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Preface

This volume contains the proceedings of the First International Conference on Formal
Structures for Computation and Deduction (FSCD’16), which was held from June 22 to June
26, in Porto, Portugal.

FSCD (http://fscdconference.org/) covers all aspects of formal structures for com-
putation and deduction, from theoretical foundations to applications. It builds on two
communities: RTA (Rewriting Techniques and Applications) which goes back to 1983 and
TLCA (Typed Lambda Calculi and Applications) which was founded in 1993. Since 2003,
both conferences have co-located together for most meetings under the umbrella of the
Federated Conference on Rewriting, Deduction and Programming. FSCD continues this
tradition and broadens their scope to closely related areas in logics, proof theory and new
emerging models of computation.

FSCD’16 has received 82 submissions (77 regular research papers and 5 system descrip-
tions) with contributing authors from 27 countries. The program committee consisted of 34
members from 16 countries. Each submitted paper was reviewed by at least 3 members of
the program committee, with the help of 103 external reviewers. The reviewing process was
handled by the Easychair system over a whole period of 8 weeks, including a rebuttal phase.
A total of 28 regular papers and 4 system descriptions were accepted for publication and are
included in this proceeding. The FSCD program also featured four invited talks given by
Amal Ahmed (Northeastern University, USA), Ichiro Hasuo (University of Tokyo, Japan),
Gérard Huet (INRIA, France), and Tobias Nipkow (Technical University Munich, Germany)
whose extended abstracts appear in the proceeding.

In addition to the main program, 11 workshops covering a wide range of topics co-located
with FSCD and took place before, in parallel, and after FSCD:

6th Workshop on Classical Logic and Computation (CL&C)
2nd Workshop on Higher-Dimensional Rewriting and Applications (HDRA)
8th Workshop on Higher-Order Rewriting (HOR)
2nd Workshop on Homotopy Type Theory/Univalent Foundations (HoTT/UF)
IFIP Working Group 1.6: Term Rewriting
8th Workshop on Intersection Types and Related Systems (ITRS)
18th Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP)
11th Logical and Semantic Frameworks with Applications (LSFA)
4th Workshop on Linearity (Linearity)
30th Workshop on Unification (UNIF)
3rd Workshop on Rewriting Techniques for Program Transformation and Evaluation
(WPTE)

Many people helped make FSCD 2016 a success. We are very grateful to all the authors
of submitted papers for considering FSCD for publishing their work. We also would like
to thank all the members of the program committee, as well as all external reviewers, for
carefully reviewing and evaluating papers. Their hard work helped to select a balanced
and attractive program. Thanks also goes to Andrei Voronkov and his team for making
available the easychair tool to manage the submission and reviewing process. On behalf of
the program committee, we thank all invited speakers for enriching the conference with their
talks. We also acknowledge the important contributions of the workshop organizers who
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were enthusiastic about co-locating with FSCD. The workshops helped shine the light on
many areas related to computation and deduction and made the conference a vibrant event.

FSCD would not have been possible without the dedicated hard work of the Organizing
Committee, headed by the Conference Chair Sandra Alves. The steering committee, lead by
Luke Ong, provided valuable guidance ensuring FSCD will have a bright and long future
ahead. Last, but not least, we thank all participants of the conference for creating a lively
and exciting event.

This volume of FSCD 2016 is being published in the LIPIcs series under a Creative
Common license, with free online access to all, and with authors retaining rights over their
contributions. We thank in particular Marc Herbstritt form Schloss Dagstuhl, Leibniz Center
for Informatics, for his helpful support during the production of this proceedings.

FSCD received support from many organizations. On behalf of all organizers, we gratefully
acknowledge the support by Center for Research in Advanced Computing Systems (CRACS),
Center for Mathematics from the University of Porto (CMUP), Artificial Intelligence and
Computer Science Laboratory (LIACC), Two Sigma Investments, and University of Porto.

Delia Kesner and Brigitte Pientka
Co-chairs of FSCD’16
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Compositional Compiler Verification for a
Multi-Language World∗

Amal Ahmed

Northeastern University, Boston, USA
amal@ccs.neu.edu

Abstract
Verified compilers are typically proved correct under severe restrictions on what the compiler’s
output may be linked with, from no linking at all to linking only with code compiled from the
same source language. Such assumptions contradict the reality of how we use these compilers
since most software systems today are comprised of components written in different languages
compiled by different compilers to a common target, as well as low-level libraries that may be
handwritten in the target language.

The key challenge in verifying compilers for today’s world of multi-language software is how to
formally state a compiler correctness theorem that is compositional along two dimensions. First,
the theorem must guarantee correct compilation of components while allowing compiled code to
be composed (linked) with target-language components of arbitrary provenance, including those
compiled from other languages. Second, the theorem must support verification of multi-pass
compilers by composing correctness proofs for individual passes. In this talk, I will describe a
methodology for verifying compositional compiler correctness for a higher-order typed language
and discuss the challenges that lie ahead [1, 2]. I will argue that compositional compiler correct-
ness is, in essence, a language interoperability problem: for viable solutions in the long term,
high-level languages must be equipped with principled foreign-function interfaces that specify
safe interoperability between high-level and low-level components, and between more precisely
and less precisely typed code.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, D.3.1 Formal
Definitions and Theory, D.3.4 Processors

Keywords and phrases verified compilation, compositional compiler correctness, multi-language
semantics, typed low-level languages

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.1

Category Invited Talk

References
1 Amal Ahmed. Verified compilers for a multi-language world. In 1st Summit on Advances

in Programming Languages (SNAPL 2015), volume 32 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 15–31, 2015.

2 James T. Perconti and Amal Ahmed. Verifying an open compiler using multi-language
semantics. In Programming Languages and Systems - 23rd European Symposium on Pro-
gramming, ESOP 2014, pages 128–148, April 2014.

∗ This talk describes work supported in part by the National Science Foundation (grants CCF-1453796,
CCF-1422133, and CCF-1203008) and a Google Faculty Research Award.
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Coalgebras and Higher-Order Computation: a GoI
Approach∗

Ichiro Hasuo

Department of Computer Science, University of Tokyo, Japan
ichiro@is.s.u-tokyo.ac.jp

Abstract
Girard’s geometry of interaction (GoI) [3] can be seen – in one practical aspect of it – as a
compositional compilation method from functional programs to sequential machines (see e.g. [8,
2]). There tokens move around and express interactions between (parts of) programs. Intrigued
by the combination of abstract structures and concrete dynamics in GoI, our line of work [4, 5,
10, 11, 6, 9] has aimed at exploiting, in GoI, results from the theory of coalgebra – a categorical
abstraction of state-based transition systems that has found its use principally in concurrency
theory. Such reinforced connection between higher-order computation and state-based dynamics
is made possible thanks to an elegant categorical axiomatization of GoI by Abramsky, Haghverdi
and Scott [1], where traced monoidal categories [7] are identified to be the essential structure
behind. In the talk I shall lay out these basic ideas, together with some of our results on:
GoI semantics for a quantum programming language [4, 5]; and our “memoryful” extension of
GoI [10, 11, 6, 9] with algebraic effects [12].

The talk is based on my joint work with my colleague Naohiko Hoshino (RIMS, Kyoto Univer-
sity) and my (former) students Koko Muroya (University of Birmingham) and Toshiki Kataoka
(University of Tokyo), to whom I owe special thanks.
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Teaching Foundations of Computation and
Deduction Through Literate Functional
Programming and Type Theory Formalization
Gérard Huet
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Abstract
We describe experiments in teaching fundamental informatics notions around mathematical struc-
tures for formal concepts, and effective algorithms to manipulate them. The major themes of
lambda-calculus and type theory served as guides for the effective implementation of functional
programming languages and higher-order proof assistants, appropriate for reflecting the theor-
etical material into effective tools to represent constructively the concepts and formally certify
the proofs of their properties. Progressively, a literate programming and proving style replaced
informal mathematics in the presentation of the material as executable course notes. The talk
will evoke the various stages of (in)completion of the corresponding set of notes along the years,
and tell how their elaboration proved to be essential to the discovery of fundamental results.
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Verified Analysis of Functional Data Structures∗

Tobias Nipkow

Technische Universität München, Munich, Germany

Abstract
In recent work the author has analyzed a number of classical functional search tree and priority
queue implementations with the help of the theorem prover Isabelle/HOL. The functional cor-
rectness proofs of AVL trees, red-black trees, 2-3 trees, 2-3-4 trees, 1-2 brother trees, AA trees
and splay trees could be automated. The amortized logarithmic complexity of skew heaps, splay
trees, splay heaps and pairing heaps had to be proved manually.
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1 Summary

Recent work on the analysis of functional data structures [6, 7] considers two questions: func-
tional correctness and amortized complexity. In the theorem proving community, functional
correctness of programs is the primary issue and their complexity is analyzed much less
frequently. In the algorithms community it is the other way around: functional correctness
is often viewed as obvious and the main issue is the complexity. We confirm the latter
point of view in two case studies involving a number of functional search tree and priority
queue implementations. The proofs were all conducted with the help of the theorem prover
Isabelle/HOL [8, 9].

In [7] it is shown how to automate the functional correctness proofs of insertion and
deletion in search trees: by means of an inorder traversal function that projects trees to lists,
the proofs are reduced from trees to lists. With the help of a small lemma library, functional
correctness and preservation of the search tree property are proved automatically for a range
of data structures: unbalanced binary trees, AVL trees, red-black trees, 2-3 trees, 2-3-4 trees,
1-2 brother trees, AA trees and splay trees.

In [6] a framework for the analysis of the amortized complexity of (functional) data
structures is formalized and applied to a number of standard examples and to three famous
non-trivial ones: skew heaps, splay trees and splay heaps. More recently, pairing heaps
were added in collaboration with Hauke Brinkop [2, 5]. In all cases we proved logarithmic
amortized complexity and the proofs were largely manual, following the existing algorithms
literature.
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2 Related Work

Very close to the above work is Charguéraud’ and Pottier’s verification of the almost-linear
amortized complexity of an OCaml implementation of Union-Find in Coq [3]. Using different
methods but also aiming for performance analysis is work on automatic analysis of worst
case execution time [11], analysis of complexity of term rewriting systems (e.g. [1, 10]), and
automatic complexity analysis of functional programs (e.g. [4]).
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Abstract
Following Aehlig [3], we consider a hierarchy Fp = {Fpn}n∈N of parameter-free subsystems of
System F, where each Fpn corresponds to IDn, the theory of n-times iterated inductive definitions
(thus our Fpn corresponds to the n + 1th system of [3]). We here present two proofs of strong
normalization for Fpn, which are directly formalizable with inductive definitions. The first one,
based on the Joachimski-Matthes method, can be fully formalized in IDn+1. This provides a
tight upper bound on the complexity of the normalization theorem for System Fpn. The second
one, based on the Gödel-Tait method, can be locally formalized in IDn. This provides a direct
proof to the known result that the representable functions in Fpn are provably total in IDn. In
both cases, Buchholz’ Ω-rule plays a central role.
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1 Introduction

It is well known that the second-order predicate calculus admits cut-elimination as shown
by Tait using a model theoretic method, which implies the consistency of the second-order
Peano arithmetic PA2 with full comprehension. Neither his proof nor its variants, however,
are considered an ultimate solution to Takeuti’s conjecture (cut-elimination for higher order
logics)1 from the viewpoint of traditional proof theory, since they do not fully elucidate the
nature of impredicativity involved in second-order arithmetic. As it is quite hard to give
a proof-theoretic analysis of PA2 directly, people in proof theory have been working on
its subsystems, such as Π1

1-CA0, the second-order arithmetic with Π1
1-comprehension, and

IDn, the theory of n-times iterated inductive definitions2. An early important achievement

1 Precisely speaking, Takeuti’s conjecture asks for a “finitistic” proof of cut-elimination for higher order
logics, where his finitistic stand point is indeed a considerable extension of Hilbert’s original one. As to
Takeuti’s philosophical position, we refer to [16].

2 After Gentzen’s monumental cut-elimination theorem for PA in 1930’s, Takeuti proved cut-elimination
for Π1

1-CA0 + BI (bar induction) in 1967 [15], and Feferman, Buchholz, Pohlers, and Sieg subsequently
investigated theories of inductive definitions and Π1

1-CA0 in 1970’s [8]. For these developments of proof
theory, we refer to Feferman’s [10].
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5:2 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

is Π1
1-CA0 = ID<ω =

⋃
n∈N IDn, which provides a reduction of an impredicative theory

Π1
1-CA0 to a “predicative” one ID<ω

3.
Translated into lambda calculus, PA2 corresponds to System F and cut-elimination

corresponds to normalization. As is well known, strong normalization for System F was
proved by an extremely powerful and elegant technique known as the Tait-Girard method or
the reducibility candidates argument [11]. However, the same question persists: does it really
elucidate impredicativity? In fact, the proof by reducibility candidates does not give any
reduction, but just defers the foundational issue to third-order arithmetic. Since the whole
System F is too powerful, a realistic approach is to begin with its subsystems for which one
can prove normalization in a “predicative” way.

Following Altenkirch, Coquand [5] and Aehlig [3], we consider the parameter-free fragment
Fp of System F as well as its subsystems Fpn so that Fp =

⋃
n∈N Fpn holds4 (Section 2).

Given a system L of lambda calculus and a system A of arithmetic, let us write L ∝ A if
the representable functions in L coincide with the provably total functions in A. Then their
main results can be stated as follows:

Fp0 ∝ PA [5], Fpn ∝ IDn and Fp ∝ Π1
1-CA0 [3].

As usual, one direction of the correspondence is established by a forgetful translation of
arithmetical derivations into lambda terms. A little bit delicate is the other direction, which
is shown by locally formalizing a normalization proof. By “local” we mean a term-wise
formalization of the statement “Mn is normalizable for every Church numeral n” for each
fixed term M : N ⇒N .

While the above is definitely a great achievement, it is not completely satisfactory since
they only prove weak normalization for terms of specific type N , and only provides a local
formalization. Also, the argument in [3] is indirect as it passes through intermediate systems
of second-order Heyting arithmetic proposed in [2].

The purpose of this paper is to improve the current situation by showing:
1. A proof of strong normalization for Fpn, which is fully formalizable in IDn+1 (Section 3).
2. Another proof of strong normalization for Fpn, which is locally but directly formalizable

in IDn (Section 4).
The first one is based on what we call the Joachimski-Matthes method (JM method), which
is pioneered by [18] and established by [12] as methodology. It fits the “predicative” spirit of
inductive definitions very well, and leads to a sharp upper bound on the complexity of the
normalization theorem for Fpn (as we know IDn 6` SN(Fpn), our result IDn+1 ` SN(Fpn) is
best possible).

The second proof is based on the standard computability argument, which we call the
Gödel-Tait method5. It is particularly suitable for local formalization. Combined with the

3 Here we use term “predicative” to refer to a system without circular definitions. That is, predicativity
in the sense of Martin-Löf’s type theory, not in the sense of Feferman’s ordinal analysis. Indeed, the
proof-theoretic ordinals of both systems are far beyond Γ0, the limit of predicative ordinals. Our usage
also conforms to [1], in which strong normalization is proved in a “predicative” way for lambda calculus
with interleaving inductive data types.

4 Our system Fp
n corresponds to the n+ 1th system F×

n+1 of [3]. We keep using our notation to have a
better correspondence with systems of arithmetic.

5 As is well known, Tait introduced his computability argument in [13]. However, Troelstra pointed out
in [17] that Gödel already suggested a similar idea in his Princeton notes, and Tait himself admitted
that Gödel knew essentially the same argument at that time [14, p.115]. Hence, it is not unfair to call it
the Gödel-Tait method.



R. Akiyoshi and K. Terui 5:3

JM method, it provides a direct proof to the results in [5] and [3] that the representable
functions in System Fpn are provably total in IDn (recall that ID0 = PA).

Apart from the technical results themselves, this paper exhibits two apparently orthogonal
methods for strong normalization in a comparable way. Both are very rare proofs of
normalization for an impredicative system which do not rely on reducibility candidates in any
sense. Candidates are replaced by the Ω-rule of Buchholz [6, 9, 7], a well-known technique in
proof theory (see below for an intuition). It has been used for ordinal analyses of the theories
of iterated inductive definitions and iterations of Π1

1-CA0, where an essential ingredient is
a partial cut-elimination theorem for arithmetical sequents. It is recently extended to a
complete cut-elimination theorem for arbitrary sequents by the first author and Mints [4].
One of our real motivations in this work is to bring this important technique to the realm of
lambda calculus, where we do not yet find any explicit use of it6.

An intuition of the Ω-rule. Let us conclude the introduction by giving an intuition of
the Ω-rule. While it was originally introduced in the context of arithmetic, its basic idea
can be explained in terms of the (standard) sequent calculus for second-order propositional
intuitionistic logic. In what follows, we assume that (i) any second-order formula ∀α.A(α)
has a quantifier-free body A(α), and (ii) Fv(A(α)) ⊆ {α} (parameter-free). This corresponds
to the restriction imposed by [5].

Recall that one of the most innovative ideas of Gentzen is to replace axioms with rules:

C ⇒ D 7→ D,Γ⇒ Π
C,Γ⇒ Π

D,Γ⇒ Π 7→ ∆⇒ D
∆,Γ⇒ Π

so that we obtain a good cut-elimination procedure.
According to our understanding, the essence of the Ω-rule lies in applying this replacement

twice to the comprehension axiom ∀α.A(α)⇒ A(B):

∀α.A(α)⇒ A(B) 7→
A(B),Γ⇒ Π
∀α.A(α),Γ⇒ Π

(∀l) 7→
{ ∆,Γ⇒ Π }∆⇒A(B)

∀α.A(α),Γ⇒ Π

where the last rule has a premise ∆,Γ⇒ Π for each provable sequent ∆⇒ A(B).
Unfortunately, the last rule is not useful to inductively define the set of provable sequents,

since the indices of the premises themselves depend on provability. To break this circularity,
we consider a two-layered setting. Let us write Γ ⇒α A(α) if Γ ⇒ A(α) is provable and
α 6∈ Fv(Γ) (the eigenvariable condition). We also write Γ ⇒α

fo A(α) if furthermore Γ and
A(α) are quantifier-free. Since second-order intuitionistic logic is conservative over first-order
one, the provability Γ⇒α

fo A(α) can be defined without recourse to the second-order part.
We are now ready to introduce the Ω-rule corresponding to ∀α.A(α)⇒ A(B):

{ ∆,Γ⇒ Π }∆⇒α
foA(α)

∀α.A(α),Γ⇒ Π
(Ω)

This rule indeed admits a well-defined reduction step:

Σ⇒α A(α)
Σ⇒ ∀α.A(α)

(∀r)
{ ∆,Γ⇒ Π }∆⇒α

foA(α)

∀α.A(α),Γ⇒ Π
(Ω)

Σ,Γ⇒ Π (cut) −→ Σ,Γ⇒ Π

6 Article [2] mentioned above uses the Ω-rule for subsystems of second-order Heyting arithmetic, not
directly for lambda calculus.
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provided that Σ is quantifier-free. Indeed, we have Σ⇒α
fo A(α) by the premise of (∀r), hence

Σ,Γ⇒ Π is a premise of the Ω-rule.
Moreover, the standard left rule (∀l) for ∀, inferring ∀α.A(α),Γ⇒ Π from A(B),Γ⇒ Π

(see above), can be simulated by the Ω-rule. To see this, suppose that ∆⇒α
fo A(α) (an index

of the Ω-rule). We then obtain ∆⇒ A(B) by substituting B for α, hence ∆,Γ⇒ Π by the
premise of (∀l). By (Ω), we conclude ∀α.A(α),Γ⇒ Π.

Thus provability is preserved by replacing (∀l) with (Ω) (called Embedding in traditional
proof theory), while cut-elimination can be proved predicatively (without any semantic
argument), provided that the conclusion sequent is quantifier-free and the requirements (i)
and (ii) above are satisfied (called Collapsing). This technique can be further extended to
the parameter-free fragment of second order intuitionistic logic, which correspond to the
system studied in [3].

2 System Fp

2.1 Syntax
Given a countable set of type variables α, β, γ, . . . , we define the set Tpn of types at level n
for each n ∈ N ∪ {−1} as follows:

An, Bn ::= α | An ⇒ Bn | ∀α.An−1

with the proviso that there is no type at level −2, and type ∀α.An−1 can be formed only
when Fv(An−1) ⊆ {α}. Here Fv(A) denotes the set of free type variables in A. That is to say,
a quantified type ∀α.A is always parameter-free, so that we may treat it as a self-standing
entity (like a data type). Let Tp :=

⋃
n∈N∪{−1} Tpn.

Since there is no type at level −2, Tp−1 just consists of simple types. As it is unpleasant
to refer to a negative integer, we write simp to denote the number −1. Thus Tpsimp = Tp−1.
Types in Tp0 are built by arrow ⇒ from type variables and ∀α.A, where A is a simple type
over single variable α. For instance:

N := ∀α.(α⇒ α)⇒ (α⇒ α) ∈ Tp0 (natural numbers)
T := ∀α.(α⇒ α⇒ α)⇒ (α⇒ α) ∈ Tp0 (binary trees)

L(N) := ∀α.(N ⇒ α⇒ α)⇒ (α⇒ α) ∈ Tp1 (lists of nat. numbers)
O := ∀α.((N ⇒ α)⇒ α)⇒ (α⇒ α)⇒ (α⇒ α) ∈ Tp1 (Brouwer ordinals)

On the other hand, L(β) := ∀α.(β ⇒ α ⇒ α) ⇒ (α ⇒ α) is not a type. Hence the
polymorphic map function, whose type would be

∀β.∀γ.(β ⇒ γ)⇒ L(β)⇒ L(γ),

is not representable in our setting. A more striking example is ∀β.(L(β)⇒ β)⇒ β, which is
the type for finitely but arbitrarily branching trees. Thus interleaving inductive data types
(cf. [1]) are out of scope and left to future work.

An important property is that
(*) A,B ∈ Tpn implies A[B/α] ∈ Tpn,
where [B/α] stands for a substitution (which is always capture-free).

We now introduce terms, which are explicitly typed à la Church. We presuppose that
a countable set Var of symbols x, y, z, . . . together with a distinguished symbol c 6∈ Var is
provided. A variable is a pair of x ∈ Var and a type A, written xA. Likewise a constant
is a pair cA. We never use xA and xB with A 6= B together in the same context. Type
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xA ∈ X
(var)

cA ∈ X
(con) MB ∈ X

(λxA.M)A⇒B ∈ X
(abs)

MA⇒B ∈ X NA ∈ X
(MN)B ∈ X

(app)
MA ∈ X ∩ Ec(α)
(Λα.M)∀α.A ∈ X

(Abs) MA ∈ X
(MB)A[B/α] ∈ X

(App)

Figure 1 Term rules: Ec(α) = {M : xB ∈ fv(M) implies α 6∈ Fv(B)}.

annotations are often omitted when they are irrelevant. We write MA to indicate that
expression M has type A, and fv(M) to denote the set of free (term) variables in M .

The set Tm of terms is defined to be the least set closed under the term rules in Figure 1,
where Ec(α) is the set of terms M subject to the eigenvariable condition with respect to α:
for any xB ∈ fv(M), α 6∈ Fv(B).

As usual, we assume that terms are identified up to α-equivalence. The reduction relation
→ is defined to be the contextual closure of

(λxA.M)N →M [N/xA], (Λα.M)B →M [B/α],

where [N/xA] stands for a capture-free substitution.
This defines the System Fp. For each n ∈ N ∪ {simp}, the subsystem Fpn is obtained by

restricting types to Tpn and terms to Tmn ⊆ Tm, which is obtained by restricting the types
to Tpn when applying the term rules. It is a legitimate definition since Tmn is closed under
reduction by (*).

Below are additional terminology and notational conventions. A term is closed if it
does not contain a free term variable x (it may contain a free type variable α). We write
type(M) = A if M is of type A. Symbols T, T0, T1, . . . stand for a term or a type, and T for
a list T1, . . . , Tn (n ≥ 0). The following convention turns out quite useful: when we write
T ∈ X, it means that all terms among T1, . . . , Tn belong to X, leaving types aside. Finally
we assume that all terms are well typed throughout this paper. This means that we write
MN only when type(M) = A ⇒ B and type(N) = A. Likewise, we write M [N/xA] only
when type(N) = A, and MB only when type(M) = ∀α.A.

I Remark. Fpsimp is nothing but the simply typed lambda calculus, while Fp0 exactly corres-
ponds to the system of [5]. If the product types are added, our Fpn corresponds to System
F×n+1 of [3]7. As noted in the introduction, it is known that Fp0 ∝ PA and Fpn ∝ IDn for
n ∈ N.

2.2 Strongly normalizable terms
A term M is strongly normalizable if there is n ∈ N which bounds the length of any reduction
sequence M ≡ M0 → M1 → M2 → · · · . Since → is finitely branching, it is equivalent to
say that there is no infinite reduction sequence from M by König’s lemma. We prefer the
former definition, since it is arithmetical (i.e., definable by a first-order formula of Peano
arithmetic). Let SN be the set of strongly normalizable terms in Tm.

As is well known, the set SN admits an alternative inductive definition (cf. [19]).

7 The second-order definition of product type A × B := ∀α.(A ⇒ B ⇒ α) ⇒ α is not quite useful in
our setting, since it would raise the level by one. However, all the results in this paper can be easily
extended to systems with product types. Also, Fp

n ∝ IDn holds in absence of product types.
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T ∈ X
xT ∈ X

(vap) T ∈ X
cT ∈ X

(cap)
M [N/xA]T ∈ X N ∈ X

(λxA.M)NT ∈ X
(β)

M [B/α]T ∈ X
(Λα.M)BT ∈ X

(B)

Figure 2 SN rules.

I Lemma 1. SN coincides with the least set X closed under (vap), (cap), (abs), (Abs), (β)
and (B) (see Figures 1 and 2).

Most importantly, SN is closed under (β) (as well as (B)), a fact known as the fundamental
lemma of perpetuality [20]8.

Notice that (var) and (con) are special cases of (vap) and (cap) with T empty. Since SN
also satisfies (abs) and (Abs), we could conclude Tm ⊆ SN (the strong normalization theorem
for Fp), if SN would satisfy (app) and (App). Of course we do not know that a priori. Hence
proofs of strong normalization usually proceed as follows:
1. Define a set X which approximates SN.
2. Prove Tm ⊆ X by showing that X is closed under the term rules (Embedding).
3. Prove X ⊆ SN (Collapsing).
We may then conclude Tm ⊆ X ⊆ SN, the strong normalization theorem.

2.3 Freezing
When discussing normalization of a lambda term, it is reasonable to distinguish two kinds
of variable. For instance, consider K ≡ Λα.λxA(α).Nα⇒α. We immediately notice that
variables α and x are never replaced by another expression during normalization, so can be
treated as if they were constants. On the other hand, K may contain variables for which
terms/types are actually substituted. In terms of proof theory, this corresponds to the
distinction between explicit and implicit formulas [16, 4]. The following operation, called
freezing, allows us to dynamically replace explicit bound variables with constants.

Let o be a distinguished type variable which we think of as constant. It is clear that for
every type A, there is a unique list t of constants c and o such that Mt is of atomic type for
any MA ∈ Tm. We write M◦ := Mt. For instance, K◦ = K o cA(o) co, which is of type o.

The following lemma is obvious, since SN is closed under subterms, and the reduction
rules do not make a distinction between free variables and constants.

I Lemma 2. Let σ = [o/α, c/x] be a substitution which replace some free type variables with
o and free term variables with c. If (Mσ)◦ ∈ SN, then M ∈ SN.

3 Joachimski-Matthes method

We now present the first proof of strong normalization. It is based on the JM method
established by Joachimski and Matthes, who gave a remarkably simple proof to strong
normalization for the simply typed lambda calculus and its extensions, including System T
[12]. It has a precursor [18], and owes the inductive characterization of SN to [19].

8 Proofs of the lemma often rely on the definition of SN as the set of terms without infinite reduction
sequences. It does not matter for our purpose, however, since PA can be conservatively extended to
ACA0, in which König’s lemma is available. Thus PA proves the lemma. Also, a very careful argument
based on the other definition of SN can be found in [12, p.68] (footnote 18).
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M ∈ X
xM ∈ X

(vap−)
T ◦ ∈ X
cT ∈ X

(cap◦) M ∈ X
λxA.M ∈ X

(abs)

M ∈ X ∩ Ec(α)
Λα.M ∈ X

(Abs)
M [N/xA]T ∈ X N◦ ∈ X

(λxA.M)NT ∈ X
(β◦)

M [B/α]T ∈ X
(Λα.M)BT ∈ X

(B)

Figure 3 JM rules.

We begin with the simply typed lambda calculus Fpsimp in 3.1. This will be useful for
recalling the JM method, and also as the basis for higher level systems Fpn with n ≥ 0. The
latter will be dealt with in 3.2. Finally we will informally discuss formalization in the theories
of inductive definitions in 3.3.

3.1 Simply typed case
Let us begin with defining a suitable term domain for each Fpn, in which an approximating
set X ⊆ SN is to be defined. The set Tmn is not suitable. As it will turn out, it is crucially
important to include as many terms as possible, while restricting the types of free variables
and whole terms. Below is the right definition.

For each n ∈ N ∪ {simp}, we define a set Domn as follows:

Domn := {M ∈ Tm : type(fv(M)) ⊆ Tpn, type(M) ∈ ∀Tpn},

where ∀Tpn := Tpn ∪ {∀α.A : A ∈ Tpn}.
Thus all free variables of M ∈ Domsimp have quantifier-free types, and type(M) is either

quantifier-free or a quantified type ∀α.A ∈ Tp0. Let us emphasize that the definition of Domn

is only concerned with the types of free variables and whole terms, not with the internal
structure of terms at all. Thus Tmn ( Domn.

We now define the first approximating set X ⊆ SN, which we call the JM predicate at
level −1.

I Definition 3. Let JMsimp be the least set X ⊆ Domsimp closed under the rules in Figure 3,
called the JM rules.

Compared with the rules defining SN (Lemma 1), rule (vap) is restricted to (vap−). This
will be important in Lemma 6, where we argue by induction on the⇒-rank of a type. Another
difference is that the freezing operator is employed in (cap◦) and (β◦). This results in a very
pleasant property: for any n ∈ N and any JM rule, if the conclusion term belongs to Domn,
so do the premise terms. For instance, look at (cap◦). Even though cT ∈ Domn, the type
of each term Ti may be quite complicated. Still, type(T ◦i ) is atomic so that T ◦i belongs to
Domn. Observe that the same is true of (vap−), because the type of each Mi in xAM is a
subtype of A.

I Lemma 4 (Collapsing). JMsimp ⊆ SN.

Proof. SN is closed under the JM rules by Lemma 1; notice that closure under (cap◦) and
(β◦) is ensured by Lemma 2. J

We next proceed to Embedding (Tmsimp ⊆ JMsimp). We already have (var), (con), (abs)
and (Abs) (though redundant), while (App) is not needed for Fpsimp. Hence it just remains to
show that JMsimp is closed under (app).
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L ∈ X
L◦ ∈ X

(frz)
L ∈ X B ∈ Tpn
L[B/α] ∈ X

(Subn) L ∈ X KC ∈ X
LK ∈ X

(app)
L ∈ X KC ∈ X
L[K/yC ] ∈ X

(sub)

Figure 4 Additional rules.

I Lemma 5. JMsimp is closed under (frz) in Figure 4.

Proof. We prove a more general claim: let σ = [o/α, c/x] be a substitution of o, c for free
type variables and term variables, and t a list of o, c such that (Lσ)t is well typed. Then
L ∈ JMsimp implies (Lσ)t ∈ JMsimp.

The proof proceeds by induction on the derivation of L ∈ JMsimp.
L ≡ xM1 · · ·Mn is derived from M ∈ JMsimp by (vap−). Then t does not contain o, since
type(L) is quantifier-free (as x is). Suppose that xσ = x (the case xσ = c is similar). By
the IH, we have Miσ ∈ JMsimp. Hence (Lσ)t ≡ x(M1σ) · · · (Mnσ)t ∈ JMsimp by (vap−).
L ≡ Λα.M ∈ JMsimp is derived fromM ∈ JMsimp by (Abs). We may assume that ασ = α

and t is of the form o, u, if not empty. By the IH, we have (Mσ[o/α])u ∈ JMsimp. Hence
(Lσ)t ≡ (Λα.Mσ)ou ∈ JMsimp by (B).

The other cases are similar. J

The next lemma is the highlight of the JM method. Given a type A, its⇒-rank is defined
as follows:

rk(α) = rk(∀α.A) := 0, rk(A⇒ B) := max{rk(A) + 1, rk(B)}.

I Lemma 6. JMsimp is closed under (app) and (sub) in Figure 4.

Proof. By main induction on rk(C) and side induction on the derivation of L ∈ JMsimp.
For (sub), we consider two cases; the first one is crucial, while the second one is a typical

one, from which the other cases are easily understood.
L ≡ xAM ∈ JMsimp is derived from M ≡ M1, . . . ,Mn ∈ JMsimp by (vap−). Suppose
that yC ≡ xA so that L[K/y] ≡ K(M1[K/y]) · · · (Mn[K/y]) (the case y 6≡ x is easier).
This means that C is of the form B1 ⇒ · · ·Bn ⇒ B0. By the side IH (sub) we have
Mi[K/y]Bi ∈ JMsimp. Since rk(Bi) < rk(C) we may apply the main IH (app) (n times)
to conclude that L[K/y] ∈ JMsimp.
L ≡ (λx.M)NT ∈ JMsimp is derived from M [N/x]T ∈ JMsimp and N◦ ∈ JMsimp. Let us
use a tentative notation M ′ := M [K/y]. Then L[K/y] can be written as (λx.M ′)N ′T ′.
By the side IH, we have M ′[N ′/x]T ′ ∈ JMsimp and (N ′)◦ ≡ (N◦)′ ∈ JMsimp, hence
L[K/y] ∈ JMsimp by (β◦).

For (app), we again consider two cases.
L ≡ λx.M ∈ JMsimp is derived from M ∈ JMsimp by (abs). We have M [K/x] ∈ JMsimp
by the side IH (sub), hence (λx.M)K ∈ JMsimp by (β◦), noting that K◦ ∈ JMsimp follows
from K ∈ JMsimp by the previous lemma.
L ≡ xM ∈ JMsimp is derived from M ∈ JMsimp by (vap−). We may add a new premise
K ∈ JMsimp to obtain xMK ∈ JMsimp. J

Since JMsimp satisfies (var), (con), (abs) and (app), we have Tmsimp ⊆ JMsimp ⊆ SN
(Embedding). This completes the proof.

I Theorem 7. Fpsimp admits strong normalization.
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M∀α.A ∈ X { K[B/α]T ∈ X }KA∈JMn−1∩Ec(α)

MBT ∈ X
(Ωn) M∀α.A ∈ X B ∈ Tpn

MB ∈ X
(Appn)

Figure 5 (Ωn) and (Appn).

3.2 Inductive cases
Now a crucial question is how to extend JMsimp so that it also accommodates (App).
Extending (vap−) to (vap) would totally spoil the fine-tuned structure of the JM method, as
the use of induction on rk(C) in the proof of Lemma 6 would not work anymore. We will
instead adopt a brilliant idea due to Buchholz: the Ω-rule.

I Definition 8. Let JM0 be the least set X ⊆ Dom0 closed under the JM rules (Figure 3)
and (Ω0) (Figure 5). More generally, JMn (n ∈ N) is defined to be the least set X ⊆ Domn

closed under the JM rules and (Ω0), . . . , (Ωn). JMn is called the JM predicate at level n.

Rule (Ω0) has a premise K[B/α]T ∈ X for each K ∈ JMsimp∩Ec(α). Thus it depends on
the set JMsimp, which has been already defined. In general, JMn is obtained from JMn−1
by extending the term domain to Domn and by adding a new rule (Ωn), which depends on
JMn−1. Hence we have JMn−1 ⊆ JMn by definition. Notice that B is an arbitrary type in
Tp; it is condition K ∈ Ec(α) that ensures that K[B/α]T belongs to Domn as far as MBT

does.

I Lemma 9. JMn is closed under (Appn) (Figure 5).

Proof. Suppose that M∀α.A ∈ JMn and B ∈ Tpn. For each KA ∈ JMn−1 ∩ Ec(α) we have
K ∈ JMn and so K[B/α] ∈ JMn by Lemma 10 below. Hence we obtain MB ∈ JMn by
(Ωn). J

I Remark. The Ω-rule is often called an impredicative cut. In the current situation, it can be
thought of as a meta-cut on derivations, rather than a redex occurring in a term M . Imagine
that rule (Abs) is sort of an “introduction rule” in natural deduction. Then (Ωn) provides a
matching “elimination rule” with a notion of “reduction”:

NA ∈ JMn

Λα.N ∈ JMn

(Abs)

.... πK
{ K[B/α] ∈ JMn }KA∈JMn−1∩Ec(α)

(Λα.N)B ∈ JMn

(Ωn) =⇒

.... πN
N [B/α] ∈ JMn

(Λα.N)B ∈ JMn

(B)

which is triggered by showing NA ∈ JMn−1.
The Ω-rule was first introduced by Buchholz [6] to give ordinal analyses of iterated

inductive definitions. His main theorem called Collapsing amounts to a partial cut-elimination
theorem for derivations of arithmetical sequents. Later it is extended to a complete cut-
elimination theorem for the Ω-rule by the first author and Mints [4]. In these developments,
it is always a crucial issue how to define or extend the “domain” of the Ω-rule. A technical
contribution of this paper is that we have managed to include strongly normalizable terms in
the domain, in contrast to the “proof theoretic” domains which consist of normal (cut-free)
derivations.

Coming back to the formal argument, it is not hard to extend (frz), (app) and (sub)
(Figure 4) to JMn. We also consider a new rule (Subn).

I Lemma 10. For every n ∈ N ∪ {simp}, JMn is closed under (frz), (Subn), (app) and
(sub).
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5:10 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

Hence JMn satisfies all of (var), (con), (abs), (Abs), (app) and (Appn). We therefore
conclude:

I Lemma 11 (Embedding). For every n ∈ N ∪ {simp}, Tmn ⊆ JMn.

Let us now move on to the Collapsing part. We first need an inversion lemma for (cap◦).

I Lemma 12. If cT ∈ JMn, then T ◦ ∈ JMn.

Proof. By induction on the derivation. It is obvious if cT ∈ JMn is derived by (cap◦).
Otherwise, it is derived by (Ωm) (m ≤ n):

(cT1)∀α.A ∈ JMn { K[B/α]T2 ∈ JMn }KA∈JMm−1∩Ec(α)

cT1BT2 ∈ JMn

Let K := cA to obtain cA[B/α]T2 ∈ JMn. By the IH (twice), we have T ◦1 , T ◦2 ∈ JMn. J

The next lemma lies at the heart of the Ω-rule technique. It describes a “meta-cut
elimination procedure” to eliminate (Ωn+1) from a derivation in JMn+1.

I Lemma 13. JMn satisfies (Ωn+1):

M∀α.A ∈ JMn { K[B/α]T ∈ JMn }KA∈JMn∩Ec(α)

MBT ∈ JMn

Proof. By induction on the derivation of M∀α.A ∈ JMn.
M ≡ Λα.N ∈ JMn is derived by (Abs). Then NA ∈ JMn ∩ Ec(α), so let K := N to
obtain N [B/α]T ∈ JMn. Hence MBT ∈ JMn by (B).
M ≡ xCN is derived by (vap−). C ∈ Tpn implies ∀α.A ∈ Tpn, so A ∈ Tpn−1. Moreover,
JMn−1 ⊆ JMn. Hence we may apply (Ωn) to obtain the same conclusion9.
M ≡ cU ∈ JMn is derived by (cap◦). Let K := cA to obtain cA[B/α]T ∈ JMn. By
Lemma 12, we have U◦, T ◦ ∈ JMn. Hence we obtain MBT ≡ cUBT ∈ JMn by (cap◦).
M ≡ NCU is obtained by (Ωm) with m ≤ n:

N∀β.D ∈ JMn { L[C/β]U ∈ JMn }LD∈JMm−1∩Ec(β)

NCU ∈ JMn

For each LD ∈ JMm−1 ∩Ec(β) we have (L[C/β]U)∀α.A ∈ JMn. So L[C/β]UBT ∈ JMn

by the IH. Hence we obtain MBT ≡ NCUBT ∈ JMn by (Ωm).
It never happens that M∀α.A ∈ JMn is derived by (abs). The cases of (β◦) and (B) easily
follow from the IH. J

The next lemma follows immediately, since JMn+1 reduces to JMn by restricting the
term domain to Domn and eliminating (Ωn+1).

I Lemma 14. For every n ∈ N ∪ {simp}, JMn+1 ∩ Domn = JMn.

As a consequence, we obtain:

I Lemma 15 (Collapsing). For every n ∈ N ∪ {simp}, JMn ⊆ SN.

9 Though it looks innocent, this is indeed the bottle neck of the whole argument. We restricted the term
domain to Domn and introduced constants and freezing just for managing this case.
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Proof. Given M ∈ JMn, let N := M◦[c/x] be the closed term of atomic type obtained by
freezing and constant substitution. Then N ∈ Domsimp and N ∈ JMn by Lemma 10. Hence
by Lemma 14 and Lemma 4, we obtain:

N ∈ JMn ∩Domsimp = JMn−1 ∩Domsimp = · · · = JM0 ∩Domsimp = JMsimp ⊆ SN.

From this, we conclude M ∈ SN by Lemma 2. J

I Theorem 16. For each n ∈ N∪{simp}, Fpn admits strong normalization. Hence Fp admits
strong normalization too.

3.3 Formalization in ID<ω

Let us recall the theories {IDn}n∈N of finitely iterated inductive definitions. ID0 is just the
standard first-order Peano arithmetic PA.

ID1 is obtained as follows. Let A ≡ A(X, x) be a first order arithmetical formula with
(temporarily used) second-order variable X which occurs positively. x is a first-order variable,
and we suppose that A does not contain any other free variables. For each such A, we extend
the language with a new unary predicate IA(x) together with the axioms

A[IA/X] ⊆ IA, A[S/X] ⊆ S → IA ⊆ S,

where S ≡ S(x, y) is an arbitrary formula and B ⊆ C abbreviates ∀x(B(x) → C(x)).
Intuitively, A expresses a monotone operator ℘(N) −→ ℘(N) and IA its least fixed point.
This defines ID1.

IDn with n > 1 is defined similarly, except that formula A can be taken from the language
of IDn−1. Thus we are allowed to define a new fixed point making use of previous ones. Let
ID<ω :=

⋃
n∈N IDn. It is known that ID<ω proves exactly the same arithmetical sentences

as Π1
1-CA0, the second-order Peano arithmetic with Π1

1-comprehension.
Let us now discuss formalization of Theorem 16. We may assume a reasonable encoding

of lambda terms as natural numbers and basic operations as primitive recursive functions
(see [2]). The sets SN and JMsimp, as well as the associated induction principles, are available
in PA, since these are defined by finitary rules. For instance, one can define M ∈ JMsimp as
“there exists a derivation d ending with statement M ∈ JMsimp,” which is arithmetical since
d, a finite object, is encodable by a natural number.

On the other hand, the definition of JM0 involves (Ω0), which is infinitary. It is here
that inductive definitions play a role. Indeed, ID1 allows us to define JM0 quite smoothly.
For n > 0, recall that JMn involves (Ω0), . . . , (Ωn), which depend on JM0, . . . ,JMn−1 (as
well as JMsimp, which is arithmetical and thus negligible). Hence definition of JMn requires
IDn+1.

Once JMn has been defined, the rest of argument proceeds by induction on the derivation
and some inductions on natural numbers, all of which are available in IDn+1 (see also
footnote 8). We therefore conclude:

I Theorem 17. IDn+1 proves strong normalization for Fpn.

Since Fpn ∝ IDn [2, 3], normalization for Fpn implies consistency of IDn (if IDn were
not consistent, it would prove totality of a partial function, and Fpn would represent it
by a lambda term of type N ⇒ N , contradicting normalization). Hence by the second
incompleteness theorem, IDn does not prove normalization for Fpn. Therefore Theorem 17 is
the best possible we may obtain.
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Turning to the whole system, normalization for Fp cannot be proved in ID<ω for the
same reason. Still, ID<ω has a proper extension IDω which corresponds to Π1

1-CA0 + BI
(bar induction). We have:

I Theorem 18. IDω proves strong normalization for Fp.

4 Gödel-Tait method

The previous proof, fully based on the JM method, works almost fine. It is, however, not
amenable to local formalization, so cannot be used to prove that the representable functions
in Fpn are provably total in IDn, since it involves n+ 1 times iteration of inductive definitions
in an unavoidable way. Hence we are led back to a more conventional approach, which
we call the Gödel-Tait method for the reason explained in footnote 5. It works perfectly,
when combined with the JM method. In this section, we give an alternative proof of strong
normalization in 4.1 and discuss local formalization in 4.2.

4.1 Computability predicates
Throughout this section, we fix n ∈ N ∪ {simp} and assume that the JM predicate JMn at
level n has been defined. Our goal is to give an alternative proof to strong normalization
for Fpn+1 by building a computability predicate on top of JMn. In the sequel, we write
JM := JMn just for simplicity.

Anticipating local formalization later, we will work with a restricted set of types. Given a
set X ⊆ Tpn+1, let X↓ be the least set containing X and satisfying the following conditions:
1. A⇒ B ∈ X↓ implies A,B ∈ X↓.
2. ∀α.A ∈ X↓ and D ∈ X imply A[D/α] ∈ X↓.
It is clear that X↓ is finite whenever X is.

Recall that JM = JMn ⊆ Domn. To address strong normalization for Fpn+1, we enlarge
the domain Domn with terms of type X↓. Let

Dom(X ) := {M ∈ Tm : type(fv(M)) ⊆ Tpn, type(M) ∈ ∀Tpn ∪ X↓}.

In particular when X is finite, ∀Tpn∪X↓ consists of ∀Tpn together with finitely many⇒-types
in Tpn+1. Given X,Y ⊆ Dom(X ), let us write

X ⇒ Y := {M ∈ Dom(X ) : ∀N ∈ X. MN ∈ Y }.

Also, let JM(A) := {M ∈ JM : type(M) = A} for each A ∈ ∀Tpn.
Our first observation is the following:

I Lemma 19. If A,B ∈ Tpn, JM(A⇒ B) = JM(A)⇒ JM(B).

Proof. The inclusion ⊆ is due to (app) already established for JM = JMn by Lemma 10.
For the other inclusion, let M ∈ JM(A) ⇒ JM(B). Since x ∈ JM(A) by (var), we have
Mx ∈ JM(B) with x a fresh variable. We can easily show that M ∈ JM by induction on
the derivation of Mx ∈ JM.

The only nontrivial case is when (λy.N)x ∈ JM is derived from N [x/y] ∈ JM by (β◦).
In this case, we have λy.N ≡ λx.N [x/y] ∈ JM by (abs). J

Notice that this is a consequence of the definition of JM predicates. The Gödel-Tait
method works the other way round; we define a predicate by the above property, and then
derive JM-like properties as consequences.
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I Definition 20. For each C ∈ ∀Tpn ∪ X↓, we define a set CP(C) ⊆ Dom(X ) as follows.

CP(C) := JM(C) (C ∈ ∀Tpn)
:= CP(A)⇒ CP(B) (C ≡ A⇒ B ∈ X\∀Tpn)

Let CP = CP(X ) :=
⋃
C∈∀Tpn∪X↓

CP(C). This defines the computability predicate at level
n+ 1, relative to X .

I Lemma 21. The set CP satisfies (app), (Abs), (β◦), (B), (Ωm) (m ≤ n+ 1) as well as

MC ∈ X
M◦ ∈ JM (sn◦)

T ◦ ∈ JM
(cT )C ∈ X

(csn◦)

Proof. (app) is a consequence of the definition and Lemma 19. (Abs) is trivial. Indeed, if
∀α.A ∈ ∀Tpn ∪ X↓, then ∀α.A ∈ ∀Tpn and A ∈ Tpn. Hence we have CP(A) = JM(A) and
CP(∀α.A) = JM(∀α.A) so that it boils down to (Abs) for JM.

(sn◦) and (csn◦) are simultaneously verified by induction on rk(C). If C ∈ ∀Tpn, it
amounts to (frz) and (cap◦) for JM. So suppose that C ≡ A⇒ B ∈ X↓\∀Tpn.

(sn◦) Assume M ∈ CP(A ⇒ B). By the IH (csn◦) for A, we have c ∈ CP(A), so
Mc ∈ CP(B) and thus (Mc)◦ ∈ JM by the IH (sn◦) for B. That is, M◦ ∈ JM.
(csn◦) Suppose that T ◦ ∈ JM. For any N ∈ CP(A), we have N◦ ∈ JM by the IH (sn◦)
for A. Hence cTN ∈ CP(B) by the IH (csn◦) for B.

Finally (β◦), (B) and (Ωm) are verified by induction on rk(C), where C is the type of the
term in conclusion. It is obvious if C ∈ ∀Tpn. Otherwise, suppose that the conclusion
term is MA⇒B. To prove M ∈ CP(A ⇒ B), it suffices to show MN ∈ CP(B) for any
N ∈ CP(A). But it follows from the IH straightforwardly, since these rules are closed under
term application. J

As an immediate consequence of (sn◦), Lemma 15 and Lemma 2, we obtain:

I Lemma 22 (Collapsing). CP ⊆ SN.

We now proceed to the Embedding part. Since CP already satisfies (var), (con), (app)
and (Abs), we only have to verify (abs) and (Appn+1). Let us begin with the latter. The
basic idea is to use (Ωn+1) as in Lemma 9, so we have to show that CP is closed under
(Subn+1) as far as needed.

Consider a term substitution σ = [N1/x
A1
1 , . . . , Nk/x

Ak
k ]. We say that σ is a cp-

substitution if Ai ∈ ∀Tpn ∪ X↓ and Ni ∈ CP(Ai) for every 1 ≤ i ≤ k.

I Lemma 23. Let B ∈ X and σ be a cp-substitution. Suppose that KA ∈ JM satisfies:
(?) C[B/α] ∈ ∀Tpn ∪ X↓ for any C ∈ type(fv(K)) ∪ {A}.
Then K[B/α]σ ∈ CP.

We are now ready to show:

I Lemma 24. CP satisfies (Appn+1) for ∀α.A ∈ X↓ and B ∈ X .

Proof. Suppose that M∀α.A ∈ CP. We are going to use (Ωn+1). So let KA ∈ JMn ∩ Ec(α).
Any C ∈ type(fv(K)) does not contain α as free type variable, so that C[B/α] ≡ C ∈ Tpn.
Also, A[B/α] ∈ X↓. Hence K satisfies the condition of the previous lemma so that K[B/α] ∈
JMn follows. Therefore we obtain MB ∈ CP by (Ωn+1). J
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Given a lambda term M ∈ Tmn+1, let subterm(M) be the set of subterms of M and
subtype(M) be defined by:

subtype(M) := {type(N) : N ∈ subterm(M)} ∪ {B : NB ∈ subterm(M)}.

The next lemma, the Basic Lemma of logical relations, establishes Embedding. It can be
proved by induction on the structure of M in a completely standard way.

I Lemma 25. Suppose that subtype(M) ⊆ X . Then for any cp-substitution σ, Mσ ∈ CP =
CP(X ).

In particular, any closed term M ∈ Tmn+1 belongs to CP = CP(X ) by letting X :=
subtype(M). Hence in conjunction with Lemma 22, we conclude:

I Theorem 26. System Fpn+1 admits strong normalization.

4.2 Local formalization in IDn+1

In contrast to the JM predicates, the computability predicate CP does not fit the pattern
of inductive definitions. Namely, it is not defined as the least fixed point of a monotone
operator, due to the use of non-monotone operator ⇒. Indeed, a naive formalization would
require Π1

1-comprehension, which is too high a price to pay.
On the other hand, CP is easily amenable to local formulation. For simplicity, let us write

m := n+ 1. If X is a finite set, CP = CP(X ) is definable from the JM predicate JMm−1
by a single formula so that it is definable in IDm. By formalizing the rest of argument, we
obtain:

I Theorem 27. Let X be a finite subset of Tpm. Then IDm proves that M is strongly
normalizable for every closed term M ∈ Tmm such that subtype(M) ⊆ X .

A function f : N −→ N is representable in System Fpm if there is a lambda term M of type
N ⇒N such that Mn→∗ k iff f(n) = k for every n, k ∈ N, where n is the Church numeral
for n. By noting that subtype(n) is the same for any Church numeral n, we conclude from
the previous theorem that Mn normalizes to a Church numeral for every n ∈ N, provably in
IDm.

I Theorem 28. Every representable function in Fpm is provably total in IDm.

I Remark. The above theorem, together with the converse direction, is already proved by
Altenkirch and Coquand [5] for n = 0, and by Aehlig [2, 3] for an arbitrary n ∈ N. The
former proof uses a Heyting-valued computability predicate, while the latter consists of two
steps: article [3] locally formalizes (weak) normalization (for terms of type N) in a parameter-
free system HA2

n+1,(1) of second order Heyting arithmetic, and [2] gives a proof-theoretic
reduction of the latter system to IDn. The reduction is done by encoding (recursive) infinitary
derivations involving the Ω-rule into natural numbers, and then applying the computability
argument. Though closely related, our proof is more direct in that it circumvents use of
an intermediate system like HA2

n+1,(1) and first-order encoding of infinitary derivations.
More importantly, we prove strong normalization for all terms explicitly, in contrast to weak
normalization for specific terms.

Acknowledgments. This work was supported by KAKENHI 16K16690 and KAKENHI
25330013.
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Abstract
We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories.
Our construction is formulated using internal type theory using quotient inductive types. We
use a typed presentation hence there are no preterms or realizers in our construction. NBE for
simple types is using a logical relation between the syntax and the presheaf interpretation. In our
construction, we merge the presheaf interpretation and the logical relation into a proof-relevant
logical predicate. We have formalized parts of the construction in Agda.
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1 Introduction

1.1 Specifying normalisation
Normalisation can be given the following specification.

We denote the type of well typed terms of type A in context Γ by Tm ΓA. This type
is defined as a quotient inductive inductive type (QIIT, see [10]): in addition to normal
constructors for terms such as lam and app, it also has equality constructors e.g. expressing
the β computation rule for functions. An equality t ≡Tm ΓA t′ expresses that t and t′ are
convertible.

The type of normal forms is denoted Nf ΓA and there is an embedding from it to terms
p–q : Nf ΓA→ Tm ΓA. Normal forms are defined as a usual inductive type, decidability of
equality is straightforward.

Normalisation is given by a function norm which takes a term to a normal form. It needs
to be an isomorphism:

completeness norm ↓
Tm ΓA
Nf ΓA ↑ p–q stability

If we normalise a term, we obtain a term which is convertible to it: t ≡ pnorm tq. This is
called completeness. The other direction is called stability: n ≡ norm pnq. It expresses that
there is no redundancy in the type of normal forms. This property makes it possible to
establish properties of the syntax by induction on normal forms.
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6:2 Normalisation by Evaluation for Dependent Types

NE∆ Σ (TM∆ × J∆K) R∆ NF∆

TM∆

u∆ q∆

p–q p–q
proj

Figure 1 The type of quote and unquote for a context ∆ in NBE for simple types.

Soundness, that is, if t ≡ t′ then norm t ≡ norm t′ is given by congruence of equality. The
elimination rule for the QIIT of the syntax ensures that every function defined from the
syntax respects the equality constructors.

1.2 NBE for simple type theory
Normalisation by evaluation (NBE) is one way to implement this specification. In this
subsection, we summarize the approach of [6]. NBE works by evaluating the syntax in a
presheaf model over the category of renamings REN and with normal forms as interpretation
of the base type. The objects in REN are contexts and morphisms are lists of variables. Note
that for any context Γ one can define the presheaves of terms, neutral terms (the subset of
normal forms where an eliminator is applied to a variable) and normal forms. The action
on objects is just returning substitutions, lists of neutral terms and lists of normal forms,
respectively.

TM∆ : PSh REN NE∆ : PSh REN NF∆ : PSh REN
TM∆ Γ := Tms Γ ∆ NE∆ Γ := Nes Γ ∆ NF∆ Γ := Nfs Γ ∆

To normalise a substitution with codomain ∆, one defines two natural transformations
unquote u∆ and quote q∆ by induction on the structure of contexts and types such that the
diagram in figure 1 commutes. J∆K denotes the interpretation of ∆ in the presheaf model
and R∆ denotes the logical relation at context ∆ between TM∆ and J∆K. The logical relation
is equality at the base type.

Now a substitution σ can be normalised by quote: it needs the substitution itself, the
interpretation JσK and a proof that they are related. This is given by the fundamental
theorem of the logical relation denoted by Rσ which also needs two related elements: these
are given by unquoting the identity renaming (which is neutral).

norm∆ (σ : TM∆ Γ) : NF∆ Γ := q∆ Γ (σ, JσK,Rσ (uΓ Γ idΓ))

Completeness is given by commutativity of the right hand triangle. Stability can be proven
by mutual induction on terms and normal forms.

A nice property of this approach is that the part of unquote and quote which gives J∆K
can be defined separately from the part which gives relatedness, hence the normalisation
function can be defined independently from the proof that it is complete.

1.3 NBE for type theory
In the case of simple type theory, types are closed, so they act like contexts. Quote at a type
A is just a natural transformation.

qA : Σ (TMA × JAK) RA →̇NFA
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NE∆ Σ TM∆ J∆K NF∆

TM∆

u∆ q∆

p–q p–q
proj

Figure 2 The type of quote and unquote for a context ∆ in our proof.

In the case of (dependent) type theory, types depend on contexts, so TMΓ`A becomes a
family of presheaves over TMΓ, JΓ ` AK is a family over JΓK and RΓ`A depends on RΓ (and a
term of that type and the interpretation of a term of that type).

TMΓ`A,NEΓ`A,NFΓ`A : FamPSh TMΓ

JΓ ` AK : FamPSh JΓK

RΓ`A : FamPSh
(

Σ
(
Σ (TMΓ × JΓK) RΓ

) (
TMΓ`A × JΓ ` AK

))
We can try to define quote and unquote for this type as a family of natural transformations.
The type of quote and unquote omitting the naturality conditions would be the following.
These types encode the commutativity of the triangles as well.

q(Γ`A) Ψ : (p : RΓ Ψ ρα)(t : TMA ρ)(v : JAKα)→ RA p t v → Σ(n : NFA ρ).t ≡ pnq
u(Γ`A) Ψ : (p : RΓ Ψ ρα)(n : NEA ρ)→ Σ(v : JAKα).RA p pnq v

However there seems to be no way to define quote and unquote this way because quote does
not preserve the logical relation. The problem is that when defining unquote at Π we need
to define a semantic function which works for arbitrary inputs, not only those which are
related to a term. It seems that we need to restrict the presheaf model to only contain such
functions.

We solve this problem by replacing the presheaf and the logical relation by a proof
relevant logical predicate. We denote the logical predicate at a context ∆ by J∆K. We define
normalisation following the diagram in figure 2.

In the presheaf model, the interpretation of the base type was normal forms of the base
type, and the logical relation at the base type was equality of the term and the normal form.
In our case, the logical predicate at the base type will say that there exists a normal form
which is equal to the term.

1.4 Structure of the proof and the paper
In this section, we give a high level sketch of the proof. Sections 3, 4, 6 are fully formalised
in Agda, sections 5, 7 and 8 are partially formalised [9].

In section 2 we briefly summarize the metatheory we are working in.
In section 3 we define the syntax for type theory as a quotient inductive inductive type

(QIIT) [10]. The arguments of the eliminator for the QIIT form a model of type theory.
In section 4 we define the category of renamings REN: objects are contexts and morphisms

are renamings (lists of variables).
In section 5 we define the proof-relevant Kripke logical predicate interpretation of the

syntax. The interpretation has REN as the base category and two parameters for the
interpretations of U and El. This interpretation can be seen as a dependent version of the
presheaf model of type theory. E.g. a context in the presheaf model is interpreted as a

FSCD 2016



6:4 Normalisation by Evaluation for Dependent Types

presheaf. Now it is a family of presheaves dependent on a substitution into that context.
The interpretations of base types can depend on the actual elements of the base types. The
interpretation of substitutions and terms are the fundamental theorems.

In section 6 we define neutral terms and normal forms together with their renamings and
embeddings into the syntax (p–q). With the help of these, we define the interpretations of U
and El. The interpretation of U at a term of type U will be a neutral term of type U which
is equal to the term. Now we can interpret any term of the syntax in the logical predicate
interpretation. We will denote the interpretation of a term t by JtK.

In section 7 we mutually define the natural transformations quote and unquote. We
define them by induction on contexts and types as shown in figure 2. Quote takes a term
and a semantic value at that term into a normal term and a proof that the normal term is
equal to it. Unquote takes a neutral term into a semantic value at the neutral term.

Finally, in section 8, we put together the pieces by defining the normalisation function
and showing that it is complete and stable. Normalisation and completeness are given by
interpreting the term in the logical predicate model at the identity semantic element and
then quoting. Stability is proved by mutual induction on neutral terms and normal forms.

1.5 Related work

Normalisation by evaluation was first formulated by Schwichtenberg and Berger [11], sub-
sequently a categorical account using presheaf categories was given [6] and this approach
was extended to System F [7, 8] and coproducts [5]. The present work can be seen as a
continuation of this line of research.

The term normalisation by evaluation is also more generally used to describe semantic
based normalisation functions. E.g. Danvy is using semantic normalisation for partial
evaluation [14]. Normalisation by evaluation using untyped realizers has been applied to
dependent types by Abel et al [3, 1, 2]. Danielsson [13] has formalized NBE for dependent
types but he doesn’t prove soundness of normalisation.

2 Metatheory and notation

We are working in intensional Martin-Löf Type Theory with postulated extensionality
principles using Agda as a vehicle [17, 4]. We extend Agda with quotient inductive inductive
types (QIITs, see section 6 of [10]) using axioms. When defining an inductive type A, we
first declare the type by dataA : S where S is the sort, then we list the constructors. For
inductive inductive types we first declare all the types, then following a second data keyword
we list the constructors. We also postulate functional extensionality which is a consequence
of having an interval QIIT anyway. We assume K, that is, we work in a strict type theory.

We follow Agda’s convention of denoting the universe of types by Set, we write function
types as (x : A)→ B or ∀x.B, implicit arguments are written in curly braces {x : A} → B

and can be omitted or given in lower index. If some arguments are omitted, we assume
universal quantification, e.g. (y : B x)→ C means ∀x.(y : B x)→ C if x is not given in the
context. We write Σ(x : A).B for Σ types. We overload names e.g. the action on objects
and morphisms of a functor is denoted by the same symbol.

The identity type is denoted – ≡ – and its constructor is refl. Transport of a term a : P x
along an equality p : x ≡ y is denoted p∗a : P y. We denote (p∗a) ≡ b by a ≡p b. We write ap
for congruence, that is ap f p : f x ≡ f y if p : x ≡ y. For readability, we will omit transports
most of the time (starting from section 5). This makes some terms non-well typed, e.g. we
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might write f a where f : A → B and a : A′ but in this case there is an equality in scope
which justifies A ≡ A′.

Sometimes we use Coq-style definitions: we write d (x : A) : B := t for defining d of type
(x : A)→ B by λx.t. We also use Agda-style pattern matching definitions.

3 Object theory

The object theory is the same1 as in [10], we present it as a quotient inductive inductive type
(QIIT). A QIIT is presented by first declaring the types that we define mutually, and then
listing all the constructors.

The syntax constituting of contexts, types, substitutions and terms is declared as follows.

data Con : Set
data Ty : Con→ Set
data Tms : Con→ Con→ Set
data Tm : (Γ : Con)→ Ty Γ→ Set

We use the convention of naming contexts Γ,∆,Θ, types A,B, terms t, u, substitutions
σ, ν, δ.

We define a basic type theory with an uninterpreted base type U, a family over this
type El and dependent function space Π with constructor lam and eliminator app. Our type
theory is given as an explicit substitution calculus, hence the QIIT needs constructors – [– ]
for substituted types and terms. The constructors of the QIIT can be summarized as follows.

Substitutions form a category with a terminal object. This includes the categorical
substitution laws for types [id] and [][].

Substitution laws for types U[], El[], Π[].

The laws of comprehension which state that we have the natural isomorphism

π1β, π2β – , – ↓
σ : Tms Γ ∆ Tm ΓA[σ]

Tms Γ (∆, A)
↑ π1, π2 πη

where naturality2 is given by , ◦.

The laws for function space which are given by the natural isomorphism

Πβ lam ↓
Tm (Γ, A)B

Tm Γ (ΠAB)
↑ app Πη

where naturality is given by lam[].

1 Steven Schäfer pointed us to [18] which shows that in the presentation [10] the equalities [id]t and [][]t
(identity and associativity laws of term substitution) can be derived from the others. This is why we
omitted these equalities from this presentation and the formal development.

2 If one direction of an isomorphism is natural, so is the other. This is why it is enough to state naturality
for – , – and not for π1, π2.
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6:6 Normalisation by Evaluation for Dependent Types

We list the point constructors in the left column and the equality constructors in the right.

data data
· : Con [id] : A[id] ≡ A
– , – : (Γ : Con)→ Ty Γ→ Con [][] : A[σ][ν] ≡ A[σ ◦ ν]
– [– ] : Ty ∆→ Tms Γ ∆→ Ty Γ U[] : U[σ] ≡ U
U : Ty Γ El[] : (El Â)[σ] ≡ El (U[]∗Â[σ])
El : Tm Γ U→ Ty Γ Π[] : (ΠAB)[σ] ≡ Π (A[σ]) (B[σA])
Π : (A : Ty Γ)→ Ty (Γ, A)→ Ty Γ id◦ : id ◦ σ ≡ σ
id : Tms Γ Γ ◦id : σ ◦ id ≡ σ
– ◦ – : Tms Θ ∆→ Tms Γ Θ→ Tms Γ ∆ ◦◦ : (σ ◦ ν) ◦ δ ≡ σ ◦ (ν ◦ δ)
ε : Tms Γ · εη : {σ : Tms Γ ·} → σ ≡ ε
– , – : (σ : Tms Γ ∆)→ Tm ΓA[σ]→ Tms Γ (∆, A) π1β : π1 (σ, t) ≡ σ
π1 : Tms Γ (∆, A)→ Tms Γ ∆ πη : (π1 σ, π2 σ) ≡ σ
– [– ] : Tm ∆A→ (σ : Tms Γ ∆)→ Tm ΓA[σ] , ◦ : (σ, t) ◦ ν ≡ (σ ◦ ν), ([][]∗t[ν])
π2 : (σ : Tms Γ (∆, A))→ Tm ΓA[π1 σ] π2β : π2 (σ, t) ≡π1β t

lam : Tm (Γ, A)B → Tm Γ (ΠAB) Πβ : app (lam t) ≡ t
app : Tm Γ (ΠAB)→ Tm (Γ, A)B Πη : lam (app t) ≡ t

lam[] : (lam t)[σ] ≡Π[] lam (t[σA])

Note that the equality π2β lives over π1β. Also, we had to use transport to typecheck El[]
and , ◦. We used lifting of a substitution in the types of Π[] and lam[]. It is defined as follows.

(σ : Tms Γ ∆)A : Tms (Γ, A[σ]) (∆, A) := (σ ◦ π1 id), ([][]∗π2 id)

We use the categorical app operator but the usual one (–$–) can also be derived.

< (u : Tm ΓA) > : Tms Γ (Γ, A) := id, [id]−1∗u

(t : Tm Γ (ΠAB))$(u : Tm ΓA) : B[< u >] := (app t)[< u >]

When we define a function from the above syntax, we need to use the eliminator. The
eliminator has 4 motives corresponding to what Con, Ty, Tms and Tm get mapped to and
one method for each constructor including the equality constructors. The methods for
point constructors are the elements of the motives to which the constructor is mapped.
The methods for the equality constructors demonstrate soundness, that is, the semantic
constructions respect the syntactic equalities. The eliminator comes in two different flavours:
the non-dependent and dependent version. In our constructions we use the dependent version.
The motives and methods for the non-dependent eliminator (recursor) collected together form
a model of type theory, they are basically the same3 as Dybjer’s Categories with Families
[15].

As an example we list the motives and a few methods of the dependent eliminator. An
algorithm for deriving them from the constructors is given in [10]. As names we use the
names of the constructors followed by an upper index M.

3 Dybjer uses the usual application operator, we use the categorical one, the projections π1, π2 are defined
differently and Dybjer lists some equations derivable from the others, we omit these. However all the
operators and the laws are inter-derivable.
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ConM : Con→ Set
TyM : (ConM Γ)→ Ty Γ→ Set
TmsM : (ConM Γ)→ (ConM ∆)→ Tms Γ ∆→ Set
TyM : (ΓM : ConM Γ)→ TyM ΓM A→ Tm ΓA→ Set
idM : TmsM ΓM ΓM id
– ◦M – : TmsM ΘM ∆M σ → TmsM ΓM ΘM ν → TmsM ΓM ∆M (σ ◦ ν)

◦idM : σM ◦M idM ≡◦id σM

π2β
M : πM

2 (ρM,MtM) ≡π1β
M,π2β tM

Note that the method equality ◦idM lives over the constructor ◦id while the method equality
π2β

M lives both over the method equality π1β
M and the equality constructor π2β.

4 The category of renamings

In this section we define the category of renamings REN. Objects in this category are contexts,
morphisms are renamings (Vars): lists of de Bruijn variables.

We define the types of variables Var and renamings Vars together with their embeddings
into substitutions. This is an inductive-recursive definition as p–q for renamings needs to be
defined mutually with renamings.

data Var : (Ψ : Con)→ Ty Ψ→ Set
vze : Var (Ψ, A) (A[π1 id])
vsu : Var ΨA→ Var (Ψ, B) (A[π1 id])
p–q : Vars Ω Ψ→ Tms Ω Ψ
data Vars : Con→ Con→ Set
ε : Vars Ψ ·
– , – : (β : Vars Ω Ψ)→ Var ΩA[pβq]→ Vars Ω (Ψ, A)

p–q : Var ΨA→ Tm ΨA

pvzeq := π2 id
pvsuxq := pxq[π1 id]
pεq := ε

pβ, xq := pβq, pxq

Variables are typed de Bruijn indices. vze projects out the last element of the context, vsu
extends the context, and the type A : Ty Ψ needs to be weakened in both cases because we
need to interpret it in Ψ extended by another type. Renamings are lists of variables with the
appropriate types. Embedding of variables into terms uses the projections and the identity
substitution, and embedding renamings is pointwise.

We use the names Ψ,Ω,Ξ for objects of REN, x, y for variables, β, γ for renamings.
We need identity and composition of renamings for the categorical structure. To define

them, we also need weakening and renaming of variables together with laws relating their
embeddings to terms. We only list the types as the definitions are straightforward inductions.
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wk : Vars Ω Ψ→ Vars (Ω, A) Ψ pwkq : pβq ◦ π1id ≡ pwk βq
id : Vars Ψ Ψ pidq : pidq ≡ id
– ◦ – : Vars Ξ Ψ→ Vars Ω Ξ→ Vars Ω Ψ p◦q : pβq ◦ pγq ≡ pβ ◦ γq
– [– ] : Var ΨA→ (β : Vars Ω Ψ)→ Var ΩA[pβq] p[]q : pxq[pβq] ≡ px[β]q

Renamings form a category, we omit the statement and proofs of the categorical laws.

5 The logical predicate interpretation

In this section, after defining a few categorical notions, we define the proof-relevant Kripke
logical predicate interpretation of the type theory given in section 3. It can also be seen as a
dependent version of the presheaf model of type theory [16].

A contravariant presheaf over a category C is denoted Γ : PSh C. It is given by the
following data: given I : |C|, a set Γ I, and given f : C(J, I) a function Γ f : Γ I → Γ J .
Moreover, we have idP Γ : Γ idα ≡ α and compP Γ : Γ (f ◦ g)α ≡ Γ g (Γ f α) for α : Γ I,
f : C(J, I), g : C(K,J).

Given Γ : PSh C, a family of presheaves over Γ is denoted A : FamPSh Γ. It is given
by the following data 4 : given α : Γ I, a set AI α and given f : C(J, I), a function
Af : AI α → AJ (Γ f α). In addition, we have the functor laws idFA : A id v ≡idP v and
compFA : A (f ◦ g) v ≡compP Ag (Af v) for α : Γ I, v : Aα, f : C(J, I), g : C(K,J).

A natural transformation between presheaves Γ and ∆ is denoted σ : Γ →̇∆. It is given
by a function σ : {I : |C|} → Γ I → ∆ I together with the condition natnσ : ∆ f (σI α) ≡
σJ (Γ f α) for α : Γ I, f : C(J, I).

A section5 from a presheaf Γ to a family of presheaves A over Γ is denoted t : Γ s→ A. It
is given by a function t : {I : |C|} → (α : Γ I)→ AI α together with the naturality condition
natS t α f : Af (t α) ≡ t (Γ f α) for f : C(J, I).

Given Γ : PSh C and A : FamPSh Γ we can define Σ ΓA : PSh C by (Σ ΓA) I := Σ(α :
Γ I).AI α and (Σ ΓA) f (α, a) := (Γ f α,A f a).

Given σ : Γ →̇∆ and A : FamPSh ∆, we define A[σ] : FamPSh Γ by A[σ]I α := AI (σI α)
and A[σ] f a := natnσ∗(Af a) for α : Γ I, a : A[σ]α and f : C(J, I).

The weakening natural transformation wk : Σ ΓA →̇Γ is defined by wkI (α, a) := α.
Lifting of a section t : Γ s→ A by a family of presheaves B : FamPSh Γ is a natural

transformation tB : Σ ΓB →̇Σ (Σ (ΓA))B[wk]. It is defined as tBI (α, b) := (α, tI α, b).
To define the logical predicate interpretation of the syntax, we need to give the motives

and methods for the eliminator. We will denote the interpretation of a syntactic construct t
by JtK. The following table gives the motives of the eliminator.

Γ : Con TMΓ = Tms – Γ : PSh REN JΓK : FamPSh TMΓ

A : Ty Γ TMA = Tm – A[– ] : FamPSh TMΓ JAK : FamPSh
(

Σ
(
Σ (TMΓ TMA)

)
JΓK[wk]

)
σ : Tms Γ ∆ TMσ = (σ ◦ –) : TMΓ →̇TM∆ JσK : Σ TMΓ JΓK s→ J∆K[TMσ][wk]

t : Tm ΓA TMt = t[– ] : TMΓ
s→ TMA JtK : Σ TMΓ JΓK s→ JAK[TMt

JΓK]

4 Indeed, this is equivalent to a presheaf over the category of elements
∫

Γ.
5 t : Γ s→ A is called a section because it can be viewed as a section of the first projection from Σ ΓA to Γ
but we define it without using the projection.
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First we define the syntactic presheaf interpretation TM as given in the table. TM∆ is a
presheaf over REN, the action on morphisms is TM∆ (β : Vars Ω Ψ)σ := σ ◦ pβq. TMA is a
family of presheaves over TMΓ, TMσ is a natural transformation and TMt is a section. The
action on morphisms and the functor laws for TMA and the naturality laws for TMσ and
TMt are straightforward. TM is not a presheaf model, it is just the syntax in a different
structure so that it matches the motives of a presheaf model.

In the logical predicate interpretation, a context ∆ is mapped to a family of presheaves over
TM∆. That is, for every substitution ρ : TM∆ Ψ we have a set J∆KΨ ρ which expresses that the
logical predicate holds for ρ. Moreover, we have the renaming J∆Kβ : J∆K ρ→ J∆K (TM∆ β ρ).

JAK is the logical predicate at a type A. It depends on a substitution (for which the
predicate needs to hold) and a term. JAKΨ (ρ, s, α) expresses that the logical predicate holds
for term s : Tm ΨA[ρ]. It is also stable under renamings.

A : Ty Γ Ψ : |REN| ρ : TMΓ Ψ s : TMA ρ α : JΓKΨ ρ

JAKΨ (ρ, s, α) : Set

JAKβ : JAK (ρ, s, α)→ JAK (TMΓ β ρ,TMA β s, JΓKβ α)

A substitution σ is mapped to JσK which expresses the fundamental theorem of the logical
predicate for σ: for any other substitution ρ for which the predicate holds, we can compose
it with σ and the predicate will hold for the composition. The fundamental theorem is also
natural.

σ : Tms Γ ∆ Ψ : |REN| ρ : TMΓ Ψ α : JΓKΨ ρ

JσKΨ (ρ, α) : J∆KΨ (σ ◦ ρ)

J∆Kβ (JσK (ρ, α)) ≡ JσK (TMΓ β ρ, JΓKβ α)

A term t is mapped to the fundamental theorem for the term: given a substitution ρ for
which the predicate holds, it also holds for t[ρ] in a natural way.

t : Tm ΓA Ψ : |REN| ρ : TMΓ Ψ α : JΓKΨ ρ

JtKΨ (ρ, α) : JAKΨ (ρ, t[ρ], α)

JAKβ (JtK (ρ, α)) ≡ JtK (TMΓ β ρ, JΓKβ α)

We define the presheaf TMU : PSh REN and a family over it TMEl : FamPSh TMU. The
actions on objects are TMU Ψ := Tm Ψ U and TMEl

Ψ Â := Tm Ψ (El Â). The action on a
morphism β is just substitution – [pβq] for both.

Note that the base category of the logical predicate interpretation is fixed to REN. However
we parameterise the interpretation by the predicate at the base type U and base family El.
These are denoted by Ū and Ēl and have the following types.

Ū : FamPSh TMU

Ēl : FamPSh
(

Σ
(
Σ (TMU TMEl)

)
Ū[wk]

)
Now we list the methods for each constructor in the same order as we have given them in

section 3. We omit the proofs of functoriality/naturality only for reasons of space.
The logical predicate trivially holds at the empty context, and it holds at an extended

context for ρ if it holds at the smaller context at π1 ρ and if it holds at the type which extends
the context for π2 ρ. The second part obviously depends on the first. The action on morphisms
for context extension is pointwise. Here we omitted some usages of –∗ – e.g. JΓKβ α is only
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well-typed in that position when we transport along the equality π1 ρ ◦ pβq ≡ π1 (ρ ◦ pβq).
From now on we will omit transports and the usages of p–q in most cases for readability.

J·KΨ (ρ : TM·Ψ) := >
JΓ, AKΨ (ρ : TMΓ,A Ψ) := Σ(α : JΓKΨ (π1 ρ)).JAKΨ (π1 ρ, π2 ρ, α)
JΓ, AK (β : Vars Ω Ψ) (α, a) := (JΓKβ α, JAKβ a)

The logical predicate at a substituted type is the logical predicate at the type and we need
to use the fundamental theorem at the substitution to lift the witness of the predicate for
the substitution. Renaming a substituted type is the same as renaming in the original type.
The logical predicate at the base type and family says what we have given as parameters.
Renaming also comes from these parameters.

JA[σ]K (ρ, s, α) := JAK (σ ◦ ρ, s, JσK (ρ, α)) JA[σ]Kβ a := JAKβ a

JUK (ρ, s, α) := Ū (U[]∗s) JUKβ a := Ūβ a
JEl ÂK (ρ, s, α) := Ēl (Â[ρ], s, JÂK (ρ, α)) JEl ÂKβ a := Ēlβ a

The logical predicate holds for a function s when we have that if the predicate holds for
an argument u (at A, witnessed by v), so it holds for s$u at B. In addition, we have a
Kripke style generalisation: this should be true for s[β] given a morphism β in a natural
way. Renaming a witness of the logical predicate at the function type is postcomposing the
Kripke morphism by it.

JΠABKΨ (ρ : TMΓ Ψ, s, α)

:= Σ
(

map :
(
β : Vars Ω Ψ

)(
u : TMA (ρ ◦ β)

)(
v : JAKΩ (ρ ◦ β, u, JΓKβ α)

)
→ JBKΩ

(
(ρ ◦ β, u), s[β]$u, (JΓKβ α, v)

))
.∀β, u, v, γ.JBK γ (mapβ u v) ≡ map (β ◦ γ) (u[γ]) (JAK γ v)

JΠABKβ′ (map, nat) := (λβ.map (β′ ◦ β), λβ.nat (β′ ◦ β))

Now we list the methods for the substitution constructors, that is, we prove the fun-
damental theorem for substitutions. We omit the naturality proofs. The object theoretic
constructs map to their metatheoretic counterparts: identity becomes identity, composi-
tion becomes composition, the empty substitution becomes the element of the unit type,
comprehension becomes pairing, first projection becomes first projection.

JidK (ρ, α) := α

Jσ ◦ νK (ρ, α) := JσK (ν ◦ ρ, JνK (ρ, α))
JεK (ρ, α) := tt
Jσ, tK (ρ, α) := JσK (ρ, α), JtK (ρ, α)
Jπ1 σK (ρ, α) := proj1 (JσK (ρ, α))

The fundamental theorem for substituted terms and the second projection is again just
composition and second projection.

Jt[σ]K (ρ, α) := JtK (σ ◦ ρ, JσK (ρ, α))
Jπ2 σK (ρ, α) := proj2 (JσK (ρ, α))
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The fundamental theorem for lam and app are more interesting. For lam, the map function
is using the fundamental theorem for t which is in the context extended by the domain
type A : Ty Γ, so we need to supply an extended substitution and a witness of the predicate.
Moreover, we need to rename the substitution ρ and the witness of the predicate α to
account for the Kripke property. The naturality is given by the naturality of the term itself.
Application uses the map part of the logical predicate and the identity renaming.

Jlam tK (ρ, α) :=
(
λβ, u, v.JtK

(
(ρ ◦ β, u), (JΓKβ α, v)

)
, λβ, u, v, γ.natS JtK

(
(ρ ◦ β, u), (JΓKβ α, v)

)
γ
)

Japp tK (ρ, α) := map
(
JtK (π1 ρ, proj1 α)

)
id (π2 ρ) (proj2 α)

Lastly, we need to provide methods for the equality constructors. We won’t list all of
these proofs as they are quite straightforward, but as examples we show the semantic versions
of the laws [][] and π2β. For [][], we have to show that the two families of presheaves JA[σ][ν]K
and JA[σ ◦ ν]K are equal. It is enough to show that their action on objects and morphisms
coincides as the equalities will be equal by K. Note that we use function extensionality to
show the equality of the presheaves from the pointwise equality of actions. When we unfold
the definitions for the actions on objects we see that the results are equal by associativity.

JA[σ][ν]K (ρ, s, α)

= JAK
(
σ ◦ (ν ◦ ρ), s, JσK

(
ν ◦ ρ, JνK (ρ, α)

))
≡ JAK

(
(σ ◦ ν) ◦ ρ, s, JσK

(
ν ◦ ρ, JνK (ρ, α)

))
= JA[σ ◦ ν]K (ρ, s, α)

The actions on morphisms are equal by unfolding the definitions.

JA[σ][ν]Kβ a = JAKβ a = JA[σ ◦ ν]Kβ a

For π2β we need to show that two sections Jπ2 (σ, t)K and JtK are equal, and again, the law
parts of the sections will be equal by K.

Jπ2 (σ, t)K (ρ, α) = proj2
(
Jσ, tK (ρ, α)

)
= JtK (ρ, α)

6 Normal forms

We define η-long β-normal forms mutually with neutral terms. Neutral terms are terms where
a variable is in a key position which precludes the application of the rule Πβ. Embeddings
back into the syntax are defined mutually in the obvious way. Note that neutral terms and
normal forms are indexed by types, not normal types.

data Ne : (Γ : Con)→ Ty Γ→ Set data Nf
data Nf : (Γ : Con)→ Ty Γ→ Set neuU : Ne Γ U→ Nf Γ U
p–q : Nf ΓA→ Tm ΓA neuEl : Ne Γ (El Â)→ Nf Γ (El Â)
data Ne lam : Nf (Γ, A)B → Nf Γ (ΠAB)

var : Var ΓA→ Ne ΓA p–q : Ne ΓA→ Tm ΓA
app : Ne Γ (ΠAB)→ (v : Nf ΓA)

→ Ne Γ (B[< pvq >])
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We define lists of neutral terms and normal forms. X is a parameter of the list, it can stand
for both Ne and Nfs.

data –s (X : (Γ : Con)→ Ty Γ→ Set) : Con→ Con→ Set
p–q : Xs Γ ∆→ Tms Γ ∆
dataXs
ε : Xs Γ ·
– , – : (τ : Xs Γ ∆)→ X ΓA[pτq]→ Xs Γ (∆, A)

We also need renamings of (lists of) normal forms and neutral terms together with lemmas
relating their embeddings to terms. Again, X can stand for both Ne and Nf.

– [– ] : X ΓA→ (β : Vars Ψ Γ)→ X ΨA[pβq] p[]q : pnq[pβq] ≡ pn[β]q
– ◦ – : Xs Γ ∆→ Vars Ψ Γ→ Xs Ψ ∆ pτq ◦ pβq ≡ pτ ◦ βq

Now we can define the presheaf XΓ and families of presheaves XA for any A : Ty Γ where X
is either NE or NF. The definitions follow that of TM.

Γ : Con XΓ : PSh REN XΓ Ψ := Xs Ψ Γ XΓ β τ := τ ◦ β
A : Ty Γ XA : FamPSh TMΓ XA (ρ : TMΓ Ψ) := X ΨA[ρ] XA β n := n[β]

We set the parameters of the logical predicate at the base type and family by defining Ū
and Ēl. The predicate holds for a term if there is a neutral term of the corresponding type
which is equal to the term. The action on morphisms is just renaming.

Ū : FamPSh TMU

ŪΨ (Â : Tm Ψ U) := Σ(n : Ne Ψ U).Â ≡ pnq

Ēl : FamPSh
(

Σ
(
Σ (TMU TMEl)

)
Ū[wk]

)
ĒlΨ (Â, t : Tm Ψ (El Â), p) := Σ(n : Ne Ψ (El Â)).t ≡ pnq

Now we can interpret any term in the logical predicate model over REN with base type
interpretations Ū and Ēl. We denote the interpretation of t by JtK.

7 Quote and unquote

By the logical predicate interpretation using Ū and Ēl we have the following two things:
terms at the base type and base family are equal to a normal form,
this property is preserved by the other type formers — this is what the logical predicate
says at function types and substituted types.

We make use of this fact to lift the first property to any type. We do this by defining a
quote function by induction on the type. Quote takes a term which preserves the predicate
and maps it to a normal form that it is equal to it. Because of function spaces, we need a
function in the other direction as well, mapping neutral terms to the witness of the predicate.

More precisely, we define the quote function q and unquote u by induction on the structure
of contexts and types. For this, we need to define a model of type theory in which only the
motives for contexts and types are interesting.
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First we define families of presheaves for contexts and types which express that there is
an equal normal form. The actions on objects are given as follows.

NF≡∆ : FamPSh TM∆ NF≡A : FamPSh (Σ TMΓ TMA)
NF≡∆ (ρ : TM∆ Ψ) := Σ(ρ′ : NF∆ Ψ).ρ ≡ pρ′q NF≡A (ρ, s) := Σ(s′ : NFA ρ).s ≡ ps′q

We use these to write down the motives for contexts and types. We use sections to express
the commutativity of the diagram in figure 2. We only write Σ once for iterated usage.

u∆ : NE∆
s→ J∆K[p–q] uA : Σ TMΓ NEA (JΓK[wk]) s→ JAK[id, p–q, id]

q∆ : Σ TM∆ J∆K s→ NF≡∆[wk] qA : Σ TMΓ TMA (JΓK[wk]) JAK s→ NF≡A[wk][wk]

Unquote for a context takes a neutral substitution and returns a proof that the logical
predicate holds for it. Quote takes a substitution for which the predicate holds and returns a
normal substitution together with a proof that the original substitution is equal (convertible)
to the normal one (embedded into substitutions by p–q). The types of unquote and quote for
types are more involved as they depend on a substitution for which the predicate needs to
hold. Unquote for a type takes such a substitution and a neutral term at the type substituted
by this substitution and returns a proof that the predicate holds for this neutral term. The
natural transformation id, p–q, id is defined in the obvious way, it just embeds the second
component (the neutral term) into terms. Quote for a type takes a term of this type for
which the predicate holds and returns a normal form at this type together with a proof that
it is equal to the term. Here again, another substitution is involved.

The motives for substitutions and terms are the constant unit families.
We will list the methods for contexts and types excluding the naturality proofs for brevity.
Unquote and quote for the empty context are trivial, for extended contexts they are

pointwise. ap, is the congruence law of substitution extension – , –.

u· (τ : NE·Ψ) : > := tt
q·
(
(σ : TM·Ψ), (α : >)

)
: Σ(ρ′ : NF·Ψ).ρ ≡ pρ′q := (ε, εη)

u∆,A
(
(τ, n) : NE∆,A Ψ

)
: Σ
(
α : J∆K (π1 pτ, nq)

)
.JAK (π1 pτ, nq, π2 pτ, nq, α)

:= u∆ τ, uA (pτq, n, u∆ τ)
q∆,A

(
(ρ : TM∆ Ψ), (α, a) : J∆, AK ρ

)
: Σ(ρ′ : NF∆,A Ψ).ρ ≡ pρ′q

:= let (τ, p) := q∆ (π1 ρ, α); (n, q) := qA (π1 ρ, π2 ρ, α, a) in
(
(τ, n), (ap, p q)

)
(Un)quoting a substituted type is the same as (un)quoting at the type and using the

fundamental theorem at the substitution to lift the witness of the predicate α. As expected,
unquoting at the base type is simply returning the neutral term itself and the witness of the
predicate will be reflexivity, while quote just returns the witness of the predicate.

uA[σ] (ρ, n, α) : JAK
(
σ ◦ ρ, pnq, JσK (ρ, α)

)
:= uA

(
σ ◦ ρ, n, JσK (ρ, α)

)
qA[σ] (ρ, s, α, a) : Σ(s′ : NFA[σ] ρ).s ≡ ps′q := qA

(
σ ◦ ρ, s, JσK (ρ, α), a

)
uU
(
(ρ : TMΓ Ψ), (n : Ne Ψ U[ρ]), α

)
: Σ(n′ : NFU id).pnq ≡ pn′q := neuU (U[]∗n), refl

qU

(
ρ, t, α,

(
a : NF≡U (id, t)

))
: NF≡U (ρ, t) := U[]∗a

uEl Â
(
(ρ : TMΓ Ψ), (n : Ne Ψ (El Â[ρ])), α

)
: Σ(n′ : NFEl Â id).pnq ≡ pn′q

:= neuEl (El[]∗n), refl

qEl Â

(
ρ, t, α,

(
a : NF≡El Â (id, t)

))
: NF≡El Â (ρ, t) := El[]∗a
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We only show the mapping part of unquoting a function. To show that n preserves the
predicate, we show that it preserves the predicate for every argument u for which the predicate
holds (by v). We quote the argument, thereby getting it in normal form (m), and now we
can unquote the neutral term (appn[β]m) to get the result. We also need to transport the
result along the proof p that u ≡ pmq.

map
(

uΠAB

(
(ρ : TMΓ Ψ), (n : NEΠAB ρ), α

))(
β : Vars Ω Ψ

)(
u : TMA (ρ ◦ pβq)

)
(
v : JAKΩ (ρ ◦ pβq, u, JΓKβ α)

)
: JBKΩ

(
(ρ ◦ pβq, u), (pnq[pβq])$u, (JΓKβ α, v)

)
:= let (m, p) := qA (ρ ◦ pβq, u, JΓKβ α, v) in uB

(
(ρ ◦ pβq, u), (p∗appn[β]m), (JΓKβ α, v)

)
The normal form of a function t is lamn for some normal form n which is in the extended
context. We get this n by quoting app t in the extended context. f is the witness that
t preserves the relation for any renaming, and we use the renaming wk id to use f in the
extended context. The argument of f in this case will be the zero de Bruijn index vze and
we need to unquote it to get the witness that it preserves the logical predicate. This is the
place where the Kripke property of the logical relation is needed: the base category of the
Kripke logical relation needs to minimally include the morphism wk id.

qΠAB (ρ, t, α, f) : Σ(t′ : NFΠAB ρ).t ≡ pt′q
:= let a := uA (ρ ◦ pwk idq, var vze, JΓK (wk id)α)

(n, p) := qB
(
ρA, app t, (JΓK (wk id)α, a),map f (wk id) pvzeq a

)
in (lamn,Πη−1 � ap lam p)

We have to verify the equality laws for types. Note that we use function extensionality to
show that the corresponding quote and unquote functions are equal. The naturality proofs
will be equal by K.

(Un)quote preserves [id] by the left identity law.

uA[id] (ρ, n, α) = uA (id ◦ ρ, n, α) ≡ uA (ρ, n, α)
qA[id] (ρ, s, α, a) = qA (id ◦ ρ, s, α, a) ≡ qA (ρ, s, α, a)

(Un)quote preserves [][] by associativity for substitutions.

uA[σ][ν] (ρ, n, α)
= uA

(
σ ◦ (ν ◦ ρ), n, JσK (ν ◦ ρ, JνK (ρ, α))

)
≡ uA

(
(σ ◦ ν) ◦ ρ, n, JσK (ν ◦ ρ, JνK (ρ, α))

)
= uA[σ◦ν] (ρ, n, α)

qA[σ][ν] (ρ, s, α, a)
= qA

(
σ ◦ (ν ◦ ρ), s, JσK (ν ◦ ρ, JνK (ρ, α)), a

)
≡ qA ((σ ◦ ν) ◦ ρ, s, JσK (ν ◦ ρ, JνK (ρ, α)), a)
= qA[σ◦ν] (ρ, s, α, a)

The semantic counterparts of U[] and El[] are verified as follows.

uU[σ] (ρ, n, α) = uU
(
σ ◦ ρ, n, JσK (ρ, α)

)
= (n, refl) = uU (ρ, n, α)

qU[σ] (ρ, t, α, a) = qU
(
σ ◦ ρ, t, JσK (ρ, α), a

)
= a = uU (ρ, t, α, a)

u(El Â)[σ] (ρ, n, α) = uEl Â
(
σ ◦ ρ, n, JσK (ρ, α)

)
= (n, refl) = uEl (Â[σ]) (ρ, n, α)

q(El Â)[σ] (ρ, t, α, a) = qEl Â
(
σ ◦ ρ, t, JσK (ρ, α), a

)
= a = uEl (Â[σ]) (ρ, t, α, a)
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For reasons of space, we only state what we need to verify for Π[]. It is enough to show that
the mapping parts of the unquoted functions are equal and that the first components of the
results of quote are equal because the other parts are equalities.

map
(
u(ΠAB)[σ] (ρ, n, α)

)
≡ map

(
uΠA[σ]B[σA] (ρ, n, α)

)
proj1

(
q(ΠAB)[σ] (ρ, t, α, f)

)
≡ proj1

(
qΠA[σ]B[σA] (ρ, t, α, f)

)
The methods for substitutions and terms (including the equality methods) are all trivial.

8 Normalisation

Now we can define the normalisation function and show that it is complete as follows.

normA (t : Tm ΓA) : Nf ΓA := proj1
(

qA
(
id, [id]−1∗t, uΓ id, JtK (id, uΓ id)

))
complA (t : Tm ΓA) : t ≡ pnormA tq := proj2

(
qA
(
id, [id]−1∗t, uΓ id, JtK (id, uΓ id)

))
We prove stability by mutual induction on neutral terms and normal forms.

n : Ne ΓA
JpnqK (id, uΓ id) ≡ uA (id, n, uΓ id)

n : Nf ΓA
normA pnq ≡ v

As our normal forms are indexed by types, we need decidability of equality of types to
show decidability of equality of normal forms. For this, we need to define a model of normal
forms where types are mapped to normal types (which exclude substituted types). We leave
this as future work.

9 Conclusions and further work

We proved normalisation for a basic type theory with dependent types by the technique
of NBE. We evaluate terms into a proof relevant logical predicate model. The model is
depending on the syntax, we need to use the dependent eliminator of the syntax. Our
approach can be seen as merging the presheaf model and the logical relation used in NBE
for simple types [6] into a single logical predicate. This seems to be necessary because of
the combination of type indexing and dependent types: the well-typedness of normalisation
depends on completeness. Another property to note is that we don’t normalise types, we
just index normal terms by not necessarily normal types.

We are currently working on completing the formalisation6 [9]. Most of the work here
is equality reasoning. QIITs make it possible to define the syntax of type theory in a very
concise way, however because of missing computation rules, reasoning with them involves
lots of boilerplate. We expect that a cubical metatheory [12] with its systematic way of
expressing equalities depending on equalities and its additional computation rules would
significantly reduce the amount of boilerplate.

Another challenge is to extend our basic type theory with inductive types, universes and
large elimination. Also, it would be interesting to see how the work fits into the setting of
homotopy type theory (without assuming K). We would also like to investigate whether the
logical predicate interpretation can be generalised to work over arbitrary presheaf models
and how the syntactic model fits here.

6 The current status of formalisation is that we formalised most main constructions but the functoriality
and naturality properties are left as holes.
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Abstract
Paradefinite (‘beyond the definite’) logics are logics that can be used for handling contradictory
or partial information. As such, paradefinite logics should be both paraconsistent and paracom-
plete. In this paper we consider the simplest semantic framework for defining paradefinite logics,
consisting of four-valued matrices, and study the better accepted logics that are induced by these
matrices.
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1 Introduction

Uncertainty in commonsense reasoning and AI involves inconsistent and incomplete informa-
tion. Paradefinite logics (called ‘non-alethic’ by da Costa and ‘paranormal’ by Béziau [11])
are logics that successfully handle these two types of indefinite data, and so they have the
following two properties:

Paraconsistency [13]: The ability to properly handle contradictory data by rejecting the
principle of explosion, in which any proposition can be inferred from an inconsistent set
of assumptions.
Paracompleteness: The ability to properly handle incomplete data by rejecting the law
of excluded middle, in which for any proposition, either that proposition is ‘true’ or its
negation is ‘true’.

Apart of these two primary requirements, a ‘decent’ logic for reasoning with indefinite data
should have some further characteristics, like being expressive enough, faithful to classical
logic as much as possible (in the sense that entailments in the logic should also hold in classical
logic), and having some maximality properties (which may be intuitively interpreted by the
aspiration to retain as much of classical logic as possible, while preserving paraconsistency
and paracompleteness).

In this paper we are interested in the ‘simplest’ paradefinite logics (in terms of the number
of the truth values of their semantics) that have the above properties. Obviously, two-valued
logics are not adequate for this, as they cannot handle either of the two types of uncertainty.
Likewise, three-valued logics can be used for handling just one type of uncertainty (see,
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e.g., [5]), but they cannot simultaneously handle both of them. On the other hand, as shown
e.g. in [10] and [2], four truth values are enough for reasoning with incompleteness and
inconsistency.

This paper is a largely extended study of the work on 4-valued logics mentioned above.
Among others, we characterize the 4-valued paradefinite matrices, consider the induced
logics, examine them according to the criteria in [3], investigate their relative strengths, and
introduce corresponding sound and complete Hilbert-type and Gentzen-type proof systems.

2 Preliminaries

2.1 Propositional Logics
In what follows we denote by L a propositional language with a set Atoms(L) = {P1, P2, . . .}
of atomic formulas and use p, q, r to vary over this set. The set of the well-formed formulas
of L is denoted by W(L) and ϕ,ψ, φ, σ will vary over its elements. The set Atoms(ϕ) denotes
the atomic formulas occurring in ϕ. Sets of formulas in W(L) are called theories and are
denoted by T or T ′. Finite theories are denoted by Γ or ∆. We shall abbreviate T ∪ {ψ}
by T , ψ and write T , T ′ instead of T ∪ T ′. A rule in a language L is a pair 〈Γ, ψ〉, where
Γ ∪ {ψ} is a finite theory. We shall henceforth denote such a rule by Γ/ψ.

I Definition 2.1. A (propositional) logic is a pair L = 〈L,`〉, such that L is a propositional
language, and ` is a binary relation between theories in W(L) and formulas in W(L),
satisfying the following conditions:

Reflexivity: if ψ ∈ T then T ` ψ.
Monotonicity: if T ` ψ and T ⊆ T ′, then T ′ ` ψ.
Transitivity: if T ` ψ and T ′, ψ ` φ then T , T ′ ` φ.
Structurality: for every substitution θ and every T and ψ, if T ` ψ then {θ(ϕ) | ϕ ∈
T } ` θ(ψ).
Non-Triviality: there is a non-empty theory T and a formula ψ such that T 6` ψ.

A logic 〈L,`〉 is finitary if for every theory T and every formula ψ such that T ` ψ there is
a finite theory Γ ⊆ T such that Γ ` ψ.

Note that the languages that are considered in the sequel are all propositional, as this is
the heart of every paraconsistent and paracomplete logic ever studied so far. Also, we confine
ourselves to paradefinite logics, thus no form of non-monotonic reasoning is considered in
this paper.

I Definition 2.2. Let L = 〈L,`〉 be a logic, and let S be a set of rules in L. The finitary
L-closure CL(S) of S is inductively defined as follows:
〈θ(Γ), θ(ψ)〉 ∈ CL(S), where θ is an L-substitution, Γ is a finite theory in W(L), and
either Γ ` ψ or Γ/ψ ∈ S.
If the pairs 〈Γ1, ϕ〉 and 〈Γ2 ∪ {ϕ}, ψ〉 are both in CL(S), then so is the pair 〈Γ1 ∪ Γ2, ψ〉.

Next we define what an extension of a logic means.

I Definition 2.3. Let L = 〈L,`〉 be a logic, and let S be a set of rules in L.
A logic L′ = 〈L,`′〉 is an extension of L (in the same language) if `⊆`′. We say that L′
is a proper extension of L, if `( `′.
The extension of L by S is the pair L∗ = 〈L,`∗〉, where `∗ is the binary relation between
theories in W(L) and formulas in W(L), defined by: T `∗ ψ if there is a finite Γ ⊆ T
such that 〈Γ, ψ〉 ∈ CL(S).
Extending L by an axiom schema ϕ means extending it by the rule ∅/ϕ.
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The usefulness of a logic strongly depends on the question what kind of connectives are
available in it. Three particularly important types of connectives are defined next.

I Definition 2.4. Let L = 〈L,`〉 be a propositional logic.
A binary connective ⊃ of L is an implication for L, if the classical deduction theorem
holds for ⊃ and `, that is: T , ϕ ` ψ iff T ` ϕ ⊃ ψ.
A binary connective ∧ of L is a conjunction for L, if T ` ψ ∧ ϕ iff T ` ψ and T ` ϕ.
A binary connective ∨ of L is a disjunction for L, if T , ψ∨ϕ ` σ iff T , ψ ` σ and T , ϕ ` σ.

We say that L is semi-normal if it has (at least) one of the three basic connectives defined
above. We say that L is normal if it has all these three connectives.

2.2 Many-Valued Matrices
The most standard semantic way of defining many-valued logics is by using the following
type of structures (see, e.g., [19, 20, 25]).

I Definition 2.5. A (multi-valued) matrix for a language L is a tripleM = 〈V,D,O〉, where
V is a non-empty set of truth values,
D is a non-empty proper subset of V, called the designated elements of V, and
O is a function that associates an n-ary function �̃M : Vn→V with every n-ary connective
� of the language L.

In what follows, we shall denote by D the elements in V \D. The set D is used for defining
satisfiability and validity as defined below:

I Definition 2.6. LetM = 〈V,D,O〉 be a matrix for L.
AnM-valuation for L is a function ν :W(L)→V such that for every n-ary connective �
of L and every ψ1, . . . , ψn ∈ W(L), ν(�(ψ1, . . . , ψn)) = �̃M(ν(ψ1), . . . , ν(ψn)). We denote
by ΛM the set of all theM-valuations.
A valuation ν∈ΛM is anM-model of a formula ψ (alternatively, ν M-satisfies ψ), if it
belongs to the set modM(ψ) = {ν ∈ ΛM | ν(ψ) ∈ D}. TheM-models of a theory T are
the elements of the set modM(T ) = ∩ψ∈T modM(ψ).
A formula ψ isM-satisfiable ifmodM(ψ) 6= ∅. A theory T isM-satisfiable ifmodM(T ) 6=
∅.

In the sequel, when it is clear from the context, we shall sometimes omit the subscript
‘M’ and the tilde sign from �̃M, and the prefix ‘M’ from the notions above.

I Definition 2.7. Let M = 〈V,D,O〉 be a matrix for a language L, and let L ⊆ L′. A
matrixM′ = 〈V ′,D′,O′〉 for L′ is called an expansion ofM to L′, if V = V ′, D = D′, and
O′(�) = O(�) for every connective � of L.

I Definition 2.8. Given a matrixM, the consequence relation `M that is induced by (or
associated with)M, is defined by: T `M ψ if modM(T ) ⊆ modM(ψ). We denote by LM
the pair 〈L,`M〉, whereM is a matrix for L and `M is the consequence relation induced by
M.

I Theorem 2.9 ([21, 22]). For every propositional language L and finite matrixM for L,
LM = 〈L,`M〉 is a propositional logic. IfM is finite, then `M is also finitary.

We conclude this section with some simple, easily verified properties of the basic connect-
ives (Definition 2.4).
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I Definition 2.10. LetM = 〈V,D,O〉 be a matrix for L and let A ⊆ V.
An n-ary connective � of L is called A-closed if �̃(a1, . . . , an) ∈ A for every a1, . . . , an ∈ A.
An n-ary connective � of L is called A-limited if for every a1, . . . , an ∈ V , if �̃(a1, . . . , an) ∈
A then a1, . . . , an ∈ A.

I Definition 2.11. LetM = 〈V,D,O〉 be a matrix for L.
A connective ∧ in L is called anM-conjunction if it is D-closed and D-limited, i.e., for
every a, b ∈ V, a ∧ b ∈ D iff a ∈ D and b ∈ D.
A connective ∨ in L is called anM-disjunction if it is D-closed and D-limited, i.e., for
every a, b ∈ V, a ∨ b ∈ D iff a ∈ D or b ∈ D.
A connective ⊃ in L is called anM-implication if for every a, b ∈ V, a ⊃ b ∈ D iff either
a 6∈ D or b ∈ D.

Using the terminologies in Definitions 2.4 and 2.11, we have:

I Theorem 2.12. LetM = 〈V,D,O〉 be a matrix for L.
1. A connective is anM-conjunction iff it is a conjunction for LM.
2. AnM-disjunction is also a disjunction for LM.
3. AnM-implication is also an implication for LM.

I Corollary 2.13. Let M = 〈V,D,O〉 be a matrix for L, and let M′ be an expansion
ofM.
1. AnM-conjunction (respectively: M-disjunction,M-implication) is also a conjunction

(respectively: disjunction, implication) for LM′ .
2. If M has either an M-conjunction, or an M-disjunction, or an M-implication, then

LM′ is semi-normal. IfM has all of them then LM′ is normal.

3 Paradefinite Logics

In this section we define in precise terms what paradefinite logics are, and consider some
related desirable properties.

I Definition 3.1. Let L be a propositional language with a unary connective ¬, and let
L = 〈L,`L〉 be a logic for L.

L is called pre-¬-paraconsistent if there are formulas ψ,ϕ such that ψ,¬ψ 6`L ϕ.
L is called pre-¬-paracomplete if there is a theory T and formulas ψ,ϕ such that T , ψ `L ϕ

and T ,¬ψ `L ϕ, but T 6`L ϕ.

The first property above intends to capture the idea that a contradictory set of premises
should not entail every formula, and the second property indicates that it may happen that
a certain statement and its negation do not hold. Both of these intuitions make sense only
if the underlying connective ¬ somehow represents a ‘negation’ operation. This is assured
by the condition of ‘coherence with classical logic’, which is defined next. Intuitively, this
condition states that a logic that has such a connective should not admit entailments that
do not hold in classical logic.

I Definition 3.2. Let L be a language with a unary connective ¬. A bivalent ¬-interpretation
for L is a function F that associates a two-valued truth table with each connective of L, such
that F(¬) is the classical truth table for negation. We denote byMF the two-valued matrix
for L induced by F, that is,MF = 〈{t, f}, {t},F〉 (see Definition 2.5).

I Definition 3.3. Let L = 〈L,`L〉 be a propositional logic where L contains a unary
connective ¬.
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Let F be a bivalent ¬-interpretation for L. We say that L is F-contained in classical
logic if for every ϕ1, . . . , ϕn, ψ ∈ W(L), if ϕ1, . . . ϕn `L ψ then ϕ1, . . . , ϕn `MF ψ.
L is ¬-contained in classical logic [3], if it is F-contained in it for a bivalent ¬-inter-
pretation F.
L is ¬-coherent with classical logic, if it has a semi-normal fragment (Definition 2.4) which
is ¬-contained in classical logic.

I Definition 3.4. Let L = 〈L,`L〉 be a propositional logic where L contains a unary
connective ¬. We say that ¬ is a negation for L, if L is ¬-coherent with classical logic.

I Remark. If ¬ is a negation for L = 〈L,`L〉, then for every atom p ∈ Atoms(L) it holds
that p 6`L ¬p and ¬p 6`L p.

I Definition 3.5. Let L be a language with a unary connective ¬, and L = 〈L,`L〉 a logic
for L.

L is called ¬-paraconsistent if it is pre-¬-paraconsistent and ¬ is a negation of L.
L is called ¬-paracomplete if it is pre-¬-paracomplete and ¬ is a negation of L.
L is called ¬-paradefinite if it is ¬-paraconsistent and ¬-paracomplete.

Henceforth we shall frequently omit the ¬ sign (if it is clear from the context), and simply
refer to paradefinite [paraconsistent, paracomplete] logics.

4 Four-Valued Paradefinite Matrices

We now show that the availability of at least four different truth values is needed for
developing paradefinite logics in the framework of matrices. We then characterize the
structure of four-valued paradefinite matrices.

In what follows we suppose thatM = 〈V,D,O〉 is a matrix for a language with ¬. We
say thatM is paradefinite [paraconsistent, paracomplete] if so is LM (Definition 2.8).

I Theorem 4.1.
1. M is pre-paraconsistent iff there is an element > ∈ D, such that ¬̃> ∈ D.
2. IfM is paraconsistent then there are three different elements t, f , and > in V such that

f = ¬̃t, f 6∈ D, and {t, ¬̃f,>, ¬̃>} ⊆ D.

Proof. M is pre-paraconsistent iff p,¬p 6`M q. Obviously, this happens iff {p,¬p} has an
M-model. The latter, in turn, is possible iff there is some > ∈ D, such that ¬̃> ∈ D, as
indicated in the first item of the theorem. For the second item we may assume without loss
of generality thatM is ¬-contained in classical logic. We let F be a bivalent ¬-interpretation
such that LM is F-contained in classical logic. Since p,¬¬p 6`MF ¬p, also p,¬¬p 6`M ¬p,
and so there is some t ∈ D, such that ¬̃t 6∈ D, while ¬̃¬̃t ∈ D. Let f = ¬̃t. Then t and f
have the required properties, and together with the first item we are done. J

I Theorem 4.2.
1. IfM is pre-paracomplete then there is an element ⊥ ∈ V such that ⊥ 6∈ D and ¬̃⊥ 6∈ D.
2. IfM has anM-disjunction and there is an element ⊥ ∈ V such that ⊥ 6∈ D and ¬̃⊥ 6∈ D,

thenM is pre-paracomplete.

Proof. Suppose first that M is pre-paracomplete. Then there is a set of formulas Γ and
formulas ψ, φ, such that (i) Γ, ψ `M φ, (ii) Γ,¬ψ `M φ, and (iii) Γ 6`M φ. From (iii)
it follows that there is a valuation ν ∈ modM(Γ) \ modM(φ). Thus, in order to satisfy
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7:6 Minimal Paradefinite Logics for Reasoning with Incompleteness and Inconsistency

conditions (i) and (ii), necessarily ν(ψ) 6∈ D and ¬̃ν(ψ) = ν(¬ψ) 6∈ D. Hence ν(ψ) is the
element ⊥ as required.

For the second item, suppose that its two conditions are satisfied. Let ∨ be an M-
disjunction. Then by Theorem 2.12, p `M ¬p ∨ p and ¬p `M ¬p ∨ p. However, if ν(p) = ⊥
then ν(¬p ∨ p) 6∈ D by the definitions of ⊥ and of an M-disjunction. Hence M is pre-
paracomplete. J

By the theorems above, no 2-valued matrix can be paraconsistent or paracomplete, and
no 3-valued matrix can be paradefinite. Also, by Theorem 4.1, every paraconsistent (and so
every paradefinite) matrix should have at least two designated elements. The structures of
the minimally-valued paradefinite matrices is considered next.

I Theorem 4.3. IfM = 〈V,D,O〉 is a ¬-paradefinite matrix then there are four elements
t,f ,>, and ⊥ in V such that: (1) t ∈ D and ¬̃t 6∈ D, (2) f 6∈ D and ¬̃f ∈ D, (3) > ∈ D and
¬̃> ∈ D, (4) ⊥ 6∈ D and ¬̃⊥ 6∈ D, (5) ¬̃t = f .

Proof. This follows from Theorems 4.1 and 4.2. J

I Corollary 4.4. LetM be a ¬-paradefinite four-valued matrix. ThenM is isomorphic to
a matrix of the form M′ = 〈{t, f,>,⊥}, {t,>},O〉, in which ¬̃t = f , ¬̃f = t, ¬̃> ∈ {t,>},
and ¬̃⊥ ∈ {f,⊥}.

In the rest of this paper we shall assume that the 4-valued matrices we study have the
form described in Corollary 4.4,

5 Dunn-Belnap’s Matrix FOUR

Theorem 4.4 leaves exactly four possible interpretations for ¬ in four-valued paradefinite
matrices. However, the next theorem and its corollary show that the Dunn-Belnap negation
([9, 10, 14, 15]) is by far more natural than the others.1

I Theorem 5.1. LetM be a ¬-paradefinite 4-valued matrix. Then:
1. If ¬ is left involutive for LM (that is, ¬¬p `LM p) then ¬⊥ = ⊥.
2. If ¬ is right involutive for LM (that is, p `LM¬¬p) then ¬>=>.

Proof. Suppose that ¬ is left involutive. Then ¬¬p `M p, and so ¬⊥ 6= f (otherwise, by
Corollary 4.4 ν(p) = ⊥ would have been a counter-model). It follows that ¬⊥ = ⊥. Suppose
now that ¬ is right involutive. Then p `M ¬¬p, and so ¬> 6= t (otherwise, by Corollary 4.4
again, ν(p) = > would have been a counter-model). Thus ¬> = >. J

I Corollary 5.2. The only involutive negation of paradefinite 4-valued logics is Dunn-Belnap
negation, defined by ¬t = f , ¬f = t, ¬> = > and ¬⊥ = ⊥.

Concerning the interpretations of the other connectives, we again follow Belnap’s motiva-
tion in [9] and [10], where he suggested a four-valued framework for collecting and processing
information (this work was later generalized in [7]): Assume a set of sources, each one of
them can indicate that an atom p is true (i.e., it assigns p the truth-value 1), false (i.e., it
assigns p the truth-value 0), or that it has no knowledge about p. In turn, a mediator assigns

1 For convenience, we shall denote the interpretation of ¬ by ¬ as well. A similar convention will be
usually used for any other connective.
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to an atomic formula p a subset d(p) of {0, 1} as follows: 1 ∈ d(p) iff some source claims that
p is true, and 0 ∈ d(p) iff some source claims that p is false. The mediator’s evaluation of
complex formulas over {¬,∨} is then derived as follows:

0 ∈ d(¬ϕ) iff 1 ∈ d(ϕ),
1 ∈ d(¬ϕ) iff 0 ∈ d(ϕ),
1 ∈ d(ϕ ∨ ψ) iff 1 ∈ d(ϕ) or 1 ∈ d(ψ),
0 ∈ d(ϕ ∨ ψ) iff 0 ∈ d(ϕ) and 0 ∈ d(ψ).

In this model, ν(ϕ)={0, 1} means that ϕ is known to be true and also known to be false
(i.e., the information about ϕ is inconsistent). ν(ϕ)={1} means that ϕ is only known to be
true, while ν(ϕ)={0} means that ϕ is only known to be false. Finally, ν(ϕ)=∅ means that
there is no information about ϕ. This observation leads to the following identification of the
four truth-values with the subsets of {0, 1}: t = {1}, f = {0},> = {0, 1},⊥ = ∅.

Accordingly, the truth tables for ¬ and ∨ that the above principles lead to are the
following (where the connective ∧ is defined by: ϕ ∧ ψ =Df ¬(¬ϕ ∨ ¬ψ)):

∨̃ t f > ⊥
t t t t t

f t f > ⊥
> t > > t

⊥ t ⊥ t ⊥

∧̃ t f > ⊥
t t f > ⊥
f f f f f

> > f > f

⊥ ⊥ f f ⊥

¬̃
t f

f t

> >
⊥ ⊥

I Definition 5.3. The Dunn-Belnap basic matrix for the language LFOUR = {¬,∨,∧} (or
just {¬,∨}) is the matrix FOUR = 〈V,D,O〉, where V = {t, f,>,⊥}, D = {t,>}, and the
interpretations of the connectives are given by the truth tables above.

I Remark. Another, dual representation of FOUR uses pairs from {1, 0}×{1, 0}. Given such
a pair 〈a, b〉, the first component intuitively represents the information about the truth of a
formula, and the second one represents the information about its falsity. According to this
representation, we have that t = 〈1, 0〉, f = 〈0, 1〉, > = 〈1, 1〉, ⊥ = 〈0, 0〉, 〈a1, b1〉 ∨ 〈a2, b2〉 =
〈max(a1, b1),min(a2, b2)〉, 〈a1, b1〉∧〈a2, b2〉 = 〈min(a1, b1),max(a2, b2)〉, and ¬〈a, b〉 = 〈b, a〉.
This representation is useful for a number of applications (see, e.g., [1, 4, 8, 17]).

A common way of defining and understanding the disjunction, conjunction and negation
of FOUR is with respect to the partial order ≤t on {t, f,>,⊥}, in which t is the maximal
element, f is the minimal element, and >,⊥ are intermediate ≤t-incomparable elements.
This order may be intuitively understood as reflecting differences in the amount of truth that
each element exhibits. Here, ∧̃ and ∨̃ are the meet and the join (respectively) of ≤t, and ¬̃
is order reversing with respect to ≤t. Note that this interpretation of ¬ coincides with that
of the unique involutive negation of paradefinite four-valued logics given in Corollary 5.2.

For characterizing the expressive power of the languages of FOUR it is convenient to
order the truth-values in the partial order ≤k that intuitively reflects differences in the amount
of knowledge (or information) that the truth values convey. According to this relation > is
the maximal element, ⊥ is the minimal element, and t, f are intermediate ≤k-incomparable
elements.

Together, the lattices 〈{t, f,>,⊥},≤t〉 and 〈{t, f,>,⊥},≤k〉 form a single four-valued
structure (denoted again by FOUR), known as Belnap’s bilattice ([9, 10]), which is repres-
ented in the double-Hasse diagram of Figure 1.

Following Fitting’s notations (see [16]), we shall denote the join and the meet of ≤k by ⊕
and ⊗ (respectively). The ≤k-reversing function on {t, f,>,⊥} which is dual to ¬̃ is called
conflation [16], and the corresponding connective is usually denoted by −. The truth tables
of these ≤k-connectives are given below.
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Figure 1 The bilattice FOUR

⊕̃ t f > ⊥
t t > > t

f > f > f

> > > > >
⊥ t f > ⊥

⊗̃ t f > ⊥
t t ⊥ t ⊥
f ⊥ f f ⊥
> t f > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

−̃
t t

f f

> ⊥
⊥ >

6 Important Expansions of FOUR

As noted before, the logic LFOUR (also denoted 4Basic), induced by FOUR, has some
appealing applications in the context of logics for AI. Also, it has some desirable properties,
like being semi-normal (it is easy to verify that ∨ is a FOUR-disjunction and that ∧ is a
FOUR-conjunction), paradefinite, and ¬-contained in classical logic. However, 4Basic also
has some drawbacks, one of which is considered next.

I Theorem 6.1. 4Basic is not normal (since no implication is definable in it).

Sketch of proof. Note, first, that every n-valued function g : {t, f,>,⊥}n → {t, f,>,⊥}
which is representable in the language of {∨,∧,¬} 2 must be ≤k-monotonic, i.e., if ai ≤k bi
for every 1 ≤ i ≤ n then g(a1, . . . , an) ≤k g(b1, . . . , bn) as well. This implies that only
≤k-monotonic connectives are definable in this language. Now, suppose for contradiction that
⊃ is a definable implication for 4Basic. In particular, one may verify that (i) `4Basic p ⊃ p,
and (ii) p, p ⊃ q `4Basic q. Now, (i) entails that ⊃̃(f, f) ∈ {t,>}. Therefore, it follows from
the ≤k-monotonicity of ⊃ that ⊃̃(>, f) ∈ {t,>}. This contradicts (ii), since it is refuted by
any assignment ν such that ν(p) = > and ν(q) = f . J

The last theorem, together with the fact that definable functions in the language of
{∨,∧,¬} are {⊥}-closed (and so no tautologies are available in this language), imply that
the language of FOUR is rather limited, even if we add to it propositional constants for

2 That is, there is a formula ψ in {∨,∧,¬}, such that Atoms(ψ) ⊆ {P1, . . . , Pn}, and for every a1, . . . , an ∈
{t, f,>,⊥} it holds that g(a1, . . . , an) = ν(ψ), where ν ∈ ΛFOUR is defined by ν(Pi) = ai for all
1 ≤ i ≤ n.
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the two classical truth-values. Therefore, we now introduce several other useful and natural
connectives on {t, f,>,⊥} that cannot be defined in the language of FOUR.

The following connective is anM-implication for every paradefinite four-valued matrix
M (of the form considered in Corollary 4.4), in which it is definable:

a⊃̃b =
{
b if a ∈ {t,>},
t if a ∈ {f,⊥}.

We denote by t, f, c (contradictory) and u (unknown) the propositional constants to
be interpreted, respectively, by the truth-values t,f ,>, and ⊥ (thus, for instance, ∀ν∈
ΛM ν(c)=>).

Using the connectives above, in the following sections we shall consider some important
expansions of the matrix FOUR.3

6.1 A Maximal Expansion
First, we consider expansions of FOUR in which all the operations on {t, f,>,⊥} are
definable.

IDefinition 6.2. Let LAll = {¬,∨,∧,−,⊕,⊗,⊃, f, t, c, u}. The matrixMAll is the expansion
of FOUR to LAll. The logic that is induced by MAll is denoted by 4All (or, as before,
LMAll

).

As the next theorem shows, the set of connectives in LAll (and actually a proper subset
of it) is indeed sufficient for defining any operation on {t, f,>,⊥}.

I Theorem 6.3. The language of {¬,∨,∧,⊃, c, u} is functionally complete for {t, f,>,⊥}.

I Remark. Since ⊥ = f ⊗ ¬f while > = f ⊕ ¬f , the language of {¬,∨,∧,⊃,⊗,⊕, f} is also
functionally complete for {t, f,>,⊥}. The use of this language has a certain advantage of
modularity over the use of {¬,∨,∧,⊃, c, u}, since it has been proved in [6] that if Ξ is a subset
of {⊗,⊕, f}, then a function g : {t, f,>,⊥}n → {t, f,>,⊥} is representable in {¬,∧,⊃} ∪ Ξ
iff it is S-closed for every S ∈ {{>}, {t, f,>}, {t, f,⊥}} for which all the (functions that
directly correspond to the) connectives in Ξ are S-closed. In other words:

I Theorem 6.4.
g is representable in {¬,∨,∧,⊃} iff it is {>}-closed, {t, f,⊥}-closed, and {t, f,>}-closed.
g is representable in {¬,∨,∧,⊃, f} iff it is {t, f,⊥}-closed and {t, f,>}-closed.
g is representable in {¬,∨,∧,⊃,⊕} iff it is {>}-closed and {t, f,>}-closed.
g is representable in {¬,∨,∧,⊃,⊗} iff it is {>}-closed and {t, f,⊥}-closed.
g is representable in {¬,∨,∧,⊃,⊗, f} iff it is {t, f,⊥}-closed.
g is representable in {¬,∨,∧,⊃,⊕,⊗} iff it is {>}-closed.
g is representable in {¬,∨,∧,⊃,⊕, f} iff it is {t, f,>}-closed.
g is representable in {¬,∨,∧,⊃,⊕,⊗, f}.

3 Due to lack of space, proofs in the rest of this paper are omitted. Complete proofs will be provided in
the full version of the paper.
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It is also worth noting that it is easy to find examples that show that the eight fragments
in the theorem above are different from each other (see [2] and [6]).

Note thatMAll, like any other 4-valued matrix where the ≤k-meet ⊗, the ≤k-join ⊕, or
either of the propositional constants c and u is definable in its language, is not {t, f}-closed
(indeed, a⊕ b 6∈ {t, f} and a⊗ b 6∈ {t, f} for any a 6= b ∈ {t, f}). This implies that 4All is
only ¬-coherent with classical logic but not ¬-included in it.

I Theorem 6.5. The logic 4All is paradefinite and normal.

The next theorem follows from the fact that 4All has no proper extensions (in the same
language).

I Theorem 6.6. The logic 4All (unlike the logic 4Basic!) is maximally paraconsistent in
the sense that every proper extension of 4All (Definition 2.3) is not pre-paraconsistent.

6.2 A Maximal Monotonic Expansion
In [10] Belnap suggested to use the sources-mediator model described previously only for
languages with monotonic interpretations of the connectives. The reason was to achieve
stability in the sense that the arrival of new data from new sources does not change previous
knowledge about truth and falsity. From Belnap’s point of view an optimal language for
information processing is therefore a language in which it is possible to represent all monotonic
functions, and only monotonic functions. Next we show that not much should be added to
the basic language of {¬,∨,∧} (or just {¬,∨}) in order to obtain such a language.

I Definition 6.7. Let LMon = {¬,∨,∧, c, u}. We denote byMMon the expansion of FOUR
to LMon. The logic that is induced byMMon is denoted by 4Mon.

I Theorem 6.8. A function g :{t, f,>,⊥}n→{t, f,>,⊥} is representable in LMon iff it is
≤k-monotonic (i.e., if ai ≤k bi for every 1 ≤ i ≤ n then g(a1, . . . , an) ≤k g(b1, . . . , bn)).

I Corollary 6.9. The logic 4Mon contains every logic which is induced by a matrix of the
form of Corollary 4.4 that employs only monotonic functions.

I Theorem 6.10. The logic 4Mon is paradefinite. It has no proper extensions in its language,
and so it is maximally paraconsistent (see Theorem 6.6).

6.3 A Maximal Classically Closed Expansion
We now examine the maximal expansions of FOUR by connectives that are {t, f}-closed.

I Definition 6.11. Let LCC = {¬,−,∨,∧,⊃}. We denote byMCC the expansion of FOUR
to LCC . The logic that is induced byMCC is denoted by 4CC.

I Theorem 6.12. A function g :{t, f,>,⊥}n→{t, f,>,⊥} is representable in LCC iff it is
{t, f}-closed.

I Corollary 6.13. The logic 4CC contains every logic which is induced by a matrix of the
form of Corollary 4.4 and is ¬-contained in classical logic.

I Theorem 6.14. The logic 4CC is paradefinite and normal. It is ¬-contained in classical
logic and has no proper extensions in its language, thus it is maximally paraconsistent (in
the sense described in Theorem 6.6).
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We note, in addition to the properties considered in Proposition 6.14, that 4CC is also
maximal relative to classical logic. This means, intuitively, that any attempt to add to it
a tautology of classical logic which is not provable in 4CC should necessarily end-up with
classical logic (see [3] for the exact definition of this property).

6.4 A Maximal Non-Exploding Expansion
Next, we consider the maximal expansions of FOUR which are non-exploding in the following
sense:

I Definition 6.15. A logic 〈L,`〉 is non-exploding, if for every theory T in L such that
Atoms(T ) 6= Atoms(L) there is a formula ψ in L such that T 6` ψ.

I Definition 6.16. Let LNex = {¬,∨,∧,⊃,⊕,⊗}. We denote by MNex the expansion of
FOUR to LNex. The logic that is induced byMNex is denoted by 4Nex.

I Theorem 6.17. A function g : {t, f,>,⊥}n → {t, f,>,⊥} is representable in LNex iff it
is {>}-closed.

I Corollary 6.18. The logic 4Nex contains every logic which is induced by a matrix of the
form of Corollary 4.4 and is non-exploding.

I Theorem 6.19. The logic 4Nex is paradefinite. It is non-exploding but not ¬-contained
in classical logic. Also, 4Nex has no proper extensions in its language, thus it is maximally
paraconsistent.

6.5 A Maximal Flexible Expansion
The combination of {t, f,>}-closure and {t, f,⊥}-closure is a very desirable property, since
it allows flexibility in the use of the four basic truth-values. Obviously, there is no point
in using c in case no contradiction is expected, while in the dual case there is no point in
using u. The use of connectives which have both of the above properties ensures that one
can easily switch from the use of the four-valued framework to the use of the appropriate
3-valued framework. Also, this combination is a natural strengthening of the condition of
classical closure. These considerations motivate the four-valued logic introduced next.

I Definition 6.20. A function g : {t, f,>,⊥}n → {t, f,>,⊥} is called flexible iff it is both
{t, f,>}-closed and {t, f,⊥}-closed.

Obviously, every flexible function is classically closed, but the converse is not true.

I Definition 6.21. Let LFlex = {¬,∨,∧,⊃, f}. We denote by MFlex the expansion of
FOUR to LFlex. The logic that is induced byMFlex is denoted by 4Flex.

I Theorem 6.22. A function g : {t, f,>,⊥}n → {t, f,>,⊥} is representable in LFlex iff it
is flexible.

I Corollary 6.23. The logic 4Flex contains every logic that is induced by a matrix of the
form of Corollary 4.4 and employs only flexible connectives.

I Theorem 6.24. The logic 4Flex is a paradefinite and normal. It is ¬-contained in classical
logic and not non-exploding. This logic is neither maximally paraconsistent nor maximally
paraconsistent relative to classical logic.
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6.6 The Classical Expansion
The last expansion of FOUR we present is the maximal one which is both non-explosive and
flexible.

I Definition 6.25. Let LCL = {¬,∨,∧,⊃}. We denote byM4CL is the expansion of FOUR
to LCL. The logic that is induced byM4CL is denoted by 4CL.

I Theorem 6.26. A function g : {t, f,>,⊥}n → {t, f,>,⊥} is representable in LCL iff it is
flexible and {>}-closed.

I Corollary 6.27. The logic 4CL contains every non-exploding logic which is induced by a
matrix of the form of Corollary 4.4 and employs only flexible connectives.

I Theorem 6.28. The logic 4CL is paradefinite and normal. It is ¬-contained in classical
logic and non-exploding. This logic is neither maximally paraconsistent nor maximally
paraconsistent relative to classical logic.

7 Proof Theory

We conclude by considering proof systems for the ¬-paradefinite logics presented in this
paper.

7.1 Gentzen-type Systems
First, we consider Gentzen-type systems [18]. We show that each of the logics considered
here has a corresponding cut-free, sound and complete sequent calculus, which is a fragment
of the sequent calculus G4All, presented in Figure 2.

For each L ∈ {4All,4Mon,4CC,4Nex,4Flex,4CL,4Basic} we denote by GL the
restriction of G4All to the language of L (i.e., the Gentzen-type system in the language
of L whose axioms and rules are the axioms and rules of G4All which are relevant to that
language). Also, we denote by `GL the consequence relation induced by GL, that is: T `GL ϕ,
if there exists a finite Γ ⊆ T such that Γ⇒ϕ is provable in GL from the empty set of sequents
(see, e.g., [23] and [24]).

I Theorem 7.1. For each L ∈ {4All,4Mon,4CC,4Nex,4Flex,4CL,4Basic} GL is
sound and complete for L: T `GL ψ iff T `L ψ. Moreover, GL admits cut-elimination.

7.2 Hilbert-type Systems
Next, we consider sound and complete Hilbert-type systems for ¬-paradefinite logics which
have an implication connective. Again, we show that these are fragments of the same proof
system, which has Modus Ponens [MP] as its sole rule of inference.

Consider the proof system H4All in Figure 3. For L ∈ {4All,4CC,4Nex,4Flex,4CL}
we denote by HL the restriction of H4All to the language of L (i.e., the Hilbert-type system
in the language of L whose axioms and rules are the axioms and rules of H4All which are
relevant to that language). We denote by `HL the consequence relation induced by HL.

I Theorem 7.2. For every L ∈ {4All,4CC,4Nex,4Flex,4CL} we have that `HL = `GL .

By Theorems 7.1 and 7.2 we also have the following result.



O. Arieli and A. Avron 7:13

Axioms: ψ ⇒ ψ

Structural Rules:

Weakening: Γ⇒ ∆
Γ,Γ′ ⇒ ∆,∆′ Cut: Γ1 ⇒ ∆1, ψ Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

Logical Rules:

[∧⇒] Γ, ψ, ϕ⇒ ∆
Γ, ψ ∧ ϕ⇒ ∆ [⇒∧] Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

[∨⇒] Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆
Γ, ψ ∨ ϕ⇒ ∆ [⇒∨] Γ⇒ ∆, ψ, ϕ

Γ⇒ ∆, ψ ∨ ϕ

[⊃⇒] Γ⇒ ψ,∆ Γ, ϕ⇒ ∆
Γ, ψ ⊃ ϕ⇒ ∆ [⇒⊃] Γ, ψ ⇒ ϕ,∆

Γ⇒ ψ ⊃ ϕ,∆

[⊗⇒] Γ, ψ, φ⇒ ∆
Γ, ψ ⊗ φ⇒ ∆ [⇒⊗] Γ⇒ ∆, ψ Γ⇒ ∆, φ

Γ⇒ ∆, ψ ⊗ φ

[⊕⇒] Γ, ψ ⇒ ∆ Γ, φ⇒ ∆
Γ, ψ ⊕ φ⇒ ∆ [⇒⊕] Γ⇒ ∆, ψ, φ

Γ⇒ ∆, ψ ⊕ φ

[¬¬⇒] Γ, ϕ⇒ ∆
Γ,¬¬ϕ⇒ ∆ [⇒¬¬] Γ⇒ ∆, ϕ

Γ⇒ ∆,¬¬ϕ

[−⇒] Γ,⇒ ∆,¬ψ
Γ,−ψ ⇒ ∆ [⇒−] Γ,¬ψ ⇒ ∆

Γ⇒ ∆,−ψ

[¬−⇒] Γ,⇒ ∆, ψ
Γ,¬−ψ ⇒ ∆ [⇒¬−] Γ, ψ ⇒ ∆

Γ⇒ ∆,¬−ψ

[¬∧⇒] Γ,¬ϕ⇒ ∆ Γ,¬ψ ⇒ ∆
Γ,¬(ϕ ∧ ψ)⇒ ∆ [⇒¬∧] Γ⇒ ∆,¬ϕ,¬ψ

Γ⇒ ∆,¬(ϕ ∧ ψ)

[¬∨⇒] Γ,¬ϕ,¬ψ ⇒ ∆
Γ,¬(ϕ ∨ ψ)⇒ ∆ [⇒¬∨] Γ⇒ ∆,¬ϕ Γ⇒ ∆,¬ψ

Γ⇒ ∆,¬(ϕ ∨ ψ)

[¬⊃⇒] Γ, ϕ,¬ψ ⇒ ∆
Γ,¬(ϕ ⊃ ψ)⇒ ∆ [⇒¬⊃] Γ⇒ ϕ,∆ Γ⇒ ¬ψ,∆

Γ⇒ ¬(ϕ ⊃ ψ),∆

[¬⊗⇒] Γ,¬ψ,¬φ⇒ ∆
Γ,¬(ψ ⊗ φ)⇒ ∆ [⇒¬⊗] Γ⇒ ∆,¬ψ Γ⇒ ∆,¬φ

Γ⇒ ∆,¬(ψ ⊗ φ)

[¬⊕⇒] Γ,¬ψ ⇒ ∆ Γ,¬φ⇒ ∆
Γ,¬(ψ ⊕ φ)⇒ ∆ [⇒¬⊕] Γ⇒ ∆,¬ψ,¬φ

Γ⇒ ∆,¬(ψ ⊕ φ)
[f⇒] Γ, f ⇒ ∆ [⇒¬f] Γ⇒ ∆,¬f
[⇒ c] Γ⇒ ∆, c [⇒¬c] Γ⇒ ∆,¬c
[u⇒] Γ, u⇒ ∆ [¬u⇒] Γ,¬u⇒ ∆

Figure 2 The proof system G4All.

I Corollary 7.3. For every L ∈ {4All,4CC,4Nex,4Flex,4CL}, HL is sound and complete
for L.

I Remark. Other proof systems for paradefinite logics have been considered in the literature,
and in many cases it is possible to show that they are equivalent to some of the proof systems
considered here. For instance, Bou and Rivieccio’s Hilbert-style proof system introduced
in [12] has 23 rules for the language of {¬,∨,∧,⊗,⊕}, and no axioms. In [12] it is shown
that this system is equivalent to the corresponding fragment of G4All, and it is not difficult
to see that it is obtained by a straightforward translation of that system.
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Inference Rule: [MP] ψ ψ ⊃ ϕ
ϕ

Axioms:
[⇒⊃1] ψ ⊃ (ϕ ⊃ ψ)
[⇒⊃2] (ψ ⊃ (ϕ ⊃ τ)) ⊃ ((ψ ⊃ ϕ) ⊃ (ψ ⊃ τ))
[⇒⊃3] ((ψ ⊃ ϕ) ⊃ ψ) ⊃ ψ
[⇒∧⊃] ψ ∧ ϕ ⊃ ψ, ψ ∧ ϕ ⊃ ϕ [⇒⊃∧] ψ ⊃ (ϕ ⊃ ψ ∧ ϕ)
[⇒⊃∨] ψ ⊃ ψ ∨ ϕ, ϕ ⊃ ψ ∨ ϕ [⇒ ∨⊃] (ψ ⊃ τ) ⊃ ((ϕ ⊃ τ) ⊃ (ψ ∨ ϕ ⊃ τ))
[¬¬⇒] ¬¬ϕ ⊃ ϕ [⇒¬¬] ϕ ⊃ ¬¬ϕ
[¬⊃⇒1] ¬(ϕ ⊃ ψ) ⊃ ϕ [¬⊃⇒2] ¬(ϕ ⊃ ψ) ⊃ ¬ψ
[⇒¬⊃] (ϕ ∧ ¬ψ) ⊃ ¬(ϕ ⊃ ψ)
[¬∨⇒1] ¬(ϕ ∨ ψ) ⊃ ¬ϕ [¬∨⇒2] ¬(ϕ ∨ ψ) ⊃ ¬ψ
[⇒¬∨] (¬ϕ ∧ ¬ψ) ⊃ ¬(ϕ ∨ ψ)
[¬∧⇒] ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ)
[⇒¬∧1] ¬ϕ ⊃ ¬(ϕ ∧ ψ) [⇒¬∧2] ¬ψ ⊃ ¬(ϕ ∧ ψ)
[⇒⊗] ψ ⊃ ϕ ⊃ ψ ⊗ ϕ [⊗⇒] ψ ⊗ ϕ ⊃ ψ, ψ ⊗ ϕ ⊃ ϕ
[⇒⊕] ψ ⊃ ψ ⊕ ϕ, ϕ ⊃ ψ ⊕ ϕ [⊕⇒] (ψ ⊃ τ) ⊃ (ϕ ⊃ τ) ⊃ (ψ ⊕ ϕ ⊃ τ)
[⇒¬⊕] ¬ψ ⊕ ¬ϕ ⊃ ¬(ψ ⊕ ϕ) [¬⊕⇒] ¬(ψ ⊕ ϕ) ⊃ ¬ψ ⊕ ¬ϕ
[⇒¬⊗] ¬ψ ⊗ ¬ϕ ⊃ ¬(ψ ⊗ ϕ) [¬⊗⇒] ¬(ψ ⊗ ϕ) ⊃ ¬ψ ⊗ ¬ϕ
[f⇒] f ⊃ ψ
[u⇒] u ⊃ ψ [⇒c] ψ ⊃ c
[¬u⇒] ¬u ⊃ ψ [⇒¬c] ψ ⊃ ¬c

Figure 3 The proof system H4All.
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Abstract
Development of a contraction-free BI sequent calculus, be the contraction-freeness implicit or
explicit, has not been successful in the literature. We address this problem by presenting such
a sequent system. Our calculus involves no structural rules. It should be an insight into non-
formula contraction absorption in other non-classical logics. Contraction absorption in sequent
calculus is associated to simpler cut elimination and to efficient proof searches.
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1 Introduction

Propositional BI [22] is a combined logic formed from propositional intuitionistic logic IL
and propositional multiplicative fragment of intuitionistic linear logic MILL. Recall that
IL, and respectively MILL, have the following logical connectives: {>0,⊥0,∧2,∨2,⊃2} (Cf.
any standard text on the mathematical logic for intuitionistic logic; [16] for instance), and
respectively, {10,⊗2,−◦2} (Cf. [11] for linear logic).1 A rough intuition about BI is that a BI
expression is any expression that is constructable from (P, {>0,⊥0,∧2,∨2,⊃2,10,⊗2,−◦2}).
P denotes some set of propositional letters. Following the popular convention in BI, we use
the symbol ∗ in place of ⊗, and −∗ in place of −◦. In place of 1, we use ∗>, emphasising
some link of its to >, as to be shortly stated. It holds true that what IL or MILL considers
a theorem, BI also does [22]. To this extent BI is a conservative extension of the two
propositional logics.

Now, one may contemplate the converse. Is it the case that what BI considers a theorem,
IL or MILL also does, i.e. is it the case that every BI formula is reducible either into an IL
formula or into a MILL formula? It is stated in [22] that that is not so.

Analysis of the way logics combine is itself an interest. When one combines two logics, it
is possible - depending on how the chosen methodology combines the logics - that some logical
connective in one of them collapses onto some logical connective in the other. A notable
example is the case of classical logic and intuitionistic logic [6, 5]. There, intuitionistic implic-
ation can become classical implication. If another approach is chosen, classical implication
can also become intuitionistic implication. In order to prevent these from occurring, one must
prepare the combined logic domain in such a way that, within the domain, the classical logic
domain is sufficiently independent of the intuitionistic logic domain. The reason pertains to
the difference in their viewpoint of what an infinity is. Similarly in the combination of IL

1 The subscripts denote the arity.
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8:2 Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus

with MILL, some sort of the merging of logical connectives could occur. In BI, one that is
intentionally avoided is the conflict between the two implications. The following example in
the BI proof theory is taken from [22].

Γ;F ` G
⊃ RΓ ` F⊃G

Γ, F ` G
−∗RΓ ` F−∗G

F and G are assumed to be some arbitrary BI formula. The semi-colon and the comma are
the two structural connectives acting as the structural counterparts of ∧ and respectively
∗, which can nest over one another. Γ denotes some arbitrary BI structure.2 BI achieves
separation of the two implications by the two structural connectives.3 Here the basic axioms
of IL and MILL can be recalled: that if (F ∧ G) ⊃ H for some formulas F,G and H is a
theorem in IL, then so is F ⊃ (G ⊃ H) (which structurally translates into ⊃ R above); and
that if (F ∗G)−∗H is a theorem in MILL, then so is F−∗(G−∗H) (which structurally translates
into −∗R above). On the other hand, there is certain glueing between > and ∗>: in BI, F is
a true expression iff F ∗ ∗> is iff F ∧ > is. This connection is chosen not to be eliminated,
although it could be eliminated if one so desires.

Under the particular combination that forms BI, there is no free distribution of “;” over
“,” or of “,” over “;”. This implies that a BI structure is, as we just stated, a nesting of
structures in the form of Γ1; Γ2, called additive structures, and those in the form of Γ1,Γ2,
called multiplicative structures. There is a proof theoretical asymmetry among them by
the availability of structural inference rules. Consider for example the following familiar
structural rules (in sequent calculi) that come from IL:

Γ(Γ1; Γ1) ` F
ContractionΓ(Γ1) ` F

Γ(Γ1) ` F
Weakening

Γ(Γ1; Γ2) ` F

Here Γ(· · · ) abstracts any other structures surrounding the focused ones in the sequents.
These are available in BI sequent calculus LBI [24]. On the other hand, neither of the
inferences below is - as a rule - permitted.

Γ(Γ1,Γ1) ` F
Γ(Γ1) ` F

Γ(Γ1) ` F
Γ(Γ1,Γ2) ` F

‘As a rule’ because there are some exceptions to the guideline.

Γ(Γ1,
∗>) ` F

Γ(Γ1) ` F
Γ(Γ1) ` F

Γ(Γ1,
∗>) ` F

1.1 Research problems and contributions
In Γ1; Γ1 on the premise of Contraction, or in Γ1; Γ2 on the conclusion of Weakening, neither
Γ1 nor Γ2 must be additive. Consider then the following inferences, each of which is an
instance of Contraction:

Γ((F ;F ), G) ` H
Ctr1Γ(F,G) ` H

Γ(F, (G;G)) ` H
Ctr2Γ(F,G) ` H

Γ((Γa,Γb); (Γa,Γb)) ` H
Ctr3Γ(Γa,Γb) ` H

2 These and other orthodox proof-theoretical terms are assumed to be familiar to the readers. They are
found for example in [25, 16]. The formal definitions that we will need for our technical discussions will
be found in the next section.

3 The need for more than one structural connectives in proof systems was recognised in display calculus
[3] as well as in other studies, e.g. in the multi-modal categorial type logics [20] and in relevant logics
[18, 19], which were developed prior to the appearance of BI.
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Observe it is a formula that duplicates upwards in the first two inferences. These are simply
adaptations of the usual structural contraction available in G1i [25], the standard IL sequent
calculus. It is a well-known fact that, as far as G1i is concerned, elimination of the structural
weakening requires hardly any effort, and that the structural contraction goes admissible once
the left implication rule is modified in the weakening-free IL sequent calculus; Cf. [25, 16] for
the results but also [13] for the idea of eliminating the structural contraction rule. Given that
the same elimination technique has been shown to be applicable to many other extensions
of IL, it is expected on a reasonable ground that handling these formula contractions (and
weakenings) is straightforward also in LBI. As can be seen in Ctr3, however, the scope
of Contraction is not restricted to the formula contractions. The degree of the nesting of
additive/multiplicative structures in Γ1 in Contraction can be arbitrarily large.

One pertinent question to ask is if it is possible at all to eliminate the non-formula
contractions from LBI, eliminating Contraction as the result. Actually, it is not very difficult
to postpone answering this question, if replacement of Contraction with a set of alternative
new structural rules is permitted. The Contraction can be then emulated in the new structural
rules. Such replacement strategies work particularly well if one retains the cut rule in the
sequent system. Knowing, however, that they rather relocate the issue that was expressed
in the original question into the new structural rules, we may just as well strengthen the
question and ask, instead, if a BI sequent calculus without structural rules is derivable at all,
this way precluding any miscommunication.

In setting for the investigation, it seems there are two major sources of difficulty one
must face. The first difficulty comes from the equivalences Γ,∗> = Γ = Γ;>, structural
counterparts of the above-mentioned equivalences, which imply bidirectional inference rules.

Γ(Γ1) ` F
Γ(Γ1;>) ` F

Γ(Γ1;>) ` F
Γ(Γ1) ` F

Γ(Γ1) ` F
Γ(Γ1,

∗>) ` F
Γ(Γ1,

∗>) ` F
Γ(Γ1) ` F

As well as being obvious sources of non-termination, they obscure the core mechanism of
the interactions between additive and multiplicative structures, since they imply a free
transformation of an additive structure into a multiplicative one and vice versa. The second
difficulty is the difficulty of isolating the effect of the structural contraction from that of
the structural weakening. Donnelly et al [7] succeeded in eliminating structural weakening;
however, they had to absorb contraction into the structural weakening as well as into logical
rules. Absorption of one structural rule into another structural rule is a little problematic,
since - as we have already mentioned - the former still occurs indirectly through the latter
which is a structural rule. It is also not so straightforward to know whether either weakening
or contraction is immune to the effect of the structural equivalences.

Despite the technical obstacles, we show the answer to the above-posed question to be
in the affirmative by presenting a structural-rule-free BI sequent calculus. What it is to
LBI is what G3i is to G1i. As far as can be gathered from the literature, the elimination
of contraction from BI sequent calculus has not been previously successful, be the sense of
contraction-freeness according to the sense in G3i or the sense in G4i [8]. The following are
some motivations for presenting such a sequent calculus.
1. The current status of the knowledge of structural interactions within BI proof systems is

not very satisfactory. From the perspective of theorem proving for example, the presence
of the bidirectional rules and contraction as explicit structural rules in LBI means that
it is difficult to actually prove that an invalid BI formula is underivable within the
calculus. This is because LBI by itself does not provide termination conditions save when
a (backward) derivation actually terminates: the only case in which no more backward
derivation on a LBI sequent is possible is when the sequent is empty; the only case in
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which it is empty is when it is the premise of an axiom. The contraction-free BI sequent
calculus is a step forward in this respect.

2. There are other sequent calculi that necessarily require a non-formula structural contrac-
tion rule (or else alternative structural rules that emulate the effect). Sequent systems
of the relevant logics closely related to BI [10] are good examples. Sequent systems of
some constructive modal logics [23] also require non-formula contractions; Cf. [1]. It
tends to be almost always the case that the presence of a structural contraction rule
increases the technical complexity of a cut elimination proof (see the induction measure
in [1]). The techniques to eliminate non-formula structural contraction rules are useful for
simplifying the proof of cut admissibility in the sequent calculi of the existing or emerging
non-classical logics.

This work has only a marginal technical dependency on earlier works: it suffices to have the
knowledge of LBI [24]; and to understand [24], it suffices to have the basic knowledge of the
structural proof theory [16, 25].

1.2 Structure of the remaining sections
In Section 2 we present technical preliminaries of BI proof theory. In Section 3 we introduce
our BI calculus LBIZ with no structural rules. In Section 4 we show its main properties
including admissibility of structural rules and its equivalence to LBI. We also show Cut
admissibility in LBIZ. Section 5 concludes.

2 BI Proof Theory - Preliminaries

We assume availability of the following meta-logical notations. “If and only if” is abbreviated
by “iff”.

I Definition 1 (Meta-connectives). We denote logical conjunction (“and”) by ∧†, logical
disjunction (“or”) by ∨†, material implication (“implies”) by →†, and equivalence by ↔†.
These follow the semantics of standard classical logic’s.

We denote the set of propositional variables by P and refer to an element of P by p or q

with or without a subscript.
A BI formula F (, G,H) with or without a subscript is constructed from the following

grammar: F := p | > | ⊥ | ∗> | F ∧F | F ∨F | F⊃F | F ∗F | F−∗F . The set of BI formulas
is denoted by F.

I Definition 2 (BI structures). BI structure Γ(, Re) with or without a subscript/superscript,
commonly referred to as a bunch [22], is defined by: Γ := F | Γ; Γ | Γ,Γ. We denote by S

the set of BI structures.

We define the binding order to be [∧,∨, ∗] � [⊃,−∗] � [; , ] � [∧†,∨†] � [→†,↔†] in
a strictly decreasing precedence. Connectives in the same group have the same binding
precedence.

Both of the structural connectives “;” and “,” are defined to be associative and com-
mutative. On the other hand, we do not assume distributivity of “;” over ‘,’ or vice versa.
A context “ Γ(−)” (with a hole “ −") takes the form of a tree because of the nesting of
additive/multiplicative structures.

I Definition 3 (Context). A context Γ(−) is finitely constructed from the following grammar:
Γ(−) := − | Γ(−); Γ | Γ; Γ(−) | Γ(−),Γ | Γ,Γ(−).
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id
F ` F

Γ1 ` G Γ(G) ` H
CutΓ(Γ1) ` H

⊥LΓ(⊥) ` H

>RΓ ` >
∗>R∗> ` ∗>

Γ(F ; G) ` H
∧LΓ(F ∧G) ` H

Γ(F ) ` H Γ(G) ` H
∨LΓ(F ∨G) ` H

Γ1 ` F Γ(Γ1; G) ` H
⊃ LΓ(Γ1; F ⊃ G) ` H

Γ(F, G) ` H
∗LΓ(F ∗G) ` H

Γ1 ` F Γ(G) ` H
−∗L

Γ(Γ1, F−∗G) ` H

Γ ` F Γ ` G ∧RΓ ` F ∧G

Γ ` Fi ∨RΓ ` F1 ∨ F2

Γ; F ` G
⊃ RΓ ` F ⊃ G

Γ1 ` F Γ2 ` G
∗RΓ1, Γ2 ` F ∗G

Γ, F ` G
−∗RΓ ` F−∗G

Γ(Γ1) ` H
Wk LΓ(Γ1; Γ2) ` H

Γ(Γ1; Γ1) ` H
Ctr LΓ(Γ1) ` H

Γ(Γ1;>) ` H
. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . EqAnt1

Γ(Γ1) ` H

Γ(Γ1,∗>) ` H
. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . EqAnt2

Γ(Γ1) ` H

Figure 1 LBI: a BI sequent calculus. Inference rules with a double-dotted line are bidirectional.
i ∈ {1, 2}. Structural connectives are fully associative and commutative.

We assume that a BI structure Γ2 replaces − in a context Γ1(−) as Γ1(Γ2) which, we again
assume, is a BI structure.

I Definition 4 (Sequents). The set of BI sequents D is defined by:
D := {Γ ` F | Γ ∈ S ∧† F ∈ F}.

We call the left hand side of ` antecedent, and the right hand side of ` consequent.

A variant of the first BI sequent calculus LBI [24] is found in Figure 1. Notice that we do not
use the nullary structural connectives used in the reference. All the additive inference rules,
by which we mean all the inference rules that originate in IL, share contexts. Consider ∨L
for example. In the inference rule the same context in the conclusion propagates onto both
premises. Multiplicative inference rules, by which we mean the inference rules that originate
in MILL, are context-free [25] or resource sensitive. A good example to illustrate this is ∗R:
both Γ1 and Γ2 in the conclusion sequent are viewed as resources for the inference rule,
and are split into the premises of the rule. Note again our assumption of commutativity of
“,” here. Cut is admissible in [LBI- Cut].

I Lemma 5 (Cut admissibility in LBI - Cut). There is a direct cut elimination procedure which
proves admissibility of Cut in [LBI- Cut] (sketched in [24]; corrected in [2]).

The following derivation highlights a simple additive/multiplicative interaction in BI.

id
F ` F id

F ` F ∧R
F ` F ∧ F −∗L` F−∗F ∧ F

This shows that F−∗F ∧ F is provable in LBI. Further, given that semantics is given to LBI
[24], it is a valid BI formula. Any others that are provable in LBI are valid. We assume that
readers are familiar with provability or derivability (found in standard proof theory texts),
and with validity or satisfiability (found in Wikipedia).
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3 LBIZ: A Structural-Rule-Free BI Sequent Calculus

In this section we present a new BI sequent calculus LBIZ (Figure 2) in which no structural
rules appear. We first introduce notations necessary for reading inference rules in the calculus.
From this point on, whenever we write Γ̃ for any BI structure, it shall be agreed that it
may be empty. The emptiness is in the following sense: Γ̃1; Γ2 = Γ2 if Γ1 is empty; and
Γ̃1,Γ2 = Γ2 if Γ1 is empty. Apart from this, we use two other notations.

3.1 Essence of antecedent structures
Co-existence of IL and MILL in BI calls for new contraction-absorption techniques. We need
to consider possible interferences to one structural rule from the others. To illustrate the
technical difficulty, EqAnt2 LBI for instance interacts directly with WkLLBI. When WkLLBI

is absorbed into the rest, the effect propagates to one direction of EqAnt2 LBI, resulting in;

Γ(Γ1) ` H
EA2

Γ(Γ1, (∗>; Γ̃2)) ` H

Hence absorption of WkLLBI must involve analysis of EqAnt2 LBI as well. To solve this
particular problem we define a new notation: ‘essence’ of BI structures.

I Definition 6 (Essence of BI structures). Let Γ1 be a BI structure. Then we have a set of
its essences as defined in the following inductive rules.

Γ2 is an essence of Γ1 if Γ1 = Γ2.4
Γ(Γ′, (∗>; Γ̃2))5 is an essence of Γ1 if Γ(Γ′) is an essence of Γ1.

By E(Γ1) we denote an essence of Γ1.

The essence takes care of an arbitrary number of EA2 applications, while nicely retaining
a compact representation of a sequent (see the calculus). In each of ⊃ L and −∗L, the
essence in the premise(s) and that in the conclusion are the same and identical BI structure.
Specifically, the use of E(Γ) in multiple sequents in a derivation tree signifies the same BI
structure.

I Example 7. A LBIZ-derivation:
id

F1; ((∗>; Γ1), F1⊃F2) ` F1
id

F2;F1; ((∗>; Γ1), F1⊃F2) ` F2 ⊃ L
F1; ((∗>; Γ1), F1⊃F2) ` F2

can be alternatively written down as:
idE(F1;F1 ⊃ F2) ` F1

id
F2;E(F1;F1 ⊃ F2) ` F2 ⊃ LE(F1;F1 ⊃ F2) ` F2

if E(F1;F1 ⊃ F2) = F1; ((∗>; Γ1), F1 ⊃ F2).

E′(Γ) (or E1(Γ) or any essence that differs from E by the presence of a subscript, a
superscript or both) in the same derivation tree does not have to be coincident with the BI
structure that the E(Γ) denotes. However, we do - for prevention of inundation of many
superscripts and subscripts - make an exception. In the cases where no ambiguity is likely to
arise such as in the following:

4 For some Γ2. The equality is of course up to associativity and commutativity.
5 For some Γ̃2; similarly in the rest.
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id
E(Γ̃; p) ` p

⊥LΓ(⊥) ` F
>RΓ ` >

∗>R
E(Γ̃;∗>) ` ∗>

Γ(F ; G) ` H
∧LΓ(F ∧G) ` H

Γ ` F Γ ` G ∧RΓ ` F ∧G

Γ(F ) ` H Γ(G) ` H
∨LΓ(F ∨G) ` H

Γ ` Fi ∨RΓ ` F1 ∨ F2

E(Γ̃1; F⊃G) ` F Γ(G;E(Γ̃1; F⊃G)) ` H
⊃ L

Γ(E(Γ̃1; F⊃G)) ` H

Γ; F ` G
⊃ RΓ ` F⊃G

Γ(F, G) ` H
∗LΓ(F ∗G) ` H

Rei ` F1 Rej ` F2
∗R

Γ′ ` F1 ∗ F2

Rei ` F Γ((R̃ej , G); (Γ̃′,E(Γ̃1; F−∗G))) ` H
−∗L

Γ(Γ̃′,E(Γ̃1; F−∗G)) ` H

Γ, F ` G
−∗RΓ ` F−∗G

Figure 2 LBIZ: a BI sequent calculus with zero occurrence of explicit structural rules. i, j ∈ {1, 2}.
i 6= j. Structural connectives are fully associative and commutative. In ∗R and −∗L, if Γ′ is
not empty, (Re1, Re2) ∈ Candidate(Γ′); otherwise, Rei = ∗> and Rej is empty. Both E and
Candidate are as defined in the main text.

Γ(E(Γ1;F ;G)) ` H
∧LΓ(E(Γ1;F ∧G)) ` H

we assume that the essence in the conclusion is the same antecedent structure as the essence
in the premise(s) except what the inference rule modifies.

3.2 Correspondence between Rei/Rej and Γ′

I Definition 8 (Relation �). We define a binary relation �: S×S as follows.
Γ1 � Γ2 if Γ1 = Γ2.
Γ(Γ1) � Γ(Γ1; Γ′).
[Γ1 � Γ2] ∧† [Γ2 � Γ3]→† [Γ1 � Γ3].

Intuitively if Γ1 � Γ2, then there exists a LBI-derivation:

Γ(Γ1) ` H
WkL

Γ(Γ2) ` H

for any Γ(Γ1) and any H. Here and elsewhere a double line indicates zero or more derivation
steps.

I Definition 9 (Candidates). Let Γ be a BI structure, then any of the following pairs is a
candidate of Γ.

(Γx,
∗>) if Γx � Γ.

(Γx,Γy) if Γx,Γy � Γ.
We denote the set of candidates of Γ by Candidate(Γ).

Now we see the connection between Rei/Rej and Γ′ in the two rules ∗R/−∗L.

I Definition 10 (Rei/Rej in ∗R/−∗L). In ∗R and −∗L, if Γ′ is empty (this case applies to
−∗L only), Rei = ∗> and Rej is empty. If it is not empty, then (Re1, Re2) ∈ Candidate(Γ′).
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Candidate allows for absorption of an arbitrary number of Wk L applications in the two
inference rules. The sequent: D : p1; ((p2; p3), (p4; p5)) ` p2 ∗ p5, illustrates why it is used. It
is clearly LBI-derivable:

id
p2 ` p2

id
p5 ` p5 ∗R

p2, p5 ` p2 ∗ p5 Wk L
p2, (p4; p5) ` p2 ∗ p5 Wk L(p2; p3), (p4; p5) ` p2 ∗ p5 Wk L

D : p1; ((p2; p3), (p4; p5)) ` p2 ∗ p5

However, ∗R in LBI does not apply immediately to D. Hence ∗R in LBIZ must absorb Wk L.
With the two notations we have introduced, what the inference rules in LBIZ are doing

should be clear. There are no structural rules. Implicit contraction occurs only in ⊃ L and
−∗L.6 In both of the inference rules, a structure rather than a formula duplicates upwards.
This is necessary, for we have the following observation.

I Observation 11 (Non-formula contractions are not admissible). There exist sequents Γ ` F
which are derivable in LBI - Cut but not derivable in LBI - Cut without structural contraction.

Proof. For −∗L use a sequent >−∗p1,>−∗(p1⊃p2) ` p2 and assume that every propositional
variable is distinct. Then without contraction, there are several derivations. Two sensible
ones are shown below (the rest similar). Here and elsewhere we may label a sequent by D

with or without a subscript/superscript just so that we may refer to it by the name.

1.
>R>−∗(p1⊃p2) ` > p1 ` p2 −∗L

D : >−∗p1,>−∗(p1⊃p2) ` p2

2. >R>−∗p1 ` >

> ` p1
id

p2 ` p2 ⊃ L>; p1⊃p2 ` p2
EqAnt1L

p1⊃p2 ` p2 −∗L
D : >−∗p1,>−∗(p1⊃p2) ` p2

In both of the derivation trees above, one branch is open. Moreover, such holds true when
only formula-level contraction is permitted in LBI. The sequent D cannot be derived under
the given restriction. If non-formula contractions are available, there is another construction
leading to a closed derivation tree:

Π(D1) Π(D2)
−∗L(>−∗p1,>−∗(p1 ⊃ p2)); (>−∗p1,>−∗(p1 ⊃ p2)) ` p2
CtrL

D : >−∗p1,>−∗(p1 ⊃ p2) ` p2

where Π(D1) and Π(D2) are:

Π(D1):

>R>−∗(p1 ⊃ p2) ` >

Π(D2):

6 Implicit weakening and others occur also in other inference rules; but they are not very relevant in
backward theorem proving.



R. Arisaka 8:9

>R>−∗p1 ` >

id
p1 ` p1

id
p2 ` p2

WkL
p1; p2 ` p2 ⊃ L

p1; p1 ⊃ p2 ` p2 −∗L
p1; (>−∗p1,>−∗(p1 ⊃ p2)) ` p2

All the derivation tree branches are closed.
For ⊃ L, use (∗>; p1), (∗>; p1⊃p2) ` p2. Without non-formula contractions we have (only

two sensible ones are shown; the rest similar):
1.

∗> ` p1

id
p2 ` p2

WkL∗>; p2 ` p2
EA2(∗>; p1), (∗>; p2) ` p2 ⊃ L

D : (∗>; p1), (∗>; p1⊃p2) ` p2
2.

p1 ` p2
WkL∗>; p1 ` p2

EA2
D : (∗>; p1), (∗>; p1⊃p2) ` p2

In the presence of structural contraction, there is a closed derivation.
id

p1 ` p1
WkL∗>; p1;∗> ` p1

id
p2 ` p2

WkL∗>; p1;∗>; p2 ` p2 ⊃ L∗>; p1;∗>; p1⊃p2 ` p2
EA2((∗>; p1), (∗>; p1⊃p2)); ((∗>; p1), (∗>; p1⊃p2)) ` p2
CtrL

D : (∗>; p1), (∗>; p1⊃p2) ` p2

J

We list LBIZ derivations of the two examples in the observation for easy comparisons. We
assume that Γ = (>−∗p1,>−∗(p1 ⊃ p2)). Also, by Π(D) we denote a derivation tree of a
sequent D. We assume that Π(D) is always closed: every derivation branch of the tree has
an empty sequent as the leaf node (the premise of an axiom).

>R>−∗p1 ` >

>R>−∗(p1 ⊃ p2) ` > Π((∗>, p1); (∗>, p1 ⊃ p2); Γ ` p2)
−∗L(∗>, p1); Γ ` p2 −∗LΓ ` p2

Π((∗>, p1); (∗>, p1 ⊃ p2); Γ ` p2) is as follows.
id(∗>, p1); (∗>, p1 ⊃ p2); Γ ` p1

id
p2; (∗>, p1); (∗>, p1 ⊃ p2); Γ ` p2 ⊃ L(∗>, p1); (∗>, p1 ⊃ p2); Γ ` p2

For the other sequent, we have:
id(∗>; p1), (∗>; p1 ⊃ p2) ` p1

id
p2; (∗>; p1), (∗>; p1 ⊃ p2) ` p2 ⊃ L(∗>; p1), (∗>; p1 ⊃ p2) ` p2

4 Main Properties of LBIZ

In this section we show the main properties of LBIZ such as admissibility of weakening, that
of EA2, that of both EqAnt1 LBI and EqAnt2 LBI, that of contraction, and its equivalence
to LBI. Cut is also admissible. We will refer to the notion of derivation depth very often.

I Definition 12 (Derivation depth). Let Π(D) be a derivation tree. Then the derivation
depth of D′, a node in Π(D), is:

FSCD 2016



8:10 Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus

1 if D′ is the conclusion node of an axiom inference rule.
1 + (derivation depth of D1) if Π(D′) looks like:

Π(D1)
D′

1 + (the larger of the derivation depths of D1 and D2) if Π(D′) looks like:
Π(D1) Π(D2)

D′

4.1 Admissibility of weakening and EA2

Admissibilities of both weakening and EA2 are proved depth-preserving. This means in
case of weakening that if a sequent Γ(Γ1) ` H is derivable with derivation depth of k, then
Γ(Γ1; Γ2) ` H is derivable with derivation depth of l such that l ≤ k.

I Proposition 13 (LBIZ weakening admissibility). If a sequent D : Γ(Γ1) ` F is LBIZ-
derivable, then so is D′ : Γ(Γ1; Γ2) ` F depth-preserving.

Proof. By induction on derivation depth of D. J

I Proposition 14 (Admissibility of EA2). If a sequent D : Γ(Γ1) ` F is LBIZ-derivable, then
so is D′ : Γ(E(Γ1)) ` F depth-preserving.

Proof. By induction on derivation depth of D. J

4.2 Inversion lemma
The inversion lemma below is important in simplification of the subsequent discussion.

I Lemma 15 (Inversion lemma for LBIZ). For the following sequent pairs, if the sequent
on the left is LBIZ-derivable at most with the derivation depth of k, then so is (are) the
sequent(s) on the right.

Γ(F ∧G) ` H, Γ(F ;G) ` H
Γ(F1 ∨ F2) ` H, both Γ(F1) ` H and Γ(F2) ` H

Γ(F ∗G) ` H, Γ(F,G) ` H
Γ(Γ1;>) ` H, Γ(Γ1) ` H
Γ(Γ1,

∗>) ` H, Γ(Γ1) ` H
Γ ` F ∧G, both Γ ` F and Γ ` G
Γ ` F⊃G, Γ;F ` G
Γ ` F−∗G, Γ, F ` G

Proof. By induction on derivation depth. J

4.3 Admissibility of EqAnt1,2

I Proposition 16 (Admissibility of EqAnt1,2). EqAnt1 LBI and EqAnt2 LBI are depth-preserving
admissible in LBIZ.

Proof. Follows from inversion lemma,7 Proposition 13 and Proposition 14. J

7 Inversion lemma proves one direction.
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4.4 Preparation for contraction admissibility in ∗R/−∗L cases
We dedicate one subsection here to prepare for the main proof of contraction admissibility.
Based on Proposition 13, we make an observation about the set of candidates. The discovery,
which is to be stated in Proposition 18, led to the solution to the problem of the elimination
of LBI structural contraction.

I Definition 17 (Representing candidates). Let �̂ : S×S be a binary relation satisfying:
Γ1�̂Γ2 if Γ1 = Γ2.
Γ1�̂ Γ1; Γ3.
[Γ1�̂Γ2] ∧† [Γ2�̂Γ3]→† [Γ1�̂Γ3].
Γ1,Γ2 �̂ Γ1, (Γ2; Γ3).

Now let Γ be a BI structure. Then any of the following pairs is a representing candidate of
Γ.

(Γx,
∗>) if Γx�̂Γ.

(Γx,Γy) if Γx,Γy�̂Γ.
We denote the set of representing candidates of Γ by RepCandidate(Γ).

We trivially have that RepCandidate(Γ) ⊆ Candidate(Γ) for any Γ. More can be said.

I Proposition 18 (Sufficiency of RepCandidate). LBIZ with RepCandidate instead of
Candidate for (Re1, Re2) is as expressive as LBIZ (with Candidate).

Proof. The only inference rules in LBIZ that use Candidate are ∗R and −∗L. So it suffices
to consider only those.

For ∗R, suppose by way of showing contradiction that LBIZ with RepCandidate is not
as expressive as LBIZ, then there exists some LBIZ derivation tree Π(D):

...
D1 : Rei ` F1

...
D2 : Rej ` F2

∗R
D : Γ′ ` F1 ∗ F2

such that (Re1, Re2) must be in Candidate(Γ′)\RepCandidate(Γ′). Now, without loss
of generality assume (i, j) = (1, 2). Then D′1 : Re′i ` F1 and D′2 : Re′j ` F2 for
(Re′i, Re′j) ∈ RepCandidate(Γ′) are also LBIZ derivable (by Proposition 13). But this means
that we can choose the (Re′i, Re′j) for (Re1, Re2), a direct contradiction to the supposition.
Similarly for −∗L. J

I Theorem 19 (Contraction admissibility in LBIZ). If D : Γ(Γa; Γa) ` F is LBIZ-derivable,
then so is D′ : Γ(Γa) ` F . The derivation depth is preserved.

Proof. By induction on derivation depth. The base cases are when it is 1, i.e. when D is
the conclusion sequent of an axiom. Consider which axiom has applied. If it is >R, then
it is trivial to show that if Γ(Γa; Γa) ` >, then so is Γ(Γa) ` >. Also for ⊥L, a single
occurrence of ⊥ on the antecedent part of D suffices for the ⊥L application, and the
current theorem is trivially provable in this case, too. For both id and ∗>R, Π(D) looks
like:

E(Γ̃1;α) ` α

where α is p ∈ P for id, ∗> for ∗>R and Γ(Γa; Γa) = E(Γ̃1;α). If α is not a sub-structure
of either of the occurrences of Γa, then D′ is trivially derivable. Otherwise, assume that
the focused α in E(Γ̃1;α) is a sub-structure of one of the occurrences of Γa in Γ(Γa; Γa).

