V(`, ci−1).
Using the IH for 1b we obtain siσ1 ↪→∥ ∗n′ siσ and siσ2 ↪→∥ ∗m′ siσ. Moreover siσ1 ↪→∥ ∗m′ tiσ1
and siσ2 ↪→∥ ∗n′ tiσ2 since σ1 and σ2 satisfy c, and thus by the outer IH we obtain s′ such
that tiσ1 ↪→∥ ∗n′ s′ and tiσ2 ↪→∥ ∗m′ s′. Recall that by right-stability ti is either a ground
Ru-normal form or a linear constructor term. In the former case tiσ1 = tiσ2 = s′ and
hence σ satisfies 1a and 1b. In the latter case right-stability allows us to combine the
restriction of σ1 to V(ti) and the restriction of σ to V(`, ci−1) into a substitution satisfying
1a and 1b. This concludes the inner induction. Since R is a 3-CTRS, using (?) together
with 1b shows rσ1 ↪→∥ ∗n′ rσ and rσ2 ↪→∥ ∗m′ rσ. Since ↪→∥ ∗n′ ⊆ ↪→∥ n and ↪→∥ ∗m′ ⊆ ↪→∥ m we can
take v = rσ to conclude this case.

2. (Di 6= �). Then for some 1 6 k 6 d, we have (uj , vj) ∈ Rn or uj →∗n′ vj for all
k 6 j 6 k + di − 1, that is, an extended parallel rewrite step of level n from s′i = u′i =
Di[uki

, . . . , uki+di−1] to Di[vki
, . . . , vki+di−1] = v′i. Since R is almost orthogonal and, by

Di 6= �, root overlaps are excluded, the constituent parts of the extended parallel step
from s′i to v′i take place exclusively inside the substitution of the root-step to the left
(which is somewhat obvious – as also stated by Suzuki et al. [16] – but surprisingly hard
to formalize, even more so when having to deal with infeasibility). We again close this
case by induction on the number of conditions making use of right-stability of R. J

Clearly, applicability of Theorem 5 relies on having powerful techniques for proving
infeasibility at our disposal. Those are the topic of the next section.

4 Infeasibility

In the context of oriented conditional term rewriting we may employ non-reachability criteria
in order to conclude infeasibility of conditions. The two prevalent methods to check for
non-reachability use unification and tree automata techniques, respectively. In the following
two sections we describe both of these.
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4.1 Non-reachability by unification
Probably the fastest available method of checking for non-reachability is to try to unify the
tcap of the source term with the target term; which is the de facto standard for approximating
dependency graphs for termination proofs [6]. Typical “pen and paper” definitions rely on
replacing subterms by “fresh variables” making them somewhat hard to formalize (as already
remarked in [17]). Instead of inventing fresh variables out of thin air, the IsaFoR-version
of tcap replaces every variable occurrence by the symbol �. The resulting terms behave
like ground multihole contexts – we call them ground contexts – and they are intended to
represent the set of all terms resulting from replacing all “holes” by arbitrary terms. This
is made formal by the substitution instance class JtK of a ground context t: J�K = T (F ,V)
and Jf(t1, . . . , tn)K = {f(s1, . . . , sn) | si ∈ JtiK}. Note that for variable-disjoint terms s and
t, unifiability coincides with sσ = tτ for some substitutions σ and τ . Thus asking whether a
term t unifies with a variable-disjoint term represented by the ground context s is equivalent
to checking whether tσ ∈ JsK for some substitution σ. The latter is called ground context
matching and shown to be decidable by an efficient algorithm by Thiemann and Sternagel [17].
Thus we can define an efficient executable version of tcap by

tcapR(t) =


� if t is a variable
� if t = f(t1, . . . , tn) and `σ ∈ JuK for some σ and `→ r ∈ R
u otherwise

where u = f(tcapR(t1), . . . , tcapR(tn)).

I Lemma 7 (tcap is sound). If sσ →∗R t then t ∈ Jtcap(s)K. J

Then checking non-reachability of t from s amounts to deciding whether @τ. tτ ∈ Jtcap(s)K,
for which we use the more succinct notation tcap(s) 6∼ t almost everywhere else in this paper.

While the above definition of tcap and the corresponding soundness lemma were already
present in IsaFoR, the following easy extension also allows us to test for non-joinability.

I Lemma 8. If sσ →∗R · ∗R← tτ then Jtcap(s)K ∩ Jtcap(t)K 6= ∅.

