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Abstract
We study the prize-collecting version of the node-weighted Steiner tree problem (NWPCST)
restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP)
3-approximation algorithm for planar NWPCST. We then show a 2.88-approximation which
establishes a new best approximation guarantee for planar NWPCST. This is done by combining
our LMP algorithm with a threshold rounding technique and utilizing the 2.4-approximation
of Berman and Yaroslavtsev [6] for the version without penalties. We also give a primal-dual
4-approximation algorithm for the more general forest version using techniques introduced by
Hajiaghay and Jain [17].
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1 Introduction

In Steiner problems we aim at connecting certain specified vertices (called terminals) by
buying edges or nodes of the given graph. The classic edge-weighted setting is well known to
have many applications in areas like electronic circuits, computer networking, and telecom-
munication. The expressive power of the node weighted variants is used to model various
settings common to bioinformatics [11], maintenance of electric power networks [16], and
computational sustainability [10].

The node weighted setting is a generalization of the edge weighted case. In particular,
one may cast the Set Cover problem as an instance of the Node-weighted Steiner Tree
problem, which proves hardness of approximation of the general node-weighted setting. In
this paper we study a natural special case, namely planar graphs, for which constant factor
approximation algorithms are possible.

In the prize-collecting (penalty-avoiding) setting we are given an option not to satisfy
a certain connectivity requirement, but to pay a fixed penalty instead. The main focus of
this work is to develop efficient primal-dual approximation algorithms for prize-collecting
versions of the node-weighted Steiner problems.
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Table 1 Summary of best known approximation ratios for Steiner problems. Results of this
paper are highlighted.

edge-weighted node-weighted
tree forest tree forest

general 1.39 [7] 2 [15] O(log k) [5] O(log k) [5]
planar PTAS [4] PTAS [4] 2.4 [6] 2.4 [6]

general 2 − ε [2] 3
2.54 (LP) [17] O(log k) [5, 19] O(log k) [5]

prize-collecting
planar PTAS [3] APX-HARD [3] 3

2.88 (LP) 4

1.1 Previous work

The Steiner tree problem is NP-hard even in planar graphs [12]. The most studied version
is the standard edge-weighted Steiner tree, for which the best known approximation ratio
1.39 is obtained via a randomized iterative rounding technique [7]. By contrast, the best
approximation algorithms for Steiner forest have the so far unbreakable ratio of 2 [1, 18].

For the prize-collecting Steiner tree problem there exists a primal-dual 2-approximation
algorithm [15]. It can be shown that it is also Lagrangian-preserving, i.e., that it achieves a
1-approximation on the penalty term. This property was used by Archer et al. to design the
currently best 2− ε approximation algorithm for PCST [2].

For the prize-collecting Steiner forest problem there is a 3 approximation primal-dual
algorithm [17], which introduces a general technique to handle prize-collecting problems. In
the same paper the authors use a threshold rounding technique with randomized analysis to
obtain a ≈ 2.54 approximation.

There are optimal (up to a constant factor) algorithms for node-weighted Steiner problems.
One example is the recent O(lnn) approximation algorithm for NWPCSF by Bateni et al [5].
Könemann et al [19] gave a Lagrangian-multiplier-preserving (LMP) approximation that
achieves the same guarantee. Establishing the LMP property is of crucial importance for
the construction of approximation algorithms for quota and budgeted versions of the NWST
problem.

Planarity helps significantly in both the edge and node weighted setting. Both ST and
SF admit PTAS in planar graphs [4]. Planar PCST can be also approximated with any
constant, but PCSF is APX-HARD already on planar graphs [3].

In the case of the node-weighted setting, planarity helps to achieve constant factor
approximations. The NWSF can be expressed as the Hitting Set problem for some uncrossing
family of cycles and hence solved as a feedback problem. This was exploited by Berman and
Yaroslavtsev in [6] where they obtained a 2.4 approximation for NWSF and other problems
on planar graphs.

In [21] it was observed that using a threshold rounding technique together with the 2.4-
approximation of Berman and Yaroslavtsev [6] for the version without penalties gives a 2.93-
approximation algorithm for NWPCST on planar graphs. This was the best approximation
guarantee up to date. However, such an algorithm requires solving an LP.

