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Abstract
We consider the recognition problem for two graph classes that generalize split and unipolar
graphs, respectively. First, we consider the recognizability of graphs that admit a monopolar
partition: a partition of the vertex set into sets A,B such that G[A] is a disjoint union of cliques
and G[B] an independent set. If in such a partition G[A] is a single clique, then G is a split
graph. We show that in O(2k · k3 · (|V (G)| + |E(G)|)) time we can decide whether G admits a
monopolar partition (A,B) where G[A] has at most k cliques. This generalizes the linear-time
algorithm for recognizing split graphs corresponding to the case when k = 1.

Second, we consider the recognizability of graphs that admit a 2-subcoloring: a partition
of the vertex set into sets A,B such that each of G[A] and G[B] is a disjoint union of cliques.
If in such a partition G[A] is a single clique, then G is a unipolar graph. We show that in
O(k2k+2 · (|V (G)|2 + |V (G)| · |E(G)|)) time we can decide whether G admits a 2-subcoloring
(A,B) where G[A] has at most k cliques. This generalizes the polynomial-time algorithm for
recognizing unipolar graphs corresponding to the case when k = 1.

We also show that in O∗(4k) time we can decide whether G admits a 2-subcoloring (A,B)
where G[A] and G[B] have at most k cliques in total.

To obtain the first two results above, we formalize a technique, which we dub inductive
recognition, that can be viewed as an adaptation of iterative compression to recognition problems.
We believe that the formalization of this technique will prove useful in general for designing
parameterized algorithms for recognition problems. Finally, we show that, unless the Exponential
Time Hypothesis fails, no subexponential-time algorithms for the above recognition problems
exist, and that, unless P=NP, no generic fixed-parameter algorithm exists for the recognizability
of graphs whose vertex set can be bipartitioned such that one part is a disjoint union of k cliques.
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14:2 Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs

1 Introduction

A (ΠA,ΠB)-graph, for graph properties ΠA,ΠB , is a graph G = (V,E) for which V admits a
partition into two sets A,B such that G[A] satisfies ΠA and G[B] satisfies ΠB . There is an
abundance of (ΠA,ΠB)-graph classes, and important ones include, in addition to bipartite
graphs (i.e., 2-colorable graphs), well-known graph classes such as split graphs (which admit
a bipartition into a clique and an independent set), and unipolar graphs (which admit a
bipartition into a clique and a cluster graph). Here a cluster graph is a disjoint union of
cliques.

The problem of recognizing whether a given graph belongs to a particular class of (ΠA,ΠB)-
graphs is called (ΠA,ΠB)-Recognition, and is known as a vertex-partition problem. In
general, most recognition problems for (ΠA,ΠB)-graphs are NP-hard [11], but bipartite, split,
and unipolar graphs can all be recognized in polynomial time [17, 13, 16, 10, 20]. With the
aim of generalizing these polynomial-time algorithms, we study the complexity of recognizing
two classes of (ΠA,ΠB)-graphs that generalize split and unipolar graphs.

First, we consider monopolar graphs; these are graphs in which the vertex set admits a
bipartition into a cluster graph and an independent set, and thus generalize split graphs.
Monopolar graphs have applications in the analysis of protein-interaction networks [3]. The
recognition problem of monopolar graphs can be formulated as follows:

Monopolar Recognition
Input: A graph G = (V,E).
Question: Does G have a monopolar partition (A,B), that is, can V be partitioned
into sets A and B such that G[A] is a cluster graph and G[B] is an independent set?

Second, we study 2-subcolorable graphs; these are graphs in which the vertex set admits a
bipartition into two cluster graphs [2], and thus generalize unipolar graphs. The recognition
problem of 2-subcolorable graphs can be formulated as follows:

2-Subcoloring
Input: A graph G = (V,E).
Question: Does G have a 2-subcoloring (A,B), that is, can V be partitioned into sets
A and B such that each of G[A] and G[B] is a cluster graph?

Monopolar Recognition and 2-Subcoloring are both NP-hard [1, 11]. This is a stark
contrast to the variants of both problems where G[A] is required to consist of a single
cluster, which correspond to the recognition of split graphs and unipolar graphs, respectively,
and admit polynomial-time algorithms [13, 16, 10, 20]. This has left the complexity of
Monopolar Recognition and 2-Subcoloring parameterized by the number of clusters
in G[A] as intriguing open questions.

Our Results. We show that both Monopolar Recognition and 2-Subcoloring are
fixed-parameter tractable parameterized by the number of clusters in G[A]. More formally,
let G = (V,E) be a graph and k a nonnegative integer. We prove the following:

I Theorem 1.1. In O(2k ·k3 ·(|V |+ |E|)) time, we can decide whether G admits a monopolar
partition (A,B) such that G[A] is a cluster graph with at most k clusters.

Observe that the algorithm runs in linear time for any fixed k. In particular, the algorithm
recognizes split graphs (the case k = 1) in linear time, matching the running time of the
existing algorithm for this problem [13].
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I Theorem 1.2. In O(k2k+2 · (|V |2 + |V | · |E|)) time, we can decide whether G admits a
2-subcoloring (A,B) such that G[A] is a cluster graph with at most k clusters.

For both problems, one faces various technical difficulties when designing recognition algo-
rithms due to the following: First, we parameterize by the number of clusters in G[A] and
not by the number of vertices. Second, the number of clusters or vertices of G[B] can be
arbitrary. In particular, 2-Subcoloring does not seem to yield to standard approaches in
parameterized algorithms. To overcome these difficulties, we propose a technique, which
we dub inductive recognition, that is an adaptation of iterative compression to recognition
problems. We believe that the applications of this technique extend beyond the problems
under consideration in this paper, and will have general use for designing parameterized
algorithms for recognition problems.