Proof. We have sσ →∗R u and tτ →∗R u for some u. By Lemma 7 we have u ∈ tcap(s) and
u ∈ tcap(t). J

Fortunately the same techniques that are used to obtain an algorithm for ground context
matching can be reused for ground context unifiability, i.e., checking Jtcap(s)K∩ Jtcap(t)K 6= ∅
(elsewhere in this paper we use the notation tcap(s) 6∼ tcap(t)).

4.2 Non-reachability by exact tree automata completion
What is generally known as tree automata completion today was introduced by Genet in
1998 [4, 5]. But already in 1996 Jacquemard [8] used a similar concept to show decidability
of reachability for linear and growing TRSs. His proof was based on the construction of a
tree automaton that accepts the set of ground terms which are normalizable with respect to
a given linear and growing TRS R. If we replace the automaton recognizing R-normal forms
in Jacquemard’s construction by an arbitrary automaton A we arrive at a tree automaton
that accepts the R-ancestors of the language of A.

We need some basic definitions and auxiliary lemmas before we present the construction
of this ancestor automaton in detail.

FSCD 2016
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I Definition 9 (Ground-Instance Transitions, ∆t). Let [t] denote a term t ∈ T (F ,V) where
all variable-occurrences have been replaced by a fresh symbol �. Using such terms as
states we define the set ∆t that contains all transitions which are needed to recognize all
ground-instances of a term t ∈ T (F ,V) in state [t].

∆t =
{
{f([t1], . . . , [tn])→ [t]} ∪

⋃
16i6n ∆ti if t = f(t1, . . . , tn)

{f(�, . . . ,�)→ � | f ∈ F} otherwise

Note that if t is not linear this actually gives an overapproximation.
The next lemma holds by definition of ∆t.

I Lemma 10. For any subterm s of any term t if there is a sequence u→+
∆t

[s] then u is a
ground-instance of s, and vice versa if t is linear. J

We now use ∆t to define an automaton for the ground-instances of t.

I Definition 11 (Ground-Instance Automaton, AΣ(t)). Let Qt denote the set of states occur-
ring in ∆t then we call the tree automaton AΣ(t) = 〈F , Qt, {[t]},∆t〉 the ground-instance
automaton for t.

I Lemma 12. The language of AΣ(t) is an overapproximation of the set of ground-instances
of t in general and an exact characterization if t is linear. J

Using the concept of ground-instance automaton we are now able to define a tree
automaton which accepts all R-ancestors of a given regular set of ground terms using exact
tree automata completion (ETAC).

IDefinition 13 (Ancestor Automaton, ancR(A)). Given a tree automatonA = 〈F , QA, Qf ,∆〉
whose states are all accessible, and a linear and growing TRS R the construction proceeds
as follows.

First we extend the set of transitions of A in such a way that we can match left-hand sides
of rules inR. This yields the set of transitions ∆0 = ∆∪

⋃
`→r∈R∆`. LetA0 = 〈F , Q,Qf ,∆0〉

where Q denotes the set of states in ∆0. We have to ensure (for example by using the disjoint
union of states) that for any state q which is used in both ∆ and some ∆`, the terms which
can reach it are the same ({t | t→+

∆ q} = {t | t→+
∆`

q}). Then the language does not change,
that is, L(A0) = L(A).

Finally, we saturate ∆0 by inference rule (†) in order to extend the language by R-
ancestors, that is, if we can reach a state q from an instance of a right-hand side of a rule in
R we add a transition which ensures q is reachable from the corresponding left-hand side.4

f(`1, . . . , `n)→ r ∈ R rθ →∗∆k
q

f(q1, . . . , qn)→ q ∈ ∆k+1
(†)

Here θ : V(r) → Q is a state substitution and qi = `iθ if `i is a variable in r and qi = [`i]
otherwise. Note that this inductive definition possibly adds many new transitions from ∆k

to ∆k+1.
Since R is finite, the number of states is finite, and we do not introduce new states

using (†), this process terminates after finitely many steps resulting in the set of transitions
∆m. Also note that ∆k is monotone with respect to k, i.e., ∆k ⊆ ∆k+1 for all k > 0. We
call ancR(A) = 〈F , Q,Qf ,∆m〉 the R-ancestors automaton for A. It is easy to show that
L(A0) ⊆ L(ancR(A)).