We summarize the current best known results in Table 1.
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1.2 Our contribution

We propose a new LMP 3-approximation algorithm for NWPCST on planar graphs. The
algorithm is an adaptation of the original technique developed by Goemans and Williamson
in [15] for PCST to the node-weighted version. However, we change the pruning phase of the
algorithm. This enables us to analyze the connection and penalty costs separately which is
the key ingredient. In particular, we can directly charge the penalty costs to a part of the
dual solution yielding Langrangian-multiplier-preservation. Further, the connection costs
can be bounded using a slightly adapted analysis from [20] for NWSF. The approximation
ratio of 3 is slightly higher than the previously best approximation ratio but the primal-dual
algorithm does not require solving an LP.

Next, we establish a new best approximation ratio by exploiting the asymmetry of our
primal-dual algorithm. A combination of the new LMP algorithm with a threshold rounding
technique with the underlying 2.4-approximation from [6] yields a 2.88-approximation for
NWPCST on planar graphs.

Furthermore, we obtain an efficient, direct primal-dual 4-approximation algorithm for
NWPCSF on planar graphs building up on ideas for edge-weighted PCSF from [17]. This
approach was previously indicated by Demaine et al. [9], but we give a better constant.

2 The LMP primal-dual 3-approximation algorithm

Consider an undirected graph G = (V,E) with non-negative cost function and penalties
on the vertices denoted by w : V → Q+ and π : V → Q+, respectively. In the NWPCST
problem we are allowed to purchase a connected subgraph F of G that connects vertices to a
prespecified root r ∈ V . Every bought vertex induces a cost according to w. Every vertex
that is not included induces a penalty according to π. The objective is to minimize the sum
of the purchase and penalty costs, i.e.,

∑
v∈F wv +

∑
v/∈F πv.

By a standard transformation we can assume that for every vertex v either its cost or its
penalty is zero. To see this consider a single vertex v with both strictly positive cost and
penalty. Add an additional vertex v′, set its cost to zero and penalty to πv, add an edge
from v′ to v and set the penalty of v to zero. Now, any solution in the original graph can be
transformed to a solution of the same cost in the modified graph and vice-versa.

In the sequel, we call a vertex with a positive penalty a terminal. Terminals and the
root can be purchased for free. Other vertices do not have a penalty and we call them
non-terminals or Steiner vertices.

Let Γ(S) denote the set of neighbors of S, i.e., the set of vertices in V \ S incident to
vertices from S ⊆ V . Let also Π(X) =

∑
v∈X πv. Thus, NWPCST is the following problem:

min
∑
v∈V

wvxv +
∑

X⊆V \{r}

Π(X)zX (IPPCST)

s.t. ∑
v∈Γ(S)

xv +
∑

X:S⊆X
zX ≥ 1 ∀S ⊆ V \ {r}

xv ∈ {0, 1} ∀v ∈ V
zX ∈ {0, 1} ∀X ⊆ V \ {r}

By relaxing the integrality constraints to non-negativity constraints we obtain the standard
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linear relaxation. The dual of this relaxation is

max
∑

S⊆V \{r}

yS (DLPPCST )

s.t. ∑
S:v∈Γ(S)

yS ≤ wv ∀v ∈ V (1)

∑
S⊆X

yS ≤ Π(X) ∀X ⊆ V \ {r} (2)

yS ≥ 0 ∀S ⊆ V \ {r}

2.1 Algorithm

Now we shortly describe our primal-dual algorithm which is an adaptation of the generic
moat-growing approach of Goemans and Williamson [15]. In each iteration i we maintain
a set of already bought nodes F . We say that some vertex was bought at time i if it was
bought in iteration i1. At the beginning F contains all terminals (including the root). We
maintain also the set of connected components C of subgraph G[F ] induced by the vertices
bought so far. We call each of these connected components a moat. Moats can be active or
inactive. The moat containing root r is always inactive. In each iteration we increase (grow)
dual variables corresponding to all active moats uniformly until one of the following two
events happen:

a vertex v goes tight (constraint (1) becomes equality), or
a set X goes tight (constraint (2) becomes equality).