Inductive recognition on a graph G = (V,E) works as follows. Start with an empty
graph G0 that trivially belongs to the graph class. In iteration i, we recognize whether
the subgraph Gi of G induced by the first i vertices of V still belongs to the graph class,
given that Gi−1 belongs to the graph class. This technique is very similar to the well-known
iterative compression technique [18]. The crucial difference, however, is that in iterative
compression we can always add the i-th vertex vi to the solution from the previous iteration
to obtain a new solution (which we compress if it is too large). However, in our problems,
we cannot simply add vi to one part and witness that Gi is still a member of the graph class
with possibly too many clusters. For example, if we consider vi with respect to a monopolar
partition (A,B) of Gi−1, then potentially vi could neighbor a vertex in B and vertices of
two clusters in G[A]. Therefore, we cannot add vi to A or B to obtain another monopolar
partition, even if Gi is monopolar, and hence, we also cannot perform a “compression step”.
Instead, we must “repair” the solution by rearranging vertices. This idea is formalized in the
inductive recognition framework in Section 3.

In the case of 2-Subcoloring, we also consider the weaker parameter of the total number
of clusters in G[A] and G[B]. This parameterization makes the problem amenable to a
branching strategy that branches on the placement of the endpoints of suitably-chosen edges
and nonedges of the graph. This way, we create partial 2-subcolorings (A′, B′) where each
vertex in V \ (A′ ∪B′) is adjacent to the vertices of exactly two partial clusters, one in each
of G[A′] and G[B′]. Then we show that whether such a partial 2-subcoloring extends to an
actual 2-subcoloring of G can be tested in polynomial time via a reduction to 2-CNF-Sat.

I Theorem 1.3 (?1). In O∗(4k) time, we can decide whether G admits a 2-subcoloring (A,B)
such that G[A] and G[B] are cluster graphs with at most k clusters in total.

Finally, we consider the parameter consisting of the total number of vertices in G[A]. We
observe that a straightforward branching strategy yields a generic fixed-parameter algorithm
for many (ΠA,ΠB)-Recognition problems.

I Proposition 1.4 (?). Let ΠA and ΠB be two graph properties such that membership of ΠA

can be decided in polynomial time and ΠB can be characterized by a finite set of forbidden
induced subgraphs. Then we can decide in O∗(2O(k)) time whether V can be partitioned into
sets A and B such that G[A] ∈ ΠA, G[B] ∈ ΠB, and |A| ≤ k.

We observe that several possible improvements or generalizations of our results are
unlikely. First, we notice that subexponential-time fixed-parameter algorithms for both
Monopolar Recognition and 2-Subcoloring are unlikely.

1 The proofs of the results marked with a “?” are omitted due to the lack of space.
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I Proposition 1.5 (?). Monopolar Recognition parameterized by the number k of
clusters in G[A] and 2-Subcoloring parameterized by the total number k of clusters in
G[A] and G[B] cannot be solved in O∗(2o(k)) time, unless the Exponential Time Hypothesis
fails.

Second, observe that Theorems 1.1 and 1.2 give fixed-parameter algorithms for two (ΠA,ΠB)-
Recognition problems, in both of which ΠA defines the set of all cluster graphs, parameter-
ized by the number of clusters in G[A]. Hence, one might hope for a generic fixed-parameter
algorithm for such problems, irrespective of ΠB. However, polar graphs stand in our way.
A graph G = (V,E) has a polar partition if V can be partitioned into sets A and B such
that G[A] is a cluster graph and G[B] is the complement of a cluster graph [21].

I Proposition 1.6 (?). It is NP-hard to decide whether G has a polar partition (A,B) such
that G[A] is a cluster graph with one cluster or G[B] is a co-cluster graph with one co-cluster.

Related Work. To the best of the authors’ knowledge, the parameterized complexity of
Monopolar Recognition and 2-Subcoloring has not been studied before. The known
algorithms for both problems are not parameterized, and assume that the input graph
belongs to a structured graph class; see [4, 5, 9, 15] and [2, 12, 19], respectively. Recently,
Kolay and Panolan [14] considered the problem of deleting k vertices or edges to obtain an
(r, `)-graph. For integers r, `, a graph G = (V,E) is an (r, `)-graph if V can be partitioned
into r independent sets and ` cliques. For example, (2, 0)-graphs are precisely bipartite
graphs and (1, 1)-graphs are precisely split graphs. However, observe that (1, ·)-graphs are
not monopolar graphs, because monopolar graphs do not allow edges between the cliques (as
G[A] is a cluster graph), whereas such edges are allowed in (1, ·)-graphs. These differences
lead to substantially different algorithmic techniques. For example, since Kolay and Panolan
consider the deletion problem, they can use iterative compression in their work. Moreover,
they consider r, ` < 3, which makes even nf(r,`)-time algorithms polynomial. Neither of these
ideas works for the problems in this paper. We were, however, inspired by their Observation 2,
which we adapt to our setting to help bound the running time of our algorithms.

2 Preliminaries

For the relevant notions from parameterized algorithms, we refer to the literature [8, 6]. We
follow standard graph-theoretic notation [7]. Let G be a graph. By V (G) and E(G) we
denote the vertex-set and the edge-set of G, respectively. For X ⊆ V (G), G[X] denotes
the subgraph of G induced by X. For a vertex v ∈ G, N(v) and N [v] denote the open
neighborhood and the closed neighborhood of v, respectively. For X ⊆ V (G), we define
N(X) := (

⋃
v∈X N(v)) \X and N [X] :=

⋃
v∈X N [v]. We say that a vertex v is adjacent to a

subset X ⊆ V (G) of vertices if v is adjacent to at least one vertex in X. A P3 is a path on 3
vertices. We repeatedly use the following well-known characterization of cluster graphs:

I Fact 2.1. A graph is a cluster graph if and only if it contains no P3 as an induced subgraph.