FSCD 2016



8:12 Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus

Then there exists some Γ2 and Γ̃3 such that E(Γ̃1;α) = E(Γ2; Γ̃3;α) = E1(Γ2);E2(Γ̃3;α)
and that Γa is an essence of Γ̃3;α. But then D′ : Γ(Γa) is still an axiom.

For inductive cases, suppose that the current theorem holds true for any derivation depth
of up to k. We must demonstrate that it still holds for the derivation depth of k+1. Consider
what the LBIZ inference rule applied last is, and, in case of a left inference rule, consider
where the active structure Γb of the inference rule is in Γ(Γa; Γa).
1. ∧L, and Γb is F1∧F2: if Γb does not appear in Γa, induction hypothesis on the premise

sequent concludes. Otherwise, Π(D) looks like:
...

D1 : Γ(Γ′a(F1;F2); Γ′a(F1 ∧ F2)) ` H
∧L

D : Γ(Γ′a(F1 ∧ F2); Γ′a(F1 ∧ F2)) ` H
D′1 : Γ(Γ′a(F1;F2); Γ′a(F1;F2)) ` H is LBIZ-derivable (inversion lemma);
D′′1 : Γ(Γ′a(F1;F2)) ` H is also LBIZ-derivable (induction hypothesis); then ∧L on D′′1
concludes.

2. ⊃ L, and Γb is E(Γ̃′;F ⊃ G): if Γb does not appear in Γa, then the induction hypothesis
on both of the premises concludes. If it is entirely in Γa, then Π(D) looks either like:

...
D1 : E(Γ̃′;F ⊃ G) ` F

...
D2 ⊃ L

D : Γ(Γ′a(E(Γ̃′;F ⊃ G)); Γ̃′a(E(Γ̃′;F ⊃ G))) ` H
where D2 : Γ(Γ′a(G;E(Γ̃′;F⊃G)); Γ′a(E(Γ̃′;F⊃G))) ` H, or, in case Γa is Γ′a;F⊃G,
like:

...
D1 : Γ′a;F⊃G; Γ′a;F⊃G ` F

...
D2 ⊃ L

D : Γ(Γ′a;F⊃G; Γ′a;F⊃G) ` H
where D2 : Γ(G; Γ′a;F⊃G; Γ′a;F⊃G) ` H.
In the former case,
D′2 : Γ(Γ′a(G;E(Γ̃′;F⊃G)); Γ′a(G;E(Γ̃′;F⊃G))) ` H (weakening admissibility);
D′′2 : Γ(Γ′a(G;E(Γ̃′;F⊃G))) ` H (induction hypothesis);
then ⊃ L on D1 and D′′2 concludes. In the latter, induction hypothesis on D1 and on
D2; then via ⊃ L for a conclusion. Finally, if only a substructure of Γb is in Γa with
the rest spilling out of Γa, then if the principal formula F ⊃ G does not occur in Γa,
then straightforward; otherwise similar to the latter case.

3. ∗R: Π(D) looks like:
...

D1 : Rei ` F1

...
D2 : Rej ` F2

∗R
D : Γ(Γa; Γa) ` F1 ∗ F2

By Proposition 18, assume that (Re1, Re2) ∈ RepCandidate(Γ(Γa; Γa)) without loss
of generality. Then by the definition of �̂ it must be that either (1) Γa; Γa preserves
completely in Re1 or Re2, or (2) it remains neither in Re1 nor in Re2. If Γa; Γa is
preserved in Re1 (or Re2), then induction hypothesis on the premise that has Re1 (or
Re2) and then ∗R conclude; otherwise, it is trivial to see that only a single Γa needs to
be present in D.

4. −∗L, and Γb is Γ̃′,E(Γ̃1;F−∗G): if Γb is not in Γa, then induction hypothesis on the
right premise sequent concludes. If it is in Γa, Π(D) looks like:

...
D1 : Rei ` F

...
D2 −∗L1

D : Γ(Γ′a(Γ̃′,E(Γ̃1;F−∗G)); Γ′a(Γ̃′,E(Γ̃1;F−∗G))) ` H
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where D2 is:
Γ(Γ′a((R̃ej , G); (Γ̃′,E(Γ̃1;F−∗G))); Γ′a(Γ̃′,E(Γ̃1;F−∗G))) ` H

D′2 : Γ(Γ′a((R̃ej , G); (Γ̃′,E(Γ̃1;F−∗G))); Γ′a((R̃ej , G); (Γ̃′,E(Γ̃1;F−∗G)))) ` H via Proposi-
tion 13 is also LBIZ-derivable. D′′2 : Γ(Γ′a((R̃ej , G); (Γ̃′,E(Γ̃1;F−∗G)))) ` H via induction
hypothesis. Then −∗L on D1 and D′′2 concludes. If, on the other hand, Γa is in Γb,
then it is either in Γ1 or in Γ′. But if it is in Γ1, then it must be weakened away, and if
it is in Γ′, similar to the ∗R case.

5. Other cases are similar to one of the cases already examined. J

4.5 Equivalence of LBIZ to LBI

I Theorem 20 (Equivalence between LBIZ and LBI). D : Γ ` F is LBIZ-derivable if and only
if it is LBI-derivable.

Proof. Into the only if direction, assume that D is LBIZ-derivable, and then show that
there is a LBI-derivation for each LBIZ derivation. But this is obvious because each LBIZ
inference rule is derivable in LBI.8

Into the if direction, assume that D is LBI-derivable, and then show that there is a
corresponding LBIZ-derivation to each LBI derivation by induction on the derivation depth
of D.

If it is 1, i.e. if D is the conclusion sequent of an axiom, we note that ⊥LLBI is identical
to ⊥LLBIZ; idLBI and ∗>RLBI via idLBIZ and resp. ∗>RLBIZ with Proposition 13 and
Proposition 14; and >RLBI is identical to >RLBIZ. For inductive cases, assume that the if
direction holds true up to the LBI-derivation depth of k, then it must be demonstrated that
it still holds true for the LBI-derivation depth of k + 1. Consider what the LBI rule applied
last is:
1. ⊃ LLBI: ΠLBI(D) looks like:

...
D1 : Γ1 ` F

...
D2 : Γ(Γ1;G) ` H

⊃ LLBI
D : Γ(Γ1;F⊃G) ` H

By induction hypothesis, both D1 and D2 are also LBIZ-derivable. Proposition 13 on D1
in LBIZ-space results in D′1 : Γ1;F⊃G ` F , and on D2 results in D′2 : Γ(Γ1;G;F⊃G) `
H. Then an application of ⊃ LLBIZ on D′1 and D2 concludes in LBIZ-space.

2. −∗LLBI: ΠLBI(D) looks like:
...

D1 : Γ1 ` F

...
D2 : Γ(G) ` H

−∗LLBI
D : Γ(Γ1, F−∗G) ` H

By induction hypothesis, D1 and D2 are also LBIZ-derivable.
a. If Γ(G) is G, i.e. if the antecedent part of D2 is a formula ( G), then Proposition 13

on D2 results in D′2 : G; (Γ1, F−∗G) ` H in LBIZ-space. Then −∗LLBIZ on D1 and
D′2 leads to D′ : Γ1, F−∗G ` H as required.

b. If Γ(G) is Γ′(Γ′′, G), then Proposition 13 on D2 leads to D′2 : Γ′((Γ′′, G);
(Γ′′,Γ1, F−∗G)) ` H. Then −∗LLBIZ on D1 and D′2 leads to D′ : Γ′(Γ′′,Γ1, F−∗G) ` H
as required.

8 Note that EA2 is LBI-derivable with W kLLBI and EqAnt2 LBI.
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c. Finally, if Γ(G) is Γ′(Γ′′;G) ` H, then Proposition 13 on D2 gives D′2 : Γ′(Γ′′;
G; (Γ1, F−∗G)) ` H. Then −∗LLBIZ on D1 and D′2 leads to D′ : Γ′(Γ′′; (Γ1, F−∗G)) `
H as required.

3. WkLLBI: Proposition 13.
4. CtrLLBI: Theorem 19.
5. EqAnt1 LBI: Proposition 16.
6. EqAnt2 LBI: Proposition 16.
7. The rest: straightforward. J

4.6 LBIZ Cut Elimination
Cut is admissible in LBIZ. As a reminder (although already stated under Figure 1) Cut is
the following rule:

Γ1 ` F Γ2(F ) ` G
CutΓ2(Γ1) ` G

Just as in the case of intuitionistic logic, cut admissibility proof for a contraction-free BI
sequent calculus is simpler than that for LBI [2]. Since we have already proved depth-
preserving weakening admissibility, the following context sharing cut, CutCS , is easily verified
derivable in LBIZ + Cut:

Γ̃3; Γ1 ` F Γ2(F ; Γ1) ` H
CutCS

Γ2(Γ̃3; Γ1) ` H

where Γ1 appears on both of the premises. F in the above cut rule appearing on both
premises is called the cut formula. The use of CutCS simplifies the cut elimination proof a
little.

We recall the standard notations of the cut rank and the cut level.

I Definition 21 (Cut level/rank). Given a cut instance in a closed derivation:

D1 : Γ1 ` F D2 : Γ2(F ) ` H
Cut

D3 : Γ2(Γ1) ` H

The level of the cut instance is: der_depth(D1) + der_depth(D2), where der_depth(D)
denotes derivation depth of D. The rank of the cut instance is the size of the cut formula
F , f_size(F ), which is defined as follows:

it is 1 if F is a nullary logical connective or a propositional variable.
it is f_size(F1) + f_size(F2) + 1 if F is in the form: F1 •F2 for • ∈ {∧,∨,⊃, ∗,−∗}.

I Theorem 22 (Cut admissibility in LBIZ). Cut is admissible in LBIZ.

Proof. By induction on the cut rank and a sub-induction on the cut level. We make use
of CutCS . In this proof (X,Y ) for some LBIZ inference rules X and Y means that one of
the premises has been just derived with X and the other with Y . Γ(Γ1)(Γ2) abbreviates
(Γ(Γ1))(Γ2). In pairs of derivations below, the first is the derivation tree to be permuted and
the second is the permuted derivation tree.
(id, id):

1.
id

E(Γ̃1; p) ` p
id

E′(Γ̃2; p) ` p
Cut

E′(Γ̃2;E(Γ̃1; p)) ` p
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⇒

id
E′(Γ̃2;E(Γ̃1; p)) ` p

Of course, for the above permutation to be correct, we must be able to demonstrate
the fact that the antecedent structure E′′(Γ̃2; Γ̃1; p) is such that [E′′(Γ̃2; Γ̃1; p)] =
[E′(Γ̃2;E(Γ̃1; p))]. But note that it only takes a finite number of (backward) EA2
applications (Cf. Proposition 14) on Γ̃2;E(Γ̃1; p) ` p to upward derive Γ̃2; Γ̃1; p ` p.
The implication is that, since Γ̃2;E(Γ̃1; p) ` p results upward from E′(Γ̃2;E(Γ̃1; p)) ` p
also in a finite number of backward EA2 applications, the antecedent structure must
be in the form: E′′(Γ̃2; Γ̃1; p).

2.

id
E(Γ̃1; p) ` p idE′(Γ2(p); q) ` q

Cut
E′(Γ2(E(Γ̃1; p)); q) ` q

This and the other patterns for which one of the premises is an axiom sequent are straight-
forward.

For the remaining cases, if the cut formula is principal only for one of the premise sequents,
then we follow the routine [25] to permute up the other premise sequent for which it is the
principal. For example, in case we have the derivation pattern below:

D1 D2 ∨L
D5 : Γ1(H1 ∨H2) ` F1⊃F2

D3 : E(Γ̃3;F1⊃F2) ` F1 D4 : Γ2(F2;E(Γ̃3;F1⊃F2)) ` H
⊃ L

D6 : Γ2(E(Γ̃3;F1⊃F2)) ` H
Cut

Γ2(E(Γ̃3; Γ1(H1 ∨H2))) ` H

for D1 : Γ1(H1) ` F1⊃F2 and D2 : Γ1(H2) ` F1⊃F2, the cut formula F1⊃F2 is not the
principal on the left premise. In this case, we simply apply Cut on the pairs: (D1, D6) and
(D2, D6), to conclude:

D1 D6 Cut
Γ2(E(Γ̃3; Γ1(H1))) ` H

D2 D6 Cut
Γ2(E(Γ̃3; Γ1(H2))) ` H

∨L
Γ2(E(Γ̃3; Γ1(H1 ∨H2))) ` H

Of course, for this particular permutation to be correct, we must be able to demonstrate, in
the permuted derivation tree, that E(Γ̃3; Γ1(H1 ∨H2)) = E′(Γ̃3) ?Γ1(H1 ∨H2) with ? either
a semi-colon or a comma, that E(Γ̃3; Γ1(H1)) = E′(Γ̃3) ? Γ1(H1), and that E(Γ̃3; Γ1(H2)) =
E′(Γ̃3) ? Γ1(H2). But this is vacuous since the cut formula which is replaced by the structure
Γ1(H1) or Γ1(H2) is a formula.

The cases that remain are those for which both premises of the cut instance have the cut
formula as the principal. We go through each of them to conclude the proof.
(∧L,∧R):

D1 : Γ1 ` F1 D2 : Γ1 ` F2 ∧RΓ1 ` F1 ∧ F2

D3 : Γ2(F1;F2) ` H
∧LΓ2(F1 ∧ F2) ` H

CutΓ2(Γ1) ` H
⇒
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D2

D1 D3 CutΓ2(Γ1;F2) ` H
CutCSΓ2(Γ1) ` H

(∨L,∨R):

D1 : Γ1 ` Fi (i ∈ {1, 2})
∨RΓ1 ` F1 ∨ F2

D2 : Γ2(F1) ` H D3 : Γ2(F2) ` H
∨LΓ2(F1 ∨ F2) ` H

CutΓ2(Γ1) ` H
⇒

D1 D(2 or 3)
CutΓ2(Γ1) ` H

The value of i decides which of D2 or D3 is the right premise sequent.
(⊃ L,⊃ R):

D1 : Γ3;F1 ` F2 ⊃ R
D4 : Γ3 ` F1⊃F2

D2 : E(Γ̃1;F1⊃F2) ` F1 D3 : Γ2(F2;E(Γ̃1;F1⊃F2)) ` H
⊃ L

Γ2(E(Γ̃1;F1⊃F2)) ` H
Cut

Γ2(E(Γ̃1; Γ3)) ` H
⇒

D4 D2 Cut
E(Γ̃1; Γ3) ` F1 D1

Cut
Γ3;E(Γ̃1; Γ3) ` F2

D4 D3 Cut
Γ2(F2;E(Γ̃1; Γ3)) ` H

CutCS
Γ2(Γ3;E(Γ̃1; Γ3)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 13

Γ2(Γ̃1; Γ3;E(Γ̃1; Γ3)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 14
Γ2(E(Γ̃1; Γ3);E(Γ̃1; Γ3)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 19

Γ2(E(Γ̃1; Γ3)) ` H

The derivation steps with a dotted line are depth-preserving.
(∗L, ∗R):

D1 : Rei ` F1 D2 : Rej ` F2
∗RΓ1 ` F1 ∗ F2

D3 : Γ2(F1, F2) ` H
∗LΓ2(F1 ∗ F2) ` H

CutΓ2(Γ1) ` H
⇒

D2

D1 D3 CutΓ2(Rei, F2) ` H
CutΓ2(Rei, Rej) ` H. . . . . . . . . . . . . . . . . . . . Proposition 13

Γ2(Γ1) ` H
(−∗L,−∗R):

D1 : Γ1, F1 ` F2 −∗R
D4 : Γ1 ` F1−∗F2

D2 : Rei ` F1 D3 : Γ2((R̃ej , F2); (Γ̃′,E(Γ̃3;F1−∗F2))) ` H
−∗L1

Γ2(Γ̃′,E(Γ̃3;F1−∗F2)) ` H
Cut

Γ2(Γ̃′,E(Γ̃3; Γ1)) ` H
⇒
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D2

D1

D4 D3 Cut
Γ2((R̃ej , F2); (Γ̃′,E(Γ̃3; Γ1))) ` H

Cut
Γ2((R̃ej ,Γ1, F1); (Γ′,E(Γ̃3; Γ1))) ` H

Cut
Γ2((R̃ej ,Γ1, Rei); (Γ̃′,E(Γ̃3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 13
Γ2((Γ̃′, (Γ̃3; Γ1)); (Γ̃′,E(Γ̃3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 14

Γ2((Γ̃′,E(Γ̃3; Γ1)); (Γ̃′,E(Γ̃3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 19
Γ2(Γ̃′,E(Γ̃3; Γ1)) ` H

J

5 Conclusion

We addressed the problem of structural rule absorption in BI sequent calculus. This problem
was around for a while. As far back as we can see, the first proximate attempt was made in
[21]. References to the problem were subsequently made [9, 21, 4] in a discussion. The work
that came closest to ours is one by Donnelly et al. [7]. They consider weakening absorption
in the context of forward theorem proving (where weakening rather than contraction is a
source of non-termination). One inconvenience in their approach, however, is that the effect
of weakening is not totally isolated from that of contraction: it is absorbed into contraction
as well as into logical rules. But then structural weakening is still possible through the new
structural contraction. Also, the coupling of the two structural rules amplifies the difficulty
of analysis on the behaviour of contraction. Further, their work is on a subset of BI without
units. In comparison, our solution covers the whole BI. Techniques we used in this work
should be useful in the derivation of contraction-free sequent calculi of other non-classical
logics that come with a non-formula structural contraction rule. For instance, nested sequent
calculi [15, 12, 17] of some constructive modal logics (those only with k1 and k2 axioms)
[23], when they are extended with additional modal axioms including 5 axiom, are known
to truly require non-formula contractions, in the presence of which cut-elimination proof
becomes demanding. As is always the case, there are fewer cases to cover in cut-elimination
proof when there are no structural contraction. There are also more recent BI extensions in
sequent calculus such as [14], to which this work has relevance. Seeing the complexity of
LBIZ, one may also consider development of another formalism that may represent BI and
other similar non-classical logics more informatively.

Acknowledgements. I thank two reviewers for this paper for kindly pointing out typo-
graphical errors. This contribution is also in Section 3 of my PhD Thesis written a while
back, and my PhD study was supported in part by an EPSRC project EP/G042322.
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Abstract
We present sound and complete environmental bisimilarities for a variant of Dybvig et al.’s cal-
culus of multi-prompted delimited-control operators with dynamic prompt generation. The reas-
oning principles that we obtain generalize and advance the existing techniques for establishing
program equivalence in calculi with single-prompted delimited control.

The basic theory that we develop is presented using Madiot et al.’s framework that allows for
smooth integration and composition of up-to techniques facilitating bisimulation proofs. We also
generalize the framework in order to express environmental bisimulations that support equival-
ence proofs of evaluation contexts representing continuations. This change leads to a novel and
powerful up-to technique enhancing bisimulation proofs in the presence of control operators.
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1 Introduction

Control operators for delimited continuations, introduced independently by Felleisen [12]
and by Danvy and Filinski [9], allow the programmer to delimit the current context of
computation and to abstract such a delimited context as a first-class value. It has been
shown that all computational effects are expressible in terms of delimited continuations [13],
and so there exists a large body of work devoted to this canonical control structure, including
our work on a theory of program equivalence for the operators shift and reset [5, 6, 7].

In their paper on type-directed partial evaluation for typed λ-calculus with sums, Balat et
al. [2] have demonstrated that Gunter et al.’s delimited-control operators set and cupto [15],
that support multiple prompts along with dynamic prompt generation, can have a practical
advantage over single-prompted operators such as shift and reset. Delimited-control operators
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with dynamically-generated prompts are now available in several production programming
languages such as OCaml [19] and Racket [14], and they have been given formal semantic
treatment in the literature. In particular, Dybvig et al. [11] have proposed a calculus
that extends the call-by-value λ-calculus with several primitives that allow for: fresh-
prompt generation, delimiting computations with a prompt, abstracting control up to the
corresponding prompt, and composing captured continuations. Dybvig et al.’s building blocks
were shown to be able to naturally express most of other existing control operators and as
such they form a general framework for studying delimited continuations. Reasoning about
program equivalence in Dybvig et al.’s calculus is considerably more challenging than in
single-prompted calculi: one needs to reconcile control effects with the intricacies introduced
by fresh-prompt generation and local visibility of prompts.

In this article we investigate the behavioral theory of a slightly modified version of Dybvig
et al.’s calculus that we call the λG#-calculus. One of the most natural notions of program
equivalence in languages based on the λ-calculus is contextual equivalence: two terms are
contextually equivalent if we cannot distinguish them when evaluated within any context.
The quantification over contexts makes this relation hard to use in practice, so it is common to
characterize it using simpler relations, like coinductively defined bisimilarities. As pointed out
in [21], among the existing notions of bisimilarities, environmental bisimilarity [29] is the most
appropriate candidate to characterize contextual equivalence in a calculus with generated
resources, such as prompts in λG#. Indeed, this bisimilarity features an environment which
accumulates knowledge about the terms we compare. This is crucial in our case to remember
the relationships between the prompts generated by the compared programs. We therefore
define environmental bisimilarities for λG#, as well as up-to techniques, which are used to
simplify the equivalence proof of two given programs. We do so using the recently developed
framework of Madiot et al. [25, 24], where it is simpler to prove that a bisimilarity and its
up-to techniques are sound (i.e., imply contextual equivalence).

After presenting the syntax, semantics, and contextual equivalence of the calculus in
Section 2, in Section 3 we define a sound and complete environmental bisimilarity and its
corresponding up-to techniques. In particular, we define a bisimulation up to context, which
allows to forget about a common context when comparing two terms in a bisimulation proof.
The bisimilarity we define is useful enough to prove, e.g., the folklore theorem about delimited
control [4] expressing that the static delimited-control operators shift and reset [9] can be
simulated by the dynamic control operators control and prompt [12]. The technique, however,
in general requires a cumbersome analysis of terms of the form E[e], where E is a captured
evaluation context and e is any expression (not necessarily a value). We therefore define in
Section 4 a refined bisimilarity, called ?-bisimilarity, and a more expressive bisimulation up
to context, which allows to factor out a context built with captured continuations. Proving
the soundness of these two relations requires us to extend Madiot et al.’s framework. These
results non-trivially generalize and considerably improve the existing techniques [7]. Finally,
we discuss related work and conclude in Section 5. An accompanying research report [1]
contains the proofs.

2 The Calculus λG#

The calculus we consider, called λG#, extends the call-by-value λ-calculus with four building
blocks for constructing delimited-control operators as first proposed by Dybvig et al. [11]. 1

1 Dybvig et al.’s control operators slightly differ from their counterparts considered in this work, but they
can be straightforwardly macro-expressed in the λG#-calculus.
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Syntax. We assume we have a countably infinite set of term variables, ranged over by x, y,
z, and k, as well as a countably infinite set of prompts, ranged over by p, q. Given an entity
denoted by a meta-variable m, we write −→m for a (possibly empty) sequence of such entities.
Expressions (e), values (v), and evaluation contexts (E) are defined as follows:

e ::= v | e e | Px.e | #ve | Gvx.e | v / e (expressions)
v ::= x | λx.e | p | pEq (values)
E ::= � | E e | v E | #pE (evaluation contexts)

Values include captured evaluation contexts pEq, representing delimited continuations,
as well as generated prompts p. Expressions include the four building blocks for delimited
control: Px.e is a prompt-generating construct, where x represents a fresh prompt locally
visible in e, #ve is a control delimiter for e, Gvx.e is a continuation grabbing or capturing
construct, and v / e is a throw construct.

Evaluation contexts, in addition to the standard call-by-value contexts, include delimited
contexts of the form #pE, and they are interpreted outside-in. We use the standard notation
E[e] (E[E′]) for plugging a context E with an expression e (with a context E′). Evaluation
contexts are a special case of (general) contexts, understood as a term with a hole and ranged
over by C.

The expressions λx.e, Px.e, and Gvx.e bind x; we adopt the standard conventions
concerning α-equivalence. If x does not occur in e, we write λ .e, P .e, and Gv .e. The set of
free variables of e is written fv(e); a term e is called closed if fv(e) = ∅. We extend these
notions to evaluation contexts. We write #(e) (or #(E)) for the set of all prompts that
occur in e (or E respectively). The set sp(E) of surrounding prompts in E is the set of all
prompts guarding the hole in E, defined as {p | ∃E1, E2, E = E1[#pE2]}.

Reduction semantics. The reduction semantics of λG# is given by the following rules:

(λx.e) v → e{v/x}
#pv → v

#pE[Gpx.e] → e{pEq/x} p /∈ sp(E)
pEq / e → E[e]
Px.e → e{p/x} p /∈ #(e)

Compatibility
e1 → e2 fresh(e2, e1, E)

E[e1]→ E[e2]

The first rule is the standard βv-reduction. The second rule signals that a computation
has been completed for a given prompt. The third rule abstracts the evaluation context up
to the dynamically nearest control delimiter matching the prompt of the grab operator. In
the fourth rule, an expression is thrown (plugged, really) to the captured context. Note that,
like in Dybvig et al.’s calculus, the expression e is not evaluated before the throw operation
takes place. In the last rule, a prompt p is generated under the condition that it is fresh
for e.

The compatibility rule needs a side condition, simply because a prompt that is fresh for e
may not be fresh for a surrounding evaluation context. Given three entities m1, m2, m3 for
which # is defined, we write fresh(m1,m2,m3) for the condition (#(m1)\#(m2))∩#(m3) = ∅,
so the side condition states that E must not mention prompts generated in the reduction
step e1 → e2. This approach differs from the previous work on bisimulations for resource-
generating constructs [23, 22, 30, 31, 32, 3, 26], where configurations of the operational
semantics contain explicit information about the resources, typically represented by a set.
We find our way of proceeding less invasive to the semantics of the calculus.
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When reasoning about reductions in the λG#-calculus, we rely on the notion of permutation
(a bijection on prompts), ranged over by σ, which allows to reshuffle the prompts of an
expression to avoid potential collisions (e with prompts permuted by σ is written eσ). E.g.,
we can use the first item of the following lemma before applying the compatibility rule, to be
sure that any prompt generated by e1 → e2 is not in #(E).

I Lemma 1. Let σ be a permutation.
If e1 → e2 then e1σ → e2σ.
For any entities m1, m2, m3, we have fresh(m1,m2,m3) iff fresh(m1σ,m2σ,m3σ).

A closed term e either uniquely, up to permutation of prompts, reduces to a term e′, or
it is a normal form (i.e., there is no e′′ such that e→ e′′). In the latter case, we distinguish
values, control-stuck terms E[Gpk.e] where p 6∈ sp(E), and the remaining expressions that
we call errors (e.g., E[p v] or E[Gλx.ek.e′]). We write e1 →∗ e2 if e1 reduces to e2 in many
(possibly 0) steps, and we write e  when a term e diverges (i.e., there exists an infinite
sequence of reductions starting with e) or when it reduces (in many steps) to an error.

When writing examples, we use the fixed-point operator fix, let-construct, conditional if
along with boolean values true and false, and sequencing ”;”, all defined as in the call-by-value
λ-calculus. We also use the diverging term Ω def= (λx.x x) (λx.x x), and we define an operator
?= to test the equality between prompts, as follows:

e1
?= e2

def= let x= e1 in let y= e2 in #x((#yGx .false);true)

If e1 and e2 evaluate to different prompts, then the grab operator captures the context up to
the outermost prompt to throw it away, and false is returned; otherwise, true is returned.

Contextual equivalence. We now define formally what it takes for two terms to be con-
sidered equivalent in the λG#-calculus. First, we characterize when two closed expressions
have equivalent observable actions in the calculus, by defining the following relation ∼.

I Definition 2. We say that e1 and e2 have equivalent observable actions, noted e1 ∼ e2, if
1. e1 →∗ v1 iff e2 →∗ v2,
2. e1 →∗ E1[Gp1x.e

′
1] iff e2 →∗ E2[Gp2x.e

′
2], where p1 6∈ sp(E1) and p2 6∈ sp(E2),

3. e1

 iff e2

 .
We can see that errors and divergence are treated as equivalent, which is standard.

Based on ∼, we define contextual equivalence as follows.

I Definition 3 (Contextual equivalence). Two closed expressions e1 and e2 are contextually
equivalent, written, e1 ≡E e2, if for all E such that #(E) = ∅, we have E[e1] ∼ E[e2].

Contextual equivalence can be extended to open terms in a standard way: if fv(e1)∪ fv(e2) ⊆
−→x , then e1 ≡E e2 if λ−→x .e1 ≡E λ−→x .e2. We test terms using only promptless contexts,
because the testing context should not use prompts that are private for the tested expressions.
For example, the expressions λf.f p q and λf.f q p should be considered equivalent if
nothing is known from the outside about p and q. As common in calculi with resource
generation [31, 30, 29], testing with evaluation contexts (as in ≡E) is not the same as testing
with all contexts: we have Px.x ≡E p, but these terms can be distinguished by

let f =λx.� in if f λx.x ?= f λx.x then Ω else λx.x,

In the rest of the article, we show how to characterize ≡E with environmental bisimilarities.2

2 If ≡C is the contextual equivalence testing with all contexts, then we can prove that e1 ≡C e2 iff
λx.e1 ≡E λx.e2, where x is any variable. We therefore obtain a proof method for ≡C as well.
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3 Environmental Bisimilarity

In this section, we propose a first characterization of ≡E using an environmental bisimilarity.
We express the bisimilarity in the style of [25], using a so called first-order labeled transition
system (LTS), to factorize the soundness proofs of the bisimilarity and its up-to techniques.
We start by defining the LTS and its corresponding bisimilarity.

3.1 Labeled Transition System and Bisimilarity
In the original formulation of environmental bisimulation [29], two expressions e1 and e2 are
compared under some environment E , which represents the knowledge of an external observer
about e1 and e2. The definition of the bisimulation enforces some conditions on e1 and e2
as well as on E . In Madiot et al.’s framework [25, 24], the conditions on e1, e2, and E are
expressed using a LTS between states of the form (Γ, e1) (and (∆, e2)), where Γ (and ∆) is a
finite sequence of values corresponding to the first (and second) projection of the environment
E . Note that in (Γ, e1), e1 may be a value, and therefore a state can be simply of the form Γ.
Transitions from states of the form (Γ, e1) (where e1 is not a value) express conditions on e1,
while transitions from states of the form Γ explain how we compare environments. In the
rest of the paper we use Γ, ∆ to range over finite sequences of values, and we write Γi, ∆i

for the i th element of the sequence. We use Σ, Θ to range over states.
Figure 1 presents the LTS α−→, where α ranges over all the labels. We define #(Γ) as⋃

i #(Γi). The transition E−→ uses a relation e
=−→ e′, defined as follows: if e → e′, then

e
=−→ e′, and if e is a normal form, then e =−→ e.3 To build expressions out of sequences of

values, we use different kinds of multi-hole contexts defined as follows.

C ::= Cv | C C | Px.C | #CvC | GCvx.C | Cv / C (contexts)
Cv ::= x | λx.C | pEq | �i (value contexts)
E ::= � | E C | Cv E | #�i

E (evaluation contexts)

The holes of a multi-hole context are indexed, except for the special hole � of an evaluation
context E, which is in evaluation position (that is, filling the other holes of E with values
gives a regular evaluation context E). We write C[Γ] (respectively Cv[Γ] and E[Γ]) for the
application of a context C (respectively Cv and E) to a sequence Γ of values, which consists in
replacing �i with Γi; we assume that this application produce an expression (or an evaluation
context in the case of E), i.e., each hole index in the context is smaller or equal than the size
of Γ, and for each #�i

E construct, Γi is a prompt. We write E[e,Γ] for the same operation
with evaluation contexts, where we assume that e is put in � (note that e may also be a
value). Notice that prompts are not part of the syntax of Cv, therefore a multi-hole context
does not contain any prompt: if C[Γ], Cv[Γ], or E[e,Γ] contains a prompt, then it comes from
Γ or e. Our multi-hole contexts are promptless because≡E also tests with promptless contexts.

We now detail the rules of Figure 1, starting with the transitions that one can find in any
call-by-value λ-calculus [25]. An internal action (Γ, e1) τ−→ Σ corresponds to a reduction step,
except we ensure that any generated prompt is fresh w.r.t. Γ. The transition Γ λ,i,Cv−−−−→ Σ
signals that Γi is a λ-abstraction, which can be tested by passing it an argument built from Γ
with the context Cv. The transition p.q,i,C−−−−→ for testing continuations is built the same way,

3 The relation =−→ is not exactly the reflexive closure of →, since an expression which is not a normal
form has to reduce.
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e1 → e2 fresh(e2, e1,Γ)
(Γ, e1) τ−→ (Γ, e2)

Γi = λx.e

Γ λ,i,Cv−−−−→ (Γ, e{Cv[Γ]/x}) Γ v−→ Γ

Γi = pEq

Γ p.q,i,C−−−−→ (Γ, E[C[Γ]])

Γi = p Γj = p

Γ #,i,j−−−→ Γ

p /∈ #(Γ)

Γ #−→ (Γ, p)

p /∈ sp(E) E[E[Gpx.e],Γ] =−→ e′

(Γ, E[Gpx.e])
E−→ (Γ, e′)

Figure 1 Labeled Transition System for λG#.

except we use a context C, because any expression can be thrown to a captured context.
Finally, the transition Γ v−→ Γ means that the state Γ is composed only of values; it does
not test anything on Γ, but this transition is useful for the soundness proofs of Section 3.2.
When we have Γ R (∆, e) (where R is, e.g., a bisimulation), then (∆, e) has to match with
(∆, e) τ−→

∗ v−→ (∆, v) so that (∆, v) is related to Γ. We can then continue the proofs with two
related sequences of values. Such a transition has been suggested in [24, Remark 5.3.6] to
simplify the proofs for a non-deterministic language, like λG#.

We now explain the rules involving prompts. When comparing two terms generating
prompts, one can produce p and the other a different q, so we remember in Γ, ∆ that p
corresponds to q. But an observer can compare prompts using ?=, so p has to be related only
to q. We check it with #,i,j−−−→: if Γ #,i,j−−−→ Γ, then ∆ has to match, meaning that ∆i = ∆j ,
and doing so for all j such that Γi = Γj ensures that all copies of Γi are related only to ∆i.
The transition #,i,i−−−→ also signals that Γi is a prompt and should be related to a prompt.
The other transition involving prompts is Γ #−→ (Γ, p), which encodes the possibility for an
outside observer to generate fresh prompts to compare terms. If Γ is related to ∆, then ∆
has to match by generating a prompt q, and we remember that p is related to q. For this rule
to be automatically verified, we define the prompt checking rule for a relation R as follows:

Γ R ∆ p /∈ #(Γ) q /∈ #(∆)
(Γ, p) R (∆, q)

(#-check)

Henceforth, when we construct a bisimulation R by giving a set of rules, we always
include the (#-check) rule so that the #−→ transition is always verified.

Finally, the transition E−→ deals with stuck terms. An expression E[Gpx.e] is able to reduce
if the surrounding context is able to provide a delimiter #p. However, it is possible only if p
is available for the outside, and therefore is in Γ. If p /∈ sp(E[Γ]), then E[E[Gpx.e],Γ] remains
stuck, and we have E[E[Gpx.e],Γ] =−→ E[E[Gpx.e],Γ]. Otherwise, it can reduce and we have
E[E[Gpx.e],Γ] =−→ e′, where e′ is the result after the capture. The rule for E−→ may seem
demanding, as it tests stuck terms with all contexts E, but up-to techniques will alleviate
this issue (see Example 8).

For weak transitions, we define ⇒ as τ−→
∗
, α=⇒ as ⇒ if α = τ and as ⇒ α−→⇒ otherwise. We

define bisimulation and bisimilarity using a more general notion of progress. Henceforth, we
let R, S range over relations on states.



A. Aristizábal, D. Biernacki, S. Lenglet, and P. Polesiuk 9:7

I Definition 4. A relation R progresses to S, written R� S, if R ⊆ S and Σ R Θ implies
if Σ α−→ Σ′, then there exists Θ′ such that Θ α=⇒ Θ′ and Σ′ S Θ′;
the converse of the above condition on Θ.

A bisimulation is a relation R such that R � R, and bisimilarity ≈ is the union of all
bisimulations.

3.2 Up-to Techniques, Soundness, and Completeness
Before defining the up-to techniques for λG#, we briefly recall the main definitions and results
we use from [28, 25, 24]; see these works for more details and proofs. We use f , g to range
over functions on relations on states. An up-to technique is a function f such that R� f(R)
implies R ⊆ ≈. However, this definition can be difficult to use to prove that a given f is
an up-to technique, so we rely on compatibility instead. A function f is monotone if R ⊆ S
implies f(R)⊆ f(S). Given a set F of functions, we also write F for the function defined as⋃
fi∈F fi (where f ∪ g is defined argument-wise, i.e., (f ∪ g)(R) = f(R) ∪ g(R)). Given a

function f , fω is defined as
⋃
n∈N f

n.

I Definition 5. A function f evolves to g, written f g, if for all R � S, we have
f(R)� g(S). A set F of monotone functions is compatible if for all f ∈ F , f Fω.

I Lemma 6. Let F be a compatible set, and f ∈ F ; f is an up-to technique, and f(≈)⊆ ≈.

Proving that f is in a compatible set F is easier than proving it is an up-to technique, because
we just have to prove that it evolves towards a combination of functions in F . Besides, the
second property of Lemma 6 can be used to prove that ≈ is a congruence just by showing
that bisimulation up to context is compatible.

The first technique we define allows to forget about prompt names; in a bisimulation
relating (Γ, e1) and (∆, e2), we remember that Γi = p is related to ∆i = q by their position i,
not by their names. Consequently, we can apply different permutations to the two states to
rename the prompts without harm, and bisimulation up to permutations4 allows us to do so.
Given a relation R, we define perm(R) as Σσ1 perm(R) Θσ2, assuming Σ R Θ and σ1, σ2
are any permutations.

We then allow to remove or add values from the states with, respectively, bisimulation up
to weakening weak and bisimulation up to strengthening str, defined as follows

(−→v ,Γ, e1) R (−→w ,∆, e2)
(Γ, e1) weak(R) (∆, e2)

(Γ, e1) R (∆, e2)
(Γ,Cv[Γ], e1) str(R) (∆,Cv[∆], e2)

Bisimulation up to weakening diminishes the testing power of states, since less values means
less arguments to build from for the transitions λ,i,Cv−−−−→, p.q,i,C−−−−→, and E−→. This up-to technique
is usual for environmental bisimulations, and is called “up to environment” in [29]. In
contrast, str adds values to the state, but without affecting the testing power, since the added
values are built from the ones already in Γ, ∆.

Finally, we define the well-known bisimulation up to context, which allows to factor out a
common context when comparing terms. As usual for environmental bisimulations [29], we
define two kinds of bisimulation up to context, depending whether we operate on values or

4 Madiot defines a bisimulation “up to permutation” in [24] which reorders values in a state. Our
bisimulation up to permutations operates on prompts.
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9:8 Environmental Bisimulations for Dynamic Prompt Generation

any expressions. For values, we can factor out any common context C, but for expressions
that are not values, we can factor out only an evaluation context E, since factoring out any
context in that case would lead to an unsound up-to technique [24]. We define up to context
for values ctx and for any expression ectx as follows:

Γ R ∆
(Γ,C[Γ]) ctx(R) (∆,C[∆])

(Γ, e1) R (∆, e2)
(Γ,E[e1,Γ]) ectx(R) (∆,E[e2,∆])

I Lemma 7. The set {perm,weak, str, ctx, ectx} is compatible.

The function ectx is particularly helpful in dealing with stuck terms, as we can see below.

I Example 8. Let Σ def= (Γ,Gpx.e1) and Θ def= (∆,Gqx.e2) (for some e1, e2), so that Σ R Θ. If p
and q are not in Γ, ∆, then the two expressions remain stuck, as we have Σ E−→ (Γ,E[Gpx.e1,Γ])
and similarly for Θ. We have directly (Γ,E[Gpx.e1,Γ]) ectx(R) (∆,E[Gqx.e2,∆]). Oth-
erwise, the capture can be triggered with a context E of the form E1[#�i

E2], giving
Σ E−→ (Γ,E1[e1{pE2[Γ]q/x},Γ]) and Θ E−→ (∆,E1[e2{pE2[∆]q/x},∆]). Thanks to ectx, we
can forget about E1 which does not play any role, and continue the bisimulation proof by
focusing only on (Γ, e1{pE2[Γ]q/x}) and (∆, e2{pE2[∆]q/x}).

Because bisimulation up to context is compatible, Lemma 6 ensures that ≈ is a congruence
w.r.t. all contexts for values, and w.r.t. evaluation contexts for all expressions. As a corollary,
we can deduce that ≈ is sound w.r.t. ≡E ; we can also prove that it is complete w.r.t. ≡E ,
leading to the following full characterization result.

I Theorem 9. e1 ≡E e2 iff (∅, e1) ≈ (∅, e2).

For completeness, we prove that {(Γ, e1), (∆, e2) | ∀E,E[e1,Γ] ∼ E[e2,∆]} is a bisimulation
up to permutation; the proof is in [1, Appendix A.1].

3.3 Example
As an example, we show a folklore theorem about delimited control [4], stating that the static
operators shift and reset can be simulated by the dynamic operators control and prompt. In
fact, what we prove is a more general and stronger result than the original theorem, since we
demonstrate that this simulation still holds when multiple prompts are around.

I Example 10 (Folklore theorem). We encode shift, reset, control, and prompt as follows

shiftp
def= λf.Gpk.#pf(λy.#pk / y) controlp

def= λf.Gpk.#pf(λy.k / y)
resetp

def= p#p�q promptp
def= p#p�q

Let shift′p
def= λf.controlp (λl.f (λz.promptp / l z)); we prove that the pair (shiftp, resetp)

(encoded as λf.f shiftp resetp) is bisimilar to (shift′p, promptp) (encoded as λf.f shift′ppromptp).

Proof. We iteratively build a relation R closed under (#-check) such that R is a bisimulation
up to context, starting with (p, shiftp) R (p, shift′p). The transition #,1,1−−−→ is easy to check.
For λ,2,Cv−−−−→, we obtain states of the form (p, shiftp, e1), (p, shift′p, e2) that we add to R,
where e1 and e2 are the terms below

Γ R ∆
(Γ,Gpk.#pCv[Γ] (λy.#pk / y)) R (∆,Gpk.#p(λl.Cv[∆] (λz.promptp / l z)) (λy.k / y))
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We use an inductive, more general rule, because we want λ,2,Cv−−−−→ to be still verified after we
extend (p, shiftp) and (p, shift′p). The terms e1 and e2 are stuck, so we test them with E−→.
If E does not trigger the capture, we obtain E[e1,Γ] and E[e2,∆], and we can use ectx to
conclude. Otherwise, E = E′[#�1E′′] (where #�1 does not surround � in E′′), and we get

E′[#pCv[Γ] (λy.#ppE′′[Γ]q / y),Γ] and E′[#pCv[∆] (λz.promptp / (λy.pE′′[∆]q / y) z),∆]

We want to use ctx to remove the common context E′[#�1Cv �i], which means that we have
to add the following states in the definition of R (again, inductively):

Γ R ∆
(Γ, λy.#ppE′′[Γ]q / y) R (∆, λz.promptp / (λy.pE′′[∆]q / y) z)

Testing these functions with λ,i,Cv−−−−→ gives on both sides states where #�1E′′[Cv] can be
removed with ctx. Because (∅, λf.f shiftp resetp) weak(ctx(R)) (∅, λf.f shift′p promptp), it
is enough to conclude. Indeed, R is a bisimulation up to context, so R ⊆ ≈, which implies
weak(ctx(R)) ⊆ weak(ctx(≈)) (because weak and ctx are monotone), and weak(ctx(≈)) ⊆ ≈
(by Lemma 6). Note that this reasoning works for any combination of monotone up-to
techniques and any bisimulation (up-to). J

What makes the proof of Example 10 quite simple is that we relate (p, shiftp) and
(p, shift′p), meaning that p can be used by an outside observer. But the control operators
(shiftp, resetp) and (shift′p, promptp) should be the only terms available for the outside, since
p is used only to implement them. If we try to prove equivalent these two pairs directly, i.e.,
while keeping p private, then testing resetp and promptp with p.q,2,C−−−−→ requires a cumbersome
analysis of the behaviors of #pC[Γ] and #pC[∆]. In the next section, we define a new kind
of bisimilarity with a powerful up-to technique to make such proofs more tractable.

4 The ?-Bisimilarity

4.1 Motivation

Testing continuations. In Section 3, a continuation Γi = pEq is tested with Γ p.q,i,C−−−−→
(Γ, E[C[Γ]]). We then have to study the behavior of E[C[Γ]], which depends primarily on
how C[Γ] reduces; e.g., if C[Γ] diverges, then E does not play any role. Consequently, the
transition p.q,i,C−−−−→ does not really test the continuation directly, since we have to reduce C[Γ]
first. To really exhibit the behavior of the continuation, we change the transition so that it
uses a value context instead of a general one. We then have Γ p.q,i,Cv−−−−−→ (Γ, E[Cv[Γ]]), and the
behavior of the term we obtain depends primarily on E. However, this is not equivalent to
testing with C, since C[Γ] may interact in other ways with E if C[Γ] is a stuck term. If E is
of the form E′[#pE

′′], and p is in Γ, then C may capture E′′, since p can be used to build
an expression of the form Gpx.e. To take into account this possibility, we introduce a new
transition Γ p.q,i,j−−−−→ (Γ, pE′q, pE′′q), which decomposes Γi = E′[#pE

′′] into pE′q and pE′′q,
provided Γj = p. The stuck term C[Γ] may also capture E entirely, as part of a bigger
context of the form E1[E[E2]]. To take this into account, we introduce a way to build such
contexts using captured continuations. This is also useful to make bisimulation up to context
more expressive, as we explain in the next paragraph.
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9:10 Environmental Bisimulations for Dynamic Prompt Generation

A more expressive bisimulation up to context. As we already pointed out in [7], bisimu-
lation up to context is not very helpful in the presence of control operators. For example,
suppose we prove the βΩ axiom of [18], i.e., (λx.E[x]) e is equivalent to E[e] if x /∈ fv(E)
and sp(E) = ∅. If e is a stuck term Gpy.e1, we have to compare e1{pE1[(λx.E[x]) �]q/y}
and e1{pE1[E]q/y} for some E1. If e1 is of the form y / (y / e2), then we get respectively
E1[(λx.E[x]) E1[(λx.E[x]) e2]] and E1[E[E1[E[e2]]]]. We can see that the two resulting
expressions have the same shape, and yet we can only remove the outermost occurrence of
E1 with ectx. The problem is that bisimulation up to context can factor out only a common
context. We want an up-to technique able to identify related contexts, i.e., contexts built out
of related continuations. To do so, we modify the multi-hole contexts to include a construct
?i[C] with a special hole ?i, which can be filled only with pEq to produce a context E[C].
As a result, if Γ = (p(λx.E[x])�q) and ∆ = (pEq), then E1[(λx.E[x]) E1[(λx.E[x])�]] and
E1[E[E1[E[�]]]] can be written E[Γ], E[∆] with E = E1[?1[E1[?1[�]]]]. We can then focus
only on testing Γ and ∆.

However, such a bisimulation up to related context would be unsound if not restricted in
some way. Indeed, let pE1q, pE2q be any continuations, and let Γ = (pE1q), ∆ = (pE2q).
Then the transitions Γ p.q,1,Cv−−−−−→ (Γ, E1[Cv[Γ]]) and ∆ p.q,1,Cv−−−−−→ (∆, E2[Cv[∆]]) produce states
of the form (Γ,C[Γ]), (∆,C[∆]) with C = ?1[Cv]. If bisimulation up to related context
was sound in that case, it would mean that pE1q and pE2q would be bisimilar for all E1
and E2, which, of course, is wrong.5 To prevent this, we distinguish passive transitions
(such as p.q,i,Cv−−−−−→) from the other ones (called active), so that only selected up-to techniques
(referred to as strong) can be used after a passive transition. In contrast, any up-to technique
(including this new bisimulation up to related context) can be used after an active transition.
To formalize this idea, we have to extend Madiot et al.’s framework to allow such distinctions
between transitions and between up-to techniques.

4.2 Labeled Transition System and Bisimilarity

First, we explain how we alter the LTS of Section 3.1 to implement the changes we sketched
in Section 4.1. We extend the grammar of multi-hole contexts C (resp. E) by adding the
production ?i[C] (resp. ?i[E]), where the hole ?i can be filled only with a continuation (the
grammar of value contexts Cv is unchanged). When we write (?i[C])[Γ], we assume Γi is a
continuation pEq, and the result of the operation is E[C[Γ]] (and similarly for E).

We also change the way we deal with captured contexts, by using the following rules:

Γi = pEq

Γ p.q,i,Cv−−−−−→ (Γ, E[Cv[Γ]])

Γi = pE1[#pE2]q Γj = p p /∈ sp(E2)

Γ p.q,i,j−−−−→ (Γ, pE1q, pE2q)

The transition p.q,i,Cv−−−−−→ is the same as in Section 3, except that it tests with an argument
built with a value context Cv instead of a regular context C. We also introduce the transition
p.q,i,j−−−−→, which decomposes a captured context pE1[#pE2]q into sub-contexts pE1q, pE2q,
provided that p is in Γ. This transition is necessary to take into account the possibility for
an external observer to capture a part of a context, scenario which can no longer be tested
with p.q,i,Cv−−−−−→, as explained in Section 4.1, and as illustrated with the next example.

5 The problem is similar if we test continuations using contexts C (as in Section 3) instead of Cv.
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I Example 11. Let Γ = (p, p#p�q), ∆ = (q, p�q); then Γ p.q,2,Cv−−−−−→ (Γ,#pCv[Γ]) τ−→ (Γ,Cv[Γ])
and ∆ p.q,2,Cv−−−−−→ (∆,Cv[∆]). Without the p.q,i,j−−−−→ transition, Γ and ∆ would be bisimilar,
which would not be sound (they are distinguished by the context �2 / G�1x.Ω).

The other rules are not modified, but their meaning is still affected by the change in the
contexts grammars: the transitions λ,i,Cv−−−−→ and E−→ can now test with more arguments. This
is a consequence of the fact that an observer can build a bigger continuation from a captured
context. For instance, if Γ = (p, pEq, λx.x / v), then with the LTS of Section 3, we have

Γ
p.q,2,E1[G�1x.x]
−−−−−−−−−−→

#�1E2
−−−−→ λ,3,�4−−−−→ (Γ, pE1[E[E2[Γ]],Γ]q, pE1[E[E2[Γ]],Γ]q / v). In the new LTS,

the first transition is no longer possible, but we can still test the λ-abstraction with the same
argument using Γ λ,3,E1[?2[E2]]−−−−−−−−→ (Γ, pE1[E[E2[Γ]],Γ]q / v).

As explained in Section 4.1, we want to prevent the use of some up-to techniques (like
the bisimulation up to related context we introduce in Section 4.3) after some transitions,
especially p.q,i,Cv−−−−−→. To do so, we distinguish the passive transitions p.q,i,Cv−−−−−→, v−→ from the
other ones, called active. In a LTS, a visible action α−→ (where α 6= τ) usually corresponds
to an interaction with an external observer. The transition v−→ does not fit that principle;
similarly, p.q,i,Cv−−−−−→ does not correspond exactly to an observer interacting with a continuation,
since we throw a value, and not any expression. In contrast, λ,i,Cv−−−−→ corresponds to function
application, E−→ to context capture, p.q,i,j−−−−→ to continuation decomposition, and #,i,j−−−→ to
testing prompts equality. This is how we roughly distinguish the former transitions as passive,
and the latter ones as active. We then change the definition of progress, to allow a relation
R to progress towards different relations after passive and active transitions.

I Definition 12. A relation R diacritically progresses to S, T written R�� S, T , if R ⊆ S,
R ⊆ T , and Σ R Θ implies that

if Σ α−→ Σ′ and α−→ is passive, then there exists Θ′ such that Θ α=⇒ Θ′ and Σ′ S Θ′;
if Σ α−→ Σ′ and α−→ is active, then there exists Θ′ such that Θ α=⇒ Θ′ and Σ′ T Θ′;
the converse of the above conditions on Θ.

A ?-bisimulation is a relation R such that R�� R,R, and ?-bisimilarity ?
≈ is the union of

all ?-bisimulations.

Note that with the same LTS, � and �� entail the same notions of bisimulation and
bisimilarity (but we use a different LTS in this section).

4.3 Up-to Techniques, Soundness, and Completeness
We now discriminate up-to techniques, so that regular up-to techniques cannot be used after
passive transitions, while strong ones can. An up-to technique (resp. strong up-to technique)
is a function f such that R�� R, f(R) (resp. R�� f(R), f(R)) implies R ⊆ ?

≈. We also
adapt the notions of evolution and compatibility.

I Definition 13. A function f evolves to g, h, written f g, h, if for all R �� R, T , we
have f(R)�� g(R), h(T ).

A function f strongly evolves to g, h, written f s g, h, if for all R �� S, T , we have
f(R)�� g(S), h(T ).

Strong evolution is very general, as it uses any relation R, while regular evolution is more
restricted, as it relies on relations R such that R�� R, T . But the definition of diacritical
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9:12 Environmental Bisimulations for Dynamic Prompt Generation

compatibility below still allows to use any combinations of strong up-to techniques after a
passive transition, even for functions which are not themselves strong. In contrast, regular
functions can only be used once after a passive transition of an other regular function.

I Definition 14. A set F of monotone functions is diacritically compatible if there exists
S ⊆ F such that

for all f ∈ S, we have f s S
ω, Fω;

for all f ∈ F , we have f Sω ◦F ◦Sω, Fω.
If S1 and S2 are subsets of F which verify the conditions of the definition, then S1 ∪ S2 also
does, so there exists the largest subset of F which satisfies the conditions, written strong(F ).
This (possibly empty) subset of F corresponds to the strong up-to techniques of F .

I Lemma 15. Let F be a compatible set.
If R�� strong(F )ω(R), Fω(R), then Fω(R) is a bisimulation.
If f ∈ F , then f is an up-to technique. If f ∈ strong(F ), then f is a strong up-to
technique.
For all f ∈ F , we have f(≈)⊆ ≈.

We now use this framework to define up-to techniques for the ?-bisimulation. The
definitions of perm and weak are unchanged. We define bisimulation up to related contexts
for values rctx and for any term rectx as follows:

Γ R ∆

(Γ,−→Cv[Γ],C[Γ]) rctx(R) (∆,−→Cv[∆],C[∆])

(Γ, e1) R (∆, e2)

(Γ,−→Cv[Γ],E[e1,Γ]) rectx(R) (∆,−→Cv[∆],E[e2,∆])

The definitions look similar to the ones of ctx and ectx, but the grammar of multi-hole
contexts now include ?i. Besides, we inline strengthening in the definitions of rctx and
rectx, allowing Γ, ∆ to be extended. This is necessary because, e.g., str and rectx cannot be
composed after a passive transition (they are both not strong), so rectx have to include str
directly. Note that the behavior of str can be recovered from rectx by taking E = �.

I Lemma 16. F def= {perm,weak, rctx, rectx} is compatible, with strong(F ) = {perm,weak}.

As a result, these functions are up-to techniques, and weak and perm can be used after a
passive transition. Because of the last item of Lemma 15, ?

≈ is also a congruence w.r.t.
evaluation contexts, which means that ?

≈ is sound w.r.t. ≡E . We can also prove it is complete
the same way as for Theorem 9, leading again to full characterization.

I Theorem 17. e1 ≡E e2 iff (∅, e1) ?
≈ (∅, e2).

4.4 Examples

We illustrate the use of ?
≈, rctx, and rectx with two examples that would be much harder to

prove with the techniques of Section 3.

I Example 18 (βΩ axiom). We prove (λx.E[x]) e ?
≈ E[e] if x /∈ fv(E) and sp(E) = ∅.

Define R starting with (p(λx.E[x])�q) R (pEq), and closing it under the (#-check) and the
following rule:

Γ R ∆
(Γ, (λx.E[x]) Cv[Γ]) R (∆, E[Cv[∆]])
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Then (∅, (λx.E[x]) e) weak(rctx(R)) (∅, E[e]) and R is a bisimulation up to context, since
the sequence Γ p.q,1,Cv−−−−−→ (Γ, (λx.E[x]) Cv[Γ]) τ−→ (Γ, E[Cv[Γ]]) fits ∆ p.q,1,Cv−−−−−→ (∆, E[Cv[∆]]) τ=⇒
(∆, E[Cv[∆]]), where the final states are in rctx. Notice we use rctx after τ−→, and not after
the passive p.q,1,Cv−−−−−→ transition.

I Example 19 (Exceptions). A possible way of extending a calculus with exception handling
is to add a construct tryr e with v, which evaluates e with a function raising an exception
stored under the variable r. When e calls the function in r with some argument v′, even inside
another try block, then the computation of e is aborted and replaced by vv′. We can implement
this behavior directly in λG#; more precisely, we write tryr e with v as handle (λr.e) v, where
handle is a function expressed in the calculus. One possible implementation of handle in λG#
is very natural and heavily relies on fresh-prompt generation:

handle def= λf.λh.Px.#xf (λz.Gx .h z)

The idea is to raise an exception by aborting the current continuation up to the corresponding
prompt. The same function can be implemented using any comparable-resource generation
and only one prompt p:

handlep
def= λf.λh.Px.(#plet r= f raisep,x in λ .λ .r) x h

raisep,x
def= fix r(z).Gp .λy.λh.if x

?= y then h z else r z

Here the idea is to keep a freshly generated name x and a handler function h with the prompt
corresponding to each call of handlep. The exception-raising function raisep,x iteratively
aborts the current delimited continuation up to the nearest call of handlep and checks the
name stored there in order to find the corresponding handler. Note that this implementation
also uses prompt generation, since it is the only comparable resource that can be dynamically
generated in λG#, but the implementation can be easily translated to, e.g., a calculus with
single-prompted delimited-control operators and first-order store.

Proof. We prove that both versions of handle are bisimilar. As in Example 10 we iteratively
build a relation R closed under the (#-check) rule, so that R is a bisimulation up to context.
We start with (handle) R (handlep); to match the λ,1,Cv−−−−→ transition, we extend R as follows:

Γ R ∆
(Γ, λh.Px.#xCv[Γ] (λz.Gx .h z)) R (∆, λh.Px.(#plet r=Cv[∆] raisep,x in λ .λ .r) x h)

We obtain two functions which are in turn tested with λ,n+1,C′
v−−−−−−→, and we obtain the states

(Γ,#p1Cv[Γ] (λz.Gp1 .C′v[Γ] z)) and (∆, (#plet r=Cv[∆] raisep,p2 in λ .λ .r) p2 C′v[∆]).

Instead of adding them to R directly, we decompose them into corresponding parts using up
to context (with C = ?n+1[Cv �n+2]), and we add these subterms to R:

Γ R ∆ p1 /∈ #(Γ) p2 /∈ #(∆)
(Γ, p#p1�q, λz.Gp1 .C′v[Γ] z) R (∆, p(#plet r=� in λ .λ .r) p2 C′v[∆]q, raisep,p2)

(∗)

Testing the two captured contexts with p.q,n+1,C′′
v−−−−−−−→ is easy, because they both evaluate to the

thrown value. We now consider λz.Gp1 .C′v[Γ] z and raisep,p2 ; after the transition λ,n+2,Cv−−−−−−→
we get the two control stuck terms

Gp1 .C′v[Γ] Cv[Γ] and Gp .λy.λh.if p2
?= y then h Cv[∆] else raisep,p2 Cv[∆]

FSCD 2016



9:14 Environmental Bisimulations for Dynamic Prompt Generation

Adding such terms to the relation will not be enough. The first one can be unstuck only using
the corresponding context p#p1�q, but the second one can be unstuck using any context
added by rule (∗), even for a different p2. In such a case, it will consume a part of the context
and evaluate to itself. To be more general we add the following rule:

Γ R ∆ E[Gp1 .C′v[Γ] Cv[Γ],Γ] is control-stuck

(Γ,E[Gp1 .C′v[Γ] Cv[Γ],Γ]) R (∆,Gp .λy.λh.if p2
?= y then h Cv[∆] else raisep,p2 Cv[∆])

The newly introduced stuck terms are tested with E′

−→; if E′ does not have ?i surrounding �,
they are still stuck, and we can use up to evaluation context to conclude. Assume E′ =
E1[?i[E2]] where E2 has not ?j around �. If i points to the evaluation context added by
(∗) for the same p2, then they both evaluate to terms of the same shape, so we use up to
context with C = E1[C′v Cv]. Otherwise, we know the second program compares two different
prompts, so it evaluates to E1[Gp .λy.λh.if p2

?= y then h Cv[∆] else raisep,p2 Cv[∆],∆] and
we use rectx with the last rule. J

5 Related Work and Conclusion

Related work. In previous works [5, 6, 7], we defined several bisimilarities for a calculus
(called λS) with the (less expressive) delimited-control operators shift and reset. The
bisimilarity of Section 3 and the corresponding up-to techniques are close to the ones
of [7, Section 3], except that in [7], we do not compare stuck terms using all evaluation
contexts. However, there is no equivalent of bisimulation up to related contexts in [7], which
makes the proof of the βΩ axiom very difficult in that paper. The proof in Example 18 is as
easy as the proof of the βΩ axiom in [6], but the bisimilarity of [6] is not complete, unlike ?

≈.
As a matter of fact, following the developments of Section 4, we believe it is possible to
define environmental bisimulations up to related contexts for the λS -calculus.

Environmental bisimilarity has been defined in several calculi with dynamic resource
generation, like stores and references [23, 22, 30], information hiding constructs [31, 32], or
name creation [3, 26]. In these works, an expression is paired with its generated resources,
and behavioral equivalences are defined on these pairs. Our approach is different since we do
not carry sets of generated prompts when manipulating expressions (e.g., in the semantic
rules of Section 2); instead, we rely on side-conditions and permutations to avoid collisions
between prompts. This is possible because all we need to know is if a prompt is known to an
outside observer or not, and the correspondences between the public prompts of two related
expressions; this can be done through the environment of the bisimilarity. This approach
cannot be adapted to more complex generated resources, which are represented by a mapping
(e.g., for stores or existential types), but we believe it can be used for name creation in
π-calculus [26].

A line of work on program equivalence for which relating evaluation contexts is crucial,
as in our work, are logical relations based on the notion of biorthogonality [27]. In particular,
this concept has been successfully used to develop techniques for establishing program
equivalence in ML-like languages with call/cc [10], and for proving the coherence of control-
effect subtyping [8]. Hur et al. combine logical relations and behavioral equivalences in the
definition of parametric bisimulation [16], where terms are reduced to normal forms that
are then decomposed into subterms related by logical relations. This framework has been
extended to abortive control in [17], where stuttering is used to allow terms not to reduce for
a finite amount of time when comparing them in a bisimulation proof. This is reminiscent
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of our distinction between active and passive transitions, as passive transitions can be seen
as “not reducing”, but there is still some testing involved in these transitions. Besides, the
concern is different, since the active/passive distinction prevents the use of up-to techniques,
while stuttering has been proposed to improve plain parametric bisimulations.

Conclusion and future work. We have developed a behavioral theory for Dybvig et al.’s
calculus of multi-prompted delimited control, where the enabling technology for proving
program equivalence are environmental bisimulations, presented in Madiot’s style. The
obtained results generalize our previous work in that they account for multiple prompts
and local visibility of dynamically generated prompts. Moreover, the results of Section 4
considerably enhance reasoning about captured contexts by treating them as first-class
objects at the level of bisimulation proofs (thanks to the construct ?i) and not only at the
level of terms. The resulting notion of bisimulation up to related contexts improves on the
existing bisimulation up to context in presence of control operators, as we can see when
comparing Example 18 to the proof of the same result in [7]. We believe bisimulation up to
related contexts could be useful for constructs akin to control operators, like passivation in
π-calculus [26]. The soundness of this up-to technique has been proved in an extension of
Madiot’s framework; we plan to investigate further this extension, to see how useful it could
be in defining up-to techniques for other languages. Finally, it may be possible to apply the
tools developed in this paper to [20], where a single-prompted calculus is translated into a
multi-prompted one, but no operational correspondence is given to guarantee the soundness
of the translation.

Acknowledgements. We would like to thank Jean-Marie Madiot for the insightful dis-
cussions about his work, and Małgorzata Biernacka, Klara Zielińska, and the anonymous
reviewers for the helpful comments on the presentation of this work.
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Abstract
Term rewriting has been used as a formal model to reason about the complexity of logic, func-
tional, and imperative programs. In contrast to term rewriting, term graph rewriting permits
sharing of common sub-expressions, and consequently is able to capture more closely reasonable
implementations of rule based languages. However, the automated complexity analysis of term
graph rewriting has received little to no attention.

With this work, we provide first steps towards overcoming this situation. We present adap-
tions of two prominent complexity techniques from term rewriting, viz, the interpretation method
and dependency tuples. Our adaptions are non-trivial, in the sense that they can observe not
only term but also graph structures, i.e. take sharing into account. In turn, the developed meth-
ods allow us to more precisely estimate the runtime complexity of programs where sharing of
sub-expressions is essential.
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Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.10

1 Introduction

In recent years automated complexity analysis of term rewriting (see [20] for an early overview)
has received increased attention, which has manifested itself in a number of significant
breakthroughs. For brevity, we only mention recent work on direct methods [21, 3, 29],
on worst case lower bounds [15], and on certification [6]. Furthermore the liveliness of the
designated complexity competition clearly showcases the various activities in this area. 1

These activities have also triggered applications outside of rewriting. In particular term
rewriting has been very successfully used as a formal model to reason about the complexity
of logic, functional, and imperative programs, cf. [16, 28, 11, 2].

In contrast to term rewriting, term graph rewriting permits sharing of common sub-
expressions, and consequently is able to capture more closely reasonable implementations of
rule based languages. However, the automated complexity analysis of term graph rewriting
has received little to no attention. This is somewhat surprising. On the one hand, term graph
rewriting is typically motivated as implementation of term rewriting. Hence effectivity of the
implementation should have been an issue. On the other hand, (term) graph rewriting is the
rule in any kind of implementation of functional programs [27]. Consider for instance the
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power x 0 = 1
power x n = y * y * (if n ‘mod ‘ 2 == 0 then 1 else x)

where y = power x (n ‘div ‘ 2)

Figure 1 Fast Exponentiation in Haskell.

Haskell program depicted in Figure 1. The example showcases the necessity to implement
non-strict evaluation via graph reduction. Indeed, if we assign unit cost to arithmetic
operations as usual, then it is easy to see that graph reduction in general requires time linear
in the bit-length of n. In contrast, when implemented naively, e.g. as a term rewrite system
(TRS for short) under an outermost reduction strategy, in each step the recursive call is
duplicated. Conclusively the runtime complexity becomes exponential in the setting of TRSs.
Moreover, transformations from imperative languages to term rewriting would profit from
a more direct representation of the heap as a graph, rather than a tree. Thus complexity
analysis of term graph rewriting, automated if possible, should have significant impact.

In this paper, we provide first steps towards overcoming this situation. We present
adaptions of two prominent complexity techniques from term rewriting, viz, the interpretation
method and dependency tuples. We summarise the contributions of this paper.

We clarify and fix the notion of runtime complexity in the context of term graph rewriting
(see Section 3). This is a non-trivial task, as we have to take care of succinct representations
of start terms.

We provide a novel interpretation method for term graph rewrite systems (Theorem 12).
This method is obtained by a careful adaption of the notion of well-founded monotone
algebra to term graphs.

We show that in the context of sharing, existing restrictions of the dependency tuple
approach to innermost evaluation can be overcome and establish a dependency pair
method for term graph rewrite systems (Theorem 21).

The results above transfer two core techniques of the dependency pair framework to the
complexity analysis of term graph rewrite systems. Great care has been taken to establish
the correctness of these techniques in the more general setting of relative graph rewriting.
Consequently, these methods are readily applicable in the complexity pair framework from [4],
suited to term graph rewrite systems. Although not presented here, this in turn paves the way
to transfer with relative ease a variety of complexity techniques applicable in the dependency
pair setting from term to graph rewriting, notably, the usable rules criterion, predecessor
estimation, dependency graph decomposition and various simplification techniques, see [4].

Our adaptions are non-trivial, in the sense that they can observe not only term but also
graph structures, i.e. take sharing into account. In turn, the developed methods allow us to
more precisely estimate the runtime complexity of programs where sharing of sub-expressions
is essential.

This paper is structured as follows. In the next two sections we cover basics and clarify
the notion of term graph rewriting employed. In Section 4, we present our interpretation
method of term graph rewriting and in Section 5, we adapt the dependency tuple technique
to this context. In Section 6 we discuss related work. Finally, in Section 7 we conclude and
mention future work.
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(f) A reduction step on T with rule L→ R.

Figure 2 Step-by-step construction of a graph rewrite step.

2 Preliminaries

We shortly recap basic definitions and notions. With N we denote the set of natural numbers
{0, 1, 2, . . . }. For a set S, we denote by S∗ the set of finite sequences [s1, s2, . . . , sn] over
elements si ∈ S. A partial function f from A to B is denoted by f : A 7→ B. Its domain
is dom(f) := {a ∈ A | f(a) is defined}. For two partial functions f, g : A 7→ N and a ∈ A
we define f(a) 6k g(a) if either f(a) or g(a) is undefined, or f(a) and g(a) are defined and
f(a) 6 g(a) holds.

Let → ⊆ S × S be a binary relation. We denote by →+ the transitive and by →∗ the
transitive and reflexive closure of →. We say that → is well-founded or terminating, if there
is no infinite sequence s0 → s1 → . . . . It is finitely branching, if the set {t | s→ t} is finite
for each s ∈ S. For two binary relations →A and →B , the relation of →A relative to →B is
defined by →A/→B :=→∗B · →A · →∗B. The derivation height dh→ : S 7→ N with respect
to → over S is defined by dh→(s) := max{` ∈ N | s = s0 → s1 → · · · → s`}. Note that dh→
is total whenever → is terminating and finitely branching. Let (Si)i∈N denote a countably
infinite family of monotonically increasing subsets of S, i.e. Si ⊆ Si+1 for all i ∈ N, whose
limit is S. For brevity, we denote the family (Si)i∈N by S. We define rcS→ : N 7→ N by
rcS→(n) := max{dh→(s) | s ∈ Sn}.

3 Term Graph Rewriting and All That

We introduce central concepts and notions of term graph rewriting, see [7] for an overview.

Term Graphs

Let F denote a signature, i.e. a finite set of function symbols. Each f ∈ F is associated with
a natural number ar(f), its arity. Moreover, we suppose a partitioning of the signature F

FSCD 2016
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into defined symbols D and constructors C. Defined symbols take over the role of operations,
whereas constructors are used to build values. Throughout the following, the signature F
and its separation into D and C is kept fixed. A term graph (TG for short) T over the
signature F is a directed acyclic graph whose internal nodes are labeled by symbols in F ,
and where outgoing edges are ordered. Formally, T is a triple (NT , sucT , labT ) consisting of
nodes NT , a partial successors function sucT : NT 7→ N∗T from nodes to sequences of nodes,
and a partial labeling function labT : NT 7→ F . Unlabeled nodes take the role of variables in
terms, and are collected in VT ⊆ NT . We require that TGs are compatible with their labeling,
in the sense that for each node u ∈ NT , if labT (u) = f then sucT (u) = [u1, . . . , uar(f)] and
otherwise, sucT (u) is undefined. In the former case, we also write T (u) = f(u1, . . . , uar(f)).
We define the successor relation ⇀T on nodes in T such that u ⇀T v holds if sucT (u)
is defined and v occurs in sucT (u). If v occurs at the ith position we also write u i−⇀T v.
Throughout the following, we consider only acyclic TGs, that is, we demand that ⇀T is
acyclic. If not mentioned otherwise, we also suppose that TGs are rooted, i.e. T contains a
unique node rt(T ) ∈ NT , the root, from which all nodes v ∈ NT are reachable: rt(T ) ⇀∗T v.
See Figure 2(a) for an example of a TG. Here, we depict nodes directly by their label,
possibly annotating node identities. Unfolding a term graph T from its root results in a
finite term over the signature F and variables VT , and we sometimes use this term as a
linear representation for the TG T . For instance, the TG depicted in Figure 2(a) unfolds to
g
(
s(s(s(0))), f(s(s(0)),n(s(0), l, l))

)
.

The size |T | of the TG T refers to the cardinality of NT . The TG T is called ground if
VT = ∅. For a subset G ⊆ F of function symbols, we collect in NGT ⊆ NT all nodes u with
labT (u) ∈ G. We call a node u ∈ NT below and above, respectively, of a node v ∈ NT in
accordance to the topological ordering induced by ⇀∗T . Two nodes are called parallel in T , if
they are mutually unreachable. For instance, in Figure 2(a), the nodes v and x are parallel.
The TG T is a tree if every node in T is reachable by precisely one path from its root rt(T ).
Thus, trees do not exhibit sharing.

We denote by T �u the sub-graph of T rooted at node u ∈ NT . With T [v ← u] we denote
the graph obtained by redirecting all edges pointing to u to point to the node v. That is,
T [v ← u] denotes the TG with nodes NT ∪ {v}, labeling labT [v←u] := labT and the successor
function sucT [v←u] is defined such that (i) w i−⇀T [v←u] v holds for each edge w i−⇀T u in T ,
and (ii) w i−⇀T [v←u] w

′ holds whenever w i−⇀T w
′ for w′ 6= u. Note that if v 6∈ NT , then v is

considered a variable node in T [v ← u]. The notion is naturally extended to sequences, i.e.
T [v1, . . . , vn ← u1, . . . , un] denotes the TG obtained by redirecting edges pointing to ui to vi
for all 1 6 i 6 n. Here, we assume that for all 1 6 i, j 6 n, the node ui is distinct from uj
(if j 6= i) and vj . We denote by S ∪ T the union of two TGs S and T . To avoid ambiguities,
we require that if u ∈ NS ∩NT then labS(u) or labT (u) is undefined. We define

sucS∪T (u) :=


sucS(u) if u ∈ NS and labS(u) ∈ F ,
sucT (u) if u ∈ NT and labT (u) ∈ F ,
undefined otherwise.

Similarly, we define the labeling labS∪T . We write T 〈S〉u to denote the replacement of the
subgraph in T at node u by S:

T 〈S〉u :=
{
S if u = rt(T ),(
T [rt(S)← u] ∪ S

)
� rt(T ) otherwise.

.

For two rooted TGs S = (NS , sucS , labS) and T = (NT , sucT , labT ), a mappingm : NS →
NT is called morphic in u ∈ NS if (i) labS(u) = labT (m(u)) whenever labS(u) is defined, and
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(ii) u i−⇀S v implies m(u) i−⇀T m(v) for all appropriate i. A (rooted) homomorphism from S

to T is a mapping m : NS → NT that (i) maps the root of S to the root of T and that (ii) is
morphic in all nodes u ∈ NFS . We write S ·>m T to indicate that m is a homomorphism from
S to T . We denote by m its extension outside of its domain, such that m(u) = u whenever
u is not in the domain of m. Two TGs are isomorphic, in notation S ∼= T , if there exist
two morphisms m1,m2 with S ·>m1 T and T ·>m2 S, or equivalently, if S ·>m T holds for a
bijective morphism m. Observe that two isomorphic TGs are equal up to renaming of nodes.

Term Graph Rewriting

A graph rewrite rule over the signature F is a triple (G, l, r) where G is a TG over F and
l, r ∈ NG are two distinguished nodes, denoting the root of the left- and right-hand side,
respectively. We require that all nodes in G are reachable from l or r. This way, a graph
rewrite rule can be denoted by L→ R, for the left-hand side L := G�l and right-hand side
R := G�r. Furthermore, we demand that the root l of the left-hand side L is labeled by a
defined symbol, and that all variable nodes in R occur also in L. The label of l is called the
defined symbol of L→ R. The maximal sub-graph of G contained in both L and R is called
the interface of the rule L→ R. See Figure 2(b) that depicts a graph rewrite rule defining
f, with left-hand side f(s(x), y) and right-hand side f(x,n(s(x), y, y)), for x and y denoting
the two variable nodes. The interface of this rule consists of the two variable nodes, as well
as the node labeled by s. Isomorphisms are naturally extended to graph rewrite rules. An
isomorphic copy of a rule L→ R is also called a renaming. If R lies within L, we also say
that L→ R is a collapsing rule. A graph rewrite system (GRS for short) G over F is a finite
set of graph rewrite rules over F .

Let S be a ground TG and let L→ R be a graph rewrite rule with nodes disjoint from
those in S. Application of L→ R on S involves the identification of a redex, i.e. homomorphic
copy of L in S, replacing this copy with a copy of R, retaining interface nodes, and finally
garbage collecting nodes that became inaccessible. All of this is formalised as follows. We say
that the graph rewrite rule L → R matches the TG S at node u if L ·>m S�u holds. The
triple 〈L → R,m, u〉 is called a redex in S, and the node u of S the redex node, compare
Figure 2(c). With m(R) we denote the instantiation of the right-hand side of R by the
matching morphism L ·>m S�u. This is done by redirecting edges according to the morphism
m, from R to S, and then removing inaccessible nodes. Formally, let u1, . . . , un denote all
nodes of the interface in L→ R = (G, l, r). Then

m(R) := R[m(u1), . . . ,m(un)← u1, . . . , un]�m(r) .

Observe that m(r) 6= r only when R is collapsing, i.e. when r is an interface node ui. In this
case, m(R) consists of the single variable node m(r). Compare Figure 2(d) which depicts
m(R) with respect to the right-hand side R of the rule from Figure 2(b) and the matching
morphism drawn in Figure 2(c).

We define S  〈L→R,m,u〉 T , if 〈L → R,m, u〉 is a redex in S and T := S〈m(R)〉u, and
call S  〈L→R,m,u〉 T a pre-reduction step. We write S  L→R T when the precise redex is
unimportant. Since nodes of S and R are disjoint, S〈m(R)〉u is well-defined and acyclic.
Observe that by construction, the right-hand side R is embedded in T at node rt(R), more
precise, R ·>m T � rt(R) holds. Compare Figures 2(e) and 2(f).

For a rule L→ R = (G, l, r), we define their difference set ∆(L→ R) := (NR \NL)∪{l} if
l ∈ NR, and ∆(L→ R) := NR \NL otherwise. For symbols D ⊆ F we denote by ∆D(L→ R)
the restriction of ∆(L→ R) to nodes labeled by symbols from D. The following technical
result will be useful later.
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10:6 Complexity of Acyclic Term Graph Rewriting

I Proposition 1. If S  〈L→R,m,u〉 T then NDT ⊆ (NDS \ {u}) ∪ {m(v) | v ∈ ∆D(L→ R)}.

Proof. Observe that m is the identity function on NR \NL, whereas m(l) = u for l the root
of the left-hand side L. Further, NDT ⊆ NDS ∪∆D(L → R) \ {l} where moreover, u 6∈ NDT
whenever l does not occur in the right-hand side R. From this, the claim follows by case
analysis on l ∈ NR. J

To every TG T , we can identify an isomorphic, canonical TG C(T ) where nodes are
sets of positions, i.e. finite sequences of integers [26]. In particular, if two TG S and T are
isomorphic, then C(S) = C(T ). To avoid reasoning modulo TG isomorphisms below, we
define the graph rewrite relation −→G induced by the GRS G over canonical TGs. We define
S −→L→R T if S  〈L′→R′,m,u〉 T

′ and C(T ′) = T holds for a renaming L′ → R′ of L → R,
some morphism m and node u. Renaming ensures that nodes in L → R are fresh with
respect to S. Notice that independent of the particular renaming L→ R, the reduct T is
unique. Finally, we define S −→G T if S −→L→R T holds for some rule L→ R ∈ G.

Runtime Complexity

To measure the complexity of an operation f ∈ D we adopt a unitary cost model, where each
reduction step has unit cost. To this end, we look at calls to f when supplied with values.
In short, we restrict our attention to reductions starting from basic TGs ♦(D, C), i.e. TGs
whose root is labeled by a defined symbol D, and whose arguments are values formed from C.
Similarly, the set M(D, C) ⊆ ♦(D, C) of basic trees is defined. We abbreviate ♦(D, C) and
M(D, C) by ♦ and M, respectively.

Let S be a set of TGs, parameterised in their size. For simplicity, we assume that S denotes
the limit of a family of TGs (Si)i=N, where Si ⊆ S collects all TGs in

⋃
i∈N S of size up to i.

As above we denote the family simply by S. Recall that rcS−→G
(n) = max{dh−→G

(s) | s ∈ Sn},
cf. page 3. The runtime complexity (function) of G with respect to starting graphs S is
defined as rcSG(n) := rcS−→G

(n).
Furthermore, we set dhG(T ) := dh−→G

(T ). Of particular interest will be the runtime
complexity rc♦G (n) of G on basic TGs, and the runtime complexity rcMG(n) of G on basic trees.

Relative Term Graph Rewriting

Rather than focusing solely on a GRS G, we also consider the graph rewrite relation of a GRS
G relative to a GRS H, in notation G/H. This way, we can seamlessly adopt the combination
framework for complexity analysis underlying our tool TCT [4] and the certifier CeTA [6]. The
relation −→G/−→H is abbreviated by −→G/H. Note that −→G/H specialises to −→G for the case
H = ∅. Similar to above, we set dhG/H(T ) := dh−→G/H

(T ) and rcSG/H(n) := rcS−→G/H
(n) for

a set of TGs S. Note that the derivation height of a TG T with respect to −→G/H, if defined,
corresponds to the number of applications of rules from G in a G ∪ H-derivation. Thus,
intuitively, rcSG/H(n) measures the complexity of G ∪ H, where applications of rules from H
are free.

The following is a straight forward adaption of H. Zankl and M. Korp [30, Theorem 3.6].

I Proposition 2. For three GRSs G1,G2 and H and any set of TGs S, we have

rcSG1∪G2/H(n) 6k rcSG1/G2∪H(n) + rcSG2/G1∪H(n) , for all n ∈ N.

Proof of Proposition 2. Fix a TG T such that both dhG1/G2∪H(T ) and dhG2/G1∪H(T ) are
defined, i.e., T neither admits a G1 ∪ G2 ∪H derivation with infinitely many applications of
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rules from G1 or from G2. Clearly, in any such reduction of T , we can estimate the number
l ∈ N of applications of rule from G1 by dhG1/G2∪H(T ). Likewise, the number k ∈ N of
applications of rule from G2 is bounded by dhG2/G1∪H(T ). In total thus, the considered
reduction admits k + l 6 dhG1/G2∪H(T ) + dhG2/G1∪H(T ) applications of rules from G1 ∪ G2.
As the considered reduction was arbitrary, this implies

dhG1∪G2/H(T ) 6k dhG1/G2∪H(T ) + dhG2/G1∪H(T ) ,

which then easily generalises to the runtime complexity function. J

4 An Interpretation Method for Graph Rewriting

In this section we introduce an interpretation method for graph rewrite systems. We start
with a trivial extension of quasi-interpretations from terms to term graphs.

I Definition 3. An F-algebra A for a signature F consists of a set A, the carrier, together
with operations fA : Ak → A for every k-ary function symbol f ∈ F . For an F-algebra A,
assignment α : VT → A and TG T , the interpretation JuKA,αT of a node u in T is defined as
follows.

JuKA,αT :=
{

fA(Ju1K
A,α
T , . . . , JukK

A,α
T ) if T (u) = f(u1, . . . , uk),

α(u) otherwise.

Throughout the following, we fix the algebra A and write JuKαT instead of JuKA,αT . Similar, we
may drop the reference to α when T is ground. Note that the interpretation JuKT corresponds
to the interpreting of the term obtained unfolding the subgraph T �u. As such, it cannot
observe sharing. This, in turn, allows us to prove the following, even in the case where
matching is non-injective.

I Lemma 4. Suppose S ·>m T holds for two TGs S and T , where T is ground. For all
u ∈ VS, define α(u) := Jm(u)KT . Then JuKαS = Jm(u)KT holds for all nodes u of S.

Proof. The proof is by induction on the term graph structure of S. In the base case, where
we consider a variable node u of S, we have JuKαS = α(u) = Jm(u)KT as desired. In the
inductive step, we consider a node u in S with S(u) = f(u1, . . . , uk). As by assumption the
function m is morphic in u, we see that T (m(u)) = f(m(u1), . . . ,m(uk)). Thus by definition
and induction hypothesis,

JuKαS = fA(Ju1KαS , . . . , JukK
α
S) = fA(Jm(u1)KT , . . . , Jm(uk)KT ) = Jm(u)KT . J

Let >A denote a proper, i.e. transitive and irreflexive, order on the carrier A of an
F-algebra A, and denote by >A its reflexive closure. Then (A, >A) is a weakly monotone
F-algebra (WMA for short) if all interpretations fA : Ak → A are monotone with respect
to >A. Here fA is monotone with respect to an order � on A if

ai � b =⇒ fA(a1, . . . , ai, . . . , ak) � fA(a1, . . . , b, . . . , ak) .

I Definition 5. A WMA (A, >A) is called a quasi-model for a GRS G if JlKA,αG >A JrKA,αG

holds for all rules (G, l, r) ∈ G and all assignments α : VG → A.

By weak monotonicity, the quasi-model condition on G extends to −→G . More precise, the
following lemma holds. Here, for a step S  〈L→R,m,u〉 T , where by definition T = S〈m(R)〉u,
we say that a node w ∈ NT originates from a node v in S if either w = v ∈ NS , or
w = rt(m(R)) and v = u. In particular, the root of T always originates from the root of S.
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10:8 Complexity of Acyclic Term Graph Rewriting

I Lemma 6. Let (A, >A) be a quasi-model for a GRS G, and consider a step S −→G T . Then
JvKS >A JwKT holds for every node w ∈ NT that originates from a node v ∈ NS.

Proof. Suppose S  〈L→R,m,u〉 T for a renaming L → R of a rule in G, and fix a node
w ∈ NT that originates from v ∈ NS . The only non-trivial case is when the node w lies along
the path from the root of T to the root of the plugged graph m(R), as otherwise T �w = S�v
and thus trivially JvKS = JwKT .

Hence fix a node w along this path. The proof is by induction on the distance of w to the
rt(m(R)). In the base case, w = rt(m(R)). We distinguish two cases. In the first case, w is a
node of S, and thus w originates from itself. Thus L→ R is a collapsing rule which implies
S�w = T �w, and hence the claim follows in this case. Otherwise, w = rt(m(R)) = rt(R)
is a fresh node and w originates from the redex node u. Recall that by construction, the
right-hand side R is embedded via m in T at node rt(R), i.e. R ·>m T � rt(R) holds. Define
the assignment α by α(v′) := Jm(v′)KS = Jm(v′)KT for all variable nodes v′ of L. As we also
have L ·>m S�u, two applications of Lemma 4 and the quasi-model condition yields:

JuKS = Jm(rt(L))KS = Jrt(L)KαL >A Jrt(R)KαR = Jm(rt(R))KT = Jrt(R)KT .

This concludes the base case. The inductive step then follows directly from the induction
hypothesis and weak monotonicity of the quasi-model. J

Incorporating Sharing

Our approach to sharing is simple but effective. Conceptually, the semantics imposed by
a quasi-model A are used to associate a notion of size to term graphs. An alternative
interpretation B on operation symbols f ∈ D can then be used to measure the complexity of
calls to f, where the size of the arguments is given by A. A term graph T is then interpreted
by summing up the interpretation of all calls to defined symbols in T . Conditions put on
rewrite rules then ensure that T interpreted gives a bound on the length of reductions of
T . However, as soon as we move to the dependency pair setting, the separation into two
algebras A and B becomes inessential. In the following, we therefore restrict ourselves to a
single algebra that is used to measure sizes as well as the complexity of function calls. This
intuition is formalised as follows.

Let A be an F-algebra, equipped with a binary operation ⊕ and constant 0A such
that (A,⊕, 0A) forms a commutative monoid, that is, ⊕ : A × A → A is associative and
commutative, with identity 0A. Then (A,⊕, 0A) is called an abelian F -algebra. Furthermore,
if (A, >A) is a WMA, and ⊕ is monotone with respect to >A (and hence also with respect to
≥A), then ((A,⊕, 0A), >A) is called a weakly-monotone abelian algebra (WMAA for short).
Notice that addition (⊕) extends in the obvious way to summation

∑
over finite multisets

over A, in particular, the summation over an empty set is 0A.

I Definition 7. Let (A,⊕, 0A) be an abelian F-algebra. For a TG T , an assignment
α : VT → A we define the D-interpretation JT KA,αD of T by

JT KA,αD :=
∑
u∈ND

T

JuKA,αT .

As before, we drop the index A in JT KA,αD when clear from context, and the assignment α for
ground term graphs. Note that as a particular consequence of Lemma 4, the interpretation
of isomorphic term graphs coincides.
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I Lemma 8. Let S and T be two ground TGs. If S ∼= T then JSKD = JT KD .

Proof. By assumption, there exists a bijective morphism S ·>m T . Lemma 4 yields JuKS =
Jm(u)KT , for all nodes u of S. Since m is bijective and respects the labeling of nodes, we
conclude

JSKD =
∑
u∈ND

S

JuKS =
∑
u∈ND

S

Jm(u)KT =
∑
v∈ND

T

JvKT = JT KD . J

In the following, we give a sufficient criterion for an embedding of the rewrite relation −→G
into >A via the interpretation J·KD , that is, S −→G T implies JSK >A JT K. A first attempt
might be to require that JLKαD >A JRKαD holds for all rules L→ R ∈ G and assignments α.
The following example clarifies that such an orientation of rewrite rules is not sufficient, even
when (A,⊕, 0A) is a quasi-model for G.

I Example 9. Consider the one-rule GRS G1 := {f(g)→ c}, over a signature F1 consisting
of defined symbols D = {f, g}, the constructor c, and an additional binary constructor d.
We consider the WMAA ((A1,+, 0), >N) over N, where the interpretation A1 is defined by:

gA1 := 1 fA1(x) := 0 cA1 := 0 dA1(x, y) := 0 .

Then ((A1,+, 0), >N) constitutes a quasi-model for G1. Let G denote the graph underlying
the rule f(g)→ c, and let ug be the node labeled by g in G. Then

Jf(g)KA1
D = fA1(JugKG) + gA1 = 0 + 1 = 1 >N 0 = JcKA1

D .

On the other hand, for a binary constructor d, the GRS G1 gives rise to a rewrite step

S :=
d

f
gv
−→G1

d
c

g
=: T .

However this step is not embedded into >N:
JSKA1
D = fA1(JvKS) + gA1 = 1 6>N 1 = gA1 = JT KA1

D .

The inequality JLKαD >A JRKαD is not suitably reflecting upon the replacements of nodes
underlying a step S  〈L→R,m,u〉 T , in the presence of sharing. Although in the above
example the shared node labeled by g of the reduct lies within the matched pattern but not
in the right-hand side of the applied rule, it does not vanish in the reduct.

We overcome this issue via the notion of difference set, introduced in Section 3, that
characterises the node replacements underlying a rewrite step (see Proposition 1).

I Definition 10. Let (A,⊕, 0A) be an abelian F-algebra and fix an order � on the carrier
A. We say that a rule L→ R = (G, l, r) is oriented by � (with respect to the algebra A and
defined symbols D) if

JlKA,αG �
∑

u∈∆D (L→R)

JuKA,αG holds for all assignments α.

A GRS G is called oriented by � if all rules in G are oriented by �.

The following constitutes the main technical lemma of this section.
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I Lemma 11. Let ((A,⊕, 0A), >A) be an abelian quasi-model for a GRS G and suppose the
rule L→ R ∈ G is oriented by some � ∈ {>A, >A}. Then

S −→L→R T =⇒ JSKD � JT KD .

Proof. Fix � ∈ {>A, >A} and a rule L→ R = (G, l, r) which is oriented by �:

JlKA,αG �
∑

v∈∆D (L→R)

JvKA,αG . (?)

We prove that for a pre-reduction step S  〈L→R,m,u〉 T , we have JSKD � JT KD . As Lemma 4
allows us to lift the inequality (?) to renamings of L→ R, and since the interpretation of
isomorphic term graphs coincides (Lemma 8), the lemma follows from this. Define P as the
restriction of nodes NS \ {u} to nodes in T , and define Q := {m(v) | v ∈ ∆D(L→ R)}. Thus
NDT ⊆ P ∪Q, by Proposition 1. By Lemma 6 we have

JvKS >A JvKT for all v ∈ P . (†)

Furthermore, since R ·>m T �m(rt(R)), by Lemma 4 we see that

JvKαG = Jm(v)KT for all v ∈ ∆D(L→ R). (‡)

We conclude:

JSKD >A
∑
v∈P

JvKS ⊕ JuKS =
∑
v∈P

JvKS ⊕ JlKαG by definition and Lemma 4

�
∑
v∈P

JvKS ⊕
∑

v∈∆D (L→R)

JvKαG using the assumption (?)

>A
∑
v∈P

JvKT ⊕
∑

v∈∆D (L→R)

Jm(v)KT using Equalities (†) and (‡)

=
∑
v∈P

JvKT ⊕
∑
v∈Q

JvKT = JT KD m is injective on ∆D(L→ R).J

The following is then a straight forward consequence of Lemma 11.

I Theorem 12. Let ((A,⊕, 0A), >A) be an abelian quasi-model for the GRSs G and H. If G
is oriented by >A and H is oriented by >A, then dhG/H(T ) 6k dh>A

(JT KAD) holds for every
term graph T .

Proof. Fix a TG T with dh>A
(JT KAD) defined. It suffices to show that every sequence of

TGs T = T0, T1, T2, . . . such that

T = T0 −→∗H · −→G · −→∗H T1 −→∗H · −→G · −→∗H T2 −→∗H · −→G · −→∗H . . . .

is bounded in length by dh>A
(JT KAD). Using the assumptions on G and H, Lemma 11

translates the above sequence to

JT KAD = JT0KAD >∗A · >A · >∗A JT1KAD >
∗
A · >A · >∗A JT2KAD >

∗
A · >A · >∗A . . . .

As >∗A · >A · >∗A = >+
A, the claim is then easy to establish by definition of dh>A

. J

We emphasise that in conjunction with Proposition 2, the theorem can be applied in an
iterative fashion, moving successively rules from G two H until G is empty (see Example 15
below).
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Polynomial Term Graph Interpretations

We now instantiate Theorem 12 to make it applicable in the context of polynomial runtime
complexity analysis. With respect to term rewrite systems, various forms of interpretation
have been used to determine quantitative properties, most prominently, restricted forms of
polynomial [8] and matrix interpretations [22, 19]. Via Theorem 12, these techniques extend
naturally to graph rewrite systems. For brevity, we focus here on polynomial interpretations
into the naturals.

I Lemma 13. Let A be an F-algebra with carrier N, such that every interpretation function
fA is given by a polynomial of degree k ∈ N. Then the following properties hold.
1. Suppose cA(x1, . . . , xk) 6

∑
16i6n xi + δ holds for every c ∈ C and for some δ ∈ N. Then

there exists a polynomial p : N→ N of degree k such that dh>N(JT KAD) 6 p(|T |) holds for
every basic tree T ∈ M.

2. Suppose cA(x1, . . . , xk) 6 max16i6n xi + δ holds for every c ∈ C and for some δ ∈ N.
Then there exists a polynomial p : N → N of degree k such that dh>N(JT KAD) 6 p(|T |)
holds for every basic TG T ∈ ♦.

Proof. Fix a TG T ∈ ♦ with root r, thus T (r) = f(u1, . . . , uk) for some f ∈ D and some
nodes ui (1 6 i 6 k). Note that dh>N(n) = n, as moreover only the root of T is labeled by a
defined symbol, we conclude

dh>N(JT KAD) = JT KAD = JrKT = fA(Ju1KT , . . . , JukKT ) .

Define γ ∈ N as the maximal constant δ ∈ N occurring in the interpretation cA of a constructor.
By assumption on fA, we conclude Property 1 by observing that JuiKT 6 |T �ui| · δ holds for
all 1 6 i 6 k whenever T ∈ M. This follows by a standard induction on T �ui. Note that in the
inductive step we makes essential use of the tree shape of T . Concerning Property 2, the form
put on interpretations of constructors allows us to dispense the assumption T ∈ M. Indeed,
here JuiKT is bounded by a linear function in the depth of the graphs T �ui (1 6 i 6 k). J

If the pre-conditions of Lemma 13(1) (Lemma 13(2), respectively) are satisfied, we call
A a M-restricted (♦-restricted) polynomial interpretation of degree k. The following, then,
is a consequence of Theorem 12 and Lemma 13. In essence, a M-restricted polynomial
interpretation permits the interpretation of values linearly in their size, whereas ♦-restricted
polynomial interpretations measures values in their depth.

I Corollary 14. Let ((A,+, 0), >N) be an abelian quasi-model for GRSs G and H. Suppose
G is oriented by >N and H is oriented by >N (with respect to defined symbols D).
1. If A is a M-restricted polynomial interpretation of degree k, then rcMG/H(n) ∈ O(nk).
2. If A is a ♦-restricted polynomial interpretation of degree k, then rc♦G/H(n) ∈ O(nk).

I Example 15. Consider the following GRS that flattens trees to lists:

1: flatten(l)→ [ ] 2: flatten(n(e, s, t))→ e : (flatten(s) ++ flatten(t))
3: [ ] ++ ys→ ys 4: (x : xs) ++ ys→ x : (xs ++ ys) .

Collect in Gflatten the rules defining flatten, likewise collect in G++ the ones defining ++.
Define the M-restricted polynomial interpretation A2 such that

lA2 := 1 nA2(e, s, t) := 1 + s+ t flattenA2(t) := t

[ ]A2 := 0 x :A2 xs := 1 + xs xs++A2 ys := xs+ ys
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Then it can be verified that ((A2,+, 0), >N) is a quasi-model for the considered GRS, and
moreover, orients the rules in Gflatten strictly, and rules from G++ weakly. Note that A2 is a
M-restricted polynomial interpretation of degree 1. By Proposition 2 and Corollary 14, the
runtime complexity of G on trees is bounded by O(n) + rcMG++/Gflatten

(n). Now define a second
quasi-model A3 like A2, but with [ ]A3 := 1 and xs++A3 ys := xs instead. This interpretation
orients rules from G++ strictly, and rules from Gflatten weakly, and thus rcMG++/Gflatten

(n) ∈ O(n)
by Corollary 14. Conclusively, the overall runtime is linear on trees.

Note that neither of the two interpretations is a ♦-restricted polynomial interpretation,
due to the interpretation of the constructor n. Indeed, the runtime complexity of the system
on general term graphs is exponential, e.g., consider the flattening of a fully collapsed graph.

5 Dependency Pairs for Complexity Analysis

In the following, we suite dependency tuples [23], a variant of dependency pairs admissible
for the innermost runtime complexity analysis of term rewrite systems, to graph rewrite
systems. In the context of term graph rewriting, we will see that soundness of the method is
independent of a particular reduction strategy.

For each k-ary defined symbol f ∈ D, let f] denote a fresh function symbol also of arity k,
the dependency pair symbol of f. Marked defined symbols are collected in D]. Furthermore,
let Com denote the countable infinite set of compound symbols ck for all k ∈ N. The arity of ck
is k. For a TG T , symbol f and nodes {u1, . . . , uar(f)} ∈ NT , we write f(T �u1, . . . , T �uar(f))
for the term graph S�uf, where S is defined as the extension of the TG T by a fresh node
uf 6∈ NT with S(uf) = f(u1, . . . , uar(f)). For a TG T rooted in a defined symbol f ∈ D,
i.e. T (rt(T )) = f(u1, . . . , uk), the marking T ] of T is defined as f](T �u1, . . . , T �uar(f)). This
notation is naturally extended to sets.

I Definition 16. Let L→ R be a rule with ∆D(L→ R) = {u1, . . . , uk}. Then the rule

DP(L→ R) := L] → ck((R�u1)], . . . , (R�uk)]) ,

is called the dependency pair of L→ R (DP for short). We collect in DP(G) for each rule
L→ R a corresponding dependency pair DP(L→ R).

Kindly observe that according to the definition we only consider those subgraph R�ui of
the right-hand side R, that are outside of the interface of the rule L→ R. This is akin to a
similar condition for dependency pairs in termination of term rewrite systems, first observed
by Dershowitz [14]. Further, observe that the definition of dependency pairs is devoid of an
intermediate sharing or collapsing step. I.e. a shared node in DP(L → R) will have been
shared in L→ R already. However, utilising the notion of tops [25] an alternative definition
could be formalised in a straightforward way. This however, would render the step-by-step
simulation shown below impossible.

I Example 17. Reconsider our motivating example from the introduction, depicted in
Figure 1. Represent positive integers using two unary constructors 0, 1 and a constant ε.
Then the definition of power is expressible as the GRS Gpower consisting of the following rules:

power(x,0(ε))→ 1(ε)
power(x,0(n))→ y ∗ y where y = power(x, n)
power(x,1(n))→ y ∗ (y ∗ x) where y = power(x, n) .
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In the last two rules, the where-clause indicates that the recursive call is shared, i.e. repres-
ented by the node y. For brevity, we leave multiplication abstract, however, in the following
we consider the symbol (∗) defined. Thus DP(Gpower) consists of the following three rules:

power](x,0(ε))→ c0

power](x,0(n))→ c2(power](x, n), y ∗] y) where y = power(x, n)
power](x,1(n))→ c3(power](x, n), y ∗] (y ∗ x), y ∗] x) where y = power(x, n) .

In the following, we establish a simulation of G via DP(G)/G. In this simulation, we
will consider very specific term graphs over the new signature, so called DP graphs: a term
graph U over the signature F ∪D] ∪ Com is called a DP graph if nodes above marked nodes,
i.e. nodes u with labU (u) = f], are labeled by compound symbols, and all nodes below are
labeled by unmarked symbols F . Thus one can adopt the intuition that a DP graph T

denotes a finite sequence of term graphs whose root is marked, where the sequence itself is
constructed via compound symbols. Note that DP graphs are closed under reductions:

I Lemma 18. Let U be a DP graph. If U −→DP(G)∪G V then V is again a DP graph.

The following notion relates term graphs T to DP graphs U . In essence, it states that
every potential redex in T is represented by its marked version in U . We drive our simulation
precisely via this correspondence.

I Definition 19. Let T be a ground term graph, and let V be DP graph. Then V is good
for T , in notation T ≫ V , if there is an injective function d : NDT → N

D]

V such that for all
u ∈ NDT , (T �u)] ∼= V �d(u) holds.

Observe that T ] is good for T , if T is a basic term graph. Furthermore, the right-hand
side of DP(L→ R) is good for the part of R whose nodes lie in the difference set ∆(L→ R).
In the proof of the following lemma, we tacitly employ that the relation≫ is closed under
isomorphisms, i.e. ∼= ·≫ · ∼= ⊆≫.

I Lemma 20. If S≫ U and S −→L→R T , then there exists a term graph V with U −→∗L→R
· −→DP (L→R) V and T ≫ V .

Proof. Let L → R = (G, l, r). Fix a pre-reduction step S  〈L→R,m,u〉 T and suppose

S≫ U , as witnessed by the injective mappings d : NDS → N
D]

U .
Denote by v1, . . . , vk all nodes labeled by a defined symbol that lie strictly above the

redex node u in S, i.e. vi ⇀+
S u with vi ∈ NDS holds for all 1 6 i 6 k. By the assumption

S ≫ U , the markings of S�vi are isomorphic to U�d(vi), i.e. (S�vi)] ∼=mi
U�d(vi) holds.

This again implies that the assumed rewrite can be carried out in U�d(vi). More precise,
〈L → R,mi ◦ m,mi(u)〉 is a redex in U , where the reduct of U�d(vi) is isomorphic to the
marking of T �vi, by construction. Kindly note that the nodes mi(u) are not necessarily
pairwise distinct, however if two nodes mi(u) and mj(u) are distinct, then these two nodes
are parallel. Moreover the nodes mi(u) (1 6 i 6 k) lie outside of U�d(v) for all v ∈ NDS with
v 6∈ {v1, . . . , vk}. The latter is a simple fact following from S≫ U and the relative position
of v to the redex node u in S, i.e. parallel or below. In conclusion, all rewrite steps on mi(u)
can be carried out independently and in sequence, resulting in a DP graph W ,

U  L1→R1
· · · Ln→Rn

W ,

for suitable renamings Lj → Rj of L→ R. By construction, we have (i) (S�v)] ∼= W �d(v) for
all nodes v ∈ NDS strictly above u, and (ii) U�d(v) = W �d(v) for all nodes v ∈ NS parallel
or below u (including u).
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Next, assume wlog. that the nodes of DP(L→ R) are disjoint from those of W . Observe
that by (ii), S�u and W �d(u) are isomorphic, modulo marking of d(u). And thus, since L
and L] coincides on all but the marking of the root node, we obtain our final DP graph V ,
with

W  〈DP(L→R),m],d(u)〉 V ,

for a suitable matching morphism m]. Observe that since marked nodes in W are all
in parallel, and by injectivity of d, it follows that (iii) W �d(v) = V �d(v) holds for all
v ∈ NDS \ {u}.

It remains to verify that V is good for T . To this end, for each node v ∈ ∆D(L→ R), let
v] denote the root of the subgraph (R�v)] occurring in the right-hand side of DP(L→ R).
Define e : NDT → N

D]

V by

e(v) :=
{
d(v) if v ∈ NS ,
v] if v ∈ NDR \N

D
L .

Observe that e is injective, moreover, it is total as a consequence of Proposition 1. We
perform case analysis on v ∈ NDT and show that the marking of T �v is isomorphic to V �e(v):

If v is strictly above the redex node u in S then the claim follows from (i) and (iii).
If v occurs parallel or strictly below the redex node u in S, then S�v = T �v, and
U�d(v) = V �d(v) by (ii) and (iii). Then S≫ U and definition of e proves the case.
If v = u, then L lies below R in L → R, hence again S�u = T �u. Note that in the
considered case, l occurs in the difference set ∆D(L→ R), and consequently l] lies also
below the right-hand side of DP(L→ R). Thus also U�d(u) = W �d(u) = V �d(u) where
the first equality holds by (ii) and the second by construction. We conclude as above.
Suppose v ∈ NDR \N

D
L ⊆ ∆D(L→ R). We have to show that the marking of T �v is iso-

morphic to V �e(v) = V �v], for v] the root of the graph (R�v)] that occurs in the right-hand
side of DP(L→ R). Compare the rewrite S  〈L→R,m,u〉 T withW  〈DP(L→R),m],d(u)〉 V .
Observe that R�v is embedded at node v in T , i.e. R�v ·>m T �v where moreover, m is
injective on all nodes NR�v \NL. In a similar fashion, (R�v)] is embedded at node v] in
V . Since the left-hand side of L→ R is isomorphic to the left-hand side of DP(L→ R)
modulo marking of the root, and since the redexes S�u and W �d(u) are isomorphic
modulo marking of d(u), it is then not difficult to conclude that T �v is isomorphic to
V �v], modulo marking of v].

By Proposition 1, we exhausted all cases and conclude the lemma. J

Note that for a rule L→ R ∈ G, the sequence U −→∗L→R · −→DP(L→R) V corresponds to a
relative step U −→DP(G)/G V . Thus, Lemma 20 is directly applicable in a relative setting.
I Theorem 21. Let G and H be GRSs and define Q := DP(G)/DP(H) ∪ G ∪H. Then

S≫ U =⇒ dhG/H(S) 6k dhQ(U) .

Proof. Consider first a relative step S −→G/H T , i.e. S −→∗H · −→G · −→∗H T , and let U be a
term graph that is good for S. As a consequence of Lemma 20, we obtain a term graph V
that is good for T such that U −→∗DP(H)/H · −→DP(G)/G · −→

∗
DP(H)/H V , i.e. U −→Q V , holds.

From this, we conclude by following the structure of the proof of Theorem 12. J

Conclusively, we obtain the main result of this section.
I Corollary 22. Let G and H be GRSs, let P denote the relative system G/H, and let Q
denote the relative system DP(G)/DP(H) ∪ G ∪ H. Then for any set S ⊆ ♦ of basic term
graphs, rcSP(n) 6k rcS]

Q (n) holds for all n ∈ N.
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Suiting the Interpretation Method

Our interpretation method (Corollary 14) is readily applicable in the context of relative
dependency pair systems of the form of Q from Corollary 22. However, the imposed
constraints are unnecessarily strict, as we only need to account for steps due to dependency
pairs, i.e. rewrites on marked symbols. We thus embed reductions via J·KD] rather than
J·KD]∪D . This, in turn, allows us to weaken the pre-conditions of Corollary 14. The following
constitutes the central observation.

I Lemma 23. Let ((A,⊕, 0A), >A) be a quasi-model for the GRS G, and let U be a DP
graph. Then U −→G V implies JUKAD] >A JV KAD] .

Proof. Consider a step U −→G V . By the shape of U , this step has to take place strictly below
marked symbols, and consequently N := N

D]

U = N
D]

V . Hence Lemma 6 yields JuKU >A JuKV
for each u ∈ N , and thus JUKD] =

∑
u∈N JuKU >A

∑
u∈N JuKV = JV KD] . J

Consider an abelian F -algebra (A,⊕, 0A), and let L→ R = (G, l, r) be a dependency pair
with right-hand side R = ck((R�u1)], . . . , (R�uk)]). Then this dependency pair is oriented
by an order � on the carrier A with respect to marked defined symbols D] if

JlKA,αG �
∑

u∈∆D]
(L→R)

JuKA,αG

(
=
∑

16i6k
JuiK

A,α
G

)
holds for all assignments α.

The following is then a simple corollary to Theorem 12, using in addition Lemma 23.

I Corollary 24. Let P and Q be two sets of dependency pairs, and let G be a GRS. Let
((A,⊕, 0A), >A) be an abelian quasi-model for G, and suppose that rules in P and Q are
oriented by >A and >A, respectively, with respect to the WMAA (A,⊕, 0A) and defined
symbols D]. Then dhP/Q∪G(U) 6k dh>A

(JUKD) holds for every DP graph U .

I Example 25 (Continued from Example 17). With the help of this final corollary, it is not
difficult to bind the runtime complexity of DP(Gpower)/Gpower, using a ♦-restricted polynomial
interpretation of degree one. Thus the GRS Gpower has linear complexity by Corollary 22,
and under the assumption that multiplication has unit cost, this bound transfers to our
motivating example.

6 Related Work

To the best of our knowledge this study is the first investigation towards an automated
complexity analysis of term graph rewriting. However, in the wider scope of graph rewriting,
complexity has been an issue.

In particular Bonfante et al. study the derivation height of specific graph rewrite systems,
cf. [9]. A termination method for graph rewrite systems is established, which is based on
weights. Termination induces polynomial bounds on the derivation height of the rewrite
relation. As the considered graph rewrite systems always start in an initial configuration,
we can roughly say that their methods establish polynomial runtime complexity of the
graph computation. Due to the specific nature of the considered systems the technical
results obtained in [9] cannot be compared to the results obtained in this paper. Still,
the conceptional approach of proving termination of graph rewrite systems by weights and
studying the induced runtime complexity is related to some degree.

In [12], H. J. Sander Bruggink, B. König and H. Zantema introduce a novel interpretation
method applicable in the context of termination analysis of graph transformation systems.
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Here a, possibly cyclic, graph is interpreted via its embedding into a weighed type graph.
Sufficient orientation conditions are then put on transformation rules which ensure that the
interpretation of graphs decreases during reductions. Interestingly, the method implies a
linear bound on the runtime complexity of the analysed system. To overcome the limitation
to such linear systems, the authors show that the method is also applicable in an iterated
fashion. Then, however, sensible bounds on the runtime complexity cannot be derived.
In recent work [13], H.J.S. Bruggink, B. König, D. Nolte and H. Zantema generalise the
approach to type graphs over semirings. It is unclear how this generalisation relates to
runtime complexity analysis, and whether it can be suited to term graphs.

Furthermore, in the literature the complexity of interaction nets [18] have been pondered.
In contrast to term graphs considered here, interaction nets may admit cyclic structures, but
on the other hand provide for more control in sharing or garbage collection, via the explicit
use of duplication or erasing cells. First results on runtime complexity have been proposed
by Perrinel in [24]. Furthermore, Gimenez and the second author study in [17] space and
time complexities of sequential and parallel computations. The resource analysis is based
on user-defined sized types in conjunction with potentials that are assigned to each cell in
the net. While technically quite apart from the work presented here, there are conceptional
similarities: potentials are conceivable as interpretations, and the dependency pair method
implicitly combines a size analysis with a runtime analysis.

Finally, we also mention connections to [10]. Here G. Bonfante, J.-Y. Marion and J.-Y.
Moyen couple a termination criterion with quasi-interpretations to derive bounds on the
complexity of term rewrite systems, using memoisation to speed up computation. Partly
inspired by this work, in [1] the first author together with Dal Lago introduce a machinery that
incorporates sharing and memoization in order to get an even more efficient mechanism for
evaluating term rewrite systems. It seems that a suitable adaptation of quasi-interpretations
to term graphs, following along the lines of our adaption of polynomial interpretations, would
allow the use of this machinery to strengthen the result of [10].

7 Conclusion and Future Work

In this paper we have transferred two seminal techniques in complexity analysis of term
rewrite systems to term graph rewrite systems: (i) the interpretation method and (ii) the
dependency pair method. Our adaptions are non-trivial, in the sense that they can observe
not only term but also graph structures, i.e. take sharing into account. As our results have
been obtained in the context of relative graph rewriting, we have thus established the core
parts of a complexity pair framework for term graph rewrite systems. We expect that similar
adaptions of existing processors, like for example usable arguments or dependency graphs are
easily obtainable, based on the foundation provided in this paper.

An immediate concern for future work is the implementation of the proposed techniques.
Using similar methods as in our existing implementation of complexity analysis of term
rewrite systems [5], it is not difficult to see that all proposed methods are automatable and
we do not expect any issues for the preparation of a prototype. Furthermore our motivating
example highlights the interest of dedicated methods for outermost evaluation, which we
want to study in the future. Also of essence is the extension of the approach to possibly
cyclic graphs. More generally, one strong motivation for this work stems from our work
on resource analysis of imperative programs. Existing transformations to rewrite systems,
necessarily unfold the heap to a tree, as it has to be representable as a term [28]. Here we
hope that the direct coupling with graph rewriting is of advantage and could provide us with
a sophisticated shape analysis of the heap.
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Abstract
Nominal unification is a generalisation of first-order unification that takes α-equivalence into
account. In this paper, we study nominal unification in the context of equational theories. We
introduce nominal narrowing and design a general nominal E-unification procedure, which is
sound and complete for a wide class of equational theories. We give examples of application.
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1 Introduction

This is a paper about nominal unification in the context of equational theories.
Nominal techniques [16] facilitate reasoning in systems with binding operators, where

α-equivalence must be taken into account. In nominal syntax [11, 29], atoms, which are
used to represent object-level variables in the intended applications, can be abstracted: [a]t
denotes the abstraction of the atom a in the term t. Variables in nominal terms represent
unknown parts of terms and behave like first-order variables, but nominal variables may
be decorated with atom permutations. Permutations act on terms, swapping atoms (e.g.,
(a b) · t means that a and b are swapped everywhere in t).

Nominal syntax has interesting properties. Nominal unification [29], that is, unification of
nominal terms modulo α-equivalence, is decidable and unitary. Efficient nominal unification
algorithms are available [3, 19]. Nominal matching, a key ingredient in the definition of
nominal rewriting [11], is a particular case of nominal unification that can be solved in
linear time [4]. Nominal rewriting [11] can be used to reason in nominal equational theories
(see [12]; a completion procedure is described in [14]).

However, to our knowledge, the concept of nominal E-unification, i.e., nominal unification
in the context of an equational theory E, has not been addressed in previous works. Nominal
E-unification is needed to solve equations between nominal terms where the function symbols
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satisfy properties defined by an equational theory. Nominal E-unification has applications in,
e.g., functional-logical programming languages and analysis of cryptographic protocols.

The main contributions of this paper are:
We define nominal E-unification problems, and the nominal narrowing relation, and study
the relationship between nominal rewriting and nominal narrowing.
We show that Hullot’s results [17] (with the corrections from [1, 24]) relating first-order
narrowing derivations and first-order E-unifiers can be transferred to nominal systems.
Thus, we obtain a nominal E-unification procedure that is sound and complete for the
class of convergent closed equational theories. We give examples to illustrate these results.
We define basic nominal narrowing and provide sufficient conditions for termination of
nominal narrowing derivations, which can be used to prove the decidability of nominal
E-unification for certain equational theories.

Related Work. Narrowing has traditionally been used to solve equations in initial and
free algebras modulo a set of equations. It is well-known that narrowing is a programming
feature that allows integration of functional and logical programming languages [8, 20].
Narrowing was originally introduced for theorem proving [17], but nowadays it is used in
type inference [27] and verification of cryptographic protocols [23], amongst other areas.
Narrowing gives rise to a complete E-unification procedure if E is defined by a convergent
rewrite system, but it is generally inefficient. Several strategies have been designed to
make narrowing-based E-unification procedures more efficient by reducing the search space
(e.g., basic narrowing [17] and variant narrowing [9], the latter inspired by the notion of
E-variant [6]) and sufficient conditions for termination have been obtained [17, 9, 1]. In this
paper we develop basic nominal narrowing strategies and associated termination conditions,
and leave the study of other complete strategies for future work.

Nominal unification is closely related to higher-order pattern unification [18] and there
is previous work addressing higher-order pattern E-unification: Prehofer [26] introduced
higher-order narrowing and some variants (such as lazy narrowing, conditional narrowing,
pattern narrowing), and considered applications of narrowing as an inference rule in logic and
functional programming. Nominal extensions of logic and functional programming languages
are already available (see, e.g., [28, 5]), and nominal narrowing could play a similar role in
the definition of a functional-logic programming language.

Overview of the paper: Section 2 recalls basic concepts in nominal unification and rewriting.
Section 3 introduces the notion of nominal narrowing, presents results relating nominal
narrowing and nominal equational unification, and gives examples of application. Section 4
introduces basic nominal narrowing and the results regarding the termination of narrowing.
Section 5 contains the conclusions and directions for future work.

2 Nominal Rewriting

We recall below the definitions of nominal unification and nominal rewriting; for more details
we refer the reader to [11, 29].

2.1 Nominal terms and α-equivalence
A nominal signature Σ is a set of function symbols f, g, . . ., each with a fixed arity n ≥ 0. Fix
a countably infinite set X of variables X,Y, Z, . . .; these represent meta-level unknowns. Also,
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fix a countably infinite set A of atoms a, b, c, n, x, . . .; these represent object-level variables.
We assume that Σ, X and A are pairwise disjoint.

Nominal terms are generated by the grammar: t ::= a |π ·X | [a]t | f(t1, . . . , tn).
Terms are called respectively atoms, suspensions, abstractions and function applications. We
write V (t) for the set of variables occurring in t, A(t) for the set of atoms mentioned in t,
and atm(t) for the set of atoms that occur as subterms in t. For example, A([a]b) = {a, b},
b ∈ atm([a]b), a 6∈ atm([a]b). Ground terms are terms without variables, they may still
contain atoms. The occurrences of a in a term are said to be bound (or abstracted) if they
occur in the scope of an abstraction, otherwise they are said to be free (or unabstracted).

A permutation π is a bijection on atoms, with finite domain. π ◦ π′ denotes functional
composition of permutations and π-1 denotes the inverse of π. A permutation action π · t
is defined by induction: π · a ≡ π(a), π · [a]t ≡ [π(a)](π · t), π · (π′·X) ≡ (π ◦ π′) ·X and
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn). We write (a b) for the swapping permutation that maps
a to b, b to a and all other atoms c to themselves, and Id for the identity permutation, so
Id(a) = a. Note that X is not a term, but Id ·X is. We abbreviate Id ·X as X when there
is no ambiguity.

A substitution σ is a mapping from variables to terms, with a finite domain denoted
by dom(σ); the image is denoted Im(σ). Henceforth, if X 6∈ dom(σ) then σ(X) denotes
Id ·X. Substitutions are generated by the grammar: σ := Id | {X 7→ s}σ, where Id denotes
the substitution with dom(Id) = ∅. We use the same notation for the identity permutation
and the identity substitution, as there will be no ambiguity. For every substitution σ, we
define σ|V (the restriction of σ to V ) as the substitution that maps X to σ(X) if X ∈ V
and to Id ·X otherwise. The substitution action tσ is defined as follows: aσ ≡ a, ([a]t)σ ≡
[a](tσ), f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ) and (π ·X)σ ≡ π ·σ(X). If σ and θ are substitutions,
θ ◦ σ is the substitution that maps each X to (Xσ)θ. Note that substitution allows capture
of free atoms (it behaves like first-order substitution, except that when instantiating π ·X, π
applies).

On nominal terms, α-equivalence is defined using swappings and a notion of freshness. A
freshness constraint is a pair a#t (read “a fresh in t”) of an atom a and a term t. Intuitively,
a#t means that if a occurs in t then it must be abstracted. An α-equality constraint is a
pair s ≈α t of two terms s and t. A freshness context is a set of freshness constraints of the
form a#X. ∆, Γ and ∇ will range over freshness contexts. A freshness judgement is a tuple
of the form ∆ ` a#t whereas an α-equivalence judgement is a tuple of the form ∆ ` s ≈α t.
The derivable freshness and α-equivalence judgements are defined by the rules in Figure 1.
A set Pr of constraints is called a problem. We write ∆ ` Pr when proofs exist for each
P ∈ Pr, using the derivation rules given in Figure 1. The minimal ∆ such that ∆ ` Pr,
denoted by 〈Pr〉nf , can be obtained by using a system of simplification rules [11, 29], which,
given Pr, outputs ∆ or fails.

2.2 Unification, Matching and Nominal Rewriting
Unification is about finding a substitution that makes two terms equal. For nominal terms
the notion of equality is ≈α, which is defined in a freshness context; nominal unification
takes this into account.

I Definition 1. A solution for a problem Pr is a pair (Γ, σ) such that Γ ` Prσ, where Prσ
is the problem obtained by applying the substitution σ to the terms in Pr.

We follow [11], defining nominal matching/unification problems in context. A term-in-
context is a pair ∆ ` t of a freshness context and a term. We may write ` t or simply t if
∆ = ∅.
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(#ab)
∆ ` a#b

(#[a])
∆ ` a#[a]t

(π-1(a)#X) ∈ ∆
(#X)

∆ ` a#π ·X

∆ ` a#t
(#[b])

∆ ` a#[b]t
∆ ` a#t1 · · · ∆ ` a#tn

(#f)
∆ ` a#f(t1, . . . , tn)

(≈αa)
∆ ` a ≈α a

∆ ` b#t ∆ ` (b a) · t ≈α u
(≈α[b])

∆ ` [a]t ≈α [b]u
(a#X ∈ ∆ for all a s.t. π(a) 6= π′(a))

(≈αX)
∆ ` π ·X ≈α π′ ·X

∆ ` t ≈α u
(≈α[a])

∆ ` [a]t ≈α [a]u
∆ ` ti ≈α ui (1 ≤ i ≤ n)

(≈αf)
∆ ` f(t1, . . . , tn) ≈α f(u1, . . . , un)

Figure 1 Freshness and α-equality.

The action of substitutions extends to freshness contexts, instantiating the variables in
freshness constraints.

I Definition 2. A unification problem (in context) is a pair (∇ ` l) ≈? ? (∆ ` s) where ∆,∇
are freshness contexts and l, s are nominal terms. The solution to this unification problem, if
it exists, is a pair (∆′, θ) that solves the problem ∆,∇, l ≈α s, that is, ∆′ ` ∆θ,∇θ, lθ ≈α sθ.

A matching problem (in context) is a particular kind of unification problem, written
(∇ ` l) ≈? (∆ ` s),1 where s is ground, or contains variables not occurring in ∇, l. The
solution (∆′, θ) is such that Xθ ≡ X for X ∈ V (∆, s) (i.e., θ can only instantiate variables
in ∇ and l, therefore, ∆′ ` ∆,∇θ and ∆′ ` lθ ≈α s).

I Example 3. (` [a][b]X ′) ≈? (` [b][a]X) has solution (∅, {X ′ 7→ (a b) ·X}).

I Definition 4. Let Γ1,Γ2 be contexts, and σ1, σ2 substitutions. Then (Γ1, σ1) ≤ (Γ2, σ2)
if there exists some σ′ such that: ∀X, Γ2 ` Xσ1σ

′ ≈α Xσ2 andΓ2 ` Γ1σ
′. If we want to be

more specific, we may write (Γ1, σ1) ≤σ′ (Γ2, σ2). The relation ≤ is a partial order

Nominal unification is decidable and unitary [29]: a solvable problem has a unique
least solution according to ≤, called principal solution or most general unifier, denoted by
mgu(Pr).

Below we recall the definitions of nominal equational reasoning [15] and nominal re-
writing [11] from [12], where a position C is defined as a pair (s,_) of a term and a
distinguished variable _ ∈ X that occurs precisely once in s, with permutation Id. C is
also called a context. When there is no ambiguity, we equate C with s and write C[t]
for the result of applying the substitution {_ 7→ t} to s2. Pos(u) denotes the set of po-
sitions of the nominal term u, that is, all the positions C such that u = C[t] for some t.
Pos(u) = {C ∈ Pos(u)|u = C[t] and t 6= π ·X} is the set of non-variable positions.

An equality judgement (resp. rewrite judgement) is a tuple ∆ ` s = t (resp. ∆ ` s→ t) of
a freshness context ∆ and two nominal terms s, t. An equational theory E = (Σ,Ax) is a pair
of a signature Σ and a possibly infinite set of equality judgements Ax in Σ; they are called
axioms. A rewrite theory R = (Σ,Rw) is a pair of a signature Σ and a possibly infinite set of
rewrite judgements Rw in Σ; they are called rewrite rules. Σ may be omitted, identifying E

1 The ≈? indicates that the variables being instantiated occur in the left-hand side term.
2 This definition of position is equivalent to the standard notion of a position as a path in a tree; here we

exploit the fact that nominal substitution corresponds to the informal notion of replacement of a ‘hole’
in a context by a term.



M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 11:5

` app(lam([a]X), X ′) → sub([a]X,X ′) (Beta)
` sub([a]a,X) → X

a#Y ` sub([a]Y,X) → Y

` sub([a]app(X,X ′), Y ) → app(sub([a]X,Y ), sub([a]X ′, Y ))
b#Y ` sub([a]lam([b]X), Y ) → lam([b]sub([a]X,Y ))

Figure 2 λ-calculus with names and explicit substitutions [13].

with Ax and R with Rw when the signature is clear from the context. See Figure 2 for an
example of a rewrite theory for the λ-calculus.

I Definition 5.
Nominal rewriting: The one-step rewrite relation ∆ ` s R→[C,R,θ,π] t is the least relation
such that for any R = (∇ ` l → r) ∈ R, position C, term s′, permutation π, and
substitution θ,

s ≡ C[s′] ∆ `
(
∇θ, s′ ≈α π · (lθ), C[π · (rθ)] ≈α t

)
∆ ` s R→[C,R,θ,π] t

We may omit subindices if they are clear from the context, writing simply ∆ ` s R→ t.
The rewrite relation ∆ `R s→ t is the reflexive transitive closure of the one-step rewrite
relation, that is, the least relation that includes the one-step rewrite relation and such
that: for all ∆, s, s′: ∆ `R s→ s′ if ∆ ` s ≈α s′ (the native notion of equality of nominal
terms is α-equality)3; for all ∆, s, t, u: ∆ `R s→ t and ∆ `R t→ u implies ∆ `R s→ u.
If ∆ `R s → t holds, we say that s rewrites to t in the context ∆. A normal form is a
term-in-context ∆ ` s that does not rewrite, that is, there is no t such that ∆ ` s R→ t.
A rewrite theory R is convergent if the rewrite relation is confluent and terminating.
(Nominal algebra) equality: ∆ `E s = t is the least transitive reflexive symmetric relation
such that for any (∇ ` l = r) ∈ E, position C, permutation π, substitution θ, and fresh Γ
(so if a#X ∈ Γ then a is not mentioned in ∆, s, t),

∆,Γ `
(
∇θ, s ≈α C[π · (lθ)], C[π · (rθ)] ≈α t

)
∆ `E s = t

.

Given an equational theory E and a rewrite theory R, we say that R is a presentation of
E if: ∇ ` s = t ∈ E⇔ (∇ ` s→ t ∈ R ∨∇ ` t→ s ∈ R).

Nominal rewriting is not complete for equational reasoning in general; however, closed
nominal rewriting is complete for equational reasoning with closed axioms (see [12]). In-
tuitively, no free atom occurs in a closed term, and closed axioms do not allow abstracted
atoms to become free (a natural assumption). Closedness of a term can be easily checked by
matching the term with a freshened copy of itself. For example, the term f(a) is not closed
(it is not possible to match f(a) with a freshened variant f(a′)); however, f([a]a) is closed
(f([a]a) ≈α f([a′]a′)). If there are variables, freshness contexts have to be taken into account.
We recall below the definitions of freshened variant, closed rewrite rule and closed rewriting
relation from [12].

3 As in the case of conditional rewriting modulo an equivalence theory (see [22]), reflexivity takes into
account the underlying equivalence relation, here ≈α.
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If t is a term, we say that t N is a freshened variant of t when t Nhas the same structure as
t, except that the atoms and unknowns have been replaced by ‘fresh’ atoms and unknowns.
Similarly, if ∇ is a freshness context then ∇ N will denote a freshened variant of ∇ (so if
a#X ∈ ∇ then a N#X N∈ ∇ N, where a Nand X Nare chosen fresh for the atoms and unknowns
appearing in ∇). We may extend this to other syntax, like equality and rewrite judgements.
For example, [a N][b N]X N is a freshened variant of [a][b]X, a N#X N is a freshened variant of
a#X, and ∅ ` f([a N]X N)→ [a N]X N is a freshened variant of ∅ ` f([a]X)→ [a]X.

I Definition 6 (Closed terms and rules, closed rewriting). A term-in-context ∇ ` l is closed if
there exists a solution for the matching problem (∇ N` l N) ?≈ (∇, A(∇ N, l N)#V (∇, l) ` l)4.
Call R = (∇ ` l → r) and Ax = (∇ ` l = r) closed when ∇ ` (l, r) is closed5. Given a
rewrite rule R = (∇ ` l → r) and a term-in-context ∆ ` s, write ∆ ` s→c

Rt when there is
some R Na freshened variant of R (so fresh for R, ∆, s, and t), position C and substitution
θ such that s ≡ C[s′] and ∆, A(R N) # V (∆, s, t) ` (∇ Nθ, s′≈αl Nθ, C[r Nθ]≈αt). We call this
(one-step) closed rewriting. The closed-rewrite relation ∆ `R s→ct is the reflexive transitive
closure as in Definition 5.

All the rewrite rules in Figure 2 are closed. Closed rewriting is an efficient mechanism
to generate rewriting steps for closed rules (closed-rewriting steps can be generated simply
using nominal matching; it is not necessary to find a permutation π to apply a rule). We
refer the reader to [11, 12] for examples.

3 Nominal E-Unification and Narrowing

We start by generalising the notion of solution.

I Definition 7 (Nominal E-unification). An E-solution, or E-unifier, of a problem Pr is a pair
(Γ, σ) of a freshness context and a substitution such that
1. Γ `E Pr

′σ where Pr′ is obtained from Pr by replacing each ≈α by =, and Γ `E a#t
coincides with Γ ` a#t.

2. Xσ = Xσσ for all X (i.e., σ is idempotent).
If there is no such (Γ, σ) then Pr is unsolvable. UE(Pr) is the set of E-solutions of Pr.

The notion of E-unification extends to terms-in-context in the natural way.

I Definition 8. A nominal E-unification problem (in context) is a pair (∇ ` l) E
≈? ? (∆ ` s).

The pair (∆′, σ) is an E-solution, or E-unifier, of (∇ ` l) E
≈? ? (∆ ` s) iff (∆′, σ) is an E-solution

of the problem ∇,∆, l ≈α s, that is, ∆′ `E ∇σ,∆σ, lσ = sσ.
UE(∇ ` l,∆ ` s) denotes the set of all the E-solutions of (∇ ` l) E

≈? ? (∆ ` s). If ∇ and ∆
are empty we write UE(l, s) for the set of E-unifiers of l and s.

Nominal E-matching problems in context are defined similarly, except that s is a ground
term (or, if it has variables, the solution cannot instantiate them). E-matching problems in
context are written (∇ ` l) E

≈? (∆ ` s).

I Definition 9. The ordering ≤E is the extension of ≤ with respect to E: (Γ1, σ1) ≤E (Γ2, σ2)
iff there exists a substitution ρ such that ∀X, Γ2 `E Xσ2 = (Xσ1)ρ and Γ2 ` Γ1ρ. We write
≤VE for the restriction of ≤E to the set V of variables.

4 A(∇ N, l N)#V (∇, l) = {a#X | a ∈ A(∇ N, l N), X ∈ V (∇, l)}.
5 Here we use the pair constructor as a term former and apply the definition above.
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I Definition 10 (Complete set of E-solutions of Pr). Let W be a finite set of variables
containing V = V (Pr). We say that S = {(Γ1, θ1), . . . , (Γn, θn)} is a complete set of
E-solutions of Pr away from W iff
1. ∀(Γ, θ) ∈ S, dom(θ) ⊆ V and Im(θ) ∩W = ∅,
2. S ⊆ UE(Pr) (correctness),
3. ∀(Γ, σ) ∈ UE(Pr) ∃(Γi, θi) ∈ S, (Γi, θi) ≤VE (Γ, σ) (completeness).

We are now ready to define the nominal narrowing relation generated by R. The definition
of nominal narrowing is similar to nominal rewriting, but we need to solve unification problems
instead of matching problems.

I Definition 11 (Nominal Narrowing). The one-step narrowing relation (∆ ` s) [C,R,θ,π]
(∆′ ` t) is the least relation such that for any R = (∇ ` l → r) ∈ R, position C, term s′,
permutation π, and substitution θ,

s ≡ C[s′] ∆′ `
(
∇θ, ∆θ, s′θ ≈α π · (lθ), (C[π · r])θ ≈α t

)
(∆′, θ) = mgu(∇,∆, s′ ≈α π · l)(∆ ` s) [C,R,θ,π] (∆′ ` t)

.

We may omit subindices if they are clear from the context.
The narrowing relation (∆ ` s) R (∆′ ` t) is the reflexive transitive closure of the one-step
narrowing relation, that is, the least relation that includes the one-step narrowing relation
and such that: for all ∆, s, s′: (∆ ` s) R (∆ ` s′) if ∆ ` s ≈α s′; for all ∆, ∆′, ∆′′, s, t, u:
(∆ ` s) R (∆′ ` t) and (∆′ ` t) R (∆′′ ` u) implies (∆ ` s) R (∆′′ ` u).

The Lifting Theorem given below relates nominal narrowing and nominal rewriting. It
is an extension of Hullot’s Theorem 1 [17], taking into account freshness contexts and α-
equivalence. The notions of normalised substitution-in-context and satisfiability of freshness
contexts play a key role. A substitution σ is normalised in ∆ w.r.t. a rewrite theory R if
∆ ` Xσ is a normal form in R for every X. A substitution σ satisfies the freshness context ∆
if there exists a freshness context ∇ such that ∇ ` a#Xσ for each a#X ∈ ∆; the minimal
such ∇ is 〈∆σ〉nf .

I Theorem 12 (Lifting). Let R = {∇i ` li → ri} be a convergent rewrite theory. Let ∆0 ` s0
be a nominal term-in-context and V0 a finite set of variables containing V = V (∆0, s0). Let
η be a substitution with dom(η) ⊆ V0 and satisfying ∆0, that is, there exists ∆ such that
∆ ` ∆0η. Assume moreover that η is normalised in ∆. Consider a rewrite derivation:

∆ ` s0η = t0 →[C0,R0] . . .→[Cn−1,Rn−1] tn (*)

There exists an associated nominal narrowing derivation:

(∆0 ` s0) [C′0,R0,σ0] . . . [C′
n−1,Rn−1,σn−1] (∆n ` sn) (**)

for each i, 0 ≤ i ≤ n, a substitution ηi and a finite set of variables Vi ⊇ V (si) such that:
1. dom(ηi) ⊆ Vi,
2. ηi is normalised in ∆,
3. ∆ ` η|V ≈α θiηi|V ,
4. ∆ ` siηi ≈α ti,
5. ∆ ` ∆iηi
where θ0 = Id and θi+1 = θiσi.

Conversely, to each nominal narrowing derivation of the form (∗∗) and every η such that
(∆n, θn) ≤V (∆, η) and ∆ ` siηi ≈α ti we can associate a nominal rewriting derivation of
the form (∗).
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∆ ` sη = t0 // . . . ti // ti+1 // . . . // tn

∆0 ` s0

η0

OO

// . . . (∆i ` si) //

ηi

OO

(∆i+1 ` si+1)

ηi+1

OO

// . . . // (∆n ` sn)

ηn

OO

Figure 3 Corresponding Rewriting and Narrowing Steps.

Proof.

(=⇒) The proof is by induction on the length of the derivation. Figure 3 illustrates the
relation between the two derivations.

Base Case. For n = 0, take η0 = η, V0 = V ∪ dom(η). By assumption, ∆ ` ∆0η0.

∆0 ` s0 99Kη0 ∆ ` s0η = t0

Induction Step. Assume conditions (1)-(5) hold for i, and ∆ ` ti →[Ci,Ri] ti+1 (see Figure 3).
We have:
(a) Ri = ∇i ` li → ri ∈ R, V (Ri) ∩ V (∆, ti) = ∅,
(b) ti ≡ Ci[t′i] for some position Ci[_] and ∆ ` ∇iσ, π · (liσ) ≈α t′i.
(c) ∆ ` Ci[π · (riσ)] ≈α ti+1

Also, dom(σ) ∩ Vi = ∅ since V (Ri) ∩ V (∆, ti) = ∅.
By IH, it follows from assumptions 2., 4. and 5. that si ≡ C ′i[s′i] where C ′i[_] ∈ Pos(si)

and ∆ ` s′iηi ≈α t′i ≈α π · (liσ) (if C ′i[_] were a variable position the term s′i would be
a variable, from (4), ∆ ` s′iηi ≈α t′i ≈α π · (liσ) →Ri π · (riσ), contradicting that ηi is a
normalised substitution).

Let us consider ρ = ηi ∪ σ, we have ∆ ` s′iρ ≈α π · (liρ). The pair (∆, ρ) is a solution for
(∆i ` s′i) ?≈? (∇i ` li):
(i) ∆ ` ∆iρ, because, by hypothesis, ∆ ` ∆iηi and σ does not affect ∆i (dom(σ) ⊆ V (Ri)).
(ii) ∆ ` ∇iρ.
(iii) ∆ ` s′iρ ≈α π · (liρ).

Now, take the principal solution (∆i+1, σi) of (∆i ` s′i) ≈? ? (∇i ` π · li). Then, ∆i+1 `
∆iσi,∇iσi, s′iσ ≈α π ·(liσi). Let si+1 be a nominal term such that ∆i+1 ` C ′i[π ·ri]σi ≈α si+1.
Therefore, (∆i ` si) [Ci,Ri,σi] (∆i+1 ` si+1).

Since (∆i+1, σi) is the least unifier of (∆i ` s′i) ?≈? (∇i ` π · li), (∆i+1, σi) ≤ (∆, ρ) and
thus there exists a substitution η′ such that for all X, ∆ ` Xσiη′ ≈α Xρ and ∆ ` ∆i+1η

′.
That is, ∆ ` σiη′ ≈α ρ. Since ρ = ηi∪σ and dom(σ)∩Vi = ∅, ηi is such that ∆ ` ηi ≈α σiη′|Vi .

Now let Vi+1 = (Vi ∪ Im(σi))− dom(σi) and let ηi+1 be such that ∆ ` ηi+1 ≈α η′|Vi+1 .

We get condition 1., that is, dom(ηi+1) ⊆ Vi+1 and from 3.: ∆ ` ηi ≈α (σiηi+1)|Vi
(1).

(By hypothesis, ∆ ` η|V ≈α θiηi. To illustrate, take i = 4, then η|V = θ4η4 = θ5η5.
Using the definition of θi, it follows that θ4 = σ0σ1 . . . σ3 and θ5 = σ0σ1 . . . σ4. Thus, θ4η4 =
σ0σ1 . . . σ3η4 = σ0σ1 . . . σ3σ4η5 and η4 = σ4η5.) Recall that we impose dom(σi)∩ Im(σi) = ∅.

To prove 5. for i+ 1, notice that from ∆ ` ∆i+1η
′ it follows that ∆ ` ∆i+1ηi+1, since

∆ ` ηi+1 ≈α η′.
To prove 2. for i+ 1, let us consider X ∈ Vi+1. There are two cases:

(i’) X ∈ Vi − dom(σi) then ∆ ` Xηi ≈α Xσiη′ ≈α Xη′ ≈α Xηi+1. Since ηi is a normalised
substitution, by hypothesis, it follows that ηi+1 is also a normalised substitution.
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(ii’) X ∈ V (Im(σi)), then there exists Y ∈ dom(σi) such that X ∈ V (Y σi). Then, Xηi+1 is
a subterm of Y ηi since ∆ ` Xηi+1 ≈α Xη′, Y σiη′ ≈α Y ηi, and since, by hypothesis, ηi
is a normalised substitution, it follows that ηi+1 is also normalised.

This proves (2) for i+ 1.
We now prove 3. for i+ 1, assuming it for i, i.e., ∆ ` η|V ≈α θiηi|V .
From equation (1) we get ∆ ` θiηi|V ≈α θi(σiηi+1|Vi

)|V From the definition of θi we have
Im(θi) ⊆ Vi and V0 ⊆ Vi ∪ dom(θi). Therefore, ∆ ` θiσi︸︷︷︸

θi+1

ηi+1|V ≈α θiηi|V ≈α η|V proving

condition 3) for i+ 1. Notice that, by 3), θi is normalised.
Finally, on the one hand ∆ ` ti+1 ≈α Ci[π · riσ] ≈α Ci[π · riρ] ≈α Ci[π · ri(σiη′)] ≈α

Ci[π · riηi]. On the other hand, ∆ ` si+1ηi+1 ≈α (C ′i[π · ri]σi)ηi+1 ≈α (C ′i[π · ri]σi)η′ ≈α
(C ′i(σiη′))[π · ri(σiη′)] ≈α (Ciηi)[π · riηi] ≈α Ci[π · riηi]. Therefore, ∆ ` si+1ηi+1 ≈α ti+1,
proving (4).

(⇐=) Conversely, let us consider a derivation (**): (∆0 ` s0) [C′0,R0,σ0] . . . [C′
n−1,Rn−1,σn−1]

(∆n ` sn), and a substitution η such that (∆n, θn) ≤V (∆, η), that is, there exists ρ such that
∆ ` Xη|V ≈α (Xθn)ρ|V and ∆ ` ∆nρ. We define substitutions ηi for 0 ≤ i ≤ n − 1 by:
∆ ` ηi ≈α σi . . . σn−1ρ (2). and a normalised substitution ηn ≡ ρ. By hypothesis, ∆ ` ∆nρ, and
by definition of narrowing step, it follows that ∆i+1 ` ∆iσi (0 ≤ i ≤ n − 1). Hence ∆ ` ∆iηi,
and in particular ∆ ` ∆0η. We define siηi ≡ ti for 0 ≤ i ≤ n, and show, by induction on i, that:
∆ ` s0η = t0 →[C0,R0] . . .→[Cn−1,Rn−1] tn.

Base Case. When i = 0: ∆ ` s0η0 ≈α s(θnηn) ≈α sη. By definition, η0 = σ0σ1 . . . σn−1︸ ︷︷ ︸
θn

ρ.

Induction Step. Suppose that (∆i ` si) [C′
i
,Ri,σi] (∆i+1 ` si+1). By the definition of nominal

narrowing we have
Ri = ∇i ` li → ri ∈ R, V (Ri) ∩ V (∆i, si) = ∅.

si ≡ C′i[s′i], for a non-variable position C′i[_] of si, and such that (∆i+1, σi) is the least solution
for (∆i ` s′i) ?≈? (∇i ` π · li). That is, ∆i+1 ` s′iσi ≈α π · (liσi) and ∆i+1 ` ∆iσi,∇iσi.

∆i+1 ` C′i[π · ri]σi ≈α si+1.
By definition, ∆ ` siηi ≈α ti. Since Ci[_] is a non-variable position and ηi is a normalised
substitution, we have that ∆ ` s′iηi ≈α t′i. In addition, define η′ ≡ σi+1 . . . σn−1ρ, by equation
(2) ∆ ` ηi+1 ≈α η′|Vi+1 . ∆ ` t′i ≈α s′iηi ≈α s′i(σiη′) ≈α (π · liσi)η′ →Ri (π · riσi)η′ Therefore,
∆ ` ti ≡ Ci[t′i]→Ri Ci[π · riσiη′] ≈α si+1ηi+1 ≈α ti+1. J

In a similar way, we can associate closed nominal rewriting derivations (see Definition 6)
with closed nominal narrowing derivations, where closed narrowing is defined as follows.

I Definition 13 (Closed narrowing). Given a rewrite rule R = (∇ ` l → r) and a term-
in-context ∆ ` s, write (∆ ` s) c

R(∆′ ` t) when there is some R N a freshened variant
of R (so fresh for R, ∆, s, and t), position C and substitution θ such that s ≡ C[s′] and
∆′, A(R N) # V (∆, s, t) ` (∇ Nθ,∆θ, s′θ≈αl Nθ, (C[r N])θ≈αt). We call this (one-step) closed
narrowing. The closed narrowing relation ∆ `R s 

c∆′ `R t is the reflexive transitive closure
as in Definition 5.

See Example 17 in Section 3.1 for examples of closed narrowing steps.

I Remark. We can state a “closed lifting” theorem by replacing nominal rewriting/narrowing
for closed rewriting/narrowing. The proof is similar.
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11:10 Nominal Narrowing

In the following we consider a closed nominal equational theory E, presented by a
convergent set R of closed rules.

Let us consider an E-unification problem (∆ ` s) E
≈? ? (∇ ` t). To find a solution, we will

apply closed narrowing on ∆ ` s and ∇ ` t in parallel. It will simplify matters to narrow
the single term u = (s, t)6 under ∆,∇.

I Lemma 14 (Soundness). Let ∆ ` s and ∇ ` t be two nominal terms-in-context and
∆,∇ ` (s, t) = u0 c . . . c∆n ` un = (sn, tn) a closed narrowing derivation such that
∆n, sn ≈α tn has a solution, say (Γ, σ). Then (Γ, θnσ) is an E-solution of the problem
∆,∇, s E

≈? ? t, where θn is the composition of substitutions along the narrowing derivation, as
defined in Theorem 12.

Proof. Using the (⇐) part of the previous theorem with η = θn, we can associate this
narrowing derivation with the following rewriting derivation:
Γ ` u0θn = v0→cv1→cv2→c . . .→cvn = (vsn, vtn). Thus, Γ `R sθn→cvsn and Γ `R tθn→cvtn.
Moreover, since ηn = Id (because η = ηnθn) it follows that Γ ` vsn ≈α sn and Γ ` vtn ≈α tn,
thus: Γ `E sθnσ = tθnσ and therefore, (Γ, θnσ) is an E-solution for ∆,∇, s E

≈? ? t. J

I Lemma 15 (Completeness). Let ∆ ` s and ∇ ` t be two nominal terms-in-context, such
that the problem (∆ ` s) E

≈? ? (∇ ` t) has an E-solution, (∆′, ρ), and let V be a finite
set of variables containing V (∆,∇, s, t). Then there exists a closed narrowing derivation:
∇,∆ ` u = (s, t) c . . . cΓn ` (sn, tn), such that Γn, sn ≈α tn has a solution. Let
(Γ, µ) = mgu(Γn, sn ≈α tn), and θn the composition of the narrowing substitutions. Then,
(Γ, θnµ) ≤VE (∆′, ρ). Moreover, we are allowed to restrict our attention to  c-derivations
such that: ∀i, 0 ≤ i ≤ n, θi|V is normalised.

Proof. By Definition 8, ∆′ `E sρ = tρ,∇ρ,∆ρ. Take η = ρ ↓, that is, ρ’s normal form in ∆′:
∆′ ` Xη ≈α (Xρ) ↓. It follows that ∆′ `E sη = tη,∇η,∆η since the rules are closed.

Since E is a closed nominal theory presented by a convergent rewrite system R, and since
closed rewriting is complete for equational reasoning in this case, sη and tη have the same
normal form in ∆′, which we will call r. Then, ∆′ ` uη = (sη, tη) = t′0→c . . .→ct′n = (r, r).
By Theorem 12 there exists a corresponding -derivation ending with Γn ` (sn, tn) such that:
∆′ ` (snηn, tnηn) ≈α t′n = (r, r) and ∆′ ` Γnηn. Thus, (∆′, ηn) is a solution of Γn, sn ≈α tn.

Since (Γ, µ) is the least unifier, it follows that (Γ, µ) ≤ (∆′, ηn) and: ∃ξ : ∀X, ∆′ `
Xµξ ≈α Xηn and ∆′ ` Γξ. Therefore, by Theorem 12, ∆′ ` (θnµξ)|V ≈α θnηn|V ≈α η|V
and ∆′ `E η|V = ρ|V that is, (Γ, θnµ) ≤VE (∆′, ρ). J

Now we can describe how to build a complete set of E-unifiers for two terms-in-context.

I Theorem 16. Let E be a closed nominal equational theory and R be an equivalent convergent
nominal rewrite theory. Let ∆ ` s and ∇ ` t be two terms-in-context, and V be a finite set
of variables containing V (∆, s,∇, t). Let S be the set of pairs (Γ, σ) such that there exists
a  c-derivation: Γ0 ` u = (s, t) = u0 c . . . cΓn ` un = (sn, tn), where (Γ0 ≡ ∆,∇),
Γn, sn ≈α tn has a least solution (Γ, µ), σ ≡ θnµ, and θn is the normalised composition of
the narrowing substitutions. Then S is a complete set of E-unifiers of ∆ ` s and ∇ ` t away
from V .

Proof. Consequence of Lemmas 14 and 15. J

6 Here we use the pair constructor as a term former.
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y#F ` diff(lam([y]F ), X)→ 0
` diff(lam([y]y), X)→ 1
` diff(lam([y]sin(F )), X)→ mult(cos(sub([y]F,X)), diff(lam([y]F ), X))
` diff(lam([y]plus(F,G)), X)→ plus(diff(lam([y]F ), X), diff(lam([y]G), X))
` diff(lam([y]mult(F,G)), X)→ plus(mult(diff(lam([y]F ), X), sub([y]G,X)),

mult(diff(lam([y]G), X), sub([y]F,X)))

Figure 4 Rewrite rules for symbolic differentiation.

An E-unification procedure follows from the construction of Theorem 16: enumerate
all elements of S. The set S may be infinite, one can organise the enumeration in such a
way that if two nominal terms ∆ ` s and ∇ ` t are E-unifiable, then an E-solution will be
produced in a finite number of steps. Thus, assuming E is presented by a convergent rewrite
theory R, we have a semi-decision procedure for nominal E-unification.

3.1 An example: symbolic differentiation
The rewrite rules in Figure 2 define a λ-calculus with names and explicit substitutions [13];
the extension with numbers and operations (plus, mult, sin, cos) is straightforward.

Consider now symbolic differentiation [26]: diff(F,X) computes the differential of a
function F (meta-level unknown that can be instantiated by a λ-term) at a point X, using
the rewrite rules given in Figure 4.

I Example 17. Let E be the theory defined by rewrite rules in Figures 2 and 4 together
with standard rules for arithmetic operations. This system is closed but not convergent
(we can simulate the untyped λ-calculus, which is non-terminating) so narrowing is not
necessarily complete; however, we can still obtain the E-solution (∅, {F 7→ y}) for the nominal
E-unification problem lam([z]diff(lam([y]sin(F )), z)) E

≈? ? lam([z]cos(z)) as follows7.
The first closed-narrowing step uses a freshened rule

` diff(lam([y′]sin(F ′)), X ′)→ mult(cos(sub([y′]F ′, X ′)), diff(lam([y′]F ′), X ′))
with the assumption y′#F (below the narrowed subterm is in bold, the substitution used is
{F ′ 7→ (y y′) · F,X ′ 7→ z}):

lam([z]diff(lam([y]sin(F)), z)) ≈? ? lam([z]cos(z))
 lam([z]mult(cos(sub([y′](y y′) · F, z)), diff(lam([y′](y y′) · F ), z))) ≈? ? lam([z]cos(z))

We now use the freshened rule ` diff(lam([w]w),W )→ 1 with substitution {F 7→ y,W 7→ z}
and assumption w#F to narrow the second argument of mult:

 lam([z]mult(cos(sub([y′]y′, z)), 1)) ≈? ? lam([z]cos(z))

Using now the rules for sub, we can rewrite (hence also narrow) to

lam([z]mult(cos(z), 1)) ≈? ? lam([z]cos(z))

and by rewriting with the usual rules for multiplication, we obtain two equal terms.

7 Here we do not rely on Beta, diff uses just the substitution rules, which are terminating.

FSCD 2016



11:12 Nominal Narrowing

(1) ∅ ` πi(〈X1, X2〉) → Xi (i ∈ {1, 2})
(2) ∅ ` d({X}Y , Y −1) → X

(3) ∅ ` d({X}Y−1 , Y ) → X

(4) ∅ ` (X−1)−1 → X

(5) ∅ ` substnj ([ #»z ]zk,
#»
X) → Xk (1 ≤ k ≤ j)

(6) z#Y ` substn1 ([z]Y,X) → Y

(7) zk#Y ` substnj (
# »

[z]Y, #»
X) → substnj−1(

#   »

[z′]Y,
#  »

X ′) (1 ≤ k ≤ j, j > 1)
(8) ∅ ` substnj (

# »

[z]f( # »
W ), #»

X) → f(
#                                    »

substnj (
# »

[z]W, #»
X))

Figure 5 Rewrite theory DYT.

3.2 Application: Intruder Deduction Problem
In this section we present an application of nominal E-matching.

I Definition 18 (Nominal Intruder Deduction Problem). Given a finite set of ground messages
in normal form Γ = {t1, . . . , tn}, a ground message in normal form m (the secret), and private
names a1, . . . , ak, we model the Intruder Deduction Problem (IDP) as a nominal E-matching
problem with one unknown: (∆ ` subst([ #»z ]X, #»

t )) E
≈? m. Here m is short for ∅ ` m and

∆ = {a1#X, . . . , ak#X} is a freshness context specifying that the names a1, . . . , an are
fresh in the unknown term X, subst is a term-former denoting the substitution of z1, . . . , zn
(denoted by #»z ) by t1, . . . , tn (denoted by #»

t ), #»z are abstracted in X, and #»
t represent the

messages in Γ.

To illustrate the results we consider a simple equational theory, namely the Axiomatised
Dolev-Yao Theory (DYT). It is essentially the classical Dolev-Yao model with explicit
destructors such as decryption and projections. It is well-known that IDP for this theory is
decidable in polynomial time8, the purpose here is to show how nominal narrowing could be
used to solve this security problem.

The signature for DYT, ΣDYT, includes function symbols 〈_,_〉, π1(_), π2(_), d(_,_),
{_}_, (_)−1 for pairing, projections, decryption, encryption and inverse, respectively, as well
as a family of symbols substnj (n ≥ 1, j ∈ {1, . . . , n}) to perform substitution. Intuitively,
projections are inverses of pairing and decrypting with k−1 a message encrypted with k gives
back the plaintext.

The rewrite rules are given, in a schematic way, in Figure 5. The index j in substnj denotes
the number of abstracted atoms in [ #»z ], for j ∈ {1, . . . , n}. In rule schemes (5) and (7), zk is
a term in {z1, . . . , zj} and there is a rule for each k s.t. 1 ≤ k ≤ j. In rule scheme (7), j > 1;
in case j = 1 we use rule (6). In rules (7) and (8) we use the following abbreviations:

# »

[z] = [z1, . . . , zj ] and
#   »

[z′] = [z1 . . . , zk−1, zk+1, . . . , zj ];
#»

X = (X1, . . . , Xj) and
#  »

X ′ = (X1, . . . , Xk−1, Xk+1, . . . , Xj−1);
f ∈ ΣDYT is an r-ary function symbol (there is a version of rule (8) for each f 6= subst),
and f(

#                                    »

substnj (
# »

[z]W, #»

X)) = f(substnj (
# »

[z]W1,
#»

X), . . . , substnj (
# »

[z]Wr,
#»

X)).

I Proposition 19. DYT is a closed and convergent nominal rewrite system.

Proof. The termination is obtained by a simplification ordering. It is convergent because
the critical pairs obtained are joinable [11]. J

8 This result was obtained using another approach [7]
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X{ #         »
z 7→ t}

DYT
≈? m

θ1ww θ5 '' θf

++t1
DYT
≈? m . . . t5

DYT
≈? m . . . cf

Figure 6 First level of the narrowing tree.

I Remark. Below, the notation t{z 7→ t′} is syntactic sugar for subst([z]t, t′).

I Example 20. Consider Γ = {{{m}b}c︸ ︷︷ ︸
t1

, {b−1}k︸ ︷︷ ︸
t2

, {c−1}r︸ ︷︷ ︸
t3

, k−1︸︷︷︸
t4

, r−1︸︷︷︸
t5

} and a secret m (a con-

stant). Taking into account the theory DYT, this IDP can be stated as X{ #         »
z 7→ t}

DYT
≈? m,

where { #         »
z 7→ t} denotes the substitution of ti for zi, i = 1, . . . , 5. Figure 6 shows part of the

first level of the narrowing tree for this problem.
The substitutions θi are {X 7→ zi}, i = 1, . . . , 5 and the corresponding narrowing steps

use rule (5). The result ti
DYT
≈? m is a ground problem, which can be decided by checking

syntactic equality since each ti and m are in normal form. The branch labelled with the
substitution θf is an abbreviation for six branches, namely, one for each f ∈ ΣDYT (except
subst).

To illustrate, consider the case in which f is a constructor, for instance, f = 〈 , 〉:

X{ #         »
z 7→ t}

DYT
≈? m

vv

θ〈,〉
��

θf2

((. . . 〈X1{
#         »
z 7→ t}, X2{

#         »
z 7→ t}〉

DYT
≈? m . . .

This branch is obtained via
a version of rule (8): ∅ ` subst5j (

#  »

[w]〈W1,W2〉,
#»

Z)→ 〈subst5j (
#  »

[w]W1,
#»

Z), subst5j (
#  »

[w]W2,
#»

Z)〉
and substitution θ〈,〉 = {X 7→ 〈X1, X2〉,W1 7→ (w z) ·X1,W2 7→ (w z) ·X2,

#»

Z 7→ #»

T } with
the assumption w#X.

Consider the case in which f is a destructor, for instance, f = d. There is a narrowing
step:

X{ #         »
z 7→ t}

DYT
≈? m θd

d(X1{
#         »
z 7→ t}, X2{

#         »
z 7→ t}) DYT

≈? m

obtained via substitution θd = {X 7→ d(X1, X2)} and rule (8). From this node we can narrow
with θi,1d = {X1 7→ zi}, or θi,2d = {X2 7→ zi} (i = 1, . . . , 5), or θf,1d = {X1 7→ f(X ′1)} or
θf,2d = {X2 7→ f(X ′2)} (f ∈ ΣDYT):

X{ #         »
z 7→ t}

DYT
≈? m

θd

��

d(X1{
#         »
z 7→ t}, X2{

#         »
z 7→ t}) DYT

≈? m

θi,1
d

∗

uu ))

θf,1
d

∗

��
cdi,1 cdf,1 . . .
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X{ #         »
z 7→ t}

DYT
≈? m

θd

��
tt **. . . d(X1{

#         »
z 7→ t}, X2{

#         »
z 7→ t}

DYT
≈? m

θd2
��

**tt

. . .

. . . d(X1{
#         »
z 7→ t}, d(X21{

#         »
z 7→ t}, X22{

#         »
z 7→ t}) DYT

≈? m

θ��
**tt

. . .

. . .
...

η
��

. . .

d(d(t1, d(t3, t5)), d(t2, t4)) DYT
≈? m

Figure 7 Narrowing Subtree for the Solution.

The left branch represents 5 narrowing branches, one for each i. After applying rule (5) one
has cdi,1 := d(ti, X2) DYT

≈? m. Similarly, cdf,1 represents 6 other possible branches, one for
each function symbol from ΣDYT. Iterating this reasoning, we obtain the narrowing branch
shown in Figure 7, which leads to a ground problem whose solution is positive.

The previous example illustrates the fact that a series of narrowing steps might be
necessary in order to obtain a solution. Variables might need to be instantiated with
constructors for two reasons:

either the term m contains a sequence of constructors in its structure, therefore, the
variables in the term being matched have to be instantiated with the same sequence of
constructors, and rule (8) applies;
or a sequence of constructors matches a sequence of the corresponding destructors in a
term in Γ, enabling a rewriting rule to be applied.

As a consequence, the number of applications of DYT rules is bounded by |Γ|+ |m|.

I Theorem 21. If a narrowing derivation (∆0 ` (subst([ #»z ]X, #»
t ),m) σ0 . . . σk−1 (∆k `

uk) has more than |Γ| + |m| narrowing steps then height(subst([ #»z ]X, #»
t )σ0σ1 . . . σk−1) >

height(m). Therefore, it does not lead to a solution.

Proof. Each application of a Dolev-Yao rule eliminates one symbol from the term. In the
worst case, in all terms from Γ all the function symbols can be eliminated by a rule, before
several steps of composition (with a constructor that has not just been eliminated) can be
applied until one reaches the size of m.

Notice that for infinite branches of the form ΠiΠjΠiΠj . . . or dddd . . . either the term
m would have to be headed with the same sequence of functions or rewrite rules would
be applied. By the Lifting Theorem, we can assume the compositions of substitutions are
normalised, therefore, the only way to apply rewrite rules is when the terms in Γ contain, in
the first case, a sequence of pairings 〈〈〈. . .〉〉〉 or, in the second case, a sequence of encryptions
{{. . .}}. We cannot introduce a destructor followed by its corresponding constructor with a
substitution, e.g, ΠiΠjΠi〈〈. . .〉〉, otherwise the substitution would not be normalised. Since
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all the terms in Γ are finite, only a finite number of destructive rewrite rules could be applied
and the number of constructive rewrite rules that could be applied is bounded by the size of
m. The same reasoning applies when we have interleaving of destructors dΠidΠjdΠidΠj . . .

or even constructors and destructors of the form d{}d{}d{}, when the encryption/decryption
keys do not correspond. J

As a consequence, we obtain the decidability of the nominal IDP for DYT.

4 Basic Nominal Narrowing

Hullot [17] introduced basic narrowing to eliminate redundant narrowing derivations in order
to give sufficient conditions for the termination of the narrowing process. Following [17],
with the corrections made in [1, 24], we define basic (closed) nominal narrowing. In the rest
of this section, R = {Rk ≡ ∇ ` lk → rk} is a closed nominal rewrite theory.

I Definition 22. Consider a nominal term s and a set U of positions that are proper prefixes
of s, that is, U = Pos(r), for some subterm r of s. We define by induction what it means
for a nominal rewriting derivation ∆ ` s = s0 →[C0,R0] s1 →[C1,R1]→ . . . →[Cn−1,Rn−1] sn
to be based on U and construct sets of positions Ui ⊂ Pos(si), 0 ≤ i ≤ n, inductively: the
empty derivation is based on U , and U0 = U ; if a derivation up to si is based on U , then
the derivation obtained from it by adding one step si →[Ci,Ri] si+1 is based on U iff Ci ∈ Ui,
and in this case we take: Ui+1 = (Ui − {C ∈ Ui|Ci ≤ C}) ∪ {Ci.C|C ∈ Pos(ri)}, where ri
denotes the right-hand side of the rule Ri in R9.

A nominal rewrite step ∆ ` C[s]→ C[s′] at position C is innermost if for any Ci such
that C < Ci and C[s] = Ci[si], there is no rewrite step ∆ ` Ci[si] → Ci[t] at position Ci.
In other words, there is no rewrite step inside s. An innermost nominal rewrite derivation
contains only innermost rewrite steps.

I Lemma 23. Let ∆ ` s ≈α s0η, with η normalised in ∆. Every innermost nominal rewrite
derivation from ∆ ` s is based on Pos(s0).

I Definition 24. A nominal narrowing derivation (∆0 ` s0) [C0,R0,σ0] . . . [Ci−1,Ri−1,σi−1]

(∆i ` si), is basic if it is based on Pos(s0) (in the same sense as in the previous definition
for nominal rewriting derivation).

I Theorem 25. The narrowing derivations constructed in Theorem 12 are all basic.

Proof. Let (∆0 ` s0) [C′0,R0,σ0] . . . [C′
n−1,Rn−1,σn−1] (∆n ` sn) be the nominal narrowing

derivation associated by Theorem 12 with ∆ ` s0η = t0 →[C0,R0] . . .→[Cn−1,Rn−1] tn, such
that η is normalised. Since R is confluent we may assume that the nominal rewriting sequence
from ∆ ` s0η is innermost. By Lemma 23, this nominal rewriting derivation is based on
Pos(s0), and since the sets Ui in the two derivations are equivalent, it follows that the
considered nominal narrowing derivation is basic. J

I Remark. Definition 22, Lemma 23 can also be stated for closed narrowing. Theorem 16
holds also for closed basic narrowing.

The main interest of closed basic narrowing is that we can give a sufficient condition for
the termination of the narrowing process when we consider only basic  -derivations and
therefore for the termination of the corresponding nominal E-unification procedure.

9 Given Ci = (si,_) and C = (s,_), it follows Ci.C = (si{_ 7→ s},_) and Ci ≤ C if ∃t : si{_ 7→ t} = s.
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I Proposition 26. Let R = {∇k ` lk → rk} be a convergent nominal rewriting system such
that any basic  -derivation issuing from any of the right-hand sides rk terminates. Then
any basic  -derivation issuing from any nominal term terminates.

The previous proposition also holds for basic closed narrowing.

I Theorem 27. Basic closed nominal narrowing is complete for convergent closed nominal
rewriting systems.

Moreover, if R satisfies the hypothesis of Proposition 26, nominal basic narrowing leads to a
complete and finite E-unification algorithm.

5 Conclusion and Future Work

We have introduced the nominal narrowing relation and designed a general nominal E-
unification procedure, which is complete for a wide class of theories, namely, the theories
defined by convergent closed nominal rewriting systems.

There is a lot of work to be done regarding nominal E-unification. A first step would be
to study the relationship between nominal narrowing and pattern narrowing [26]. For the
analysis of protocols, it would be interesting to study nominal unification modulo equational
theories including associativity and commutativity axioms. From a practical point of view,
narrowing strategies should be studied, such as lazy narrowing for nominal terms, and
also more general versions of nominal narrowing such as conditional [26] and variant [10]
narrowing, which have interesting applications [21, 23]. We would like to define conditions for
termination of nominal narrowing similar to the finite variant and boundedness properties [6],
to obtain an alternative way to study the security of protocols, via nominal narrowing.

Acknowledgements. We thank Santiago Escobar, Jesus Dominguez Alvarez and the FSCD
reviewers for their valuable comments, which helped us improve the paper.
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Abstract
Curry-Howard isomorphism makes it possible to obtain functional programs from proofs in logic.
We analyse the problem of program synthesis for ML programs with algebraic types and relate it
to the proof search problems in appropriate logics. The problem of synthesis for closed programs
is easily equivalent to the proof construction in intuitionistic propositional logic and thus fits in
the class of PSPACE-complete problems. We focus further attention on the synthesis problem
relative to a given external library of functions. It turns out that the problem is undecidable for
unbounded instantiation in ML. However its restriction to instantiations with atomic types only
results in a case equivalent to proof search in a restricted fragment of intuitionistic first-order
logic, being the core of Σ1 level of the logic in the Mints hierarchy. This results in EXPSPACE-
completeness for this special case of the ML program synthesis problem.
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1 Introduction

In general, program synthesis is the problem of the following form: given a not necessarily
executable specification, find an executable program satisfying that specification. The idea
of mechanically constructed programs or more precisely programs correct-by-construction
appeared already a long time ago and not only in functional programming but also in
imperative programming [22, 5] and in logic programming. This idea arises naturally in the
context of increasing demand for programmer’s productivity.

In 2005 Augustsson created Djinn [1], “a small program that takes a (Haskell) type and
gives you back a function of that type if one exists.” As an example supporting usefulness of
such program extraction, he used the key functions of the continuation monad:

# return , bind , and callCC in the continuation monad
Djinn > type C a = (a -> r) -> r
Djinn > returnC ? a -> C a
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Given this query he obtained an answer:

returnC :: a -> C a
returnC x1 x2 = x2 x1

Moreover, for

Djinn > bindC ? C a -> (a -> C b) -> C b

he obtained

bindC :: C a -> (a -> C b) -> C b
bindC x1 x2 x3 = x1 (\ c15 -> x2 c15 (\ c17 -> x3 c17 ))

and finally for

Djinn > callCC ? ((a -> C b) -> C a) -> C a

he got

callCC :: ((a -> C b) -> C a) -> C a
callCC x1 x2 = x1 (\ c15 _ -> x2 c15) (\ c11 -> x2 c11)

Indeed, in certain situations such as the one above, there exists only a handful of functions
of a given type (sometimes—barring usage of functions such as error or undefined—just
one). If the type is complex and specific enough, we may be content with any of them. In
such cases the programmer should be liberated from the effort of coding and the code of the
program should be given for acceptance as soon as the type of the function is given.

The reference point for type systems in functional programming languages with static
typechecking is the model language of ML [9, 4]. This language brings the let x = M in N
construct into the inventory of program term constructs available in the standard Curry-style
λ-calculus. This makes it possible to assign to the term M a polymorphic type scheme
∀α1 . . . αn.τ and use it within N in various places so that in each of them α1, . . . , αn can be
instantiated with different concrete types. This design of language leads to the situation
that formal typing judgements use contexts that in addition to assertions x : A about
(monomorphic) types contain assertions about type schemes x : τ .

However, the expressivity of ML types is very limited. Stronger type theories were
applied to extend the reasoning possibilities for functional programs, including calculus of
constructions [3] or Martin-Löf type theory [12]. Types correspond there to propositions in
richer logics and one can, for example, specify sorting as

∀x ∃y ordered(y) ∧ permutation(x, y)

A constructive proof of this specification should be turned into a sorting procedure by
a program synthesis mechanisms. This view is supported by the Curry-Howard isomorphism,
which identifies a proof (of a specification) with a program (meeting that specification).

In richer type systems the relation between proofs and programs is not simple and can
take up the form of a program extraction procedure. In its course, all “computationally
irrelevant” content is deleted while the remaining executable parts of the proof are guaranteed
to be correct with respect to the specification formula proved by the initial proof.

Program extraction procedures are typically associated with proof assistants. In particular,
Minlog [18], Isabelle/HOL [14], Coq [2] have such mechanisms. Let us examine closer their
features based upon the extraction mechanism of Coq, designed by Paulin [15] and Letouzey
[10]. The input for the extraction mechanism are Coq proofs and functions. The extracted
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programs are expressed in functional languages such as Ocaml, Haskell and Scheme. One
delicate point concerns the typability of the extracted code, since neither Haskell nor Ocaml
have dependent types. A first solution is to use a type-free language like Scheme. Another
possibility is to use ML-like typing as long as possible and insert some unsafe type coercions
when needed: Obj.magic in Ocaml and unsafeCoerce in Haskell. This feature implies
that resulting types of functions may go beyond the realm of tautologies of the base logic
associated with the ML type system.

