
Sorting Under Forbidden Comparisons
Indranil Banerjee1 and Dana Richards2

1 Department Of Computer Science, George Mason University, Fairfax, USA
ibanerje@gmu.edu

2 Department Of Computer Science, George Mason University, Fairfax, USA
richards@cs.gmu.edu

Abstract
In this paper we study the problem of sorting under forbidden comparisons where some pairs of
elements may not be compared (forbidden pairs). Along with the set of elements V the input
to our problem is a graph G(V,E), whose edges represents the pairs that we can compare in
constant time. Given a graph with n vertices and m =

(
n
2
)
− q edges we propose the first non-

trivial deterministic algorithm which makes O((q+n) logn) comparisons with a total complexity
of O(n2 + qω/2), where ω is the exponent in the complexity of matrix multiplication. We also
propose a simple randomized algorithm for the problem which makes Õ(n2/

√
q + n+n√q) probes

with high probability. When the input graph is random we show that Õ(min (n3/2, pn2)) probes
suffice, where p is the edge probability.

1998 ACM Subject Classification F.2.2 Sorting and searching

Keywords and phrases Sorting, Random Graphs, Complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.22

1 Introduction

Comparison based sorting algorithms is one of the most studied areas in theoretical computer
science. The majority of the efforts have been focused on the uniform comparison cost model.
Arbitrary non-uniform cost models can make trivial problems non-trivial, like finding the
minimum [10, 16] . Thus it makes sense to consider a more structured cost. For example, a
common cost model is the monotone1 cost model. As shown in [16] the best one can do is to
get an algorithm that is within a logarithmic factor of a cost optimal algorithm. However,
the 1-∞ cost model in this paper is not monotonic. This model has comparison cost of 1 or
∞. A pair with cost ∞ is considered a “forbidden pair”. The set of pairs with comparison
cost 1, defines an undirected graph, G(V,E), where V is the set of keys and E represents the
allowed comparisons. We call G the comparison graph. Define Ef to be the set of forbidden
pairs (edges). Let |V | = n and |Ef | = q.

Next we define the query model used in this paper. We don’t get charged for checking
whether an edge exists but are only charged for the comparisons made. The number of
comparisons made or rather asked to the oracle is naturally defined as the comparison
complexity or the probe complexity. No non-trivial ITB for the probe complexity is known in
the standard decision tree model. We believe that the model is too weak for this purpose.
For example, given a comparison graph G the number of different acyclic orientations of G
gives an upper bound on the number of possible answers as each correspond to a unique

1 By monotone we mean that the cost of comparing a pair is a monotone function of the values of the
pair.

© Indranil Banerjee and Dana Richards;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Sorting Under Forbidden Comparisons

partial order. Since identifying G (up to isomorphism by verifying edges) is free and G has
≤
∏

v∈V (dv + 1) ≤ nn[15] number of acyclic orientations we have the ITB of Ω(n logn) for
this problem. We believe this bound to be weak for this problem. The matter is further
complicated if one is also given the guarantee that the graph G is sortable. We say G is
sortable if G can be totally sorted. This restriction further reduces the number of possible
answers for graphs with small number of edges. For example if G has = n− 1 edges then
we can determine the unique total order by just making one comparison. Since any acyclic
orientation of the edges of G must give a Hamiltonian path and G has = n− 1 edges, the
edges must link consecutive vertices in the unknown order. A solitary probe is then used to
determine the direction of this ordering. In this paper we take G to be arbitrary and not
necessarily sortable. Hence by sorting G we mean determining the orientations of all the
edges of G which may only get us a partial order on the vertices.

1.1 Prior Results
The problem of sorting with forbidden pairs is still open for the most part. It is closely
related to the problem of partial sorting under a relation determining oracle. In this model
we are given a set P of elements and a oracle Or which is used to determine the relations
between pairs of elements in P . The goal is to determine all the valid relations. Number of
queries made to Or is defined as the query complexity. Since there are Ω(2n2/4)[11] labeled
posets with n elements, it immediately follows that the information theoretic bound (ITB) for
the query complexity is Ω(n2). This has been investigated for width bounded posets in [12],
where the authors show that if P has width at most w (size of the largest anti-chain) then the
ITB for the query complexity is Ω((w + logn)n). They presented a query optimal algorithm
for width bounded posets whose total complexity is O(nw2 log n

w). This algorithm can be
generalized for any poset with an additional logw factor added to the the query complexity.
Their results were the first major extension in this line of research after the seminal work
by Faigle and Turán[14] which only showed the existence of such an algorithm. Another
similar problem is the local sorting problem. In this problem V is an ordered set and for each
(u, v) ∈ E we want to determine their relative order. The problem is to determine if this can
be done without sorting the entire set V , since the ITB for this problem is Ω(n log (m+ n)/n)
in the standard comparison tree model (where m is the number of edges G). Currently no
non-trivial deterministic algorithm is known for this problem. However, there is a randomized
algorithm which makes optimal number of comparison with high probability [9]. Another
related problem is the partial order production problem, where given a set T with an unknown
total order we are interested in determining the partial order of another set S by comparing
pairs in T . The goal is do this with minimum number of comparisons. The reader is referred
to the survey by Cardinal et. al [8] which discusses some of these and other related problems
in detail.