The asymptotic notation O∗() suppresses a polynomial factor in the input length. For
` ∈ N, by [`] we denote the set {1, . . . , `}.

3 Foundations for Inductive Recognition

We describe the foundations of the general technique that we use to recognize monopolar and
2-subcolorable graphs. The technique works in a similar way to the iterative compression
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technique by Reed et al. [18]. Let G be an arbitrary hereditary graph class (i.e. if G ∈ G, then
G′ ∈ G for every induced subgraph G′ of G). We call an algorithm A an inductive recognizer
for G if given a graph G = (V,E), a vertex v ∈ V such that G − v ∈ G, and a certificate
for G − v ∈ G, algorithm A correctly decides whether G ∈ G and gives a membership
certificate if G ∈ G.

I Theorem 3.1 (?). Given an inductive recognizer A for G, we can recognize whether a
given graph G = (V,E) is a member of G in time O(|V |+ |E|) +

∑|V |
i=1 T (i), where T (i) > 0

is the worst-case running time of A on a graph of size at most i.

For the purpose of this paper, we consider parameterized inductive recognizers. In addition
to G and v, these recognizers take a nonnegative integer k as input. The above general
theorem can then be instantiated as follows.

I Corollary 3.2 (?). Let k be a nonnegative integer, and let ΠA and ΠB be two graph
properties. Let Gk be a hereditary class of (ΠA,ΠB)-graphs with an arbitrary additional
property that may depend on k.

Given a parameterized inductive recognizer A for Gk, we can recognize whether a given
graph G = (V,E) is a member of Gk in time O(|V |+ |E|) +

∑|V |
i=1 T (i, k), where T (i, k)

is the worst-case running time of A with parameter k on a graph of size at most i.
Given a parameterized inductive recognizer A for Gk that runs in time f(k) ·∆, where ∆ is
the maximum degree of the input graph and f is an arbitrary computable function, we can
recognize whether a given graph G = (V,E) is a member of Gk in time f(k) · (|V |+ |E|).

4 An FPT algorithm for Monopolar Recognition

In this section, we give an FPT algorithm for Monopolar Recognition parameterized by
the number of clusters. Throughout, given a graph G = (V,E) and a nonnegative integer
k, we say that a monopolar partition (A,B) of G is valid if G[A] is a cluster graph with at
most k clusters. Using Corollary 3.2, it suffices to give a parameterized inductive recognizer
for graphs with a valid monopolar partition. That is, we need to solve the following problem
in time f(k) ·∆, where f is some computable function and ∆ the maximum degree of G:

Inductive Monopolar Recognition
Input: A graph G = (V,E), a vertex v ∈ V , and a valid monopolar partition (A′, B′)
of G′ = G− v.
Question: Does G have a valid monopolar partition (A,B)?

Fix an instance of Inductive Monopolar Recognition with a graph G = (V,E), a
vertex v ∈ V , and a valid monopolar partition (A′, B′) of G′ = G− v.

To find a valid monopolar partition (A,B) of G, we try the two possibilities of placing v
in A or placing v in B. More precisely, in one case, we start a search from the bipartition (A′∪
{v}, B′), and in the other case, we start a search from the bipartition (A′, B′ ∪ {v}). Neither
of these two partitions is necessarily a valid monopolar partition of G. The search strategy is
to try to “repair” a candidate partition by moving few vertices from one part of the partition
to the other part. During this process, if a vertex is moved from one part to the other, then it
will never be moved back. To formalize this approach, we introduce the notion of constraints.

I Definition 4.1. A constraint C = (AC∗ , ACP , BC∗ , BCP ) is a four-partition of V such that AC∗ ⊆
A′ and BC∗ ⊆ B′. The vertices in ACP and BCP are called permanent vertices of the constraint.
A constraint C = (AC∗ , ACP , BC∗ , BCP ) is fulfilled by a vertex bipartition (A,B) of G if (A,B) is
a valid monopolar partition of G such that:
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1. ACP ⊆ A; and
2. BCP ⊆ B.

The permanent vertices in ACP and BCP in the above definition will correspond to those
vertices that were moved during the search from one part to the other part. Note that:

I Fact 4.2. Each valid monopolar partition (A,B) of G fulfills either (A′, {v}, B′, ∅) or
(A′, ∅, B′, {v}).

We call the two constraints in Fact 4.2 the initial constraints of the search. We solve Induc-
tive Monopolar Recognition by giving a search-tree algorithm that determines for each
of the two initial constraints whether there is a partition fulfilling it. The root of the search
tree is a dummy node that has two children, associated with the two initial constraints. Each
non-root node in the search tree is associated with a constraint C, and the algorithm searches
for a solution that fulfills C. To this end, the algorithm applies reduction and branching rules
that find vertices that in every valid monopolar partition (A,B) fulfilling C are in AC∗ ∩B or
BC∗ ∩A; that is, these vertices must “switch sides”.

Formally, a reduction rule that is applied to a constraint C associated with a node α in
the search tree associates α with a new constraint C′ or rejects C; the reduction rule is correct
either if C has a fulfilling partition if and only if C′ does, or if the rule rejects C, then no valid
monopolar partition of G fulfills C. A branching rule applied to a constraint C associated
with a node α in the search tree produces more than one child node of α, each associated
with a constraint; the branching rule is correct if C has a fulfilling partition if and only if
at least one of the child nodes of α is associated with a constraint C′ that has a fulfilling
partition.

The algorithm first performs the reduction rules exhaustively, in order, and then performs
the branching rules, in order. That is, Reduction Rule i may only be applied if Reduction
Rule i′ for all i′ < i cannot be applied. In particular, after Reduction Rule i is applied, we
start over and apply Reduction Rule 1, etc. The same principle applies to the branching
rules; moreover, branching rules are only applied if no reduction rule can be applied.

