
Automata Serialization for Manipulation and
Drawing∗

Miguel Ferreira1, Nelma Moreira2, and Rogério Reis3

1 CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Porto,
Portugal
miguelferreira108@gmail.com

2 CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Porto,
Portugal
nam@dcc.fc.up.pt

3 CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Porto,
Portugal
rvr@dcc.fc.up.pt

Abstract
GUItar is a GPL-licensed, cross-platform, graphical user interface for automata drawing and
manipulation, written in C++ and Qt5. This tool offers support for styling, automatic layouts,
several format exports and interface with any foreign finite automata manipulation library that
can parse the serialized XML or JSON produced. In this paper we describe a new redesign of the
GUItar framework and specially the method used to interface GUItar with automata manipulation
libraries.

1998 ACM Subject Classification D.2.2 State diagrams

Keywords and phrases automata, serialization, visualization

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.15

1 Introduction

Software environments for symbolic manipulation of formal languages and models of compu-
tation are widely recognized as important tools for theoretical and practical research, as well
as pedagogical tools for teaching automata theory and formal languages. Examples include
Grail+ [18, 12], OpenFST [13], FAdo [6, 1] and Vaucanson [11, 10]. The visualisation and
interactive drawing of the diagrams of the computational models is also an important com-
ponent, but few tools are available. Namely, JFLAP [15, 14] is mainly used for pedagogical
purposes (and includes its own symbolic manipulator) and other alternatives include the use
of generic graph visualization tools such as Graphviz [17].

The GUItar project aims to develop an extensible graphical environment for several
combinatorial objects and models of computation, such as finite automata, pushdown
automata, transducers, Turing machines, etc. Its functionalities include visualisation and
interactive editing, i.e. automatic and assisted diagram drawing; and export/import filters
that allow the interaction with several symbolic manipulators. Comparing with generic graph
visualization tools several requirements are distinct and are analised in the following.

∗ This work was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT
(Portugal) with national (MEC) and european structural funds through the programs FEDER, under
the partnership agreement PT2020.

© Miguel Ferreira, Nelma Moreira, and Rogério Reis;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 15; pp. 15:1–15:7

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Automata Serialization for Manipulation and Drawing

Automatic graph drawing has been a very active research area and several (mainly)
commercial software packages are now available for general and specific applications (data
base design, information systems, bioinformatics, social networks,etc). In contrast, auto-
mata diagrams (alike labelled multi-digraphs) require additional aesthetics and graphical
constraints: left-to-right reading, initial states on the left and final states on the right, edge
shapes and label placements, etc. Another important issue is the visualisation of only some
parts of a larger automata.

For the interactive editing it should define constraints that correspond to boolean functions
of manipulators. For instance, if we are editing a deterministic finite automaton (DFA) no
multiple transitions with the same label should be allowed; or a state can only be deleted if
the resulting recognised language is the same.

For the interaction with the different symbolic manipulators (filters), it should be allowed
the dynamic definition of actions that can be invoked, as well as conversions between the
objects of the graphical framework and ones of the manipulators.

A first version of the software tool GUItar, was developed together with the FAdo system [1,
2, 3]. That version was implemented in wxPython [16] and included the visualisation and
interactive editing for various types of automata. FAdo is mainly implemented in Python
and currently includes most standard operations for the manipulation of regular languages
and regular transductions, as well as several uniform random generators for these objects.

In this paper we present a new redesign of the GUItar framework that allows the interaction
with several automata manipulators. In Section 2 we describe the main GUItar features
within its interface and the several algorithms we use to layout the manipulated automata.
The communication process between a library and GUItar is shown in Section 3. For the
communication between these two layers to be possible, we needed to serialize the automaton.
This is accomplished by the XML/JSON grammar presented in Section 4, along with the
description of style manipulation of the automaton and examples of conversion to portable
export formats. Section 5 concludes with some future work.

2 Graphical Interface for Automata Manipulation

The GUItar [8] is a graphical interface for automata drawing and manipulation, written in
C++ and Qt5 [5]. The program is licensed with the GNU General Public License version 3.