In this paper we are interested in the problem of program generation for functional
programs. For this we focus on the model language of ML. In its basic form, the problem has
already been fully exploited in Djinn. However, the example of program generation with help
of Djinn above used no external context of library functions, i.e. no additional symbols were
available that could occur in the generated program except from those explicitly declared in
the body of the generated function. A more realistic case is when the programmer expects
that the program to be created should contain certain symbols that were defined beforehand
in the available program libraries. This leads to the problem of synthesis for ML:

Given a set Γ of library functions together with their types and a type τ of the goal
program, find a term M that has type τ under the context Γ.

In the current paper we analyse unrestricted problem of program synthesis for ML with
algebraic types. The problem turns out to be undecidable when we allow Γ to contain not
only constructive tautologies, but symbols of arbitrary type. We further consider ML with
restricted type instantiations so that types can be instantiated only with atomic types. We
can prove that this case is equivalent to proof search for a restricted fragment of intuitionistic
first-order logic, being the core of Σ1 level of the logic in the Mints hierarchy. As a result we
obtain EXPSPACE-completeness for the ML program synthesis problem for so constrained
instantiations.

The current paper is constructed as follows. In Section 2 the type systems and logics
used in the paper are defined. The problem of program synthesis is studied in Section 3. In
Subsection 3.1 we present the undecidability proof for ML with unrestricted instantiations
and in Subsection 3.2 we analyse the situation when the instantiations are restricted to atomic
types. We present conclusions together with possible further work directions in Section 4.

2 Presentation of Logical Systems

2.1 The System of ML
We assume that an infinite set of object variables Vars is available. The expressions of ML
are defined with the following grammar

M ::= x | λx.M |M1M2 | let x = M1 in M2

where x ∈ Vars. The set FV(M) of free variables in a term M is defined inductively as
FV(x) = {x}, FV(λx.M) = FV(M)\{x}, FV(M1M2) = FV(M1) ∪ FV(M2),
FV(let x = M1 in M2) = FV(M1) ∪ (FV(M2)\{x}).

This notion is extended naturally to sets of terms. The capture avoiding substitution that
assigns M to a variable x is written [x := M ] and as usual extended to [x1 := M1, . . . , xn :=
Mn] when many variables are involved. For the definition of types we assume that we have a
finite, but of unbounded size, set of type constants TConst as well as an infinite set TVars
of type variables. The types and type schemes are defined with the grammar

A ::= o | α | A→ A (types) σ ::= A | ∀α.σ (type schemes)

FSCD 2016
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A inst σ
Γ, x : σ ` x : A (var)

Γ, x : A `M : B
Γ ` λx.M : A→ B

(→ I) Γ `M1 : A→ B Γ `M2 : A
Γ `M1M2 : B (→ E)

Γ `M1 : B Γ, x : gen(Γ, B) `M2 : A
Γ ` let x = M1 in M2 : A (let)

Figure 1 Rules of ML.

where o ∈ TConst, α ∈ TVars. A context Γ is a finite set of pairs x : σ such that when x : σ
and y : τ occur in Γ then x 6= y. The set FTV(σ) of free type variables in type σ is defined
inductively as

FTV(o) = ∅, FTV(α) = {α}, FTV(A→ B) = FTV(A) ∪ FTV(B),
FTV(∀α.σ) = FTV(σ)\{α}.

This notion extends naturally to sets of types and to contexts.
The relation A inst ∀α1 . . . αn.A

′ holds when there is a (capture avoiding) substitution S
that assigns types to type variables with {α1, . . . , αn} = dom(S), where dom(S) is the domain
of S, such that A = S(A′). The function gen(·) is defined as gen(Γ, B) = ∀α1 . . . αn.B where
{α1, . . . , αn} = FTV(B)\FTV(Γ). The type assignment rules for the system are presented in
Figure 1. We write Γ `ML M : τ to tell that the judgement Γ `M : τ is derivable according
to these rules.

This language can be extended to handle algebraic types. In that case we assume that
there is a finite set of algebraic type constructors TAlg, and each P ∈ TAlg has arity given
by arity(P ). The types are formed according to the following grammar

A ::= o | α | A→ A | P (A1, . . . , An) (types)
σ ::= A | ∀α.σ (type schemes)

where o ∈ TConst, α ∈ TVars, P ∈ TAlg and arity(P ) = n. The algebraic types come usually
equipped with term constants that make it possible to construct values of the algebraic types
and destruct them. We omit the constructors from our account since they can be introduced
to our setting as polymorphic object variables placed in contexts (however, the presence of
them may change the complexity bounds, as the presence of any other class of variables can
do). The algebraic type of the form P (A1, . . . , An), type constant or type variable are called
atomic types. If any of them occurs at the end of a type or type scheme, it is called the target
of the type or type scheme, respectively.

This system is accompanied by a reduction relation →β that is defined by the following
redexes

(λx.M)N →β M [x := N ], let x = M in N →β N [x := M ]

extended by syntactic closure. The transitive-reflexive closure of→β is→∗β . The normal form
of a term M is defined as a term NF(M) such that there is no M ′ such that NF(M)→β M

′.
The system of ML enjoys the following proof-theoretic properties:

I Theorem 1.
(Subject reduction) If Γ `ML M : A and M →β N then Γ `ML N : A.
(Church-Rosser) If M →∗β N1 and M →∗β N2 then there is a term M ′ such that N1 →∗β
M ′ and N2 →∗β M ′.
(Strong normalisation) For each term N such that Γ `ML N : A there is no infinite
sequence Mi for i ∈ N such that N = M0 and Mi →β Mi+1 for i ∈ N.
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A inst1 σ

Γ, x : σ ` x : A (var)

Figure 2 The modified rule (var) of ML1.

Γ, x : A ` x : A (var)

Γ, x : A `M : B
Γ ` λx.M : A→ B

(→ I) Γ `M1 : A→ B Γ `M2 : A
Γ `M1M2 : B (→ E)

Figure 3 Rules of the simply-typed lambda calculus.

Proof. The subject reduction property can be attributed to Dubois [6]. The rest is obtained
as a folklore result resulting from an obvious embedding of the system to System F of Girard
and Reynolds [8, 16]. J

By a straightforward inspection of cases we obtain the following proposition that describes
the set of normal forms in ML.

I Proposition 2.
1. If M is an ML term in normal form then M = x, M = xM1 . . .Mn for some n ≥ 1, or

M = λx.M1 where M1, . . . ,Mn are in normal form.
2. If Γ `ML M : A→ B is in normal form then

a. either M = xM1 · · ·Mn for n ≥ 0 with x : ∀α1 . . . αk.A1 → · · · → An → C ∈ Γ,
A → B = C[α1 := B1, . . . , αk := Bk] for some B1, . . . , Bk and Γ ` Mi : Ai[α1 :=
B1, . . . , αk := Bk] for i = 1, . . . , n,

b. or M = λx.M0 where Γ, x : A `ML M0 : B.
3. If Γ `ML M : A where A is atomic type and M is in normal form then M = xM1 · · ·Mn

for n ≥ 0 with x : ∀α1 . . . αk.A1 → · · · → An → C ∈ Γ, A = C[α1 := B1, . . . , αk := Bk]
for some B1, . . . , Bk and Γ `Mi : Ai[α1 := B1, . . . , αk := Bk] for i = 1, . . . , n.

Proof. Standard arguments are left to the reader. J

Observe that normal forms in this system have no occurrences of the let · in · construct.
We consider here in more detail a restricted version of the system ML, namely ML1, in

which the terms, types and type schemes remain the same as in ML, but the instantiation
relation inst is restricted to inst1 where A inst1 ∀α1 . . . αn.A

′ holds whenever there is
a substitution S such that {α1, . . . , αn} = dom(S), A = S(A′), and for each α ∈ dom(S) we
have |S(α)| = 1. In this system only one rule is modified, namely the (var) rule, and it takes
the form presented in Figure 2.

Simply-typed Lambda Calculus. Simply-typed lambda calculus may be viewed as a restric-
tion of ML, the terms and types of which respectively are

M ::= x | λx.M |M1M2 A ::= o | α | A→ A

The rules are presented in Figure 3. Note that the (var) rule is a special case of the ML
(var) rule for the empty string of quantifiers (i.e. when the instantiated type scheme is a
type). Also note that the rule for let · in · is missing. We write Γ `→ M : τ to tell that
the judgement Γ `M : τ is derivable according to these rules in Figure 3.

FSCD 2016
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Γ, x : ϕ ` x : ϕ (Ax)

Γ, x : ϕ `M : ψ
Γ ` λx : ϕ.M : ϕ→ ψ

(→I) Γ `M : ϕ→ ψ Γ ` N : ϕ
Γ `MN : ψ (→E)

Γ `M : ϕ
Γ ` λXM : ∀Xϕ (∀I)∗

Γ `M : ∀Xϕ
Γ `MY : ϕ[X := Y ]

(∀E)

∗ This rule is subject to the standard eigenvariable condition.

Figure 4 Proof assignment rules for intuitionistic first-order logic with →, ∀.

2.2 Intuitionistic First-order Logic
For the definition of formulas in intuitionistic first-order logic (IFOL) we need an infinite
set of object variables VarsIFOL as well as a finite, but of unbounded size set of predicates
Preds such that each P ∈ Preds has arity given by arity(P ) (we abuse the notation and use
the same metavariables for predicates and algebraic types as they are translated bijectively
in our approach, this also explains the overloading of the function arity(·)). Formulas of
intuitionistic first-order logic with →,∀ are built using the following grammar

ϕ ::= P (X1, . . . , Xn) | ϕ1 → ϕ2 | ∀X ϕ

where X,X1, . . . , Xn ∈ VarsIFOL. In this article we use formulas of restricted form that
can be described within the framework of the Mints hierarchy [17] where the presence of
a formula on a particular level depends on the form of its classical prenex form. We can
define syntactically the resulting classes of formulas Σn,Πn in the following way. The sets
Σ0 = Π0 are equal to the set of quantifier-free formulas. Further,

Σn+1 ::= P (X1, . . . , Xn) | Πn | Πn+1 → Σn+1
Πn+1 ::= P (X1, . . . , Xn) | Σn | Σn+1 → Πn+1 | ∀X Πn+1

where X1, . . . , Xn, X ∈ VarsIFOL. We introduce an additional class of formulas in natural
form defined by the following grammar from the symbol N

N ::= O | B→ N B ::= O | ∀X B O ::= P (X1, . . . , Xn) | O→ O

where X1, . . . , Xn, X ∈ VarsIFOL. The formulas are natural in the sense that they avoid
nested quantifiers, and people tend to avoid internal quantification. Again the predicate
P (X1, . . . , Xn), where n ≥ 0, at the end of a formula is called target of the formula. We
observe that N ⊆ Σ1.

The proofs for valid formulas of the logic can be represented by terms. To define them
we need an infinite set of proof variables VarsP . The terms are generated by the grammar

M ::= x | λx : ϕ.M |M1M2 | λXM |MX

where x ∈ VarsP and X ∈ VarsIFOL. The proof assignment rules for the logic are presented
in Figure 4.

This system is again accompanied by a reduction relation →β that is defined through the
redex (λx.M)N →β M [x := N ] as well as (λXM)Y →β M [X := Y ] extended by syntactic
closure. The transitive-reflexive closure of →β is →∗β . The normal form of a term M is
defined as a term NF(M) such that there is no M ′ with NF(M)→β M

′. We also define the
notion of a proof term in long normal form, abbreviated lnf .
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If N is an lnf of type ϕ then λX N is an lnf of type ∀X ϕ.
If N is an lnf of type ψ then λx :ϕ.N is an lnf of type ϕ→ ψ.
If N1, . . . , Nn are lnf or object variables, and xN1 . . . Nn is of an atom type, then
xN1 . . . Nn is an lnf.

We have now (see e.g. the paper by Schubert et al [17]) the following basic properties.

I Proposition 3.
1. If ϕ is intuitionistically derivable from Γ then Γ ` N : ϕ, for some lnf N .
2. If Γ ` N : P (~x), where P (~x) is an atomic formula and N is an lnf, then N = X ~D, where

(X : ψ) ∈ Γ with target(ψ) = P , and ~D is a sequence that may contain proof terms and
object variables.

I Problem 4 (Provability Problem). Given a context Γ and formula ϕ check if there is a
proof term M such that Γ `IFOL M : ϕ holds.

This problem is known to be EXPSPACE-complete for formulas in Σ1. We have even
more.

I Theorem 5. The provability problem when formulas are restricted to come from Σ1 is
EXPSPACE-complete. The same holds for formulas in Σ1 ∩N = N.

The paper by Schubert et al [17] states the above result only for Σ1. However, the hardness
proof uses formulas from N so the result holds for this restricted class.

3 The Problem of Synthesis

The program synthesis problem in its most basic formulation is as follows

I Problem 6 (Closed Program Synthesis for ML). Given a type A of ML check if there is a
term M such that `ML M : A.

We can restate it in the vocabulary of programming languages as follows: given a type τ find
a program M that has the type.

One may be tempted to ask why we demand type instead of type scheme in the problem,
but this is easily explained by the fact that there are no terms of any type scheme in the
language of ML. Functional programming languages make it possible to define functions for
type schemes, but they do it so by implicit introduction of let · in · construct.

For completeness we present here a proof that the problem of closed program synthesis is
PSCPACE-complete, but this is rather a folklore result, which is difficult to attribute to a
particular publication. The proof is done by reduction of the type inhabitation problem for
the simply-typed lambda calculus, which is known to be PSCPACE-complete [21]. Actually,
the work of Augustsson [1] is based on the same observation we explicate here.

I Lemma 7.
1. If Γ `→ M : A then Γ `ML M : A.
2. If Γ `ML M : A where Γ does not contain type schemes andM = NF(M) then Γ `→ M : A.

Proof. The first claim follows easily by induction over M and observation that the simply-
typed lambda calculus is a subsystem of ML.

The second claim follows by observation that a normal form of an ML term does not
contain occurrences of let · in ·. As the (let) rule can only be applied to a term of the
form let · in ·, this rule cannot occur in the derivation. The remaining rules are the rules
of the simply-typed lambda calculus so the claim follows. J
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I Theorem 8. The closed program synthesis for ML is PSPACE-complete. This holds even
for programs with algebraic types.

Proof. By subject reduction and strong normalisation properties we may restrict our search
in the closed program synthesis problem for ML to terms in normal form.

Suppose we are given a type A in the simply-typed lambda calculus. Since simply-typed
lambda calculus is a subsystem of ML, we can use an algorithm for the closed program
synthesis for ML on this input. In case the algorithm answers positively, there is a term M

such that `ML M : A. By the strong normalisation property, we may assume M is in normal
form. By Lemma 7(2) we obtain `→ M : A. As a result, the answer for ML is correct for
the simply-typed lambda calculus. In case the algorithm answers negatively, i.e. there is no
ML term of type A, we cannot have a term of the simply-typed lambda calculus of the type
either. In case there is a term M such that `→ M : A, we immediately translate M to ML
by Lemma 7(1) and obtain contradiction with the correctness of the algorithm for ML. This
gives a polynomial time reduction of the inhabitation problem for the simply-typed lambda
calculus to the program synthesis for ML. As the inhabitation problem is PSPACE-hard for
this calculus [21], we obtain that closed program synthesis for ML is PSPACE-hard.

A similar argument proves that the program synthesis problem for ML is reduced to
the inhabitation problem for the simply-typed lambda calculus. As a result, we obtain
that the synthesis problem is in PSPACE, which concludes the proof that the problem is
PSPACE-complete.

The algebraic types do not invalidate the argument as they only serve as new atoms. J

3.1 Program Synthesis in Context
The above-discussed version of the program synthesis problem does not cover the issue of
program synthesis in full. Actually, programmers do not want their programs to be composed
entirely from scratch. Instead they want to use a libraries with functions that offer more
refined functionality than the basic language. This consideration leads to the following
version of the program synthesis problem for ML.

I Problem 9 (Program Synthesis for ML). Given a context Γ and type A of ML check if
there is a term M such that Γ `ML M : A.

One may be curious why the context Γ is not restricted to contain only types that are
inhabited within the original type theory, i.e. ML in this case—procedures in a library
must have been written in the same language. This broadening of the scope of possible
contexts has two reasons. First, languages such as Haskell or Ocaml use, as mentioned in
the introductory Section 1, page 3, extensions that make it possible to go beyond ML type
discipline. Second, the libraries may be the result of incorporating some libraries written in
foreign languages, e.g. Qt or GTK, which may use some internal global state and in this way
enable presence of originally non-inhabited types.

One can observe that the synthesis problem of this kind was posed before in terms
of Hilbert-style propositional logic. In such systems axiom schemes may be regarded as
polymorphic operations that are available in the context. The provability problem (that may
be viewed as the synthesis problem through the Curry-Howard isomorphism) is undecidable
there, which is stated in the Linial-Post theorem [11] that holds even for the calculae with
arrow only [19], which are very close to ML. However, these Hilbert-style systems use only
two rules, namely the modus ponens together with the substitution rule and these are not
enough to guarantee that the deduction theorem holds. Therefore, these results cannot be
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applied directly to the case of ML and we give here a direct reduction of the halting problem
for two-counter automata.

A two-counter automaton A (introduced by Minsky [13]) is a tuple 〈Q, qI , F, δ〉 where Q
is a finite set of states, qI ∈ Q is an initial state, F ⊆ Q is a set of final states, and δ is a set
of rules of the form

q, T 7→ q′, k0, k1 (1)

where q, q′ ∈ Q, T ∈ {Z0, Z1,NZ0,NZ1}, k0, k1 ∈ {0,−1,+1}. The value T describes a test
on one of the available two counters that enables the rule to fire. It can be described precisely
by means of configurations. A configuration of the automaton is a triple 〈q, l0, l1〉 where
q ∈ Q, l0, l1 ∈ N. A rule (1) is applicable to a configuration 〈q, l0, l1〉 when

T = Zi, li = 0, l̄i 6= 0, and ki ≥ 0, or
T = Zi, li = 0, l̄i = 0, and k0, k1 ≥ 0, or
T = NZ i, li 6= 0, and l̄i 6= 0, or
T = NZ i, li 6= 0, l̄i = 0, and kī ≥ 0

for i ∈ {0, 1} and ī = i+ 1 mod 2. Observe that the rules that perform subtraction can only
be fired when the resulting counter is non-negative. We fix an automaton A for the rest of
the section. Halting is defined inductively as follows. We say that the automaton halts from
a configuration 〈q, l0, l1〉 when

either q ∈ F or
there is a rule q, T 7→ q′, k0, k1 applicable to 〈q, l0, l1〉 such that A halts from 〈q′, l0 +
k0, l1 + k1〉.

We say that the automaton halts when it halts from the configuration 〈qI , 0, 0〉.

In our construction we use the following vocabulary of type constants and constructors
type constants: loop, start, p, 1, 0 and
type constructors: P,R of arity 1.

We need first to provide representation for states. For this we define types R0(A) = A and
Ri+1(A) = R(Ri(A)). Assume that the set of states is Q = {q0, . . . , qn}. We can represent
the state qi by Aqi

= Ri(0). We write L0
0 = 0, L0

1 = 1, Li+1
0 = P (P i(0)), Li+1

1 = P (P i(1)).
We can now define an ML type A〈q, l0, l1〉 that represents the configuration 〈q, l0, l1〉 of the
automaton

A〈q, l0, l1〉 = Ll00 → Ll11 → Aq → p. (2)

With this in mind, we can define formulas that represent particular kinds of automaton rules.
Let us define first formulas that make it possible to test for zero and non-zero:

BZ,0(D1, D2) =L0
0 → D1 → D2 → p, BZ,1(D1, D2) =D1 → L0

1 → D2 → p,

BNZ,0(D1, D2, D3) =P (D1)→ D2 → D3 → p, BNZ,1(D1, D2, D3) =D1→P (D2)→D3→p

as well as the formula that updates counters

C(α, β, γ) = α→ β → γ → p.

We can now define operations B + k for k ∈ Z.

B + 0 = B, B + (k + 1) = P (B) + k for k ≥ 0
P (B) + (k − 1) = B + k, for k < 0
B + k = B, for k < 0 and B 6= P (B′)
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12:10 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

We define B−k = B+(−k). Observe that for n = −1 we have γ−n = P (γ) and γ−n+n = γ.
The context ΓA consists of the following six kinds of type schemes:

(1) (A〈qI , 0, 0〉 → loop)→ start
(2) for each rule of the form q, Z0 7→ q′,m, n :

∀γ.BZ,0(γ − n,Aq)→ (C(L0
0 +m, γ − n+ n,Aq′)→ loop)→ loop

(3) for each rule of the form q, Z1 7→ q′,m, n :
∀γ.BZ,1(γ −m,Aq)→ (C(γ −m+m,L0

1 + n,Aq′)→ loop)→ loop
(4) for each rule of the form q,NZ0 7→ q′,m, n :

∀γ0γ1.BNZ,0(γ0, γ1 − n,Aq)→
(C(γ0 + 1 +m, γ1 − n+ n,Aq′)→ loop)→ loop

(5) for each rule of the form q,NZ1 7→ q′,m, n :
∀γ0γ1.BNZ,1(γ0 −m, γ1, Aq)→

(C(γ0 −m+m, γ1 + 1 + n,Aq′)→ loop)→ loop
(6) ∀γ0γ1.(γ0 → γ1 → Aq → p)→ loop for q ∈ F

where k0, k1 ≥ 0. An important property of ΓA is that all its type schemes have targets
being type constants. Since the notation above is quite dense, we give an example on how it
expands. Suppose we want to obtain the concrete formula for the rule q1, Z0 7→ q2,+1,−1.
Assume that q1 is represented as R(0) and q2 as R(R(0)). The rule falls under the point (2)
above and gives rise to the formula

∀γ.(0→ P (γ)→ R(0)→ p)→ ((P (0)→ γ → R(R(0))→ p)→ loop)→ loop.

It is worth pointing out here that the mentioned above type schemes are variations on
the double negation principle (they turn into real double negation when loop is understood
as falsity) and in this way resemble the very natural terms presented in our example on
pages 12:1–12:2.

We say that a context Σ is faithful for the automaton A when
it consists only of pairs in one of the form: x : A〈q, l0, l1〉,
if x : A〈q, l0, l1〉 ∈ Σ then either q = qI , l0 = 0, l1 = 0 or there is a rule q′, T 7→ q, k0, k1 in
δ, and a pair x : A〈q′, l′0, l′1〉 ∈ Σ such that the rule is applicable to 〈q′, l′0, l′1〉, l0 = l′0 + k0,
and l1 = l′1 + k1.

I Lemma 10. If Σ is faithful for the automaton A with x : A〈q, l0, l1〉 ∈ Σ such that A halts
from 〈q, l0, l1〉 then there is a term M such that ΓA,Σ `ML M : loop.

Proof. The proof is by a straightforward induction over the notion of halting from configur-
ation. J

I Lemma 11. If Σ is faithful for the automaton A and ΓA,Σ `ML M : loop for some term
M then there is x : A〈q, l0, l1〉 ∈ Σ such that A halts from 〈q, l0, l1〉.

Proof. We may assume that M is in normal form. The proof is by induction on the size of
the term M . There is no term of size 1 of type loop so the base case follows.

For the inductive step we observe that M is in normal form and its type is a constant so
it must be of the form xM1 . . .Mn for some x : τ ∈ ΓA,Σ. As no type in Σ has target loop
we obtain that x : τ ∈ ΓA. We analyse the cases for possible kinds of schemes in ΓA. We
present here only the most interesting cases (2) and (4).

In case (2), x : ∀γ.BZ,0(γ − n,Aq) → (C(L0
0 + m, γ − n + n,Aq′) → loop) → loop for

a transition rule q, Z0 7→ q′,m, n in δ (*). This means that M = xM1M2 where M1 is of type
BZ,0((γ−n)[γ := A0], Aq), the termM2 is of type C(L0

0+m, (γ−n+n)[γ := A0], Aq′)→ loop.
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As BZ,0((γ − n)[γ := A0], Aq) = L0
0 → A2 → Aq → p, the term M1 = λx1x2x3.M

′
1 where

ΓA,Σ, x1 : L0
0, x2 : A2, x3 : Aq `ML M

′
1 : p with A2 = (γ − n)[γ := A0]. Only elements of Σ

have target p so M ′1 = yM ′′1 M
′′
2 M

′′
3 for some y : A〈qy, l0, l1〉 = Ll00 → Ll11 → Aqy

→ p, M ′′1 of
type Ll00 , M ′′2 of type Ll11 andM ′′3 of type Aqy . The only type in the context that has target of
the form P (· · ·P (0) · · · ) is the type of x1 so M ′′1 = x1. Similarly, the only type in the context
that has target of the form P (· · ·P (1) · · · ) is the type of x2 soM ′′2 = x2. Again, the only type
in the context that can possibly have the target of the form R(· · ·R(0) · · · ) is the type of x3,
soM ′′3 = x3 and A2 = (γ−n)[γ := A0] = R(· · ·R(0) · · · ). Consequently y : A〈q, 0, l1〉 ∈ Σ for
some number l1 ≥ 0. Recall that γ−n for n = −1, 0, 1 is either γ or P (γ) so γ is instantiated
either with A0 = P l1(1) or A0 = P l1−1(1) (for n = −1). We can now turn our attention to
the term M2. Since its type is Ag → loop = C(L0

0 + m, (γ − n + n)[γ := A0], Aq′) → loop,
it has the form λx1.M

′
2 where Γ,Σ, x1 : Ag `ML M

′
2 : loop. An analysis of Ag shows that it

is actually A〈q′, 0 +m, l1 + n〉. As the size of M ′2 is less than the size of M , we can apply
the induction hypothesis. As a result, we obtain A〈q′′, k0, k1〉 ∈ Σ such that A halts from
〈q′′, k0, k1〉. In case 〈q′′, k0, k1〉 = 〈q′, 0 +m, l1 + n〉, we obtain by the mentioned above rule
(*) that A halts from 〈q, 0, l1〉 where A〈q, 0, l1〉 ∈ Σ. In case 〈q′′, k0, k1〉 6= 〈q′, 0 +m, l1 + n〉,
we obtain that already 〈q′′, k0, k1〉 ∈ Σ. In both cases the claim of the current lemma is
proved.

In case (4), x : BNZ,0(γ0, γ1 − n,Aq)→ (C(γ0 + 1 +m, γ1 − n+ n,Aq′)→ loop)→ loop
for a transition rule q,NZ0 7→ q′,m, n in δ (**). This means that M = xM1M2 where M1 is
of type

BNZ,0(γ0[γ0 := A0], (γ1 − n)[γ1 := A1], Aq),

and the term M2 is of type

C((γ0 + 1 +m)[γ0 := A0], (γ1 − n+ n)[γ1 := A1], Aq′)→ loop.

As BNZ,0(γ0[γ0 := A0], (γ1−n)[γ1 := A1], Aq) = P (A0)→ (γ1−n)[γ1 := A1]→ Aq → p, the
term M1 = λx1x2x3.M

′
1 where ΓA,Σ, x1 : P (A0), x2 : (γ1−n)[γ1 := A1], x3 : Aq `ML M

′
1 : p.

Only elements of Σ have target p so M ′1 = yM ′′1 M
′′
2 M

′′
3 for some y : A〈qy, l0, l1〉 = Ll00 →

Ll11 → Aqy → p with l0, l1 ≥ 0,M ′′1 of type Ll00 ,M ′′2 of type Ll11 andM ′′3 of type Aqy . The only
type in the context that has target of the form P (· · ·P (0) · · · ) is the type of x1 so M ′′1 = x1.
Similarly, the only type in the context that has target of the form P (· · ·P (1) · · · ) is the type
of x2 so M ′′2 = x2. Again, the only type in the context that can possibly have the target
of the form R(· · ·R(0) · · · ) is the type of x3, so M ′′3 = x3. Consequently y : A〈q, l0, l1〉 ∈ Σ,
and l0 > 0. Recall that γ1 − n for n = −1, 0, 1 is either γ1 or P (γ1) so γ1 is instantiated
either with A1 = P l1(1) or A1 = P l1−1(1) (for n = −1). We can now turn our attention to
the term M2. Since its type is

Ag → loop = C((γ0 + 1 +m)[γ0 := A0], (γ1 − n+ n)[γ1 := A1], Aq′)→ loop,

it has the form λx1.M
′
2 where

Γ,Σ, x1 : Ag `ML M
′
2 : loop.

An analysis of Ag shows that it is actually A〈q′, l0 +m, l1 +n〉. As the size of M ′2 is less than
the size ofM , we can apply the induction hypothesis. As a result, we obtain A〈q′′, k0, k1〉 ∈ Σ
such that A halts from 〈q′′, k0, k1〉. In case 〈q′′, k0, k1〉 = 〈q′, l0 + m, l1 + n〉, we obtain by
the mentioned above rule (**) that A halts from 〈q, l0, l1〉 where A〈q, l0, l1〉 ∈ Σ. In case
〈q′′, k0, k1〉 6= 〈q′, l0 +m, l1 + n〉, we obtain that already A〈q′′, k0, k1〉 ∈ Σ. In both cases the
claim of the current lemma is proved. J
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We can now use these lemmas to prove the undecidability result.

I Theorem 12. The program synthesis for ML with algebraic types is undecidable.

Proof. We reduce the halting problem for two-counter automata to the problem of program
synthesis. Given an automaton A we generate the instance ΓA, start of the program synthesis
for ML with algebraic types.

In case there is a (normal form) term M such that ΓA `ML M : start we proceed as
follows. Since start is atomic, the term M must be of the form xM1 · · ·Mn for some x ∈ ΓA.
The only variable of this kind is x : (A〈qI , 0, 0〉 → loop)→ start and M = x(λy.M ′) where
ΓA, y : A〈qI , 0, 0〉 `ML M ′ : loop. We observe that Σ = y : A〈qI , 0, 0〉 is faithful for the
automaton A. We can apply now Lemma 11 and conclude that A halts from 〈qI , 0, 0〉.

In case A halts from 〈qI , 0, 0〉, we can apply Lemma 10 to the context Σ = y : A〈qI , 0, 0〉,
which is faithful for the automaton A. As a result, we obtain a term M ′ such that ΓA, y :
A〈qI , 0, 0〉 `ML M

′ : loop. This gives us that ΓA`MLx(λy.M ′) : start where x : (A〈qI , 0, 0〉 →
loop)→ start ∈ ΓA.

This concludes the reduction and thus the program synthesis for ML with algebraic types
is undecidable as the halting problem is. J

Algebraic types in functional programming languages use constants that construct values
of algebraic types (e.g. cons for lists) and destruct them (e.g. fold-like iterators for lists).
The construction above does not work when the context Γ above contains constructors and
destructors for algebraic types. However, it can be easily corrected when we allow value
constructors, but disallow destructors. The proof breaks when we say that the only way to
obtain target type of the forms P i(0), P i(1), Ri(0) is through the use of a variable introduced
through one of our six type schemes. In the presence of value constructors we have another
option to construct them using them. We can forbid this possibility by taking a slightly
different encoding of counters, and states and take there P i(0)→ q, P i(1)→ q,Ri(0)→ q

for some new type constant q.
It is still possible to have realistic programming scenarios within these constraints.

Algebraic types are often hidden in abstract types that make available value constructors,
but do not offer destructors. Instead they give the programmers an interface to operate on
constructed values without the knowledge of their actual representation.

3.2 Program Synthesis with Restricted Instantiation
Since the problem in its full generality is undecidable we can try to find a reasonable special
case, for which the problem becomes decidable. One of the critical features of the reduction in
the previous section is the possibility to instantiate type schemes with types of arbitrary size
(they are used to match the values of the counters during a run of a simulated automaton).
Therefore, we propose to restrict the instantiation.

I Problem 13 (Program Synthesis for ML1). Given a context Γ and type A of ML1 check if
there is a term M such that Γ `ML1 M : A.

In this paper we show that this problem is EXPSPACE-complete for ML with algebraic
types. As the main device to prove this, we use the results for the provability problem in
IFOL in the restricted class N of first-order formulas of Mints-hierarchy [17].

We can now define a transformation b·c that transforms a formula from B to an ML type
scheme. For simplicity, we assume that the set of predicates and algebraic type constructors
are the same, i.e. Preds = TAlg. We assume that there is an injective correspondence between
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variables in VarsIFOL and type variables in TVars. The result of this correspondence for
a variable X is written αX . On other formulas of B it gives

bP (X1, . . . , Xn)c = P (αX1 , . . . , αXn
), bϕ1 → ϕ2c = bϕ1c → bϕ2c, b∀X ϕc = ∀αX .bϕc.

This definition naturally extends to contexts. We can also define its extension to formulas of
N. For a formula ϕ = ϕ1 → · · · → ϕn → P (X1, . . . , Xn) we define (with a slight abuse of
the target language) the type

bϕc = bϕ1c → · · · → bϕnc → bP (X1, . . . , Xn)c.

(Note that this is actually a System F type the inhabitation of which is equivalent to
the inhabitation of the type bP (X1, . . . , Xn)c in the initial context extended with x1 :
bϕ1c, . . . , bϕnc.) Committing another small abuse of notation, we define b·c on proof terms.

bxc = x, bλx : ϕ.Mc = λx.bMc, bM1M2c = bM1cbM2c, bλXMc = M, bMXc = bMc.

Note that this translation may be viewed as a formula erasure mapping.
Here are the basic properties of the transformation.

I Lemma 14.
1. For each formula φ and variables X,Y ∈ VarsIFOL bφ[X := Y ]c = bφc[αX := αY ].
2. For each proof term M in normal form the term bMc is also in normal form.

Proof. Straightforward induction over the formula φ in (1) and term M in (2). J

I Lemma 15. For each Γ with formulae from Π1 ∩B only and ϕ ∈ O it holds that for each
proof term M in normal form Γ `IFOL M : ϕ if and only if bΓc `ML1 bMc : bϕc.

Proof.
(⇒) The proof is by induction over the derivation for Γ `IFOL M : ϕ with cases de-
pending on the last rule used. The interesting case is when the last rule is (∀E) then
M = xX1 · · ·Xm and the judgement Γ ` xX1 · · ·Xm : ϕ as well as Γ ` x : ∀Y1 . . . Ym.ϕ[X1 :=
Y1, . . . Xm := Ym] are derivable in intuitionistic first-order logic. This means that x :
∀Y1 . . . Ym.ϕ[X1 := Y1, . . . Xm := Ym] ∈ Γ. Observe that b∀Y1 . . . Ym.ϕ[X1 := Y1, . . . , Xm :=
Ym]c = ∀αY1 . . . αYm

.bϕ[X1 := Y1, . . . , Xm := Ym]c and consequently that

x : ∀αY1 . . . αYm .bϕ[X1 := Y1, . . . , Xm := Ym]c ∈ bΓc.

We can now use the (var) rule of ML1 with the instantiation S = [αY1 := αX1 , . . . , αYm
:=

αXm
] since this instantiation can be used to obtain

S(bϕ[X1 :=Y1, . . . , Xm :=Ym]c) inst1 ∀αY1 . . . αYm
.bϕ[X1 :=Y1, . . . , Xm :=Ym]c.

As a result, we obtain bΓc `ML1 x : S(bϕ[X1 := Y1, . . . , Xm := Ym]c), which is actually
bΓc `ML1 x : bϕc as bϕc = S(bϕ[X1 :=Y1, . . . , Xm :=Ym]c).

(⇐) The proof is by induction over derivation for bΓc `ML1 bMc : bϕc. The interesting case
is when the last rule is (var) then our judgement has the form bΓc, x : bψc ` x : bϕc for some ψ,
and it holds that bψc inst1 bϕc. Since ψ ∈ Π1∩B and ϕ ∈ O, the formula ψ is ∀X1 . . . Xn.ψ0,
where ψ0 is quantifier-free and ϕ is quantifier-free. This implies that bψc = ∀αX1 . . . αXn

.bψ0c.
Moreover, relation inst1 means that bψ0c[αX1 := β1, . . . , αXn := βn] = bϕc where β1, . . . , βn
are type variables. For those of the variables that occur in FTV(bϕc) we may assume
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that are of the form αY . For other ones we can also assume they have analogous form.
Therefore, we have bψ0c[αX1 := αY1 , . . . , αXn

:= αYn
] = bϕc for some Y1, . . . , Yn ∈ VarsIFOL.

We can now use the (var) rule of intuitionistic first-order logic to obtain Γ, x : ψ ` x : ψ
and then subsequently n times the (∀E) rule with substitutions of the form [Xi := Yi] to
obtain Γ, x : ψ ` xY1 · · ·Yn : ψ0[X1 := Y1, . . . , Xn := Yn], which is the required judgement
as bψ0[X1 := Y1, . . . , Xn := Yn]c = bψ0c[αX1 := αY1 , . . . , αXn := αYn ] by Lemma 14 and
bxY1 · · ·Ync = x by definition of b·c. J

The lemma above helps in giving the proof of EXPSPACE-hardness. One might be temp-
ted to give a proof that the problem is in EXPSPACE also through a translation argument.
However, such reasoning would be complicated as the arguments of type constructors need
not be type variables. Therefore, we present a direct proof.

First, we need to know how type substitutions affect inferences in ML.

I Lemma 16. If Γ ` N : A in either ML or ML1 then Γ[~α := ~β] ` N : A[~α := ~β] in ML or
ML1 respectively.

Proof. Straightforward induction over the term N . J

I Lemma 17. Let C be the set of type constants that occur in Γ, A. If N is in normal form
and Γ ` N : A in ML1 where C ∪ FTV(Γ, A) ⊆ V for some non-empty set V then all type
instantiations in the derivation can be restricted to use atoms in V.

Proof. The proof is by induction over the term N .
In case N is a variable the proof is obvious. In case N = λx.N ′, the type A is A1 → A2

and the inference must end with the (→ I) rule. This reduces the problem to the one for the
judgement Γ, x : A1 ` N ′ : A2, for which we can apply the induction hypothesis and then
obtain our conclusion.

In case N = xN1 . . . Nk, the inference must start with the (var) rule for x : σ ∈ Γ where
σ = ∀~γ.A1 → · · · → Ak → B and Γ ` Ni : Ai[~γ := ~A] where ~A are atomic. By Lemma 16 we
obtain Γ ` Ni : Ai[~γ := ~A′] for i = 1, . . . , k where ~A′ differs from ~A only on positions that
are outside of V and has a fixed element α0 of V there. Therefore the atomic instantiation
with ~A′ can be used in the initial (var) rule instead of ~A, which gives the required conclusion
after application of the induction hypothesis to arguments Ni for i = 1, . . . , k. J

I Lemma 18. The program synthesis problem for ML1 is in EXPSPACE.

Proof. Given a context Γ and type A we use a simple generalisation of the Ben-Yelles
algorithm [20]. Lemma 17 implies that type inference for a normal program N of type A
above can be restricted to use only type atoms from the set A = C ∪ FTV(A,Γ) ∪ {α0},
where C is the set of type constants in A,Γ. Note that the type variable α0 guarantees that
A is not empty. Therefore the algorithm needs only to consider judgements Γ′ ` M : B
where all type atoms are in A. It should be clear that the number of different types in Γ′ is
at most exponential in the size n of A,Γ. (A type scheme that generalises m variables has at
most mn instances.) Using the same argument as for simply typed lambda calculus in the
Ben-Yelles algorithm we obtain an alternating exponential time exponential algorithm. J

I Theorem 19. The program synthesis problem for ML1 is EXPSPACE-complete.

Proof. We can now exploit Theorem 5 in the context of the program synthesis problem. The
EXPSPACE-hardness is the result of this theorem combined with the reduction presented
in Lemma 15. The fact that the problem is in EXPSPACE is again the the result of the
theorem combined this time with the construction presented in Lemma 18. J
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4 Conclusions and Further Work

We presented an initial study on program synthesis for functional programs with libraries.
The goal of the constructions presented here is not only to demonstrate undecidability
or a particular complexity. They also allow us to better understand intricate difficulties
of program synthesis. In particular, the undecidability proof works because the depth of
instantiation is not bounded. This makes it reasonable to restrict it in practical procedures
or heuristics for program synthesis. We make restriction of this kind in our analysis for ML
with instantiations restricted to atomic types. The EXPSPACE-hardness proof there relies
on the translation from the core of the fragment Σ1 of intuitionistic first-order logic. This
translation is direct so the reason for the high complexity in the logic is the same as in ML,
namely, the number of quantifiers in front of a type scheme occurs in the exponent while the
number of atoms determines the base of exponentiation. This is also a hint on the heuristics
for program synthesis so that they should give ways to restrict type schemes in this fashion.

The discussion of this paper goes beyond the solution of Djinn, which handles polymorphic
functions, but does not allow for any instantiation. One improvement of the current work
over Djinn is that we show that handling of instantiation may lead to undecidability, but
also we show how to handle some interesting instantiation cases.

There are still some interesting questions that are left open here. First, it is not clear
what is the complexity of program synthesis with context for ML programs with no algebraic
types. Second, the complexity of program synthesis for the case where the context contains
only types of the algebraic type constructors and destructors may be different than the
complexities obtained in this work. It is also appealing to investigate the impact of the size of
the instantiation on the complexity of the problem in the spirit of the bounded combinatory
logic studied by Düdder et al [7]. These theoretical questions can be complemented by
investigations in more practical directions. For example, which syntactic forms of types give
rise to small number of inhabitants? What are the situations when the resulting terms are
small enough to be further examined by programmers in reasonable time?
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Abstract
We use the control features of continuation models to interpret proofs in first-order classical
theories. This interpretation is suitable for extracting algorithms from proofs of Π0

2 formulas. It
is fundamentally different from the usual direct interpretation, which is shown to be equivalent
to Friedman’s trick. The main difference is that atomic formulas and natural numbers are
interpreted as distinct objects. Nevertheless, the control features inherent to the continuation
models permit extraction using a special “channel” on which the extracted value is transmitted at
toplevel without unfolding the recursive calls. We prove that the technique fails in Scott domains,
but succeeds in the refined setting of Laird’s bistable bicpos, as well as in game semantics.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages: Denotational
semantics, F.4.1 Mathematical Logic
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1 Introduction

Game semantics appeared simultaneously in [13, 21, 2] and provides precise models for PCF.
These seminal works started a new line of research which led among other things to models
of languages with higher-order references [1] and control operators [18]. These interesting
features were obtained by removing some requirements of the original model: innocence for
references, and well-bracketing for control operators. This interesting property means that
the model is at first a model of a language with side effects, that we can then constrain to
eliminate non-functional behaviors. In this work, we are interested into giving computational
content to formulas through realizability, so it is an interesting feature to have an expressive
language in which we can write simple realizers for complicated formulas.

Realizability is a way to relate programs and formulas invented by Kleene [14]. To each
formula A in a given language L we associate a set |A| of realizers in a given programming
language P. The realizability interpretation |_| is usually defined by induction on the
formula, for example M ∈ |A⇒ B| is typically defined as: for all N ∈ |A|, M N ∈ |B|,
where M N is the application of the argument N to the program M in P. The property of
adequacy is obtained by the definition of a theory for L which is correct with respect to the
realizability interpretation. Adequacy allows the mapping of any proof π of a formula A in
the chosen theory to some [π] ∈ |A|. Finally, if the realizability interpretation is sufficiently
well behaved, then a realizer M of a formula ∀x ∃y A {x, y} is such that for any element a
in the model, A {a,M a} holds. This property combined with adequacy gives extraction:
from a proof of a formula A one can obtain a program M such that A {a,M a} holds for any
element a.
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In the context of classical logic, there are mainly two extraction methods. The first
one relies on Gödel’s negative translation which maps a proof of ∀x∃y P {x, y} (where P is
an atomic predicate) in classical arithmetic to a proof of ∀x¬∀y ¬P {x, y} in intuitionistic
arithmetic. Then Friedman’s trick [8] replaces ⊥ with ∃y P {x, y}, to obtain an intuitionistic
proof of ∀x∃y P {x, y}. This turns any extraction method in intuitionistic arithmetic into
an extraction method for Π0

2 formulas in classical arithmetic. Refinements of this technique
have been studied in [5], and bar recursive interpretations of the negative translation of the
axiom of choice in this setting have been given in [4, 6].

The second method uses control operators [9] like scheme’s call/cc. If P has control
features, then adequacy can hold for a classical theory. Extraction with this method is
obtained by taking a non-empty set of realizers of ⊥. The first realizability models for
classical logic with control operators were built by Krivine [16] and use an untyped λ-calculus
extended with call/cc as programming language, and second order Peano arithmetic as logical
theory. They have also been later extended with the axiom of dependent choice, by the
addition of particular instructions to the language of realizers [15]. Krivine’s realizability has
also been related to Friedman’s A-translation in [22, 20], and several extraction methods in
this setting have been studied [20, 24].

In this work we define a variant of the second method and introduce control features
in P by working in simply-typed λµ-calculus [23]. Precisely, we take P to be a model of
λµ-calculus, that is, a category of continuations [12]. Working in a model rather than in a
language can be interesting when one wants features that fit more naturally in a model than
in the syntax. An example is the realization of the axiom of choice using the bar recursion
operator [7], which requires the existence of all the first-class functions in P. Taking the
game semantics model for P also gives access to references in the realizers.

In Section 2 we first fix the logical framework, that is first-order logic. We then describe
the mapping of intuitionistic (resp. classical) proofs to λ-calculus (resp. λµ-calculus) and
the realizability interpretation. We describe Friedman’s trick which turns extraction for
intuitionistic theories into extraction for classical theories, then we describe how control
operators can be used to interpret directly classical logic, and finally we explain why the two
methods are equivalent when working in a model. In Section 3 we present our method of
extraction for classical logic in a category of continuations and explain how it provides a
simpler interpretation. Finally we explain why this technique fails in models based on Scott
domains, but works in the model of unbracketed Hyland-Ong-style game semantics.

2 Friedman’s trick and direct interpretation

In this section, we fix the logical system we will be working with. Then we present on one
hand the indirect interpretation through negative translation and Friedman’s trick and on
the other hand the direct interpretation with control operators. Finally we explain why these
two interpretations are the same when we work in a model.

2.1 The logical system

The logical systems under consideration in this work are first-order minimal logic, M, and
first-order classical logic, C. C is simply an extension of M with double-negation elimination.
The common syntax of first-order terms and formulas of M and C is the following:

t, u ::= x | f
(
~t
)

A,B ::= P
(
~t
)
| ⊥ | A⇒B | A ∧B | ∀xA | A ∨B | ∃xA
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Γ, p : A ` p : A
Γ, p : A `M : B

Γ ` λp.M : A⇒B
Γ `M : B⇒A Γ ` N : B

Γ `MN : A

Γ `M1 : A1 Γ `M2 : A2
Γ ` 〈M1,M2〉 : A1 ∧A2

Γ `M : A1 ∧A2
Γ ` πiM : Ai

Γ `M : A (x /∈FV(Γ))
Γ ` Λx.M : ∀xA

Γ `M : ∀xA
Γ `M btc : A {t/x}

Γ `M : Ai
Γ ` iniM : A1 ∨A2

Γ `M : A1 ∨A2 Γ, p : A1 ` N1 : B Γ, p : A2 ` N2 : B
Γ ` caseM [in1 p 7→ N1, in2 p 7→ N2] : B

Γ `M : A {t/x}
Γ ` ex [t,M ] : ∃xA

Γ `M : ∃xA Γ, p : A ` N : B
(x /∈FV(Γ,B))

Γ ` destM as ex [x, p] inN : B

Figure 1 Rules for M.

where f (resp. P ) ranges over a set of function (resp. predicate) symbols given with their
arity. Quantification has precedence over other connectives and negation is encoded as usual:
¬A ∆= A⇒⊥. The proofs and proof terms of M are defined by the rules of Figure 1, where
Γ stands for a sequence of pairs p : A where p is a proof variable, for which we allow implicit
re-ordering.

For C, we simply add the rules:

Γ ` dne : ¬¬A⇒A

Provability in M (resp. C) will be denoted m̀ (resp. c̀ ). We will sometimes write Γ m̀ A

(resp. Γ c̀ A) if we’re not interested in the proof term, and we may write X m̀ A (resp.
X c̀ A) for some set X, which means Γ m̀ A (resp. Γ c̀ A) for some finite sequence Γ of
formulas of X. Since contraction is derivable and weakening is admissible, we will use these
implicitly.

2.2 Mapping proofs to terms
We will use two programming languages that share a common ground to interpret M and C.
This common ground is simply-typed λ-calculus with products and unit types, and one base
type ι. The set of variables of this λ-calculus is the union of first-order variables x, y, . . . and
proof variables p, q, . . ., this union being ranged over with e, f, . . .. There is also one constant
f of type ι→ . . .→ ι→ ι (n+ 1 times) for each first-order constant f of arity n. The syntax
of types and terms of this common ground is as follows:

T,U ::= ι | T → U | 1 | T ×U M,N ::= f | λe.M |M N | 〈〉 | 〈M,N〉 | π1M | π2M

From this common ground, the first language we consider is λ+, in which we will interpret
M. λ+ is obtained by adding sum types to the common ground:

T,U ::= . . . | T +U M,N ::= . . . | in1M | in2M | caseM {in1 e 7→ N1 | in2 e 7→ N2}

The second language is λµ, in which we will interpret C, and which is obtained by adding to
the common ground an empty type, control features and µ-variables:

T,U ::= . . . | � M,N ::= . . . | µα.M | [α]M

FSCD 2016
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(A⇒B)∗ ∆= A∗ → B∗ (A ∧B)∗ ∆= A∗ ×B∗ (∀xA)∗ ∆= ι→ A∗

⊥∗m ∆= 1 P
(
~t
)∗m ∆= 1 (A ∨B)∗m ∆= A∗m +B∗m (∃xA)∗m ∆= ι×A∗m

⊥∗c ∆= � P
(
~t
)∗c ∆= � → � (A ∨B)∗c ∆= (¬ (¬A ∧ ¬B))∗c (∃xA)∗c ∆= (¬∀x¬A)∗c

Figure 2 Mapping formulas to types.

p∗
∆= p (λp.M)∗ ∆= λp.M∗ (M N)∗ ∆= M∗N∗ (Λx.M)∗ ∆= λx.M∗

(M btc)∗ ∆= M∗ t∗ 〈M,N〉∗ ∆= 〈M∗, N∗〉 (πiM)∗ ∆= πiM
∗ dne∗c ∆= λp.µα.p (λq. [α] q)

(iniM)∗m ∆= iniM∗m (ex [t,M ])∗m ∆= 〈t∗,M∗m〉

(iniM)∗c ∆= λp.πi pM
∗c (ex [t,M ])∗c ∆= λp.p t∗M∗c

(caseM [in1 p 7→ N1, in2 p 7→ N2])∗m ∆= caseM∗m [in1 p 7→ N1
∗m, in2 p 7→ N2

∗m]

(caseM [in1 p 7→ N1, in2 p 7→ N2])∗c ∆= dne∗c (λq.M∗c 〈λp.q N1
∗c, λp.q N2

∗c〉)

(destM as ex [x, p] inN)∗m ∆= (λxp.N∗m) (π1M
∗m) (π2M

∗m)

(destM as ex [x, p] inN)∗c ∆= dne∗c (λq.M∗c (λxp.q N∗c))

Figure 3 Mapping proof terms to λ+/λµ-terms.

We work in a call-by-name setting and refer to [12, 25] for the typing rules and equational
theory of λµ.

Note that terms of λ+ and λµ are not the same as the proof terms of Figure 1. In particular,
proof terms have no operational or denotational semantics, but provide a convenient way to
manipulate proofs. Proofs terms will now be mapped to terms of λ+ or λµ. First, we map
each formula A to a type A∗ of either λ+ or λµ. When the interpretation is different in M

and C we will write A∗m or A∗c. The mapping is defined in Figure 2.

In the case of C, since positive connectives are known to raise issues on the computational
level when combined with classical logic [11] (we also give a concrete example at the end of
Section 2.3) we use a negative encoding of connectives ∨ and ∃. First-order terms (which
are common to M and C) are mapped to terms of λ+ ∩ λµ by x∗ ∆= x and (f (t1, . . . , tn))∗ ∆=
f t1∗ . . . tn∗, and proof terms of M (resp. C) are mapped to terms of λ+ (resp. λµ) as in
Figure 3. The elimination of the encoded connectives in C is made possible by classical logic
and control features of λµ.

A proof term p1 : A1, . . . , pn : An m̀ M : A (resp. p1 : A1, . . . , pn : An c̀ M : A)
with FV (A1, . . . , An, A) = {x1, . . . , xm} is therefore mapped to a term M∗m : A∗m (resp.
M∗c : A∗c) of λ+ (resp. λµ) with free variables among p1 : A1

∗, . . . , pn : An∗, x1 : ι, . . . , xm : ι,
and no free µ-variable (in the case of C).
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∣∣P (~t)∣∣
m

∆=
{
{〈〉} if ~t∗ ∈ {|P |}
∅ otherwise

|A1 ∧A2|
∆= {φ | π1 φ ∈ |A1| and π2 φ ∈ |A2|}

∣∣P (~t)∣∣
c

∆=
{
|⊥⇒⊥|

c
if ~t∗ ∈ {|P |}

{φ | if ψ ∈ C (1, �) then φψ ∈ |⊥|
c
} otherwise

|A⇒B| ∆= {φ | if ψ ∈ |A| then φψ ∈ |B|} |∀xA| ∆= {φ | if ψ ∈ 〈|ι|〉 then φψ ∈ |A {ψ/x}|}

|A1 ∨A2|m
∆= {in1 φ | φ ∈ |A1|m} ∪ {in2 φ | φ ∈ |A2|m} |A1 ∨A2|c

∆= |¬ (¬A1 ∧ ¬A2)|
c

|∃xA|
m

∆= {φ | π1 φ ∈ 〈|ι|〉 and π2 φ ∈ |A {π1 φ/x}|m} |∃xA|
c

∆= |¬ ∀x¬A|
c

Figure 4 The realizability interpretation.

2.3 Typed realizability
We now describe the realizability semantics of M and C. Let C be a cartesian closed
category. We also suppose that C has coproducts in the case of M, or that it is a category of
continuations (see [12, 25] and Section 2.6) in the case of C. Every type of λ+ (for M) or λµ
(for C) is interpreted as an object of C in the standard way, from a chosen interpretation of ι.
We will therefore consider types as objects of C. Similarly, we suppose given a morphism for
each constant f of λ+ ∩ λµ (remember from Section 2.2 that there is one such constant for
each first-order constant f), so that every term of λ+ or λµ is interpreted as a morphism in
the homset corresponding to its context. We will therefore also consider terms as morphisms
in C, and we will use the syntax of λ+ and λµ to manipulate morphisms with domain 1. In
order to define the realizability values of the formulas, we first fix a set 〈|ι|〉 ⊆ C (1, ι) such
that for every closed first-order term t, t∗ ∈ 〈|ι|〉. This set represents the elements of the
model on which we quantify. Typically, if C (1, ι) is a domain of natural numbers with a
bottom element, 〈|ι|〉 would be the set of natural numbers (the domain minus the bottom
element). We also fix for every predicate P of arity n a set {|P |} ⊆ 〈|ι|〉n of n-tuples satisfying
the predicate. The set of realizers of a closed formula with parameters in 〈|ι|〉 is then a
set of morphisms |A| ⊆ C (1, A∗). When the interpretation is different in M and C we will
again write |A|

m
or |A|

c
. We take |⊥|

m
= ∅, but |⊥|

c
is a parameter of the realizability

interpretation. The interpretation is defined in Figure 4.
It is worth noting here that taking |⊥|

c
= ∅ gives a degenerated model, in which |A|

c
is

either empty or the full homset C (1, A∗). Indeed, suppose that |A|
c
6= ∅, and let φ ∈ C (1, A∗).

First, since |A|
c
6= ∅ and |⊥|

c
= ∅, we have |¬A|

c
= ∅, and therefore |¬¬A|

c
= C

(
1, (¬¬A)∗

)
.

But since λp.p φ ∈ C
(
1, (¬¬A)∗

)
, we get λp.p φ ∈ |¬¬A|

c
, and then dne∗ (λp.p φ) = φ ∈ |A|

c

by adequacy (Lemma 1 below). Therefore, if we want to get computational content from
classical proofs, we need to consider |⊥|

c
6= ∅.

We can already state an adequacy lemma for M and C:

I Lemma 1 (Adequacy). Suppose ~p : ~A `M : B is a proof in M or C and write FV
(
~A,B

)
=

~x = {x1, . . . , xn}. Then for any ~φ in 〈|ι|〉n and any realizers ~ψ ∈
∣∣∣ ~A{~φ/~x}∣∣∣, we have

M∗
{
~φ/~x, ~ψ/~p

}
∈
∣∣∣B {~φ/~x}∣∣∣.

Proof. By induction on M . An interesting case is that of dne : ¬¬A⇒A in the case of C
(we will write dneA in this proof), which is proved by induction on A. If A is atomic, then it
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is a case analysis. In the other cases, it follows from the observation that in C:

dneA⇒B∗c = λpq.dneB∗c (λr.p (λs.r (s q))) dne∀xA∗c = λpx.dneA∗c (λq.p (λr.q (r x)))

dneA∧B∗c = λp. 〈dneA∗c (λq.p (λr.q (π1 r))) , dneA∗c (λq.p (λr.q (π2 r)))〉 J

We can now explain by reformulating the ideas of [11] why we encoded ∃xA in C

instead of interpreting it as in M. Suppose there is a binary predicate P (t, u) and some
φ, ψ1, ψ2 ∈ 〈|ι|〉 such that (φ, ψ1) /∈ {|P |} and (φ, ψ2) ∈ {|P |} (for example, P may be equality
and ψ1 6= φ = ψ2). Consider the proof:

r : P (x, y2) c̀ dne (λp.p ex [y1, dne (λq.p ex [y2, r])]) : ∃y P (x, y)

If (ex [_,_])∗c was a pair like in M, then this proof would be translated to a term of
λµ which is equal in C to µα. [α] 〈y1, µβ. [α] 〈y2, r〉〉. Adequacy would imply that for any
ξ ∈ |P (φ, ψ2)|

c
:

ζ = µα. [α] 〈ψ1, µβ. [α] 〈ψ2, ξ〉〉 ∈ |∃y P (φ, y)|
c

so π2 ζ ∈ |P (φ, π1 ζ)|
c
(if |∃ y_|

c
was as in M). But since π1 ζ = ψ1 and π2 ζ = ξ,

this would mean that ξ ∈ |P (φ, ψ1)|
c
. The other inclusion being easy, we would get

|P (φ, ψ1)|
c

= |P (φ, ψ2)|
c
, that is, |P (φ, ψ)|

c
would not depend on whether (φ, ψ) ∈ {|P |} or

not and the model would be degenerated.

2.4 Extraction for minimal logic

We fix now a theory Ax, that is, a set of closed formulas, or axioms. We also suppose that
for each A ∈ Ax we have some realizer ζA ∈ |A|m. Extraction is an immediate consequence
of adequacy:

I Theorem 2 (Extraction). Let ~pA : ~A m̀ M : ∀x∃y B be a proof, where ~A ⊆ Ax and
FV (B) ⊆ {x; y}. From that proof we can extract some φ ∈ C (1, ι→ ι×B∗m) such that for
any ψ ∈ 〈|ι|〉, π1 (φψ) ∈ 〈|ι|〉 and:

π2 (φψ) ∈ |B {ψ/x, π1 (φψ) /y}|
m

Proof. Immediate from adequacy, with φ = M∗m

{
~ζA/ ~pA

}
. J

Let’s look at the particular example of Ax being the set of axioms of arithmetic. Suppose we
have realizers of these axioms in C (which usually means that C is a model of Gödel’s system
T) and 〈|ι|〉 is isomorphic to N with the constants interpreted accordingly. The extraction
result tells us that from a proof of ∀x ∃y (t = 0) in Ax we can extract an element:

φ′ = λx.π1 (φx) ∈ C (1, ι→ ι)

such that for any n ∈ N, |t {n/x, φ′ n/y} = 0|
m
6= ∅, and so (n, φ′ n) ∈ {|=|} by definition of

the realizability interpretation in M. If moreover {|=|} is equality on 〈|ι|〉 ' N then it tells us
that t∗ {n/x, φ′ n/y} = 0 in N.
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pR
∆= p (λp.M)R ∆= λq.

(
λp.MR

)
(π1 q) (π2 q) (M N)R ∆= λp.MR

〈
NR, p

〉
〈M1,M2〉R

∆= λp.case p
[
in1 q 7→MR

1 q, in2 q 7→MR
2 q
]

(πiM)R ∆= λp.MR (ini p)

(Λx.M)R ∆= λp.dest p as ex [x, q] inMR q (M btc)R ∆= λp.MRex [t, p]

(iniM)R ∆= λp.πi pM
R (ex [t,M ])R ∆= λp.p ex

[
t,MR

]
(caseM [in1 p 7→ N1, in2 p 7→ N2])R ∆= λq.MR

〈
λp.NR

1 q, λp.NR
2 q
〉

(destM as ex [x, p] inN)R ∆= λq.MR
(
λr.dest r as ex [x, p] inNR q

)
dneR ∆= λp.π1 p 〈λq.π1 q (π2 p) , λr.r〉

Figure 5 Lafont-Reus-Streicher translation of proofs from C to M.

2.5 Negative translation and Friedman’s trick
In this section we explain the indirect interpretation of classical theories via negative
translation and Friedman’s trick. Negative translation has been defined by Gödel to study
the relationship between intuitionistic and classical provability. A formula A is translated to
A¬ by inductively replacing every positive formula by a (classically) equivalent negative one.
Negative translation turns classical provability into intuitionistic provability, in the sense
that if A1, . . . , An c̀ B, then A¬1 , . . . , A¬n m̀ B¬.

Adapting Friedman’s original translation [8], we can parameterize negative translation by
an arbitrary formula R playing the role of ⊥. R will be instantiated later on with a carefully
chosen formula. This is known as Friedman’s trick and can be used to prove conservativity
of classical arithmetic over intuitionistic arithmetic for Π0

2 formulas. Here we use a slightly
different version: Lafont-Reus-Streicher (LRS) translation [17]. This version makes explicit
the connection with the direct interpretation that we will present in Section 2.6.

For each formula A we define an intermediate translation AR in order to then define
AR ≡ AR⇒R. AR and AR are parameterized by the arbitrary formula R:(

P
(
~t
))R ∆= P

(
~t
)
⇒R ⊥R ∆= ⊥⇒⊥ (∀xA)R ∆= ∃xAR (∃xA)R ∆= ∃xAR⇒R

(A⇒B)R ∆= AR ∧BR (A ∧B)R ∆= AR ∨BR (A ∨B)R ∆=
(
AR⇒R

)
∧
(
BR⇒R

)
This translation turns provability in classical logic into provability in minimal logic:

I Lemma 3. If Γ c̀ A then ΓR m̀ AR (modulo α-conversion to avoid capture of the free
variables of R).

Proof. The translation M 7→MR on proof terms is given in Figure 5 J

We now show how we can transpose the extraction Theorem 2 into an extraction theorem
for a classical theory through LRS translation. We fix C to be a cartesian closed category
with coproducts as in Section 2.3, with a chosen object ι, a set 〈|ι|〉 ⊆ C (1, ι), interpretations
of the constants f and interpretations of the predicates {|P |} ⊆ 〈|ι|〉n. We also fix a theory
Ax, and we suppose that for each A ∈ Ax we have some realizer ζA ∈ |A|m. Extraction
from classical proofs of Π2

0 formulas is obtained through Friedman’s trick combined with the
extraction Theorem 2:

FSCD 2016



13:8 Classical Extraction in Continuation Models

I Theorem 4 (Extraction). Suppose that for every A ∈ Ax we have Ax m̀ AR. From a proof
of Ax c̀ ∀x∃y P

(
~t
)
where FV

(
~t
)
⊆ {x; y}, we can extract a morphism φ ∈ C (1, ι→ ι) such

that for any ψ ∈ 〈|ι|〉, φψ ∈ 〈|ι|〉 and:

~t∗ {ψ/x, φψ/y} ∈ {|P |}

Proof. Elimination of the ∀ quantification gives Ax c̀ ∃y P
(
~t
)
, and LRS translation com-

bined with the proofs Ax m̀ AR gives some proof term:

~pA : ~A m̀ M :
(
∃y P

(
~t
))R ≡ (∃y ((P (~t)⇒R

)
⇒R

)
⇒R

)
⇒R

for some ~A ⊆ Ax. We apply now Friedman’s trick: take R ≡ ∃ y P
(
~t
)
(its only free variable

is x so there is no capture of variables). Then we have:

~pA : ~A m̀ Λx.M (λp.dest p as ex [y, q] in q (λr.ex [y, r])) : ∀x∃ y P
(
~t
)

to which we apply Theorem 2 and get some φ0 such that for any ψ ∈ 〈|ι|〉:

π2 (φ0 ψ) ∈
∣∣P (~t {ψ/x, π1 (φ0 ψ) /y}

)∣∣
m

so
∣∣P (~t {ψ/x, π1 (φ0 ψ) /y}

)∣∣
m
6= ∅, and ~t∗ {ψ/x, φψ/y} ∈ {|P |} with φ = λx.π1 (φ0 x) . J

We discuss now about the assumption that for every A ∈ Ax we have Ax m̀ AR.
In the case of arithmetic, since equality is decidable in minimal logic, all the axioms

A ∈ Ax but induction are such that Ax m̀ AR. For induction it is even simpler since its
translation is itself an instance of induction. Therefore, the extraction in minimal arithmetic
presented in Section 2.4 can be turned into extraction for classical arithmetic.

This assumption however doesn’t hold for every theory. For example, consider the axiom
of dependent choice DC (that we can formulate in a multi-sorted version of first-order logic).
DC fails to prove DCR in minimal logic. However, DCR is a consequence of DNS +DC in
minimal logic, where DNS is the double-negation shift:

∀x ((A⇒R)⇒R)⇒ (∀xA⇒R)⇒R

where the sort of x is that of natural numbers. In a single-sorted setting, one can even show
that DNS proves A⇒AR for any formula A in minimal logic. Historically, this technique
has been used to give computational content to the axiom of choice in a classical setting,
interpreting DNS intuitionistically with Spector’s operator of bar recursion [4, 6].

2.6 Direct interpretation
Since Griffin’s discovery [9], we can directly interpret proofs of classical logic in functional
programming languages with control operators, as was done in Section 2.2. In order to
interpret λµ (in which classical proofs are mapped), we fix a category of continuations C = �D
(see [12, 25]). This means that D is a distributive category, � is an object of D such that
all exponents �X exist in D, and �D is the full subcategory of D consisting of the objects
�X . As suggested by the notation, � is the object interpreting the type � of λµ. In order
to perform extraction we suppose ι = � in C. We fix a theory Ax and we suppose that for
each A ∈ Ax we have some realizer ζA ∈ |A|c. Extraction requires a clever choice of the
parameter |⊥|

c
of the realizability interpretation:
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C

M

λµ

λ+

C = �D R∗m ' �_R

��

_∗c

//

_∗m
//

''

77

Figure 6 Correspondence of direct and indirect realizability interpretations.

I Theorem 5 (Extraction). From a proof of Ax c̀ ∀x∃y P
(
~t
)
where FV

(
~t
)
⊆ {x; y}, we

can extract a morphism φ ∈ C (1, ι→ ι) such that for any ψ ∈ 〈|ι|〉, φψ ∈ 〈|ι|〉 and:

~t∗ {ψ/x, φψ/y} ∈ {|P |}

Proof. Write ~pA : ~A c̀ M : ∀x ∃y P
(
~t
)
where ~A ⊆ Ax. By adequacy we have for any

ψ ∈ 〈|ι|〉:

M∗c

{
~ζA/ ~pA

}
ψ ∈

∣∣∃y P (~t {ψ/x})∣∣
c

=
∣∣¬∀y ¬P (~t {ψ/x})∣∣

c

Remember now that |⊥|
c
⊆ C (1, �) = C (1, ι) is a parameter that we can choose freely. Take

now:

|⊥|
c

=
{
ζ ∈ 〈|ι|〉

∣∣ ~t∗ {ψ/x, ζ/y} ∈ {|P |}}
By a simple disjunction of cases we prove that λyp.p y ∈

∣∣∀y ¬P (~t {ψ/x})∣∣
c
for this choice

of |⊥|
c
. Note that this term is well-typed precisely because ι = �. The following morphism

then has the required property:

φ = λx.M∗c

{
~ζA/ ~pA

}
x (λyp.p y) . J

2.7 Correspondence of the two methods
The indirect and direct methods presented in the previous two sections share some similarities,
which we shall now make explicit. More precisely, we will prove that the diagram of Figure 6
commutes.

Fix a category of continuations C = �D. First, observe that the LRS translation of
Section 2.5 is such that for any formula A, AR belongs to a restricted syntax of formulas
where implications are all of the form B⇒ R. Moreover, AR doesn’t contain ∀, therefore,
the simple type

(
AR
)∗m is itself in a restricted syntax where arrow types are all of the

form T → R∗. This means that D has enough structure to interpret the LRS translations
of C-proofs if we suppose R∗m ' � (remember that D has all exponentials �X). Finally,
since

(
AR
)∗m =

(
AR
)∗m

→ R∗m, LRS translations of C-proofs can be interpreted in the
full subcategory C = �D. We claim now that this interpretation is the same as the direct
interpretation of Section 2.6.

The following lemma, proved by induction on formulas and proofs, connects the two
interpretations in C at the level of formulas, proof terms and realizers:

I Lemma 6. If R∗m ' �, then:
for any formula A,

(
AR
)∗m ' A∗c in C

for any C-proof term M ,
(
MR

)∗m and M∗care equal in C, up to the previous isomorphism

FSCD 2016



13:10 Classical Extraction in Continuation Models

if |R|
m

and |⊥|
c
are equal up to the isomorphism R∗m ' �, then for any formula A,∣∣AR∣∣

m
is equal to |A|

c
, up to the isomorphism

(
AR
)∗m ' A∗c

To conclude this section, we show that in the extraction Theorems 4 and 5, we indeed have
R∗m ' � and |R|

m
equal to |⊥|

c
up to this isomorphism. On one hand, in the extraction

Theorem 4, we fixed R ≡ ∃y P
(
~t
)
, and therefore:

R∗m =
(
∃y P

(
~t
))∗m = ι× 1 ' ι

And on the other hand, in the extraction Theorem 5 we supposed that ι = �. Therefore we
have indeed R∗m ' �. Also, in Theorem 4 we have for any ψ ∈ 〈|ι|〉:

|R {ψ/x}|
m

=
∣∣∃y P (~t {ψ/x})∣∣

m
=
{
φ
∣∣ π1 φ ∈ 〈|ι|〉 and π2 φ ∈

∣∣P (~t {ψ/x, π1 φ/y}
)∣∣

m

}
but since π2 φ ∈ C (1, 1) which is a singleton, |R {ψ/x}|

m
is isomorphic to:{

ζ ∈ 〈|ι|〉
∣∣ ∣∣P (~t {ψ/x, ζ/y})∣∣

m
6= ∅
}

=
{
ζ ∈ 〈|ι|〉

∣∣ ~t∗ {ψ/x, ζ/y} ∈ {|P |}}
but this last set is exactly the one chosen for |⊥|

c
in Theorem 5. Finally, the requirement of

Theorem 4 that for every A ∈ Ax we have Ax m̀ AR provides through adequacy a method
to turn a set of realizers {ζB ∈ |B|m | B ∈ Ax} into a realizer ξA ∈ |A|c '

∣∣AR∣∣
m
.

Before presenting another method for direct extraction, we discuss the reason for the
correspondence between the two methods. This correspondence comes from the fact that we
chose � = ι in the direct interpretation so we could take elements of ι as realizers of ⊥. This
choice was motivated by the fact that taking |⊥|

c
= ∅ gives a degenerated model. However,

this is an unnatural interpretation, since the object � should represent an empty type. We
will see that even though this natural interpretation is not possible in Scott domains, it is
possible in bistable bicpos and game semantics.

3 Another direct interpretation

In this section we present another direct realizability interpretation of C in a category of
continuations C = �D. The interpretation of C-proofs as terms of λµ is almost identical as in
Section 2.2, the only difference being that a proof term ~p : ~A c̀ M : B with FV

(
~A,B

)
= {~x}

is now mapped to a term M∗c : B∗c of λµ with free λ-variables among ~p : ~A∗c, ~x : ~ι, and a
special free µ-variable κ : ι, which doesn’t appear in M∗c but may appear in an arbitrary
realizer. This free µ-variable will only be used for extraction, as a channel to transmit the
extracted value. In categories of continuations, a term M : T of λµ with λ-context Γ and
µ-context ∆ is interpreted as a morphism in C (Γ, T &∆) where &is the pretensor defined
by �X &

�Y ∆= �X×Y , see [25]. Therefore, we adapt the realizability semantics, with the
realizability value of a formula A being now |A|

c
⊆ C (1, A∗ &

ι). The parameter |⊥|
c
is now

a subset of C (1, � &

ι), which is isomorphic to the homset C (1, ι) used in the previous direct
interpretation. The difference is that now we can choose � 6= ι and take � to be a “truly”
empty object. The new realizability value for atomic predicates is:∣∣P (~t)∣∣

c

∆=
{
|⊥⇒⊥|

c
if ~t∗ ∈ {|P |}

{φ | if ψ ∈ C (1, � &

ι) then φψ ∈ |⊥|
c
} otherwise

and the other definitions go through easily, the “ &

ι” part being carried over transparently
as a “semantic” free µ-variable. For the definition of |∀xA|

c
, the morphism ψ ∈ 〈|ι|〉 ⊆ C (1, ι)

is viewed as a morphism in C (1, ι &

ι) by adding the semantic µ-variable κ with weakening,
that is, post-composing ψ with wlι,ι (with the notations of [25], r emark 2.6). Adequacy still
holds and the extraction theorem is very similar to the previous one:
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I Theorem 7 (Extraction). From a proof of Ax c̀ ∀x∃y P
(
~t
)
where FV

(
~t
)
⊆ {x; y}, we

can extract a morphism φ ∈ C (1, ι→ ι) such that for any ψ ∈ 〈|ι|〉, φψ ∈ 〈|ι|〉 and:

~t∗ {ψ/x, φψ/y} ∈ {|P |}

Proof. Write ~pA : ~A c̀ M : ∀x ∃y P
(
~t
)
where ~A ⊆ Ax. Adequacy gives for any ψ ∈ 〈|ι|〉:

M∗c

{
~ζA/ ~pA

}
ψ ∈

∣∣∃y P (~t {ψ/x})∣∣
c

=
∣∣¬∀y ¬P (~t {ψ/x})∣∣

c

We fix now the parameter |⊥|
c
⊆ C (1, � &

ι):

|⊥|
c

=
{
ζ ∈ C (1, � &

ι)
∣∣ µκ.ζ ∈ 〈|ι|〉 and ~t∗ {ψ/x, µκ.ζ/y} ∈ {|P |}

}
Here, the morphism ζ ∈ C (1, � &

ι) is viewed as a term of λµ of type � with the special
free µ-variable κ of type ι, and therefore µκ.ζ ∈ C (1, ι). We prove that λyp.p ([κ] y) ∈∣∣∀y ¬P (~t {ψ/x})∣∣

c
by taking ϕ ∈ 〈|ι|〉 and ξ ∈

∣∣P (~t {ψ/x, ϕ/y})∣∣
c
and showing ξ ([κ]ϕ) ∈

|⊥|
c
. We distinguish two cases. If ~t∗ {ψ/x, ϕ/y} ∈ {|P |}, then ξ ∈ |⊥⇒⊥|

c
and we are left

to prove [κ]ϕ ∈ |⊥|
c
, which is true since µκ. [κ]ϕ = ϕ (because the semantic µ-variable κ

doesn’t appear in ϕ which comes from weakening), ϕ ∈ 〈|ι|〉 and ~t∗ {ψ/x, ϕ/y} ∈ {|P |}. In
the other case ~t∗ {ψ/x, ϕ/y} /∈ {|P |}, and ξ ([κ]ϕ) ∈ |⊥|

c
by definition of

∣∣P (~t {ψ/x, ϕ/y})∣∣
c
,

since [κ]ϕ ∈ C (1, � &

ι). Therefore we get:

φ0 = M∗
{
~ζA/ ~pA

}
ψ (λyp.p ([κ] y)) ∈ |⊥|

c

so µκ.φ0 ∈ 〈|ι|〉 and ~t∗ {ψ/x, µκ.φ0/y} ∈ {|P |} by definition of |⊥|
c
. Finally, the following

morphism has the required property:

φ = λx.µκ.M∗
{
~ζA/ ~pA

}
x (λyp.p ([κ] y)) . J

The computational behavior of the extracted term is different from that of the extracted
term of Section 2.6, because as soon as the argument (λyp.p ([κ] y)) is called inside M∗c,
y receives a value which is directly transmitted over channel κ and redirected to toplevel.
Conversely, in the previous direct interpretation, once the argument (λyp.p y) was called,
the value given to y had to go through all the call stack before returning to toplevel. This
interpretation corresponds to the meaning of the control features of λµ-calculus.

This new direct interpretation’s improvement relies heavily on the fact that we do not
require � = ι anymore, and we can choose � to be a “truly” empty object. We will see in the
next sections that the ability to choose � 6= ι is very dependent on the particular model that
we choose.

3.1 Failure in Scott domains
In this section, we explain why in Scott domains, we have no choice but to take � = ι if
we want ι to be in the category of continuations. Recall that a Scott domain is a partial
order with a least element, least upper bounds of directed subsets, least upper bounds of
non-empty upper-bounded subsets, and which is algebraic (see e.g. [3] for the definitions and
basic properties). The standard domain interpretation of a base type ι with set-theoretic
interpretation [[ι]] is [[ι]]⊥ = ([[ι]] ∪ {⊥},≤) with x ≤ y if and only if x = y or x = ⊥. First, we
should ask ourselves what should D be if �D is a category of continuations of domains. The
category of Scott domains is cartesian closed and has fixpoints: for any morphism φ : X → X

there is a morphism ψ : 1→ X such that ψ;φ = ψ. It is well-known that a bicartesian closed
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category with fixpoints has to be trivial (since in that case 1 ' 0). Therefore, since D should
have coproducts, we should relax one of the conditions of Scott domains. The most natural
choice is to drop the requirement of existence of a least element and define D as the category
of unpointed Scott domains. In that case, the set-theoretic disjoint union provide D with a
bicartesian closed structure, at the expense of not having fixpoints. We can now state the
following failure lemma:

I Lemma 8. If D is a category of unpointed Scott domains, if C = �D is a category of Scott
domains, if [[ι]] 6= ∅ and if [[ι]]⊥ is an object of C, then � ' [[ι]]⊥.

Proof. Suppose [[ι]]⊥ is an object of C = �D. Then there is some unpointed domain X in
D such that [[ι]]⊥ is the domain �X of functions from X to �. If X is empty then �X has
only one element, which is impossible since [[ι]] 6= ∅. If X has only one element, then X ' 1
and � ' [[ι]]⊥, which is the conclusion of the lemma. Suppose now that X has at least two
elements a 6= b. We will derive a contradiction. Since X is non-empty and �X = [[ι]]⊥ is
pointed, � is also pointed and we write ⊥� for its least element. If � = {⊥�} then �X has
only one element, which is impossible since [[ι]] 6= ∅. Therefore there must be some c 6= ⊥� in
�. Since X is algebraic, we can suppose without loss of generality that a and b are compact
(a non-compact element dominates infinitely many compact elements), and since a 6= b, we
can also suppose without loss of generality that a � b. Define now monotone continuous
functions f , g and h from X to � by:

f (x) = ⊥� g (x) =
{

c if x ≥ b
⊥� otherwise

h (x) = c

From the above assumptions we have f < g < h (a � b ensures g 6= h), but [[ι]]⊥ has no chain
of length > 2, so �X 6' [[ι]]⊥. J

3.2 Bistable bicpos
In this section we prove that the category of bistable bicpos [19] is a category of continuations
�D in which the natural interpretation of ι is in general different from �. First we recall the
definition of bistable biorders and bistable functions:

I Definition 9 (Bistable Biorder). A bistable biorder is a partial order (X,≤) together
with an equivalence relation l on X such that for each l-equivalence class E,

(
E,≤|E

)
is a

distributive lattice and the inclusion E ⊆ X preserves meets and joins.

I Definition 10 (Bistable Function). A bistable function from (X,≤X , lX) to (Y,≤Y , lY ) is
a monotone function f : X → Y such that for any x, y ∈ X, x lX y implies:

f (x) lY f (y) f (x ∧ y) = f (x) ∧ f (y) f (x ∨ y) = f (x) ∨ f (y)

The set Y X of bistable functions from (X,≤X , lX) to (Y,≤Y , lY ) is itself a bistable biorder:

I Lemma 11. If f, g are bistable functions from (X,≤X , lX) to (Y,≤Y , lY ), define:

f ≤Y X g ≡ ∀x ∈ X, f (x) ≤Y g (x)

f lY X g ≡


∀x ∈ X, f (x) lY g (x)

∀x, y ∈ X,x lX y ⇒

{
f (x) ∧ g (y) = f (y) ∧ g (x)
f (x) ∨ g (y) = f (y) ∨ g (x)

(note that if x lX y then f (x) lY f (y) lY g (x) lY g (y) )(
Y X ,≤Y X , lY X

)
is a bistable biorder.
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As shown in [19], the category of bistable biorders is bicartesian closed, the product and
coproduct of bistable biorders being defined pointwise. Bistable bicpos are then defined by
adding notions of completeness and continuity to bistable biorders:

I Definition 12. Let (X,≤, l) be a bistable biorder. If E,F are directed subsets of X, write
E l F if for any x ∈ E and y ∈ F there exists x′ ∈ E and y′ ∈ F such that x ≤ x′, y ≤ y′

and x′ l y′. (X,≤, l) is a bistable bicpo if (X,≤) has least upper bounds of directed subsets
and for any E l F ,

∨
E l

∨
F and

∨
E ∧

∨
F =

∨
{x ∧ y | x ∈ E, y ∈ F, x l y}.

Similarly to the case of Scott domains, we say that a bistable bicpo is pointed if it has both a
least and a greatest element which are l-equivalent. The category of unpointed bistable bicpos
and bistable continuous functions is bicartesian closed, while the full subcategory of pointed
bistable bicpos is cartesian closed and has fixpoints. The standard interpretation of a base
type ι with set-theoretic interpretation [[ι]] is the bistable bicpo [[ι]]>⊥ = ([[ι]] ∪ {⊥;>},≤, l)
with x ≤ y if and only if x = y or x = ⊥ or y = >, and x l y if and only if x = y or
{x; y} = {⊥;>}. If we choose D to be the category of unpointed bistable bicpos and � = ∅>⊥,
then C = �D is a category of continuations of bistable bicpos and all [[ι]]>⊥ are objects of C.
Indeed, it was proved in [19] (for [[ι]] = N, but the extension to arbitrary [[ι]] is straightforward)
that if [[ι]] denotes the unpointed bistable bicpo ([[ι]] ,≤, l) with x ≤ y if and only if x = y

and x l y if and only if x = y, then [[ι]]>⊥ is isomorphic to the space of bistable continuous
functions from

(
∅>⊥
)[[ι]] to ∅>⊥.

One may wonder if the failure in Scott domains was not simply because we interpreted
the datatype with values in [[ι]] as [[ι]]⊥ rather than [[ι]]>⊥, which is also a Scott domain.
This is not the case, since the space of monotone continuous functions from ∅>⊥

[[ι]] (where
[[ι]] is the unpointed Scott domain with x ≤ y iff x = y) to ∅>⊥ is isomorphic to the
set {E ⊆ Pfin ([[ι]]) | E ∈ E ∧ E ⊆ F ⇒ F ∈ E} ordered with inclusion, which is clearly not
isomorphic to [[ι]]>⊥. A careful analysis shows that if we restrict ourselves to bistable continuous
functions, then the sets E ⊆ Pfin ([[ι]]) above also have to satisfy: E ∈ E∧F ∈ E ⇒ E∩F ∈ E
and E ∪ F ∈ E ⇒ E ∈ E ∨ F ∈ E . The only possibilities are then E = ∅, E = Pfin ([[ι]]) and
E = {E ∈ Pfin ([[ι]]) | v ∈ E} for v ∈ [[ι]], and we indeed get back [[ι]]>⊥.

3.3 Game semantics
In this section, we take C to be the category of unbracketed non-innocent but single-
threaded Hyland-Ong games. Hyland-Ong game semantics provide precise models of various
programming languages such as PCF [13, 21, 2], also augmented with control operators [18]
and higher-order references [1]. In game semantics, plays are interaction traces between
a program (player P ) and an environment (opponent O). A program is interpreted by a
strategy for P which represents the interactions it can have with any environment. We will
only define what is necessary for our result, and we refer to e.g. [10] for the full definitions
and properties. In the category C, objects are arenas and morphisms are strategies:

I Definition 13 (Arena). An arena is a countably branching, finite depth forest of moves.
Each move is given a polarity O (for Opponent) or P (for Player or Proponent): a root is of
polarity O and a move which is not a root has the inverse polarity than that of his parent.
A root of an arena is also called an initial move.

I Definition 14 (Play, Strategy). A play on an arena X is a justified sequence of moves of
X with alternating polarities, starting with an O-move. A strategy on X is a non-empty
even-prefix-closed set of even-length plays on X which is deterministic and single-threaded.
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A play on an arena is the trace of an interaction between a program and a context, each one
performing an action alternately, and a strategy represents all the interactions that a given
program can have with its environment. The definitions of justified sequence, determinism and
single-threadedness are standard and can be found for example in [10]. C is cartesian closed
and has countable products, the I-indexed product of {Xi | i ∈ I} being the juxtaposition of
arenas Xi, and if X and Y are arenas consisting of the trees X1 . . . Xp . . . and Y1 . . . Yq . . .,
then the arena Y X can be represented as follows (roots are at the top):

Y1 · · ·

X1 · · · Xp
· · ·

Yq · · ·

X1 · · · Xp
· · ·

The standard interpretation of a base type ι in C is the flat arena [[ι]]† associated to the
set-theoretic interpretation [[ι]] of ι. This flat arena is the tree with one root move and a
child move for each element of [[ι]] = {a1; a2; . . . ; ai; . . .}:

•

a1 a2 · · · ai · · ·

As in the cases of Scott domains and bistable bicpos, if we want to get a category of
continuations �D, we must first find out what D should be. In game semantics, however,
there is no natural notion of unpointed arena, since the strategy consisting of only the empty
play is always a least element. We will therefore simply take D to be the countable coproduct
completion Fam (C) of C:

I Definition 15 (Fam (C)). The objects of Fam (C) are families of objects of C indexed by
countable sets, and a morphism from {Xi | i ∈ I} to {Yj | j ∈ J} is a function f : I → J

together with a family of morphisms of C from Xi to Yf(i), for i ∈ I.

Fam (C) is a distributive category, the empty product being the singleton family {1}, the
product of {Xi | i ∈ I} and {Yj | j ∈ J} being {Xi × Yj | (i, j) ∈ I × J}, the empty coproduct
being the empty family {}, and the coproduct of two families being the disjoint union of the
two families. Fam (C) is not cartesian closed, but has exponentials of all singleton families:
the object of functions from {Xi | i ∈ I} to the singleton family {Y } is the singleton family{

Πi∈IY
Xi
}
. This property implies that if � is a singleton family, then �D = �Fam(C) is a

category of continuations. We now prove that if we choose � carefully, we can completely
reveal the continuation structure of C:

I Lemma 16. If � =
{
∅†
}
, then the category �D = �Fam(C) is isomorphic to the category C.

Proof. Since
{
∅†
}
is a singleton family, the objects of �D are all singleton families and we

have a functor from �D to C which is full, faithful and strictly injective on objects and which
maps {X} to X and (Id, φ) ∈ �D ({X}, {Y }) to φ ∈ C (X,Y ). We now show that it is also
surjective on objects, so it is an isomorphism of categories. This amounts to show that any
arena X can be written as Πi∈I

(
∅†
)Yi , but this is immediate if one takes I to be the set of

roots of X and Yi to be the forest under root i ∈ I in X. J

Therefore C is (isomorphic to) a category of continuations �D where � 6= ι, which was our
goal. Note that this result is stronger than the one on bistable bicpos, since �D is not only a
category of continuations of arenas which has the natural interpretation of ι as an object,
but �D is isomorphic to the category C of arenas.
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We now examine the extraction technique presented at the beginning of Section 3 in the
particular case of game semantics. In order to have a realizability model, we define 〈|ι|〉 to be
the set of all strategies on [[ι]]† but {ε}, so we have 〈|ι|〉 ' [[ι]]. We write a for the strategy on
[[ι]]† corresponding to a ∈ [[ι]] (it answers a to the unique initial move), so 〈|ι|〉 = {a | a ∈ [[ι]]}.
The extraction technique for classical proofs presented at the beginning of Section 3 becomes
in this setting:

I Theorem 17 (Extraction). Suppose given a strategy ζA ∈ |A|c for each A ∈ Ax. We can
extract from a proof of Ax c̀ ∀x∃y P

(
~t
)
where FV

(
~t
)
⊆ {x; y} a strategy φ on the arena(

[[ι]]†
)[[ι]]†

such that for any a ∈ [[ι]], φa = b for some b ∈ [[ι]], and ~t∗ {a/x, b/y} ∈ {|P |}.

Let us compare now the arena where realizers of the formula ∀x∃y P
(
~t
)
live in the standard

and new interpretations. First, we have:(
∀x∃y P

(
~t
))∗c =

(
∀x¬∀y ¬P

(
~t
))∗c = ι→ (ι→ (� → �)→ �)→ �

In the standard interpretation, � = ι is [[ι]]†, the flat arena for [[ι]], so the arena of realizers is
[[ι]]† ⇒

(
[[ι]]† ⇒

(
[[ι]]† ⇒ [[ι]]†

)
⇒ [[ι]]†

)
⇒ [[ι]]†. In the new interpretation however, � is the

one-move arena ∅†, and a “ &

ι” is added, so the arena of the realizers of the same formula is(
[[ι]]† ⇒

(
[[ι]]† ⇒

(
∅† ⇒ ∅†

)
⇒ ∅†

)
⇒ ∅†

) &[[ι]]†. The two arenas are as follows:

standard interpretation: new interpretation:

•

• • ~a

~a • • ~a

~a • ~a

~a

•

• • ~a

~a • •

~a •

where ~a represents the sequence of all elements of [[ι]]. We can observe that the flat arenas for
the atomic formulas in the standard interpretation are replaced with one-move arenas in the
new interpretation, and a set of moves ~a is added, but only under the root (this corresponds
to the “ &

ι”). On the computational level, when in the standard interpretation a realizer
gives a value for an atomic formula, this value is copied to the various parts of the arena
which are in the call stack. Conversely, in the new interpretation the realizer writes the value
directly under the root and the computation stops (this corresponds to the interpretation of
µ-variables as “channels”).

4 Conclusion

We defined a method to extract strategies of game semantics from classical proofs. This
method uses peculiarities of the games model allowing the interpretation of the ⊥ formula as
an empty type while still being able to extract computational content, through the use of
an external “output channel” on which the extracted value is transmitted, without going
through all the call stack. It would be interesting to compare these results with the technique
described in [20], which also reduces the amount of recursive calls, but takes place in an
untyped, syntactic setting. Working with non-innocent games also has the advantage that
we have access to higher-order references which could be used to write efficient realizers.

FSCD 2016



13:16 Classical Extraction in Continuation Models

References
1 Samson Abramsky, Kohei Honda, and Guy McCusker. A Fully Abstract Game Semantics

for General References. In 13th Annual IEEE Symposium on Logic in Computer Science,
pages 334–344. IEEE Computer Society, 1998.

2 Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full Abstraction for PCF.
Information and Computation, 163(2):409–470, 2000.

3 Roberto Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi, volume 46 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

4 Stefano Berardi, Marc Bezem, and Thierry Coquand. On the Computational Content of
the Axiom of Choice. Journal of Symbolic Logic, 63(2):600–622, 1998.

5 Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined program extraction
from classical proofs. Annals of Pure and Applied Logic, 114(1-3):3–25, 2002.

6 Ulrich Berger and Paulo Oliva. Modified bar recursion and classical dependent choice.
In Logic Colloquium 2001, Proceedings of the Annual European Summer Meeting of the
Association for Symbolic Logic, volume 20 of Lecture Notes in Logic, pages 89–107. A K
Peters, Ltd., 2005.

7 Valentin Blot and Colin Riba. On Bar Recursion and Choice in a Classical Setting. In 11th
Asian Symposium on Programming Languages and Systems, volume 8301 of Lecture Notes
in Computer Science, pages 349–364. Springer, 2013.

8 Harvey Friedman. Classically and intuitionistically provably recursive functions. In Gert
Müller and Dana Scott, editors, Higher Set Theory, volume 669 of Lecture Notes in Math-
ematics, pages 21–27. Springer, 1978.

9 Timothy Griffin. A Formulae-as-Types Notion of Control. In 17th Symposium on Principles
of Programming Languages, pages 47–58. ACM Press, 1990.

10 Russ Harmer. Games and full abstraction for non-deterministic languages. PhD thesis,
Imperial College London (University of London), 1999.

11 Hugo Herbelin. On the Degeneracy of Sigma-Types in Presence of Computational Classical
Logic. In 7th International Conference on Typed Lambda Calculi and Applications, Lecture
Notes in Mathematics, pages 209–220. Springer, 2005.

12 Martin Hofmann and Thomas Streicher. Completeness of Continuation Models for
λµ-Calculus. Information and Computation, 179(2):332–355, 2002.

13 Martin Hyland and Luke Ong. On Full Abstraction for PCF: I, II, and III. Information
and Computation, 163(2):285–408, 2000.

14 Stephen Cole Kleene. On the Interpretation of Intuitionistic Number Theory. Journal of
Symbolic Logic, 10(4):109–124, 1945.

15 Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theoretical Computer Science,
308(1–3):259–276, 2003.

16 Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–229,
2009.

17 Yves Lafont, Bernhard Reus, and Thomas Streicher. Continuations Semantics or Express-
ing Implication by Negation. Technical Report 93-21, Ludwig-Maximilians-Universität,
München, 1993.

18 James Laird. Full Abstraction for Functional Languages with Control. In 12th Annual
IEEE Symposium on Logic in Computer Science, pages 58–67. IEEE Computer Society,
1997.

19 James Laird. Bistable Biorders: A Sequential Domain Theory. Logical Methods in Com-
puter Science, 3(2), 2007.

20 Alexandre Miquel. Existential witness extraction in classical realizability and via a negative
translation. Logical Methods in Computer Science, 7(2), 2011.



V. Blot 13:17

21 Hanno Nickau. Hereditarily Sequential Functionals. In Third International Symposium
on Logical Foundations of Computer Science, Lecture Notes in Computer Science, pages
253–264. Springer, 1994.

22 Paulo Oliva and Thomas Streicher. On Krivine’s Realizability Interpretation of Classical
Second-Order Arithmetic. Fundamenta Informaticae, 84(2):207–220, 2008.

23 Michel Parigot. λµ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction.
In 3rd International Conference on Logic Programming and Automated Reasoning, volume
624 of Lecture Notes in Computer Science, pages 190–201. Springer, 1992.

24 Christophe Raffalli. Getting results from programs extracted from classical proofs. Theo-
retical Computer Science, 323(1-3):49–70, 2004.

25 Peter Selinger. Control categories and duality: on the categorical semantics of the λµ
calculus. Mathematical Structures in Computer Science, 11(2):207–260, 2001.

FSCD 2016





Proving Correctness of Logically Decorated Graph
Rewriting Systems∗

Jon Haël Brenas1, Rachid Echahed2, and Martin Strecker3

1 CNRS and Université Grenoble Alpes, Saint Martin d’Hères, France
Jon-Hael.Brenas@imag.fr

2 CNRS and Université Grenoble Alpes, Saint Martin d’Hères, France
Jon-Hael.Brenas@imag.fr

3 IRIT – Université de Toulouse, Toulouse, France
martin.strecker@iri.fr

Abstract
We first introduce the notion of logically decorated rewriting systems where the left-hand sides
are endowed with logical formulas which help to express positive as well as negative application
conditions, in addition to classical pattern-matching. These systems are defined using graph
structures and an extension of combinatory propositional dynamic logic, CPDL, with restricted
universal programs, called C2PDL. In a second step, we tackle the problem of proving the
correctness of logically decorated graph rewriting systems by using a Hoare-like calculus. We
introduce a notion of specification defined as a tuple (Pre, Post, R, S) with Pre and Post being
formulas of C2PDL, R a rewriting system and S a rewriting strategy. We provide a sound calculus
which infers proof obligations of the considered specifications and establish the decidability of
the verification problem of the (partial) correctness of the considered specifications.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.4.1 Mathematical
Logic, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Graph Rewriting, Hoare Logic,Combinatory PDL, Rewrite Strategies,
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1 Introduction

Rewriting techniques and particularly term rewriting systems have been very successful
in different areas such as theorem proving or declarative programming languages. Term
rewriting systems have a wide range of interesting results such as confluence analysis,
termination orderings and even very powerful proof techniques based, in particular, on
equational reasoning and structural induction. However, the structure of terms (trees) is not
well suited to specify easily problem handling graph structures, unless one uses cumbersome
encodings.

In this paper we will focus on a class of rewriting systems that manipulate graphs. Graphs
are data structures that have become ubiquitous. In addition to discrete mathematics and
computer science, they are also used to model data in various fields such as biology, geography,
physics etc. The transformation of graphs is nowadays a domain of research in its own. One
may distinguish two main streams, in the literature, for graph transformations : (i) the
algorithmic approaches, which describe explicitly the algorithms involved in the application
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a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

A B

Figure 1 A – A Sudoku grid. B – An illustration of the correct definition of columns. We omit
the labels of the edges.

of a rule to a graph, and (ii) the algebraic approaches which define abstractly a graph
transformation step using basic constructs borrowed from category theory.

In this paper, we follow the algorithmic approach as proposed in [7] and consider rewrite
rules of the form lhs→ α where lhs is a graph and α is a sequence of elementary actions that
perform the desired transformations on the subgraph matched by lhs. We define the notion
of logically decorated graph rewriting systems (LDRS) where the left-hand sides of rules are
graphs attributed by formulas in a dynamic logic, called C2PDL[5], and whose models are
also graphs. Such formulas, within the left-hand sides, could be seen as additional conditions
to be fulfilled when matching a subgraph.

After the introduction of LDRS systems, we tackle the problem of their verification with
the objective of building a decidable procedure. For that we define a Hoare-like calculus the
aim of which is to prove that a transformation is correct, i.e., given a set of rewriting rules, a
strategy stating how to apply them, a pre-condition indicating what are the properties to be
satisfied before the application of the transformations and a post-condition stating which
property is to be verified after the transformations, whether for any graph G satisfying the
pre-condition every graph obtained by transforming G will satisfy the post-condition. To do
so, we define a calculus that generates weakest-pre-conditions and verification conditions for
each intermediate step of the strategy. This infers a weakest pre-condition and a verification
condition for the whole transformations. That weakest pre-condition is then compared to
the given pre-condition. We show that the proposed Hoare-like calculus is sound and that
the considered correctness problem is decidable.

I Example 1. To clarify what is our aim and how our system works, we will be using
a running example: we propose to study a simple program dealing with Sudoku grids.
For reason of clarity and conciseness, we will study 4x4 grids instead of the normal 9x9.
Nonetheless, the example can be easily extended to the normal Sudoku. An example of such
a grid is shown in Figure 1.A. The goal is to fill each blank cell with a number between 1 and
4 such that the same number doesn’t appear twice on a line, a column or a square. The goal
of this example is not to show that graph transformations are efficient for solving Sudokus
but just to provide a rather simple and common example in order to illustrate how to carry
out the correctness proof of a program defined as a graph rewrite system.

The paper is organized as follows. In the following section, the dynamic logic C2PDL
used to express pre- and post-conditions is presented briefly. Then, the class of logically
decorated rewriting systems is defined in Section 3 together with a notion of rewrite strategies.
In Section 4, we start by setting the verification problem we consider and show how the proof
obligations are generated. We also prove that the presented verification process is sound and
decidable. An overview of related work is given in Section 5. Section 6 concludes the paper.
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2 The dynamic logic C2PDL

In this section, we introduce C2PDL [5], a logic that we use to specify assertions. It is a mix
of Converse Propositional Dynamic Logic [8] and Combinatory Propositional Dynamic Logic
[15], both commonly known as CPDL. C2PDL contains elements of Propositional Dynamic
Logic, that allows one to define complex role constructors, and Hybrid Logic, which allows
one to use the power of nominals. C2PDL further extends the CPDLs in two ways: it splits
the universe into elements that are part of the model and elements that may be created by
an action or that have been deleted; it also extends the notion of universal role to “total”
roles over subsets of the universe in order to be able to deal with these modifications of the
universe.

I Definition 2 (Syntax of C2PDL). Given three countably infinite and pairwise disjoint
alphabets Σ, the set of names, Φ0, the set of atomic propositions, Π0, the set of atomic
programs, the language of C2PDL is composed of formulas and programs1. We partition the
set of names Σ into two countably infinite alphabets Σ1 and Σ2 such that Σ1 ∪ Σ2 = Σ and
Σ1 ∩ Σ2 = ∅. Formulas φ and programs α are defined as:

φ := i | φ0 | ¬φ | φ ∨ φ | 〈α〉φ
α := α0 | νS | α;α | α ∪ α | α∗ | α− | φ?

where i ∈ Σ, φ0 ∈ Φ0, α0 ∈ Π0 and S ⊆ Σ.
We denote by Π the set of programs and by Φ the set of formulas. As ususal, φ ∧ ψ

stands for ¬(¬φ ∨ ¬ψ) and [α]φ stands for ¬(〈α〉¬φ).

For now, the splitting of Σ seems artificial. It is actually grounded in the use we want to
make of the logic. Roughly speaking, Σ1 stands for the names that are used in “the” current
model whereas Σ2 stands for the names that may be used in the future (or have been used
in the past but do not participate in the current model).

I Definition 3 (Model). A model is a tupleM = (M,R, χ, V ) where M is a set called the
universe, χ : Σ→M is a surjective mapping such that χ(Σ1) ∩ χ(Σ2) = ∅, R : Π→ P(M2)
and V : Φ→ P(M) are mappings such that:

For each α0 ∈ Π0, R(α0) ∈ P(χ(Σ1)2)
R(νS) = χ(S)2 for S ⊆ Σ
R(α ∪ β) = R(α) ∪R(β)
R(A?) = {(s, s)|s ∈ V (A)}
R(α−) = {(s, t)|(t, s) ∈ R(α)}
R(α∗) =

⋃
k<ω R(αk) where αk stands for the sequence α; . . . ;α of length k

R(α;β) = {(s, t)|∃v.((s, v) ∈ R(α) ∧ (v, t) ∈ R(β))}
For each i ∈ Σ, V (i) = {χ(i)}
For each φ0 ∈ Φ0, V (φ0) ∈ P(χ(Σ1))
V (¬A) = M\V (A)
V (A ∨B) = V (A) ∪ V (B)
V (〈α〉A) = {s|∃t ∈M.((s, t) ∈ R(α) ∧ t ∈ V (A))}

In the following, we write sRαt for (s, t) ∈ R(α).

C2PDL will be used in this paper to label nodes and to express properties of attributed
graphs.

1 This notion of programs is borrowed from PDL logic.
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I Definition 4 (Attributed Graph). An attributed graph G is a tuple (N ,E,C,R,LN ,LE ,s,t)
where N is the set of nodes, E is the set of edges, C is the set of node labels or concepts, R is
the set of edge labels or roles, LN is the node labeling (total) function, LN : N → P(C), LE
is the edge labeling (total) function, LE : E → R, s is the source function s : E → N and t
is the target function t : E → N .

From now on, we will only consider graphs such that C = Φ and R = Π. Given a
graph G = (N,E, C,R, LN , LE , s, t) and a formula φ, we say that G |= φ if there exists
n ∈ N such that n |= φ where the universe M is the set of nodes N . R and V are
defined as usual: for φ0 ∈ Φ0 (resp. π0 ∈ Π0), V (φ0) = {x ∈ N |φ0 ∈ LN (x)} (resp.
R(π0) = {(x, y) ∈ N2|∃e ∈ E.s(e) = x∧ t(e) = y∧LE(e) = π0}). R and V are then extended
to non-atomic propositions and programs following the same rules defined in the models. As
usual, a formula φ is satisfiable if there exists a graph G such that G |= φ and unsatisfiable
otherwise and it is valid if for all models G, G |= φ and invalid otherwise. We denote by S a
subset of C which consists of names such that for each name s ∈ S there is at most one node
n ∈ N such that n |= s. One may remark that all models can be considered as graphs. The
converse is false.

Often, we will write i : C instead of i : {C} to say that node i is labelled with the formula
C. In Figure 2, we give an example of models depicted as graphs.

Attributed graphs where all nodes are named will be called named graphs. This notion of
graphs will be used in the proof section.

I Definition 5 (Named Graph). A named graph G is an attributed graph such that the set
of names S ⊆ C satisfies:
(a) ∀s ∈ S. ∃n ∈ N. s ∈ LN (n),
(b) ∀n ∈ N. LN (n) ∩ S 6= ∅,
(c) ∀n, n′ ∈ N,n 6= n′, LN (n) ∩ LN (n′) ∩ S = ∅ .

Notation: From (a), (b) and (c), it is obvious that, as each name labels at least one node,
each node is labeled by at least one name and each name labels at most one node, it is
possible to define two functions θ and µ such that ∀s ∈ S, θ(s) is the node named s and
∀n ∈ N,µ(n) is a name of n. This allows to define the surjective mapping of models χ and
thus named graphs and models are equivalent structures. We will thus consider from now on
that formulae are interpreted over named graphs.

I Example 6. Going back to the Sudoku example, we will use C2PDL to state some
properties. We are going to use a name for each cell of the grid (aij with 0 ≤ i, j ≤ 3
where i is the row and j the column in which the cell can be found). We will also use
three atomic programs R (resp. C and SQ) to state which cells are on the same row (resp.
column and square). Finally, we will need eight atomic propositions 1 (resp. 2,3 and 4)
and P1 (resp. P2,P3 and P4) to state that a cell is known to contain 1 (resp. 2, 3 or 4) and
that a cell may contain 1 (resp. 2, 3 or 4). Thus we require that {aij |i, j ∈ [0, 3]} ⊂ Σ,
{i|i ∈ [1, 4]}∪{Pi|i ∈ [1, 4]} ⊂ Φ0 and {R,C, SQ} ⊂ Π0. As we do not create or delete nodes,
we do not make use of the possibility to change the set of definition of the total program.
For this example, ν stands for νΣ1 . We define below a few relevant formulae.

The atomic program C should describe columns, as shown in Figure 1.B:
cj = 〈ν〉(a0j ∧ 〈C〉(a1j ∧ 〈C〉(a2j ∧ 〈C〉a3j))) for j ∈ [0, 3]. cj describes the successive
elements of a column.
cj = 〈ν〉(a0j ∧ [C](a1j ∧ [C](a2j ∧ [C](a3j ∧ [C]⊥)))) for j ∈ [0, 3]. cj says that there
are no more elements in a column than those specified by cj . Thus a column is specified
by cj ∧ cj .
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i : 1¬1 ¬11 i : 1¬1 ¬11
R RR RR R

Figure 2 Model and counter-model. All nodes of the left graph satisfy the formula [ν](1 ⇒
[R−][R−∗]¬1). This is not the case for the graph given on the right since i 6|= (1⇒ [R−][R−∗]¬1).

A cell should contain, at most, one value: uI,J = [ν](I ⇒ ¬J) for I, J ∈ [1, 4],
I 6= J and there is no doubt about it (e.g., once a cell is assigned the value I, it is no
longer a candidate for any future potential assignement PJ): uI,J = [ν](I ⇒ ¬PJ) for
I, J ∈ [1, 4]
If a cell has a value J , J cannot be the value of any other cell on the same row, column
or square vr,J = [ν](J ⇒ (([r][r∗]¬J) ∧ ([r−][r−∗]¬J))) for J ∈ [1, 4] and r ∈ {R,C, SQ}.
Figure 2 shows an example of a model and a counter-model of part of this expression.

I Theorem 7. Given a formula φ of C2PDL, the satisfiability and the validity of φ are
decidable.

More on C2PDL including the proof of this theorem can be found in [5].

3 Logically Decorated Rewriting Systems LDRS

In this section we introduce the notion of logically decorated rewriting systems, LDRS. These
are extensions of graph rewriting systems defined in [7] where graphs are attributed with
C2PDL formulas. The left-hand sides of the rules are thus logically decorated graphs whereas
the right-hand sides are defined as sequences of elementary actions. These actions constitute
a set of elementary transformations used in graph transformation processes. The operational
way the right-hand sides are defined in this paper departs from those classically used in
algebraic approaches [18] such as simple pushout or double pushout where rules are defined
by means of graph morphisms.

I Definition 8 (Elementary Action, Action). An elementary action, say a, has one of the
following forms:

a concept addition addC(i, c) (resp. concept deletion delC(i, c)) where i is a node and c
is a basic concept (a proposition name) in Φ0. It adds the node i to (resp. removes the
node i from) the valuation of the concept c.
a role addition addR(i, j, r) (resp. role deletion delR(i, j, r)) where i and j are nodes and
r is an atomic role (edge label) in Π0. It adds the pair (i, j) to (resp. removes the pair
(i, j) from) the valuation of the role r.
a node addition addI(i) (resp. node deletion delI(i)) where i is a new node (resp. an
existing node). It creates the node i. i has no incoming nor outgoing edge and there is
no basic concept (in Φ0) such that i belongs to its valuation (resp. it deletes i and all its
incoming and outgoing edges).
a global edge redirection i� j where i and j are nodes. It redirects all incoming edges of
i toward j.

The result of performing the elementary action α on a graph G = (NG, EG, CG, RG,

LGN , L
G
E , s

G, tG), written G[α], produces the graph G′ = (NG′ , EG
′
, CG

′
, RG

′
,

LG
′

N , L
G′

E , s
G′ , tG

′) as defined in Figure 3. An action, say α, is a sequence of elementary
actions of the form α = a1; a2; . . . ; an. The result of performing α on a graph G is written
G[α]. G[a;α] = (G[a])[α] and G[ε] = G, ε being the empty sequence.
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If α = addC(i, c) then: If α = delC(i, c) then:
NG′ = NG,EG′ = EG,CG′ = CG,RG′ = RG,LG′E = LGE NG′ = NG,EG′ = EG,CG′ = CG,RG′ = RG, LG′E = LGE

LG
′

N (n) =
{

LGN (n) ∪ c if n = i

LGN (n) if n 6= i
LG
′

N (n) =
{

LGN (n)\c if n = i

LGN (n) if n 6= i

sG
′ = sG, tG′ = tG sG

′ = sG, tG′ = tG

If α = addR(i, j, r) then: If α = delR(i, j, r) then:
NG′ = NG, CG′ = CG,RG′ = RG, LG′N = LGN NG′ = NG, CG′ = CG,RG′ = RG, LG′N = LGN
EG
′ = EG ∪ e where e is a new element EG

′ = EG\{e|sG(e) = i ∧ tG(e) = j ∧ LGE(e) = r}

LG
′

E (e′) =
{

r if e′ = e

LGE(e′) if e′ 6= e
LG
′

E is the restriction of LGE to EG′

sG
′(e′) =

{
i if e′ = e

sG(e′) if e′ 6= e
sG
′ is the restriction of sG to EG′

tG
′(e′) =

{
j if e′ = e

tG(e′) if e′ 6= e
tG
′ is the restriction of LGE to EG′

If α = addI(i) then: If α = delI(i) then:
NG′ = NG ∪ i where i is a new node EG

′ = EG\{e|sG(e) = i ∨ tG(e) = i}
CG
′ = CG, RG′ = RG NG′ = NG\i, CG′ = CG,RG′ = RG

LG
′

N (n′) =
{
∅ if n′ = i

LGN (n′) if n′ 6= i
LG
′

N is the restriction of LGN to NG′

EG
′ = EG, LG′E = LGE ,sG

′ = sG, tG′ = tG LG
′

E is the restriction of LGE to EG′

If α = i� j then: sG
′ is the restriction of sG to EG′

NG′ = NG, EG′ = EG, CG′ = CG tG
′ is the restriction of LGE to EG′

RG
′ = RG, LG′N = LGN , LG

′
E = LGE ,sG

′ = sG

tG
′(e) =

{
j if tG(e) = i

tG(e) if tG(e) 6= i

Figure 3 Summary of the effects of elementary actions.

I Definition 9 (Rule, LDRS). A rule ρ is a pair (lhs,α) where lhs, called the left-hand side,
is an attributed graph with C2PDL formulae as attributes and α, called the right-hand side,
is an action. Rules are usually written lhs → α. A logically decorated rewriting system,
LDRS, is a set of rules.

It is noteworthy that the left-hand side of a rule is an attributed graph, that is it can
contain nodes labeled with C2PDL formulae. This is not insignificant. Indeed, these formulae
can express reachability expression (closure of a program), non-local properties (universal
program), ... These node labelings allow to write more concise and simpler rewriting systems.
For instance, Figure 4 provides two LDRSs, GRS0 and GRS1 which remove unreachable
nodes from a start state (labeled by S) of an automaton. Without the closure constructor
(∗), one would tag that the start states are reachable (label R) (rule ρ00), then say that every
neighbor of a reachable node is reachable (rule ρ01) and finally that all nodes that have not
been reached by applying the first two rules as much as possible are to be removed (rule
ρ02). GRS0 requires the explicit computation of the reachability making the algorithm more
complex. On the other hand, GRS1 only uses one rule which says that all nodes that are
not reachable from a start state are to be removed (rule ρ1).

It is worth noting that the impact of C2PDL formulae in node labels is not limited to
graph rewriting. Indeed, let us consider the term rewriting system of integer arithmetic with
multiplication. The classical way to deal with 0s in such a case is to have rules saying that
0× x 0 and x× 0 0. Considering terms as trees, and thus as graphs, it is also possible
to improve on this set of rules by using, for instance, the rule i : ×∧〈((L∪R);×?)∗〉0 i : 0.
This rule states that if a node i is such that i : ×∧ 〈((L∪R);×?)∗〉0, that is to say, node i is
labeled by the multiplication operator (i : ×) and there is a path of left- or right-operands
(L ∪ R), crossing nodes labeled by the multiplication operator (×?), that leads to a node
labeled by 0 (i : 〈((L ∪R);×?)∗〉0), then node i could be labeled by 0 (i : 0).
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GRS0 GRS1

i : S addC(i, R)

i : R j addC(j, R)

i : ¬R delI(i)

i : [r−∗]¬S delI(i)

ρ00 :

ρ01 :

ρ02 :

ρ1 :

Figure 4 Two LDRS dealing with the suppression of unreachable nodes. Rules with atomic
formulae are on the left. The rule with a non-atomic formula is on the right.

i : A j : B k :< β∗ > C addR(j, k, γ); delR(j, k, β)

Figure 5 An example of LDRS. The dashed line represents the program (label) α and the plain
line the program β. The first edge labeled β after an access α on a path toward a C gets a new
tag γ.

In Figure 5, we provide an additional toy example which is used later. It consists of one
rule which relabels the edge going from node j to k with label (program) γ whenever node
k has access to “information” C. This rule may have different interpretations such as the
modification of access policy to information tagged C.

I Example 10. Back to our running example, we provide a very simple graph rewriting
system R that tries to produce a full and correct grid. It contains 16 rules, that are
summarized in Figure 6. The rules ρr,J make sure that when a line (resp. a column or a
square) contains a cell with value J , PJ is no longer available for all the cells on the line
(resp. column or square). The rules ρJ are used to pick one choice among those that are
available.

I Definition 11 (Match). A match h between a left-hand side lhs and a graph G is a pair
of functions h = (hN , hE), with hN : Nlhs → NG and hE : Elhs → EG such that:
1. ∀n ∈ Nlhs, ∀c ∈ LNlhs(n), hN (n) |= c 2. ∀e ∈ Elhs, LElhs(e) = LEG(hE(e))
3. ∀e ∈ Elhs, sG(hE(e)) = hN (slhs(e)) 4. ∀e ∈ Elhs, tG(hE(e)) = hN (tlhs(e))

The third and the fourth conditions are classical and say that the source and target
functions and the match have to agree. The first condition says that for every node n of the
left-hand side, the node to which it is associated, h(n), in G has to satisfy every concept
that n satisfies. This condition clearly expresses additional negative and positive conditions
which are added to the “structural” pattern matching. The second one ensures that the
match respects edge labeling.

I Definition 12 (Rule Application). A graph G rewrites to graph G′ using a rule ρ = (lhs, α)
iff there exists a match h from lhs to G. G′ is obtained from G by performing actions in
h(α)2. Formally, G′ = G[h(α)]. We write G→ρ G

′ or G→ρ,h G
′.

Confluence of graph rewriting systems is not easy to establish. For instance, orthogonal
graph rewrite systems are not always confluent, see e.g.,[7]. That is why we use a notion
rewrite strategies to control the use of possible rules. Informally, a strategy specifies the

2 h(α) is obtained from α by replacing every node name,n, of lhs by h(n).
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i : PJ ∧ 〈(r ∪ r−)∗〉J delC(i, PJ)

i : PJ addC(i, J); delC(i, P1); delC(i, P2); delC(i, P3); delC(i, P4)

ρr,J :

ρJ :

Figure 6 A summary of the rules of R. In ρr,J , r must be replaced by either R, C or SQ and J
by 1, 2, 3 or 4. In ρJ , J must be replaced by 1, 2, 3 or 4.

G→ρ G
′

G⇒ρ G
′ (Rule)

G⇒s0 G
′′ G′′ ⇒s1 G

′

G⇒s0;s1 G
′ (Strategy composition)

G⇒s0 G
′

G⇒s0⊕s1 G
′ (Choice left)

G⇒s1 G
′

G⇒s0⊕s1 G
′ (Choice right)

¬App(s,G)
G⇒s∗ G

(Closure false)
G⇒s G

′′ G′′ ⇒s∗ G
′ App(s,G)

G⇒s∗ G
′ (Closure true)

Figure 7 Strategy application rules.

application order of different rules. It does not point to where the matches are to be found
nor does it ensure the unicity of the reduction outcome.

I Definition 13 (Strategy). Given a graph rewriting system R, a strategy is a non-empty
word of the following language defined by s:
s := ρ (Rule) s; s (Composition) s⊕ s (Choice) s∗ (Closure)

where ρ is any rule in R.
We write G⇒S G′ when G rewrites to G′ following the rules given by the strategy S.

Informally, the strategy ”ρ1; ρ2” means that rule ρ1 should be applied first, followed by
the application of rule ρ2. The strategy ”ρ∗0; (ρ1⊕ ρ2)” means that rule ρ0 is applied as far as
possible, then followed either by ρ1 or ρ2. It is worth noting that the closure is the standard
“while” construct: if the strategy we use is s∗, the strategy s is used as long as it is possible
and not an undefined number of times.

I Example 14. For the Sudoku example, a possible strategy S1 could be: “As long as
one can eliminate possibilities, do it. Then, when it is no longer the case, make a choice
in one of the blank cells and go back to the first step”. S1 may be defined as S1 =
(
⊕

r∈{R,C,SQ},J∈[1,4] ρr,J)∗; ((
⊕

J∈[1,4] ρJ); (
⊕

r∈{R,C,SQ},J∈[1,4] ρr,J)∗)∗.

In Figure 7, we provide the rules that specify how strategies are used to rewrite a graph.
For that, we use the predicate App(s,G) which holds whenever graph G can be rewritten
by the strategy s. It is defined as follows:
App(ρ,G) = true iff there exists a match h from the left-hand side of ρ to G
App(s0 ⊕ s1, G) = App(s0, G) ∨App(s1, G)
App(s∗0, G) = true

App(s0; s1, G) = App(s0, G)
It is worth noting that App(s,G) is not meant to denote that the whole strategy can

be applied to G, just that the next step can be applied. Indeed, let’s assume the strategy
s = s0; s1 where s0 can be applied but may lead to a state where s1 cannot. In this case
App(s,G) will hold saying that the strategy s can be applied on G.
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wp(addC(i, c), Q) = Q[addC(i, c)] wp(delC(i, c), Q) = Q[delC(i, c)]
wp(addR(i, j, r), Q) = Q[addR(i, j, r)] wp(delR(i, j, r), Q) = Q[delR(i, j, r)]
wp(addI(i), Q) = Q[addI(i)] • wp(delI(i), Q) = Q[delI(i)]
wp(i >> j, Q) = Q[i >> j] wp(ε, Q) = Q

wp(a;α, Q) = wp(a,wp(α,Q))

Figure 8 Weakest pre-conditions for actions.

wp(s0; s1, Q) = wp(s0, wp(s1, Q)) wp(s0 ⊕ s1, Q) = wp(s0, Q) ∧ wp(s1, Q)
wp(s∗, Q) = invs wp(ρ, Q) = App(tag(ρ))⇒ wp(tag(αρ), Q)

Figure 9 Weakest pre-conditions for strategies.

4 Proving Correctness of LDRS’s

Equational reasoning and structural induction method represent the main core of proof
techniques dedicated to reason about term rewrite systems. Unfortunately, graph rewrite
systems do not benefit yet from such established techniques. For example, generalization
of equational reasoning to graph rewriting systems is not complete [6]. In this section, we
propose a way to specify properties of LDRSs for which we establish a decidable proof
procedure.

I Definition 15 (Specification). A specification SP is a tuple (Pre, Post, R, S) where Pre
and Post are C2PDL formulas, R is a graph rewriting system and S is a strategy.

A specification SP is said to be correct iff for all graphs G, G′ such that G⇒S G′ and
G |= Pre, then G′ |= Post.

In order to show the correctness of a specification, we follow a Hoare-calculus style
and compute the weakest pre-condition wp(S, Post). For that, we define the weakest pre-
conditions of a formula Post induced by a strategy, a rule, an action and an elementary
action. They are presented in Figure 8 for the elementary actions and Figure 9 for strategies.

The weakest pre-condition of an elementary action, say a, and a post-condition Q is
defined as wp(a,Q) = Q[a] where Q[a] stands for the pre-condition consisting of Q to which
is applied a substitution induced by the action a that we denote by [a]. The notion of
substitution used here is the one of Hoare-calculi [11].

I Definition 16 (Substitutions). To each elementary action a is associated a substitution,
written [a], such that for any graph G, (G |= φ[a])⇔ (G[a] |= φ).

It is worth noting that substitutions are, in all generality, not defined as formulae of
C2PDL. They are defined as a new constructor whose meaning is that the weakest pre-
conditions as defined above are correct. There is no reason whatsoever to think that the
addition of a constructor for substitutions is harmless, in general. It is a very interesting
problem to figure out for which logics they can be introduced as it is a strong indication that
such a logic may be suitable to study the correction of programs. It is one of the central
results of [5] that C2PDL is closed under substitutions allowing us to use them freely in the
following.
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i : {ia, PJ} addC(ia, J); delC(ia, P1); delC(ia, P2); delC(ia, P3); delC(ia, P4)tag(ρJ) :

Figure 10 The rule ρJ is modified into tag(ρJ) with tag(i) = ia.

Apart from wp(ρ, Q), the weakest pre-conditions defined in here are the usual ones. As
in any other framework using Hoare logic, it requires the definition of an invariant(inv) for
each loop that has to be provided by the user.

The weakest pre-condition of a rule ρ = (lhsρ, αρ) and a post-condition Q is given by
wp(ρ, Q) = App(tag(ρ)) ⇒ wp(tag(αρ), Q) where tag : Nlhsρ → Σ is a function which
associates to every node, n, of the left-hand side of rule ρ, a fresh name in Σ. These new
names are used to keep track of the matching locations within potential graphs rewritten
by different instances of ρ during the execution of a strategy. tag(ρ) = (tag(lhsρ), tag(αρ))
where tag(lhsρ) is a named graph which consists of the graph lhsρ where the node labeling
function is augmented by tag, i.e., for all nodes, n, of lhsρ, LNtag(lhsρ)(n) = LNlhsρ (n)∪tag(n).
tag(αρ) is obtained from αρ by substituting every node (in Nlhsρ), say i, by tag(i). Figure 10
gives an example turning the left-hand side of a rule into a named graph via a function tag.

The formula App(tag(ρ)) expresses the applicability of the rule tag(ρ). In other words, it
expresses the existence of a match of the left-hand side of tag(ρ). More precisely App(tag(ρ))
is defined as follows:

App(tag(ρ)) = φnodes ∧ φedges

where

φnodes =
∧

u∈tag(Nlhsρ )

〈νΣ1〉(u ∧
∧

φ∈Lþ(lhsρ)
N

(θ(u))

φ)

and

φedges =
∧

e∈E|s(e)=θ(u)

〈νΣ1〉(u ∧ 〈L
þ(lhsρ)
E (e)〉tag(t(e))∧

∧
e∈E|t(e)=θ(u)

〈νΣ1〉(u ∧ 〈L
þ(lhsρ)
E (e)−〉tag(s(e)) .

φnodes states that the first condition of Definition 11 is satisfied i.e., all formulae satisfied
by a node of the left-hand side have to be satisfied by its image in the graph. φedges does
the same with edges: the label of the corresponding edges are the same and the source and
target functions fulfill the matching compatibly condition.

Tagging a rule may seem to reduce its applicability. Indeed, by choosing a new name for
each node of the left-hand side, the rule can now be applied only at the nodes of the graph
named accordingly. Let ρ be a rule such that LHSρ = (Nρ = {i0, . . . in}, Eρ, Cρ,Rρ, LNρ , LEρ ,
sρ, tρ) is its left-hand side. In order to prove that the application of ρ on a graph
G = (NG, EG, CG,RG, LNG , LEG , sG, tG) is correct, one has to verify that for every match
h = (hN , hE) (as defined in Definition 11), the post-condition is satisfied after the transform-
ation associated with ρ is applied at the hN (ik)’s. Instead of showing that, the verification
procedure proves that for any graph, if the rule can be applied at the θ(u)’s, where θ is the
function that associates to each name of Σ a node of G and u ∈ tag(ρ), the post-condition
is satisfied after performing the transformation. As the u’s are fresh names, they do not
have any impact on the previous characterization of the graphs. Thus, the validity of
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vc(ρ, Q) = > vc(s0; s1, Q) = vc(s0, wp(s1, Q)) ∧ vc(s1, Q)
vc(s0 ⊕ s1, Q) = vc(s0, Q) ∧ vc(s1, Q)
vc(s∗, Q) = (invs ∧NApp(s)⇒ Q) ∧ (invs ⇒ wp(s, invs)) ∧ vc(s, invs)

Figure 11 Verification conditions.

wp(ρ, Post) actually states that whatever the choice of θ is, if the rule can be applied, then
the post-condition will be satisfied after it is fired.

The weakest pre-condition associated to the closure of a strategy, say s∗, and a post-
condition Q is defined as wp(s∗, Q) = invs where invs is an invariant (C2PDL formula)
associated to the strategy s. Roughly speaking s∗ could be seen as a while-loop which needs
invariants associated with additional proof obligations defined by means of the function vc
(verification conditions) given in Figure 11.

Informally, the predicate NApp(s), used in the definition of vc, the verification conditions
function, says that the strategy s cannot be applied. To express NApp(s), one may wonder
whether it is possible to use the negation of App(s). The answer is negative since App has
been defined using dedicated names, that is to say a rule is applied at a specific place defined
by the added names introduced by the function tag. Intuitively, if one wants to express that
there is no match for a rule whose left-hand side contains a cycle (e.g., the second graph
of Figure 12), then universal quantification is required. For instance, in that case it would
be ∀i, j.[νΣ1](i⇒ [R](j ⇒ [R]¬i)). One of them can be discarded to produce the expression
∀i.[νΣ1](i⇒ [R][R]¬i). Alas, this cannot be expressed in C2PDL. The names only allow to
express existential quantifiers. Indeed, to express universal quantifiers, one needs to extend
the logic with the binder ↓ of hybrid logic which is enough to make the logic undecidable[2].

To express formally NApp(s) in C2PDL, one needs to introduce some additional definitions
first.

I Definition 17 (Explicitly Named Nodes, Non-Oriented Cycles). An explicitly named node is
a node such that each disjunct of the disjunctive normal form of its label contains a name.
A non-oriented cycle, c, is a finite list of nodes c = [n0, . . . , nk] such that (i) nk = n0 and (ii)
∀κ ∈ [0, k − 1],∃r ∈ Π0 such that (nκ, nκ+1) ∈ R(r) or (nκ+1, nκ) ∈ R(r).

I Definition 18 (Grove and Thicket). A grove is a disjoint union of thickets. A thicket
is a connected graph such that it does not contain any non-oriented cycle composed only
of non explicitely named nodes. We call a strategy S relative to a rewriting system R a
grove-strategy if the left-hand sides of all the rules appearing under a closure are groves.

Let lhs be a left-hand side. Let us split Nlhs into TE , the set of explicitly named nodes,
and TI = Nlhs\TE . For each maximally connected subgraph composed only of nodes in TI ,
a distinguished node ri is selected. If there is a maximally connected subgraph composed
only of explicitly named nodes, an ri is also picked for it. Now, everything is ready to define
NApp(s).
1. NApp(ρ) =

∨
ri

[νΣ1 ]NA(ri, ∅)
2. NA(n, V ) = (

∨
φ∈LN (n) ¬φ) ∨ (

∨
e∈E|s(e)=n|s(e)∈TE∪(TI\V )[LE(e)]NA(t(e), V ∪ {n})) ∨

(
∨
e∈E|t(e)=n|t(e)∈TE∪(TI\V )[LE(e)−]NA(s(e), V ∪ {n})) if n 6∈ V

3. NA(n, V ) = ¬µ(n) if n ∈ TE ∩ V
4. NApp(s0 ⊕ s1) = NApp(s0) ∧NApp(s1)
5. NApp(s∗) = false

6. NApp(s0; s1) = NApp(s0)

FSCD 2016



14:12 Proving Correctness of Logically Decorated Graph Rewriting Systems

A B A B A

Figure 12 These two graphs are indistinguishable without names.

Rule 2 is the most involved. NA(n, V ) is used to describe what has to be true for a node
different from n. V is used to track which nodes have already been visited.

∨
φ∈LN (n) ¬φ

states that there is at least one of the formulae satisfied by n that is not satisfied while∨
e∈E|s(e)=n|s(e)∈TE∪(TI\V )[LE(e)]NA(t(e), V ∪{n}) means that there is a neighbor of n using

an outgoing edge that cannot find a match.
∨
e∈E|t(e)=n|t(e)∈TE∪(TI\V )[LE(e)−]NA(s(e), V ∪

{n}) has the same signification but for incoming edges. Rule 3 is used to recall the names of
the explicitly named nodes that have already been visited without creating a cycle in the
execution. Rules 4 to 6 are exactly the negation of App(s,G). Rule 1 says that for at least
one ri, it is not possible to find a node that would be a match. It is noteworthy that there is
no rule for N ∈ TI ∩ V since the considered left-hand side has to be a grove.

I Example 19. The rules of the Sudoku example are simple, having only one-node left-hand
side, and thus not very interesting as far as NApp is concerned. We will thus consider the rule,
say ρ, of Figure 5. There is only one connected subgraph so one has to pick one distinguished
node r0. Let us choose, randomly, the node j as r0. Then NApp(ρ) = [νΣ1 ]NA(j, ∅). As j is
not explicitly named, NA(j, ∅) = ¬B ∨ [β]NA(k, {j}) ∨ [α−]NA(i, {j}). As i is not explicitly
named either, NA(i, {j}) = ¬A as the only neighbor of i is j. Finally, NA(k, {j}) = [β∗]¬C
as the only neighbor of k is j. Thus NApp(ρ) = [νΣ1 ](¬B ∨ [β][β∗]¬C ∨ [α−]¬A).

Given a specification SP , the correctness of SP amounts to verify the validity of the
formula CorrSP = vc(S, post) ∧ (pre ⇒ wp(S, post)). It can be shown that CorrSP is a
C2PDL formula due to the closure by substitutions of C2PDL [5]. Therefore we can state
the soundness of our calculus in the following theorem.

I Theorem 20. Let SP = (Pre, Post, R, S) be a specification where Pre and Post are
C2PDL formulas, S is a grove-strategy relative to LDRS R. If the formula CorrSP =
vc(S, post) ∧ (pre ⇒ wp(S, post)) is valid then for all graphs G and G′, if G ⇒S G′, then
G |= pre implies G′ |= post.

CorrSP being a formula of C2PDL, one gets the following corollary from theorem 7.

I Corollary 21. Let SP = (Pre, Post, R, S) be a specification where Pre and Post

are C2PDL formulas, S is a grove-strategy relative to LDRS R. The verification of the
correctness of SP is decidable.

I Example 22. The example of Figure 13 contains one rule that is applied as long as
possible. As the closure is used, an invariant has to be specified. We choose 〈νΣ1〉x which
is obviously an invariant of the loop. The specifications differ on the post-condition, the
first one being what we would expect, that is all elements are labelled A, and the other
one being the exact opposite. Both specifications are deemed partially correct. Indeed, as
wp(ρ∗1, Post) = inv = 〈νΣ1〉x, Pre ⇒ wp(ρ∗1, Post) = >. Furthermore, as vc(ρ∗1, Post) =
(inv∧App(ρ1)⇒ inv[addC(i, A)])∧(inv∧NApp(ρ1)⇒ Post)∧vc(ρ1, inv) and vc(ρ1, inv) = >
and inv ⇒ inv = >, vc(ρ∗1, Post) = inv ∧ NApp(ρ1) ⇒ Post). But then, as NApp(ρ1) =
[νΣ1 ]⊥, inv ∧NApp(ρ1) = ⊥ and thus vc(ρ∗1, Post) = > independently of the post-condition.
The fact that two specifications leading to opposite results would be both considered correct
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i addC(i, A)ρ1 :

SP10 = (〈νΣ1〉(x ∧ ¬A), [νΣ1 ]A, {ρ1}, ρ∗1)

SP11 = (〈νΣ1〉(x ∧ ¬A), 〈νΣ1〉¬A, {ρ1}, ρ∗1)

Figure 13 Scholastic examples of specification. Both of the specifications are partially correct.

seems to be an error but the fact is that the program will never stop and, actually, no result
is ever reached.

It is noteworthy that the choice of the invariant is, as usual in Hoare logic [11], far from
innocent. Let’s assume we chose inv = > instead. Then, the only difference is that now
inv ∧ NApp(ρ1) = NApp(ρ1) = [νΣ1 ]⊥. But then, inv ∧ NApp(ρ1) ⇒ [νΣ1 ]¬A is true but
not inv ∧ NApp(ρ1) ⇒ 〈νΣ1〉A. A poor choice of inv can prevent someone from proving a
program correct.

The example of the Sudoku can be proven to be valid with a suitable choice of Pre, Post
and inv.

5 Related work

One of the main features of the class of rewriting systems we introduce in this paper consists
in specifying application conditions as logic formulas that label nodes of the left-hand sides.
This is, to our knowledge, a new approach to specify application conditions. In [9] the idea
of additional (negative) application conditions has been introduced in a framework based on
category theory.

Our second contribution is to introduce a decidable verification procedure for the con-
sidered rewrite systems and the logic used to express system properties. The problem of
reasoning about graph transformations is known to be complex in its full generality [12].

One approach to program verification, as exemplified by [10, 16], is similar to the one
we pursue here, i.e., the goal is to generate the weakest pre-condition for a condition to
be satisfied. Our method strongly diverges from theirs in very key points, though. First
and foremost, their rewriting systems are based on algebraic methods whereas ours are
purely algorithmic. Secondly, our graphs are logically attributed, that is each node is labeled
with formulas. Another difference lies in the considered logics. Indeed, the logic presented
in [16] is equivalent to monadic second-order logic. It thus allows to express second-order
quantification which is out of the scope of our logic. The one in [10] is equivalent to first-order
graph formulas whose expressivity is not comparable to ours (i.e., there are formulas that can
be expressed in one logic but not in the other and vice versa). Both monadic second-order
and first-order graph logics are undecidable. On the other hand, we have carefuly chosen
an extension of dynamic logic that preserves decidability. Last but not least, the way
they compute the pre-conditions is also much different from ours. We use the notion of
substitutions whereas their conditions are built incrementally on the rules.

In [13], the authors also use a stronger logic, monadic second-order logic again, and the
verification problem is decidable. This is due to the fact that their transformations are
bisimulation-generic whereas ours are not. Furthermore they do not label nodes. In both
cases, the core of the reflexion is centered in modifications of the structure of the data (that
is how general classes of nodes and edges interact). On the other hand, we are able to do the
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core of these transformation but our focus is on localized modifications that is a change at
the instance level.

Another approach to the verification of graph transformation is the classical model-
checking applied in the case where states are specified by graphs [17]. This approach, which
needs the development of a possibly infinite transition systems, departs from ours.

A verification method of graph transformation is tackled in [14] where a set of forbidden
graphs is given and where context-free graph grammars are used instead of logics to define
post-conditions. This method is quite different from ours.

In [3], a logic dedicated to mimic graph transformations has been introduced. That logic
can also be used to specify properties over graph transformations. The expressive power of
that logic is very rich but its validity problem is not decidable.

In [6], an extension of equational logic to graph transformation has been investigated.
Theories generated by such logic are not recursively enumerable in general. Thus no
completeness nor decidability results can be expected. In addition, in the considered logic
bisimilar graphs cannot be distinguished.

The modification of Knowledge Bases is a much different but very active field. Belief
revision [1] deals with the addition of new knowledge and how to modify the Knowledge
Base so that it is still consistent. That means that a lot of modifications may be hidden in
one update action. This is quite a different approach as we want, on the other hand, to know
exactly what actions are performed and use that to define our new knowledge.

The work in [4] is heading toward the same goal as the present paper but both the
programming language, that is slightly less expressive and imperative, and the considered
logic are different.

6 Conclusion

We have presented a new class of graph rewrite systems, LDRSs, where left-hand sides
can express additional application conditions defined as C2PDL formulas. We defined
computations with these systems by means of rewrite strategies. There is certainly much
work to be done around such systems with logically decorated left-hand sides. For instance,
the extension to narrowing derivations, which is a matter of future work, would use an involved
unification algorithm taking into account the underlying logic. We have also presented a
sound Hoare-like calculus for specifications with pre- and post-conditions in C2PDL and
show that the considered correctness problem is decidable. These positive achievements
deserve to be extended to other logics which we intend to investigate in the future.
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Abstract
Working in the untyped lambda calculus, we study Morris’s λ-theory H+. Introduced in 1968,
this is the original extensional theory of contextual equivalence. On the syntactic side, we show
that this λ-theory validates the ω-rule, thus settling a long-standing open problem. On the
semantic side, we provide sufficient and necessary conditions for relational graph models to be
fully abstract for H+. We show that a relational graph model captures Morris’s observational
preorder exactly when it is extensional and λ-König. Intuitively, a model is λ-König when every
λ-definable tree has an infinite path which is witnessed by some element of the model.

Both results follows from a weak separability property enjoyed by terms differing only because
of some infinite η-expansion, which is proved through a refined version of the Böhm-out technique.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Lambda calculus, relational models, fully abstract, Böhm-out, ω-rule
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1 Introduction

The problem of determining when two programs are equivalent is crucial in computer science:
for instance, it allows to verify that the optimizations performed by a compiler preserve the
meaning of the input program. For λ-calculi, it has become standard to regard two λ-terms
M and N as equivalent when they are contextually equivalent with respect to some fixed
set O of observables. This means that one can plug either M or N into any context C[−]
without noticing any difference in the global behaviour: C[M ] reduces to an observable in O
exactly when C[N ] does. The underlying intuition is that the terms in O represent sufficient
stable amounts of information coming out of the computation. The problem of working
with this definition, is that the quantification over all possible contexts is difficult to handle.
Therefore, various researchers undertook a quest for characterizing observational equivalences
both semantically, by defining fully abstract denotational models, and syntactically, by
comparing (possibly infinite) trees representing the programs executions.

The observational equivalence obtained by considering the λ-terms in head normal form
as observables is by far the most famous and well studied since it enjoys many interesting
properties. By definition, it corresponds to the λ-theory H∗ which is the greatest sensible
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consistent λ-theory. As shown in [1, Thm. 16.2.7], two λ-terms are equivalent in H∗ exactly
when their Böhm trees are equal up to denumerable many η-expansions of (possibly) infinite
depth. These kinds of characterizations based on infinite trees have been recently rewritten
using the modern approach of infinitary rewriting, thus initiating an interesting line of
research [25]. From a semantic perspective, it is well known that H∗ is the theory induced by
Scott’s model D∞, a result first reported in [14, 26]. In other words, the model D∞ is fully
abstract for H∗. Until recently, researchers were only able to introduce individual models
of H∗ [11], or at best to provide sufficient conditions for models living in some class to be
fully abstract [18]. A substantial advance was made by Breuvart in [4] where he proposed the
notion of hyperimmune model of λ-calculus, and showed that a continuous K-model is fully
abstract for H∗ iff it is extensional and hyperimmune, thus providing a characterization.

In the present paper we study Morris’s observational equivalence [21] generated by
considering the β-normal forms as observables, and we denote by H+ the corresponding
λ-theory. (This λ-theory is denoted by TNF in Barendregt’s book [1].) The λ-theory H+ is
extensional and sensible; therefore, as H∗ is maximal, we have H+ ( H∗. Even if it has been
less ubiquitously studied in the literature, also the equality in H+ has been characterized
both syntactically, in terms of trees, and semantically. Indeed, two λ-terms are equivalent in
H+ if and only if their Böhm trees are equal up to denumerable many η-expansions of finite
depth [13], and this holds exactly when they have the same interpretation in Coppo, Dezani
and Zacchi’s filter model [6]. More recently, Manzonetto and Ruoppolo defined a class of
relational graph models (rgms, for short), and proved that every extensional rgm preserving
the polarities of the empty multiset (in a technical sense) is fully abstract for H+.

Inspired by the work done in [4], we are going to strengthen this result and provide
sufficient and necessary conditions on rgms to induce H+ as λ-theory. Now, as all extensional
rgms equate at least as H+, the difficult part is to find a condition guaranteeing that they
do not equate more. In other words, we need to analyze in detail the equations in H∗ \ H+.
We show that if two λ-terms M,N are equal in H∗, but not in H+, then their Böhm trees
are similar but there exists a position σ where they differ because of an infinite η-expansion
of a variable x, that follows the structure of some computable infinite tree T . Thanks to
a refined (almost chirurgical) Böhm-out technique, we prove that it is always possible to
extract such a difference by defining a suitable context C[−]. To ensure that this difference
is still detectable in an rgm, we introduce the notion of λ-König model: intuitively, an rgm is
λ-König when every computable infinite tree T has an infinite path (which always exists by
König’s lemma) witnessed by some element of the model. In our main result (Theorem 36) we
prove that an rgm D is fully abstract for H+ iff it is extensional and λ-König, thus providing
a complete characterization. From our syntactic weak separation theorem it also follows that
H+ satisfies the ω-rule, a property of extensionality stronger than the η-rule. Hence, our
Theorem 40 answers positively this longstanding open problem, and brings us closer to the
solution of Sallé’s conjecture Bω ( H+ (cf. [1, Thm. 17.4.16]).

2 Preliminaries

Sequences and Trees

We denote by N the set of natural numbers and by N<ω the set of finite sequences over N.
The empty sequence is denoted by ε.

Let σ = 〈n1, . . . , nk〉 and τ = 〈m1, . . . ,mk′〉 be two sequences and let n ∈ N. We write:
`(σ) for the length of σ,
σ.n for the sequence 〈n1, . . . , nk, n〉,
σ ? τ for the concatenation of σ and τ , that is for the sequence 〈n1, . . . , nk,m1, . . . ,mk′〉.
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We say that σ is a subsequence of τ , denoted σ ⊆ τ , when τ = σ ? σ′ for some σ′ ∈ N<ω.
Given a map f : N→ N, its prefix of length n is the sequence 〈f |n〉 := 〈f(0), . . . , f(n− 1)〉.

I Definition 1. A tree is a partial function T : N<ω ⇀ N such that dom(T ) is closed under
prefixes and for all σ ∈ dom(T ) and n ∈ N we have σ.n ∈ dom(T ) if and only if n < T (σ).

The elements of dom(T ) are called positions. For all σ ∈ dom(T ), T (σ) gives the number
of children of the node in position σ; therefore T (σ) = 0 when σ corresponds to a leaf.

Let T be a tree. We say that T is: recursive if the function T is partial recursive; finite if
dom(T ) is finite; infinite otherwise. We denote by T∞rec the set of all recursive infinite trees.

The subtree of T at σ is the tree T�σ defined by T�σ(τ) = T (σ ? τ) for all τ ∈ N<ω.
A map f : N→ N is an infinite path of T if 〈f |n〉 ∈ dom(T ) for all n ∈ N.
We denote by Π(T ) the set of all infinite paths of T . By König’s lemma, a tree T is

infinite if and only if Π(T ) 6= ∅.

The Lambda Calculus

We generally use the notation of Barendregt’s book [1] for λ-calculus. The set Λ of λ-terms
over an infinite set V of variables is defined by the following grammar:

Λ : M,N ::= x | λx.M | MN for all x ∈ V.

We assume that application associates to the left, while λ-abstraction to the right. Application
has a higher precedence than λ-abstraction. E.g., λxyz.xyz := λx.(λy.(λz.((xy)z))).

The set FV(M) of free variables of M and the α-conversion are defined as in [1, Ch. 1§2].
A λ-termM is closed whenever FV(M) = ∅ and in this case it is also called a combinator. The
set of all combinators is denoted by Λo. Hereafter, we consider λ-terms up to α-conversion
and we adopt the variable convention [1, Conv. 2.1.13]. We fix the following combinators:

I := λx.x ∆ := λx.xx 1n := λxy1 . . . yn.xy1 · · · yn
K := λxy.x Ω := ∆ ∆ Y := λf.(λx.f(xx))(λx.f(xx))

S+ := λnfs.nf(fs) cn := λfz.fn(z) J := Y(λzxy.x(zy))

where fn(z) := f(· · · f(f(z)) · · · ). We will simply denote by 1 the combinator 11 := λxy.xy.
Given two λ-termsM,N we denote byM{N/x} the capture-free simultaneous substitution

of N for all free occurrences of x in M . The β- and η- reductions are defined by:

(β) (λx.M)N →β M{N/x} (η) λx.Mx→η M provided x /∈ FV(M).

Given a reduction →R, we write �R for its transitive-reflexive closure, we denote by nfR(M)
the R-normal form of M (if it exists) and by NFR the set of all R-normal forms. We denote
by =R the corresponding R-conversion.

A context C[−] is a λ-term with a hole denoted by [−]. Given a context C[−], we
write C[M ] for the λ-term obtained from C by substituting M for the hole possibly with
capture of free variables in M . A context C[−] is called: a head context if it has the shape
(λx1 . . . xk.[−])M1 · · ·Mn for k, n ≥ 0; applicative if it is of the form [−]M1 · · ·Mn for n ≥ 0.
A head (resp. applicative) context C[−] is closed when all the Mi’s are closed λ-terms.

I Definition 2. A λ-term M is solvable when there is a (head) context C[−] such that
C[M ]�β I. Otherwise M is called unsolvable.

Wadsworth proved in [26] that a λ-term M is solvable if and only if M has a head normal
form (hnf ), which means that M �β λx1 . . . xn.yN1 · · ·Nk (for some n, k ≥ 0).

The principal head normal form of a λ-term M , denoted phnf(M), is the head normal
form obtained from M by head reduction [1, Def. 8.3.10].
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Figure 1 Some examples of Böhm trees. We refer to [1, Lemma 16.4.4] for the definition of P,Q.

Böhm trees

The Böhm tree BT(M) of a λ-term M is defined coinductively: if M is unsolvable then
BT(M) = ⊥; if M is solvable and phnf(M) = λx1 . . . xn.yN1 · · ·Nk then:

BT(M) = λx1 . . . xn.y

BT(N1) BT(Nk)· · ·

More generally, we say that T is a Böhm tree if there is a λ-term M such that BT(M) = T .
In Figure 1 we provide some examples of Böhm trees. Since every Böhm tree can be seen as
a labelled tree over L = {⊥} ∪ {λ~x.y | ~x, y ∈ V}, we adopt the same notions and notations
introduced for trees. However, we will write σ ∈ BT(M) rather than σ ∈ dom(BT(M)).

Given two Böhm trees T, T ′ we set T ≤⊥T ′ if and only if T results from T ′ by replacing
some subtrees with ⊥. When T is finite, we say that T is a finite approximant of T ′.

The set NF⊥ of finite approximants is the set of normal λ-terms possibly containing ⊥
inductively defined as follows: ⊥ ∈ NF⊥; if ti ∈ NF⊥ for i ∈ [1..n] then λ~x.yt1 · · · tn ∈ NF⊥.
The size of a finite approximant t ∈ NF⊥, written size(t), is defined as usual:

size(⊥) = 0 and size(λx1 . . . xn.yt1 · · · tk) = size(t1) + · · ·+ size(tk) + n+ 1.
The set BTk(M) of all finite approximants of BT(M) of size at most k is defined by

BTk(M) = {t ∈ NF⊥ | size(t) ≤ k, t ≤⊥BT(M)}.
The set BT∗(M) =

⋃
k∈N BTk(M) is therefore the set of all finite approximants of BT(M).

Observational Preorders and Lambda Theories

Observational preorders and λ-theories become the main object of study when considering
the computational equivalence more important than the process of calculus.

A relation on Λ is compatible if it is compatible with application and λ-abstraction.

IDefinition 3. A preorder theory is any compatible preorder on Λ containing the β-conversion.
A λ-theory is any compatible equivalence on Λ containing the β-conversion.

Given a λ-theory (resp. preorder theory) T we write M =T N (M vT N) for (M,N) ∈ T .
The set of all λ-theories, ordered by inclusion, forms a (quite rich) complete lattice [17].

A λ-theory T is called: consistent if it does not equate all λ-terms; extensional if it
contains the η-conversion; sensible if it equates all unsolvables.

We denote by λ the least λ-theory, by λη the least extensional λ-theory, by H the least
sensible λ-theory, and by B the (sensible) λ-theory equating all λ-terms having the same
Böhm tree. Given a λ-theory T , we write T η for the least λ-theory containing T ∪ λη.
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Several interesting λ-theories are obtained via suitable observational preorders defined
with respect to a set O of observables. Given O ⊆ Λ, we write M ∈R O if M �R M

′ ∈ O.
Given O ⊆ Λ, the O-observational preorder is given by:

M vO N ⇐⇒ ∀C[−] . C[M ] ∈β O entails C[N ] ∈β O.

The induced equivalence M ≡O N is defined as M vO N and N vO M .

I Definition 4. We focus on the following observational preorders and equivalences:
Hyland’s preorder vhnf and equivalence ≡hnf are obtained by taking as O the set of head
normal forms. They are maximal among preorder theories and λ-theories, respectively.
for Morris’s preorder vnf and equivalence ≡nf we consider as O the set NFβ [21].

We denote by H∗ and H+ the λ-theories corresponding to ≡hnf and ≡nf, respectively.

The ω-Rule

λ

λη H
Hη

Hω Bη
λω B

Bω

? • H+

H∗

The ω-rule is a strong form of extensionality defined as follows:

(ω) ∀P ∈ Λo.MP = NP entails M = N.

We write (ω0) for the ω-rule restricted to combinators M,N ∈ Λo.
Given a λ-theory T we denote its closure under the ω-rule by T ω.
We say that T satisfies the ω-rule, written T ` ω, if T = T ω.
By collecting some results in [1, §4.1] we have for all λ-theories T :
T η ⊆ T ω,
T ` ω if and only if T ` ω0,
T ⊆ T ′ entails T ω ⊆ T ′ω.

The picture on the right, where T is above T ′ if T ( T ′, is taken
from [1, Thm. 17.4.16] and shows some facts about the λ-theories
under consideration. In [1, §17.4], Sallé conjectured that Bω ( H+.

The counterexample showing that λη 6` ω is based on Plotkin’s terms [1, Def. 17.3.26].
Since these terms are unsolvable, they become useless when considering sensible λ-theories.
The techniques to analyze the ω-rule for sensible λ-theories are discussed in Section 3.2.

3 The Lambda Theories H+ and H∗

In this section we recall the characterizations of H+ and H∗ in terms of “extensional”
Böhm-trees, and we discuss the ω-rule for sensible λ-theories in the interval [B,H∗].

3.1 Böhm Trees and Their η-Expansions
Morris’s theory H+ and preorder vnf correspond to the contextual theories where the
observables are the β-normal forms. Notice that it is equivalent to take as observables the
βη-normal forms since M �β nfβ(M) exactly when M �βη nfβη(M), so λη ⊆ H+.

Moreover, by the Context Lemma for β-normalizable terms [7, Lemma 1.2], the context
C[−] separating two combinators M 6vnf N can be chosen applicative and closed.

I Theorem 5 ([13, Thm. 2.6]). Let M,N ∈ Λ. Then M =H+ N if and only if BT(M) and
BT(N) are equal up to denumerable many η-expansions of finite depth.

This means that there exists a Böhm tree T such that both BT(M) and BT(N) can be
transformed into T by performing a denumerable (possibly finite) number of η-expansions.
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λxy.xBT(M) =

x ⊥ λz0.x

λz1.z0

λz2.z1

...

��η λxy.x

x ⊥ x

≤⊥ λxy.x

x y x

η�� λxy.x = BT(N)

λz0w0.x y x

λz1.z0

λz2.z1

...

λw1.w0

λw2.w1

...

Figure 2 A situation witnessing the fact that M vhnf N holds.

Consider, for instance, the two λ-terms P,Q whose Böhm trees are depicted in Figure 1,
where ηn(x) denotes the η-expansion of x having depth n. (Such terms exist by [1, §16.4].)
Now, BT(P ) is such that at every level 2n the variable x is η-expanded n times (in depth).
We have P =H+ Q because we can perform infinitely many finite η-expansions of increasing
depth in BT(Q) and obtain BT(P ) (but in general we may need to η-expand both trees).

As a brief digression, notice that the existence of such P,Q entails that Bη ( H+. Indeed,
for M,N ∈ Λ, M →η N entails that BT(M) can be obtained from BT(N) by performing at
most one η-expansion at every level (see [1, Lemma 16.4.3]). It is easy to show that P 6=Bη Q.

Hyland’s theory H∗ and preorder vhnf correspond to the contextual theories where the
observables are the head normal forms (equivalently, the solvable λ-terms). It is easy to show
that M vnf N entails M vhnf N , so H+ ( H∗. Terms M,N such that M 6vhnf N are called
semi-separable in [1]. Also in this case, the context lemma for solvable terms [26, Lemma 6.1]
entails that the semi-separating contexts can be chosen applicative and closed.

The characterization of H∗ in terms of trees, needs the notion of infinite η-expansion of a
Böhm tree. The classical definition is given in terms of tree extensions in [1, Def. 10.2.10].

I Definition 6. Given two Böhm trees T and T ′, we say that T is a (possibly) infinite
η-expansion of T ′, written T ��η T

′, if T is obtained from T ′ by performing denumerable
many η-expansions of possibly infinite depth.

We prefer not to use Barendregt’s classical notation T ≥η T ′ as it could be confusing. Our
notation is borrowed from infinite rewriting since ��η can also be defined in this way [25].
(We refer here to the strongly converging η-reduction of [25] restricted to Böhm trees.)

I Theorem 7 ([1, Thm. 19.2.9]). Let M,N ∈ Λ.
M vhnf N iff there are Böhm trees T, T ′ such that BT(M) η�� T ≤⊥T ′ ��η BT(N).
M =H∗ N iff BT(M) and BT(N) are equal up to denumerable many (possibly) infinite
η-expansions; this means that there is a Böhm tree T such that BT(M) η�� T ��η BT(N).

The typical example is I vhnf J, since clearly BT(J)��η I (on the contrary, I 6vnf J), but
in general to show that M vhnf N one may need infinitely η-expand also BT(M) and cut
some subtree of BT(N). This is the case for M = λxy.xxΩ(Jx) and N = λxy.x(Jx)yx, see
Fig. 2. We recall from [14, Thm. 5.4(a)] that the relation vhnf can be stratified as follows.

I Lemma 8. For M,N ∈ Λ, M vhnf
k N iff either k = 0, or M is unsolvable, or k > 0 and

M =β λx1 . . . xn1 .yM1 · · ·Mm1 and N =β λx1 . . . xn2 .yN1 · · ·Nm2

where n1 −m1 = n2 −m2 and either y is free or y = xj for some j ≤ min{n1, n2}. So if,
say, m1 ≤ m2 then n1 ≤ n2 and there exists p ≥ 0 such that n2 = n1 + p and m2 = m1 + p.
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BT(JT )
q

λxy1 . . . yTε.x

λz1 . . . zT 〈0〉.y1 · · · λz1 . . . zT 〈Tε-1〉.yTε

λ~wT 〈0,0〉.z1 · · · λ~wT 〈0,T 〈0〉-1〉.zT 〈0〉 λ~wT 〈Tε-1,0〉.z1 · · · λ~wT 〈Tε-1,T 〈Tε-1〉-1〉.zTε-1

· · · · · · · · · · · ·

Figure 3 The Böhm tree of JT , an infinite η-expansion of I following T ∈ T∞
rec. To lighten the

notations we write Tσ rather than T (σ) and we let ~wn := w1, . . . , wn.

Moreover Mi vhnf
k−1 Ni for all i ≤ m1 and xn1+j vhnf

k−1 Nm1+j for all j ≤ p. (The case
m1 > m2 is symmetrical.) Finally we have M vhnf N iff M vhnf

k N for all k ∈ N.

The Infinite η-Expansion JT

Note that J is not the unique infinite η-expansion of the identity. For each T ∈ T∞rec there is
a λ-term JT which is an infinite η-expansion of I following T in the sense of Figure 3.

We could just say that the existence of such a JT follows directly from the fact that T is
recursive and [1, Thm. 10.1.23]. We prefer to give a more explicit definition.

Let us fix a bijective encoding # : N∗ → N and let Cons ∈ Λ0 be such that

Cons c#σ cn =β c#(σ.n)

for all σ ∈ N∗, n ∈ N. Notice that such a combinator Cons exists by Church’s thesis.
Given M,N ∈ Λ and x /∈ FV(M), we set:

[M,N ] := λx.xMN, M ◦N := λx.M(Nx).

We associate with every tree T a partial map fT : N⇀ N such n ∈ dom(fT ) iff n = #σ for
σ ∈ dom(T ), and in this case fT (n) = T (σ). When T is recursive fT is clearly λ-definable.

I Definition 9. Let F ∈ Λo be the term λ-defining fT . Define (for X ∈ Λ arbitrary):
1. LXp := λz.p(λnxy.z(S+n)(x(Xny)));
2. MXnx := nLX [c0, x](KI);
3. Ns := MN◦(Cons s)(Fs), using the fixed point combinator Y;
4. JT := Nc#ε.

I Lemma 10. JT is such that the underlying tree of BT(JT ) is T and BT(JT )��η I.

Proof sketch. First one verifies that for all for X ∈ Λ and n ∈ N the following hold:
1. (LX)n[c0, x] =β λzy1 . . . yn.zcn(x(Xc0y1) · · · (Xcn−1yn));
2. MXcnx =β λy1 . . . yn.x(Xc0y1) · · · (Xcn−1yn);
3. Nc#σx =β λy1 . . . yn.x(Nc#(σ.0)y1) · · · (Nc#(σ.(n−1))yn), where n = T (σ);
In particular, BT(JT ) is ⊥-free. From this, and the fact that I is βη-normal, we have that
BT(JT )��η I if and only if JT vhnf

k I for all k ∈ N (by Lemma 8).
We prove by induction on k− `(σ), that for all k ∈ N and σ ∈ dom(T ) such that `(σ) < k,

we have Nc#σx vhnf
k−`(σ) x. If k − `(σ) = 0 or T (σ) = 0 then it is trivial. Otherwise, it

follows from (3) and the induction hypothesis since σ.i ∈ dom(T ) for all i < T (σ) and
k − `(σ.i) < k − `(σ). Finally, we conclude since JT := Nc#ε. J
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15:8 New Results on Morris’s Observational Theory

I Lemma 11. For all T ∈ T∞rec, we have JT1T (ε) =B JT .

In Section 4 we consider M vhnf N for some M,N such that M is β-normal and BT(N)
is infinite. We show that M and BT(N) have similar structure, except for the fact that
there is a position σ in BT(N) where an infinite η-expansion following some T ∈ T∞rec occurs.
Moreover, we show that this difference can be extracted via a suitable Böhm-out technique.

3.2 The ω-Rule for Sensible Theories
The validity of the ω-rule for λ-theories T containing B can be tricky to prove (or disprove).
We have seen that the terms P,Q of Figure 1 are equated in H+, but different in Bη. Perhaps
surprisingly, they can also be used to prove that Bη ( Bω since P =Bω Q holds. The
following argument is due to Barendregt, see [1, Lemma 16.4.4].

Recall the following basic fact: for every M ∈ Λo, there exists k ≥ 0 such that MΩ · · ·Ω,
k times, becomes unsolvable (see [1, Lemma 17.4.4]). By inspecting Figure 1, we notice
that in BT(P ) the variable y is applied to an increasing number of Ω’s (represented by ⊥).
So, when substituting some M ∈ Λo for y in BT(Py), there will be a level k of the tree
where MΩ · · ·Ω become ⊥, thus cutting BT(PM) at level k. The same reasoning can be
done for BT(QM). Therefore BT(PM) and BT(QM) only differ because of finitely many
η-expansions. Since Bη ⊆ Bω, we conclude that P =Bω Q.

The fact that H∗ ` ω is clearly a consequence of its maximality. However, there are
several direct proofs: see [1, §17.2] for a syntactic demonstration and [26] for a semantic one.
The longstanding open question whether H+ ` ω will be answered positively in Theorem 40.
We believe that the λ-terms P and Q, suitably modified to get rid of the Ω’s in their Böhm
trees, are good candidates to show that Bω ( H+, but the question remains open.

4 Böhming-out Infinite η-Expansions

The Böhm out technique [3, 1, 23] aims to build a context which extracts (an instance of) the
subterm of a λ-term M at position σ. It is used for separating two λ-terms M,N provided
that their structure is sufficiently different (depending on the notion of separation under
consideration). We show that when M 6vnf N this difference can be Böhmed out via an
appropriate head context, even when M and N have a similar structure (i.e. M vhnf N).

4.1 Morris Separators
We start by providing a notion of Morris separator, that is a sequence σ witnessing the fact
that M 6vnf N for λ-terms M and N such that M is β-normal and M vhnf N holds.

We recall from Section 2 that we use for Böhm trees, the same notions and notations
introduced for trees. However, we write σ ∈ BT(M) to indicate that σ ∈ dom(BT(M)).

Given σ ∈ BT(M) we define the subterm Mσ of M at σ (relative to its Böhm tree) by:
Mε = M ,
Mi.σ = (Mi+1)σ whenever phnf(M) = λ~x.yM1 · · ·Mn.

I Definition 12. We say that σ ∈ BT(M)∩BT(N) is a Morris separator for M,N , written
σ : M 6vnf N , if there exists i > 0 such that, for some p ≥ i, we have:

Mσ =β λx1 . . . xn.yM1 · · ·Mm and Nσ =β λx1 . . . xn+p.yN1 · · ·Nm+p

where Nm+i =B JTxn+i for some T ∈ T∞rec.
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BT(M) = λx.x

λz0.y λz0z
′
0.x

x z0 z0 z′0

BT(N) = λxw.x

y λz0.x λz0z
′
0.w

x λz1.z0 λz2z
′
2.z0 λz2z

′
2.z
′
0

λz2.z1...

λz3z
′
3.z
′
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′
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′
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′
3.z
′
2 λz3z

′
3.z
′
2. . .. .

. . . .. .
. . . .. .

. . . .. .
.

Figure 4 Two terms M,N such that M is β-normal, M vhnf N, but M 6vnf N.

It is easy to check that σ : M 6vnf N and σ = 〈k〉 ? τ entail τ : Mk+1 6vnf Nk+1.
Recall that we are considering λ-terms M,N such that M is β-normal, M 6vnf N , but

M vhnf N . Obviously such M and N are not (semi-)separable, using the terminology of [1].
Since M is β-normal, its Böhm tree is finite and ⊥-free. Since M vhnf N , by Lemma 8 also
BT(N) is ⊥-free; moreover, at every position σ ∈ BT(M)∩BT(N), Mσ and Nσ have similar
hnfs (the number of abstractions and applications can be matched via η-expansions). Note
that BT(M) might have η-expansions that are not present in BT(N). As M 6vnf N , the
Böhm tree of N must have infinite subtrees of the form BT(JTx) for some x ∈ V, T ∈ T∞rec.

To explain the idea behind Morris separators, we use the terms M and N whose Böhm
trees are depicted in Figure 4. This example admits two Morris separators: ε and 〈1, 0〉.

The empty sequence ε is a separator since N〈2〉 =B JT2w where T2 is the complete binary
tree. The sequence 〈1, 0〉 is a separator because N〈1,0,0〉 =B JT1z1 where T1 is the complete
unary tree (i.e. JT1 =B J).

I Proposition 13. Let M,N ∈ Λ such that M is β-normal, N /∈β NFβ and M vhnf N .
Then there exists a position σ ∈ BT(M) ∩ BT(N) such that σ : M 6vnf N .

Proof. Since M is β-normal, N does not have a β-normal form and M vhnf N , BT(N)
must be infinite and ⊥-free. By König’s lemma there is f ∈ Π(BT(N)) and since BT(M) is
finite there exists n > 0 such that σ := 〈f |n− 1〉 ∈ BT(M) ∩ BT(N) but 〈f |n〉 /∈ BT(M).
By applying Lemma 8, there exists p > 0 such that Mσ =β λx1 . . . xn1 .yM1 · · ·Mm1 and
Nσ =β λx1 . . . xn1+p.yN1 · · ·Nm1+p. Moreover, xn1+j vhnf Nm1+j where j = f(n) + 1−m.
Since BT(Nm1+j) is infinite we must have Nm1+j =B JTxn1+j for some T ∈ T∞rec. J

4.2 A Böhm-out Technique for Separating the Inseparable
The following combinators will be used (among others) to build the Böhm-out context:

Un
k := λx1 . . . xn.xk Pn := λx1 . . . xn.λz.zx1 · · ·xn

The combinator Un
k is called projector and Pn tupler as they enjoy the following properties.

I Lemma 14. Let k ≥ n ≥ 0 and X1, . . . , Xn, Y1, . . . , Yk−n ∈ Λo.
1. (PkX1 · · ·Xn)Y1 · · ·Yk−n =β λz.zX1 · · ·XnY1 · · ·Yk−n
2. (λz.zX1 · · ·Xn)Un

i =β Xi

When Un
k is substituted for y in λ~x.yM1 · · ·Mn, it extracts an instance of Mk. Let us

consider the λ-term N whose Böhm tree is given in Figure 4. The context [−]U2
1 extracts

from N the subterm yx where x is replaced by U2
1. The idea of the Böhm-out technique is

to replace every variable along the path σ with the correct projector.
The issue is when the same variable occurs several times in σ and we must select different

children in these occurrences. For example, to extract N〈1,0〉, the first occurrence of x should

FSCD 2016
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be replaced by U3
2, the second by U1

1 := I. The problem was originally solved by Böhm in [3]
by first replacing the occurrences of the same variables along the path by different variables
using the tupler, and then replacing each variable by the suitable projector. In the example
under consideration, the context [−]P3ΩU3

2U1
1ΩΩU3

1 extracts from N the instance of N〈1,0〉
where z0 is replaced by I.

Obviously, finite η-differences can be destroyed during the process of Böhming out. In
contrast, we show that infinite η-differences can always be preserved.

I Lemma 15 (Böhm-out). Let M,N ∈ Λ such that M vhnf N , let ~y = FV(MN) and
σ : M 6vnf N . Then for all k ∈ N large enough, there are combinators ~X ∈ Λo such that
M{Pk/~y} ~X =β 1T (ε) and N{Pk/~y} ~X =B JT for some T ∈ T∞rec.

Proof. We proceed by induction on σ.

Base case: σ = ε. Then there exists i > 0 such that, for some p ≥ i, we have:

M =β λx1 . . . xn.yM1 · · ·Mm and N =β λx1 . . . xn+p.yN1 · · ·Nm+p

where Nm+i =B JTxn+i. For any k ≥ n+m+ p let us set ~X := P∼nk 1∼pT (ε)Ω
∼k−m−pUk

m+i,
where M∼n denotes the sequence of λ-terms containing n copies of M .

We split into cases depending on whether y is free or y = xj for some j ≤ n. We consider
the former case, as the latter is analogous. On the one side we have:

(λx1 . . . xn.yM1 · · ·Mm){Pk/~y} ~X =
(λx1 . . . xn.PkM

′
1 · · ·M ′m) ~X =β where M ′` := M`{Pk/~y}

(PkM
′′
1 · · ·M ′′m)1∼pT (ε)Ω

∼k−m−pUk
m+i =β where M ′′` := M ′`{Pk/~x}

(λz.zM ′′1 · · ·M ′′m1∼pT (ε)Ω
∼k−m−p)Uk

m+i =β 1T (ε) by Lemma 14.1 and 14.2.

On the other side, we have:

(λx1 . . . xn+p.xjN1 · · ·Nm+p){Pk/~y} ~X =
(λx1 . . . xn+p.PkN

′
1 · · ·N ′m+p) ~X =β for N ′` := N`{Pk/~y}

(λxn+1 . . . xn+p.PkN
′′
1 · · ·N ′′m+p)1

∼p
T (ε)Ω

∼k−m−pUk
m+i = for N ′′` := N ′`{Pk/x1, . . . , xn}

(PkN
′′∗
1 · · ·N ′′∗m+p)Ω∼k−m−pUk

m+i = for N ′′∗` := N ′′` {1T (ε)/xn+1, . . . , xn+p}
(λz.zN ′′∗1 · · ·N ′′∗m+pΩ∼k−m−p)Uk

m+i = by Lemma 14.1
N ′′∗m+i = (JTxn+i){1T (ε)/xn+i} = JT1T (ε) = JT by Lemma 14.2 and 11

Induction case: σ = 〈i〉 ? σ′. By Lemma 8, for n−m = n′ −m′ and i+ 1 ≤ min{m,m′}
we have:

M = λx1 . . . xn.yM1 · · ·Mm N = λx1 . . . xn′ .yN1 · · ·Nm′

where Mj vhnf Nj for all j ≤ min{m,m′} and either y is free or y = xj for j ≤ min{n, n′}.
Suppose that, say, n ≤ n′. Then there is p ≥ 0 such that n′ = n+ p and m′ = m+ p. Since
Mi+1 vhnf Ni+1 and σ′ : Mi+1 6vnf Ni+1 we apply the induction hypothesis and get, for any
k′ large enough, ~Y ∈ Λo such that Mi+1{Pk′/~y, ~x}~Y =β 1T (ε) and Ni+1{Pk′/~y, ~x}~Y =B JT .
For any k ≥ max{k′, n+m+ p}, we set ~X := P∼n+p

k Ω∼k−m−pUk
i+1

~Y .
We suppose that y is free, the other case being analogous. On the one side we have:

(λx1 . . . xn.yM1 · · ·Mm){Pk/~y} ~X =
(λx1 . . . xn.PkM

′
1 · · ·M ′m)P∼n+p

k Ω∼k−m−pUk
i+1

~Y =β where M ′` := M`{Pk/~y}
(PkM

′′
1 · · ·M ′′m)P∼pk Ω∼k−m−pUk

i+1
~Y =β where M ′′` := M ′`{Pk/~x}

(λz.zM ′′1 · · ·M ′′mP∼pk Ω∼k−m−p)Uk
i+1

~Y =β by Lemma 14.1
M ′′i+1

~Y = Mi+1{Pk/~y, ~x}~Y =β 1T (ε) by Lemma 14.2 and IH
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On the other side, we have:

(λx1 . . . xn+p.yN1 · · ·Nm+p){Pk/~y} ~X =
(λx1 . . . xn+p.PkN

′
1 · · ·N ′m+p) ~X =β where N ′` := N`{Pk/~y}

(PkN
′′
1 · · ·N ′′m+p)Ω∼k−m−pUk

i+1
~Y =β where N ′′` := N ′`{Pk/~x}

(λz.zN ′′1 · · ·N ′′m+pΩ∼k−m−p)Uk
i+1

~Y =β by Lemma 14.1
N ′′i+1

~Y = Ni+1{Pk/~y, ~x}~Y =B JT by Lemma 14.2 and IH

J

From Proposition 13 we get this immediate corollary of Lemma 15.