Let C = (AC∗ , ACP , BC∗ , BCP ) be a constraint. We now describe the reduction rules. Bear
in mind that cluster graphs contain no P3 as an induced subgraph (Fact 2.1). The first
reduction rule identifies obvious cases in which a constraint cannot be fulfilled.

I Reduction Rule 4.3 (?). If G[ACP ] is not a cluster graph with at most k clusters, or
if G[BCP ] is not an independent set, then reject the current constraint.

The second reduction rule finds vertices that must be moved from BC∗ to ACP .

I Reduction Rule 4.4 (?). If there is a vertex u ∈ BC∗ that has a neighbor in BCP , then
set ACP ← ACP ∪ {u} and BC∗ ← BC∗ \ {u}; that is, replace C with the constraint (AC∗ , ACP ∪
{u}, BC∗ \ {u}, BCP ).

The third reduction rule finds vertices that must be moved from AC∗ to BCP .

I Reduction Rule 4.5 (?). If there is a vertex u ∈ AC∗ and two vertices w, x ∈ ACP such
that G[{u,w, x}] is a P3, set AC∗ ← AC∗ \ {u} and BCP ← BCP ∪ {u}.

The first branching rule identifies pairs of vertices from AC∗ such that at least one of them
must be moved to BCP because they form a P3 with a vertex in ACP .

I Branching Rule 4.6 (?). If there are two vertices u,w ∈ AC∗ and a vertex x ∈ ACP such
that G[{u,w, x}] is a P3, then branch into two branches, one associated with the constraint
(AC∗ \ {u}, ACP , BC∗ , BCP ∪ {u}) and one with constraint (AC∗ \ {w}, ACP , BC∗ , BCP ∪ {w}).
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It is important to observe that if none of the previous rules applies, then (AC∗ ∪ACP , BC∗ ∪BCP )
is a monopolar partition (we prove this rigorously in Lemma 4.8). However, G[AC∗ ∪ACP ] may
consist of too many clusters for this to be a valid monopolar partition. To check whether it
is possible to reduce the number of clusters in G[AC∗ ∪ACP ], we apply a second branching rule
that deals with singleton clusters in G[A′].

I Branching Rule 4.7 (?). If there is a vertex u ∈ AC∗ such that {u} is a cluster in G[A′],
then branch into two branches: the first is associated with the constraint (AC∗ \ {u}, ACP ∪
{u}, BC∗ , BCP ), and the second is associated with the constraint (AC∗ \ {u}, ACP , BC∗ , BCP ∪ {u}).

If no more rules apply to a constraint C, then we can determine whether C can be fulfilled:

I Lemma 4.8. Let C = (AC∗ , ACP , BC∗ , BCP ) be a constraint to which Reduction Rules 4.3, 4.4,
and 4.5, and Branching Rules 4.6 and 4.7 do not apply. Then (AC∗ ∪ ACP , BC∗ ∪ BCP ) is a
monopolar partition. Moreover, there is a valid monopolar partition (A,B) fulfilling C if and
only if (AC∗ ∪ACP , BC∗ ∪BCP ) is valid.

Proof. First, we show that (AC∗ ∪ ACP , BC∗ ∪ BCP ) is a monopolar partition. There are no
induced P3’s in G[AC∗ ∪ACP ], because Reduction Rules 4.3 and 4.5 and Branching Rule 4.6 do
not apply, and because there are no induced P3’s in G containing three vertices from AC∗ ⊆ A′.
Similarly, there are no edges in G[BC∗ ∪ BCP ], because Reduction Rules 4.3 and 4.4 do not
apply, and because there are no edges in G[B′] and BC∗ ⊆ B′.

To show the second statement in the lemma, observe that, if (AC∗ ∪ACP , BC∗ ∪BCP ) is valid,
then C is fulfilled by (AC∗ ∪ACP , BC∗ ∪BCP ). It remains to show that, if (AC∗ ∪ACP , BC∗ ∪BCP )
is not valid, then each monopolar partition (A,B) of G fulfilling C is not valid. For the
sake of contradiction, assume that this is not the case and let (A,B) be a valid monopolar
partition fulfilling C. Since (AC∗ ∪ ACP , BC∗ ∪ BCP ) is a monopolar partition of G that is not
valid, there are more than k clusters in G[AC∗ ∪ACP ]. Thus, there is a cluster Q in G[AC∗ ∪ACP ]
such that Q ⊆ B. Note that |Q| = 1, because G[B] is an independent set and Q ⊆ B.
Because (A,B) fulfills C, Q ∩ACP = ∅ and thus Q ⊆ AC∗ . Hence, Q is a subset of a cluster Q′
of G[A′], as Q ⊆ AC∗ ⊆ A′. However, |Q′| ≥ 2, because Branching Rule 4.7 does not apply
even though Q ⊆ AC∗ . Hence, any rule that moved the vertices of Q′ \Q was not Branching
Rule 4.7. Then the description of the other rules implies that Q′ \ Q ⊆ BCP . Note that
BCP ⊆ B, because (A,B) fulfills C. Hence, Q′ ⊆ B and thus G[B] is not an independent set.
Therefore, (A,B) is not a monopolar partition, a contradiction to our choice of (A,B). J

The following lemmas will be used to upper bound the depth of the search tree, and the
number of applications of each rule along each root-leaf path in this tree. Herein a leaf of
the search tree is a node associated either with a constraint that Reduction Rule 4.3 rejects,
or with a constraint to which no rule applies.

I Lemma 4.9. Along any root-leaf path in the search tree of the algorithm, Reduction Rule 4.4
is applied at most k + 1 times.