It includes functionalities such as:
Interactive “point and click” creation of automata;
XML and JSON description of the automaton structure, styling and geometry of the
states and transitions;
Socket communication for obtaining and drawing automata represented on the GUItar
XML or JSON language;
Layout algorithms for state positioning;
Embedded ipython shell for real time command line interaction;
Exporting for several formats: PDF, PGF/Tikz, GraphViz (dot).

Its main window is composed of a QGraphicsScene widget used as a canvas, a terminal for
interfacing with the scene automaton through command lines and selection buttons: insert
state, insert transition and select items.

Using the same mechanism for automata manipulation through serialization described in
Figure 1, GUItar supports file saving and opening, restoring all automaton style and geometry
properties.

M. Ferreira, N. Moreira, and R. Reis 15:3

GUI

Canvas
Style Editor
Undo/Redo
PDF Export
Interactive Console

Automaton

States / Transitions
Styles
Geometry
Layout Algorithms
Format Export

Automata
Manipulation Library

Socket

Cereal

C++11 Linkage

XML/JSON

Figure 1 GUItar organization.

Figure 2 GUItar square, circle and spring layout of an automaton.

Comparing with the previous version of GUItar, the whole interaction and communication
use a new paradigm (including the embedded shell), consisting on the complete separation of
the symbolic manipulation program and the display program. Additional layouts and export
formats where added.

2.1 Layouts
GUItar includes several implementations of graph layout algorithms, such as:

Square - states are distributed in a d
√

ne × d
√

ne virtual grid where n is the number of
states.
Circle - we calculate a circle radius as a function of the number of states and then each
state si gets positioned at radius× (cos (Θ× i), sin (Θ× i)) where Θ is 2π

n and n is the
number of states.
Two circle - based on the JFLAP implementation, we separate the automaton into two
parts: the inner circle, which includes all states with degree greater than 2, and the outer
circle which includes the remaining states.
Barycenter [4] - an iterative algorithm that given a fixed set of states, the remaining
states move towards the barycenter proportionally to its degree.
Spring energy - another iterative algorithm that simulates a force system where states
repel each other and transitions attract their states, working as springs. This algorithm
can run a user-defined number of iterations or until the particle system’s kinetic energy
is below a certain threshold.

An example of some of these layouts is presented in Figure 2.

SLATE’16

15:4 Automata Serialization for Manipulation and Drawing

Figure 3 Example manipulation of an automaton using GUItar and FAdo.

3 Interfacing with Automata Manipulation Libraries

Communication with the GUItar is made through local sockets. For the sake of simplicity on
the automata manipulation library side, we added support for the communication through
the GUItar binary itself, as this is a single instance application.

There is also support for communication with a command line embedded inside the
GUItar. This terminal has an ipython shell with the FAdo library loaded for a more natural
way of handling the visible automaton.

The action for obtaining the currently seen automaton consists of sending the string “GET”
through the GUItar socket and expecting a JSON/XML response. It is possible to draw using
an analogous approach with the string “PUT” followed by the JSON/XML representation
of the automaton, expecting empty answer in case of success and validation of the input
against a schema.

This simplistic approach allowed us to quickly interface with known libraries such as
FAdo and Vaucanson, by writing library-side methods for interpreting the JSON/XML GUItar
format. An example using FAdo is shown in Figure 3.

4 Automata Serialization and its XML Grammar

GUItar uses the cereal [7] serialization library to produce JSON and XML representations of
its automata to be understood by manipulation libraries. We chose this approach instead of
other alternatives based on other serialization methods not only for the sake of code simplicity
and parsing efficiency, but to allow any automata manipulation library programmer to easily
interact with GUItar, be it through JSON, XML or even binary form.

The C++11 library cereal allowed us to transform our structural representation into a
XML/JSON language that later can be parsed and validated using a schema. A fragment of
the language schema is shown in Listing 2.