4 This is symmetric to resolving compatibility violations in the tree automata completion by Genet [4, 5].
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s = D[f(s1, . . . , sn)] D[f(q1, . . . , qn)] C[f(q1, . . . , qn)] C[q′] [t]

D[`τ ] D[rτ ] C[rτ ] C[rθ]

∗

∆ ∪∆k′

∗

∆ ∪∆k′

∗
ρ

∗

∆k′+1

∗R

∗
R

∗

∆ ∪∆k′

∗

∆ ∪∆k′

∗ ∆k′

Figure 1 Bypassing ρ to close the induction step.

I Theorem 14. Given a tree automaton A as well as a linear and growing TRS R the
language of ancR(A) is exactly the set of R-ancestors of L(A).

Proof. First we prove that (→∗R)[L(A)] ⊆ L(ancR(A)). Pick a term s ∈ (→∗R)[L(A)]. But
that means that there is a rewrite sequence s→k

R t of length k > 0 for some t ∈ L(A). We
proceed by induction on k. If k = 0 then s = t and hence s ∈ L(ancR(A)). Now assume k =
k′+ 1 for some k′ > 0 then there is a rewrite sequence s = C[f(`1, . . . , `n)σ]→R C[rσ]→k′

R t

for some context C, rewrite rule f(`1, . . . , `n) → r ∈ R, and substitution σ. By induction
hypothesis C[rσ] ∈ L(ancR(A)). But that means that there is a state substitution θ : V(r)→
Q, a state q ∈ Q, and a final state qf ∈ Qf such that C[rσ]→∗∆m

C[rθ]→∗∆m
C[q]→∗∆m

qf .
From the construction using rule (†) we know that there is a transition f(q1, . . . , qn)→ q ∈ ∆m

such that qi = `iθ if `i ∈ V(r) and qi = [`i] otherwise. If `i ∈ V(r) then `iσ →+
∆m

`iθ and
otherwise `iσ →+

∆m
[`i] for all 1 6 i 6 n. Hence in both cases `iσ →+

∆m
qi. But then we

can construct the sequence s = C[f(`1σ, . . . , `nσ)]→∗∆m
C[f(q1, . . . , qn)]→∆m

C[q]→∗∆m
qf

and hence s ∈ L(ancR(A)).
For the other direction we prove the following two properties for all sequences s→+

∆m
q:

1. If q = [t] for some subterm of a left-hand side of a rule in R then s ∈ (→∗R)[Σ(t)].
2. If q ∈ Qf then s ∈ (→∗R)[L(A)].
The proof for both properties works along the same lines. We sketch the one for the first
property here. From the construction using rule (†) we know that s →+

∆k
[t] for some

k > 0. We proceed by induction on k. If k = 0 then s→+
∆0

[t]. By construction of A0 and
Lemma 10 we have s ∈ Σ(t) and hence also s ∈ (→∗R)[Σ(t)]. Now assume that k = k′ + 1
for some k′ > 0. By induction hypothesis (IH0) s →+

∆k′
[t] implies s ∈ (→∗R)[Σ(t)] for

all terms s and t. Consider the set ∆k′+1 \∆k′ of transitions which were newly added in
∆k′+1. We continue by a second induction on the size of ∆k′+1 \ ∆k′ . If it is empty we
have a ∆k′ -sequence and may simply close the proof with an application of IH0. Otherwise
we have some set ∆ and transition ρ : f(q1, . . . , qn) → q′ that was created from some rule
`→ r ∈ R with ` = f(`1, . . . , `n) and the sequence rθ →∗∆′

k
q′ by an application of rule (†)

such that {ρ} ]∆ ⊆ ∆k′+1 \∆k′ . The second induction hypothesis (IH1) is if s→+
∆∪∆k′

[t]
then s ∈ (→∗R)[Σ(t)]. Let m denote the number of steps that use ρ. We continue by a
third induction on m. If m = 0 the sequence from s to [t] only used transitions in ∆ ∪∆k′

and using IH1 we are done. Otherwise there is some m′ > 0 such that m = m′ + 1 and
the induction hypothesis (IH2) is that for all terms s, t if s →+

∆∪∆k′
[t] using ρ only m′

times then s ∈ (→∗R)[Σ(t)]. Now we look at the first step using ρ in the sequence, i.e.,
s = D[f(s1, . . . , sn)]→∗∆∪∆k′

C[f(q1, . . . , qn)]→ρ C[q′]→∗∆k′+1
[t]. Note that from this we

get D[u]→∗∆∪∆k′
C[u] for all terms u.