I Corollary 16. Let M,N ∈ Λ such that M is β-normal, N /∈β NFβ and M vhnf N . Then
there is a head context C[−] such that C[M ] =βη I and C[N ] =B JT for some T ∈ T∞rec.

I Theorem 17 (Morris Separation). Let M,N ∈ Λ such that M vhnf N while M 6vnf N .
There is a head context C[−] such that C[M ] =βη I and C[N ] =B JT for some T ∈ T∞rec.
When M,N ∈ Λo the context C[−] can be chosen closed and applicative.

Proof. Since M 6vnf N , there is a head context D2[−] such that D2[M ] ∈β NFβ , while
D2[N ] /∈β NFβ . From M vhnf N we obtain D2[M ] vhnf D2[N ]. Therefore we can apply
Corollary 16, and get a head context D1[−] such that D1[D2[M ]] =βη I and D1[D2[N ]] =B JT
for some T ∈ T∞rec. Hence the head context C[−] we are looking for is actually D1[D2[−]].
When M,N are closed, all the contexts can be chosen closed and applicative. J

5 Relational Graph Models

In this section we recall the definition of relational graph models (rgm, for short). Individual
examples of such models were previously studied in the literature (e.g., in [15]), but the class
of rgms was formally introduced in [20]. We refer the reader to [22] for a detailed analysis.

5.1 The Relational Semantics
Relational graph models are called relational since they are reflexive objects in the cartesian
closed category MRel [5], which is the Kleisli category of Rel with respect to the finite
multisets comonadMf(−). Before going further we briefly recall the category MRel, but we
refer to [5] for a detailed presentation.

Given a set A, a multiset over A is any map a : A→ N. Given α ∈ A and a multiset a
over A, the multiplicity of α in a is given by a(α). A multiset a is called finite if its support
supp(a) = {α ∈ A | a(α) 6= 0} is finite. A finite multiset a is represented by the unordered
list of its elements [α1, . . . , αn], possibly with repetitions, and the empty multiset is denoted
by []. We writeMf(A) for the set of all finite multisets over A. Given a1, a2 ∈Mf(A), their
multiset union is denoted by a1 + a2 and defined as a pointwise sum.

The objects of MRel are all the sets. A morphism f ∈ MRel(A,B) is any relation
betweenMf(A) and B, in other words MRel(A,B) = P(Mf(A)×B). The composition of
f ∈MRel(A,B) and g ∈MRel(B,C) is defined as follows:

f ; g = {(a1 + · · ·+ ak, γ) | ∃β1, . . . , βk, such that (ai, βi) ∈ f, ([β1, . . . , βk], γ) ∈ g}.

The identity of A is the relation IdA = {([α], α) | α ∈ A}. It is easy to check that the product
is the disjoint union A ]B and the exponential object A⇒ B isMf(A)×B. As usual, we
will silently use Seely’s isomorphisms betweenMf(A ]B) andMf(A)×Mf(B).
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Relational graph models correspond to a particular subclass of reflexive objects in living
in MRel. In particular, they are all linear in the sense that the morphisms inducing the
retraction are linear [19]. Therefore, they are also models of the resource calculus [8].

I Definition 18. A relational graph model D = (D, i) is given by an infinite set D and a
total injection i :Mf(D)×D → D. We say that D is extensional when i is bijective.

We denote i(a, α) by a→i α, or simply by a→ α when i is clear.

Notice that any function f : A→ B can be sent to a relation f† ∈MRel(A,B) by setting
f† = {([a], f(a)) | a ∈ A}. Therefore, every rgm D = (D, i) induces a reflexive object.
I Remark. The set D is a reflexive object since i†; (i−1)† = IdD⇒D. If D is extensional (in
the sense that i is bijective) the model is extensional in the sense that (i−1)† ; i† = IdD.
Note that, when i is just injective, there are different (linear) morphisms that can be chosen
as inverses. There are therefore linear reflexive objects in MRel that are not rgms. However,
the class of extensional rgms coincide with the class of extensional (linear) reflexive objects.

Relational graph models, just like the regular ones [2], can be built by performing the
free completion of a partial pair.

I Definition 19. A partial pair A is a pair (A, j) where A is a non-empty set of elements
(called atoms) and j :Mf(A)×A→ A is a partial injection. We say that A is extensional
when j is a bijection between dom(j) and A.

Hereafter, we will only consider partial pairs A whose underlying set A does not contain any
pair. This is not restrictive because partial pairs can be considered up to isomorphism.

I Definition 20. The completion A of a partial pair A is the pair (A, j) defined as follows:
A =

⋃
n∈NAn, where A0 = A and An+1 = ((Mf(An)×An)− dom(j)) ∪A ; moreover

j(a, α) =
{
j(a, α) if (a, α) ∈ dom(j),
(a, α) otherwise.

We say that an atom α ∈ A has rank 0, whilst an element α ∈ A − A has rank k if
α ∈ Ak −Ak−1. Note that, for every rgm D we have that D = D (up to isomorphism).

I Proposition 21. If A is an (extensional) partial pair, then A is an (extensional) rgm.

Proof. The proof of the fact that A is an rgm is analogous to the one for regular graph
models [2]. It is easy to check that when j is bijective, also its completion j is. J

I Example 22. We define the relational analogues of:
Engeler’s model [10]: E = (N, ∅), first defined in [15],
Scott’s model [24]: Dω = ({?}, {([], ?) 7→ ?}), first defined (up to isomorphism) in [5],
Coppo, Dezani and Zacchi’s model [6]: D? = ({?}, {([?], ?) 7→ ?}), introduced in [20].

Notice that Dω and D? are extensional, while E is not.

5.2 The Approximation Theorem
We now show how λ-terms and Böhm trees can be interpreted in an rgm, and we recall the
main properties enjoyed by these models. Using the terminology of [1], rgms are continuous
models, in the sense that they all enjoy the approximation theorem (Theorem 27). From this,
it follows that the λ-theory induced by an extensional rgm always includes H+ (Corollary 29).

Given two n-uples ~a,~b ∈Mf(A)n we write ~a+~b for (a1 + b1, . . . , an + bn) ∈Mf(A)n.
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I Definition 23. Let M ∈ Λ and let ~x ∈ Vn be such that FV(M) ⊆ ~x. The interpretation
of M in D w.r.t. ~x is the relation JMK~x ⊆Mf(D)n ×D defined inductively as follows:

JxkK~x = {(([], . . . , [], [α], [], . . . , []), α) | α ∈ D}, where [α] stands in k-th position,
JMNKD~x ={((~a0 + · · ·+~ak), α) | ∃β1, . . . , βk ∈ D, such that (~a0, [β1, . . . , βk]→α) ∈ JMKD~x

and, for all 1 ≤ ` ≤ k, (~a`, β`) ∈ JNKD~x }.
Jλy.NKD~x = {(~a, (b→ α)) | ((~a, b), α) ∈ JNKD~x,y}, where by α-equivalence we assume y /∈ ~x.

This definition extends to approximants t ∈ NF⊥ by setting J⊥KD~x = ∅ and to Böhm trees by
interpreting all their finite approximants JBT(M)KD~x =

⋃
t∈BT∗(M)JtK

D
~x .

Whenever we write JMKD~x we always assume that FV(M) ⊆ ~x. When M is a combinator,
we consider JMKD ⊆ D. In all our notations we will omit the model D when it is clear.

I Example 24. Let D be any rgm. Then we have:
1. JIKD = {[α]→ α | α ∈ D} and J1KD = {[a→ α]→ a→ α | α ∈ D, a ∈Mf(D)}, thus:
2. JJKD = {[α] → α | α ∈ D′} ⊆ J1KD ⊆ JIKD, where D′ is the smallest subset of D

satisfying: if α ∈ D then []→ α ∈ D′; if α ∈ D and a ∈Mf(D′) then a→ α ∈ D′,
3. J∆KD = {(a+ [a→ α])→ α | α ∈ D, a ∈Mf(D)} therefore JΩKD = J⊥KD = ∅,
4. Jλx.xΩKD = {[[]→ α]→ α | α ∈ D}.
It follows that JIK = J1K in both Dω and D?, but JIKDω = JJKDω , while ? ∈ JIKD? − JJKD? .

Rgms satisfy the following substitution property, and are sound models of λ-calculus.

I Lemma 25 (cf. [22]). Let M,N ∈ Λ and D be a relational graph model.
1. (Substitution) (~a, α) ∈ JM{N/y}KD~x iff there are β1, . . . , βk ∈ D, ~a0, . . . ,~ak ∈ Mf(D)n

such that (~a`, β`) ∈ JNKD~x , for 1 ≤ ` ≤ k, ((a0, [β1, ..., βk]), α) ∈ JMKD~x,y and ~a =
∑k
`=0 ~a`.

2. (Soundness) If M =β N then JMKD~x = JNKD~x for all ~x containing FV(M) ∪ FV(N).

The λ-theory induced by D is defined by Th(D) = {(M,N) ∈ Λ×Λ | JMK~x = JNK~x}. The
preorder theory induced by D is given by Thv(D) = {(M,N) ∈ Λ× Λ | JMK~x ⊆ JNK~x}. We
will write D |= M = N when (M,N) ∈ Th(D), and D |= M v N when (M,N) ∈ Thv(D).

I Definition 26. A model D is called inequationally O-fully abstract when D |= M v N iff
M vO N . A model D is called O-fully abstract whenever D |= M = N iff M ≡O N .

It is easy to check that in every extensional rgm D we have D |= I = 1, thus λη ⊆ Th(D).
As a consequence, the λ-theories induced by rgms and by ordinary graph models are different,
since no graph model is extensional. For instance, the λ-theory of Dω, the relational analogue
of Scott’s model D∞, is H? [18]. In other words, the model Dω is hnf-fully abstract.

All rgms enjoy the approximation theorem for Böhm trees below. As usual, this result
can be proved via techniques based on finite approximants (see [18]). However, in [20] we
provided a new proof exploiting the following facts: rgms are models of Ehrhard and Regnier’s
resource calculus [8]; they satisfy the Taylor expansion [19]; two λ-terms have the same Böhm
tree iff the normal form of the support of their Taylor expansions coincide [9].

Recall from page 4 that BT∗(M) denotes the set of all finite approximants of BT(M).

I Theorem 27 (Approximation Theorem [20]). Let M be a λ-term. Then (~a, α) ∈ JMK~x if
and only if there exists t ∈ BT∗(M) such that (~a, α) ∈ JtK~x. Therefore JMK~x = JBT(M)K~x.

I Corollary 28. For all rgms D we have that B ⊆ Th(D). In particular Th(D) is sensible
and JMKD~x = ∅ for all unsolvable λ-terms M .

Proof. From Theorem 27 we get JMK~x = JBT(M)K~x =
⋃
t∈BT∗(M)JtK~x. Therefore, whenever

BT(M) = BT(N) we have JMK~x = JBT(M)K~x = JBT(N)K~x = JNK~x. Thus B ⊆ Th(D). J
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In the next corollary we are going to use the following characterization of Morris’s preorder
vnf , which is based on Lévy’s notion of extensional Böhm trees [16]:

BTe(M) = {nfη(t) | t ∈ BT∗(M ′),M ′ �η M}.

By [13], we have M vnf N if and only if BTe(M) ⊆ BTe(N).

I Corollary 29. The order theory of any extensional rgm D contains vnf , so H+ ⊆ Th(D).

Proof. From Theorem 27 we obtain JMK~x =
⋃
t∈BT∗(M)JtK~x. From the extensionality of D,

we get JMK~x =
⋃
M ′�ηM,t∈BT∗(M ′)JtK~x =

⋃
M ′�ηM,t∈BT∗(M ′)Jnfη(t)K~x = JBTe(M)K~x. So,

we have that BTe(M) ⊆ BTe(N) entails JMK~x = JBTe(M)K~x ⊆ JBTe(N)K~x = JNK~x. J

6 Characterizing Fully Abstract Relational Models of H+

In this section we provide a characterization of those rgms which are fully abstract for H+.
We first introduce the notion of λ-König rgm, and then we show that an rgm D is extensional
and λ-König exactly when the induced order theory is Morris’s preorder vnf (Theorem 36).

6.1 Lambda König Relational Graph Models
Before entering into the technicalities we try to give the intuition behind our condition. By
Lemma 8 and Theorem 17, two λ-terms M,N are equal in H∗, but different in H+, when
there is a position σ such that, say, BT(M ′)σ = x for some M ′ �η M , while BT(N)σ is an
infinite η-expansion of x following some T ∈ T∞rec.

Therefore our models need to separate x from any JTx for T ∈ T∞rec.
In an extensional rgm D, every α is equal to an arrow, so we can always try to unfold it

following a function f : starting from α = α0, at level ` we have α` = a0 → · · · → af(`) → α′

and, as long as there is an α`+1 ∈ af(`), we can keep unfolding it at level `+ 1. There are
now two possibilities. If this process continues indefinitely, then we consider that α can
actually be unfolded following f . Otherwise, if at some level ` we have af(`) = [], then the
process is forced to stop and α cannot be unfolded following f .

Now, since T ∈ T∞rec is a finitely branching infinite tree, by König’s lemma there is an
infinite path f in BT(JT ), and since the interpretation of JT is inductive (rather than
coinductive) we will have [α]→ α /∈ JJT K for any α whose unfolding can actually follow f .
In some sense such an α is witnessing within the model the existence of an infinite path f in
T , and therefore in JT . The following is a coinductive definition1 of such a witness.

I Definition 30. Let D be an rgm, T ∈ T∞rec and f ∈ Π(T ). An element α ∈ D is a witness
for T following f if there exist a0, . . . , af(0) ∈Mf(D) and α′ ∈ D such that

α = a0 → · · · → af(0) → α′ and there is a witness β ∈ af(0) for T�〈f(0)〉 following f≥1

where f≥1 denotes the function k 7→ f(k+ 1). We simply say that α is a witness for T when
there exists an f ∈ Π(T ) such that α is a witness for T following f .

We denote by WD(T ) (resp. WD,f (T )) the set of all witnesses for T (resp. following f). When
the model D is clear from the context, we will simply write W(T ) (resp. Wf (T )).

We formalize the intuition given above by showing that WD(T ) is constituted by those
α ∈ D such that [α]→ α /∈ JJT K. We first prove the following technical lemma.

1 I.e., we are defining the greatest relation W ⊆ D × T∞
rec × (N→ N) satisfying the condition of Def. 30.
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I Lemma 31. Let D be an extensional rgm. For all k ∈ N, T ∈ T∞rec, α ∈ WD(T ) and
t ∈ BTk(JTx) we have ([α], α) /∈ JtKx.

Proof. We proceed by induction on k.
Case k = 0. This case is trivial since BT0(JTx) = {⊥} and J⊥Kx = ∅.
Case k > 0. If t = ⊥ then J⊥Kx = ∅, otherwise t = λy0 . . . yT (ε)−1.xt0 · · · tT (ε)−1 where

each ti ∈ BTk−1(JT�〈i〉yi). As the model is extensional α = a0 → · · · → aT (ε)−1 → α′, for
some ai = [αi,1, . . . , αi,ki ]. Hence ([α], α) ∈ JtKx if and only if (([α], a0, . . . , aT (ε)−1), α′) ∈
Jxt0 · · · tT (ε)−1Kx,y0,...,yT (ε)−1

. By exploiting the facts that FV(ti) ⊆ {yi} and JtiKyi ⊆ JyiKyi ,
we obtain ([αi,j ], αi,j) ∈ JtiKyi for all i ≤ T (ε)− 1 and j ≤ ki. Since α ∈Wf (T ) for some f ,
there exists a witness αf(0),j ∈ af(0) for T�〈f(0)〉 following f≥1. By αf(0),j ∈ W(T�〈f(0)〉) and
the induction hypothesis we get ([αf(0),j ], αf(0),j) /∈ Jtf(0)Kyf(o)

, which is a contradiction. J

By applying the Approximation Theorem we get the following characterization of WD(T ).

I Proposition 32. For any extensional rgm D and any tree T ∈ T∞rec:

WD(T ) = {α ∈ D | ([α], α) 6∈ JJTxKx}.

Proof.
(⊆) Follows immediately from the Approximation Theorem 27 and from Lemma 31.

(⊇) Let α ∈ D such that ([α], α) 6∈ JJTxKx. We coinductively construct a path f such
that α ∈ Wf (T ). As T is infinite we have JTx =β λx0 . . . xn.x(JT�〈0〉x0) · · · (JT�〈n〉xn) and
since D is extensional α = a0 → · · · → an → α′. From ([α], α) 6∈ JJTxKx and Lemma 25.2 we
get ([α], α) /∈ Jλx0 . . . xn.x(JT�〈0〉x0) · · · (JT�〈n〉xn)Kx, therefore there is an index k ≤ n such
that ak 6= [] and an element β ∈ ak such that ([β], β) 6∈ JJT�〈k〉xkKxk . By the coinductive
hypothesis, there exists a function g such that β ∈ Wg(T�〈k〉). We conclude since α ∈ Wf (T )
where f is the function defined as follows: f(0) = k and f(n+ 1) = g(n) for all n ∈ N. J

It should be now clear that in an rgm D fully abstract for H+, every infinite λ-definable
tree needs an element in D witnessing its infinite path, which exists by König’s lemma.

I Definition 33 (λ-König models). An rgm D is λ-König if for every T ∈ T∞rec, WD(T ) 6= ∅.

6.2 The Characterization
We will focus on the λ-König condition, since the extensionality is necessary, as λη ⊆ H+.

Lambda-König Implies Inequational Full Abstraction

Let D be an extensional λ-König relational graph model. Since every T ∈ T∞rec has a non-
empty set of witnesses WD(T ), by Proposition 32, there is an element α ∈WD(T ) such that
[α]→ α /∈ JIK − JJT K. Thus, D separates I from all the JT ’s.

I Theorem 34 (Inequational Full Abstraction). Let D be an extensional λ-König rgm, then:

M vnf N ⇐⇒ D |= M v N .

Proof.
(⇒) This follows directly from Corollary 29.
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(⇐) We assume, by the way of contradiction, that D |= M v N but M 6vnf N . Since
vhnf is maximal (cf. [1, Lemma 16.2.4]) and JMK~x ⊆ JNK~x we must have M vhnf N . By
Theorem 17 there exists a context C[−] such that C[M ] =βη I and C[N ] =B JT for some
T ∈ T∞rec. Since J−K is contextual and, by Corollary 29, Bη ⊆ H+ ⊆ Th(D) we have
JIK = JC[M ]K ⊆ JC[N ]K = JJT K. We derive a contradiction by applying Proposition 32. J

Inequational Full Abstraction Implies Lambda-König

I Theorem 35. Let D be an rgm. If Thv(D) =vnf then D is extensional and λ-König.

Proof. Obviously D must be extensional since H∗ is an extensional λ-theory. By the way of
contradiction, we suppose that it is not λ-König, then there is T ∈ T∞rec such that WD(T ) = ∅
and, by Proposition 32, we get JIK = JJT K. This is impossible since I 6vnf JT . J

From Theorems 34 and 35 we get the main semantic result of the paper.

I Theorem 36. An extensional rgm D is λ-König if and only if D is inequationally fully
abstract for Morris’s preorder vnf .

The following result first appeared in [20].

I Corollary 37. The model D? of Example 22 is inequationally fully abstract for Morris’s
preorder vnf . In particular Th(D?) = H+.

7 The λ-Theory H+ Satisfies the ω-Rule

This section is devoted to show that H+ satisfies the ω-rule. We will focus on its restriction
to closed terms ω0, and conclude since T ` ω if and only if T ` ω0, as shown in [12].

Recall that, by the context lemma, if two closed λ-termsM and N are such thatM 6vhnf N

holds, then the context C[−] semi-separating them can be chosen applicative and closed,
that is C[−] = [−]~Z for ~Z ∈ Λo.

I Lemma 38. Let M,N ∈ Λo be such that M ∈β NFβ, while N /∈β NFβ. Then, there exist
n ≥ 1 and combinators Z1, . . . , Zn ∈ Λo such that M ~Z ∈β NFβ while N ~Z /∈β NFβ.

Proof. By hypothesis M 6vH+ N . There are two possible cases.
Case M vhnf N . Therefore, by Theorem 17 there are Z1, . . . , Zk ∈ Λo such that

M ~Z =βη I and N ~Z =B JT for some T ∈ T∞rec. If k = 0 just take the λ-term 1T (ε) as Z1 and
conclude since JT1T (ε) =B JT .

Case M 6vhnf N . By semi-separability, there are Z1, . . . , Zk ∈ Λo such that M ~Z =β I
and N ~Z =β U for some unsolvable U . If k = 0 just take the identity I as Z1. J

I Lemma 39. Let M,N ∈ Λo. If ∀Z ∈ Λo,MZ =H+ NZ, then

∀~P ∈ Λo(M ~P ∈β NFβ ⇐⇒ N ~P ∈β NFβ).

Proof. Suppose that for all Z, ~Q ∈ Λo, MZ ~Q ∈β NFβ if and only if NZ ~Q ∈β NFβ . We show
by induction on the length k of ~P ∈ Λo that M ~P ∈β NFβ if and only if N ~P ∈β NFβ .

Base case: k = 0. Since the contrapositive holds by Lemma 38.
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Induction case: k > 0. It follows trivially from the induction hypothesis. J

This shows that H+ ` ω0. As a consequence, we get our main syntactic result.

I Theorem 40. H+ satisfies the ω-rule.

This solves positively the question whether H+ ` ω holds. The question whether a more
constructive proof can be provided will be addressed in further works.

Sallé’s conjecture saying that the inclusion Bω ⊆ H+ is proper, which is stated in the
proof of [1, Thm. 17.4.16], is still open and under investigation.

I Remark. In first-order logic, ω-completeness is closely related to the notion of a standard
model, which has as domain the Herbrand’s universe generated by the signature of the given
theory. In higher-order languages, Morris-style observational equality is the untyped analogue
of extensional equality defined by a logical relation on – again – the ground term model of
the higher-order language.

Our result perhaps gives some indication that these logical and computational aspects are
not at all independent, with the universal property of observational equality being powerful
enough to imply ω-completeness in the purely syntactic sense of validating the ω-rule.
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Abstract
Focusing is a general technique for syntactically compartmentalizing the non-deterministic choices
in a proof system, which not only improves proof search but also has the representational benefit of
distilling sequent proofs into synthetic normal forms. However, since focusing is usually specified
as a restriction of the sequent calculus, the technique has not been transferred to logics that lack
a (shallow) sequent presentation, as is the case for some of the logics of the modal cube. We have
recently extended the focusing technique to classical nested sequents, a generalization of ordinary
sequents. In this work we further extend focusing to intuitionistic nested sequents, which can
capture all the logics of the intuitionistic S5 cube in a modular fashion. We present an internal
cut-elimination procedure for the focused system which in turn is used to show its completeness.
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1 Introduction

When one adds features to a proof system, one generally expects that the meta-theory of
the system becomes more complicated. Take, for example, the one-sided sequent calculus
G3c for classical propositional logic, which has just as many logical rules as connectives and
two additional structural rules of identity and cut. Eliminating cuts from this system is
relatively straightforward: there is a single cut rule and a simple lexicographic induction on
the cut rank and heights of derivations. If we move to a system with multiplicative rules and
structural rules of contraction and weakening, such as Gentzen’s original system LK, then the
single cut rule and lexicographic measure is no longer sufficient to handle permutations of
cuts with contraction and weakening: we either need to add additional rules such as mix or
we need to use a sophisticated induction measure that takes the number of contractions on
the cut formula into account. Extending the system with the modal connectives 2 and 3 and
the modal axiom k adds new forms of cuts and further complications to the measure. Adding
other modal axioms such as t or 4 causes new structural rules to appear that now need to be
considered for cut permutations. Other modal axioms such as 5 causes the very structure of
(list-like) sequents to no longer be adequate for building analytic proof systems, so the notion
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of sequent needs to be generalized, say to labeled sequents [15, 20] or to hypersequents [2].
Needless to say, the cut rules for such generalized sequents – indeed, the entire cut-elimination
procedure – needs to be re-examined. Finally, moving to a two-sided sequent calculus, which
is essential for intuitionistic versions of these calculi, doubles the number of inference rules,
and hence doubles the number of cases to consider in the cut-elimination argument.

In this paper, we report on some observations that seem to suggest that this trend
of increasing syntactic and meta-theoretic complexity can be halted and even reversed if
one designs the proof system to enforce certain normal forms. We use the intuitionistic
propositional logics of the modal S5 cube (see Figure 1) as our testbed, as it contains all
permutations of the complications mentioned in the previous paragraph. We did not begin
this work with the goal of improving the proof systems for such logics; we were instead
interested in the pragmatic question of automated proof search in modal logics, in both
their classical and intuitionistic dialects. For such logics, proof systems based on nested
sequents, a generalization of the usual list-like sequents (as formulated by Gentzen) to tree-like
structures [4], turn out to have certain desirable properties from the perspective of proof
search. Specifically, (1) they are analytic, meaning that every theorem can be proved using
only sequents built from subformulas of the theorem; (2) their meta-theory is internal, which
means that procedures such as cut-elimination operate directly on the proofs in the system
rather than by translation to a different system; and (3) they are modular, which means that
the axes of extension in the modal cube correspond exactly to the choice of specific inference
rules. This final desideratum of modularity turns out to be fairly non-trivial [4, 5, 12].

One direct way to improve proof search is to reduce the proof search space, which lets a
search procedure make fewer choices to get farther. Over the past two decades, the focusing
technique, originally developed for (linear) logic programming [14, 1] has turned out to be a
generally applicable method of reducing the proof search space that remains complete (i.e.,
every theorem has a focused proof). It has been transplanted from its origin in the sequent
calculus for linear logic [1] to a wide variety of logics [8, 11, 17] and proof systems [6, 3, 7], and
it is empirically a very “high impact” optimization to standard proof search procedures [8, 13].
This generality suggests that the ability to transform a proof system into a focused form is
a good indication of its syntactic quality, in a manner similar to how admissibility of cut
shows that a proof system is syntactically consistent.

We have recently shown how to adapt the focusing technique to the classical nested proof
systems [7]. Now, nested proof systems also exist for the intuitionistic versions of these modal
systems [21, 12], so it is natural to ask if our focusing technique applies here as well. The
intuitionistic restriction in these systems is achieved by means of an input/output annotation
on the formulas that corresponds to whether that formula is a hypothesis or a conclusion [9].
As long as there is exactly one output in a sequent, its semantic meaning is intuitionistic,
and hence the inference rules of the system are designed to preserve this singular occurrence
of output formulas. These annotations cause every rule corresponding to connectives and
the modal axioms to have two incarnations, one for an input-annotated and the other for an
output-annotated formula. Section 3 summarizes the system NIK from [21] that we use as
the basis of our focused systems.

Our starting point, therefore, was a focused version of the proof system containing
annotated formulas. However, we were surprised to discover that: (1) the input/output
annotations turn out to be redundant, as they can always be uniquely inferred; and that (2)
in the synthetic form (Section 5) of the system, which elides the details of the focused logical
rules and records only the phase transitions, there is only a single modal structural rule that
is needed for every axiom. It turns out that the synthetic version of the system has fewer
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structural rules than the non-focused version, and the same number of structural rules as the
classical system, which we did not expect would be the case. The input/output annotations
are shown to be unnecessary by the use of polarized syntax that separates the classes of
positive formulas, whose output rules are non-invertible (therefore requiring non-deterministic
choices during search) and negative formulas, whose input rules are non-invertible. We can
show that intuitionistically meaningful polarized sequents are exactly those sequents with a
single negative formula interpreted as the output.

Like in the classical case [7], our main technical contribution is the proof of completeness
of the focused calculus by means of an internal cut-elimination proof. In the process of
writing this proof, we discovered a further simplification of the synthetic version of the
focused system: the so called store rule of focused calculi [7, Figure 3] that we used earlier in
the classical system is also unnecessary. Indeed, removing the store rule makes the decision
and release rules of the system correspond exactly to the introduction rules for the two
shift connectives ↓ and ↑, respectively, that inject each polarized class into the other. This
simplification in turn makes the three cuts that were required in the classical cut-elimination
argument [7, Figures 6 and 9] merely variants of a single cut rule. Moreover, since this
simplification was effectively independent of the classical or intuitionistic flavor of the logic,
we observe exactly the same reduction of the number of cut rules to just a single rule in
the intuitionistic synthetic system described in Section 5. We then obtain a cut-elimination
proof (Theorem 6.6) – and its corollary, the completeness of the synthetic system – that
is considerably shorter and simpler, using a more standard induction measure, than the
corresponding proof in [7].

Besides these technical contributions, we would like to stress the following conceptual
point: focusing, written in a synthetic form, is not a complication one adds to a proof system
and its associated meta-theory, but a simplification of both. Such a simplification has already
been observed for ordinary intuitionistic logic by Zeilberger [22]. As we add more features to
a logic, the effect of this simplification becomes more noticeable.

2 Preliminaries on Intuitionistic Modal Logic

We will work with the following grammar of formulas (written A, B, . . . ), which are built
from a collection of atomic formulas (written a, b, . . . ).

A, B, . . . ::= a A ∧B > A ∨B ⊥ A ⊃B 2A 3A

This grammar is slightly redundant because > can be defined as a ⊃ a for some atom a. We
nevertheless keep it in the syntax because one of the polarized versions of >, which we will
encounter in Section 4, will turn out to be non-redundant. Recall that classical modal logic K
is obtained from classical propositional logic by adding to any standard formulation, such as
Hilbert’s axiomatization,

a necessitation rule that says that 2A is a theorem of K if A is a theorem; and
the axiom of distributivity, commonly called k: 2(A ⊃B) ⊃ (2A ⊃2B).

Obtaining the intuitionistic variant of K is more involved. Lacking De Morgan duality,
there are several variants of k that are classically but not intuitionistically equivalent. In this
paper, we consider the intuitionistic variant of the modal logic K, called IK, that is obtained
from ordinary intuitionistic propositional logic (IPL) by

adding the necessitation rule: 2A is a theorem of IK if A is a theorem; and

FSCD 2016
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IK IKB

IKB5
IK4

ID

IT

IS4 IS5
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IDB

ID4
ID45

IK45

ID5

IK5

d : 2A ⊃3A (Seriality)
t : (A ⊃3A) ∧ (2A ⊃A) (Reflexivity)
b : (A ⊃23A) ∧ (32A ⊃A) (Symmetry)
4 : (33A ⊃3A) ∧ (2A ⊃22A) (Transitivity)
5 : (3A ⊃23A) ∧ (32A ⊃2A) (Euclideanness)

Figure 1 The intuitionistic modal S5 cube and the five constituent axioms.

adding the following five variants of the k axiom.

k1 : 2(A ⊃B) ⊃ (2A ⊃2B)
k2 : 2(A ⊃B) ⊃ (3A ⊃3B)

k3 : 3(A ∨B) ⊃ (3A ∨3B)
k4 : (3A ⊃2B) ⊃2(A ⊃B)

k5 : 3⊥ ⊃⊥ (1)

This logic IK was first studied in [18] and [16], and then was investigated in detail in [20],
particularly its standard Kripke semantics based on birelational models.

In this paper, we will also examine the intuitionistic variants of the axioms d, t, b, 4,
and 5 that are shown on the right in Figure 1. As in the classical case, they give rise to 15
different distinct logics that can be arranged in a cube, the so-called S5-cube. (There are
fewer than 32 logics because of redundant sets such as {t, 5} and {b, 4} that both yield the
logic IS5.) The intuitionistic variant of the cube is shown on the left in Figure 1.

For a given set X ⊆ {t, d, 4, b, 5}, we write IK+X for the logic that is obtained from IK by
adding the axioms in X. A formula A is said to be X-valid iff it is a theorem of IK+X.1 In
addition, we define the 45-closure of X, denoted by X̂, as follows:

X̂ =


X+4 if {b, 5} ⊆ X or if {t, 5} ⊆ X
X+5 if {b, 4} ⊆ X
X otherwise

If X = X̂ we also say that X is 45-closed. In this case we have that whenever the 4 axiom (or
the 5 axiom) is derivable in IK+X, then 4 (or 5 resp.) is already contained in X. Every logic
in the cube in Figure 1 can be defined by at least one 45-closed set of axioms [4].

3 Intuitionistic Modal Logic in Nested Sequents

This section is a summary of the nested sequent system NIK from [21]. The standard
formulation of NIK is based closely on the classical system KN [7, 4]. A nested sequent is a
finite tree where each node contains a multiset of formulas. In the classical case, this tree is
then endowed with an interpretation where, at each node, the interpretation of each child
subtree is boxed (using 2) and considered to be disjunctively related to that of the other
child subtrees and to the formulas at the node. This interpretation is purely symmetric. To
move to the intuitionistic case, we need to introduce an essential asymmetry between the
input (i.e., the left) formulas, which constitute the hypotheses, and the singleton output
(or the right) that constitutes the conclusion. Exactly one of the formulas in the tree will

1 We slightly abuse the term valid as we do not refer to semantics in this paper.
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therefore be annotated with a special mark, depicted with a superscript ◦, to signify that it
is the output; all other formulas will then be interpreted as inputs.

To be concrete, we will present nested sequents in terms of a grammar of input sequents
(written Λ) where the output formula does not occur, and full sequents (written Γ) where
the output formula does occur. When the distinction between input and full sequents is not
essential, we will use ∆ to stand for either case. The relationship between parent and child
in the tree will be represented using bracketing ([ ]).

Λ ::= ∅ A, Λ [Λ1], Λ2 Γ ::= Λ, A◦ Λ, [Γ] ∆ ::= Λ Γ

Every full sequent Γ therefore has the shape Λ1, [Λ2, · · · [Λn, A◦] · · · ]. As usual, we consider
sequents to be identical up to a reordering of the comma-separated elements. Observe that
removing the output formula from a full sequent yields an input sequent. We write Λ, ∆ to
stand for the concatenation of Λ and ∆, given inductively by ∅, ∆ = ∆; (A, Λ), ∆ = A, (Λ, ∆);
and ([Λ1], Λ2), ∆ = [Λ1], (Λ2, ∆).

I Definition 3.1 (Meaning). The meaning of a NIK sequent ∆ is a formula, written fm(∆),
that obeys the following equations.

fm(∅) = > fm(A, Λ) = A ∧ fm(Λ) fm([Λ1], Λ2) = 3fm(Λ1) ∧ fm(Λ2)
fm(Λ, A◦) = fm(Λ) ⊃A fm(Λ, [Γ]) = fm(Λ) ⊃2fm(Γ)

We assume that any occurrences of A ∧> and > ⊃A in the meaning are simplified to A.

I Example 3.2. Consider the following full sequent: Γ = A, B, [C◦, [B]], [D, A, [C]]. It is
considered identical to A, B, [D, A, [C]], [[B], C◦] and represents this tree:

A, B

C◦

B

D, A

C

We also have fm(Γ) = A ∧B ∧3(D ∧A ∧3C) ⊃2(3B ⊃ C).

The inference rules for nested sequents will operate on subtrees of such sequents. To
identify such subtrees, we use the notions of contexts and substitutions.

I Definition 3.3 (Context). An n-holed context is like a sequent but contains n pairwise
distinct numbered holes of the form { }i (for i ∈ 1..n) wherever an input formula may
otherwise occur. We depict such a context as ∆{ }1 · · · { }n. Given n sequents ∆1, . . . , ∆n

(called the arguments), we write ∆{∆1} · · · {∆n}, called a substitution, to stand for the
sequent where the hole { }i in ∆{ }1 · · · { }n has been replaced by ∆i (for i ∈ 1..n), assuming
that the result is well-formed, i.e., there is at most one ◦-annotated formula. Note that if
∆i = ∅ we simply remove the hole { }i. A full context is a context of the form Γ{ }1 · · · { }n,
which means that there is an output formula in Γ{∅}1 · · · {∅}n. Thus, all the arguments to
this context must be input sequents. On the other hand, an input context is of the form
Λ{ }1 · · · { }n and contains only input formulas, so when it is used to build a sequent at most
one of its arguments can itself be a full sequent.

In the rest of this paper, we will omit the hole index subscripts (except when there is
some ambiguity) to keep the notation light. Note that a 0-holed context is the same as a
sequent. Given a 1-holed context that contains no output formulas, i.e., of the form Λ{ }, it

FSCD 2016
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N
IK

id Λ{a, a◦}
Λ{A◦} Λ{B◦}

∧R Λ{A ∧B◦}
Γ{A, B}

∧L Γ{A ∧B} >R Λ{>◦}
Λ{A◦}

∨R1 Λ{A ∨B◦}
Λ{B◦}

∨R2 Λ{A ∨B◦}
Γ{A} Γ{B}

∨L Γ{A ∨B} ⊥L Γ{⊥}
Λ{A, B◦}

⊃R Λ{A ⊃B◦}
Γ∗{A ⊃B, A◦} Γ{B}

⊃L Γ{A ⊃B}
Λ1{[Λ2, A◦]}

3Rk Λ1{[Λ2],3A◦}
Γ{[A]}

3L Γ{3A}
Λ{[A◦]}

2R Λ{2A◦}
∆1{2A, [A, ∆2]}

2Lk ∆1{2A, [∆2]}

X

Λ{A◦}
3Rt Λ{3A◦}

Γ{2A, A}
2Lt Γ{2A}

Λ1{[Λ2,3A◦]}
3R4 Λ1{[Λ2],3A◦}

∆1{2A, [2A, ∆2]}
2L4 ∆1{2A, [∆2]}

Λ{[A◦]}
3Rd Λ{3A◦}

Γ{2A, [A]}
2Ld Γ{2A}

Λ1{[Λ2], A◦}
3Rb Λ1{[Λ2,3A◦]}

∆1{[2A, ∆2], A}
2Lb ∆1{[2A, ∆2]}

Λ{∅}{3A◦}
3R5 dp(Λ{ }{∅}) > 0Λ{3A◦}{∅}

Γ{2A}{2A}
2L5 dp(Γ{ }{∅}) > 0Γ{2A}{∅}

Figure 2 The NIK+X family of nested sequent systems for intuitionistic modal logics.

is permissible to replace the hole with a full sequent Γ, in which case the substitution Λ{Γ}
is also a full sequent. If the context contains an output formula, however, then this formula
must be removed before such a substitution is syntactically well-formed.

I Definition 3.4 (Output Deletion). We write ∆∗{ }1 · · · { }n for the result of deleting any
output formulas from an n-holed context ∆{ }1 · · · { }n.

I Example 3.5. Consider Λ{ } = [[B, C ], { }], C ; Γ1{ } = C, [{ }, [B, C◦]]; and Γ2 = A, [B◦].
Then, Λ{Γ2} = C, [[B, C ], A, [B◦]] and Γ1{Λ{∅}} = C, [[[B, C ]], C , [B, C◦]]. Γ1{Γ2} is not
well-formed because it would contain both C◦ and B◦, but Γ∗1{Γ2} = C, [[B ], A, [B◦]].

We now have enough ingredients to define the inference rules for NIK, which are displayed
in Figure 2. The rules in the upper box are common to every logic in the modal cube and so
we call just this core system NIK. For every collection of axioms X ⊆ {t, d, 4, b, 5}, we define
the system NIK+X by adding to NIK the rules 3Rx and 2Lx for every x ∈ X. Note that in the
rules 2Lk, 2L4, 2Lb exactly one of the ∆1{ } and ∆2 is a full sequent (context), and the other
is an input sequent (context), as only one of them can contain the unique output formula.

The 3R5 and 2L5 rules have a side condition on the depth of the occurrence of the
principal formula, which must not be in the root of the tree representation of the sequent.
This is a direct consequence of the fact that the 5 axiom implies that 3 · · ·3A ⊃23A, so a
bracketed 3A◦ in the conclusion can be derived from any 3A◦ under a prefix of n 3s, which
can then be moved into any other bracket at depth n in the premise using 3Rk.

I Definition 3.6 (Depth). The depth of a 1-holed context ∆{ }, written dp(∆{ }), is given
inductively by dp({ }) = 0; dp(∆1, ∆2{ }) = dp(∆2{ }); dp(∆1, [∆2{ }]) = 1 + dp(∆2{ }).

I Example 3.7. We give as an example the proof of k4 : (3p ⊃2n) ⊃2(p ⊃ n) in NIK.
id

3p ⊃2n, [p◦, p]
3R

3p ⊃2n,3p◦, [p]

id
2n, [p, n, n◦]

2L
2n, [p, n◦]

⊃L (†)
3p ⊃2n, [p, n◦]

⊃R
3p ⊃2n, [p ⊃ n◦]

2R
3p ⊃2n,2(p ⊃ n)◦

⊃R (3p ⊃2n) ⊃2(p ⊃ n)◦
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Observe how n◦ is deleted from the first premise of (†).

The following theorem summarizes the main results of [21].

I Theorem 3.8. Let X ⊆ {t, d, 4, b, 5} be 45-closed and let Γ be a sequent. The following
are equivalent:
1. fm(Γ) is X-valid.
2. Γ is provable in NIK+X+cut, where cut is: Γ∗{A◦} Γ{A}cut Γ{∅}3. Γ is provable in NIK+X.

Proof. See [21, Theorems 4.1, 5.1, 5.3, and 6.7]. 45-closure is only needed for cut-elimination
and cut-free completeness. It is not necessary for soundness and completeness with cut. J

4 Focused Nested Sequents

In the previous section, input and output formulas were differentiated using annotations, but
without any particular restrictions on which kinds of formulas may receive which annotations.
It turns out that certain connectives are endowed with inherent affinities for one or the other
annotation. For instance, 3-formulas in the output tend to remain as side formulas until the
sequent has the adequate bracketing structure, but input 3-formulas can be decomposed
eagerly since 3L is an invertible rule. For example, the sequent 3a,3a◦ can only be proved
by applying the 3L rule below 3Rk. In the terminology of polarities and focusing, 3-formulas
are synchronous or positive.

It turns out that we can classify every formula – not just 3 – into either a positive
formula, whose right rules are non-invertible, or a negative formula, whose left rules are
non-invertible. For nearly every kind of formula, this classification is canonically determined;
the exceptions are the atoms, where the choice of polarity is free as long as each atom is
assigned exactly one polarity, and the ∧ and > connectives, which are ambiguous in the
sense that it is possible to design inference rules for them that give them a positive or a
negative interpretation. Following [7, 11], we divide ∧ and > into their polarized incarnations
as separate connectives; ∧ into its positive and negative polarizations, +

∧ and −

∧, and > into
+

> and −

>. Formulas are therefore divided into the positive (written with P, Q) and negative
(written with N, M) classes as follows.

P, Q ::= L P +

∧Q
+

> P ∨Q ⊥ 3P L ::= p ↓N

N, M ::= R M −

∧N
−

> P ⊃N 2N R ::= n ↑P

We write L for particular positive formulas that we call left-neutral formulas, and R for
particular negative formulas that we call right-neutral formulas. They can be atoms or built
from the polarity shifts ↓ and ↑, which are used to move between the two polarized classes.

Polarized sequents are similar to NIK sequents, but instead of using annotations, we force
input formulas to be positive and output formulas to be negative. The resulting grammar
for polarized input sequents (written Ω) and polarized full sequents (written Σ) is then:

Ω ::= ∅ P, Ω [Ω1], Ω2 Σ ::= Ω, N Ω, [Σ] Θ ::= Ω Σ

Observe that in any polarized full sequent there is always exactly one negative formula. In
building the focused proof system, we will largely confine ourselves to neutral input sequents
(written Λ) and neutral full sequents (written Γ), which are those subclasses of polarized

FSCD 2016
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L2 Γ{〈M −

∧N〉}
Γ{〈P 〉} Γ{〈N〉}

⊃f
L Γ{〈P ⊃N〉}

∆1{[∆2, 〈P 〉]}
3f

Rk ∆1{[∆2], 〈3P 〉}
∆1{[∆2, 〈N〉]}

2f
Lk ∆1{[∆2], 〈2N〉}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Λ{↑P, 〈P 〉}

↑f
R Λ{↑P }

Γ{P }
↑f

L Γ{〈↑P 〉}
Γ{↓N, 〈N〉}

↓f
L Γ{↓N}

Γ∗{N}
↓f

R Γ{〈↓N〉}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ{P, Q}
∧+f

L Σ{P
+

∧Q}
Σ{∅}

>+f
L Σ{ +

>}
Σ{P } Σ{Q}

∨f
L Σ{P ∨Q} ⊥f

L Σ{⊥}
Σ{[P ]}

3f
L Σ{3P }

Ω{M} Ω{N}
∧−f

R Ω{M
−

∧N} >−f
R Ω{ −

>}
Ω{P, N}

⊃f
R Ω{P ⊃N}

Ω{[N ]}
2f

R Ω{2N}

X
f

Γ{〈P 〉}
3f

Rt Γ{〈3P 〉}
Γ{〈N〉}

2f
Lt Γ{〈2N〉}

∆1{[∆2, 〈3P 〉]}
3f

R4 ∆1{[∆2], 〈3P 〉}
∆1{[∆2, 〈2N〉]}

2f
L4 ∆1{[∆2], 〈2N〉}

Γ{[〈P 〉]}
3f

Rd Γ{〈3P 〉}
Γ{[〈N〉]}

2f
Ld Γ{〈2N〉}

∆1{[∆2], 〈P 〉}
3f

Rb ∆1{[∆2, 〈3P 〉]}
∆1{[∆2], 〈N〉}

2f
Lb ∆1{[∆2, 〈2N〉]}

Γ{∅}{〈3P 〉}
3f

R5 dp(Γ{ }{∅}) > 1Γ{〈3P 〉}{∅}
Γ{∅}{〈2N〉}

2f
L5 dp(Γ{ }{∅}) > 1Γ{〈2N〉}{∅}

Figure 3 The FoNIK+Xf family, focused versions of NIK+X from Figure 2.

input sequents and polarized full sequents that are built up of neutral formulas. In other
words, they have the following grammar.

Λ ::= ∅ L, Λ [Λ1], Λ2 Γ ::= Λ, R Λ, [Γ] ∆ ::= Λ Γ

Let us now give the meanings of these polarized sequents.

IDefinition 4.1 (Depolarization). Every polarized formula P or N is related to an unpolarized
formula by a depolarization map b c with the following inductive definition.

bpc = p b↓Nc = bNc bnc = n b↑P c = bP c

bP
+

∧Qc = bP c ∧ bQc b +

>c = > bP ∨Qc = bP c ∨ bQc b⊥c = ⊥ b3P c = 3bP c

bM
−

∧Nc = bMc ∧ bNc b −

>c = > bP ⊃Nc = bP c ⊃ bNc b2Nc = 2bNc

We say that P or N is X-valid iff bP c or bNc is X-valid, respectively.

I Definition 4.2 (Meaning). The meaning of a polarized sequent Θ, written fm(Θ), is a
positive or a negative formula (respectively) obeying:

fm(∅) = +

> fm(P, Ω) = P
+

∧ fm(Ω) fm([Ω1], Ω2) = 3fm(Ω1) +

∧ fm(Ω2)

fm(Ω, N) = fm(Ω) ⊃N fm(Ω, [Σ]) = fm(Ω) ⊃ 2fm(Σ)

I Definition 4.3 (Polarized Context). An n-holed polarized context is like a polarized sequent
but contains n pairwise distinct numbered holes of the form { }i (for i ∈ 1..n) wherever a
positive formula may otherwise occur. We depict such a context as Θ{ }1 · · · { }n. Given n

polarized sequents Θ1, . . . , Θn (the arguments), we write the substitution Θ{Θ1} · · · {Θn}
to mean the sequent where the hole { }i in Θ{ }1 · · · { }n is replaced by Θi (or removed if
Θi = ∅), for i ∈ 1..n, assuming that the result is well-formed, i.e., that there is at most one
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negative formula in the result. We write Θ∗{ }1 · · · { }n for the context formed by deleting
any negative formula from Θ{ }1 · · · { }n.2

The inference system for polarized sequents will be focused [1]. A focused proof is a proof
where the decision to apply a non-invertible rule to a neutral formula must be explicitly
taken, and this decision commits the proof to retaining focus on its transitive subformulas
until there is a polarity change. This focusing protocol drastically reduces the space of proofs,
since rules can only be applied to the focused formula when one exists. Nevertheless, every
derivable polarized sequent has a focused proof, as we will see in Section 6.

I Definition 4.4 (Focused Sequent). A focused sequent is like a neutral sequent but contains
an additional single occurrence of 〈P 〉 or 〈N〉 wherever a positive formula may otherwise occur,
called its focus. We depict such sequents as Γ{〈P 〉} or Γ{〈N〉} where Γ{ } is a neutral context
(i.e., Γ{∅} is a neutral sequent). The meaning of a focused sequent is written by extending
fm( ), which now obeys fm(Γ{〈P 〉}) = fm(Γ∗{↑P}) and fm(Γ{〈N〉}) = fm(Γ{↓N}).

The inference rules of the family of focused sequent systems FoNIK+Xf are given in
Figure 3. Like with NIK+X earlier, for any X ⊆ {t, d, 4, b, 5}, we define FoNIK+Xf to be the
system FoNIK, consisting of the rules in the upper section of Figure 3, extended with 2f

Lx
and 3f

Rx (for each x ∈ X) in the lower section of the figure.
A focused proof of a neutral sequent begins – reading from conclusion upwards – with a

neutral end-sequent, to which only the two rules ↓f
L and ↑f

R may be applied. In each case a
neutral shifted formula is selected for focus, at which point the proof enters the focused phase,
which persists until the focus again becomes neutral. At this point, the proof either finishes
with idf

R or idf
L if the focus is atomic, or it enters the active phase using the rules ↑f

L or ↓f
R.

Note that, because the ↓f
R rule introduces a negative formula to the premise sequent, any

other existing negative formulas must be deleted. In the active phase, positive and negative
formulas are decomposed, in an arbitrary order, using left and right rules respectively, until
eventually the sequent becomes neutral again.

I Example 4.5. Let R = ↑↓(↓(3p ⊃2n) ⊃2(p ⊃ n)) which is a right-neutral polarized form
of k4 (see (1)) with a minimal number of shifts. Below is the derivation of R in FoNIK, and
therefore the focused version of the derivation in Example 3.7:

idf
R R, ↓(3p ⊃2n), [〈p〉, p, n]

3f
Rk R, ↓(3p ⊃2n), 〈3p〉, [p, n]

idf
L R, ↓(3p ⊃2n), [〈n〉, p, n]

2f
Lk R, ↓(3p ⊃2n), 〈2n〉, [p, n]

⊃f
L R, ↓(3p ⊃2n), 〈3p ⊃2n〉, [p, n]

↓f
L (†)

R, ↓(3p ⊃2n), [p, n]
⊃f

R R, ↓(3p ⊃2n), [p ⊃ n]
2f

R R, ↓(3p ⊃2n),2(p ⊃ n)
⊃f

R R, ↓(3p ⊃2n) ⊃2(p ⊃ n)
↓f

R R, 〈↓(↓(3p ⊃2n) ⊃2(p ⊃ n))〉
↑f

R R

Observe that the instance of ↓f
L marked (†) cannot be applied any lower in the derivation,

since its conclusion would not then be neutral.

I Lemma 4.6 (Soundness). Let X ⊆ {t, d, 4, b, 5}. If Σ is provable in FoNIK+Xf then it is
X-valid.

2 We reuse the right-deletion notation from Definition 3.4 in the polarized case since the concepts are
similar, replacing “output formula” with “negative formula”.

FSCD 2016
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Proof. The proof makes use of the following two inference rules

Γ{∅}weak Γ{Λ}
and Γ{Λ, Λ}cont Γ{Λ}

defined on unpolarized sequents, and the fact that they are admissible for NIK+X (see [21,
Lemma 6.4]). Now, any polarized sequent Σ can be transformed into an unpolarized sequent
bΣc with the same meaning by replacing every formula P in Σ by bP c and the unique formula
N in Σ by bNc◦, and similarly for contexts Σ{ }. Then we can define bΣ{〈N〉}c = bΣc{bNc}
and bΣ{〈P 〉}c = bΣc∗

{
bP c◦

}
. Every rule in FoNIK+Xf then either becomes trivial or can

be simulated by a derivation consisting of an instance of a rule in NIK+X and an instance of
weak, except for ↑f

R and ↓f
L, which become instances of cont. Thus, a proof of Σ in FoNIK+Xf

is transformed into a proof of bΣc in NIK+X + weak + cont. The lemma now follows from
admissibility of weak and cont for NIK+X and Theorem 3.8. J

5 Synthetic Nested Sequents

Ultimately, we wish to establish the following relation between NIK+X and FoNIK+Xf .

I Theorem 5.1 (Soundness and Completeness of FoNIK+Xf). The neutral sequent Γ is
derivable in FoNIK+Xf if and only if bΓc is derivable in NIK+X.

However, directly showing this statement is rather complicated because of the number of
rules in FoNIK+Xf . The issue is actually worse than it appears since we would like to have
the completeness of focusing be a consequence of cut-elimination and identity reduction in
FoNIK+Xf , following a strategy initially described by Laurent [10] that has turned out to be
remarkably versatile [8, 11, 19, 7]. To retrace this meta-theory directly in FoNIK+Xf would
require a carefully managed collection of cuts with a lengthy and intricate argument.

Can the system be simplified? Since the boundary rules ↓f
L, ↑

f
R, ↑

f
L and ↓f

R are limited
to conclusions that are either neutral or focused, we can see a FoNIK+Xf derivation as
progressing in large synthetic steps where the rest of the rules are elided. In this section,
we give a presentation of FoNIK+Xf that formally builds only such synthetic derivations.
Importantly, the synthetic system has far fewer rules than FoNIK+Xf . In particular, there
is no longer a duplication of the modal rules into 3f

R and 2f
L versions. Nevertheless, this

system will be sound and complete with respect to both NIK+X and FoNIK+Xf , giving us
Theorem 5.1 as a corollary.

The basis of the synthetic system is to isolate the subformula relation and generalize it
into an inductively defined substructure relation, written ∈∈, that determines, for a given
focus, what formulas would be present in the fringe of the focused phase rooted on it. Since
only neutral formulas occur at the fringes, these substructures would be made up of neutral
formulas. The inductive definition of the subformula relation is given in the uppermost
part of Figure 4. When Λ ∈∈ P or Γ ∈∈N , we say that Λ or Γ is, respectively, a synthetic
substructure of P or N . Intuitively, each substructure defines a particular collection of
disjunctive choices available in a corresponding focused phase. The focused phase is launched
from a neutral sequent by picking a suitable neutral formula for focus, selecting one of its
substructures, and then contextualizing the substructure using a generalization of focused
sequents (Definition 4.4).

I Definition 5.2 (Contextualizing Sequent). A contextualizing sequent is like a neutral sequent
but contains a single occurrence of a focus of the form 〈∆〉 (where ∆ is a neutral sequent)
where a positive neutral formula may otherwise occur. Such sequents are written as Γ{〈∆〉}
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Sy
N

IK

L ∈∈ L

Λ1 ∈∈ P Λ2 ∈∈ Q

Λ1, Λ2 ∈∈ P
+

∧Q ∅ ∈∈ +

>

Λ ∈∈ P

Λ ∈∈ P ∨Q

Λ ∈∈ Q

Λ ∈∈ P ∨Q

Λ ∈∈ P

[Λ] ∈∈ 3P

R ∈∈ R

Γ ∈∈ M

Γ ∈∈ M
−

∧N

Γ ∈∈ N

Γ ∈∈ M
−

∧N

Λ ∈∈ P Γ ∈∈ N

Λ, Γ ∈∈ P ⊃N

Γ ∈∈ N

[Γ] ∈∈ 2N
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

id〈〉 ∆{a, 〈a〉}

{
Γ{Λ} : Λ ∈∈ P

}
↑〈〉L Γ{〈↑P 〉}

Λ2 ∈∈ P Λ1{↑P, 〈Λ2〉}
↑〈〉R Λ1{↑P }

fin〈〉 Γ{〈∅〉}

{
Γ∗1{Γ2} : Γ2 ∈∈ N

}
↓〈〉R Γ1{〈↓N〉}

Γ2 ∈∈ N Γ1{↓N, 〈Γ2〉}
↓〈〉L Γ1{↓N}

∆1{[∆2, 〈∆3〉]}
k〈〉 ∆1{[∆2], 〈[∆3]〉}

Γ{〈∆〉} Γ{〈Λ〉}
spl〈〉 #∆ > 0, #Λ > 0Γ{〈∆, Λ〉}

X
〈
〉 Γ{〈∆〉}

t〈〉 Γ{〈[∆]〉}
∆1{[∆2, 〈[∆3]〉]}

4〈〉 ∆1{[∆2], 〈[∆3]〉}
Γ{[〈∆〉]}

d〈〉 Γ{〈[∆]〉}
∆1{[∆2], 〈∆3〉}

b〈〉 ∆1{[∆2, 〈[∆3]〉]}
Γ{〈[∆]〉}{∅}

5〈〉 Γ{∅}{〈[∆]〉}

Figure 4 The SyNIK+X〈〉 family, synthetic versions of FoNIK+Xf (Figure 3).

where Γ{∅} is a neutral sequent. The meaning of a contextualizing sequent is written using
fm( ) obeying: fm(Γ{〈Λ〉}) = fm(Γ∗{↑fm(Λ)}) and fm(Γ1{〈Γ2〉}) = fm(Γ1{↓fm(Γ2)}).

The synthetic system SyNIK will be built using neutral and contextualizing sequents. The
rules of SyNIK+X〈〉 (for any X ⊆ {t, d, 4, b, 5}) are shown in Figure 4. As before for NIK+X
and FoNIK+Xf , we define SyNIK+X〈〉 to be SyNIK extended with x〈〉 for every x ∈ X. The ↓〈〉L
and ↑〈〉R rules are similar to the ↓f

L and ↑f
R rules from FoNIK, except that, instead of granting

focus to the P or N (respectively), one of its substructures is selected for contextualization.
The contextualization rules consist of the rules {spl〈〉, fin〈〉, k〈〉, t〈〉, 4〈〉, d〈〉, b〈〉, 5〈〉} that serve
to divide up or move the focus among the premises of the rule. To prevent needless looping,
the spl〈〉 rule has a side condition that neither of the foci in the premises is empty; the
fin〈〉 rule handles the empty focus case instead. The modal rules require the focus in the
conclusion to be bracketed. Observe that there is exactly one modal rule for every modal
axiom, unlike FoNIK+Xf that needed both left and right versions. The 5〈〉 rule has the usual
side condition that dp(Γ{ }{∅}) > 0.

Once the focus has been reduced to a single formula by the other rules, it must either
be atomic or a shifted formula. In the former case, we apply the id〈〉 rule, which is the
common form of idf

R and idf
L from FoNIK. When the focus is a shifted formula, we use ↑〈〉L or

↓〈〉R ; in each case, we iterate over the substructures of the principal formula, producing one
premise per substructure. When the substructure is a neutral sequent, we need to remove
the right-neutral formula from the surrounding context; this only happens in the ↓〈〉R rule.

I Example 5.3. Here is the synthetic version of the derivation in Example 4.5.
id〈〉

R, ↓(3p ⊃2n), [〈p〉, p, n]
k〈〉

R, ↓(3p ⊃2n), 〈[p]〉, [p, n]

id〈〉
R, ↓(3p ⊃2n), [〈n〉, p, n]

k〈〉
R, ↓(3p ⊃2n), 〈[n]〉, [p, n]

spl〈〉
R, ↓(3p ⊃2n), 〈[p], [n]〉, [p, n]

↓〈〉L (‡)
R, ↓(3p ⊃2n), [p, n]

↓〈〉R R, 〈↓(↓(3p ⊃2n) ⊃2(p ⊃ n))〉
↑〈〉R (†)

R

The instance (†) of ↑〈〉R is applicable as L = ↓(3p ⊃2n) ⊃2(p ⊃ n) is left-neutral, so L ∈∈ L.
Likewise, the instance (‡) of ↓〈〉L is applicable since [p], [n] ∈∈3p ⊃2n.

FSCD 2016
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I Lemma 5.4 (Soundness). Let X ⊆ {t, d, 4, b, 5} and let Γ be a neutral sequent. If Γ is
provable in SyNIK+X〈〉, then it is also provable in FoNIK+Xf .

Proof (Sketch). The essential idea is to interpret the SyNIK contextualizing sequent Γ{〈Θ〉}
as the FoNIK focused sequent Γ{〈fm(Θ)〉}. The rules of the former can be simulated by the
latter because Θ ∈∈ fm(Θ). Examples 4.5 and 5.3 illustrates this interpretation. The whole
proof then works by induction on the given SyNIK+X〈〉 derivation; the ↓〈〉L and ↑〈〉R rules are
simulated by repeating the derivation of the substructure in the FoNIK sequent rather than
as a side premise. The ↑〈〉L and ↓〈〉R rules are easily simulated since the active rules of FoNIK
are precisely matched by the ∈∈ inferences. The x〈〉 rules are simulated by 3f

Rx or 2f
Lx rules,

respectively depending on whether the focus contains a negative formula or not. Finally,
spl〈〉 and fin〈〉 are simulated by ∧+f

R and >+f
R respectively. J

The less trivial converse of Lemma 5.4 will follow from cut-elimination in the next section.

6 Synthetic Meta-Theory

In this section we will show that SyNIK+X〈〉 extended with a cut rule can simulate NIK+X
derivations under a certain interpretation of the annotations. We will then show that
the cut rule is admissible in SyNIK+X〈〉, thereby concluding that NIK+X rules under that
interpretation are admissible in SyNIK+X〈〉, i.e., SyNIK+X〈〉 is complete with respect to
NIK+X. To formulate the cut rule with a minimum of redundancy, we will need to slightly
enlarge our notion of contexts and define a pair of pruning operations for such contexts.

I Definition 6.1 (Enlarged Contexts and Pruning). In this section, we allow neutral sequents
to contain at most one occurrence of a focus 〈∆〉. For a sequent ∆, we write ∆6〈〉 to prune
its focus if there is one (i.e., if ∆ = ∆1{〈∆2〉} for some ∆1{ }, then ∆6〈〉 = ∆1{∅}; otherwise
∆6〈〉 = ∆). This definition extends straightforwardly to contexts ∆{ }. For a context ∆1{ },
we write ∆?

1{∆2} to mean ∆1{∆2} if ∆2 is an input sequent, and ∆∗1{∆2} if ∆2 is a full
sequent (see Definition 3.4).

The synthetic cut rule for SyNIK+X〈〉 can then be written concisely as follows:

Γ?{∆} Γ 6〈〉{〈∆〉}
cut〈〉 Γ{∅}

Before we can show that cut〈〉 is admissible, we need to show the admissibility of the structural
rules shown in Figure 5 that are used in the cut-elimination proof. Note that the weakening
rule weak can be applied only to input contexts and the contraction rule cont only to positive
atoms. While the contraction rule could be generalized to any input context, only this
instance is needed in the proof. Of course, the notion of contexts and sequents in these
structural rules are enlarged in the sense of Definition 6.1.

I Definition 6.2. The height of a derivation D, denoted by ht(D), is the height of D when
seen as a tree, i.e., the length of the longest branch from the root to a leaf. We say that a
rule Γ1

r Γ2
is admissible for a system S if for every proof D1 of Γ1 in S there is a proof D2 of

Γ2 in S. We say that it is height-preserving admissible if additionally ht(D2) ≤ ht(D1).

I Lemma 6.3 (Admissible Rules). Let X ⊆ {t, d, 4, b, 5} be 45-closed. The rules weak, cont,
and k[ ] are height-preserving admissible in SyNIK+X〈〉, and for every x ∈ X, the rule x[ ] is
admissible in SyNIK+X〈〉.
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Γ{∅}
weak Γ{Λ}

∆1{[∆2], [∆3]}
k[ ]

∆1{[∆2, ∆3]}
∆1{[ ]}

d[ ]

∆1{∅}
∆1{[∆2, [∆3]]}

b[ ]

∆1{[∆2], ∆3}

Γ{p, p}
cont Γ{p}

∆1{[∆2], [∆3]}
4[ ]

∆1{[[∆2], ∆3]}
∆1{[∆2]}

t[ ]

∆1{∆2}
∆1{∅}{[∆2]}

5[ ] dp(∆1{ }{∅}) > 0∆1{[∆2]}{∅}

Figure 5 Structural rules admissible in SyNIK+X〈〉.

Proof. The first part is by straightforward induction on the height of the derivation. The
second part is less straightforward, but also by induction on the height of the derivation,
following [4, Lemma 9]. Below we show the translation of one case from the case analysis
in [4] into our setting. The others are similar.

D
∆1{〈∆2〉, [∆3], [∆4]}

b〈〉 ∆1{[〈[∆2]〉, ∆3], [∆4]}
4[ ]

∆1{[[〈[∆2]〉, ∆3], ∆4]}
;

D
∆1{〈∆2〉, [∆3], [∆4]}

4[ ]

∆1{〈∆2〉, [[∆3], ∆4]}
b〈〉 ∆1{[〈[∆2]〉, [∆3], ∆4]}
5〈〉 ∆1{[[〈[∆2]〉, ∆3], ∆4]}

We rely on the crucial fact that 5 ∈ X when {b, 4} ⊆ X, as X is 45-closed. So, this case
illustrates why 45-closure is needed, and also shows that the height of the proof can increase
for the admissibility of the x[ ] rules. J

I Definition 6.4. The depth of a polarized formula P or N , denoted by dp(P ) or dp(N), is
inductively given as follows:

dp(p) = dp(n) = 1
dp(⊥) = dp( +

>) = dp( −

>) = 1
dp(↑P ) = dp(3P ) = dp(P ) + 1
dp(↓N) = dp(2N) = dp(N) + 1

dp(P +

∧Q) = max(dp(P ), dp(Q)) + 1
dp(P ∨Q) = max(dp(P ), dp(Q)) + 1
dp(P ⊃N) = max(dp(P ), dp(N)) + 1
dp(M −

∧N) = max(dp(M), dp(N)) + 1

The rank of a neutral sequent ∆, denoted by rk(∆), is the multiset of the depths of the
formulas in ∆. Formally, it can be defined inductively as follows:

rk(L, Λ) = {|dp(L)|} ] rk(Λ) rk(Λ, R) = rk(Λ) ] {|dp(R)|} rk(Λ, [∆]) = rk(Λ) ] rk(∆)

I Lemma 6.5 (Cut Reduction). Let X ⊆ {t, d, 4, b, 5} be 45-closed. Given a proof that ends:

D1
Γ?{∆}

D2
Γ 6〈〉{〈∆〉}

cut〈〉 Γ{∅}

where D1 and D2 are in SyNIK+X〈〉, there is a proof of Γ{∅} in SyNIK+X〈〉.

Proof. By lexicographic induction on the tuple 〈rk(∆), ht(D2), ht(D1)〉, splitting cases on
the last rule instances in D1 and D2. Note that the last rule in D2 always applies to the
focus 〈∆〉. We will rewrite the derivation, written using ;, by moving the instance of cut〈〉
to a position of strictly lower measure or eliminating it entirely.

First, let us consider the cases where D2 ends with a structural rule:

D1

Γ?{∆, Λ}

D′2
Γ6〈〉{〈∆〉}

D′′2
Γ6〈〉{〈Λ〉}

spl〈〉
Γ6〈〉{〈∆, Λ〉}

cut〈〉 Γ{∅}
;

D1

Γ?{∆, Λ}

D′2
Γ6〈〉{〈∆〉}

weak
Γ6〈〉{〈∆〉, Λ}

cut〈〉 Γ{Λ}
D′′2

Γ6〈〉{〈Λ〉}
cut〈〉 Γ{∅}
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D1

∆?
1{[∆?

2], [∆3]}

D′2
∆ 6〈〉

1
{[

∆ 6〈〉
2 , 〈∆3〉

]}
k〈〉

∆ 6〈〉
1
{[

∆ 6〈〉
2
]
, 〈[∆3]〉

}
cut〈〉 ∆1{[∆2]}

;

D1

∆?
1{[∆?

2], [∆3]}
k[ ]

∆?
1{[∆?

2, ∆3]}
D′2

∆ 6〈〉
1
{[

∆ 6〈〉
2 , 〈∆3〉

]}
cut〈〉 ∆1{[∆2]}

D1

Γ?{[∆]}

D′2
Γ6〈〉{[〈∆〉]}

d〈〉
Γ6〈〉{〈[∆]〉}

cut〈〉 Γ{∅}
;

D1

Γ?{[∆]}
D′2

Γ6〈〉{[〈∆〉]}
cut〈〉 Γ{[∅]}

d[ ]

Γ{∅}

D1

Γ?{[∆]}

D′2
Γ6〈〉{〈∆〉}

t〈〉
Γ6〈〉{〈[∆]〉}

cut〈〉 Γ{∅}
;

D1

Γ?{[∆]}
t[ ]

Γ?{∆}
D′2

Γ6〈〉{〈∆〉}
cut〈〉 Γ{∅}

D1

∆?
1{[∆?

2, [∆3]]}

D′2
∆ 6〈〉

1
{[

∆ 6〈〉
2
]
, 〈∆3〉

}
b〈〉

∆ 6〈〉
1
{[

∆ 6〈〉
2 , 〈[∆3]〉

]}
cut〈〉 ∆1{[∆2]}

;

D1

∆?
1{[∆?

2, [∆3]]}
b[ ]

∆?
1{[∆?

2], ∆3}
D′2

∆ 6〈〉
1
{[

∆ 6〈〉
2
]
, 〈∆3〉

}
cut〈〉 ∆1{[∆2]}

D1

∆?
1{[∆?

2], [∆3]}

D′2
∆ 6〈〉

1
{[

∆ 6〈〉
2 , 〈[∆3]〉

]}
4〈〉

∆ 6〈〉
1
{[

∆ 6〈〉
2
]
, 〈[∆3]〉

}
cut〈〉 ∆1{[∆2]}

;

D1

∆?
1{[∆?

2], [∆3]}
4[ ]

∆?
1{[∆?

2, [∆3]]}
D′2

∆ 6〈〉
1
{[

∆ 6〈〉
2 , 〈[∆3]〉

]}
cut〈〉 ∆1{[∆2]}

D1

Γ?{[∆]}{∅}

D′2
Γ6〈〉{∅}{〈[∆]〉}

5〈〉
Γ6〈〉{〈[∆]〉}{∅}

cut〈〉 Γ{∅}{∅}
;

D1

Γ?{[∆]}{∅}
5[ ]

Γ?{∅}{[∆]}
D′2

Γ6〈〉{∅}{〈[∆]〉}
cut〈〉 Γ{∅}{∅}

In each case we can apply the induction hypothesis because ht(D′2) < ht(D2) and in the
first case also ht(D′′2 ) < ht(D2).3 Note the use of Lemma 6.3.
If the last rule in D2 is an axiom, we have one of the following three cases:

D1

Γ{∅}
fin〈〉

Γ6〈〉{〈∅〉}
cut〈〉 Γ{∅}

;
D1

Γ{∅}

D1

Λ{n}
id〈〉

Λ6〈〉{n, 〈n〉}
cut〈〉 Λ{n}

;
D1

Λ{n}

D1

Γ{p, p}
id〈〉

Γ6〈〉{p, 〈p〉}
cut〈〉 Γ{p}

;

D1

Γ{p, p}
cont Γ{p}

For the third case we use the admissibility of atomic contraction.
Finally, the last rule in D2 can be ↑〈〉L or ↓〈〉R , and if at the same time the last rule in D1
is the corresponding ↓〈〉L or ↑〈〉R on the cut formula (the cut sequent has to be a singleton
in that case), we have one of the two principal cases:

Γ2 ∈∈ N

D′1
Γ1{↓N, 〈Γ2〉}

↓〈〉L Γ1{↓N}

{
DΓ2

Γ∗1{Γ2}

}
Γ2 ∈∈ N

↓〈〉R Γ1{〈↓N〉}
cut〈〉 Γ1{∅}

;

D′1
Γ1{↓N, 〈Γ2〉}

D2

Γ1{〈↓N〉}
cut〈〉 Γ1{〈Γ2〉}

DΓ2

Γ∗1{Γ2}
cut〈〉 Γ1{∅}

3 We abuse the pruning notation in the cases for k〈〉, b〈〉 and 4〈〉 by writing ∆?
1{[∆?

2], { }} or ∆?
1{[∆?

2, { }]}
to denote the pruned context ∆?{ } when ∆{ } = ∆1{[∆2], { }} or ∆{ } = ∆1{[∆2, { }]} respectively.
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Λ ∈∈ P

D′1
Γ∗{↑P, 〈Λ〉}

↑〈〉R Γ∗{↑P }

{
DΛ

Γ{Λ}

}
Λ ∈∈ P

↑〈〉L Γ{〈↑P 〉}
cut〈〉 Γ{∅}

;

D′1
Γ∗{↑P, 〈Λ〉}

D2

Γ{〈↑P 〉}
cut〈〉 Γ{〈Λ〉}

DΛ

Γ{Λ}
cut〈〉 Γ{∅}

In both cases we have to apply the induction hypothesis twice: first to the upper cut
because ht(D′1) < ht(D1), and then to the lower cut because rk(Γ2) < rk(↓N) and
rk(Λ) < rk(↑P ). After the reduction step the focus is not in the same branch any more,
so which branch is considered to be D1 or D2 may change, but since the rank has decreased
strictly this does not affect the inductive argument.
Of course, when the last rule in D2 is ↑〈〉L or ↓〈〉R , the last rule in D1 does not need to be
the corresponding ↑〈〉R or ↓〈〉L rule. In that case we have a commutative case: the last rule
in D1 is permuted under the cut:

D′1
Γ?

1{∆}
r Γ?{∆}

D2

Γ6〈〉{〈∆〉}
cut〈〉 Γ{∅}

;

D′1
Γ?

1{∆}
D2

Γ6〈〉
1 {〈∆〉}

cut〈〉 Γ1{∅}
r Γ{∅}

The situation above applies if r is k〈〉 or any of the x〈〉 rules, because then there is a focus
in Γ{ } which is moved by r, and we have Γ6〈〉

1 { } = Γ 6〈〉{ }. It also applies if r is one of ↓〈〉L
or ↑〈〉R because then Γ{ } contains no focus and therefore Γ 6〈〉

1 { } = Γ6〈〉{ }. If the last rule
in D1 is spl〈〉 the situation is similar, and if it is one of id〈〉 or fin〈〉, then the cut disappears
trivially. Note that the last rule in D1 is not applying to ∆ (which is a singleton) because
otherwise it would be a principal case. The only nontrivial commutative cases are when
the focus in Γ{ } is released by the last rule in D1 which can be either a ↑〈〉L or a ↓〈〉R . In
the ↑〈〉L -case, we can reduce as follows:

{
DΛ

Γ?{Λ}{∆}

}
Λ ∈∈ P

↑〈〉L Γ?{〈↑P 〉}{∆}
D2

Γ{∅}{〈∆〉}
cut〈〉 Γ{〈↑P 〉}{∅}

;

 DΛ

Γ?{Λ}{∆}

D2

Γ{∅}{〈∆〉}weak Γ{Λ}{〈∆〉}
cut〈〉 Γ{Λ}{∅}


Λ ∈∈ P

↑〈〉L Γ{〈↑P 〉}{∅}

and we only need height-preserving admissibility of weakening in order to apply the
induction hypothesis, using ht(DΛ) < ht(D1). In the ↓〈〉R -case we need to distinguish
whether ∆ is of the form ↑P or ↓N . In the first case the cut disappears:{

DΓ2

Γ∗1{Γ2}{∅}

}
Γ2 ∈∈N

↓〈〉R Γ∗1{〈↓N〉}{↑P}
D2

Γ1{∅}{〈↑P 〉}
cut〈〉 Γ1{〈↓N〉}{∅}

;

{
DΓ2

Γ∗1{Γ2}{∅}

}
Γ2 ∈∈N

↓〈〉R Γ1{〈↓N〉}{∅}

and in the second we again use height-preserving admissibility of weakening in order to
apply the induction hypothesis, as ht(DΓ2) < ht(D1):{

DΓ2

Γ∗1{Γ2}{↓M}

}
Γ2 ∈∈N

↓〈〉R Γ1{〈↓N〉}{↓M}

{
DΓ3

Γ∗1{∅}{Γ3}

}
Γ3 ∈∈M

↓〈〉R Γ1{∅}{〈↓M〉}
cut〈〉 Γ1{〈↓N〉}{∅}

;


DΓ2

Γ∗1{Γ2}{↓M}


DΓ3

Γ∗1{∅}{Γ3}
weak Γ∗1{Γ∗2}{Γ3}

Γ3 ∈∈M
↓〈〉R Γ∗1{Γ2}{〈↓M〉}

cut〈〉 Γ∗1{Γ2}{∅}


Γ2 ∈∈N

↓〈〉R Γ1{〈↓N〉}{∅}
J
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I Theorem 6.6 (Cut-Elimination). Let X ⊆ {t, d, 4, b, 5} be 45-closed. If a sequent Γ is
provable in SyNIK+X〈〉+cut, then it is also provable in SyNIK+X〈〉.

Proof. By induction on the number of cuts in the proof, by repeatedly applying Lemma 6.5,
always starting with a topmost cut. J

I Lemma 6.7 (Identity). The following rule is derivable in SyNIK: sid〈〉 .∆1{∆2, 〈∆2〉}
Proof. The proof, by induction on the structure of the focus, is similar to the one for classical
modal logics in [7, Lemma 4.6]. J

I Lemma 6.8 (Simulation). Let A◦ be provable in NIK+X, and let R be a right-neutral
formula with bRc = A. Then R is provable in SyNIK+X〈〉+cut.

Proof. First, any NIK sequent can be transformed into a neutral polarized sequent with the
same meaning. The connectives are turned into their polarized variant and in particular,
a polarity is arbitrarily chosen for every atom, every >, and every ∧; then shifts are added
as needed to produce well-formed polarized formulas. Once the formulas are polarized, one
can obtain neutrality, and remove the ◦-annotation, by adding extra shifts in front of each
formula in the sequent as follows: if P is a positive formula, P 7→ ↓↑P and P ◦ 7→ ↑P , and if
N is a negative formula, N 7→ ↓N and N◦ 7→ ↑↓N . Each rule of NIK+X can therefore be
considered as a rule between neutral polarized sequents. As such, it can be shown to be
derivable in SyNIK+X〈〉+cut. We show the cases for the rules id, ∧L and 3Rd. The other
cases are similar.

id Λ{a, a◦}
becomes

sid〈〉 Λ{↓↑p, 〈↑p〉, ↑p}
↓〈〉L Λ{↓↑p, ↑p}

or
sid〈〉 Λ{↓n, ↑↓n, 〈↓n〉}
↑〈〉R Λ{↓n, ↑↓n}

Γ{A, B}
∧L Γ{A ∧B}

becomes

Γ{↓↑P, ↓↑Q}
weak Γ{↓↑(P +

∧Q), ↓↑P, ↓↑Q}

{
sid〈〉 Γ∗{↓↑(P +

∧Q), ∆P , ∆Q, ↑Q, 〈∆Q〉}
↑〈〉R Γ∗{↓↑(P +

∧Q), ∆P , ∆Q, ↑Q}

}
∆P ∈∈P,∆Q∈∈Q

↓〈〉R Γ∗{↓↑(P +

∧Q), 〈↑(P +

∧Q)〉, ↑Q}
↓〈〉L Γ∗{↓↑(P +

∧Q), ↑Q}
↓〈〉R Γ{↓↑(P +

∧Q), 〈↓↑Q〉}
...

spl〈〉 Γ{↓↑(P +

∧Q), 〈↓↑P, ↓↑Q〉}
cut〈〉 Γ{↓↑(P +

∧Q)}

(where the omitted third premise derivation is the similar branch for 〈↓↑P 〉), or it becomes

Γ{↓N, ↓M}
weak Γ{↓(N −

∧M), ↓N, ↓M}

{
sid〈〉 Γ∗{↓(N −

∧M), 〈∆N 〉, ∆N }
↓〈〉L Γ∗{↓(N −

∧M), ∆N }

}
∆N ∈∈N

↓〈〉R Γ{↓(N −

∧M), 〈↓N〉}
...

spl〈〉 Γ{↓(N −

∧M), 〈↓N, ↓M〉}
cut〈〉 Γ{↓(N −

∧M)}

(where the omitted third premise derivation is the similar branch for 〈↓M〉). Finally,

Λ{[A◦]}
3Rd Λ{3A◦}

becomes Λ{[↑P ]}


sid〈〉 Λ{↑3P, [〈∆P 〉, ∆P ]}
k〈〉 Λ{↑3P, 〈[∆P ]〉, [∆P ]}
↑〈〉R Λ{↑3P, [∆P ]}
↑〈〉L Λ{↑3P, [〈↑P 〉]}


∆P ∈∈P

d〈〉 Λ{↑3P, 〈[↑P ]〉}
cut〈〉 Λ{↑3P }

The lemma then follows by replacing in the proof of P ◦ (or N◦) in NIK+X each instance of
a rule by the corresponding derivation in SyNIK+X〈〉+cut, which builds a proof of ↑P (or
↑↓N resp.) in SyNIK+X〈〉+cut. J
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We can now summarize the results of this paper in the following theorem:

I Theorem 6.9. Let X ⊆ {t, d, 4, b, 5} be 45-closed and let Γ be a neutral sequent. The
following are equivalent:
1. fm(bΓc) is X-valid.
2. Γ is provable in FoNIK+Xf .
3. Γ is provable in SyNIK+X〈〉.
4. Γ is provable in SyNIK+X〈〉+cut.

Proof. 4 → 3 is just Theorem 6.6; 3 → 2 follows from Lemma 5.4; 2 → 1 follows from
Lemma 4.6; and finally 1→ 4 follows from Lemma 6.8 with the use of Theorem 3.8. Observe
that the proof of Lemma 6.8 applies to unpolarized sequents and neutral sequents in general,
and not just output formulas and right-neutral formulas. J
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Abstract
In this paper, we show that Markov’s principle is not derivable in dependent type theory with
natural numbers and one universe. One tentative way to prove this would be to remark that
Markov’s principle does not hold in a sheaf model of type theory over Cantor space, since Markov’s
principle does not hold for the generic point of this model. It is however not clear how to interpret
the universe in a sheaf model [9, 17, 21]. Instead we design an extension of type theory, which
intuitively extends type theory by the addition of a generic point of Cantor space. We then show
the consistency of this extension by a normalization argument. Markov’s principle does not hold
in this extension, and it follows that it cannot be proved in type theory.
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1 Introduction

Markov’s principle has a special status in constructive mathematics. One way to formulate
this principle is that if it is impossible that a given algorithm does not terminate, then it does
terminate. It is equivalent to the fact that if a set of natural number and its complement are
both computably enumerable, then this set is decidable. This form is often used in recursivity
theory. This principle was first formulated by Markov, who called it “Leningrad’s principle”,
and founded a branch of constructive mathematics around this principle [14].

This principle is also equivalent to the fact that if a given real number is not equal to 0
then this number is apart from 0 (that is this number is < −r or > r for some rational number
r > 0). On this form, it was explicitly refuted by Brouwer in intuitionistic mathematics, who
gave an example of a real number (well defined intuitionistically) which is not equal to 0,
but also not apart from 0. (The motivation of Brouwer for this example was to show the
necessity of using negation in intuitionistic mathematics [4].) The idea of Brouwer can be
represented formally using topological models [19].

In a neutral approach to mathematics, such as Bishop’s [3], Markov’s principle is simply
left undecided. We also expect to be able to prove that Markov’s principle is not provable
in formal system in which we can express Bishop’s mathematics. For instance, Kreisel [12]
introduced modified realizability to show that Markov’s principle is not derivable in the
formal system HAω. Similarly, one would expect that Markov’s principle is not derivable in
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17:2 The Independence of Markov’s Principle in Type Theory

Martin-Löf type theory [15], but, as far as we know, such a result has not been established
yet. 1

We say that a statement A is independent of some formal system if A cannot be derived
in that system. A statement in the formal system of Martin-Löf type theory (MLTT) is
represented by a closed type. A statement/type A is derivable if it is inhabited by some term t

(written MLTT ` t :A). This is the so-called propositions-as-types principle. Correspondingly
we say that a statement A (represented as a type) is independent of MLTT if there is no
term t such that MLTT ` t :A.

The main result of this paper is to show that Markov’s principle is independent of
Martin-Löf type theory.2

The main idea for proving this independence is to follow Brouwer’s argument. We want
to extend type theory with a “generic” infinite sequence of 0 and 1 and establish that it is
both absurd that this generic sequence is never 0, but also that we cannot show that it has
to take the value 0. To add such a generic sequence is exactly like adding a Cohen real [5]
in forcing extension of set theory. A natural attempt for doing this will be to consider a
topological model of type theory (sheaf model over Cantor space), extending the work [19]
to type theory. However, while it is well understood how to represent universes in presheaf
model [9], it has turned out to be surprisingly difficult to represent universes in sheaf models,
as we learnt from works of Chuangjie Xu and Martin Escardo [21] and works of Thomas
Streicher [17]. Our approach is here instead a purely syntactical description of a forcing
extension of type theory (refining previous work of [7]), which contains a formal symbol
for the generic sequence and a proof that it is absurd that this generic sequence is never 0,
together with a normalization theorem, from which we can deduce that we cannot prove
that this generic sequence has to take the value 0. Since this formal system is an extension
of type theory, the independence of Markov’s principle follows.

As stated in [11], which describes an elegant generalization of this principle in type theory,
Markov’s principle is an important technical tool for proving termination of computations,
and thus can play a crucial role if type theory is extended with general recursion as in [6].

This paper is organized as follows. We first describe the rules of the version of type
theory we are considering. This version can be seen as a simplified version of type theory as
represented in the system Agda [16], and in particular, contrary to the work [7], we allow
η-conversion, and we express conversion as judgment. Markov’s principle can be formulated
in a natural way in this formal system. We describe then the forcing extension of type
theory, where we add a Cohen real. For proving normalization, we follow Tait’s computability
method [18, 15], but we have to consider an extension of this with a computability relation
in order to interpret the conversion judgment. This can be seen as a forcing extension of the
technique used in [1]. Using this computability argument, it is then possible to show that we
cannot show that the generic sequence has to take the value 0. We end by a refinement of
this method, giving a consistent extension of type theory where the negation of Markov’s
principle is provable.

1 The paper [10] presents a model of the calculus of constructions using the idea of modified realizability,
and it seems possible to use also this technique to interpret the type theory we consider and prove in
this way the independence of Markov’s principle.

2 Some authors define independence in the stronger sense “A statement is independent of a formal system
if neither the statement nor its negation is provable in the system”, e.g. [13]. We will establish the
independence of Markov’s principle in this stronger sense with the help of known results from the
literature.
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2 Type theory and forcing extension

A dependent type theory is given by: A syntax describing the set objects of discourse, forms
of judgments, and rules of inference for deriving valid judgments.

The syntax of our type theory is given by the grammar:

t, u,A,B :=x | ⊥rec (λx.A) | unitrec (λx.A) t | boolrec (λx.A) t u | natrec (λx.A) t u
| U | N | N0 | N1 | N2 | 0 | 1 | S t
| Π(x :A)B | λx.t | t u | Σ(x :A)B | (t, u) | t.1 | t.2

The terms N0, N1, N2, and N will denote , respectively, the empty type, the unit type,
the type of booleans, and the type of natural numbers. The term U will denote the universe,
i.e. the type of small types. We use the notation n as a short hand for the term Sn 0, where
S is the successor constructor of natural numbers.

2.1 Type system
We describe a type theory with one universe à la Russell, natural numbers, functional
extensionality and surjective pairing, hereafter referred to as MLTT.3 The type theory has
the following judgment forms: 1. Γ `. 2. Γ ` A. 3. Γ ` t :A. 4. Γ ` A = B. 5. Γ ` t = u :A.
The first expresses that Γ is a well-formed contexts, the second that A is a type in the context
Γ, and the third that t is a term of type A in the context Γ. The fourth and fifth express type
and term equality respectively. Below we outline the inference rules of this type theory. We
use the notation F → G for Π(x : F )G when G doesn’t depend on F and ¬A for A→ N0.

Natural numbers:
Γ `

Γ ` N
Γ `

Γ ` 0:N
Γ ` n :Nnat-suc

Γ ` Sn :N
Γ, x :N ` F Γ ` a0 :F [0] Γ ` g :Π(x :N)(F [x]→ F [Sx])

natrec-I
Γ ` natrec (λx.F ) a0 g :Π(x :N)F

Γ, x :N ` F Γ ` a0 :F [0] Γ ` g :Π(x :N)(F [x]→ F [Sx])
natrec-0

Γ ` natrec (λx.F ) a0 g 0 = a0 :F [0]
Γ, x :N ` F Γ ` a0 :F [0] Γ ` n :N Γ ` g :Π(x :N)(F [x]→ F [Sx])

natrec-suc
Γ ` natrec (λx.F ) a0 g (Sn) = g n (natrec (λx.F ) a0 g n) :F [Sn]

Γ, x :N ` F = G Γ ` a0 :F [0] Γ ` g :Π(x :N)(F [x]→ F [Sx])
natrec-eq

Γ ` natrec (λx.F ) a0 g = natrec (λx.G) a0 g :Π(x :N)F

Booleans:
Γ `

Γ ` N2

Γ `
Γ ` 0:N2

Γ `
Γ ` 1:N2

Γ, x :N2 ` F Γ ` a0 :F [0] Γ ` a1 :F [1]
boolrec-I

Γ ` boolrec (λx.F ) a0 a1 :Π(x :N2)F
Γ, x :N2 ` F Γ ` a0 :F [0] Γ ` a1 :F [1]

boolrec-0
Γ ` boolrec (λx.F ) a0 a1 0 = a0 :F [0]

3 This is a type system similar to Martin-löf’s [15] except that we have η-conversion and surjective pairing.
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Γ, x :N2 ` F Γ ` a0 :F [0] Γ ` a1 :F [1]
boolrec-1

Γ ` boolrec (λx.F ) a0 a1 1 = a1 :F [1]

Γ, x :N2 ` F = G Γ ` a0 :F [0] Γ ` a1 :F [1]
boolrec-eq

Γ ` natrec (λx.F ) a0 a1 = natrec (λx.G) a0 a1 :Π(x :N2)F

Dependent functions:

Γ ` F Γ, x :F ` G
Π-I

Γ ` Π(x :F )G
Γ ` F = H Γ, x :F ` G = E

Π-eq
Γ ` Π(x :F )G = Π(x :H)E

Γ, x :F ` t :G
λ-I

Γ ` λx.t :Π(x :F )G
Γ ` g :Π(x :F )G Γ ` a :F

fun-ap
Γ ` g a :G[a]

Γ, x :F ` t :G Γ ` a :F
β

Γ ` (λx.t)a = t[a] :G[a]

Γ ` g :Π(x :F )G Γ ` u = v :F
fun

Γ ` g u = g v :G[u]
Γ ` h = g :Π(x :F )G Γ ` u :F

fun-eq
Γ ` hu = g u :G[u]

Γ ` h :Π(x :F )G Γ ` g :Π(x :F )G Γ, x :F ` hx = g x :G[x]
fun-ext

Γ ` h = g :Π(x :F )G

Dependent product:

Γ ` F Γ, x :F ` G
Σ-I

Γ ` Σ(x :F )G
Γ ` F = H Γ, x :F ` G = E

Σ-eq
Γ ` Σ(x :F )G = Σ(x :H)E

Γ, x :F ` G Γ ` a :F Γ ` b :G[a]
pr-I

Γ ` (a, b) :Σ(x :F )G
Γ ` t :Σ(x :F )G

pr-e-1
Γ ` t.1:F

Γ ` t :Σ(x :F )G
pr-e-2

Γ ` t.2:G[t.1]

Γ ` (t, u) :Σ(x :F )G
pr1

Γ ` (t, u).1 = t :F
Γ ` (t, u) :Σ(x :F )G

pr2
Γ ` (t, u).2 = u :G[t]

Γ ` t = u :Σ(x :F )G
pr-eq-1

Γ ` t.1 = u.1:F
Γ ` t = u :Σ(x :F )G

pr-eq-1
Γ ` t.2 = u.2:G[t.1]

Γ ` t :Σ(x :F )G Γ ` u :Σ(x :F )G Γ ` t.1 = u.1:F Γ ` t.2 = u.2:G[t.1]
pr-ext

Γ ` t = u :Σ(x :F )G

Universe:

Γ `
Γ ` U

Γ ` F :U
Γ ` F

Γ ` F = G :U
Γ ` F = U

Γ `
Γ ` N :U

Γ `
Γ ` N2 :U

Γ ` F : U Γ, x :F ` G : U
Γ ` Π(x :F )G : U

Γ ` F = H : U Γ, x :F ` G = E : U
Γ ` Π(x :F )G = Π(x :H)E :U

Γ ` F : U Γ, x :F ` G : U
Γ ` Σ(x :F )G : U

Γ ` F = H : U Γ, x :F ` G = E : U
Γ ` Σ(x :F )G = Σ(x :H)E :U
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Congruence:
Γ ` t :F Γ ` F = G

Γ ` t :G
Γ ` t = u :F Γ ` F = G

Γ ` t = u :G
Γ ` F

Γ ` F = F
Γ ` F = G
Γ ` G = F

Γ ` F = G Γ ` G = H
Γ ` F = H

Γ ` t :F
Γ ` t = t :F

Γ ` t = u :F
Γ ` u = t :F

Γ ` t = u :F Γ ` u = v :F
Γ ` t = v :F

For brevity we omitted the rules for the types N0 and N1.
The following four rules are admissible in the this type system [1]:

Γ ` a :A
Γ ` A

Γ ` a = b :A
Γ ` a :A

Γ, x :F ` G Γ ` a = b :F
Γ ` G[a] = G[b]

Γ, x :F ` t :G Γ ` a = b :F
Γ ` t[a] = t[b] :G[a]

2.2 Markov’s principle
Markov’s principle can be represented in type theory by the type

MP := Π(h :N → N2)[¬¬(Σ(x :N) IsZero (hx))→ Σ(x :N) IsZero (hx)]

where IsZero :N2 → U is defined by IsZero := λy.boolrec (λx.U)N1N0 y.
Note that IsZero (hn) is inhabited when hn = 0 and empty when hn = 1. Thus

Σ(x :N) IsZero (hx) is inhabited if there is n such that hn = 0.
The main result of this paper is the following:

I Theorem 2.1. There is no term t such that MLTT ` t :MP.

An extension of MLTT is given by introducing new objects, judgment forms and derivation
rules. This means in particular that any judgment valid in MLTT is valid in the extension.
A consistent extension is one in which the type N0 is uninhabited.

To show Theorem 2.1 we will form a consistent extension of MLTT with a new consant
f where ` f :N → N2 and ¬¬(Σ(x :N) IsZero (f x)) → Σ(x :N) IsZero (f x) is not derivable.
Thus MP is not derivable in this extension and consequently not derivable in MLTT.

While this is sufficient to establish independence in the sense of non-derivability of MP.
To establish the independence of MP in the stronger sense one also needs to show that
¬MP is not derivable in MLTT. This can achieved by reference to the work of Aczel [2]
where it is shown that MLTT extended with ` dne :Π(A :U)(¬¬A→ A) is consistent. Since
h :N → N2, x :N ` IsZero (hx) :U we have h :N → N2 ` Σ(x :N) IsZero (hx) :U . Thus

h :N → N2 ` dne (Σ(x :N) IsZero (hx)) :¬¬(Σ(x :N) IsZero (hx))→ Σ(x :N) IsZero (hx)

By λ abstraction we have ` λh.dne (Σ(x :N) IsZero (hx)) :MP. We can then conclude that
there is no term t such that MLTT ` t :¬MP.

Finally, we will refine the result of Theorem 2.1 by building a consistent extension of
MLTT where ¬MP is derivable.

2.3 Forcing extension
A condition p is a graph of a partial finite function from N to {0, 1}. We denote by 〈〉 the
empty condition. We write p(n) = b when (n, b) ∈ p. We say q extends p (written q 6 p)
if p is a subset of q. A condition can be thought of as a compact open in Cantor space
2N. Two conditions p and q are compatible if p ∪ q is a condition and we write pq for p ∪ q,
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17:6 The Independence of Markov’s Principle in Type Theory

otherwise they are incompatible. If n /∈ dom(p) we write p(n, 0) for p∪{(n, 0)} and p(n, 1) for
p ∪ {(n, 1)}. We define the notion of partition corresponding to the notion of finite covering
of a compact open in Cantor space.

I Definition 2.2 (Partition). We write p C p1, . . . , pn to say that p1, . . . , pn is a partition of
p and we define it as follows:
1. p C p.
2. If n /∈ dom(p) and p(n, 0) C . . . , qi, . . . and p(n, 1) C . . . , rj , . . . then p C . . . , qi, . . . , rj , . . . .
Note that if p C p1, . . . , pn then pi and pj are incompatible whenever i 6= j. If moreover
q 6 p then q C . . . , qpj , . . . where pj is compatible with q.

We extend the given type theory by annotating the judgments with conditions, i.e.
replacing each judgment Γ ` J in the given type system with a judgment Γ `p J .

In addition we add the locality rule: Γ `p1 J . . . Γ `pn
J

loc p C p1 . . . pnΓ `p J
.

We add a term f for the generic point along with the introduction and conversion rules:
Γ `p

f-I Γ `p f :N → N2

Γ `p
f-eval n ∈ dom(p)

Γ `p f n = p(n) :N2
.

We add a term w and the rule:
Γ `p

w-term
Γ `p w :¬¬(Σ(x :N) IsZero (f x))

.

Since w inhabits ¬¬(Σ(x :N) IsZero (f x)), our goal is then to show that no term inhabits
Σ(x :N) IsZero(f x).

It follows directly from the description of the forcing extension that:

I Lemma 2.3. If Γ ` J then Γ `p J for all p. In particular, if ` t :A then `p t :A for all p.

Note that if q 6 p and Γ `p J then Γ `q J (monotonicity). A statement A (represented as a
closed type) is derivable in this extension if `〈〉 t :A for some t, which in turn implies `p t :A
for all p.

Similarly to [7] we can state a conservativity result for this extension. Let ` g :N → N2
and ` v : ¬¬(Σ(x :N) IsZero (g x)) be two terms of standard type theory. We say that g
is compatible with a condition p if g is such that ` g n = b :N2 whenever (n, b) ∈ p and
` g n = 0:N2 otherwise. We say that v is compatible with a condition p if g is compatible
with p and v is given by v := λx.x (np, 0) where np is the smallest natural number such
that np /∈ dom(p). To see that v is well typed, note that by design Γ ` g np = 0 :N2 thus
Γ ` IsZero (g np) = N1 and Γ ` (np, 0) : Σ(x :N)IsZero (g x). We have then Γ, x : ¬(Σ(y :
N) IsZero (g y)) ` x (np, 0) :N0 thus Γ ` λx.x (np, 0) :¬¬(Σ(y :N) IsZero (g y)).

I Lemma 2.4 (Conservativity). Let ` g : N → N2 and ` v : ¬¬(Σ(x : N) IsZero (g x)) be
compatible with p. If Γ `p J then Γ[g/f, v/w] ` J [g/f, v/w], i.e. replacing f with g then w
with v we obtain a valid judgment in standard type theory. In particular, if Γ `〈〉 J where
neither f nor w occur in Γ or J then Γ ` J is a valid judgment in standard type theory.

Proof. The proof is by induction on the type system and it is straightforward for all the
standard rules. For (f-eval) we have (f n)[g/f, v/w] := g n and since g is compatible
with p we have Γ[g/f, v/w] ` g n = p(n) : N2 whenever n ∈ dom(p). For (w-term) we
have (w : ¬¬(Σ(x : N) IsZero (f x)))[g/f, v/w] := (w : ¬¬(Σ(x : N) IsZero (g x)))[v/w] := v :
¬¬(Σ(x :N) IsZero (g x)). For (loc) the statement follows from the observation that when
g is compatible with p and p C p1, . . . , pn then g is compatible with exactly one pi for
1 6 i 6 n. J
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3 A Semantics of the forcing extension

In this section we outline a semantics for the forcing extension given in the previous section.
We will interpret the judgments of type theory by computability predicates and relations
defined by reducibility to computable weak head normal forms.

3.1 Reduction rules
We extend the β, ι conversion with f n ⇒p b whenever (n, b) ∈ p. In order to ease the
presentation of the proofs and definitions we introduce evaluation contexts following [20].

E ::=[ ] | Eu | E.1 | E.2 | SE | f E
⊥rec (λx.C)E | unitrec (λx.C) aE | boolrec (λx.C) a0 a1 E | natrec (λx.C) cz g E

An expression E[e] is then the expression resulting from replacing the hole [ ] by e. We
reserve the symbols E and C for evaluation contexts. We have the following reduction rules:

unitrec (λx.C) c 0→ c boolrec (λx.C) c0 c1 0→ c0 boolrec (λx.C) c0 c1 1→ c1

natrec (λx.C) cz g 0→ cz natrec (λx.C) cz g (S k)→ g k (natrec (λx.C) cz g k)

(λx.t) a→ t[a/x] (u, v).1→ u (u, v).2→ v

e→ e′

e→p e
′

k ∈ dom(p)
f-red

f k →p p(k)
e→p e

′

E[e]⇒p E[e′]

Note that we reduce under S.
The relation ⇒ is monotone, that is if q 6 p and t⇒p u then t⇒q u. We will also need

to show that the reduction is local, i.e. if p C p1, . . . , pn and t⇒pi
u then t⇒p u.

I Lemma 3.1. If m /∈ dom(p) and t→p(m,0) u and t→p(m,1) u then t→p u.

Proof. By induction on the derivation of t→p(m,0) u. If t→p(m,0) u is derived by (f-red)
then t := f k and u := p(m, 0)(k) for some k ∈ dom(p(m, 0)). But since we also have a
reduction f k →p(m,1) u, we have p(m, 1)(k) := u := p(m, 0)(k) which could only be the case if
k ∈ dom(p). Thus we have a reduction f k →p u := p(k). Alternatively, we have a derivation
t→ u, in which case we have t→p u directly. J

I Lemma 3.2. If m /∈ dom(p) and t⇒p(m,0) u and t⇒p(m,1) u then t⇒p u.

Proof. From the reduction t ⇒p(k,0) u we have t := E[e], u := E[e′] and e →p(m,0) e
′ for

some context E. But then we also have a reduction E[e]⇒p(m,1) E[e′], thus e→p(m,1) e
′. By

Lemma 3.1, we have e→p e
′ and thus E[e]⇒p E[e′]. J

I Lemma 3.3. Let q 6 p. If t→q u then either t→p u or t has the form E[f m] for some
m ∈ dom(q) \ dom(p).

Proof. By induction on the derivation of t →q u. If the reduction t →q u has the form
f k →q q(k) then either k /∈ dom(p) and the statement follows or k ∈ dom(p) and we have
t→p u. Alternatively, we have t→ u and immediately t→p u. J

I Lemma 3.4. Let q 6 p. If t⇒q u then either t⇒p u or t has the form E[f m] for some
m ∈ dom(q) \ dom(p).
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Proof. If t⇒q u then t := E[e], u := E[e′] and e→q e
′ for some context E. By Lemma 3.3

either e := C[f m] for m /∈ dom(p) and the statement follows or e →p e
′ in which case we

have t⇒p u. J

I Corollary 3.5. For any condition p and m /∈ dom(p). Let t⇒p(m,0) u and t⇒p(m,1) v. If
u := v then t⇒p u; otherwise, t has the form E[f m].

Proof. Follows by Lemma 3.2 and Lemma 3.4. J

Next we define the relation p ` t⇒ u :A to mean t⇒p u and `p t = u :A and we write
p ` A ⇒ B for p ` A ⇒ B : U . We note that it holds that if p ` t ⇒ u : Π(x : F )G and
` a : F then p ` t a ⇒ u a :G[a] and if p ` t ⇒ u : Σ(x : F )G then p ` t.1 ⇒ u.1 : F and
p ` t.2⇒ u.2:G[t.1]. We define a closure for this relation as follows:

`p t :A
p ` t⇒∗ t :A

p ` t⇒ u :A
p ` t⇒∗ u :A

p ` t⇒ u :A p ` u⇒∗ v :A
p ` t⇒∗ v :A

`p A
p ` A⇒∗ A

p ` A⇒ B

p ` A⇒∗ B
p ` A⇒ B p ` B ⇒∗ C

p ` A⇒∗ C

A term t is in p-whnf if whenever t⇒p u then t := u. A whnf is canonical if it has the
form 0,1,n, λx.t, f, w, ⊥rec (λx.C), unitrec (λx.C) a, boolrec (λx.C) a0 a1, natrec (λx.C) cz g,
N0,N1,N2,N ,U ,Π(x :F )G, or Σ(x :F )G. A p-whnf is proper if it is canonical or it is of the
form E[f k] for k /∈ dom(p).

We have the following corollaries to Lemma 3.2 and Corollary 3.5.

I Corollary 3.6. Let m /∈ dom(p). Let p(m, 0) ` t⇒p(m,0) u :A and p(m, 1) ` t⇒p(m,1) v :A.
If u := v then p ` t⇒ u :A; otherwise t has the form E[f m].

I Corollary 3.7. If p ` t ⇒ u : A and q 6 p then q ` t ⇒ u : A. If p C p1, . . . , pn and
pi ` t⇒ u :A for all i then p ` t⇒ u :A.

Proof. Let q 6 p. If t ⇒p u we have t ⇒q u and if `p t = u :A then `q t = u :A. Thus
q ` t ⇒ u :A whenever p ` t ⇒ u :A. Let p C p1, . . . , pn. If for all i, t ⇒pi u :A then from
Lemma 3.2, by induction on the partition, we have t⇒p u :A. If `pi

t = u :A for all i, then
`p t = u :A. Thus we have p ` t⇒ u :A whenever pi ` t⇒ u :A for all i. J

From the above we can show that closure ⇒∗ is monotone, it is not however local.
For a closed term `p t :A, we say that t has a p-whnf if p ` t⇒∗ u :A and u is in p-whnf.

If moreover u is canonical, respectively proper, we say that t has a canonical, respectively
proper, p-whnf. Since the reduction relation is deterministic we have

I Lemma 3.8. A term `p t :A has at most one p-whnf.

I Corollary 3.9. Let `p t :A and m /∈ dom(p). If t has proper p(m, 0)-whnf and a proper
p(m, 1)-whnf then t has a proper p-whnf.

Proof. Let p(m, 0) ` t⇒∗ u :A and p(m, 1) ` t⇒∗ v :A with u in proper p(m, 0)-whnf and
v in proper p(m, 1)-whnf. If t := u or t := v then t is already in proper p-whnf. Alternatively
we have reductions p(m, 0) ` t⇒ u1 :A and p(m, 1) ` t⇒ v1 :A. By Corollary 3.6 either t is
in proper p-whnf or u1 := v1 and p ` t⇒ u1 :A. It then follows by induction that u1, and
thus t, has a proper p-whnf. J



T. Coquand and B. Mannaa 17:9

3.2 Computability predicate and relation
We define inductively a forcing relation p  A to express that a type A is computable at
p. Mutually by recursion we define relations p  a :A, p  A = B, and p  a = b :A. The
definition fits the generalized mutual induction-recursion schema [8]4.

I Definition 3.10 (Computibility predicate and relation).

(FN0) If p ` A⇒∗ N0 then p  A.
1. p  t :A does not hold for all t.
2. p  t = u :A does not hold for all t and u.
3. If p  B then p  A = B if

(i) p ` B ⇒∗ N0.
(ii) p ` B ⇒∗ E[f m] for some m /∈ dom(p) and p(m, i)  A = B for all i ∈ {0, 1}.

(FN1) If p ` A⇒∗ N1 then p  A.
1. p  t :A if

(i) p ` t⇒∗ 0:A.
(ii) p ` t⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t :A for all i ∈ {0, 1}.

3. If p  t :A and p  u :A then p  t = u :A if
(i) p ` t⇒∗ 0:A and p ` u⇒∗ 0:A.
(ii) p ` t⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t = u :A for all i ∈ {0, 1}.
(iii) p ` u⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t = u :A for all i ∈ {0, 1}.

4. If p  B then p  A = B if
(i) p ` B ⇒∗ N1.
(ii) p ` B ⇒∗ E[f m] for some m /∈ dom(p) and p(m, i)  A = B for all i ∈ {0, 1}.

(FN2) If p ` A⇒∗ N2 then p  A.
1. p  t :A if

(i) p ` t⇒∗ b :A for some b ∈ {0, 1}.
(ii) p ` t⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t :A for all i ∈ {0, 1}.

3. If p  t :A and p  u :A then p  t = u :A if
(i) p ` t⇒∗ b :A and p ` u⇒∗ b :A for some b ∈ {0, 1}.
(ii) p ` t⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t = u :A for all i ∈ {0, 1}.
(iii) p ` u⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t = u :A for all i ∈ {0, 1}.

4. If p  B then p  A = B if
(i) p ` B ⇒∗ N2.
(ii) p ` B ⇒∗ E[f m] for some m /∈ dom(p) and p(m, i)  A = B for all i ∈ {0, 1}.

(FN) If p ` A⇒∗ N then p  A.
1. p  t :A if

(i) p ` t⇒∗ n :A for some n ∈ N.
(ii) p ` t⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t :A for all i ∈ {0, 1}.

3. If p  t :A and p  u :A then p  t = u :A if
(i) p ` t⇒∗ n :A and p ` u⇒∗ n :A for some n ∈ N.
(ii) p ` t⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t = u :A for all i ∈ {0, 1}.
(iii) p ` u⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  t = u :A for all i ∈ {0, 1}.

4. If p  B then p  A = B if
(i) p ` B ⇒∗ N .
(ii) p ` B ⇒∗ E[f m] for some m /∈ dom(p) and p(m, i)  A = B for all i ∈ {0, 1}.

4 However, for the canonical proof below we actually need something weaker than an inductive-recursive
definition (arbitrary fixed-point instead of least fixed-point), reflecting the fact that the universe is
defined in an open way [15].
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(FΠ) If p ` A ⇒∗ Π(x : F )G then p  A if p  F and for all q 6 p, q  G[a] whenever
q  a :F and q  G[a] = G[b] whenever q  a = b :F .
1. If `p f : A then p  f : A if for all q 6 p, q  f a : G[a] whenever q  a : F and

q  f a = f b :G[a] whenever q  a = b :F .
2. If p  f :A and p  g :A then p  f = g :A if for all q 6 p, q  f a = g a :G[a]

whenever q  a :F .
3. If p  B then p  A = B if

(i) `p A = B and p ` B ⇒∗ Π(x : H)E and p  F = H and for all q 6 p,
q  G[a] = E[a] whenever q  a :F .

(ii) p ` B ⇒∗ E[f m] for some m /∈ dom(p) and p(m, i)  A = B for all i ∈ {0, 1}.
(FΣ) If p ` A ⇒∗ Σ(x : F )G then p  A if p  F and for all q 6 p, q  G[a] whenever

q  a :F and q  G[a] = G[b] whenever q  a = b :F .
1. If `p t :A then p  t :A if p  t.1:F and p  t.2:G[t.1].
2. If p  t :A and p  u :A then p  t = u :A if p  t.1 = u.1:F and p  t.2 = u.2:G[t.1].
3. If p  B then p  A = B if

(i) `p A = B and p ` B ⇒∗ Σ(x : H)E and p  F = H and for all q 6 p,
q  G[a] = E[a] whenever q  a :F .

(ii) p ` B ⇒∗ E[f m] for some m /∈ dom(p) and p(m, i)  A = B for all i ∈ {0, 1}.
(FU) If p ` A⇒∗ U then p  A.

1. p  C :A if
(i) p ` C ⇒∗ M :A for M ∈ {N0, N1, N2, N}.
(ii) p ` C ⇒∗ Π(x :F )G :A and p  F :A and for all q 6 p, q  G[a] :A whenever

q  a :F and q  G[a] = G[b] :A whenever q  a = b :F .
(iii) p ` C ⇒∗ Σ(x :F )G :A and p  F :A and for all q 6 p, q  G[a] :A whenever

q  a :F and q  G[a] = G[b] :A whenever q  a = b :F .
(iv) p ` C ⇒∗ E[f m] :A for some m /∈ dom(p) and p(m, i)  C :A for all i ∈ {0, 1}.

5. If p  C :A and p  D :A then p  C = D :A if
(i) p ` C ⇒∗ M :A and D ⇒∗ M :A for M ∈ {N0, N1, N2, N}.
(ii) p ` C ⇒∗ Π(x :F )G :A and p ` D ⇒∗ Π(x :H)E :A and p  F = H :A and for

all q 6 p, q  G[a] = E[a] :A whenever q  a :F .
(iii) p ` C ⇒∗ Σ(x :F )G :A and p ` D ⇒∗ Σ(x :H)E :A and p  F = H :A and for

all q 6 p, q  G[a] = E[a] :A whenever q  a :F .
(iv) p ` C ⇒∗ E[f m] : A for some m /∈ dom(p) and p(m, i)  C = D : A for all

i ∈ {0, 1}.
(v) p ` D ⇒∗ E[f m] : A for some m /∈ dom(p) and p(m, i)  C = D : A for all

i ∈ {0, 1}.
6. If p  B then p  A = B if p ` B ⇒∗ U .

(FLoc) If p ` A ⇒∗ E[f m] for some m /∈ dom(p) and p(m, i)  A for all i ∈ {0, 1} then
p  A.
1. If p(m, i)  t :A for all i ∈ {0, 1} then p  t :A.
2. If p  t :A and p  u :A and p(m, i)  t :A for all i ∈ {0, 1} then p  t = u :A.
3. If p  B then p  A = B if p(m, i)  A = B for all i ∈ {0, 1}.

We note from the definition that when p  A = B then p  A and p  B, when p  a :A
then p  A and when p  a = b :A then p  a :A and p  b :A. We remark also if p ` A⇒∗ U
then A := U since we have only one universe.

The clause (FLoc) gives semantics to variable types. For example, if p := {(0, 0)} and
q := {(0, 1)} the type R := boolrec (λx.U)N1N (f 0) has reductions p ` R ⇒∗ N1 and
q ` R⇒∗ N . Thus p  R and q  R and since 〈〉 C p, q we have 〈〉  R.
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Immediately from Definition 3.10 we get:

I Lemma 3.11. If p  A then `p A. If p  a :A then `p a :A.

I Lemma 3.12. If p  A then there is a partition p C p1, . . . , pn where A has a canonical
pi-whnf for all i.

Proof. The statement follows from the definition by induction on the derivation of p  A J

I Corollary 3.13. Let p C p1, . . . , pn. If pi  A for all i then A has a proper p-whnf.

Proof. Follows from Lemma 3.12 and Corollary 3.9 by induction on the partition. J

I Lemma 3.14. If p  A and q 6 p then q  A.

Proof. Let p  A and q 6 p. By induction on the derivation of p  A:
(FN) Since p ` A⇒∗ N and the reduction relation is monotone we have q ` A⇒∗ N , thus

q  A. The statement follows similarly for (FN0), (FN1), (FN2) and (FU).
(FΠ) Let p ` A⇒∗ Π(x :F )G. Since p  F , by induction q  F . Let s 6 q, we have then

s 6 p. It then follows from p  A that s  G[a] whenever s  a :F and s  G[a] = G[b]
whenever s  a = b :F . Thus q  A. The statement follows similarly for (FΣ).

(FLoc) Let p ` A ⇒∗ E[f m]. If m ∈ dom(q) then q 6 p(m, 0) or q 6 p(m, 1) and since
p(m, i)  A, by induction q  A. Alternatively, q ` A⇒∗ E[f m]. But q C q(m, 0), q(m, 1)
and q(m, i) 6 p(m, i). By induction q(m, i)  A for all i ∈ {0, 1} and thus q  A. J

I Lemma 3.15. If p  t :A and q 6 p then q  t :A.

Proof. Let p  t :A and q 6 p. By induction on the derivation of p  A.
(FN) Since p ` A ⇒∗ N then q ` A ⇒∗ N . By induction on the derivation of p  t :A.

If p ` t ⇒∗ n : A for n ∈ N then q ` t ⇒∗ n : A, hence, q  t : A. Alternatively,
p ` t⇒∗ E[f k] :A for some k /∈ dom(p) and p(k, b)  t :A for all b ∈ {0, 1}. If k ∈ dom(q)
then q 6 p(k, 1) or q 6 p(k, 0) and in either case, by induction, q  t :A. Otherwise, we
have q(k, b) 6 p(k, b) and by induction q(k, b)  t :A for all b. By the definition q  t :A.
The statement follows similarly for (FN0), (FN1), and (FN2).

(FU) We can show the statement by a proof similar to that of Lemma 3.14.
(FΠ) Let p ` A⇒∗ Π(x :F )G. We have q ` A⇒∗ Π(x :F )G. From `p t :A we have `q t :A.

Let r 6 q. If r  a :F then since r 6 p we have r  t a :G[a]. Similarly if r  a = b :F
then r  t a = t b :G[a]. Thus q  t :A.

(FΣ) Let p ` A⇒∗ Σ(x :F )G. We have q ` A⇒∗ Σ(x :F )G. From `p t :A we have `q t :A.
Since p  t :A we have p  t.1 : F and p  t.2 :G[t.1]. By induction q  t.1 : F and
q  t.2:G[t.1], thus q  t :A.

(FLoc) Let p ` A⇒∗ E[f k] for some k /∈ dom(p). Since p  t :A we have p(k, b)  t :A for
all b ∈ {0, 1}. If k ∈ dom(q) then q 6 p(k, 0) or q 6 p(k, 1) and by induction q  t :A.
Otherwise, q ` A⇒∗ E[f k] and since q(k, b) 6 p(k, b), by induction, q(k, b)  t :A for all
b. By definition q  t :A. J

Using similar arguments we can also show the following two statements:

I Lemma 3.16. Let p  A. If p  A = B and q 6 p then q  A = B.

I Lemma 3.17. Let p  A. If p  t = u :A and q 6 p then q  t = u :A.

We collect the results of Lemmas 3.14, Lemma 3.15, Lemma 3.17, and Lemma 3.16 in
the following corollary.
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I Corollary 3.18 (Monotonicity). If p  J and q 6 p then q  J .

We write  J when 〈〉  J . By monotonicity  J iff p  J for all p.

I Lemma 3.19. If p(m, 0)  A and p(m, 1)  A for some m /∈ dom(p) then p  A.

Proof. By Corollary 3.13, either A has a canonical p-whnf or p ` A⇒∗ E[f k] for k /∈ dom(p).
If p ` A⇒∗ M with M ∈ {N0, N1, N2, N} then we have immediately that p  A.
If p ` A ⇒∗ M with M of the form Π(x : F )G or Σ(x : F )G then p(m, b) ` A ⇒∗ M
for all b ∈ {0, 1}. Since p(m, b)  A we have p(m, b)  F for all b and by induction
p  F . Let q 6 p and q  a :F . If m ∈ dom(q) then q 6 p(m, b) for some b ∈ {0, 1}.
Assume, w.l.o.g, q 6 p(m, 0). Since p(m, 0)  A we have by the definition that q  G[a].
Alternatively, if m /∈ dom(q) we have a partition q C q(m, 0), q(m, 1). By monotonicity
q(m, b)  a :F , and since q(m, b) 6 p(m, b), we have q(m, b)  G[a] for all b ∈ {0, 1}. By
induction q  G[a]. Similarly we can show q  G[a] = G[b] whenever q  a = b :F .
Alternatively, p ` A⇒∗ E[f k] for some k /∈ dom(p). If k = m then by the definition p  A.
Otherwise, p(m, 0) ` A⇒∗ E[f k] and by the definition p(m, 0)(k, b)  A for all b ∈ {0, 1}.
Similarly, p(m, 1)(k, b)  A for all b ∈ {0, 1}. But p(k, b) C p(m, 0)(k, b), p(m, 1)(k, b). By
induction p(k, b)  A for all b ∈ {0, 1} and thus p  A. J

Similarly we can show the following two statements:

I Lemma 3.20. 1. If p(m, 0)  t :A and p(m, 1)  t :A for some m /∈ dom(p) then p  t :A.
2. If p(m, 0)  t = u :A and p(m, 1)  t = u :A for some m /∈ dom(p) then p  t = u :A.

I Lemma 3.21. If p(m, 0)  A = B and p(m, 1)  A = B for some m /∈ dom(p) then
p  A = B.

I Corollary 3.22 (Local character). If p C p1, . . . , pn and pi  J for all i then p  J .

Proof. Follows from Lemma 3.19, Lemma 3.20, and Lemma 3.21 by induction. J

I Lemma 3.23. Let p ` A ⇒∗ M where M ∈ {N1, N2, N}. If p  a :A then there is a
partition p C p1, . . . , pn where a has a canonical pi-whnf for all i. If p  a = b :A then there
is a partition p C q1, . . . , qm where a and b have the same canonical qj-whnf for each j.

Proof. Follows by induction from the definition. J

I Lemma 3.24. Let p  A = B.
1. If p  t :A then p  t :B and if p  u :B then p  u :A.
2. If p  t = u :A then p  t = u :B and if p  v = w :B then p  v = w :A.

Proof. By induction on the derivation of p  A.
(FN) By induction on the derivation of p  A = B. (i) Let p ` B ⇒∗ N then the statement

follows directly. (ii) Let p ` B ⇒∗ E[f m] for m /∈ dom(p) and p(m, b)  A = B for all
b ∈ {0, 1}. Let p  t :A. By monotonicity p(m, b)  t :A and by induction p(m, b)  t :B
for all b. By the definition p  t :B. Let p  u :B. By monotonicity p(m, b)  u :B and
p(m, b)  A = B. By induction p(m, b)  u :A for all b. By local character p  u :A.
Similarly we can show the second statement. The statement follows similarly for (FN1)
and (FN2).
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(FΠ) Let p ` A ⇒∗ Π(x : F )G. By induction on the derivation of p  A = B. (i) Let
`p A = B and p ` B ⇒∗ Π(x :H)E and p  F = H and for all q 6 p, q  G[a] = E[a]
whenever q  a :F . If p  f :A then `p f :A, thus `p f :B. Let q 6 p and q  u :H. By
monotonicity q  F = H. By induction q  u :F , hence, q  f u :G[u] and by induction
q  f u :E[u]. Similarly, q  f u = f v :E[u] whenever q  u = v :H. Thus p  f :B.
Similarly, if p  g :B we get p  g :A. (ii) Let p ` B ⇒∗ E[f, k] and p(k, b)  A = B

for all b ∈ {0, 1}. If p  f :A then by monotonicity p(k, b)  f :A and by induction
p(k, b)  f :B for all b. By the definition p  f :B. If on the other hand p  g :B then
by definition p(k, b)  g :B and by induction p(k, b)  g :A for all b. By local character
p  g :A. Similarly we can show the second statement.

(FΣ) Let p ` A ⇒∗ Σ(x : F )G. By induction on the derivation of p  A = B. (i) Let
`p A = B and p ` B ⇒∗ Σ(x :H)E and p  F = H and for all q 6 p, q  G[a] = E[a]
whenever q  a :F . If p  t :A then `p t :A, thus `p t :B. Since p  t.1:F , by induction
p  t.1 :H. Since p  t.2 :H[t.1], by induction p  t.2 :E[t.1]. Thus p  t :B. Similarly
if p  u :B we have p  u :A. (ii) Let p ` B ⇒∗ E[f, k] and p(k, b)  A = B for all
b ∈ {0, 1}. If p  t :A then by monotonicity p(k, b)  t :A and by induction p(k, b)  t :B
for all b. By the definition p  f :B. If on the other hand p  g :B then by definition
p(k, b)  g :B and by induction p(k, b)  g :A for all b. By local character p  g :A.
Similarly we can show the second statement.

(FU) Since p  A = B, we have p ` B ⇒∗ U and the statements follow directly.
(FLoc) Let p ` A⇒∗ E[f k] for some k /∈ dom(p). Since p  A = B, we have p(k, b)  A = B

for all b ∈ {0, 1}. If p  t :A then p(k, b)  t :A and by induction p(k, b)  t :B for all b.
By the definition p  t :B. If p  u :B then p(k, b)  u :B and by induction p(k, b)  u :A
for all b. By local character p  u :A. Similarly we can show the second statement. J

From the above results we can show that the relations p  − = − and p  − = − :A are
equivalence relations. We omit the proof here.

I Lemma 3.25.
Reflexivity: If p  A then p  A = A and if p  t :A then p  t = t :A.
Symmetry: If p  A = B then p  B = A and if p  t = u :A then p  u = t :A.
Transitivity: If p  A = B and p  B = C then p  A = C and if p  t = u : A and

p  u = v :A then p  t = v :A.

4 Soundness

In this section we show that the type theory described in Section 2 is sound with respect
to the semantics described in Section 3. That is, we aim to show that for any judgment J
whenever `p J then p  J .

I Lemma 4.1. If p ` A⇒∗ B and p  B then p  A and p  A = B.

Proof. Follows from the definition. J

I Lemma 4.2. Let p  A. If p ` t⇒ u :A and p  u :A then p  t :A and p  t = u :A.

Proof. Let p ` t⇒ u :A and p  u :A. By induction on the derivation of p  A.
(FU) That is, p ` A⇒∗ U . The statement follows similarly to Lemma 4.1.
(FN) By induction on the derivation of p  u :A. If p ` u ⇒∗ n :N for some n ∈ N then

p ` t ⇒∗ n :N and the statement follows by the definition. If p ` u ⇒∗ E[f k] :A for
k /∈ dom(p) and p(k, b)  u :A for all b ∈ {0, 1} then since p(k, b) ` t⇒ u :A, by induction,
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p(k, b)  t :A and p(k, b)  t = u :A. By the definition p  t :A and p  t = u :A. The
statement follows similarly for (FN1), (FN2).

(FΠ) Let p ` A⇒∗ Π(x :F )G. Since p ` t⇒ u :A we have `p t :A. Let q 6 p and q  a :F .
We have q ` t a ⇒ u a :G[a]. By induction q  t a :G[a] and q  t a = u a :G[a]. If
q  a = b :F we similarly get q  t b :G[b] and q  t b = u b :G[b]. Since q  G[a] = G[b],
by Lemma 3.24, q  t b = u b :G[a]. But q  u a = u b :G[a]. By symmetry and transitivity
q  t a = t b :G[a]. Thus p  t :A and p  t = u :A.

(FΣ) Let p ` A ⇒∗ Σ(x : F )G. From p ` t ⇒ u : A we have `p t : A and we have
p ` t.1⇒ u.1:F and p ` t.2⇒ u.2:G[u.1]. By induction p  t.1:F and p  t.1 = u.1:F .
By induction p  t.2 :G[u.1] and p  t.2 = u.2 :G[u.1]. But since p  A and we have
shown p  t.1 = u.1:F we get p  G[t.1] = G[u.1]. By Lemma 3.24, p  t.2:G[t.1] and
p  t.2 = u.2:G[t.1]. Thus p  t :A and p  t = u :A

(FLoc) Let p ` A ⇒∗ E[f k] for k /∈ dom(p). Since p  u : A we have p(k, b)  u : A
for all b ∈ {0, 1}. But we have p(k, b) ` t ⇒ u : A. By induction p(k, b)  t : A and
p(k, b)  t = u :A. By the definition p  t :A and p  t = u :A. J

I Corollary 4.3. Let p ` t⇒∗ u :A and p  A. If p  u :A then p  t :A and p  t = u :A.

I Corollary 4.4.  f :N → N2.

Proof. It’s direct to see that  N → N2. For an arbitrary condition p let p  n :N . By
Lemma 3.23, we have a parition p C p1, . . . , pm where for each i, pi ` n ⇒∗ mi : N for
some mi ∈ N. We have thus a reduction pi ` f n ⇒∗ f mi : N2. If mi ∈ dom(pi) then
pi ` f n ⇒∗ f mi ⇒ bi :N2 for some bi ∈ {0, 1} and by definition pi  f n :N2. If for any j,
mj /∈ dom(pj) then pj(mj , 0) ` f n ⇒∗ fmj ⇒ 0 :N2 and pj(mj , 1) ` f n ⇒∗ fmj ⇒ 1 :N2.
Thus pj(mj , 0)  f n :N2 and pj(mj , 1)  f n :N2. By the definition pj  f n :N2. We thus
have that pi  f n :N2 for all i and by local character p  f n :N2. Similarly we can show
p  f n1 = f n2 :N2 whenever p  n1 = n2 :N . Hence ` f :N → N2. J

I Lemma 4.5. If `p t :¬A and p  A then p  t :¬A iff for all q 6 p there is no term u

such that q  u :A.

Proof. Let p  A and `p t :¬A. We have directly that p  ¬A. Let p  t :¬A. If q  u :A
for some q 6 p, then q  t u :N0 which is impossible. Conversely, assume it is the case that
for all q 6 p there is no u for which q  u :A. Since r  a :A and r  a = b :A never hold
for any r 6 p, the statement “r  t a :N0 whenever r  a :A and r  t a = t b :N0 whenever
r  a = b :A” holds trivially. J

I Lemma 4.6.  w :¬¬(Σ(x :N)IsZero(f x)).

Proof. By Lemma 4.5 it is enough to show that for all q there is no term u for which
q  u : ¬(Σ(x : N)IsZero(f x)). Assume q  u : ¬(Σ(x : N)IsZero(f x)) for some u. Let
m /∈ dom(q) we have then q(m, 0)  (m, 0) : Σ(x :N)IsZero(f x) thus q(m, 0)  u (m, 0) :N0
which is impossible. J

Let Γ := x1 : A1 . . . , xn : An[x1, . . . , xn−1] and ρ := a1, . . . , an. We say p  ρ : Γ if
p  a1 :A, . . . , p  an :An[a1, . . . , an−1]. If moreover σ := b1, . . . , bn and p  σ : Γ, we say
p  ρ = σ :Γ if p  a1 = b1 :A1, . . . , p  an = bn :An[a1, . . . , an−1].

I Lemma 4.7. Let Γ `p. For all q 6 p, if q  ρ :Γ, q  σ :Γ and q  ρ = σ :Γ then
If Γ `p A then q  Aρ = Aσ and if Γ `p A = B then q  Aρ = Bρ.
If Γ `p a :A then q  aρ = aσ :Aρ and if Γ `p a = b :A then q  aρ = bρ :Aρ
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Proof. The proof is by induction on the rules of the type system. We show that if the
statement holds for the premise of the rule it holds for the conclusion. For economy of
presentation we only present the proof for few selected rules. For the rest of the rules the
proof follows in a similar fashion.

For the elimination rules (β), (unitrec-0), (boolrec-0), (boolrec-1), (natrec-0),
(natrec-suc), (pr1), (pr2) and (f-eval) the statement follows from Corollary 4.3.
For the congruence rules the statement follows from Lemma 3.24, Lemma 3.25.
The statement follows for (f-i) by Corollary 4.4, for (w-term) by Lemma 4.6, and for
(loc) by Lemma 3.22.
(nat-suc) By induction q  nρ = nσ : N . By Lemma 3.23 there is a partition q C
q1, . . . , q` where for each i, qi ` nρ⇒∗ mi :N and qi ` nσ ⇒∗ mi :N for somemi ∈ N. But
then qi ` Snρ⇒∗ Smi :N and qi ` Snσ ⇒∗ Smi :N for all i. Thus qi  Snρ = Snσ :N
for all i and by local character q  Snρ = Snσ :N .
(Π-i) By induction q  Fρ = Fσ. Let r 6 q. We have r  (ρ, c) = (ρ, b) : (Γ, x :
F ) whenever r  c = b : F and by induction r  Gρ[c] = Gρ[b]. We have then
q  Π(x : Fρ)Gρ and similarly q  Π(x : Fσ)Gσ. Whenever r  a : Fρ then, by
Lemma 3.24, r  (ρ, a) = (σ, a) : (Γ, x :F ) and by induction r  Gρ[a] = Gσ[a]. Thus
q  Π(x :Fρ)Gρ = Π(x :Fσ)Gσ.
(λ-i) From Γ, x :F `p t :G we have Γ `p F and Γ, x :F `p G. Similarly to (Π-i) we can show
q  Π(x :Fρ)Gρ, q  Π(x :Fσ)Gσ, and q  Π(x :Fρ)Gρ = Π(x :Fσ)Gσ. Let r 6 q and
r  a :Fρ. We have r  (ρ, a) = (σ, a) : (Γ, x :F ) and by induction r  tρ[a] = tσ[a] :Gρ[a].
But r ` (λx.tρ) a ⇒ tρ[a] :Gρ[a] and r ` (λx.tσ) a ⇒ tσ[a] :Gσ[a]. By Lemma 4.2 one
has r  (λx.tρ) a = tρ[a] :Gρ[a] and r  (λx.tσ) a = tσ[a] :Gσ[a]. Since by induction we
have r  Gρ[a] = Gσ[a], by Lemma 3.24, r  (λx.tσ) a = tσ[a] :Gρ[a]. By symmetry
and transitivity r  (λx.tρ)a = (λx.tσ)a :Gρ[a]. Similarly we can show r  (λx.tρ) a =
(λx.tρ) b :Π(x :Fρ)Gρ whenever r  a = b :Fρ and r  (λx.tσ) a = (λx.tσ) b :Π(x :Fσ)Gσ
whenever r  a = b :Fσ. Thus q  (λx.tρ) = (λx.tσ) :Π(x :Fρ)Gρ
(⊥rec-i-e) Follows trivially since r  t :N0 never holds for any condition r.
(natrec-i) While we omit the proof here the basic idea is as follows: If for some r 6 q we
have r  t :N then by Lemma 3.23, we have r C r1, . . . , rn and for each i, ri ` t⇒∗ Ski0
for some ki ∈ N. By induction on ki we can show ri  (natrec (λx.F ) a0 g)ρ t :Fρ[t] for all
i. By local character we will then have r  (natrec (λx.F ) a0 g)ρ t :Fρ[t]. Similarly we can
show r  (natrec (λx.F ) a0 g)ρ t = (natrec (λx.F ) a0 g)ρ u :Fρ[t] whenever r  t = u :N .
By the definition we will have q  (natrec (λx.F ) a0 g)ρ :Π(x :N)Fρ and similarly we can
show q  (natrec (λx.F ) a0 g)ρ = (natrec (λx.F ) a0 g)σ :Π(x :N)Fρ. J

I Theorem 4.8 (Fundamental Theorem). If `p J then p  J .

5 Markov’s principle

Now we have enough machinery to show the independence of MP from type theory. The
idea is that if a judgment J is derivable in type theory (i.e. ` J) then it is derivable in the
forcing extension (i.e. `〈〉 J) and by Theorem 4.8 it holds in the interpretation (i.e.  J). It
thus suffices to show that there no t such that  t :MP to establish the independence of MP
from type theory. First we recall the formulation of MP.

MP := Π(h :N → N2)[¬¬(Σ(x :N) IsZero (hx))→ Σ(x :N) IsZero (hx)]

where IsZero :N2 → U is given by IsZero := λy.boolrec (λx.U)N1N0 y.

FSCD 2016
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I Lemma 5.1. There is no term t such that  t :Σ(x :N) IsZero (f x).

Proof. Assume  t : Σ(x : N) IsZero (f x) for some t. We then have  t.1 : N and 
t.2 : IsZero (f t.1). By Lemma 3.23, one has a partition 〈〉 C p1, . . . , pn where for each i,
pi ` t.1⇒∗ mi for some mi ∈ N. Hence pi ` IsZero (f t.1)⇒∗ IsZero (f mi) and by Lemma 4.1,
pi  IsZero (f t.1) = IsZero (f mi). But, by definition, a partition of 〈〉must contain a condition,
say pj , such that pj(k) = 1 whenever k ∈ dom(pj) (this holds vacuously for 〈〉 C 〈〉).
Assume mj ∈ dom(pj), then pj ` IsZero (f t.1) ⇒∗ IsZero (f mj) ⇒∗ N0. By monotonicity,
from  t.2 : IsZero (f t.1) we get pj  t.2 : IsZero (f t.1). But pj ` IsZero (f t.1) ⇒∗ N0
thus pj  IsZero (f t.1) = N0. Hence, by Lemma 3.24, pj  t.2 : N0 which is impossible,
thus contradicting our assumption. If on the other hand mj /∈ dom(pj) then since pj C
pj(mj , 0), pj(mj , 1) we can apply the above argument with pj(mj , 1) instead of pj . J

I Lemma 5.2. There is no term t such that  t :MP.

Proof. Assume  t :MP for some t. From the definition, whenever  g :N → N2 we have
 t g :¬¬(Σ(x :N) IsZero (g x))→ Σ(x :N) IsZero (g x). Since by Corollary 4.4,  f :N → N2
we have  t f : ¬¬(Σ(x : N) IsZero (f x)) → Σ(x : N) IsZero (f x). Since by Lemma 4.6,
 w :¬¬(Σ(x :N) IsZero (f x)) we have,  (t f) w :Σ(x :N) IsZero (f x) which is impossible by
Lemma 5.1. J

From Theorem 4.8, Lemma 5.2, and Lemma 2.3 we can then conclude:

I Theorem 2.1. There is no term t such that MLTT ` t :MP.

5.1 Many Cohen reals

We extend the type system in Section 2 further by adding a generic point fq for each condition
q. The introduction and conversion rules for fq are given by:

Γ `p
Γ `p fq :N → N2

Γ `p
n ∈ dom(q)Γ `p fq n = 1

Γ `p
n /∈ dom(q), n ∈ dom(p) .

Γ `p fq n = p(n)

With the reduction rules: n ∈ dom(q)
fq n→ 1

n /∈ dom(q), n ∈ dom(p)
fq n→p p(n)

.

We observe that the reduction relation is still monotone.

For each fq we add a term
Γ `p

Γ `p wq :¬¬(Σ(x :N) IsZero (fq x))
.

Finally we add a term mw witnessing the negation of MP Γ `p
Γ `p mw :¬MP

.

By analogy to Corollary 4.4 we have:

I Lemma 5.3.  fq :N → N2 for all q.

I Lemma 5.4.  wq :¬¬(Σ(x :N) IsZero (fq x)) for all q.

Proof. Assume p  t :¬(Σ(x :N)IsZero (fq x)) for some p and t. Let m /∈ dom(q) ∪ dom(p),
we have p(m, 0)  fqm = 0. Thus p(m, 0)  (m, 0) : Σ(x : N) IsZero (fq x) and p(m, 0) 
t (m, 0) :N0 which is impossible. J

I Lemma 5.5. There is no term t for which q  t :Σ(x :N) IsZero (fq x).
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Proof. Assume q  t : Σ(x : N) IsZero (fq x) for some t. We then have q  t.1 : N and
q  t.2 : IsZero (fq t.1). By Lemma 3.23 one has a partition q C q1, . . . , qn where for each i,
t.1⇒∗qi

mi for some mi ∈ N. Hence qi ` IsZero (fq t.1)⇒∗ IsZero (fqmi) . But any partition
of q contain a condition, say qj , where qj(k) = 1 whenever k /∈ dom(q) and k ∈ dom(qj).
Assume mj ∈ dom(qj). If mj ∈ dom(q) then qj ` fqmj ⇒ 1 : N2 and if mj /∈ dom(q)
then qj ` fqmj ⇒ qj(k) := 1 : N2. Thus qj ` IsZero (fq t.1) ⇒∗ N0 and by Lemma 4.1,
qj  IsZero (f t.1) = N0. From  t.2 : IsZero (f t.1) by monotonicity and Lemma 3.24 we
have qj  t.2 : N0 which is impossible. If on the other hand mj /∈ dom(qj) then since
qj C qj(mj , 0), qj(mj , 1) we can apply the above argument with qj(mj , 1) instead of qj . J

I Lemma 5.6.  mw :¬MP

Proof. Assume p  t :MP for some p and t. Thus whenever q 6 p and q  u :N → N2 then
q  t u :¬¬(Σ(x :N) IsZero (ux)) → (Σ(x :N) IsZero (ux)). But we have q  fq :N → N2
by Lemma 5.3. Hence q  t fq : ¬¬(Σ(x : N)IsZero (fq x)) → (Σ(x : N)IsZero (fq x)). But
q  wq : ¬¬(Σ(x :N)IsZero (fq x)) by Lemma 5.4. Thus q  (t fq) wq : Σ(x :N) IsZero (fq x)
which is impossible by Lemma 5.5. J

We have then the following result.

I Theorem 5.7. There is a consistent extension of MLTT where ¬MP is derivable.
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On Undefined and Meaningless in Lambda
Definability∗

Fer-Jan de Vries

Computer Science, University of Leicester, Leicester, UK
fdv1@le.ac.uk

Abstract
We distinguish between undefined terms as used in lambda definability of partial recursive func-
tions and meaningless terms as used in infinite lambda calculus for the infinitary terms models
that generalise the Böhm model. While there are uncountable many known sets of meaningless
terms, there are four known sets of undefined terms. Two of these four are sets of meaningless
terms.

In this paper we first present set of sufficient conditions for a set of lambda terms to serve
as set of undefined terms in lambda definability of partial functions. The four known sets of
undefined terms satisfy these conditions.

Next we locate the smallest set of meaningless terms satisfying these conditions. This set
sits very low in the lattice of all sets of meaningless terms. Any larger set of meaningless terms
than this smallest set is a set of undefined terms. Thus we find uncountably many new sets of
undefined terms.

As an unexpected bonus of our careful analysis of lambda definability we obtain a natural
modification, strict lambda-definability, which allows for a Barendregt style of proof in which the
representation of composition is truly the composition of representations.

1998 ACM Subject Classification F.4.1 [Mathematical Logic] lambda calculus and related sys-
tems

Keywords and phrases lambda calculus, lambda definability, partial recursive function, un-
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1 Introduction

The intuition that not all lambda terms are equally significant from a computational point
of view is as old as lambda calculus itself. It is of particular interest that in lambda calculus,
unlike e.g. the notion of zero in arithmetic, the notion of insignificant term is not uniquely
determined. There are many different reasonable choices that one can make for a set of
unsignificant terms. Making a concrete choice is akin to choosing a semantics for the lambda
calculus.

The oldest, relatively understudied application of insignificant terms is made in the lambda
definability of partial recursive functions. In this area insignificant terms are traditionally
called undefined terms. The other more modern and better understood application is the
construction of infinitary term models of the lambda calculus. This construction generalises
the Böhm model. In the latter case the insignificant terms are called meaningless terms.
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There are four well-known sets of undefined terms used in lambda definability. In contrast
there are uncountably many sets of meaningless terms, that each give rise to their own model
of lambda calculus. As it happens only two of the four known sets of undefined terms are
also sets of meaningless terms. Hence it is a natural question to ask which of the uncountable
many other sets of meaningless terms can also play the role of set of undefined terms, so
that in the corresponding model the recursive functions can naturally be interpreted.

The proof technique of Statman’s theorem which, as Barendregt has shown, works
uniformly for each of the four known sets of undefined terms does not generalise to arbitrary
sets of meaningless terms, because in general sets of meaningless terms are not co-Visser-sets.
Instead we analyse the proof of lambda definability in Barendregt’s PhD thesis. With our
modern insight in sets of meaningless terms we can generalise and improve this old proof,
but we can also improve it.

Church and Kleene were the first to give lambda-representation of recursive functions.
In their representation the role of undefined terms is played by the terms without a finite
normal form. Barendregt criticises their representation and expresses the clear ideal that the
lambda-representation of recursive functions should preserve the way they are defined (this
wish is also known as Kreisel’s Superthesis). The Church-Kleene lambda-representation falls
short of this ideal: the representation of the composition of two recursive functions is not
the composition of their represenation. Barendregt then takes the rather revolutionary step
to replace their old notion of undefined term by the new concept of unsolvable term.1

This new notion of undefined term indeed allows for an improvement of the old proof.
But there is a surprise. Barendregts lambda-represenation of partial recursive functions falls
arguably short of his own ideal. He gives first a lambda-representation of the total recursive
functions and then a lambda representation of the partial recursive functions. In case of the
total functions he use the natural notion of composition of their representations. In case
of the partial recursive functions he defines composition in a slightly ad hoc way. He gets
around this definition by using a very clever “jamming” trick.

We observe in this paper that by using the novel concept of strict lambda definability we
can represent the partial recursive functions in such a way that their definition is completely
preserved, in line with Barendregt’s original "dream improvement" of the old proof by Church.
This reformulated proof is also more general: it now applies to any set of meaningless terms
satisfying one particular extra closure condition.

Ordered by inclusion the sets of meaningless terms form a lattice. The largest set of
meaningless terms that can be used to make a model of lambda calculus is the set of
unsolvables. The smallest such set is the set of rootactive terms2. The infinitary term models
constructed with these two sets of meaningless terms are the Böhm model and the Berarducci
model. In the Böhm model they are exactly the unsolvables that are equated with ⊥. In the
Berarducci model they are the rootactives that are equated with ⊥.

The smallest set of undefined terms that we can identify sits very low in this lattice of
sets of meaningless terms just above the the set of rootactives. This raises an open question:
whether the partial recursive functions can be interpreted in the Berarducci model of the

1 A closed lambda term M is solvable if MN1 . . . Nk = I for some sequence N1, . . . , Nk with k ≥ 0. An
open lambda term is called solvable if its closure is solvable. A lambda terms is called unsolvable if it is
not solvable.

2 A lambda termM is rootactive if any reduct ofM can further reduce to a redex. The classical rootactive
term is Ω. The unsolvable ΩI is not rootactive. Note that the definition of a rootactive terms allows for
free variables. The term EyE with E ≡ Θλxyz.zyx is a concrete example of a rootactive term with
free variable y.
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lambda calculus in such a way that if a partial recursive function f is not defined on a natural
number n, then the interpretation of f(n) equals bottom.

2 Brief recap of 80 years of lambda definability

Lambda definability goes some 80 years back to the exciting, early days of lambda calculus
when, in the slipstream of Gödel’s incompleteness theorems, Church and his students Kleene
and Rosser were experimenting which functions could be represented in the lambda calculus,
Gödel and Herbrand defined the recursive functions and Turing tried to capture the intuitive
idea of “effective calculable” function with his machines. While Church was mainly using
the λI-calculus3 considers only in his papers, Turing realised that it is “naturally much
simpler” [22] to use λK-calculus, what we now call the lambda calculus.

That recursive functions on natural numbers can be represented in lambda calculus is
due to Kleene [15]. The converse, that lambda-definable functions on natural numbers are
recursive, is due to Kleene and Church independently [15, 9]. These results are important as
on one hand they led Church to his Church Thesis and on the other hand they demonstrate
that lambda calculus is a paradigmatic programming language [3].

The first definition of lambda definability dealt with total functions, as partial recursive
functions had not yet been defined.

I Definition 1. A total function f : N→ N is λ-definable if for some lambda term F and
each n ∈ N we have Fpnq = pf(n)q.

I Theorem 2. A total function f : N→ N is λ-definable if and only if f is recursive.

When Kleene [16] defined next the partial recursive functions, Theorem 2 was immediately
extended to partial recursive functions [10, 11]. This required an extra clause to Definition 1
to explain what happens when the function that one wants to represent happens to be
undefined on some input.

I Definition 3. Let U be a set of lambda terms. A partial function φ : N 7→ N is λU -definable
if for some lambda term F and each n ∈ N:

Fpnq = pφ(n)q if φ(n) ↓
Fpnq ∈ U else.

2.1 Kleene-Church: undefined is having no normal form
Church [10, p. 29] used the set NF lambda terms without normal form for U to represent
“undefined”.

I Theorem 4 (Kleene). A partial function φ : N 7→ N is λNF -definable if and only if φ is
partial recursive.

In his thesis [1, 3] Barendregt points out that there is a practical problem with composition
in the approach of Church and Kleene. If f, g are λNF -defined by F,G, then f ◦ g can not
be λNF -defined by λx.F (Gx), which would be the natural way to λNF -define F ◦ G. As
example, Barendregt takes for f the constant zero function represented by λx.p0q and for g
the function that is everywhere undefined represented by Ω. Then f ◦ g is totally undefined,

3 The λI-calculus allows terms of the form λx.M only if x is a free variable of M .
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but F ◦G ≡ λx.F (Gx) = λx.p0q. The conclusion is then that “it is not immediate that the
λNF -definable functions are closed under composition.” Kleene and Church avoid this issue
by using Kleene’s normal form theorem. They represent only the normal form of a partial
recursive function. Barendregt emphasises that their representation of the partial recursive
functions is not intensional, as it does not preserve their definition trees.

2.2 Barendregt: undefined is being unsolvable
Barendregt’s solution is to take for U the set HNF4 of unsolvables.

I Theorem 5 (Barendregt). A partial function φ : N 7→ N is λHNF -definable if and only if
φ is partial recursive.

Barendregt uses Lercher’s jamming factor trick and represents the composition f ◦ g by
λx.GxKIIF (Gx). This clever trick works because if g(n) is undefined then Gpnq is unsolvable
and hence also Fpnq ≡ GpnqKIIF (Gpnq) is unsolvable, and if g(n) is defined then it can
be shown that GpnqKII→→β I in which case Fpnq = F (Gpnq). Cf. [3, Lemma 8.4.5].

Barendregt felt strongly about this change from NF to HNF in the definition of lambda
definability. In his thesis he writes on page xvi: ”This is not to be regarded as a mere
technical improvement but simply central to the objects which are here intended.” And in [4]
he explains in detail:

It has been stressed by Kreisel [18, p. 177-178] that in connection with the so-called
“superthesis”, Church’s thesis expresses less than we know. When we say that all
mechanically computable number theoretic functions are λ-definable or recursive, we
merely speak of the results of computations, of their graphs. But we have in mind
that λ-terms correspond to our procedures for defining these functions. As far as the
µ-recursive functions and the λ-definable functions are concerned, strong definability
proves the equivalence not only in the sense of Church but also of the super thesis:
definitions are preserved. [4]

Given these strong arguments against the traditional Kleene-Church proof of λNF -
definability, it is a bit unexpected that composition is not defined in the natural way as
λx.F (Gx) in λHNF -definability. Barendregt’s solution to deal with composition is arguably
almost but not quite in the spirit of the superthesis.

In Section 3 we will show that Lercher’s jamming factor trick is not needed for partial
functions either, and that composition can indeed be represented compositionally.

2.3 Statman: undefined is belonging to a co-Visser set
Statman takes a general approach: any non-empty co-Visser set of closed lambda terms can
be used as set U of undefined terms in λU -definability of the partial recursive functions.

I Definition 6. A set U ⊆ Λ0 is a co-Visser set, if:
1. Λ0\U is recursive enumerable,
2. Λ0\U is closed under finite β-reduction.

I Theorem 7 (Statman, 1990). Let A be a non-empty co-Visser set. Then any partial
recursive function is λA-definable.

4 Wadsworth has shown that a term is unsolvable iff it has no head normal form. Hence our notation
HN F for the set of unsolvables.
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Barendregt [5] has given a detailed proof of Statman’s Theorem and Visser’s Anti Diagonal-
isation Theorem [24, Thm. 4.4] on which Statman’s Theorem is based. This way of proving
lambda definability has two consequences. First, Statman’s theorem is formulated for closed
terms. This is because the proof makes use of a self-interpreter, i.e. a lambda term E such
that for M ∈ Λ0 one has

Ep#Mq→→β M,

where # : Λ→ Nat is some effective bijection that assigns to a lambda term a unique natural
number. This equation cannot hold when M contains free variables [3, Definition 8.5.1].
Secondly, the Statman proof does not give support for Kreisel’s superthesis. Visser’s theorem
uses Ershov’s precomplete numerations, so that the proof of Visser’s theorem is ’“coordinate
free” i.e. the proof uses (nearly) no specific properties of lambda calculus’ in the words of [24].

Barendregt lists four sets that satisfy the condition of Statman’s theorem: (the subsets of
closed terms of) NF, HNF, the set WHNF of terms without a weak head normal form5 and
the set E of easy6 terms. Two of these, HNF,WHNF are sets of meaningless terms. We will
see in Section 6 that there are many other sets of meaningless terms which don’t satisfy the
Statman condition and yet can be used as set of undefined terms.

3 Strict λU-definability

In this section we search for general sufficient conditions for a set U of lambda terms so that
we can generalise Barendregt’s proof of lambda definability. We follow the notation of [3] for
the standard Church coding:

F ≡ λxy.y T ≡ λxy.x

and ≡ λxy.xyx if B then M else N ≡ BMN

[M,N ] ≡ λz.zMN Zero ≡ λx.xT
S+ ≡ λx.[T, x] P− ≡ λx.[F, x]
K ≡ λxy.x I ≡ λx.x

I Definition 8 (Turing’s fixed point combinator [23]). We define:

Θ ≡ (λxy(y(xxy))λxy(y(xxy).

I Definition 9 (Barendregt numerals [2]). We define p q : N→ Λ by induction:

p0q ≡ I
pn+ 1q ≡ [F, pnq]

Let us first follow [3] and define the class of partial recursive functions as the least class
of partial numeric functions which contains the total recursive functions and is closed under
composition and minimalisation.

Suppose our candidate set of undefined terms is U . We will inspect Barendregt’s proof to
see what requirements we have to make on U .

5 A lambda term has a weak head normal form if it can reduce to either an abstraction or a term of the
form xM1 . . .Mn.

6 A lambda term is easy if it can consistently be equated to any other lambda term.
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3.1 Composition
Let F,G be the representations of the partial numeric functions f, g : N→ N. The natural
way to represent composition is

(F ◦G) ≡ (λx.F (Gx)),

as in the lambda definability proof of the total recursive functions in [3]. This works all right
in case g is well-defined on n and f is defined on g(n), because then

pf ◦ gqpnq ≡ (F ◦G)pnq→→β F (Gpnq) ≡ Fpg(n)q ≡ pf(g(n))q.

If g(n) is undefined, then Gpnq should reduce to some U ∈ U . With the notion of λU
definability we cannot infer from F (Gpnq) →→β FU that FU ∈ U . Barendregt’s jamming
trick argument can be repeated, provided that the set U of undefined terms has the property:
if U ∈ U then UM ∈ U for any M ∈ Λ. In particular the set of unsolvables has this property.

However, the jamming trick and the previous condition on U is not needed with the
following “stricter” definition of lambda definability:

I Definition 10. Let U be a set of lambda terms. A partial function φ : Np 7→ N is strictly
λU -definable if for some lambda term F and each ~n ∈ Np
1. Fp~nq→→ pmq if φ(~n) = m,
2. Fp~nq ∈ U if φ(~n) ↑,
3. F ~N ∈ U for all ~N ∈ Λp with at least one Ni ∈ U .

This new strictness clause does the trick for proving that the representation of composition
is the composition of the representations:

I Lemma 11. The strictly λU -definable partial functions are closed under composition.

Proof. To keep the notation simple we consider without loss of generality unary numeric
functions. Let F,G be the strict representations of the partial numeric functions f, g. Then
for U ∈ U we have GU ∈ U and hence also

(F ◦G)U ≡ (λx.F (Gx))U → F (GU) ∈ U .

For n ∈ N we have either g(n) ↓ or g(n) ↑. If the former than

(F ◦G)pnq ≡ (λx.F (Gx))pnq→ F (Gpnq)→→ Fpg(n)q→→ pf(g(n))q.

If the latter, then we have that Gpnq →→β U for some U ∈ U and therefore by the new
strictness clause we get

(F ◦G)pnq ≡ (λx.F (Gx))pnq→ F (Gpnq)→→ FU ∈ U . J

3.2 Minimalisation
In [3] a lambda term P is called a predicate if Ppnq reduces to either T or F for all n ∈ N.
We will use in this section strict predicates that satisfy the extra property that PU ∈ U
whenever U ∈ U for some fixed set U of undefined terms.

In the proof of [3, Prop. 8.4.10] we find this definition of a lambda term:

HP ≡ Θ(λhx.if Px then x else h(S+x))
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where P is a predicate, together with the following reduction

HP pnq→→β if Ppnq then pnq else HP pn+ 1q.

Hence, this finite term HP can reduce with an infinite reduction to the infinite expression

if Pp0q then p0q else if Pp1q then p1q else if Pp2q then p2q else . . .

Recall that minimalisation is the construction of a new partial function

µm[χ(~n,m) = 0] : Np → N

from a given partial function χ : Np+1 → N. The new function calculates for given ~n the
least m such that χ(~n,m) = 0, if there is such an m and is undefined otherwise.

Suppose χ is λU -defined by G. We will now represent µm[χ(~n,m) = 0] by the lambda
term λ~n.((λp.Hpp0q) λm.Zero(G~nm)). we can safely say that this representation preserves
the definition of minimalisation. After all, instead of the notation µm[χ(~n,m) = 0] one could
just as well have opted for µ[λm.χ(~n,m) = 0] instead.

In [3] we find the following proposition:

I Proposition 12 ([3, Prop. 8.4.10]). Let P be such that for all n ∈ N one has Ppnq→→ F.
Then:
1. µP has no normal form,
2. µP is unsolvable.

Since we want to generalise from the set of unsolvables to other sets of undefined terms,
we can not use the previous proposition. However, we can reuse its proof, which actually
shows that µP is rootactive.7

This leads us to a more general proposition:

I Proposition 13. Let P be such that for all n ∈ N we have Ppnq →→ F. ThenµP is
rootactive.

Proof. Consider the following reduction from [3] that we reproduce here with slightly more
detail:

µP ≡ HP p0q
→→ if Pp0q then p0q else HP p1q
→→ if F then p0q else HP p1q
≡ Fp0q(HP p1q)
≡ (λxy.y)p0q(HP p1q)
→ (λy.y)(HP p1q)
→0 HP p1q
→→ if F then p1q else HP p2q
→→ λy.y(HP p2q)
→0 HP p2q
→→ . . .

In all segments HP pnq →→ HP pn+ 1q at least one reduction step takes place at the root
(the step →0). Hence using the terminology of [13] the infinite reduction starting from µP

7 It is well known that the set of rootactives is a proper subset of the set of unsolvables. E.g. λx.Ω, λx.Ωx
and ΘK are unsolvables that are not rootactive.
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is hypercollapsing.8 Hence by [13, Theorem 12.8.3] we obtain that the initial term µP is
rootactive. J

I Lemma 14. Let U be a set of lambda terms such that U contains all rootactive terms and
U ∈ U implies UTpnqM ∈ U , for any M ∈ Λ. The strictly λU -definable partial functions
are closed under minimalisation.

Proof. Let U be a set of terms such that U contains all rootactive terms and U ∈ U implies
UTpnqM ∈ U . Let φ(~n) ≡ µm[χ(~n,m) = 0], where χ is total and λU -definable by, say, G.
Then we define:

F ≡ λ~x.µ[λy.Zero(G~xy)].

If φ(~n) ↓, then χ(~n,m) = 0 for some m ∈ N. Then by [3, Lemma 6.3.9(ii)] we get

Fp~nq = pφ(~n)q.

And if φ(~n) ↑, then χ(~n,m) 6= 0 and so Zero(G~nm) →→β F for all m ∈ N. Hence by
Proposition 13 we see that

Fp~nq→→β µ[λy.Zero(G~ny)]

is rootactive. Finally, consider an ~N ∈ Λ with at least one Ni ∈ U . Because G is strict, this
implies the existence of a U ∈ U such that G ~Np0q→→β U . We can now make the following
reduction:

F ~N →→β µ[λy.Zero(G ~Ny)]
→→β HP p0q
→→β if Pp0q then p0q else HP p1q
→→β if Zero(G ~Np0q) then p0q else HP p1q
→→β if Zero U then p0q else HP p1q
≡ Zero U p0q (HP p1q)
≡ (λx.xT)Up0q(HP p1q)
→→β UTp0q(HP p1q)

where P stands for λy.Zero(G ~Ny). The last term UTp0q(HP p1q) is undefined because of
our assumption on U .

Concluding, we have shown that φ(~n) is strictly λU -definable by F . J

3.3 Total recursive functions
After composition and minimalisation we will now look at a strict encoding of the total
recursive functions. This presents another obstacle: the usual representation of a total
recursive function is not strict. Consider for instance the constant 0 function represented by
Z ≡ λx.p0q in [3]. We get:

(λx.p0q)Ω ≡ (λx.I)Ω→ I.

8 A hypercollapsing reduction is a “quasi root reduction,” i.e. a reduction containing infinitely many root
reduction steps of the form (λx.M)N →0 M [x := N ].
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Our previous analysis of minimalisation forced upon us the condition for U , that if U ∈ U
then also UTXY ∈ U for any X,Y ∈ Λ. Now, if I would be an element of U , then for any
M ∈ Λ we would get:

ITMM ≡ IKMM →β KMM →β M ∈ U .

This can not be the case, as the numerals are not supposed to be undefined.
There is, however, a strict way of representing the constant zero function. Consider the

following infinite expression:

λx.if x = p0q then p0q else if x = p1q then p0q else if x = p2q then p0q else . . .

in which we use x = pmq as shorthand for Zero(P−mpxq). Clearly, this expression will
reduce to p0q whenever x is a numeral pnq. The above infinite expression is of the simple
form

λx.if x = p0q then X else Y for some possibly infinite expressions X,Y.

If we provide the previous term with input U ∈ U , we get:

if U = p0q then X else Y ′ →→β λx.if Zero U then X else Y
→→β Zero UXY

≡ (λx.xT)UXY
→→β UTXY

We find that expression λx.if x = p0q then X else Y is strict for those sets U that
satisfy the same property that we needed in Lemma 14, namely that U ∈ U must imply
UTp0qM ∈ U for any M ∈ Λ.

In general, where Barendregt would use F to represent a total unary function f , we
transform his F to a finite term which can reduce to an infinite representation for f :

λn.if n = p0q then Fp0q else if n = p1q then Fp1q else if n = p2q then Fp2q else . . ..

This representation is strict, with a similar argument. And for all input of the form pnq with
n ∈ N the expression reduces to Fpnq. Thanks to the fixed-point trickery of Turing [22]
there is a finite term that reduces to this this infinite expression:

L ≡ λf.Θ(λwmn.(Zero n)(fm)(w(P− n)(S+ m)))

If F is the Church-Barendregt encoding of a total unary numeric function f , we get:

LFp0qpnq →→ if Zeropnq then Fp0q else KFp1q(P−pnq)
→→β if Zero (P−pnq) then Fp1q else LFp2q(P−2pnq)
→→β . . .

→→β if Zero (P−npnq) then Fpnq else LFpn+ 1q(P−n+1pn)q
→→β if Zero p0q then Fpnq else LFpn+ 1q(P−n+1pn)q
→→β Fpnq

I Lemma 15. Let U be a set of lambda terms such that U ∈ U implies UXY Z ∈ U , for any
X,Y, Z ∈ Λ. Then the total unary recursive functions are strictly λU -definable.

Proof. If F is the Barendregt representation of the total unary recursive function f , then
we will represent f now by λx.LFp0qx. J
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I Corollary 16. The function S+(n) = n + 1 is strictly λU -definable by λx.LS+p0qx and
the function Z(n) = 0 is strictly λU -definable by λx.LZx, for any set U of lambda terms
satisfying the condition U ∈ U implies UTXY ∈ U , for any X,Y ∈ Λ.

Next we want to show that p-ary projections functions Upi can be strictly λU -defined.
With this goal in mind, consider the case where f is a constant function λn.g and g is total
p-ary recursive function that can be λU -defined by some lambda term G. Then we represent
f by

λn.L(λm.G)p0qn

which reduces to the infinite term

λn.if n = p0q then G else if n = p1q then G else if n = p2q then G else . . ..

I Lemma 17. The functions Upi ≡ λx1 . . . xp.xi with 0 ≤ i ≤ p are strictly λU -definable,
for any set U of lambda terms satisfying the condition U ∈ U implies UTXY ∈ U , for any
X,Y ∈ Λ.

Proof Sketch. Note that Upi can be rewritten λ~x.Upp ~y, where ~y is obtained from the se-
quence of variables ~x by moving xi to the leftmost position. Next, note that Upp ≡
λx1.(λx2. . . . (λxp.xp)).

The recursive identity function λxp.xp is strictly λU -definable by Fp with

Fp ≡ λxp.LIp0qxp.

But then λxp−1xp.xp, that is the constant function λxp−1.(λxp.xp), can be represented by
Fp−1 with

Fp−1 ≡ λxp−1.L(λm.Fp)p0qxp−1.

We continue this process until we find that Upp can be represented by

F1 ≡ λx0.L(λm.F1)p0qx0. J

Together, the functions of this lemma and the previous corollary are called the initial
functions.

Summarising: in this section we found that, modulo the condition that U ∈ U implies
UTXY ∈ U for any X,Y ∈ Λ, all unary total recursive functions and all initial functions are
strictly λU -definable. But we left open whether all p-ary total recursive functions are strictly
λU -definable. Hence we can not yet conclude that all partial recursive functions are strictly
λU -definable. To obtain this conclusion we must first show closure under primitive recursion.

3.4 Primitive recursion
I Lemma 18. The strictly λU -definable partial functions are closed under primitive recursion,
for any set U of lambda terms satisfying the condition U ∈ U implies UTXY ∈ U , for any
X,Y ∈ Λ.

Proof. We can mimic the proof of [3, Lemma 6.3.7] replacing λ-definable by strictly λU -
definable. Since the representing term F given there is of the form if Zero x then X else Y ,
we get strictness. J
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3.5 Undefined is satisfying certain conditions
We will show that the partial functions are strictly λU -definable for any U satisfying certain
conditions. The conditions we have seen so far are not yet enough.

I Lemma 19. If F λU -defines a p-ary partial function φ, then for all n ∈ Np,m ∈ N:
1. φ(~n) = m iff Fp~nq = pmq and
2. φ(~n) ↑ iff Fp~nq ∈ U ,
provided U satisfies the conditions:
1. M /∈ U , for any M such that M →→ pnq for some n ∈ N and
2. U is closed under reduction.

Proof. One direction is by definition for both items.
1. If Fp~nq = pmq then, because pmq /∈ U , φ(~n) ↓ and φ(~n) = m′. But then pmq = pm′q

and hence m = m′. This argument is exactly as in [3, Lemma 8.4.12], but we use that
pmq /∈ U , where Barendregt uses that pmq is solvable.

2. Next suppose Fp~nq = U ∈ U , then Fp~nq 6= pmq for all m ∈ N. Suppose Fp~nq = pmq
for some m ∈ N. Then U and pmq have no common reduct, because by the conditions
on U any reduct of U belongs to U , while the normal form pmq does not. Therefore
φ(~n) 6= m for all m ∈ N. Hence φ(~n) ↑. J

Let us now take the standard definition of partial recursive functions as the smallest class
containing the initial functions, and closed under primitive recursion and minimalisation.
This is equivalent to the definition used in [3] that we repeated in Section 3.

I Theorem 20. Let U be a set of lambda terms such that
1. M /∈ U , for any M such that M →→ pnq for some n ∈ N.
2. U is closed under reduction.
3. U contains all rootactive terms.
4. U ∈ U implies UTM1M2 ∈ U , for any M1,M2 ∈ Λ.
Then a partial function φ : Np 7→ N is strictly λU -definable if and only if φ is partial recursive.

Proof. By Corollary 16 and Lemmas 17, 11, 18 and 14, and conditions 3 and 4 on U it
follows that all partial recursive functions are λU -definable.

For the converse, assume φ is strictly λU -definable. Then by Lemma 19 and conditions 1
and 2 on U we get for all n,m ∈ N: φ(n) = m iff λβ ` Fpnq = pmq. As we can recursively
enumerate all conversions of the form Fpnq = pmq that can be derived in the classical
lambda calculus, it follows that the graph of φ is recursive enumerable as well. Hence φ is
partial recursive. J

4 Proposal for a definition of a set of undefined terms

In Theorem 20 we needed four conditions on U . Let us promote them to a definition.

I Definition 21. A set U of lambda terms is a set of undefined terms if it satisfies the
following conditions:
1. M /∈ U , for any M such that M →→ pnq for some n ∈ N.
2. U is closed under reduction.
3. U contains all rootactive terms.
4. U ∈ U implies UTM1,M2 ∈ U , for any M1,M2 ∈ Λ.
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Theorem 20 implies that this collection of condition is sufficient to prove that a partial
function φ : N 7→ N is strictly λU -definable if and only if φ is partial recursive.

We leave it open whether this set of conditions is necessary. But we consider the above
set of conditions to be a reasonable first attempt at defining the concept of a set of undefined
terms. Apart from condition 4, perhaps, these conditions feel quite natural.

Let us now go back to the four sets of terms NF, HNF, WHNF and E that satisfied the
condition of Statman’s theorem. Note that condition 4 is implied by the condition (*) U ∈ U
implies UM ∈ U , for any M ∈ Λ. It is not difficult to see that NF, HNF and WHNF satisfy
all four conditions of Definition 21. In case of the set E of easy terms condition 3 and (*) are
well known. Hence condition 4 holds as well for E . To show condition 1 we need a lemma,
that likely belongs to folklore.

I Lemma 22. The set E of easy terms is a set of undefined terms in the sense of Definition 21.

Proof.
1. The numerals pnq are all βη-normal form. Hence by an application of Böhm’s theorem [3,

Corollary 10.4.3] they can not be easy.
2. This follows directly from the definition of easy term.
3. Condition 3 is shown in [6].
4. Condition (*) goes at least back to [12]. Hence condition 4 holds as well. J

5 Recap of definition of set of meaningless terms

Sets of meaningless terms were studied in the context of infinite lambda calculus. Adding
infinite terms and infinite reductions that converge to a limit to the finite lambda calculus
results is a calculus that is not confluent with respect to infinitary reduction. The construction
of the Böhm model hints at the solution. First we add a fresh symbol ⊥ to the syntax of
finite lambda calculus and consider the set Λ∞⊥ of finite and infinite λ-terms

M ::=coinduction ⊥ | x | (λxM) | (MM)

By Λ∞ we denote the subset of finite and infinite terms not containing ⊥. Next, we choose a
set U ⊆ Λ∞ and add a new rule for some set U ⊆ Λ∞:

M [⊥ := Ω] ∈ U M 6= ⊥
(⊥U )

M → ⊥

The resulting infinitary lambda calculus we denote by λ∞β⊥U
. We use the notation of [13]:

→→ stands for finite reduction as in [3] and →→→ stands for strongly converging (in-)finite
reduction.

I Definition 23 ([20]). U ⊆ Λ∞ is called a set of (finite or infinite) meaningless terms, if it
satisfies the axioms of meaninglessness:
1. Axiom of Rootactiveness: R ⊆ U .
2. Axiom of Closure under β-reduction: If M →→→β N implies N ∈ U for all M ∈ U .
3. Axiom of Closure under Substitution: If M ∈ U then any substitution instance of M is

an element of U .
4. Axiom of (Weak) Overlap: Either for each λx.P ∈ U , there is some W ∈ U such that

P →→→β Wx , or alternatively (λx.P )Q ∈ U , for any Q ∈ Λ∞⊥ .
5. Axiom of Indiscernibility: Define M U↔ N if M can be transformed into N by replacing

pairwise disjoint subterms of M in U by terms in U . If M U↔ N then M ∈ U ⇔ N ∈ U .
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The set Λ∞ satisfies all these conditions. But the resulting lambda calculus is inconsistent,
as all elements reduce to ⊥. So the sets that we are interested in should be non-trivial.