An example of a problem that uses the probe complexity model is the nuts and bolts
problem. This is strictly not a sorting problem rather a matching one. In this problem one
is given two sets of elements, a set of nuts and a set bolts. Elements in each set have distinct
sizes and for each nut it is guaranteed that there exists a unique bolt of same size. Matching
is performed by comparing a nut with a bolt. However, pairs of nuts or pairs of bolts cannot
be compared. So in this case G = K(N,B) is a complete bipartite graph with edges from the
set of nuts N to the set of bolts B. This problem has been solved in the mid 1990s [3, 20].
The existence of a O(n logn) time deterministic algorithm was proved for it using the theory
on bipartite expanders [3]. In the context of randomized algorithms, this problem has been
studied in [17, 4]. The authors in [17] proposed a randomized algorithm that sorts G with

I. Banerjee and D. Richards 22:3

a probe complexity of Õ(n3/2) with high probability2. However their implementation uses
as a sub-routine a poly-time uniform sampling algorithm to sample points from a convex
polytope[13]. The authors did not discuss the exact bound on the total time complexity in
their paper. At each step the algorithm either finds a balancing edge3 or finds a subset of
elements that can be sorted quickly. For an arbitrary G it is not guaranteed that a balancing
edge always exists. However, when G is the complete graph there always exists a balancing
edge that reduces the number of linear extension at-least by a factor of 8/11 [19].

1.2 Our Results
In this paper we propose the first non-trivial deterministic algorithm under the probe
complexity model as well as a randomized algorithm. The results are expressed in terms of n
and q. Expressing the results in terms of the number of forbidden edges fits naturally with
the problem. First of all q and w are related, where w is the width of the poset PG found
after sorting G. We have q ≥ # of incomparable pairs in PG ≥

(
w
2
)
. Hence, w = O(√q).

Although we cannot directly compare the probe complexity used in this paper with the query
complexity in [12] it gives a better sense of the relatedness of the two models. Secondly, in
the absence of any other structural properties of the input graph G, q gives a good indication
of how difficult it is to sort G. For example, when q = O(logn), it is easy to see that one can
sort in O(n logn) total time. To do this we pick an arbitrary pair of non-adjacent vertices
and take out one of them, removing it from the graph. We do the same thing with the
remaining graph until the graph remaining is a clique. It is clear that we had to take out at
most O(logn) vertices. Then we sort this graph with O(n logn) comparisons and merge the
vertices we had remove previously by probing all the remaining undirected edges, which is at
most O(n logn). On the other extreme, if |E| =

(
n
2
)
− q = O(n) then it can be shown that

we need to make Ω(|E|) probes to determine the partial order, since the complete bipartite
graph K(A,B) with |A| � |B| has many acyclic orientations [18, 15]. So in this case one
has to probe most of the allowed edges.

The main contributions of this paper are as follows:
Given a comparison graph G we propose a deterministic algorithm that sorts G with
O((q + n) logn) probes. The total complexity of our algorithm is O(n2 + qω/2), where
ω ∈ [2, 2.38] is the exponent in the complexity of matrix multiplication. We start by
finding a set of large enough cliques in G and use its elements to determine a good pivot.
This algorithm is applied recursively to induced subgraphs of G to generate a collection
of partial orders. We then merge these partial orders in the final steps.
We propose a randomized algorithm which sorts G with O(n2/

√
n+ q + n

√
q) probes

with high probability. We use a random graph model for this purpose. The method uses
only elementary techniques and unlike in Huang, et. al[17] has a total run time of O(nω)
in the worst case.
When G is a random graph with edge probability p we show that one can sort G with
high probability using only Õ(min (n3/2, pn2)) probes.

The rest of this paper is organized as follows: in section 1.2 we introduce some definitions and
lemmas. Section 2 details the proposed deterministic algorithm. In section 3 we introduce
the randomized algorithm and its extension to random graphs.

2 By high probability we mean that the probability tends to 1 as n → ∞.
3 An edge in G revealing whose orientation is guaranteed to reduce the number of linear extensions of the

current partial order by a constant fraction. The pair of vertices incident to this edge is referred to as a
balancing pair.

SWAT 2016

22:4 Sorting Under Forbidden Comparisons

1.3 Definitions
Recall G(V,E) is the input graph on the set V of elements to be sorted. A pair of vertices
(u, v) can be compared if (u, v) ∈ E, otherwise, we say the pair is forbidden and is in Ef .
The graph G is given to us by our adversary. Let Gi be the graph after i-edges have been
oriented and Pi be the associated partial order. We denote the degree of a vertex v by d(v)
and n(v) = n − 1 − d(v) is the number of vertices that are not adjacent to v. The set of
neighbors of a vertex v is denoted by N(v). We use the notation E(A,B) we denote the set
of edges between the sets of vertices A,B ⊂ V . We also define the little-o notation to remove
any ambiguity from our exposition.

I Definition 1. If f(n) ∈ o(g(n)) then f(n) ∈ O(g(n)) but f(n) 6∈ Ω(g(n)).

The following lemmas can be easily proven, hence we omit their proofs.

I Lemma 2. Let {f1(n), f2(n), ..., fk(n)} be a finite set of non-negative monotonically
increasing functions in n such that for g(n):
1. ∀i fi(n) ∈ o(g(n))
2.
∑

i fi(n) ≤ cg(n)
If F (n) =

∑
i f

2
i (n) then F (n) ∈ o(g2(n)).

I Lemma 3. Let T (n) =
∑k

i=1 T (ni) + f(n) where
∑

i ni ≤ δn for some 0 < δ < 1 and
f(n) ∈ o(n2). Then, T (n) ∈ o(n2).

2 A Deterministic Algorithm For Restricted Sorting

First we look at a simple case where q = O(n). We will use some of the main ideas from this
algorithm to extend it to the general case. This initial algorithm will have a worse probe
complexity than the main algorithm. In this algorithm we shall do case analysis based on
whether a certain quantity is o(n) or not. We acknowledge that this is not an algorithmic
test. However, we use it in this algorithm to establish a framework for the second algorithm,
which uses a traditional test and does not affect the claims made in this paper.