Next we define a substitution τ such that s→∗R D[`τ ]→R D[rτ ]→∗∆∪∆k′
C[rτ ]→∗∆∪∆k′

C[q′]. This allows us to bypass the ρ-step and so we arrive at a ∆k′+1-sequence from D[rτ ]
to [t] containing one less ρ-step as shown in Figure 1. The construction of τ proceeds as
follows: We fix 1 6 i 6 n. If `i is a variable in r define τi to be {`i 7→ si}. Otherwise we

FSCD 2016



29:10 Certifying Confluence of Almost Orthogonal CTRSs

know from the definition of inference rule (†) that qi = [`i] and si →+
∆∪∆k′

[`i]. From that
we have that si ∈ (→∗R)[Σ(`i)] but that means that there is some substitution τi such that
si →∗R `iτi. Moreover let τ ′ = {x 7→ ux | x ∈ V(r) \ V(`)} where ux is an arbitrary but fixed
ground term such that ux →∗∆0

xθ.5 Now let τ be the disjoint union of τ1, . . . , τn, τ ′. This
substitution is well-defined because ` is linear. By construction of τ we get s→∗R D[`τ ].

Consider a variable x occurring in r. If x also occurs in ` we have x = `i for some unique
1 6 i 6 n because R is growing. But then by construction of τi we get xτ = `iτi = si.
Moreover from the definition of qi in inference rule (†) we have qi = `iθ = xθ. But then
xτ →+

∆∪∆k′
xθ from si →+

∆∪∆k′
qi. On the other hand, if x does not occur in ` then

xτ = xτ ′ and xτ ′ →∗∆0
xθ by construction of τ ′. So in both cases rτ →∗∆∪∆k′

rθ. Together
with rθ →∗∆k′

q′ and C[q′] →∗∆k′+1
[t] we may construct the sequence D[rτ ] →+

∆k′+1
qf

which uses ρ only m′ times. Using IH2 we arrive at D[rτ ] ∈ (→∗R)[Σ(t)]. Together with
s→∗R D[`τ ]→∗R D[rτ ] this means that s ∈ (→∗R)[Σ(t)] and we are done. J

I Lemma 15 (Non-Reachability via anc). Let R be a linear and growing TRS over signature
F . We may conclude non-reachability of t from s if the following language is empty:

L(AΣ(s) ∩ ancR(AΣ(t))) J

I Example 16 (Infeasibility via anc). Consider the CTRS R = {f(a, x) → a, f(b, x) →
b, g(a, x) → c ⇐ f(x, a) ≈ a, g(x, a) → d ⇐ f(x, b) ≈ b, c → c}. It has two critical pairs
c ≈ d ⇐ f(a, b) ≈ b, f(a, a) = a and the symmetric one. Since tcap(f(a, b)) = x ∼ b and
tcap(f(a, a)) = x ∼ a unification is not sufficient to show infeasibility of these critical pairs.
On the other hand, since the underlying TRS Ru is linear and growing, we may construct
the tree automata AΣ(f(a,b)) and ancRu

(AΣ(b)). Because the language of the intersection
automaton is empty we have shown infeasibility of the condition f(a, b) ≈ b by Lemma 15.
So both critical pairs are infeasible.

Moreover, as shown in the following example, anc may be employed to show infeasibility
of conditions of a conditional rewrite rule, directly. Such rules can never be used to rewrite
and so might as well be removed from a CTRS.

I Example 17 (Infeasible Rules via anc). Consider the CTRS R = {h(x) → a, g(x) →
x, g(x) → a ⇐ h(x) ≈ b, c → c}. The condition of the third rule is infeasible because h(x)
only rewrites to a and not to b. This cannot be shown by unification because tcap(h(x)) =
y ∼ b = tcap(b). Fortunately the underlying TRS Ru is linear and growing and hence we can
construct the tree automata AΣ(h(x)) and ancRu

(AΣ(b)). The language of the intersection
automaton is empty and we have shown infeasibility of the condition h(x) ≈ b by Lemma 15.

Remember that in our setting the right-hand sides of conditions are always linear terms.
Hence it is beneficial to start with the ground-instance automaton for the right-hand side of
a condition (which in this case is exact) and compute the set of ancestors rather than taking
the possibly non-linear left-hand side of a condition, overapproximating the ground-instances
and only then computing the descendants of this set.