In the first case we buy vertex v and possibly merge moats incident to v. If we merge to a
moat containing the root r, this moat becomes inactive, otherwise it is declared active.

In the second case, we declare the moat corresponding to set X inactive. Moreover, we
mark all unmarked terminals inside X with the current time.

The growth phase terminates when there are no more active moats. After that, we have a
pruning phase. In the pruning phase we restrict to the connected component of F containing
the root and discard everything else. Let F (r) denote this component. Then, we consider
vertices in F (r) in the reverse order of purchase. We delete vertex v (bought at time t) if it
does not disconnect from r any terminal which was unmarked at time t. When we delete v,
we further discard all vertices that become disconnected from r. As a result we output the
set of bought vertices F ′ that survived pruning.

Our algorithm can be implemented with a notion of so-called potentials. Let P (X) =
Π(X) −

∑
S⊆X yS be the potential of set X. Intuitively, we pay for the growth of moats

(increase of dual variables) with potentials of these moats. If the potential of a moat goes
to zero, the corresponding constraint becomes tight, so we have to make this moat inactive.
When we merge moats to a new moat S by buying a vertex, we compute the potential of S
by summing the potentials of the old moats.

1 When we refer to time we always have in mind the number of the current iteration. Note that it implies
that the speed of the uniform growth of dual budgets is not constant across iterations, but it does not
affect our description of the algorithm.
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2.2 Analysis

I Theorem 1 (Lagrangian Multiplier Preservation). Let G be planar. The algorithm described
in the previous section outputs a set of vertices F ′ such that∑

v∈F ′
wv + 3Π(V \ F ′) ≤ 3

∑
S⊆V \{r}

yS ≤ 3 OPT .

In the proof we want to use the obtained dual solution y to account for the connection
costs and penalties of the primal solution F ′. We will partition the yS into two sets. The
first set will yield a bound on the connection costs and the second a bound on the penalties.

The key ingredient in the analysis is the partition that is based on the following lemma.
Consider any iteration i and the active moats Ai before this iteration. Let S ∈ Ai be an
active moat that was not included in the final solution, i.e., S ∩ F ′ = ∅. Then, the dual
variable of S did not contribute to buying any vertex in F ′. This means that yS does not
contribute to the left-hand-side of the constraints (1) for any v ∈ F ′. More formally, this
means that S does not have a neighbor in F ′.

I Lemma 2. Let S ∈ Ai be such that S ⊆ V \ F ′. Then, the moat S does not have any
neighbor in the solution, i.e. F ′ ∩ Γ(S) = ∅ .

Proof of Lemma 2. Note that S ∈ Ai means that S is active in iteration i and therefore
there is an unmarked (before time i) terminal in S. Now, assume for a contradiction that
F ′ ∩ Γ(S) 6= ∅ and let U ⊆ S be the set of vertices having a neighbor in F ′. Note that
all vertices in U were bought before iteration i because S is a connected component of the
vertices bought before iteration i and U ⊆ S. Since S is not part of F ′, all the vertices in U
must have been deleted in the pruning phase. A contradiction, since this would disconnect
the unmarked (before time i) terminal in S. J

Following Lemma 2, we can partition all dual variables into the variables that contributed
to buying the vertices of F ′ and the dual variables that account for the penalties induced
by F ′. Let CC be the set of all moats S ⊆ V \ {r} that include a vertex of F ′ or have a
neighbor in F ′, i.e., (S ∪ Γ(S)) ∩ F ′ 6= ∅ and yS > 0. Let PC be the set of all other moats,
i.e., sets S with yS > 0 but S 6∈ CC. We will show that∑

v∈F ′
wv ≤ 3

∑
S∈CC

yS and Π(V \ F ′) =
∑
S∈PC

yS

which yields Theorem 1.
To show the bound on the connection cost we make a degree counting argument. Here, we

can leverage the analysis of the primal-dual algorithm for node-weighted Steiner forest given
in [20]. Recall that our algorithm can also deactivate moats due to the penalty constraints.
However, this fact does not generate problems. Intuitively, deactivating a moat corresponds
to satisfying a demand pair in the forest problem. The proof of the following lemma only
requires a minor change to the analysis.