I Theorem 24 ([20]). If U is a meaningless set, then λ∞β⊥U
is confluent for infinitary

β-reduction.

For the converse we need one more condition: U is called closed under β⊥-expansion
from ⊥ if N →→→β⊥ ⊥ implies N ∈ U for all N ∈ Λ∞. Under this natural condition we have

I Theorem 25 ([20]). Let U satisfies Closure under β⊥-Expansion from ⊥. If λ∞β⊥U
is

confluent, then U is a meaningless set.

5.1 Sets of finite meaningless terms

There is now a mismatch: undefined terms are always finite and meaningless terms can be
infinite. This can be reconciled. Instead of using the full set Λ∞ we restrict to the closure
Λinf of Λ under strongly convergent reduction. The previous two theorems hold for Λinf
as well. We say that U is a set of finite meaningless terms, if its closure under strongly
converging reduction is a set of meaningless terms. From now, whenever we write set of
meaningless terms we mean a set of finite meaningless terms.

Let us go once more back to the four sets of terms NF, HNF, WHNF and E that satisfied
the condition of Statman’s theorem. Of the four, NF is the largest, and HNF the second
largest. Both WHNF and E9 are subsets of HNF. It is well known that HNF and WHNF are
sets of (finite) meaningless terms [14]. The other two are not:

I Lemma 26.
1. [14] The set NF does not satisfy Overlap.
2. The set E does not satisfy Indiscernibility.

Proof.
1. λx.xIΩ has no finite normal form, but (λx.xIΩ)K reduces in two steps to the normal

form I. Note that the resulting extension infinitary term model is not consistent: K←β

(λx.xKΩ)K→⊥ ⊥ ←⊥ (λx.xKΩ)I→β I.
2. In [14] this was left open. But if we combine the fact that λz.Ω(Θλxyz.xzy) is an easy

term [12]10 and the fact that λx.Ω(xx) is not an easy term [7, Remark 6.2] with [21,
Lemma 46(2)] (if a set of meaningless terms contains an abstraction, then it must contain
all abstractions), we see that E can not be a set of meaningless terms. In [14] it has been
shown that the first three properties hold, hence Indiscernibility does not hold. J

Since HNF and WHNF are sets of meaningless terms as well as sets of undefined terms,
there is the natural question which other sets of meaningless terms can be taken as set of
undefined terms. Statman’s theorem is now of no help, as HNF and WHNF are the only sets
of meaningless terms satisfying the Statman condition: the other sets of meaningless terms
are not co-Visser sets. In the next section we will answer this question.

9 It is straightforward to check that easy terms are unsolvable.
10The steps of the nice proof in [12] are: (1) C ≡ λxyz.xzy is right-invertible in λβη. (2) Ω is easy wrt
λβη. (3) C is easy wrt λβ. (4) If M is easy, then MN is easy for any N . (5) CΩ(Θ(CΩ)) is easy.
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6 When is meaningless undefined?

I Lemma 27 ([21]). If U is a non-trivial set of finite or infinite meaningless terms (i.e.
U 6= Λ∞), then all its elements are unsolvable.

I Corollary 28. Let U be a non-trivial set of finite meaningless terms (i.e. U 6= Λ) that
satisfies Closure under β⊥-Expansion from ⊥. Then U satisfies conditions 1, 2 and 3 of
Definition 21.

Proof. 2 and 3 are trivial. If M →→ pnq for some n ∈ N, then M reduces to a finite normal
form. Hence M is solvable, because M has a head normal form. But then M /∈ U by
Lemma 27. J

There is a natural smallest set of meaningless terms satisfying condition 4 of Definition 21.

I Definition 29. Let us call lambda term M in Λ almost rootactive, if M can reduce to a
term of the form RTM1N1 . . .TMkNk where R is rootactive and Mi, Ni ∈ Λ for 1 ≤ i ≤ k.
Let W denote the set of almost rootactive terms.

Clearly the set W is the smallest set of undefined terms that satisfies the four conditions for
a set of undefined terms. We also have that

I Lemma 30. The set W is the smallest set of meaningless terms that is a set of undefined
terms.

Proof. With the techniques of [19, 21] one can show that W satisfies all conditions of a set
of meaningless terms. J

7 Conclusion

We have presented a set of sufficient conditions on a set U of lambda terms such that a partial
function φ : Np 7→ N is strictly λU -definable if and only if φ is partial recursive. The smallest
set W satisfying the these conditions is also a set of meaningless terms. By the Axiom of
Indiscernibility it follows that any larger set of meaningless terms is also a set of undefined
terms. Since W is larger than the set R of rootactibve terms, we conjecture that R can not
be used to prove that a partial recursive function φ : Np 7→ N is strictly λR-definable.

The notion of strict λU -definability is forced when one searches for representations of
partial recursive functions that preserve their definition. This has interesting consequences.
E.g. the strict predicates suggest strongly that lambda calculus contains a many-valued logic
related to McCarthy’s calculus for three-valued sequential logic [8, 17].
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Abstract
The intersection type unification problem is an important component in proof search related to
several natural decision problems in intersection type systems. It is unknown and remains open
whether the unification problem is decidable. We give the first nontrivial lower bound for the
problem by showing (our main result) that it is exponential time hard. Furthermore, we show that
this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain
rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type
matching (one-sided unification), which is known to be NP-complete.

We place the intersection type unification problem in the context of unification theory. The
equational theory of intersection types can be presented as an algebraic theory with an ACI (asso-
ciative, commutative, and idempotent) operator (intersection type) combined with distributivity
properties with respect to a second operator (function type). Although the problem is algebra-
ically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of
unification, and our investigation of the problem suggests that new methods are required to un-
derstand the problem. Thus, for the lower bound proof, we were not able to reduce from known
results in ACI-unification theory and use game-theoretic methods for two-player tiling games.
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1 Introduction

Intersection type systems occupy a prominent place within the theory of typed λ-calculus
[5]. As is well known, variants of such systems characterize deep semantic properties of
λ-terms, including normalization and solvability properties [5]. As a consequence of the
enormous expressive power of intersection types, standard type-theoretic decision problems
are undecidable for general intersection type systems, including the problem of type checking
(given a term and a type, does the term have the type?) and inhabitation (given a type, does
there exist a term having the type?). A combinatorial problem centrally placed in many
classical type-theoretic decision problems is that of type unification: given two types σ and τ ,
does there exist a substitution S of types for type variables such that S(σ) = S(τ) in a suitable
equational theory (=) of types? In this paper we wish to initiate a study of the problem
of intersection type unification which we believe to be of considerable systematic interest.
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19:2 The Intersection Type Unification Problem

We consider the standard equational theory of intersection types induced by a canonical
subtyping relation for intersection types [4]. Although decidability of intersection type
unification appears to be surprisingly difficult and remains open, the present paper provides
the first nontrivial lower bound indicating that the problem is of very high complexity: we
prove that the problem is Exptime-hard. Our proof uses game-theoretic methods, in the
form of two-player tiling games, which we believe to be of intrinsic interest and potentially
helpful towards understanding the problem of decidability. Moreover, as we will show, the
intersection type unification problem occupies a natural but hitherto (so far as we are aware)
unstudied place in the theory of unification. Thus, we hope with this paper to stimulate
further work on a fascinating open problem in type theory as well as in unification theory.

We briefly summarize some of the most important algebraic properties of the equational
theory of intersection types needed to appreciate the systematic placement of the unification
problem (full details are given later in the paper). Intersection type systems are characterized
by the presence of an associative, commutative, idempotent operator, ∩ (intersection), which
allows the formation of types of the form σ ∩ τ . In addition, we have function types,
σ → τ . The standard equational theory, denoted =, of intersection types [4] is induced
from a partial order ≤ on types, referred to as subtyping, by taking type equality to be
the relation ≤ ∩ ≤−1. Conversely, as will be discussed in the paper, it is also possible to
give a purely equational presentation of subtyping. Because intersection is greatest lower
bound with respect to subtyping, the intersection type unification problem is equivalent to
the subtype satisfiability problem: given σ and τ , does there exist a type substitution S

such that S(σ) ≤ S(τ)? The latter is equivalent to S(σ) ∩ S(τ) = S(τ), hence satisfiability
is reducible to unification. The equational theory includes right-distributivity of → over ∩:
σ → (τ1 ∩ τ2) = (σ → τ1) ∩ (σ → τ2) and left-contravariance of → with respect to subtyping:
σ1 → τ1 ≤ σ2 → τ2 whenever σ2 ≤ σ1 and τ1 ≤ τ2. As a consequence, one has “half
left-distributivity” of → over ∩: (σ1 → τ) ∩ (σ2 → τ) ≤ (σ1 ∩ σ2)→ τ (but the symmetric
relation does not hold). Altogether, we could say for short that → is “1 1

2 -distributive” over
∩. Axioms specific to a special largest type, ω, are added in some variants of the theory
(both variants, with or without ω, are important in type theory), including the recursion
axiom ω = ω → ω, and we have the derived equation σ → ω = ω. Thus, ω is unit (neutral
element) with respect to ∩ and right-absorbing element with respect to →.

In the remainder of this section we consider the most closely related work within unification
theory and type theory.

1.1 Related work in unification theory
The single most directly related piece of work in the literature is the study from 2004 by
Anantharaman, Narendran, and Rusinowitch on unification modulo ACUI (associativity,
commutativity, unit, idempotence) plus distributivity axioms [2]. They consider equational
theories over a binary ACUI symbol, denoted +, together with a binary operator, ∗, which
distributes (left, right, or both) over +. Indeed, since (as summarized above) we have an
ACUI theory of ∩ together with → enjoying distributivity properties over ∩, it would seem
that we are temptingly close to the theories studied in [2], by thinking of their + as ∩
and their ∗ as →. In particular, algebraically closest among the theories covered in that
paper, ACUI-unification with one-sided (say, left) distributivity (ACUIDl) is shown to be
Exptime-complete, using techniques from unification modulo homomorphisms [3]. But it
turns out that there are fundamental obstacles to transferring results or techniques from
ACUIDl-unification to intersection type unification, as will be summarized next.

With regard to any upper bound, the main obstacle is that, whereas decidability of the
ACUID-problems can be relatively straight-forwardly obtained by appeal to an occurs-check
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(nontrivial cyclic equations have no solutions), this is very far from being clear in the case
of intersection type unification. Indeed, even in the absence of the recursive type ω, we
can solve nontrivial cyclic constraints, due to contravariance. For example, the constraint
α ≤̇ α→ b (where ≤̇ denotes a formal subtyping constraint, α is a type variable and b is a
constant) can be solved, e.g., by setting S(α) = b ∩ (b→ b). The theory of intersection types
is non-structural in the sense that types with significantly different shapes (tree domains,
when types are regarded as labeled trees) may be related, and this presents fundamental
obstacles for bounding the depth of substitutions via any kind of standard occurs-check.
Although “1 1

2 -distributivity” of → over ∩ may at first sight appear to be algebraically close
to the ACUID-framework of [2], the contravariant “ 1

2 -distributivity” makes the theory of
intersection types significantly different. We cannot exclude that some kind of restricted
occurs-check might be possible, but our investigations lead us to believe that, in case it
exists, it is likely to be very complicated, and we have been unable to find such a bounding
principle. Hence, decidability remains a challenging open problem.

With regard to the exponential time lower bound, the results of [2] (in fact, both the
Exptime upper and lower bounds) rely essentially on reductions from unification modulo a set
H of noncommuting homomorphisms (ACUIDH), which was shown to be Exptime-complete
in [3]. The basic idea is to represent unification with distributivity to unification modulo
homomorphisms by replacing s ∗ t by hs(t) where hs is a homomorphism with respect to the
AC(U)I-theory. However, again, such techniques fail in our case due to contravariance. The
equational presentation of the theory of intersection types captures contravariant subtyping
by the absorption axiom (written in the algebraic notation of [2]): s∗t = s∗t+(s+s′)∗t. One
could attempt to represent this axiom by hs(t) = hs(t) + hs+s′(t). But here the expression
hs+s′(t) does not fall within the homomorphic format, and it is therefore not clear how the
homomorphic framework could be applied. Moreover, the bounding problem discussed above
leads to the problem that it is not clear how the theory could be adequately represented
using only a finite set of homomorphisms. We concluded that we need new methods in order
to make progress on understanding lower bounds for intersection type unification, and the
route we present in this paper for the Exptime-lower bound is entirely different, relying on
game theoretical results on tiling problems.

1.2 Related work in type theory
It may be surprising that computational properties (decidability, complexity) of the intersec-
tion type unification problem have not previously been systematically pursued per se. The
theory of intersection type subtyping and its equational counterpart have rather been studied
from semantic (operational and denotational) perspectives. Indeed, as mentioned already,
the intersection type system captures deep operational properties of λ-terms, and undecidab-
ility of type checking and typability follows immediately. The theories of intersection type
subtyping and equality studied here arose naturally out of model-theoretic considerations.
For example, a fundamental result [14, 4] shows that intersection type subtyping and equality
are sound and complete for set-theoretic containment in a class of λ-models: σ ≤ τ holds, if
and only if JσKMv ⊆ JτKMv for all modelsM in the class and valuations v. The intersection
type unification problem can therefore also be endowed with semantic interpretations.

Several extensions and variations of the standard algebraic operations of unification
studied here have been considered in connection with intersection type systems, foremostly
motivated by questions related to notions of principality (principal types, principal typings,
principal pairs) in such systems. Ronchi della Rocca, working from such motivations, defines
a notion of unification in [21] and gives a semi-decision procedure for the corresponding
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unification problem. But that problem involves operations (chains of substitutions together
with special expansion operations) which are not present in the algebraic notion of unification
we consider here. Similarly, so-called expansion variables with associated operations have
been used by Kfoury and Wells to characterize principality properties [17] and so-called β-
unification involving expansion variables has been shown to characterize strong normalization
in the λ-calculus [16], see also [10, 6]. The algebraic unification problem considered here is a
centrally placed component in most forms of proof search related to intersection type systems.
For example, it is not difficult to see that type checking parametric functions (or, combinatory
expressions [15]) with intersection type schemes contains intersection type unification (we
will give some concrete examples below in the paper). The problem is therefore likely to be
involved as soon as one attempts to combine intersection types with usual notions of type
instantiation. A recent example is the so-called type tallying problem of [7], which is not
known to be decidable and is closely related to the intersection type satisfiability problem.

Summarizing the situation with regard to intersection type unification within type theory,
it appears to hold an interesting and rather unexplored intermediate position: it is contained
in many decision problems associated with intersection type systems, it is known to be
expressive enough to capture certain restrictions of the type system, but it is not known
whether it is decidable. It is therefore also a problem of importance for advancing our
understanding of restrictions of the intersection type system and computational properties of
associated decision problems.

Organization of the paper. The remainder of this paper is organized as follows. Intersection
types are introduced in Sec. 2 together with the standard theory of subtyping [4]. In Sec. 3
we briefly study the matching problem (one-sided unification) as a natural preparation for
considering the unification problem. The unification problem is studied in Sec. 4, which
contains our main result. We first introduce the unification problem and the equational
theory of intersection types (Sec. 4.1) and then turn to the proof of the Exptime-lower bound.
We introduce tiling games (Sec. 4.2) and prove Exptime-completeness of a special form of
such (“spiral tiling games”), which is then used (Sec. 4.3) in our reduction to unification and
satisfiability. We conclude the paper in Sec. 5.

2 Intersection types

I Definition 1 (T). The set T of intersection types, ranged over by σ, τ, ρ, is given by

T 3 σ, τ, ρ ::= a | α | ω | σ → τ | σ ∩ τ

where a, b, c, . . . range over type constants C, ω is a special (universal) constant, and α, β, γ
range over type variables V.

As a matter of notational convention, function types associate to the right, and ∩ binds
stronger than →. A type τ ∩ σ is said to have τ and σ as components.

I Definition 2 (Subtyping ≤). Subtyping ≤ is the least preorder (reflexive and transitive
relation) over T (cf. [4]) such that

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, (σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2,
if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2, if σ2 ≤ σ1 and τ1 ≤ τ2 then σ1 → τ1 ≤ σ2 → τ2
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Type equality, written σ = τ , holds when σ ≤ τ and τ ≤ σ, thereby making ≤ a partial
order over T. We use ≡ for syntactic identity. By the axioms of subtyping, ∩ is associative,
commutative, idempotent and has the following distributivity properties

(σ → τ1) ∩ (σ → τ2) = σ → (τ1 ∩ τ2) ,
(σ1 → τ1) ∩ (σ2 → τ2) ≤ (σ1 ∩ σ2)→ (τ1 ∩ τ2) .

We write
⋂n
i=1 τi or

⋂
i∈I τi or

⋂
{τi | i ∈ I} for an intersection of several components, where

the empty intersection is identified with ω.
Using [4](Lemma 2.4.1) we syntactically define the set Tω of all types equal to ω.

I Definition 3 (Tω). The set Tω of types in T equal to ω is given by

Tω 3 σω, τω ::= ω | σ → τω | σω ∩ τω .

I Lemma 4. For τ ∈ T we have τ ∈ Tω iff τ = ω.

I Lemma 5 (Beta-Soundness [4, 5]). Given σ =
⋂
i∈I

(σi → τi)∩
⋂
j∈J

aj∩
⋂
k∈K

αk, we have:

(i) If σ ≤ a for some a ∈ C, then a ≡ aj for some j ∈ J .
(ii) If σ ≤ α for some α ∈ V, then α ≡ αk for some k ∈ K.
(iii) If σ ≤ σ′ → τ ′ 6= ω for some σ′, τ ′ ∈ T, then I ′ = {i ∈ I | σ′ ≤ σi} 6= ∅ and

⋂
i∈I′

τi ≤ τ ′.

I Problem 6. (Subtyping) Given σ, τ ∈ T, does σ ≤ τ hold?

The subtyping relation is known to be decidable in polynomial time. The algorithm
sketched in the proof of the following lemma gives an improved quadratic upper bound.

I Lemma 7. Problem 6 (Subtyping) is decidable in time O(n2) where n is the sum of the
sizes of the input types σ and τ .

Proof. For a polynomial time decision algorithm with a quartic upper bound see [19]. For a
different approach with a quintic upper bound using rewriting see [22]. However, a quadratic
upper bound to decide σ ≤ τ is achievable using Lemmas 4 and 5. First, in linear time,
subterms of σ and τ of the shape defined by Tω are replaced by ω. Second, in linear time,
nested intersection are flattened using associativity of ∩ and components equal to ω are
dropped. Third, in quadratic time, Lemma 5 is applied recursively using the additional
property ρ ≤

⋂
i∈I τi iff ρ ≤ τi for i ∈ I. The invariant that ∩ is not nested and does not

contain ω as component is ensured in recursive calls using linked lists with constant time
concatenation to store components of intersections. J

We recapitulate the notion of paths and organized types introduced in [13].

I Definition 8 (Paths P). The set P of paths in T, ranged over by π, is given by

P 3 π ::= a | α | τ → π .

I Definition 9 (Organized type). A type τ is organized, if τ ≡ ω or τ ≡
⋂
i∈I πi for some

paths πi for i ∈ I.

A type can be organized (transformed to an equivalent organized type) in polynomial time.
Note that an organized type is not necessarily normalized [14]. Normalization can lead to an
exponential blow-up of type size.
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I Lemma 10. Given two organized types σ ≡
⋂
i∈I πi and τ ≡

⋂
j∈J πj, we have

σ ≤ τ iff for all j ∈ J there exists an i ∈ I with πi ≤ πj.

I Corollary 11. Given a path π ∈ P and types σ, τ , we have σ ∩ τ ≤ π iff σ ≤ π or τ ≤ π.

For the sake of completeness, we outline the corresponding type assignment system [4], also
called BCD in literature. A basis (also called context) is a finite set Γ = {x1 : τ1, . . . , xn : τn},
where the variables xi are pairwise distinct; we set dom(Γ) = {x1, . . . , xn} and we write
Γ, x : τ for Γ ∪ {x : τ}, where x 6∈ dom(Γ).

I Definition 12 (Type Assignment). BCD type assignment is given by the following rules

x : τ ∈ Γ (Ax)Γ ` x : τ
Γ, x : σ ` e : τ (→I)Γ ` λx.e : σ → τ

Γ ` e : σ → τ Γ ` e′ : σ (→E)
Γ ` (e e′) : τ

(ω)Γ ` e : ω
Γ ` e : σ Γ ` e : τ (∩I)Γ ` e : σ ∩ τ

Γ ` e : σ σ ≤ τ (≤)Γ ` e : τ

3 Intersection type matching

In order to understand the unification problem it is useful first to investigate its restriction to
matching (one-sided unification). Intersection type matching occurs naturally during proof
search in intersection type systems and is known to be NP-complete [12]. We strengthen this
result by showing that the problem remains so even when restricted to the fixed-parameter
case where only a single type variable and only a single constant is used in the input.

For τ ∈ T let Var(τ) ⊆ V denote the set of variables occurring in τ .

I Problem 13 (Matching). Given a set of constraints C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn}, where
for each i ∈ {1, . . . , n} we have Var(σi) = ∅ or Var(τi) = ∅, is there a substitution S : V→ T
such that S(σi) ≤ S(τi) for 1 ≤ i ≤ n?

We say that a substitution S satisfies {σ1 ≤̇ τ1, . . . , σn ≤̇ τn} if S(σi) ≤ S(τi) for 1 ≤ i ≤ n.

I Problem 14 (One-Sided Unification). Given a set of constraints C = {σ1
.= τ1, . . . , σn

.= τn},
where for each i ∈ {1, . . . , n} we have Var(σi) = ∅ or Var(τi) = ∅, is there a substitution
S : V→ T such that S(σi) = S(τi) for 1 ≤ i ≤ n?

Note that any matching constraint set C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn} can be reduced to
a single matching (resp. one-sided unification) constraint σ ≤̇ τ (resp. σ ∩ τ .= σ) with
Var(σ) = ∅ by fixing a type constant • ∈ C to define

(σ′i, τ ′i) =
{

(σi → •, τi → •) if Var(σi) = ∅
(τi, σi) if Var(τi) = ∅

for 1 ≤ i ≤ n

and σ ≡ σ′1 → . . .→ σ′n → • and τ ≡ τ ′1 → . . .→ τ ′n → •. By Lemma 5, for any substitution
S we have S(σ) ≤ S(τ) (resp. S(σ ∩ τ) = S(σ)) iff S(σi) ≤ S(τi) for 1 ≤ i ≤ n. Therefore,
matching and one-sided unification remain NP-complete even restricted to single constraints.

In [12] the lower bound for matching is shown by reduction from 3-SAT and requires two
type variables αx, α¬x for each propositional variable x. Since 3-SAT, parameterized by the
number of propositional variables, is fixed parameter tractable, we naturally ask whether the
same holds for matching (resp. one-sided unification) parameterized by the number of type
variables.
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I Proposition 15. Problem 13 (Matching) is NP-hard even if only a single type variable
and a single constant is used in the input.

Proof. (Sketch) We fix a 3-SAT instance F containing clauses (L1 ∨ L2 ∨ L3) ∈ F over
propositional variables V where Li is either x or ¬x for some x ∈ V . We reduce satisfiability
of F to matching with one type variable α. First, we fix a set of type constants B = V ∪{¬x |
x ∈ V } and the type constant •. Let σx ≡

⋂
(B \ {¬x}) and σ¬x ≡

⋂
(B \ {x}) for x ∈ V .

We construct the set C containing following constraints

for x ∈ V (consistency) :
((σ¬x → •)→ (¬x→ •)) ∩ ((σx → •)→ (x→ •)) ≤̇ (α→ •)→ (α→ •)

for (L1 ∨ L2 ∨ L3) ∈ F (validity) :
(L1 → •) ∩ (L2 → •) ∩ (L3 → •) ≤̇ α→ •

If F is satisfied by a valuation v, then the substitution α 7→
⋂

v(x)=1
x ∩

⋂
v(x)=0

¬x satisfies C.

If C is satisfied by a substitution S, then by Corollary 11 and the consistency constraints
we have either σ¬x ≤ S(α) ≤ ¬x or σx ≤ S(α) ≤ x for x ∈ V . A valuation v constructed
according to these cases satisfies each clause in F due to Corollary 11 and the validity
constraints.

Instead of using constants {a1, . . . , ak, •} for an instance of the matching problem, encode
[ai] = • → . . .→ • →︸ ︷︷ ︸

i times

• for 1 ≤ i ≤ k in the proof. Using this technique it is easy to see that

only one type constant • is sufficient. J

Combining Proposition 15 with the reduction in [12] we conclude that neither restricting
substitutions to the shape S : {α} → T nor restricting to the shape S : V → C (atomic
substitutions, mapping variables to type constants) reduces the complexity of matching.

4 Intersection type unification

4.1 The unification problem
I Problem 16 (Satisfiability). Given a set of constraints C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn}, is
there a substitution S : V→ T such that S(σi) ≤ S(τi) for 1 ≤ i ≤ n?

I Problem 17 (Unification). Given a set of constraints C = {σ1
.= τ1, . . . , σn

.= τn}, is there
a substitution S : V→ T such that S(σi) = S(τi) for 1 ≤ i ≤ n?

Since for any σ, τ ∈ T and any substitution S we have S(σ) ≤ S(τ) ⇐⇒ S(σ) ∩ S(τ) =
S(σ), satisfiability and unification are equivalent. Similarly to matching (resp. one-sided
unification) restricting satisfiability (resp. unification) to single constraints does not reduce
its complexity.

We now provide a number of observations that give some insight into the type-theoretical
and combinatorial expressive power of unification.

Consider a combinatory logic with intersection types [15, 11] with arbitrary basis B, that
is, a finite set of combinator symbols F,G, . . . with type schemes τF , τG, . . .. Such a system
is given by the rules (applicative fragment) (→E), (∩I), (≤) of Definition 12 together with
a rule assigning types S(τF ) to the combinator symbol F for any substitution S. Write
B ` E : τ for derivability of the type τ for the combinatory expression E in this system.
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19:8 The Intersection Type Unification Problem

I Example 18. Let B = {F : (σ → τ)→ •, G : α→ α}, where wlog. α 6∈ Var(σ) ∪ Var(τ).
In this scenario, type-checking B ` F G : • is equivalent to solving the satisfiability problem
α → α ≤̇ σ → τ , equivalently, the unification problem σ ∩ τ .= σ, because we need to find
substitutions S, S1, . . . Sn for some n ∈ N such that

n⋂
i=1

Si(α→ α) ≤ S(σ → τ)

Lem. 5⇐⇒ S(σ) ≤
⋂
i∈I

Si(α) and
⋂
i∈I

Si(α) ≤ S(τ) for some I ⊆ {1, . . . , n}

⇐⇒ S(α→ α) ≤ S(σ → τ) setting S(α) =
⋂
i∈I

Si(α)

Write B `∗ E : τ if B ` E : τ is derivable without the intersection introduction rule
(∩I). This restriction occupies an interesting ‘intermediate’ position: generalized to arbitrary
bases B, it is the combinatory logic that subsumes the BCD-calculus without intersection
introduction [18, 20]. For example, `∗ is sufficient to type S I I, i.e. the SKI-combinatory
logic equivalent of the λ-term λx.x x not typable in simple types.

I Example 19. Typability with respect to `∗ is equivalent to unification. Let B = {F1 :
τ1, . . . Fn : τn}, where wlog. Var(τi) ∩ Var(τj) = ∅ for i 6= j, and let E be a combinatory
term over B. We want to know whether there is a type τ such that B `∗ E : τ .

For any combinatory term E′ and type τ ′ we define

f(E′, τ ′) =
{
{τi ≤̇ τ ′} if E′ = Fi for some i ∈ {1, . . . , n}
f(E1, α→ β) ∪ f(E2, α) if E′ = E1E2 and α, β are fresh

The unification problem instance f(E,α), where α is fresh, has a solution iff E is typable in
the basis B, i.e. there exists a type τ such that B `∗ E : τ . Conversely, given a satisfiability
problem σ ≤̇ τ , we consider typability of F G in the basis B = {F : τ → a,G : σ}.

The following example shows that unification can force exponential growth of the size of
solutions.

I Example 20. Consider prime numbers 2, 3 and the following unification constraints

a→ a→ (β2 ∩ b)
.= β2 ∩ α, a→ a→ a→ (β3 ∩ b)

.= β3 ∩ α .

The smallest substitution satisfying the above constraints is

S(β2) = (a→ a→ b) ∩ (a→ a→ a→ a→ b)
S(β3) = a→ a→ a→ b

S(α) = a→ a→ a→ a→ a→ a→ b

In particular, the size of S(α) is greater than the product of our initial primes. By adding
an additional constraint a→ a→ a→ a→ a→ (β5 ∩ b)

.= β5 ∩ α, the size of S(α) becomes
at least 2 · 3 · 5, growing exponentially with additional constraints.

An axiomatization of the equational theory of intersection type subtyping (without ω) is
derived in [22]. We add two additional axioms (U) and (RE) in the following Definition 21
to incorporate ω.
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I Definition 21 (ACIUDlReAb). The equational theory ACIUDlReAb is given by
(A) σ ∩ (τ ∩ ρ) ∼ (σ ∩ τ) ∩ ρ
(C) σ ∩ τ ∼ τ ∩ σ
(I) σ ∩ σ ∼ σ
(U) σ ∩ ω ∼ σ,
(Dl) (σ → τ) ∩ (σ → τ ′) ∼ σ → τ ∩ τ ′
(RE) ω ∼ ω → ω

(AB) σ → τ ∼ (σ → τ) ∩ (σ ∩ σ′ → τ)

The recursion axiom (RE) captures the recursive nature of ω and the absorption axiom
(AB) captures contra-variance.

I Lemma 22. Given σ, τ ∈ T we have σ = τ iff σ ∼ τ .

Proof.
(⇒) Induction on the depth of the derivation of σ ≤ τ to show σ ∩ τ ∼ σ. Therefore, σ ≤ τ
and τ ≤ σ imply σ ∼ σ ∩ τ ∼ τ .
(⇐) Each axiom of ACIUDlReAb is derivable using subtyping. J

The absorption axiom (AB) distinguishes the above theory ACIUDlReAb from theories
studied in literature. As discussed in the introduction, the closest equational theory ACIUDl

of [2], which assumes ω → σ ∼ ω ∼ σ → ω and has no equivalent of the absorption axiom
(AB), is Exptime-complete. Unfortunately, the absorption axiom prevents the approaches
presented in [2, 1] as shown by the following examples.

I Example 23. Consider α ∩ (α→ a) .= α (or equivalently α ≤̇ α→ a). A DAG-based (or
‘occurs-check’-based) approach cannot stratify such a constraint (even in the absence of ω)
since any solution S(α) contains at least one subterm S(α) → a and therefore a circular
dependency. Interestingly, using absorption there is a solution S(α) = a ∩ (a→ a).

I Example 24. Consider α∩(((α→ c)∩b)→ a) .= α (or equivalently α ≤̇ ((α→ c)∩b)→ a).
In contrast to the previous example, all occurrences of α are positive. Again, we have a
circular dependency. Using absorption there is a solution S(α) = b→ a.

4.2 Tiling games
In this section we introduce a special kind of domino tiling game, referred to as two-player
corridor tiling games, for which Chlebus showed in 1986 that the problem of existence of
winning strategies is Exptime-complete [9]. We then show that Exptime-completeness is
preserved when tilings are restricted to a particular (“spiral”) shape, which will be used to
prove our Exptime-lower bound for intersection type unification in Sec. 4.3.

I Definition 25 (Tiling System). A tiling system is a tuple (D,H, V, b̄, t̄, n), where:
D is a finite set of tiles (also called dominoes)
H,V ⊆ D ×D are horizontal and vertical constraints
b̄, t̄ are n-tuples of tiles
n is a unary encoded natural number

I Definition 26 (Corridor Tiling). Given a tiling system (D,H, V, b̄, t̄, n), a corridor tiling is
a mapping λ : {1, . . . , l} × {1, . . . , n} → D for some l ∈ N such that:

b̄ = (λ(1, 1), . . . , λ(1, n)) (correct bottom row)
t̄ = (λ(l, 1), . . . , λ(l, n)) (correct top row)
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19:10 The Intersection Type Unification Problem

for i ∈ {1, . . . , l} and j ∈ {1, . . . , n − 1} we have (λ(i, j), λ(i, j + 1)) ∈ H, i.e. the
horizontal constraints are satisfied
for i ∈ {1, . . . , l− 1} and j ∈ {1, . . . , n} we have (λ(i, j), λ(i+ 1, j)) ∈ V , i.e. the vertical
constraints are satisfied

Given a tiling system (D,H, V, b̄, t̄, n), a Two-Player Corridor Tiling game consists of
two players (Constructor and Spoiler). The game is played on an N× {1, . . . , n} board and
starts with the bottom row b̄. Each player places tiles in turn starting with Constructor.
While Constructor tries to construct a corridor tiling, Spoiler tries to prevent it. Constructor
wins if Spoiler makes an illegal move (with respect to H or V ), or when a correct corridor
tiling is completed. We say Constructor has winning strategy, if he can win no matter what
Spoiler does.

I Lemma 27 (Chlebus [9]). The decision problem whether Constructor has a winning strategy
in a given two-player corridor tiling game is Exptime-complete.

Instead of directly encoding a Two-Player Corridor Tiling into intersection type satisfiability,
we introduce a slightly different game that is played out as sequences instead of corridors.
The main goal is to get rid of several structural constraints of corridors for a more accessible
construction of a spiral where each new tile has a neighboring previous tile.

I Definition 28 (Spiral Tiling). Given a tiling system (D,H, V, b̄, t̄, n), a spiral tiling is a
sequence d1 . . . dm ∈ Dm for some m ∈ N such that:

d1 . . . dn = b̄

dm−n+1 . . . dm = t̄

(di, di+1) ∈ H for 1 ≤ i ≤ m− 1
(di, di+n) ∈ V for 1 ≤ i ≤ m− n

Given a tiling system (D,H, V, b̄, t̄, n) a Two-Player Spiral Tiling game, played by Con-
structor and Spoiler, starts with the sequence b̄. Each player adds a tile to the end of
the current sequence taking turns starting with Constructor. While Constructor tries to
construct a spiral tiling, Spoiler tries to prevent it. Constructor wins if Spoiler makes an
illegal move (with respect to H or V ), or when a correct spiral tiling is completed. Again,
we are interested in whether Constructor has a winning strategy.

The main differences between a corridor tiling and a spiral tiling is the lack of individual
rows. While a tile at the beginning of the new row of a corridor is not constrained by the
previously placed tile, in a spiral each new tile is constraint by the previously placed one.
Additionally, a corridor tiling always contains l · n tiles for some l; a spiral tiling does not
obey such a restriction.

I Lemma 29. The decision problem whether Constructor has a winning strategy in a given
two-player spiral tiling game is Exptime-complete.

Proof.
Lower Bound: Given a tiling system T = (D,H, V, (b1, . . . , bn), (t1, . . . , tn), n), let:

D′ = D ∪̇ {#}
H ′ = H ∪̇ {(d,#) | d ∈ D′} ∪ {(#, d) | d ∈ D′}
V ′ = V ∪̇ {(#,#)}
T ′ = (D′, H ′, V ′, (b1, . . . , bn,#,#), (t1, . . . , tn,#,#), n+ 2)
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We show that Constructor has a winning strategy for Two-Player Corridor Tiling in T iff he
has a winning strategy for Two-Player Spiral Tiling in T ′.

By construction, both players are allowed to and have to place the tile # at exactly the
turns i(n + 2) − 1 and i(n + 2) for i ≥ 1. Therefore, a winning strategy does not branch
nor end at those turns. Additionally, a correct spiral tiling ends in two consecutive # tiles,
therefore necessarily contains i(n+ 2) tiles.

From any correct corridor tiling λ : {1, . . . , l} × {1, . . . , n} for T we construct a spiral
tiling d1 . . . dl(n+2) for T ′ by

dk =
{
λ(i, j) if k = (i− 1)(n+ 2) + j and i ≥ 1 and 1 ≤ j ≤ n
# if k = (i− 1)(n+ 2) + j and i ≥ 1 and either j = 0 or j = n+ 1

From a correct spiral tiling d1 . . . dl(n+2) for T ′ we construct a corridor tiling λ : {1, . . . , l}×
{1, . . . , n} for T by λ(i, j) = d(i−1)(n+2)+j .

In particular, Constructor’s winning strategy (skipping/adding the forced # turns) is
exactly the same for both games.
Upper Bound: Computation in Apspace = Exptime (similar to Two-Player Corridor
Tiling). To continue the game only the n previously placed tiles have to be considered. J

4.3 Exptime lower bound
We now prove our main result, that the intersection type unification problem is Exptime-
hard. The proof will be by reduction from spiral tiling games (Lemma 29) to the intersection
type satisfiability problem.

Let T = (D,H, V, b̄ = b1 . . . bn, t̄ = t1 . . . tn, n) be a tiling system. Wlog. (bi, bi+1) ∈ H
and (ti, ti+1) ∈ H for 1 ≤ 1 < n. We fix the set of type constants C = D ∪̇{•} and variables
V = {α} ∪ {βd | d ∈ D} and construct the following set of constraints CT :
(i) σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd ≤̇ σb ∩
⋂

d′∈D

⋂
d∈D

(d′ → d→ βd) (Game moves)

(ii)
⋂

(d′,d)∈H
(d→ d′ → α) ≤̇

⋂
d∈D

(d→ βd) (d respects H)

(iii)
⋂

(d′,d)∈V
(d→ ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → α) ≤̇
⋂
d∈D

(d→ βd) (d respects V )

where

σb ≡ bn → . . .→ b1 → • (Initial state)
σt ≡ (tn → . . .→ t1 → α) ∩ (ω → tn → . . .→ t1 → α) (Final states)

σH⊥ ≡
⋂

(d,d′)∈D×D\H

(d′ → d→ α) (d′ violates H)

σV⊥ ≡
⋂

(d,d′)∈D×D\V

(d′ → ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d→ α) (d′ violates V )

Intuitively, we want to use Lemma 10 to realize alternation. The rhs of (i) represents
an intersection of all board positions which Constructor may face. Therefore, for all such
position he needs to find a suitable move by picking a path on the lhs of (i). He can either
state that the Spoilers last move violates H or V choosing σH⊥ or σV⊥ or state that the game
is finished choosing σt or pick his next move d ∈ D choosing βd. Intuitively, βd captures all
board positions in which Constructors decides to place d next. Note that on the rhs of (i)
in the type d′ → d → βd the tile d′ is not constrained (representing all possible moves of
Spoiler) while the tile d is constrained to the index of βd, i.e. Constructors previous choice.
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Therefore, by picking a move d Constructor is faced with all board positions that arise from
the previous position extended by d and each possible d′. Constraints (ii) and (iii) ensure
that whenever Constructor picks his next move d ∈ D choosing βd he has to respect H and
V .

We show that Constructor has a winning strategy for two-player spiral tiling in T iff
the constraint system CT is satisfiable. To represent game positions as types, we define the
mapping [·] : D∗ → T such that [ε] = • and [s̄d] = d→ [s̄] for s̄ ∈ D∗ and d ∈ D. To improve

readability, we use the notation σ
φ

≤ τ , where φ is a hint why the inequality holds.

I Lemma 30. Let T be a tiling system. If Constructor has a winning strategy in a two-player
spiral tiling game in T , then the constraint system CT is satisfiable.

Proof. Assume that Constructor has a winning strategy that is represented by a labeled tree
f : dom(f)→ {C, S} where

dom(f) ⊆ D∗ is finite and prefix-closed, i.e. ūv̄ ∈ dom(f) implies ū ∈ dom(f).
depth(f) = max{k | d1 . . . dk ∈ dom(f)}.
For s̄ = d1 . . . dk ∈ dom(f) we have f(s̄) = C if k is even and f(s̄) = S if k is odd, i.e. C
places a tile after an even number of turns and S after an odd number of turns.
For s̄ ∈ dom(f) such that f(s̄) = S we have s̄d′ ∈ dom(f) for all d′ ∈ D, i.e. the strategy
has to consider all (possibly illegal) Spoilers moves.
For s̄ ∈ dom(f) such that f(s̄) = C we have either

There exists exactly one d ∈ D such that s̄d ∈ dom(f) and b̄s̄ = ūd1 . . . dn for some
ū ∈ D∗ and d1, . . . , dn ∈ D with (dn, d) ∈ H and (d1, d) ∈ V , i.e. Constructors next
move is d which respects H and V .
s̄d 6∈ dom(f) for all d ∈ D and either
∗ b̄s̄ = ūt̄ for some ū ∈ D∗, i.e. Constructor states that the game is finished.
∗ b̄s̄ = ūt̄d′ for some ū ∈ D∗ and d′ ∈ D, i.e. Constructor states that Spoilers last

move d′ is illegal because the game already ended.
∗ b̄s̄ = ūdd′ for some ū ∈ D∗, d, d′ ∈ D such that (d, d′) 6∈ H, i.e. Constructor states

that Spoilers last move d′ violates H.
∗ b̄s̄ = ūdv̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1, d, d′ ∈ D such that (d, d′) 6∈ V , i.e.

Constructor states that Spoilers last move d′ violates V .
We construct the following substitution S

S(α) =
⋂

d1...dk=s̄∈D∗
k≤depth(f)+n

[s̄] and S(βd) =
⋂

s̄∈f−1(C)
s̄d∈dom(f)

[b̄s̄] for d ∈ D .

We verify that the individual inequalities hold.
S(σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd) ≤ σb:

if b̄ = t̄, then S(σt) ≤ σb. Otherwise, according to f , there exists a d ∈ D such that
d ∈ dom(f). Therefore, S(βd) ≤ [b̄] ≡ σb.
S(σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd) ≤ S(d′ → d→ βd) for all d, d′ ∈ D:

we show that for any π = dk → . . . → d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C)
and s̄d ∈ dom(f) we have S(σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd) ≤ d′ → d → π ≡ [b̄s̄dd′]. Since

s̄d ∈ dom(f) and f(s̄) = C we have s̄dd′ ∈ dom(f) and f(s̄dd′) = C. According to f we
have either
s̄dd′d′′ ∈ dom(f) for some d′′ ∈ D. Therefore, S(βd′′) ≤ d′ → d→ π ≡ [b̄s̄dd′]
or
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∗ b̄s̄dd′ = ūt̄ for some ū ∈ D∗, then S(σt) ≤ [ūt̄] ≡ [b̄s̄dd′].
∗ b̄s̄dd′ = ūt̄d′ for some ū ∈ D∗, then S(σt) ≤ [ūt̄d′] ≡ [b̄s̄dd′].
∗ (d, d′) 6∈ H, then S(σH⊥ ) ≤ [b̄s̄dd′].
∗ b̄s̄dd′ = ūd′′v̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1, d′′ ∈ D such that (d′′, d′) 6∈ V , then
S(σV⊥) ≤ [ūd′′v̄d′] ≡ [b̄s̄dd′].

S(
⋂

(d′,d)∈H
(d→ d′ → α)) ≤ S(d→ βd) for all d ∈ D:

fix any π = dk → . . .→ d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C) and s̄d ∈ dom(f).
Since f(s̄) = C and s̄d ∈ dom(f), we have b̄s̄d = ūd′d for some ū ∈ D∗ and d′ ∈ D such
that (d′, d) ∈ H. We have:

S(
⋂

(d′,d)∈H

(d→ d′ → α))
S(α)≤[ū]
≤ [ūd′d] ≡ [b̄s̄d] ≡ d→ π .

S(
⋂

(d′,d)∈V
(d→ ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → α)) ≤ S(d→ βd) for all d ∈ D:

fix any π = dk → . . .→ d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C) and s̄d ∈ dom(f).
Since f(s̄) = C and s̄d ∈ dom(f), we have b̄s̄d = ūd′v̄d for some ū ∈ D∗, v̄ ∈ Dn−1 and
d′ ∈ D such that (d′, d) ∈ V . We have

S(
⋂

(d′,d)∈V

(d→ ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d′ → α))
S(α)≤[ū]
≤ [ūd′v̄d] ≡ [b̄s̄d] ≡ d→ π . J

I Lemma 31. Let T be a tiling system. If the constraint system CT is satisfiable, then
Constructor has a winning strategy in a two-player spiral tiling game in T .

Proof. Assume that there exists a substitution S that satisfies the constraints CT and wlog.
uses only organized types. Constructor wins the game regardless of Spoilers moves as follows:

Let τ ≡ S(σb ∩
⋂

d′∈D

⋂
d∈D

(d′ → d→ βd)), i.e. the rhs of (i). The initial game position is b̄.

Note that τ ≤ σb ≡ [b̄]. We consider a single turn of Constructor from any game position
s̄ ∈ D∗ that he may face.

Assume (?) that the current game position s̄ satisfies τ ≤ [s̄]. Due to (i) and Corollary 11
we have the following cases

If S(σH⊥ ) ≤ [s̄], then there exist d, d′ ∈ D such that (d, d′) 6∈ H and for some path π we
have d′ → d → π ≤ [s̄]. Therefore, s̄ = ūdd′ for some ū ∈ D∗ and Constructor wins
because Spoilers last move d′ violates H. Note that this is not possible for s̄ = b̄ since b̄
is horizontally consistent.
If S(σV⊥) ≤ [s̄], then there exist d, d′ ∈ D such that (d, d′) 6∈ V and for some path π we
have d′ → ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d→ π ≤ [s̄]. Therefore, s̄ = ūdv̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1

and Constructor wins because Spoilers last move d′ violates V . Note that this is not
possible for s̄ = b̄ since b̄ is too short.
If S(σt) ≤ [s̄], then Constructor wins because tn → . . .→ t1 → π ≤ [s̄] for some path π
implies the winning condition s̄ = ūt̄ for some ū ∈ D∗. Alternatively ω → tn → . . . →
t1 → π ≤ [s̄] for some path π implies s̄ = ūt̄d′ for some ū ∈ D∗ and d′ ∈ D, therefore
Spoilers last move d′ was illegal because the game already ended.
If S(βd) ≤ [s̄] for some d ∈ D, then Constructor may safely place d as the next tile. We
verify consistency wrt. H and V . First, due to (ii) there exists a path d→ d′ → π for
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some d′ ∈ D with (d′, d) ∈ H such that

d→ d′ → π
(ii)
≤ S(d→ βd)

S(βd)≤[s̄]
≤ [s̄d] .

Therefore, s̄d = ūd′d for some ū ∈ D∗ and placing d does not violate H. Second, due to
(iii) there exists a path d → ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → π′ for some d′ ∈ D with (d′, d) ∈ V

such that

d→ ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d′ → π′
(iii)
≤ S(d→ βd)

S(βd)≤[s̄]
≤ [s̄d] .

Therefore, s̄d = ūd′v̄d for some ū ∈ D∗, v̄ ∈ Dn−1 and placing d does not violate V .
Note that in neither case Constructor loses. If Constructor placed the tile d ∈ D, in which
case we have S(βd) ≤ [s̄], Spoiler may place any tile d′ ∈ D. The new game position is s̄dd′.
Note that our initial assumption (?) is inductively satisfied

τ ≤ S(d′ → d→ βd)
S(βd)≤[s̄]
≤ [s̄dd′] .

Therefore, we may apply our argument inductively. Additionally, the game necessarily ends
after a finite number of turns: if τ =

⋂
i∈I

(σi1 → . . . σili → ci) (for some index set I, integers

li ≥ 0 for i ∈ I, types σij for i ∈ I and 1 ≤ j ≤ li and type constants ci for i ∈ I), then (?),
i.e. τ ≤ [s̄], cannot be satisfied by any s̄ ∈ Dk with k > max{li | i ∈ I}. J

I Theorem 32. The intersection type satisfiability problem and the intersection type unifica-
tion problem are Exptime-hard.

Proof. Immediate from Lemma 29, Lemma 30 and Lemma 31, since all reduction steps
are evidently computable in polynomial time. Moreover, satisfiability is polynomial time
equivalent to unification. J

I Corollary 33. Satisfiability and unification are Exptime-hard even in the presence of only
one constant.

Proof. Instead of using constants {d1, . . . , dk, •}, encode [di] = • → . . .→ • →︸ ︷︷ ︸
i times

• for 1 ≤ i ≤ k

in the original proofs. Therefore, only one type constant • is sufficient. J

Note that without any constants satisfiability and unification are trivial by mapping all
type variables to ω.

I Corollary 34. Satisfiability and unification are Exptime-hard even if the codomain of
substitutions is restricted to types of rank 1, i.e. intersections of simple types.

Proof. In the proof of Lemma 30 each variable is substituted by an intersection of simple
types, i.e. a rank 1 intersection type. J

Interestingly, the axiom (RE) ω ∼ ω → ω (resp. ω ≤ ω → ω) is not necessary for
the Exptime lower bound proof, while the axioms (U) and (AB) (resp. σ ≤ ω and
ω → τ ≤ σ → τ derived from contravariance) play a crucial role in the construction of σV⊥ to
capture an exponential number of cases.
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5 Conclusion and future work

We have positioned the intersection type unification problem as a natural object of study
within unification theory and type theory, and we have provided the first nontrivial lower
bound showing that the problem is of high complexity. Our Exptime-lower bound uses
game-theoretic methods which may be useful for making further progress on the main open
question for future work, that of decidability. Next steps include exploring variants and
restrictions. Variants of intersection type subtyping theories (see [5]) give rise to a family
of intersection type unification problems yet to be studied, e.g., the ω-free theory. We
conjecture an NExptime-upper bound for rank 1 restricted unification, in which variables
are substituted by intersections of simple types. Since organized rank 1 subtyping corresponds
to set inclusion, one can reduce a rank 1 unification problem to satisfiability of set constraints
with projections [8] in finite sets. Unfortunately, standard set constraint interpretations may
contain infinite sets, which is why this approach needs further investigation.
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Abstract
We show that every connected Multiplicative Exponential Linear Logic (MELL) proof-structure
(with or without cuts) is uniquely determined by a well-chosen element of its Taylor expansion:
the one obtained by taking two copies of the content of each box. As a consequence, the relational
model is injective with respect to connected MELL proof-structures.
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1 Introduction

Given a syntax S endowed with some rewrite rules, and given a denotational model D for
S (i.e. a semantics which associates with every term t of S an interpretation JtKD that is
invariant under the rewrite rules), we say that D is injective with respect to S if, for any
two normal terms t and t′ of S, JtKD = Jt′KD implies t = t′. In categorical terms, injectivity
corresponds to faithfulness of the interpretation functor from S to D. Injectivity is a natural
and well studied question for denotational models of λ-calculi and term rewriting systems
(see [10, 18]). In the framework of Linear Logic (LL, [11]) this question, addressed in [19],
turned out to be remarkably complex: contrary to what happens in the λ-calculus, there
exist semantics of LL that are not injective, such as the coherent model which is injective
only with respect to some fragments of LL (see [19]). After the first partial positive results
obtained in [19], it took a long time to obtain some improvements: in [5], the injectivity
of the relational model is proven for MELL (the multiplicative-exponential fragment of LL,
sufficiently expressive to encode the λ-calculus) proof-structures that are connected, and
eventually in [3] the first complete positive result is achieved, since the author proves that
the relational model is injective for all MELL proof-structures.

Ehrhard [6] introduced finiteness spaces, a denotational model of LL (and λ-calculus)
which interprets formulas by topological vector spaces and proofs by analytical functions: in
this model the operations of differentiation and Taylor expansion make sense. Ehrhard and
Regnier [7, 8, 9] internalized these operations in the syntax and thus introduced differential
linear logic DiLL0 (which encodes the resource λ-calculus, see [8]), where the promotion rule
(the only one in LL which is responsible for introducing the !-modality and hence for creating
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resources available at will, marked by boxes in LL proof-structures) is replaced by three
new “finitary” rules introducing the !-modality which are perfectly symmetric to the rules
for the ?-modality: this allows a more subtle analysis of the resources consumption during
the cut-elimination process. At the syntactic level, the Taylor expansion decomposes a LL
proof-structure/λ-term in a (generally infinite) formal sum of DiLL0 proof-structures/resource
λ-terms, each of which contains resources usable only a fixed number of times. Roughly
speaking, each element of the Taylor expansion TR of a LL proof-structure/λ-term R is a
DiLL0 proof-structure/resource λ-term obtained from R by replacing each box/argument B
in R with nB copies of its content (for some nB ∈ N), recursively.

In the light of the differential approach, it is clear (and well-known) that the resource
λ-term of order 1 in the Taylor expansion of a λ-term (which is obtained by taking exactly one
copy of the argument of each application) is enough to entirely determine the λ-term: if two
λ-terms t1 and t2 have the same element of order 1 in their Taylor expansion, then t1 = t2.
One can formulate the results of [5] and [3] by saying that, given two LL proof-structures
R1 and R2, if there exists an appropriate DiLL0 proof-structure, whose order depends on R1
and R2, which occurs in the Taylor expansions of both R1 and R2, then R1 = R2. We prove,
in the present paper, for connected MELL, a result which is very much in the style of the
one just mentioned for the λ-calculus: if two connected MELL proof-structures R1 and R2
(with or without cuts) have the same element of order 2 in their Taylor expansions (which is
obtained by taking exactly two copies of the content of each box), then R1 = R2 (i.e. the
element of order 2 of the Taylor expansion of a connected MELL proof-structure is enough
to entirely determine the proof-structure). Since it is known (see [12] for details) that the
elements of the Taylor expansion of a LL proof-structure/λ-term are essentially the elements
of its interpretation in the relational model, we immediately obtain another proof of the
injectivity of the relational model for connected MELL proof-structures.

It is widely acknowledged, in the LL community, that the subsystem of LL corresponding
to the λ-calculus enjoys all the possible good properties, while many of them are lost in the
general MELL fragment. Our result seems to suggest the following hierarchy:
1. full MELL, for which there does not seem to be a way to bound “a priori” the complexity of

the element of the Taylor expansion allowing to distinguish two different proof-structures;
2. connected MELL (containing the λ-calculus) for which the element of order 2 of the Taylor

expansion of a proof-structure is enough to entirely determine the proof-structure;
3. the λ-calculus, for which the element of order 1 of the Taylor expansion of a λ-term is

enough to entirely determine the λ-term.

Outline. After laying out precise definitions of proof-structure (§2) and Taylor expansion
(§3), in §4 we show how a connected MELL proof-structure can be univocally computed by
the point of order 2 of its Taylor expansion. Finally, in §5 we infer from this the injectivity
of the relational model for connected MELL.

I Notation. We set LMELL = {1,⊥,⊗,`, !, ?, ax, cut}. The set FMELL of MELL formulas is
generated by the grammar: A,B,C ::= X | X⊥ | 1 | ⊥ | A ⊗ B | A ` B | !A | ?A , where
X ranges over an infinite set of propositional variables. The linear negation is involutive,
i.e. A⊥⊥ = A, and defined via De Morgan laws 1⊥ = ⊥, (A ⊗ B)⊥ = A⊥ ` B⊥ and
(!A)⊥ = ?A⊥.

Let A be a set: P(A) is the power set of A,
⋃
A is the union of A, A∗ is the set of

finite sequences over A. If A is ordered by ≤, for any a ∈ A we set ↓A a = {b ∈ A | b ≤ a}.
The empty sequence is denoted by ( ). Given a finite sequence a = (a1, . . . , an) with n ∈ N,
we set |a| = n and, if n > 0, a– = (a1, . . . , an−1); if moreover b = (b1, . . . , bm), we set
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a·b = (a1, . . . , an, b1, . . . , bm); if n = 1 (resp. m = 1), then a1 ·b (resp. a·b1) stands for a·b.
We write a v b if a·c = b for some finite sequence c. Let f : A → B be a partial function
(without “partial”, a function is always total): dom(f) and im(f) are the domain and image
of f; the partial function f : P(A) → P(B) is defined by f(A′) = {f(a) | a ∈ A′ ∩ dom(f)}
for any A′ ⊆ A.

2 A non-inductive syntax for proof structures

It is well-known that for LL proof-nets there is no “canonical” representation: every paper
about them introduces its own syntax for proof-nets, and more generally for proof-structures,
depending on the purposes of the paper.1 The first aim of the syntax for proof-structures
that we present here is to give a rigorous and compact definition of the following notions:
(1) equality between proof-structures; (2) Taylor expansion of a proof-structure. The first
point naturally leads us to adopt a low-level syntax with generalized ?- and !-links, similarly
to [5]. This choice can be made compatible with the second point by giving a completely
non-inductive definition of proof-structures, which is in keeping with the intuition that a
proof-structure is a directed graph, plus further information about the borders of boxes. We
have also taken care of minimizing the information required to identify a proof-structure,
especially the borders of its boxes.

We use terminology of interactions nets [13, 8], even if properly speaking our objects are
not interaction nets. So, for instance, our cells correspond to links in [2, 14, 19]. Our syntax is
inspired by [15, 16, 17, 20, 4, 5]. The main technical novelties with respect to them are that:

there are no wires (the same port may be auxiliary for some cell and principal for another
cell), so axioms and cuts are cells, and our ports corresponds to edges in [2, 14, 19];
boxes do not have an explicit constructor or cell, hence boxes and depth of a proof-structure
are recovered in a non-inductive way.

As in [15, 16, 17] and unlike [4, 5], our syntactic objects are typed by MELL formulas:
we have opted for a typed version only to keep out immediately the possibility of “vicious
cycles” (see Fact 3). All the results in this paper can be adapted also to the untyped case.

Pre-proof-structures and isomorphisms. We define here our basic syntactical object: pre-
proof-structure (pps for short). All other syntactical objects, in particular proof-structures
corresponding to the fragments or extensions of LL that we will consider (DiLL-, MELL- and
DiLL0-proof structures), are some special cases of pps. Essentially, a pps Φ is a directed labeled
graph GΦ called the ground-structure (gs for short) of Φ, plus a partial function boxΦ defined
on certain edges (or nodes). The gs of Φ represents a “linearised” proof-structure, i.e. Φ
without the border of its boxes; the partial function boxΦ marks the borders of the boxes of Φ.
Examples of pps are in Fig. 1. Unlike [17, 5], our syntactical objects are not necessarily
cut-free (nor with atomic axioms). Cut-elimination is not defined since it is not used here.

I Definition 1 (Pre-proof-structure, ports, cells, ground-structure, fatness). A pre-proof-struc-
ture (pps for short) is a 9-tuple Φ = (PΦ, CΦ, tcΦ,Ppri

Φ ,Paux
Φ ,Pleft

Φ , tpΦ, Cbox
Φ , boxΦ) such that:

PΦ and CΦ are finite sets, their elements are resp. the ports and the cells (or links) of Φ;

1 Following [11], a proof-net is a proof-structure sequentializable (i.e. corresponding to a derivation)
in LL sequent calculus: proof-nets can be (partly or completely, depending on the fragment of LL)
characterized among proof-structures via “geometric” correctness criteria, see for instance [1, 19].
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Y Y ⊥ ?Z 1 ⊥ 1 X X⊥

ax

cut

?

`
Y ` Y ⊥

?

??Z
?

???Z

!p

!(Y ` Y ⊥)

11 ⊥ ax

!p

!1

?

?X
?

?!1
(a) A pps Φ.

p :1 ⊥

1 ⊥

!p

q : !1
?

?!1

?

?⊥
!p

!?⊥
(b) Two pps, Ψ1 (on the left)
and Ψ2 (on the right).

⊥ 1

1

⊥

1

1

?

?⊥
?

??⊥

!p

!1

!p

!1

(c) A pps X.

⊥ 1 X X⊥

⊥ 1

?

?⊥
!p

!?⊥

?

?1
!p

!?1

ax

!p

!X
!p

!!X

?p

?X⊥

!p

!?X⊥

(d) Two pps, Ξ (on the left) and Ξ ′
(on the right).

Figure 1 Some examples of pps that are not DiLL-ps. See Def. 1 and 8.

tcΦ is a function from CΦ to LMELL; for every l ∈ CΦ, tcΦ(l) is the label, or type, of l; for
every t, t′ ∈ LMELL, we set CtΦ = {l ∈ CΦ | tcΦ(l) = t} (whose elements are the t-cells, or
t-links, of Φ) and Ct,t

′

Φ = CtΦ ∪ Ct
′

Φ ;
Ppri
Φ : CΦ →P(PΦ) is a function such that

⋃
im(Ppri

Φ ) = PΦ and moreover, for all l, l′ ∈ CΦ,
if l 6= l′ then Ppri

Φ (l) ∩ Ppri
Φ (l′) = ∅,

if tcΦ(l) ∈ {1,⊥,⊗,`, !, ?} then card(Ppri
Φ (l)) = 1,

if tcΦ(l) = ax (resp. tcΦ(l) = cut) then card(Ppri
Φ (l)) = 2, (resp. card(Ppri

Φ (l)) = 0);
for any l ∈ CΦ, the elements of Ppri

Φ (l) are the principal ports, or conclusions, of l in Φ;
Paux
Φ : CΦ →P(PΦ) is a function such that, for all l, l′ ∈ CΦ,
if l 6= l′ then Paux

Φ (l) ∩ Paux
Φ (l′) = ∅,

if tcΦ(l)∈{1,⊥, ax} then card(Paux
Φ (l))=0; if tcΦ(l)∈{⊗,`, cut} then card(Paux

Φ (l))=2;
for any l ∈ CΦ, the elements of Paux

Φ (l) are the auxiliary ports, or premises, of l in Φ;
Pleft
Φ : C⊗,`Φ → PΦ is a function such that Pleft

Φ (l) ∈ Paux
Φ (l) for any l ∈ C⊗,`Φ ;

tpΦ : PΦ → FMELL is a function (we write p : A and we say that A is the type of p, when
tpΦ(p) = A) such that, for any l ∈ CΦ, one has

if tcΦ(l) = ax (resp. tcΦ(l) = cut) and Ppri
Φ (l) = {p1, p2} (resp. Paux

Φ (l) = {p1, p2}), then
tpΦ(p1) = A and tpΦ(p2) = A⊥, for some A ∈ FMELL,
if tcΦ(l) = A ∈ {1,⊥} and Ppri

Φ (l) = {p}, then tpΦ(p) = A,
if tcΦ(l) = � ∈ {⊗,`}, Ppri

Φ (l) = {p}, Paux
Φ (l) = {p1, p2} and Pleft

Φ (l) = p1, then
tpΦ(p) = tpΦ(p1)� tpΦ(p2),
if tcΦ(l) = ♦ ∈ {!, ?}, Ppri

Φ (l) = {p} and Paux
Φ (l) = {p1, . . . , pn} (with n ∈ N), then

tpΦ(p) = ♦A and tpΦ(pi) = A for all 1 ≤ i ≤ n, for some A ∈ FMELL;
Cbox
Φ ⊆ {l ∈ C!

Φ | card(Paux
Φ (l)) = 1}, the elements of Cbox

Φ are the box-cells of Φ; for any
l ∈ Cbox

Φ , its (unique) premise is denoted by pridΦ(l) and called the principal door or
pri-door of the box of l (in R); we set Doors!

Φ =
⋃

Paux
Φ (Cbox

Φ );2

boxΦ :
(⋃

Paux
Φ (C?,cut

Φ ) ∪ Doors!
Φ

)
→ Cbox

Φ is a partial function such that Doors!
Φ ⊆

dom(boxΦ) and boxΦ(pridΦ(l)) = l for all l ∈ Cbox
Φ .3

We set: Paux
Φ =

⋃
im(Paux

Φ ), whose elements are the auxiliary ports of Φ; P free
Φ = PΦrPaux

Φ ,
whose elements are the free ports, or conclusions, of Φ; and Cfree

Φ = {l ∈ CΦ | Ppri
Φ (l) ⊆ P free

Φ },
whose elements are the free, or terminal, cells of Φ.4

2 Hence, Doors!
Φ = {pridΦ(l) | l ∈ Cbox

Φ } , the set of premises of all box-cells of Φ.
3 So, boxΦ is defined on Doors!

Φ and maps the (unique) premise of a box-cell l into l itself.
4 Thus, a cell l of a pps Φ is in Cfree

Φ iff either l is a ax-cell and both its conclusions are in P free
Φ , or l is a

cut-cell, or l is neither an ax- nor a cut-cell and its unique conclusion is in P free
Φ .
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For any pps Φ, the ground-structure (gs for short) of Φ is the 7-tuple GΦ = (PΦ, CΦ, tcΦ,
Ppri
Φ ,Paux

Φ ,Pleft
Φ , tpΦ).

A pps Φ is fat (resp. strongly fat) if card(Paux
Φ (l))≥1 (resp. card(Paux

Φ (l))≥2) for all l ∈ C!
Φ.

Let us make some comments on Def. 1. Let Φ be a pps.

The function Pleft
Φ fixes an order on the two premises of any ⊗- and `-cell of Φ; the

premises of the other types of cells are unordered, as well as the conclusions of the ax-cells.
The conditions

⋃
im(Ppri

Φ ) = PΦ and “for all l, l′ ∈ CΦ, if l 6= l′ then Ppri
Φ (l)∩Ppri

Φ (l′) = ∅ =
Paux
Φ (l)∩Paux

Φ (l′)” mean that every port is conclusion of exactly one cell and premise of at
most one cell; the elements of P free

Φ are the ports of Φ that are not premises of any cell.
No condition is required for card(Paux

Φ (l)) when l ∈ C!,?
Φ : l can have n ∈ N premises since

we use generalized ?- and !-cells for (co-)contraction, (co-)weakening and (co-)dereliction.
The gs GΦ of Φ is obtained from Φ by forgetting boxΦ and Cbox

Φ . In a way, GΦ encodes
the “geometric structure” of Φ (see below).

For any pps Φ, the fact that boxΦ is defined on Doors!
Φ is not needed but it simplifies

the definition of the function boxext
PΦ (Def. 6), an extension of boxΦ that will be useful in the

sequel. Provided that some suitable conditions are fulfilled (Def. 8), any box-cell l of Φ is the
starting point to compute the box associated with l partial function boxΦ allows to recover
the border of this box. In general, not all !-cells of Φ with exactly one premise are box-cells.

I Notation. For any pps Φ we set DoorsΦ = dom(boxΦ) and Doors?
Φ = DoorsΦ∩

⋃
Paux
Φ (C?

Φ),
Doorscut

Φ = DoorsΦ∩
⋃

Paux
Φ (Ccut

Φ ) and Cbord
Φ = Cbox

Φ ∪{l ∈ C?
Φ | ∃ p ∈ Doors?

Φ∩Paux
Φ (l)}. From

now on, • /∈ CΦ (in particular, • /∈ Cbox
Φ ) for any pps Φ.

With the gs GΦ of any pps Φ is naturally associated a directed labeled graph G(GΦ): its
nodes are the cells of Φ, labeled by their type; its oriented edges are the ports of Φ, labeled
by their type; a premise (resp. conclusion) of a cell l is incoming in (resp. outgoing from) l.

In the graphical representation of a pps Φ, a dotted arrow is depicted from a premise q of
a ?-cell or cut-cell to the premise of a box-cell l when q ∈ box−1

Φ (l). In pictures, the label of
a box-cell is marked as !p, and the names or types of ports and cells are sometimes omitted.

I Definition 2 ((Pre-)order on the ports of a pre-proof-structure). Let Φ be a gs. The binary
relation <1

Φ on PΦ is defined by: p <1
Φ q if there exists l ∈ CΦ such that p ∈ Ppri

Φ (l) and
q ∈ Paux

Φ (l). The preorder relation ≤Φ on PΦ is the reflexive-transitive closure of <1
Φ. When

p ≤Φ q we say that q is above p. We write p <Φ q if p ≤Φ q and p 6= q.

In a pps Φ, the binary relation ≤Φ has a geometric meaning (note that Cbox
Φ and boxΦ, as

well as tcΦ, Pleft
Φ and tpΦ, play no role in Def. 2): for any p, q ∈ PΦ, if p ≤Φ q then in the direc-

ted graph G(GΦ) there is a directed path from q to p that does not cross any ax- or cut-cell.

I Remark (Predecessor of a port). Let Φ be a pps. For all p ∈ Paux
Φ r Paux

Φ (Ccut
Φ ), there is

a unique q ∈ PΦ (denoted by predΦ(p), the predecessor of p) such that q <1
Φ p; moreover

predΦ(p) 6= p. Indeed, by hypothesis p is a premise of some cell of Φ, but the only cells with
more than one conclusion are the ax-cells, which have no premises; so, p is a premise of a cell
of Φ having just one conclusion q; also, tpΦ(p) is a proper subformula of tpΦ(q), thus p 6= q.

I Fact 3 (Tree-like order on ports). Let Φ be a pps: ≤Φ is a tree-like order relation on PΦ.

According to Fact 3, a pps Φ cannot have “vicious cycles” like for example a cell l such
that Ppri

Φ (l) ∩ Paux
Φ (l) 6= ∅ (i.e. a port cannot be both a premise and a conclusion of a cell l).
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(a)
P(PΦ)
ϕP ��

CΦPaux
Φ

oo
Ppri
Φ

//

ϕC
��

P(PΦ)
ϕP��

P(PΨ ) CΨ
Paux
Ψoo

Ppri
Ψ //P(PΨ )

CΦ tcΦ
//

ϕC ��

LMELL

CΨ
tcΨ

;; PΦ tpΦ
//

ϕP ��

FMELL

PΨ
tpΨ

:: C⊗,`Φ Pleft
Φ

//

ϕC ��

PΦ
ϕP
��

C⊗,`Ψ

Pleft
Ψ // PΨ

(b)
DoorsΦ

ϕP
��

boxΦ
// Cbox
Φ

ϕC ��
DoorsΨ

boxΨ // Cbox
Ψ

Figure 2 Commutative diagrams for isomorphism of gs (Fig. 2a) and of pps (Fig. 2b). See Def. 4.

The names of ports and cells of a pps (ports and cells being nothing but their names) will
be important to define the labeled Taylor expansion (Def. 11), a more informative variant of
the usual Taylor expansion (Def. 15). Nevertheless, a precise answer to the question “When
two pps can be considered equal?” leads naturally to the notion of isomorphism between
pps (Def. 4), inspired by the notion of isomorphism between graphs: intuitively, two pps are
isomorphic if they are identical up to the names of their ports and cells.

I Definition 4 (Isomorphism on ground-structures and pre-proof-structures). Let Φ, Ψ be pps.
An isomorphism from GΦ to GΨ is a pair ϕ = (ϕP , ϕC) of bijections ϕP : PΦ → PΨ and

ϕC : CΦ → CΨ such that the diagrams in Fig. 2a commute. We write then ϕ : GΦ ' GΨ .
An isomorphism from Φ to Ψ is a pair ϕ = (ϕP , ϕC) of bijections ϕP : PΦ → PΨ and

ϕC : CΦ → CΨ such that ϕ : GΦ ' GΨ , im(ϕC�Cbox
Φ

) = Cbox
Ψ , im(ϕP�DoorsΦ) = DoorsΨ and the

diagram in Fig. 2b commutes. We write then ϕ : Φ ' Ψ .
If there is an isomorphism from Φ to Ψ , we say: Φ and Ψ are isomorphic and we write Φ ' Ψ .

The relation ' is an equivalence on the set of pps. Equivalence classes for ' share the
same graphical representation up to the order of the premises of their !- and ?-cells: any such
representation can be seen as a canonical representative of an equivalence class.

I Remark. Let Φ and Ψ be some pps with ϕ = (ϕP , ϕC) : GΦ ' GΨ . We have:
1. card(Paux

Φ (l)) = card(Paux
Ψ (ϕC(l))) for every l ∈ CΦ, in particular Φ is fat (resp. strongly

fat) iff Ψ is fat (resp. strongly fat); moreover, P free
Ψ = ϕP(P free

Φ ) and Cfree
Ψ = ϕC(Cfree

Φ );
2. for every p, q ∈ PΦ, p ≤Φ q implies ϕP(p) ≤Ψ ϕP(q) (ϕP is non-decreasing).

DiLL-, DiLL0- and MELL-proof-structures. A pps Φ is a very “light” structure and in
order to associate with any l ∈ Cbox

Φ the sub-pps of Φ usually called the box of l, some
conditions need to be satisfied: for example, boxes have to be ordered by a tree-like order
(nesting), cut- and ax-cells cannot cross the border of a box, etc. We introduce here some
restrictions to pps in order to define proof-structures corresponding to some fragments or
extension of LL: MELL, DiLL and DiLL0. Full differential linear logic (DiLL) is an extension
of MELL (with the same language as MELL) provided with both promotion rule (i.e. boxes)
and co-structural rules (the duals of the structural rules handling the ?-modality) for the
!-modality: DiLL0 and MELL are particular subsystems of DiLL, respectively the promotion-
free one (i.e. without boxes) and the one without co-structural rules. Our interest for DiLL
is just to have an unitary syntax subsuming both MELL and DiLL0 without considering
cut-elimination: for this reason, unlike [16, 20], our DiLL-ps are not allowed to contain a
set of DiLL-ps inside a box.

I Definition 5 (DiLL0-proof-structure). A DiLL0-proof structure (DiLL0-ps or diffnet for short)
is a pps Φ with Cbox

Φ = ∅. The set of DiLL0-ps is denoted by PSDiLL0 , and ρ, σ, . . . range over it.

So, a DiLL0-ps ρ is a pps without box-cells: in this case, boxρ is the empty function. Thus,
any DiLL0-ps ρ can be identified with its gs Gρ.
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To define the conditions that a pps has to fulfill to be a DiLL-ps, we first extend the partial
function boxΦ to a function boxext

PΦ that associates with every port p of Φ the “deepest” box-cell
(if any) whose box contains p; it returns a dummy element • if p is not contained in any box.

I Definition 6 (Extension of boxΦ). Let Φ be a pps. The extension of boxΦ is a function
boxext
PΦ: PΦ → Cbox

Φ ∪ {•} defined as follows: for any p ∈ PΦ,

boxext
PΦ(p) =

{
boxΦ(max≤Φ(↓PΦ p ∩ DoorsΦ)) if ↓PΦ p ∩ DoorsΦ 6= ∅
• otherwise.

For every pps Φ, the function boxext
PΦ is well-defined since , for all p ∈ PΦ, the set

↓PΦ p∩DoorsΦ is finite and totally ordered by ≤Φ, according to Fact 3: therefore the greatest
element of ↓PΦ p ∩ DoorsΦ exists as soon as ↓PΦ p ∩ DoorsΦ 6= ∅.

In a pps Φ, computing boxext
PΦ from boxΦ is simple. Given a port p of Φ, consider the

maximal downwards path starting from p in the directed graph G(GΦ): the first time the
path bumps into a port q ∈ DoorsΦ (if any), we set boxext

PΦ(p) = boxΦ(q) ; if the path does
not bump into any q ∈ DoorsΦ, then boxext

PΦ(p) = •.

I Definition 7 (Preorder on box-cells of a pre-proof-structure). Let Φ be a pps. The binary
relation ≤Cbox

Φ
on Cbox

Φ is defined by: l ≤Cbox
Φ
l′ (say l′ is above l) iff there are p, p′ ∈ DoorsΦ

such that p ≤Φ p′, boxΦ(p) = l and boxΦ(p′) = l′. We write l <Cbox
Φ
l′ if l ≤Cbox

Φ
l′ and l 6= l′.

The binary relation ≤Cbox
Φ
∪{•} on Cbox

Φ ∪ {•} is defined by: l ≤Cbox
Φ
∪{•} l

′ if either l ≤Cbox
Φ
l′

or l = •. We write l <Cbox
Φ
∪{•} l

′ when l ≤Cbox
Φ
∪{•} l

′ and l 6= l′.

In any pps Φ, ≤Cbox
Φ

is a preorder on Cbox
Φ , since ≤Φ is a preorder on PΦ. The preorder

≤Cbox
Φ
∪{•} is the extension of ≤Cbox

Φ
obtained by adding • as least element.

In Fig. 1d, Ξ is a pps such that ≤Cbox
Ξ

is not an order on Cbox
Ξ ; Ξ ′ is a pps such that ≤Cbox

Ξ′

is an order but not a tree-like order on Cbox
Ξ′ . A condition that a pps Φ must fulfill to be a

DiLL-ps is just that ≤Cbox
Φ

is a tree-like order (or equivalently, ≤Cbox
Φ
∪{•} is a rooted tree-like

order whose root is •): this essentially amounts to the nesting of boxes (see [12] for details).

I Definition 8 (DiLL-proof-structure and MELL-proof-structure). A DiLL-proof-structure
(DiLL-ps for short) is a pps Φ such that:
1. ≤Cbox

Φ
is a tree-like order on Cbox

Φ ;
2. boxext

PΦ(p)=boxext
PΦ(q) for all l∈Cax

Φ with Ppri
Φ (l)={p, q} and all l∈Ccut

Φ with Paux
Φ (l)={p, q};

3. for all p ∈ Doors!
Φ ∪ Doors?

Φ, one has boxΦ(p) 6= boxext
PΦ(predΦ(p));

4. for all l ∈ Cbox
Φ ∪{•} and p ∈Doors!

Φ, if l <Cbox
Φ
∪{•} boxΦ(p) then l ≤Cbox

Φ
∪{•} boxext

PΦ(predΦ(p)).

A MELL-proof-structure (MELL-ps for short) is a DiLL-ps Φ such that Cbox
Φ = C!

Φ. The set
of DiLL-ps (resp. MELL-ps) is denoted by PSDiLL (resp. PSMELL) and R,S, . . . range over it.

In Def. 8, condition 2 means that a cut-cell (resp. ax-cell) cannot cross the border of
a box, i.e. its premises (resp. conclusions) belong to the same boxes; the pps Φ in Fig. 1a
does not fulfill condition 2. Condition 3 in Def. 8 entails that two ports on the border of the
same box cannot be above each other (in the sense of ≤Φ); the pps Ψ1 and Ψ2 in Fig. 1b do
not fulfill condition 3. Condition 4 in Def. 8 implies that the border of a box cannot have
more than one !-cell: when the premise of a !-cell l′ belongs to the box associated with a
box-cell l 6= l′, then l′ is itself contained in the box of l. The pps X in Fig. 1c does not fulfill
condition 4, even if it satisfies conditions 1-3. See [12] for more details.
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X X⊥ 1 ⊥ 1 ⊥

⊥ ⊥

ax ax ⊥

⊥ ⊥

1

cut`
X `X⊥

?

?⊥

!p

!1
!p

!!1

!

!(X `X⊥)

X X⊥ 1 ⊥ 1 ⊥

⊥ ⊥

ax ax ⊥

⊥ ⊥

1

cut`
X `X⊥ !

!1

!

!

!!1

! ?

?⊥

!

!(X `X⊥)

(a) S ∈ PSDiLL r (PSMELL ∪PSDiLL0).

1

⊥

1

⊥
!p

!1

1

⊥

1

⊥
!

!1

!

(b) R1 ∈ PSMELL r PSDiLL0 .

1

⊥

1

⊥
!

!1
(c) R2 ∈ PSDiLL0 r PSMELL.

Figure 3 Some examples of DiLL-ps. In R1 (Fig. 3b) Cbox
R1 = {l} and boxR1 is the empty function. In

R2 (Fig. 3c) Cbox
R2 = ∅, so boxR2 is the empty function. Both S (Fig. 3a) and R1 (Fig. 3b) are in two dif-

ferent presentations: the “arrow-like” one (on the left) and the “inductive-like” one (on the right).

In [12] we show that the information encoded in a DiLL-ps R is enough to associate a
box Rl with any box-cell l of R. So, as usual for LL, Rl can be graphically depicted (instead
of using dotted arrows to pick out box−1

R (l) ) by a rectangular frame containing all ports in
inboxR(l) (see Def. 9). Some examples of DiLL-ps are in Fig. 3.

I Definition 9 (Content of the box, depth). Let R be a DiLL-ps.
For any l ∈ Cbox

R , the content of the box of l is inboxR(l) = {q ∈ PR | l ≤Cbox
R

boxext
PR(q)}.

The function boxext
CR : CR → Cbox

R is defined by: for every l ∈ CR r Ccut
R (resp. l ∈ Ccut

R ), we
set boxext

CR(l) = boxext
PR(p) where p ∈ Ppri

R (l) (resp. p ∈ Paux
R (l)).5

For every p ∈ PR and l ∈ CR, the depths of p and l in R are defined as follows:
depthPR(p) = card(↓Cbox

R
(boxext

PR(p))) and depthCR(l) = card(↓Cbox
R

(boxext
CR(l))). The depth of R

is the natural number depth(R) = sup{depthPR(p) | p ∈ PR}.

Given a DiLL-ps R, for any box-cell l in R, inboxR(l) represents the set of ports contained
in the box of l. According to Definition 9, the meaning of boxext

PR is clear: for any port p of
R, ↓Cbox

R
(boxext

PR(p)) = {l ∈ Cbox
R | p ∈ inboxR(l)} is the set of boxes in R containing p, and if

boxext
PR(p) = • then p has depth 0 (no box in R contains p), otherwise boxext

PR(p) is the deepest
box-cell in R whose box contains p; the depth of p in R is the number of nested boxes in R
containing p. According to Def. 9, for any box-cell l, depthPR(pridR(l)) = depthCR(l) + 1.

In a DiLL-ps R the ports in Doors!
R ∪ Doors?

R are the ones in the border of some box:
more precisely, for any p ∈ Doors!

R ∪ Doors?
R, p is in the border of the box of every box-cell

l of R such that boxext
PR(predR(p)) <Cbox

R
∪{•} l ≤Cbox

R
boxext
PR(p). By conditions 1 and 3-4 in

Def. 8, (the premise of) a box-cell is in the border of exactly one box: for any l ∈ Cbox
R

with Ppri
R (l) = {p}, one has boxext

PR(p) <Cbox
R
∪{•} l and there is no l′ ∈ Cbox

R ∪ {•} such that
boxext
PR(p) <Cbox

R
∪{•} l

′ <Cbox
R
∪{•} l. This does not hold in general for ?-cells in Cbord

R , since we
use generalized ?-links: a premise of a ?-cell can cross the border of several boxes, see for
instance one of the premises of the ?-cell whose conclusion is of type ?⊥ in Fig. 3a.

3 Computing the Taylor expansion of a DiLL-proof-structure

The Taylor expansion of a MELL-ps, or more generally a DiLL-ps, R is a (usually infinite) set
of DiLL0-ps: roughly speaking, each element of the Taylor expansion of R is obtained from R

by replacing each box B in R with nB copies of its content (for some nB ∈ N), recursively on
the depth of R. Note that nB depends not only on B but also on which “copy” of the contents

5 For every l ∈ CR, boxext
CR(l) is well-defined by condition 2 in Def. 8. Note that, for any l ∈ Cbox

R , boxext
CR(l)

is the immediate predecessor of l in the tree-like order ≤Cbox
R
∪{•}.
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of all boxes containing B we are considering. Usually, the Taylor expansion of MELL-ps
[15, 17] is defined globally and inductively: with every MELL-ps R is directly associated its
Taylor expansion (the whole set!) by induction on the depth of R. We adopt an alternative
approach, which is pointwise and non-inductive: visually, it is exemplified by Fig. 4.

We introduce here Taylor-functions: a Taylor-function of a DiLL-ps R ascribes recursively
a number of copies for each box of R. Any element of the Taylor expansion of R can be
built from (at least) one element of the proto-Taylor expansion T proto

R of R, T proto
R being the

set of Taylor-functions of R. We build in this way a more informative version of the Taylor
expansion of R, the labeled Taylor-expansion TR of R: one of the advantages of our pointwise
and non-inductive approach is that it is easy to define the correspondence between ports and
cells of any element ρ of the Taylor expansion of R and ports and cells of R (an operation
intuitively clear but very awkward to define with the global and inductive approach), and
to differentiate the various copies in ρ of the content of a same box in R. For this purpose,
any port (or cell) of any DiLL0-ps in the labeled Taylor expansion of R is of the shape (p, a),
where p is the corresponding port (or cell) of R and the finite sequence a has to be intended
as a list of indexes saying in which copy of the content of each box (p, a) is. These indexes
are a syntactic counterpart of the ones used in the definition of k-experiment of PLPS in [5,
Def. 35]. The information encoded in any element of the labeled Taylor expansion will be
useful to prove some fundamental lemmas in §4. The usual Taylor expansion of a DiLL-ps R
(whose elements do not contain this information, Def. 15) is then the quotient of TR modulo
isomorphism, i.e. modulo renaming of ports and cells of any DiLL0-ps in TR.

I Definition 10 (Taylor-function of a DiLL-proof-structure). Let R be a DiLL-ps. A Taylor-
function of R is a function f : Cbox

R ∪ {•} →Pfin(N∗) such that:
1. (depth compatibility) f(•) = {( )} and |a| = depthPR(pridR(l)), for any l∈Cbox

R and a∈ f(l);
2. (vertical downclosure) for all l, l′ ∈ Cbox

R such that l ≤Cbox
R
l′, with k = depthPR(pridR(l)) and

k′= depthPR(pridR(l′)) (so k ≤ k′), if (n1, . . . , nk, . . . , nk′) ∈ f(l′) then (n1, . . . , nk) ∈ f(l).
The proto-Taylor expansion of R is the set T proto

R of Taylor-functions of R.

Note that the notion of Taylor-function of a DiLL-ps R relies only on the tree-like order
on Cbox

R , hence we could define the Taylor-function of any tree. By the vertical downclosure
condition, any Taylor-function of a DiLL-ps R can be naturally presented as a tree-like order
which is an “level-by-level expansion” of the tree-like order on Cbox

R : see Fig. 4a–4c.
Our approach in defining the elements of the Taylor expansion of a DiLL-ps R separates the

analysis of the number of copies to take for each (copy of) box of R (every Taylor-function of R
contains this information, which is the most important one) from the operation of copying the
content of each box (given by the function τR defined below). Indeed, with any Taylor-function
of R one can associate a unique element of the (labeled) Taylor expansion of R (Def. 11).

I Definition 11 (Labeled Taylor expansion). Let R be a DiLL-ps. The function τR : T proto
R →

PSDiLL0 associates with any f ∈ T proto
R a DiLL0-ps τR(f) defined by: Cbox

τR(f) = ∅, boxτR(f) is
the empty function, and

PτR(f) = {(p, a) | p ∈ PR and a ∈ f(boxext
PR(p))}

CτR(f) = {(l, a) | l ∈ CR and a ∈ f(boxext
CR(l))}

tcτR(f)((l, a)) = tcR(l) for every (l, a) ∈ CτR(f)

Ppri
τR(f)((l, a)) = {(p, a) | p ∈ Ppri

R (l)} for every (l, a) ∈ CτR(f)

Paux
τR(f)((l, a)) = {(p, b) | p∈Paux

R (l), a v b ∈ f(boxext
PR(p))} for any (l, a)∈CτR(f)
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Pleft
τR(f)((l, a)) = (Pleft

R (l), a) for every (l, a) ∈ C⊗,`τR(f)

tpτR(f)((p, a)) = tpR(p) for every (p, a) ∈ PτR(f)

The labeled Taylor expansion of R is the set of DiLL0-ps TR = im(τR).

The proof that τR(f) is a DiLL0-ps for any DiLL-ps R and any Taylor-function f of R, is
left to the reader. The set TR (as well as T proto

R ) is infinite iff depth(R) > 0.
Note that when l ∈ Cbord

R , the condition a v b when defining Paux
τR(f)((l, a)) in Def. 11 plays

a crucial role: for instance, given the MELL-ps R as in Fig. 4a and the Taylor-function f of
R as in Fig. 4c, the premises of the !-cell (l1, (1)) of τR(f) (whose conclusion is (r1, (1)) in
Fig. 4d) are (p1, (1, 1)), (p1, (1, 2)), (p1, (1, 3)), and not (p1, (2, 1)), since (1) 6v (2, 1).
I Remark (Canonicity). Given a DiLL-ps R and f ∈ T proto

R , we say that f is canonical if
(horizontal downclosure) for every l ∈ Cbox

R , if (n1, . . . , nm) ∈ f(l) then n1, . . . , nm ∈ N+

and (n1, . . . , nm−1, k) ∈ f(l) for any 1 ≤ k ≤ nm.
A ρ ∈ TR is canonical if ρ = τR(f) for some canonical f ∈ T proto

R . In any canonical DiLL0-ps
of TR the various copies of the content of a box are numbered sequentially starting from 1.
It can easily be shown that for any ρ ∈ TR, there is a canonical σ ∈ TR such that ρ ' σ.

The next example shows how to compute an element ρ of the labeled Taylor expansion of a
DiLL-ps R starting from R and a Taylor-function of R. It shows also the information encoded
in ρ with respect to R: the correspondence between ports (and cells) of ρ and ports (and cells)
of R, and the differentiation of the various copies in ρ of the content of a same box in R.

I Example 12. Let R be the MELL-ps as in Fig. 4a (the tree-like order on Cbox
R is in Fig. 4b)

and f be the Taylor-function of R as in Fig. 4c. The DiLL0-ps τR(f) ∈ TR obtained from f by
applying Def. 11 is in Fig. 4d. Note that the ports (p2, (1, 2)) and (p2, (2, 1)) are two ports
of τR(f) corresponding to the port p2 of R: more precisely, (p2, (1, 2)) (resp. (p2, (2, 1))) is in
the second (resp. first) copy of the content of the box of l1 which is in the first (resp. second)
copy of the content of o. Analogously for the other ports and cells of τR(f).

I Definition 13 (Forgetful functions). Let R ∈ PSDiLL and ρ ∈ TR. The forgetful functions
forgetρ,RP : Pρ → PR and forgetρ,RC : Cρ → CR are defined by: forgetρ,RP ((p, a)) = p and
forgetρ,RC ((l, b)) = l for all (p, a) ∈ Pρ and (l, b) ∈ Cρ.

By forgetting the indexes associated with the ports and cells of ρ ∈ TR, the functions
forgetρ,RP and forgetρ,RC make explicit the correspondence (neither injective nor surjective)
between ports and cells of ρ and ports and cells of R, implicitly given in Def. 11.

Given f ∈ T proto
R such that ρ = τR(f) ∈ TR, the functions f ◦ boxext

PR and f ◦ boxext
CR are

some kind of “inverses” of forgetρ,RP and forgetρ,RC , respectively: with every port and cell of R,
they associate the set of indexes of their corresponding ports and cells of ρ. In other words,
for every port p and cell l of R, f(boxext

PR(p)) and f(boxext
CR(l)) are the sets of the “tracking

numbers” of the copies of (the content of the boxes containing) p and l in ρ.

I Example 14. Let R be the MELL-ps as in Figure 5a and let f and g be the Taylor-functions
of R defined in Fig. 5b-5c. Obviously, f 6= g, τR(f) 6= τR(g) (indeed, (p, (2, 2)) ∈ PτR(f)rPτR(g),
see Fig. 5d-5e) but τR(f) ' τR(g) (and τR(f), τR(g) ∈ TR).

For any DiLL-ps R, it can be shown that the function τR is injective. However, Example 14
shows that there may exist two different Taylor-functions of R whose images via τR are
different but isomorphic: the labeled Taylor expansion of a DiLL-ps may contain several
elements which are isomorphic and differ from each other only by the name of their ports and
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p1 : ⊥ p2 : ⊥ q1 : 1 q2 : ⊥ q3 : 1 q4 : ⊥

r3 :⊥ s4 :⊥

ax ⊥

⊥ ⊥

⊥ ⊥ 1

cut

!

r2 : !1

!
!

r1 : !⊥

!

!

s2 : !!1

! ?

s3 :?⊥

?

s1 :?!⊥

(a) A MELL-ps R, where o (resp. l1;l2) is the box-cell
with conclusion s2 : !!1 (resp. r1 : !⊥; r2 : !1.)

o

l1 l2

(b) The tree-like order on Cbox
R .

f(l2) = {(2, 1), (2, 2), (3, 1)}
f(l1) = {(1, 1), (1, 2), (1, 3), (2, 1)}

f(o) = {(1), (2), (3)}
o

(1, 1) (1, 2) (1, 3)

l1 l2

(1)

l1

(2, 1) (2, 1)

l2

(2, 2)

(2)

(3, 1)

l1 l2

(3)

(c) A Taylor-function f of R (defined on the left), also in its tree-like presentation (on the right).

(p1,(1,1)) (p1,(1,2)) (p1,(1,3)) (p1,(2,1)) (p2,(1,1)) (p2,(1,3)) (q1,(2,1)) (q2,(2,1)) (q3,(2,1)) (q1,(2,2)) (q2,(2,2)) (q3,(2,2)) (q1,(3,1)) (q2,(3,1)) (q3,(3,1))

(p2,(1,2)) (p2,(2,1)) (q4,(2,1)) (q4,(2,2)) (q4,(3,1))

(r1, (3))

(r3, (1)) (r3, (2)) (r3, (3)) (r2, (1))
(s4, ( ))

ax ax ax

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥

⊥ ⊥ ⊥ ⊥

!

!

⊥

⊥

⊥

⊥

1 1 1

cut cut cut

!

(r2, (2))

!

(r2, (3))

!

(r1, (1))

!

(r1, (2))

!

(s2, ( ))

?

(s3, ( ))

?

(s1, ( ))

(d) The DiLL0-ps τR(f) ∈ TR (the types of the ports are omitted).

Figure 4 From a MELL-ps R (Fig. 4a) to an element of the labeled Taylor expansion of R
(Fig. 4d), via a Taylor-function of R (Fig. 4c). See also Example 12.

cells. Moreover, the Taylor expansion is not closed by isomorphism: from ρ ∈ TR for some
DiLL-ps R and σ ' ρ, it does not follow that σ ∈ TR (and there might even exist a DiLL-ps
S 6' R with σ ∈ TS). Indeed, although ρ and σ are isomorphic as DiLL0-ps, all information
about R available in ρ thanks to the names of its ports and cells might very well be lost in σ.

The definition of Taylor expansion of a MELL-ps coming from [9] and used in [15, Def. 9]
and [17, Def. 5] forgets all the information encoded in the names of ports and cells of each
element of our labeled Taylor expansion.

I Definition 15 (Taylor expansion of a DiLL-proof-structure). Let R be a DiLL-ps. The Taylor
expansion of R is T 'R =

{
{τ ∈ PSDiLL0 | τ ' ρ} | ρ ∈ TR

}
.

Let R be a DiLL-ps: the binary relation ≈R on PSDiLL0 defined by “τ ≈R τ ′ iff there
is ρ ∈ TR such that τ ' ρ ' τ ′” is a partial equivalence relation, and, for any ρ ∈ TR,
{τ ∈ PSDiLL0 | τ ' ρ} is a partial equivalence class on PSDiLL0 modulo ≈R. Morally, T 'R is
the quotient of TR modulo isomorphism, i.e. modulo renaming of ports and cells of each
element of TR: any element of T 'R can be seen as an element of TR where all the information
encoded in the names of its ports and cells is forgotten. Clearly, if R ' S then T 'R = T 'S .

Let us stress the differences between TR and T 'R of a DiLL-ps R. Given a (co-)contraction
cell l of ρ ∈ TR (i.e. l ∈ C!,?

ρ and card(Paux
ρ (l)) ≥ 2), it is possible to distinguish if l is a “real”

(co-)contraction (i.e. the corresponding !- or ?-cell l′ of R has at least 2 premises) or not (and
then l′ is in the border of some box and has only one premise which is in Doors!

R ∪Doors?
R):

only in the first case there are two premises (p, a) and (q, b) of l with p 6= q. We can make

FSCD 2016
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p : 1

1

!

q : !1

!

!

r : !!1

!

(a) R ∈ PSMELL

l

o o

(1) (2)

(1, 1) (2, 1) (2, 2)

f(o) = {(1, 1), (2, 1), (2, 2)}
f(l) = {(1), (2)}

(b) f ∈ T proto
R .

l

o o

(1) (2)

(1, 1) (1, 2) (2, 1)

g(o) = {(1, 1), (1, 2), (2, 1)}
g(l) = {(1), (2)}

(c) g ∈ T proto
R .

(p, (1, 1)) (p, (2, 1)) (p, (2, 2))

1 1 1

!

(q, (1))

!

(q, (2))

!

(r, ( ))

(d) τR(f) ∈ TR

(p, (1, 1)) (p, (1, 2)) (p, (2, 1))

11 1

!

(q, (2))

!

(q, (1))

!

(r, ( ))

(e) τR(g) ∈ TR

Figure 5 A MELL-ps R (Fig. 5a) where o (resp. l) is the box-cell with conclusion q : !1 (resp. r : !!1),
and two different but isomorphic elements τR(f) (Fig. 5d) and τR(g) (Fig. 5e) of TR. See Example 14.

p :⊥ q :⊥ r :1
⊥ ⊥ 1

?

t :?⊥

!

u : !1

!!

s : !⊥

!

(a) R ∈ PSMELL.

p :⊥ q :⊥ r :1
⊥ ⊥ 1

?

t :?⊥

!

u : !1

!!

s : !⊥

!

(b) S ∈ PSMELL.

l o

(1) (2) (1) (2)

f(l) = {(1), (2)} = f(o)

(c) f ∈ T proto
R ∩ T proto

S .

(p, (1)) (p, (2)) (q, (1)) (q, (2)) (r, (1)) (r, (2))
⊥ ⊥ ⊥ ⊥ 1 1

!

(s, ( ))

?

(t, ( ))

!

(u, ( ))
(d) τ ∈ TR ∩ TS .

Figure 6 Two non-isomorphic MELL-ps R (Fig. 6a) and S (Fig. 6b), where l (resp. o) is the
box-cell of R and S with conclusion s : !⊥ (resp. u : !1). The DiLL0-ps τ ∈ TR ∩ TS (Fig. 6d) is (the
2-diffnet of R and S) generated by the Taylor-function f of R and S (Fig. 6c), i.e. τR(f) = τ = τS(f).

this distinction via the information encoded in the names of ports and cells of ρ ∈ TR, but in
general we are not able to do that in (any representative of) an element of T 'R .

Nevertheless, the information encoded in the labeled Taylor expansion of a DiLL-ps has
some limitations: in general, a DiLL-ps R is not completely characterized by any ρ ∈ TR
(even if ρ is R-fat or strongly R-fat, see Def. 16 below), i.e. the fact that ρ ∈ TR ∩ TS for
some DiLL-ps R and S does not imply R ' S. For instance, the DiLL0-ps τ in Fig. 6d is an
element of both TR and TS , where R and S are as in Fig. 6a and 6b, respectively.

Elements of special interest of the (labeled) Taylor expansion of a DiLL
proof-structure

I Definition 16 (R-fatness, k-diffnet of a DiLL-ps). Let R ∈ PSDiLL, ρ ∈ TR and k ∈ N.
ρ is R-fat (resp. strongly R-fat) if, for every (l, b) ∈ C!

ρ such that l ∈ Cbox
R , one has

card(Paux
ρ ((l, b))) ≥ 1 (resp. card(Paux

ρ ((l, b))) ≥ 2).
ρ is a k-diffnet of R if card(Paux

ρ ((l, b))) = k for any (l, b)∈C!
ρ such that l∈Cbox

R .
The element of order k of T 'R is the ρ0 ∈ T 'R such that ρ ∈ ρ0 for some k-diffnet ρ of R.

Given a DiLL-ps R and ρ ∈ TR: ρ is R-fat (resp. strongly R-fat) when ρ is obtained by
taking at least one (resp. two) copies of the content of any box in R; ρ is a k-diffnet of R when
ρ is obtained by taking exactly k copies of the content of every box in R . Any k-diffnet of R
with k ≥ 1 (resp. k ≥ 2) is R-fat (resp. strongly R-fat). Given k ∈ N, all k-diffnets of R are
isomorphic and there is a unique canonical k-diffnet of R; moreover, there is a unique element
of order k in T 'R : the set of all DiLL0-ps isomorphic to any k-diffnet of R. Following [5,
Def. 16–17], it can be shown that the LPS of R is univocally determined by any R-fat ρ ∈ TR.

I Fact 17 (Isomorphism of gs). Let R,S ∈ PSDiLL and ρ (resp. σ) be a 1-diffnet of R
(resp. S).
1. The functions forgetρ,RP and forgetρ,RC are bijective, and (forgetρ,RP , forgetρ,RC ) : Gρ ' GR.
2. Suppose ϕ1 : ρ ' σ. Let ϕP : PR → PS and ϕC : CR → CS be functions defined by

ϕP = forgetσ,SP ◦ ϕ1P ◦ (forgetρ,RP )−1 and ϕC = forgetσ,SC ◦ ϕ1C ◦ (forgetρ,RC )−1.
Then, ϕP and ϕC are bijective and (ϕP , ϕC) : GR ' GS.
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The fact that ρ ∈ TR for some DiLL-ps R and σ ' ρ do not imply that σ ∈ TR (and there
may exist a DiLL-ps S 6' R such that σ ∈ TS).

Indeed, all the information about R encoded in the names of ports and cells of ρ is lost in
σ, since σ is “the same as ρ up to the names of ports and cells”. In general looking at σ one is
not able to recognize where the border of the boxes in R are. Fact 17.2 only says that if R,S
are DiLL-ps and ρ (resp. σ) is the 1-diffnet of R (resp. S) with ϕ1 : ρ ' σ, then ϕ1 induces an
isomorphism ϕ from the gs GR of R to the gs GS of S, but in general ϕ does not make the
diagram in Fig. 2b (Def. 4) commute. This is not surprising, since a 1-diffnet of a DiLL-ps R
is essentially the gs of R (Fact 17.1), i.e. R having forgotten the border of boxes in R.

4 Connected case: computing a MELL-ps from its Taylor expansion

We show here our main result (Thm. 23): a connected (in the sense of Def. 19) MELL-ps
R is completely characterized by any γ ∈ T 'R strongly fat.6 The idea is that, by means
of the “geometry” of γ (the same in all elements of γ, since they are isomorphic), we can
recover the information about R encoded in the names of ports and cells of some suitable
ρ ∈ TR ∩ γ: in particular, we can identify the “real” contraction cells from the “fake” ones.
A key-tool for this approach is the notion of ?-accessibility (Def. 18): it allows to separate
the different copies of the content of a box, so it plays at a syntactic level the same role
played by bridges in [5, Def. 73]. Intuitively, in a pps Φ, q is a ? -accessible port from p

if there is a path in G(GΦ) seen as undirected graph (see page 5) starting upward from p

and ending in q, paying attention that, when crossing downward a cell l with type ? (here
“upward” and “downward” are in the sense of the order relation ≤Φ of Def. 2), we require
that all the premises of l are reachable by a path starting upward from p.

I Definition 18 (?-path, ?-accessibility). Let Φ be a pps. A ?-path on Φ (from p0 to pn) is a
finite sequence (p0, . . . , pn) of ports of Φ defined by induction as follows:
(i) (p) is a ?-path for any p ∈ PΦ;
(ii) if ~p = (p0, . . . , pn) is a ?-path where pn ∈ Ppri

Φ (l) for some l ∈ CΦ, then ~p·q is a ?-path,
for any q ∈ (Ppri

Φ (l) ∪ Paux
Φ (l)) r {pn};

(iii) if ~p = (p0, . . . , pn) is a ?-path with pn ∈ Paux
Φ (l) r {p0} for some l ∈ CΦ such that

tcΦ(l) 6= ?, then ~p·q is a ?-path, for any q ∈ (Ppri
Φ (l) ∪ Paux

Φ (l)) r {pn};
(iv) if ~p = (p0, . . . , pn) is a ?-path with pn ∈ Paux

Φ (l) r {p0} for some l ∈ C?
Φ, if for any r ∈

Paux
Φ (l) there is a ?-path from p0 to r, then ~p·q is a ?-path, for any q ∈ (Ppri

Φ (l) ∪ Paux
Φ (l)) r {pn}.

For every p ∈ PΦ, the set of the ?-accessible ports from p in Φ is defined as acces?
Φ(p) :=

{q ∈ PΦ | there is a ?-path in Φ from p to q}.

We require p0 6= pn in rules 3-4 so that in any ?-path on Φ of the form p·~r ·p·q, either
p <1

Φ q, or p and q are the two conclusions of a same ax-cell (?-paths “start upwards”).
According to Def. 18, given a pps Φ and p ∈ PΦ, the set of ?-accessible ports from p in Φ
is upward-closed (rule 2): if q ∈ acces?

Φ(p) and q ≤R q′ then q′ ∈ acces?
Φ(p);

is “often” downward-closed (rules 3-4): if q ∈ acces?
Φ(p) and q′ /∈ acces?

Φ(p) with q ∈ Paux
Φ (l)

and q′∈ Ppri
Φ (l) for some l ∈ CΦ, then p ∈ Paux

Φ (l), or l ∈ C?
Φ and Paux

Φ (l) 6⊆ acces?
Φ(l);

crosses ax-cells and cut-cells (rules 2-3): if l ∈ Cax
Φ then either Ppri

Φ (l) ⊆ acces?
Φ(p) or

Ppri
Φ (l)∩acces?

Φ(p) = ∅; if l ∈ Ccut
Φ then either Paux

Φ (l) ⊆ acces?
Φ(p) or Paux

Φ (l)∩acces?
Φ(p) = ∅.

6 According to Def. 1, (strong) fatness is not defined for a set of pps, but this notion can be extended to
a set of isomorphic pps thanks to Remark 2.1.
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The set Cbox
Φ and the partial function boxΦ play no role in Def. 18: in other words, ?-paths

and ?-accessibility can be equivalently defined in the gs GΦ of Φ.
Note that ?-accessibility cannot be defined as a binary symmetric relation on the ports of

a pps Φ: in general, q ∈ acces?
Φ(p) does not imply that p ∈ acces?

Φ(q), as exemplified by the
MELL-ps S in Fig. 8c.
I Remark. Recalling Remark 2.2, one can easily see that, if Φ and Ψ are pps such that
ϕ : GΦ ' GΨ , then for every p ∈ PΦ one has: ϕP(acces?

Φ(p)) = acces?
Ψ (ϕP(p)).

We now define the geometric key-notion of box-connectedness: a DiLL-ps is box-connected
if, seen as an undirected graph, what is inside any box is recursively connected, that is
(following [19, 5]), for any two ports p and q on the border of a same box, p and q are
connected by a path crossing only ports with depth at least the depth of p (and q). Formally,
our definition relies instead on ?-paths, which are a tool used in the proof of Lemma 20.

I Definition 19 (?-path inside a box, box-connectedness). Given R ∈ PSDiLL and l ∈ Cbox
R , a

?-path ~p = (p0, . . . , pn) in R is inside the box of l if pi ∈ inboxR(l) for all 0 ≤ i ≤ n.
A DiLL-ps R is box-connected if, for any l ∈ Cbox

R and p ∈ inboxR(l), there is a ?-path in
R from pridR(l) to p inside the box of l.

For example, the DiLL-ps R1 and R2 in Fig. 3b-3c, and R and S in Fig. 7a-7b are box-con-
nected; the DiLL-ps R and S in Fig. 4a and 3a are not box-connected. Clearly, any DiLL0-ps,
or more generally, any DiLL-ps R such that Doors?

R = ∅ = Doorscut
R , is box-connected.

We stress that the box-connectedness condition (a crucial hypothesis in our main result)
is quite general and not ad hoc. Indeed, it can be proven that: any ACC7 DiLL-ps having
neither ⊥-cells nor weakenings (i.e. ?-cells with no premises) inside boxes is box-connected.
In particular, any derivation in MELL sequent calculus without mix-rules, nor ⊥-rules nor
weakening rules corresponds to a box-connected MELL-ps. Also, any MELL-ps which is the
translation of an untyped λ-term (according to the call-by-name type identity o = !o( o) is
box-connected. Finally, box-connectedness is preserved under cut-elimination.

Box-connection and Taylor expansion. Given a box-connected DiLL-ps R and a strongly
R-fat ρ ∈ TR, all information encoded in the indexes of ports and cells of ρ can be recovered in
a “ geometric” way via ?-accessibility, without looking at the names of ports and cells of ρ: by
Lemma 20, in ρ the copy with index a of the content of the box associated with a box-cell l of
R is exactly the set of ?-accessible ports from the premise (pridR(l), a) of the !-cell (l, a–) of ρ.

I Lemma 20 (Geometric characterization of the copies of a box in an element of the labeled
Taylor expansion). Let R be a DiLL-ps, ρ ∈ TR and (p, a) ∈ Pρ with p = pridR(l) for some
l ∈ Cbox

R .8 Let P l,aρ = {(q, a·b) ∈ Pρ | b ∈ N∗ and q ∈ inboxR(l)}. If R is box-connected and ρ
is strongly R-fat , then P l,aρ = acces?

ρ((p, a)) and thus inboxR(l) = forgetρ,RP (acces?
ρ((p, a))).

In the proof of Lemma 20, the hypothesis of box-connectedness (resp. strong R-fatness)
ensures that the ?-accessible ports from (pridR(l), a) in ρ contain at least (resp. at most) all
the content of the copy with index a of the content of the box associated with the box-cell l
of R. In Fig. 6, τ is a 2-diffnet of both R and S (so τ is strongly R- and S-fat) but R and S
are not box-connected, and indeed (setting A1

p = acces?
τ ((p, (1))) and A1

r = acces?
τ ((r, (1)))):

7 See [19, Def. A.6, Rmk. A.7] for the definition of ACC for MELL-ps, which can easily be adapted to
DiLL-ps: ?-cells (resp. !-cells which are not box-cells) are considered as generalized `-cells (resp. ⊗-cells).

8 This implies that (l, a–) ∈ C!
ρ and (p, a) ∈ Paux

ρ ((l, a–)), according to Def. 9–11.
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(a) R ∈ PSMELL

X X⊥
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!X⊥
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?
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(b) S ∈ PSMELL

X X⊥

ax

?

?X
?

??X

!

!X⊥

(c) τ1 ∈ T '
R ∩T '

S

X X⊥ X X⊥

ax ax

?

?X

?

?X
?

??X
!

!X⊥

(d) ρ2 ∈ T '
R r T '

S

X X⊥ X X⊥

ax ax

?

?X
?

??X

!

!X⊥

(e) σ2 ∈ T '
S r T '

R

Figure 7 Two non-isomorphic box-connected MELL-ps R (Fig. 7a) and S (Fig. 7b), having in
their respective Taylor expansions T 'R and T 'S the same element τ1 of order 1 (Fig. 7c), but two
different elements ρ2 (Fig. 7d) and σ2 (Fig. 7e) of order 2, respectively.

in R (Fig. 6a), one has inboxR(l) = forgetτ,RP (A1
p) but inboxR(o) 6⊆ forgetτ,RP (A1

r);

in S (Fig. 6b), one has inboxS(o) = forgetτ,SP (A1
r) but inboxR(l) 6⊆ forgetτ,SP (A1

p).
In Fig. 7, (any representative of) τ1 (Fig. 7c) is a 1-diffnet of S (hence τ1 is not strongly
S-fat) and the ?-accessible ports from the premise of the !-cell of τ1 cover more than the
content of the box of box-cell of S: only in σ2 (Fig. 7e), taking two copies of the content of
the box, the ?-accessible ports correspond exactly to the content of the box.

A consequence of Lemma 20 and Remark 4 is Cor. 21 given two box-connected MELL-ps
R and S, and ρ ∈ TR and σ ∈ TS strongly fat, any isomorphism ϕ between ρ and σ “preserves”
the copies of the content of a box (Cor. 21.1) and the depth of ports and cells (Cor. 21.2).

I Corollary 21 (Boxes and copies preservation). Let R,S ∈ PSMELL, ρ ∈ TR and σ ∈ TS with
ϕ = (ϕP , ϕC) : ρ ' σ. If R and S are box-connected and ρ and σ are strongly fat, then for
any (p, a), (p′, a′) ∈ Pρ and (q, b), (q′, b′) ∈ Pσ with ϕP((p, a)) = (q, b) and ϕP((p′, a′)) =
(q′, b′):
1. (copies preserv.) boxext

PR(p) = boxext
PR(p′) and a = a′ iff boxext

PS(q) = boxext
PS(q

′) and b = b′;
2. (depth preserv.) depthPR(p) = depthPS(q) (and depthPR(p′) = depthPS(q

′)).

Cor. 21.2 says that if a port of ρ corresponds to a port of R contained in n ∈ N boxes,
then its image in σ via ϕ corresponds to a port of S contained in n boxes, and conversely.
Cor. 21.1 means that if two ports of ρ are in the same copy of the content of a box in R,
then their images in σ via ϕ are in the same copy of a box in S , and conversely. The idea
of the proof of Cor. 21.1 is that if two ports of ρ are in the same copy of a box in R, then
(Lemma 20) they are ?-accessible from the same premise of a !-cell of ρ and thus, since
?-accessibility is preserved by isomorphism (Remark 4), their images via ϕ are ?-accessible
from the same premise of a !-cell of σ, hence (Lemma 20 again) they are in the same copy of
a box in S. The proof of Cor. 21.2 is similar. A fact analogous to Cor. 21 holds for cells.

I Remark (Box-cells preservation). LetR,S ∈ PSMELL, ρ ∈ TR and σ ∈ TS with ϕ = (ϕP , ϕC) :
ρ ' σ. Let a ∈ N∗ and l ∈ Cbox

R : if (pridR(l), a) ∈ Pρ then there are o∈Cbox
S and b∈N∗ such

that ϕP((pridR(l), a)) = (pridS(o), b) and ϕC((l, a–)) = (o, b–), as in a MELL-ps !-cells and
box-cells coincide. Analogously for every b ∈ N∗ and o ∈ Cbox

S with (pridS(o), b) ∈ Pσ.

Remark 4 is false in general if R or S is a DiLL-ps: given R ∈ PSDiLLrPSMELL and ρ ∈ TR
as in Fig. 8a–8b, it is easy to find ϕ = (ϕP , ϕC) : ρ ' ρ with ϕC

(
(l, ( ))

)
= (o, ( )), i.e. ϕ maps

the !-cell of ρ corresponding to the box-cell of R into the !-cell of ρ not corresponding to the box-
cell of R. For this reason Cor. 21 holds only for MELL-ps and not for DiLL-ps, in general.

Cor. 21 (together with Fact 17) is crucial in the proof of the next lemma, which shows
how to build an isomorphism φ between two box-connected MELL-ps R and S starting from
an isomorphism ϕ between ρ ∈ TR and σ ∈ TS strongly fat: roughly speaking, φ is just the
restriction of ϕ to only one copy (e.g. the first one) in ρ of the content of each box of R.
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Figure 8 A box-connected DiLL-ps R (Fig. 8a, with Cbox
R = {l} and C!

R r Cbox
R = {o}) and a

2-diffnet ρ (Fig. 8b) of R (see also Remark 4). Moreover, a box-connected MELL-ps S (Fig. 8c).

I Lemma 22 (Building isomorphism). Let R,S∈PSMELL, ρ∈TR and σ∈TS. Suppose ρ and σ
are strongly fat and canonical, and ϕ = (ϕP , ϕC) : ρ ' σ. Let φP : PR → PS and φC : CR → CS
be functions defined in Eq. (1). If R and S are box-connected, then φ = (φP , φC) : R ' S.

φP(p) = forgetσ,SP (ϕP((p, a))) for every p ∈ PR where (p, a) ∈ Pρ with a ∈ {1}∗;

φC(l) = forgetσ,SC (ϕC((l, a))) for every l ∈ CR where (l, a) ∈ Cρ with a ∈ {1}∗.
(1)

I Theorem 23. Let R and S be some box-connected MELL-ps. Let ρ0 ∈ T 'R and σ0 ∈ T 'S
be strongly fat. If ρ0 = σ0 then R ' S.

Proof. According to Def. 15, ρ0 = σ0 implies that there are ρ ∈ TR ∩ ρ0, σ ∈ TS ∩ σ0 and
ϕ = (ϕP , ϕC) : ρ ' σ. By Remark 3, we can suppose without loss of generality that ρ and σ
are canonical. By hypothesis, ρ and σ are strongly fat. By Lemma 22, there is φ : R ' S. J

We point out that Thm. 23 holds for any ρ0 ∈ T 'R strongly fat, in particular when ρ0
is the element of order 2 of the Taylor expansion of R, i.e. ρ0 is obtained from R (up to
isomorphism, see Def. 15-16) by taking exactly 2 copies of the content of each box in R. If R
or S is not box-connected, or ρ0 is not strongly fat, then in general R 6' S, see Fig. 6-7.

5 Conclusion: injectivity of the relational model

Thm. 23 has a semantic counterpart: the injectivity of relational semantics for box-connected
MELL-ps. The relational model is the simplest model of MELL; it can be seen as a degenerate
case of Girard’s coherent semantics [11], where formulas are interpreted as sets and proofs
as relations between them. It is more or less well-known that, given a MELL-ps R, there
is a correspondence between certain equivalence classes on its relational interpretation JRK
and elements of its Taylor expansion T 'R (see [12] for a detailed proof): in particular, two
cut-free MELL-ps with atomic axioms have the same relational semantics iff they have the
same Taylor expansion. Thus, from Thm. 23 it follows that:

I Corollary 24 (Injectivity for box-connected MELL). Let R and S be cut-free MELL-ps with
atomic axioms and conclusions of the same type.
1. If R and S are box-connected, and if JRK = JSK, then R ' S.
2. If R and S are sequentializable in MELL sequent calculus without mix-rules, ⊥-rules and

weakening-rules, and if JRK = JSK, then R ' S.

Using different techniques, De Carvalho [3] proves the following, more general, theorem:

I Theorem 25 (De Carvalho [3], injectivity for full MELL). Let R and S be cut-free MELL-ps
with atomic axioms and conclusions of the same type. If JRK = JSK, then R ' S.
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The injectivity proven in [5, Cor. 55] is the same as our Cor. 24.2,9 even if the technique
used in [5] allows to recover the LPS (see [5, Def. 16-17 and Cor. 52]) of any cut-free MELL-ps
R with atomic axioms from its relational semantics JRK: this eventually yields a slightly
more general injectivity result than our Cor. 24.1.10 As stressed in §??, our Thm. 23 (and our
proof of Cor. 24) differs a lot from the proofs of Thm. 25 and [5, Cor. 52,54-55]: [3, 5] rely on
the presence, in the interpretations of MELL-ps, of points with arbitrarily large complexity,
depending on the two MELL-ps one wishes to discriminate. On the other hand, our result
allows to discriminate any two different box-connected, cut-free MELL-ps with atomic axioms
using a point of the relational semantics with fixed complexity (the order 2).

As a concluding remark, we believe that some kind of “converse” of Thm. 23 holds, which
can be stated as follows: if R is a MELL-ps such that the element of order 2 of T 'R does not
belong to T 'S for any MELL-ps S 6' R, then R is “connected”. Strictly, such a statement
is wrong if we interpret “connected” as box-connected or connected graph in the sense of
[5, Cor. 54]. However, we conjecture that a slight modification of these two notions yields a
notion of connectedness for which Thm. 23 and its aforementioned converse (so as Cor. 24.1
and [5, Cor. 54]) hold. These results would strengthen the hierarchy outlined in §??.
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Abstract
Cyclic data structures, such as cyclic lists, in functional programming are tricky to handle because
of their cyclicity. This paper presents an investigation of categorical, algebraic, and computa-
tional foundations of cyclic datatypes. Our framework of cyclic datatypes is based on second-order
algebraic theories of Fiore et al., which give a uniform setting for syntax, types, and computation
rules for describing and reasoning about cyclic datatypes. We extract the “fold” computation
rules from the categorical semantics based on iteration categories of Bloom and Esik. Thereby,
the rules are correct by construction. Finally, we prove strong normalisation using the Gen-
eral Schema criterion for second-order computation rules. Rather than the fixed point law, we
particularly choose Bekic̆ law for computation, which is a key to obtaining strong normalisation.
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Keywords and phrases cyclic data structures, traced cartesian category, fixed point, functional
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1 Introduction

Cyclic data structures in functional programming are tricky to handle because of their
cyclicity. In Haskell, one can define cyclic data structures, such as cyclic lists by

clist = 2:1:clist

The feasibility of such a recursive definition of cyclic data depends on lazy evaluation.
However, it does not ensure termination of computation. It might fall into a non-terminating
situation. For example, what is the sum of all elements of clist? One may think that it is
non-terminating, undefined, or impossible.

An answer using our framework in this paper is different. We do not rely on lazy evaluation.
We provide a way to regard the sum of a cyclic list as a cyclic natural number, which is
computed by the strongly normalising “fold” combinator. In this paper, we investigate a
framework for syntax and semantics of cyclic datatypes that makes this understanding and
computation correct.

Our framework of cyclic datatypes is founded on second-order algebraic theories of Fiore
et al. [13, 14]. Second-order algebraic theories have been shown to be a useful framework
that models various important notions of programming languages, such as logic programming
[32], algebraic effects [15], quantum computation [33]. This paper gives another application
of second-order algebraic theories, namely, to cyclic datatypes and its computation. We
use second-order algebraic theories to give a uniform setting for typed syntax, equational

© Makoto Hamana;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Strongly Normalising Cyclic Data Computation by Second-Order Algebraic Theories

S

S
fold

equational theory
for bisimulationsum

cyclic natural number

2 1 =
AxCy

S

S

[II][III][I]

clist

cy(x.2::1::x)

“infinity”

Figure 1 Framework: Second-order algebraic theories and iteration theories.

logic and computation rules for describing and reasoning about cyclic datatypes. We extract
computation rules for the fold from the categorical semantics based on iteration categories
[5]. Thereby the rules are correct by construction. Finally, we prove strong normalisation by
using the General Schema criterion [3] for rewrite rules.

Overview. As an overview of cyclic datatypes and their operations we develop in this paper,
we first demonstrate descriptions and an operation of cyclic datatypes by pseudo-program
codes. The code fragments correspond one-to-one to theoretical data given in later sections.
Therefore, they are theoretically meaningful and more intuitive than starting from detailed
theory.

First we consider an example of cyclic lists. The code below with the keyword ctype is
intended to declare cyclic datatype CList of cyclic lists having two ordinary constructors in
Haskell or Agda style.

ctype CList where
[ ] : CList
:: : CNat,CList → CList

with axioms AxCy

We assume that any ctype declared datatype has a default constructor “cy” for making
a cycle. For example, we express a cyclic list of 1 as a term cy(x.1::x), where cy has a
variable binding “x.”, regarded as the “address” of the top of list. A variable occurrence
x in the body means to refer to the top, hence it makes a cycle. The terms built from the
constructors of CList and the default constructor cy is required to satisfy the axioms AxCy
(given later in Fig. 3) as the keyword “with axioms” mentioned (we assume that any ctype
datatype satisfies AxCy, so this is for ease of understanding). We next consider the above
mentioned example of the sum of cyclic list. We define another cyclic datatype of natural
numbers.
ctype CNat where

0 : CNat
S : CNat → CNat

with axioms AxCy

sum : CList → CNat
spec sum ([ ]) = 0

sum (k :: t) = plus(k, sum (t))

The code with keyword spec at the right column describes an equational specification of
function. It requires that the sum function from cyclic lists to cyclic natural numbers must
satisfy the ordinary definition. We intend that the spec code is merely a (loose) specification,
and not a definition, because it lacks the case of cy-term.

fun sum t = fold (0, k,x.plus(k,x)) t

We here assume that the plus function on CNat has already been defined (as presented later
in Example 4.2). The above code with the keyword fun defines the function sum. It is defined



M. Hamana 21:3

by the fold combinator on the cyclic datatypes, as in an ordinary fold on an algebraic
datatypes. The first two arguments 0 and k,x.plus(k,x) correspond to the right-hand sides
of the specification of sum. The fold is actually the fold on a cyclic datatype, which knows
how to cope with cy-term. Actually, the sum of a cyclic list can be computed as follows:

sum(cy(x.S2(0)::S(0):: x)) →
cy(x.sum(x.S2(0)::S(0)::x)@x) →+ cy(x.S(S(S(x))))

where we represent n by Sn(0). The final term is a normal form that cannot be rewritten
further. Therefore, we regard it as the computation result. Here sum is intended to denote
“fold(0,..)”. The steps presented above are actual rewrite steps by the second-order rewrite
rules FOLDr given later in Fig. 8.

How to understand the meaning of the result cy(x.S(S(S(x)))) is arguable. The overall
situation we have demonstrated is illustrated in Fig. 1. In this paper, we also provide a
formal basis to understand and to reason about cyclic data, as well as the computation
result. We use second-order equational logic and the axioms AxCy to equate cyclic data
formally (Fig. 1 [III]). It completely characterises the notion of bisimulation on cyclic data.
The expression cy(x.S(S(S(x)))) is equal to (i.e. bisimilar to) cy(x.S(x)), which is a
minimal representation of the result, which may be regarded as ∞ (infinity). In this paper,
we do not develop an explicit algorithm to extract such a minimal representation from the
computation result, but it is noteworthy that this equational theory generated by AxCy is
decidable. Consequently, it is computationally reasonable. More practical examples on cyclic
datatypes and computation will be given in §6.

2 Second-Order Algebraic Theory of Cyclic Datatypes

We introduce the framework of second-order cartesian algebraic theory, which is a typed
and cartesian extension of [13, 14] and [19]. Here “cartesian” means that the target sort of
a function symbol is a sequence of base types. We use second-order algebraic theory as a
formal framework to provide syntax and to describe axioms of algebraic datatypes enriched
with cyclic constructs. The second-order feature is necessary for cycle operation and the fold
function on them. We will often omit superscripts or subscripts of a mathematical object if
they are clear from contexts. We use the vector notation −→A for a sequence A1, · · · , An, and
|
−→
A | for its length.

2.1 Cartesian Second-Order Algebraic Theory
We assume that B is a set of base types (written as a, b, c, . . .), and Σ, called a signature, is a
set of function symbols of the form

f : (−→a1 →
−→
b1), . . . , (−→am →

−→
bm)→ c1, . . . , cn.

where all ai, bi, ci are base types (thus any function symbol is of up to second-order type). A
sequence of types may be empty in the above definition. The empty sequence is denoted by
(), which may be omitted, e.g., b1, . . . , bm → c , or ()→ c. The latter case is simply denoted
by c. A signature Σc for type c denotes a subset of Σ, where every function symbol is of the
form f : τ → c, which is regarded as a constructor of c. A metavariable is a variable of (at
most) first-order type, declared as m : −→a → b (written as small-caps letters z,t, s,m, . . .).
A variable of the order 0 type is merely called variable (written usually x, y, . . .). The raw
syntax is given as follows.

FSCD 2016
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Terms have the form: t ::= x | x.t | f(t1, . . . , tn).
Meta-terms extend terms to: t ::= x | x.t | f(t1, . . . , tn) | m[t1, . . . , tn].

Terms are used for representing concrete cyclic data, functional programs on them and equa-
tions we want to model. A second-order equational theory is a set of proved equations built
from terms (NB. not meta-terms). Meta-terms are used for formulating equational axioms,
which are expected to be instantiated to terms. We write x1, . . . , xn. t for x1. · · · .xn. t.

A metavariable context Θ is a sequence of metavariable:type-pairs, and a context Γ is a
sequence of variable:type-pairs. A judgment is of the form Θ . Γ ` t : −→b . If Θ is empty,
we may simply write Γ ` t : −→b . A meta-term t is well-typed by the typing rules Fig. 4.
We often omit the types for binders as f( −→x1.t1, . . . ,

−→xn.tn ). Given a meta-term t with
free variables x1, . . . , xn, the notation s [x1 7→ s1, . . . , xn 7→ sn] denotes ordinary capture
avoiding substitution that replaces the variables with meta-terms s1, . . . , sn. A substitution
which replaces metavariables with meta-terms [14] is defined in Fig. 6. For meta-terms
Θ . Γ ` s : −→b and Θ . Γ ` t : −→b , an equation is of the form Θ . Γ ` s = t : −→b , or
denoted by Γ ` s = t : −→b when Θ is empty. The cartesian second-order equational logic
is a logic to deduce formally proved equations. The inference system of equational logic is
given in Fig. 5.

Preliminaries for datatypes. The default signature Σdef is given by the function symbols
called default constructors:

Empty sequence 〈 〉 :() Tuple 〈−, · · · ,−〉:(−→c1), . . . , (−→cn)→ −→c1 , . . . ,−→cn
Cycle constr. cy|−→c | :(−→c → −→c )→ −→c Composition �(−→a ,−→c ) :(−→a → −→c ),−→a → −→c .

defined for all base types −→a ,−→c ,−→c1 , . . . ,−→cn ∈ B. This means that any base type has default
constructors. We assume that any signature includes Σdef in this paper. We identify 〈t, 〈 〉〉
and 〈〈 〉, t〉 with t, and 〈〈s , t〉 , u〉 with 〈s , 〈t , u〉〉; thus we will freely omit the angle brackets
as 〈t1 , . . . , tn〉.

A datatype declaration for a type c is given by a triple (c,Σc, E) consisting of a base type
c, signature Σ and equational axioms E , where every f ∈ Σc is first-order, i.e. is of the form
f : b1, . . . , bn → c, and any equation in E is built from Σc-terms.

2.2 Instance (1): Cyclic Lists modulo Bisimulation
We will present an algebraic formulation of cyclic datatypes. By cyclic datatype, we mean
algebraic datatype having the cycle construct cy satisfying the axioms that characterise
cyclicity. The first example is the datatype of cyclic lists. It has already been defined as
CList in Introduction as the pseudo code. We now give a formal definition using datatype
declaration. Fix a ∈ B. The datatype declaration for CLista, the cyclic lists of type a, is
given by (CLista,ΣCLista ,AxCy) where ΣCLista is

[ ] : CLista, (− ::a −) : a, CLista → CLista

and the axioms AxCy are given in Fig. 3. Note that CLista has also the default constructors,
thus one can form cycle (see the example below). The definition of CList in Introduction
actually represents the datatype declaration (CListCNat,ΣCListCNat ,AxCy). Hereafter, we will
omit the type parameter subscript a of CList. The axioms AxCy mathematically characterise
that cy is truly a cycle constructor in the sense of Conway fixed point operator [5]. The
equational theory generated by AxCy captures the intended meaning of cyclic lists. For
example, the following are identified as the same cyclic list:



M. Hamana 21:5

=
AxCy

2 22 2 22=
AxCy

cy(x.2 :: x) = 2 :: cy(x.2 :: x) = 2 :: 2 :: cy(x.2 :: x) .

These equalities come from the fixed point property of cy.

On axioms AxCy We explain the intuitive meaning of the axioms in AxCy. Parameterised
fixed-point axioms axiomatise cy as a fixed point operator. They (minus (CI)) are equivalent
to the axioms for Conway operators of [5, 23, 31]. Bekic̆ law is well-known in denotational
semantics (cf. [34, §10.1]) to calculate the fixed point of a pair of continuous functions.
Conway operators are also arisen in work independently of Hyland and Hasegawa [23], who
established a connection with the notion of traced cartesian categories [25]. There are
equalities that holds in the cpo semantics but Conway operators do not satisfy. The axiom
(CI) is the commutative identities of Bloom and Ésik [5, 31], which ensures that all equalities
that hold in the cpo semantics do hold. See also [31, Section 2] for a useful overview about
this. The equality generated by AxCy is actually bisimulation on cyclic lists. This is included
in the equality of cyclic sharing trees given in next subsection.

2.3 Instance (2): Cyclic Sharing Trees modulo Bisimulation

Next we consider the datatype of binary branching trees, which can involve cycle and sharing.
We call them cyclic sharing trees, or simply cyclic trees. We first give the declaration of
datatype CTree of cyclic trees as the style of pseudo code below, where we assume that f ’s

ctype CTree where
f : CTree → CTree
[ ] : CTree
+ : CTree,CTree → CTree

with axioms AxCy,AxBr([ ],+)

part denotes various unary function symbols such as a,b,c,p,q,. . .. Formally, it is expressed
as the datatype declaration (CTree, {f, [ ],+}, AxCy ∪ AxBr([ ],+)). The binary operator +
denotes a branch. For example, one can write b([])+c([]) (cf. Fig. 2 (A)). It can also
express sharing by the constructor � of composition: x.a(b(x) + c(x)) � p([]) (Fig. 2
(F)). Note that the first argument of composition � has a binder (e.g. x.), which indicates
placeholder filled by the shared part after � (e.g. p([])). A binder at the first argument of
�-term may be a sequence of variables (e.g. “x,y.” in (E)), which will be filled by terms
in a tuple (e.g. <p([]),q([])>). Cyclic trees are very expressive. They cover essentially
XML trees with IDREF, the data model called trees with pointers [7], and arbitrary rooted
directed graphs (cf. Fig. 2 (B)(E)).

We denote by ∼ the equivalence relation generated by the axioms AxCy,AxBr([ ],+) in Fig.
3. Using the axioms AxCy ∪ AxBr([ ],+), we can reason this equality ∼ in the second-order
equational logic. The equality ∼ gives reasonable meaning of cycles as in the case of cyclic
lists and that the branch + is associative, commutative and idempotent (cf. Fig. 2 (C)),
thus nested + can be seen as an n-ary branch (cf. Fig. 2 (D)). Moreover, a shared term and
its unfolding are also identified by ∼ because of the axiom (sub) (cf. Fig. 2 (F)). The axiom
(sub) is similar to the β-reduction in the λ-calculus.
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Figure 2 Examples of cyclic sharing trees.

Algebraic theory of bisimulation. Actually, ∼ is exactly bisimulation on cyclic trees. Since
unary f expresses a labelled edge, and + expresses a branch, cyclic sharing trees are essentially
process graphs of regular behaviors, called charts by Milner in [29]. Infinite unfolding of them
are synchronization trees [5]. Thus the standard notion of bisimulation between graphs can
be defined. Intuitively, starting from the root, bisimulation is by comparing traces of labels
of two graphs along edges (more detailed definition is given in [5, 29] or ([22] Appendix)).
Now we see that (C),(F) and (G) are examples of bisimulation. Actually, the axioms in
Fig. 3 are sound for bisimulation, i.e. for each axiom, the left and the right-hand sides are
bisimilar. Moreover, it is complete.

I Proposition 2.1 ([21],([22]§5.3)). Γ ` s = t : CTree is derivable from AxCy and
AxBr([ ],+) iff if s and t are bisimilar.

The main reason of this is that the axioms AxCy and AxBr([ ],+) are second-order
representation of Bloom and Ésik’s complete equational axioms of bisimulation [5]. A crucial
fact is that bisimulation s ∼ t is decidable [5, 6]. There is also an efficient algorithm for
checking bisimulation, e.g. [10]. Hence, cyclic datatypes with the axioms AxCy, or the axioms
AxCy ∪ AxBr are computationally feasible, such as checking equality on cyclic structures we
have seen in Fig. 1.

There are many other instances of cyclic datatypes, some of which will be given in §6.

3 Categorical Semantics of Cyclic Datatypes

In this section, we give a categorical semantics of cyclic datatypes. A reason to consider
categorical semantics is to systematically obtain a “structure preserving map” on cyclic
datatypes. We will formulate the “fold” function for a cyclic datatype as a functor on the
category for cyclic datatypes (Thm. 3.8 and §4).

Since a cyclic datatype has cycles, the target categorical structure should have a notion
of fixed point. It has been studied in iteration theories of Bloom and Ésik [5]. In particular
iteration categories [11] are suitable for our purpose, which are traced cartesian categories
[25, 23] satisfying the commutative identities axiom [5]. We write 1 for the terminal object,
× for the cartesian product, 〈−,−〉 for pairing, and ∆ = 〈id, id〉 for diagonal in a cartesian
category.
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Axioms AxCy for cycles

(sub) t :−→a → −→c ,
s1, . . . , sn : −→a . ` (−→y .t[−→y ]) � 〈s1 , . . . , sn〉= t[s1 , . . . , sn] : −→c

(SP) t : −→c . ` 〈(−→y .y1) � t, . . . , (−→y .yn) � t〉= t : −→c

(dinat) s : −→a →−→c ,
t : −→c →−→a . ` cy(−→x .s[t[−→x ]]) = (−→z .s[−→z ]) � cy(−→z .t[s[−→z ]])] : −→c

(Bekic̆) t : −→c ,−→a → −→c ,
s : −→c ,−→a → −→a . ` cy(−→x ,−→y. 〈 t̂, ŝ 〉) =

〈 cy(−→x . (−→y .t̂) � cy(−→y .̂s)),
cy(−→y . (−→x .̂s) � cy(−→x . (−→y .t̂) � cy(−→y .̂s))) 〉

: −→c ,−→a

(CI) t : −→a → −→a . ` cy(−→y .〈t[ρ1], . . . ,t[ρm]〉) = 〈cy(y.t̃ ), . . . , cy(y.t̃ )〉 : −→a

In (CI), ρi = 〈q1 , . . . , qm〉, each qj is one of yi for i = 1, . . . ,m, and t̃ is short for t[y, . . . , y] .
In (Bekic̆), t̂ and ŝ are short for t[−→x ,−→y ] and s[−→x ,−→y ], respectively.

Axioms AxBr([ ],+) for branching

(del) t : c . ` cy(xc.t + x) = t : c
(unitL) t : c . ` [ ] + t = t : c
(unitR) t : c . ` t + [ ] = t : c
(assoc) s,t,u : c . ` (s + t) + u = s + (t + u) : c
(comm) s,t : c . ` s + t = t + s : c
(degen) t : c . ` t + t = t : c

Figure 3 Axioms.

I Definition 3.1 ([11, 5]). A Conway operator in a cartesian category C is a family of
functions (−)† : C(A×X,X)→ C(A,X) satisfying:

(f ◦ (g × idX))† = f† ◦ g , (f†)† = (f ◦ (idA ×∆))† ,
f ◦ 〈idA, (g ◦ 〈π1, f〉)†〉 = (f ◦ 〈π1, g〉)†.

An iteration category is a cartesian category having a Conway operator satisfying the
“commutative identities” law [5]

〈f ◦ (idA × ρ1), . . . , f ◦ (idA × ρm)〉† = ∆m ◦ (f ◦ (idA ×∆m))† : A→ X

where
f : A×Xm → X

diagonal ∆m , 〈idX , · · · , idX〉 : X → Xm

ρi : Xm → Xm such that ρi = 〈qi1, . . . , qim〉 where each qij is one of projections
π1, . . . , πm : Xm → X for i = 1, . . . ,m (see also [31]).

An iteration functor between iteration categories is a cartesian functor that preserves Conway
operators.

A typical example of iteration category is the category of complete partial orders (cpos)
and continuous functions [5, 23], where the least fixed point operator is a Conway operator.

I Definition 3.2. Let Σ be a signature. A Σ-structure M in an iteration category C is
specified by giving for each base type b ∈ B, an object [[b]]M (or simply written [[b]]) in C, and
for each function symbol f : (−→a1 →

−→
b1), . . . , (−→am →

−→
bm)→ −→c , a function

[[f ]]MA : C(A× [[−→a1]], [[−→b1 ]])× · · · × C(A× [[−→an]], [[−→bn]]) - C(A, [[−→c ]]) (1)

FSCD 2016
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y : b ∈ Γ
Θ . Γ ` y : b

(m : a1, . . . , am →
−→
b ) ∈ Θ Θ . Γ ` t1 : a1 Θ . Γ ` tm : am
Θ . Γ ` m[t1, . . . , tm] : −→b

Θ . Γ,−−−→x1 : a1 ` t1 : −→b1 · · · Θ . Γ,−−−−−→xm : am ` tm : −→bm
Θ . Γ ` f(

−→
xa1

1 .t1, . . .
−−→
xam
m .tm ) : −→c

where f : (−→a1 →
−→
b1), . . . , (−→am →

−→
bm)→ −→c .

Figure 4 Typing rules of meta-terms.

(Sub)
m1 : (−→a1 →

−→
b1), . . . ,mk : (−→ak →

−→
bk) . Γ ` t = t′ : −→c

Θ . Γ′,−−−→xi : ai ` si = s′i : −→bi (1 ≤ i ≤ k)

Θ . Γ,Γ′ ` t [−−−−→m := s ] = t′ [
−−−−→
m := s′ ] : −→c

(Ax)
(Θ . Γ ` s = t : −→c ) ∈ E

Θ . Γ ` s = t : −→c

(Ref)

Θ . Γ ` t = t : −→c

(Sym)
Θ . Γ ` s = t : −→c
Θ . Γ ` t = s : −→c

(Tr)
Θ . Γ ` s = t : −→c Θ . Γ ` t = u : −→c

Θ . Γ ` s = u : −→c

Figure 5 Cartesian second-order equational logic.

which is natural in A, where [[b1, . . . , bn]] , [[b1]]× . . .× [[bn]]. Also given a context Γ = x1 :
b1, . . . , xn : bn we set [[Γ]] , [[b1, . . . , bn]]. The superscript of [[−]] may be omitted hereafter.

Interpretation. Let M be a Σ-structure in an iteration category C. We give the categorical
meaning of a term judgment Γ ` t : −→c (where there are no metavariables) as a morphism
[[t]]M : [[Γ]]→ [[−→c ]] in C defined by

[[Γ ` yi : c]]M = πi : [[Γ]]→ [[c]]

[[Γ ` f(
−→
xa1

1 .t1, . . .
−→
xan
n .tn ) : −→c ]]

M
= [[f ]]M[[Γ]]( [[t1]]M , . . . , [[tn]]M ).

We assume the following interpretations in any Σdef-structure:

[[〈 〉]]MA = ! : A→ 1 [[〈−, . . . ,−〉]]MA (t1, . . . , tn) = 〈t1, . . . , tn〉
[[�]]MA (t, s) = t ◦ 〈idA, s〉 [[cy]]MA (t) = t†

Importantly, these satisfy the axioms AxCy because C is an iteration category.

I Definition 3.3. A (Σ, E)-structure is a Σ-structure M in C satisfying [[s]]M = [[t]]M for
every axiom Γ ` s = t : c in E . Let N be a (Σ, E)-structure in an iteration category D. We
say that an iteration functor F : C → D preserves (Σ, E)-structures if F ([[−]]M ) = [[−]]N .

A c-structure (M,α) for a datatype declaration (c,Σc, E) is a (Σc, E)-structure M with
a family of morphisms of C; α , ( ([f ])M : [[b1]] × . . . × [[bn]] → [[c]] )f :b1,...,bn→c∈Σc

. It
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Let Γ = y1 : −→b1 · · · , yk : −→b1 . Suppose Θ . Γ′,−−−→xi : ai ` si : −→bi and

m1 : −→a 1 →
−→
b 1, . . . ,mk : −→a k →

−→
b k . Γ ` e : −→c

where −−−→xi : ai = x1
i : a1

i , . . . , x
m
i : ami for m = |−→ai | and each i = 1, . . . , k. Then a substitution

Θ . Γ,Γ′ ` e [−−−−→m := s ] : −→c is inductively defined as follows.

x [−−−−→m := s ] , x

mi[t1, . . . , tmi
] [−−−−→m := s ] , si [x1 7→ t1 [−−−−→m := s ], . . . , xmi

7→ tmi
[−−−−→m := s ]]

f(−→y1.s1, . . . ,
−→ym.sm) [−−−−→m := s ] , f(−→y1.s1 [−−−−→m := s ], . . . ,−→ym.sm [−−−−→m := s ])

where [−−−−→m := s ] denotes [m1 := s1, . . . ,mk := sk].

Figure 6 Substitution for metavariables.

actually defines a (Σc, E)-structure by [[f ]]MA (t1, . . . , tn) , ([f ])M ◦ 〈t1, . . . , tn〉 for any A in C.
We say that an iteration functor F : C → D preserves c-structures if F ([[c]]M ) = [[c]]N , and
F (([f ])M ) = ([f ])N for every f ∈ Σc.

I Example 3.4 (The cyclic list datatype CList). A CList-structure is given by a (ΣCList,AxCy)-
structure M having the interpretations of “[ ]” and “::”.

I Example 3.5 (The cyclic tree type CTree). A CTree-structure is given by a (ΣCTree,AxBr∪
AxBr([ ],+))-structure M where [[CTree]]M = N and N is a commutative monoid object
(N, η :1→ N, µ :N ×N → N) in C satisfying µ† = idN , where ([ [ ] ])M = η, ([+])M = µ. It
satisfies AxBr([ ],+). Note that any CTree-structure is always a degenerated commutative
bialgebra (cf. [16]) in a cartesian category C, i.e. N is also a comonoid (N, !,∆) that satisfies
the compatibility

∆ ◦ η = η × η, ∆ ◦ µ = (µ× µ) ◦ (id× 〈π2, π1〉 × id) � (∆×∆), µ ◦∆ = id.

The last equation is by µ ◦ ∆ = µ ◦ 〈id, id〉 = µ ◦ 〈id, (µ)†〉 =(dinat) (µ)† = id. Thus, a
CTree-structure models branch and sharing of cyclic sharing trees.

We next give a syntactic category and a Σ-structure to prove categorical completeness.
Let Σ be a signature, and E a set of axioms which is the union of AxCy and axioms for all
datatype declarations of base types c. Given axioms E , all proved equations Γ ` s = t : −→c
(which must be the empty metavariable context) by the second-order equational logic (Fig.
5), defines an equivalence relation =E on well-typed terms, where we also identify renamed
terms by bijective renaming of free and bound variables. We write an equivalence class of
terms by =E as [Γ ` t : −→c ]E . We define the category Tm(E) of terms by taking

objects: sequences of base types −→c
morphisms: [Γ ` t : −→c ]E : [[Γ]]→ [[−→c ]], the identity: [−−→x : c ` 〈−→x 〉 : −→c ]E
composition: [−−→x : b ` s : −→c ]E ◦ [Γ ` t : −→b ]E , [Γ ` (−→x .s) � t : −→c ]E

I Proposition 3.6. Tm(E) is an iteration category, and has a (Σ, E)-structure U.

Proof. We define a Σ-structure U by [[c]]U , c for each c ∈ B and [[f ]]U−→a , f for each function
symbol f and arbitrary base types −→a . We take

terminal object: () • pair: 〈[s]E , [t]E〉 , [Γ ` 〈s , t〉 : −→c1 ,−→c2 ]E
product: concatenation of sequences
Conway: ([Γ,−−→x : c ` t : −→c ]E)† = [Γ ` cy(−→xc.t) : −→c ]E
projections: [x1 : c1, x2 : c2 ` xi : ci]E
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Then these data satisfy that Tm(E) is an iteration category and U forms a (Σ, E)-structure
because of the axioms E for each c ∈ B. Moreover, ([[c]]U, (f)f∈Σc

) is a c-structure. J

Then [[t]]U = [t]E holds for all well-typed terms t. Using it, we have the following.

I Theorem 3.7 (Categorical soundness and completeness). Γ ` s = t : −→c is derivable iff
[[s]]MC = [[t]]MC holds for all iteration categories C and all (Σ, E)-structures in C.

I Theorem 3.8. For a (Σ, E)-structure M in an iteration category C, there exists a unique
iteration functor ΨM : Tm(E) - C that preserves (Σ, E)-structures. Pictorially, it is
expressed as the following picture, where Tm denotes the set of all terms (without quotient).

Tm [[−]]U - Tm(E)

C

[[−]]M

?�

Ψ
M

Proof. We write simply Ψ for ΨM . Since Ψ preserves (Σ, E)-structures, Ψ([[−]]U) = [[−]]M

holds. Hence Ψ([[t]]U) = Ψ([t]E) = [[t]]M for any t, meaning that the mapping Ψ is required
to satisfy

Ψ( [Γ ` yi : c]E ) = πi Ψ([Γ ` 〈 〉 : ()]E) = !
Ψ( [Γ ` 〈s , t〉 : −→c1 ,−→c2 ]E ) = 〈Ψ[Γ ` s : −→c1 ]E ,Ψ[Γ ` t : −→c2 ]E〉
Ψ( [Γ ` cy(−→xc.t) : −→c ]E ) = (Ψ[Γ,−−→x : c ` t : −→c ]E)†

Ψ( [Γ ` f(
−→
xa1

1 .t1, . . . ,
−−→
xam
m .tm) : c]E ) = [[f ]]M[[Γ]](Ψ[Γ,−−−−→x1 : a1 ` t1 : b1]E , . . .)

Ψ( [Γ ` (
−→
xb.t) � s : c]E ) = Ψ[Γ,−−→x : b, ` t : c]E ◦ 〈id[[Γ]],Ψ[Γ ` s : −→b ]E〉

(2)

The above equations mean that Ψ is an iteration functor that sends the (Σ, E)-structure U to
M . Such Ψ is uniquely determined by these equations because U is a (Σ, E)-structure. J

4 Fold on Cyclic Datatype

Fix a cyclic datatype c (say, the type CList of cyclic lists). By the previous theorem, for a
c-structure M , the interpretation [[−]]M determines a c-structure preserving iteration functor
ΨM . If we take the target category C as also Tm(E), M should be another cyclic datatype
b (say, the CNat of cyclic natural numbers), where the constructors of c are interpreted as
terms of type b. For example, the sum of a cyclic list in Introduction is understood in this
way. Thus the functor ΨM determined by [[−]]M can be understood as a transformation of
cyclic data from terms of type c to terms of type b.

Along this idea, we formulate the fold operation from the cyclic datatype c to b by the
functor ΨM . Let (M,α) be an arbitrarily c-structure in Tm(E), where [[c]]M = b ∈ B. We
write the arrow part function ΨM on hom-sets as the fold, i.e.

foldcb(α) : Tm(E)([[Γ]]U, c) - Tm(E)([[Γ]]M, b).
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4.1 Formalising fold as a second-order algebraic theory
The fold is a function on equivalence classes of term judgments modulo E including AxCy ∪
AxBr characterised by (2). Equivalently, we regard it as a function on terms (judgments)
that preserves =E , i.e. s =E t ⇒ foldcb(α)(s) =E foldcb(α)(t). In this subsection, we
axiomatise the function foldcb as the laws of fold within second-order equational logic using
(2).

Formalising a c-structure (M,α). To give α = (([f ])M : [[a1]]×. . .×[[an]]→ [[c]])f :a1,...,an→c∈Σc

is to give terms x1 : [[a1]], . . . , xn : [[an]] ` ef : b for all f : a1, . . . , an → c ∈ Σc such that
([f ])M = [ef ]E . We represent α as a tuple of terms ef according to function symbols in Σc by
the order of datatype constructors listed in a ctype declaration of c.

Formalising fold. We next formalise the fold operation in second-order algebraic theory.
The type of fold may be chosen as foldcb : (−→a1 → b), . . . , (−→ak → b), (cm → c) → (bm → b),
where the first k-arguments correspond to the c-structure α. But in second-order algebraic
theory, the codomain of function symbol must be a sequence of base types (§2.1), so the
current codomain (bm → b) is inappropriate. To solve it, we introduce a new base type
jtybm as the type of “encoded judgments” and a function symbol judgmtbm : (bm → b)→ jtybm
for each m ∈ N, b ∈ B. We encode a judgment −−→y : b ` t : b as a term judgmtbm(−→y .t), for
m = |−→y |, which will be denoted by −→y  t for readability. In case of m = 0, jtyb0 = b and
we do not use the constructor judgmtb0. In summary, the fold is formalised as the function
symbol of the type

foldcb : (−→a1 → b), . . . , (−→ak → b), jtycm → jtybm
and the mathematical expression foldcb(α)([Γ ` t : c]E) at the level of semantics is formalised
as a term foldcb(e1, . . . , ek, Γ  t) in second-order algebraic theory, where each ei corresponds
to ([fi])M for fi ∈ Σc in α.

Finally, we axiomatise fold by using the characterisation (2) in case of particular category
C = Tm(E) and a c-structure. Here we assume an additional function symbol app : (−→a →
b),−→a → b. We give the axioms FOLD in Fig. 7, which is straightforward formalisation of (2)
in case of the target c-structure is given by terms of type b. The arguments of fold expressing
the c-structure are abbreviated as E for simplicity. We also include the axioms and theorems
(8)-(12) taken from AxCy and AxBr for simplification. This importation of several axioms
from AxCy∪AxBr to the second-order algebraic theory FOLD is harmless because our general
framework is second-order equational logic under E ∪FOLD which includes AxCy∪AxBr. The
following is immediate by construction.

I Proposition 4.1. Using the above formalisation process, the following are equivalent.
foldcb(α)([Γ ` t : c]E) = [Γ′ ` u : b]E
` fold(e1, . . . , ek, Γ  t) = (Γ′  u) : jtybm is derived from the axioms E ∪ FOLD using
the second-order equational logic.

where α, ei and t are fold free, Γ = x1 : c, . . . , xm : c, Γ′ = x1 : b, . . . , xm : b.

I Example 4.2. The plus function on CNat can be defined as fold as follows.

plus : CNat,CNat → CNat
spec plus(m, n) = pl(m)

where pl(0) = n
pl(S(m)) = S(pl(m))

fun plus(m, n) = fold (n, x.S(x)) m
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Fold
(1) fold(E,

−→
yc  yi) =

−→
yb  yi (for yi ∈ {−→y })

(2) fold(E, −→y  〈 〉) =−→y  〈 〉
(3) fold(E, −→y  〈s[−→y ],t[−→y ]〉) =−→y  〈app(fold(E, −→y  s[−→y ]),−→y ), app(fold(E, −→y  t[−→y ]),−→y )〉
(4) fold(E, −→y  cy(−→x .t[−→y ,−→x ])) =−→y  cy(−→x .app(fold(E, −→y ,−→x  t[−→y ,−→x ]),−→y ,−→x ))
(5) fold(E, −→y  d(−→a ,t1[−→y ], . . . ,tn[−→y ])) = −→y  (−→x .ed[−→a ,−→x ]) � 〈app(fold(E, −→y  t1[−→y ]),−→y ), . . . , 〉
(6) fold(E, x  (−→y .t[−→y ]) � s[−→x ])=−→x  −→y .app(fold(E, −→y  t[−→y ]),−→y ) � app(fold(E, −→x  s[−→x ]),−→x )
(7) app(−→x  s[−→x ], z1, . . . , zm) =s[z1, . . . , zm]
Bekic̆ and cycle cleaning
(8) cy(−→x ,−→y. 〈 t̂, ŝ 〉) =〈 cy(−→x . (−→y .t̂) � cy(−→y .̂s)), cy(−→y . (−→x .̂s) � cy(−→x . (−→y .t̂) � cy(−→y .̂s)))〉
(9) cy(−→y.t) =t (NB. t cannot contain y)
(10)cy(xc.x) = [ ] cy(xc.t + x) =t (if a type c has [ ] and “+” satisfying AxBr)
Composition
(11)(−→y .t[−→y ]) � 〈s1 , . . . , sn〉 =t[s1 , . . . , sn]

Here E is a sequence (ed)d∈Σc of metavariables and d ∈ Σc.
In (8), t̂ and ŝ are short for t[−→x ,−→y ] and s[−→x ,−→y ], respectively.

Figure 7 Second-order algebraic theory FOLD of fold from the datatype c to b.

In specification, we understand plus in terms of a unary function pl which recurses on the
first argument m and gives the second argument n if m = 0. Hence it is fold where the
parameter n is passed to the Σ-structure of fold.

4.2 Primitive recursion by fold
The fold formalised above covers the ordinary fold on algebraic datatypes. Thus, we expect
that various techniques on fold developed in functional programming, such as the fold fusion
technique and representation of recursion principles such as [28] may be transferred to the
current setting. Here we consider a way to implement a particular pattern of recursion
appearing often in specifications as a fold. Consider a specification having a clause

spec f(d(t)) = e

where e contains f(t) as well as t solely (cf. examples in §6). (If e constrains only the
recursive call f(t), it is merely a pattern of structural recursion, so it can be implemented
by fold using the structure x.e′ where all the recursive calls f(t) in e are abstracted to x as
Example 4.2.)

The above specification (i.e. the clause with spec keyword) can be seen as describing
primitive recursion, because it is similar the primitive recursion on natural numbers f(S(n)) =
e(f(n), n), where both n and f(n) can be used at the right-hand side. In functional
programming, it is known that primitive recursion on algebraic datatypes can be represented
as fold, called paramorphism [27]. We sketch how we can import this technique (see also
[21, §3.5], [22, §4.2]). For the above case, we take the fold where the target Σ-structure is
the product b, b of types, i.e. foldcb,b. In this case, variables in context are doubled at the
right-hand sides of the axioms FOLD, e.g. for (1) fold(E, −→y  yi) = (−→y ,

−→
y′  〈yi, y′i〉). Let

π1 = (x, y.x). We implement f as

f(Γ  t) , π1 � fold(· · · , 〈x, y.e′, d(y)〉, · · · , Γ  t)

where e′ is obtained from e in the specification by replacing every “f(t)” with x and every “t”
not in the form f(t) with y. The other components of the c-structure for fold are implemented
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Fold
(1) fold(E,

−−→
yVarc. v(yi)) →

−−→
yVarb. v(yi)

(2) fold(E, −→y. 〈 〉) →−→y. 〈 〉
(3) fold(E, −→y. 〈s[−→y ],t[−→y ]〉) →−→y. 〈fold(E, −→y. s[−→y ])@−→y , fold(E, −→y.t[−→y ])@−→y 〉
(4) fold(E, −→y. cy1(x.t[−→y , x])) →−→y. cy1(x.fold(E, −→y , x.t[−→y , x])@−→y , x)
(5) fold(E, −→y. d(−→a ,t1[−→y ], . . . ,tn[−→y ]))→−→y. (−→x .ed[−→a ,−→x ]) � 〈 fold(E, −→y.t1[−→y ])@−→y , . . .〉
(6) fold(E, −→x. (−→y .t[−→y ]) � s[−→x ]) →−→x. (−→y .fold(E, −→y.t[−→y ])@−→y ) � fold(E, −→x. s[−→x ])@−→x
Bekic̆ and cycle cleaning (for m,n ≥ 1)
(8) cym+n(−→x ,−→y. 〈 t̂, ŝ 〉) →〈 cym(−→x . (−→y .t̂) � cyn(−→y .̂s)),

cyn(−→y . (−→x .̂s) � cym(−→x . (−→y .t̂) � cyn(−→y .̂s)))〉
(9) cy(−→y.t) →t
(10) cy(x.v(x))→ [ ] cy(x.t + v(x)) →t (if a type c has [ ] and “+” satisfying AxBr)
Composition
(11) (−→y. v(yi)) � 〈−→s 〉 →si

(12) (−→y. d(−→x1.t1[−→y ,−→x1], . . .)) � 〈−→s 〉 →d(−→x. (−→y.t1[−→y ,−→x1]) � 〈−→s 〉, . . . , (−→y.tn[−→y ,−→xn]) � 〈−→s 〉)
(for each constructor d)

Figure 8 Rewrite system FOLDr.

by the same way, according to the specification. Then by induction on the structure of
terms t, we have foldcb,b(E,−→y  t) = −→y  〈 app(f(−→y  t),−→y ), t 〉 for closed t using FOLD.
By the characterisation (2), we have f(d(t)) = (x, y. e′) � 〈f(t), t〉 = e, thus it satisfies the
specification. We use extensively this technique in §6.

5 Strongly Normalising Computation Rules for FOLD

We expect that FOLD provides strong normalising computation rules. An immediate idea is
to regard the axioms FOLD as rewrite rules by orienting each axiom from left to right.

But proving strong normalisation (SN) of FOLD is not straightforward. The sizes of both
sides of equations in FOLD are not decreasing in most axioms. So, assigning some “measure”
to the rules in FOLDr that is strictly decreasing is difficult for this case. If the axioms
(regarded as rewrite rules) are a binding CRS [18] (meaning that every meta-application
m[t1, . . . , tn] is of the form m[−→x ]), then it is possible to use a simple polynomial interpretation
to prove termination of second-order rules [18]. Unfortunately, this is not the case because in
(5) and (11) there are meta-applications violating the condition. Existence of meta-application
means that it essentially involves the β-reduction, thus it has the same difficulty as proving
strong normalisation of the simply-typed λ-calculus.

We use a general established method of the General Schema[4, 3], which is based on
Tait’s computability method to show SN. The General Schema has succeeded to prove SN of
various recursors such as the recursor in Gödel’s System T. The basic idea of the General
Schema is to check whether the arguments of recursive calls in the the right-hand side of a
rewrite rule are “smaller” than the left-hand sides’ ones. It is similar to Coquand’s notion of
“structurally smaller” [8], but more relaxed and extended.

Rewrite rules using strictly positive types. In order to apply the General Schema criterion,
we refine the second-order algebraic theory FOLD to the rewrite rule FOLDr. The General
Schema in [3] is formulated for a framework of rewrite rules called inductive datatype systems,
whose (essentially) second-order fragment is almost the same as the present formulation
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given in §2. Minor differences are as follows.
(i) The target of function symbols must be a single (not necessary base) type in inductive

datatype systems. Hence we introduce the product type constructor ×, assume that
b1 × b2 is again a base type in the sense of §2.2, and use it for the target type.

(ii) Instead of term x1, . . . , xn.t that binds a sequence of variables and is of sort a1, . . . , an → b

in second-order algebraic theory, we use x1. · · · .xn.t that repeatedly binds single variables
and is of type a1 → · · · → an → b. Now the abbreviation −→x .t denotes x1. · · · .xn.t.

(iii) We assume that a function symbol @ : (a→ b), a→ b and a rule (x.t[x])@s→ t[s] for
application ([3] Def. 2, β-IDTS). We write (−→x .t)@−→s for (−→x .t)@s1 · · ·@sn.
The General Schema requires a notion of strictly positivity. Crucially, the constructors

used in FOLD are not strictly positive, as cy and � involve negative occurrence of c in (c→ c).
We can overcome this problem by modifying the type (c → c) to a restricted (Varc → c),
where Varc is a base type having no constructor considered as a type of “variables” of type c.
We assume the constructor v which embeds a “variable” into a term. We modify the types of
constructors as follows:

〈−, · · · ,−〉 : c1, . . . , cn → −→c , cy : (−−→Varc → −→c )→ −→c ,
v : Varc → c, − � − : (−−→Vara → −→c ), a1 × · · · × an → −→c ,

where −→c denotes c1 × · · · × cn , ci’s and a are base types, −−→Vara → τ is short for Vara1 →
· · · → Varan

→ τ and similarly for −−→Varc → τ . The use of a type Varσ → τ to represent
binders is known in the field of mechanized reasoning, sometimes called (weak) higher-order
abstract syntax [9]. Accordingly, the type of fold is now

fold : (−−−→Vara1 → b), . . . , (−−−→Varak
→ b), (Varmc → c)→ (Varmb → b),

and rules are modified to FOLDr giving in Fig. 8. In case of inductive data type system, a
term of the form −→y .t is allowed and well-typed (although not allowed as a sole term in case
of second-order algebraic theory), thus we can now write the binder −→y .− directly at the
right-hand side. FOLDr is correct.

I Lemma 5.1. If t →+
FOLDr t

′ where t′ does not involve @, then ť = ť′ is derivable from
FOLD without using (Sym) where ť, ť′ recovers the original term notation from the encoding
we gave above.

I Theorem 5.2. The rewrite system FOLDr is strongly normalising.

Proof. Since FOLDr fits into the General Schema using the well-founded order

fold > cym > cyn > � > v > any other constructors,@

for natural numbers m > n, it is strongly normalising. Note that the superscript of cy in (8)
indicates the number of arguments (cf. §2.1). This kind of indication of an “invariant” is
similar to the idea of higher-order semantic labelling [19], but here we just make the existing
superscript explicit rather than labelling. J

6 Computing by Fold on Cyclic Datatypes

In this section, we demonstrate fold computation on cyclic data by several examples.

I Example 6.1. As an example of primitive recursion on cyclic datatypes mentioned in §4.2.
we consider the tail of a cyclic list, which we call ctail. It should satisfy the specification
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below right. But how to define the tail of cy-term is not immediately clear. For example,
what should be the result of ctail (cy(x.1::2::x))? This case may need unfolding of cycle
as in [17]. A naive unfolding by using the fixed point law cy(x.t) = t [cy(x.t)/x] violates
strong normalisation because it copies the original term. It actually increases complexity.

ctail : CList → CNat
spec ctail ([ ]) = [ ]

ctail (k :: t) = t
ctail (cy(x. t))= ??

t s
t

s

s(Bekič)

Rather than the fixed point law, we use another important principle of cyclic structures
known as Bekic̆ law, given by the axiom (Bekic̆) in AxCy or (8) in FOLDr. It says that the
fixed point of a pair can be obtained by computing the fixed point of each of its components
independently and composing them suitably (see the right figure). It can be seen as decreasing
complexity of cyclic computation because looking at the argument of cy, the number of
components of tuple is reduced. We define ctail by fold.

fun ctail(t) = π1 � fold (<[],[]>, k.x.y.<y, k :: y>) t

ctail(cy(x.1 :: 2 :: x)) →+ π1 � cy(x.y. <2 :: y, 1 :: 2 :: y>)
→+ π1 � <cy(x.2 :: cy(y.1 :: 2 :: y)), cy(y.1 :: 2 :: y)>
→ cy(x.2 :: cy(y.1 :: 2 :: y)) → 2 :: cy(y.1 :: 2 :: y) (Normal form)

Note that the above normal form does not mean a head normal form and we do not rely on
lazy evaluation. The highlighted step uses Bekic̆ law.

I Example 6.2. This example shows that our cyclic datatype has ability to express directed
graphs. The graph shown below right represents friend relationship, which describes Alice
knows Carol, Bob knows Alice, and Carol knows Alice and Bob. This is represented as a
term

cy(a.b.c.<name("alice")+knows(c), name("bob")+knows(a),
name("carol")+knows(a)+knows(b)>)

which we call g. The term g is of type FriendGraph defined as follows.
ctype FriendGraph where

knows : FriendGraph → FriendGraph
name : String → FriendGraph
[ ] : FriendGraph
+ : FriendGraph,FriendGraph → FriendGraph

with axioms AxCy,AxBr([ ],+)

alice

bob carol
knows

We define a function collect that collects all names in a graph as a name list of type Names.

FSCD 2016
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ctype Names where
nm : String → Names
[ ] : Names
+ : Names,Names → Names

with axioms AxCy,AxBr([ ],+)

collect : FriendGraph → Names
spec collect (knows(t)) = collect(t)

collect (name(p)) = nm(p)

fun collect t = π1� folde t

Then we collect certainly all names by FOLDr as follows, where folde is short for
fold (x.y.<x,knows(y)>, x.y.<nm(y),name(y)>).

collect g = π1� folde g
→ π1� (cy(a.a’.b.b’.c.c’.

<folde(a.b.c.name("alice")+knows(c)), folde(a.b.c.name("bob")+knows(a)),
folde(a.b.c.name("carol")+knows(a)+knows(b)>)))

→+ π1� (cy(a.a’.b.b’.c.c’.
< <nm("alice"),name("alice")>, <nm("bob"),name("bob")>, <nm("carol"),name("carol")> >)

→+ nm("alice")+nm("bob")+nm("carol")

7 Related Work

There has been various work to deal with graph computation and cyclic data structures in
functional programming and foundational calculi including [12, 30, 6, 24, 26, 2, 1]. Several
work [12, 30, 26] relies on lazy evaluation to deal with cycles. The present paper is different
in this respect. We do not assume any particular operational semantics nor strategy to
obtain strongly normalising fold on cyclic data. This point may be useful to deal with cyclic
datatypes in proof assistance like Coq or Agda.

Foundational graph rewriting calculi, such as equational term graph rewriting systems
[2], are general frameworks of graph computation. The fold on cyclic datatype in this paper
is more restricted than general graph rewriting. However, our emphasis is clarification of
the categorical and algebraic structure of cyclic datatypes and the computation fold on
them by regarding fold as a structure preserving map, rather than unrestricted rewriting.
It was a key to obtain strong normalisation. We also hope that it will be useful for further
optimisation such as the fold fusion based on semantics as done in [22] Sec. 4.3. The general
study of graph rewriting was also important for our study at the foundational level. The
unit “[ ]” of branching in AxBr corresponds to the black hole constant “•” considered in [2],
due to [5]. This observation has been used to give an effective operational semantics of graph
transformation in [26].

In [17, 20], the present author aimed to capture the unique representations of cyclic sharing
data structures (without any quotient) in order to obtain efficient functional programming
concept. The approach taken in this paper is different. We have assumed the axioms AxCy
and AxBr to equate bisimilar graphs. The point is that bisimulation on graphs can be
efficiently decidable [10], thus now we regard that uniqueness of representation is not quite
serious.

In [21, 22], the author and collaborators gave algebraic and categorical semantics of a
graph transformation language UnCAL [6, 24] using iteration categories [5]. The graph data
of UnCAL corresponds to cyclic sharing trees of type CTree in the present paper. UnCAL
does not have the notion of types. Hence structural recursive functions in UnCAL are
always transformations from general graphs to graphs, thus typing such as sum:CList→CNat
(in Introduction) or collect:FriendGraph→Names (in §6) could not be formulated. The
present paper advanced one step further by developing a suitable algebraic framework that
captures datatypes supporting cycles and sharing. We have used a rewriting technique of
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the General Schema [3] to show strong normalisation (not merely termination of a particular
computation strategy or algorithm) of fold. Such a direction has not been pursued so far.

Acknowledgments. I am grateful to Kazutaka Matsuda and Kazuyuki Asada for various
discussions about calculi and programming languages about graphs.
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Abstract
This paper solves problem #79 of RTA’s list of open problems [14] – in the positive. If the
rules of a TRS do not overlap w.r.t. substitutions of infinite terms then the TRS has unique
normal forms. We solve the problem by reducing the problem to one of consistency for “similar”
constructor term rewriting systems. For this we introduce a new proof technique. We define a
relation ⇓ that is consistent by construction, and which – if transitive – would coincide with the
rewrite system’s equivalence relation =R.

We then prove the transitivity of ⇓ by coalgebraic reasoning. Any concrete proof for instances
of this relation only refers to terms of some finite coalgebra, and we then construct an equivalence
relation on that coalgebra which coincides with ⇓.

Keywords and phrases consistency, omega-substitutions, uniqueness of normal forms
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1 Introduction

For over 40 years [13] it has been known that TRSs that are left-linear and non-overlapping
are confluent, and for over 30 years [8] that non-overlapping on its own may not even give us
unique normal forms:

I Example 1. By Huet [8]: {F (x, x)→ A,F (x,G(x))→ B,C → G(C)}. The term F (C,C)
possesses two distinct normal forms, A and B.

However, in a certain sense the first two rules overlap semantically: the infinite term G(G(· · · ))
provides such an overlap, and in the world of infinitary rewriting [9] the term C even rewrites
to that term in the limit.

The notion of overlap is based on the notion of substitution. By changing the codomain
of the substitutions of concern from the set of finite terms to the set of infinitary (finite or
infinite) ones we arrive at the notion of ω-overlap.

This creates the question: do non-ω-overlapping TRSs have unique normal forms? This
was first conjectured 27 years ago by Ogawa [11], with an incomplete proof, and the problem
is still listed as open problem 79 in RTA’s list of open problems.

When making the step from a rewrite relation →R to its equivalence closure =R one is
typically interested in its consistency [3, p32ff], i.e. are there terms t, u such that ¬(t =R u)?

Both uniqueness of normal forms (UN) and consistency (CON) can be looked at as
properties of open terms or ground terms. We stick in this paper to the versions on open
terms, as these notions are unaffected by signature extensions; for the versions on ground
terms, UN can be lost and CON gained when we extend the signature. Moreover, on open
terms UN implies CON.

For non-ω-overlapping systems UN and CON are closely related, as we can extend non-UN
systems in a seemingly harmless way to make them fail CON too:
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I Example 2. Add to the system of Example 1 the rewrite rules H(A, x, y) → x and
H(B, x, y)→ y. The system remains non-overlapping but it is now inconsistent.

Even if a TRS is non-ω-overlapping, the reduction relation →R may still not be confluent
(and so we need a different approach to show consistency); this follows from a well-known
example by Klop [10]:

I Example 3. {A→ C(A), C(x)→ D(x,C(x)), D(x, x)→ E}.