4.3 Certification
In this section we give an overview of all techniques that are newly supported by our
certifier CeTA and what kind of information it requires from a certificate in CPF [14] (short

5 Since all states in A0 are accessible we can always find such a term ux.
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for certification problem format). Before we come to the special infeasibility condition of
Definition 2, we handle the common case where, given a list of conditions c, we are interested
in proving σ, n 6` c for every substitution σ and level n.

I Lemma 18 (Infeasibility Certificates). Given (R, c) consisting of a CTRS R and a list of
conditions c = s1 ≈ t1, . . . , sk ≈ tk, infeasibility of c with respect to R can be certified in one
of the following ways:
1. Provide two terms s and t with s ≈ t ∈ c, and a non-reachability certificate for (Ru, s, t).
2. Provide a function symbol cs of arity n (called a compound symbol) together with a

non-reachability certificate for (Ru, cs(s1, . . . , sk), cs(t1, . . . , tk)).
3. For an arbitrary subset c′ of c, provide an infeasibility certificate for (R, c′).
4. Provide three terms s, t, and u such that s ≈ u and t ≈ u are equations in c together with

a non-joinability certificate for (Ru, s, t).

Proof. Note that 3 is obvious and 1 only exists for tool-author convenience but is subsumed
by the combination of 2 and 3. Moreover, 2 follows from the fact that cs(s1, . . . , sk)σ 6→∗Ru

cs(t1, . . . , tk)τ for all σ and τ , implies the existence of at least one 1 6 i 6 k such that
siσ 6→∗Ru

tiτ for all σ and τ . Finally, for 4, whenever sσ and tτ are not joinable for arbitrary
σ and τ , the existence of µ and n such that µ, n ` s ≈ u, t ≈ u is impossible. J

Note that in 2 we check for non-reachability between left-hand sides and their corresponding
right-hand sides, while in 4 we check for non-joinability between two left-hand sides. Thus,
while in general non-joinability is more difficult to show than non-reachability, 4 is not
directly subsumed by 2.

I Lemma 19 (Non-Reachability Certificates). Given (R, s, t) consisting of a TRS R and
two terms s and t, R-non-reachability of t from s can be certified in one of the following
ways:
1. Indicate that tcap(s) does not unify with t.
2. Provide a TRS R′ such that for each `→ r ∈ R there is `′ → r′ ∈ R′ and a substitution

σ with ` = `′σ and r = r′σ, together with a non-reachability certificate for (R′, s, t).
3. Provide a non-reachability certificate for (R−1, t, s).
4. Make sure that R is linear and growing and provide a finite signature F and two constants

a and � such that a ∈ F but � /∈ F , together with a tree automaton A that is an
overapproximation of ancR(AΣ(t)) and satisfies L(AΣ(s) ∩ A) = ∅.

Proof. If tcapR(s) 6∼ t, then 1 holds by Lemma 7. Further note that →R ⊆ →R′ and thus
2 is immediate. Moreover, 3 is obvious, leaving us with 4. From a certification perspective
this is the most interesting case. To begin with, there are two reasons why we do not
want to repeat the full construction of anc inside CeTA. Firstly, we would unnecessarily
repeat an operation with at least exponential worst-case complexity. Secondly, a fully-verified
executable algorithm is not even part of our formalization, instead we heavily rely on inductive
definitions.6 In CeTA we check that A is an overapproximation of ancR(AΣ(t)) as follows:
firstly, we ensure that A does not contain epsilon transitions, that [t] is included in the final
states of A, and that ∆t as well as the matching rules with respect to the signature F are part
of the transitions of A; secondly, we check that A is closed with respect to inference rule (†).
Since AΣ(s) is an overapproximation of Σ(s) and by the required conditions together with

6 While turning the existing inductive definitions into executable recursive functions would definitely be
possible, we stress that this is not necessary.
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Theorem 14, L(A) overapproximates [→∗R](Σ(t)), we can conclude Σ(s) ∩ [→∗R](Σ(t)) = ∅.
Thus there are no ground substitutions σ and τ such that sσ, tτ ∈ T (F) and sσ →∗R tτ .
In order to conclude that the same holds true for arbitrary substitutions (not necessarily
restricted to F), we rely on an earlier result [13] that implies that whenever sσ →∗R tτ for
arbitrary σ and τ and s, t ∈ T (F ,V) then there are σ′ and τ ′ such that sσ′, tτ ′ ∈ T (F) and
sσ′ →∗R tτ ′. J

Note that 2 allows us to certify the linear growing approximation of a TRS without actually
having to formalize it in Isabelle/HOL. More specifically, whenever R′ is the result of applying
the linear growing approximation to R, then the corresponding certificate will pass 2 and R′
will be linear and growing in the check for 4; otherwise 4 will fail.