I Lemma 3 (Analog of Analysis in [20]). Let F ′ be the output of the algorithm and Ai be the
set of active moats before running iteration i. Then,∑

S∈Ai∩CC
|F ′ ∩ Γ(S)| ≤ 3|Ai ∩ CC|.
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Proof. We outline the proof of Lemma 3. As indicated this proof is, except for a minor
change, analogous to the proof used in [20] to show that the generic primal-dual algorithm
for node-weighted Steiner forest on planar graphs has an approximation guarantee of 3.

Let F ′ be the output of the algorithm and Ai be the set of active moats before running
iteration i. We want to show that∑

S∈Ai∩CC
|F ′ ∩ Γ(S)| ≤ 3|Ai ∩ CC|. (3)

In (3) we count the adjacencies between active moats at iteration i and vertices from F ′.
Let Fi be the set of vertices bought by the algorithm before iteration i. Consider a graph G′
obtained from G in the following way:
1. take the subgraph of G induced by vertices from Fi ∪ F ′
2. keep only the connected component containing root r
3. contract each inactive moat (at iteration i) in this subgraph with a neighboring vertex

(excluding the moat containing root)
4. contract each active moat in this component
5. contract the moat containing the root
Next, color the vertices of G′ with three colors:

white color for vertices obtained from contracting active moats
blue color for the single vertex representing the moat containing the root
black color for all other vertices, i.e. F ′ \ Fi

Observe now that deleting a black vertex in G′ disconnects some white vertex from the blue
vertex, because otherwise it would be deleted in the pruning phase. G′ remains planar, since
deletions and contractions preserve planarity. Moreover, it is easy to see that the number of
adjacencies

∑
S∈Ai

|F ′ ∩ Γ(S)| in G is the same as the number of edges between white and
black vertices in G′.

To bound this number we will use the following result that is implicit in [20].

I Lemma 4. Consider a simple connected planar graph H = (V,E) in which vertices are
colored with two colors: black and white, i.e. V = B ∪W . If for this graph the two following
conditions hold

there is no edge between any two white vertices
removing any black vertex disconnects the graph

then the number of edges between black and white vertices (|E′|) is at most 3 times greater
than the number of white vertices, i.e., |E′| ≤ 3(|W | − 1)

Before we prove Lemma 4, let us remark how it yields the claim. Consider for a moment
the color of the blue vertex in G′ to be white (resulting in graph H). Now removing a black
vertex clearly splits the graph into multiple components, since it disconnects at least two
white vertices (one of them is this recolored blue vertex). All other conditions of the lemma
are satisfied. Applying Lemma 4 finishes the proof of Lemma 3, since |Ai| = |W | − 1. J

Proof of the Lemma 4. We follow the proof given in [21]. Consider the following operation
on the graph H. Take any edge e = (u, v) between two black vertices u and v in H.

If u and v share a common white neighbor, then delete edge e.
Otherwise contract u and v.

Observe that this operation preserves conditions of the lemma. Moreover it does not change
the number of adjacencies between black and white vertices. Consider now the graph H ′
obtained by performing as many above operations as possible. The H ′ is bipartite since we
contracted or deleted all edges between any two black vertices. The goal is now to bound
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the number of edges in H ′. The idea is to use the Euler’s formula for planar graphs. But
first we have to show a few claims about H ′.

Let W and B denote the set of white and black vertices of H ′, respectively.

I Fact 5. |B| ≤ |W | − 1.

Proof. Consider a breadth-first search tree T in H ′ rooted at any white vertex rw. Since
removing a black vertex splits the graph, all leaves of T are white. Recall that H ′ is bipartite.
Thus each black vertex has at least one unique white child in T . Furthermore, rw is the only
white vertex that does not have a parent. This concludes the proof of Fact 5. J

Now, using Fact 5 instead of Claim 1.4 of [21] in the proof of Lemma 1.3 of [21] yields
Lemma 4 J

To conclude the upper bound on the connection costs, note that constraint (1) is tight
for all vertices v ∈ F ′. This gives∑

v∈F ′
wv =

∑
v∈F ′

∑
S:v∈Γ(S)

yS =
∑

S⊆V \{r}

|F ′ ∩ Γ(S)| yS =
∑
S∈CC

|F ′ ∩ Γ(S)| yS .