Proof. Let C = (AC∗ , ACP , BC∗ , BCP ) be a constraint obtained from an initial constraint via k+1
applications of Reduction Rule 4.4 and an arbitrary number of applications of Reduction
Rules 4.3 and 4.5, and Branching Rules 4.6 and 4.7. Each application of Reduction Rule 4.4
adds a vertex of B′ to ACP . Since G[B′] is an independent set, any monopolar partition (A,B)
with ACP ⊆ A has at least k + 1 clusters in G[A] and, therefore, is not valid. Reduction
Rule 4.3 will then be applied before any further application of Reduction Rule 4.4, and the
constraint C will be rejected. J
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I Lemma 4.10. Along any root-leaf path in the search tree of the algorithm, Reduction
Rule 4.5 and Branching Rules 4.6 and 4.7 are applied at most k + 1 times in total.

Proof. Let C = (AC∗ , ACP , BC∗ , BCP ) be a constraint obtained from an initial constraint via k+1
applications of Reduction Rule 4.5 and Branching Rules 4.6 and 4.7, and an arbitrary number
of applications of the other rules. Let ks denote the number of singleton clusters in G[A′].
Observe that each application of Reduction Rule 4.5 or Branching Rules 4.6 and 4.7 makes a
vertex of AC∗ ⊆ A′ permanent by placing it in ACP or BCP . By the description of all rules, a
vertex will never be made permanent twice. Hence, out of the k+ 1 applications of Reduction
Rule 4.5 and Branching Rules 4.6 and 4.7, at most ks make the vertex from a singleton
cluster of G[A′] permanent. Observe that Branching Rule 4.7 cannot make a vertex from a
non-singleton cluster in G[A′] permanent. Thus, Reduction Rule 4.5 and Branching Rule 4.6
make at least k−ks +1 vertices in the k−ks non-singleton clusters of G[A′] permanent. Since
k−ks +1 ≥ 1, this also implies that a non-singleton cluster exists. By the pigeonhole principle,
out of the k− ks + 1 vertices that are made permanent by Reduction Rule 4.5 and Branching
Rule 4.6, two are from the same non-singleton cluster in G[A′]. Since both Reduction Rule 4.5
and Branching Rule 4.6 only move vertices from AC∗ to BCP , it follows that BCP contains two
adjacent vertices. Then the constraint C will be rejected by Reduction Rule 4.3, which is
applied before any further rule is applied. J

I Theorem 4.11. Inductive Monopolar Recognition can be solved in O(2k · k3 ·∆)
time, where ∆ is the maximum degree of G.

Proof. We call a leaf of the search tree associated with a constraint to which no rule applies
an exhausted leaf. By Lemma 4.8 and the correctness of the rules, G has a valid monopolar
partition if and only if for at least one exhausted leaf node, the partition (AC∗ ∪ACP , BC∗ ∪BCP ),
induced by the constraint C associated with that node, is a valid monopolar partition. Hence,
if the search tree has an exhausted leaf for which the partition (AC∗ ∪ACP , BC∗ ∪BCP ), induced
by the constraint C associated with that node, is a valid monopolar partition, the algorithm
answers “yes”; otherwise, it answers “no”. Therefore, the described search-tree algorithm
correctly decides an instance of Inductive Monopolar Recognition.

To upper bound the running time, let T denote the search tree of the algorithm. By
Lemma 4.10, Branching Rules 4.6 and 4.7 are applied at most k + 1 times in total along any
root-leaf path in T . It follows that the depth of T is at most k+ 2. As each of the branching
rules is a two-way branch, T is a binary tree, and thus the number of leaves in T is O(2k).

The running time along any root-leaf path in T is dominated by the overall time taken
along the path to test the applicability of the reduction and branching rules, and to apply
them. By Lemma 4.9 and Lemma 4.10, along any root-leaf path in T the total number
of applications of Reduction Rules 4.4 and 4.5 and Branching Rules 4.6 and 4.7 is O(k).
Reduction Rule 4.3 is applied once before the application of each of the aforementioned rules.
It follows that the total number of applications of all rules along any root-leaf path in T is
O(k). Moreover, T has O(2k) leaves as argued before. Therefore, we test for the applicability
of the rules and apply them, or use the check of Lemma 4.8, at most O(2k ·k) times. We next
upper bound the time to test the applicability of the rules and to apply them by O(k2 ·∆).

Let C = (AC∗ , ACP , BC∗ , BCP ) be a constraint associated with a node in T . Observe that
each cluster in G[AC∗ ] has size O(∆). Since G[AC∗ ] has at most k clusters, this implies
that |AC∗ | ≤ k ·∆. Thus, in O(k ·∆) time, we can compute a list of all clusters in G[AC∗ ] and
the size of each cluster. The same holds for G[A′]. Observe that we can always check in O(1)
time, for a given vertex v, whether v is contained in A′, AC∗ , ACP , BC∗ , or BCP and, in case v
is contained in A′ or AC∗ , we can find the index and the size of the cluster that contains v.
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Moreover, by Lemma 4.9 and 4.10, we can assume that |ACP | = O(k), and by Lemma 4.10,
we can assume that |BCP | = O(k).

To test the applicability of Reduction Rules 4.3 and 4.4, we check whether G[ACP ] is a
cluster graph with at most k clusters, whether G[BCP ] is an independent set, and whether
there is an edge with one endpoint in BCP and the other endpoint in BC∗ . This can be done
in O(k ·∆) time since |ACP | = O(k) and |BCP | = O(k).

To test the applicability of Reduction Rule 4.5, we consider each pair v, w of vertices in ACP .
If v and w are adjacent, then in O(∆) time we can check whether there is a vertex u ∈ AC∗
such that u is adjacent to exactly one of v and w. If v and w are not adjacent, then in O(∆)
time we can check whether they have a common neighbor in AC∗ . If neither condition applies
to any pair v, w, then Reduction Rule 4.5 does not apply. Overall, this test takes O(k2 ·∆)
time.