I Lemma 20 (Non-Joinability Certificates). Given (R, s, t) consisting of a TRS R and two
term s and t, R-non-joinability of s and t can be certified in one of the following ways.
1. Indicate that tcap(s) does not unify with tcap(t).
2. If at least one of the terms, say t, is a ground R-normal form provide a non-reachability

certificate for (R, s, t).

Proof. We prove 1 by Lemma 8 and 2 by Lemma 7 since non-joinability reduces to non-
reachability when one of the terms is an R-normal form. J

I Lemma 21 (Ao-Infeasibility Certificates). Given (R, c1, c2) consisting of a CTRS R fulfilling
all syntactic requirements of Theorem 5 and two lists of conditions c1 and c2, infeasibility
with respect to almost orthogonality can be certified in one of the following ways:
1. Provide an infeasibility certificate for (R, c) where c is the concatenation of c1 and c2.
2. Provide three terms s, t and u such that s ≈ t is an equation in c1 and s ≈ u an equation

in c2, together with a non-joinability certificate for (Ru, t, u).

Proof. While 1 follows from Lemma 18, in 2 we make use of the level-commutation assumption
of Definition 2 to deduce non-meetability of t and u from non-joinability of t and u. J

4.4 Comparison
For our main use case, Theorem 5, we are restricted to left-linear CTRSs (via almost
orthogonality) and linear right-hand sides of conditions (via right-stability). The latter also
holds for right-hand sides that are combined by a compound symbol (again by right-stability).
We show that in this setting anc subsumes tcap (at least in theory and for the forward
direction).

I Lemma 22. Let R be a left-linear CTRS and t a linear term. If tcap can show non-
reachability of t from s, then so can anc.

Proof. We proof the contrapositive and assume that anc cannot show non-reachability.
Moreover, let R′ denote the result of applying the linear growing approximation to Ru.
Then there is some term u such that u ∈ L(AΣ(s)) and u ∈ L(ancR′(AΣ(t))). Since t
is linear and R′ is linear and growing the latter implies that u ∈ (→∗R′)[Σ(t)] and thus
u →∗R′ tτ for some substitution τ . By Lemma 7, this means that tτ ∈ JtcapR′(u)K. Since
u ∈ L(AΣ(s)), it is clearly the case that u ∈ Σ(ren(s)) and thus u = ren(s)σ for some
substitution σ, where ren denotes an arbitrary linearization of s. Moreover JtcapR′(u)K ⊆
JtcapR′(ren(s))K = JtcapR′(s)K. Together with tτ ∈ JtcapR′(u)K from above, we obtain
tτ ∈ JtcapR′(s)K. However, tcap does only consider the left-hand sides of rules, which are
the same in R′ and Ru, thus also tτ ∈ JtcapRu

(s)K which implies tcapRu
(s) ∼ t. J



C. Sternagel and T. Sternagel 29:13

Table 1 82 right-stable, extended properly oriented, and oriented 3-CTRSs.

ConCon
uncertified certified 2 certified 2+3 certified+

confluent 47 23 32 35
non-confluent 15 - - -

don’t know 20 59 50 47

If we also consider the reverse direction, that is, checking if t→∗R−1
u
s for some condition

s ≈ t in Theorem 5, then tcap may well succeed where anc fails, as shown by the next
example.

I Example 23 (anc vs. tcap). The oriented 3-CTRS R = {g(x) → f(x, x), g(x) → g(x) ⇐
g(x) ≈ f(a, b)} is right-stable and extended properly oriented. It has two symmetric CCPs of
the form f(x, x) ≈ g(x)⇐ g(x) ≈ f(a, b). The underlying TRS Ru is not linear and growing,
so if we want to apply anc we have to apply the linear growing approximation, resulting
in R′ = {g(x) → f(x, y), g(x) → g(x)}. But then anc is not able to show infeasibility
since the language of AΣ(g(x)) ∩ ancR′(AΣ(f(a,b)) is not empty and also for the reverse
direction AΣ(f(a,b)) ∩ ancR′−1(AΣ(g(x))) we get a non-empty language. On the other hand
using the reversed underlying system R−1

u = {f(x, x) → g(x), g(x) → g(x)} we have that
tcapR−1

u
(f(a, b)) = f(a, b) 6∼ g(x). So in this case tcap succeeds where anc fails.