In this system we have A→∗R E and A→∗R C(E), but C(E) and E have no common reduct.

1.1 Translation of TRSs to Constructor TRSs
We are going to show how TRSs can be translated into Constructor TRSs, without affecting
its equivalence in a substantial way, in particular: consistency is both preserved and reflected
by the translation, as is strong normalisation.

The translation works by (i) doubling up the signature, so that for each function symbol
F we have both a constructor version Fc and a destructor Fd; (ii) translate the rewrite rules
to make them comply with the regime of Constructor TRSs; (iii) add further rules that make
former patterns regain pattern status.

I Example 4. If we take the rewrite rules of Combinatory Logic, A(A(K,x), y) → x and
A(A(A(S, x), y), z) → A(A(x, z), A(y, z)) and apply the translation, we end up with the
following system:

Ad(Ac(Kc, x), y)→ x

Ad(Kc, x)→ Ac(Kc, x)
Kd → Kc

Ad(Ac(Ac(Sc, x), y), z)→ Ad(Ad(x, z), Ad(y, z))
Ad(Sc, x)→ Ac(Sc, x)

Ad(Ac(Sc, x), y)→ Ac(Ac(Sc, x), y)
Sd → Sc

The top two rules are the translated versions of the original rules, the ones below are their
respective pattern rules.

In Example 4, an orthogonal TRS was translated into an orthogonal Constructor TRS.
In general, this will not quite be the case, and non-ω-overlapping TRSs will not remain
non-ω-overlapping either. However, all overlaps created by the translation are benign.

1.2 Consistency of Constructor Rewriting
At the heart of our overall proof is showing (for our rewrite systems in question) that the
equivalence closure =R of single rewrite steps is a subrelation of a consistent relation ⇓ and
therefore itself consistent. This relation ⇓ is defined using slightly stronger closure principles
than those that characterise the joinability relation ↓, however they remain weak enough
to ensure (for arbitrary TRSs) that ⇓ is consistent. Because ⇓ is closed under the same
operations as =R, except for transitivity, proving consistency of =R can be reduced to proving
that ⇓ is transitive.

Our proof idea is then based on the following fundamental observations: (i) (inductive,
finitely-branching) proofs are finite objects, (ii) therefore each proof can only refer to finitely
many terms. Instead of asking the question: “is t ⇓ u true?” we consider its provability
relative to some finite set of terms A (t ⇓A u); we need A to be closed under subterms which
implies that it is a coalgebra of the signature. We show that – provided the TRS is “suitably
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well-behaved” – such finite coalgebras give rise to a single structure one might call a universal
proof for A that proves t ⇓A u whenever it holds. This universal proof also exhibits the
property that ⇓A is an equivalence relation. We have that t ⇓ u iff t ⇓A u for some finite A.
Since these coalgebras are closed under union, and A ⊆ B ∧ t ⇓A u⇒ t ⇓B u, we have that
⇓ itself is transitive.

2 Preliminaries

We assume familiarity with the standard notions of term rewriting and infinitary term
rewriting [18, 2], but use this section to fix some notation.

A signature Σ is a pair (F ,#) comprising a set F of function symbols and a function
# : F → N assigning to each function symbol an arity. We write Ter(Σ, X) for the set of
finite terms over the variable set X, and Terω(Σ, X) and Ter∞(Σ, X) for the corresponding
sets of rational and infinitary terms. Given a rewrite rule l → r we write l→r−→ for the
substitutive closure of the rule, and ε→ for the union of l→r−→ for all rewrite rules l→ r of a
TRS.

We say that a relation R on Ter(Σ, X) is consistent if ∀x, y ∈ X. x R y ⇒ x = y. We say
that a TRS is consistent (has the CON property) if the congruence closure of ε→ is consistent
on Ter(Σ, Y ), for an infinite set Y .

A substitution is a map σ : V → Ter(Σ, X) which we homomorphically extend to
Ter(Σ, V )→ Ter(Σ, X). Two terms t ∈ Ter(Σ, V ), u ∈ Ter(Σ,W ) are said to be unifiable iff
there is a pair of substitutions σ : V → Ter(Σ, X), θ : W → Ter(Σ, X) such that σ(t) = θ(u).
A pair of terms is said to be ω-unifiable if these conditions hold for substitutions with infinite
terms in their codomain. Unifiability implies ω-unifiability, as all finite terms inhabit the
infinite term universe as well.

As an aside, ω-unifiability of finite terms coincides with their unifiability w.r.t. substi-
tutions with rational terms. This was first studied by Huet [7], and is these days usually
implemented via union/find structures [16], which incidentally provide some inspiration for
the notion of “proof graph” we consider later on.

2.1 Constructor Rewriting
A TRS is a Constructor TRS if the signature Σ is a constructor signature, i.e. it splits into
two disjoint subsignatures Σc and Σd such that for any rewrite rule F (p1, . . . , pn)→ r we
have F ∈ Σd and p1, . . . , pn ∈ Ter(Σc, X).

The standard notion of non-overlapping TRSs is based on the notion of unifiability, and
it can be simplified for Constructor TRSs. A Constructor TRS is non-overlapping iff the
left-hand sides of any two different rules are not unifiable. Replacing ‘unifiability’ in that
setting with ‘ω-unifiability’ provides the analogous (stronger) notion of non-ω-overlapping.
A similar notion is that of almost non-ω-overlapping TRSs, which means that non-variable
proper subterms of left-hand sides of rules are not ω-unifiable with left-hand sides of rules,
and that ε→ is deterministic.

2.2 Term-Coalgebras
In order to consider coalgebras of signatures Σ we would have to view signatures as functors
on the category Set. However, we only need the following special instance of this concept
later, which helps to keep the proofs short:
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I Definition 5. Given a signature Σ, a term-coalgebra is a set A ⊆ Ter∞(Σ, ∅) which is
closed under subterms. It is called finite if it is a finite set, and strongly finite if in addition
A ⊆ Ter(Σ, ∅). We refer to the elements of a coalgebra as nodes.

More generally, Σ-coalgebras A would be characterized by a function υ : A→ Σ(A) which
maps a node to a structure containing its root function symbol and the list of its subnodes. In
that setting two nodes are bisimilar if their repeated unfolding via υ yield the same infinitary
term. In a term-coalgebra this is unique, so bisimilarity coincides there with equality.

We also allow for variables in term-coalgebras by “freezing” them, i.e. using the canonical
isomophism between Ter∞(Σd+ Σc, X) and Ter∞(Σd+ (Σc+X), ∅). Thus, when considered
as a member of a term-coalgebra a variable is a nullary constructor. For heterogeneous
relations between term-coalgebras we must therefore have that the variable set X is the
same, so that they are coalgebras of the same functor. Relations between term-coalgebras
can be consistent simply due to the lack of variables occurring in them as nodes, or indeed
any other nodes: the empty set is a term-coalgebra that can only be consistently related to
other term-coalgebras.

2.3 Relational Algebra
We use some standard constructions from relational algebra; in particular, we write R · S for
relational composition in diagrammatical order, i.e. a (R · S) b ⇐⇒ ∃c. a R c ∧ c S b. As
constants, we also use the empty relation ∅, and the identity relation id.

Binary relations on any set form a complete lattice, and so Tarski’s fixpoint theorems [17]
apply – any monotonic function f on these relation domains has a smallest fixpoint, µ(f),
and a largest fixpoint ν(f). One usually writes µx.f(x) for µ(λx.f(x)), etc. Most operations
in relational algebra are monotonic (with the notable exception of complement, which we are
not using here), as are the smallest/largest fixpoint constructions themselves [1, Proposition
1.2.18]. Thus any composition of these operations will result in a monotonic function on
relations that therefore has both of these fixpoints. In the following, we will tacitly exploit
that any function arrived by these means is monotonic.

I Definition 6. A predicate P on a complete lattice L is called sup-continuous iff for any
function f : I → L such that ∀x ∈ I. P (f(x)) we also have P (

⊔
i∈I f(i)).

Note that – as the definition also applies when the index set is empty – we would also
necessarily have P (⊥).

I Proposition 7. Let P be a sup-continuous predicate on a complete lattice L, and f a
monotonic function on L that preserves P , i.e. ∀x ∈ L. P (x)⇒ P (f(x)). Then P (µx.f(x)).

Proof. This follows from [1, Theorem 1.2.11]. That theorem defines for any ordinal β,
xβ =

⊔
{f(xα) | α < β}, and shows that for some β that is sufficiently large xβ = µx.f(x).

Hence the result follows by ordinal induction on the ordinal β + 1. J

3 Constructor Translation

We first demonstrate that a TRS can, in a sense, be viewed as a Constructor TRS, by
translating it into a Constructor TRS with similar properties. This similarity is particularly
strong for non-ω-overlapping TRSs.

To translate TRSs we use the concept of signature morphism – see [15] for a more general
and modern version of the concept; we specialise it here for the standard signatures used in
TRSs, as this concept rarely shows up in term rewriting literature.
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I Definition 8. A signature morphism between signatures Σ = (FΣ,#Σ) and Θ = (FΘ,#Θ)
is a function f : FΣ → FΘ such that #Θ(f(G)) = #Σ(G). Each signature morphism
f : Σ → Θ induces a map Tf : Ter(Σ, X) → Ter(Θ, X) given as Tf (F (t1, . . . , tn)) =
f(F )(Tf (t1), . . . , Tf (tn)) and Tf (x) = x for x ∈ X.

Signatures and signature morphisms form a category, and this category clearly has coproducts,
given by the disjoint union of signatures.

I Definition 9. Given a signature Σ we write Σ2 for the coproduct Σ + Σ, which we view as
a constructor signature; the images of Σ under the injections ι1 and ι2 give us Σc and Σd,
respectively. We write Fc and Fd for the function symbols ι1(F ) and ι2(F ), respectively. We
use the abbreviations btc for Tι1(t) and dte for Tι2(t).

So Σ2 contains two copies of every function symbol, one as a constructor, and one as a
destructor. The two embedding signature morphisms induce two different embeddings of
terms, labelling all symbols as constructors or destructors, respectively.

I Definition 10. Let γ : Σ2 → Σ be the signature morphism [id, id], i.e. γ(Fc) = F ,
γ(Fd) = F . We write |t| for Tγ(t).

Thus, given a “labelled” term t ∈ Ter(Σ2, X), |t| ∈ Ter(Σ, X) is the term we get when we
erase the labels from t. Clearly, we have |dte| = t = |btc|, but no corresponding property
when we go the other way, e.g. u and d|u|e can differ.

I Definition 11. Given a TRS T = (Σ, R), a pattern is a proper subterm of the left-hand
side of a rule in R. We write Pat(T ) for the set of all patterns of the TRS T .

Recall that Constructor TRSs are characterised by having all their patterns confined to
Ter(Σc, X). Therefore, patterns play a special role in the translation of TRSs into Constructor
TRSs:

I Definition 12. Let T be a TRS with ruleset R and signature Σ. The constructor trans-
lation of T is a Constructor TRS T ′ = (Σ2, R′) built as follows. R′ = R′d ∪ R′c, where
R′d = {Fd(bt1c, . . . , btnc) → dre | F (t1, . . . , tn) → r ∈ R} and R′c = {Fd(bt1c, . . . , btnc) →
Fc(bt1c, . . . , btnc) | F (t1, . . . , tn) ∈ Pat(T )}.

Any rule of the original TRS becomes a rule in R′d by turning its patterns into constructor
patterns, and every non-variable pattern of T becomes a rule in R′c. We have already seen
the translation of Combinatory Logic (Example 4) as an example for this translation in the
introduction. For simplicity, the constructor translation does not make a distinction which
symbols already acted like constructors, such as the constants K and S.

We can relate a TRS to its constructor translation. First, when terms lose pattern status
via the destructor translation then they can regain it through rewriting:

I Lemma 13. Let T be a TRS and T ′ its constructor translation. For any p ∈ Pat(T ) we
have dpe →∗T ′ bpc.

Proof. By induction on the term structure of p. If p is a variable then dpe = bpc. Otherwise,
p = F (t1, . . . , tn) and dpe = Fd(dt1e, . . . , dtne). By induction hypothesis dtie →∗R′ btic, for
all i. Therefore, Fd(dt1e, . . . , dtne)→∗T ′ Fd(bt1c, . . . , btnc).

Moreover, Fd(bt1c, . . . , btnc) → Fc(bt1c, . . . , btnc) is a rule in R′ and therefore overall
dpe = Fd(dt1e, . . . , dtne)→∗T ′ Fd(bt1c, . . . , btnc)→T ′ Fc(bt1c, . . . , btnc) = bpc. J
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I Lemma 14. Let T be a TRS and T ′ its constructor translation. If t→T u then dte →+
T ′ due.

If p→T ′ q then |p| →T |q| ∨ |p| = |q|.

Proof. If t →T u then we must have that for some context C, substitution σ and rewrite
rule F (p1, . . . , pn) → r in T , t = C[F (σ(p1), . . . , σ(pn))] and u = C[σ(r)]. We clearly
have dte = dCe[Fd(dσe(dp1e), . . . , dσe(dpne))] and due = dCe[dσe(dre)], where dCe and dσe
are straightforward extensions of the signature morphism to contexts and substitutions.
By Lemma 13 we have dpie →∗T ′ bpic, hence by substitutivity of rewriting dσe(dp1e) →∗T ′

dσe(bpic). Compatibility of rewriting gives us dte →∗T ′ dCe[Fd(dσe(bp1c), . . . , dσe(bpnc))].
The latter term then rewrites in one step to due.

In the case of p→T ′ q a rewrite step with a rule from R′c gives us |p| = |q|, otherwise it
is a translated rule from the old system and we have |p| →T |q|. J

I Proposition 15. Let T be a TRS and T ′ be its constructor translation. For t, u ∈ Ter(Σ, X),
if t =T u then dte =T ′ due. For p, q ∈ Ter(Σ2, Y ), if p =T ′ q then |p| =T |q|.

Proof. Either way we split the equational proof into individual rewrite steps, and then
rebuild these using Lemma 14. J

Proposition 15 tells us that we can translate equations back and forth between a TRS and
its constructor translation. This has a consequence on consistency.

I Corollary 16. Let T be a TRS and T ′ its constructor translation. Then T is consistent iff
T ′ is.

Proof. If, say, T is inconsistent, then x =T y, for distinct variables x and y. By Proposition
15 we have dxe =T ′ dye. But dxe = x and dye = y and so T ′ is inconsistent too. The other
direction is analogous. J

So, the constructor translation preserves and reflects consistency – in the following we really
only need that it reflects that property. Aside: regarding termination and confluence, the
constructor translation preserves and reflects the former, but only reflects the latter. In
general, it does not even preserve weak confluence.

Notice that our construction can fail to produce an almost non-ω-overlapping TRS if our
original TRS was merely almost-non-ω-overlapping.

I Example 17. Consider the following rules describing an if-and-only-if operator on the
Booleans: {Iff (F, x)→ N(x), Iff (x, F )→ N(x), Iff (x, x)→ N(F ), N(N(F ))→ F}.

The system is almost non-ω-overlapping, with trivial overlaps between any of the first three
rules. However, the constructor translation makes some of the trivial overlaps non-trivial,
because F becomes Fc on the left and Fd on the right.

4 Strongly Almost non-ω-overlapping Constructor TRSs

In the Introduction we were mentioning that overlaps created by the constructor translation
are “benign”. We will now characterise how benign they are more precisely.

I Definition 18. Two rewrite rules l1 → r1, l1, r1 ∈ Ter(Σ, X), and l2 → r2, l2, r2 ∈
Ter(Σ, Y ), have a common generalisation l3 → r3 iff there are substitutions σ1 : Z →
Ter(Σ, X), σ2 : Z → Ter(Σ, Y ) such that:

σ1(l3) = l1 and σ2(l3) = l2, and σ1(r3) = r1 and σ2(r3) = r2,
all variables in r3 occur in l3.
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The idea goes back to Plotkin’s concept of generalisation and anti-unifiers [12]. Indeed we
can check whether two rules have a common generalisation by computing the anti-unifier of
the terms R(l1, r1) and R(l2, r2), and then checking whether the result – which must have
the form R(l3, r3) – satisfies the final condition on variables.
I Lemma 19. If two rewrite rules of a Constructor TRS have a common generalisation
l3 → r3 then this is either a legal rewrite rule for a Constructor TRS over the same signature,
or l3 is a variable.
Proof. Proper subterms of l3 must be constructor terms, otherwise σ1(l3) = l1 must have
non-constructor subterms, contradicting the premise. J

We do not need the concrete rewrite system a common generalisation would be part of; all
we need is that the rule behaves like a rewrite rule from a Constructor TRS.
I Definition 20. A TRS is called strongly almost non-ω-overlapping iff (i) all ω-overlaps
are in root position, (ii) whenever two left-hand sides are ω-unifiable then their rules have a
common generalisation.
To justify the chosen terminology:
I Proposition 21. Any non-ω-overlapping TRS is strongly almost non-ω-overlapping. Any
strongly almost non-ω-overlapping TRS is almost non-ω-overlapping.
Proof. A non-ω-overlapping TRS clearly satisfies the conditions of being strongly non-ω-
overlapping, as its rules can only overlap with themselves, and that at the root.

For the second part, assume we have a strongly almost non-ω-overlapping TRS. Let
〈θ1, θ2〉 be a ω-unifier for the left-hand sides l1, l2. Then we have θ1(l1) = (θ1 ◦ σ1)(l3),
and similarly θ2(l2) = (θ2 ◦ σ2)(l3). Thus, the composite substitutions θ1 ◦ σ1 and θ2 ◦ σ2
must agree on all variables occurring in l3. The variable condition on r3 then gives us
(θ1 ◦ σ1)(r3) = (θ2 ◦ σ2)(r3), and as (θ2 ◦ σ2)(r3) = θ2(r2) and (θ1 ◦ σ1)(r3) = θ1(r1) we have
that 〈θ1, θ2〉 is also a ω-unifier for the right-hand sides r1, r2. J

I Proposition 22. The constructor translation of an almost non-ω-overlapping TRS is
strongly almost non-ω-overlapping.
Proof. Because the constructor translation produces a Constructor TRS all ω-overlaps
between left-hand sides of rules, if any, are at root position. Let l1 → r1 and l2 → r2 be two
rules in the constructor translation R′, such that l1 and l2 are ω-unifiable. That implies that
|l1| and |l2| are ω-unifiable too.

If both rules are translated rules then we can only avoid a contradiction by |l1| = |l2| and
|r1| = |r2| which implies l1 = l2 and r1 = r2, as the translation of rules is injective.

If the first rule is a translated rule and the second a pattern rule then |l2| is a non-variable
subterm of a left-hand side in R, and is ω-unifiable with |l1| which contradicts our assumption
about R.

If both rules are pattern rules then both rules clearly have the common generalisation
Fd(x1, . . . , xn)→ Fc(x1, . . . , xn), where F is the root symbol of the pattern. J

Note: it is not generally true that the constructor translation of a strongly almost non-
ω-overlapping TRS is itself strongly almost non-ω-overlapping, because the constructor
translation breaks the sharing of subterms of left-hand and right-hand sides, e.g. for the rules
F (C(x), y)→ G(C(x)) and F (y,B)→ G(y) – the common generalisation F (y, z)→ G(y) of
the two rules is not preserved by the constructor translation. One could fix this by providing a
more sophisticated translation that maintains the sharing of common subexpressions between
left-hand and right-hand sides.
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5 Reasoning with Term-Coalgebras

The main purpose of this section is to establish some tools to reason about consistency.
These tools are largely relation-algebraic, for relations operating on term-coalgebras, though
they could be generalised to arbitrary Σ-coalgebras.

As an additional ingredient to define relations between or on term-coalgebras for a
signature Σ we use the following notation: if R ⊂ A×B, where A and B are term-coalgebras
A and B then R̃ ⊆ A×B is defined as follows:

∀t ∈ A. ∀u ∈ B. t R̃ u ⇐⇒ ∃F ∈ Σ. ∃a1, . . . , an ∈ A. ∃b1, . . . , bn ∈ B.
t = F (a1, . . . , an) ∧ u = F (b1, . . . , bn) ∧ ∀i. ai R bi

This concept was first used in [5, 6]; we modified it slightly by removing the reflexivity case.
For constructur signatures, we use the notations R and R̂ to mean R̃ for the subsignatures
Σd and Σc, respectively. In particular, t îd t iff the root symbol of t is a constructor, and
so R̂ · S = ∅. We still use R̃ for constructor signatures, to refer to the combined signature;
hence R̃ = R ∪ R̂.

One can generalise this to arbitrary Σ-coalgebras where the conditions t = F (a1, . . . , an)
and u = F (b1, . . . , bn) would be replaced by υA(t) = F (a1, . . . , an) and υB(u) = F (b1, . . . , bn)
where υA and υB are the unfolding maps of their respective coalgebras.

I Proposition 23. Some general relation-algebraic properties of R̃:
1. R̃ ∩ S = R̃ ∩ S̃, which moreover implies that the function x 7→ x̃ is monotonic.
2. R̃−1 = R̃−1.
3. R̃ · S ⊇ R̃ · S̃. Therefore also: R̃∗ ⊇ R̃∗.

Proof. Trivial. J

We have R̃ ∪ S ⊇ R̃ ∪ S̃ by monotonicity, and it is not an equation because a signature can
contain function symbols of arity greater than 1. Also, the relation ∅̂ is generally not the
empty relation – it will relate all bisimilar nodes that have no subnodes and are topped with
a constructor, and therefore also variables.

For term-coalgebras we have id = ĩd, but arbitrary Σ-coalgebras would only give us
id ⊆ ĩd, because a coalgebra can contain distinct bisimilar nodes with identical subnodes.

I Definition 24. A relation R between term-coalgebras is called Σ-closed iff R̃ ⊆ R.

Note: this is standard terminology taken from [2], except that we generalise it to coalgebras.

I Definition 25. Let V = ℘(A×B) be the set of relations between term-coalgebras A and
B. Then the function CT : V → V is defined by CT(R) .= µx. R ∪ x̃. Thus CT(R) is the
smallest Σ-closed relation containing R.

We can use the R̃ notation to define =R in a relation-algebraic way:

I Definition 26. The inductive congruence closure CGI(R) of a relation R on a term-
coalgebra is defined as: CGI(R) .= µx. R ∪ x−1 ∪ (x · x) ∪ id ∪ x̃.

Thus =R is then CGI( ε→) on the coalgebra Ter(Σ, X). Notice that for rewrite systems this
is in general not the same as the equivalence closure of rewrite steps, because a coalgebra
might lack the intermediate terms. To reason about pattern matching we will later need a
stronger notion of consistency, that includes reasoning about constructors:
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I Definition 27. A relation R between term-coalgebras is called constructor-compatible iff
îd · R · îd ⊆ R̂.

I Lemma 28. Every constructor-compatible relation R between any two term-coalgebras A
and B is consistent.

Proof. Let x R y where x and y are variables. Since variables in term-coalgebras are viewed
as constructors we have x îdA x and y îdB y. Hence x îdA x R y îdB y. Constructor-
compatibility of R then gives us x R̂ y which means x = y since they have no subterms. J

I Lemma 29. Constructor-compatible relations are closed under arbitrary union. Relational
inverse also preserves constructor-compatibility.

Proof. Let Ri with i ∈ I be a family of constructor-compatible relations.

îd · (
⋃
i∈I

Ri) · îd =
⋃
i∈I

(îd · Ri · îd) ⊆
⋃
i∈I

R̂i ⊆
⋃̂
i∈I

Ri

For inverse, for relations between term-coalgebras A and B:

îdB · R−1 · îdA = ((îdB · R−1 · îdA)
−1

)
−1

= (îdA · R · îdB)
−1
⊆ R̂−1 = R̂−1 J

Lemma 29 means that constructor-compatibility is a sup-continuous predicate on the
lattice of binary relations between two coalgebras. We also have that any relation between
term-coalgebras has a constructor-compatible interior – the union of all its subrelations that
have this property.

I Definition 30. Given a Constructor TRS over a signature Σ, a consistency invariant is
a consistent and Σ-closed relation S on a term-coalgebra A such that for any constructor-
compatible equivalence =S ⊆ S we have ε← · =S ·

ε→ ⊆ CT(=S).

Explanation: if we have a1
ε← a2 =S a3

ε→ a4 then the pair 〈a1, a4〉 can be viewed as a
form of “semantical critical pair”, because it has been obtained by root-rewrite-steps from
〈a2, a3〉 which share their root symbols and are “semantically equal” below the root. Thus
a consistency invariant is characterised by the property that semantical critical pairs stay
within the invariant. That this is relative to a term-coalgebra A matters insofar as rewrite
steps with contracta outside A are simply discarded.

The reason =S is locally quantified in the definition of consistency invariant is that
although constructor-compatible relations are closed under union, equivalence relations are
not, so we cannot simply compute a suitable interior relation. The reason the definition uses
constructor-compatible equivalences is that we can turn them into functions that unify the
nodes in their equivalence classes.

I Definition 31. Given a term-coalgebra A, a function f : A → Ter∞(Σ, ∅) is called
constructor-preserving iff

∀a1, . . . an ∈ A.∀C ∈ Σc. f(C(a1, . . . , an)) = C(f(a1), . . . , f(an))

I Proposition 32. Let =% be a constructor-compatible equivalence relation on a term-
coalgebra A. Given some well-ordering on =%-equivalence classes, there is a function U(=%) :
A → Ter∞(Σ, ∅) such that: (i) U(=%) is constructor-preserving; (ii) ∀a, b ∈ A. a =% b ⇒
U(=%)(a) = U(=%)(b).
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Proof. Let minD denote the minimum element of any non-empty subset D of any equivalence
class w.r.t. that well-order. Let [a] ⊆ A be the =%-equivalence class of some node a ∈ A. Let
B = {b ∈ [a] | b îd b}. Then we define U(=%)(a) as follows:

U(=%)(a) =
{
C(U(=%)(b1), . . . , U(=%)(bn)) if B 6= ∅ ∧minB = C(b1, . . . , bn)
min[a] if B = ∅

Clearly, U(=%) satisfies condition (ii) because its definition only depends on the equivalence
class [a], not on a directly. Let c ∈ [a] be constructor-topped, i.e. c îd c. Thus we have
c îd c =% minB îd minB: and constructor-compatibility of =% gives us: c =̂% minB.
Therefore c = C(c1, . . . , cn) and ci =% bi and the result follows. J

Notice that even if the coalgebra A only contains finite terms the function U(=%) may still
have infinite terms in its range; e.g. this would be the case for the equivalence class [K,C(K)]
if C is a constructor.

6 Rewrite-Related Reasoning

We now study some properties of our relations in the presence of pattern matching and
rewrite rules. The aim is to establish invariants that “survive” the parallel application of
rewrite rules at the root of a term (node).

Besides giving us an ω-unifier (for equivalences), constructor-compatible relations give us
an invariant in pattern matching:

I Lemma 33. Let t ∈ Ter(Σc, X), s = σ(t), u = θ(t), and s R u where R is a constructor-
compatible relation between two term-coalgebras A and B. Then for any x ∈ X that occurs
in t, σ(x) R θ(x).

Proof. Let x ∈ X be any variable occurring in t, i.e. there is some position p ∈ Pos(t) such
that t|p = x. The proof goes by induction on the length of p.

If p = 〈 〉 (the empty position) then σ(t) = σ(x); similarly, θ(u) = θ(x), and so the result
follows.

Otherwise, p = i · p′ and t = C(t1, . . . , tn), for some constructor C ∈ Σc. s = σ(t)
implies s = C(σ(t1), . . . , σ(tn)). Similarly, u = C(θ(t1), . . . , θ(tn)). Thus, s and u are both
constructor-topped, therefore s R u implies s R̂ u by constructor-compatibility of R. Hence
σ(ti) R θ(ti), and we can apply the induction hypothesis to ti w.r.t. position p′. J

For applying a substitution after matching we have the following result:

I Lemma 34. Let R be a Σ-closed relation between two term-coalgebras A and B. Let
t ∈ Ter(Σ, X), s = σ(t) ∈ A, u = θ(t) ∈ B. If for all variables x ∈ X that occur in t we
have σ(x) R θ(x) then s R u.

Proof. By induction on the term structure of t. If t ∈ X (it is a variable) then s = σ(t) R
θ(t) = u and the result follows from the assumption.

Otherwise, t = F (t1, . . . , tn), s = F (σ(t1), . . . , σ(tn)), u = F (θ(t1), . . . , θ(tn)). By
induction hypothesis we have si R ui (for all i), thus s R̃ u which entails the result, because
R is Σ-closed. J

As a direct consequence we can characterise “how safe” parallel rewrite steps with the same
rule are in a constructor rewrite system:
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I Corollary 35. Let S be constructor-compatible, and let l → r be a rewrite rule of a
Constructor TRS. If t1

l→r←− t2 S t3
l→r−→ t4 then t1, t4 are related by CT(S).

Proof. Because l is the left-hand side of a rule of a Constructor TRS, its direct subterms are
constructor terms. Thus Lemma 33 applies: the matching substitutions are pointwise related
by S. Hence they are also related by CT(S) and the result then follows from Lemma 34. J

Besides non-determinism of ε→ what might also introduce constructor-inconsistency if
between root-rewrite steps we rewrite on subterms in some way that might allow the
adjacent root steps to create an inconsistency. However, the situations allowing us to rewrite
in opposite directions are limited by the following observation:

I Lemma 36. Let a → b, c → d be two rewrite rules of a Constructor TRS. Let =% be a
constructor-compatible equivalence on some term-coalgebra A. If t1

a→b←− t2 =% t3
c→d−→ t4 then

a and c are ω-unifiable.

Proof. We know t2 = σ(a) and t3 = θ(c) for some substitutions σ and θ. We know from
Proposition 32 that U(=%) maps the direct subnodes of t2 and t3 to the same result.

Because that function is constructor-preserving we have U(=%)(t2|i) = U(=%)(σ(a|i)) =
(U(=%) ◦ σ)(a|i) and similarly U(=%)(t3|i) = (U(=%) ◦ θ)(c|i). Thus the pair of maps
〈U(=%) ◦ σ, U(=%) ◦ θ〉 is an ω-unifier for a and c. J

Lemma 36 means that if the reasoning between root steps is done safely, i.e. via a constructor-
compatible equivalence on subterms then the subsequent rewrite steps were done with rules
with ω-overlapping patterns.

I Theorem 37. For a strongly almost non-ω-overlapping Constructor TRS, any Σ-closed
consistent relation R on a term-coalgebra A is a consistency invariant.

Proof. By Lemma 36 parallel rule applications are with ω-unifiable left-hand sides. As
the system is strongly almost non-ω-overlapping both are therefore instances of a common
generalisation l3 → r3, and we can apply Corollary 35. J

The standard equivalence relation =R associated with a Constructor TRS can be expressed
as CGI( ε→). We want to show that this relation is consistent. Instead, we are going to prove
the stronger property that it is constructor-compatible.

To define the right kind of invariant we need another auxiliary function on binary relations
over a term-coalgebra which allows us to compose rewrite steps and reasoning on subterms
“in a safe way” with another relation.

I Definition 38. The unary function IndA on binary relations over a term-coalgebra A is
defined as follows: IndA(x) .= ( ε→A ∪ x) · x.

I Lemma 39. IndA(R) is constructor-compatible.

Proof. Constructor-topped terms are not in the domain of either ε→A or R. Hence îdA ·
IndA(R) · îdA is the empty relation. J

Using IndA we can construct a suitable consistent relation:

I Definition 40. Given a TRS with signature Σ, and a term-coalgebra A, the relation ⇓A is
a relation on A defined as follows:

⇓A
.= µx. fA(x)

fA(x) .= x−1 ∪ IndA(x) ∪ idA ∪ x̂ ∪ x

We omit the index if A = Ter∞(Σ +X, ∅).
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I Lemma 41. Let A and B be term-coalgebras with A ⊆ B. Then ⇓A ⊆ ⇓B.

Proof. We have idA ⊆ idB and ε→A ⊆
ε→B simply because A ⊆ B. Hence IndA(x) ⊆ IndB(x)

and fA(x) ⊆ fB(x). The result follows by monotonicity of fixpoint constructions (Proposition
1.2.18 in [1]). J

I Proposition 42. ⇓A is Σ-closed.

Proof. ⇓A = ⇓A · idA ⊆ ⇓A · ⇓A ⊆ IndA(⇓A) ⊆ ⇓A, and ⇓̂A ⊆ ⇓A is immediate. J

In contrast to joinability, the direction of rewrite steps only matters here at root position.
Below root we do not rewrite, we just look for the invariant again. This change makes the
relation ⇓ strictly more expressive than ↓ (in non-confluent systems):

I Example 43. Recall that in Example 3 we had A →∗R E and A →∗R C(E), without a
common reduct for the two terms. However, we do have E ⇓ C(E), even E ⇓B C(B) in
a strictly finite term-coalgebra B: B = {A,E,C(A), C(E), D(A,C(A)), D(C(A), C(A))}.
Because A →∗R E and C(A) →∗R E we also have A ⇓B E (and C(A) ⇓B E), by symmetry
E ⇓B A and so C(E) ⇓B C(A). Because ⇓B is closed under prefixing with ⇓B we get
C(E) ⇓B E.

I Proposition 44. For any term-coalgebra A and w.r.t. any Constructor TRS, the relation
⇓A is constructor-compatible.

Proof. First note that the function fA preserves constructor-compatibility: We have that
the indivual parts of fA preserve constructor-compatibility (Lemmas 29 and 39), hence
îdA · fA(x) · îdA ⊆ x̂−1 ∪ ̂IndA(x) ∪ îdA ∪ x̂ ⊆ f̂A(x).

From Lemma 29 we get that constructor-compatibility is sup-continuous, hence µx.fA(x)
is constructor-compatible by Proposition 7. J

I Corollary 45. Given a strongly almost non-ω-overlapping Constructor TRS, ⇓A is a
consistency invariant on any term-coalgebra A.

Proof. This follows directly from Theorem 37 and Propositions 44 and 42. J

7 Proof Graphs

We introduce the new concept of proof graphs. The immediate purpose of these structures is
to permit us to reason about consistency proofs, and manipulate them, if necessary. The
overall goal is to show that ⇓A is an equivalence.

We assume throughout a fixed Constructor TRS (Σ,R), and a fixed strongly finite
term-coalgebra A.

I Definition 46. A proof graph % = ( %→,=%) is given by a binary relation %→ on A with the
following properties:
1. ( %→ ∪ %←)∗ = =% ⊆ ⇓A;
2. %→ is deterministic, i.e. %← · %→ ⊆ idA;
3. %→ is terminating;
4. %→ ⊆ ε→A ∪ ⇓A ∪ =̂%

Explanation: the first condition means that a proof graph represents an equivalence relation
which is a subrelation of ⇓A; the second and third condition means that this representation
is a forest of trees (a union/find structure); the fourth condition means that these edges have
“good properties” when we want to extend the proof graph and merge equivalence classes.
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I Lemma 47. Let % = ( %→,=%) be a proof graph. Then =% is constructor-compatible.

Proof. Let t =% u, where t îdA t and u îdA u. The first condition of the definition gives
us t ( %→ ∪ %←)∗ u; by the second and third condition %→ there must a common reduct s ∈ A
with t

%

→∗ s and s
%

←∗ u. Because the only outgoing edges for constructor-topped nodes are
of the relation =̂% we have t =̂%

∗
u, but =̂%

∗ ⊆ (̂=%)∗ = =̂%, and so t =̂% u. J

7.1 Extensions of a Proof Graph
I Definition 48. A node t ∈ A is called a normal form of % iff it is a normal form of the
relation %→. We write NF% for the set of normal forms of %. We write [%](a) for the normal
form of a node a.

The normal forms of a proof graph represent its equivalence classes. We want a way to merge
equivalences classes of a proof graph. In its simplest form (without allowing for “rewiring”)
this means the following:

I Definition 49. Given two proof graphs α and β, β is an extension of α iff α→ ⊆ β→.

I Lemma 50. Let β be an extension of α. Then for all a, b ∈ A with a β→ b ∧ ¬(a α→ b) we
must have: ¬(a =α b) and a ∈ NFα.

Proof. By contradiction: If a /∈ NFα then a α→ b′ for some b′, hence a β→ b′ because α→ ⊆ β→.
But then β→ fails to be deterministic, so β could not be a proof graph. If a =α b then

b
α

→∗ a, because α→ is deterministic and terminating. Therefore b
β

→∗ a β→ b. Thus β→ is not
terminating, so β could not be a proof graph. J

In addition to that one needs that the new merged equivalence class in =β is still contained
in ⇓A. However, that turns out not to be an issue because of our restrictions on edges.

I Definition 51. Given a proof graph % = ( %→,=%) the grey edge relation on nodes is defined
as  % = ε→A ∪ ⇓A ∪ =̂%.

So grey edges include those that are in that proof graph and those that “might be”.

I Lemma 52. Let % be a proof graph. Let →β ⊆  % such that →β is deterministic and
terminating, and let =β be the equivalence closure of →β. Then =β ⊆ ⇓A.

Proof. If t =β u we must have an s ∈ A with t→∗β s and u→∗β s, because→β is deterministic
and terminating. We prove this by induction on the number of →β steps. Moreover, we
strengthen the claim by requiring that if t îdA t and u îdA u then t =̂% u.

If t = u then by reflexivity of ⇓A we have t ⇓A u. If in addition t îdA t then t =̂% t by
reflexivity of =%.

If t ( ε→A ∪ ⇓A) t′ =β u then t′ ⇓A u by induction hypothesis and so t IndA(⇓A) u which
implies t ⇓A u.

If t =β t
′( ε→A ∪⇓A)

−1
u then t ⇓A t′ by induction hypothesis, t′ ⇓A t by symmetry of ⇓A,

u ⇓A t by the previous argument, and t ⇓A u by symmetry.
Otherwise, we must have t îdA t and u îdA u and t =̂% t

′ =β u. Thus t′ is constructor-
topped and t′ =̂% u by induction hypothesis. This implies t =̂% · =% u and so t =̂% u by
transitivity of =%. Since =% ⊆ ⇓A we have =̂% ⊆ ⇓̂A ⊆⇓A and so t ⇓A u. J
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I Corollary 53. Let % = ( %→,=%) be a proof graph, let a % b where a ∈ NF% and ¬(a =% b).
Then β = ( %→ ∪{(a, b)},=β) is an extension of %.

Proof. The conditions on a and b mean that β→ remains deterministic and terminating.
Therefore, and because of β→ ⊆  % we can apply Lemma 52 and get =β ⊆ ⇓A. Finally,
because =% ⊂ =β we also have =̂% ⊆ =̂β and so all constructor edges can be retained. J

I Definition 54. A proof graph is called complete if it has no extensions other than itself.

I Proposition 55. Every proof graph has a complete extension.

Proof. Trivial, as each proper extension merges equivalence classes, and A is finite. J

I Lemma 56. For every complete proof graph % the relation =% is Σc-closed.

Proof. By contradiction. Suppose % were complete and we had t =̂% u and ¬(t =% u) then we
must also have t =̂% [α](t). This implies [α](t) =̂% u. By Corollary 53 β = ( %→ ∪{(a, b)},=β)
is an extension of %, which contradicts completeness of %. J

The corresponding property is generally not true for Σ-closure, because we might only be
able to attach new edges from ⇓A to nodes that are redexes. But if a proof graph does not
contain “too many redexes” then such a conflict does not materialise.

We can characterise proof graphs for which this is possible by considering the relation
⇓A
∗ – which is an equivalence since ⇓A (and therefore ⇓A) is symmetric.

I Definition 57. For any t ∈ A we define Et
.= {u ∈ A | t ⇓A

∗
u}. We also define

DA
.= {Et | t ∈ A}. Rt

.= {u ∈ Et | ∃v ∈ A. u
ε→A v}.

Thus Et is the equivalence class of t for the relation ⇓A
∗, Rt the subset of redexes of Et and

DA the collection of equivalence classes. Note that if t is constructor-topped then Et is a
singleton and Rt is empty. We use these notions to build a proof a graph in which redexes
and Σ-closure are not in conflict.

I Definition 58. A target is a function targ : DA → A such that the following properties
hold: (i) ∀t ∈ A. targ(Et) ∈ Et and (ii) ∀t ∈ A. Rt 6= ∅ ⇒ targ(Et) ∈ Rt.

Thus a target singles out a member of each equivalence class, which moreover must be a
redex if the class contains any redexes. The motivation is to build a proof graph whose
subgraph on Et is a tree with root targ(Et).

I Definition 59. A targeted proof graph is a pair (%, targ%) such that % is a proof graph,
targ% is a target, and we have:

∀t ∈ A. t (⇓A ∩
%→)∗ targ(Et) ∨ t ∈ NF%

∀t ∈ A, u ∈ A. targ(Et)
%→ u⇒ u /∈ Et

Thus, in a targeted proof graph a subset of Et is already connected with root targ(Et) whilst
all other nodes in Et are not linked to anything.

I Definition 60. A targeted extension of a proof graph α is a targeted proof graph (β, targβ)
such that β is an extension of α.

I Lemma 61. Any targeted proof graph has a targeted extension which is complete.



S. Kahrs and C. Smith 22:15

Proof. Suppose % was targeted and there is a t ∈ NF% such that with t 6= targ(Et). Then
there are nodes t = t0, . . . , tn = targ(Et) such that ∀i. ti ⇓A ti+1 and there must be some
j < n such that tj ∈ NF% and tj+1 (⇓A ∩

%→)∗ targ(Et). Thus we can extend % with the edge
(tj , tj+1), keep the same target, and then complete the extension.

If there is no such node then any extension will remain targeted, and so we can apply
Proposition 55. J

I Lemma 62. If (α, targα) is a complete targeted proof graph then =α is Σ-closed.

Proof. By Lemma 56 we know that =α is Σc-closed. Let t =α u. Because α is complete
and targeted t

α

→∗ targα(Et) and u
α

→∗ targα(Eu) Since t =α u we have t ⇓A u, hence
Et = Eu. J

7.2 The Universal Proof Graph
The kind of proof graph we want to build is one whose equivalence is the full relation ⇓A,
because that would show that ⇓A is transitive.

I Definition 63. A proof graph % is universal iff =% = ⇓A.

I Lemma 64. If ⇓A is a consistency invariant for our rewrite system then any targeted
proof graph which is complete is universal.

Proof. Let (%, targ%) a target proof graph which is complete. This is universal iff =% and
CG( ε→A) coincide. We write =R for CG( ε→A).

We prove the implication ∀t, u ∈ A. t ⇓A u⇒ t =% u by induction on the term structure.
Because =% is a Σ-closed equivalence this reduces to ∀t, u ∈ A. t ε→A u⇒ t =% u.

If t ε→A u then Rt 6= ∅ and so targ%(Et) ∈ Rt and we have t (⇓A ∩
%→)∗ targ%(Et) by

completeness of %. Since ⇓A
∗ ⊆ =R

∗ ⊆ =R we get t =R targ%(Et) and so by induction
hypothesis t =% targ%(Et). Because targ%(Et) ∈ Rt there is some r ∈ A with targ%(Et)

ε→A r

and because of completeness we have targ%(Et) =% r. The consistency invariant property then
gives us u CT(=%) r. Because =% is Σ-closed (Lemma 62) we get u =% r and t =% targ%(Et).
Overall t =% targ%(Et) =% r =% u. J

I Lemma 65. If ⇓A is a consistency invariant for our rewrite system then there is a universal
proof graph.

Proof. Let targ : DA → A be any target function. Then ((∅, id), targ) is a targeted proof
graph. We can then apply Lemma 61 and Lemma 65. J

I Theorem 66. Let (Σ, R) be a Constructor TRS such that ⇓A is a consistency invariant
for any strongly finite term-coalgebra A. Then =R coincides with ⇓ on Ter(Σ, ∅) (and is
therefore constructor-compatible).

Proof. Moreover, we even have that t =R u implies t ⇓B u for some strongly finite B.
Since t =R u, we must have a sequence of distinct terms s1, . . . , sn with t = s1 and u = sn

such that for all i < n either si →R si+1 or si+1 →R si. Closing the set {s1, . . . , sn} under
subterms then gives us the term-coalgebra B. By assumption ⇓B is a consistency invariant
for B, therefore there is a universal proof graph for B by Lemma 65 and thus t ⇓B u. By
the coalgebra-inclusion argument (Lemma 41) we have t ⇓ u. J

I Corollary 67. Strongly almost non-ω-overlapping Constructor TRSs have a consistent
equational theory.

Proof. Follows from Theorem 66 and Corollary 45. J
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8 Consequences

Now we can put these results together to deliver the main theorems.

I Theorem 68. Non-ω-overlapping TRSs have a consistent equational theory.

Proof. By Corollary 16 a TRS is consistent iff its constructor translation is. By Proposition 22
the constructor translation of a non-ω-overlapping TRS is strongly almost non-ω-overlapping,
which – by Corollary 67 – means that it is consistent. J

From this, we also easily get uniqueness of normal forms:

I Theorem 69. Non-ω-overlapping TRSs have unique normal forms.

Proof. By contradiction. Suppose T = (Σ, R) were a non-ω-overlapping TRS, t, u ∈
Ter(Σ, X) were normal forms with t =R u and t 6= u. Then they remain normal forms
in the TRS U = (Σ + X + {F}, R ∪ F (t, x, y)→ x, F (u, x, y)→ y). The system U is also
non-ω-overlapping, as the new rules do not ω-overlap with each other or any old rule. But
x =U F (t, x, y) =U F (u, x, y) =U y, i.e. U is inconsistent which contradicts Theorem 68. J

9 Future Work

We would like to extend the result to wider ranges of TRSs. In particular, it would be nice
to be able to extend it to almost non-ω-overlapping Constructor TRSs, as these are the kind
of TRSs that are of concern in the Glasgow Haskell compiler which originated our interest
[4]. This is almost certainly doable with just slight extensions of the techniques displayed
here, though extending this further to arbitrary non-ω-overlapping TRSs might not be as
straightforward.

Also of special interest are semi-equational Conditional TRSs as the can be used to turn
TRSs into equivalent left-linear CTRSs, and non-duplicating TRSs into linear CTRSs, by
transforming variable sharing into equational constraints.

10 Conclusion

We have proved that non-ω-overlapping TRS have a consistent equational theory, as well
as unique normal forms. More important than the result itself is the novel proof technique
that makes use of finite Σ-coalgebras, in order to show that certain relations are invariants
across equational reasoning. The technique is related to the notion of “equivalent reductions”
of orthogonal term rewriting, but in contrast does not require “the creation of” additional
terms – the terms participating in the consistency proof are the same as the ones of the
original equational proof.
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Abstract
Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-
hand sides of rules are subterms of constructor terms in the left-hand side; the computational
intuition is that rules cannot build new data structures. It is well-known that cons-free program-
ming languages can be used to characterize computational complexity classes, and that cons-free
first-order term rewriting can be used to characterize the set of polynomial-time decidable sets.

We investigate cons-free higher-order term rewriting systems, the complexity classes they
characterize, and how these depend on the order of the types used in the systems. We prove that,
for every k ≥ 1, left-linear cons-free systems with type order k characterize EkTIME if arbitrary
evaluation is used (i.e., the system does not have a fixed reduction strategy).

The main difference with prior work in implicit complexity is that (i) our results hold for
non-orthogonal term rewriting systems with possible rule overlaps with no assumptions about
reduction strategy, (ii) results for such term rewriting systems have previously only been obtained
for k = 1, and with additional syntactic restrictions on top of cons-freeness and left-linearity.

Our results are apparently among the first implicit characterizations of the hierarchy E =
E1TIME ( E2TIME ( · · · . Our work confirms prior results that having full non-determinism
(via overlaps of rules) does not directly allow characterization of non-deterministic complexity
classes like NE. We also show that non-determinism makes the classes characterized highly
sensitive to minor syntactic changes such as admitting product types or non-left-linear rules.
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read-only: data structures cannot be created or altered, only read from the input; and any
data passed as arguments to recursive function calls must thus be part of the original input.

The interest in such programs lies in their applicability to computational complexity: by
imposing cons-freeness, the resulting set of programs can only decide the sets in a proper
subclass of the Turing-decidable sets, indeed are said to characterize the subclass. Jones
goes on to show that adding further restrictions such as type order or enforcing tail recursion
lowers the resulting expressiveness to known classes. For example, cons-free programs with
data order 0 can decide exactly the sets in PTIME, while tail-recursive cons-free programs
with data order 1 can decide exactly the sets in PSPACE. The study of such restrictions and
the complexity classes characterized is a research area known as implicit complexity and has
a long history with many distinct approaches (see, e.g., [4, 6, 5, 7, 8, 12, 17]).

Rather than a toy language, it is tantalizing to consider term rewriting instead. Term
rewriting systems have no fixed evaluation order (so call-by-name or call-by-value can be
introduced as needed, but are not required); and term rewriting is natively non-deterministic,
allowing distinct rules to be applied (“functions to be invoked”) to the same piece of syntax,
hence could be useful for extensions towards non-deterministic complexity classes. Implicit
complexity using term rewriting has seen significant advances using a plethora of approaches
(e.g. [1, 2, 3]). Most of this research has, however, considered fixed evaluation orders (most
prominently innermost reduction), and if not, then systems which are either orthogonal, or
at least confluent (e.g. [2]). Almost all of the work considers only first-order rewriting.

The authors of [11] provide a first definition of cons-free term rewriting without constraints
on evaluation order or confluence requirements, and prove that this class – limited to first-
order rewriting – characterizes PTIME. However, they impose a rather severe partial linearity
restriction on the programs. This paper seeks to answer two questions: (i) what happens if no
restrictions beyond left-linearity and cons-freeness are imposed? And (ii) what if higher-order
term rewriting – including bound variables as in the lambda calculus – is allowed? We obtain
that kth-order cons-free term rewriting exactly characterizes EkTIME. This is surprising
because in Jones’ rewriting-like language, kth-order programs characterize EXPk−1TIME:
surrendering both determinism and evaluation order thus significantly increases expressivity.

An extended version, including appendices with full proofs, is available online [16].

2 Preliminaries

2.1 Computational complexity
We presuppose introductory working knowledge of computability and complexity theory
(corresponding to standard textbooks, e.g., [13]). Notation is fixed below.

Turing Machines (TMs) are triples (A,S, T ) where A is a finite set of tape symbols such
that A ⊇ I ∪ {␣}, where I ⊇ {0, 1} is a set of initial symbols and ␣ /∈ I is the special
blank symbol; S ⊇ {start, accept, reject} is a finite set of states, and T is a finite set
of transitions (i, r, w, d, j) with i ∈ S \ {accept, reject} (the original state), r ∈ A (the
read symbol), w ∈ A (the written symbol), d ∈ {L, R} (the direction), and j ∈ S (the
result state). We sometimes write this transition as i r/w d===⇒ j. All TMs in the paper are
deterministic and (which we can assume wlog.) do not get stuck: for every pair (i, r) with
i ∈ S \ {accept, reject} and r ∈ A there is exactly one transition (i, r, w, d, j). Every TM
has a single, right-infinite tape.

A valid tape is a right-infinite sequence of tape symbols with only finitely many not ␣. A
configuration of a TM is a triple (t, p, s) with t a valid tape, p ∈ N and s ∈ S. The transitions
T induce a binary relation ⇒ between configurations in the obvious way.



C. Kop and J. G. Simonsen 23:3

A TM with input alphabet I decides X ⊆ I+ if for any string x ∈ I+, we have x ∈ X
iff (␣x1 . . . xn␣␣ . . . , 0, start)⇒∗ (t, i, accept) for some t, i, and (␣x1 . . . xn␣␣ . . . , 0, start)
⇒∗ (t, i, reject) otherwise (i.e., the machine halts on all inputs, ending in accept or reject
depending on whether x ∈ X). If f : N −→ N is a function, a (deterministic) TM runs in
time λn.f(n) if, for each n ∈ N \ {0} and each x ∈ In: (␣x␣␣ . . . , 0, start) ⇒≤f(n) (t, i, s)
for s ∈ {accept, reject}, where ⇒≤f(n) denotes a sequence of at most f(n) transitions.

Complexity and the ETIME hierarchy

For k, n ≥ 0, let exp0
2(n) = n and expk+1

2 (n) = 2expk
2 (n) = expk2(2n).

IDefinition 1. Let f : N −→ N be a function. Then, TIME (f(n)) is the set of all S ⊆ {0, 1}+

such that there exist a > 0 and a deterministic TM running in time λn.a ·f(n) that decides S
(i.e., S is decidable in time O(f(n))). For k ≥ 1 define: EkTIME ,

⋃
a∈N TIME

(
expk2(an)

)
Observe in particular that E1TIME =

⋃
a∈N TIME

(
exp1

2(an)
)

=
⋃
a∈N TIME (2an) = E

(where E is the usual complexity class of this name, see e.g., [19, Ch. 20]).
Note that for any d, k ≥ 1, we have (expk2(x))d = 2d·expk−1

2 (x) ≤ 2expk−1
2 (dx) = expk2(dx).

Hence, if P is a polynomial with non-negative integer coefficients and the set S ⊆ {0, 1}+ is
decided by an algorithm running in time O(P (expk2(an))) for some a ∈ N, then S ∈ EkTIME.

Using the Time Hierarchy Theorem [20], it is easy to see that E = E1TIME ( E2TIME (
E3TIME ( · · · . The union

⋃
k∈N EkTIME is the set ELEMENTARY of elementary lan-

guages.

2.2 Higher-order rewriting
Unlike first-order term rewriting, there is no single, unified approach to higher-order term
rewriting, but rather a number of different co-extensive systems with distinct syntax; for an
overview of basic issues, see [21]. We will use Algebraic Functional Systems (AFSs) [15, 9],
in the simplest form (which disallows partial applications). However, our proofs do not use
any particular features of AFSs that preclude using different higher-order formalisms.

Types and Terms

We assume a non-empty set S of sorts, and define types and type orders as follows: (i) every
ι ∈ S is a type of order 0 ; (ii) if σ, τ are types of order n and m respectively, then σ ⇒ τ is
a type of order max(n+ 1,m). Here ⇒ is right-associative, so σ ⇒ τ ⇒ π should be read
σ ⇒ (τ ⇒ π). A type declaration of order k ≥ 0 is a tuple [σ1 × · · · × σn] ⇒ ι with all σi
types of order at most k − 1, and ι ∈ S; if n = 0 this declaration may simply be denoted ι.

We additionally assume given disjoint sets F of function symbols and V of variables. Each
symbol in F is associated with a unique type declaration, and each variable in V with a
unique type. The set T (F ,V) of terms over F and V consists of those expressions s such
that ` s : σ can be derived for some type σ using the following clauses:

(var) ` x : σ if x : σ ∈ V
(app) ` s · t : τ if s : σ ⇒ τ and t : σ
(abs) ` λx.s : σ ⇒ τ if x : σ ∈ V and s : τ
(fun) ` f(s1, . . . , sn) : ι if f : [σ1 × . . .× σn]⇒ ι ∈ F and s1 : σ1, . . . , sn : σn

Clearly, each term has a unique type. Note that a function symbol f : [σ1 × . . .× σn]⇒ ι

takes exactly n arguments, and its output type ι is a sort. The abstraction construction λx.s
binds occurrences of x in s as in the λ-calculus, and α-conversion is defined for terms mutatis
mutandis; we identify terms modulo α-conversion, renaming bound variables if necessary.
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Application is left-associative. The set of variables of s which are not bound is denoted
FV (s). A term s is closed if FV (s) = ∅. We say that a term s has base type if ` s : ι ∈ S.

I Example 2. We will often use extensions of the signature Fstring, given by:

true : bool 0 : [string]⇒ string B : string
false : bool 1 : [string]⇒ string

Terms are for instance true, λx.0(1(x)) and (λx.0(x)) · 1(y). The first and last of these
terms have base type, and the first two are closed; the last one has y as a free variable.

A substitution is a type-preserving map from V to T (F ,V) which is the identity on all
but finitely many variables. Substitutions γ are extended to arbitrary terms s, notation sγ,
by using α-conversion to rename all bound variables in s to fresh ones, then replacing each
unbound variable x by γ(x). A context C[] is a term in T (F ,V) in which a single occurrence
of a variable is replaced by a symbol � /∈ F ∪ V. The result of replacing � in C[] by a term
s (of matching type) is denoted C[s]. Free variables may be captured; e.g. (λx.�)[x] = λx.x.
If s = C[t] we say that t is a subterm of s, notation tE s, or tC s if C[] 6= �.

Rules and Rewriting

A rule is a pair `→ r of terms in T (F ,V) with the same sort (i.e. ` ` : ι and ` r : ι for some
ι ∈ S), such that ` has the form f(`1, . . . , `n) with f ∈ F and such that FV (r) ⊆ FV (`). A
rule `→ r is left-linear if every variable occurs at most once in `. We assume given a set R
of rules, and define the one-step rewrite relation →R on T (F ,V) as follows:

C[`γ] →R C[rγ] with `→ r ∈ R, C a context, γ a substitution
C[(λx.s) · t] →R C[s[x := t]]

We may write s→β t for a rewrite step using (beta). Let →+
R denote the transitive closure

of →R and →∗R the transitive-reflexive closure. We say that s reduces to t if s→R t. A term
s is in normal form if there is no t such that s→R t, and t is a normal form of s if s→∗R t

and t is in normal form. An AFS is a pair (F ,R), generating a set of terms and a reduction
relation. The order of an AFS is the maximal order of any type declaration in F .

I Example 3. Recall the signature Fstring from Example 2; let Fcount be its extension with
succ : [string]⇒ string. We consider the AFS (Fcount,Rcount) with the following rules:

(A) succ(B) → 1(B) (B) succ(0(xs)) → 1(xs)
(C) succ(1(xs)) → 0(succ(xs))

This is a first-order AFS, implementing the successor function on a binary number expressed
as a bitstring with the least significant digit first. For example, 5 is represented by 1(0(1(B))),
and indeed succ(1(0(1(B))))→R 0(succ(0(1(B))))→R 0(1(1(B))), which represents 6.

I Example 4. Alternatively, we may define a bit-sequence as a function: let Fhocount be
the extension of Fstring with not : [bool]⇒ bool, ite : [bool× bool× bool]⇒ bool and
all, succ : [(bool⇒ bool)× string]⇒ string. Let Rhocount consist of:

(A) ite(true, x, y) → x (C) not(x) → ite(x, false, true)
(B) ite(false, x, y) → y (D) all(F,B) → F ·B
(E) all(F, a(xs)) → ite(F · a(xs), all(F, xs), false) Jfor a ∈ {0, 1}K
(F) succ(F,B) → not(F ·B)
(G) succ(F, a(xs)) → ite(all(F, xs), not(F · a(xs)), F · a(xs)) Jfor a ∈ {0, 1}K
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Note that (E) and (G) each represent two rules: one for each choice of a. This AFS is second-
order, due to all and succ. A function F represents a (potentially infinite) binary number,
with the ith bit given by F · t for any bitstring t of length i (counting from i = 0, so t = B).
Thus, the number 0 is represented by, e.g., λx.false, and 1 by ONE ::= λx.succ(λy.false, x).
Indeed ONE · B = (λx.succ(λy.false, x)) · B →β succ(λy.false,B) →R not((λy.false) ·
B)→β not(false)→R true, and ONE · 0k(B)→∗R false for k > 0.

We fix a partitioning of F into two disjoint sets, D of defined symbols and C of constructor
symbols, such that f ∈ D for all f(~̀) → r ∈ R. A term s is a constructor term if it is in
T (C,V) and a proper constructor term if it also contains no applications or abstractions. A
closed proper constructor term is also called a data term. The set of data terms is denoted DA.
Note that data terms are built using only clause (fun). A term f(s1, . . . , sn) with f ∈ D
and each si ∈ DA is called a basic term. A constructor rewriting system is an AFS where
each rule f(`1, . . . , `n)→ r ∈ R satisfies that all `i are proper constructor terms (and f ∈ D).
An AFS is a left-linear constructor rewriting system if moreover each rule is left-linear.

In a constructor rewriting system, β-reduction steps can always be done prior to other
steps: if s has a normal form q and s→β t, then also t→∗R q. Therefore we can (and will!)
safely assume that the right-hand sides of rules are in normal form with respect to →β .

I Example 5. The AFSs from Examples 3 and 4 are left-linear constructor rewriting systems.
In Example 3, C = Fstring and D = {succ}. If a rule 0(B) → B were added to Rcount, it
would no longer be a constructor system, as this would force 0 to be in D, conflicting with
rule (B). A rule such as equal(xs, xs)→ true would break left-linearity.

I Remark. Constructor rewriting systems – typically left-linear – are very common both in
the literature on term rewriting and in functional programming, where similar restrictions
are imposed. Left-linear systems are well-behaved: contraction of non-overlapping redexes
cannot destroy redexes that they themselves are arguments of. Constructor systems avoid
non-root overlaps, and allow for a clear split between data and intermediate terms.

They are, however, less common in the literature on higher-order term rewriting, and the
notion of a proper constructor term is new for AFSs (although the exclusion of abstractions
and applications in the left-hand sides roughly corresponds to fully extended pattern HRSs
in Nipkow’s style of higher-order rewriting [18]).

Deciding problems using rewriting

Like Turing Machines, an AFS can decide a set X ⊆ I+ (where I is a finite set of symbols).
Consider AFSs with a signature F = C ∪ D where C contains symbols B : string, true :
bool, false : bool and a : [string]⇒ string for all a ∈ I. There is an obvious correspon-
dence between elements of I+ and data terms of sort string; if x ∈ I+, we write x for
the corresponding data term. The AFS accepts D ⊆ I+ if there is a designated defined
symbol decide : [string]⇒ bool such that, for every x ∈ I+ we have decide(x)→∗R true
iff x ∈ D. More generally, we are interested in the reductions of a given basic term to a data
term.

We use the acceptance criterion above – reminiscent of the acceptance criterion of non-
deterministic Turing machines – because term rewriting is inherently non-deterministic unless
further constraints (e.g., orthogonality) are imposed. Thus, an input x is “rejected” by
a rewriting system iff there is no reduction to true from decide(x); and as evaluation is
non-deterministic, there may be many distinct reductions starting from decide(x).
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3 Cons-free rewriting

Since the purpose of this research is to find groups of programs which can handle restricted
classes of Turing-computable problems, we will impose certain limitations. In particular, we
will limit interest to cons-free left-linear constructor rewriting systems.

I Definition 6. A rule `→ r, presented using α-conversion in a form where all binders are
distinct from FV (`), is cons-free if for all subterms s = f(s1, . . . , sn)E r with f ∈ C, we have
sC ` or s ∈ DA. A left-linear constructor AFS (F ,R) is cons-free if all rules in R are.

This definition corresponds largely to the definitions of cons-freeness appearing in [11, 14].
In a cons-free AFS, it is not possible to create more data, as we will see in Section 3.1.

I Example 7. The AFS from Example 3 is not cons-free due to rules (B) and (C). The
AFS from Example 4 is cons-free (in rules (E) and (G), a(xs) is allowed to occur on the
right despite the constructor a, because it also occurs on the left). However, there are few
interesting basic terms, as we do not consider for instance succ(λx.false,B) basic.

I Remark. The limitation to left-linear constructor AFSs is standard, but also necessary: if
either restriction is dropped, our limitation to cons-free AFSs becomes meaningless. In the
case of constructor systems, this is obvious: if defined symbols are allowed to occur within a
left-hand side, then we could simply let D := F and have a “cons-free” system. The case of
left-linearity is a bit more sophisticated; this we will study in more detail in Section 6.

As the first two restrictions are necessary to give meaning to the third, we will consider
the limitation to left-linear constructor AFSs implicit in the notion “cons-free”.

3.1 Properties of Cons-free Term Rewriting
As mentioned, cons-free term rewriting cannot create new data. This means that the set of
data terms that might occur during a reduction starting in some basic term s are exactly the
data terms occurring in s, or those occurring in the right-hand side of some rule. Formally:

I Definition 8. Let (F ,R) be a constructor AFS. For a given term s, the set Bs contains
all data terms t such that (i) sD t, or (ii) r D t for some rule `→ r ∈ R.

Bs is a set of data terms, is closed under subterms and, since we have assumed R to be
fixed, has a linear number of elements in the size of s. The property that no new data is
generated by reducing s is formally expressed by the following result:

I Definition 9 (B-safety). Let B ⊆ DA be a set which (i) is closed under taking subterms,
and (ii) contains all data terms occurring as a subterm of the right-hand side of a rule in R.
A term s is B-safe if for all t with sD t: if t has the form c(t1, . . . , tm) with c ∈ C, then t ∈ B.

I Lemma 10. If s is B-safe and s→R t, then t is B-safe.

Proof Sketch. By induction on the form of s; the result follows trivially by the induction
hypothesis if the reduction does not take place at the root, leaving only the base cases
s = (λx.u) ·v →R u[x := v] = t and s = `γ →R rγ = t. The first of these is easy by induction
on the form of the (B-safe!) term u, the second follows by induction on the form of r (which,
as the right-hand side of a cons-free rule, has convenient properties). J

Thus, if we start with a basic term f(~s), any data terms occurring in a reduction f(~s)→∗R t

(directly or as subterms) are in Bf(~s). This insight will be instrumental in Section 5.
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I Example 11. By Lemma 10, functions in a cons-free AFSs cannot build recursive data.
To code around this, we might use subterms of the input as a measure of length. Consider
the decision problem whether a given bitstring is a palindrome. We cannot use a rule such as
decide(cs)→ equal(cs, reverse(cs)) since, by Lemma 10, it is impossible to define reverse.
Instead, a typical solution uses a string ys of length k to find ck in c0 . . . cn−1:

decide(cs) → palindrome(cs, cs)
palindrome(cs,B) → true

palindrome(cs, a(ys)) → and(palindrome(cs, ys), chka(cs, ys)) Ja ∈ {0, 1}K
and(true, x) → x chka(a(xs),B) → true Ja ∈ {0, 1}K

and(false, x) → false chka(b(xs),B) → false Ja, b ∈ {0, 1} ∧ a 6= bK
chka(b(xs), c(ys)) → chka(xs, ys) Ja, b, c ∈ {0, 1}K

(The signature extends Fstring, but is otherwise omitted as types can easily be derived.)

Through cons-freeness, we obtain another useful property: we do not have to consider
constructors which take functional arguments.

I Lemma 12. Given a cons-free AFS (F ,R) with F = D∪C, let Y = {c : [σ1× · · · × σn]⇒
ι ∈ C some σi is not a sort}. Define F ′ := F \ Y , and let R′ consist of those rules in R not
using any element of Y in either left- or right-hand side. Then (a) all data and B-safe terms
are in T (F ′, ∅), and (b) if s is a basic term and s→∗R t, then t ∈ T (F ′,V) and s→∗R′ t.

Proof. Since data terms have base type, and the subterms of data terms are data terms, we
have (a). Then, B-safe terms can only be matched by rules in R′, so Lemma 10 gives (b). J

Therefore we may safely assume that all elements of C are at most first-order.

3.2 A larger example
None of our examples so far have taken advantage of the native non-determinism of term
rewriting. To demonstrate the possibilities, we consider a first-order cons-free AFS that solves
the Boolean satisfiability problem (SAT). This is striking because, in Jones’ language in [14],
first-order programs cannot solve this problem unless P = NP, even if a non-deterministic
choose operator is added [10]. The crucial difference is that we, unlike Jones, do not employ
a call-by-value evaluation strategy.

Given n boolean variables x1, . . . , xn and a boolean formula ψ ::= ϕ1 ∧ · · · ∧ ϕn, the
satisfiability problem considers whether there is an assignment of each xi to > or ⊥ such
that ψ evaluates to >. Here, each clause ϕi has the form ai1 ∨ · · · ∨ aiki

, where each literal
aij is either some xp or ¬xp. We represent this problem as a string over I := {0, 1,#, ?}:
the formula ψ is represented by L ::= b1,1 . . . b1,n#b2,1 . . .#bm,1 . . . bm,n#, where each bi,j is
1 if xj is a literal in ϕi, is 0 if ¬xj is a literal in ϕi, and is ? otherwise.

I Example 13. The satisfiability problem for (x1∨¬x2)∧(x2∨¬x3) is encoded as 10?#?10#.

Letting 0, 1,#, ? : [string] ⇒ string, and assuming other declarations clear from
context, we claim that the AFS in Figure 1 can reduce decide(L) to true iff ψ is satisfiable.

In this AFS, we follow some of the same ideas as in Example 11. In particular, any string
of the form bi . . . bn# . . . with each bj ∈ {0, 1, ?} is considered to represent the number i. The
rules for eq are defined so that eq(s, t) tests equality of these numbers, not the full strings.

The key idea new to this example is that we use terms not in normal form to represent a
set of numbers. If we are interested in numbers in {1, . . . , n}, then a set X ⊆ {1, . . . , n} is
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eq(#(xs),#(ys)) → true eq(#(xs), a(ys)) → false
eq(a(xs), b(ys)) → eq(xs, ys) eq(a(xs),#(ys)) → false

}
Jfor a, b ∈ {0, 1, ?}K

decide(cs) → assign(cs,B,B, cs)
assign(#(xs), s, t, cs) → main(s, t, cs)
assign(a(xs), s, t, cs) → assign(xs, either(a(xs), s), t, cs)
assign(a(xs), s, t, cs) → assign(xs, s, either(a(xs), t), cs)

}
Jfor a ∈ {0, 1, ?}K

either(xs, q) → xs either(xs, q) → q

main(s, t, ?(xs)) → main(s, t, xs)
main(s, t, 0(xs)) → test(s, t, xs, eq(t, 0(xs)), eq(s, 0(xs)))
main(s, t, 1(xs)) → test(s, t, xs, eq(s, 1(xs)), eq(t, 1(xs)))

main(s, t,B) → true test(s, t, xs, true, z) → main(s, t, skip(xs))
main(s, t,#(xs)) → false test(s, t, xs, z, true) → main(s, t, xs)
skip(#(xs)) → xs

skip(a(xs)) → skip(xs) Jfor a ∈ {0, 1, ?}K

Figure 1 A cons-free first-order AFS solving the satisfiability problem.

encoded as a pair (s, t) of terms such that, for i ∈ {1, . . . , n}: s→∗R q for some representation
q of i if and only if i ∈ X, and t→∗R q for some representation q of i if and only if i /∈ X.

This is possible because we do not use a call-by-value or similar reduction strategy: an
evaluation of this AFS is allowed to postpone reducing such terms, and we focus on those
reductions. The AFS is constructed in such a way that reductions which evaluate these “sets”
too eagerly simply end in an irreducible, non-data state.

Now, an evaluation starting in decide(L) first non-deterministically constructs a “set”X
containing those boolean variables assigned true: decide(L) →∗R main(s, t, L). Then, the
main function goes through L, finding for each clause a literal that is satisfied by the
assignment. Encountering for instance bij = 1, we determine if j ∈ X by comparing both a
reduct of s and of t to j. If s→∗R “j” then j ∈ X, if t→∗R “j” then j /∈ X; in either case, we
continue accordingly. If the evaluation state is incorrect, or if s or t both non-deterministically
reduce to some other term, the evaluation gets stuck in a non-data normal form.

I Example 14. To solve satisfiability of (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3), we reduce decide(L),
where L = 10?#?10#. First, we build a valuation; the choices made by the assign rules
are non-deterministic, but a possible reduction is decide(L) →∗R main(s, t, L), where s =
either(10?#?10#,B) and t = either(?#?10#, either(0?#?10#,B)). Recall that, since
n = 3, 10?#?10# represents 1 while ?#?10# and 0?#?10# represent 3 and 2 respectively.
Thus, this corresponds to the valuation [x1 := >, x2 := ⊥, x3 := ⊥].

Then, the main loop recurses over the problem. Note that s reduces to a term 10?# . . . and
t reduces to both ?# . . . and 0?# . . .. Therefore, main(s, t, L) = main(s, t, 11?#?01#) →∗R
main(s, t, skip(1?#?01#)) →∗R main(s, t, ?01#): the first clause is confirmed since x1 is
mapped to >, so the clause is removed and the loop continues with the second clause.
Next, the loop passes over those variables whose assignment does not contribute to verifying
this clause, until the clause is confirmed by x3: main(s, t, ?01#) →R main(s, t, 01#) →∗R
main(s, t, 1#)→∗R main(s, t, skip(#))→R main(s, t,B)→R true.

Using non-determinism, the term in Example 14 could easily have been reduced to false
instead, simply by selecting a different valuation. This is not problematic: by definition,
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the AFS accepts the set of satisfiable formulas if decide(L)→∗R true if and only if L is a
satisfiable formula: false negatives or reductions which do not end in a data state are allowed.

A longer example derivation is given in Appendix B of the full version of the paper.

4 Simulating EkTIME Turing machines

In order to see that cons-free term rewriting captures certain classes of decidable sets, we will
simulate Turing Machines. For this, we use an approach very similar to that by Jones [14].
We introduce constructor symbols a : [string] ⇒ string for all a ∈ A (including the
blank symbol, which we shall refer to as B) along with B and the booleans, s : state for
all s ∈ S ∪ {fail}, L, R : direction and action : [string × direction × state] ⇒ trans,
end : [state]⇒ trans, NA : trans. We will introduce defined symbols and rules such that,
for any string c ∈ (A \ {␣})∗ – represented as the term cs := c1(c2(· · · cn(B) · · · )) – we have:

decide(cs)→∗R true if and only if (␣c␣␣ . . . , 0, start)⇒∗ (t, i, accept) for some t, i;
decide(cs)→∗R false if and only if (␣c␣␣ . . . , 0, start)⇒∗ (t, i, reject) for some t, i.

As rules may be overlapping, it is possible that decide(cs) will have additional normal forms,
but only one normal form will be a data term.

The rough idea of the simulation is to represent non-negative integers as terms and let
tape(n, p) reduce to the symbol at position p on the tape at the start of the nth step, while
state(n, p) returns the state of the machine at time n, provided the tape head is at position
p. If the tape head of the machine is not at position p at time n, then state(n, p) should
return fail instead; this makes it possible to test the position of the tape head at any given
time. As the machine is deterministic, we can devise rules to compute these terms from
earlier configurations.

Finding a suitable representation of integers and corresponding manipulating functions is
the most intricate part of this simulation, where we may need both higher-order functions
and non-deterministic rules. Therefore, let us first assume that this can be done. Then, for a
Turing machine which is given to run in time bounded above by λx.P (x), we define the AFS
in Figure 2. Note that, by construction, any occurrence of cs can only be instantiated by the
input string during evaluation.

Counting

The goal, then, is to find a representation of numbers and functionality to do four things:
calculate [P (|cs|)] or an overestimation (as the machine cannot move from its final state);
test whether a “number” represents 0;
given [n], calculate [n− 1], provided n > 0 – so it suffices to determine [max(n− 1, 0)];
given [n], calculate [n+ 1], provided n+ 1 ≤ P (|cs|) as necessarily transition(cs, [n], [p])
→R NA when n < p and n never increases – so it suffices to determine [min(n+1, P (|cs|))].

Moreover, these calculations all occur in the right-hand side of a rule containing the initial
input list cs on the left, which they can therefore use (for instance to recompute P (|cs|)).

Rather than representing a number by a single term, we will use tuples of terms (which are
not terms themselves, as a pairing constructor would conflict with cons-freeness). To illustrate
this, suppose we represent each number n by a pair (n1, n2). Then the predecessor and
successor function must also be split, e.g. pred1(cs, n1, n2)→∗R n′1 and pred2(cs, n1, n2)→∗R
n′2 for (n′1, n′2) some tuple representing n− 1. Thus, for instance the first test rule becomes:

test(fail, cs, n1, n2, p1, p2)→ findanswer(cs, n1, n2, pred1(cs, p1, p2), pred2(cs, p1, p2))
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ifelseι(true, y, z) → y

ifelseι(false, y, z) → z

}
Jfor ι ∈ {string, state}K

get(B, [i], q) → q

get(a(xs), [i], q) → ifelsestring([i = 0], a(B), get(xs, [i− 1], q)) Jfor all a ∈ IK
inputtape(cs, [p]) → ifelsestring([p = 0], B(B), get(cs, [p− 1], B(B)))

tape(cs, [n], [p]) → ifelsestring([n = 0], inputtape(cs, [p]), tapex(cs, [n− 1], [p]))
tapex(cs, [n], [p]) → tapey(cs, [n], [p], transition(cs, [n], [p]))

tapey(cs, [n], [p], action(q, d, s)) → q tapey(cs, [n], [p], NA) → tape(cs, [n], [p])
tapey(cs, [n], [p], end(s)) → tape(cs, [n], [p])

state(cs, [n], [p]) → ifelsestate([n = 0], state0(cs, [p]), statex(cs, [n− 1], [p]))
state0(cs, [p]) → ifelsestate([p = 0], start, fail)

statex(cs, [n], [p]) → statey(transition(cs, [n], [p− 1]), transition(cs, [n], [p]),
transition(cs, [n], [p+ 1]))

statey(action(q, R, s), y, z) → s statey(NA, action(q, d, s), z) → fail
statey(action(q, L, s), y, z) → fail statey(NA, NA, action(q, L, s)) → s

statey(end(s), y, z) → fail statey(NA, NA, action(q, R, s)) → fail
statey(NA, end(s), z) → s statey(NA, NA, end(s)) → fail

transition(cs, [n], [p]) → transitionhelp(state(cs, [n], [p]), tape(cs, [n], [p]))
transitionhelp(fail, q) → NA
transitionhelp(s, r(B)) → action(w(B), d, t) Jfor all s

r/w d
===⇒ t ∈ T K

transitionhelp(s, q) → end(s) Jfor s ∈ {accept, reject}K

decide(cs) → findanswer(cs, [P (|cs|)], [P (|cs|)])
findanswer(cs, [n], [p]) → test(state(cs, [n], [p]), cs, [n], [p])

test(fail, cs, [n], [p]) → findanswer(cs, [n], [p− 1])
test(accept, cs, [n], [p]) → true
test(reject, cs, [n], [p]) → false

Figure 2 Simulating a deterministic Turing Machine running in λx.P (x) time.

Following Jones [14], we use the notion of a counting module which provides an AFS with
a representation of a counting function and a means of computing. Counting modules can
be composed, making it possible to count to greater numbers. Due to the laxity of term
rewriting, our constructions are technically quite different from those of [14].

I Definition 15 (Counting Module). Write F = C ∪D for the signature in Figure 2. For P a
function from N to N, a P -counting module of order k is a tuple Cπ ::= (~σ,Σ, R,A, 〈·〉) s.t.:

~σ is a sequence of types σ1 × · · · × σa where each σi has order at most k − 1;
Σ is a kth-order signature disjoint from F , with designated symbols zeroπ : [string×~σ]⇒
bool and, for 1 ≤ i ≤ a with σi = τ1 ⇒ . . . ⇒ τm ⇒ ι symbols prediπ, suciπ, inviπ :
[string× ~σ × ~τ ]⇒ ι and seediπ : [string× ~τ ]⇒ κ;
R is a set of cons-free rules f(~̀)→ r with f ∈ Σ, each `i ∈ T (C,V) and r ∈ T (C ∪ Σ,V);
for every string cs ⊆ I+, the set Acs ⊆ {(s1, . . . , sa) ∈ T (C ∪Σ)a |` sj : σj for 1 ≤ j ≤ a};
for every string cs, 〈·〉cs is a surjective mapping from Acs to {0, . . . , P (|cs|)− 1};
writing e.g. prediπ[~s] : σi for the term λ~y.prediπ(~s, ~y), the following properties are satisfied:

(seed1
π[cs], . . . , seedaπ[cs]) ∈ Acs and 〈(seed1

π[cs], . . . , seedaπ[cs])〉cs = P (|cs|)− 1
and for all (s1, . . . , sa) ∈ Acs with 〈(s1, . . . , sa)〉cs = m:



C. Kop and J. G. Simonsen 23:11

(pred1
π[cs, ~s], . . . , predaπ[cs, ~s]) and (suc1

π[cs, ~s], . . . , sucaπ[cs, ~s]) and (inv1
π[cs, ~s], . . . ,

invaπ[cs, ~s]) are all in Acs
〈(pred1

π[cs, ~s], . . . , predaπ[cs, ~s])〉cs = max(m− 1, 0)
〈(suc1

π[cs, ~s], . . . , sucaπ[cs, ~s])〉cs = min(m+ 1, P (|cs|)− 1)
〈(inv1

π[cs, ~s], . . . , invaπ[cs, ~s])〉cs = P (|cs|)− 1−m
zeroπ(cs, ~s)→∗R true iff m = 0 and zeroπ(cs, ~s)→∗R false iff m > 0
if each si →∗R ti and (t1, . . . , ta) ∈ Acs, then also 〈(t1, . . . , ta)〉cs = m.

It is not hard to see how we would use a P -counting module in the AFS of Figure 2; this
results in a kth-order AFS for a kth-order module. Note that this works even if some number
representations (s1, . . . , sa) are not in normal form: even if we reduce ~s to some tuple ~t, the
result of the zero test cannot change from true to false or vice versa. Since the algorithm
relies heavily on these tests, we may safely assume that terms representing numbers are
reduced in a lazy way – as we did in Section 3.2 for the arguments s and t of main.

I Lemma 16. There is a first-order (λn.2n+1)-counting module.

Proof. Like in Section 3.2, we will represent a set of numbers – or rather, its encoding as a
bit-sequence – by a pair of terms. We let Ce := (string× string,Σ, R,A, 〈·〉), where:

Acs contains all pairs (s, t) such that (a) all data terms q such that s →∗R q or t →∗R q

are subterms of cs, and (b) for each q E cs either s→∗R q or t→∗R q, but not both.
Writing cs = cN (. . . (c1(B)) . . . ), we let cs0 = B, cs1 = c1(B) and so on. We let
〈(s, t)〉cs =

∑N
i=0{2N−i | s →∗R csi}. That is, 〈(s, t)〉cs is the number represented by

the bit-sequence b0 . . . bN where bi = 1 iff s→∗R csi, iff not t→∗R csi (with bN the least
significant digit).
Σ consists of the defined symbols introduced in R, which we construct below.

As in Section 3.2, we use non-deterministic selection functions to construct (s, t):

either(x, y) → x either(x, y) → y ⊥ → ⊥

The symbol ⊥ will be used for terms which do not reduce to any data (the ⊥ → ⊥ rule is
used to force ⊥ ∈ D). For the remaining functions, we consider bitvector arithmetic. First,
2N+1 − 1 corresponds to the bit-sequence where each bi = 1:

seed1
e(cs) → all(cs,⊥) all(B, q) → either(B, q)

seed2
e(cs) → ⊥ all(a(xs), q) → all(xs, either(a(xs), q)) Jfor a ∈ IK

Here, I = {a | a ∈ I}. The inverse function is obtained by flipping the sequence’s bits:

inv1
e(cs, s, t) → t inv1

e(cs, s, t) → s

In order to define zeroe, we must test the value of all bits in the sequence. This is done by
forcing an evaluation from s or t to some data term. This test is constructed in such a way
that both true and false results necessarily reflect the state of s and t; any undesirable
non-deterministic choices lead to the evaluation getting stuck.

eqLen(B,B) → true eqLen(B, a(ys)) → false
eqLen(a(xs), b(ys)) → eqLen(xs, ys) eqLen(a(xs),B) → false

}
Jfor a, b ∈ IK

bitset(xs, s, t) → test(eqLen(xs, s), eqLen(xs, t)) test(true, x) → true
test(x, true) → false

Then zeroe simply tests whether the bit is unset for each sublist.

zeroe(xs, s, t) → zo(xs, s, t, bitset(xs, s, t)) zo(xs, s, t, true) → false
zo(a(xs), s, t, false) → zeroe(xs, s, t) Jfor a ∈ IK zo(B, s, t, false) → true
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For the predecessor function, note that the predecessor of a bit-sequence b0 . . . bi−1b10 . . . 0
is b0 . . . bi−101 . . . 1. We first define a helper function copy to copy b0 . . . bi−1:

copy(xs, s, t, false) → maybeadd(xs, bitset(xs, s, t), copy(tl(xs), s, t, empty(xs)))
copy(xs, s, t, true) → ⊥ maybeadd(xs, true, q) → either(xs, q)

maybeadd(xs, false, q) → q
empty(B) → true tl(B) → B

empty(a(x)) → false Jfor a ∈ IK tl(a(x)) → x Jfor a ∈ IK

Then copy(xsmax(i−1,0), s, t, [i = 0]) reduces to those xsj with 0 ≤ j < i where bj = 1, and
copy(xsmax(i−1,0), t, s, [i = 0]) to those with bj = 0. This works because s and t are each
other’s complement. To define pred, we first handle the zero case:

predi
e(cs, s, t) → pzi(cs, s, t, zeroe(cs, s, t)) Jfor i ∈ {1, 2}K

pz1(cs, s, t, true) → s pz1(cs, s, t, false) → pmain1(cs, s, t, bitset(cs, s, t))
pz2(cs, s, t, true) → t pz2(cs, s, t, false) → pmain2(cs, s, t, bitset(cs, s, t))

Then, pmain(xsN , s, t, [bN = 1]) flips the bits bN , bN−1, . . . until an index is encountered
where bi = 1; this last bit is flipped, and the remaining bits copied. Formally:

pmain1(xs, s, t, true) → copy(tl(xs), s, t, empty(xs))
pmain2(xs, s, t, true) → either(xs, copy(tl(xs), t, s, empty(xs)))

pmain1(xs, s, t, false) → either(xs, pmain1(tl(xs), s, t, bitset(tl(xs), s, t)))
pmain2(xs, s, t, false) → pmain2(tl(xs), s, t, bitset(tl(xs), s, t))

Finally, we observe that x + 1 = N − ((N − x) − 1) and for x = N also min(x + 1, N) =
N−(max((N−x)−1, 0)). Thus, we may define suc(b) as inv(pred(inv(x))). Taking pairing
into account and writing out the definition, this simplifies to:

suc1(cs, s, t) → pred2(cs, t, s) suc2(cs, s, t) → pred1(cs, t, s) J

Having Lemma 16 as a basis, we can define composite modules. Here, we give fewer
details than for Lemma 16 as the constructions use many of the same ideas.

I Lemma 17. If there exist a P -counting module Cπ and a Q-counting module Cρ, both of
order at most k, then there is a (λn.P (n) ·Q(n))-counting module Cπ·ρ of order at most k.

Proof Sketch. Let Cπ ::= ([σ1×· · ·×σa],Σπ, Rπ, Aπ, 〈·〉π) and Cρ ::= ([τ1×· · ·×τb],Σρ, Rρ,
Aρ, 〈·〉ρ). We will, essentially, represent the numbers i ∈ {0, . . . , P (|cs|) ·Q(|cs|)− 1} by a
pair (i1, i2) with 0 ≤ i1 < P (|cs|) and 0 ≤ i2 < Q(|cs|), such that i = i1 ·Q(|cs|) + i2. This
is done by defining Aπ·ρcs = {(u1, . . . , ua, v1, . . . , vb) | (u1, . . . , ua) ∈ Aπcs ∧ (v1, . . . , vb) ∈ Aρcs},
and 〈(~u,~v)〉π·ρcs = 〈(~u)〉πcs ·Q(|cs|) + 〈(~v)〉ρcs. The signature of defined symbols and rules of
Cπ·ρ are straightforwardly defined as well, extending those in Cπ and Cρ; for instance:

zeroπ·ρ(cs, u1, . . . , ua, v1, . . . , vb) → and(zeroπ(cs, u1, . . . , ua), zeroρ(cs, v1, . . . , vb))

and(true, x) → x and(false, y) → false J

I Lemma 18. If there is a P -counting module Cπ of order k, then there is a (λn.2P (n))-
counting module Cp[π] of order k + 1.

Proof Sketch. We represent every bitstring bP (|cs|)−1···b0 as a function of type σ1 ⇒ . . .⇒
σa ⇒ bool. The various functions are defined as bitvector operations. For example:

seedp[π](cs, k1, . . . , ka) → true invp[π](cs, F, k1, . . . , ka) → not(F · k1 · · · ka)
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zerop[π](cs, F ) → zero′p[π](cs, seed1
π[cs], . . . , seedaπ[cs], F )

zero′p[π](cs, k1, . . . , ka, F ) → ztestp[π](F · k1 · · · ka, zeroπ(cs, k1, . . . , ka), cs,
k1, . . . , ka, F )

ztestp[π](true, z, cs,~k, F ) → false
ztestp[π](false, true, cs,~k, F ) → true

ztestp[π](false, false, cs,~k, F ) → zero′p[π](cs, pred1
π[cs,~k], . . . , predaπ[cs,~k], F ) J

Note that, for instance, seedp[π][cs] is λk1 . . . ka.seedp[π](cs, k1, . . . , ka): the additional para-
meters ki should be seen as indexing the result of the function.

We obtain:

I Theorem 19. Any decision problem in EkTIME can be accepted by a kth-order AFS.

Proof. Following the construction in this section, it suffices if we can find a kth-order counting
module counting up to expk2(a · n) where n is the size of the input and a a fixed positive
integer. Lemma 16 gives a first-order λn.2n+1-counting module, and by iteratively using
Lemma 17 we obtain λn.(2n+1)a = λn.2a(n+1) for any a. Iteratively applying Lemma 18 on
the result gives a kth-order λn.expk2(a · (n+ 1))-counting module. J

5 Finding normal forms

In the previous section we have seen that every function in EkTIME can be implemented by
a cons-free kth-order AFS. Towards a characterization result, we must therefore show the
converse: that every function implemented by a cons-free kth-order AFS is in EkTIME.

To achieve this goal, we will now give an algorithm that, on input any basic term in an
AFS of order k, will output its set of data normal forms in EkTIME in the size of the term.

A key idea is to associate terms of higher-order type to functions. We define:

JιK = P({s | s ∈ B ∧ ` s : ι}) for ι ∈ S (so a set of subsets of B)
Jσ ⇒ τK = JτKJσK (so the set of functions from JσK to JτK)

Intuitively, an element of JιK represents a set of possible reducts of a term s : ι, while
an element of Jσ ⇒ τK represents the function defined by some λx.s : σ ⇒ τ . Since –
as induction on the structure of σ shows – each JσK is finite, we can define the following
algorithm to find all normal forms of a given basic term. In the algorithm, we build
functions Confirmed0,Confirmed1, . . . , each mapping statements f(A1, . . . , An) ≈ t to a value
in {>,⊥}. Intuitively, Confirmedi[f( ~A) ≈ t] denotes whether, in step i in the algorithm, we
have confirmed that f(s1, . . . , sn)→∗R t, where each Ai represents the corresponding si.

I Algorithm 20.
Input: A basic term s = g(t1, . . . , tm).
Output: The set of data normal forms of s. Note that this set may be empty.
Set B := Bs. For all f : [σ1 × · · · × σn]⇒ ι ∈ D, all A1 ∈ Jσ1K, . . . , An ∈ JσnK, all t ∈ JιK,

we let Confirmed0[f(A1, . . . , An) ≈ t] := ⊥. Now, for all such f, ~A, t and all i ∈ N:
if Confirmedi[f( ~A) ≈ t] = >, then Confirmedi+1[f( ~A) ≈ t] := >;
otherwise, for all rules f(`1, . . . , `n)→ r ∈ R, for all substitutions γ on domain FV (f(~̀))\
{~̀} (so on those variables occurring below constructors) such that `jγ ∈ Aj for all j with
`j not a variable (Aj is a set of terms since `j , a non-variable proper constructor term,
must have base type), let η be the function such that for each `j ∈ V, η(`j) = Aj , and
test whether t ∈ NF i(rγ, η). If there are a rule and substitution where this test succeeds,
let Confirmedi+1[f( ~A) ≈ t] := >, otherwise let Confirmedi+1[f( ~A) ≈ t] := ⊥.
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Here, NF i(s, η) is defined recursively for B-safe terms s and functions η mapping all variables
x : σ in FV (s) to an element of JσK, as follows:

if s is a data term, then NF i(s, η) := {s};
if s is a variable, then NF i(s, η) := η(s);
if s = f(s1, . . . , sn) with f ∈ D, then NF i(s, η) is the set of all t ∈ B such that
Confirmedi[f(NF i(s1, η), . . . ,NF i(sn, η)) ≈ t] = >;
if s = u · v, then NF i(s, η) = NF i(u, η)(NF i(v, η));
if s =α λx.t : σ ⇒ τ where x /∈ domain(η), then NF i(s, η) := the function mapping
A ∈ JσK to NF i(t, η ∪ [x := A]).

When Confirmedi+1[f( ~A) ≈ t] = Confirmedi[f( ~A) ≈ t] for all statements, the algorithm ends;
we let I := i+ 1 and return {t ∈ B | ConfirmedI [g({t1}, . . . , {tm}) ≈ t] = >}.

As D, B and all JσiK are all finite, and the number of positions at which Confirmedi is >
increases in every step, the algorithm always terminates. The intention is that ConfirmedI

reflects rewriting for basic terms. This result is stated formally in Theorem 22.

I Example 21. Consider the palindrome AFS in Example 11, with starting term s = 1(0(B)).
Then Bs = {1(0(B)), 0(B),B, true, false}. Then we have JboolK = {∅, {true}, {false},
{true, false}} and JstringK is the set containing all eight subsets of {1(0(B)), 0(B),B}.
Thus, there are 8 · 8 · 2 statements of the form palindrome(A,B) ≈ t, 4 · 4 · 2 of the form
and(A,B) ≈ t and so on, totalling 432 statements to be considered in every step.

We consider one step, determining Confirmed1[chk1({1(0(B))}, {0(B),B}) ≈ true]. There
are two viable combinations of a rule and a substitution: chk1(1(xs), 0(ys))→ chk1(xs, ys)
with substitution γ = [xs := 0(B), ys := B] and chk1(1(xs),B) → true with γ = [xs :=
0(B)]. Consider the first. As there are no functional variables, η is empty and we need to
determine whether true ∈ NF1(chk1(0(B),B), ∅). This fails, because Confirmed0[ξ] = ⊥ for
all statements ξ. However, the check for the second rule, true ∈ NF1(true, ∅), succeeds.
Thus, we mark Confirmed1[chk1({1(0(B))}, {0(B),B}) ≈ true] = >.

I Theorem 22. Let f : [ι1 × · · · × ιn] ⇒ κ ∈ D and s1 : ι1, . . . , sn : ιn, t : κ be data terms.
Then ConfirmedI [f({s1}, . . . , {sn}) ≈ t] = > if and only if f(~s)→∗R t.

Proof Sketch. Define a labeled variation of R:

Rlab = {fi+1(~̀)→ labeli(r) | f(~̀)→ r ∈ R∧ i ∈ N} ∪ {fi+1(~x)→ fi(~x) | f ∈ D ∧ i ∈ N}

Here labeli replaces each defined symbol f by a symbol fi. Then Rlab is infinite, and
f(~s)→∗R t iff some fi(~s)→∗Rlab

t. Furthermore, →Rlab is terminating (even if →R is not!) as
is provable using, e.g., the Computability Path Ordering [9]. Thus, →Rlab is a well-founded
binary relation on the set of labeled terms, and we can hence perform induction.

Consider the arguments passed to Confirmedi in the recursive process: NF i is defined
using tests of the form Confirmedi[f(NF i(s1, η), . . . ,NF i(sn, η))] = >, where each η(x) itself
has the form NFj(t, η′). To formally describe this, let an NF-substitution be recursively
defined as a mapping from some (possibly empty) set V ⊆ V such that for each x : σ ∈ V
there are an NF-substitution δ and a term s with ` s : σ such that η(x) = NFj(s, δ)
for some j. For an NF-substitution η on domain V , we define η(x) = x for x /∈ V , and
η(x) = labelj(s)ζ for x ∈ V with η(x) = NFj(s, ζ). Then the following two claims can be
derived by mutual induction on q ordered with→Rlab ∪B (all ηj and ζ are NF -substitutions):

Confirmedi[f(NFj1(s1, η1), . . . ,NFjn(sn, ηn)) ≈ t] = > if and only if
q := fi(labelj1(s1)η1, . . . , labeljn

(sn)ηn)→∗Rlab
t;



C. Kop and J. G. Simonsen 23:15

t ∈ NF i(u, ζ)(NFj1(s1, η1), . . . ,NFjn(sn, ηn)) if and only if
q := (labeli(u)ζ) · labelj1(s1)η1 · · · labeljn

(sn)ηn →∗Rlab
t.

Since, if we refrain from stopping the process in step I, we have ConfirmedI = ConfirmedI+1 =
ConfirmedI+2 = . . . , the theorem follows because f(~s)→∗R t iff some fi(~s)→∗Rlab

t. J

It remains to prove that Algorithm 20 runs sufficiently fast.

I Theorem 23. If (F ,R) has order k, then Algorithm 20 runs in time O(expk2(m · n)) for
some m.

Proof. Write N := |B|. As R and F are fixed, N is linear in the size of the only input, s.
We claim that if k, i ∈ N are such that σ has at most order k, and the longest sequence
σ1 ⇒ . . .⇒ σn ⇒ ι occurring in σ has length n+ 1 ≤ i, then card(JσK) ≤ expk+1

2 (ik ·N).
(Proof of claim.) Observe first that P(B) has cardinality 2N . Proceed by induction on

the form of σ. Note that we can write σ in the form σ1 ⇒ . . .⇒ σn ⇒ ι with n < i and each
σj having order at most k − 1 (as n = 0 when given a 0th-order type). We have:

card(Jσ1 ⇒ . . .⇒ σn ⇒ ιK) = card((· · · (JιKJσnK)Jσn−1K · · · )Jσ1K) = card(JιK)card(JσnK)···card(Jσ1K)

≤ 2N·card(JσnK)···card(Jσ1K) ≤ 2N·expk
2 (ik·N)···expk

2 (ik·N)(by IH)

= 2N·expk
2 (ik·N)n

≤ 2expk
2 (ik·N·n+N)(by induction on k)

= expk+1
2 (n · ik ·N +N) ≤ expk+1

2 (i · ik ·N) = expk+1
2 (ik+1 ·N)

(because n · ik + 1 ≤ (n+ 1) · ik ≤ i · ik)

(End of proof of claim.)
Since, in a kth-order AFS, all types occurring in type declarations have order at most

k − 1, there is some i (depending solely on F) such that all sets JσK in the algorithm have
cardinality ≤ expk2(ik−1 · N). Writing a for the maximal arity in F , there are at most
|D| · expk2(ik−1 ·N)a ·N ≤ |D| · expk2((ik−1 · a+ 1) ·N) distinct statements f( ~A) ≈ t.

Writing m := ik−1 · a+ 1 and X := |D| · expk2(m ·N), we thus find: the algorithm has
at most I ≤ X + 2 steps, and in each step we consider at most X statements ϕ where
Confirmedi[ϕ] = ⊥. For every applicable rule, there are at most (2N )a different substitutions
γ, so we have to test a statement t ∈ NF i(rγ, η) at most X · (X + 2) · |R| · 2aN times. The
exact cost of calculating NF i(rγ, η) is implementation-specific, but is certainly bounded by
some polynomial P (X) (which depends on the form of r). This leaves the total time cost of
the algorithm at O(X · (X + 1) · 2aN · P (X)) = O(P ′(expk2(m ·N))) for some polynomial P ′
and constant m. As EkTIME is robust under taking polynomials, the result follows. J

I Theorem 24. Let k ≥ 1. A set S ⊆ {0, 1}+ is in EkTIME iff there is an AFS of order k
that accepts S.

Proof. If S ∈ EkTIME, Theorem 19 shows that it is accepted by an AFS of order k.
Conversely, if there is an AFS of order k that accepts S, Theorem 23 shows that we can
find whether any basic term reduces to true in time O(expk2(m · n)) for some m, and thus
S ∈ EkTIME. J

I Remark. Observe that Theorem 24 concerns extensional rather than intensional behavior
of cons-free AFSs: a cons-free AFS may take arbitrarily many steps to reduce its input to
normal form, even if it accepts a set that a Turing machine may decide in a bounded number
of steps. However, Algorithm 20 can often find the possible results of an AFS faster than
evaluating the AFS would take, by avoiding duplicate calculations.
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⊥::t → t rnd → I translate(0(xs)) → O :: translate(xs)
rnd → O rnd → B translate(1(xs)) → I :: translate(xs)

translate(B) → B :: translate(B)
rndtape(x)→ B translate(B) → B
rndtape(x)→ rnd :: rndtape(x) equal(xl, xl) → true

start(cs) → run(startstate,B, B, translate(cs))
run(s, xl, r, yl) → shift(t, xl, w, yl, d) Jfor every transition s

r/w d
===⇒ tK

shift(s, xl, c, yl, d) → shift1(s, xl, c, yl, d, rnd, rndtape(O), rndtape(I))
shift1(s, xl, c, yl, d, b, t, t) → shift2(s, xl, c, yl, d, b, t) Jfor every b ∈ {O, I, B}K

shift2(s, xl, c, yl, R, z, t) → shift3(s, c :: xl, z, t, equal(yl, z :: t))
shift2(s, xl, c, yl, L, z, t) → shift3(s, t, z, c :: yl, equal(xl, z :: t))
shift3(s, xl, c, yl, true) → run(s, xl, c, yl)

Figure 3 A first-order non-left-linear AFS that simulates a Turing machine.

6 Changing the restrictions

In the presence of non-determinism, minor syntactical changes can make a large difference in
expressivity. We briefly consider two natural changes here.

6.1 Non-left-linearity

Recall that we imposed three restrictions: the rules in R must be constructor rules, left-
linear and cons-free. Dramatically, dropping the restriction on left-linearity allows us to
decide every Turing-decidable set using first-order systems. This is demonstrated by the
first-order AFS in Figure 3 which simulates an arbitrary Turing Machine on input alphabet
I = {0, 1}. Here, a tape x0 . . . xn␣␣ . . . with the tape head at position i is represented by a
triple (xi−1:: · · · ::x0, xi, xi+1:: · · · ::xn), where the “list constructor” :: is a defined symbol,
ensured by a rule which never fires. To split such a list into a head and tail, the AFS
non-deterministically generates a new head and tail, makes sure they are fully evaluated, and
uses a non-left-linear rule to test whether their combination corresponds to the original list.

6.2 Product Types

Unlike AFSs, Jones’ minimal language in [14] employs a pairing constructor, essentially
admitting terms (s, t) : ι× κ if ` s : ι and ` t : κ are data terms or themselves pairs. This is
not in conflict with the cons-freeness requirement due to type restrictions: it does not allow
the construction of an arbitrarily large structure of fixed type. In our (non-deterministic)
setting, however, pairing is significantly more powerful. Following the ideas of Section 4, one
can count up to arbitrarily large numbers: for an input string xn(. . . (x1(B))) of length n,

the counting module C0 represents i ∈ {0, . . . , n} by a substring xi(. . . (x1(B))) : string;
given a (λn.expk2(n + 1))-counting module Ck, we let Ck+1 represent a number b with
bit representation b0 . . . bN (for N < expk2(n+ 1)) as the pair (s, t) – a term! – where s
reduces to representations of those bits set to 1, and t to representations of bits set to 0.

Then for instance a number in {0, . . . , 22n+1 − 1} is represented by a pair (s, t) : (string×
string)× (string× string), where s and t themselves are not pairs; rather, they are both
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terms reducing to a variety of different pairs. A membership test would take the form

elem2(k, (s, t))→ elemtest(equal1(k, s), equal1(k, t))
elemtest(true, x)→ true elemtest(x, true)→ false

with the rule for equal1 having the form equal1((s1, t1), (s2, t2)) → r. That is, the rule
forces a partial evaluation. This is possible because a “false constructor” (i.e., a syntactic
structure that rules can match) is allowed to occur above non-data terms.

7 Future work

In this paper, we have considered the expressive power of cons-free term rewriting, and seen
that restricting data order results in characterizations of different classes. A natural direction
for future work is to consider further restrictions, either on rule formation, reduction strategy,
or both. Following Jones [14], we suspect that restricting to innermost evaluation will give
the hierarchy P ⊆ EXPTIME ⊆ EXP2TIME ( · · · . Furthermore, we conjecture that a
combination of higher-order rewriting and restrictions on rule formation, possibly together
with additions such as product types, may yield characterizations of a wide range of classes,
including non-deterministic classes like NP or very small classes like LOGTIME.
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Weighted Relational Models for Mobility
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Abstract
We investigate operational and denotational semantics for computational and concurrent systems
with mobile names which capture their computational properties. For example, various properties
of fixed networks, such as shortest or longest path, transition probabilities, and secure data flows,
correspond to the “sum” in a semiring of the weights of paths through the network: we aim
to model networks with a dynamic topology in a similar way. Alongside rich computational
formalisms such as the λ-calculus, these can be represented as terms in a calculus of solos with
weights from a complete semiring R, so that reduction associates a weight in R to each reduction
path.

Taking inspiration from differential nets, we develop a denotational semantics for this calculus
in the category of sets and R-weighted relations, based on its differential and compact-closed
structure, but giving a simple, syntax-independent representation of terms as matrices over R. We
show that this corresponds to the sum in R of the values associated to its independent reduction
paths, and that our semantics is fully abstract with respect to the observational equivalence
induced by sum-of-paths evaluation.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.4.1 Mathem-
atical Logic

Keywords and phrases Mobility, Concurrency, Solos

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.24

1 Introduction

Calculi based on name mobility [20, 23, 11] are well established as an elegant and expressive
formalism for describing computation and communication in a broad range of concurrent
systems. Semantics for these calculi, such as labelled transition systems, typically focus
on local properties of processes – in particular, bisimulation equivalence. In this article we
introduce resource-sensitive operational and denotational semantics for mobility which can
capture quantitative properties of the whole system being modelled for a variety of potential
resources (cost, security level, probability, . . . ). Potentially, this will allow algorithmic
reasoning principles developed for models such as weighted graphs to be extended to more
dynamic systems.

1.1 Related Work
We will describe operational and denotational interpretations of the solos calculus [17] –
that is, the fusion calculus [23] without any sequentialization in the form of input or output
prefixing. The solos calculus presents name mobility in a particularly pure form, without any
explicit notion of causal or temporal dependency, with an elegant graphical representation
via solo diagrams [22]. However, Laneve and Victor [17] have shown that sequentialization
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protocols may be written in the calculus using name-passing, recovering the expressive
power of the π-calculus, for example, and establishing the solos calculus as an elegant and
economical syntax for describing mobility in highly distributed systems.

We take inspiration from work by Ehrhard and Laurent [7], who have developed an
interpretation of the solos calculus in the formal graphical language of differential nets [10],
establishing a striking connections between name mobility and the differential structure [4]
which underlies our model. There are some significant differences: our semantics includes
replication (unlike the differential net semantics) but also the acyclic terms [7], which have
some pathological behaviours.

We develop and extend work by Manzonetto, McCusker, Pagani and the author [16],
which introduced operational and denotational semantics for nondeterministic functional
programs with weights from a continuous semiring R. Each terminating reduction path in
the operational semantics may be associated with a value in R by multiplying the weights
ecountered, giving an interpretation of programs as a sum in R of the weights of their
reduction paths. The corresponding denotational model in the category of free R-modules
has differential structure, although this is not reflected in the syntax, leading to a failure of full
abstraction. By moving to the solos calculus – with its close connection to differential structure
– this paper develops an analogous, but fully abstract interpretation for a broader class of
programs. (We show that there is a sound interpretation of R-weighted nondeterministic
λ-terms in the solos calculus over R.)

Our semantics of a concurrent process calculus with mobility which represents terms as
sums of their independent reduction paths is adumbrated by the work of Beffara [2], which
captures directly this notion of independent path in the (finitary) πI-calculus, and uses it to
give a trace semantics which is observed to possess many of the algebraic properties which
we use to define our model (e.g. the processes over a given set of free names form a semiring).
Our compositional construction of a semantics of this kind is therefore complementary, and
opens up the question of defining a formal relationship with the trace semantics. Similarly,
the representation of replication as a formal power series is foreshadowed by Boreale and
Gadducci [5].

1.2 Contribution

In this paper we develop a new semantic account of the solos calculus, by weighting terms and
reduction paths with values from a complete semiring R. Our main results are operational
and denotational semantics for a “unidirectional” fragment of the calculus in which each
closed term is interpreted as the sum in R of the weights of its reduction paths. We show that
the unidirectional fragment is sufficiently expressive to capture reduction behaviour in the
full calculus, and to evaluate sums-of-paths for an R-weighted non-deterministic λ-calculus.

Our denotational semantics interprets terms in the category of free R-modules and their
homomorphisms, which correspond simply to matrices with entries in R. We formalize
the differential structure required to interpret R-weighted unidirectional terms – a reflexive
differential bialgebra – and use it to establish soundness of the model.

2 Preliminaries: Complete Semirings

Both operational and denotational semantics will use notions of complete monoid, semiring
and semimodule, which we define here. A complete monoid [12] is a commutative monoid
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with infinite sums – a pair (S,Σ) of a set S with an operation Σ taking indexed1 sets over S
to elements of S, satisfying the following axioms:

For any indexed family {ai}i∈I , and partitioning function f : I → J ,
Σi∈Iai = Σj∈J(Σi∈f−1(j)ai).
Σi∈{j}ai = aj .

A complete (commutative2) semiring R is a tuple (|R|,Σ, ·, 1) such that (|R|,Σ) is a complete
monoid and (|R|, ·, 1) is a commutative monoid which distributes over Σ – i.e. a · Σi∈Ibi =
Σi∈Ia · bi.

If R is a complete semiring, then (R,+, 0, ·, 1) is a commutative semiring in the usual
sense (where 0 is the sum of the empty family, and a1 + a2 = Σi∈{1,2}ai). R is idempotent if
ai = b for all i ∈ I implies Σi∈Iai = b.

If the sub-semiring of R, of elements generated from the unit 1 is a semifield, then we may
define an exponential function on R (a homomorphism from its additive to its multiplicative
structure) as follows:

I Definition 1. Let R be a complete semiring. For each natural number n, let nR denote the
sum Σ1≤i≤n1. If nR has a multiplicative inverse 1

nR
for each n > 0, we may define the Taylor

exponential ! : (R,+, 0)→ (R, ·, 1) as the sum of the formal power series !a = Σn≥0
1
!n .a

n.

Note that we may define the Taylor exponential on any idempotent complete semiring (as
nR = 1

nR
= 1 for all n).

2.1 Semiring-Weighted Networks
We shall represent concurrent systems as (possibly infinite) matrices over a complete semiring
R (an A×B matrix over R is a function from A×B to R). To motivate the rest of the paper,
we note that such matrices provide a general setting for defining and studying shortest-path
and related problems [21], which are a classical application of semirings in quantitative
analysis of static systems. An A × A matrix G ∈ RA×A corresponds to a network, or
weighted digraph on the set of nodes A, with G(a, a′) being the weight of the edge from
a to a′. For any path (sequence of length at least 2) in A∗ we may compute a weight by
multiplication in R – i.e. w(a0, . . . , an+1) = G(a0, a1) · . . . ·G(an, an+1) – and so define the
sum of weights of all paths between a and a′: ΣG(a, a′) = Σs∈A∗w(asa′). The significance of
this value depends on the choice of R. For example:

If R is the Boolean semiring B = ({>,⊥},
∨
,∧,>) (i.e. G represents an unlabelled

digraph) then ΣG(a, a′) = > iff there is a path from a to a′.
In general, if R is a lattice, (e.g. G(a, a′) is the security level of information that can pass
from a to a′) then ΣG(a′, a) is the least upper bound of all information that may flow
from a to a′

If R is the tropical semiring T∞ = (R+ ∪ {∞},
∧
,+, 0) (i.e. G(a, a′) is the length or cost

of travelling from a to a′) then w(s) represents the length of the path s and ΣG(a, a′) is
the length of the shortest path from a to a′.
If R is the probability semiring (R+ ∪ {∞},Σ,×, 1), and the sum of weights entering
(or leaving) each node is less than 1 (i.e G is a stochastic matrix) then ΣG(a, a′) is the
probability of reaching a′ from a.

1 Our semantics restrict straightforwardly to countably complete monoids/semirings.
2 Only commutative monoids and semirings will be considered throughout.
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3 A Calculus of Solos With Resources

In this section we describe a “resource sensitive” version of the solos calculus [17]. This is
the fragment of the fusion calculus [23] without prefixing – that is, we have primitives (solos)
which can emit or receive channel names, but no primitives for expressing sequentialization
(although these may be expressed). We include weights from a commutative monoid, which
can quantify the resources used (the monoid operation shows how to combine weights across
parallel composition).

We work in the dyadic3 solos calculus, omitting matching of channel names, but including
explicit fusions of names, which simplify presentation of the semantics (these are studied
in detail by Wischik and Gardner [25]). Let M = (|M |, ·, 1) be a commmutative monoid.
Terms of the solos calculus over M are formed according to the grammar:

p, q ::= a | x(y, z) | x(y, z) | x = y | p|q | p+ q | !p | νx.p

where variables x, y, z represent communication channel names, and:
Each constant a is a weight representing the value a in |M |.
x(y, z) and x(y, z) are input and output solos – representing the receiving and sending of
the pair of names y and z on the channel x, respectively.
x = y is an explicit fusion asserting the identity of the names x and y.
p|q is parallel composition, with unit 1.
νx.p is hiding, binding the name x in p.
!p is the exponential of p, offering arbitrarily many copies of p in parallel.
p+ q is an (external) choice of the processes p and q.

3.1 Reduction Semantics
Our operational semantics for the solos calculus is non-standard – the primary justification
for this is that it reflects an elegant denotational, algebraic model. The close correspondence
between the calculus and differential nets [10, 8] suggests that a term of the solos calculus
can represent a collection of resources, so that reduction determines whether these resources
are successfully consumed or not (as in the differential λ-calculus [9]). In practical terms,
this means that our reduction rules for the solos calculus are linear, rather than affine – a
resource which cannot be consumed (e.g. νx.x(y, z)) is not equivalent to the unit for parallel
composition – and the sum is an external choice corresponding to the sum in a semiring. Note
that the latter may be macro-expressed (e.g. as p+ q = νx.x(−,−)|!(x(−,−)|p)|!(x(−,−)|q)
where x is not free in p or q). Linearity allows us to be more precise about how resources
are used, but we can express the affine behaviour of the original solos calculus (e.g. by
representing an affine solo as a choice x(y, z) + 1), as for the π-calculus [2].

We work up to structural congruence, which is the smallest congruence on terms containing
α-equivalence with respect to bound variables and the following axioms:

p|(q|r) ≡ (p|q)|r p|q ≡ q|p p|1 ≡ p a|b ≡ a · b
νx.νy.p ≡ νy.νx.p νx.1 ≡ 1 (νx.p)|q ≡ νx.(p|q) (x 6∈ FV (p))

In other words, terms are identified up to associativity and commutativity of parallel
composition (which acts as multiplication in M on weights) and scope extrusion of variables.
The basic reduction rules are as follows:

3 This is a minimal, expressive version of the calculus – Laneve and Victor [17] show that monadic solos
cannot express polyadic solos.
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x(u, v)|x(y, z)→ u = y|z = v

!p→ 1 νx.x = y|p→ p[y/x] p+ q → p

!p→ p|!p νy.x = y|p→ p[x/y] p+ q → q

In other words, communicating solos reduce by fusing their arguments, !p may replicate or
discard p,4 explicit fusion of a bound variable reduces by substitution with the variable to
which it is fused and non-deterministic choice reduces to one of its branches.

These reductions may be applied inside hiding and parallel composition, to terms identified
up to structural congruence. We define the compatible reduction −→ to be the least relation
on terms such that:

p→q
p−→q

p≡p′ p−→q q≡q′
p′−→q′

p−→q
νx.p−→νx.q

p−→q
p|r−→q|r

Every terminating reduction path ends either in a weight a or an irreducible term p which
contains solos which cannot communicate – i.e. resources which cannot be consumed or
demands for resources which cannot be satisfied (cf. the differential λ-calculus [9]). In the
former case, we say that a is a weight for the path, in the latter, that p is a failure (written
p 6↓).

For instance, we might represent a finite directed graph with weights from M as a term
of the solos calculus, such that reduction paths correspond to paths through G. Assuming
for the sake of simplicity that G is acyclic, let G̃ = |i,j∈N !([xi 7→ xj ]|aij),

I Proposition 2. νx1 . . . xn.x1(−,−)|G̃|xk(−,−) ↓ a if and only if there is a path from node
1 to node k of weight a.

More importantly, using the solos calculus allows us to describe networks which do not have a
fixed topology – for example by passing names through the network to create new (weighted)
connections.

3.2 The Unidirectional Solos Calculus
Our aim is to give a semantics of the solos calculus which accounts for all reduction paths, by
summing their weights in a complete semiring. In general, to compute a sum of path weights
for a term it is necessary to take account of the multiplicity of distinct paths to the same
value, where paths are distinguished according to the different choices made during reduction,
but not the order in which they are made. To make this notion of “sum of independent
paths” precise, we restrict attention to an expressive fragment of the solos calculus, closer to
differential nets, for which we are able to give operational and denotational semantics which
give a consistent interpretation of path sum. This “unidirectional” fragment is defined by a
derivation system which separates input and output capabilities and enforces constraints on
mobility of names related to those in the private π-calculus [24].

In a unidirectional term, the solo x(y, z) is assumed to send (on x) the capability to
receive on y and send on z. Accordingly, we say that x and z occur as output names, and y
as an input name in x(y, z). Dually x(y, z) receives on x the capability to send on y, and
receive on z – i.e. x and z occur as input names and y as an output name. The fusion x = y

joins an input name (x) to an output name (y).
We shall say that an occurrence of a variable is mobile if it is the argument to an input

or output solo, or in an explicit fusion – i.e. y, z occur as mobile names in both x(y, z),

4 Note that !p is not structurally congruent to p|!p, reflecting the linear nature of our rules.
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x,z`x(y,z);y y`x(y,z);x,z x`x=y;y

Γ`p;∆
Γ−{x}`νx.p;∆−{x}

Γ`p;∆ Γ`q;∆
Γ`p+q;∆ _`a;_a ∈ |M |

Γ`p;∆ Γ′`q;∆′
Γ∪Γ′`p|q;∆∪∆′ Γ Γ′,∆ ∆′ Γ`p;∆

Γ`!p;∆Γ = ∆ = ∅

Figure 1 Derivation Rules for Unidirectional Solos.

x(y, z) (and y = z), whereas x does not. A unidirectional context Γ is a set of names with a
specified subset Γ ⊆ Γ of mobile names. Figure 1 gives derivation rules for unidirectional
terms-in-context of the form Γ ` p; ∆, where Γ and ∆ are unidirectional contexts of input
and output names occurring in p. These rules may be seen as enforcing a simple linear
typing discipline on terms of the solos calculus: mobile names must be used linearly, whereas
static names may be used freely, with respect to the input and output modalities separately.

We write Γ Γ′ if Γ ∩ Γ′ = ∅ and Γ′ ∩ Γ = ∅. Sharing of mobile names is constrained by
requiring that in the parallel composition p|q the input and output contexts of p and q must
be non-interfering in this sense. Similarly, the exponential !p may contain no (free) mobile
names. A name is static in Γ ` p; ∆ if it does not occur in Γ ∪∆.

I Proposition 3. If Γ ` p; ∆ and p −→ q then there exist Γ′,∆′ such that Γ′ ` p; ∆′.

Proof. This is evident for the basic reductions of communicating solos, choice and replication.
The key case is reduction of explicit fusion by substitution. We show that if Γ, y ` p; ∆, x,
where x 6∈ Γ and y 6∈ ∆, then Γ, y ` p[y/x]; ∆, y by induction on p. Hence if Γ, y ` νx.x =
y|p; ∆, y, so that Γ, y ` p; ∆, x then Γ, y ` p[y/x]; ∆, y as required. (Note, however, that in
this case, y is now output-static.)

It is straightforward to check that unidirectionality is preserved under structural con-
gruence – i.e. if p ≡ p′ and Γ ` p; ∆ then Γ ` p′; ∆. So subject reduction extends to the
compatible reduction relation. J

We now assume that our monoid of resources is the multiplication in a complete semiring
R with a Taylor exponential.

3.3 Expressiveness of Unidirectional Terms
Passing of bound names, as in the private π-calculus [24], is naturally expressed in the
unidirectional fragment: we write x(y, z)p and x(y, z)p for νy.νz.x(y, z)|p and νy.νz.x(y, z)|p
respectively. These are essentially bound input and output operations for the “synchronous
π-calculus” [3].

To show the expressiveness of the unidirectional solos calculus , we may define unidirec-
tional terms which correspond to bidirectional solos – i.e. they can pass the capability to
send and receive on static names. Hence we may give a translation of the full solo calculus
into the unidirectional fragment which is sound with respect to reduction.

Using the forwarder [x 7→ y] =df νu.νv.x(u, v)|y(u, v), we may define macros for explicit
fusions of static variables (the equators of [14]) – let x̂ = y =df ![x 7→ y]|![y 7→ x] – and for
monadic bidirectional solos x̂(u) (input) and x̂(u) (output) which pass both input and output
capabilities on the static name u:
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x̂(u) =df x(v, w)![v 7→ u]|![u 7→ w] x̂(u) =df x(v, w)![u 7→ v]|![w 7→ u] We define a unidirec-
tional term representing the dyadic bidirectional solo x(y, z) by passing private names v, w
on x, and communicating send and receive capacity for y on v, and for z on w (as in the
encoding of polyadic communication in the monadic π-calculus [24]) – i.e.

x̂(y, z) = x(v, w)v̂(y)|ŵ(z).
x̂(y, z) = x(v, w)v̂(y)|ŵ(z).

This yields a compositional translation _̂ of the (dyadic) solos calculus into its unidirectional
fragment by replacing each solo and explicit fusion with the corresponding macro.

I Proposition 4. For every term p, p −→∗ a if and only if p̂ −→∗ a.

Proof Outline. We show the following by induction on reduction:
for any unidirectional term p, νx.x̂ = y|p −→∗ a if and only if νx.p[x/y] −→∗ a.
(We prove from left to right by showing that if νx.([x 7→ y]|[y 7→ x])n|x̂ = y|p −→∗ a for
some n then νx.p[x/y] −→∗ a.)
νx.v̂(y)|v̂(y′)|p̂ −→∗ a if and only if ŷ = y′|p̂ −→∗ a.
x̂(y, z)| ̂x(y′, z′)|p̂ −→∗ a if and only if ŷ = y′|ẑ′ = z|p̂ −→∗ a.

In other words, reduction of p̂ precisely tracks reduction of p, and hence p −→∗ a if and only
if p̂ −→∗ a. J

3.4 The Quantitative λ-Calculus

As a demonstration of the expressiveness of quantitative unidirectional solos, we adapt
Milner’s translation of the λ-calculus into the π-calculus [19]. [16] introduced an applied
λ-calculus (PCF) with non-deterministic choice and scalar multiplication by weights in a
continuous semiring R, describing an operational semantics evaluating programs to elements
of R and a corresponding denotational semantics in the category of weighted relations (i.e.
matrices) over R (which will also furnish models of the solos calculus over R). We show that
these results may be recast as an interpretation of the untyped λ-calculus with choice in the
unidirectional solo calculus (where they may be extended to any complete semiring with a
Taylor exponential).

For any complete semiring R, let Λ+
R be the (lazy) λ-calculus extended with a binary

choice operator +, and weighting with values from R – i.e. terms are given by the grammar:

M,N ::= x | λx.M | M N | M +N | a(M)

where a ranges over elements of R.
We may interpret Λ+

R by translation into the unidirectional solos calculus over R . A term
M of Λ+

R over the free variables x1, . . . , xn is interpreted as a R-term x1, . . . , xn ` ([M ])(u);u
with free static input names x1, . . . , xn and output name u.

([x])(u) = x(u,−)
([λx.M ])(u) =!u(v, x)([M ])(v)
([M N ])(u) = νv.v(u,w)|([M ])(v)|!w(y,−)([N ])(y).
([M +N ])(u) = ([M ])(u) + ([N ])(u).
([a(M)])(u) = a|([M ])(u).

We show that this translation is sound with respect to an operational semantics of Λ+
R which

evaluates each term to the sum of its reduction-path weights (based on [16]).

FSCD 2016
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4 Denotational Semantics

We now describe, for each complete semiring R, a fully abstract interpretation of the
unidirectional solos calculus in the symmetric monoidal category MatR of sets and matrices
over R. The objects of MatR are sets, and morphisms from X to Y are X×Y matrices (a.k.a.
“R-weighted relations”) over R, composed by matrix multiplication – given f : X → Y and
g : Y → Z, (f ; g)(x, z) = Σy∈Y f(x, y) · g(y, z).

The tensor product X ⊗ Y is the cartesian product of X and Y as sets (with unit I
being the singleton set), sending f : X → X ′ and g : Y → Y ′ to the matrix f ⊗ g with
(f ⊗ g)(x, y, x′, y′) = f(x, x′) · g(y, y′). MatR is compact closed: every object Y is dual to
itself – i.e. there are evident natural isomorphisms MatR(X ⊗ Y,Z) ∼= MatR(X,Y ⊗ Z).

For each X,Y , the X × Y matrices over R form a R-module – that is, a complete monoid
with an operation of scalr multiplication by elements of R, which satisfies:

(Σi∈Iai).u = Σi∈I(ai.u) a.Σi∈Iui = Σi∈Ia.ui (a · b).u = a.(b.u) (1.u) = u

I Proposition 5. MatR is enriched over the category of R-modules and their homomorphisms.5

Proof. Concretely, this means that there are indexed sum and scalar multiplication operations
on each hom-set (i.e. pointwise addition and multiplication of matrix entries) which satisfy
the axioms for a R-module and distribute over composition and the tensor product – i.e.

(Σi∈Ifi); g = Σi∈Ifi; g, f ; Σj∈Jgj = Σj∈J(f ; gj) and (a.f); g = a.(f ; g) = f ; (a.g).
(Σi∈Ifi)⊗ g = Σi∈I(fi ⊗ g) and (a.f ⊗ g) = a.(f ⊗ g).

By elementary linear algebra, the embedding of MatR into the category of R-modules which
sends each set X to the free R-module RX , and each X × Y matrix to the corresponding
linear function from RX to RY is fully faithful. J

4.1 Differential Structure
We interpret sharing of channels (contraction and weakening) using simple differential
structure in our category of matrices. The properties we require may be presented as follows:

I Definition 6. A differential bialgebra on a pair of objects (A,B) in a commutative-monoid-
enriched symmetric monoidal category is given by morphisms (µ : B ⊗B → B, η : I → B, δ :
B → B ⊗ B, ε : B → I, ζ : A → B, ξ : B → A) such that (B,µ, η, δ, η) is a commutative
bialgebra, and the following equations hold:
(i) ζ; ξ : A→ A = idA

(ii) η; ξ : I → A = 0 and ζ; ε : A→ I = 0
(iii) µ; ξ : B ⊗B → A = (ε⊗ ξ) + (ξ ⊗ ε) and ζ; δ : A→ B ⊗B = (η ⊗ ζ) + (ζ ⊗ η)
These equations are implicit in the definition of differential nets [10], and included explicitly
(alongside further structure) in the notion of a model of the differential calculus [4], which is
proven equivalent to a differential category with a storage modality – in any such category
there is a comonad ! : A→ A with a differential bialgebra on (A, !A) for each A. In MatR we
may define a differential bialgebra on (A,M∗(A)) for any set A, whereM∗(A) is the set of
finite multisets over A, by following the construction of the cofree commutative comonoid
on [18, 16] (essentially, a generalization of the finite multiset exponential on the relational
model of linear logic). Specifically, we may define the matrices:

5 The category of R-modules and their homomorphisms is symmetric monoidal closed, with construction
of the tensor product of R-modules following [13] – see e.g. [1] for extension with infinite sums).
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η(∗, X) = ε(X, ∗) = 1 if X = {}, 0 otherwise.
µ((X,Y ), Z) = δ(X, (Y, Z)) = 1 if X = Y ] Z, 0 otherwise.
ξ(X,x) = ζ(x,X) = 1 if X = {x}, 0 otherwise.

We interpret (the “type” of) channels as a differential bialgebra which satisfies a basic
recursive equation: on a channel we may send (finitely but unboundedly many) pairs of an
output and input name.

I Definition 7. A reflexive differential bialgebra is an object B (in a commutative monoid-
enriched SMC) with a dual B∗ and a differential bialgebra on (B ⊗B∗, B).

To define a reflexive differential bialgebra in MatR, we take the least fixed point of the
⊆-continuous operation sending the set X to the setM∗(X×X) of finite multisets of pairs of
elements ofX. LetB be the (countable) set

⋃
i∈ω Bi, whereB0 = ∅, andBi+1 =M∗(Bi×Bi),

so that B =M∗(B ×B). Since B is self-dual, and the tensor product in MatR is cartesian
product of sets, B =M∗(B ⊗B∗).

4.2 Denotational Interpretation
Let R be a complete semiring with a Taylor exponential, and let B be a reflexive differential
bialgebra in a R-module-enriched symmetric monoidal category C, yielding a commutative
bialgebra (B⊗n, µn, ηn, δn, εn) for each n.

For each m,n, C(B⊗m, B⊗n) is a complete semiring – we may define a product operation
on C(B⊗m, B⊗n): f · g = δm; (f ⊗ g);µn, with neutral element 1 = εm; ηn : B⊗m → B⊗n.
This is associative and commutative, and distributes over the indexed sum on C(B⊗m, B⊗n),
yielding a complete semiring CR(B⊗m, B⊗n), with a homomorphism of semirings from R

into CR(B⊗m, B⊗n) sending a ∈ R to a.1. Hence, in particular, CR(B⊗m, B⊗n) has a Taylor
exponential. The full subcategory of C generated from I,B,B∗ is compact closed, and
therefore has a canonical trace operator [15], with which we interpret hiding.

Ordering input and output contexts, we interpret terms-in-context x1, . . . , xm ` p;x1, . . . , xn

in CR(B⊗m, B⊗n), as follows:
Constants denote scalar multiples of the unit: [[_ ` a;_]] = k.idI .
Solos denote ξ and ζ: [[x, z ` x(y, z); y]] = Λ−1(ξ), [[y ` x(y, z);x, z]] = Λ(ζ).
Explicit Fusions denote the identity: [[x ` x = y; y]] = idB .
Hiding denotes the trace operation: [[Γ ` νx.p; ∆]] = tr([[Γ, x ` p; ∆, x]]).
Composition denotes the product: [[Γ ` p|q; ∆]] = [[Γ ` p; ∆]] · [[Γ ` q; ∆]].
Choice denotes the sum: [[Γ ` p+ q; ∆]] = [[Γ ` p; ∆]] + [[Γ ` q; ∆]].
Replication denotes the Taylor exponential: [[Γ `!p; ∆]] =![[Γ ` p; ∆]].

Permutation of contexts corresponds to composition with the corresponding isomorphisms on
B⊗m and B⊗n, and weakening of contexts to composition with B⊗m ⊗ ε : B⊗m+1 → B⊗m

and B⊗n ⊗ η : B⊗n → B⊗n+1

It may be noted that this interpretation does not mention unidirectionality. However, it
plays a critical role in the proof of its soundness in the following section.

5 Sum-of-Paths Evaluation

We now aim to show that our denotational semantics for a (closed) unidirectional term p

over the semiring R corresponds to an operational semantics which computes a sum in R of
the residues of the reduction paths of p.

FSCD 2016
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a⇓Ra
p⇓Ra p≡q

q⇓Ra
p 6↓
p⇓R0

p⇓Ra
νx.p⇓Ra

p|r⇓Ra q|r⇓Rb
(p+q)|r⇓Ra+b

pn|q⇓Ran

!p|q⇓RΣn≥0
an
n!

p⇓Ra
x=x|p⇓R∞.a

x(y1,z1)|...|u=yi|zi=v|...|x(yn,zn)|p⇓Rai

x(u,v)|x(y1,z1)|...|x(yn,zn)|p⇓RΣi≤nai
x 6∈ FV −(p) p[y/x]⇓Ra

x=y|p⇓Ra
x 6≡ y

Figure 2 Evaluation Rules for Unidirectional Terms.

If R is idempotent, then we may define this to be
∨
{a | p ↓ a}, but in the general case,

we require a notion of (syntax) independent reduction path. On the one hand, it is necessary
to take account of the multiplicity of distinct paths to the same value. For example, there
should be two reduction paths from a+ a to a. On the other hand some distinct reduction
paths in the rewriting system are different syntactic representations of the same events and
so do not represent independent paths in the required sense. For example, there is a single
path from a+ b|c+ d to a|c. Moreover, in calculi with mobility such as the solos calculus the
order in which reduction choices are made changes the communications available – as in the
term νxνy.νz.x(y, z)|x(z, y)|y(x, z)|y(z, x)|z(x, y)|z(y, x), for example.

Beffara makes this notion of independent reduction path explicit in giving a trace semantics
of the πI-calculus [2], which is quotiented by an equivalence relation between reduction paths.
However, if p is a term in our unidirectional solos calculus we can always find a channel on
which all possible interactions are simultaneously available, and so it remains implicit in the
operational semantics given here.

I Remark. Unidirectionality, and our denotational semantics, provide a perspective on the
notion of acyclicity introduced by Ehrhard and Laurent [7]. Cycles arise when a channel
name becomes fused to itself – a term is acyclic if it never attempts to fuse a channel to itself
in this way.

In our semantics, cyclic terms denote infinite sums of paths. For example, consider the solo
term νx.x = x, which denotes the composition of the unit and counit νB ; εB : I ⇒ I. Letting
∞ = Σi∈N1 (note that if R is idempotent, then ∞ = 1) then Σb∈B idI =∞.idI , whereas (e.g.)
νx.νy.x = y denotes idI . Semantically, this corresponds to identifying an explicit fusion
such as x = x with the forwarder ![x 7→ x], which reduces to νyz.x(y, z)|x(y, z)|![x 7→ x] −→
νyz.y = y|z = z|![x 7→ x], generating infinitely many reduction paths. Note that this does
not arise for forwarders and equators in the π-calculus, which must receive an input before
they can send an output – more generally (as noted by Ehrhard and Laurent), terms of the
π-calculus and λ-calculus can be represented as acyclic solos.

5.1 Evaluation Semantics
The rules in Figure 2 define a relation ⇓R between unidirectional R-terms and values in R,
such that if p ⇓R a then a is the sum in R of the weights of the reduction paths of p. We
write pn for the composition of n copies of p – i.e. p0 = 1, pn+1 = p|pn, and FV −(p) for the
set of input names of p.

I Proposition 8. For any term p, there exists a such that p ⇓R a.

Proof. By induction on the (well-founded [6]) multiset ordering on the measure `(p), defined
as follows:



J. Laird 24:11

`(a) = `(x = y) = ∅ `(x(y, z)) = `(x(y, z)) = {{}}
`(νx.p) = `(p) `(p|q) = `(p) ∪ `(q)

`(p+ q) = `(p) ∪ `(q) ∪ {{}} `(!p) = {`(p)}

Note that ` is invariant with respect to structural congruence, and if q ⇓R b is a premise
for a rule (other than structural congruence) with conclusion p ⇓R a, then `(q)� `(p). If p
contains occurrences of !, = or +, then one of the corresponding rules is applicable. Otherwise
p is equivalent to νx1 . . . νxm.p

′, where p′ is a parallel composition of solos and constants. If
p′ consists only of constants, then p ≡ a for some a. If p′ contains a pair of complementary
solos xi(xj , xk) and xi(xj′ , xk′) then by unidirectionality xi cannot occur as a mobile name
in p′, and so the communication rule applies. Otherwise p is a failure. J

Moreover, it is a consequence of the soundness of the denotational model (Proposition 17)
that the result of evaluation is unique and therefore ⇓R defines a function from closed R-terms
to elements of R. For idempotent complete semirings, this agrees with small-step reduction
in the following sense.

I Proposition 9. If R is idempotent, p ⇓R

∨
{k | p −→∗ a}

Proof. By induction over the nested multiset ordering on `(p). J

Each complete semiring R induces a notion of contextual equivalence (R-equivalence)
on unidirectional solo terms, by testing closed terms with ⇓R. Say that a context C[_] is a
closing context for Γ,∆ if for any unidirectional term Γ ` p; ∆, C[p] is a closed unidirectional
term.

I Definition 10. Given terms Γ ` p, q; ∆, p∼Γ,∆
R q if for all closing contexts C[_] for Γ,∆,

C[p] ⇓R a if and only if C[q] ⇓R a.6

The properties of ∼R depend on R, but in general it is neither coarser nor finer than the
bisimulation equivalence for the solos calculus [17]. We give some illustrative examples of
equivalences and inequivalences (for non-trivial R), which follow from full abstraction of the
denotational semantics. We leave the input and output contexts implicit.

Units 1 6∼R0 – as noted, our interpretation of solo terms is not affine.
p|0∼R0 – 0 is an absorbing element for parallel composition.
Choice p|(q + r)∼Rp|q + p|r (distributivity).
p+ p∼Rp if and only if the finite sum in R is idempotent .
Exponential !(p+ q)∼R!p|!q and !0∼R1 – ! is a homomorphism from + to |
!p 6∼Rp|!p in general (since !0∼R0|!0 implies 0∼R!0∼R1).
For idempotent R, !p∼R1 + (p|!p).

5.2 Sum-of-paths for λ-terms
We illustrate our sum-of-paths interpretation of unidirectional processes by relating to an
evaluation semantics of Λ+

R terms based on that given in loc. cit. [16] – i.e. we prove
soundness of the translation given in Section 3.4. We evaluate closed terms of Λ+

R to elements
of R using a CEK machine equipped with an oracle determining which branch is taken at
each choice encountered in evaluation. A state of the machine is a triple (C;E;K;w) of

6 It will follow from our full abstraction result that any terms which are not ∼R-equivalent can be
separated by pure contexts – i.e. each semiring induces a single notion of equivalence, regardless of
which elements are denoted as constants.

FSCD 2016
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(λx.M ;E;ε)⇓R1
(Mi;E;K;w)⇓Ra

(M0+M1;E;K;iw)⇓Ra
i ∈ {0, 1} (M ;E,(x,N);K;w)⇓Ra

(λx.M ;E;N ::K;w)⇓Ra

(M ;E;N ::S;w)⇓Ra
(M N ;E;K;w)⇓Ra

(M ;E;K;w)⇓Rb
(a(M);E;K;w)⇓Ra·b

(M ;E,(x,M);K;w)⇓Ra
(x;E,(x,M);K;w)⇓Ra

Figure 3 Evaluation rules for the Λ+
R CEK machine.

(λx.M ;∅;ε;ε)⇓R1
(Mi;E;K;w)⇓Ra

(M0+M1;E;K;iw)⇓Ra
i ∈ {0, 1} (M ;E,(x,N)j ;K;w)⇓Ra

(λx.M ;E;N ::K;w)⇓Ra

(M ;E;N ::S;w)⇓Ra
(M N ;E;K;w)⇓Ra

(M ;E;K;w)⇓Rb
(a(M);E;K;w)⇓Ra·b

(M ;E,(x,M)j ;K;w)⇓Ra
(x;E,(x,M)j+1;K;w)⇓Ra

Figure 4 Multiset CEK Machine for Λ+
R .

a term C, an environment E (a finite set of pairs (x,M) defining a partial function from
variables to terms) and a continuation K (a finite list S of terms), and an oracle w (an
element of the set {0, 1}∗ of binary words). The rules in Figure 3 define a “big-step” reduction
relation from states to elements of R.

By induction on derivation, we prove that:

I Lemma 11. If (M ;E;K,w) ⇓ a and (M ;E;K;w) ⇓ a′ then a = a′.

So for any closed term M we may define the function evM : {0, 1}∗ → R:
evM (w) = a if (M ;∅; ε;w) ⇓R a, and evM (w) = 0, otherwise.
Hence we may evaluate the sum of paths for M by taking the sum of evM (w) over {0, 1}∗.

To prove soundness of the translation with respect to this operational semantics, we define
an equivalent version of the latter in which the environment E is a finite multiset of variable
bindings (rather than a set), such that application creates a finite (non-deterministically
chosen) number of copies of the binding of x to N , invocation of x consumes a single instance
and convergence requires that the environment is empty (See Figure 4.) We prove the
following lemma by a straightforward induction on derivation (sup(E) is the support of the
multiset E):

I Lemma 12. (M ; E ;K;w) ⇓R a if and only if there exists a multiset E such that sup(E) ⊆ E
and (M ; E;K;w) ⇓R a.

I Proposition 13. For any closed term M of Λ+
R , ([M ]) ⇓R Σw∈{0,1}∗evM (w).

Proof. By Lemma 12, it is sufficient to show ([M ; E;K]) ⇓R Σw∈{0,1}∗ev(M ; E;K;w), where:
ev(M ; E;K;w) is the evaluation function for states of the multiset CEK machine – i.e.
ev(M ; E;K;w) = a if (M ; E;K;w) ⇓R a, and ev(M,E,K,w) = 0, otherwise.
([M ; E;K]) is defined by extending the translation of Λ+

R -terms to states of the multiset
CEK machine:

([M ; {(x1, N1)j1 , . . . , (xk, Nk)jk};P1 : . . . : Pl]) =
([M ])(v1)| 1

!j1
|(x1(y,−)([N1])(y))j1 | . . . | 1

!jk
|(xk(y,−)([Nk])(y))jk |v1(v2, w1)|([P1])(w1)| . . .

. . . |vl(u,wl)|([P ])l(wl).
This is shown by nested multiset induction on `([M ; E;K;w]). J
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6 Soundness and Full Abstraction

We now prove soundness and completeness results relating the operational and denotational
semantics of unidirectional terms. We first show that structurally congruent terms have the
same denotation, using the symmetric monoidal structure and the properties of the trace
operator

I Lemma 14. For processes Γ `; p, q; ∆, if p ≡ q then [[Γ ` p; ∆]]R = [[Γ ` q; ∆]]R.

Soundness of the communication rule is established using the differential structure. Given
a differential bialgebra (A,B) we may derive a morphism ε : A ⊗ B → B = (ξ ⊗ B);µ
(this corresponds to the deriving transform for the differential operation). For n ≥ 0 let
δn

A : B → B⊗n be n-fold comultiplication derived from the comonoid structure on B, and for
each i ≤ n, let θi,n : A⊗n → A⊗n be the permutation isomorphism swapping the first and
ith copies of A. The equations for a differential bialgebra yield: ε; δn+1; ζ⊗n+1 : (A⊗B)→
A⊗n+1 = Σi≤n(A⊗ (δn; ζ⊗n)); θi,n+1.

I Lemma 15. If x 6∈ FV −(p) then [[νx.x(u, v)|x(y1, z1)| . . . |x(yn+1, zn+1)|p]]
= Σi≤n[[νx.x(u, v)|x(y1, z1)| . . . |u = yi|zi = v| . . . |x(yn+1, zn+1)|p]].

Proof. Suppose Γ ` p; ∆, x, with x 6∈ Γ – so p denotes a morphism [[p]] : [[Γ]] → [[∆]] ⊗ B.
Then x(u, v)|p denotes (a currying of) ([[p]]⊗ (B⊗B∗)); ([[∆]]⊗ε) : [[Γ]]⊗ (B⊗B∗)→ [[∆]]⊗B,
and x(y1, z1)| . . . |x(yn+1, zn+1) denotes (an uncurrying of) δn; ζ⊗n : B → (B ⊗B∗)n.

By dinaturality of the trace, νx.x(u, v)|x(y1, z1)| . . . |x(yn+1, zn+1)|p denotes the compos-
ition of these morphisms – i.e. ([[p]] ⊗ (B ⊗ B∗)); ([[∆]] ⊗ (ε; δn; ζ⊗n)) : [[Γ]] ⊗ (B ⊗ B∗) →
∆⊗ (B ⊗B∗)n).

By the differential rule above this is equal to [[p]]⊗ (Σi≤n(B ⊗ B∗)⊗ (δn; ζ⊗n); θi,n+1),
and hence to Σi≤n[[νx.x(y1, z1)| . . . |u = yi|zi = v| . . . |x(yn+1, zn+1)|p]]. J

Soundness of the evaluation rules for choice and replication follow directly from their definition,
and for (non-acyclic) explicit fusion, from the yanking rule for the trace operator. However,
the categorical structure is not sufficient to establish that every failure denotes the zero
map – this requires a global argument to show that every failure corresponds to “deadlocked”
matrix with a trace of zero.

I Lemma 16. If p 6↓ then [[p]] = 0.

Proof. Suppose p 6↓. Then p ≡ νx1 . . . xm.q where q is a parallel composition of solos and
constants. By definition, [[p]] is the trace of the Bm×Bm matrix [[x1, . . . , xm ` q;x1, . . . , xm]]
– i.e. the sum of the entries on the diagonal of [[q]]. Suppose (for a contradiction) that this is
non-zero – then there is a non-zero entry on this diagonal – i.e. there exist e1, . . . , em ∈ B
such that [[q]](e1, . . . , em, e1, . . . , em) 6= 0.

Choose the smallest n ∈ N such that e1, . . . , em ∈ Bn+1. Then (without loss of generality)
there exists j such that q ≡ xj(y, z)|q′ and ej 6∈ Bn. By assumption that p is a failure, xj

must appear as a mobile output name in q′ (otherwise, the communication rule may be
applied to reduce p to 0). Suppose (w.l.o.g.) q′ ≡ xk(u, xj)|q′′ for some q′′. Then there exists
d with (d, ej) ∈ ek. But ek ∈ Bn+1, and therefore ej ∈ Bn, a contradiction. J

I Proposition 17. For any closed term p, p ⇓R a if and only if [[p]]R(∗, ∗) = a.

Proof. From left-to-right, this follows from an induction on `(p), using Lemmas 14 15 and
16. For the converse, suppose [[p]]R(∗, ∗) = a. By Proposition 8, p ⇓R b for some b, and by
the left-to-right implication just established, a = b. J
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6.1 Full Abstraction
We will now establish a full abstraction result, showing that contextually equivalent R-
weighted solo terms denote the same matrix over R – i.e. if Γ ` p, q; ∆ where Γ ∩∆ = ∅,
p∼Rq if and only if [[p]]R = [[q]]R

7. This establishes the closeness of the syntax and semantics,
and also that we can define a testing equivalence for weighted processes which obeys the
algebraic laws of R-modules, and differential nets. Note that the R-weighted model of PCF
in [16] is not fully abstract, essentially because it contains finite elements which are not
denoted by any term. By contrast, we will show thatit is straightforward to define a basis of
definable elements for each R-module in our model.

For an element b ∈ B, define χ−b : B → I and (its transpose) χ+
B : I → B:

χ−b (a, ∗) = χ+
b (∗, a) = 1 if a = b: χ−b (a, ∗) = χ+

b (∗, a) = 0, otherwise.
{χ−b | b ∈ B} and {χ

+
b | b ∈ B} are bases for the R-modules MatR(B, I) and MatR(I,B).

I Lemma 18. For all b ∈ B, there exist terms x ` p−b and ` p+
b ; y which denote χ−b and χ+

b .

Proof. We prove that if b ∈ Bk then χ−b and χ+
b are definable, by induction on k. B0 = ∅,

so suppose b ∈ Bk+1. Then b is a finite multiset {(b−1 , b
+
1 ), . . . , (b−m, b+m)}, where each

b−i , b
+
i ∈ Bk. So by hypothesis, for each i, χ−

b+
i

is definable as a term u ` p−i and each χ+
b−

i

as ` p+
i ; v. Hence χ−b is definable as p−(x) = x(v, u)p−1 |p

+
1 | . . . |x(v, u)p−m|p+

m. By symmetry,
χ+

b is definable as _ ` p+(y); y. J

I Theorem 19. If Γ ` q, q′; ∆, where Γ ∩∆ = ∅ then [[q]]R = [[q′]]R ⇐⇒ q∼Rq
′.

Proof. Equational soundness follows from Proposition 17.
To prove completeness, suppose x1, . . . , xm ` q, q′; y1, . . . , yn, and [[q]]R 6= [[q′]]R. There ex-

ist b−1 , . . . , b−m, b
+
1 , . . . , b

+
n ∈ B such that [[q]](b−1 , . . . , bm, b

+
1 , . . . , b

+
n ) 6= [[q′]](b−1 , . . . , bm, b

+
1 , . . . , b

+
n ).

By Lemma 18, each χ+
b−

i

and χ−
b+

j

are definable as terms _ ` p+
i ;xi and yj ` p−j for

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
Let C[_] = νx1 . . . xm.νy1 . . . yn.[_]|p+

1 | . . . |p+
m|p−1 | . . . |p−n . By Proposition 17 C[q] ⇓R

[[q]](b−1 , . . . , bm, b
+
1 , . . . , b

+
n ) and C[q′] ⇓R [[q]](b−1 , . . . , bm, b

+
1 , . . . , b

+
n ) – i.e. q 6∼Rq

′ as required.
J

7 Conclusions and Further Directions

We have defined a semantic basis for name mobility which focusses on quantitative testing.
Areas in which it might be extended, refined or applied, include:

Describing systems: which classes of processes can be expressed in the (acyclic part
of) the calculus of R-solos? In particular, can we establish a precise relationship with
Beffara’s quantitative trace semantics of the πI-calculus [2].
Expressing properties: which quantitative and qualitative properties of systems can be
naturally expressed using quantitative solos?
Computing sums of paths: For which terms can we give algorithms for computing the
evaluation function?
Constructing new models: Are there instances of reflexive differential bialgebras with
richer structure, for example in categories of games or event structures?

7 Our result is restricted to terms with disjoint input and output channels, essentially because input and
output capabilities are modelled separately. Without this restriction, full abstraction may fail – e.g.
in an idempotent semiring, the term νy.νz.x(y, z)|x(y, z) (which forwards to itself) is observationally
equivalent to the unit, 1.
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Abstract
We propose new sequent calculus systems for orthologic (also known as minimal quantum logic)
which satisfy the cut elimination property. The first one is a very simple system relying on the
involutive status of negation. The second one incorporates the notion of focusing (coming from
linear logic) to add constraints on proofs and thus to facilitate proof search. We demonstrate
how to take benefits from the new systems in automatic proof search for orthologic.
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1 Introduction

Classical (propositional) logic can be used to reason about facts in classical mechanics and is
related with the lattice structure of Boolean algebras. On its side, quantum (propositional)
logic has been introduced to represent observable facts in quantum mechanics. It is provided
as an axiomatization of the lattice structure of the closed subspaces of Hilbert spaces. This
corresponds to the structure of so-called orthomodular lattices. Among the properties of
these lattices, and thus of quantum logic, one finds the orthomodularity law (a ≤ b =⇒
b ≤ a ∨ (¬a ∧ b)) which is a very weak form of distributivity. Removing this law gives the
notion of ortholattice and leads to the associated orthologic (also called minimal quantum
logic, as it can be defined as quantum logic without orthomodularity). In the description
and reasoning about quantum properties, quantum logic is more accurate than orthologic.
Nevertheless a formula valid in orthologic is also valid in quantum logic, and thus provides a
valid quantum property. In the current state of the art, orthologic benefits of much better
logical properties than plain quantum logic (in proof theory in particular) and, since it also
corresponds to a nice class of lattices, many authors focus on it [9, 14, 10, 13, 4]. From the
point of view of lattice theory, ortholattices are bounded lattices with an involutive negation
such that p ∨ ¬p = >. As a consequence they can be understood as Boolean lattices without
distributivity, and indeed distributive ortholattices are exactly Boolean lattices.

The main topic of the present work is the study of the proof theory of orthologic, from
the sequent calculus point of view. Sound and complete sequent calculi satisfying the cut-
elimination property already occur in the literature (see for example [14, 13, 6]). Our first
result is another such calculus which is particularly simple: each sequent has exactly two
formulas and only seven rules are required. It relies on ideas of J.-Y. Girard in linear logic [7]
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for the representation of systems with an involutive negation, and shows how orthologic can
be seen as an extension of the additive fragment of linear logic with one new contraction-
weakening rule. The second and main contribution of this paper lies in the development of
a “second-level proof-theory” for orthologic by investigating the notion of focusing in this
setting.

Focusing, introduced in linear logic by J.-M. Andreoli [1], is a constraint on the structure
of proofs which requires connectives sharing some structural properties (like reversibility) to
be grouped together. The key point is that this restriction is sound and complete: focused
proofs are proofs and any provable sequent admits a focused proof. Together with cut
elimination, focusing can be used as a strong tool in proof search and proof study since it
reduces the search space to focused proofs. Focusing has also been used to define new logical
systems [8].

In the case of orthologic, we show that focusing can be defined and interacts particularly
well with the 2-formulas sequents. In particular, not only logical rules associated with
connectives are constrained but also structural rules can be organised. The exchange rule can
be hidden easily in the specific focusing rules and the contraction-weakening rule becomes
precisely constrained. As a consequence, we obtain a bound on the height of all focused
proofs of a given sequent, which is rarely the case in the presence of a contraction rule.
Starting from this remark, we experiment proof search strategies for orthologic based on our
focused system.

In Section 2, we recall the definition of ortholattice and orthologic with the main results
from the literature on sequent calculus and cut-elimination for orthologic. In Section 3, we
introduce the sequent calculus OL (inspired by additive linear logic) with a few properties.
Section 4 gives the two-steps construction of the focused system OLf . We explain how
focusing is applied to orthologic and we prove soundness, completeness and cut-elimination.
The last Section 5 is dedicated to the application of OLf in (backward and forward) proof
search for orthologic. This is based on upper bounds on the height of proofs and on additional
structural properties of focused cut-free proofs.

2 Ortholattices and Orthologic

Orthologic or minimal quantum logic is the logic associated with the order relation of
ortholattices (for some results about ortholattices, see for example [2]).

I Definition 1 (Ortholattice). An ortholattice O is a bounded lattice (a lattice with smallest
and biggest elements ⊥ and >) with an order-reversing involution p 7→ ¬p (also often denoted
p⊥ in the literature), called orthocomplement, satisfying p ∨ ¬p = > (for all p in O).

In particular the following properties hold for any two elements p and q of any ortholattice:
p ≤ q =⇒ ¬q ≤ ¬p, ¬¬p = p, ¬⊥ = >, ¬(p ∨ q) = ¬p ∧ ¬q, p ∧ ¬p = ⊥, as well as the
other De Morgan’s laws, but there is no distributivity law between ∧ and ∨.

Orthologic is the logic associated with the class of ortholattices, or conversely ortholattices
are the algebras associated with orthologic. Formulas in orthologic are built using connectives
corresponding to the basic operations of ortholattices:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬A

where X ranges over elements of a given countable set X of variables.
We want then A ` B to be derivable in orthologic if and only if A ≤ B is true in any

ortholattice O (for every interpretation of variables as elements of O, and with connectives
in A and B interpreted through the corresponding operations of O). In particular, the



O. Laurent 25:3

Lindenbaum algebra associated with orthologic over the set X is the free ortholattice over X
(which is infinite as soon as X contains at least two elements [3]).

If we adopt a sequent calculus style presentation, an (sound and complete) axiomatization
of orthologic can be given by the following axioms and rules (in the spirit of [9]):

A ` A
A ` B B ` C

A ` C

A ∧B ` A A ∧B ` B
C ` A C ` B

C ` A ∧B C ` >

A ` A ∨B B ` A ∨B
A ` C B ` C

A ∨B ` C ⊥ ` C
A ` B
¬B ` ¬A A ` ¬¬A ¬¬A ` A > ` A ∨ ¬A

The first line corresponds to an (pre) order relation. The second and third lines correspond
to a bounded inf semi-lattice and bounded sup semi-lattice (thus together they provide us
the structure of a bounded lattice). The fourth line adds the missing ortholattice ingredients
related with the orthocomplement ¬A.

I Example 2. If one wants to prove that for any p and q in an ortholattice, we have:
> ≤ ((p ∧ q) ∨ ¬p) ∨ ¬q. We can either use algebraic properties of ortholattices (which have
to be proved as well): ((p ∧ q) ∨ ¬p) ∨ ¬q = (p ∧ q) ∨ (¬p ∨ ¬q) = (p ∧ q) ∨ ¬(p ∧ q) = >
or we can use, on the logic side, a derivation with conclusion the corresponding sequent
> ≤ ((X ∧ Y ) ∨ ¬X) ∨ ¬Y . This requires us to use most of the rules above.

The axiomatization proposed above is a direct translation of the order-theoretic definition
of ortholattices. From a proof-theoretic point of view, it has strong defects such has the
impossibility of eliminating the cut rule:

A ` B B ` C cut
A ` C

(which encodes the transitivity of the order relation). Example 2 could not be derived
without this rule for example. A reason for trying to avoid the cut rule is that when studying
a property like A ` C, the cut rule tells us that we may need to invent some arbitrary
B (unrelated with A and C). This may lead us to difficulties, undecidability, etc. In the
opposite, cut-free systems usually satisfy the sub-formula property stating that every formula
appearing in a proof of a given sequent is a sub-formula of a formula of this sequent. The
idea of finding presentations of the logic associated with lattices in such a way that cut (or
transitivity) could be eliminated goes back to Whitman [15] with applications to the theory
of lattices. In the case of ortholattices, one can find such an axiomatization in [14] under the
name OCL+ (also called GOL in [5]):

OCL+

ax
A ` A

Γ ` ∆ wLΓ, A ` ∆
Γ ` ∆ wRΓ ` A,∆

Γ, A ` ∆ ∧1LΓ, A ∧B ` ∆
Γ, B ` ∆ ∧2LΓ, A ∧B ` ∆

Γ ` A,∆ Γ ` B,∆
∧RΓ ` A ∧B,∆

Γ ` A,∆ ∨1RΓ ` A ∨B,∆
Γ ` B,∆ ∨2RΓ ` A ∨B,∆

Γ, A ` ∆ Γ, B ` ∆
∨LΓ, A ∨B ` ∆

>RΓ ` >,∆ ⊥LΓ,⊥ ` ∆
Γ, A ` ∆

¬RΓ ` ¬A,∆
Γ ` A,∆

¬LΓ,¬A ` ∆

where sequents Γ ` ∆ are given from two finite sets Γ and ∆ of formulas such that the size
of Γ plus the size of ∆ is at most 2 (and the comma denotes set union).

FSCD 2016



25:4 Focusing in Orthologic

I Example 3. We can prove in OCL+ the sequent of Example 2:

ax
X ` X ¬R` X,¬X ∨2R` X, (X ∧ Y ) ∨ ¬X

∨1R` X, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y

ax
Y ` Y ¬R` Y,¬Y ∨2R` Y, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y

∧R` X ∧ Y, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y
∨1R` (X ∧ Y ) ∨ ¬X, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y
∨1R` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y

wL> ` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y

The following key properties of OCL+ are proved in [14]:

I Theorem 4 (Cut Elimination in OCL+). The cut rule Γ1 ` A,∆1 Γ2, A ` ∆2
Γ1,Γ2 ` ∆1,∆2

is
admissible in OCL+.

I Theorem 5 (Soundness and Completeness of OCL+). OCL+ is sound and complete for
orthologic.

By looking at the structure of the rules, one can see there is an important symmetry
between ∨ on the left and ∧ on the right, ∧ on the left and ∨ on the right, ⊥ on the left and >
on the right, etc. This is not very surprising in a context where negation is an involution, and
this is an incarnation of De Morgan’s duality between ∧ and ∨ and > and ⊥. J.-Y. Girard
has shown for linear logic [7] how to simplify sequent calculi in the presence of an involutive
negation by restricting negation to variables and by considering one-sided sequents only.
This idea has been partly applied in [6] where they define formulas for orthologic as:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬X

and negation is then extended to all formulas by induction (it is not a true connective
anymore):

¬(¬X) := X ¬(⊥) := > ¬(>) := ⊥ ¬(A ∨B) := ¬A ∧ ¬B ¬(A ∧B) := ¬A ∨ ¬B

so that we obtain ¬¬A = A for any A. However the system proposed in [6] does not really
take benefits from this encoded involutive negation on formulas, since they use two-sided
sequents. One can also note that no remark is given in [6] regarding the number of formulas
in sequents. However one can see that, in their system, Γ ` ∆ is provable if and only if∧

Γ `
∨

∆ is provable, and that a proof of a sequent Γ ` ∆ with at most one formula in Γ
and at most one formula in ∆ contains only sequents satisfying this property.

We propose to go further in this direction of involutive negation to target a simpler
sequent calculus system for orthologic.

3 One-Sided Orthologic

In order to clarify the analysis and to be closer to an implementation, we prefer to consider
sequents based on lists rather than sets or multi-sets. The main difference with respect to
OCL+ is the necessity to use an explicit contraction rule and an explicit exchange rule. We
thus consider two kinds of sequents: ` A,B and ` A. As a notation, Π corresponds to 0
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or 1 formula so that ` A,Π is a common notation for both kinds of sequents. Like in [6],
formulas are built with negation on variables only:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬X

and, by moving to a one-sided list-based system, we obtain derivation rules like:

ax
` ¬A,A

` A,B ex
` B,A

` A,A c
` A

` A w
` A,B

` A,Π ∨1` A ∨B,Π
· · ·

But we can optimise these rules. First, we can assume Π not to be empty since the case of
an empty Π is derivable from the non-empty case. For example, for the (∨1) rule:

` A w
` A,A ∨B ∨1` A ∨B,A ∨B c
` A ∨B

Second, once we thus consider only logical rules with two formulas in sequents, the only rule
with a premise with only one formula is the (w) rule and the only rule with a conclusion with
only one formula is the (c) rule. This means that in a proof of a sequent with two formulas,
(c) and (w) rules always come together, one above the other, and we can group them. Finally
a sequent ` A can always be encoded as ` A,A since one is provable if and only if the other
is (thanks to the rules (c) and (w)). We thus focus on sequents ` A,B only, and on the
following rules:

OL

ax
` ¬A,A

` A,B ex
` B,A

` A,A cw
` A,B

` A,C ∨1` A ∨B,C
` B,C ∨2` A ∨B,C

` A,C ` B,C
∧` A ∧B,C

>` >, C

This sequent calculus with 7 rules (6 rules in its multi-set-based and set-based versions) does
not seem to occur in the literature and looks simpler than all the sound and complete calculi
for orthologic we have found. We call it OL. Relying on the remarks above, we have:

I Theorem 6 (Soundness and Completeness of OL). ` ¬A,B is provable in OL if and only
if A ` B is provable in OCL+, so that OL is sound and complete for orthologic.

Proof. To be completely precise, we have to recall that formulas of OL are all formulas of
OCL+. While the converse is not true, there is a canonical mapping of formulas of OCL+ into
formulas of OL obtained by unfolding the definition of ¬. For soundness, we use Theorem 4.
Concerning completeness, we prove simultaneously that A ` B in OCL+ entails ` ¬A,B in
OL, A ` in OCL+ entails ` ¬A,¬A in OL and ` B in OCL+ entails ` B,B in OL. J

For readers familiar with linear logic [7], this calculus OL can be seen as one-sided additive
linear logic extended with the (cw) rule, if we replace ∨ by ⊕, ∧ by & and ⊥ by 0.

I Example 7. We can prove in OL the sequent of Example 2 in its one-sided version:

FSCD 2016
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ax
` ¬X,X ∨2` (X ∧ Y ) ∨ ¬X,X ∨1` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y,X ex

` X, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y

ax
` ¬Y, Y ∨2` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y, Y ex

` Y, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y
∧

` X ∧ Y, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y ∨1` (X ∧ Y ) ∨ ¬X, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y ∨1` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y cw
` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y,⊥ ex
` ⊥, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y

We now describe a few properties of OL which will be used later. First, the cut rule
` A,B ` ¬B,C

` A,C
is admissible (see Proposition 19 for an indirect proof). Also:

I Proposition 8 (Axiom expansion for OL). If we restrict the axiom rule of OL to its variable
case axv` ¬X,X , the general rule (ax) is derivable.

I Lemma 9 (Reversibility of ∧). ` A ∧B,C is provable iff both ` A,C and ` B,C are.

I Lemma 10 (Reversing). If we restrict the (cw) rule to formulas of the shape A1 ∨A2:

` A1 ∨A2, A1 ∨A2 cw∨` A1 ∨A2, B

where moreover B is neither > nor a ∧, the general rule (cw) is admissible.

Proof. This is done in two steps, first by proving the restriction on A (by induction on A for
an arbitrary B) and then the restriction on B (by induction on B, with A = A1 ∨A2). J

4 Focused Orthologic

Relying on the strong relation between the sequent calculus OL and linear logic, we import
the idea of focusing [1]. This constraint on the structure of proofs is based on an analysis of
the polarity of connectives, by separating those which are reversible and those which are
not. By reducing the space of proofs of each formula, it is a strong tool for accelerating
proof search. In orthologic, the connectives ∧ and > are reversible: the conclusion of their
introduction rule implies its premises (see Lemma 9 for example). Such connectives are
also called asynchronous or negative. Their dual connectives are called synchronous or
positive. Following this pattern, we separate formulas into synchronous and asynchronous
ones according to their main connective: X, ⊥ and A ∨B are synchronous, and ¬X, > and
A ∧B are asynchronous. So that A is synchronous if and only if ¬A is asynchronous. The
choice for variables is in fact arbitrary, as soon as we preserve this dual polarity between X
and ¬X for each of them.

4.1 A First Focused System OL0
f

Dealing with variables in focused systems is delicate, so we recommend the reader not very
familiar with focusing to concentrate on the other aspects of the system first.

A key result will be to prove the focused system to be as expressive as OL (and thus
sound and complete for orthologic). In order to make this as simple and clear as possible, we
will work in two steps. Indeed some optimisations (to be introduced later on in Section 4.4)
would make a direct translation more difficult.
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Our first focused system OL0
f is based on four kinds of sequents. For each of them, we

give an informal explanation based on how we can find a proof of such a sequent, thus from
the point of view of a bottom-up reading of proofs and rules:

In a sequent ` ⇑ A,B, all the asynchronous connectives at the roots of A and B (in
formulas A and B seen as trees) will be deconstructed and after that, A and B will be
synchronous (or negation of a variable) and allowed to move to the left of ⇑. In fact we
first work on A and then we move to a sequent ` A ⇑ B.
In a sequent ` A ⇑ B, A is synchronous or is the negation of a variable. The asynchronous
connectives at the root of B will be deconstructed and after that, B will be synchronous
(or negation of a variable) and allowed to move to the left of ⇑.
In a sequent ` A,B ⇑ , A and B are synchronous or the negation of a variable. We have
to select a synchronous formula and start decomposing its synchronous connectives at
the root, in a sequent ` A ⇓ B. Before that, we can apply contraction-weakening rules
to A and B. This is the main place where choices have to be made during proof search.
In a sequent ` A ⇓ B, A is synchronous or is the negation of a variable. The synchronous
connectives at the root of B will be deconstructed and after that, B will be asynchronous
(and we will start decomposing its asynchronous connectives at the root in a sequent
` A ⇑ B). Choices concerning the decomposition of ∨ will have to be made here.

Note, sequents ` ⇑ A,B are crucial for the comparison with other systems but play a weak
role inside this system. Indeed they occur only in proofs of sequents of the same shape and
only at the bottom part of such a proof. As soon as we reach a sequent ` A ⇑ B (in the
bottom-up reading of a proof), we will not find any other sequent ` ⇑ A,B above.

Let us be more formal now with the explicit list of the rules of the system OL0
f :

OL0
f

` ⇑ A,C ` ⇑ B,C ⇑∧` ⇑ A ∧B,C
⇑>` ⇑ >, C

` A ⇑ C ⇑R` ⇑ A,C

` C ⇑ A ` C ⇑ B ∧⇑` C ⇑ A ∧B
[(s) or (n)] >⇑` A ⇑ >

` C,A ⇑ R⇑` C ⇑ A

` C,C ⇑[(s) or (n)] cw1` C,A ⇑
` C,C ⇑[(s) or (n)] cw2` A,C ⇑

` C ⇓ A[(s)] D1` A,C ⇑
` C ⇓ A[(s)] D2` C,A ⇑

axv` ¬X ⇓ X
` C ⇓ A ∨1` C ⇓ A ∨B

` C ⇓ B ∨2` C ⇓ A ∨B
` C ⇑ A[(a)] R⇓` C ⇓ A

with the following side conditions written between square brackets [_]:
(a) A is asynchronous (s) A is synchronous (n) A is the negation of a variable.

One could have been more explicit by asking [(s) or (n)] as side condition in the (⇑R)
and (R⇑) rules but the following lemma proves these two side conditions to be redundant.

I Lemma 11. If ` A ⇑ C or ` A,B ⇑ or ` A ⇓ C is provable then A and B are
synchronous or the negation of a variable.

I Example 12. The sequent ` (X ∨ A) ∨ B, (C ∨ (D ∨ ¬X)) ∧ > has many proofs in the
systems of the previous sections, in particular in OL. However the corresponding sequent
` ⇑ (X ∨A) ∨B, (C ∨ (D ∨ ¬X)) ∧ > has a unique proof in OL0

f :
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axv` ¬X ⇓ X ∨1` ¬X ⇓ X ∨A ∨1` ¬X ⇓ (X ∨A) ∨B
D1` (X ∨A) ∨B,¬X ⇑
R⇑

` (X ∨A) ∨B ⇑ ¬X
R⇓

` (X ∨A) ∨B ⇓ ¬X ∨2` (X ∨A) ∨B ⇓ D ∨ ¬X ∨2` (X ∨A) ∨B ⇓ C ∨ (D ∨ ¬X)
D2` (X ∨A) ∨B,C ∨ (D ∨ ¬X) ⇑
R⇑

` (X ∨A) ∨B ⇑ C ∨ (D ∨ ¬X)
>⇑

` (X ∨A) ∨B ⇑ >
∧⇑

` (X ∨A) ∨B ⇑ (C ∨ (D ∨ ¬X)) ∧ >
⇑R

` ⇑ (X ∨A) ∨B, (C ∨ (D ∨ ¬X)) ∧ >

One can prove the soundness of OL0
f with respect to orthologic by translation into OL.

I Proposition 13 (Soundness of OL0
f ). If ` ⇑ A,B or ` A ⇑ B or ` A,B ⇑ or ` A ⇓ B is

provable in OL0
f then ` A,B is provable in OL.

To conclude this section, here are a few simple facts which will be useful later and which
can be obtained by simple induction on proofs:
` X,Y ⇑ , ` ¬X,¬Y ⇑ and ` ⊥,⊥ ⇑ are not provable (both if X = Y or X 6= Y );
if ` A,B ⇑ is provable then ` B,A ⇑ as well (and with a proof of the same size);
if ` A,A ⇑ is provable then the proof contains a proof of ` A ⇓ A.

4.2 Cut Elimination in OL0
f

Due to the very rigid structure of proofs in focused systems, the possibility of enriching them
with admissible cut rules is often used in their study [8, 11] (in particular for expressiveness
analysis). It is the tool we are going to use here in order to prove the completeness of OL0

f
with respect to orthologic.

I Theorem 14 (Cut Elimination in OL0
f ). The following cut rules are admissible in OL0

f :

C synchronous
` X ⇓ A ` ¬X ⇓ C

v-cut2` C ⇓ A

C synchronous
` X ⇑ A ` ¬X ⇓ C

v-cut3` C ⇑ A

` A,X ⇑ ` C,¬X ⇑
v-cut1` A,C ⇑

B asynchronous or variable
` A ⇑ B ` C ⇑ ¬B cut1` A,C ⇑

` A ⇑ B ` C,¬B ⇑ cut2` A,C ⇑

B asynchronous
` A ⇑ B ` ¬B ⇓ C cut3` A ⇓ C

B asynchronous or variable
` A ⇑ B ` C ⇓ ¬B cut4` A,C ⇑

` A ⇑ B ` ¬B ⇑ C cut5` A ⇑ C

` ⇑ A,B ` ⇑ C,¬B cut0` ⇑ A,C
` ⇑ A,B ` C ⇑ ¬B cut′0` C ⇑ A
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Proof. This is a proof involving many cases which require a precise management of the four
kinds of sequents. We try to explain the key ingredients which work in successive steps.