To test the applicability of Branching Rule 4.6, we can check for each vertex v of the at
most k vertices of ACP in O(∆) time whether v has neighbors in two different clusters of AC∗ ,
or whether there are two vertices u,w in the same cluster of AC∗ such that v is adjacent to u
but not adjacent to w. If one of the two cases applies to some vertex v ∈ ACP , then Branching
Rule 4.6 applies to v. Otherwise, there is no P3 containing exactly one vertex from ACP and
exactly two vertices from AC∗ , and Branching Rule 4.6 does not apply. Hence, the applicability
of Branching Rule 4.6 can be tested in O(k ·∆) time.

To test the applicability of Branching Rule 4.7, we can check in O(k) time, whether G[AC∗ ]
contains a singleton cluster that is also a singleton cluster of G[A′].

All rules can trivially be applied in O(1) time if they were found to be applicable. Hence,
the running time to test and apply any of the rules is O(k2 ·∆).

Finally, if none of the rules applies, then we can check in O(k · ∆) time whether the
number of clusters in G[AC∗ ∪ACP ] is at most k. Hence, the algorithm runs in O(2k · k3 ·∆)
time in total. J

Given the above theorem, Corollary 3.2 immediately implies Theorem 1.1.

5 An FPT algorithm for 2-Subcoloring

In this section, we give an FPT algorithm for 2-Subcoloring parameterized by the smallest
number of clusters in the two parts. Although the general approach is similar to the approach
used for Monopolar Recognition, in that it relies on the inductive recognition technique
and the notion of constraints, the algorithm is substantially more complex. In particular,
the notion of constraints and the reduction and branching rules are more involved, mainly
due to the much more complicated structure of 2-subcolorable graphs.

Throughout, given a graph G and a nonnegative integer k, we call a 2-subcoloring (A,B)
of G valid if G[A] has at most k cliques. Using the inductive recognition approach, we need
a parameterized inductive recognizer for the following problem:

Inductive 2-Subcoloring
Input: A graph G = (V,E), a vertex v ∈ V , and a valid 2-subcoloring (A′, B′)
of G′ = G− v.
Question: Does G have a valid 2-subcoloring (A,B)?

Fix an instance of Inductive 2-Subcoloring with a graph G = (V,E), a vertex v ∈ V ,
and a valid 2-subcoloring (A′, B′) of G′ = G− v. Let n = |V |. We again apply a search-tree
algorithm that starts with initial partitions (AC∗ , BC∗ ) of V , derived from (A′, B′), that are
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not necessarily 2-subcolorings of G. Then, we try to “repair” those partitions by moving
vertices between AC∗ and BC∗ to form a valid 2-subcoloring (A,B) of G. As before, each node
in the search tree is associated with one constraint.

I Definition 5.1. A constraint C = (AC1 , . . . , ACk , BC1 , . . . , BCn, ACP , BCP ) consists of a parti-
tion (AC1 , . . . , ACk , BC1 , . . . , BCn) of V and two vertex sets ACP ⊆ AC∗ and BCP ⊆ BC∗ , where
AC∗ =

⋃k
i=1 A

C
i and BC∗ =

⋃n
i=1 B

C
i , such that for any i 6= j:

u and w are not adjacent for any u ∈ ACi \ACP and w ∈ ACj \ACP , and
u and w are not adjacent for any u ∈ BCi \BCP and w ∈ BCj \BCP .

We explicitly allow (some of) the sets of the partition (AC1 , . . . , ACk , BC1 , . . . , BCn) of V to be
empty. The vertices in ACP and BCP are called permanent vertices of the constraint.

The permanent vertices in ACP and BCP in the definition will correspond precisely to those
vertices that have switched sides during the algorithm. We refer to the sets AC1 , . . . , ACk
and BC1 , . . . , BCn as groups; during the algorithm, G[AC∗ ] and G[BC∗ ] are not necessarily cluster
graphs and, thus, we avoid using the term clusters.

We now define the notion of a valid 2-subcoloring fulfilling a constraint. Intuitively
speaking, a constraint C is fulfilled by a bipartition (A,B) if (A,B) respects the assignment
of the permanent vertices stipulated by C, and if all vertices that do not switch sides stay in
the bipartition (A,B) in the same groups they belong to in C. This notion is formalized as
follows.

I Definition 5.2. A constraint C = (AC1 , . . . , ACk , BC1 , . . . , BCn, ACP , BCP ) is fulfilled by a bipar-
tition (A,B) of V if G[A] is a cluster graph with k clusters A1, . . . , Ak and G[B] is a cluster
graph with n clusters B1, . . . , Bn (some of the clusters may be empty) such that:
1. for each i ∈ [k], Ai ∩AC∗ ⊆ ACi ;
2. for each i ∈ [n], Bi ∩BC∗ ⊆ BCi ;
3. ACP ⊆ A; and
4. BCP ⊆ B.
We now need a set of initial constraints to jumpstart the search-tree algorithm.

I Lemma 5.3 (?). Let A′1, . . . , A′k denote the clusters of G′[A′] and let B′1, . . . , B′n denote
the clusters of G′[B′]. Herein, if there are less than k clusters in G[A′] or less than n clusters
in G[B′], we add an appropriate number of empty sets. By relabeling, we may assume that
only B′1, . . . , B′i contain neighbors of v, and B′i+1 = ∅. Each valid 2-subcoloring (A,B) of G
fulfills either:

(A′1, . . . , A′j ∪ {v}, . . . , A′k, B′1, . . . , B′n, {v}, ∅) for some j ∈ [k], or
(A′1, . . . , A′k, B′1, . . . , B′j ∪ {v}, . . . , B′n, ∅, {v}) for some j ∈ [i+ 1].