5 Conclusion and Future Work

We have not only produced several thousand (∼ 6600) lines of proof documents, but also
refined and extended an earlier result which allows us to certify confluence proofs for a larger
class of CTRSs. Moreover, a new method to check for non-reachability between terms has
been added, which (at least theoretically) further expands this class. The certifier CeTA
has been updated to handle all new certificates and the confluence tool ConCon has been
extended to use the new results and generate certifiable output for them.

Our formalization exposed an error in the exact tree automata completion procedure
implemented in ConCon which is now corrected.

Experiments We shortly examine ConCon’s ability to provide certifiable proofs before and
after the implementation of the presented results. Our testbed comprises 82 right-stable,
extended properly oriented, and oriented 3-CTRSs taken from the confluence problems
database (Cops).7 Note that only 52 of these 82 systems have at least one CCP and hence
are amenable to the improved infeasibility methods.

All in all ConCon implements three criteria for checking confluence of oriented CTRSs.
1. Strongly deterministic, quasi-decreasing 3-CTRSs are confluent if all CPs are joinable [1].
2. Theorem 5 from above.
3. A deterministic 3-CTRS is confluent if its unraveling is left-linear and confluent [20].
These are accompanied by some infeasibility-methods (including the ones presented). So far
criteria 2 and 3 have been formalized.

7 http://cops.uibk.ac.at
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In Table 1 we summarize our findings. The column labeled uncertified contains the
results of unleashing ConCon using all (possibly not yet certifiable) criteria for confluence
and infeasibility it implements. The next two columns labeled certified 2 and certified
2+3, respectively, show the numbers when only using certifiable methods already present
in ConCon before the modification. In certified 2 we only used the syntactic method from
Suzuki et al. Column certified 2+3 combines the latter with method 3 employing unravelings.
Finally, the column labeled certified+ gives the results for the current version of ConCon
including the newly implemented certifiable methods. One interesting point is that method 2
completely subsumes 3 in certified+. What we can see from the table is the following: We
were able to increase the applicability of 2 by 12 systems. But if we also take into account
method 3 we only gain 3 certified proofs. All together we can certify 35 out of 47 confluence
proofs. So far we have not worked on formalizing the used non-confluence criteria, hence
none of the non-confluence proofs can be certified.

Concerning Examples 16 and 17 it is interesting to note that criterion 1 does not apply,
because both systems are non-terminating and also criterion 3 does not apply, because the
unraveled system is non-confluent in both cases. So 2 is the only of the three methods that
can handle both examples.

Finally, we believe that the small gain of only 3 certified proofs in total, has to be taken
with a grain of salt. On the one hand, since the number of CTRSs in Cops is rather low.
On the other hand, and more importantly, since the class of CTRSs to which Theorem 5
potentially applies, closely corresponds to what is actually allowed in functional and logic
programs.

Future Work For the moment we have restricted our attention to confluence of CTRSs
in general and Theorem 5 in particular. However, we provide general techniques for the
certification of non-reachability and non-joinability; those should be applicable also in
other areas like certification of dependency graph approximations for termination of TRSs,
non-confluence of TRSs, and more hypothetically the correctness of protocols.

As for the applicability of our method to the certification of dependency graph approx-
imations, we conducted some preliminary experiments. Here, a potential edge consists of
two pairs of terms (s, t) and (u, v) where the goal is to prove non-reachability of u from t

(since then it does not turn into an actual edge, which might lead to an easier termination
proof). Since at the time of writing the only certifiable way of handling dependency graphs in
current termination tools is a tcap-based estimation, we started with all the 542428 potential
edges obtained from the termination problem database8 that cannot already be handled by
tcap. Of those, 129599 are trivially shown to be actual edges via unification (i.e., no rewrite
steps are necessary). Out of the remaining 412829 potential edges, we were able to show
non-reachability for 10217/24291/43364 when using a timeout of 1/3/10 seconds per edge.

Another direction of future work will be to formalize criterion 1 and also extend our
formalization to non-confluence proofs.
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