2.1 A Restricted Case
Assume q ≤ cn for some constant c. Let R = {v ∈ V | n(v) > c1} for some constant c1, then
|R| ≤ (2c/c1)n. This is obvious from the fact that

∑
v n(v) ≤ 2cn. We choose c1 = 4c. Let

S = V \ R and G[S] be the induced subgraph generated by S. We have |S| ≥ n/2 and if
v ∈ S then n(v) ≤ c1.

I Claim 4. There exists a subset X ⊂ S such that |X| ≥ n
2(4c+1) and G[X] is a complete

graph.

Proof. We construct X explicitly. We start with X = {u}, where u is an arbitrary vertex
in S. We pick successive vertices from S iteratively. Let v be last vertex to be added to X.
Since v has at least |S| − c1 neighbors, whenever we pick a neighbor of v from S to add to X
we loose at most c1 + 1 vertices (including the vertex we picked). Hence if we pick neighbors
of v the size of X is at least |S|/(c1 + 1) ≥ n/2(4c+ 1). J

Clearly the above procedure runs in O(n2) time and makes no comparisons. Now we are
ready to describe our algorithm. The main algorithm is recursive and we have two levels of
recursion. We shall break up the algorithm into several steps.

I. Banerjee and D. Richards 22:5

2.1.1 Initial Sorting
Given the input graph G, let X be a clique, with |X| ≥ n/2(4c + 1) (Claim 1). Let
Y = V \ X. Note that |Y | ≤ n − n/2(4c + 1) = (8c + 1/8c + 2)n. Now we sort X using
O(n logn) comparisons as G[X] is a complete graph. We can use a standard comparison
based sorting algorithms for this purpose. Now we have two possibilities:
Case 1. If |Y | = o(n), then we probe all edges of G[Y] and G[Y,X], where G[Y,X] is the

induced bipartite graph generated by the sets Y and X. Then we take the transitive
closure of the resulting relations, which does not need any additional probes. It can be
easily seen that the number of probe made in the previous step is o(n2). For the sake
of contradiction if we assume that it is not so then |X||Y | + |Y |2/2 ≥ dn2 for some d.
Which implies |Y | ≥ dn, since |X|+ |Y |/2 ≤ n. But then, |Y | = Ω(n), which is not true
according to our earlier assumption. So, in this case we would have sorted V by making
only o(n2) probes.

Case 2. Otherwise |Y | ≥ δn, for some constant δ. In this case we recursively partition Y
based on elements from X. We call this the partition step.

2.1.2 Partition Step
We will recursively partition both X and Y . To keep track of the current partition depth we
rename X to X00 and Y to Y00. We pick m00 the median of X00 (after X00 is sorted). Since
X00 ⊂ S we have n(m00) ≤ c1. So m00 will be comparable to all but at most c1 elements of
Y00. Let,

A00 = {v ∈ Y00| v ∈ N(m00)}

and B00 = Y00 \A00. Note |B00| ≤ c1. Now let U00 be the subset of A00 whose elements are
≥ m00 and the set L00 accounts for the rest of A00 \m00. Let X10 and X11 be the elements
of X00 that are < and ≥ to m00 respectively. We recursively partition the sets U00 and L00
using the medians of X10 and X11.The B-sets are kept for later processing. We rename the
sets U00 and L00 to Y10 and Y11. So, the pairs (X10, Y10) and (X11, Y11) are processed as
above generating the sets A10, A11, B10 and B11. We continue doing this until the size of the
X-set is ≤ c2, where c2 is some constant. At this point we don’t know the size of the Y -set
paired with it. There are two cases we need to consider:
Case 1. |Y | = o(n): Then we probe all the edges of G[Y] and G[X,Y] which uses at most

c2|Y |+
(|Y |

2
)
number of comparisons.

Case 2. |Y | ≥ δn: Then we have |Y | ≥ δn for constant δ. Hence the graph G[Y] can have
at most ≤ (c/δ)|Y | missing edges. This satisfies our initial premise that the number of
missing edges in G[Y] is linear in the number of vertices. Hence we can apply our initial
strategy recursively4. That is we first find a large enough clique (which according to
Claim 1 must exist) and then use it to partition the rest of the set Y .

Let us visualize using a partial recursion tree T (see Fig.1 below). We shall call T the
partial recursion tree for reasons that will soon be clear. At the root we have the pair
(X00, Y00). It has two children node (X10, Y10) and (X11, Y11) each having two children of

4 Note that (c/δ) is an absolute constant. If the input graph has at most cn missing edges we apply the
procedure recursively to subgraphs whose number of missing edges are at most (c/δ) times the number
of vertices in the subgraph at any level of recusrion. This (c/δ) factor is not successively multiplied
within each level of recursion.

SWAT 2016

22:6 Sorting Under Forbidden Comparisons

their own and so on. Now at each level, the size of the X-set gets halved. So, the number
of levels in T is at most O(logn). However, the Y -sets need not get divided with equal
proportions. So, at the frontier (the deepest level) we will have nodes of the above two types,
depending on the size of their corresponding Y -sets. Let the collection of these frontier nodes
be partitioned in two sets Φ and Ψ corresponding to case 1 and case 2 respectively.