Now that we have identified the initial constraints, we turn to the search-tree algorithm
and its reduction and branching rules. A crucial ingredient to the rules and the analysis of
the running time is the following lemma. A consequence of the lemma is that if the number
of initial constraints is too large, then most of them should be rejected immediately.

I Lemma 5.4 (?). Let C = (AC1 , . . . , ACk , BC1 , . . . , BCn, ACP , BCP ) be a constraint and let (A,B)
be any valid 2-subcoloring of G fulfilling C. If u ∈ V has neighbors in more than k+ 1 groups
among BC1 , . . . , BCn, then u ∈ A.

Lemma 5.4 implies that if v has neighbors in more than k + 1 clusters of A′, then we should
immediately reject the initial constraints generated by Lemma 5.3 that place v in BCP . Hence,
we obtain the following corollary of Lemmas 5.3 and 5.4.
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I Corollary 5.5 (?). Lemma 5.3 generates at most 2k+2 constraints that are not immediately
rejected.

As before, each non-root node of the search tree is associated with a constraint. The root
of the search tree is a dummy node with children associated with the constraints generated
by Lemma 5.3 that are not immediately rejected due to Lemma 5.4. We now give two
reduction rules, which are applied exhaustively to each search-tree node, in the order they
are presented.

Let C = (AC1 , . . . , ACk , BC1 , . . . , BCn, ACP , BCP ) be a constraint. The first reduction rule
identifies some obvious cases in which the constraint cannot be fulfilled.

I Reduction Rule 5.6 (?). If G[ACP ] or G[BCP ] is not a cluster graph, or if there are i 6= j

such that there is an edge between ACi ∩ ACP and ACj ∩ ACP or an edge between BCi ∩ BCP
and BCj ∩BCP , then reject C.

The second reduction rule is the natural consequence of Lemma 5.4.

I Reduction Rule 5.7 (?). If there is a vertex u ∈ ACi \ ACP that has neighbors in more
than k + 1 groups of BC∗ , then set ACP ← ACP ∪ {u}.

The algorithm contains a single branching rule. This rule, called switch(u), uses branching
to fix a vertex u in one of the clusters in one of the parts of the 2-subcoloring. The vertices
to which switch() must be applied are identified by switching rules. We say that a switching
rule that calls for applying switch(u) is correct if for all valid 2-subcolorings (A,B) of G
fulfilling C, we have u ∈ AC∗ ∩B or u ∈ BC∗ ∩ A. We first describe the switching rules, and
then describe switch(u). Recall from Fact 2.1 that cluster graphs do not contain induced
P3’s.

The first switching rule identifies vertices that are not adjacent to some permanent vertices
of their group.

I Switching Rule 5.8. If there is a vertex u such that u ∈ ACi \ACP and u is not adjacent to
some vertex in ACi ∩ACP , or u ∈ BCi \BCP and u is not adjacent to some vertex in BCi ∩BCP ,
then call switch(u).

The second switching rule finds vertices that have permanent neighbors in another group.

I Switching Rule 5.9. If there is a vertex u such that u ∈ ACi \ ACP and u has a neighbor
in ACP \ACi , or u ∈ BCi \BCP and u has a neighbor in BCP \BCi , then call switch(u).

Now, we describe switch(u), which is a combination of a reduction rule and a branching rule.
There are two main scenarios that we distinguish. If u has permanent neighbors in the other
part, then there is only one choice for assigning u to a group. Otherwise, we branch into all
(up to symmetry when a group is empty) possibilities to place u into a group. It is important
to note that the switching rules never apply switch(u) to a permanent vertex.

I Branching Rule 5.10 (switch(u)).
If u ∈ ACi \ACP and u has a permanent neighbor in some BCj , then set ACi ← ACi \{u}, BCj ←
BCj ∪ {u}, BCP ← BCP ∪ {u}.
If u ∈ ACi \ACP and u has only nonpermanent neighbors in BC∗ , then, for each BCj such
that N(u)∩BCj 6= ∅ and BCj ∩BCP = ∅, and for one BCj such that BCj = ∅ (chosen arbitrarily),
branch into a branch associated with the constraint (AC1 , . . . , ACi \{u}, . . . , ACk , BC1 , . . . , BCj ∪
{u}, . . . , BCn, ACP , BCP ∪ {u}).
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If u ∈ BCi \BCP and u has a permanent neighbor in some ACj , then set BCi ← BCi \{u}, ACj ←
ACj ∪ {u}, ACP ← ACP ∪ {u}.
If u ∈ BCi \ BCP and u has only nonpermanent neighbors in AC∗ , then for each ACj
with ACj ∩ ACP = ∅, branch into a branch associated with the constraint (AC1 , . . . , ACj ∪
{u}, . . . , ACk , BC1 , . . . , BCi \ {u}, . . . , BCn, ACP ∪ {u}, BCP ); if no such ACj exists, reject C.

If none of the previous rules applies, then the constraint directly gives a solution:

I Lemma 5.11. Let C = (AC1 , . . . , BCn, ACP , BCP ) be a constraint such that none of the rules
applies. Then (AC∗ , BC∗ ) is a valid 2-subcoloring.

Proof. We need to show that G[AC∗ ] and G[BC∗ ] are cluster graphs and that G[AC∗ ] has at
most k clusters. First, we claim that G[ACi ] is a clique for every i = 1, . . . , k. Every vertex
in ACi \ ACP is adjacent to every vertex in ACi ∩ ACP ; otherwise, Switching Rule 5.8 applies.
Any two vertices in ACi \ACP are also adjacent, because they are in the same cluster of A′. It
remains to show that G[ACi ∩ ACP ] is a clique. By the description of switch(u), if a vertex
x is placed into ACi and ACi ∩ ACP 6= ∅, then x is adjacent to a vertex of ACi ∩ ACP . Hence,
G[ACi ∩ ACP ] is connected. Since Reduction Rule 5.6 does not apply, G[ACi ∩ ACP ] does not
contain an induced P3 and, thus, it is a clique. Hence, G[ACi ] is a clique, as claimed.