We will show that
∑
S∈CC |F ′ ∩ Γ(S)| yS ≤ 3

∑
S∈CC yS by induction on the number of

iterations. At the beginning all dual variables are equal to 0 and the inequality holds. In
iteration i we grow each active moat from Ai ∩CC by εi. This increases the left-hand side by
εi
∑
S∈Ai∩CC |F

′ ∩Γ(S)| and the right-hand side by 3εi|Ai ∩CC|. Then, Lemma 3 concludes
the proof of the bound on the connection costs.

In order to prove the bound on the penalties we employ the following lemma.

I Lemma 6. Let F ′ and yS be the primal and dual solution constructed by the algorithm.
The set of vertices X = V \ F ′ not spanned by the final solution can be partitioned into sets
X1, X2, . . . Xl such that the potential of each set is 0, i.e., P (Xk) = 0 for each k.

Proof. Observe that there are two ways for a vertex v to be in X: either it was never a part
of the root component (v ∈ V \ F (r)) or it was deleted in the pruning phase (v ∈ F (r)). It
is easy to see that P (V \ F (r)) = 0. Each vertex in V \ F (r) was at the end a part of some
inactive component not containing the root and hence the potentials of these components
were 0. Or, it was never in any moat.

It remains to show that the set S of vertices disconnected from F ′ by pruning a vertex v
can be partitioned into sets Xk for which P (Xk) = 0. Let t be the time when v was bought.
Observe that every vertex u in the neighborhood Γ(S) of S has been bought after time t or
was not bought at all. Now, S contains only marked terminals at time t, otherwise v would
not have been pruned. Hence, S is a union of inactive moats at time t. This gives the desired
partition. J

Observe that PC is the set of all S ⊆ Xi with yS > 0. To conclude the bound on the
penalties note that since all Xk have zero potential we have

Π(V \ F ′) =
l∑

k=1
Π(Xk) =

l∑
k=1

∑
S⊆Xk

yS =
∑
S∈PC

yS .
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3 Combination with threshold rounding

A standard technique to generalize primal-dual algorithms from Steiner tree problems to their
price-collecting variations is to use threshold rounding (see Section 5.7 of [22] or [13]). Here,
in the first step an LP formulation for the price-collecting version is solved over fractional
variables. Then, we pick a threshold α and consider the vertices that are bought with value
at least α to be terminals. In the second step, the primal-dual algorithm for the original
Steiner tree problem is run on this set of terminals to obtain the final solution. We note that
the resulting algorithm is deterministic because we can try all possible thresholds (at most
one for every vertex). However, the analysis uses a randomization argument.

We observed in [21] that using threshold rounding in combination with the primal-dual
2.4-approximation for node-weighted Steiner forest by Berman and Yaroslavtsev [6] yields a
2.93-approximation for NWPCST on planar graphs.

In this section, we combine the previous LMP algorithm with the threshold rounding
technique to gain an improved approximation factor of 2.88. Our approach is inspired by
an idea of Goemans [14]. Intuitively, such an improvement is possible because the LMP
approximation improves over the factor of 3 if the optimal solution induces a high penalty
cost. In contrast, if the penalties are only a small part of the optimal solution’s cost,
threshold rounding can leverage the robustness of the underlying 2.4-approximation. Thus,
by combining the two algorithms we can hedge their weaknesses.

3.1 Threshold rounding

We use the standard threshold rounding technique (cf. [22]). Consider the following LP

min
∑
v∈V

wvxv +
∑

u∈V \{r}

πuyu (LPthr)

s.t. ∑
v∈Γ(S)

xv + yu ≥ 1 ∀S ⊆ V \ {r}, u ∈ S

xv ≥ 0 ∀v ∈ V yu ≥ 0 ∀u ∈ V

This LP is equivalent to the LP used in the construction of the primal-dual LMP 3-
approximation from Section 2. This was shown by Williamson for the edge-weighted variant
(see section 7.4.1 of [23]), however arguments are identical in our case. This is due to the
fact, that the mapping between feasible solutions leaves variables related to connection costs
unchanged and constructs variables z based solely on y and vice-versa.