We can conclude that the total number of probes needed to compute all relations in Φ
is o(n2). This follows from Lemma 1. Here we can map the size of the Y -sets of the nodes
in the collection Φ to the functions fi(n). We know that the total elements in the union of
these Y -sets is ≤ |Y00| ≤ (8c+ 1/8c+ 2)n. The total number of probes will be F (n) in worst
case. What is the total number of probes on the internal nodes of T? We know that in the
internal nodes we compare the median of the X-set with the elements of the A-set, which
takes |A| probes. Since the union of these A-sets cannot exceed the total number of vertices
in G(n), at each level of T we do at most O(n) probes, totaling to O(n logn) probes over all
the internal nodes.

Unlike the nodes in Φ, the nodes in Ψ recursively call the initial strategy using the input
graph G[Y]. Let the probe complexity of our initial strategy be Q(n). Then the recursion
for Q is as follows:

Q(n) =
|Ψ|∑
i=1

Q(ni) + o(n2)

Here we assume that the nodes in Ψ are indexed according to some arbitrary order. We can
solve this recurrence using Lemma 2 giving Q(n) ∈ o(n2), since

∑|Ψ|
i=1 ni ≤ (8c+ 1/8c+ 2)n.

Note here that |Ψ| is bounded by a constant since the size of the Y -sets are Ω(n).
We call T̂ the full tree. All leaf nodes in T̂ are in Φ. It is straightforward to show that T̂

has O(log2 n) levels. Since any of the leaf nodes of T has |Y | ≤ βn (where β = (8c+1/8c+2)),
its subtree in T̂ can have at most α log βn = α logn− αβ levels, and any of its leaves having
at most α logn− 2αβ levels and so on for some constant α.

2.1.3 Merge Step

Once we have completed building T̂ we proceed with the final stage of our algorithm. Recall
that during the forward partition step we had generated many of these B-sets in the internal
nodes of T̂ . Now we start from the leaves of T̂ and proceed upwards. Each pair of leaf
nodes l, r sharing a common parent p, sends a partial order to it (computed as in case 1).
When we merge this two partial orders we know that no extra probes are needed since they
have already been split by the median of the X-set of p. What remains is to probe all
edges between the B-set in p and elements in this partial order (which constitutes the set
of elements A ∪X of the node p) as well as the edges in G[B]. Then we pass the resulting
partial order to the parent of p, and so on. Since the size of the B-sets are bounded by
c1 (at any level in T̂), total number of probes we make is then ≤ c1

∑
i(|Ai| + |Xi| + c1).

The sum is taken over all the nodes in that level. Hence this is bounded by c1n, so at each
level we do at most O(n) probes in the backward merging step. Since there are at most
O(log2 n) levels, it totals to O(n log2 n) additional probes. Adding this to the probe cost of
partitioning in the forward step does not effect the total probe complexity, which was o(n2).
The final step is to compute the transitive closure of the resulting set of relations, which can
be done without any additional probing. Since computing the transitive closure is equivalent
to boolean matrix multiplication[21] the total complexity is O(nω).

I. Banerjee and D. Richards 22:7

U10L10B10

X20 X21

m10

U11L11B11

X22 X23

m11

{ {

} {

∈ Ψ ∈ Ψ ∈ Ψ

SORT X00

T

T̂

T
T T

T
T

U00L00B00

X10 X11

m00

Figure 1 Visualizing the steps. At the bottom of T the shaded boxes represents the Φ-nodes and
the blue rectangles the Ψ-nodes. The outer dashed triangle represents the full tree T̂ . The tree T̂ is
created during the partitioning step and in the merge step we start from the deepest leaves of T̂ and
move upwards.

2.2 The General Case
We will define the sets R and S analogously to section 2.1. We have R = {v ∈ V | n(v) >
c1q/n} for some constant c1. With c1 = 4, we get |R| ≤ δ1n where δ1 ≤ 2/c1 = 1/2. Hence
|S| ≥ (1− δ1)n ≥ n/2. Now we will apply Claim 1 successively to construct a “big-enough”
set X ⊂ S which we will use to find an approximate median of V . This set X consists of
disjoint subsets Xi such that G[Xi] is a clique.

2.2.1 Constructing X
Let us define Si = S \

⋃i
j=1Xj . We construct the first clique X1 ⊂ S using the method

detailed in Claim 1. There are two cases:
Case 1. q < n: In this case we can show that |X1| ≥ (n/2)/(c1q/n+ 1) ≥ n/10. We take

the first n/10 elements and keep the rest for the second round. Now we construct the
second clique X2 from S1 which has at least 2n/25 vertices. We let X = X1 ∪X2. Hence
X has at least 9n/50 vertices.

Case 2. q ≥ n: In this case we have |X1| ≥ (n/2)/(c1q/n + 1) ≥ n2/10q. Again we take
|X1| = (1/10)n2/q discarding some vertices if necessary. Similarly we construct X2 ⊂ S1.
It can be shown that |X2| ≥ (n2/10q)(1− n/5q) and we keep (n2/10q)(1− n/5q) vertices
in X2 and the rest are discarded to be processed the next round. In general for the clique
Xr we have |Xr| ≥ (n2/10q)(1− n/5q)r−1. Now we let X =

⋃r
i=1Xi. We will show that

|X| ≥ δ2n for some constant δ2 > 0. We let r = 5q/n+ 1. Then we have

|Xr| ≥ (n2/10q)(1− n/5q)r−1 ≥ (n2/10q)(1− n/5q)5q/n > 3n2/100q

since q ≥ n. Hence, |X| =
∑r

i=1 |Xi| ≥ r|Xr| ≥ (9/50)n, giving δ2 = 9/50. Now for each
Xi (1 ≤ i ≤ r) we keep a subset Yi of size |Xr| and throw away the rest. Clearly, for
each i, the induced sub-graph G[Yi] is also a clique. Let Y =

⋃r
i=1 Yi. We also have

|Y | ≥ (9/50)n.