The structure is completely passed back and forth between the GUItar and the library
through sockets and it is the library responsibility to maintain any state, if necessary, within

M. Ferreira, N. Moreira, and R. Reis 15:5

Listing 1 Partial JSON serialization
example for the GUItar automata class.
{

" automaton " : {
" t i t l e " : " Automaton 1" ,
" type " : " " ,
" s t a t e s " : [
{

"name " : "1461439542" ,
" l a b e l " : " s2 " ,
" output " : " " ,
" i n i t i a l " : f a l s e ,
" f i n a l " : t rue

} ,
] ,
" t rans " : [
{

"name " : "14614395790" ,
" orig_name " : "1461439542" ,
" dest_name " : "1461439542" ,
" l a b e l " : " a " ,
" weight " : " " ,
" compounds " : []

}
] ,

" a lphabet " : [" a "]
}

}

Listing 2 XML Relax NG Compact grammar for
the GUItar automata class.
s t a r t = element c e r e a l {

element automaton {
element t i t l e { t ex t } ,
element type { text } ,
element s t a t e s {

element s t a t e {
element name { xsd : i n t e g e r } ,
element l a b e l { t ex t } ,
element output { text } ,
element i n i t i a l { xsd : boolean } ,
element f i n a l { xsd : boolean }

}∗
} ,
element t rans {

element t r a n s i t i o n {
element name { xsd : i n t e g e r } ,
element orig_name { xsd : i n t e g e r } ,
element dest_name { xsd : i n t e g e r } ,
element l a b e l { t ex t } ,
element weight { text } ,
element compounds {

element compound {
element key { text } ,
element value { text }

}∗
}

}∗
} ,
element alphabet {

element symbol { t ext }∗
}

}

the extra branch of the grammar. This branch is guaranteed by GUItar to be returned exactly
as it was sent.

For different automaton types, we allow special transitions with compounds, in which a
format string is defined on the label field in the form of $compound1 · · · $compoundn, and
the values of the compounds are stored as key-value pairs on its branch.

4.1 Example of a XML Automaton with Styles

On this implementation of GUItar, we include support for styling inside the JSON/XML
grammar. Each drawable object can have style properties in GUItar defined for each object
class. There can be style templates defined inside the GUI besides the default one.

The correspondence between style XML, automaton visualization and style form can be
seen in Listing 3 and Figure 4.

4.2 Exporting to Visualization Formats

Our automata objects in GUItar can be exported to several known formats. At the moment, it
is possible to export to Vaucanson-G [9] and PGF/Tikz maintaining some level of similarity
between geometry and style. We can also export the automaton with some level of styling to
the GraphViz layout program in dot language.

SLATE’16

15:6 Automata Serialization for Manipulation and Drawing

Listing 3 An example of XML GUItar.
<?xml version=" 1 .0 " encoding=" utf −8" ?>
<c e r e a l>

<automaton>
< t i t l e>FAdo</ t i t l e>
. . .

<s t a t e s s i z e=" dynamic "> . . . </ s t a t e s>
<trans s i z e=" dynamic "> . . . </ t rans>

</automaton>
. . .

<s t y l e>
<s t a t e s s i z e=" dynamic ">

<value0>
<key>1458486283455</key>
<value>

<shape>0</ shape>
<lineWidth>5</ lineWidth>
<l i n e S t y l e>0</ l i n e S t y l e>
<lineRgb>255</ l ineRgb>
< f i l l S t y l e>0</ f i l l S t y l e>
<f i l l R g b>16777215</ f i l l R g b>

</ value>
</ value0>

</ s t a t e s>
</ s t y l e>

</automaton>

b

a

a

s1

s2

s0

Figure 4 Automaton state styling.

a

b
a

b
a

s_1 s_2

s_3

s_4 s4

s3

s2s1
a

b

a
b
a

Figure 5 GUItar native export and PGF/Tikz comparison.

It is possible to export to a PDF file, maintaining an exact layout, the visible drawing in
GUItar through Qt framework methods.

5 Conclusion

In this paper we presented a new implementation of the GUItar program for visually ma-
nipulating automata and interacting with libraries. This new version, although using some
ideas of the previous one, consisted in a new redesign of most of the features and addition of
new ones. Major improvement was the possibility of communicate with several automata
symbolic manipulators.

This project is still under continuous development. The simplistic socket interface
combined with the serialization procedure provides an almost transparent communication
with automata manipulation libraries.

M. Ferreira, N. Moreira, and R. Reis 15:7

There are still features to develop and add to this project, such as GraphML export
format, more layout algorithms focused on automata drawing and constrained edition driven
by manipulators functions.

Acknowledgements. We want to thank to the anonymous reviewers for their comments
that helped to improve this paper.