In the sequel, let (x∗, y∗) be the optimum solution to LPthr with objective value OPTLP .
Further, if T is a solution to NWPCST, let w(T ) be the total connection and π(V \ T ) be
the total penalties of T . We also use this notation for (fractional) solutions: w(x), π(z) and
π(y).

Let β ∈ (0, 1) be a constant to be determined later. For every possible value α of y∗ that
is at most β, let Q = {u : y∗u ≤ α}. Consider the instance INWSTQ

of the NWST problem
which is derived from INWPCST by keeping only terminals from Q. Let LPNWSTQ

be the
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following linear program

min
∑
v∈V

wvxv (LPNWSTQ
)∑

v∈Γ(S)

xv ≥ 1 ∀S ⊆ V \ {r}, Q ∩ S 6= ∅

xv ≥ 0 ∀v ∈ V

Let OPTLPQ
be the optimum objective function value of LPNWSTQ

. We run the 2.4-
approximation algorithm for INWSTQ

by Berman and Yaroslavtsev [6] which returns a
solution F such that its cost is no greater than 2.4 ·OPTLPQ

. Finally, return the best of all
obtained solutions F (due to different values of α).

Though the algorithm is deterministic its analysis is based on a randomized argument.
Instead of trying all possible values of α, consider α to be chosen uniformly at random from
[0, β]. Consider x′ = 1

1−αx
∗. It follows that x′ is a feasible solution to LPNWSTQ

. We bound
the expected connection and penalty costs of F .

E

[∑
v∈F

wv

]
≤ E

[
2.4 ·OPTLPQ

]
≤ E

[
2.4
∑
v∈V

x′v · wv

]
≤ E

[
2.4

1− α

]∑
v∈V

x∗v · wv

=
(∫ β

0

1
β
· 2.4

1− αdα
)
w(x∗)

= 2.4
β

ln
(

1
1− β

)
w(x∗)

E

∑
u/∈Q

πu

 = E

 ∑
u:y∗u>α

πu

 ≤∑
u

πuPr [y∗u ≥ α] ≤
∑
u

πu

∫ y∗u

0

1
β
dα

=
∑
u

πu
1
β
y∗u = 1

β
π(y∗)

3.2 Combining the two algorithms

To combine the LMP approximation with threshold rounding we require a slight modification
of the instance submitted to the LMP approximation.

Recall that for an instance I the LMP 3-approximation returns a solution T such that
w(T ) + 3π(V \ T ) ≤ 3OPTLP . Consider now instance I ′ with has its penalties scaled by
1/3, i.e., π′v = 1

3πv. Run the LMP approximation on I ′ to obtain a solution T ′ satisfying
w(T ′) + π(V \ T ′) = w(T ′) + 3π′(V \ T ′) ≤ 3OPT ′LP , where OPT ′LP is the value of the
optimum solution to program LP ′ derived from LPthr by taking scaled penalties π′. Observe
that (x∗, y∗) is also feasible to LP ′, because this program differs only in the objective function.
Hence we have that

w(T ′) + π(V \ T ′) ≤ 3OPT ′LP ≤ 3 (w(x∗) + π′(y∗)) = 3w(x∗) + π(y∗)

Now, our final algorithm returns the best solution among T ′ and the solution produced by
the threshold rounding technique in the previous section. Note that this is a deterministic
procedure. However, the analysis uses a randomized argument inspired by Goemans [14]:
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pick one solution with probability p and the other with probability 1− p. Let SOL be the
returned solution.

E [SOL] ≤
[
3p+ (1− p)2.4

β
ln
(

1
1− β

)]
w(x∗) +

[
p+ (1− p) 1

β

]
π(y∗)

≤
[(

3p+(1−p)2.4
β

ln
(

1
1−β

))
w(x∗)+

(
p+(1−p) 1

β

)
π(y∗)

]
Finally, optimizing constants we obtain for β = 1 − e− 5

36 and p = 1
4−3e−5/36 the claimed

result

E [SOL] ≤ 4
4− 3e−5/36 (w(x∗) + π(y∗))

≤ 4
4− 3e−5/36 OPT ≈ 2.8797 ·OPT

4 The primal-dual 4-approximation for forest

In this section we use a general combinatorial approach for solving prize-collecting problems
introduced by Hajiaghayi and Jain [17]. In their work they obtained the primal-dual 3-
approximation algorithm for edge-weighted prize-collecting Steiner forest problem. We adapt
their argumentation to the planar node-weighted setting resulting in the 4-approximation
algorithm. We provide here only a sketch - the more detailed description and proofs can be
found in the full version of the paper [8].