SWAT 2016

22:8 Sorting Under Forbidden Comparisons

2.2.2 Computing An Approximate Median Of V
We shall compute an approximate median with respect to all the vertices (the set V) and not
just the set S. We will find a median element that divides the set V in constant proportions.
This can be done easily using the set Y . For each Yi we find its median using Θ(|Yi|) probes
since G[Yi] is a complete graph. Let this median be mi and M be the set of these r medians.
Since mi ∈ S, n(mi) ≤ 4q/n. We define the upper set of m ∈M with respect to a set A ⊂ V
(m may not be a member of A) as U(m,A) = {a ∈ A | a > m}. Similarly we define the lower
set L(m,A). We want to compute the sets U(m,Y) and L(m,Y). However, m may not be
neighbors of all the elements in Y . So we compute approximate upper and lower sets by
probing all the edges in E({m}, Y \ {m}). These sets are denoted by Ũ(m,Y) and L̃(m,Y)
respectively. It is easy to see that there exists some m ∈ M which divides Y into sets of
roughly equal sizes (their sizes are a constant factor of each other). In fact the median of
M is such an element. However the elements in M may not all be neighbors of each other
hence we will approximate m using the ranks of the elements in M with respect to the set Y
(which is |L̃(m,Y)|). Next we prove that the element m∗ is an approximate median of M ,
picked using the above procedure, is also an approximate median of Y .

I Claim 5. The element m∗ picked as described above is an approximate median of Y .

Proof. First we show that the median of M is an approximate median of Y . This can be
easily verified. Let us take the elements in M in sorted order (m1, ...,mr), so the median
of M is mbr/2c. Now L(mbr/2c, Y) ≥

⋃br/2c
i=1 L(mi, Yi). Since, the sets Yi are disjoint and

L(mi, Yi) ≥ |Xr|/2, we have |L(mbr/2c, Y)| ≥ |Xr|r/4 (ignoring the floor). Similarly we can
show that |U(mbr/2c, Y)| ≥ |Xr|r/4. Hence mbr/2c is an approximate median of Y . Now we
show that | |L(m∗, Y)| − |L(mbr/2c, Y)| |< 4q/n. Consider the sorted order of elements in M
according to |L̃(m∗, Y)|. Since each element in m ∈M has at most 4q/n missing neighbors
in Y , we have | |L̃(m,Y)| − |L(m,Y)| |< 4q/n. So the rank of an element in the sorted order
is at most 4q/n less than its actual rank. Thus an element m∗ picked as the median of M
using its approximate rank |L̃(m,Y)| cannot be more than 4q/n apart from mbr/2c in the
sorted order of Y . Hence

|L(m∗, Y)| ≥ |Xr|r/4− 4q/n ≥ 9n/200− 4q/n ≥ n/40 (1)

whenever n2 ≥ 200q. In an identical manner we can show that |U(m∗, Y)| ≥ n/40. Hence,
m∗ is an approximate median of Y . When q < n we just take m∗ as the median with the
higher |L̃(·, Y)| value, which guarantees |L(m∗, Y)| ≥ n/40 whenever n2 ≥ 800q/13. So we
take n2 ≥ 200q to cover both the cases. J

It immediately follows that m∗ is also an approximate median of V with both |L(m∗, V)|
and |U(m∗, V)| lower bounded by n/40. Lastly, we note that the above process of computing
an approximate median makes Θ(q + n) probes. This follows from the fact that computing
the medians makes Θ(n) probes in total and for each of the ≤ 5q/n+ 1 medians we make
O(n) probes.

2.2.3 A Divide-And-Conquer Approach
Now that we have computed an approximate median of V we proceed with an recursive
approach. Let m∗ be the median. As in section 2.1 we partition V into three sets U , L and B.
The U and L are the upper and lower sets with respect to m∗. B is the set of vertices that do
not fall into either, that is, they are non-neighbors of m∗. Since m∗ ∈ S we have |B| ≤ 4q/n.

I. Banerjee and D. Richards 22:9

We recursively proceed to partially sort the sets U and L with the corresponding graphs
G[U] and G[L] and keep B for later processing (as we did in the merging step previously).
Like before we can imagine a recursion tree T . Let EfP

be the set forbidden edges in G[P].
We take nP = |P | and qP = |EfP

|. For each node P ∈ T there are two cases:
Case 1. When n2

P ≥ 200qP we recursively sort P . In this case we can guarantee that the
approximate median m∗P of P will satisfy equation (1). That is both |L(m∗P , P)| and
|U(m∗P , P)| is ≥ nP /40.

Case 2. Otherwise we probe all edges in G[P]. In this case P will become a leaf node in T .
It can be easily seen that the depth of the recursion tree is bounded by O(logn) since at
each internal node P of T we pass sets of constant proportions (where the size of the larger
of the two set is upper bounded by (39/40)nP) to its children nodes.

2.2.4 Merge Step
In this step we start with the leaves of T and proceed upwards. A parent node P gets two
partial orders from its left and right children respectively. Then it probes all the edges
between its B-set and these partial orders to generate a new partial order and pass it on to
its own parent. This step works exactly as the “merge step” of the previous algorithm. Only
difference is that the B-sets here may not be of constant size but of size ≤ 4q/n.