Second, we claim that there are no edges between ACi and ACj , where i 6= j. Suppose for
the sake of a contradiction that e is such an edge. Since Reduction Rule 5.6 does not apply, e
is incident with at least one nonpermanent vertex. Since Switching Rule 5.9 does not apply,
e is in fact incident with two nonpermanent vertices. Then e cannot exist by the definition
of a constraint. The claim follows.

The combination of the above claims shows that G[AC∗ ] is a cluster graph with the clusters
ACi (some of which may be empty) and, thus, has at most k clusters. Similar arguments
show that G[BC∗ ] is a cluster graph: in the above argument, we used only Reduction Rule 5.6
and Switching Rules 5.8 and 5.9, which apply to vertices in AC∗ and BC∗ symmetrically. J

I Theorem 5.12. Inductive 2-Subcoloring can be solved in O(k2k+2 · (|V |+ |E|)) time.

Proof. Given the valid 2-subcoloring (A′, B′) of G′, we use Lemma 5.3 to generate a set
of initial constraints, and reject those which cannot be fulfilled due to Lemma 5.4. By
Corollary 5.5, at most 2k+2 initial constraints remain, which are associated with the children
of the (dummy) root node. For each node of the search tree, we first exhaustively apply the
reduction rules on the associated constraint. Afterwards, if there exists a vertex u to which
a switching rule applies, then we apply switch(u). If switch(u) does not branch but instead
reduces to a new constraint, then we apply the reduction rules exhaustively again, etc.

A leaf of the search tree is a node associated either with a constraint that is rejected,
or with a constraint to which no rule applies. The latter is called an exhausted leaf. If the
search tree has an exhausted leaf, then the algorithm answers “yes”; otherwise, it answers
“no”. By the correctness of the reduction, branching, and switching rules, and by Lemma 5.11,
graph G has a valid 2-subcoloring if and only if the search tree has at least one exhausted
leaf node. Therefore, the described search-tree algorithm correctly decides an instance of
Inductive 2-Subcoloring.

We now bound the running time of the algorithm. Observe that each described reduction
rule and the branching rule switch() either rejects the constraint or makes a vertex permanent.
Hence, along each root-leaf path, O(n) rules are applied. Each rule can trivially be tested
for applicability and applied in polynomial time. Hence, it remains to bound the number of
leaves of the search tree.

As mentioned, at the root of the search tree, we create at most O(n) constraints, out of
which at most 2k+2 constraints do not correspond to leaf nodes by Lemma 5.3, Corollary 5.5
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and Reduction Rule 5.7. The only branches are created by a call to switch(u) for a vertex u
that has only non-permanent neighbors in the other part of the bipartition (AC∗ , BC∗ ). Observe
that if such a vertex u ∈ BC∗ \BCP , then in each constraint C′ constructed by switch(u) the
number of groups in AC′

∗ that have at least one permanent vertex increases by one compared
to C. Since each constraint has k groups in AC∗ , this branch can be applied at most k times
along each root-leaf path in the search tree.

Similarly, if u ∈ AC∗ \ACP , then in each constraint C′ constructed by switch(u) the number
of groups in BC∗ that have at least one permanent vertex increases by one compared to C.
We claim that, if BC∗ has k groups with a permanent vertex, then u has a neighbor in BCP .
First, each permanent vertex in BC∗ is part of A′ by the description of the rules. Moreover,
the permanent vertices of the k groups in BC∗ with a permanent vertex stem from k different
clusters in G[A′], because switch() places a vertex of AC∗ \ACP that has neighbors in BCP in
the same group as its neighbors in BCP . This implies that one of the clusters in G[A′] that
the permanent vertices stem from contains u. Hence, u is adjacent to a vertex in BCP , as
claimed. The claim implies that if BC∗ has k groups with a permanent vertex, then switch(u)
applied to a vertex u ∈ AC∗ \ ACP does not branch. Hence, also the branch of switch(u) in
which u ∈ AC∗ \ACP is performed at most k times along each root-leaf path in the search tree.

In summary, the branchings of switch(u) in which u ∈ BC∗ \BCP branch into at most k cases,
and the branchings in which u ∈ AC∗ \ACP branch into at most k + 2 cases, since Reduction
Rule 5.7 does not apply. Observe that k of the initial constraints have already one group
in AC∗ with a permanent vertex, and the other k + 1 initial constraints have one group in B
with a permanent vertex. Thus, if the initial constraint C places v in ACP , then the overall
number of constraints from C by branching is at most kk−1 ·(k+2)k. If the initial constraint C
places v in BCP , then the overall number of constraints created from C by branching is at
most kk · (k + 2)k−1. Altogether, the number of constraints created by branching is thus

(2k + 1) · kk · (k + 2)k = (2k + 1) · kk · kk · [(1 + 1/(k/2))k/2]2 = O(k2k+1)

after noting that [(1 + 1/(k/2))k/2]2 = O(1). This provides the claimed bound on the
number of leaves of the search tree. By performing an analysis similar to that in the proof
of Theorem 4.11, we can show that the time spent along each root-leaf path of the search
tree is O(k · (|V |+ |E|)), which yields an overall running time of O(k2k+2 · (|V |+ |E|)) for
Inductive 2-Subcoloring. J

Given the above theorem, Corollary 3.2 immediately implies Theorem 1.2.
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