Consider a graph G = (V,E) with a non-negative cost function on nodes w : V → Q+, a
set of pairs of vertices (demands) D = (s1, t1), (s2, t2), . . . , (sk, tk) and a non-negative penalty
function π : D → Q+. In the node-weighted prize-collecting Steiner forest problem we are
asked to find a set of vertices F ⊆ V which minimizes the sum of costs of vertices in F plus
penalties for pairs of vertices which are not connected in a subgraph of G induced by F .

Note that we can give an equivalent definition of demands and penalties by specifying
penalties for each unordered pair of vertices. Simply set penalties for pairs of vertices which
are not in D to 0. From now on we will use values πij to denote penalties. Let also Γ(S)
denote the set of vertices in V \ S incident to vertices from S ⊆ V and let S � (i, j) means
that |(i, j) ∩ S| = 1 (i.e., S separates vertices i and j) Using this notation, we can formulate
our problem with the following integer program

min
∑
v∈V

wvxv +
∑

(i,j)∈V×V

πijzij (IPSF)

s.t. ∑
v∈Γ(S)

xv + zi,j ≥ 1 ∀S ⊆ V, ∀(i, j) ∈ V × V : S � (i, j)

xv ∈ {0, 1} ∀v ∈ V
zi,j ∈ {0, 1} ∀(i, j) ∈ S × S

Setting xv = 1 corresponds to buying a vertex v (including v into solution F ) and setting
zi,j = 1 corresponds to paying a penalty instead of connecting vertices i and j.

Unfortunately, the dual of the linear relaxation of IPSF is not suitable for obtaining a
primal-dual algorithm. However, following the framework in [17], we can replace it with the
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following LP:

max
∑
S⊂V

yS (DLPSF4)

s.t. ∑
S:v∈Γ(S)

yS ≤ wv ∀v ∈ V (4)

∑
S∈S

yS ≤
∑

(i,j)∈V×V,S�(i,j)

πi,j ∀S ∈ 22V

(5)

yS ≥ 0 ∀S ⊂ V

where S � (i, j) denotes that there exists S ∈ S such that S � (i, j) (we say that family S
separates vertices i and j if and only if there exists at least one set S ∈ S which separates
vertices i and j).

This new formulation allows us to obtain a natural primal-dual algorithm which is
described below.

The algorithm starts with an initial solution F in which there are all vertices of cost 0
(hence all terminals). In each iteration the algorithm maintains moats which are the connected
components of graph G induced by the vertices of the current solution F . Demands can be
marked (meaning that we decide to pay a penalty for them) or unmarked. At the beginning
all demands are unmarked. Once demand is marked, it stays marked forever. A moat
(denoted by the corresponding set S ⊆ V ) is active in the current iteration if and only if
there is at least one unmarked demand (i, j) such that S � (i, j). Now in each iteration we
simultaneously grow each active moat until one of the following two events occur:

a vertex v goes tight (constraint (4) becomes equality), or
a family S goes tight (constraint (5) becomes equality).

In the first case we simply add v to our solution F (which may make some moats inactive)
and continue to the next iteration.

In the second case, we mark each demand (i, j) such that S� (i, j). Hence in the following
iterations all moats from S will be inactive, and we will not violate any constraint during the
growth process. We repeat this process until all moats become inactive.

After that we have an additional pruning phase in which we process all vertices of F in
the reverse order of buying. We remove a vertex v from F if after its removal from F , all
unmarked demands are still connected in the graph induced by F . We output this pruned
set of vertices as F ′ which is our final solution.