2.2.5 Probe Complexity
We can determine the probe complexity by looking at the recursion tree T . First we compute
it for the forward partition step. At each internal node of T we compute a set of medians
and pick one element from it appropriately chosen. Then we partition the set of elements
at the node by probing all edges between the selected element and rest of the elements in
the node. As mentioned before this only takes Θ(qP + nP) probes for some internal node P .
We assume that all the leaves of T are at the same depth, otherwise we can insert internal
dummy nodes and make it so. At each level of T the sum total of all the vertices in every
node is ≤ n and the sum total of the forbidden edges is ≤ q. Hence we do O(q+n) probes at
any internal level of T . So for a total of O(logn) internal levels in T the number of probes
done is ((q + n) logn) in the forward partition step. If P is a leaf node then we probe all
edges in G[P]. There are at most

(
nP

2
)
− qP edges in G[P]. Since P is a leaf node, according

equation 1, n2
P < 200qP . Hence we make

(
nP

2
)
− qP = O(qP) probes. Summing this over all

the leaves gives a total of O(q) probes. Hence the total probe complexity during the forward
step is O((q + n) logn).

Now we look at the merging step. Merging happens only at the internal nodes. Lets look
at an arbitrary internal level of T . At each node P of this level we probe all the edges in
E(BP , UP ∪LP ∪m∗P) and in G[BP]. Note that we do not have to make any probes between
U and L as they were already separated by the approximate median m∗P . Hence the total
number of probes made in this node is ≤ (|UP |+ |LP |+ |BP |+1)|BP | ≤ (nP)(4qP /nP) ≤ 4qP .
Summing over all the nodes at any given level gives us O(q) as the probe complexity per
level. So the total probe complexity in the merging stage is O(q logn). Hence, combining
the probes made during the partition step and the merge step we see that the total probes
needed to sort V is O((q + n) logn).

2.2.6 Total Complexity
Now we look at the total complexity of the previous procedure. Again the analysis is divided
into forward step and the merge step. In the forward step at each node P we perform

SWAT 2016

22:10 Sorting Under Forbidden Comparisons

O(n2
P) operations. This includes computing the degrees, finding the cliques, computing the

approximate median. So at any level of T , regardless of it being an internal level or not,
we perform O(n2) operations. Hence it totals to O(n2 logn) operations in the forward step.
However this is a conservative estimate and we can remove the logn factor as argued below:
we can define the recurrence for the forward computation as,

T (n) =
{
T (n/40) + T (39n/40) +O(n2) n2 ≥ 200q
O(q) Otherwise

(2)

This follows from the previous discussion. If we don’t recurse on a node we guarantee that
n2

P < 200qp for that node. Hence, we have T (n) = O(n2 + q) using the Akra-Bazzi method[2].
In the merge step, we only make O(qP) comparisons at any given node. We compute
transitive closures only at the leaves. However for any leaf P we have n2

P < 200qP . Hence
computing the transitive closure of G[P] takes O(qω/2

P) time. Hence, the total complexity
of the above procedure is O(n2 + qω/2). We summarize the results in this section with the
following theorem:

I Theorem 6. Given a graph G(V,E) of n vertices having q forbidden edges, one can
compute the partial order of V with O((q + n) logn) comparisons and in total O(n2 + qω/2)
time.

Proof. Follows from the discussions in this section. J

3 A Randomized Algorithm

In this section we look at a more direct way of sorting by making random probes. The
proposed method is inspired by the literature on two-step oblivious parallel sorting [1, 7]
algorithms, in particular on a series of studies by Bollobás and Brightwell showing certain
sparse graphs can be used to construct efficient sorting networks [6, 5]. It was shown that if
a graph satisfies certain properties then probing its edges and taking the transitive closure of
the results would yield large number of relations. Then we just probe the remaining edges
that are not oriented, which is guaranteed (with high probability) to be a “small” set.

The main idea is as follows: Let Hn be a collection of undirected graphs on n vertices
having certain properties. A transitive orientation of a graph H(V,E) ∈ Hn is an ordering
of V and the induced orientation of the edges of H based on that ordering. Let σ be an
ordering on V and P (H,σ) be the partial order generated by this ordering σ on H. It is
a partial order since H may not be sortable. Let P = P (H,σ) and t(P) be the number
of incomparable pairs in P. We want H to be such that t(p) is small. If that is the case
then P will have many relations and if H is sparse then we can probe all the edges of H
and afterwards we will be left with probing only a small number of pairs. These are pairs
which were not oriented during the first round of probing and after the transitive closure
computation. A graph H is useful to our purpose if every transitive orientation of H results
in many relations. We want to find a collection Hn such that every graph in it is useful with
high probability.

We extend the results in [6, 5] to show that a collection of certain conditional random
graphs are useful, with high probability. In our case this random graph will be a spanning
subgraph of the input graph G. Here we recall an important result from [6] (Theorem 7)
which we will use in our proof.

I. Banerjee and D. Richards 22:11

I Theorem 7 ([6]). If G is any graph on n vertices and G satisfies the following property:
Q1 Any two subsets A,B of vertices having size l have at least one edge between them.
Then, the number of incomparable pairs in P (G, σ) is at most O(nl log l) for any σ.