We prove simultaneously the admissibility of (v-cut2) and (v-cut3) by induction on the
size of the left premise.
We deduce the admissibility of (v-cut1) by induction on the size of the left premise. For
example:

` X ⇓ A D1` A,X ⇑
` ¬X ⇓ C D1` C,¬X ⇑

v-cut1` A,C ⇑
 

` X ⇓ A ` ¬X ⇓ C
v-cut2` C ⇓ A D1` A,C ⇑

since A and C are synchronous.
Using the previous steps, we prove simultaneously the admissibility of (cut1), (cut2), (cut3),
(cut4) and (cut5) by induction on the pair (f, p) where f is the size of the cut-formula B
and p is the size of the right premise. The crucial cases are the following:

Starting from:
` A ⇑ B1 ` A ⇑ B2 ∧⇑` A ⇑ B1 ∧B2

` C ⇓ ¬B1 ∨1` C ⇓ ¬B1 ∨ ¬B2 cut4` A,C ⇑
we can apply the induction hypothesis by means of (cut4) with a smaller cut formula.
If B is asynchronous, we have:

` A ⇑ B
` ¬B ⇓ C D1` C,¬B ⇑ cut2` A,C ⇑

 
` A ⇑ B ` ¬B ⇓ C cut3` A ⇓ C D2` A,C ⇑

otherwise B is a variable so that ` A ⇑ X must come from (R⇑) and we apply (v-cut1).
The most tricky case is contraction where we need two induction steps:

` A ⇑ B

` ¬B ⇓ ¬B
D` ¬B,¬B ⇑
cw

` ¬B,¬B ⇑ cw2` C,¬B ⇑ cut2` A,C ⇑

 
` A ⇑ B

` A ⇑ B ` ¬B ⇓ ¬B cut3` A ⇓ ¬B cut4` A,A ⇑ cw1` A,C ⇑

First we apply (cut3) with a smaller right premise and then, by transforming one more
step the (cut4), we reach a smaller cut formula.

We deduce the case (cut′0) and then (cut0), by induction on the size of the left premise. J

Among the 10 cut rules considered in the theorem above, mainly two will be used now
(namely cut0 and cut′0). The other rules were however necessary as intermediary steps to
prove the admissibility of these two rules.

4.3 Completeness of OL0
f

We are going to translate proofs of OL into proofs of OL0
f . We start with some preliminary

results about sequents ` ⇑ A,B in OL0
f which will be the target of sequents of OL.

I Lemma 15. The following rules are admissible in OL0
f :

` ⇑ C,>
` ⇑ C,A ` ⇑ C,B

` ⇑ C,A ∧B
` A ⇑ C
` ⇑ C,A

` ⇑ A,C
` ⇑ C,A
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I Lemma 16. In OL0
f , the following rules are admissible (and similarly for B ∨A instead

of A ∨B):

A asynchronous
` C ⇑ A
` A ∨B ⇑ C

A synchronous
` A ⇑ C
` A ∨B ⇑ C

A synchronous
` A,C ⇑
` A ∨B,C ⇑

A synchronous
` A ⇓ C
` A ∨B ⇓ C

I Proposition 17 (Axiom expansion for OL0
f ). If A is synchronous or a negation of a variable,

` A ⇑ ¬A is provable.

This leads us to the completeness of OL0
f for orthologic by means of the completeness of

OL and the following translation result:

I Theorem 18 (Completeness of OL0
f ). If ` A,B is provable in OL then ` ⇑ A,B is

provable in OL0
f .

Proof. By induction on the proof of ` A,B in OL, the main cases are:
If the last rule is a contraction-weakening rule, we use Lemma 10 to restrict ourselves to
the (cw∨) case, and by induction hypothesis we have ` ⇑ A1 ∨A2, A1 ∨A2. The only
way this is provable is by:

` A1 ∨A2, A1 ∨A2 ⇑ R⇑` A1 ∨A2 ⇑ A1 ∨A2 ⇑R` ⇑ A1 ∨A2, A1 ∨A2
so that we can build:

` A1 ∨A2, A1 ∨A2 ⇑ cw1` A1 ∨A2, B ⇑ R⇑` A1 ∨A2 ⇑ B ⇑R` ⇑ A1 ∨A2, B

If the last rule is a (∨1) rule, by induction hypothesis we have ` ⇑ A,C, thus using
Lemmas 15 and 16, Proposition 17 and Theorem 14:

` ⇑ A,C
` ⇑ C,A

A synchronous
` A ⇑ ¬A
` A ∨B ⇑ ¬A cut′0` A ∨B ⇑ C ⇑R` ⇑ A ∨B,C

and
` ⇑ A,C
` ⇑ C,A

A asynchronous
` ¬A ⇑ A
` A ∨B ⇑ ¬A cut′0` A ∨B ⇑ C ⇑R` ⇑ A ∨B,C

J

As promised in Section 3, we can deduce cut elimination for OL.

I Proposition 19 (Cut Elimination for OL). The cut rule is admissible in OL.

Proof. By Theorem 18, we have ` ⇑ A,B and ` ⇑ ¬B,C in OL0
f . By Lemma 15 we

deduce ` ⇑ C,¬B. Using cut0 (Theorem 14) we have ` ⇑ A,C, and by Proposition 13,
` A,C in OL. J

4.4 A Second Focused System OLf

If we try to apply a simple bottom-up proof-search procedure in a sequent calculus system,
a first obstacle to the finiteness of the search is given by cut rules. If a cut rule cannot
be eliminated then a given conclusion leads us to a possibly infinite set of premises. A
second obstacle comes from loops, i.e. non trivial derivations leading from a sequent to the
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same sequent (note however this obstacle can be dealt with by using loop detection during
the search, but loops make the proof-search longer). All the systems we have seen so far
contain non-trivial loops. Avoiding loops is one of the motivations for looking for a more
constrained focused system. Let us analyse loops in OL0

f . They mainly come from rules
acting on sequents of the shape ` _,_ ⇑ . If we look at derivations in a bottom-up way, we
reach such a sequent through a (R⇑) rule:

` C,A ⇑ R⇑` C ⇑ A

then we stay with sequents ` _,_ ⇑ by using (upwardly):

` C,C ⇑ cw1` C,A ⇑
and ` C,C ⇑ cw2` A,C ⇑

until we reach:

` C ⇓ A D1` A,C ⇑
or ` C ⇓ A D2` C,A ⇑

.

Globally, this means we start with a sequent ` C ⇑ A and we must end with ` C ⇓ A,
` A ⇓ C, ` A ⇓ A or ` C ⇓ C. This would correspond to four derivable rules:

` C ⇓ A
` C ⇑ A

` A ⇓ C
` C ⇑ A

` A ⇓ A
` C ⇑ A

` C ⇓ C
` C ⇑ A

In the same time we want to try to constrain contraction so that it is applied on ∨-formulas
only (in the spirit of Lemma 10). Moreover we would like contraction not being applied twice
on the same formula. In particular we get read of the fourth rule just above, which would
allow C to be contracted (uselessly) many times. All these remarks lead us to the following
new focused system called OLf :

OLf

` ⇑ A,C ` ⇑ B,C ⇑∧` ⇑ A ∧B,C
⇑>` ⇑ >, C

` C ⇑ A ` C ⇑ B ∧⇑` C ⇑ A ∧B
[(s) or (n)] >⇑` A ⇑ >

` B ∨ C ⇓ B ∨ C ⇑cw` ⇑ B ∨ C,A
` B ∨ C ⇓ B ∨ C[(s) or (n)] cw⇑` A ⇑ B ∨ C

axv` ¬X ⇓ X
` C ⇓ A ∨1` C ⇓ A ∨B

` C ⇓ B ∨2` C ⇓ A ∨B

` A ⇑ C ⇑R` ⇑ A,C
` C ⇑ A[(a)] R⇓` C ⇓ A

` C ⇓ A[(s)] D1` A ⇑ C
` C ⇓ A[(s)] D2` C ⇑ A

(a) A is asynchronous (s) A is synchronous (n) A is the negation of a variable

Note, sequents ` A,B ⇑ disappear in this system which relies on three kinds of sequents
only: ` A ⇑ B, ` A ⇓ B and ` ⇑ A,B.

I Example 20. We can prove in OLf the sequent associated with Example 2:
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axv` ¬X ⇓ X D1` X ⇑ ¬X R⇓` X ⇓ ¬X ∨2` X ⇓ (X ∧ Y ) ∨ ¬X ∨1` X ⇓ ((X ∧ Y ) ∨ ¬X) ∨ ¬Y
D1` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y ⇑ X

axv` ¬Y ⇓ Y D1` Y ⇑ ¬Y R⇓` Y ⇓ ¬Y ∨2` Y ⇓ ((X ∧ Y ) ∨ ¬X) ∨ ¬Y
D1` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y ⇑ Y
∧⇑

` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y ⇑ X ∧ Y
R⇓

` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y ⇓ X ∧ Y ∨1` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y ⇓ (X ∧ Y ) ∨ ¬X ∨1` ((X ∧ Y ) ∨ ¬X) ∨ ¬Y ⇓ ((X ∧ Y ) ∨ ¬X) ∨ ¬Y
cw⇑

` ⊥ ⇑ ((X ∧ Y ) ∨ ¬X) ∨ ¬Y
⇑R

` ⇑ ⊥, ((X ∧ Y ) ∨ ¬X) ∨ ¬Y

The system OLf is as expressive as OL0
f for sequents ` ⇑ A,B. In particular:

I Proposition 21 (Expressiveness of OLf). If ` ⇑ A,B is provable in OL0
f , it is also provable

in OLf .

Proof. We prove by induction on the proof π in OL0
f the more general statement:

If ` ⇑ A,B in OL0
f then ` ⇑ A,B in OLf .

If ` A ⇑ B in OL0
f then either ` A ⇑ B in OLf or A = A1 ∨A2 with ` A ⇓ A in OLf .

If ` A ⇓ B in OL0
f then either ` A ⇓ B in OLf or A = A1 ∨A2 with ` A ⇓ A in OLf .

If ` A,B ⇑ in OL0
f then at least one of the following four possibilities holds:

B is synchronous and ` A ⇓ B in OLf ;
A is synchronous and ` B ⇓ A in OLf ;
A = A1 ∨A2 and ` A ⇓ A in OLf ;
B = B1 ∨B2 and ` B ⇓ B in OLf .

We consider each possible last rule for π. Interesting cases are:
For the two contraction rules, we have ` C,C ⇑ in OL0

f thus, by induction hypothesis,
` C ⇓ C in OLf with C synchronous and we are done since ` ⊥ ⇓ ⊥ and ` X ⇓ X are
not provable thus C = C1 ∨ C2.
For (∨1), by induction hypothesis, we have either ` C ⇓ A or ` C1 ∨ C2 ⇓ C1 ∨ C2 in
OLf with C = C1 ∨ C2. In the first case, we apply the corresponding rule. In the second
case, we are immediately done.
For (⇑R), by induction hypothesis we have ` A ⇑ C or A = A1 ∨A2 with ` A1 ∨A2 ⇓
A1 ∨A2, we can build: ` A ⇑ C ⇑R` ⇑ A,C

or ` A1 ∨A2 ⇓ A1 ∨A2 ⇑cw` ⇑ A1 ∨A2, C
For (R⇑), we apply the induction hypothesis and we obtain four possible cases:

If ` C ⇓ A in OLf with A synchronous, we have: ` C ⇓ A D2` C ⇑ A
If ` A ⇓ C in OLf with C synchronous, we have: ` A ⇓ C D1` C ⇑ A
If ` C1 ∨ C2 ⇓ C1 ∨ C2 (C = C1 ∨ C2) in OLf , we are done.

If ` A1 ∨A2 ⇓ A1 ∨A2 (A = A1 ∨A2) in OLf , we have: ` A1 ∨A2 ⇓ A1 ∨A2 cw⇑` C ⇑ A1 ∨A2
J

I Proposition 22 (Soundness of OLf). If ` ⇑ A,B is provable in OLf then ` A,B is
provable in OL.
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From Propositions 19, 21 and 22, and Theorem 18, we can deduce the admissibility of
the following cut rule in OLf :

` ⇑ A,B ` ⇑ ¬B,C
cut` ⇑ A,C

We have thus built yet another sound and complete system for orthologic. This one has
very strong constraints on the structure of proofs. A key property of this new system (which
holds in none of the previous ones) is the termination of the naive bottom-up proof search
strategy (Proposition 23).

5 Proof Search in OLf

We first develop a few properties of OLf on which we will rely for proof search. In a second
time, we will compare with other algorithms from the literature.

5.1 Backward Proof Search
The basic idea of backward proof search in a cut-free sequent calculus system is to start
from the sequent to be proved, to look in a bottom-up manner at each possible instance of a
rule with this sequent as conclusion and to continue recursively with the premises of these
instances until axioms are reached. Given a sequent, we are going to bound the length of
branches of its proofs in OLf . Let us first define the following measure on formulas:

ϕ(X) = ϕ(¬X) = ϕ(⊥) = ϕ(>) = 1 ϕ(A∧B) = ϕ(A)+ϕ(B) ϕ(A∨B) = 2ϕ(A)+2ϕ(B)

As a bound on ϕ, we have ϕ(A) < 2|A| where |A| is the size (number of symbols) of A.

I Proposition 23 (Finiteness of Branches in OLf). Given two formulas A and B, 2ϕ(A)+2ϕ(B)
is a bound on the length of the branches of any proof of ` ⇑ A,B in OLf .

Proof. We define the measure ψ of a sequent, according to its shape:

ψ( ` ⇑ A,B) = 2ϕ(A) + 2ϕ(B) ψ( ` A ⇑ B) = ϕ(A) + 2ϕ(B)

ψ( ` A ⇓ B) =
{
ϕ(A) + ϕ(B) if B is synchronous
ϕ(A) + 2ϕ(B) + 1 if B is asynchronous

We now prove for each rule of OLf : if S1 is a sequent premise of the rule and S2 is the sequent
conclusion of the rule, then ψ(S1) < ψ(S2). For example:

(∨1) with A synchronous (∨1) with A asynchronous

ψ( ` C ⇓ A) = ϕ(C) + ϕ(A)
< ϕ(C) + 2ϕ(A) + 2ϕ(B)
= ϕ(C) + ϕ(A ∨B)
= ψ( ` C ⇓ A ∨B)

ψ( ` C ⇓ A) = ϕ(C) + 2ϕ(A) + 1
< ϕ(C) + 2ϕ(A) + 2ϕ(B)
= ϕ(C) + ϕ(A ∨B)
= ψ( ` C ⇓ A ∨B)

Thus for any sequent S, ψ(S) is a bound on the height of the branches of the proofs of S. J

Since rules of OLf are finitely branching, this bound on the length of branches ensures
(the absence of loops and) the termination of the backward proof search. Moreover, thanks
to the sub-formula property, we know every sequent appearing in a proof of ` ⇑ A,B is
made of two formulas which are sub-formulas of A or B. Since we have three different kinds
of sequents, there are at most 3(|A|+ |B|)2 such sequents. We have just proved a sequent
cannot appear twice in a branch of a proof, so we can deduce a tighter bound than ψ on the
height of branches: 3(|A|+ |B|)2. We thus have an upper bound 23(|A|+|B|)2+1 on the size of
proofs since rules have arity at most 2.
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5.2 Single Formula Proof Search
As we have seen in Section 3, in systems with exactly two formulas in sequents presented in
this paper, the provability of a formula A in orthologic is encoded as the provability of a
sequent of the shape ` A,A or ` ⇑ A,A. Since we are often interested in the provability of
a single formula, these sequents play a specific role. We can give some optimisation on the
bottom structure of proofs of sequents ` ⇑ A,A.

I Proposition 24 (Diagonal Sequent). The following properties hold in OLf :
` ⇑ X,X, ` ⇑ ¬X,¬X and ` ⇑ ⊥,⊥ are not provable.
` ⇑ >,> is provable.
` ⇑ B ∧ C,B ∧ C is provable if and only if both ` ⇑ B,B and ` ⇑ C,C are provable.
` ⇑ B ∨ C,B ∨ C is provable if and only if ` B ∨ C ⇓ B ∨ C is provable.

Proof. We consider the last two statements only. For ∧, we move back and forth to OL
thanks to Theorem 18 and Propositions 21 and 22. In OL, we use Lemma 9 and:

` B,B cw
` B,B ∧ C

` C,C cw
` C,B ∧ C

∧` B ∧ C,B ∧ C

For ∨, the only possible last rules are:

` B ∨ C ⇓ B ∨ C ⇑cw` ⇑ B ∨ C,B ∨ C
` B ∨ C ⇑ B ∨ C ⇑R` ⇑ B ∨ C,B ∨ C

and for a proof of ` B ∨ C ⇑ B ∨ C, the only possible last rules are:

` B ∨ C ⇓ B ∨ C cw⇑` B ∨ C ⇑ B ∨ C
` B ∨ C ⇓ B ∨ C D1` B ∨ C ⇑ B ∨ C

` B ∨ C ⇓ B ∨ C D2` B ∨ C ⇑ B ∨ C

so that ` B ∨ C ⇓ B ∨ C must be provable for ` ⇑ B ∨ C,B ∨ C to be provable. In the
other direction we directly use (⇑cw). J

This means in particular that any sequent ` A,A is equivalent to a finite family of
sequents ` B1 ∨ C1 ⇓ B1 ∨ C1,. . . , ` Bn ∨ Cn ⇓ Bn ∨ Cn (with each Bi ∨ Ci sub-formula
of A) or clearly not provable.

5.3 Forward Proof Search
Forward proof search consists in building, in a top-down way, proof-trees which are candidates
to be sub-proof-trees of proofs of a given sequent. Clearly the sub-formula property can
be used to control the sequents to be considered inside the proof-trees. We use here even
stronger constraints. Let us fix a formula A. We want to study sub-proof-trees of proofs of
` ⇑ A,A in OLf . We do not consider the more general case ` ⇑ A,B here.

I Proposition 25 (Strengthened Sub-Formula Property). If ` C ⇓ B or ` C ⇑ B′ or
` ⇑ D,E appears in a proof of ` ⇑ A,A in OLf , these are sub-formulas of A and moreover:

if B is asynchronous, it appears inside A just below a ∨ connective;
if B′ is synchronous, it is equal to A or it appears inside A just below a ∧ connective;
if B′ = A then C = A or C appears inside A below ∧ connectives only;
if C is synchronous, it is equal to A or it appears inside A just below a ∧ connective;
E = A, and D = A or D appears inside A below ∧ connectives only.
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Proof. Since ` ⇑ A,A satisfies the conclusion of the statement, we prove for each rule that
if the conclusion satisfies it, then all its premises as well. For example, for the (R⇓) rule,
the formula in position B′ in the premise must be asynchronous. Moreover we cannot have
B′ = A, since the property for the conclusion gives B′ below a ∨ connective inside A. J

This proposition provides us constraints on the meaningful sequents to be considered
during forward proof search. This means we can restrict the application of rules in the
algorithm for forward proof search to the case where they generate sequents satisfying the
properties given by Proposition 25.

5.4 Benchmark
We want to compare our proof-search procedures with procedures from the literature. We
consider some formulas from [12] and [5] as well as some random formulas in the language of
orthologic:

E1 = ((¬X ∨ Y ) ∧X) ∨ ((X ∧ ¬Y ) ∨ ((¬X ∧ ((X ∨ ¬Y ) ∧ (X ∨ Y )))
∨ (¬X ∧ ((¬X ∧ Y ) ∨ (¬X ∧ ¬Y )))))

E2 = X ∨ ((¬X ∧ ((X ∨ ¬Y ) ∧ (X ∨ Y ))) ∨ (¬X ∧ ((¬X ∧ Y ) ∨ (¬X ∧ ¬Y ))))
E3 = (((X ∨ ¬Y ) ∧ (X ∨ Y )) ∧ (¬X ∨ (X ∧ ¬Y ))) ∨ (¬X ∨ Y )
Φ0 = X ∨ ¬X Φn+1 = ((Xn ∧ Yn) ∧ (Xn ∧ Zn)) ∨ (((¬Xn ∧ Φn) ∨ ¬Yn) ∨ ¬Zn)
Ψ1

0 = > Ψ2
0 = ⊥ Ψ1

n+1 = Ψ1
n ∧Xn Ψ2

n+1 = Ψ2
n ∨ Yn

Ψ3
n = (X ∨ (Y ∧Ψ2

n)) ∧Ψ1
n Ψ4

n = (Y ∧ (X ∨Ψ1
n)) ∨Ψ2

n Ψn = ¬Ψ3
n ∨Ψ4

n

The formulas E2, E3 and Φn are provable, while E1 and Ψn are not.
We compare four algorithms: cf is prove-cf from [5], fw is the forward algorithm from [5],

bwf is the backward algorithm based on OLf , and fwf is the forward algorithm based on OLf .
The implementations are done in OCaml in the most naive way (except that we use some
memoization), so that running time (time, in seconds) should not be taken too seriously. As
an alternative measure which depends less on the particular implementation, we also count
the number of rule occurrences (rules) applied during search.

time cf bwf fw fwf

E1 0.00 0.00 0.04 0.03
E2 0.00 0.00 0.02 0.01
E3 0.00 0.00 0.02 0.02

Φ5 0.07 0.00 15.00 3.56
Φ10 0.34 0.00 368.86 88.60

Ψ5 0.22 0.00 1.43 0.13
Ψ20 _ 0.00 161.84 4.92

rules cf bwf fw fwf

E1 2 305 132 47 64
E2 210 104 33 49
E3 42 144 47 49

Φ5 6 094 384 724 338
Φ10 12 344 774 2 639 1 023

Ψ5 244 055 308 343 123
Ψ20 _ 2 603 2 083 723

rules cf bwf fw fwf

Average on some random formulas of size 20 971 28 163 29
Average on some random formulas of size 100 129 428 264 2 753 734

This is really a minimalist benchmarking. Deeper experiments must be done to obtain more
precise comparison informations. Focusing-based algorithms look really competitive. Forward
algorithms are sometimes more efficient than backward ones concerning the number of rules
applied, but require more management of data structures so take longer execution time.
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6 Conclusion

We have presented new sequent-calculus proof-systems for orthologic, mainly: OL which is
the simplest such system we know, and OLf which is based on focusing to constrain the
structure of proofs. With some complementary analysis on the structure of proofs in OLf
we have proposed efficient proof search algorithms for orthologic which look quicker than
the state of the art [5] (but additional studies in this direction must be done to obtain fully
convincing evaluations).

Our new systems open the door for additional proof-theoretical studies of orthologic (and
the possibility of extracting counter-models from proof-search failures should be investigated).
We hope also this will lead to results in the theory of ortholattices (free ones in particular)
in the spirit of Whitman’s work [15]. The present work could be extended to second-order
quantifiers on the logic side in relation with complete ortholattices. We plan also to work on
the application of focusing to other lattice-related logics [14].

Finally, the proof theory of orthologic seems to be mature enough to try to develop some
Curry-Howard correspondence aiming at exhibiting the computational content of orthologic.

Additional Material

A Coq development formalising the main proofs of the paper is available at:

https://hal.archives-ouvertes.fr/hal-01306132/file/olf.v.txt

The OCaml code for the benchmark of Section 5.4 is available at:

https://hal.archives-ouvertes.fr/hal-01306132/file/olf.ml.txt

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation, 2(3):297–347, 1992.
2 Garrett Birkhoff. Lattice Theory, volume 25 of Colloquium Publications. American Math-

ematical Society, third edition, 1967.
3 Günter Bruns. Free ortholattices. Canadian Journal of Mathematics, 28(5):977–985, Octo-

ber 1976.
4 Uwe Egly and Hans Tompits. Gentzen-like methods in quantum logic. Technical Report

99-1, Institute for Programming and Logics, University at Albany - SUNY, 1999. Position
Papers of TABLEAUX ’99.

5 Uwe Egly and Hans Tompits. On different proof-search strategies for orthologic. Studia
Logica, 73(1):131–152, February 2003.

6 Claudia Faggian and Giovanni Sambin. From basic logic to quantum logics with cut-
elimination. International Journal of Theoretical Physics, 37(1):31–37, January 1998.

7 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
8 Jean-Yves Girard. A new constructive logic: classical logic. Mathematical Structures in

Computer Science, 1(3):255–296, 1991.
9 Robert Goldblatt. Semantic analysis of orthologic. Journal of Philosophical Logic, 3(1–

2):19–35, 1974.
10 Robert Goldblatt. Orthomodularity is not elementary. Journal of Symbolic Logic, 49(2):401–

404, 1984.
11 Olivier Laurent. A proof of the focalization property of linear logic. Unpublished note,

May 2004.

https://hal.archives-ouvertes.fr/hal-01306132/file/olf.v.txt
https://hal.archives-ouvertes.fr/hal-01306132/file/olf.ml.txt


O. Laurent 25:17

12 William McCune. Automatic proofs and counterexamples for some ortholattice identities.
Information Processing Letters, 65(6):285–291, 1998.

13 Hirokazu Nishimura. Proof theory for minimal quantum logic I. International Journal of
Theoretical Physics, 33(1):103–113, January 1994.

14 Jürgen Schulte Mönting. Cut elimination and word problems for varieties of lattices. Algebra
Universalis, 12:290–321, December 1981.

15 Philip Whitman. Free lattices. Annals of Mathematics, 42(1):325–330, January 1941.

FSCD 2016





Functions-as-Constructors Higher-Order
Unification
Tomer Libal1 and Dale Miller2

1 Inria Saclay & LIX/École Polytechnique, Palaiseau, France
2 Inria Saclay & LIX/École Polytechnique, Palaiseau, France

Abstract
Unification is a central operation in the construction of a range of computational logic systems
based on first-order and higher-order logics. First-order unification has a number of properties
that dominates the way it is incorporated within such systems. In particular, first-order uni-
fication is decidable, unary, and can be performed on untyped term structures. None of these
three properties hold for full higher-order unification: unification is undecidable, unifiers can be
incomparable, and term-level typing can dominate the search for unifiers. The so-called pattern
subset of higher-order unification was designed to be a small extension to first-order unification
that respected the basic laws governing λ-binding (the equalities of α, β, and η-conversion) but
which also satisfied those three properties. While the pattern fragment of higher-order unification
has been popular in various implemented systems and in various theoretical considerations, it is
too weak for a number of applications. In this paper, we define an extension of pattern unific-
ation that is motivated by some existing applications and which satisfies these three properties.
The main idea behind this extension is that the arguments to a higher-order, free variable can
be more than just distinct bound variables: they can also be terms constructed from (sufficient
numbers of) such variables using term constructors and where no argument is a subterm of any
other argument. We show that this extension to pattern unification satisfies the three properties
mentioned above.
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1 Introduction

Unification is the process of solving equality constraints by the computation of substitutions.
This process is used in computational logic systems ranging from automated theorem
provers, proof assistants, type inference systems, and logic programming. The first-order
unification – that is, unification restricted to first-order terms – enjoys at least three important
computational properties, namely, (1) decidability, (2) determinacy, and (3) type-freeness.
These properties of unification shaped the way it can be used within computational logic
systems. The first two of these properties ensures that unification – as a process – will either
fail to find a unifier for a given set of disagreement pairs or will succeed and return the
most general unifier that solves all those disagreement pairs. The notion of type-freeness
simply means that unification can be done independently of the possible typing discipline
that might be employed with terms. Thus, first-order unification can be performed on
untyped first-order terms (as terms are usually considered in, say, Prolog). This property is
important since it means that unification can be used with any typing discipline that might
be adopted. Since typing is usually an open-ended design issue in many languages (consider,
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26:2 Functions-as-Constructors Higher-Order Unification

for example, higher-order types, subtypes, dependent types, parametric types, linear types,
etc.), the type-freeness of unification makes it possible for it to be applied to a range of
typing disciplines.

Of course, many syntactic objects are not most naturally considered as purely first-order
terms: this is the case when that syntax contains bindings. Instead, many systems have
adopted the approach used by Church in his Simple Theory of Types [11] where terms and
term equality comes directly from the λ-calculus. All binding operations – quantification in
first-order formulas, function arguments in functional programs, local variables, etc. – can
be represented using the sole binder of the λ-calculus. Early papers showed that second-
order pattern matching could be used to support interesting program analysis and program
transformation [18] and that a higher-order version of Prolog could be used to do more
general manipulations of programs and formulas [21]. Today, there is a rich collection of
computational logic systems that have moved beyond first-order term unification and rely on
some form of higher-order unification. These include the theorem provers TPS [3], Leo [7]
and Satallax [10]; the proof assistants Isabelle [26], Coq [36], Matita [4], Minlog [31], Agda
[9], Abella [5], and Beluga [29]; the logic programming languages λProlog [23] and Twelf [28];
and various application domains such as natural language processing [12].

The integration of full higher-order unification into computational logic systems is not as
simple as it is in first-order systems since the three properties mentioned above do not hold.
The unification of simply typed λ-terms is undecidable [15, 16] and there can be incomparable
unifiers, implying that no most general unifiers exist in the general situation. Also, types
matter a great deal in determining the search space of unifiers. For example, let i and j be
primitive types, let a be a constant of type i, and let F and X be variables of type α→ i

and α, respectively, where α is a type variable. Consider the unification problem (F X) = a.
If we set α to j, then there is an mgu for this problem, namely [F 7→ λw.a]. If we set α to i,
then there are two incomparable solutions, namely [F 7→ λw.a] and [F 7→ λw.w, X 7→ a]. If
we set α to i→ i, then there is an infinite number of incomparable solutions: [F 7→ λf.a]
and, for each natural number n, [F 7→ λf.fna, X 7→ λw.w]. If higher order values for α are
considered, the possibility of unifiers becomes dizzying.

For these reasons, the integration of unification for simply typed λ-terms into computa-
tional logic systems is complex: most such integration efforts attempt to accommodate the
(pre-)unification search procedure of Huet [17].

Instead of moving from first-order unification to full higher-order unification, it is possible
to move to an intermediate space of unification problems. Given that higher-order unification
is undecidable, there is an infinite number of decidable classes that one could consider. The
setting of higher-order pattern unification (proposed in [20] and called Lλ-unification there)
could be seen as the weakest extension of first-order unification in which the equations of
α, β, and η conversion hold. In this fragment, a free variable cannot be applied to general
terms but only to bound variables that cannot appear free in eventual instantiations for
the free variable. This restriction means that all forms of β-reduction encountered during
unification are actually (α-equivalent) to the rule (λx.B)x = B (a conversion rule called β0).
Notice that in this setting, β-reduction reduces the size of terms: hence, unification takes on
a much simpler nature. The unification problems that result retain all three properties we
listed for first-order unification [20]. As a result, the integration of pattern unification into a
prover is usually much simpler than incorporating all the search behavior implied by Huet’s
(pre-)unification procedure.

A somewhat surprising fact about pattern unification is that many computational logic
systems actually need only this subset of higher-order unification in order to be “practically
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complete”: that is, restricting unification to just this subset did not stop the bulk of
specifications from being properly executed. For example, while both early implementations
of λProlog and LF [24, 28] implemented full higher-order unification, the most recent versions
of those languages implement only pattern unification [1, 30]. A design feature of both of
those systems is to treat any unification problem that is not in the pattern fragment as a
suspended constraint: usually, subsequent substitutions will cause such delayed problems
to convert into the pattern fragment. Processing of constraints may also be possible: the
application of pruning to flexible-flexible constraints in [22] is such an example. Also since
pattern unification does not require typing information, it has been possible to describe
variants of such unification in settings where types can play a role during unification: see for
example, generalizations of pattern unification for dependent and polymorphic types [27],
product types [13, 14], and sum types [2].

Since pattern unification is a weak fragment of higher-order unification, it is natural to
ask if it can be extended and still keep the same high-level properties. There have been
extensions of pattern unification considered in the literature. The generalization (mentioned
above) of pattern unification to patterns by Fettig and Löchner [14] and Duggan [13] allows
for constructors denoting projections to be admitted in the scope of free functional variables.
These projections are specific unary functions which are closed under a number of properties,
such as associativity. When attempting to encode the meta-theory of sequent calculus in
which eigenvariables are seen as abstractions over sequents [19], a single bound variable
was intended to be used as a list of bound (eigen)variables. Thus, in order to encode the
sequent judgment x0, . . . , xn ` Cx0 . . . xn (for n ≥ 0 and all variables being of the same
primitive type) one would instead use the simply typed term λl.C(fst l) . . . (fst(sndnl)), where
the environment abstraction l has type, say, evs, and fst and snd are constructors of type
evs → i and evs → evs, respectively. Tiu showed how to lift pattern unification to this
setting [33]. The Coq proof assistant allows for some limited forms of unification and many
simple unification problems can appear that should be automatically solved. A typical such
example is of the form λx.Y (gx) .= λx.f(gx), where Y is a free variable of type i→ i and f
and g are constructors of the type i→ i. Clearly, this problem has the mgu Y 7→ λz.fz but
it falls outside the pattern restriction. There are certain uses of Coq (for example, with the
bigop library of SSReflect) which produce a number of non-pattern unification problems.1

Let us return to the definition of pattern unification problems. The restriction on
occurrences of the free variable, say, M is that (1) it can be applied only to variables that
cannot appear free in terms that are used to instantiate M and (2) that those arguments are
distinct. Condition (1) essentially says that the arguments of M form a primitive pattern
that allows one to form an abstraction to solve a unification problem. Thus, M x y can
equal, say, (s x) + y simply by forming the abstraction λxλy.(s x) + y. Condition (2) implies
that such abstracts are unique.

The examples of needing richer unification problems above illustrate that it is also natural
to consider arguments built using variables and term constructors: that is, we should consider
generalizing condition (1) above by allowing the application λl(M (fst l) (fst (snd l))). If this
application is required to unify with a term of the form λl.t then all occurrence of l in t must
occur in subterms of the form (fst l) or (fst (snd l)). In that case, forming an abstraction
of t by replacing all occurrences of (fst l) and (fst (snd l)) with separate bound variables
gives a solution to this unification problem. To guarantee uniqueness of such solutions, we
shall also generalize condition (2) so that the arguments of M cannot be subterms of each

1 Personal communication with Enrico Tassi.
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other. This additional constraint is required here (but not in the papers by Duggan [13] and
Tiu [33]) since we wish to handle richer signatures than just those with monadic constraints.

Many of the examples leading to this generalization of pattern unification arise in situations
where operators (such as fst and snd) are really functions and not constructors: the intended
meaning of those two operators are as functions that map lists to either their first element
or to their tail. When they arise in unification problems, however, we can only expect
to treat them as constructors. Thus, we shall name this extended pattern unification as
function-as-constructor (pattern) unification, or just FCU for short.

The rest of this paper is structured as follows. We cover the basic concepts related to
higher-order unification in Section 2. The class of unification problems addressed in this
paper, the functions-as-constructor class, is defined in Section 3 as is a unification algorithm
for that class. We prove the correctness of that algorithm in Section 4. We conclude in
Section 5.

2 Preliminaries

2.1 The Lambda-Calculus
In this section we will present the logical language that will be used throughout the paper.
The language is a version of Church’s simple theory of types [11] with an η-conversion rule as
presented in [6] and [32] and with implicit α-conversions. Unless stated otherwise, all terms
are implicitly converted into β-normal and η-expanded form. Most of the definitions in this
section are adapted from [32].

Let T0 be a set of basic types, then the set of types T is generated by T := T0 |
T → T. Let C be a signature of function symbols and let V be a countably infinite set of
variable symbols. Variables are normally denoted by the letters l, x, y, w, z,X, Y,W,Z and
function symbols by the letters f, g, h, k, a or typed names like cons . W e sometimes use
subscripts and superscripts as well. We sometimes add a superscript to symbols in order
to specify their type. The set Termα of terms of type α is generated by Termα := fα |
xα | (λxβ .Termγ) | (Termβ→αTermβ) where f ∈ C, x ∈ V and α ∈ T (in the abstraction,
α = β → γ). Applications throughout the paper will be associated to the left. We will
sometimes omit brackets when the meaning is clear. We will also normally omit typing
information when it is not crucial for the correctness of the results. τ(tα) = α refers to
the type of a term. The set Term denotes the set of all terms. Subterms and positions are
defined as usual. We denote the fact that t is a (strict) subterm of s using the infix binary
symbol (@) v. Sizes of positions denote the length of the path to the position. We denote
the subterm of t at position p by t|p. Bound and free variables are defined as usual. We will
use the convention of denoting bound and universally quantified variables by lower letters
while existentially quantified variables will be denoted by capital letters. Given a term t,
we denote by hd(t) its head symbol and distinguish between flex terms, whose head is a free
variable and rigid terms, whose head is a function symbol or a bound variable.

We will use both set union (∪) and disjoint set union (]) in the text.
Substitutions and their composition (◦) are defined as usual. Namely, (σ ◦ θ)X = θ(σX).

id denotes the trivial substitution mapping each variable to itself. We denote by σ|W the
substitution obtained from substitution σ by restricting its domain to variables in W . We
denote by σ[X 7→ t] the substitution obtained from σ by mapping X to t, where X might
already exist in the domain of σ. We extend the application of substitutions to terms in
the usual way and denote it by postfix notation. Variable capture is avoided by implicitly
renaming variables to fresh names upon binding. A substitution σ is more general than a
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substitution θ, denoted σ ≤ θ, if there is a substitution δ such that σ ◦ δ = θ. The domain of
a substitution σ is denoted by dom(σ).

We introduce also a vector notation tn for the sequence of terms t1, . . . , tn. This notation
also holds for nesting of sequences. For example, the term f (X1 z1 z2) (X2 z1 z2) (X3 z1 z2)
will be denoted by fX3z2. The meaning of the notation λzn is λz1, . . . , λzn. When the order
of the sequence is not important, we will use this notation also for multisets.

2.2 Higher-order Pre-unification
In this section we present Huet’s pre-unification procedure [17] as defined in [32]. The
procedure will be proven, in Section 3.2, to be deterministic for the class of FCU problems.
This result, together with the completeness of the procedure, implies the existence of most-
general unifiers for unifiable problems of this class.

The presentation in this paper of both the pattern and FCU unification algorithms is
much simplified if the following non-standard normal form is being used. All terms, including
functional existential variables but excluding the arguments of these variables, are considered
to be in η-expanded form. The arguments of these variables are expected to be in η-normal
forms. In a similar manner to the one in [32], one can prove that all substitutions used in
this paper preserve this normal form.

I Definition 1 (Unification Problem). An equation is a formula t .= s where t and s are
βη-normalized (see remark above) terms. A unification problem is a formula of the form
∃Xm.e1 ∧ . . . ∧ en where ei for 0 < i ≤ n is an equation. Sets of equations are always closed
under symmetry, i.e. if t .= s is in the set, then also s .= t.

I Definition 2 (Unification System). A unification system over a signature C is the following
quadruple 〈Q∃, Q∀, S, σ〉 where Q∃ and Q∀ are disjoint sets of variables, S is a set of equations
and σ a substitution. Given a unification problem ∃Xm.e1∧. . .∧en we consider the unification
system over signature C by setting Q∃ = Xm, Q∀ = {}, S = {e1, . . . , en} and σ = id. Let
bvars(ei) = zn for ei = (λzn.ti

.= λzn.si).

An important property of terms in which we will be interested later is the subterm property
between terms of different equations. Such a property is not closed under α-renaming of
bound variables for our current definition of unification systems. Since we implicitly assume
such renaming in order to avoid variables capture, we have to add the following additional
requirement.

I Definition 3 (Regular Unification Systems). A regular unification system is a unification
system in which each bound variable which is bound in a different context has a different
name.

I Example 4. The system 〈∅, ∅, {λx.fx .= λx.gx, λy.hy
.= λy.ky}, id〉 is regular while the

system 〈∅, ∅, {λx.fx .= λx.gx, λx.hx
.= λx.kx}, id〉 is not.

The next lemma is easily proven.

I Lemma 5. The subterm property is closed under α-renaming of bound variables for regular
unification systems.

Regular unification systems will also be called systems.
Before presenting Huet’s procedure for pre-unification, we will repeat the definition of

partial bindings as given in [32].
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〈Q∃, Q∀, S ] {t
.= t}, σ〉 → 〈Q∃, Q∀, S, σ〉 (Delete)

〈Q∃, Q∀, S ] {λzk.ftn
.= λzk.fsn}, σ〉 → 〈Q∃, Q∀, S ] {λzk.t1

.= λzk.s1, . . . , λzk.tn
.= λzk.sn}, σ〉 (Decomp)

〈Q∃, Q∀, S ] {λzk.Xzk
.= λzk.t}, σ〉 → 〈Q∃, Q∀, Sθ ] {X

.= λzk.t}, σ ◦ θ〉 (Bind)
where X 6∈ fvars(t) and θ = [X 7→ λzk.t]

〈Q∃, Q∀, S ] {λzk.Xα(sn) .= λzk.f(tm)}, σ〉 → 〈Q∃, Q∀, S ] {X
.= u, λzk.X

α(sn) .= λzk.f(tm)}, σ〉 (Imitate)
where u = PB(f, α) and f ∈ C

〈Q∃, Q∀, S ] {λzk.Xα(sn) .= λzk.a(tm)}, σ〉 → 〈Q∃, Q∀, S ] {X
.= u, λzk.X

α(sn) .= λzk.a(tm)}, σ〉 (Project)
where 0 < i ≤ k, u = PB(i, α) and either a ∈ C or a = zi for some 0 < i ≤ k

Figure 1 PUA- Huet’s pre-unification procedure.

I Definition 6 (Partial bindings). A partial binding of type α1 → . . . → αn → β where
β ∈ T0 is a term of the form
λyn.a(λz1

p1
.X1(yn, z1

p1
), . . . , λzmpm .Xm(yn, zmpm)) for some atom a where

τ(yi) = αi for 0 < i ≤ n.
τ(a) = γ1 → . . .→ γm → β where γi = δi1 → . . .→ δipi → γ′i for 0 < i ≤ m.
γ′1, . . . , γ

′
m ∈ T0.

τ(zij) = δij for 0 < i ≤ m and 0 < j ≤ pi.
Xi is a fresh variable and τ(Xi) = α1 → . . .→ αn → δi1 → . . .→ δipi → γ′i for 0 < i ≤ m.

Partial bindings fall into two categories, imitation bindings, which for a given atom a and
type α, are denoted by PB(a, α) and projection bindings, which for a given index 0 < i ≤ n
and a type α, are denoted by PB(i, α) and in which the atom a is equal to the bound variable
yi. Since partial bindings are uniquely determined by an index, a type and an atom (up to
renaming of the fresh variables Xm), this defines a particular term.

I Definition 7 (Huet’s Pre-unification Procedure). Huet’s pre-unification procedure is given
in Figure 1. Note that the sets Q∃ and Q∀ are fixed during the execution and are mentioned
explicitly just for compatibility with the algorithms given later in the paper.

The next theorem states the completeness of this procedure.

I Theorem 8 ([32]). Given a system 〈Q∃, Q∀, S, id〉 and assuming it is unifiable by σ, then
there is a sequence of rule applications in Def. 7 resulting in 〈Q′∃, Q′∀, ∅, θ〉 such that θ ≤ σ.

2.3 Pattern Unification
In this section we describe the higher-order pattern unification algorithm in [20]. The notation
used is similar to the one in [25]. This algorithm forms the basis for our algorithm.

I Definition 9 (Pattern Systems). A system 〈Q∃, Q∀, S, σ〉 is called a pattern system if for
all equations ei ∈ S and for all subterms Xzn in these equations such that X ∈ Q∃ we have
that zn ⊆ Q∀ ∪ bvars(ei) and zi 6= zj for all 0 < i < j ≤ n.

The following simplification will be called during the execution of the algorithm given in
Def. 11.

I Definition 10 (Pruning). Given a pattern system 〈Q∃, Q∀, S, σ〉 such that λzn.Xz1
n
.=

λzn.r ∈ S, r contains an occurrence y such that y ∈ Q∀ ∪ zn and y 6∈ z1
n:

if there is a subterm Wz2
m of r such that y = z2

i for some 0 < i ≤ m, then return
〈Q∃ ] {W ′} \ {W}, Q∀, Sθ, σ ◦ θ〉 where θ = [W 7→ λz2

m.W
′z3
m−1] and z3

m−1 = z2
m \ {z2

i }.
otherwise, return 〈Q∃, Q∀,⊥, id〉.
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〈Q∃, Q∀, S ] {t
.= t}, σ〉 → 〈Q∃, Q∀, S}, σ〉 (0)

〈Q∃, Q∀, S ] {λx.s
.= λx.t}, σ〉 → 〈Q∃, Q∀ ] {x}, S ] {s

.= t}, σ〉 (1)
〈Q∃, Q∀, S ] {ftn

.= fsn}, σ〉 → 〈Q∃, Q∀, S ] {t1
.= s1, . . . , tn

.= sn}, σ〉 (2)
where f ∈ C ∪Q∀

〈Q∃ ] {X}, Q∀, S ] {Xzn
.= fsm}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉 (3)

where f ∈ C, X 6∈ fvars(fsm) and θ = [X 7→ λzn.fsm]

〈Q∃ ] {X}, Q∀, S ] {Xz1
n
.= Xz2

n}, σ〉 → 〈Q∃ ] {W}, Q∀, Sθ, σ ◦ θ〉 (4)
θ = [X 7→ λz1

n.Wz3
k

] and z3
k

= {z1
i | z

1
i = z2

i }

〈Q∃ ] {Y }, Q∀, S ] {Xz1
n
.= Y z2

m}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉 (5)
where X 6= Y , θ = [Y 7→ λz2

m.Xz
2
φ(m)] and φ is a permutation

such that φ(j) = i if z1
i = z2

j for 0 < i ≤ n and 0 < j ≤ m

Figure 2 Pattern Unification Algorithm.

I Definition 11 (Pattern Unification Algorithm). The pattern unification algorithm is the
application of the rules from Figure 2 such that before the application of rules (3) and (5)
we apply exhaustively pruning.

Paper [20] contains a proof that the algorithm from Def. 11 is terminating, sound and
complete.

3 A Unification Algorithm for FC Higher-order Unification Problems

3.1 FC Higher-order Unification (FCU) Problems
The main difference between pattern and FCU problems is in the form of arguments of
existentially quantified variables. While in pattern unification problems, these arguments
must be a list of distinct universally quantified variables which occur in the scope of the
existentially quantified one, we relax this requirement for FCU problems. This relaxation
still ensures the existence of mgus if the problems are unifiable.

I Definition 12 (Restricted Terms). Given C, Q∀ and an equation e, a restricted term in e is
defined inductively as follows:

a ∈ Q∀ ∪ bvars(e) is a restricted term.
ftn is a restricted term if n > 0, f ∈ C ∪Q∀ ∪ bvars(e) and ti is a restricted term for all
0 < i ≤ n.

When e is clear from the context, we will refer to these terms just as restricted terms.

We will use examples over C = {cons , fst , snd , nil} and Q∀ = {l, z} to explain the
definition and algorithms presented in the paper.

I Example 13. The terms l, (cons z, l ), (cons (fst l) l) and (snd (cons z l)) are restricted
terms over the above C and Q∀, while nil and (cons z nil) are not.

I Definition 14 (FCU Systems). A system 〈Q∃, Q∀, S, σ〉 is an FCU system if the following
three conditions are satisfied:

argument restriction - for all occurrences Xtn in S where X ∈ Q∃, ti for all 0 < i ≤ n
is a restricted term.
local restriction - for all occurrences Xtn in S where X ∈ Q∃ and for each ti and tj
such that 0 < i, j ≤ n and i 6= j, ti 6v tj .
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global restriction - for each two different occurrences Xtn and Y sm in S where
X,Y ∈ Q∃ and for each 0 < i ≤ n and 0 < j ≤ m, ti 6@ sj .

I Example 15. Some examples of the equations of FCU systems are {X l z
.= fst (snd l)} and

{cons (X (fst l)) (snd l) .= snd (Y (fst l) (fst (snd l)))}. Note that only the first example is
a pattern unification problem. Examples of non-FCU problems are {X (cons z nil) .= snd l}
which violates the argument restriction, {X (fst l) l .= cons z l} which violates the
local restriction and {X (fst l) .= snd (Y (cons (fst l) (snd l)))} which violates (only)
the global restriction.

It is important to note that when dealing with restricted unification problems, the global
restriction from above cannot be violated by occurrences within different equations. The
name global only refers, therefore, to the context of one equation.

The next proposition is easy to verify.

I Proposition 16. Pattern systems are FCU systems.

Before going on to show the properties of these problems, we would like to present a short
discussion about the motivation behind the restrictions above. The three restrictions are
required in order to maintain uniqueness of the result and will be used in the next section
in order to prove the determinacy of Huet’s procedure over FCU problems. Nevertheless,
we do not prove that this result does not hold when weakening the above restrictions. The
local restriction and global restriction can easily be shown to be required even for
very simple examples. This is not the case for the argument restriction. One alternative
is to weaken the restricted term definition from above to require only one subterm in the
second condition to be restricted. I.e. to allow terms such as (cons z nil) as arguments
of existential variables. In the following, we will give a counter-example to this weaker
restriction. Still, it should be noted that the counter-example depends on allowing inductive
definitions containing more than one base case (in particular, we allow for different empty
list constructors nil1 and nil2). When such definitions are not allowed, it may be possible
to prove the results given in this paper for a stronger class of problems.

I Example 17. 〈{X,Y }, {z, z2}, {X (cons z nil1) (cons z nil2) .= cons z (Y z2)}, id〉 is
unifiable by the following two incompatible substitutions:
1. [Y 7→ λz1.nil1, X 7→ λz1, z2.z1].
2. [Y 7→ λz1.nil2, X 7→ λz1, z2.z2].

3.2 The Existence of Most-general Unifiers
From this section on, an FCU problem will be referred to simply as system, unless indicated
otherwise.

In [32] it is claimed that the only “don’t-know" non-determinism in the general higher-
order procedure stems from the choice between the different applications of (Imitate) and
(Project). We prove that fulfilling the three restrictions in Def. 14 makes these choices
deterministic.

We first prove a couple of auxiliary lemmas.

I Lemma 18. let t be a restricted term, s a term containing the subterm Xrn and σ a
substitution such that t = sσ, then there is a restricted term t′ such that t′ = Xrnσ.

Proof. Let k be the length of the position of Xrn in s, we prove by induction on k.
k = 0, then t′ = t.
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k > 0, then s = fsm and fsmσ = ftm = t. Since t is restricted, by definition so are
t1, . . . , tm. Assume Xrn occurs in si, then, according to the inductive hypothesis, there
is a restricted term t′ such that t′ = Xrnσ. J

I Lemma 19. Given a unifiable equation Xtn
.= r, where r is a restricted term. Then, there

is 0 < i ≤ n such that ti is a subterm of r.

Proof. Assume the contrary and let σ be the unifier. Then, Xtnσ = r. By definition, r
contains a symbol a ∈ Q∀ and we get a contradiction. J

I Lemma 20. Let t = t′tk and s = fsn such that t′ is a restricted term and f ∈ C ∪Q∀. If
t
.= s is unifiable, then t = fvn−ktk for restricted terms vn−k.

Proof. Since t′ is restricted, it does not contain abstractions and variables and as t is unifiable
with s, it can be written as fvn−k. Since t′ is restricted, all its subterms are restricted as
well. J

The next two lemmas prove the determinism claim on applications of (Project) and
(Imitate).

I Lemma 21. Given the equation Xtn
.= fsm where X does not occur in fsm and assuming

we can obtain the following two equations by applying the substitutions σ0 = X 7→ λzn.ziXmzn
and θ0 = X 7→ λzn.zjYkzn for some 0 < i < j ≤ n:

tiXltn
.= fsm (1)

and

tjYktn
.= fsm (2)

Then, there are no substitutions σ and θ such that σ unifies equation 1 and θ unifies equation
2.

Proof. Assume the existence of the two unifiers and obtain a contradiction. According to
Lemma 20, we can rewrite the two equations as

fvm−lXltn
.= fsm (3)

and

fum−kYktn
.= fsm (4)

for restricted terms vm−l and um−k. Assume, wlog, that l ≥ k. Note also, that since ti 6= tj
and ti, tj have f as head symbol, m ≥ m− k > 0. We consider two cases:

s1, . . . , sm−k are all ground terms. In this case and since both equations are unifiable, we
get the equation

fvm−lXl−ktnσ = fsm−k = fum−k (5)

Clearly, k 6= l since otherwise ti = tj which violates the local restriction from Def.
14. We can now conclude that

X1tnσ = um−l+1 (6)

Since um−l+1 is a restricted term then, according to Lemma 19, there is 0 < k1 ≤ n such
that tk1 is a subterm of um−l+1. Since um−l+1 is a subterm of tj , we get that tk1 is a
subterm of tj which contradicts the local restriction.
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There is sk1 for 0 < k1 ≤ m− k which contains an occurrence of Zrk2 . This must occur
as a subterm of sk1 as otherwise the subterm Zrk2r

′ where r′ is not a restricted term,
violates the argument restriction. Since sk1θ = uk1 and uk1 is a restricted term, we
have, according to Lemma 18, that there exist a restricted term u′ such that Zrk2θ = u′.
Using Lemma 19, we can conclude that there is 0 < k3 ≤ k2 such that rk3 is a subterm of
u′, which is a subterm of uk1 which is a strict subterm of tj , which violates the global
restriction. J

I Lemma 22. Given the equation Xtn
.= fsm where X does not occur in fsm and assuming

we can obtain the following two equations by applying the substitutions σ0 = X 7→ λzn.fXmzn
and θ0 = X 7→ λzn.zjYkzn for some 0 < j ≤ n:

fXmtn
.= fsm (7)

and

tjYktn
.= fsm (8)

Then, there are no substitutions σ and θ such that σ unifies equation 7 and θ unifies equation
8.

Proof. Assume the existence of the two unifiers and obtain a contradiction. Using Lemma
20, we can rewrite Eq. 8 as:

fvm−kYktn
.= fsm (9)

where v1, . . . , vm−k are restricted terms and strict subterms of tj . Since f is imitated, it is
not a restricted term and f 6= tj which implies that m− k > 0. Eq. 9 tells us that v1 = s1θ

which implies that s1θ is a strict subterm of tj and a restricted term. On the other hand, we
have that X1tn = s1σ from Eq. 7. We consider two cases:

s1 is ground. In this case we can use Lemma 19 and the fact that s1 is a restricted term
to conclude that there is 0 < k1 ≤ n such that tk1 is a subterm of s1. On the other hand,
we know that s1 is a strict subterm of tj and therefore we get that tk1 is a strict subterm
of tj , which contradicts the local restriction..
If s1 is not ground, it must contain an occurrence Zrl. This occurrence cannot occur as the
subterm Zrlr

′ where r′ is not a restricted term as it violates the argument restriction.
Therefore, Zrl is a subterm of s1. Since s1θ = v1 and since v1 is a restricted term, we
can use Lemma 18 to get that there is a restricted term v′ such that Zrl = v′. Now we
use Lemma 19 and get that there is 0 < k1 ≤ l such that rk1 is a subterm of v′, which is
a strict subterm of tj . We get again a contradiction to the global restriction. J

I Theorem 23 (The existence of most-general unifiers). Given a unifiable FCU system S,
then applying the procedure in Def. 7 to S terminates and returns a most-general unifier for
S.

Proof. The procedure in Def. 7 computes complete sets of unifiers and terminates with an
element in this set [32]. Using the lemmas 21 and 22 we obtain that all transformations
are deterministic. Therefore, the complete set contains only one element, which is the
most-general unifier of S. J
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〈Q∃, Q∀, S ] {t
.= t}, σ〉 → 〈Q∃, Q∀, S, σ〉 (0)

〈Q∃, Q∀, S ] {λx.s
.= λx.t}, σ〉 → 〈Q∃, Q∀ ] {x}, S ] {s

.= t}, σ〉 (1)
〈Q∃, Q∀, S ] {ftn

.= fsn}, σ〉 → 〈Q∃, Q∀, S ] {t1
.= s1, . . . , tn

.= sn}, σ〉 (2)
where f ∈ C ]Q∀

〈Q∃ ] {X}, Q∀, S ] {Xtn
.= fsm}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉 (3)

where f ∈ C, X 6∈ fvars(fsm) and θ = [X 7→ λzn.fsm |tnzn ]

〈Q∃ ] {X}, Q∀, S ] {Xtn
.= Xsn}, σ〉 → 〈Q∃ ] {W}, Q∀, Sθ, σ ◦ θ〉 (4)

where W 6∈ Q∃, tn 6= sn, θ = [X 7→ λzn.Wzrk ] and rk = {i | 0 < i ≤ n ∧ ti = si}

〈Q∃ ] {Y }, Q∀, S ] {Xtn
.= Y sm}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉 (5)

where X 6= Y , θ = [Y 7→ λzm.Xzφ(m)] and φ is a permutation (see Lemma 36)

such that φ(j) = i if ti = sj for 0 < i ≤ n and 0 < j ≤ m

Figure 3 An algorithm for FCU problems.

3.3 The Unification Algorithm
For defining the unification algorithm, we need to slightly extend the definition of pruning.

I Definition 24 (Covers). A cover for Xtn and a restricted term q is a substitution σ such
that Xtnσ = q.

Note, uniqueness of covers follows from Theorem 23

I Example 25. The following substitution [X 7→ λz1λz2.cons (fst z1) z2] is a cover for
(X l z) and (cons (fst l) z).

I Definition 26 (Pruning). Given an FCU system 〈Q∃, Q∀, S, σ〉 such that (Xtn
.= r) ∈ S

and r contains an occurrence of a maximal restricted term q such that q 6∈ tn:
if there is a subterm Wsm of r such that q = si for some 0 < i ≤ m, then return
〈Q∃ ] {W ′} \ {W}, Q∀, Sθ, σ ◦ θ〉 where θ = [W 7→ λzm.W

′z′m−1] and z′m−1 = zm \ {zi}.
else if there is no cover ρ for Xtn and q, then return 〈Q∃, Q∀,⊥, id〉.
else, do nothing.

I Example 27. Given the system 〈{X,Y,W,Z}, {l, w, z}, {X (snd l) z .= Y z (fst l),
W (fst l) z .= snd (Z w (fst l))}, id〉, we can apply the following three prunings, σ1 =
[Z 7→ λz1, z2.Z

′z1], σ2 = [Y 7→ λz1, z2.Y
′z1] and σ3 = [x 7→ λz1, z2.X

′z2] and obtain the
system 〈{X ′, Y ′,W,Z ′}, {l, w, z}, {X ′ z .= Y ′ z,W (fst l) z .= snd (Z ′ z)}, σ1 ◦ σ2 ◦ σ3〉.

For the next definition, we will use the following replacement operator r |tnzn to denote
the replacement of each occurrence ti in r with zi for 0 < i ≤ n.

I Definition 28 (Algorithm for FCU Systems). The rules of an algorithm for the unification
of FCU systems is given in Figure 3 where before the application of rules (3) and (5) we
apply exhaustively pruning.

I Example 29. The following problem is contained in one of the classes of problems discussed
in the introduction: ∃X∃Y λl1λl2.X (fst l1) (fst (snd l1)) .= λl1λl2.snd (Y (fst l2) (fst l1))
Figure 4 gives a full execution of the algorithm on it.

Notice that this algorithm can also work with terms that are essentially untyped: it is
the presence or absence of constructors and bound variables that matters in this algorithm
and not the types of those constructors and variables. Rich typing can, of course, be used to
disallow unifiers that are created by considering terms to be type-less.
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〈{X,Y }, ∅, {λl1λl2.X (fst l1) (fst (snd (l1))) .= λl1λl2.snd (Y (fst l2) (fst l1))}, id〉 →(1)×2

〈{X,Y }, {l1, l2}, {X (fst l1) (fst (snd (l1))) .= snd (Y (fst l2) (fst l1))}, id〉 →prun

〈{X,Y ′}, {l1, l2}, {X (fst l1) (fst (snd (l1))) .= snd (Y ′ (fst l1))}, [Y 7→ λz1λz2.Y
′z2]〉 →(3)

〈{Y ′}, {l1, l2}, {snd (Y ′ (fst l1)) .= snd (Y ′(fst l1))}, [Y 7→ λz1λz2.Y
′z2, X 7→ λz1λz2.snd (Y ′z1)]〉 →(0)

〈{Y ′}, {l1, l2}, ∅, [Y 7→ λz1λz2.Y
′z2, X 7→ λz1λz2.snd (Y ′z1)]〉

Figure 4 An example of a reduction on an FCU.

4 Correctness of the Algorithm

The unification algorithm transforms systems by the application of substitutions and by the
elimination of equations. We prove next that the application of rules of the algorithm in Def.
28 on FCU problems results in FCU problems as well.

I Lemma 30. Given an FCU problem, then the application of rules from Def. 28 results in
ain FCU problem.

Proof. Removing equations from the system clearly preserves the restrictions of FCU prob-
lems. This result is also immediate when applying substitutions as the only change to the
arguments of the variables in the problem is to eliminate them and we have already claimed
that the subterm property is closed under α-renaming for these problems in Lemma 5. J

The following lemma states that projected arguments of variables on one side of the
equation must always match arguments on the other side.

I Lemma 31. Let Xtn
.= r be an equation such that r contains an occurrence of Y sm where

r 6= Y sm and let σ be a unifier of this equation such that σY = λzm.s. Then, for each
occurrence zi in s for 0 < i ≤ m, there is 0 < j ≤ n such that si = tj.

Proof. We prove by induction on the number of occurrences. If s does not contain such
occurrence, then the lemma clearly holds. Assume s contains an occurrence zi for 0 < i ≤ m
and that there is no 0 < j ≤ n such that si = tj . In case there is more than one such
occurrence in s, choose this occurrence to be in a minimal such subterm, i.e. zi occurs in
a subterm zivk such that all occurrences of z ∈ zm in vk fulfill the requirement that there
is tj = z for some 0 < j ≤ n. Let λzm.zivk(sm) = siv′k. Since r 6= Y sm and the argument
restriction, we have that Y sm @ r. Since Xtnσ = rσ, we get that siv′k @ Xtnσ. Since si
is a restricted term, we get that there is 0 < j ≤ n such that either

siv′k v tj . By the minimality assumption, if v′k contains a restricted term, then it must
be equal to some tl 0 < l ≤ n and therefore, that tl @ tj , which contradicts the local
restriction. Therefore, since tj is a restricted term, k = 0. We obtain that si v tj and
since si 6= tj by assumption, we get, again, a contradiction to the global restriction.
tj v si. Again, since si 6= tj , we get a contraction to the global restriction. J

We now prove, for each rule in the FCU algorithm, a relative completeness result. We
start by the non-unifiability of problems with a positive occur check.

I Lemma 32. Let 〈Q∃, Q∀, S∪{Xtn
.= fsm}, σ〉 be a system such that X occurs in sm, then

the system is not unifiable.

Proof. Assume it is unifiable by θ and θX = λzn.s. Consider two cases:
s does not contain any occurrence of a variable zi for 0 < i ≤ n. Let #t be the number
of occurrences of symbols from C in t. Then, #(Xtnθ) = #(θX) ≤ #(smθ) < #(fsmθ)
and we get a contradiction to Xtnθ = fsmθ.
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In case s contains such an occurrence and let Xqn be the occurrence in sm. According to
Lemma 31, we know that for all occurrences of zi in s for 0 < i ≤ n, there is an index
0 < j ≤ n such that tj = qi. Let ρ be the mapping between indices defined as above such
that ρ(i) = j. Let rk be the set of indices 0 < i ≤ n which occur in s for some k ≤ n.
Let p′ be the non-trivial position of Xqn in fsm and let p be the maximal position of a
zi in s for i ∈ rk. This means we have qi at position p′ ◦ p in fsmθ and since tρ(i) = qi
and Xtnθ = fsmθ, we get that tρ(i) occurs at position p′ ◦ p in Xtnθ. Since tρ(i) is a
restricted term, there is an occurrence of zρ(i) in s at position p′ ◦ p, in contradiction to
the maximality of p. J

I Lemma 33. Given a system 〈Q∃, Q∀, S, ρ} where Xtn
.= r ∈ S and assuming we apply

pruning in order to obtain system 〈Q∃, Q∀, S′, ρ′} as defined in Def. 26, then, if S is unifiable
by substitution σ, then there is a substitution σ′, such that σ = θ ◦ σ′. If S is not unifiable,
then S′ is not unifiable.

Proof. The rule is applicable only if there is such an occurrence q. Otherwise, S = S′ and
θ = id. We consider the two cases in the lemma:

there is a subterm Y sm of r such that q = si for 0 < i ≤ m. If S is not unifiable, then
assume S′ is unifiable by σ′ and since S′ = Sθ, we get that S is unifiable by θ ◦ σ′, a
contradiction. Assume the system is unifiable and let σY = λzm.s. Then, according
to Lemma 31, either there is 0 < j ≤ n, such that tj = si, which contradicts the
assumption, or s does not contain an occurrence of si. In the second case, by taking
σ′ = σ|V(S)\{Y }[W 7→ λzrm−1 .Y zmσ] where zm \ z′m−1 6⊆ Q∀, we get that Y smσ =
Wsrm−1σ

′ = Y smθ ◦ σ′.
If there is no such cover, then there is no substitution which unifies this equation. J

I Lemma 34. Given a system 〈Q∃, Q∀, S, ρ〉 where Xtn
.= s ∈ S and X does not occur in s

and assuming we apply the substitution θ as defined in rule (3) in Figure 3. Then, if σ a
unifier of S, then there is σ′ such that σ = θ ◦ σ′.

Proof. We prove by induction on the structure of s. Note that two base cases are also
defined in the last two cases below for m = 0.

s = Y sm for 0 ≤ m. Note, that in this case, since ti 6@ sj for 0 < i ≤ n and 0 < j ≤ m

and that since m ≤ n due to pruning, we get that Xtnθ = Y tφ(m) for φ defined as in rule
(5) in Figure 3. The rest of the proof is similar to the proof of Lemma 36.
s = tism for some 0 < i ≤ n and 0 ≤ m and therefore θX = λzn.zis′m for some s′m.
Assume applying (Project) with the substitution θ′ = λzn.ziXmzn as defined in Def. 7.
After applying (Bind) and possibly also several (Decomp), we get the problem, since X
cannot occur in s,

S′θ′ ∪ {X1tn
.= s1, . . . , Xmtn

.= sm} (10)

Since, by assumption, Xtn
.= tism is unifiable and ti is a restricted term, it follows, using

an argument similar to the one in the proof of Lemma 21, that also each of the Xjtn
.= sj

is unifiable by some σoj for 0 < j ≤ m. By following lemmas 21 and 22, we have that
applying any other projection or imitation to Xtn

.= tism will render it non-unifiable. By
using Theorem 8, we have that σoj can be extended into a unifier σj of S′θ′ ∪{Xjtn

.= sj}
for all 0 < j ≤ m and σ = θ′ ◦ σ1 ◦ . . . ◦ σm. By applying the induction hypothesis, we get
that there are substitutions σ′j unifying S′θ′ ∪ {Xjtn

.= sj} for all 0 < j ≤ m such that
σj = θj ◦ σ′j for θjXj = λzn.s

′
j . I.e. that σ = θ′ ◦ θ1 ◦ σ′1 ◦ . . . ◦ θm ◦ σ′m. Since each σj is

a unifier of the above equations and σ is a unifier of S, we get that for each m ≥ j′ > j,
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σ′j′ ≤ σ′j |dom(σ′
j′

). From this, together with the fact that the domain and range of each
σ′j do not contain variables from the domain of each θj′ for 0 < j < j′ ≤ m, we get that
σ = θ′ ◦ θ1 ◦ . . .◦ θm ◦σ′1 ◦ . . .◦σ′m. On the other hand, by applying θ, we get the problem

S′θ ∪ {s′1
.= s1, . . . , s

′
m
.= sm} (11)

But, since θ = θ′ ◦ θ1 ◦ . . . ◦ θm, we just need to choose σ′ = σ′1 ◦ . . . ◦ σ′m and we have
σ = θ ◦ σ′.
s = fsm for 0 ≤ m and therefore θX = λzn.fs′m. Assume applying (Imitate) with
the substitution θ′ = λzn.fXmzn. After applying (Bind) and a (Decomp), we get the
problem, since x cannot occur in s,

S′θ′ ∪ {X1tn
.= s1, . . . , Xmtn

.= sm} (12)

From here we follow as before and use again Theorem 8 and Lemma 22. J

I Lemma 35. Given a system 〈Q∃, Q∀, S′ ∪ {Xtn
.= Xsn}, ρ〉 and assuming we apply the

substitution θ as defined in rule (4) in Figure 3. Then, if the system is unifiable by a
substitution σ, then there is σ′ such that σ = θ ◦ σ′.

Proof. Assume that σX = λzn.s, we first prove that there is no occurrence zi in s such that
there is 0 < j ≤ k where i = rj and ti 6= si. Assume on the contrary, then Xtnσ = Xsnσ

which implies that ti = si. Now we can define σ′ = σ|V(S)\{X}[W 7→ λzrk .Xznσ] where
zn \ zrk 6⊆ Q∀ are new variables. J

I Lemma 36. Given a system 〈Q∃, Q∀, S′ ∪ {Xtn
.= Y sm}, ρ〉 where X 6= Y and assuming

we apply the substitution θ as defined in rule (5) in Figure 3. Then, if the system is unifiable
by a substitution σ, then there is σ′ such that σ = θ ◦ σ′.

Proof. First note that since we apply pruning beforehand (in a symmetric way), n = m

and φ is indeed a permutation. Assume, wlog, that σX = λzn.s. We know that for each
occurrence zi in s for 0 < i ≤ n, si = tφ(i). By choosing σ′ = σ|V(S)\{Y }, we get that
Y smσ = Xsφ(m)σ = Xsφ(m)σ

′ = Y smθ ◦ σ′. Therefore, σ = θ ◦ σ′. J

I Theorem 37 (Termination). Given a system 〈Q∃, Q∀, S, σ〉, the algorithm in Def. 28 always
terminates.

Proof. Let the tuple m = 〈m1,m2〉 where m1 is the size of the set Q∃ and m2 is the number
of all symbols except .= in S. Consider its lexicographical order, it is clear that m is well
founded. We show that it decreases with every rule application of the algorithm:

rules (0), (1) and (2) decrease m2 and do no increase m1.
rule (3) decreases m1.
rule (4) decreases m2 and does not increase m1.
rule (5) decreases m1.
pruning decreases m2 and does not increase m1. J

I Theorem 38 (Completeness). Given a system 〈Q∃, Q∀, S, id〉 and assuming it is unifiable
by σ, there there is a sequence of rule applications in Def. 28 resulting in 〈Q′∃, Q′∀, ∅, θ〉 such
that θ ≤ σ.

Proof. Since the algorithm terminates and since it has a rule application for each unifiable
equation, we obtain at the end the above system. Lemmas 32, 33, 34, 35 and 36 then give
us that for any unifier σ of S, there is a substitution σ′ such that σ = θ ◦ σ′. Therefore,
θ ≤ σ. J
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The next theorem is an easy corollary of the completeness theorem.

I Theorem 39 (Most-general unifier). Given a system 〈Q∃, Q∀, S, id〉, if the algorithm defined
in Def. 28 terminates with system 〈Q′∃, Q′∀, ∅, σ〉, then σ is an mgu of S.

Proof. Since the algorithm in Def. 28 is deterministic, then we can use Theorem 38 in order
to prove that σ is an mgu. J

The next theorem is proved by simulating the algorithm in Def. 28 using the procedure
in Def. 7.

I Theorem 40 (Soundness). Given a system 〈Q∃, Q∀, S, id〉 and assuming there is a sequence
of rule applications in Def. 28 resulting in 〈Q′∃, Q′∀, ∅, θ〉, then θ is a unifier of S.

Proof. It is obvious we can simulate each of the rules (0), (1), (2) and (3) using the procedure
in Def. 7. We get the required result by using Theorem 23. For rules (4), (5) and the first
case of pruning, assume there is another substitution ρ such that ρ unifies the problem and
ρ 6< θ. This can only happen if ρX = λzn.W ′rk′ such that rk ⊂ r′k′ . Lemma 35 states that
there is no unifier ω and a substitution γ such that ω = ρ ◦ γ. Since the second case of
pruning results in failure, we are done. J

5 Conclusion

We have described an extension of pattern unification called function-as-constructor unifica-
tion. Such unification problems typically show up in situations where functions are applied
to bound variables and where such functions are treated as term constructors (at least during
the process of unification). We have shown that the properties that make first-order and
pattern unification desirable for implementation – decidability and the existence of mgus
for unifiable pairs – also hold for this class of unification problems. We are planning an
implementation within the Leo-III theorem prover [35] and we then plan to compare this
approach to unification with the implementation of Huet’s pre-unification algorithm available
in Leo-III when exercised against the THF set of problems within TPTP [8].

Another possible extension of the work is to improve its complexity class. The current
algorithm, like the one in [20] and first-order unification algorithms which are used in practice,
is of an exponential complexity. We would like to follow the work of Qian [34] and prove
that FCU is of linear complexity.
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Abstract
An important problem in universal algebra consists in finding presentations of algebraic theories
by generators and relations, which are as small as possible. Exhibiting lower bounds on the
number of those generators and relations for a given theory is a difficult task because it a priori
requires considering all possible sets of generators for a theory and no general method exists.
In this article, we explain how homological computations can provide such lower bounds, in a
systematic way, and show how to actually compute those in the case where a presentation of
the theory by a convergent rewriting system is known. We also introduce the notion of coherent
presentation of a theory in order to consider finer homotopical invariants. In some aspects, this
work generalizes, to term rewriting systems, Squier’s celebrated homological and homotopical
invariants for string rewriting systems.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases term rewriting system, Lawvere theory, Tietze equivalence, resolution,
homology, convergent presentation, coherent presentation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.27

1 Introduction

An algebraic theory is a mathematical structure specified by operations, with given arities,
and relations between those, i.e. a term rewriting system if we consider the relations as being
oriented. For instance, the theory of groups is given by three operations m of arity two (the
multiplication), e of arity zero (the neutral element) and i of arity one (the inverse), subject
to the five expected relations:

m(e, x1) = x1 m(x1, e) = x1 m(m(x1, x2), x3) = m(x1,m(x2, x3))
m(i(x1), x1) = e m(x1, i(x1)) = e

Of course there are many ways of specifying, or presenting, an algebraic theory. For instance,
the relations in the second column are derivable from the other, and we could therefore
as well remove them and still get a presentation for the theory of groups, with only three
relations. This observation is in fact the starting point of the work of Knuth and Bendix in
rewriting theory [10]: by adding derivable relations, in good cases one can obtain a set of
relations which are much better behaved from a computational point of view, such as being
confluent and terminating, without changing the presented theory. In the case of the theory
of groups, one can actually come up with an even smaller presentation by considering other
generators; it can be axiomatized with only two generators a of arity zero (standing for any
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element, in order to exclude the “empty group”) and d of arity two (standing for division)
subject to only one relation [7]:

d(x1, d(d(d(d(x1, x1), x2), x3), d(d(d(x1, x1), x1), x3))) = x2 (1)

see also [24, 23] for other possible axiomatizations of the theory of groups with one relation.
This quest for small presentations was initiated by Tarski who first gave a similar

presentation of abelian groups with one rule [30]: those with only one relation are of particular
interest and are sometimes called one-based theories in the literature. As illustrated in the
example above, this is not an easy task: in the case of groups, one had to think of completely
changing the set of generators and relations... Let us briefly recall some achievements in the
field, a detailed overview of the subject can be found in [17]. The theories of semi-lattices [27]
and distributive lattices [20] are not one-based. In contrast the theory of lattices is one-based:
first, a unique relation was shown to exist by general methods [20], giving rise to a relation of
length 300000 on 34 variables, and was then reduced to one of length 29 on 8 variables [18].
Similarly, for boolean algebras a single axiom was provided [26], but its size was more
than 40 million symbols [17], and shorter axioms (around a dozen of symbols) were found
afterward [19] by using intensive combinatorial computations.

In this article, we provide a novel method of showing that a theory is not one-based,
using homological invariants, when the theory is given by a convergent rewriting system. The
results mentioned above (such as semi- and distributive lattices) required lots of inventivity
and are specific to the considered cases. By contrast, our methods are completely mechanical:
by performing a series of computations, one obtains a lower bound on the number of rules in
any presentation of the theory, and if this lower bound is greater than two, we know that we
need at least two relations to present it, and therefore that the theory is not one-based. Of
course, our method does not always gives interesting results: it might answer zero as a lower
bound, from which we cannot conclude anything.

Homological invariants

The homology of a space consists in a sequence of groups which encode the number of “holes”
in each dimension, and moreover they constitute invariants of the spaces in the sense that
two homotopy equivalent spaces have the same associated groups [15, 6]. Homology can
also be computed for algebraic structures which are not obviously spaces, such as monoids,
groups, algebras, operads, etc. In the case of monoids, Squier has shown how to compute
those invariants in small dimensions [28, 12] when the monoid is presented by a convergent
string rewriting system, and this construction has since then been generalized in every
dimension [11]. Here also, the interest of this construction lies in the fact that, even though
it is constructed from a particular presentation, it does not actually depend on the choice of
the presentation, only the presented monoid. In particular, the rank of the second homology
group is, by construction, a natural number which is smaller than the number of relations of
the presentation used to compute it, and thus a lower bound for the number of relations of
any presentation since it is an invariant.

In this article, we generalize this approach from monoids presented by convergent string
rewriting systems to algebraic theories presented by convergent term rewriting systems,
and use the resulting homology computations to provide lower bounds on the number of
generators or relations required to present an algebraic theory. This work is based on Jibladze
and Pirasvili’s definition of a cohomology for algebraic theories [8, 9], as well as Malbos’
PhD thesis [16]. The first contribution of this article is to reformulate in concrete terms the
fairly abstract categorical definitions used in those works. We also introduce a resolution
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when the algebraic theory admits a convergent presentation, which allows us to compute the
homology in practice, using classical constructions in rewriting theory and linear algebra.
Finally, we also explain how those invariants can be refined into ones of more homotopical
nature by introducing a notion of coherent presentation for algebraic theories. Due to space
constraints we cannot detail all the constructions performed here, and advise the reader
willing to grasp the details to first understand the simpler case of monoids [28, 12], of which
this construction is largely inspired; details shall be given somewhere else, and the present
article focuses mainly on computations and applications.

2 Presentations of Lawvere algebraic theories

2.1 Term rewriting systems
Terms

A signature (P1, σ0) consists of a set P1 of operations together with a function σ0 : P1 → N asso-
ciating to each operation its arity. Supposing fixed an infinite countable set
X = {x1, x2, . . .} of variables, one can consider terms generated by operations with variables
in this set, which are defined as usual. We write FV(t) for the set of indices of free variables
occurring in a term, e.g. FV(f(x2, g(x2, x5)) = {2, 5}. Parallel substitution of xi by ti in a
term u is denoted u[t1/x1, . . . , tn/xn].

The terms generated by the signature form a category, denoted P∗1, whose objects
are natural numbers and morphisms in P∗1(m,n) are n-uples 〈t1, . . . , tn〉 of terms ti with
free variables in {x1, . . . , xm}. Composition of two morphisms 〈t1, . . . , tn〉 : m → n and
〈u1, . . . , up〉 : n→ p is induced by substitution as follows:

〈u1, . . . , up〉 ◦ 〈t1, . . . , tn〉 = 〈u1[t1/x1, . . . , tn/xn], . . . , up[t1/x1, . . . , tn/xn]〉

and the identity on n is 〈x1, . . . , xn〉 : n→ n. We sometimes overload the notation and denote
by P∗1 =

∐
m,n∈N P∗1(m,n) the class of all morphisms of this category and by σ∗0 , τ∗0 : P∗1 → N

the functions respectively associating to a morphism its source and target, also called its
arity and coarity. Note that terms are the morphisms of coarity 1. We write ι1 : P1 → P∗1 for
the canonical inclusion, sending an n-ary operation f to the term f(x1, . . . , xn).

Term rewriting systems

We suppose fixed a signature as above. A term rewriting system on the signature P1
consists of a set P2, whose elements are called rewriting rules, together with two functions
σ1, τ1 : P2 → P∗1 associating to each rule its source and target which should be (1-uples of)
terms. The source and target of a rule should have the same arity, which is called the arity
of the rule. A rewriting system together with the corresponding signature thus consists of a
diagram of sets and functions

P =

P1σ0

xx
τ0

xx

ι1

��

P2σ1

xx
τ1

xxN P∗1
σ∗0oo
τ∗0

oo

such that σ∗0 ◦ σ1 = σ∗0 ◦ τ1.

We sometimes write R : t⇒ u to denote a rule R with σ1(R) = t and τ1(R) = u. Note that
we consider the signature as being part of the rewriting system.

FSCD 2016
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I Example 1 (Monoids). The rewriting system corresponding to monoids has operations
P1 = {m, e}, with σ0(m) = 2 and σ0(e) = 0, and rewriting rules P2 = {A,L,R} with
σ1(A) = m(m(x1, x2), x3), τ1(A) = m(x1,m(x2, x3)), σ1(L) = m(e, x1), σ1(R) = m(x1, e),
τ1(L) = τ1(R) = x1. Such a rewriting system will often be written more concisely

〈m : 2, e : 0 | A : m(m(x1, x2), x3)⇒ m(x1,m(x2, x3)), L : m(e, x1)⇒ x1, R : m(x1, e)⇒ x1〉

I Example 2 (Groups). The rewriting system for groups is obtained from the rewriting
system for monoids by adding a generator i of arity one and relations I : m(i(x), x)⇒ e and
I ′ : m(x, i(x))⇒ e.

Contexts

An n-ary context C is a term with variables in {x1, . . . , xn,�}, in which the “variable” �
occurs exactly once and is called the hole of C. Given a term t, the substitution C[t/�] is
often denoted C[t]. The n-ary contexts form a category Kn with one object, morphisms being
n-ary contexts, with composition given by substitution D ◦C = D[C] and neutral element by
the identity context �. In turn, these categories induce a functor K : (P∗1)op → Cat, sending
an object n to Kn and a morphism u = 〈u1, . . . , un〉 : m→ n to the functor Ku : Kn → Km
such that the image of an n-ary context C is the m-ary context KuC = C[u1/x1, . . . , un/xn].
In the following, we simply write Cu instead of KuC, and the previous categorical discussion
boils down to the simple facts that (Cu)v = C(u ◦ v), Cid = C, (D ◦ C)u = D ◦ (Cu) and
�u = �. An occurrence of a variable xi in a term t is a context obtained from t by replacing
exactly one instance of the variable xi by �, those will be formally defined (in a linear
context) in Definition 13.

We write KK for the category whose objects are natural numbers and morphisms in KK(m,n)
are bicontexts, i.e. pairs (C, u) consisting of a context C with variables in
{x1, . . . , xn}, and a morphism u ∈ P∗1(n,m). The composition of two morphisms
(C, u) : m → n and (D, v) : n → p is given by (D, v) ◦ (C, u) = (D ◦ Cv, u ◦ v) and
the identity on n is (�, idn) : n → n. Note that composition is reversed in the second
component. A bicontext (C, u) : m → n induces a function C[−]u : P∗1(m, 1) → P∗1(n, 1)
which to a term t associates the term C[t ◦ u], which we will write C[t]u in the following;
for this reason, we will sometimes abusively write C[−]u for a context in order to avoid
introducing heavy notations. This function is easily shown to be compatible with composition
and substitution:

D[C[t]u]v = (D ◦ C)[t](u ◦ v) �[t]id = t (C[t]u) ◦ v = (Cv)[t](u ◦ v)

In particular, we have C[t]id = C[t] which makes the notation unambiguous on this point,
and we will always write composition symbol “◦” in order to avoid confusion in wrt the
equation on the right above.

In the following, when we need to distinguish between multiple rewriting systems, we
will add those in exponent to the constructions, i.e. we write KP instead of simply K for the
contexts of P, etc.

Rewriting

Suppose fixed a rewriting system P. We say that a term t rewrites in one step into t′, what we
write t −→ t′, when there exists a rule R : u⇒ u′ of arity m and a bicontext (C, v) : m→ n

such that t = C[u]v and t′ = C[u′]v. In this situation, we often write C[R]v : t −→ t′ and
the term t is said to be reducible by the rule R. We write ∗−→ for the reflexive and transitive
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closure, and ∗←→ for the generated equivalence relation. Note that the latter relation is a
congruence, in the sense that it is compatible with composition, identities and taking tuples.

A rewriting system is terminating when there is no infinite sequence t0 −→ t1 −→ . . .

of rewriting steps and confluent (resp. locally confluent) when for every terms t, u1, u2 such
that u1

∗←− t ∗−→ u2 (resp. u1 ←− t −→ u2) there exists a term v such that u1
∗−→ v

∗←− u2.
A confluent rewriting system is always locally confluent, and Newman’s lemma [25] ensures
the converse implication when the rewriting system is terminating. A rewriting system is
convergent when it is both terminating and confluent. In this case, any maximal sequence of
rewriting steps starting from a term t will end on the same term t̂, called the normal form
of t, and two terms t and t′ are such that t ∗←→ t′ if and only if t̂ = t̂′: normal forms provide
canonical representatives of equivalence classes under the equivalence relation ∗←→.

Critical pairs

Local confluence of a rewriting system can be tested by considering minimal obstructions to
confluence. Generalizing the above notion of context, a context with two holes E is a term
using usual variables as well as � and �′, in which both � and �′ occur exactly once; we write
E[t, t′] instead of E[t/�, t′/�′]. Consider a pair of rewriting steps C1[R1]v1 : t −→ u1 and
C2[R2]v2 : t −→ u2, with Ri : t′i ⇒ u′i, rewriting the same term t. The pair of rewriting steps
is non-overlapping when there exists a context E with two holes such that C1 = E[�, t′2 ◦ v2]
and C2 = E[t′1 ◦ v1,�]. In this situation, the two reductions are always confluent:

t = E[t′1 ◦ v1, t
′
2 ◦ v2]

C1[R1]v1

tt
C2[R2]v2

**
u1 = E[u′1 ◦ v1, t

′
2 ◦ v2]

∗ **

E[t′1 ◦ v1, u
′
2 ◦ v2]

∗tt

u2=

t̂ = E[u′1 ◦ v1, u
′
2 ◦ v2]

(2)

Given a pair of rewriting steps as above, a context (C, v) induces another pair of rewriting
steps rewriting the same terms: (C ◦ Ci)[R](vi ◦ v) : C[t]v ⇒ C[ui]v. In this case, we say
that the former pair is smaller than the latter, and this induces a partial order on pairs of
rewriting steps rewriting the same term.

I Definition 3. A pair of rewriting steps C1[R1]v1 : t −→ u1 and C2[R2]v2 : t −→ u2 rewrit-
ing the same term t is critical when the two steps are distinct, i.e. (C1, R1, v1) 6= (C2, R2, v2),
overlapping, and minimal wrt the above partial order. It is confluent when there exists a
term v such that u1

∗←− v ∗−→ u2.

This reformulates with our formalism the classical notion of critical pair, and the usual
associated lemma holds: a rewriting system is locally confluent if and only if all its critical
pairs are confluent. In particular, a terminating rewriting system with confluent critical pairs
is convergent.

2.2 Lawvere algebraic theories
A rewriting system P induces a category, noted P∗ and called the category presented by the
rewriting system, defined as the quotient of the category of terms P∗1 under the congruence
∗←→ generated by the rules: given a tuple of terms t ∈ P ∗1 , we write t (or sometimes even

simply t) for its equivalence class. This presented category is easily shown to be a a Lawvere
theory [13]:

FSCD 2016
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I Definition 4. A Lawvere theory T (also sometimes called an algebraic theory) is a category
with finite products whose objects are natural numbers, products are given on objects by
addition, and the terminal object is 0.

In particular, when the rewriting system has no rules, the associated Lawvere theory is P∗1
and called the Lawvere theory freely generated by the signature. It can in fact be shown
to correspond to a left adjoint to the suitable forgetful functor from Lawvere theories to
signatures (for space constraints, we do not detail this construction nor even morphisms of
signatures and Lawvere theories because they do not play an important rôle here).

I Lemma 5. Any Lawvere theory T admits a presentation P, called the standard presentation,
with

P1 =
∐
n∈N
T (n, 1) P2 = {t⇒ u | t, u ∈ P∗1 and ε(t) = ε(u)}

where we take all morphisms of T of coarity 1 as operations in P1, with the expected arity,
and write ε : P∗1 → P1 for the morphism which to a term, seen as a formal composite of
morphisms in T , associates the result of its compositions. The rules are thus all pairs of
formal composites whose result is the same.

A model of a Lawvere theory T is a functor T → Set which preserves finite products.
In the case where T is presented by a rewriting system P, this amounts to the specification
of a set X, of a function JfK : Xn → X for each operation f of arity n, in such a way that
JtK = JuK for each rule R : t⇒ u.

I Example 6. A model for the theory of monoids (Example 1) consists of a set X together
with functions JmK : X × X → X and JeK : 1 → X such that for every x, y, z ∈ X,
JmK (JmK (x, y), z) = JmK (x, JmK (y, z)), JmK (JeK (), x) = x = JmK (x, JeK ()). The models for
this theory are thus precisely monoids in the usual sense. Similarly, the models for the theory
of groups (Example 2) are groups.

2.3 Tietze transformations
Two rewriting systems are Tietze equivalent when they present isomorphic Lawvere theories,
which implies that they have the same models (in fact, the converse is also true). For instance,
the theory of groups can be presented by the rewriting system of Example 2. As explained
in the introduction, it also admits a presentation with two generators d of arity 2 and a

of arity 0, with one rewriting rule corresponding to the equation (1). In the context of
presentations of groups, Tietze has shown that the corresponding equivalence is generated by
two transformations and their inverse [31]. This property can be adapted to the context of
presentation of Lawvere theories as follows.

I Definition 7. The Tietze transformations are the two following operations, transforming
a rewriting system P into another one P′, as well as their converse (transforming P′ into P):
1. adding a superfluous operation: given a symbol f not occurring in P1, a symbol R not

occurring in P2, and a term t ∈ P∗1 of arity n, we set

P′1 = P1 ] {f} P′2 = P2 ] {R}

where f is an operation of arity n and R : t⇒ f(x1, . . . , xn),
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2. adding a derivable relation: given a symbol R not occurring in P2 and two terms t, u
such that t ∗←→P u, we set

P′1 = P1 P′2 = P2 ] {R}

with R : t⇒ u.

I Proposition 8. Two rewriting systems P and Q are Tietze equivalent if and only if Q can
be obtained from P by applying a series of Tietze transformations.

In our quest for minimizing the number of relations (and generators) of a Lawvere theory,
the Tietze transformations can be helpful, as illustrated in the following simple example.

I Example 9. Consider the string rewriting system with generators a, b and c of arity one
and two rules:

P = 〈a : 1, b : 1, c : 1 | A : a(x1)⇒ x1, B : a(b(x1))⇒ c(x1)〉

We can then apply the following sequence of Tietze transformations:

P′ = 〈a : 1, b : 1, c : 1 | A : a(x1)⇒ x1, B : a(b(x1))⇒ c(x1), C : b(x1)⇒ c(x1)〉
P′′ = 〈a : 1, b : 1, c : 1 | A : a(x1)⇒ x1, C : b(x1)⇒ c(x1)〉
P′′′ = 〈b : 1, c : 1 | C : b(x1)⇒ c(x1)〉
P′′′′ = 〈c : 1 | 〉

We have first added the derivable relation C, then removed the derivable relation B, then
removed the definable operation a, then removed the definable operation b. So, in fact, our
theory can be presented without any relation and only one operation.

It is clear that, in above example, we had to first add a new relation in order to remove
all of them: one cannot simply hope to always reduce the number of relations by Tietze
transformations in order to obtain a minimal one (and for similar reasons, one might be
forced to add new generators before reducing the presentation, as illustrated for the theory
of groups in the introduction). For this reason, it is quite difficult to minimize the number
of relations in general, or to decide whether a presentation is minimal wrt to relations or
generators.

Note in particular that, in a convergent rewriting system, a critical pair witnesses a
derivable relation, and Newman’s lemma ensures that any derivable relation can be obtained
via critical pairs: if a presentation has a removable relation, then such a relation can be
obtained by inspecting critical pairs.

3 Homology of Lawvere algebraic theories

In this section, we introduce the notion of homology of a Lawvere theory by adapting the
general methodology which is now classical for monoids, groups, algebras [15], operads [14],
etc. This construction associates to a Lawvere theory a sequence of groups which are invariants
of the Lawvere theory: we will see that these can be computed from any presentation with
suitable properties, however these groups only depend on the presented theory, and not on
the presentation. It thus provides interesting information about all the possible presentations
of the theory: its relevance will be illustrated in Section 3.6, where we use it to show that a
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particular theory admits no presentation with only one rule, whichever possible signature we
use.

The basic idea of homology is to “count” the number of times a thing is used (pos-
itively when it occurs in the target and negatively in the source). For example, a rule
R : g(f(x1), f(x1))⇒ h(x1) “consumes” two instances of f and one of g to “produce” one
of h. Therefore, we can think of the associated balance to be h − 2f − g. Since this is a
relation, it induces the equation h = 2f + g when counting operations, which indicates that
the operation h might be superfluous, i.e. we might be able to remove it using a Tietze trans-
formation. A similar process for critical pairs will allow us to provide an “over-approximation”
of the superfluous relations, and therefore give lower bounds on necessary relations.

Note that above, we formally consider the “ring” of operations (actually a “ringoid” since
operations are typed by their arities) in order to be able to consider sums of operations.
Much care is however needed in order to ensure that this way of counting is compatible with
duplication and erasure of variables, and independent of the presentation. As customary in
homological algebra, we thus begin by introducing the notion of resolution for a Lawvere
theory, which is easily shown to be invariant (in a suitable sense) under Tietze equivalences
and derive homology from those. Roughly, the resolution amounts to perform a similar
linearization process as above, but keeping track of the contexts, i.e. the rule R would give
rise to a relation of the form h(x1)− g(f(x1), f(x1))− g(f(x1), f(x1)) + g(f(x1), f(x1)), and
to ensure that all (higher-)relations are present.

One could be tempted to use standard notions of homology for a category in order to study
Lawvere theories. However, because such a theory contains a terminal object, its homology in
this sense will always be trivial. Therefore, one has to adapt the setting of homology in order
to take in account the cartesian structure. Following the general methodology of Barr and
Beck [3, 2], Jibladze and Pirashvili have been able to define a suitable ringoid of coefficients
for cohomology [8, 9], which was later on reworked by Malbos [16]. The section 3.1 to 3.4 are
a reformulation, in operational terms, of those (to simplify the presentation, the framework
is also less general: we use bimodules instead of cartesian natural systems). We suppose
fixed a rewriting system P and write T = P∗ for the theory it presents.

3.1 Modules over ringoids
Ringoids

A monoid is the same as a category with only one object, or thinking backward, a category
is a “monoid with multiple objects”. Similarly, a ringoid can be thought of as a “ring with
multiple objects”. We briefly introduce here this algebraic structure and refer the reader to
seminal paper [22] for details. The category Ab of abelian groups is monoidal when equipped
with the usual tensor product ⊗ of abelian groups, with (Z,+, 0) as unit (in the following,
we always denote abelian groups additively).

I Definition 10. A ringoid R is a small category enriched in the monoidal category Ab.

More explicitly, a ringoid consists of a category C in which each hom-set C(A,B) is equipped
with a structure of abelian group, in such a way that composition is bilinear, i.e. respects
addition and zero. For instance, given f, f ′ : A→ B and g, g′ : B → C, we have

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′ 0 ◦ f = 0 f ◦ 0 = 0 (3)

I Lemma 11. The category of ringoids with one object is equivalent to the category of rings.
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Any category C freely generates a ringoid that we denote ZC. It always exists for general
arguments [1] and can be explicitly described as follows. It has the same objects as C and,
given objects A and B, ZC(A,B) is the free abelian group over C(A,B), which is the same as
the free Z-module, i.e. formal sums of morphisms in C(A,B) with coefficients in Z, quotiented
by the usual axioms of groups, and composition is induced by the one of C and satisfies the
axioms of ringoids such as (3).

Modules

The usual notion of module over a ring, can also easily be generalized to “multiple objects”
as follows.

I Definition 12. A (left) module M over a ringoid R, or R-module, is a functor
M : R → Ab which is enriched in Ab. A morphism f : M → N of R-modules, or
R-linear map, is an enriched natural transformation: it consists of a group morphism
fA :MA→ NA for every object A of R, satisfying naturality conditions. We write Mod(R)
for the category of R-modules.

A right R-module is defined as a left Rop-module, which explains why we will only need
to consider left modules in the following. More explicitly, an R-moduleM consists of an
abelian groupMA for every object A of R, and a morphismMf :MA→MB of groups for
every morphism f : A→ B in such a way thatM(f + f ′) =Mf +Mf ′ (we are considering
the pointwise addition on the right) andM0 = 0 (on the right, 0 is the constant map). The
category Mod(R) is enriched in Ab and can be shown to have enough structure to support
usual computations in homological algebra: it is abelian and has enough projectives [22].

Free modules

Suppose given a set XA for every object A of R. The free module generated by this family
of sets, written RX, can be described as the functor which to every object A associates the
formal finite sums

∑
i fixi, with xi ∈ XAi

and coefficients fi : Ai → A, subject to the usual
laws of left modules, e.g.

g

(∑
i

fixi

)
=
∑
i

(g ◦ fi)xi g ◦ 0 = 0
(∑

i

gi

)
(fx) =

∑
i

(gi ◦ f)x 0(fx) = 0

Above, the “underline” notation is here only to make the distinction between the elements
of R and those of X, and as customary we write g(fx) instead of ((RX)g)(fx) for the left
action.

Tensor product of modules

The usual definition of the tensor product of modules can be generalized to modules over
ringoids as follows. Given a right R-module M : Rop → Ab and a left R-module
M : R → Ab, their tensor product is the ringoid defined by the (enriched) coend
M ⊗ N =

∫ AMA ⊗ NA. This means that an element of (M ⊗ N )(B) is a quotient
of
⊕

A∈RMA⊗NA by the relation identifying elements of the form (fopx)⊗y and x⊗ (fy),
for any suitably typed morphism f of R.
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3.2 The ringoid of bicontexts
The ringoid we will be mainly interested in is a quotient of ZKK, the free ringoid over
bicontexts. We begin by first defining a similar quotient on contexts.

I Definition 13. We define κi : ZP∗1 → ZK as the linear map which sends a term t to the
formal sum of occurrences of the variable xi in t. Formally, it is defined, for j 6= i and
t = 〈t1, . . . , tn〉, by

κi(xi) = � κi(xj) = 0 κi(u ◦ t) =
∑

j∈FV(u)

(κj(u)t)[κi(tj)]

On the right, the notations for contexts introduced in Section 2.1 are implicitly extended by
linearity, e.g. (C +D)[t] = C[t] +D[t], C[t+ u] = C[t] + C[u], etc.

I Example 14. Consider the term t = f(g(x1, x2), x1). We have

κ1(t) = f(g(�, x2), x1) + f(g(x1, x2),�) κ2(t) = f(g(x1,�), x1) κ3(t) = 0

We write ZK for the quotient of ZK by the ideal generated by all elements of the form
κi(u) − κi(t) for a rule R : t ⇒ u of arity n and 1 ≤ i ≤ n; we thus have a well-defined
quotient morphism κi : ZP∗1 → ZK. The ringoid of bicontexts ZKK is defined as the quotient
of the free ringoid ZKK by quotienting contexts as above and morphisms by the rewriting
rules: we identify element

∑
i ni(Ci, u) to 0 whenever

∑
i niCi = 0 in ZK, and

∑
i ni(C, ui)

to 0 whenever
∑
i niui = 0 in ZC.

I Example 15. Consider the rewriting system with operations and arities a : 0, b : 0, f : 1,
g : 2, and two rules A : a ⇒ b and B : f(x1) ⇒ g(x1, x1). The quotient on contexts is
generated by g(�, x1) + g(x1,�)− f(�).

In the rest of the paper, we write R = ZKK for the ringoid of bicontexts of T , which will
be where coefficients will be taken in. In a free module, of the form RX, the elements are
sums of monomials of the form (C, u)x where (C, u) is an equivalence class of bicontexts
and x ∈ Xn for some n ∈ N. In the following, we will adopt the notation Cxu instead:
this makes it clear that contexts C ∈ ZKn are acting on the left and morphisms in T are
acting on the right (since their composition is reversed in the composition of bicontexts). In
fact, the definition of R does not depend on the choice of the presentation P, but only on
the presented theory T . Since every Lawvere theory admits a presentation (Lemma 5), the
notions developed here will apply to any theory.

I Lemma 16. Given two Tietze equivalent rewriting systems P and Q, the ringoids RP

and RQ are isomorphic.

3.3 Resolutions for Lawvere algebraic theories
The trivial R-module Z : R → Ab is the quotient of the free R-module RX, with Xn = {?n}
for n ∈ N, quotiented by relations of the form

∑
i κi(u)t?ti = ?n for every term u ◦ t of

arity n (we write ? instead of ?1).

I Example 17. Given a signature with a binary operation m, since m◦ id2 = id◦〈m(x1, x2)〉,
we have the following relation in Z: m(�, x2)? 〈x1〉+m(x1,�)? 〈x2〉 = ?2 = ?m(x1, x2).

The general idea of a free resolution is to start with the trivial module Z and equip it
with a sequence of free R-modulesMi such thatM0 contains the sorts of the theory (there
is always only one in our setting),M1 the operations,M2 the relations,M3 the relations
between relations, and so on:
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I Definition 18. A free resolution M• of Z consists of a sequence

· · · ∂1 //M1
∂0 //M0

ε // Z // 0

of free R-modulesMi = RXi and R-linear maps ∂i and ε such that for any two successive
arrows the image of the first is equal to the kernel of the second: im ∂i+1 = ker ∂i, im ∂0 = ker ε
and im ε = Z. The resolution is partial when it is finite on the left.

Note that the relation im ε = Z means that ε is surjective and therefore M0 is free on
at least one generator. Suppose that the theory contains an operation, for instance m as
in Example 17: the kernel of ε will contain m(�, x2)1 〈x1〉 + m(x1,�)1 〈x2〉 − 1m(x1, x2)
as non-trivial element, and therefore M1 will need to contain a generator for m in order
for the relation im ∂0 = ker ε to be satisfied. More generally, M1 should be free on a set
of operations generating T . For similar reasons, M2 should be free on a set of elements
generating all the relations of T , andM3 should be free on enough generators so that any
two relations between the same (linearized) terms should be equal modulo them.

A major interest of free resolutions is that they can be shown to be essentially unique:

I Proposition 19. Any two free resolutions of Z are homotopy equivalent.

We do not detail further here the meaning of the above classical equivalence. Its main interest
is that it will enable us to show that the definition of homology makes sense in next section
(Proposition 21).

3.4 Homology of Lawvere algebraic theories
We are now in position to introduce the notion of homology of a Lawvere theory. The chain
complex (M•, ∂•) of a resolution by R-modules is acyclic, that is im ∂i+1 = ker ∂i holds. We
are going to tensor it by Zop, which means that we “erase” the coefficients in R everywhere,
e.g. ifMi is free on the set Xi (i.e.Mi = RXi) then we have Zop⊗Mi = ZXi. The resulting
chain complex (Zop ⊗M•, ∂̃•) still satisfies im ∂̃i+1 ⊆ ker ∂̃i, but the converse inclusion is
not true anymore in general. It thus makes sense to consider the following homology groups:

I Definition 20. Suppose given a Lawvere theory T and a resolution of the associated trivial
R-module Z as in Definition 18. The homology H•(T ) of T (with coefficients in the trivial
R-module Z) is the homology of the chain complex

. . .
∂̃2 // Zop ⊗M2

∂̃1 // Zop ⊗M1
∂̃0 // Zop ⊗M0

where ∂̃i = Zop ⊗ ∂i. More explicitly, the homology consists of a sequence H•(T ) of groups
defined by Hi(T ) = ker ∂̃i−1/ im ∂̃i where, by convention, ∂̃−1 is the constant null map.

Proposition 19 ensures that it is well defined, because two homotopic chain complexes will
give rise to the same homology:

I Proposition 21. The homology H•(T ) of a Lawvere theory T does not depend on the
choice of the resolution.

Any theory can be shown to admit a resolution, called the standard resolution, by easily
adapting usual constructions performed for monoids. More generally any partial resolution
can be extended into a full one. We do not detail it here however, because it involves modules
of infinite rank, and difficult to work with: in order to actually compute the homology of a
theory, one should start with a resolution which is reasonably small. The purpose of next
section is to construct such a (partial) resolution in the case where we start from a convergent
presentation of the Lawvere theory.
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3.5 A partial resolution for convergent Lawvere theories
In this section, we suppose that the Lawvere theory T we are considering is presented by a
convergent reduced rewriting system P, and construct from it a partial free resolution of the
trivial R-module Z. Writing P0 = {1} for the set with one element and P3 for the set of
critical pairs of the rewriting system, the resolution we consider is of the form

RP3
∂2 // RP2

∂1 // RP1
∂0 // RP0

ε // Z // 0 (4)

where the maps are defined as follows, and will be illustrated in next section. The map
ε : RP0 → Z is the R-linear map preserving the unit, i.e. such that ε(1) = ?. More generally,
because of relations defining Z, we have ε(C1u) = ?n. The map ∂0 : RP1 → RP0 is the
R-linear map such that for each operation f ∈ P1 of arity n, we have

∂0(f) =
(

n∑
i=1

κi(f)1 〈xi〉
)
− 1 〈f〉

The map ∂1 : RP2 → RP1 is the R-linear map such that for each rule R : t⇒ u in P2 we
have

∂1(R) = u− t

where the notation t generalizes the notation f for operations, and is defined inductively by

u ◦ t = ut+
n∑
i=1

(κi(u)t)[ti] id = 0

for t = 〈t1, . . . , tn〉. The map ∂2 : RP3 → RP2 is the R-linear map such that the image of a
critical pair (C1[R1]v1, C2[R2]v2), with Ci[R1]vi : t −→ ui, is

∂2(C1[R1]v1, C2[R2]v2) = C2R2v2 − C1R1v1 + S2 − S1 (5)

where Si : ui
∗−→ t̂ are a choice of rewriting paths from ui to t̂, the normal form of t, see (2),

which exist because the rewriting system is supposed to be convergent. Again, writing · for
the concatenation of rewriting paths and Id for the empty one, the notation T is extended to
rewriting paths by

C[R]v = CRv T ′ · T = T ′ + T Id = 0

The main result of this article is the following one:

I Theorem 22. The sequence (4) as defined above is a partial free resolution of the trivial
R-module Z.

This theorem allows us to explicitly compute low-dimensional homology of a theory with a
convergent presentation. Moreover, since the homology is independent of the choice of the
presentation (Proposition 21), and any partial resolution can be extended into a full one
(Section 3.4), it provides us with invariants for any presentation of T . In particular, since
H1(T ) is defined as a quotient of ZP1, and similarly for H2(T ), we have

I Proposition 23. The rank of H1(T ) (resp. H2(T )) is a lower bound of the number of
operations (resp. relations) in any presentation of T .
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3.6 An example
Let us illustrate the previous definitions on a simple example. Consider the term rewriting
system with two generators f and g of arity 2, three generators a, b and c of arity 0 and four
rules

A : f(a, x1)⇒ g(a, x1) A′ : f(x1, a)⇒ g(x1, a)
B : f(b, b)⇒ g(b, b) C : f(c, c)⇒ g(c, c)

The rewriting system is locally confluent, the only critical pair being

f(a, a)

[A]〈a〉
��

[A′]〈a〉
		

Φ

g(a, a)

It is also terminating, because all the rules decrease the number of occurrences of f in terms,
and thus convergent. Therefore we can construct a resolution (4), as described in Section 3.5.
The boundary maps are given on operations by

∂0(f) = f(�, x2)1 〈x1〉+ f(x1,�)1 〈x2〉 − 1 〈f(x1, x2)〉 ∂0(a) = −1 〈a〉
∂0(g) = g(�, x2)1 〈x1〉+ g(x1,�)1 〈x2〉 − 1 〈g(x1, x2)〉 ∂0(b) = −1 〈b〉

∂0(c) = −1 〈c〉

on relations by

∂1(A) = g 〈a, x1〉+ g(�, x1)a− f 〈a, x1〉 − f(�, x1)a
∂1(A′) = g 〈x1, a〉+ g(x1,�)a− f 〈x1, a〉 − f(x1,�)a
∂1(B) = g 〈b, b〉+ g(�, b)b+ g(b,�)b− f 〈b, b〉 − f(�, b)b− f(b,�)b
∂1(C) = g 〈c, c〉+ g(�, c)c+ g(c,�)c− f 〈c, c〉 − f(�, c)c− f(c,�)c

and on critical pairs by

∂2(Φ) = A′ 〈a〉 −A 〈a〉

The homology is the one of the chain complex obtained by tensoring with Zop, which amounts
to “erase contexts”, i.e. all symbols which are not elements of Z or underlined:

. . . // Z{Φ} ∂̃2 // Z{A,A′, B,C} ∂̃1 // Z{f, g, a, b, c} ∂̃0 // Z

above, ZX denotes the free abelian group (or equivalently Z-module) on a set X and the
linear maps are defined by

∂̃0(f) = ∂̃0(g) = ∂̃0(a) = ∂̃0(b) = ∂̃0(c) = 0
∂̃1(A) = ∂̃1(A′) = ∂̃1(B) = ∂̃1(C) = g − f
∂̃2(Φ) = A′ −A

Therefore the homology groups are

H0 = Z{1}/(1) = 0

H1 = Z{f, g, a, b, c}/(g − f) = Z4

H2 = Z{A′ −A,B −A,C −A}/(A′ −A) = Z2

FSCD 2016



27:14 Homological Computations for Term Rewriting Systems

The homology groups are of the form Zri and their rank is ri. From r1 = 4, we deduce that
any presentation of the theory will have at least four generating operations, and from r2 = 2
that any presentation has at least two relations: it is thus not one-based.

4 Coherent presentations

A resolution of a Lawvere theory is obtained by an “abelianization” process: in M1 we
only recall which operations in which context are used, but not the order they are used in,
similarly for the rules inM2, etc. This suggests extending the notion of presentation, so
that the moduleM3 is the abelianization of something too, as we briefly mention.

I Definition 24. An extended rewriting system consists of a rewriting system P together
with a set P3 of homotopy generators and two functions σ2, τ2 : P3 → P>2 :

P =

P0

ι0
��

P1σ0

xx
τ0

xx

ι1
��

P2σ1

ww
τ1

ww

ι2
��

P3σ2

xx
τ2

xxP∗0 P∗1
σ∗0oo
τ∗0

oo P>2
σ>1oo
τ>1

oo
such that σ>1 ◦ σ2 = σ>1 ◦ τ2

τ>1 ◦ σ2 = τ>1 ◦ τ2

where P0 = {1}, thus P∗0 = N as before, and P>2 is the set of 2-cells of the cartesian
(2,1)-category freely generated by adding the elements of P2 as invertible 2-cells to the free
cartesian category P ∗1 . It is coherent when any 2-cells with same source and target are related
by the smallest congruence generated by P3.

Intuitively, in a coherent rewriting system the set P3 is big enough to relate two possible
rewriting paths (or zig-zags) between the same terms. Newman’s lemma thus reformulate as
follows in this context:

I Lemma 25. Given a convergent rewriting system P, its extension obtained by taking the
set of confluence diagrams induced by critical pairs as P3 is coherent.

Finally, the abelianization process mentioned above can be formulated as follows:

I Proposition 26. To any coherent presentation P one can associate a partial free resolution
with RPi as modules, for 0 ≤ i ≤ 3, as in (4).

Notice that by Lemma 25, we recover the construction of Section 3.5 as a particular case.
Also, it can be noticed that all the constructions we have been performing are compatible
with the laws induced by the cartesian structure on cells (the definitions have in fact been
chosen so that this is true).

I Example 27. Consider the theory T presented by the following term rewriting system

P = 〈d : 2, t : 0, f : 0 | T : d(t, x1)⇒ t, T ′ : d(x1, t)⇒ t, F : d(f, f)⇒ f〉

corresponding to the famous parallel implementation of the disjunction, sometimes called
por (d stands for disjunction, t for true and f for false), which was used by Melliès as a
central example for standardization [21] (incidentally, this paper notices the similarity with

algebraic topology...). There is one confluent critical pair d(t, t)

[T ]〈t〉

$$

[T ′]〈t〉

::Θ t and thus the
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presentation can be extended into a coherent one by setting P3 = {Θ} with expected source
and target. By Proposition 26, we recover the resolution of Section 3.5, and one can easily
compute the associated homology: we have H0(T ) = 0, H1(T ) = Z and H2(T ) = 0.

The above definition of extended rewriting systems constitutes a generalization of poly-
graphs to Lawvere theories, using which one can show an analogous of Squier’s homotopical
theorem [29], which implies the homological one. Burroni’s original paper on polygraphs
shows that those theories can be described by polygraphs by considering explicitly the
cartesian structure (duplications and erasures of variables) [4]. By contrast, this structure is
implicit in this work, thus giving rise to much smaller and manipulable rewriting systems. It
would be interesting to compare the two resulting homologies though. Also, as in the case of
polygraphs, the formulation of Definition 24 should make it clear that this definition can be
generalized in any dimension. Finally, we should mention that in the case of presentations of
monoids, Tietze transformations and completion procedures can be generalized to coherent
presentations [5]; we expect that similar constructions can be performed in the setting
developed in this paper.

5 Extensions and future work

In conclusion, we would like to mention some other possible generalizations of this work,
which we plan to investigate and detail in future work. For instance, the generalization to
term rewriting systems with multiple sorts is easy (it roughly consists in allowing P0 to
contain multiple elements and use P∗0 instead of N for the objects of our ringoids).

One should be able to continue the resolution in higher dimension, as done for
monoids [11], by using critical n-uples for Pn+1. In particular, the next dimension of
the resolution can easily be done and allows to compute H3(T ) for a theory T , whose rank
provides a lower bound on the number of critical pairs of any convergent presentation of T .
Consider the rewriting system with generators i, h and k of arity one, generators a and f of
arity two, and three rules

h(a(x1, x2))⇒ a(f(x1, x1), x2) k(a(x1, x2))⇒ a(f(x1, x1), x2) a(f(i(x1), i(x1)), x2)⇒ a(x1, x2)

One can compute that H3(T ) is not finitely generated, showing that it cannot be presented
by a finite convergent rewriting system (since any such would have a finite number of critical
pairs), even though this theory T has a decidable equality. This generalizes to terms rewriting
systems Squier’s example for monoids [28].

Computations are quite time-consuming: we plan on implementing those to be able
to study more full-fledged examples. Also, many natural examples (e.g. lattices) contain
commutative operations, for which there is no hope of obtaining a terminating rewriting
system, which suggests that we should investigate a generalization of the construction for
rewriting modulo.

Finally, homological invariants are quite rough, in the sense that they do not provide
interesting information about some interesting rewriting systems. In order to handle those,
we believe that investigating properties of homotopical nature would provide much more
precise insights.
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Abstract
Essentially, in a reversible programming language, for each forward computation step from state
S to state S′, there exists a constructive and deterministic method to go backwards from state S′
to state S. Besides its theoretical interest, reversible computation is a fundamental concept which
is relevant in many different areas like cellular automata, bidirectional program transformation,
or quantum computing, to name a few. In this paper, we focus on term rewriting, a computation
model that underlies most rule-based programming languages. In general, term rewriting is not
reversible, even for injective functions; namely, given a rewrite step t1 → t2, we do not always
have a decidable and deterministic method to get t1 from t2. Here, we introduce a conservative
extension of term rewriting that becomes reversible. Furthermore, we also define a transformation
to make a rewrite system reversible using standard term rewriting.
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1 Introduction

The notion of reversible computation can be traced back to Landauer’s pioneering work [14].
Although Landauer was mainly concerned with the energy consumption of erasing data in
irreversible computing (only recently experimentally measured [5]), he also claimed that
every computer can be made reversible by saving the history of the computation. However,
as Landauer himself pointed out, this would only postpone the problem of erasing the tape
of a reversible Turing machine before it could be reused. Bennett [3] improved the original
proposal so that the computation now ends with a tape that only contains the output of
a computation and the initial source, thus deleting all remaining “garbage” data, though
it performs twice the usual computation steps. More recently, Bennett’s result is extended
in [6] to nondeterministic Turing machines, where it is also proved that transforming an
irreversible Turing machine into a reversible one can be done with a quadratic loss of space.
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28:2 Reversible Term Rewriting

In the last decades, reversible computing and reversibilization – transforming an irrevers-
ible computation device into a reversible one – have been the subject of intense research,
giving rise to successful applications in many different fields ranging from cellular automata
[19] and bidirectional program transformation [15] to quantum computing [29], to name a
few. We refer the interested reader to, e.g., [4, 9, 30] for a high level account of the principles
of reversible computation.

In this work, we focus on term rewriting [2, 26], a computation model that underlies most
rule-based programming languages. Essentially, there are two approaches to designing a
reversible language: one can either restrict the language to only contain reversible constructs,
or one can include some additional information (typically, the history of the computation so
far) so that all constructs become reversible, which is called a Landauer’s embedding. The
first approach is considered, e.g., by Abramsky in the context of pattern matching automata
[1]. There, biorthogonality is required to ensure reversibility, which would be a very significant
restriction for term rewriting systems. Thus, we follow the second, more general approach by
introducing the information required for the reductions to become reversible.

To be more precise, we introduce a general and intuitive notion of reversible term
rewriting by following essentially a Landauer’s embedding. Given a rewrite system R and
its associated (standard) rewrite relation →R, we define a reversible extension of rewriting
with two components: a forward relation ⇀R and a backward relation ↽R, such that ⇀R is
a conservative extension of →R and, moreover, (⇀R)−1 =↽R. We note that the inverse
rewrite relation, (→R)−1, is not an appropriate basis for “reversible” rewriting since we
aim at defining a technique to undo a given reduction. In other words, given a rewriting
reduction s →∗R t, a reversible relation aims at computing the term s from t and R in a
decidable and deterministic way, which is not possible using (→R)−1 since it is generally
non-deterministic, non-confluent, and non-terminating, even for systems defining injective
functions (see Example 8). In contrast, our backward relation ↽R is deterministic (thus
confluent) and terminating.

We then introduce a flattening transformation for rewrite systems so that the reduction
at top positions of terms suffices to get a normal form in the transformed systems. For
instance, given the following rewrite system R = {a(0, y) → y, a(s(x), y) → s(a(x, y))}
defining the addition on natural numbers built from constructors 0 and s( ), we produce the
following basic (conditional) system: R′ = {a(0, y) → y, a(s(x), y) → s(z) ⇐ a(x, y) � z}
(see Example 16 for more details). This allows us to provide an improved notion of reversible
rewriting in which some information – namely, the positions where reduction takes place – is
not required anymore. This opens the door to compile the reversible extension of rewriting
into the system rules. Loosely speaking, given a system R, we produce new systems Rf
and Rb such that standard rewriting in Rf , i.e., →Rf

, coincides with the forward reversible
extension ⇀R in the original system, and analogously →Rb

is equivalent to ↽R. E.g., for
the system R′ above, we would produce

Rf = { ai(0, y) → 〈y, β1〉,
ai(s(x), y) → 〈s(z), β2(w)〉 ⇐ ai(x, y)� 〈z, w〉 }

Rb = { a−1(y, β1) → 〈0, y〉,
a−1(s(z), β2(w)) → 〈s(x), y〉 ⇐ a−1(z, w)→ 〈x, y〉 }

where ai is an injective version of function a, a−1 is the inverse of ai, and β1, β2 are fresh
symbols introduced to label the rules of the original system.

We consider conditional rewrite systems in this work, not only to have a more general
notion of reversible rewriting, but also to define a reversibilization technique for unconditional
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rewrite systems, since the application of flattening (cf. Section 4) may introduce conditions
in a system that is originally unconditional, as illustrated above. We refer the interested
reader to [21] for a definition of reversible term rewriting for unconditional systems.

The paper is organized as follows. After introducing some preliminaries in Section 2, we
present our approach to reversible term rewriting in Section 3. Then, Section 4 introduces
a transformation to basic systems, and Section 5 presents injectivization and inversion
transformations in order to make a rewrite system reversible with standard rewriting. Finally,
Section 6 discusses some related work and Section 7 concludes and points out some ideas for
future research. More details and missing proofs can be found in [21].

2 Preliminaries

We assume familiarity with basic concepts of term rewriting. We refer the reader to, e.g., [2]
and [26] for further details.

Terms and Substitutions. A signature F is a set of function symbols. Given a set of
variables V with F ∩ V = ∅, we denote the domain of terms by T (F ,V). We use f, g, . . . to
denote functions and x, y, . . . to denote variables. Positions are used to address the nodes of
a term viewed as a tree. A position p in a term t, in symbols p ∈ Pos(t), is represented by
a finite sequence of natural numbers, where ε denotes the root position. We let t|p denote
the subterm of t at position p and t[s]p the result of replacing the subterm t|p by the term
s. Var(t) denotes the set of variables appearing in t. We also let Var(t1, . . . , tn) denote
Var(t1) ∪ · · · ∪ Var(tn). A term t is ground if Var(t) = ∅.

A substitution σ : V 7→ T (F ,V) is a mapping from variables to terms such that Dom(σ) =
{x ∈ V | x 6= σ(x)} is its domain. A substitution σ is ground if xσ is ground for all
x ∈ Dom(σ). Substitutions are extended to morphisms from T (F ,V) to T (F ,V) in the
natural way. We denote the application of a substitution σ to a term t by tσ rather than
σ(t). The identity substitution is denoted by id. We let “◦” denote the composition of
substitutions, i.e., σ ◦ θ(x) = (xθ)σ = xθσ. The restriction θ |̀V of a substitution θ to a set
of variables V is defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise. TRSs and
Rewriting. A set of rewrite rules l → r such that l is a nonvariable term and r is a term
whose variables appear in l is called a term rewriting system (TRS for short); terms l and r
are called the left-hand side and the right-hand side of the rule, respectively. We restrict
ourselves to finite signatures and TRSs. Given a TRS R over a signature F , the defined
symbols DR are the root symbols of the left-hand sides of the rules and the constructors
are CR = F \ DR. Constructor terms of R are terms over CR and V, denoted by T (CR,V).
We sometimes omit R from DR and CR if it is clear from the context. A substitution σ is a
constructor substitution (of R) if xσ ∈ T (CR,V) for all variables x.

For a TRS R, we define the associated rewrite relation→R as the smallest binary relation
satisfying the following: given terms s, t ∈ T (F ,V), we have s→R t iff there exist a position
p in s, a rewrite rule l→ r ∈ R, and a substitution σ such that s|p = lσ and t = s[rσ]p; the
rewrite step is sometimes denoted by s→p,l→r t to make explicit the position and rule used
in this step. The instantiated left-hand side lσ is called a redex. A term t is called irreducible
or in normal form w.r.t. a TRS R if there is no term s with t→R s. A substitution is called
normalized w.r.t. R if every variable in the domain is replaced by a normal form w.r.t. R.
We sometimes omit “w.r.t. R” if it is clear from the context. A derivation is a (possibly
empty) sequence of rewrite steps. Given a binary relation →, we denote by →∗ its reflexive
and transitive closure, i.e., s→∗R t means that s can be reduced to t in R in zero or more
steps; we also use s→n

R t to denote that s can be reduced to t in exactly n steps.
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In this paper, we consider conditional term rewrite systems (CTRSs); namely oriented
3-CTRSs, i.e., CTRSs where extra variables are allowed as long as Var(r) ⊆ Var(l)∪Var(C)
for any rule l → r ⇐ C [17]. In oriented CTRSs, a conditional rule l → r ⇐ C has the
form l → r ⇐ s1 � t1, . . . , sn � tn, where each oriented equation si � ti is interpreted as
reachability (→∗R). In the following, we denote by on a sequence of elements o1, . . . , on for
some n. We also write oi,j for the sequence oi, . . . , oj when i ≤ j (and the empty sequence
otherwise). We write o when the number of elements is not relevant. In addition, we denote
o1 � o′1, . . . , on � o′n by on � o′n. Moreover, we assume that rewrite rules are labelled, i.e.,
given a CTRS R, we denote by β : l→ r ⇐ sn � tn a rewrite rule with label β. Labels are
unique in a CTRS. Also, to relate label β to fixed variables, we consider that the variables of
the rewrite rules are not renamed and that the reduced terms are always ground.1 We often
write s→p,β t instead of s→p,l→r⇐sn→tn t if rule l→ r ⇐ sn → tn is labeled with β.

For a CTRS R, the associated rewrite relation →R is defined as the smallest binary
relation satisfying the following: given ground terms s, t ∈ T (F), we have s→R t iff there
exist a position p in s, a rewrite rule l → r ⇐ sn � tn ∈ R, and a ground substitution σ
such that s|p = lσ, siσ →∗R tiσ for all i = 1, . . . , n, and t = s[rσ]p.

In order to simplify the presentation, we only consider deterministic CTRSs (DCTRSs),
i.e., oriented 3-CTRSs where, for each rule l→ r ⇐ sn � tn, we have Var(si) ⊆ Var(l, ti−1)
for all i = 1, . . . , n. Intuitively speaking, the use of DCTRs allows us to compute the bindings
for the variables in the condition of a rule in a deterministic way. E.g., given a ground term t

and a rule β : l→ r ⇐ sn � tn with t|p = lθ, we have that s1θ is ground. Therefore, one can
reduce s1θ to some term s′1 such that s′1 is an instance of t1θ with some ground substitution
θ1. Now, we have that s2θθ1 is ground and we can reduce s2θθ1 to some term s′2 such that
s′2 is an instance of t2θθ1 with some ground substitution θ2, and so forth. If all equations in
the condition hold using θ1, . . . , θn, we have that t→p,β t[rσ]p with σ = θθ1 . . . θn.

I Example 1. Consider the following DCTRS R that defines the function double that doubles
the value of its argument when it is an even natural number:

β1 : add(0, y) → y β4 : even(0) → true
β2 : add(s(x), y) → s(add(x, y)) β5 : even(s(s(x))) → even(x)
β3 : double(x) → add(x, x) ⇐ even(x)� true

Given the term double(s(s(0))) we have, for instance, the following derivation:

double(s(s(0))) →ε,β3 add(s(s(0)), s(s(0))) since even(s(s(0)))→∗R true
with σ = {x 7→ s(s(0))}

→ε,β2 s(add(s(0), s(s(0)))) with σ = {x 7→ s(0), y 7→ s(s(0))}
→1,β2 s(s(add(0, s(s(0))))) with σ = {x 7→ 0, y 7→ s(s(0))}
→1.1,β1 s(s(s(s(0)))) with σ = {y 7→ s(s(0))}

3 Reversible Term Rewriting

In this section, we present a conservative extension of the rewrite relation which becomes
reversible. In the following, we use ⇀R to denote our reversible (forward) term rewrite
relation, and ↽R to denote its application in the reverse (backward) direction. Note that, in

1 Equivalently, one could require terms to be variable disjoint with the variables of the rewrite system,
but we require groundness for simplicity.
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principle, we do not require↽R=⇀−1
R , i.e., we provide independent (constructive) definitions

for each relation. Nonetheless, we will prove that ↽R =⇀−1
R indeed holds (cf. Theorem 10).

In some approaches to reversible computing, both forward and backward relations should
be deterministic. Here, we will only require deterministic backward steps, while forward
steps might be non-deterministic, as it is often the case in term rewriting. We note that
considering DCTRSs is not enough to make conditional rewriting deterministic. In general,
given a rewrite step s →p,β t with p a position of s, β : l → r ⇐ sn → tn a rule, and σ a
substitution such that s|p = lσ and siσ →∗R tiσ for all i = 1, . . . , n, there are three sources
of non-determinism: the selected position p, the selected rule β, and the substitution σ. The
use of DCTRSs can only make deterministic the last one, but the choice of a position and
the selection of a rule may still be non-deterministic.

Reversible rewriting is then defined on pairs 〈t, π〉, where t is a term and π is a trace:

I Definition 2 (trace). Given a CTRS R, a trace in R is recursively defined as follows:2
the empty list is a trace;
if π, π1, . . . , πn are traces in R, n ≥ 0, there is a rule β : l → r ⇐ sn � tn ∈ R, p is a
position, and σ is a ground substitution, then β(p, σ, π1, . . . , πn) : π is a trace in R.

We refer to each component β(p, σ, π1, . . . , πn) in a trace as a trace term.

Intuitively speaking, a trace term β(p, σ, π1, . . . , πn) stores the position of a reduction step,
a substitution with the bindings that are required for the step to be reversible (e.g., the
bindings for the erased variables, but not only; see below) and the traces associated to the
subcomputations in the condition. Our trace terms have some similarities with proof terms
[26]. However, proof terms do not store the bindings of erased variables (and, to the best of
our knowledge, are only defined for unconditional TRSs).

Our reversible term rewriting relation is only defined on safe pairs. This notion will be
clarified below, after introducing the definition of reversible rewriting.

I Definition 3 (safe pair). Let R be a DCTRS. The pair 〈s, π〉 is safe in R iff, for all trace
terms β(p, σ, πn) in π, σ is a ground substitution with Dom(σ) = (Var(l)\Var(r, sn, tn)) ∪⋃n
i=1 Var(ti)\Var(r, si+1,n) and β : l→ r ⇐ sn � tn ∈ R.

In the following, we often omit R when referring to traces and safe pairs if the underlying
CTRS is clear from the context.

I Definition 4 (reversible rewriting). Let R be a DCTRS. The reversible rewrite relation
⇀R is defined on pairs 〈t, π〉, where t is a ground term and π is a trace in R. The reversible
rewrite relation extends standard rewriting as follows:

〈s, π〉⇀R 〈t, β(p, σ′, π1, . . . , πn) : π〉

iff there exist a position p ∈ Pos(s), a rewrite rule β : l→ r ⇐ sn � tn ∈ R, and a ground
substitution σ such that s|p = lσ, 〈siσ, [ ]〉⇀∗R 〈tiσ, πi〉 for all i = 1, . . . , n, t = s[rσ]p, and
σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪

⋃n

i=1
Var(ti)\Var(r,si+1,n). The reverse relation, ↽R, is then defined

as follows:

〈t, β(p, σ′, π1, . . . , πn) : π〉↽R 〈s, π〉

iff 〈t, β(p, σ′, πn) : π〉 is a safe pair in R, β : l → r ⇐ sn � tn ∈ R and there is a
ground substitution θ such that Dom(θ) = Var(r, sn)\Dom(σ′), t|p = rθ, 〈ti θ∪σ′, πi〉 ↽∗R

2 As it is common, [ ] denotes the empty list and x : xs is a list with head x and tail xs.
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〈si θ∪σ′, [ ]〉 for all i = 1, . . . , n, and s = t[l θ∪σ′]p. Here, we assume that ∪ is the union of
substitutions and that it binds stronger than substitution application, i.e., l θ∪σ′ = l(θ ∪ σ′).
Note that θ ∪ σ′ is well defined since Dom(θ) ∩ Dom(σ′) = ∅ (actually, θ ∪ σ′ = θσ′ = σ′θ

since they are also ground).
We denote the union of both relations ⇀R ∪↽R by 
R.

I Example 5. Consider the DCTRS R from Example 1. Given the term double(s(s(0))), we
have, for instance, the following forward derivation:

〈double(s(s(0))), [ ]〉 ⇀R 〈add(s(s(0)), s(s(0))), [β3(ε, id, π)]〉
⇀R · · ·
⇀R 〈s(s(s(s(0)))), [β1(1.1, id), β2(1, id), β2(ε, id), β3(ε, id, π)]〉

where π = [β4(ε, id), β5(ε, id)] since we have the following reduction:

〈even(s(s(0))), [ ]〉⇀R 〈even(0), [β5(ε, id)]〉⇀R 〈true, [β4(ε, id), β5(ε, id)]〉

The reader can easily construct the associated backward derivation:

〈add(s(s(0)), s(s(0))), [β1(1.1, id), β2(1, id), β2(ε, id), β3(ε, id, π)]〉↽∗R 〈double(s(s(0))), [ ]〉

Let us now explain why we need to store σ′ in a step of the form 〈s, π〉⇀R 〈t, β(p, σ′, πn) : π〉.
Given a DCTRS, for each rule l→ r ⇐ sn � tn, the following conditions hold:

3-CTRS: Var(r) ⊆ Var(l, sn, tn).
Determinism: for all i = 1, . . . , n, we have Var(si) ⊆ Var(l, ti−1).

Intuitively, the backward relation ↽R can be seen as equivalent to the forward relation ⇀R
but using a reverse rule of the form r → l ⇐ tn � sn, . . . , t1 � s1. Therefore, in order to
ensure that backward reduction is deterministic, we need the same conditions as above but
on the reverse rewrite rule:

3-CTRS: Var(l) ⊆ Var(r, sn, tn).
Determinism: for all i = 1, . . . , n, Var(ti) ⊆ Var(r, si+1,n).

Since these conditions cannot be guaranteed in general, we store

σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪
⋃n

i=1
Var(ti)\Var(r,si+1,n)

in the trace term so that (r → l ⇐ tn � sn, . . . , t1 � s1)σ′ is deterministic and fulfills
the conditions of a 3-CTRS by construction, i.e., Var(lσ′) ⊆ Var(rσ′, snσ′, tnσ′) and for all
i = 1, . . . , n, Var(tiσ′) ⊆ Var(rσ′, si+1,nσ′); see the proof of Theorem 11 for more details.

I Example 6. Consider, e.g., the following DCTRS:

β1 : f(x, y,m) → s(w)⇐ h(x)� x, g(y, 4)� w

β2 : h(0) → 0 β3 : h(1) → 1 β4 : g(x, y) → x

and the step 〈f(0, 2, 4), [ ]〉 ⇀R 〈s(2), [β1(ε, σ′, π1, π2)]〉 with σ′ = {m 7→ 4, x 7→ 0}, π1 =
[β2(ε, id)] and π2 = [β4(ε, {y 7→ 4})]. The binding of variable m is required to recover the
value of the erased variable m, but the binding of variable x is also needed to perform the sub-
derivation 〈x, π1〉↽R 〈h(x), [ ]〉 when applying a backward step from 〈s(2), [β1(ε, σ′, π1, π2)]〉.
If the binding for x were unknown, this step would not be deterministic. As mentioned above,
an instantiated reverse rule (s(w) → f(x, y,m) ⇐ w � g(y, 4), x � h(x))σ′ = s(w) →
f(0, y, 4)⇐ w � g(y, 4), 0� h(0) would be a DCTRS thanks to σ′.
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We note that similar conditions could be defined for arbitrary 3-CTRSs. However, the
conditions would be much more involved (e.g., one should first compute the dependencies
between the equations in the conditions), so we prefer to keep the simpler conditions for
DCTRSs, which is still quite a general class of CTRSs.

An easy but essential property of ⇀R is that it is a conservative extension of standard
rewriting in the following sense (we omit its proof since it is straightforward):

I Theorem 7. Let R be a DCTRS. Given ground terms s, t, if s→∗R t, then for any trace π
there exists a trace π′ such that 〈s, π〉⇀∗R 〈t, π′〉.

We note that this is not the case for the backward relation: t ←R s does not imply
〈t, π′〉 ↽R 〈s, π〉 for an arbitrary trace π′.3 This is actually the purpose of our notion of
reversible rewriting: ↽R should not extend ←R but is only aimed at performing exactly
the same steps of the forward computation whose trace was stored but in the reverse order.
Nonetheless, one can still ensure that, for any step t ←R s, there is a trace π′ such that
〈t, π′〉↽R 〈s, π〉 for some trace π (which is an easy consequence of Theorems 7 and 10).

I Example 8. Consider the following simple TRS R = {β : snd(x, y) → y}. Given
the reduction snd(1, 2) →R 2, there are infinitely many reductions for 2 using ←R, e.g.,
2 ←R snd(1, 2), 2 ←R snd(2, 2), 2 ←R snd(3, 2), etc. The relation is also non-terminating:
2 ←R snd(1, 2) ←R snd(1, snd(1, 2)) ←R · · · . In contrast, given a pair 〈2, π〉, we can only
perform a single deterministic and finite reduction (as proved below).

The following result states that every pair which is reachable from an initial pair with an
empty trace is safe, and follows easily by induction on the length of the derivations:

I Proposition 9. Let R be a DCTRS. If 〈s, [ ]〉
∗R 〈t, π〉, then 〈t, π〉 is safe in R.

For the following result, we need some preliminary notions (see, e.g., [26]). For every oriented
CTRS R, we inductively define the TRSs Rk, k ≥ 0, as follows:

R0 = ∅
Rk+1 = {lσ → rσ | l→ r ⇐ sn � tn ∈ R, siσ →∗Rk

tiσ for all i = 1, . . . , n}

Observe that Rk ⊆ Rk+1 for all k ≥ 0. We have →R=
⋃
i≥0 →Ri

. We also have s →R t

iff s →Rk
t for some k ≥ 0. The minimum such k is called the depth of s →R t, and the

maximum depth k of s = s0 →Rk1
· · · →Rkm

sm = t (i.e., k is the maximum of depths
k1, . . . , km) is called the depth of the derivation. If a derivation has depth k and length m,
we write s→m

Rk
t. Analogous notions can naturally be defined for ⇀R, ↽R, and 
R.

Now, we can already state the reversibility of ⇀R:

I Theorem 10. Let R be a DCTRS. Given the safe pairs 〈s, π〉 and 〈t, π′〉, for all k,m ≥ 0,
〈s, π〉⇀m

Rk
〈t, π′〉 iff 〈t, π′〉↽m

Rk
〈s, π〉.

Proof. (⇒) We prove the claim by induction on the lexicographic product (k,m) of the
depth k and the length m of the derivation 〈s, π〉 ⇀m

Rk
〈t, π′〉. Since the base case is

trivial, we consider the inductive case (k,m) > (0, 0). Consider a derivation 〈s, π〉 ⇀m−1
Rk

〈s0, π0〉 ⇀Rk
〈t, π′〉 whose associated product is (k,m). By Proposition 9, both 〈s0, π0〉

and 〈t, π′〉 are safe. By the induction hypothesis, since (k,m − 1) < (k,m), we have
〈s0, π0〉 ↽m−1

Rk
〈s, π〉. Consider now the step 〈s0, π0〉 ⇀Rk

〈t, π′〉. Thus, there exist a

3 Here, and in the following, we assume that ←R= (→R)−1.
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position p ∈ Pos(s0), a rule β : l → r ⇐ sn � tn ∈ R, and a ground substitution
σ such that s0|p = lσ, 〈siσ, [ ]〉 ⇀∗Rk′

i

〈tiσ, πi〉 for all i = 1, . . . , n, t = s0[rσ]p, σ′ =
σ|̀(Var(l)\Var(r,sn,tn))∪

⋃n

i=1
Var(ti)\Var(r,si+1,n), and π

′ = β(p, σ′, π1, . . . , πn) : π0. By definition
of ⇀Rk

, we have that k′i < k and, thus, (k′i,m1) < (k,m2) for all i = 1, . . . , n and for
all m1,m2. Hence, by the induction hypothesis, we have 〈tiσ, πi〉 ↽∗Rk′

i

〈siσ, [ ]〉 for all
i = 1, . . . , n. Let θ = σ |̀Var(r,sn)\Dom(σ′), so that σ = θ∪σ′ is well defined. Therefore, we have
〈t, π′〉↽Rk

〈s′0, π0〉 with t|p = rθ, β : l→ r ⇐ sn � tn ∈ R and s′0 = t[l θ∪σ′]p = t[lσ]p = s0,
and the claim follows.

(⇐) This direction proceeds in a similar way. We prove the claim by induction on the
lexicographic product (k,m) of the depth k and the length m of the considered derivation.
Since the base case is trivial, let us consider the inductive case (k,m) > (0, 0). Let us
consider a derivation 〈t, π′〉 ↽m−1

Rk
〈s0, π0〉 ↽Rk

〈s, π〉 whose associated product is (k,m).
By Proposition 9, both 〈s0, π0〉 and 〈s, π〉 are safe. By the induction hypothesis, since
(k,m − 1) < (k,m), we have 〈s0, π0〉 ⇀m−1

Rk
〈t, π′〉. Consider now the step 〈s0, π0〉 ↽Rk

〈s, π〉. Then, we have π0 = β(p, σ′, π1, . . . , πn) : π, β : l → r ⇐ sn � tn ∈ R, and there
exists a ground substitution θ with Dom(θ) = Var(r, sn)\Dom(σ′) such that s0|p = rθ,
〈ti θ∪σ′, πi〉 ↽∗Rk′

i

〈si θ∪σ′, [ ]〉 for all i = 1, . . . , n, and s = s0[l θ∪σ′]p. Moreover, since
〈s0, π0〉 is safe, we have that Dom(σ′) = (Var(l)\Var(r, sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1,n)

and, thus, θ ∪ σ′ is well defined. By definition of ↽Rk
, we have that k′i < k and, thus,

(k′i,m1) < (k,m2) for all i = 1, . . . , n and for all m1,m2. Hence, by the induction hypothesis,
we have 〈si θ∪σ′, [ ]〉 ⇀∗Rk′

i

〈ti θ∪σ′, πi〉 for all i = 1, . . . , n. Let σ = θ ∪ σ′, which is well
defined since Dom(θ) ∩ Dom(σ′) = ∅. Then, since s|p = lσ, we can perform the step
〈s, π〉⇀Rk

〈s′0, β(p, σ′, π1, . . . , πn) : π〉 with s′0 = s[rσ]p = s[r θ∪σ′]p; moreover, s[r θ∪σ′]p =
s[rθ]p = s0[rθ]p = s0 since Dom(σ′) ∩ Var(r) = ∅, which concludes the proof. J

The relevance of our backward relation ↽R stems from the fact that it is deterministic
(thus confluent), terminating, and has a constructive definition. In the following, we say
that 〈t, π′〉↽R 〈s, π〉 is a deterministic step if there is no other, different pair 〈s′′, π′′〉 with
〈t, π′〉↽R 〈s′′, π′′〉 and, moreover, the subderivations for the equations in the condition of
the applied rule (if any) are deterministic, too. We say that a derivation 〈t, π′〉↽∗R 〈s, π〉 is
deterministic if each reduction step in the derivation is deterministic.

I Theorem 11. Let R be a DCTRS. Let 〈t, π′〉 be a safe pair with 〈t, π′〉↽∗R 〈s, π〉 for some
term s and trace π. Then 〈t, π′〉↽∗R 〈s, π〉 is deterministic.

Proof. We prove the claim by induction on the lexicographic product (k,m) of the depth
k and the length m of the steps. The case that m = 0 is trivial, and thus we let m > 0.
Assume 〈t, π′〉 ↽m−1

R 〈u, π′′〉. If there is no step using ↽R from 〈u, π′′〉, the claim follows
trivially for all m′ ≤ m. Now, assume there is at least one step issuing from 〈u, π′′〉, e.g.,
〈u, π′′〉↽R 〈s, π〉. For the base case k = 1, the applied rule is unconditional and we prove
that this is the only possible step. By definition, we have π′′ = β(p, σ′) : π, p ∈ Pos(u),
β : l → r ∈ R1, and there exists a ground substitution θ with Dom(θ) = Var(r) such that
u|p = rθ and s = u[l θ∪σ′]p. The only source of nondeterminism may come from choosing
a rule labeled with β and from the computation of the substitution θ. The claim trivially
follows since labels are unique in R and, if there is another ground substitution θ′ with
θ′ = Var(r) and u|p = rθ′, then θ = θ′.

Let us now consider k > 1. By definition, if 〈u, π′′〉 ↽Rk
〈s, π〉, we have π′′ =

β(p, σ′, π1, . . . , πn) : π, β : l → r ⇐ sn � tn ∈ R and there exists a ground substitu-
tion θ with Dom(θ) = Var(r) such that u|p = rθ, 〈ti θ∪σ′, πi〉 ↽∗Rj

〈si θ∪σ′, [ ]〉, j < k,
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for all i = 1, . . . , n, and s = t[l θ∪σ′]p. By the induction hypothesis, the subderivations
〈ti θ∪σ′, πi〉↽∗Rj

〈si θ∪σ′, [ ]〉 are deterministic, i.e., 〈si θ∪σ′, [ ]〉 is a unique resulting term
obtained by reducing 〈ti θ∪σ′, πi〉. Therefore, the only remaining source of nondeterminism
can come from choosing a rule labeled with β and from the computed substitution θ. On the
one hand, the labels are unique in R. As for θ, we prove that this is indeed the only possible
substitution for the reduction step. Consider the instance of rule l → r ⇐ sn � tn with
σ′: lσ′ → rσ′ ⇐ snσ′ � tnσ′. Since 〈u, π′′〉 is safe, we have that σ′ is a ground substitution
and Dom(σ′) = (Var(l)\Var(r, sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1,n). Then, the following

properties hold:
Var(lσ′) ⊆ Var(rσ′, snσ′, tnσ′), since σ′ is ground and it covers all the variables in
Var(l)\Var(r, sn, tn).
Var(tiσ′) ⊆ Var(rσ′, si+1,nσ′) for all i = 1, . . . , n, since σ′ is ground and it covers all
variables in

⋃n
i=1 Var(ti)\Var(r, si+1,n).

The above properties guarantee that the rule rσ′ → lσ′ ⇐ tnσ
′ � snσ

′, . . . , t1σ
′ � s1σ

′ can
be seen as a rule of a DCTRS and, thus, there exists a deterministic procedure to compute θ,
which completes the proof. J

Therefore, ↽R is deterministic and confluent. Termination is trivially guaranteed for pairs
with a finite trace since the trace’s length strictly decreases with every backward step.

4 Removing Positions from Traces

Once we have a feasible definition of reversible rewriting, there are two refinements that
can be considered: i) reducing the size of the traces and ii) defining a reversibilization
transformation so that standard rewriting becomes reversible in the transformed system.
Regarding the first refinement, one could remove information from the traces by requiring
certain conditions on the considered systems. For instance, requiring injective functions may
help to remove rule labels from trace terms. Also, requiring non-erasing rules may help to
remove the second component of trace terms (i.e., the substitutions). In this work, however,
we deal with a more challenging topic: removing positions from traces. This is useful not only
to reduce the size of the traces but it is also essential to define a reversibilization technique
for DCTRSs (cf. Section 5).4

In the following, rather than restricting the class of considered systems, we aim at
transforming a given DCTRS into one that fulfills some conditions that make storing
positions unnecessary. In the following, given a CTRS R, we say that a term t is basic [11] if
it has the form f(tn) with f ∈ DR a defined function symbol and tn ∈ T (CR,V) constructor
terms. Now, we introduce the following subclass of DCTRSs:

I Definition 12 (basic DCTRS). A DCTRS R is called basic if, for any rule l → r ⇐
sn � tn ∈ R, we have that r, sn and tn are either basic or constructor terms.

In principle, any DCTRS can be transformed into a basic DCTRS by applying a sequence of
flattening transformations. Roughly speaking, flattening involves transforming a term with
nested defined functions like f(g(x)) into a term f(y) and an (oriented) equation g(x)� y,
where y is a fresh variable.

4 We note that defining a transformation with traces that include positions would be a rather difficult task
because positions are dynamic (i.e., they depend on the term being reduced) and thus would require a
complex (and inefficient) program instrumentation.

FSCD 2016



28:10 Reversible Term Rewriting

I Definition 13 (flattening). Let R be a CTRS, R = (l→ r ⇐ sn � tn) ∈ R be a rule and
R′ be a new rule either of the form l→ r ⇐ s1 � t1, . . . , si|p � w, si[w]p � ti, . . . , sn � tn,
for some p ∈ Pos(si), 1 6 i 6 n, or l → r[w]q ⇐ sn � tn, r|q � w, for some q ∈ Pos(r),
where w is a fresh variable.5 Then, a CTRS R′ is obtained from R by a flattening step if
R′ = (R\{R}) ∪ {R′}.

Flattening is trivially complete since any flattening step can be undone by binding the
fresh variable again to the selected subterm and, then, proceeding as in the original system.
Soundness is more subtle though. In this work, we prove the correctness of flattening for
arbitrary DCTRSs w.r.t. innermost rewriting. As usual, the innermost rewrite relation, in
symbols, i→R, is defined as the smallest binary relation satisfying the following: given ground
terms s, t ∈ T (F), we have s i→R t iff there exist a position p in s such that no proper
subterms of s|p are reducible, a rewrite rule l→ r ⇐ sn � tn ∈ R, and a normalized ground
substitution σ such that s|p = lσ, siσ

i→∗R tiσ, for all i = 1, . . . , n, and t = s[rσ]p.

I Theorem 14. Let R be a DCTRS. If R′ is obtained from R by a flattening step, then R′

is a DCTRS and, for all ground terms s, t, we have s i→∗R t iff s
i→∗R′ t.

Therefore, both a DCTRS and its basic version – obtained by applying a sequence of flattening
steps – are equivalent w.r.t. innermost reduction. This justifies our use of basic DCTRSs in
the remainder of this paper.

A nice property of basic DCTRSs is that one can consider reductions only at topmost
positions. Formally, given a DCTRS R, we say that s →p,l→r⇐sn�tn

t is a top reduction
step if p = ε, there is a ground substitution σ with s = lσ, siσ →∗R tiσ for all i = 1, . . . , n,
t = rσ, and all the steps in siσ →∗R tiσ for i = 1, . . . , n are also top reduction steps. We
denote top reductions with ε→ for standard rewriting, and ε

⇀R,
ε
↽R for our reversible rewrite

relations.
The following result basically states that i→ and ε→ are equivalent for basic DCTRSs:

I Theorem 15. Let R be a DCTRS and R′ be a basic DCTRS obtained from R by a sequence
of flattening steps. Given ground terms s, t such that s is basic, we have s i→∗R t iff s

ε→∗R′t.

Therefore, when considering basic DCTRSs and top reductions, storing the reduced positions
in the trace terms becomes redundant since they are always ε. Thus, in practice, one can
consider simpler trace terms without positions, β(σ, π1, . . . , πn), that implicitly represent the
trace term β(ε, σ, π1, . . . , πn).

I Example 16. Consider the following TRS R defining addition and multiplication on
natural numbers, and its associated basic DCTRS R′:

R = { β1 : a(0, y) → y, R′ = { β′1 : a(0, y) → y,

β2 : a(s(x), y) → s(a(x, y)), β′2 : a(s(x), y) → s(z)⇐ a(x, y)� z,

β3 : m(0, y) → 0, β′3 : m(0, y) → 0,
β4 : m(s(x), y) → a(m(x, y), y) } β′4 : m(s(x), y) → a(z, y)⇐ m(x, y)� z }

For instance, given the following reduction in R:

m(s(0), s(0)) i→R a(m(0, s(0)), s(0)) i→R a(0, s(0)) i→R s(0)

we have the following counterpart in R′:

m(s(0), s(0)) ε→R′ a(0, s(0)) ε→R′ s(0) with m(0, s(0)) ε→R′ 0

5 The positions p, q can be required to be different from ε, but this is not strictly necessary.
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Trivially, all results in Section 3 hold for basic DCTRSs and top reductions starting from
basic terms. The simpler trace terms without positions allow us to introduce appropriate
injectivization and inversion transformations in the next section.

5 Reversibilization

In this section, we aim at compiling the reversible extension of rewriting into the system
rules. Intuitively speaking, given a basic system R, we aim at producing new systems Rf
and Rb such that standard rewriting in Rf , i.e., →Rf

, coincides with the forward reversible
extension ⇀R in the original system, and analogously →Rb

is equivalent to ↽R. Therefore,
Rf can be seen as an injectivization of R, and Rb can be seen as the inversion of Rf .

5.1 Injectivization
Essentially, injectivization in our context amounts to add the traces to the rewrite rules, so
that standard rewriting can be used:

I Definition 17 (injectivization). Let R be a basic DCTRS. We produce a new CTRS I(R)
by replacing each rule β : l→ r ⇐ s1 � t1, . . . , sn � tn of R by a new rule of the form

〈l, ws〉 → 〈r, β(y, wn) : ws〉 ⇐ 〈s1, [ ]〉� 〈t1, w1〉, . . . , 〈sn, [ ]〉� 〈tn, wn〉

in I(R), where {y} = (Var(l)\Var(r, sn, tn) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n)) and both ws and

wn are fresh variables. Here, we assume that the variables of y are in lexicographic order.

Observe that there is a clear correspondence with the notion of reversible rewriting by only
assuming that the reduced positions are always ε and, thus, they are not stored in the trace.
Note also that, rather than storing a substitution, as in β(σ, π1, . . . , πn), we add the variables
of interest to the trace term, β(y, π1, . . . , πn), where y represent the domain of σ.

I Example 18. Consider again the DCTRS R from Example 6, which is already a basic
DCTRS. Then, Rf = I(R) is as follows:6

〈f(x, y,m), ws〉 → 〈s(w), β1(m,x,w1, w2) : ws〉⇐〈h(x), [ ]〉� 〈x,w1〉, 〈g(y, 4), [ ]〉� 〈w,w2〉
〈h(0), ws〉 → 〈0, β2 : ws〉
〈h(1), ws〉 → 〈1, β3 : ws〉

〈g(x, y), ws〉 → 〈x, β4(y) : ws〉

The reversible step 〈f(0, 2, 4), [ ]〉 ε
⇀R 〈s(2), [β1(ε, σ′, π1, π2)]〉 with σ′ = {m 7→ 4, x 7→ 0},

π1 = [β2(ε, id)] and π2 = [β4(ε, {y 7→ 4})], has the following counterpart in Rf :

〈f(0, 2, 4), [ ]〉 ε→Rf
〈s(2), [β1(4, 0, [β2], [β4(4)])]〉 with 〈h(0), [ ]〉 ε→Rf

〈0, [β2]〉 and
〈g(2, 4), [ ]〉 ε→Rf

〈2, [β4(4)]〉

As can be seen in the example above, the trace terms that occur in a reversible rewrite
derivation with a basic DCTRS R and those that occur in a top reduction with I(R) are
similar but not exactly equal. We formalize their relation as follows:

6 We will write just β instead of β() when no argument is required.
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I Definition 19. Given a trace π, we define π̂ recursively as follows:

π̂ =
{

[ ] if π = [ ]
β(tm, π̂1, . . . , π̂n) if π = β({y1 7→ t1, . . . , ym 7→ tm}, π1, . . . , πn)

where we assume that the variables ym are in lexicographic order.

The following result states the correctness of our injectivization transformation:

I Theorem 20. Let R be a basic DCTRS and Rf = I(R) be its injectivization. Then Rf is a
basic DCTRS and, given a basic ground term s, we have 〈s, [ ]〉 ε

⇀∗R〈t, π〉 iff 〈s, [ ]〉 ε→∗Rf
〈t, π̂〉.

5.2 Inversion
In general, function inversion is a difficult and often undecidable problem (see, e.g., [24, 22,
10, 23]). For injectivized systems, though, it becomes straightforward:

IDefinition 21 (inversion). LetR be a basic DCTRS and letRf = I(R) be its injectivization.
Then, the inverse system, Rb = I−1(Rf ) is obtained from Rf by transforming every rule

〈l, ws〉 → 〈r, β(y, wn) : ws〉 ⇐ 〈s1, [ ]〉� 〈t1, w1〉, . . . , 〈sn, [ ]〉� 〈tn, wn〉

into a rule of the form

〈r, β(y, wn) : ws〉−1 → 〈l, ws〉−1 ⇐ 〈tn, wn〉−1 � 〈sn, [ ]〉−1, . . . , 〈t1, w1〉−1 � 〈s1, [ ]〉−1

We use a different symbol 〈_,_〉−1 since we may want to use both the forward and the
backward functions in the same system.

I Example 22. Consider the DCTRS Rf from Example 18. Then, its inversion Rb =
I−1(Rf ) is defined as follows:

〈s(w), β1(m,x,w1, w2) : ws〉−1 → 〈f(x, y,m), ws〉−1 ⇐ 〈w,w2〉−1 � 〈g(y, 4), [ ]〉−1,
〈x,w1〉−1 � 〈h(x), [ ]〉−1

〈0, β2 : ws〉−1 → 〈h(0), ws〉−1
〈1, β3 : ws〉−1 → 〈h(1), ws〉−1

〈x, β4(y) : ws〉−1 → 〈g(x, y), ws〉−1

The correctness of the inversion transformation is then stated as follows:

I Theorem 23. Let R be a basic DCTRS, Rf = I(R) its injectivization, and Rb = I−1(Rf )
the inversion of Rf . Then, Rb is a basic DCTRS and, given a basic or constructor ground
term t and a trace π with 〈t, π〉 safe, we have 〈t, π〉 ε

↽∗R〈s, [ ]〉 iff 〈t, π̂〉−1 ε→∗Rb
〈s, [ ]〉−1.

5.3 An Improved Reversibilization Procedure
Using the transformations introduced so far, given a DCTRS R, we can produce a basic
DCTRS R′, which can then be injectivized I(R′) and reversed I−1(I(R′)). Although one
can find several applications for I(R′) and I−1(I(R′)), we note that these systems are aimed
at mimicking the reversible relations ⇀R′ and ↽R′ , rather than computing injective and
inverse versions of the functions defined in R′. In other words, I(R′) defines a single function
〈_,_〉 and I−1(I(R′)) a single function 〈_,_〉−1. Now, we refine these transformations so
that one can actually produce injective and inverse versions of the original functions.
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In principle, one could consider that the injectivization of a rule of the form7

β : f(s0)→ r ⇐ f1(s1)� t1, . . . , fn(sn)� tn

will produce the following rule

fi(s0, ws)→ 〈r, β(y, wn) : ws〉 ⇐ fi1(s1, [ ])� 〈t1, w1〉 . . . , fin(sn, [ ])� 〈tn, wn〉

where traces are now added as an additional argument of each function. The following
example, though, illustrates that this is not correct in general.

I Example 24. Consider the following basic DCTRS R:

β1 : f(x, y) → z ⇐ h(y)� w, first(x,w)� z

β2 : h(0) → 0
β3 : first(x, y) → x

together with the following top reduction:

f(2, 1) ε→R 2 with σ = {x 7→ 2, y 7→ 1, w 7→ h(1), z 7→ 2}
where h(y)σ = h(1) ε→∗Rh(1) = wσ and first(x,w)σ = first(2, h(1)) ε→∗R2 = zσ

The improved injectivization above would return the following basic DCTRS:

fi(x, y, ws) → 〈z, β1(w1, w2) : ws〉 ⇐ hi(y, [ ])� 〈w,w1〉, firsti(x,w, [ ])� 〈z, w2〉
hi(0, ws) → 〈0, β2 : ws〉

firsti(x, y, ws) → 〈x, β3(y) : ws〉

Unfortunately, the corresponding reduction for fi(2, 1, [ ]) above cannot be done in this system
since hi(1, [ ]) cannot be reduced to 〈hi(1), [ ]〉.

In order to solve the above drawback, one could complete the function definitions with rules
that reduce each irreducible term t to a tuple of the form 〈t, [ ]〉. Although we find it a
promising idea for future work, in this paper we propose a simpler approach. In the following,
we consider a refinement of innermost reduction where only constructor substitutions are
computed. Formally, the constructor reduction relation, c→, is defined as follows: given
ground terms s, t ∈ T (F), we have s c→R t iff there exist a position p in s such that no
proper subterms of s|p are reducible, a rewrite rule l → r ⇐ sn � tn ∈ R, and a ground
constructor substitution σ such that s|p = lσ, siσ

c→∗R tiσ for all i = 1, . . . , n, and t = s[rσ]p.
Furthermore, we also require a further requirement on DCTRSs: we say that R is a c-

DCTRS (a pure-constructor system [20]) if R is a DCTRS and, for any rule l→ r ⇐ sn � tn,
we have that l, sn are basic terms and r, tn are constructor terms. Note that requiring sn to
be basic terms (thus excluding constructor terms) is not a real restriction since any equation
of the form s� t, with s (and t) a constructor term, can be removed by matching s and t,
removing the equation, and applying the matching substitution to the rule (cf. [23]).

I Definition 25 (refined injectivization). Let R be a basic c-DCTRS. We produce a new
CTRS I(R) by replacing each rule β : f(s0) → r ⇐ f1(s1) � t1, . . . , fn(sn) � tn of R by a
new rule of the form

fi(s0)→ 〈r, β(y, wn)〉 ⇐ fi1(s1)� 〈t1, w1〉, . . . , fin(sn)� 〈tn, wn〉

in I(R), where {y} = (Var(l)\Var(r, sn, tn)) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n) and wn are fresh

variables. Here, we assume that the variables of y are in lexicographic order.

7 By abuse, here we let s0, . . . , sn denote sequences of terms of arbitrary length.
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Observe that now we do not need to keep a trace in each term, but only a single trace term
since all reductions finish in one step in a basic c-DCTRS. By abuse of notation, we still use
the notation π̂ when π is a trace term instead of a trace.

I Theorem 26. Let R be a basic c-DCTRS and Rf = I(R) be its injectivization. Then Rf
is a basic c-DCTRS and, given a basic ground term f(s) and a constructor ground term t, we
have 〈f(s), [ ]〉 c

⇀R 〈t, π〉 iff fi(s) c→Rf
〈t, π̂〉.

Now, the refined version of the inversion transformation proceeds as follows:

I Definition 27 (refined inversion). Let R be a basic c-DCTRS and Rf = I(R) be its
injectivization. The inverse system Rb = I−1(Rf ) is obtained from Rf by replacing each
rule

fi(s0)→ 〈r, β(y, wn)〉 ⇐ fi1(s1)� 〈t1, w1〉, . . . , fin(sn)� 〈tn, wn〉

of Rf by a new rule of the form

f−1(r, β(y, wn))→ 〈s0〉 ⇐ f−1n (tn, wn)� 〈sn〉, . . . , f−11 (t1, w1)� 〈s1〉

in I−1(Rf ). Here, we assume that the variables of y are in lexicographic order.

I Example 28. Consider again the basic DCTRS of Example 6 which is a c-DCTRS. The
injectivization transformation I, returns the following c-DCTRS Rf :

fi(x, y,m) → 〈s(w), β1(m,x,w1, w2)〉 ⇐ hi(x)� 〈x,w1〉, gi(y, 4)� 〈w,w2〉
hi(0) → 〈0, β2〉 hi(1) → 〈1, β3〉 gi(x, y) → 〈x, β4(y)〉

Then, inversion with I−1 produces the following c-DCTRS Rb:

f−1(s(w), β1(m,x,w1, w2)) → 〈x, y,m〉 ⇐ g−1(w,w2)� 〈y, 4〉, h−1(x,w1)� 〈x〉
h−1(0, β2) → 〈0〉 h−1(1, β3) → 〈1〉 g−1(x, β4(y)) → 〈x, y〉

Finally, the correctness of the refined inversion transformation is stated as follows:

I Theorem 29. Let R be a basic c-DCTRS, Rf = I(R) its injectivization, and Rb = I−1(Rf )
the inversion of Rf . Then, Rb is a basic c-DCTRS and, given a basic ground term f(s)
and a constructor ground term t with 〈t, π〉 a safe pair, we have 〈t, π〉 c

↽R 〈f(s), [ ]〉 iff
f−1(t, π̂) c→Rb

〈s〉.

5.4 Applications
A potential application of our reversibilization technique is in the context of bidirectional
program transformation (see, e.g., [8, 15] and references therein). This technique applies
when we have a data structure, called the source, which is transformed to another data
structure, called the view. Typically, we have a view function that takes the source and
returns the corresponding view. Here, the bidirectionalization transformation aims at defining
a backward transformation that takes a modified view, and returns the corresponding modified
source. Defining a view function and a backward transformation that form a bidirectional
transformation is not easy, and therefore our reversibilization technique can be useful in this
context. For instance, let us assume that we have a view function, view, that takes a source
and returns the corresponding view, and is defined by means of a c-DCTRS. Then, following
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our approach, we can produce an injective version, say viewi, and an inverse version view−1.
Now, one could solve the view update problem with the following function:

upd(s, v′)→ s′ ⇐ viewi(s)� 〈v, π〉, view−1(v′, π)� 〈s′〉

where s is the original source, v′ is the updated view, and s′ – the returned value – is the
corresponding updated source.

A more challenging application is the reversibilization of cellular automata [19]. In a
cellular automaton, evolution is determined by some fixed rule (generally, a mathematical
function) that determines the new state of each cell in terms of the current state of the cell
and the states of the cells in its neighborhood. If we consider a rewrite system for defining
this rule, our approach can help us to produce reversible cellular automata from irreversible
ones, an important feature in this field.

As in [18], we can consider a one-dimensional irreversible cellular automaton where each
cell has two neighbours. The cellular automaton can be represented as a (potentially infinite)
array of cells. Consider, e.g., the following function to control the evolution of a cellular
automaton whose cells can only take value � or � (it is known as rule 150 ):

β1 : f(�,�,�)→ � β2 : f(�,�,�)→ � β3 : f(�,�,�)→ � β4 : f(�,�,�)→ �
β5 : f(�,�,�)→ � β6 : f(�,�,�)→ � β7 : f(�,�,�)→ � β8 : f(�,�,�)→ �

Evolution takes place then by applying simultaneously the above function to every cell and
its neighbours. Following our approach, we can injectivize function f as follows:

fi(�,�,�)→ 〈�, β1〉 fi(�,�,�)→ 〈�, β2〉 fi(�,�,�)→ 〈�, β3〉 fi(�,�,�)→ 〈�, β4〉
fi(�,�,�)→ 〈�, β5〉 fi(�,�,�)→ 〈�, β6〉 fi(�,�,�)→ 〈�, β7〉 fi(�,�,�)→ 〈�, β8〉

We can then consider that cells include a list of rule labels, so that the following evolution:

[ �, �, �, �, � ]⇒ [ �, �, �, �, � ]⇒ [ �, �, �, �, � ]⇒ · · ·

with the original cellular automaton, are now represented as follows:

[ 〈�, [ ]〉, 〈�, [ ]〉, 〈�, [ ]〉, 〈�, [ ]〉, 〈�, [ ]〉 ]
⇒ [ 〈�, [β1]〉, 〈�, [β2]〉, 〈�, [β3]〉, 〈�, [β5]〉, 〈�, [β1]〉 ]
⇒ [ 〈�, [β2, β1]〉, 〈�, [β4, β2]〉, 〈�, [β8, β3]〉, 〈�, [β7, β5]〉, 〈�, [β5, β1]〉 ]
⇒ · · ·

Thus, the new cellular automaton is clearly reversible. With respect to the previous approach
in [18], our reversibilization process is more intuitive (the one proposed in [18] is rather
ad-hoc), does not increase the number of steps (while in [18] 2n+ k steps are required for
each step of the original cellular automaton, where k is a constant and n is the number of
non-empty cells in the cellular automaton), and its correctness is trivial by construction
(correctness is only sketched in [18]). On the other hand, our approach increases the size of
the cellular automaton by a factor that depends in principle on the length of the computation
(but not on the size of the cellular automaton).

A more detailed description of the above applications can be found in [21].

6 Related Work

Regarding reversible computing, one can already find a number of references in the literature
(e.g., [4, 9, 30]). Our work starts with the well-known approach of Landauer [14] which
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proposes that saving the history of a computation makes it reversible. This approach to
reversibilization has already been considered in the past and has been applied in different
contexts and computational models, e.g., a probabilistic guarded command language [32], a
low level virtual machine [25], the call-by-name lambda calculus [12, 13], cellular automata
[28, 18], combinatory logic [7], a flowchart language [31], or a functional language [15, 27].

However, to the best of our knowledge, this is the first work that considers a reversible
extension of (conditional) term rewriting. We note, though, that Abramsky [1] introduced
an approach to reversible computation with pattern matching automata, which could also be
represented in terms of standard notions of term rewriting. His approach, though, requires a
condition called biorthogonality (which, in particular, implies injectivity), a condition that
would be overly restrictive in our setting. Roughly speaking, in our approach we achieve a
similar class of systems through injectivization from more general systems.

Another related work are the papers by Matsuda et al [15, 16] which focus on bidirectional
program transformation for functional programs. In [15], functional programs corresponding
to linear and right-treeless8 constructor TRSs are considered. In [16], the previous class is
extended to those corresponding to left-linear right-treeless TRSs. The methods in [15, 16] for
injectivization and inversion consider a more restricted class of systems than those considered
in this paper; on the other hand, they apply a number of analyses to improve the result,
which explains the smaller traces in their approach. Besides being more general, we consider
that our approach gives better insights to understand the need for the requirements of the
program transformations. Finally, [27] introduces a transformation for functional programs
which has some similarities with both the approach of [15] and our improved transformation
in Section 5.3; in contrast, though, [27] also applies the Bennett trick [3] in order to avoid
some unnecessary information.

7 Discussion and Future Work

In this paper, we have introduced a reversible extension of term rewriting. In order to
keep our approach as general as possible, we have initially considered DCTRSs as input
systems, and proved the soundness and reversibility of our extension of rewriting. Then,
in order to introduce a reversibilization transformation for these systems, we have also
presented a transformation from DCTRSs to basic DCTRSs which is correct for innermost
reduction. Finally, for constructor reduction, we are able to further refine our reversibilization
transformations. We have successfully applied our approach in the context of bidirectional
program transformation and the reversibilization of cellular automata.

As for future work, we plan to investigate restricted classes of CTRSs so that we can
further reduce the size of the traces. In particular, we will look for conditions under which
we can remove the variable bindings, the rule label, or even the complete trace. For this
purpose, we will consider non-erasing rules and injective functions, since we think that there
are different contexts where these conditions arise quite naturally.

Acknowledgements. We thank the anonymous reviewers for their useful comments and
suggestions to improve this paper.

8 There are no nested defined symbols in the right-hand sides, and, moreover, any term rooted by a
defined function in the right-hand sides can only take different variables as its proper subterms.
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Abstract
Suzuki et al. showed that properly oriented, right-stable, orthogonal, and oriented conditional
term rewrite systems with extra variables in right-hand sides are confluent. We present our
Isabelle/HOL formalization of this result, including two generalizations. On the one hand, we
relax proper orientedness and orthogonality to extended proper orientedness and almost orthog-
onality modulo infeasibility, as suggested by Suzuki et al. On the other hand, we further loosen
the requirements of the latter, enabling more powerful methods for proving infeasibility of con-
ditional critical pairs. Furthermore, we formalized a construction by Jacquemard that employs
exact tree automata completion for non-reachability analysis and apply it to certify infeasibility
of conditional critical pairs. Combining these two results and extending the conditional conflu-
ence checker ConCon accordingly, we are able to automatically prove and certify confluence of an
important class of conditional term rewrite systems.
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1 Introduction

Today there are a number of tools in existence which allow us to conveniently check various
properties of standard term rewrite systems (TRSs). To not just rely on the trustworthiness
and programming-prowess of the tool-authors, these tools are progressively accompanied
by certifiers, that is, computer-verified programs which rigorously assure correctness of a
tool’s output with respect to a given input. The prevalent procedure for the development of
certifiers comprises the following two phases: First, employ a proof assistant (in our case
Isabelle/HOL [9]) in order to formalize the underlying theory, resulting in a formal library
(in our case IsaFoR,1 an Isabelle/HOL Formalization of Rewriting). Then, verify a program
using this library, resulting in the actual certifier (in our case CeTA [17]).