Obtaining ε1 and a tight vertex in line 7 is straightforward. On the other hand obtaining
ε2 in line 8 and a tight family S seems to be much harder, since the number of corresponding
constraint is doubly exponential. Fortunately Hajiaghayi and Jain in section 4 of [17] gave a
polynomial time algorithm for computing ε2 and the corresponding tight family S.

Since the algorithm terminates after at most 2|V | − 1 iterations (in each iteration the
number of active moats or the number of connected components decreases), the running
time of this algorithm is polynomial.

We can combine proofs from [20] and [17] in order to obtain the following result.

I Theorem 7. The algorithm outputs a set of vertices F ′ and a set of demands Q′ which
are not connected via F ′ such that∑

v∈F ′
wv +

∑
(i,j)∈Q′

πij ≤ 4
∑
S⊆V

yS ≤ 4 OPT .

SWAT 2016
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Input :A planar graph G = (V,E) with non-negative weights wi on the nodes and
non-negative penalties πij between each pair of vertices such that if πij > 0
then wi = 0 and wj = 0

Output :A set of vertices F ′ representing a forest and a set of pairs Q′ representing not
connected demands

1 begin
2 F ← {vi ∈ V : wi = 0};
3 Q← ∅ // set all demands unmarked
4 yS ← 0 // implicitly

5 AM ←
{
S ⊆ V : S ∈ SCC (G[F ]) ∧ ∃

(i,j)∈V×V−Q
πij > 0 ∧ S � (i, j)

}
;

// identify active moats as components of subgraph of G induced by
vertices F for which there is at least one unmarked demand (i, j)
which is separated by the corresponding set

6 while AM 6= ∅ do
7 find minimum ε1 s.t if we increase yS for each S ∈ AM by ε1 we get a new tight

vertex v;
8 find minimum ε2 s.t if we increase yS for each S ∈ AM by ε2 we get a new tight

family S;
9 ε← min(ε1, ε2);

10 yS ← yS + ε for all S ∈ AM ;
11 if ε = ε1 then
12 F ← F ∪ {v};
13 else
14 Q← Q ∪ {(i, j) ∈ V × V : S� (i, j)}
15 end

16 AM ←
{
S ⊆ V : S ∈ SCC (G[F ]) ∧ ∃

(i,j)∈V×V−Q
πij > 0 ∧ S � (i, j)

}
;

17 end
// pruning phase

18 Derive F ′ from F by removing vertices in reverse order of purchase so that every
unmarked demand is connected in F ′.

19 Let Q′ be all demands not connected via F ′

20 end
Algorithm 1: Primal-dual algorithm for NWPCSF on planar graphs.
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We need to show that:∑
v∈F ′

wv ≤ 3
∑
S⊆V

yS and
∑

(i,j)∈Q′
πij ≤

∑
S⊆V

yS

The bound on the connection cost is shown in a similar way as in the tree version, i.e., using
a degree counting argument for each iteration. This is captured by the lemma below.

For a set of nodes F and the set of unmarked demands R = D − Q define a minimal
feasible augmentation Faug of F with respect to R to be a set of vertices Faug containing F
as a subset such that every pair of vertices from R is connected in the subgraph of G induced
by Faug and such that removal of any v ∈ Faug \ F from Faug disconnects some pair from R.

I Lemma 8 (Analog of Analysis in [20]). Let G be planar, R be the set of unmarked demands
after running the above algorithm, Fj be the set of bought vertices before running iteration j
and Faug be a minimal feasible augmentation of Fj with respect to R. Let also Aj be the set
of active moats before running iteration j. Then∑

S∈Aj

|Faug ∩ Γ(S)| ≤ 3|Aj | .

The proof of this lemma is conducted in a similar way as the proof of Lemma 3 and the
analysis is essentially the same as in [20].

In turn, the bound on penalties is shown exactly in the same way as in the edge-weighted
version [17]. When we mark a pair it belongs to a tight family. It is observed that the union
of those tight families is also tight, hence the corresponding constraint gives the bound.

The more detailed proofs of these bounds can be found in in the full version of the
paper [8].

Note that we cannot separate dual variables like in the tree version, hence we obtain a
factor of 4 instead of 3 as in Section 2. This is essentially due to the same difficulty as in the
standard edge-weighted variant for the prize-collecting Steiner forest problem.
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