The input graph G is chosen by our adversary. However, we show that any random spanning
subgraph of G with an appropriate edge probability will satisfy Q1 with high probability.
Let Hn,p(G) be a random spanning subgraph of G, where Hn,p(G) has the same vertex set
as G and a pair of vertices in Hn,p(G) has an edge between them with probability p if they
are adjacent in G, otherwise they are also non-adjacent in Hn,p(G). All we need to prove is
that any random spanning subgraph Hn,p(G) given G with n-vertices and edge probability p
will satisfy Q1 with high probability. Since G has at most q forbidden edges any two subsets
of vertices A,B (not necessarily distinct) of size l must have at least

(
l
2
)
− q edge between

them. Let EAB be the event that the pair (A,B) is bad (they have no edges between them),
then the probability Sn,p that there exists a bad pair is:

Sn,p := P(
∑
i,j

EAiBj) ≤
∑
i,j

P(EAiBj) ≤
∑
i,j

(1− p)e(Ai,Bj) (3)

where the sum is taken over all such
(

n
l

)2 pairs of subsets, and the number of edges between
the two sets A and B in G is e(A,B) ≥

(
l
2
)
− q. So we have,

Sn,p ≤
(
n

l

)2
(1− p)(

l
2)−q ≤

(
n

l

)2
e−p((l

2)−q) Since, e−x ≥ 1− x

≤
(en
l

)2l

e−p((l
2)−q) ≤ exp(2l(log en/l)− p(

(
l

2

)
− q))

Hence Sn,p → 0 as n→∞ whenever exp(2l(log en/l)− p(
(

l
2
)
− q)) = o(1). Given q <

(
n
2
)
it

is always possible to find appropriate values for p and l as functions of q and n such that
Sn,p = o(1). Given some value for the pair (p, l), we see that in the first round we make
O(pn2) probes with high probability and in the second round O(nl log l) probes (for the
remaining unoriented edges) again with high probability. So the total probe complexity is
Õ(pn2 + nl). With some further algebra it can be shown that this is Õ(n2/

√
q + n+ n

√
q).

We summarize this section with the following theorem:

I Theorem 8. Given a graph G on n vertices and q forbidden edges one can determine the
partial order on G with high probability in two steps by probing only Õ(n2/

√
q + n+ n

√
q)

edges in total and in O(nω) time.

Proof. Follows from the preceding discussions. J

3.1 When G Is A Random Graph
The above technique can easily be extended for the case when the input graph is random.
Let Gn,p be the input graph having n-vertices and an uniform edge probability p. For such a
graph we can use equation (3) to bound Sn,p as follows:

Sn,p ≤
(
n

l

)2
(1− p)l2

≤ exp(−pl2 + 2l logn)

Hence, we can choose any l > 2 logn/p such that Sn,p → 0 as n→∞. Let l = 3 logn/p.
Using Theorem 2 we have t(Gn,p) = Õ(nl) = Õ(n/p). Since Gn,p has pn2/2 edges (with

SWAT 2016

22:12 Sorting Under Forbidden Comparisons

high probability) the critical value of p when t(Gn,p) = pn2/2 is Õ(1/
√
n). Let this be p̂.

Hence if p > p̂, we can sort by making only Õ(n3/2) comparisons. Since given Gn,p we
can construct an induced subgraph Gn,p̂ and use it as the random graph in our previous
construction. Otherwise we just probe all the edges which makes O(pn2) comparisons. Thus
we can sort Gn,p with at most Õ(min (n3/2, pn2)) comparisons with high probability. Hence,
we get an elementary technique to sort a random graph with at most Õ(n3/2) comparisons.
The algorithm in [17] has a slightly better bound of Õ(n7/5) comparisons. However, the
total runtime of the algorithm in [17] is only polynomially bounded when p is small. In our
algorithm we need compute the transitive closure only twice making it run in O(nω) total
time.

Acknowledgements. We thank the anonymous reviewers for their constructive comments,
which helped us to improve the paper.

References
1 Miklós Ajtai, János Komlós, William Steiger, and Endre Szemerédi. Almost sorting in one

round. Randomness and Computation, 5:117–125, 1989.
2 Mohamad Akra and Louay Bazzi. On the solution of linear recurrence equations.

Comp. Opt. and Appl., 10(2):195–210, 1998. URL: http://dx.doi.org/10.1023/A:
1018373005182, doi:10.1023/A:1018373005182.

3 Noga Alon, Manuel Blum, Amos Fiat, Sampath Kannan, Moni Naor, and Rafail Ostrovsky.
Matching nuts and bolts. In Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms. 23-25 January 1994, Arlington, Virginia., pages 690–696, 1994. URL:
http://dl.acm.org/citation.cfm?id=314464.314673.

4 Stanislav Angelov, Keshav Kunal, and Andrew McGregor. Sorting and selection with
random costs. In LATIN 2008: Theoretical Informatics, 8th Latin American Symposium,
Búzios, Brazil, April 7-11, 2008, Proceedings, pages 48–59, 2008. URL: http://dx.doi.
org/10.1007/978-3-540-78773-0_5, doi:10.1007/978-3-540-78773-0_5.

5 Béla Bollobás and Graham Brightwell. Graphs whose every transitive orientation contains
almost every relation. Israel Journal of Mathematics, 59(1):112–128, 1987.

6 Béla Bollobás and Graham R. Brightwell. Transitive orientations of graphs. SIAM J.
Comput., 17(6):1119–1133, 1988. URL: http://dx.doi.org/10.1137/0217072, doi:10.
1137/0217072.

7 Béla Bollobás and Moshe Rosenfeld. Sorting in one round. Israel Journal of Mathematics,
38(1-2):154–160, 1981.

8 Jean Cardinal and Samuel Fiorini. On generalized comparison-based sorting problems.
In Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian
Munro on the Occasion of His 66th Birthday, pages 164–175, 2013. URL: http://dx.doi.
org/10.1007/978-3-642-40273-9_12, doi:10.1007/978-3-642-40273-9_12.