References
1 André Almeida, Marco Almeida, José Alves, Nelma Moreira, and Rogério Reis. FAdo

and GUItar: tools for automata manipulation and visualization. In Sebastian Maneth,
editor, 14th International Conference on Implementation and Application of Automata,
CIAA 2009. Proceedings, volume 5642, pages 65–74, Sidney, July 2009. Springer.

2 André Almeida, Nelma Moreira, and Rogério Reis. GUItar and FAgoo: Graphical interface
for automata visualization, editing, and interaction. In Luís S. Barbosa and Miguel P.
Correia, editors, Inforum, Simpósio de Informática, pages 317–328, Braga,Portugal, 9-10
Setembro 2010.

3 José Alves, Nelma Moreira, and Rogério Reis. XML description for automata manipulations.
In Alberto Simões, Daniela Cruz, and José Carlos Ramalho, editors, Actas XATA 2010,
XML: aplicações e tecnologias associadas, pages 77–88, ESEIG, Vila do Conde, 2010.

4 Giuseppe Di Battista. Graph drawing: algorithms for the visualization of graphs. Pretice
Hall, 1999.

5 The Qt Company. Qt, Access date:1.12.2015. URL: http://www.qt.io.
6 Project FAdo. FAdo: tools for formal languages manipulation, Access date:1.11.2015. URL:

http://fado.dcc.fc.up.pt/.
7 Shane Grant and Randolph Voorhies. cereal – A C++11 library for serialization, Access

date:4.14.2016. URL: http://uscilab.github.io/cereal/.
8 Project GUItar. GUItar, Access date:1.06.2016. URL: http://guitar.dcc.fc.up.pt/.
9 S. Lombardy and J. Sakarovitch. Vaucanson-G, Access date:1.12.2015. URL: http://igm.

univ-mlv.fr/~lombardy/Vaucanson-G/.
10 Sylvain Lombardy, Yann Régis-Gianas, and Jacques Sakarovitch. Introducing Vaucan-

son. Theor. Comput. Sci., 328(1-2):77–96, 2004. doi:http://dx.doi.org/10.1016/j.
tcs.2004.07.007.

11 Sylvain Lombardy and Jacques Sakarovitch. Vaucanson, Access date:1.12.2015. URL:
http://vaucanson-project.org.

12 Darrell Raymond and Derick Wood. Grail: A C++ Library for automata and expressions.
J. Symb. Comp., 17(4):341–350, 1994.

13 Michael Riley. OpenFst, Access date:1.3.2016. URL: http://www.openfst.org.
14 Susan Rodger and Thomas Finley. JFLAP: An Interactive Formal Languages and Automata

Package. Jones and Bartlett Publishers, 2006.
15 Susan H. Rodger. JFLAP, Access date:1.12.2015. URL: http://www.jflap.org.
16 Julian Smart, Robert Roebling, Vadim Zeitlin, and Robin Dunn. wxWidgets 2.6.3: A

portable C++ and Python GUI toolkit, 2006. URL: http://wxpython.org.
17 Graph Visualization Software. Graphviz, Access date:1.12.2015. URL: http://graphviz.

org/.
18 Sheng Yu and Cezar Campeanu. Grail+, Access date:1.3.2016. URL: http://www.csit.

upei.ca/~ccampeanu/Grail.

SLATE’16

http://www.qt.io
http://fado.dcc.fc.up.pt/
http://uscilab.github.io/cereal/
http://guitar.dcc.fc.up.pt/
http://igm.univ-mlv.fr/~lombardy/Vaucanson-G/
http://igm.univ-mlv.fr/~lombardy/Vaucanson-G/
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2004.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2004.07.007
http://vaucanson-project.org
http://www.openfst.org
http://www.jflap.org
http://wxpython.org
http://graphviz.org/
http://graphviz.org/
http://www.csit.upei.ca/~ccampeanu/Grail
http://www.csit.upei.ca/~ccampeanu/Grail

	Introduction
	Graphical Interface for Automata Manipulation
	Layouts

	Interfacing with Automata Manipulation Libraries
	Automata Serialization and its XML Grammar
	Example of a XML Automaton with Styles
	Exporting to Visualization Formats

	Conclusion