9 Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M. Jungers, and J. Ian Munro. An
efficient algorithm for partial order production. SIAM J. Comput., 39(7):2927–2940, 2010.
URL: http://dx.doi.org/10.1137/090759860, doi:10.1137/090759860.

10 Moses Charikar, Ronald Fagin, Venkatesan Guruswami, Jon M. Kleinberg, Prabhakar
Raghavan, and Amit Sahai. Query strategies for priced information. J. Comput. Syst.
Sci., 64(4):785–819, 2002. URL: http://dx.doi.org/10.1006/jcss.2002.1828, doi:
10.1006/jcss.2002.1828.

11 SD Chatterji. The number of topologies on n points, kent state university. NASA Technical
Report, 1966.

http://dx.doi.org/10.1023/A:1018373005182
http://dx.doi.org/10.1023/A:1018373005182
http://dx.doi.org/10.1023/A:1018373005182
http://dl.acm.org/citation.cfm?id=314464.314673
http://dx.doi.org/10.1007/978-3-540-78773-0_5
http://dx.doi.org/10.1007/978-3-540-78773-0_5
http://dx.doi.org/10.1007/978-3-540-78773-0_5
http://dx.doi.org/10.1137/0217072
http://dx.doi.org/10.1137/0217072
http://dx.doi.org/10.1137/0217072
http://dx.doi.org/10.1007/978-3-642-40273-9_12
http://dx.doi.org/10.1007/978-3-642-40273-9_12
http://dx.doi.org/10.1007/978-3-642-40273-9_12
http://dx.doi.org/10.1137/090759860
http://dx.doi.org/10.1137/090759860
http://dx.doi.org/10.1006/jcss.2002.1828
http://dx.doi.org/10.1006/jcss.2002.1828
http://dx.doi.org/10.1006/jcss.2002.1828

I. Banerjee and D. Richards 22:13

12 Constantinos Daskalakis, Richard M. Karp, Elchanan Mossel, Samantha Riesenfeld, and
Elad Verbin. Sorting and selection in posets. SIAM J. Comput., 40(3):597–622, 2011. URL:
http://dx.doi.org/10.1137/070697720, doi:10.1137/070697720.

13 Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm
for approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991. URL: http:
//doi.acm.org/10.1145/102782.102783, doi:10.1145/102782.102783.

14 Ulrich Faigle and György Turán. Sorting and recognition problems for ordered sets. SIAM
J. Comput., 17(1):100–113, 1988. URL: http://dx.doi.org/10.1137/0217007, doi:10.
1137/0217007.

15 Wayne Goddard, Claire Kenyon, Valerie King, and Leonard J. Schulman. Optimal random-
ized algorithms for local sorting and set-maxima. SIAM J. Comput., 22(2):272–283, 1993.
URL: http://dx.doi.org/10.1137/0222020, doi:10.1137/0222020.

16 Anupam Gupta and Amit Kumar. Sorting and selection with structured costs. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 416–425, 2001. URL: http://dx.doi.org/10.1109/SFCS.
2001.959916, doi:10.1109/SFCS.2001.959916.

17 Zhiyi Huang, Sampath Kannan, and Sanjeev Khanna. Algorithms for the generalized
sorting problem. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 738–747, 2011. URL:
http://dx.doi.org/10.1109/FOCS.2011.54, doi:10.1109/FOCS.2011.54.

18 Nabil Kahale and Leonard J. Schulman. Bounds on the chromatic polynomial and on
the number of acyclic orientations of a graph. Combinatorica, 16(3):383–397, 1996. URL:
http://dx.doi.org/10.1007/BF01261322, doi:10.1007/BF01261322.

19 Jeff Kahn and Michael Saks. Balancing poset extensions. Order, 1(2):113–126, 1984.
20 János Komlós, Yuan Ma, and Endre Szemerédi. Matching nuts and bolts in o(n log n)

time. SIAM J. Discrete Math., 11(3):347–372, 1998. URL: http://dx.doi.org/10.1137/
S0895480196304982, doi:10.1137/S0895480196304982.

21 John E. Savage. Models of computation - exploring the power of computing. Addison-Wesley,
1998.

SWAT 2016

http://dx.doi.org/10.1137/070697720
http://dx.doi.org/10.1137/070697720
http://doi.acm.org/10.1145/102782.102783
http://doi.acm.org/10.1145/102782.102783
http://dx.doi.org/10.1145/102782.102783
http://dx.doi.org/10.1137/0217007
http://dx.doi.org/10.1137/0217007
http://dx.doi.org/10.1137/0217007
http://dx.doi.org/10.1137/0222020
http://dx.doi.org/10.1137/0222020
http://dx.doi.org/10.1109/SFCS.2001.959916
http://dx.doi.org/10.1109/SFCS.2001.959916
http://dx.doi.org/10.1109/SFCS.2001.959916
http://dx.doi.org/10.1109/FOCS.2011.54
http://dx.doi.org/10.1109/FOCS.2011.54
http://dx.doi.org/10.1007/BF01261322
http://dx.doi.org/10.1007/BF01261322
http://dx.doi.org/10.1137/S0895480196304982
http://dx.doi.org/10.1137/S0895480196304982
http://dx.doi.org/10.1137/S0895480196304982

	Introduction
	Prior Results
	Our Results
	Definitions

	A Deterministic Algorithm For Restricted Sorting
	A Restricted Case
	Initial Sorting
	Partition Step
	Merge Step

	The General Case
	Constructing X
	Computing An Approximate Median Of V
	A Divide-And-Conquer Approach
	Merge Step
	Probe Complexity
	Total Complexity

	A Randomized Algorithm
	When G Is A Random Graph