Just for clarification, by formalizing the underlying theory, we mean that we take known
proofs and definitions from the literature as well as our own results, scrutinize them, fill in the
gaps, and provide such a level of detail that we arrive at a mechanized proof that is accepted
by a proof assistant. Against common belief, such mechanized proofs are not necessarily
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inscrutable to humans. On the contrary, especially Isabelle/HOL’s proof documents are highly
structured and, provided some practice, are sometimes easier to follow than their paper-
originals (for the best reading experience we recommend Isabelle/jEdit [19] for browsing).
More often than not, at least some minor inaccuracies and sometimes even proper errors in
published proofs are exposed during the process of formalization (e.g., in previous work [14]
one of the authors detected a missing left-linearity assumption in some of his yet earlier work
[11]). So the benefits of formalization are threefold:
1. By scrutinizing known results, we gain a better understanding and clarify inaccuracies

and sometimes even correct errors.
2. We obtain computer-checkable theories which may be used to generate certifiers for the

underlying results as well as to build new results on top of them.
3. Using such certifiers we are able to increase the reliability of tools that build on the

formalized theory and also expose errors in the tools themselves.

As mentioned earlier the formalization of standard term rewriting is ongoing work since
almost a decade, with many widely used results.

Ultimately we strife to establish the same state of the art for conditional term rewrite
systems (CTRSs). We already embarked on this journey in [12] and further this enterprise
by generalizing and extending our previous work.

The developments we describe in this article are part of the IsaFoR library and are freely
available for inspection, see theories Conditional_Rewriting/Level_Confluence.thy and
Tree_Automata/Exact_Tree_Automata_Completion.thy and their *_Impl.thy variants.

Contribution. The following three tasks are the original contributions of this work. We
already formalized the result that right-stable, properly oriented, almost orthogonal, oriented
3-CTRSs are confluent by Suzuki et al. [16] in previous work [12]. (1) Here, we extend
the syntactical part of the criterion to be applicable to extended properly oriented CTRSs.
Moreover, we revisit the definition of almost orthogonality and relax it in a way that we
now may employ new infeasibility criteria (Sections 3 and 4.3). Moreover, we shortly revisit
non-reachability and non-joinability via tcap (Section 4.1) with an eye towards certification.
(2) Additionally, we formalized the known result that reachability is decidable for linear and
growing TRSs by Jacquemard [8] (Section 4.2). We use this to check for infeasibility of
conditional critical pairs. (3) Finally, we incorporated the above findings in the certifier CeTA
(Section 4.3) as well as the conditional confluence checker ConCon [15] (Section 5), so we are
able to certify a large portion of the confluence proofs which are generated by ConCon.

Related Work. Felgenhauer and Thiemann [3] formalize so called state-compatible automata
and thereby also show that it is decidable if a regular tree language is closed under rewriting.
This is also part of IsaFoR and loosely related to our work. In the yearly confluence
competition2 confluence checkers for various flavors of term rewriting (like CO3, CoScart,
and ConCon for conditional rewriting [18]) compete in different categories. However, at the
time of writing none of the other conditional confluence tools supports certification.

2 Preliminaries

We assume familiarity with the basic notions of (conditional) term rewriting [2, 10], but
shortly recapitulate terminology and notation that we use in the remainder.

2 http://coco.nue.riec.tohoku.ac.jp

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/15b94f4b3d9b/thys/Conditional_Rewriting/Level_Confluence.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/15b94f4b3d9b/thys/Tree_Automata/Exact_Tree_Automata_Completion.thy
http://coco.nue.riec.tohoku.ac.jp
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Given two arbitrary binary relations →α and →β , we write α←, →+
α , →∗α for the inverse,

the transitive closure, and the reflexive transitive closure of →α, respectively. Moreover, the
relations ∗α← · →∗β and →∗β · ∗α← are called meetability and joinability. We say that →α and
→β commute whenever ∗α← · →∗β ⊆ →∗β · ∗α← holds. The same property is called confluence,
in case α and β coincide. Given a set B we define the set of ancestors with respect to →α by
(→α)[B] = {a | ∃b ∈ B. a→α b}.

We use V(·) to denote the set of variables occurring in a given syntactic object, like a
term, a pair of terms, a list of terms, etc. The set of terms T (F ,V) over a given signature
of function symbols F and set of variables V is defined inductively: x ∈ T (F ,V) for all
variables x ∈ V, and for every n-ary function symbol f ∈ F and terms t1, . . . , tn ∈ T (F ,V)
also f(t1, . . . , tn) ∈ T (F ,V). A term t is called ground if V(t) = ∅. The set of ground
terms over F is denoted by T (F) and the set of ground instances of a term t over a fixed
signature is denoted by Σ(t). We say that terms s and t unify, written s ∼ t, if sσ = tσ

for some substitution σ. For brevity, we speak about non-reachability, non-meetability, and
non-joinability of two terms s and t, when we actually mean that the respective property
holds for arbitrary substitution instances sσ and tτ . The tcap function [6] approximates the
topmost part of a term, its “cap,” that does not change under rewriting (we defer a formal
definition until Section 4.1). It is well known that tcap(s) 6∼ t implies non-reachability of t
from s.

For the purposes of this paper a rewrite rule (or just rule) is a pair of terms, written
` → r, whose left-hand side is not a variable (meaning that extra variables in right-hand
sides are explicitly allowed). A conditional rewrite rule is additionally equipped with a list
of pairs of terms, written c = s1 ≈ t1, . . . , sk ≈ tk, and called its conditions. Let ci denote
the first i conditions of c and ci,j the list of conditions si ≈ ti, . . . , sj ≈ tj . A (conditional)
term rewrite system R is a set of (conditional) rewrite rules. A CTRS which allows for
extra variables in right-hand sides of rules is called a 3-CTRS (formally, V(r) ⊆ V(`, c) for
all ` → r ⇐ c ∈ R). We restrict our attention to oriented CTRSs, i.e., where conditions
are interpreted as reachability requirements. The rewrite relation induced by an oriented
CTRS R is structured into levels. For each level i, a TRS Ri is defined recursively as follows:
R0 = ∅, and Ri+1 = {`σ → rσ | ` → r ⇐ c ∈ R,∀s ≈ t ∈ c. sσ →∗Ri

tσ}. For brevity, we
write →n for the rewrite relation of Rn whenever R is clear from the context. Furthermore,
we write σ, n ` c, whenever sσ →∗n tσ for all s ≈ t in c. By dropping all conditions from a
CTRS R we obtain its underlying TRS, denoted Ru. Note that →R ⊆ →Ru

.
Two variable-disjoint variants of rules `1 → r1 ⇐ c1 and `2 → r2 ⇐ c2 in R such that

`1|p /∈ V and `1|pµ = `2µ with most general unifier (mgu) µ, constitute a conditional overlap.
A conditional overlap that does not result from overlapping two variants of the same rule at
the root, gives rise to a conditional critical pair (CCP) r1µ ≈ r1[r2]pµ⇐ c1µ, c2µ. A CCP
s ≈ t⇐ c is said to be infeasible if its conditions cannot be satisfied by any substitution σ.
We sometimes use rules, overlaps, critical pairs, etc. without the addendum “conditional.”

We consider bottom-up non-deterministic finite tree automata (TA) A = 〈F , Q,Qf ,∆〉
where F is a signature, Q a set of states disjoint from the signature, Qf ⊆ Q the set
of final states, and ∆ a set of transitions of the shape f(q1, . . . , qn) → q with f ∈ F
and q1, . . . , qn, q ∈ Q or q → p with q, p ∈ Q. The language of a TA A is given by
L(A) = {t ∈ T (F) | ∃q ∈ Qf . t →∗A q}. We say that a set of ground terms E is regular if
there is a TA A such that L(A) = E. A substitution from variables to states is called a state
substitution. A TRS R is called growing if for all ` → r ∈ R the variables in V(`) ∩ V(r)
occur at depth at most 1 in ` (cf. [8]). Given a TRS R the linear growing approximation [8]
is defined as any linear growing TRS obtained from R by linearizing the left-hand sides,
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renaming the variables in the right-hand sides that occur at a depth greater than one in the
corresponding left-hand side, and finally also linearizing the right-hand sides.

3 An Enhanced Criterion for Level-Confluence of CTRSs

Level-confluence of a CTRS R is the property that Rn is confluent for each level n. Clearly,
level-confluence implies confluence (take the maximum of the two levels employed in a peak).

The following purely syntactic criterion for level-confluence of (possibly nonterminating)
oriented CTRSs with extra variables in right-hand sides was given by Suzuki et al.

I Lemma 1 (Suzuki et al. [16, Corollary 4.7]). Orthogonal, properly oriented, right-stable,
and oriented 3-CTRSs are level-confluent. J

In earlier work [12] we formalized Lemma 1 in Isabelle/HOL and extended it from
orthogonal to almost orthogonal CTRSs with infeasible critical pairs. In the following we
present a relaxation of almost orthogonality modulo infeasibility that allows us to conclude
non-meetability from non-joinability when showing infeasibility of conditional overlaps.

I Definition 2 (Almost Orthogonality modulo Infeasibility). A left-linear CTRS R is almost
orthogonal (modulo infeasibility) if each overlap between rules `1 → r1 ⇐ c1 and `2 → r2 ⇐ c2
with mgu µ at position p either
1. results from overlapping two variants of the same rule at the root, or
2. is trivial (i.e., p = ε and r1µ = r2µ), or
3. is infeasible in the following sense: for arbitrary m and n, whenever levels m and n

commute, then it is impossible to satisfy the conditions stemming from the first rule on
level m and at the same time the conditions stemming from the second rule on level n.
More formally: ∀mn. ( ∗m← · →∗n ⊆ →∗n · ∗m← =⇒ @σ.m, σ ` c1µ ∧ n, σ ` c2µ).

Note that without 2 and 3, Definition 2 corresponds to plain orthogonality. Also note
that by dropping 3, Definition 2 reduces to the definition of almost orthogonality given by
Hanus [7]. In our original definition of almost orthogonality modulo infeasibility [12], 3 is
the stronger requirement that the conditions of the resulting critical pair are infeasible (i.e.,
@σ n. n, σ ` c1µ, c2µ). In the following, whenever we talk about almost orthogonality we
mean Definition 2.

Observe that the level-commutation3 assumption of the third alternative in Definition 2
allows us to reduce non-meetability to non-joinability. That this is useful in practice is shown
by the following example.

I Example 3 (Non-Meetability via tcap). Consider the CTRS consisting of the two rules
{f(x) → a ⇐ x ≈ a, f(x) → b ⇐ x ≈ b} which has the critical pair a ≈ b ⇐ x ≈ a, x ≈ b.
Since tcap(cs(x, x)) = cs(y, z) ∼ cs(a, b), where cs is an auxiliary function symbol, we cannot
conclude infeasibility via non-reachability analysis using tcap. However, tcap(a) = a 6∼ b =
tcap(b) shows non-joinability of a and b. By 3 this shows non-meetability of a and b and
thereby infeasibility of the critical pair.

In general it is beneficial to test for non-meetability via non-joinability of conditions with
identical left-hand sides, see also Lemma 21.

Before we can state the main result of this section we have to define two syntactic
properties of conditional rewrite rules.

3 While this is called shallow confluence in the literature, we believe that level-commutation is a better,
since more descriptive, name.
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I Definition 4 (Right-Stable, Extended Properly Oriented). A conditional rule ` → r ⇐ c

with k conditions c = s1 ≈ t1, . . . , sk ≈ tk is called
1. right-stable whenever we have V(ti)∩V(`, ci−1, si) = ∅ and ti is either a linear constructor

term or a ground Ru-normal form, for all 1 6 i 6 k; and
2. extended properly oriented when either V(r) ⊆ V(`) or there is some 0 6 m 6 k such that
V(si) ⊆ V(`, t1, . . . , ti−1) for all 1 6 i 6 m and V(r)∩V(si ≈ ti) ⊆ V(`, t1, . . . , tm) for all
m < i 6 k.

Observe the following property of extended properly oriented rules of 3-CTRSs

V(r) ⊆ V(`, cm) ∪ (V(r) ∩ V(cm+1,k)) (?)

which we will use later and which can be shown by induction on k −m.

I Theorem 5. Almost orthogonal, extended properly oriented, right-stable, and oriented
3-CTRSs are confluent.

Before proving this statement we need an auxiliary definition, where we adopt the convention
that the number of holes of a multihole context is denoted by the corresponding lower-case
letter, e.g., c for C, d for D, e for E etc.

I Definition 6. We say that there is an extended parallel rewrite step at level n from s to t,
written s ↪→∥ n t, whenever we have a multihole context C, and sequences of terms s1, . . . , sc
and t1, . . . , tc, such that s = C[s1, . . . , sc], t = C[t1, . . . , tc], and for all 1 6 i 6 k we have
one of (si, ti) ∈ Rn (that is, a root-step at level n) and si →∗n−1 ti.

Proof of Theorem 5. Let R be a CTRS satisfying all required properties. Instead of directly
proving the above statement, we prove the commuting diamond property, m←↩∥ · ↪→∥ n ⊆
↪→∥ n · m←↩∥ , for all m and n and a suitable relation →n⊆↪→∥ n⊆→∗n which is called extended
parallel rewriting. This yields commutation of →∗m and →∗n for all m and n, and thereby
level-confluence, which in turn ensures confluence.

We proceed by complete induction on m + n. By induction hypothesis (IH) we may
assume the result for all m′ + n′ < m + n. Now consider the peak t m←↩∥ s ↪→∥ n u. If
any of m and n equals 0, we are done (since ↪→∥ 0 is the identity relation). Thus we may
assume m = m′ + 1 and n = n′ + 1 for some m′ and n′. By the definition of extended
parallel rewriting, we obtain multihole contexts C and D, and sequences of terms s1, . . . , sc,
t1, . . . , tc, u1, . . . , ud, v1, . . . , vd, such that s = C[s1, . . . , sc] and t = C[t1, . . . , tc], as well as
s = D[u1, . . . , ud] and u = D[v1, . . . , vd]; and (si, ti) ∈ Rm or si →∗m′ ti for all 1 6 i 6 c, as
well as (ui, vi) ∈ Rn or ui →∗n′ vi for all 1 6 i 6 d.

It is relatively easy to define the greatest lower bound C uD of two contexts C and D by
a recursive function (that simultaneously traverses the two contexts in a top-down manner
and replaces subcontexts that differ by a hole) and prove that we obtain a lower semilattice.
Now we identify the common part E of C and D, employing the semilattice properties of
multihole contexts, that is, E = C uD. Then C = E[C1, . . . , Ce] and D = E[D1, . . . , De]
for some multihole contexts C1, . . . , Ce and D1, . . . , De such that for each 1 6 i 6 e we
have Ci = � or Di = �. This also means that there is a sequence of terms s′1, . . . , s′e such
that s = E[s′1, . . . , s′e] and for all 1 6 i 6 e, we have s′i = Ci[ski

, . . . , ski+ci−1] for some
subsequence ski

, . . . , ski+ci−1 of s1, . . . , sc (we denote similar terms for t, u, and v by t′i, u′i,
and v′i, respectively). Moreover, note that by construction s′i = u′i for all 1 6 i 6 e. Since
extended parallel rewriting is closed under multihole contexts, it suffices to show that for
each 1 6 i 6 e there is a term v such that t′i ↪→∥ n v m←↩∥ v′i, in order to conclude the proof.
We concentrate on the case Ci = � (the case Di = � is completely symmetric). Moreover,
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note that when we have s′i →∗m′ t′i, the proof concludes by IH (together with some basic
properties of the involved relations), and thus we remain with (s′i, t′i) ∈ Rm. At this point
we distinguish the following cases:
1. (Di = �). Also here, the non-root case u′i →∗n′ v′i is covered by the IH. Thus, we may

restrict to (u′i, v′i) ∈ Rn, giving rise to a root overlap. Since R is almost orthogonal,
this means that either the resulting conditions are not satisfiable or the resulting terms
are the same (in both of these cases we are done), or two variable disjoint variants of
the same rule ` → r ⇐ c with conditions c = s1 ≈ t1, . . . , sj ≈ tj were involved, i.e.,
u′i = `σ1 = `σ2 for some substitutions σ1 and σ2 that both satisfy all conditions in c.
Without extra variables in r, this is the end of the story (since then rσ1 = rσ2); but we
also want to cover the case where V(r) 6⊆ V(`), and thus have to reason why this does not
cause any trouble. Together with the fact that ` → r ⇐ c is extended properly oriented
we obtain a 0 6 k 6 j such that (1) V(si) ⊆ V(`, t1, . . . , ti−1) for all 1 6 i 6 k and (2)
V(r) ∩ V(si ≈ ti) ⊆ V(`, t1, . . . , tk) for all k < i 6 j by Definition 4.2. Then we prove by
an inner induction on i 6 j that there is a substitution σ such that
a. σ(x) = σ1(x) = σ2(x) for all x in V(`), and
b. σ1(x) ↪→∥ ∗n′ σ(x) and σ2(x) ↪→∥ ∗m′ σ(x) for all x in V(`, cmin{i,k}) ∪ (V(r) ∩ V(ck+1,i)).
In the base case σ1 satisfies the requirements. So suppose i > 0 and assume by IH that
both properties hold for i − 1 and some substitution σ. If i > k we are done by (2).
Otherwise i 6 k. Now consider the condition si ≈ ti. By (1) we have V(si) ⊆ V(`, ci−1).
Using the IH for 1b we obtain siσ1 ↪→∥ ∗n′ siσ and siσ2 ↪→∥ ∗m′ siσ. Moreover siσ1 ↪→∥ ∗m′ tiσ1
and siσ2 ↪→∥ ∗n′ tiσ2 since σ1 and σ2 satisfy c, and thus by the outer IH we obtain s′ such
that tiσ1 ↪→∥ ∗n′ s′ and tiσ2 ↪→∥ ∗m′ s′. Recall that by right-stability ti is either a ground
Ru-normal form or a linear constructor term. In the former case tiσ1 = tiσ2 = s′ and
hence σ satisfies 1a and 1b. In the latter case right-stability allows us to combine the
restriction of σ1 to V(ti) and the restriction of σ to V(`, ci−1) into a substitution satisfying
1a and 1b. This concludes the inner induction. Since R is a 3-CTRS, using (?) together
with 1b shows rσ1 ↪→∥ ∗n′ rσ and rσ2 ↪→∥ ∗m′ rσ. Since ↪→∥ ∗n′ ⊆ ↪→∥ n and ↪→∥ ∗m′ ⊆ ↪→∥ m we can
take v = rσ to conclude this case.

2. (Di 6= �). Then for some 1 6 k 6 d, we have (uj , vj) ∈ Rn or uj →∗n′ vj for all
k 6 j 6 k + di − 1, that is, an extended parallel rewrite step of level n from s′i = u′i =
Di[uki

, . . . , uki+di−1] to Di[vki
, . . . , vki+di−1] = v′i. Since R is almost orthogonal and, by

Di 6= �, root overlaps are excluded, the constituent parts of the extended parallel step
from s′i to v′i take place exclusively inside the substitution of the root-step to the left
(which is somewhat obvious – as also stated by Suzuki et al. [16] – but surprisingly hard
to formalize, even more so when having to deal with infeasibility). We again close this
case by induction on the number of conditions making use of right-stability of R. J

Clearly, applicability of Theorem 5 relies on having powerful techniques for proving
infeasibility at our disposal. Those are the topic of the next section.

4 Infeasibility

In the context of oriented conditional term rewriting we may employ non-reachability criteria
in order to conclude infeasibility of conditions. The two prevalent methods to check for
non-reachability use unification and tree automata techniques, respectively. In the following
two sections we describe both of these.
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4.1 Non-reachability by unification
Probably the fastest available method of checking for non-reachability is to try to unify the
tcap of the source term with the target term; which is the de facto standard for approximating
dependency graphs for termination proofs [6]. Typical “pen and paper” definitions rely on
replacing subterms by “fresh variables” making them somewhat hard to formalize (as already
remarked in [17]). Instead of inventing fresh variables out of thin air, the IsaFoR-version
of tcap replaces every variable occurrence by the symbol �. The resulting terms behave
like ground multihole contexts – we call them ground contexts – and they are intended to
represent the set of all terms resulting from replacing all “holes” by arbitrary terms. This
is made formal by the substitution instance class JtK of a ground context t: J�K = T (F ,V)
and Jf(t1, . . . , tn)K = {f(s1, . . . , sn) | si ∈ JtiK}. Note that for variable-disjoint terms s and
t, unifiability coincides with sσ = tτ for some substitutions σ and τ . Thus asking whether a
term t unifies with a variable-disjoint term represented by the ground context s is equivalent
to checking whether tσ ∈ JsK for some substitution σ. The latter is called ground context
matching and shown to be decidable by an efficient algorithm by Thiemann and Sternagel [17].
Thus we can define an efficient executable version of tcap by

tcapR(t) =


� if t is a variable
� if t = f(t1, . . . , tn) and `σ ∈ JuK for some σ and `→ r ∈ R
u otherwise

where u = f(tcapR(t1), . . . , tcapR(tn)).

I Lemma 7 (tcap is sound). If sσ →∗R t then t ∈ Jtcap(s)K. J

Then checking non-reachability of t from s amounts to deciding whether @τ. tτ ∈ Jtcap(s)K,
for which we use the more succinct notation tcap(s) 6∼ t almost everywhere else in this paper.

While the above definition of tcap and the corresponding soundness lemma were already
present in IsaFoR, the following easy extension also allows us to test for non-joinability.

I Lemma 8. If sσ →∗R · ∗R← tτ then Jtcap(s)K ∩ Jtcap(t)K 6= ∅.

Proof. We have sσ →∗R u and tτ →∗R u for some u. By Lemma 7 we have u ∈ tcap(s) and
u ∈ tcap(t). J

Fortunately the same techniques that are used to obtain an algorithm for ground context
matching can be reused for ground context unifiability, i.e., checking Jtcap(s)K∩ Jtcap(t)K 6= ∅
(elsewhere in this paper we use the notation tcap(s) 6∼ tcap(t)).

4.2 Non-reachability by exact tree automata completion
What is generally known as tree automata completion today was introduced by Genet in
1998 [4, 5]. But already in 1996 Jacquemard [8] used a similar concept to show decidability
of reachability for linear and growing TRSs. His proof was based on the construction of a
tree automaton that accepts the set of ground terms which are normalizable with respect to
a given linear and growing TRS R. If we replace the automaton recognizing R-normal forms
in Jacquemard’s construction by an arbitrary automaton A we arrive at a tree automaton
that accepts the R-ancestors of the language of A.

We need some basic definitions and auxiliary lemmas before we present the construction
of this ancestor automaton in detail.
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I Definition 9 (Ground-Instance Transitions, ∆t). Let [t] denote a term t ∈ T (F ,V) where
all variable-occurrences have been replaced by a fresh symbol �. Using such terms as
states we define the set ∆t that contains all transitions which are needed to recognize all
ground-instances of a term t ∈ T (F ,V) in state [t].

∆t =
{
{f([t1], . . . , [tn])→ [t]} ∪

⋃
16i6n ∆ti if t = f(t1, . . . , tn)

{f(�, . . . ,�)→ � | f ∈ F} otherwise

Note that if t is not linear this actually gives an overapproximation.
The next lemma holds by definition of ∆t.

I Lemma 10. For any subterm s of any term t if there is a sequence u→+
∆t

[s] then u is a
ground-instance of s, and vice versa if t is linear. J

We now use ∆t to define an automaton for the ground-instances of t.

I Definition 11 (Ground-Instance Automaton, AΣ(t)). Let Qt denote the set of states occur-
ring in ∆t then we call the tree automaton AΣ(t) = 〈F , Qt, {[t]},∆t〉 the ground-instance
automaton for t.

I Lemma 12. The language of AΣ(t) is an overapproximation of the set of ground-instances
of t in general and an exact characterization if t is linear. J

Using the concept of ground-instance automaton we are now able to define a tree
automaton which accepts all R-ancestors of a given regular set of ground terms using exact
tree automata completion (ETAC).

IDefinition 13 (Ancestor Automaton, ancR(A)). Given a tree automatonA = 〈F , QA, Qf ,∆〉
whose states are all accessible, and a linear and growing TRS R the construction proceeds
as follows.

First we extend the set of transitions of A in such a way that we can match left-hand sides
of rules inR. This yields the set of transitions ∆0 = ∆∪

⋃
`→r∈R∆`. LetA0 = 〈F , Q,Qf ,∆0〉

where Q denotes the set of states in ∆0. We have to ensure (for example by using the disjoint
union of states) that for any state q which is used in both ∆ and some ∆`, the terms which
can reach it are the same ({t | t→+

∆ q} = {t | t→+
∆`

q}). Then the language does not change,
that is, L(A0) = L(A).

Finally, we saturate ∆0 by inference rule (†) in order to extend the language by R-
ancestors, that is, if we can reach a state q from an instance of a right-hand side of a rule in
R we add a transition which ensures q is reachable from the corresponding left-hand side.4

f(`1, . . . , `n)→ r ∈ R rθ →∗∆k
q

f(q1, . . . , qn)→ q ∈ ∆k+1
(†)

Here θ : V(r) → Q is a state substitution and qi = `iθ if `i is a variable in r and qi = [`i]
otherwise. Note that this inductive definition possibly adds many new transitions from ∆k

to ∆k+1.
Since R is finite, the number of states is finite, and we do not introduce new states

using (†), this process terminates after finitely many steps resulting in the set of transitions
∆m. Also note that ∆k is monotone with respect to k, i.e., ∆k ⊆ ∆k+1 for all k > 0. We
call ancR(A) = 〈F , Q,Qf ,∆m〉 the R-ancestors automaton for A. It is easy to show that
L(A0) ⊆ L(ancR(A)).

4 This is symmetric to resolving compatibility violations in the tree automata completion by Genet [4, 5].
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s = D[f(s1, . . . , sn)] D[f(q1, . . . , qn)] C[f(q1, . . . , qn)] C[q′] [t]

D[`τ ] D[rτ ] C[rτ ] C[rθ]

∗

∆ ∪∆k′

∗

∆ ∪∆k′

∗
ρ

∗

∆k′+1

∗R

∗
R

∗

∆ ∪∆k′

∗

∆ ∪∆k′

∗ ∆k′

Figure 1 Bypassing ρ to close the induction step.

I Theorem 14. Given a tree automaton A as well as a linear and growing TRS R the
language of ancR(A) is exactly the set of R-ancestors of L(A).

Proof. First we prove that (→∗R)[L(A)] ⊆ L(ancR(A)). Pick a term s ∈ (→∗R)[L(A)]. But
that means that there is a rewrite sequence s→k

R t of length k > 0 for some t ∈ L(A). We
proceed by induction on k. If k = 0 then s = t and hence s ∈ L(ancR(A)). Now assume k =
k′+ 1 for some k′ > 0 then there is a rewrite sequence s = C[f(`1, . . . , `n)σ]→R C[rσ]→k′

R t

for some context C, rewrite rule f(`1, . . . , `n) → r ∈ R, and substitution σ. By induction
hypothesis C[rσ] ∈ L(ancR(A)). But that means that there is a state substitution θ : V(r)→
Q, a state q ∈ Q, and a final state qf ∈ Qf such that C[rσ]→∗∆m

C[rθ]→∗∆m
C[q]→∗∆m

qf .
From the construction using rule (†) we know that there is a transition f(q1, . . . , qn)→ q ∈ ∆m

such that qi = `iθ if `i ∈ V(r) and qi = [`i] otherwise. If `i ∈ V(r) then `iσ →+
∆m

`iθ and
otherwise `iσ →+

∆m
[`i] for all 1 6 i 6 n. Hence in both cases `iσ →+

∆m
qi. But then we

can construct the sequence s = C[f(`1σ, . . . , `nσ)]→∗∆m
C[f(q1, . . . , qn)]→∆m

C[q]→∗∆m
qf

and hence s ∈ L(ancR(A)).
For the other direction we prove the following two properties for all sequences s→+

∆m
q:

1. If q = [t] for some subterm of a left-hand side of a rule in R then s ∈ (→∗R)[Σ(t)].
2. If q ∈ Qf then s ∈ (→∗R)[L(A)].
The proof for both properties works along the same lines. We sketch the one for the first
property here. From the construction using rule (†) we know that s →+

∆k
[t] for some

k > 0. We proceed by induction on k. If k = 0 then s→+
∆0

[t]. By construction of A0 and
Lemma 10 we have s ∈ Σ(t) and hence also s ∈ (→∗R)[Σ(t)]. Now assume that k = k′ + 1
for some k′ > 0. By induction hypothesis (IH0) s →+

∆k′
[t] implies s ∈ (→∗R)[Σ(t)] for

all terms s and t. Consider the set ∆k′+1 \∆k′ of transitions which were newly added in
∆k′+1. We continue by a second induction on the size of ∆k′+1 \ ∆k′ . If it is empty we
have a ∆k′ -sequence and may simply close the proof with an application of IH0. Otherwise
we have some set ∆ and transition ρ : f(q1, . . . , qn) → q′ that was created from some rule
`→ r ∈ R with ` = f(`1, . . . , `n) and the sequence rθ →∗∆′

k
q′ by an application of rule (†)

such that {ρ} ]∆ ⊆ ∆k′+1 \∆k′ . The second induction hypothesis (IH1) is if s→+
∆∪∆k′

[t]
then s ∈ (→∗R)[Σ(t)]. Let m denote the number of steps that use ρ. We continue by a
third induction on m. If m = 0 the sequence from s to [t] only used transitions in ∆ ∪∆k′

and using IH1 we are done. Otherwise there is some m′ > 0 such that m = m′ + 1 and
the induction hypothesis (IH2) is that for all terms s, t if s →+

∆∪∆k′
[t] using ρ only m′

times then s ∈ (→∗R)[Σ(t)]. Now we look at the first step using ρ in the sequence, i.e.,
s = D[f(s1, . . . , sn)]→∗∆∪∆k′

C[f(q1, . . . , qn)]→ρ C[q′]→∗∆k′+1
[t]. Note that from this we

get D[u]→∗∆∪∆k′
C[u] for all terms u.

Next we define a substitution τ such that s→∗R D[`τ ]→R D[rτ ]→∗∆∪∆k′
C[rτ ]→∗∆∪∆k′

C[q′]. This allows us to bypass the ρ-step and so we arrive at a ∆k′+1-sequence from D[rτ ]
to [t] containing one less ρ-step as shown in Figure 1. The construction of τ proceeds as
follows: We fix 1 6 i 6 n. If `i is a variable in r define τi to be {`i 7→ si}. Otherwise we
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know from the definition of inference rule (†) that qi = [`i] and si →+
∆∪∆k′

[`i]. From that
we have that si ∈ (→∗R)[Σ(`i)] but that means that there is some substitution τi such that
si →∗R `iτi. Moreover let τ ′ = {x 7→ ux | x ∈ V(r) \ V(`)} where ux is an arbitrary but fixed
ground term such that ux →∗∆0

xθ.5 Now let τ be the disjoint union of τ1, . . . , τn, τ ′. This
substitution is well-defined because ` is linear. By construction of τ we get s→∗R D[`τ ].

Consider a variable x occurring in r. If x also occurs in ` we have x = `i for some unique
1 6 i 6 n because R is growing. But then by construction of τi we get xτ = `iτi = si.
Moreover from the definition of qi in inference rule (†) we have qi = `iθ = xθ. But then
xτ →+

∆∪∆k′
xθ from si →+

∆∪∆k′
qi. On the other hand, if x does not occur in ` then

xτ = xτ ′ and xτ ′ →∗∆0
xθ by construction of τ ′. So in both cases rτ →∗∆∪∆k′

rθ. Together
with rθ →∗∆k′

q′ and C[q′] →∗∆k′+1
[t] we may construct the sequence D[rτ ] →+

∆k′+1
qf

which uses ρ only m′ times. Using IH2 we arrive at D[rτ ] ∈ (→∗R)[Σ(t)]. Together with
s→∗R D[`τ ]→∗R D[rτ ] this means that s ∈ (→∗R)[Σ(t)] and we are done. J

I Lemma 15 (Non-Reachability via anc). Let R be a linear and growing TRS over signature
F . We may conclude non-reachability of t from s if the following language is empty:

L(AΣ(s) ∩ ancR(AΣ(t))) J

I Example 16 (Infeasibility via anc). Consider the CTRS R = {f(a, x) → a, f(b, x) →
b, g(a, x) → c ⇐ f(x, a) ≈ a, g(x, a) → d ⇐ f(x, b) ≈ b, c → c}. It has two critical pairs
c ≈ d ⇐ f(a, b) ≈ b, f(a, a) = a and the symmetric one. Since tcap(f(a, b)) = x ∼ b and
tcap(f(a, a)) = x ∼ a unification is not sufficient to show infeasibility of these critical pairs.
On the other hand, since the underlying TRS Ru is linear and growing, we may construct
the tree automata AΣ(f(a,b)) and ancRu

(AΣ(b)). Because the language of the intersection
automaton is empty we have shown infeasibility of the condition f(a, b) ≈ b by Lemma 15.
So both critical pairs are infeasible.

Moreover, as shown in the following example, anc may be employed to show infeasibility
of conditions of a conditional rewrite rule, directly. Such rules can never be used to rewrite
and so might as well be removed from a CTRS.

I Example 17 (Infeasible Rules via anc). Consider the CTRS R = {h(x) → a, g(x) →
x, g(x) → a ⇐ h(x) ≈ b, c → c}. The condition of the third rule is infeasible because h(x)
only rewrites to a and not to b. This cannot be shown by unification because tcap(h(x)) =
y ∼ b = tcap(b). Fortunately the underlying TRS Ru is linear and growing and hence we can
construct the tree automata AΣ(h(x)) and ancRu

(AΣ(b)). The language of the intersection
automaton is empty and we have shown infeasibility of the condition h(x) ≈ b by Lemma 15.

Remember that in our setting the right-hand sides of conditions are always linear terms.
Hence it is beneficial to start with the ground-instance automaton for the right-hand side of
a condition (which in this case is exact) and compute the set of ancestors rather than taking
the possibly non-linear left-hand side of a condition, overapproximating the ground-instances
and only then computing the descendants of this set.

4.3 Certification
In this section we give an overview of all techniques that are newly supported by our
certifier CeTA and what kind of information it requires from a certificate in CPF [14] (short

5 Since all states in A0 are accessible we can always find such a term ux.
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for certification problem format). Before we come to the special infeasibility condition of
Definition 2, we handle the common case where, given a list of conditions c, we are interested
in proving σ, n 6` c for every substitution σ and level n.

I Lemma 18 (Infeasibility Certificates). Given (R, c) consisting of a CTRS R and a list of
conditions c = s1 ≈ t1, . . . , sk ≈ tk, infeasibility of c with respect to R can be certified in one
of the following ways:
1. Provide two terms s and t with s ≈ t ∈ c, and a non-reachability certificate for (Ru, s, t).
2. Provide a function symbol cs of arity n (called a compound symbol) together with a

non-reachability certificate for (Ru, cs(s1, . . . , sk), cs(t1, . . . , tk)).
3. For an arbitrary subset c′ of c, provide an infeasibility certificate for (R, c′).
4. Provide three terms s, t, and u such that s ≈ u and t ≈ u are equations in c together with

a non-joinability certificate for (Ru, s, t).

Proof. Note that 3 is obvious and 1 only exists for tool-author convenience but is subsumed
by the combination of 2 and 3. Moreover, 2 follows from the fact that cs(s1, . . . , sk)σ 6→∗Ru

cs(t1, . . . , tk)τ for all σ and τ , implies the existence of at least one 1 6 i 6 k such that
siσ 6→∗Ru

tiτ for all σ and τ . Finally, for 4, whenever sσ and tτ are not joinable for arbitrary
σ and τ , the existence of µ and n such that µ, n ` s ≈ u, t ≈ u is impossible. J

Note that in 2 we check for non-reachability between left-hand sides and their corresponding
right-hand sides, while in 4 we check for non-joinability between two left-hand sides. Thus,
while in general non-joinability is more difficult to show than non-reachability, 4 is not
directly subsumed by 2.

I Lemma 19 (Non-Reachability Certificates). Given (R, s, t) consisting of a TRS R and
two terms s and t, R-non-reachability of t from s can be certified in one of the following
ways:
1. Indicate that tcap(s) does not unify with t.
2. Provide a TRS R′ such that for each `→ r ∈ R there is `′ → r′ ∈ R′ and a substitution

σ with ` = `′σ and r = r′σ, together with a non-reachability certificate for (R′, s, t).
3. Provide a non-reachability certificate for (R−1, t, s).
4. Make sure that R is linear and growing and provide a finite signature F and two constants

a and � such that a ∈ F but � /∈ F , together with a tree automaton A that is an
overapproximation of ancR(AΣ(t)) and satisfies L(AΣ(s) ∩ A) = ∅.

Proof. If tcapR(s) 6∼ t, then 1 holds by Lemma 7. Further note that →R ⊆ →R′ and thus
2 is immediate. Moreover, 3 is obvious, leaving us with 4. From a certification perspective
this is the most interesting case. To begin with, there are two reasons why we do not
want to repeat the full construction of anc inside CeTA. Firstly, we would unnecessarily
repeat an operation with at least exponential worst-case complexity. Secondly, a fully-verified
executable algorithm is not even part of our formalization, instead we heavily rely on inductive
definitions.6 In CeTA we check that A is an overapproximation of ancR(AΣ(t)) as follows:
firstly, we ensure that A does not contain epsilon transitions, that [t] is included in the final
states of A, and that ∆t as well as the matching rules with respect to the signature F are part
of the transitions of A; secondly, we check that A is closed with respect to inference rule (†).
Since AΣ(s) is an overapproximation of Σ(s) and by the required conditions together with

6 While turning the existing inductive definitions into executable recursive functions would definitely be
possible, we stress that this is not necessary.
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Theorem 14, L(A) overapproximates [→∗R](Σ(t)), we can conclude Σ(s) ∩ [→∗R](Σ(t)) = ∅.
Thus there are no ground substitutions σ and τ such that sσ, tτ ∈ T (F) and sσ →∗R tτ .
In order to conclude that the same holds true for arbitrary substitutions (not necessarily
restricted to F), we rely on an earlier result [13] that implies that whenever sσ →∗R tτ for
arbitrary σ and τ and s, t ∈ T (F ,V) then there are σ′ and τ ′ such that sσ′, tτ ′ ∈ T (F) and
sσ′ →∗R tτ ′. J

Note that 2 allows us to certify the linear growing approximation of a TRS without actually
having to formalize it in Isabelle/HOL. More specifically, whenever R′ is the result of applying
the linear growing approximation to R, then the corresponding certificate will pass 2 and R′
will be linear and growing in the check for 4; otherwise 4 will fail.

I Lemma 20 (Non-Joinability Certificates). Given (R, s, t) consisting of a TRS R and two
term s and t, R-non-joinability of s and t can be certified in one of the following ways.
1. Indicate that tcap(s) does not unify with tcap(t).
2. If at least one of the terms, say t, is a ground R-normal form provide a non-reachability

certificate for (R, s, t).

Proof. We prove 1 by Lemma 8 and 2 by Lemma 7 since non-joinability reduces to non-
reachability when one of the terms is an R-normal form. J

I Lemma 21 (Ao-Infeasibility Certificates). Given (R, c1, c2) consisting of a CTRS R fulfilling
all syntactic requirements of Theorem 5 and two lists of conditions c1 and c2, infeasibility
with respect to almost orthogonality can be certified in one of the following ways:
1. Provide an infeasibility certificate for (R, c) where c is the concatenation of c1 and c2.
2. Provide three terms s, t and u such that s ≈ t is an equation in c1 and s ≈ u an equation

in c2, together with a non-joinability certificate for (Ru, t, u).

Proof. While 1 follows from Lemma 18, in 2 we make use of the level-commutation assumption
of Definition 2 to deduce non-meetability of t and u from non-joinability of t and u. J

4.4 Comparison
For our main use case, Theorem 5, we are restricted to left-linear CTRSs (via almost
orthogonality) and linear right-hand sides of conditions (via right-stability). The latter also
holds for right-hand sides that are combined by a compound symbol (again by right-stability).
We show that in this setting anc subsumes tcap (at least in theory and for the forward
direction).

I Lemma 22. Let R be a left-linear CTRS and t a linear term. If tcap can show non-
reachability of t from s, then so can anc.

Proof. We proof the contrapositive and assume that anc cannot show non-reachability.
Moreover, let R′ denote the result of applying the linear growing approximation to Ru.
Then there is some term u such that u ∈ L(AΣ(s)) and u ∈ L(ancR′(AΣ(t))). Since t
is linear and R′ is linear and growing the latter implies that u ∈ (→∗R′)[Σ(t)] and thus
u →∗R′ tτ for some substitution τ . By Lemma 7, this means that tτ ∈ JtcapR′(u)K. Since
u ∈ L(AΣ(s)), it is clearly the case that u ∈ Σ(ren(s)) and thus u = ren(s)σ for some
substitution σ, where ren denotes an arbitrary linearization of s. Moreover JtcapR′(u)K ⊆
JtcapR′(ren(s))K = JtcapR′(s)K. Together with tτ ∈ JtcapR′(u)K from above, we obtain
tτ ∈ JtcapR′(s)K. However, tcap does only consider the left-hand sides of rules, which are
the same in R′ and Ru, thus also tτ ∈ JtcapRu

(s)K which implies tcapRu
(s) ∼ t. J
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Table 1 82 right-stable, extended properly oriented, and oriented 3-CTRSs.

ConCon
uncertified certified 2 certified 2+3 certified+

confluent 47 23 32 35
non-confluent 15 - - -

don’t know 20 59 50 47

If we also consider the reverse direction, that is, checking if t→∗R−1
u
s for some condition

s ≈ t in Theorem 5, then tcap may well succeed where anc fails, as shown by the next
example.

I Example 23 (anc vs. tcap). The oriented 3-CTRS R = {g(x) → f(x, x), g(x) → g(x) ⇐
g(x) ≈ f(a, b)} is right-stable and extended properly oriented. It has two symmetric CCPs of
the form f(x, x) ≈ g(x)⇐ g(x) ≈ f(a, b). The underlying TRS Ru is not linear and growing,
so if we want to apply anc we have to apply the linear growing approximation, resulting
in R′ = {g(x) → f(x, y), g(x) → g(x)}. But then anc is not able to show infeasibility
since the language of AΣ(g(x)) ∩ ancR′(AΣ(f(a,b)) is not empty and also for the reverse
direction AΣ(f(a,b)) ∩ ancR′−1(AΣ(g(x))) we get a non-empty language. On the other hand
using the reversed underlying system R−1

u = {f(x, x) → g(x), g(x) → g(x)} we have that
tcapR−1

u
(f(a, b)) = f(a, b) 6∼ g(x). So in this case tcap succeeds where anc fails.

5 Conclusion and Future Work

We have not only produced several thousand (∼ 6600) lines of proof documents, but also
refined and extended an earlier result which allows us to certify confluence proofs for a larger
class of CTRSs. Moreover, a new method to check for non-reachability between terms has
been added, which (at least theoretically) further expands this class. The certifier CeTA
has been updated to handle all new certificates and the confluence tool ConCon has been
extended to use the new results and generate certifiable output for them.

Our formalization exposed an error in the exact tree automata completion procedure
implemented in ConCon which is now corrected.

Experiments We shortly examine ConCon’s ability to provide certifiable proofs before and
after the implementation of the presented results. Our testbed comprises 82 right-stable,
extended properly oriented, and oriented 3-CTRSs taken from the confluence problems
database (Cops).7 Note that only 52 of these 82 systems have at least one CCP and hence
are amenable to the improved infeasibility methods.

All in all ConCon implements three criteria for checking confluence of oriented CTRSs.
1. Strongly deterministic, quasi-decreasing 3-CTRSs are confluent if all CPs are joinable [1].
2. Theorem 5 from above.
3. A deterministic 3-CTRS is confluent if its unraveling is left-linear and confluent [20].
These are accompanied by some infeasibility-methods (including the ones presented). So far
criteria 2 and 3 have been formalized.

7 http://cops.uibk.ac.at
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In Table 1 we summarize our findings. The column labeled uncertified contains the
results of unleashing ConCon using all (possibly not yet certifiable) criteria for confluence
and infeasibility it implements. The next two columns labeled certified 2 and certified
2+3, respectively, show the numbers when only using certifiable methods already present
in ConCon before the modification. In certified 2 we only used the syntactic method from
Suzuki et al. Column certified 2+3 combines the latter with method 3 employing unravelings.
Finally, the column labeled certified+ gives the results for the current version of ConCon
including the newly implemented certifiable methods. One interesting point is that method 2
completely subsumes 3 in certified+. What we can see from the table is the following: We
were able to increase the applicability of 2 by 12 systems. But if we also take into account
method 3 we only gain 3 certified proofs. All together we can certify 35 out of 47 confluence
proofs. So far we have not worked on formalizing the used non-confluence criteria, hence
none of the non-confluence proofs can be certified.

Concerning Examples 16 and 17 it is interesting to note that criterion 1 does not apply,
because both systems are non-terminating and also criterion 3 does not apply, because the
unraveled system is non-confluent in both cases. So 2 is the only of the three methods that
can handle both examples.

Finally, we believe that the small gain of only 3 certified proofs in total, has to be taken
with a grain of salt. On the one hand, since the number of CTRSs in Cops is rather low.
On the other hand, and more importantly, since the class of CTRSs to which Theorem 5
potentially applies, closely corresponds to what is actually allowed in functional and logic
programs.

Future Work For the moment we have restricted our attention to confluence of CTRSs
in general and Theorem 5 in particular. However, we provide general techniques for the
certification of non-reachability and non-joinability; those should be applicable also in
other areas like certification of dependency graph approximations for termination of TRSs,
non-confluence of TRSs, and more hypothetically the correctness of protocols.

As for the applicability of our method to the certification of dependency graph approx-
imations, we conducted some preliminary experiments. Here, a potential edge consists of
two pairs of terms (s, t) and (u, v) where the goal is to prove non-reachability of u from t

(since then it does not turn into an actual edge, which might lead to an easier termination
proof). Since at the time of writing the only certifiable way of handling dependency graphs in
current termination tools is a tcap-based estimation, we started with all the 542428 potential
edges obtained from the termination problem database8 that cannot already be handled by
tcap. Of those, 129599 are trivially shown to be actual edges via unification (i.e., no rewrite
steps are necessary). Out of the remaining 412829 potential edges, we were able to show
non-reachability for 10217/24291/43364 when using a timeout of 1/3/10 seconds per edge.

Another direction of future work will be to formalize criterion 1 and also extend our
formalization to non-confluence proofs.
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Abstract
We report on our experience implementing category theory in Coq 8.5. Our work formalizes most
of basic category theory, including concepts not covered by existing formalizations, in a library
that is fit to be used as a general-purpose category-theoretical foundation.

Our development particularly takes advantage of two features new to Coq 8.5: primitive
projections for records and universe polymorphism. Primitive projections allow for well-behaved
dualities while universe polymorphism provides a relative notion of largeness and smallness. The
latter is one of the main contributions of this paper. It pushes the limits of the new universe
polymorphism and constraint inference algorithm of Coq 8.5.

In this paper we present in detail smallness and largeness in categories and the foundation they
are built on top of. We furthermore explain how we have used the universe polymorphism of Coq
8.5 to represent smallness and largeness arguments by simply ignoring them and entrusting them
to the universe inference algorithm of Coq 8.5. We also briefly discuss our experience throughout
this implementation, discuss concepts formalized in this development and give a comparison with
a few other developments of similar extent.
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1 Introduction

A category [11, 2] consists of a collection of objects and for each pair of objects A and B
a collection of morphisms (aka arrows or homomorphisms) from A to B. Moreover, for
each object A we have a distinguished morphism idA : A→ A. Morphisms are composable,
i.e., given two morphisms f : A → B and g : B → C, we can compose them to form:
g ◦ f : A → C. Composition must satisfy the following additional conditions: ∀f : A →
B. f ◦ idA = f = idB ◦ f and ∀f, g, h. (h ◦ g) ◦ f = h ◦ (g ◦ f).

The notion of a category can be seen as a generalization of sets. In fact sets as objects
together with functions as morphisms form the important category Set. On the other hand,
it can be seen as a generalization of the mathematical concept of a preorder. In this regard,
a category can be thought of as a preorder where objects form the elements of the preorder
and morphisms from A to B can be thought of as “witnesses” of the fact that A � B. Thus,
identity morphisms are witnesses of reflexivity whereas composition of morphisms forms
witnesses for transitivity and the additional axioms simply spell out coherence conditions
for witnesses. Put concisely, categories are preorders where the quality and nature of the
relation holding between two elements is important. In this light, categories are to preorders
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30:2 Category Theory in Coq 8.5

what intuitionistic logic is to classical logic. A combination of these two interpretations of
categories can provide an essential and useful intuition for understanding most, if not all, of
the theory.

This generality and abstractness is what led some mathematicians to call this mathematical
theory “general abstract nonsense” in its early days. However category theory, starting
from this simple yet vastly abstract and general definition, encompasses most mathematical
concepts and has found applications not only in mathematics but also in other disciplines,
e.g, computer science.

In computer science it has been used extensively, especially in the study of semantics of
programming languages [15], in particular constructing the first (non-trivial) model of the
untyped lambda calculus by Dana Scott [17], type systems [10], and program verification
[5, 3, 4].

Given the applications of category theory and its fundamentality on the one hand and the
arising trend of formalizing mathematics in proof assistants on the other, it is natural to have
category theory formalized in one; in particular, a formalization that is practically useful as
a category-theoretical foundation for other works. This paper is a report of our experience
developing such a library. There already exist a relatively large number of formalizations of
category theory in proof assistants [14, 16, 9, 1, 7]. However, most of these implementations
are not general purpose and rather focus on parts of the theory which are relevant to the
specific application of the authors. See the bibliography of Gross et al. [8] for an extensive
list of such developments.

Features of Coq 8.5 used: η for records and universe polymorphism

This development makes use of two features new to Coq 8.5. Namely, primitive projection
for records (i.e., the η rule for records) and universe polymorphism.

Following Gross et al. [7], we use primitive projections for records which allow for well
behaved-dualities in category theory. The dual (aka opposite) of a category C is a category
Cop which has the same objects as C where the collection of morphisms from A to B is
swapped with that from B to A. Drawing intuition from the similarity of categories and
preorders, the opposite of a category (seen as a preorder) is simply a category where the order
of objects is reversed. Use of duality arguments in proofs and definitions in category theory
are plentiful, e.g., sums and products, limits and co-limits, etc. One particular property
of duality is that it is involutive. That is, for any category C, (Cop)op = C. The primitive
projection for records simply states that two instances of a record type are definitionally equal
if and only if their projections are. In terms of categories, two categories are definitionally
equal if and only if their object collections are, morphism collections are and so forth. This
means that we get that the equality (Cop)op = C is definitional. Similar results hold for
the duality and composition of functors, for natural transformations, etc. That is we get
definitional equalities such as (Fop)op = F , (N op)op = N and (F ◦ G)op = Fop ◦ Gop where
F and G are functors and N is a natural transformation.

To achieve well behaved dualities, in addition to primitive projections one needs to slightly
adjust the definition of a category itself. More precisely, the definition of the category must
carry a symmetric form of associativity of composition. The reason being the fact that for
the dual category we can simply swap the proof of associativity with its symmetric form and
thus after taking the opposite twice get back the proof we started with.

In this development we have used universe polymorphism, a feature new to Coq 8.5, to
represent relative smallness/largeness. In short, universe polymorphism allows for a definition
to be polymorphic in its universe variables. This allows us, for instance, to construct the
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category of (relatively small) categories directly. That is, the category constructed is at
a universe level (again polymorphic) while its objects are categories at a lower universe
level. We will elaborate the use of universe polymorphism to represent relative largeness and
smallness below in Section 2.

Contributions
The main contributions of this development are its extent of coverage of basic concepts
in category theory and its use of the universe polymorphism of Coq 8.5 and its universe
inference algorithm to represent relative smallness/largeness. The latter, as explained below,
allows us to represent smallness and largeness using universe levels by simply forgetting about
them and letting Coq’s universe inference algorithm take care of smallness and largeness
requirements as necessary.

The structure of the rest of this paper
The rest of this paper is organized as follows. Section 2 gives an explanation of smallness
and largeness in category theory based on the foundation used. This is followed by a detailed
explanation of our use of the new universe polymorphism and universe constraint inference
algorithm of Coq 8.5 to represent relative smallness/largeness of categories. There, we also
give a short comparison of the way other developments represent (relatively) large concepts.

In Section 3, we give a high-level explanation of the concepts formalized and some notable
features in this work. We furthermore provide a comparison of our work with a number
of other works of similar extent. We also briefly discuss the axioms that we have used
throughout this development.

Section 4 describes the work that we have done or plan to do which is based on the
current work as category-theoretical foundation. Finally, in Section 5 we conclude with a
short summary of the paper.

Development source code. The repository of our development can be found in GitHub [21].

2 Universes, Smallness and Largeness

A category is usually called small if its objects and morphisms form sets and large otherwise.
It is called locally small if the morphisms between any two objects form a set but objects fail
to. For instance, the category Set of sets and functions is a locally small category as the
collection of all sets does not form a set while for any two sets, there is a set of functions
between them. These distinctions are important when working with categories. For instance,
a category is said to be complete if it has the limit of all small diagrams (F : C → D is a
small diagram if C is a small category). For instance, Set is complete but does not have the
cartesian product of all large families of sets.

These terminology and considerations are due to the fact that the original foundations of
category theory by Eilenberg and Mac Lane were laid on top of NGB (von Neumann-Gödel-
Bernays) set theory. In NBG, in addition to sets, the notion of a class (a collection of sets
which itself is not necessarily a set) is also formalized. For any property ϕ, there is a class
Cϕ of all sets that have property ϕ. If the collection of sets satisfying ϕ forms a set then
Cϕ is just that set. Otherwise, Cϕ is said to be a proper class. In this formalism, one can
formalize large categories but cannot use them. For instance, the functor category SetSet is
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not defined as its objects are already proper classes and there is no class of proper classes in
NBG.

The other foundation that is probably the most popular among mathematicians is that of
ZF with Grothendieck’s axiom of universe. Roughly speaking, a Grothendieck universe V is
a set that satisfies ZF axioms, e.g., if A ∈ V and B ∈ V then {A,B} ∈ V (axiom of pairing),
if A ∈ V then 2A ∈ V (axiom of power set), etc. We also have if A ∈ B and B ∈ V then
A ∈ V . Grothendieck’s axiom says that for any set x there is a Grothendieck universe V such
that x ∈ V . This also implies that for any Grothendieck universe V , there is a Grothendieck
universe V ′ such that V ∈ V ′.

Working on top of this foundation, one can talk about V -small categories and use all the
set-theoretic power of ZF. The notion of completeness for a V -small category can be defined
as having all V -small limits. The category of all V -small sets will be a V ′-small category
where V ∈ V ′. It is also a V -locally-small category as its set of morphisms are V -small but
its set of objects fail to be. For more details on foundations for category theory see chapter
12 of McLarty’s book [13].

The type hierarchy of Coq (also known as universes), as explained below, bears a striking
resemblance to Grothendieck universes just explained. In the rest of this section we discuss
how Coq’s new universe polymorphism feature allows us to use Coq universes instead of
Grothendieck universes in a completely transparent way. That is, we never mention any
universes in the whole of the development and Coq’s universe inference algorithm (part of
the universe polymorphism feature) infers them for us.

2.1 Coq’s Universes

In higher-order dependent type theories such as that of Coq, types are also terms and
themselves have types. As expected, allowing existence of a type of all types results in
self-referential paradoxes, such as Girard’s paradox [6]. Thus, to avoid such paradoxes type
theories like Coq use a countably infinite hierarchy of types of types (also known as universes):
Type0 : Type1 : Type2 : . . . The type system of Coq additionally has the cumulativity property,
i.e., for any term T : Typen we also have T : Typen+1.

The type system of Coq has the property of typical ambiguity. That is, in writing
definitions, we don’t have to specify universe levels and/or constraints on them. The system
automatically infers the constraints necessary for the definitions to be valid. In case, the
definition is such that no (consistent) set of constraints can be inferred, the system rejects
it issuing a “universe inconsistency” error. It is due to this feature that throughout this
development we have not had the need to specify any universe levels and/or constraints by
hand.

To better understand typical ambiguity in Coq, let’s consider the following definition.

Definition Tp := Type.

In this case, Coq introduces a new universe variable for the level of the type Type. That is,
internally, the definition looks like1:

Definition Tp : Type@{i+1} := Type@{i}.

1 Type@{i} is Coq’s syntax for Typei.



A. Timany and B. Jacobs 30:5

Note that in older version of Coq and when universe polymorphism is not enabled in Coq
8.5 the universe level i above is a global universe level, i.e., it is fixed. Hence, the following
definition is rejected with a universe inconsistency error.

Definition TpTp : Tp := Tp.

The problem here is that this definition requires (Type@{i} : Type@{i}) which requires the
system to add the constraint i < i which makes the set of constraints inconsistent. Without
universe polymorphism, one way to solve this problem would be to duplicate the definition
of Tp as Tp’ which would be internally represented as:

Definition Tp’ : Type@{j+1} := Type@{j}.

Now we can define TpTp’:

Definition TpTp’ : Tp’ := Tp.

which Coq accepts and consequently adds the constraint i < j to the global set of universe
constraints. As these constraints are global however, after defining TpTp’ we can’t define
Tp’Tp

Definition Tp’Tp : Tp := Tp’.

This is rejected with a universe inconsistency error as it requires j < i to be added to the
global set of constraints which makes it inconsistent as it already contains i < j from TpTp’.

2.2 Universe Polymorphism
Coq has recently been extended [18] to support universe polymorphism. This feature is now
included in the recently released Coq 8.5. When enabled, universe levels of a definition are
bound at the level of that definition. Also, any universe constraints needed for the definition
to be well-defined are local to that definition. That is the definition of Tp defined above is
represented internally as:

Definition Tp@{i} : Type@{i+1} := Type@{i}. (* Constraints: *)

Note that the universe level i here is local to the definition. Hence, Tp can be instantiated
at different universe levels. As a result, the definition of TpTp above is no longer rejected
and is represented internally as:

Definition TpTp@{i j} : Tp@{j} := Tp@{i}. (* Constraints: i < j *)

That is, the two times Tp is mentioned, two different instances of it are considered at two
different universe levels i and j resulting in the constraint i < j for the definition to be
well-defined.

Note the resemblance between universes in Coq and Grothendieck universes. E.g.,
the fact that if A : Type@{i} and B : Type@{i} then {x : Type@{i} | x = A ∨ x = B} : Type@{i},
cumulativity, etc.

In the sequel, in some cases, we only show the internal representation of concepts
formalized in Coq.

2.3 Smallness and Largeness
In this implementation, we use universe levels as the underlying notion of smallness/largeness.
In other words, we simply ignore smallness and largeness of constructions and simply allow
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Coq to infer the necessary conditions for definitions to be well-defined. We define categories
without mentioning universe levels. They are internally represented as:

Record Category@{i j} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
. . .

} : Type@{max(i+1, j+1)} (* Constraints: *)

The category of (small) categories is internally represented as:

Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun (C D : Category@{k l}) ⇒ Functor@{k l k l} C D;
. . .

|} : Category@{i j} (* Constraints: k < i, l < i, k ≤ j, l ≤ j *)

That is, Cat has as objects categories that are small compared to itself.
Having a universe-polymorphic Cat means for any category C there is a version of Cat

that has C as an object. Therefore, for example, to express the fact that two categories are
isomorphic, we simply use the general definition of isomorphism in the specific category Cat.
This means we can use all facts and lemmas proven for isomorphisms, for isomorphisms of
categories with no further effort required.

The category of types (representation of Set in Coq) is internally represented as:

Definition Set@{i j} :=
{|

Obj := Type@{j};
Hom := fun (A B : Type@{j}) ⇒ A → B;
. . .

|} : Category@{i j} (* Constraints: j < i *)

The constraint j < i above is exactly what we expect as Set is locally small. The reason
that Coq’s universe inference algorithm produces this constraint is that the type of objects
of Set is Type@{j} which itself has type Type@{i}. But, the homomorphisms of this category
are functions between two types whose type is Type@{j}. Thus, the type of homomorphisms
themselves is Type@{j}. For details of typing rules for function types see the manual of Coq
[12].

Complete Small Categories are Mere Preorder Relations! Perhaps the best showcase of
using the new universe polymorphism of Coq to represent smallness/largeness can be seen in
the theorem below which simply implies that any complete category is a preorder category,
i.e., there is at most one morphism between any two objects.

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : Obj C, Hom x y’ ' ((Arrow C) → Hom x y)

where y’ is the limit of the constant functor from the discrete category Discr(Arrow C) that
maps every object to y, (Arrow C) is the type of all homomorphisms of category C and '
denotes isomorphism. In other words, for any pair of objects x and y the set of functions from
the set of all morphisms in C to the set of morphisms from x to y is isomorphic to the set of
morphisms from x to some constant object y’. This though, would result in a contradiction
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as soon as we have two objects A and B in C for which the collection of morphisms from
A to B has more than one element. Hence, we have effectively shown that any complete
category is a preorder category.

This is indeed absurd as the category Set is complete and there are types in Coq that
have more than one function between them! However, this theorem holds for small (in
the conventional sense) categories. That is, any small and complete category is a preorder
category2.

As expected, the constraints on the universe levels of this theorem that are inferred
by Coq do indeed confirm this fact. That is, this theorem is in fact only applicable to a
category C for which the level of the type of objects is less than or equal to the level of the
type of arrows. This is in direct conflict with the constraints inferred for Set as explained
above. Hence, Coq will refuse to apply this theorem to the category Set with a universe
inconsistency error.

2.4 Limitations Imposed by Using Universe Levels for Smallness and
Largeness

The universe polymorphism of Coq, as explained in Sozeau et al. [18], treats inductive
types by considering copies of them at different levels. Furthermore, if a term of a universe
polymorphic inductive type is assumed to be of two instances of that inductive type with
two different sets of universe level variables, additional constraints are imposed so that the
corresponding universe level variables in those two sets are required to be equal. As records
are a special kind of inductive types, the same holds for them. For us, this implies that if
we have C : Category@{i j} and we additionally have that C : Category@{i’ j’}, Coq enforces
i = i’ and j = j’. This means, Cat@{i j k l} is in fact not the category of all smaller
categories. Rather it is the category of smaller categories that are at level k and l and not
any lower level.

Apart from the fact that Cat defined this way is not the category of all relatively small
categories, these constraints on universe levels impose practical restrictions as well. For
instance, looking at the fact that Cat@{i j k l} has exponentials (functor categories), we can
see the constraints that j = k = l. Consequently, only those copies have exponentials for
which this constraints holds. Looking back at Set, we had the constraint that the level of
the type of morphisms is strictly less than that of objects. This means, there is no version of
Cat that both has exponentials and a version of Set in its objects.

Moreover, we can use the Yoneda lemma to show that in any cartesian closed category,
for any objects a, b and c:

(ab)c ' ab×c (1)

Yet, this theorem can’t be applied to Cat, even though it holds for Cat.
It is worth noting that although the category Cat@{i j k l} is the category of all categories

Category@{k l} and not lower, for any lower category it contains an “isomorphic copy” of
that category. That is any category C : Category@{k’ l’} such that k′ ≤ k and l′ ≤ l can be
“lifted” to Category@{k l}. Such a lifting function can be simply written as:

Definition Lift (C : Category@{k’ l’}) : Category@{k l} :=
{| Obj := Obj C; Hom := Hom C; . . . |}.

2 This theorem and its proof are taken from Awodey’s book [2].
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and the appropriate constraints, i.e., k′ ≤ k and l′ ≤ l are inferred by Coq. However, working
with such liftings is in practice cumbersome as in interesting cases where k′ < k and/or
l′ < l, we can’t prove or even specify Lift C = C as it is ill-typed. This means, any statement
regarding C must be proven separately for Lift C in order for them to be useful for the lifted
version.

It is possible to alleviate these problems if we have support for cumulative inductive types
in Coq, as proposed in Timany et al. [24]. In such a system, any category C : Category@{i j}
will also have type Category@{k l} so long as the constraints i ≤ k and j ≤ l are satisfied.

However, these limitations are not much more than a small inconvenience and in practice
we can work in their presence with very little extra effort. At least as far as basic category
theory goes. Our development is an attestation to that.

2.5 Smallness and Largeness in Other Developments
In homotopy type theory (HoTT) [20] a category C has a further constraint that for any
two objects A and B the set of morphisms from A to B must form an hSet (a homotopy
type-theoretical concept). On the other hand, for two categories C and D, the set of functors
from C to D does not necessarily form an hSet. It does however when the set of objects of D
forms an hSet. Therefore, in HoTT settings one can construct the category of small strict
categories, i.e., small categories whose type of objects forms an hSet, and not the category
of all small categories. However, the category of small strict categories itself is not strict.
Hence, contrary to the category Cat in our development, there is no category (in the HoTT
sense, i.e., one whose objects form an hSet) that has the category of small strict categories
as one of its objects. In this regard, working in HoTT is similar to working in NBG rather
than ZF with Grothendieck universes.

The situation regarding the category of small strict categories discussed above is due
to the fact that homotopy type-theoretical levels for types (e.g., hSet) concern a notion of
(homotopy theoretical) complexity rather than cardinality. In fact, in other situations, e.g.,
in defining limits of functors, where cardinality is concerned universe levels can be used to
express smallness and largeness. In other words, in HoTT settings, when defining limits, one
can simply not mention universe levels and let Coq infer that the definition of limit for a
functor F : C → D is well-defined whenever, C is relatively small compared to D. This also
means that the restrictions mentioned above are also present in HoTT settings when universe
levels are used to represent smallness and largeness. For instance isomorphism 1 above can’t
be proven in Cat using the Yoneda lemma even if a, b and c are strict categories.

This is how smallness and largeness works in both Gross et al. [7] and Ahrens et al. [1].
This is also the case for our development when ported on top of the HoTT library [19]. As
one consequence, contrary to what was explained above, in migrating to the HoTT library
settings we can’t simply consider the isomorphism of categories as the general notion of
isomorphism in the specific case of Cat.

In Huet et al. [9], working in Coq 8.4, the authors define a duplicate definition of
categories, Category’, tailored to represent large categories. This way, they form the Category’
of categories (Category) – much like we used Tp’ above.

Peebles et al. [16] however use universe levels to represent smallness and largeness. But
working in Agda which provides no typical ambiguity or cumulativity, they have to hand
code all universe levels everywhere; whereas we rely on Coq’s inference of constraints to do
the hard work. Noteworthy is also the fact that their categories have three universe variables
instead of our two. One for the level of the type of objects, one for the level of the type
of morphisms and one for the level of the type of the setoid equality for their setoids of
morphisms.
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3 Concepts Formalized, Features and Comparison

In this development we have formalize most of the basic category theory. Here, by basic
we mean not involving higher (e.g., 2-categories), monoidal or enriched categories. This
spans over the simple yet important and useful basic concepts like terminal/initial objects,
products/sums, equalizers/coequalizers, pullbacks/pushouts and exponentials on the one
hand and adjunctions, Kan extensions, (co)limits (as (left)right local Kan extensions) and
toposes on the other.

The well-behaved dualities (in the sense discussed above) allow us to simply define dual
notions, just as duals of their counterparts, e.g., initial objects as terminal objects of the
dual category or the local left Kan extension of F along G as the local right Kan extension
of Fop along Gop.

3.1 Concepts Formalized: Generality and Diversity
Throughout this development we have tried to formalize concepts in as general a way as
possible so long as they are comfortably usable. For instance, we define (co)limits as (left)right
local Kan extensions along the unique functor to the terminal category. By doing so, we can
extend facts about them to (co)limits. As an example, consider (left)right adjoints preserving
(co)limits and (co)limit functors being adjoint to ∆ explained below.

Different versions of adjunction and Kan extensions. In this formalization, we have
multiple versions of the definition of adjunctions and Kan extensions. In particular, we define
unit-universal morphism property adjunction, unit-co-unit adjunction, universal morphism
adjunction and hom-functor adjunction. For these different versions, we provide conversions
to and from the unit-universal morphism property definition which is taken to be the main
definition. This definition is also taken to be the main definition of adjunction in Awodey’s
book [2]. For local Kan extensions, we define them as (initial)terminal (co)cones along
a functor as well as through the hom-functor. Global Kan extensions are simply defined
through adjunctions.

The main reason for this diversity, aside from providing a versatile category theory library,
is the fact that each of these definitions is most suitable for some specific purpose.

For instance, using the hom-functor definition of adjunctions makes it very easy to prove
that isomorphic functors have the same adjoints: F ' F ′ ⇒ F a G ⇒ F ′ a G, duality of
adjunction: F a G ⇒ Gop a Fop, and uniqueness of adjoint functors: F a G ⇒ F ′ a G ⇒
F ' F ′. The last case simply follows from the Yoneda lemma. On the other hand, the
unit-universal morphism property definition of adjunctions together with the definition of
Kan extensions as cones along a functor provide an easy way to convert from local to global
Kan extensions.

Universal morphism adjoints in practice express sufficient conditions for a functor to
have a (left)right adjoint. That is, a functor G : C → D is a right adjoint (has a left adjoint
functor) if the comma category (x ↓ G) has a terminal object for any x : D. As we will
briefly discuss below, (left)right adjoint functors preserve (co)limits. Freyd’s adjoint functor
theorem gives an answer to the question “when is a functor that preserves all limits a right
adjoint (has a left adjoint functor)”. Universal morphism adjoints appear in this theorem
and that’s why we have included them in our formalization.

(Left)right adjoints preserve (co)limits. Awodey [2] devotes a whole section to this fact
with the title “RAPL” (Right Adjoints Preserve Limits). For a better understanding of
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this fact and perhaps the concept of adjunctions, let us draw intuition from categorical
interpretations of logic. In categorical interpretations of logic, the existential and universal
quantifiers are interpreted as left and right adjoints to some functor while conjunctions and
disjunctions are defined as products and sums respectively which respectively are in turn limits
and co-limits (see Jacobs’ book [10] for details). In this particular case, RAPL and its dual boil
down to: ∀x. P (x)∧Q(x)⇔ ∀x. P (x)∧∀x. Q(x) and ∃x. P (x)∨Q(x)⇔ ∃x. P (x)∨∃x. Q(x).
We prove this fact in general for (left)right local Kan extensions. To this end, the unit-co-
unit definition of adjunctions is the easiest to use to prove the main lemma which along
with hom-functor definition of Kan extensions proves that (left)right adjunctions preserve
(left)right Kan extensions. That is for an adjunction L a R where R : D → E and L : E → D
if in the diagram on the left H is the local right Kan extension of F along P then in the
right diagram R ◦H is the local right Kan extension of R ◦ F along P :

C D

C′

F

P H

C E

C′

R◦F

P R◦H

The case of (co)limits follows immediately. In Coq we show this by constructing a local right
Kan extension (using the hom-functor definition) of R ◦ F along P where the Kan extension
functor (HLRKE) is R composed with the Kan extension functor of F along P:

Definition Right_Adjoint_Preserves_Hom_Local_Right_KanExt
{C C′ : Category} (P : Functor C C′) {D : Category} (F : Functor C D)
(hlrke : Hom_Local_Right_KanExt P F)
{E : Category} {L : Functor E D} {R : Functor D E} (adj : UCU_Adjunct L R)

: Hom_Local_Right_KanExt P (R ◦ F) :=
{|

HLRKE := (R ◦ (HLRKE hlrke));
HLRKE_Iso := . . .

|}.

(Co)limit functors are adjoint to ∆. In order to show that (co)limits are adjoint to the
diagonal functor (∆) we simply use the fact that local (left)right Kan extensions assemble
together to form (left)right global Kan extensions. As global Kan extensions are defined
as (left)right adjoints to the pre-composition functor, putting these two facts together, we
effortlessly obtain that (co)limits form functors which are (left)right adjoint to ∆.

Cardinality restrictions. We introduce the notion of cardinality restriction in the category
Set. A cardinality restriction is a property over types (objects of Set) such that if it holds for
some type, it must hold for any other type isomorphic (in Set) to it. That is, if a cardinality
restriction holds for a type, it must hold for any other type with the same cardinality.

Record Card_Restriction : Type :=
{ Card_Rest : Type → Prop;

Card_Rest_Respect : forall (A B : Type),
(A '' B ::> Set) → Card_Rest A → Card_Rest B }.

The type (A '' B ::> Set) is the type of isomorphisms A ' B in Set. As an example, the
cardinality restriction corresponding to finiteness is defined as follows.
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Definition Finite : Card_Restriction :=
{| Card_Rest := fun A ⇒ inhabited {n : nat & (A '' {x : nat | x < n} ::> Set)}; . . . |}.

The definition above basically says that a type A is finite if there exists some n such that A
is isomorphic to the type {x : nat | x < n} of natural numbers less than n.

(Co)limits restricted by cardinality. We use the notion of cardinality restrictions above to
define (co)limits restricted by cardinality. For a cardinality restriction P , we say a category
C has (co)limits of cardinality P (C is P -(co)complete) if for all functors F : D → C such
that P (ObjD) and ∀AB ∈ ObjD, P (Hom(A,B)), C has the (co)limit of F .

Definition Has_Restr_Limits (C : Category) (P : Card_Restriction) :=
forall {J : Category} (F : Functor J C), P J → P (Arrow J ) → Limit F .

We state several lemmas about cardinality restricted (co)completeness, e.g., if a category
has all limits of a specific cardinality its dual has all co-limits of that cardinality.

Definition Has_Restr_Limits_to_Has_Restr_CoLimits_Op
{C : Category} {P : Card_Restriction}
(HRL : Has_Restr_Limits C P) : Has_Restr_CoLimits (Cop) P := . . .

This also allows us to define a topos, simply as a category that is cartesian closed, has
all finite limits and a subobject classifier where finiteness is represented as a cardinality
restriction.

Class Topos : Type :=
{ Topos_Cat : Category;

Topos_Cat_CCC : CCC Topos_Cat;
Topos_Cat_Fin_Limit : Has_Restr_Limits Topos_Cat Finite;
Topos_Cat_SOC : SubObject_Classifier Topos_Cat }.

(Co)Limits by (Sums)Products and (Co)Equalizers. A discrete category is a category
where the only morphisms are identities. That is, any set can induce a discrete category
by simply considering the category which has as objects members of that set and the only
morphisms are identity morphisms. We define the discrete category of a type A as a category,
Discr(A) with terms of type A as objects and the collection of morphisms from an object x
to an object y are proofs of equality of x = y.

Definition Discr_Cat (A : Type) : Category := {|Obj := A; Hom := fun a b ⇒ a = b; . . . |}.

Similarly, a discrete functor is a functor that is induced from a mapping f from a type A to
objects of a category C:

Definition Discr_Func {C : Category} {A : Type} (f : A → C) : Functor (Discr_Cat A) C :=
{| FO := f ; . . . |}.

We define the notion of generalized (sums)products to be that of (co)limits of functors from
a discrete category.

Definition GenProd {A : Type} {C : Category} (f : A → C) := Limit (Discr_Func f).

We use these generalized (sums)products to show that any category that has all gen-
eralized (sums)products and (co)equalizers has all (co)limits. We also prove the special
case of cardinality restricted (co)limits. Using the notions explained above, we show that
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given a cardinality restriction P if a category has (co)equalizers as well as all generalized
(sums)products that satisfy P , then that category is P -(co)complete.

Definition Restr_GenProd_Eq_Restr_Limits
{C : Category} (P : Card_Restriction)
{CHRP : forall (A : Type) (f : A → C), (P A) → (GenProd f)}
{HE : Has_Equalizers C}

: Has_Restr_Limits C P := . . .

Categories of Presheaves. To the best of our knowledge, ours is the only category theory
development featuring facts about categories of presheaves such as their (co)completeness,
and being a topos. The category of presheaves on C, (PSh(C)), is a category whose objects
are functors of the form Cop → Set and whose morphisms are natural transformations. In
other words, a presheaf P : Cop → Set on C is a collection of sets indexed by objects of
C such that for a morphism f : A → B in C, there is a function (a conversion if you will)
P (f) : P (B) → P (A) in Set. Presheaves being toposes, each come with their own logic.
As an example, Birkedal et al. [4] show that the logic of the category of presheaves on ω
(the preorder of natural numbers considered as a category) corresponds to the step-indexing
technique used in the field of programming languages and program verification. For more
details about elementary properties of categories of presheaves see Awodey’s book [2]. There
categories of presheaves are called categories of diagrams.

3.2 Comparison
Tables 1 and 2 give an overall comparison of our development with select other implementa-
tions of category theory of comparable extent. These tables mention only the most notable
features and concepts formalized and do not contain many notions and lemmas in these
developments. Notice also that the list of concepts and features appearing in these tables is
by no means exhaustive and is not the union of all formalized concepts and features of these
developments. In these tables, our development is the first column.

3.3 Axioms
One axiom that is used ubiquitously throughout the development is the uniqueness of proofs
of equality.

forall (A : Type) (x y : A) (p q : x = y), p = q

We in practice enforce this axiom using proof-irrelevance (as p and q are proofs). To facilitate
the use of this axiom, we prove a number of lemmas, e.g.:3

Lemma Functor_eq_simplify (C D : Category) (F G : Functor C D) :
(FO F = FO G) → (FA F = FA G) → F = G

which says two functors are equal if their object and arrow maps are. If so, the proofs that the
arrow maps preserve identity and composition are just assumed equal using proof-irrelevance
(uniqueness of equality proofs).

3 This is an over-simplification: in practice types of FA F and FA G don’t match and therefore their
equality as stated here is ill-typed. In practice, we adjust the type of FA F using the equality of object
maps.
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Table 1 Comparison of features and concepts formalized with a few other implementations of
comparable extent.

Concept / Feature [21] [7] [9] [1] [16]
Automation partial X

Based on HoTT in [22]] X X

Setoid for Morphisms X X

Assumes UIP or equivalent few restricted cases X

Basic constructions:
Terminal/Initial object X X X X X

Products/Sums X X X X

Equalizers/Coequalizers X X

Pullbacks/Pushouts X X X X

Basic constructions X X

above are (co)limits
exponentials X X X

Subobject classifier X X X

External constructions:
Comma categories X X X X X

Product category X X X X X

Sum category X

Cat. of categories (Cat): X X X X

Cartesian closure X X

Initial/terminal object X X X X

Category of sets (Set): X X X X X

Basic (co)limits X init./term. partial
(Local†)Cartesian closure X CCC
(Co†)Completeness X comp. X

Sub-object classifier (Prop : Type)†

Topos X†

Hom functor X X X X X

Fully-faithful functors X X X X

Essentially (inj)sur-jective X X X X

functors
The Yoneda lemma X X X X X

Monoidal Categories partial X

Enriched Categories partial partial
2-categories X

Pseudo-functors X X

(Co)monads and algebras :
(Co)Monad X X

T -(co)algebras X X X

(T : an endofunctor)
Eilenberg Moore cat. X

Kleisli cat. X

†Uses the axioms: propositional extensionality and constructive indefinite description (choice).
]The version of our development we are migrating to HoTT settings, on top of HoTT library.
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Table 2 Comparison of features and concepts formalized with a few other implementations of
comparable extent (cont.).

Concept / Feature [21] [7] [9] [1] [16]
Adjunction X X X X

Unit-universal morphism adjunction X X

Hom-functor adjunction X X X

Unit-counit adjunction X X X X X

Universal morphism adjunction X X X

Uniqueness up to natural isomorphism X

Naturally isomorphic functors have X

the same left/right adjoints
Adjoint composition laws X X X

Category of adjunctions X

(objects: categories; morphisms: adjunctions)
Partial adjunctions X

Adjoint Functor Theorem X X

Kan extensions X X X

Global definition X X X

Local definition X X

Through hom-functor X

Through cones (along a functor) X X

Through partial adjoints X

Uniqueness X

Preservation by adjoint functors X

Naturally isomorphic functors form X

the same left/right Kan extension
Pointwise kan extensions X X

(preserved by representable functors)
(Co)Limits X X X X X

As (left)right kan extensions X X

As (initial)terminal (co)cones X X X

(Sum)Product-(co)equalizer (co)limits X

(Co)Limit functor X X

(Co)Limits functor adjoint to ∆ X X

(Co)limits restricted by cardinality X

Pointwise (as kan extensions), i.e., X X

preserved by Hom functor
Category of presheaves over C (PShC): X X

Terminal/Initial object X

Products/Sums X

Equalizers/Coequalizers X†

Pullbacks X

Cartesian closure X

Completeness/Co-completeness X†

Sub-object classifier (Sieves) X†

Topos X†

†Uses the axioms: propositional extensionality and constructive indefinite description (choice).
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Using uniqueness of equality proofs in the definition of categories is an essential necessity.
As otherwise, as explained in the HoTT book [20], the category defined is not a category but
a form of higher category. That’s why in any formalization of category theory this axiom is
assumed or enforced in one way or another.

In homotopy type theory (HoTT) settings, assuming uniqueness of proofs of equality in
general is in direct contradiction with the univalence axiom which sits at the heart of HoTT.
Therefore in developments of category theory on top of HoTT, e.g., Gross et al. [7] and
Ahrens et al. [1], they include the fact that proofs of equalities of morphisms are unique
as part of the definition of a category. This is precisely the requirement that collections of
morphisms should form hSets discussed above.

In developments using setoids, e.g. Huet et al. [9] and Peebles et al. [16], the authors
customize the setoid equalities so that proofs are never considered. For instance, they define
the setoid equality for functors so that two functors are equal whenever their object and
morphism maps are.

We are currently in the process of porting a version of our development on top of the
HoTT library4. There we also stop using this axiom and change the definition of categories.
As expected almost all of the cases where we use uniqueness of proofs of equality (in a direct
or indirect way) are not problematic in HoTT settings, i.e., they are applied to equality of
morphisms. However, there are a few limited cases were they are not. Some of these cases
are no longer relevant in the HoTT settings and some others are very easily surmountable.
For more details of our ongoing effort of porting this development on top of the HoTT library
see the extended version of this paper [25].

Apart from the axiom of uniqueness of proofs of equality, we have made frequent use of
the axiom of functional extensionality. However, this axiom is a consequence of the univalence
axiom and is in fact provided in the HoTT library and frequently used therein.

We have in particular taken advantage of two other axioms, propositional extensionality
and axiom of choice (constructive indefinite description in the library of Coq) which we have
used, e.g., to construct co-limits in Set and presheaf categories. Along with using setoids,
using these axioms to represent quotient types in type theory is standard practice. We plan
to use higher inductive types, as explained in the HoTT book [20], to construct such co-limits
in the version ported on top of the HoTT library.

4 Future Work: Building on Categories

We believe that this development is one that provides a foundation for other works based on
category-theoretical foundations. We have plans to make use of the foundation of category
theory that has been laid in this work. In particular, we plan to make use of this foundation
for mechanization of categorical logic (see Jacobs’ book [10]) and higher order separation
logic (see Biering et al. [3]) for the purpose of using them as foundations for mechanization
of program verification. In particular, the theory of presheaves developed provides a basis
for formalization of the internal logic of presheaf categories with a particular interest in the
topos of trees [4].

In this regard, we have already used this development as a foundation to formalize the
theory of Birkedal et al. [5] to solve category theoretical recursive ultra-metric space equations
[23]. In Birkedal et al. [5], the authors use the theory of ultra-metric spaces to build unique
(up to isomorphism) fixed-points of particular category-theoretical recursive domain-theoretic

4 The version being ported on top of the HoTT library can be found at GitHub [22].
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equations. More precisely, they construct fixed-points of a particular class of mixed variance
functors, i.e., functors of the form F : (Cop × C) → C. Solutions to such mixed-variance
functors can for example be used to construct models for imperative programming languages.
Successful implementation of this theory [23] on top of our general foundation of categories,
although arguably not huge, is evidence that this development is fit for being used as a
general-purpose foundation.

In Birkedal et al. [5], the authors define the notion of an M-category to be a category in
which the set of morphisms between any two objects form a non-empty ultra-metric space.
In our formalization, based on a general theory of ultra-metric spaces, we define M-categories
as categories in which the type of morphisms between any two objects forms an ultra-metric
space, dropping the rather strong non-emptiness requirement. We instead require some
weaker conditions which still allow us to form fixed-points.

An interesting instance of M-categories is the presheaf topos of the preorder category
of natural numbers, i.e., the topos of trees. In our development, just showing that this
category qualifies as an M-category is sufficient to immediately be able to construct desired
fixed-points. This is due to the fact that in the foundations provided, all necessary conditions
for an M-category to allow formation of solutions, e.g., existence of limits of a particular
class of functors is already established.

5 Conclusion

The most important conclusion of this paper is that Coq 8.5 with its new features: η for
records and universe polymorphism, is next to ideal for formalization of category theory and
related parts of mathematics. We believe that Coq 8.5 is the first version of Coq that makes
it possible to lay a truly useful and versatile general purpose category theoretical foundation
as we have demonstrated.

In summary, we surveyed our development of the foundations of category theory. This
development features most of the category-theoretical concepts that are formalized in most
other such developments and some more. We pushed the limits of the new feature of universe
polymorphism and the constraint inference algorithm of Coq 8.5 by using them to represent
relative smallness/largeness. As discussed, it gives very encouraging results despite the
restrictions imposed by not having cumulative inductive types.

We have successfully used this implementation as the categorical foundation to build
categorical ultra-metric space theoretic fixed-points of recursive domain equations. This
seems an encouraging initial indication that this work is fit to perform the important role of
a general purpose category theoretical foundation for other developments to build upon.
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Abstract
Traditionally, formal languages are defined as sets of words. More recently, the alternative
coalgebraic or coinductive representation as infinite tries, i.e., prefix trees branching over the
alphabet, has been used to obtain compact and elegant proofs of classic results in language theory.
In this paper, we study this representation in the Isabelle proof assistant. We define regular
operations on infinite tries and prove the axioms of Kleene algebra for those operations. Thereby,
we exercise corecursion and coinduction and confirm the coinductive view being profitable in
formalizations, as it improves over the set-of-words view with respect to proof automation.
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1 Introduction

If we ask a computer scientist what a formal language is, the answer will most certainly be: a
set of words. Here, we advocate another valid answer: an infinite trie. This is the coalgebraic
approach to languages [24], viewed through the lens of a lazy functional programmer.

This paper shows how to formalize the coalgebraic or coinductive approach to formal
languages in the Isabelle/HOL proof assistant in the form of a gentle introduction to core-
cursion and coinduction. Our interest in the coalgebraic approach to formal languages arose
in the context of a larger formalization effort of coalgebraic decision procedures for regular
languages [28, 30]. Indeed, we present here a reusable library modeling languages, which
lies at the core of those formalized decision procedures. A lesson we have learned from this
exercise and hope to convey here is that often it is worthwhile to look at well-understood
objects from a different (in this case coinductive) perspective.

When programming with infinite structures in the total setting of a proof assistant, pro-
ductivity must be ensured. Intuitively, a corecursive function is productive if it always even-
tually yields observable output, e.g., in form of a constructor. Functions that output exactly
one constructor before proceeding corecursively or stopping with a fixed (non-corecursive)
value are called primitively corecursive – a fragment dual to well-understood primitively
recursive functions on inductive datatypes. Primitively corecursive functions are produc-
tive. Currently, the only form of corecursion supported by Isabelle is primitive corecursion.
While sophisticated methods involving domain, measure, and category theory for handling
more complex corecursive specifications have been proposed [16, 4], we explore here how
far primitive corecursion can get us. Restricting ourselves to this fragment is beneficial in
several ways. First, our constructions become mostly Isabelle independent, since primitive
corecursion is supported by all coinduction-friendly proof assistants. Second, when working
in the restricted setting, we quickly hit and learn to understand the limits. In fact, we will
face some non-primitively corecursive specifications on infinite tries, which we reduce to a
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composition of primitively corecursive specifications. Those reductions are insightful and
hint at a general pattern for handling certain non-primitively corecursive specifications.

Infinite data structures are often characterized in terms of observations. For infinite
tries, which we define as a coinductive datatype or short codatatype (Section 2), we can
observe the root, which in our case is labeled by a Boolean value. This label determines if
the empty word is accepted by the trie. Moreover, we can observe the immediate subtrees
of a trie, of which we have one for each alphabet letter. This observation corresponds
to making transitions in an automaton or rather computing the left quotient La = {w |
aw ∈ L} of the language L by the letter a. Indeed, we will see that Brzozowski’s ingenious
derivative operation [7], which mimics this computation recursively on the syntax of regular
expressions, arises very naturally when defining regular operations corecursively on tries
(Section 3). To validate our definitions, we prove by coinduction that they satisfy the
axioms of Kleene algebra (Section 4). After having presented our formalization, we step back
and connect concrete intuitive notions (such as tries) with abstract coalgebraic terminology
(Section 5). Furthermore, we discuss our formalization and its relation to other work on
corecursion and coinduction with or without proof assistants (Section 6).

The material presented in this paper is based on the publicly available Isabelle/HOL
formalization [27] and is partly described in the author’s Ph.D. thesis [30].

Preliminaries

Isabelle/HOL is a proof assistant for higher-order logic, built around a small trusted inference
kernel. The kernel accepts only non-recursive type and constant definitions. High-level
specification mechanisms, which allow the user to enter (co)recursive specifications, reduce
this input to something equivalent but non-recursive. The original (co)recursive specification
is later derived as a theorem. For a comprehensive introduction to Isabelle/HOL we refer
to a recent textbook [17, Part I].

In Isabelle/HOL types τ are built from type variables α, β, etc., via type constructors κ
written postfix (e.g., α κ). Some special types are the product type α× β and the function
type α → β, for which the type constructors are written infix. Infix operators bind less
tightly than the postfix or prefix ones. Other important types are the type of Booleans
bool inhabited by exactly two different values > (truth) and ⊥ (falsity) and the types α list
and α set of lists and sets of elements of type α. For Boolean connectives and sets common
mathematical notation is used. A special constant is equality = :: α → α → bool, which is
polymorphic (it exists for any type, including the function type, on which it is extensional,
i.e., (∀x. f x = g x) −→ f = g). Lists are constructed from [] :: α list and # :: α→ α list →
α list; the latter written infix and often omitted, i.e., we write aw for a # w. The notation
|w| stands for the length of the list w, i.e., |[]| = 0 and |aw| = 1 + |w|.

2 Languages as Infinite Tries

We define the type of formal languages as a codatatype of infinite tries, that is, (prefix)
trees of infinite depth branching over the alphabet. We represent the alphabet by the type
parameter α. Each node in a trie carries a Boolean label, which indicates whether the (finite)
path to this node constitutes a word inside or outside of the language. The function type
models branching: for each letter x :: α there is a subtree, which we call x-subtree.

codatatype α lang = L (o : bool) (δ : α→ α lang)
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>

⊥ ⊥

> > > >

. . . . . . . . . . . .

a b

a b a b

a b a b a b a b

Figure 1 Infinite trie even.

The codatatype command defines the type α lang together with a constructor L :: bool →
(α → α lang) → α lang and two selectors o :: α lang → bool and δ :: α lang → α → α lang
For a binary alphabet α = {a, b}, the trie even shown in Figure 1 is an inhabitant of
α lang. The label of its root is given by o even = > and its subtrees by another trie
odd = δ even a = δ even b. Similarly, we have o odd = ⊥ and even = δ odd a = δ odd b.
Note that we could have equally written even = L > (λ_. odd) and odd = L ⊥ (λ_. even)
to obtain the same mutual characterization of even and odd.

We gave our type the name α lang, to remind us to think of its inhabitants as formal
languages. In the following, we use the terms language and trie synonymously.

Beyond defining the type and the constants, the codatatype command also exports
a wealth of properties about them such as o (L b d) = b, the injectivity of L, or more
interestingly the coinduction rule. Informally, coinduction allows us to prove equality of
tries which cannot be distinguished by finitely many selector applications.

Clearly, we would like to identify the trie even with the regular language of all words
of even length {w ∈ {a, b}∗ | |w| mod 2 = 0}, also represented by the regular expression
((a + b) · (a + b))∗. Therefore, we define the notion of word membership ∈∈ on tries by
primitive (or structural) recursion on the word using Isabelle’s primrec command.

primrec ∈∈ :: α list → α lang → bool where
[] ∈∈ L = o L

aw ∈∈ L = w ∈∈ δ L a

Using ∈∈, each trie can be assigned a language in the traditional set of lists view.

definition out :: α lang → α list set where
out L = {w | w ∈∈ L}

With this definition, we obtain out even = {w ∈ {a, b}∗ | |w| mod 2 = 0}.

3 Regular Operations on Tries

So far, we have only specified some concrete infinite tries informally. Formally, we will use
primitive corecursion, which is dual to primitive recursion. Primitively recursive functions
consume one constructor before proceeding recursively. Primitively corecursive functions
produce one guarding constructor whose arguments are allowed to be either non-recursive
terms or a corecursive call (applied to arbitrary non-recursive arguments).The primcorec
command reduces a primitively corecursive specification to a non-recursive definition, which
is accepted by Isabelle’s inference kernel [3]. Internally, the reduction employs a dedicated
combinator for primitive corecursion on tries generated by the codatatype command. The
primcorec command slightly relaxes the above restriction of primitive corecursion by al-
lowing syntactic conveniences, such as lambda abstractions, case-, and if-expressions, to
appear between the guarding constructor and the corecursive call.

FSCD 2016
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3.1 Primitively Corecursive Operations
We start with some simple examples: the languages of the base cases of regular expressions.
Intuitively, the trie ∅ representing the empty language is labeled with ⊥ everywhere and
the trie ε representing the empty word language is labeled with > at its root and with ⊥
everywhere else. The trie A a representing the singleton language of the one letter word a
is labeled with ⊥ everywhere except for the root of its a-subtree. This intuition is easy to
capture formally.

primcorec ∅ :: α lang where
∅ = L ⊥ (λx. ∅)

primcorec ε :: α lang where
ε = L > (λx. ∅)

primcorec A :: α→ α lang where
o (A a) = ⊥
δ (A a) = λx. if a = x then ε else ∅

Among these three definitions only ∅ is truly corecursive.
The specifications of ∅ and ε differ syntactically from the one of A. The constants ∅

and ε are defined using the so called constructor view. The constructor view allows the user
to enter equations of the form constant or function equals constructor, where the arguments
of the constructor are restricted as described above. Such definitions should be familiar to
any (lazy) functional programmer.

In contrast, the specification of A is expressed in the destructor view. Here, we specify
the constant or function being defined by observations or experiments via selector equations.
The allowed experiments on a trie are given by its selectors o and δ. We can observe the
label at the root and the subtrees. Specifying the observation for each selector – again
restricted either to be a non-recursive term or to contain the corecursive call only at the
outermost position (ignoring lambda abstractions, case-, and if-expressions) – yields a
unique characterization of the function being defined.

It is straightforward to rewrite specifications in either of the views into the other one.
The primcorec command performs this rewriting internally and outputs the theorems cor-
responding to the user’s input specification in both views. The constructor view theorems
serve as executable code equations. Isabelle’s code generator [10] can use these equations
to generate code which make sense in programming languages with lazy evaluation. In con-
trast, the destructor view offers safe simplification rules even when applied eagerly during
rewriting as done by Isabelle’s simplifier. Note that constructor view specifications such as
∅ = L ⊥ (λx. ∅) will cause the simplifier to loop when applied eagerly.

Now that the basic building blocks ∅, ε, and A are in place, we turn our attention
to how to combine them to obtain more complex languages. We start with the simpler
combinators for union, intersection, and complement, before moving to the more interesting
concatenation and iteration. The union + of two tries should denote set union of languages
(i.e., out (L + K) = out L ∪ out K should hold). It is defined corecursively by traversing
the two tries in parallel and computing for each pair of labels their disjunction. Intersection
∩ is analogous. Complement simply inverts every label.

primcorec + :: α lang → α lang → α lang where
o (L + K) = o L ∨ o K
δ (L + K) = λx. δ L x + δ K x

primcorec ∩ :: α lang → α lang → α lang where
o (L ∩ K) = o L ∧ o K
δ (L ∩ K) = λx. δ L x ∩ δ K x
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> ⊥

. . . . . .
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a b a b

o K + K. . .

K. . .
+ o K ⊥ + ∅. . .

. . . . . .

a

b

a b a b

Figure 2 Tries for L (left) and the concatenation L · K (right).

primcorec :: α lang → α lang where
o L = ¬ o L
δ L = λx. δ L x

Let us look at the specifying selector equations which we have seen so far from a different
perspective. Imagine L and K being not tries but instead syntactic regular expressions, A,
+, ∩, and constructors of a datatype for regular expressions, and o and δ two operations
that we define recursively on this syntax. From that perspective, the operations are familiar:
rediscovered Brzozowski derivatives of regular expressions [7] and the empty word acceptance
(often also called nullability) test on regular expressions in the destructor view equations
for the selectors δ and o. There is an important difference, though: while Brzozowski
derivatives work with syntactic objects, our tries are semantic objects on which equality
denotes language equivalence. For example, we will later prove ∅ + L = L for tries, whereas
∅ + L 6= L holds for regular expressions. The coinductive view reveals that derivatives and
the acceptance test are the two fundamental ingredients that completely characterize regular
languages and arise naturally when only considering the semantics.

3.2 Reducing Corecursion Up-to to Primitive Corecursion
Concatenation · is next on the list of regular operations that we want to define on tries.
Thinking of Brzozowski derivatives and the acceptance test, we would usually specify it by
the following two equations.

o (L · K) = o L ∧ o K
δ (L · K) = λx. (δ L x · K) + (if o L then δ K x else ∅)

A difficulty arises here, since this specification is not primitively corecursive – the right
hand side of the second equation contains a corecursive call but not at the topmost position
(but rather under + here). We call this kind of corecursion up to +.

Without tool support for corecursion up-to, concatenation must be defined different-
ly – as a composition of other primitively corecursive operations. Intuitively, we would
like to separate the above δ-equation into two along the + and sum them up afterwards.
Technically, the situation is more involved. Since the δ-equation is corecursive, we cannot
just create two tries by primitive corecursion.

Figure 2 depicts the trie that should result from concatenating an arbitrary trie K to
the concrete given trie L. Procedurally, the concatenation must replace every subtree T of
L that has > at the root (those are positions where words from L end) by the trie U + K

where U is the trie obtained from T by changing its root from > to o K. For uniformity
with the above δ-equation, we imagine subtrees F of L with label ⊥ at the root as also being
replaced by F + ∅, which, as we will prove later, has the same effect as leaving F alone.

Figure 3 presents one way to bypass the restrictions imposed by primitive corecursion. We
are not allowed to use + after proceeding corecursively, but we may arrange the arguments
of + in a broader trie over a doubled alphabet formally modeled by pairing letters of the

FSCD 2016
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o K

o K
δ K a. . .

⊥
δ K b. . .

. . . . . .

a b
a′ b′

a b
a′ b′

a b
a′ b′

δ K a. . . δ K b. . . ∅. . . ∅. . .

Figure 3 Trie for deferred concatenation L ·̂ K.

alphabet with a Boolean flag. In Figure 3 we write a for (a, >) and a′ for (a, ⊥). Because it
defers the summation, we call this primitively corecursive procedure deferred concatenation ·̂.

primcorec ·̂ :: α lang → α lang → (α× bool) lang where
o (L ·̂ K) = o L ∧ o K
δ (L ·̂ K) = λ(x, b). if b then δ L x ·̂ K else if o L then δ K x ·̂ ε else ∅

Note that unlike in the Figure 3, where we informally plug the trie δ K x as some x′-subtrees,
the formal definition must be more careful with the types. More precisely, δ K x is of type
α lang, while something of type (α× bool) lang is expected. This type mismatch is resolved
by further concatenating ε to δ K x (again in a deferred fashion) without corrupting the
intended semantics.

Once the trie for the deferred concatenation has been built, the desired trie for concate-
nation can be obtained by a second primitively corecursive traversal that sums the x- and
x′-subtrees before proceeding corecursively.

primcorec ⊕̂ :: (α× bool) lang → α lang where
o (⊕̂ L) = o L

δ (⊕̂ L) = λx. ⊕̂ (δ L (x, >) + δ L (x, ⊥))

Finally, we can define the concatenation as the composition of ·̂ and ⊕̂. The earlier
standard selector equations for · are provable for this definition.

definition · :: α lang → α lang → α lang where
L · K = ⊕̂ (L ·̂ K)

The situation with iteration is similar. The selector equations following the Brzozowski
derivative of L∗ yield a non-primitively corecursive specification: it is corecursive up to ·.

o (L∗) = >
δ (L∗) = λx. δ L x · L∗

As before, the restriction is circumvented by altering the operation slightly. We define the
binary operation deferred iteration L ∗̂ K, whose language should represent L · K∗ (although
we have not defined ∗ yet). When constructing the subtrees of L ∗̂ K we keep pulling copies
of the second argument into the first argument before proceeding corecursively (the second
argument itself stays unchanged).

primcorec ∗̂ :: α lang → α lang → α lang where
o (L ∗̂ K) = o L

δ (L ∗̂ K) = λx. (δ (L · (ε + K)) x) ∗̂ K
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Supplying ε as the first argument to ∗̂ defines iteration for which the original selector
equations hold.

definition _∗ :: α lang → α lang where
L∗ = ε ∗̂ L

We have defined all the standard regular operations on tries. Later we will prove that
those definitions satisfy the axioms of Kleene algebra, meaning that they behave as expected.
Already now we can compose the operations to define new tries, for example the introductory
even = ((A a + A b) · (A a + A b))∗.

Beyond Regular Languages

Before we turn to proving, let us exercise one more corecursive definition. Earlier, we have
assigned each trie a set of lists via the function out. Primitive corecursion enables us to
define the converse operation.

primcorec in :: α list set → α lang where
o (in L) = [] ∈ L
δ (in L) = λa. in {w | aw ∈ L}

The function out and in are both bijections. We show this by proving that their com-
positions (either way) are both the identity function. One direction, out (in L) = L, follows
by set extensionality and a subsequent induction on words. The reverse direction requires a
proof by coinduction, which is the topic of the next section.

Using in we can turn every (even undecidable) set of lists into a trie. This is somewhat
counterintuitive, since, given a concrete trie, its word problem seems easily decidable (via
the function ∈∈). But of course in order to compute the trie out of a set of lists L via in
the word problem for L must be solved – we are reminded that higher-order logic is not a
programming language where everything is executable, but a logic in which we write down
specifications (and not programs). For regular operations from the previous section the
situation is different. For example, Isabelle’s code generator can produce valid Haskell code
that evaluates abaa ∈∈ (A a · (A a + A b))∗ to >.

4 Proving Equalities on Tries

We have seen the definitions of many operations, justifying their meaningfulness by appeal-
ing to the reader’s intuition. This is often not enough to guarantee correctness, especially
if we have a theorem prover at hand. So let us formally prove in Isabelle that the reg-
ular operations on tries form a Kleene algebra by proving Kozen’s famous axioms [13] as
(in)equalities on tries.

Codatatypes are equipped with the perfect tool for proving equalities: the coinduction
principle. Intuitively, this principle states that the existence of a relation R that is closed
under the codatatype’s observations (given by selectors) implies that elements related by
R are equal. Being closed means here that the for all R-related codatatype elements their
immediate (non-corecursive) observations are equal and the corecursive observations are
again related by R. In other words, if we cannot distinguish elements of a codatatype by
(finite) observations, they must be equal. Formally, for our codatatype α lang we obtain the
following coinduction rule.

R L K ∀L1 L2. R L1 L2 −→ (o L1 = o L2 ∧ ∀x. R (δ L1 x) (δ L2 x))
L = K

FSCD 2016
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1 theorem ∅ + L = L

2 proof (rule coinduct lang)
3 def R L1 L2 = (∃K. L1 = ∅ + K ∧ L2 = K)

4 show R (∅ + L) L by simp

5 fix L1 L2
6 assume R L1 L2
7 then obtain K where L1 = ∅ + K and L2 = K by simp
8 then show o L1 = o L2 ∧ ∀x. R (δ L1 x) (δ L2 x) by simp
9 qed

Figure 4 A detailed proof by coinduction.

The second assumption of this rule formalizes the notion of being closed under observations:
If two tries are related then their root’s labels are the same and all their subtrees are related.
A relation that satisfies this assumption is called a bisimulation. Thus, proving an equation
by coinduction amounts to exhibiting a bisimulation witness that relates the left and the
right hand sides.

Let us observe the coinduction rule, which we call coinduct lang, in action. Figure 4 shows
a detailed proof of the Kleene algebra axiom that the empty language is the left identity of
union that is accepted by Isabelle.

After applying the coinduction rule backwards (line 2), the proof has three parts. First,
we supply a definition of a witness relation R (line 3). Second, we prove that R relates the
left and the right hand side (line 4). Third, we prove that R is a bisimulation (lines 5–
8). Proving R (∅ + L) L for our particular definition of R is trivial after instantiating the
existentially quantified K with L. Proving the bisimulation property is barely harder: for
two tries L1 and L2 related by R we need to show o L1 = o L2 and ∀x. R (δ L1 x) (δ L2 x).
Both properties follow by simple calculations rewriting L1 and L2 in terms of a trie K (line
7), whose existence is guaranteed by R L1 L2, and simplifying with the selector equations
for + and ∅.

o L1 = o (∅ + K) = (o ∅ ∨ o K) = (⊥ ∨ o K) = o K = o L2

R (δ L1 x) (δ L2 x) = R (δ (∅ + K) x) (δ K x)
= R (δ ∅ x + δ K x) (δ K x) = R (∅ + δ K x) (δ K x)
= (∃K ′. ∅ + δ K x = ∅ + K ′ ∧ δ K x = K ′) = >

The last step is justified by instantiating K ′ with δ K x.
So in the end, the only part that required ingenuity was the definition of the witness R.

But was it truly ingenious? It turns out that in general, when proving a conditional equation
P x −→ l x = r x by coinduction, where x denotes a list of variables occurring freely in
the equation, the canonical choice for the bisimulation witness is R a b = (∃x. a = l x ∧
b = r x ∧ P x). There is no guarantee that this definition yields a bisimulation. However,
after performing a few proofs by coinduction, this particular pattern emerges as a natural
first choice to try. Indeed, the choice is so natural, that it was worth to automate it in the
coinduction proof method [3]. This method instantiates the coinduction rule coinduct lang
with the canonical bisimulation witness constructed from the goal, where the existentially
quantified variables must be given explicitly using the arbitrary modifier. Then it applies
the instantiated rule in a resolution step, discharges the first assumption, and unpacks the
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existential quantifiers from R in the remaining subgoal (the obtain step in the above proof).
Many proofs collapse to an automatic one-line proof using this convenience, including the
one above. Some examples follow.

theorem ∅ + L = L by (coinduction arbitrary : L) auto

theorem L + L = L by (coinduction arbitrary : L) auto

theorem L1 + L2 = L2 + L1 by (coinduction arbitrary : L1 L2) auto

theorem (L1 + L2) + L3 = L1 + L2 + L3 by (coinduction arbitrary : L1 L2 L3) auto

theorem in (out L) = L by (coinduction arbitrary : L) auto

theorem in (L ∪ K) = in L + in K by (coinduction arbitrary : L K) auto

As indicated earlier, sometimes the coinduction method does not succeed. It is instructive
to consider one example where this is the case: o L −→ ε + L = L.

If we attempt to prove the above statement by coinduction instantiated with the canon-
ical bisimulation witness R L1 L2 = (∃K. L1 = ε + K ∧ L2 = K ∧ o K), after some
simplification we are stuck with proving that R is a bisimulation.

R (δ L1 x) (δ L2 x) = R (δ (ε + K) x) (δ K x)
= R (δ ε x + δ K x) (δ K x) = R (∅ + δ K x) (δ K x)
= R (δ K x) (δ K x) = ∃K ′. δ K x = ε + K ′ ∧ δ K x = K ′ ∧ o K ′

The remaining goal is not provable: we would need to instantiate K ′ with δ K x, but
then, we are left to prove o (δ K x), which we cannot deduce (we only know o K). If we,
however, instantiate the coinduction rule with R

=
L1 L2 = R L1 L2 ∨ L1 = L2, we are

able to finish the proof. This means that our canonical bisimulation witness R is not a
bisimulation, but R= is. In such cases R is called a bisimulation up to equality.

Instead of modifying the coinduction method to instantiate the rule coinduct lang with
R

=, it is more convenient to capture this improvement directly in the coinduction rule. This
results in the following rule which we call coinduction up to equality or coinduct=

lang.

R L K ∀L1 L2. R L1 L2 −→ (o L1 = o L2 ∧ ∀x. R
=(δ L1 x) (δ L2 x))

L = K

Note that coinduct=
lang is not just an instance of coinduct lang, with R replaced by R=.

Instead, after performing this replacement, the first assumption is further simplified toR LK

– we would not use coinduction in the first place, if we could prove R=
L K by reflexivity.

Similarly, the reflexivity part in the occurrence on the left of the implication in the second
assumption is needless and therefore eliminated. The resulting coinduction up to equality
principles are independent of the particular codatatypes and thus uniformly produced by
the codatatype command. Using this coinduction up to equality rule, we have regained the
ability to write one-line proofs.

theorem o L −→ ε + L = L by (coinduction arbitrary : L rule : coinduct=
lang) auto

This brings us to the next hurdle. Suppose that we already have proved the standard
selector equations for concatenation ·. (This requires finding some auxiliary properties of
·̂ and ⊕̂ but is an overall straightforward usage of coinduction up to equality.) Next, we
want to reason about ·. For example, we prove its distributivity over +: (L + K) ·M =
(L ·M) + (K ·M). As before, we are stuck proving that the canonical bisimulation wit-
ness R L1 L2 = (∃L′ K ′ M ′. L1 = (L′ + K ′) ·M ′ ∧ L2 = (L′ ·M ′) + (K ′ ·M ′)) is a
bisimulation (and this time even for up to equality).
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R
=(δ L1 x) (δ L2 x) = R

=(δ ((L′ + K ′) ·M ′) x) (δ ((L′ ·M ′) + (K ′ ·M ′)) x)

=



R
=((δ L′ x + δ K ′ x) ·M ′)

((δ L′ x ·M ′) + (δ K ′ x ·M ′)) if ¬o L′ ∧ ¬o K ′

R
=((δ L′ x + δ K ′ x) ·M ′ + δ M ′ x)

((δ L′ x ·M ′ + δ M ′ x) + (δ K ′ x ·M ′)) if o L′ ∧ ¬o K ′

R
=((δ L′ x + δ K ′ x) ·M ′ + δ M ′ x)

((δ L′ x ·M ′) + (δ K ′ x ·M ′ + δ M ′ x)) if ¬o L′ ∧ o K ′

R
=((δ L′ x + δ K ′ x) ·M ′ + δ M ′ x)

((δ L′ x ·M ′ + δ M ′ x) + (δ K ′ x ·M ′ + δ M ′ x)) if o L′ ∧ o K ′

=


> if ¬o L′ ∧ ¬o K ′

R
=((δ L′ x + δ K ′ x) ·M ′ + δ M ′ x)

((δ L′ x ·M ′ + δ K ′ x ·M ′) + δ M ′ x) otherwise

The remaining subgoal cannot be discharged by the definition of R. In principle it could
be discharged by equality (the two tries are equal), but this is almost exactly the property we
originally started proving, so we have not simplified the problem by coinduction but rather
are going in circles here. However, if our relation could somehow split its arguments across
the outermost + highlighted in gray, we could prove the left pair being related by R and the
right pair by =. The solution is easy: we allow the relation to do just that. Accordingly, we
define the congruence closure R+of a relation R under + inductively by the following rules.

L = K

R
+
L K

R L K

R
+
L K

R
+
L K

R
+
K L

R
+
L1 L2 R

+
L2 L3

R
+
L1 L3

R
+
L1 K1 R

+
L2 K2

R
+

(L1 + L2) (K1 + K2)

The closure R+ is then used to strengthen the coinduction rule, just as the earlier re-
flexive closure R=strengthening. Note that the closure R=can also be viewed as inductively
generated by the first two of the above rules. In summary, we obtain coinduction up to
congruence of +, denoted by coinduct+

lang.

R L K ∀L1 L2. R L1 L2 −→ (o L1 = o L2 ∧ ∀x. R
+(δ L1 x) (δ L2 x))

L = K

This rule is easily derived from plain coinduction by instantiating R in coinduct lang with R+

and proceeding by induction on the definition of the congruence closure.
As intended coinduct+

lang makes the proof of distributivity into another automatic one-
liner. This is because our new proof principle, coinduction up to congruence of +, matches
exactly the definitional principle of corecursion up to + used in the selector equations of ·.

theorem (L + K) ·M = (L ·M) + (K ·M)
by (coinduction arbitrary : L K M rule : coinduct+

lang) auto

For properties involving iteration ∗, whose selector equations are corecursive up to ·,
we will need a further strengthening of the coinduction rule (using the congruence closure
under ·). Overall, the most robust solution to keep track of the different rules is to maintain
a coinduction rule up to all previously defined operations on tries: we define R• to be the
congruence closure of R under +, ·, and ∗ and then use the following rule for proving.

R L K ∀L1 L2. R L1 L2 −→ (o L1 = o L2 ∧ ∀x. R
•(δ L1 x) (δ L2 x))

L = K
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α
s //

f ��

α F
mapF f��

β
t // β F

Figure 5 Commutation property of a coalgebra morphism.

We will not spell out all axioms of Kleene algebra [13] and their formal proofs [27] here.
Most proofs are automatic; some require a few manual hints in which order to apply the
congruence rules. Note that the axioms also contain some inequalities, such as ε + L · L∗ ≤
L∗, and even conditional inequalities, such as L + M · K ≤ M −→ L · K∗ ≤ M . However,
L ≤ K is defined as L + K = K, such that proofs by coinduction also are applicable here.

5 Coalgebraic Foundations

We briefly connect the formalized but still intuitive notions, such as tries, from earlier
sections with the key coalgebraic concepts and terminology that is usually used to present
the coalgebraic view on formal languages. Thereby, we explain how particularly useful
abstract objects gave rise to concrete tools in Isabelle/HOL. More theoretical and detailed
introductions to coalgebra can be found elsewhere [23, 12].

Given a functor F an (F -)coalgebra is a carrier object A together with a map A→ F A –
the structural map of a coalgebra. In the context of higher-order logic – that is in the category
of types which consists of types as objects and of functions between types as arrows – a
functor is a type constructor F together with a map function mapF :: (α→ β)→ α F → β F
that preserves identity and composition: mapF id = id and mapF (f ◦g) = mapF f ◦mapF g.
An F -coalgebra in HOL is therefore simply a function s :: α→ α F . A function f :: α→ β

is a coalgebra morphism between two coalgebras s :: α→ α F and t :: β → β F if it satisfies
the commutation property t ◦ f = mapF f ◦ s, also depicted by the commutative diagram in
Figure 5.

An (F -)coalgebra to which there exists an unique morphism from any other coalgebra
is called a final (F -)coalgebra. Not all functors F admit a final coalgebra. Two different
final coalgebras are necessarily isomorphic. Final coalgebras correspond to codatatypes in
Isabelle/HOL. Isabelle’s facility for defining codatatypes maintains a large class of functors
– bounded natural functors [29] – for which a final coalgebra does exists. Moreover, for any
bounded natural functor F , Isabelle can construct its final coalgebra with the codatatype
CF as the carrier and define a bijective constructor CF :: CF F → CF and its inverse,
the destructor DF :: CF → CF F . The latter takes the role of the structural map of the
coalgebra.

codatatype CF = CF (DF : CF F)

Finally, we are ready to connect these abstract notions to our tries. The codatatype of
tries α lang is the final coalgebra of the functor β D = bool × (α → β) with the associated
map function mapD g = id × (λf. g ◦ f), where (f × g) (x, y) = (f x, g y). The structural
map of this final coalgebra is the function DD = 〈o, δ〉, where 〈f, g〉 x = (f x, g x).

The finality of α lang gives rise to the definitional principles of primitive coiteration and
corecursion. In Isabelle the coiteration principle is embodied by the primitive coiterator
coiter :: (τ → τ D) → τ → α lang, that assigns to the given D-coalgebra the unique
morphism from itself to the final coalgebra. In other words, the primitive coiterator allows
us to define functions of type τ → α lang by providing a D-coalgebra on τ , i.e., a function

FSCD 2016
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τ
s //

coiter s ��
τ D

mapD (coiter s)��
α lang

〈o, δ〉 // α lang D

Figure 6 Unique morphism coiter s to the final coalgebra (α lang, 〈o, δ〉).

τ
s //

corec s ��

(α lang + τ) D
mapD [id, corec s]��

α lang
〈o, δ〉 // α lang D

Figure 7 Characteristic theorem of the corecursor.

of type τ → bool × (α→ τ) that essentially describes a deterministic (not necessarily finite)
automaton without an initial state. To clarify this automaton analogy, it is customary
to present the F -coalgebra s as two functions s = 〈o, d〉 with τ being the states of the
automaton, o : τ → bool denoting accepting states, and d : α→ τ → τ being the transition
function. From a given s, we uniquely obtain the function coiter s that assigns to a separately
given initial state t : τ the language coiter s t : α lang and makes the diagram in Figure 6
commute. Note that Figure 6 is an instance of Figure 5.

Corecursion differs from coiteration by additionally allowing the user to stop the coit-
eration process by providing a fixed non-corecursive value. In Isabelle this is mirrored by
another combinator: the corecursor corec :: (τ → (α lang + τ) D) → τ → α lang where the
sum type + offers the possibility either to continue corecursively as before (represented by
the type τ) or to stop with a fixed value of type α lang. The corecursor satisfies the char-
acteristic property shown in Figure 7, where the square brackets denote a case distinction
on +, i.e. [f, g] x = case x of Inl l ⇒ f l | Inr r ⇒ g r and Inl and Inr are the standard
embeddings of +. Corecursion is not more expressive than coiteration (since corec can be
defined in terms of coiter), but it is more convenient to use. For instance, the non-corecursive
specifications of ε and A, and the else branch of ·̂ exploit this additional flexibility.

The primcorec command [3] reduces a user given specification to a non-recursive def-
inition using the corecursor. For example, the union operation + is internally defined as
λL K. corec (λ(L, K). (o L ∧ o K, λa. Inr (δ L a, δ K a))) (L, K). The D-coalgebra given
as the argument to corec resembles the right hand sides of the selector equations for + (with
the corecursive calls replaced by Inr). As end users, most of the time we are happy being
able to write the high-level corecursive specifications, without having to explicitly supply
coalgebras.

It is worth noting that the final coalgebra α lang itself corresponds to the automaton,
whose states are languages, acceptance is given by o L = o L, and the transition function
by d a L = δ L a. For these definitions, we obtain corec 〈o, d〉 (L : α lang) = L. For regular
languages this automaton corresponds to the minimal automaton (since equality on tries
corresponds to language equivalence), which is finite by the Myhill–Nerode theorem. This
correspondence is not very practical though, since we typically label states of automata with
something finite, in particular not with languages (represented by infinite tries).

A second consequence of the finality of α lang is the coinduction principle that we have
seen earlier. It follows from the fact that final coalgebras are quotients by bisimilarity, where
bisimilarity is defined as the existence of a bisimulation relation.
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6 Discussion and Related Work

Our development is a formalized counterpart of Rutten’s introduction to the coalgebraic
view on languages [24]. In this section we discuss further related work.

Adding Further Operations

With the coinductive representation adding new operations corresponds to defining a new
corecursive function on tries. Compared with adding a new constructor to the inductive
datatype of regular expressions and extending all previously defined recursive functions on
regular expressions to account for this new case, this a is rather low-cost library extension.
Wadler called this tension between extending syntactic and semantic objects the Expression
Problem [31]. Note that codatatypes alone are not the solution to the Expression Problem –
they just populate the other side of the spectrum with respect to datatypes. In fact, adding
new selectors to our tries would be as painful as adding new constructors to the datatype
of regular expressions. Rendel et al. [20] outline how automatic conversions between the
inductive and the coinductive view can help solving the Expression Problem.

We have extended our library with the regular shuffle product operation on languages
and an operation that transforms a context free grammar in weak Greibach normal form
into a trie with the same language [27]. Both operations are corecursive up to + (just as · is).

Coalgebraic View on Formal Languages

The coalgebraic approach to languages has recently received some attention. Landmark
results in language theory were rediscovered and generalized. Silva’s recent survey [26]
highlights some of those results including the proofs of correctness of Brzozowski’s subtle
deterministic finite automaton minimization algorithm [5]. The coalgebraic approach yields
some algorithmic advantages, too. Bonchi and Pous present a coinductive algorithm for
checking equivalence of non-deterministic automata that outperforms all previously known
algorithms by one order of magnitude [6]. Another recent development is our formally
verified coalgebraic algorithm for deciding weak monadic second-order logic of one successor
(WS1S) [28]. This formalization employs the Isabelle library presented here.

Tutorials on Coinduction

The literature is abound with tutorials on coinduction. So why bother writing yet another
one? First, because we finally can do it in Isabelle/HOL, which became a coinduction-
friendly proof assistant recently [3]. Earlier studies of coinduction in Isabelle had to engage
in tedious manual constructions just to define a codatatype [18]. Second, coinductive tech-
niques are still not as widespread as they could be (and we believe should be, since they
constitute a convenient proof tool for questions about semantics). Third, many tutori-
als [12, 14, 11, 8, 9, 25], with or without a theorem prover, exercise streams to the extent
that one starts to believe having seen every single stream example one can imagine. In con-
trast, Rutten [24] demonstrates that it is entirely feasible to start a tutorial with a structure
slightly more complicated than streams, but familiar to everybody with a computer science
degree. Moreover, Rot, Bonsangue, and Rutten [21, 22] present an accessible introduction
to coinduction up to congruence using the coinductive view of formal languages similarly
to our Section 4. Our work additionally focuses on corecursion up-to and puts Rutten’s
exposition in the context of a proof assistant.

FSCD 2016
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Non-Primitive Corecursion in Proof Assistants

Automation for corecursion in proof assistants is much less developed than its recursive
counterpart. Currently, Isabelle/HOL provides only a command to handle primitively core-
cursive specifications. The Coq proof assistant can do slightly more: it supports corecursion
up to constructors [8]. Looking at our examples, however, this means that Coq will not
be able to prove productivity of the natural concatenation and iteration specifications au-
tomatically, since both go beyond up-to constructors. Instead, our reduction to primitive
corecursion can be employed to bypass Coq’s productivity checker.

Agda’s combination of copatterns (i.e., destructor view) and sized types [2, 1] is the most
advanced implemented support for corecursion in proof assistants to date. However, using
sized types often means that one has to encode proofs of productivity manually in the type of
the defined function. Thus, it should be possible to define concatenation and iteration using
their natural specifications in Agda when we accept the need for heavier type annotations.

Recently, we proposed a general framework for reducing corecursion up to so called
friendly operations to primitive corecursion in Isabelle/HOL [4]. An operation is friendly
if, under lazy evaluation, it does not peek too deeply into its arguments, before produc-
ing at least one constructor. For example, the friendly operation L + K = L (o L ∨
o K) (λx. δ L x + δ K x) destructs only one layer of constructors, in order to produce the
topmost L. Since + is friendly, and · is corecursive up to +, using this framework will allow us
to use the natural specifications for · without changing any types. (The same applies for ∗.)
In contrast, the primitively corecursive equation deep L = L (o L) (λx. deep (δ (δ L x) x))
destructs two layers of constructors (via δ) before producing one and is therefore not friendly.
Indeed, we will not be able to reduce the equation bad = L > (λ_. deep bad) (which is core-
cursive up to deep) to a primitively corecursive specification. And there is a reason for it:
bad is not uniquely specified by the above equation, or in other words not productive.

Support for friendly operations will advance Isabelle over its competitors, once fully
implemented. To achieve the reduction to primitive corecursion the framework follows an
abstract, category theory inspired construction. Yet, what this reduction yields in practice
is relatively close to our manual construction for concatenation. (In contrast, the iteration
case takes some shortcuts, which the abstract view does not offer.)

Formal Languages in Proof Assistants

Such a basic thing as the traditional set-of-words view on formal languages is formalized
in most proof assistants. In contrast, we are not aware of any other formalization of the
coalgebraic view on formal languages in a proof assistant.

Here, we want to compare our formalization with the Isabelle incarnation of the set-
of-words view developed by Krauss and Nipkow for the correctness proof of their regular
expression equivalence checker [15]. Both libraries are comparably concise. In 500 lines
Krauss and Nipkow prove almost all axioms of Kleene algebra and the characteristic equa-
tions for the left quotients (the δ-specifications in our case). They reuse Isabelle’s libraries
for sets and lists, which come with carefully tuned automation setup. Still, their proofs
tend to require additional induction proofs of auxiliary lemmas, especially when reasoning
about iteration. Our formalization is 700 lines long. We prove all axioms of Kleene alge-
bra and connect our representation to the set-of-words view via the bijections out and in.
Except for those bijections our formalization does not rely on any other library. Moreover,
when we changed our 5000 lines long formalization of a coalgebraic decision procedure for
WS1S [28] to use the infinite tries instead of the set-of-words view, our proofs about WS1S
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became approximately 300 lines shorter. Apparently, a coalgebraic library is a good fit for
a coalgebraic procedure.

Paulson presents a concise formalization of automata theory based on hereditarily finite
sets [19]. For the semantics he reuses Krauss and Nipkow’s set-of-words formalization.

7 Conclusion

We have presented a particular Formal Structure for Computation and Deduction: infinite
tries modeling formal languages. Although this representation is semantic and infinite, it
is suitable for computation – in particular we obtain a matching algorithm for free on tries
constructed by regular operations. Deduction does not come short either: coinduction is
the convenient reasoning tool for infinite tries. Coinductive proofs are concise, especially for
(in)equational theorems such as the axioms of Kleene algebra.

Codatatypes might be just the right tool for thinking algorithmically about semantics.
We hope to have contributed to their dissemination by outlining some of their advantages.
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Abstract
We present abstract hyper-normalisation results for strategies. These results are then applied to
term rewriting systems, both first and higher-order. For example, we show hyper-normalisation
of the left–outer strategy for, what we call, left–outer pattern rewrite systems, a class comprising
both Combinatory Logic and the λβ-calculus but also systems with critical pairs. Our results
apply to strategies that need not be deterministic but do have Newman’s random descent prop-
erty: all reductions to normal form have the same length, with Huet and Lévy’s external strategy
being an example. Technically, we base our development on supplementing the usual notion of
commutation diagram with a notion of order, expressing that the measure of its right leg does
not exceed that of its left leg, where measure is an abstraction of the usual notion of length. We
give an exact characterisation of such global commutation diagrams, for pairs of reductions, by
means of local ones, for pairs of steps, we dub Dyck diagrams.
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grams, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems
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1 Introduction

The (hyper-)normalisation of the leftmost–outermost strategy is a fundamental result in
Combinatory Logic and the λ-calculus, cf. [3, 7]. For the special case of the λ-calculus, the
simple idea underlying the present paper is that normalisation of the leftmost–outermost
strategy is due to it being both deterministic, there is at most one leftmost–outermost
step from any given λ-term, and compatible with β, in the sense that if M ÐIβ N then
repeatedly performing the leftmost–outermost strategy on both M and N results either in a
common reduct or in infinite reductions from both. Compatibility guarantees (Section 5)
that each term β-convertible to some normal form is also convertible to that normal form
by leftmost–outermost steps. Determinism guarantees that if there is such a conversion to
normal form, then there exists a leftmost–outermost reduction from the term to the normal
form, and so all leftmost–outermost reductions from that term terminate. A method for
proving hyper-normalisation is obtained from this by strengthening compatibility with an
order constraint expressing that in the above the leftmost–outermost reduction from M be at
least as long as that from N . Ordered compatibility guarantees that β-steps never increase
the distance, i.e. the length of the leftmost–outermost reduction of a term to its normal

∗ The research for this paper was initiated during a visit in November 2013 funded by RIEC, Tohoku
University, of the first author to the second author.

© Vincent van Oostrom and Yoshihito Toyama;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


32:2 Normalisation by Random Descent

form, from which hyper-normalisation follows as leftmost–outermost steps do decrease that
distance. We present an abstract account of this idea based on the following observations.

The first observation (Section 4) is that determinism can be relaxed to Newman’s random
descent property, all reductions to normal form have the same length [13, 20, 21, 16]. This
vastly broadens the scope of the method. In addition to deterministic strategies such as
leftmost–outermost, it covers, e.g., interaction net strategies, linear β-reduction, and Huet and
Lévy’s external strategy [8], allowing to contract redexes that are outermost until eliminated
(by contracting the redex itself or some overlapping redex [19]). Technically, whereas for
deterministic systems the notion of distance is well-defined because given an object there is a
unique reduction to its normal form, it is still well-defined for random descent systems since
although reductions to normal form then need no longer be unique they have a unique length.

The second observation (Section 3) is that all reductions from an object to normal form
having the same length is equivalent to the order constraint that for each pair of reductions
from the object to normal form, the first is at least as long as the second. Working towards
deciding it, we characterise this property of peaks of reductions by means of a property of
local peaks (of steps). More precisely, we show it necessary and sufficient that such local
peaks be completable by means of a Dyck-conversion, a conversion in which the number
of forward steps never (for any prefix) exceeds the number of backward steps. Technically,
we establish the above in a commutation setting where the reductions being ordered may
be reductions in two distinct rewrite systems. In Section 6 we turn this local criterion into
a critical pair criterion for a concrete class of higher-order term rewrite systems, dubbed
left–outer Dyck, comprising both Combinatory Logic and the λβ-calculus.

The third observation is that we may abstract the notion of length in the random descent
property into a notion of measure, allowing steps having different measures to coexist. This
covers, for example, systems having ‘macro’ steps abbreviating several ‘micro’ steps. We
build this into our setup right from the start (Section 2), by introducing derivation and
conversion monoids which allow to measure reductions respectively conversions.

For terminating systems, the classical division of work for proving confluence is to first
localise the confluence property for abstract rewrite systems (Newman’s Lemma), and then
using that establish confluence for term rewrite systems by means of a critical pair criterion
(Huet’s Critical Pair Lemma). We structure our paper accordingly, first localising random
descent to the local Dyck property (Sections 3, 4) for abstract rewrite systems, and then
using that to establish a critical pair criterion, the left–outer Dyck property, for establishing
hyper-normalisation of the left–outer strategy for term rewrite systems (Sections 5, 6).

We employ the untyped λ-calculus with β- and/or η-reduction [2] as a running example,
marking the examples where en passant new results are obtained by a double dagger (‡).

Contribution Apart from unifying our earlier results [20, 21, 16], with a clean separation
into results for abstract and term rewriting, the main contributions of this paper are the
notions of measured rewrite system, ordered commutation, compatibility and Dyck diagrams.

2 Preliminaries

We assume basic knowledge of term rewriting and the λ-calculus [1, 2, 19], and use notation
from [19]. We employ abstract rewrite systems (ARSs) and strategies for them as defined
in [19, Chapters 8 and 9]; cf. also [16]. In particular, steps are first-class citizens of abstract
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rewrite systems1 and a strategy for a rewrite system is a sub-rewrite system on the same set
of objects, with the same set of normal forms.2 Throughout we assume

ÐI, →, ÐI, _ are rewrite systems on the same set of objects, unless stated otherwise.

A strategy → for the rewrite system ÐI is (ÐI-)normalising if → is terminating on objects that
are ÐI-normalising, i.e. if for all a with aÐI∗ b for some ÐI-normal form b, a is →-terminating.
The strategy → is ÐI-hyper-normalising if →/ÐI, i.e. ÐI∗

⋅→ ⋅ÐI∗, is ÐI-normalising.

I Example 1. For the λβ-calculus, selecting an outermost redex for contraction yields
a strategy (since any term not in β-normal form contains some outermost redex) that is
non-deterministic, the outermost strategy. Starting from the outermost strategy, selecting the
leftmost redex (in the tree ordering, cf. Definition 27) for rewriting yields a strategy for it that
is deterministic. Composing both yields a strategy for β-reduction that is deterministic again,
the leftmost–outermost strategy. The leftmost strategy starting from β-reduction, is also
well-defined but non-deterministic. The leftmost–outermost strategy is hyper-normalising [3],
but the leftmost and outermost strategies are not even normalising, cf. (λx.xΩ)(λxy.z)Ω.

For convenience we recapitulate notational conventions and their mnemonic values.
I Notation 2. We employ:
ÐI arrow notation to denote an ARS having steps as first-class citizens;
→ part of notation ÐI to express that → is a ÐI-strategy, i.e. part of ÐI;
← converse of notation → to expresses that ← is converse of →; and
J_Ð union of notations JÐ and _ to express J_Ð is union of JÐ and _.

We use sub/superscripts to express restricting/extending the corresponding notion.
At the core of this paper are the following commutation versions for pairs of rewrite systems
of standard notions for single rewrite systems (PN is the obvious ‘peak’ version of NF).

I Definition 3. We say the normal form property (NF) holds if a J_Ð ∗ b with a in _-normal
form implies a ∗JÐ b, the peak normal form property (PN) holds if a ∗JÐ ⋅_∗ b with a in
_-normal form implies a ∗JÐ b, the Church–Rosser property (CR) holds if a J_Ð ∗ b implies
a _∗

⋅
∗JÐ b, and commutation (CO) holds if a ∗JÐ ⋅_∗ b implies a _∗

⋅
∗JÐ b.

CR is also known as e.g. factorisation, postponement, preponement, and separation, cf. [4].
Instantiating both ÐI and _ to → yields the usual notions NF, PN, CR and CO (then called
confluence). That NF ⇐⇒ PN ⇐Ô CR ⇐⇒ CO is folklore, cf. [4]. In order to be able to
express that one rewrite system is ‘better’ than another, we enrich these notions/diagrams in
two ways: we equip steps with a measure (with respect to which conversions are compared)
and we allow for infinite reductions (defining all such to be ‘worse’ than finite ones).

I Definition 4. LetM be a monoid (M,+,�). We call ÐI anM-measured rewrite system
if it comes equipped with a map from ÐI-steps to M − {�}. The (derivation) measure of
a sequence of ÐI-steps is the sum of the measures of its steps, from left to right. The
(conversion) measure of a sequence of JÐ- and ÐI-steps is a pair having as first component
the sum of the measures of its JÐ-steps, from right to left, and as second component the
sum of the measures of its ÐI-steps, from left to right. M is a derivation monoid if it comes
equipped with a well-founded partial order ≤ such that � is the least element (� ≤m for all m)

1 Only for systems having at most one step between any pair of objects do we speak of rewrite relations.
2 Sub-rewrite systems that do change the set of normal forms, e.g. call-by-value for the λβ-calculus, are
not strategies (they result in different calculi).

FSCD 2016



32:4 Normalisation by Random Descent

fa

b

c

d

334 12

4 2

1

g g′ g′′ g′′′

h

1 1

1 1

1

1
2

e

Figure 1 Measured rewrite systems on monoid of strings of digits ordered by embedding. Here
→ is used to denote steps in belonging to both _ and ÐI, with the same measure.

and + is strictly monotonic in both arguments (if m < n then m+ k < n+ k and k +m < k +n,
for all m,n, k). A derivation monoid is cancellative if m + k ≥ n + k entails m ≥ n for all
m,n, k. A conversion monoid is a commutative derivation monoid.

Excluding � as measure of steps will ensure that by prefixing/suffixing a step to a reduction
its measure strictly increases. We use subscripts to indicate measures; in Fig. 1 digit-strings.

I Example 5. In the measured rewrite system ÐI that is the union of ÐI and _ in Fig. 1,
we have a 1234J_Ð ∗

31 e as witnessed by the conversion a 34JÐ b _3 c 12JÐ d _1 e, with the first
component 1234 of the measure obtained by concatenating the measures 12 and 34 of the
JÐ-steps, and the second component 31 by the measures 3 and 1 of the _-steps. In general,
strings with concatenation and empty string ordered by embedding constitute a cancellative
but non-commutative derivation monoid. Assuming commutativity yields the cancellative
conversion monoid of multisets with multiset sum and empty multiset. More generally,
equipping a string/multiset monoid with the order generated by the union of embedding with
some simply terminating string/multiset rewrite system yields a derivation/conversion monoid
which need not be cancellative; consider the orders generated by ab→ ac/[a, b]→ [a, c].

I Example 6. Measuring all steps of a rewrite system by 1 in the conversion monoid of the
natural numbers with addition and zero equipped with less–than–or-equal, the measure µ of
a reduction ÐI∗

µ corresponds to its length, and for nJÐÐI∗
m the integer m−n corresponds to the

difference of the conversion, the number of ÐI-steps minus the number of JÐ-steps [20, 21].

Next, we consider ordering [16, Definition 5] and pasting [17, Examples 4,9] diagrams.

I Definition 7. A conversion is ordered ifm ≥ n for its measure (m,n), and cyclic if its source
and target are the same. Shift equivalence is generated by identifying a cyclic conversion C ⋅D
with D ⋅C. A (conversion) diagram is a pair C,D of conversions with the same sources and
targets. Its induced conversion is C−1

⋅D, inducing notions of measure and shift equivalence
on diagrams, cf. [24]. Pasting diagrams shift equivalent to C,D and D,E (on D) gives C,E.

Occurrences of D, determined by picking an object on the cyclic conversion (the source of D)
and a length (of D), may be used to disambiguate pasting. For commutative monoids shift
equivalent diagrams have the same measure. A derivation diagram comprises two reductions.

I Example 8. In Fig. 1, we have, e.g., two diagrams bÐI34 a, b _3 cÐI4 a and dÐI12 c, d _1
e ÐI2 c having underlying conversions a 34JÐ b _3 c ÐI4 a respectively c 12JÐ d _1 e ÐI2 c.
The former is shift equivalent to the diagram c 3^ bÐI34 a 4JÐ c, c the latter to c, c 12JÐ d _1
e ÐI2 c, and pasting them on c yields c 3^ b ÐI34 a 4JÐ c, c 12JÐ d _1 e ÐI2 c. Whereas the
first of the original diagrams is an ordered derivation diagram (both the ‘counterclockwise’
and ‘clockwise’ measures of the 1st are 34) its shift equivalent is not (34 /≥ 43), and the result
of pasting is neither shift equivalent to a derivation diagram nor to an ordered diagram.



V. van Oostrom and Y. Toyama 32:5

n2 +m3

n1 n3

m1 m3

n3 +m1 ≥ n1 +m3 Ô⇒
≥

≥
≥m1

n1

n3 m3

m1

n1

n3 m3

m2Ô⇒

n1
n2

m2
m1

n3

m3

n2 +m1 ≥
n1 +m2

n3 +m2 ≥

Figure 2 Preservation of order (‘counterclockwise’ ≥ ‘clockwise) by pasting on n2JÐÐI
∗

m2 .

Pasting derivation diagrams on reductions requires associativity of +, for conversion diagrams
it also requires commutativity, and for pasting on conversions also cancellation is needed:

I Lemma 9. Pasting preserves order for cancellative conversion monoids (Fig. 2 left);
Pasting on a reduction (m2 or n2 is � in Fig. 2) preserves order for conversion monoids;
Pasting ordered derivation diagrams on a reduction with the source of one and target of
the other, gives a diagram shift equivalent to an ordered derivation diagram (Fig. 2 right).

Proof. Let conversions Ci have measure (ni,mi) in the pasted diagrams C1,C2 and C2,C3.
In the first two items, orderedness yields n2 +m1 ≥ n1 +m2 and n3 +m2 ≥ n2 +m3.

Combining both yields n2 +m1 + n3 +m2 ≥ n1 +m2 + n2 +m3 from which we conclude to
n3 +m1 ≥ n1 +m3 by commutativity and cancelling m2 + n2;
If w.l.o.g. n2 = �, the assumptions yield n3+m1 ≥ n3+n1+m2 ≥ n1+m3 by commutativity;
If w.l.o.g. the reduction has the same target as the original 1st diagram and the same
source as the 2nd (see Fig. 2 right), then orderedness of those original derivation diagrams
yields m1 ≥ n1 +m2 and m2 + n3 ≥m3, so m1 + n3 ≥ n1 +m2 + n3 ≥ n1 +m3. J

I Definition 10. The rewrite system _∞ [4] has the same objects as _ and a step from
a to b for each infinite _-rewrite sequence from a and for any b. Given a monoid M,
the monoid M⊺ is obtained by adjoining a fresh element ⊺ to the carrier and defining
⊺ + ⊺ = ⊺ +m =m + ⊺ = ⊺ for all m ∈M . Given aM-measured rewrite system _, mapping
_∞-steps to ⊺ gives rise to anM⊺-measured rewrite system _ ∪_∞, and similarly for a
pair ÐI,_ (see Definition 4).
Although _∞ is not common in rewriting yet, it is in relational program semantics [4].
The extension from M to M⊺ preserves commutativity, and cancelling elements of M.
(Although not needed here, note the first item of Lemma 9 needs m2 or n2 to be finite to go
through). Two rewrite systems particularly important for this paper are (_ ∪_∞

)
∗ and

(JÐ ∪_ ∪_∞
)
∗ which we will refer to as extended reduction (_⊛) and conversion (J_Ð⊛),

respectively. Beware that locations of superscipts matter, e.g. ^∞ would be distinct from
the converse of _∞.

I Example 11. In the measured rewrite system of Fig. 1 f 2J_Ð⊛
⊺ b since f 2JÐ g _∞

⊺ b as g
admits an infinite _-reduction g _ g′ _ . . .. We do not have b Ð̂I⊛ f .

We may assume _∞ to occur only, if at all, at the end of an extended reduction or conversion
because _⊛

= _∗
∪_∞

= _∗
⋅ (_∞

)
= and J_Ð⊛

= J_Ð ∗
⋅ (_∞

)
=, with superscript = denoting

reflexive closure. This process does not increase the first component of the measure and
leaves the second unchanged. To differentiate between elements ofM andM⊺, we henceforth
use m,n, k, . . . to range over the former and µ, ν, κ, . . . to range over the latter. We call
the former finite as can be vindicated by setting infinite sums of non-�-elements to ⊺ and
noting that infinite measures are not affected by (un)folding _∞: if a _∞

⊺ b is witnessed by
a _m a′ _m′ a

′′ _m′′ . . . then its measure is m +m′
+m′

+ . . . = ⊺, and so is the measure of
a _m a′ _∞

⊺ b because m+⊺ = ⊺. Thus, a reduction is infinite if and only if the corresponding
extended reduction has measure ⊺ with respect to the length measure (Example 6).
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local Dyck

⊛ ∗
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≥
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Lemma 14
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ordered commutation

Lemma 18
∗⊛
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ordered local commutation

Theorem 19
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≥

Figure 3 Localising ordered Church–Rosser, restricting the ∀, widening the ∃, to local Dyck.

3 Ordered commutation and Dyck diagrams

We introduce a property, ordered Church–Rosser, sufficient for the measure of the ÐI-
reductions from a given object to be an upper bound on the measures of its _-reductions.
This will be used in Sections 5–6 to show normalisation of the latter via that of the former.
Here we work towards deciding the property, localising it to the local Dyck property, Fig. 3.

Throughout, we assume ÐI,_ are measured rewrite systems for the same derivation
monoid.

I Definition 12. We say the ordered normal form property (ONF) holds if a nJ_Ð⊛
µ b with a

in _-normal form implies a ∗
n′JÐ b, the ordered peak normal form property (OPN) holds if

a ∗
nJÐ ⋅_⊛

µ b with a in _-normal form implies a ∗
n′JÐ b, the ordered Church–Rosser property

(OCR) holds if a nJ_Ð⊛
µ b implies a _∗

µ′ ⋅
∗
n′JÐ b, and ordered commutation (OCO) holds if

a ∗
nJÐ ⋅_⊛

µ b implies a _⊛
µ′ ⋅

∗
n′JÐ b, with the order constraint n+µ′ ≥ µ+n′ (µ′ = � by default).

In words, a commutation diagram is ordered if the measure of its left leg is as large as that
of its right leg. Note that this corresponds exactly to orderedness (see Definition 7) of the
corresponding derivation diagram for derivation monoids. Similarly, for OCR the constraint
corresponds to orderedness of the corresponding conversion diagram for conversion monoids.
Remark that if OCR/OCO and a J_Ð⊛ b/ a ∗JÐ ⋅_⊛ b, then if a is _-terminating so is
b and the corresponding OCR,OCO diagram is finite. Lemma 9 vindicates pasting such
diagrams. That OCO need not imply commutation or confluence, follows by considering non
_-terminating such a; OCO holds in Example 13, but commutation not for f iJÐ g _1 g

′.3

I Example 13. In Fig. 1, OCO and OPN are easily seen to hold by considering the three
‘interesting’ local peaks a 34JÐ b _3 c, c 12JÐ d _1 e and f iJÐ g _1 g

′, that are completed
into ordered commutation diagrams by respectively a 4JÐ c, c 2JÐ e and f _∞

⊺ g′.
Composing the first two of these local peaks (on c) yields a conversion a 1234J_Ð ∗

31 e that
can (only) be completed into a commutation diagram by a ∗

24JÐ e, which does not satisfy the
order constraint as 1234 /≥ 3124, showing neither OCR nor ONF holds, cf. Example 8.

The four notions relate to each other as in the unordered (finite) case.

I Lemma 14. ONF ⇐⇒ OPN ⇐Ô OCR ⇐⇒ OCO, for conversion monoids.

Proof. All implications hold by definition except for OCO Ô⇒ OCR and OPN Ô⇒ ONF.
These are shown by induction on the number of peaks in a conversion, pasting diagrams as in
the unordered case [4]. Since the diagrams are conversion diagrams, a conversion monoid is
needed (cf. Example 13) to let order be preserved by pasting on reductions (Lemma 9). J

3 The converse also fails as witnessed by b0 _ b1 _ . . . and a JÐ bi for all i.
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Note that the four notions are asymmetric in that they consider infinite _-reductions but
only finite ÐI-reductions. However, this sufficies for bounding _-reductions by ÐI-reductions:

I Proposition 15. If OPN and ÐI,_ have the same normal forms, then for any peak
a ⊛
νJÐ ⋅_⊛

µ b of maximal reductions, ν ≥ µ and if the left leg is finite so is the right leg and
a = b.

Proof. If the left leg of the peak has infinite length, then ν is ⊺ and we conclude trivially.
Otherwise, the peak has shape a ∗

nJÐ ⋅_⊛
µ b for some n with a in normal form. By OPN for

it, there exists a ∗
m′JÐ b such that n ≥ µ +m′. As n is finite, so is µ, so the right leg of the

peak is finite and by maximality must end in a normal form and a = b. J

In particular, if ÐI,_ are strategies for the same rewrite system, as is, e.g., the case for the
systems in Fig. 1, normalisation of the former entails normalisation of the latter.4

Having shown their usefulness, we turn to localising the properties. Localisation of a ∀∃-
property aims at finding an equivalent property that restricts the domain of the ∀-quantifier
and widens that of the ∃-quantifier, to enable or ease deciding it (automatically). The classical
example is localisation of the Church–Rosser property (∀conversions ∃valley) by restricting
first to peaks, then further to local peaks [13] and finally by widening to conversions below
the source [22], for terminating rewrite systems. Here, as we already have OCR ⇐⇒ OCO,
we restrict OCO to ordered local commutation and widen that to the local Dyck property.

I Definition 16. Ordered local commutation arises from OCO by restricting both legs of the
peak to reductions of length 1. A diagram comprising a local peak a nJÐ ⋅_m b and extended
conversion a n′J_Ð⊛

µ′ b is a Dyck diagram if n + µ′ ≥m + n′ and the Dyck-condition holds: for
every prefix (of which there are finitely many) a n′′J_Ð⊛

m′′ c of the conversion n +m′′
> n′′.

We say the systems are locally Dyck if each such peak can be completed into a Dyck diagram.

Our naming is based on that for the length measure the number of backward (JÐ) steps in
the conversion then never exceeds the number of forward (_) steps, as in the Dyck language.

I Example 17. Let for some N , the abstract rewrite system ÐI be given by bi ÐI bi+1 JÐ ai ÐI
ci+1 JÐ ci for all 1 ≤ i ≤ N and bN+1 ÐI cN+1, and _ be the ÐI-strategy comprising all ÐI-steps
except those from ai to bi+1, both with respect to the length measure. The only interesting
local peaks are bi+1 JÐ ai _ ci+1 which can be completed into a Dyck diagram; for i < N by
bi+1 _ bi+2 JÐ ai+1 _ ci+2 JÐ ci+1 (the conditions for its 5 prefixes are respectively 1 > 0, 2 > 0,
2 > 1, 3 > 1 and 3 > 2) and for i = N by bN+1 _ cN+1. For the system, this takes a number
of conversion (back-and-forth) steps linear in N , whereas naïvely completing into ordered
commutation diagrams requires a quadratic number of reduction steps, cf. [17, Example 8].
Hence, using the following, the length of ÐI-reductions bounds those of _-reductions.

I Lemma 18. Ordered commutation iff ordered local commutation.

Proof. The only–if-direction is trivial. For the if-direction, it suffices to consider peaks
a ∗
n̂JÐ ⋅_⊛

µ̂ b such that a is _-terminating as otherwise we conclude by a _∞
⊺ b. We show

such a peak can be completed by a _⊛
µ′ ⋅

∗
n′JÐ b with n̂ + µ′ ≥ µ̂ + n′ into an OCO diagram,

finite by the Remark above Example 13, by induction on (a, n̂) ordered by the leg order

4 For such strategies the proposition shows that OPN is sufficient for _ being universally better than
ÐI, in the sense of [16], and hence [16] that _ is normalising, minimal (if _ ⊆ÐI) and ÐI is perpetual,
maximal (if ÐI ⊆_). OPN is not necessary for it: b JÐ a _ c.
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Figure 4 Proofs of Lemma 18 (left) and Theorem 19 (right).

>●, the lexicographic product of _+ and >. If either leg of the peak is empty, it is trivial.
Otherwise, it has shape a ∗

nJÐ a1 n1JÐ ⋅_m1 b1 _⊛
µ b with n̂ = n1 + n and m̂ =m1 + µ; Fig. 4.

J Ordered local commutation applied to a1 n1JÐ ⋅_m1 b1 yields a1 _⊛
µ′1
c1

∗
n′1
JÐ b1 with

n1 +µ
′
1 ≥m1 +n

′
1. Consider the peak a ∗

nJÐ a1 _⊛
µ′1
c1. The induction hypothesis applies to it

as n̂ = n1 +n > n, giving a _⊛
µ′′1
a′ ∗kJÐ c1 with n+µ′′1 ≥ µ′1 + k. Vertically pasting this diagram

to the one for the local peak yields a diagram satisfying n1 +n+µ
′′
1 ≥ n1 +µ

′
1 +k ≥m1 +n

′
1 +k,

i.e. that is ordered. Abbreviating n′1 + k to k′ it has a valley a _⊛
µ′′1
a′ ∗

k′JÐ b1. K
Now consider the peak a′ ∗

k′JÐ b1 _⊛
µ b. The induction hypothesis applies to it as either

a _∗
µ′′1
a′ is not empty, or it is empty and then a = a′, µ′′1 is �, and instantiating the inequality

above yields n1 +n ≥m1 + k
′
> k′. Hence we obtain a valley a′ _⊛

κ ⋅
∗
n′JÐ b with k′ +κ ≥ µ+n′.

Setting µ′ to µ′′1 + κ we conclude by horizontal diagram pasting, yielding the order constraint
n1 + n + µ

′
= n1 + n + µ

′′
1 + κ ≥m1 + k

′
+ κ ≥m1 + µ + n

′. J

I Theorem 19. Ordered commutation iff locally Dyck, for cancellative conversion monoids.

Proof. For the only–if-direction it suffices to remark that in an ordered local commutation
diagram _-steps precede JÐ-steps, so that orderedness entails the Dyck-condition. For the
if-direction, we proceed exactly as in the proof of Lemma 18 but using the local Dyck property
instead of ordered local commutation. That is, we replace the part between J and K there by:

The local Dyck property applied to a1 n1JÐ ⋅_m1 b1 yields a1
∗
n′1
J_Ð⊛

µ′1
b1 such that

n1 + µ
′
1 ≥ m1 + n

′
1 and satisfying the Dyck-condition: for every prefix a1

∗
`J_Ð⊛

π c of the
conversion, n1 + π > `. We show by a sub-induction on the length of the prefix, that there
exists a valley a _⊛

π′ d
∗
`′JÐ c completing a ∗

nJÐ a1
∗
`J_Ð⊛

π c into an ordered diagram, i.e. such
that ` + n + π′ ≥ π + `′. The case of the empty prefix being trivial, assume the property holds
for a given prefix up to c, and distinguish cases on the next step of the prefix.

If c `1JÐ c1, then we simply affix it: a ∗
nJÐ a1

∗
`J_Ð⊛

π c `1JÐ c1 is completed by the valley
a _⊛

π′ d
∗
`′JÐ c `1JÐ c1 into an ordered diagram: `1 + ` + n + π

′
≥ `1 + π + `

′.
If c _π1 c1 or c _∞

π1
c1, then consider the peak between it and d ∗

`′JÐ c, see Fig. 4. That
the main induction applies to it follows (by a decrease in the 1st component) in case π′ is
not � and otherwise (by a decrease in the 2nd component) by combining orderedness with
the Dyck condition: n1 + ` + n ≥ n1 + π + `

′
> ` + `′ hence n1 + n > `′ by cancelling `. Thus

we obtain a valley d _⊛
π′1
d1

∗
`′JÐ c1 completing the peak to an ordered diagram. (By the

Remark above Example 13, this shows c _∞
π1
c1 is in fact impossible.) Pasting it to the one

of the IH yields an ordered diagram with valley a _⊛
π′ d _⊛

π′1
d1

∗
`′JÐ c1, as desired.

Let a _⊛
µ′′1
a′ ∗

k′JÐ b1 be the valley thus obtained for the whole of a1
∗
n′1
J_Ð⊛

µ′1
b1. By the

induction hypothesis it satisfies the order constraint n′1 + n + µ′′1 ≥ µ′1 + k
′. Combining it with
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the order constraint n1 + µ
′
1 ≥m1 + n

′
1 of the local Dyck diagram, adding the respective sides

and cancelling n′1 +µ′1 gives n1 +n+µ
′′
1 ≥m1 + k

′, showing that the valley completes the peak
a ∗
nJÐ a1 n1JÐ ⋅_m1 b1 into an ordered commutation diagram. J

For non-cancellative conversion monoids the if-direction may fail. The theorem allows one to
localise showing that a strategy ÐI bounds another strategy _, by checking all local peaks
between both to be completable into Dyck diagrams. We give 2 typical examples, cf. [16].

I Example 20 (‡). For the λ-calculus with η-reduction ÐI (see Example 40 for the rewrite
rule), consider the innermost strategy _, and, based on the idea that checking applicability
of the η-rule involves checking absence of the bound variable from the body, measure a step
by the size of its body. By orthogonality, linearity and preservation of innermost redexes, a
local peak N nJÐM _m P either is trivial (N = P ) or it can be completed by a valley of
shape N _m′ Q n′JÐ P . If the redexes are disjoint, then m′

=m and n′ = n, so the diagram
is Dyck. Otherwise, the latter is in the body of the former and we conclude to n+m′

≥m+n′

again because m′
= m and n′ = n − 2 (an @ and λ have disappeared). Thus _ is optimal,

giving a lower bound on the (size) measure of η-reduction.

I Example 21 (‡). For the λ-calculus with β-reduction, let ÐI be the leftmost–outermost
strategy, _ be the needed strategy [3], and consider a (non-trivial) local peak N JÐM _ P .
By orthogonality and projection of leftmost–outermost steps over other steps N →∗

β Q β← P

with the former a development of the residuals of M _ P . Factorising the former into needed
steps followed by non-needed steps, and observing that the latter is a leftmost–outermost
step again N _+ N ′

→
∗
β Q JÐ P with the first non-empty by definition of neededness. By

repeatedly contracting a leftmost–outermost redex starting from N ′ and performing its
projection on Q until (if this happens at all) the terms reached by both are the same, yields
a _-reduction from N ′ (using leftmost–outermost redexes are needed) and a ÐI-reduction
from Q of the same (possibly infinite) length. Therefore, N _≥1 N

′ _⊛
µ Q

′ ⊛
µJÐ Q 1JÐ P , i.e.

a Dyck diagram (note that if µ is ∞, then N ′ _⊛
∞ Q). Thus ÐI is pessimal, giving an upper

bound on the (length) measure of needed β-reduction (but not on non-needed; cf. (λx.y)Ω).

4 Ordered confluence and random descent

We show that instantiating both ÐI,_ to the same rewrite system →, and assuming it to be
measured by a conversion monoid, all conditions of the previous section are equivalent, and
sufficient to conclude that → bounds itself. We show that the bounding system (ÐI) being the
same as the system being bound (_) allows to replace the order constraint in the ordered
normal form property by equality, yielding Newman’s random descent property expressing
that “if an end-form exists it is reached by random descent” [13, 20, 21, 16]. We localise it
to the local Dyck property and give several examples.

I Definition 22. → has random descent (RD) [16] if a n↔⊛
µ b with a in normal form, implies

a ∗
n′← b with n = µ + n′. Peak random descent (PR) is obtained by restricting to a ∗

n← ⋅→
⊛
µ b.

RD and PR being more strict versions of NF respectively PN, they have similar properties.
In particular, RD Ô⇒ PR, and if a ∗

← b with a in normal form and either RD or PR holds,
then b is terminating. Note the n′ in the definition only depends on b and is unique since
applying either property to a ∗

n′← b →∗
n′′ a

′ for normal forms a, a′ gives a = a′ and n′ = n′′.
This justifies defining the distance d(b) of such an object b convertible to normal form to be
that n′, setting d(b) to ∞ for objects not convertible to normal form.
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I Example 23. β-reduction does not have the random descent property for the length
measure as witnessed e.g. by (λxz.zxx)((λx.x)y) which allows reductions to normal form
λz.zyy of lengths both 2 and 3. The restriction of β to the leftmost–outermost strategy does
have RD because it is deterministic. The restriction to linear β-redexes, i.e. such that the
bound variable occurs exactly once in the body, has RD because redex-patterns cannot be
replicated.5 On its own, η-reduction has RD as it is linear and orthogonal.
I Lemma 24. ONF ⇐⇒ OPN ⇐⇒ OCR ⇐⇒ OCO ⇐⇒ PR ⇐⇒ RD, all are equivalent
to ordered local confluence, and for cancellative monoids to the local Dyck property.
Proof. By Lemma 14 and the above, to conclude to the implications on the first line, it
suffices to show ONF Ô⇒ RD and OCO ⇐Ô PR. For the former, suppose a n↔⊛

µ b with a
in normal form. By ONF, a ∗

n′← b with n ≥ µ + n′, so µ is finite. By ONF for a ∗
n′← b µ↔

∗
n a,

also µ + n′ ≥ n. For the latter, consider a peak a ∗
n← ⋅→

⊛
µ b. If a allows an infinite reduction,

we conclude. Otherwise, c ∗
m′← a for some normal form c. By PR for c ∗

m′← a ∗
n← ⋅→

⊛
µ b, we

obtain a ∗
n′← b with n+m′

= µ+n′. The second line follows by Lemma 18 and Theorem 19. J

As in the previous section, the implication from a peak-property to its conversion-property
fails for derivation monoids (Example 13), and the lemma allows to localise random descent.
The examples here and in the previous section are illustrative both of localisation and of
the flexibility offered by measuring by length, size of subterm or pattern, rule, . . . . Many
possibilities come to mind with as extreme case measuring a reduction by ‘itself’, say as the
string or multiset of its steps. Our final example uses the left–outer order on positions.
I Example 25. The single rule term rewrite system f(x,x)ÐI f(x, f(x, a)) has random
descent (for the length measure) because there are no critical peaks and the rule is variable
preserving in that all variables appear the same number of times in both the left- and
right-hand sides. The latter condition guarantees that in the so-called variable-overlap case
of the critical pair lemma, both legs of the resulting diagram have exactly the same length.
I Example 26. The term rewrite system given by

f(x,x) ÐI1 f(x, g(x)) f(x,x) ÐI2 f(x,h(x)) g(x) ÐI1 h(x) c ÐI1 g(c)

has random descent with respect to the indicated rule measures (Definition 44, [17, Sect. 4.2]).
As in Example 25 the rules are variable preserving, but now there is the critical peak (and
its symmetric version) f(x, g(x))←1 f(x,x)→2 f(x,h(x)) which however is completable by
the step f(x, g(x))→1 f(x,h(x)) into a Dyck diagram where both legs have measure 2.
I Definition 27. On positions in terms, the left relation is defined by p ⋅ i ⋅q ≺l p ⋅ j ⋅q

′ and the
outer (or prefix) relation by p ≺o p ⋅ i ⋅ q, for arbitrary positions p, q, q′ and natural numbers
i < j. The left–outer relation is defined by ≺lo = ≺l ∪ ≺o.
The relations ≺o, ≺l and ≺lo are strict orders, ≺o and ≺l are disjoint, and ⪯lo is total.
I Example 28 (‡). The spine positions of a λ-term M are, if it has shape λx⃗.yM⃗ then the
displayed positions and the spine positions of the Mi prefixed by their position in M , and
otherwise its head spine positions. The head spine positions of terms x, λx.M1, M1M2 are all
positions ⪯lo-related to the position of M1 and all head spine positions of M1 prefixed by its
position inM . A spine redex-pattern is a redex-pattern at spine position. Always contracting
such we call a spine strategy, which is justified by the fact that any term not in β(η)-normal
form has at least one spine β(η)-redex-pattern.6 That the spine strategy has random descent

5 This is not a strategy for β-reduction in λ-calculus as e.g. (λxz.zxx)y is a normal form for it.
6 A λ-term not in η-normal form need not contain a spine η-redex-pattern, e.g. (λx.x)λy.zy.
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for β-reduction [3, Proposition 4.21] follows from that the β-rule does not overlap with itself,
and that contracting a spine β-redex-pattern leaves a unique descendant (residual) of any
non-overlapping spine position (redex-pattern). As the η-rule does not overlap with itself
and is variable preserving, descendants are unique after η-steps and η-reduction has random
descent. Since the (two) critical peaks between the β- and η-rules are trivial, they are locally
Dyck, from which it follows that the spine strategy has random descent for βη-reduction.

The underlying intuition, generalising that for externality [8], is that the spine is a prefix of
a term that persists linearly (contrary to externality, it may involve change, but only ‘linear
change’). It applies to some other term rewrite systems, e.g. Combinatory Logic as well. We
conclude by an easy result allowing to infer RD for strategies.

I Lemma 29. If ÐI has random descent then so does any strategy → for it.

I Example 30. Since the spine strategy has random descent for βη-reduction (see above),
so does the left–outer (see, the text above, Definition 41) strategy.

5 Compatibility

We present a method to establish hyper-normalisation of strategies for abstract rewrite
systems, based on a diagram we (inspired by Staples’ notion of compatible refinement, cf. [19,
Exercise 1.3.9]) dub compatibility governing the interaction between the strategy and the
system, and show it can be made flexible by well-foundedly indexing steps giving rise to
the notion of decreasing compatibility. As an application, one may immediately conclude
normalisation of the needed strategy for λβη, cf. [9, Chapter IV] and [3], from that of the
spine strategy (Example 38), using that the former is bounded by the latter (Example 21).
Our methods rely on the strategy having the random descent property, for an arbitrary
cancellative conversion monoid, as introduced above.

We assume → is a strategy having random descent for the rewrite system ÐI.

I Definition 31. → is (ordered) compatible with ÐI, if aÐI b entails a n↔⊛
µ b (with µ ≥ n).

I Example 32 (‡). Spine reduction is compatible with backward β(η)-steps and ordered
compatible with forward such steps. We provide a proof of this later, via decreasing
compatibility, but the intuition for that it holds is that, given a β(η)-step M ÐI N one may
contract an arbitrary spine redex in M . In case this →-step yields N then we are done.
Otherwise, one may contract ‘the same’ spine redex in N , project M ÐI N over both, and
repeat the process until the first case applies. We also conclude when this process proceeds
indefinitely, as then we have constructed infinite →-reductions from M and N .

I Lemma 33. → is (ordered) compatible with ÐI iff it is (ordered) compatible with ÐI∗.

Proof. The if-direction is trivial by ÐI being contained in ÐI∗ and the only–if-direction
follows by an easy induction on the length of ÐI∗-reductions (using commutativity). J

I Theorem 34. If → is a random descent ÐI-strategy compatible with JÐ, it is ÐI-normalising.
If, moreover, → is ordered compatible with ÐI, it is ÐI-hyper-normalising and ÐI has NF.

Proof. Suppose → is a random descent ÐI-strategy that is compatible with JÐ, and aÐI∗ b
with b in ÐI-normal form. Lemma 33 yields that → is compatible with JÐ∗, which applied to
b JÐ∗ a entails b n↔⊛

µ a. By random descent a is →-terminating.
Suppose, moreover, → is ordered compatible with ÐI, and a is ÐI-normalising. To prove

→/ÐI-reduction terminates on a, it suffices to show that for aÐI a′ we have d(a) ≥ d(a′) and
if in fact a→ a′ then d(a) > d(a′). Distinguish cases on whether or not aÐI a′ is a →-step.
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distance
=

=

⋎

⊛ ⊛=

≥

Figure 5 Decreasing compatibility (without condition, left) and its instance of Corollary 37.

If a→m a′, then by RD for b←∗
d(a) a→m a′, b←∗

d(a′) a
′ with d(a) =m + d(a′) > d(a′).

If aÐI a′ then by → being ordered compatible with ÐI, we have a n↔⊛
µ a

′ with µ ≥ n. By
RD for b←∗

d(a) a n↔
⊛
µ a

′, then b←∗
d(a′) a

′ with n + d(a) = µ + d(a′) (so µ is finite). Hence
d(a) ≥ d(a′) since in any cancellative derivation monoid if n + k =m + ` and m ≥ n, then
n + k =m + ` ≥ n + ` so by cancellation k ≥ ` (without cancellation this property need not
hold; let ≥ be generated by the multiset rule [a, b]→ [a, a] and consider [a, b, a]).

Finally, we conclude to NF of ÐI since the assumptions yield → is compatible with JÐÐI hence
with JÐÐI∗ by Lemma 33, and since → is a ÐI-strategy. J

By introducing a well-founded order on steps, as a parameter to the definition of compatibility,
we increase its flexibility, cf. [20, Corollary 3.7], [21, Corollary 3]. The intuition captured is
that ÐI-steps go ‘at least as much forward (µ) as backward (n)’ with respect to →, recursively.

I Definition 35. We say → is (ordered) decreasingly compatible with ÐI, if for some well-
founded order ≺ on the steps of ÐI, for all ÐI-steps φ, it holds ÐIφ ⊆ n↔

⊛
µ ⋅ÐI

=
φ(µ=n) ⋅ n′↔

⊛
µ′

with µ ≥ n (and µ + µ′ ≥ n′ + n), where φ(true) denotes ⋎φ, the set of steps ≺-related to φ,
and φ(false) denotes the set of all steps.

I Proposition 36. If → is a random descent strategy for ÐI, then → is (ordered) compatible
with ÐI iff it is (ordered) decreasingly compatible with ÐI.

Proof. For the only–if-direction, set ≺ to the empty relation and µ,n both to �. For the
if-direction, let → have random descent and be (ordered) decreasingly compatible with ÐI.
We show for →-terminating a, that if a ÐIφ b then a k↔⊛

λ b (with λ ≥ k), by well-founded
induction on the pair (d(a), φ) ordered by the lexicographic product of > and ≻, using ‘vertical
pasting’ (cf. Fig. 5). We load the induction hypothesis to show that λ is finite. J

We present a simple, easily applicable sufficient criterion. (Note that it is weaker than
Theorem 34 as it requires more, than needed, for objects not convertible to normal form.)

I Corollary 37. If → is a random descent strategy with respect to the length measure, for
ÐI and ≺ a well-founded order ≺ on the steps of ÐI such that for all ÐI-steps φ, it holds
ÐIφ ⊆ (→ ⋅ÐI=

⋎φ) ∪ (→ ⋅ÐI=
⋅←), then → is hyper-normalising and ÐI has NF.

Proof. By Theorem 34 and Proposition 36, instantiating measures to 0/1. J

I Example 38 (‡). To prove that the spine strategy → is hyper-normalising for β(η) in the
λ-calculus, it suffices to show the assumptions of Corollary 37 are satisfied when setting ÐI to
(nonempty) β(η)-multisteps, taking as well-founded order ≺ on them the development order,
generated by ordering a multistep above each of its residuals after contracting anyone of its
redex-patterns. This is a well-founded order by the finite developments theorem (see [2]).
Let φ ∶M ○ÐÐI N be a nonempty β(η)-multistep and ψ ∶M →M ′ a spine step.
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If the respective (sets of) redex-patterns of φ and ψ do not have overlap, then we may
compute the residual of each after the other with common reduct, say, N ′. As spine redex-
patterns are (uniquely) preserved after taking residuals, we have ψ/φ ∶N → N ′. Observing
that the ‘other’ residual φ/ψ either is empty (covered by reflexivity) or a nonempty multistep,
we conclude to the ‘right case’ of Corollary 37.

If the redex-pattern of ψ has overlap with some redex-pattern, say φ1, in φ, then we may
develop φ as M ÐIφ1 M

′
○ÐÐIφ/φ1 N . We conclude to the ‘left case’ of Corollary 37 as φ/φ1

is either empty or ≺-smaller than φ.

6 Hyper-normalisation for left–outer Dyck systems

We turn the reasoning in Example 38 into a critical pair criterion for a general class of term
rewrite systems comprising both combinatory logic and the λβ-calculus. We dub the criterion
left–outer Dyck, as it will entail (by Theorem 19) that all critical peaks can be completed into
Dyck diagrams by means of critically left–outer steps, i.e. by left–outer steps that are closed
under substitutions and (left–outer) contexts. The latter have RD so the criterion guarantees
(by Theorem 34) hyper-normalisation for the left–outer strategy, cf. [21, Section 9].

We formalise our results in the setting of higher-order term rewrite systems where terms
are simply typed λ-terms modulo αβη-equality over simply typed (variables and) function
symbols [23], using η-long β-normal forms as unique representatives of αβη-equivalence
classes of terms. To obtain decidability of criticality of left–outer steps, we focus on Nipkow’s
higher-order pattern rewrite systems [10], restricted to systems that are left-normal and local.

I Definition 39. A term is a pattern [12] if the free variables in it have sequences of pairwise
distinct bound variables as arguments. A pattern is

linear if each free variable that occurs in it, occurs in it exactly once;
fully-extended [6] if each free variable occurring in it has as arguments a sequence
comprising the variables bound above it;
local [15, Footnote 1] if it is both linear and fully-extended;
left-normal [14, 9] if each free position in it only ≺lo-relates (see Definition 27) to other
such, with positions in subterms having a free variable as head being free.

These notions extend to rewrite rules and systems via their left-hand side(s).

I Example 40. The higher-order rewrite rules corresponding to β- and η-reduction are:

@(λx.M(x))N ÐI M(N) λx.@Mx ÐI M

where λ and @ (henceforth left implicit) are appropriately typed function symbols, usually
called abs respectively app [10, 19]. The left-hand sides (λx.M(x))N,λx.Mx are patterns:
the free variables M and N only have sequences of pairwise distinct bound variables, x and
the empty sequence (twice), as arguments. The former, (λx.M(x))N , is both local and
left-normal: linear as its free variables M,N both occur once in it, fully-extended since M
has the variable x bound above it as argument and N has no arguments, and left-normal as
the free position 1 ⋅ 2 ⋅ 2 ⋅ 1 (of M(x)) only ≺lo-relates to 2 (the position of N). The latter,
λx.Mx, is neither local nor left-normal. It is linear but not fully-extended since M does not
have the variable x bound above it among its (empty) list of arguments, and not left-normal
as the free position 2 ⋅ 1 ⋅ 1 ⋅ 2 (of M) ≺lo-relates to 2 ⋅ 1 ⋅ 2 (the position of x, not free). That is,
the β-rule on its own constitutes a left-normal and local higher-order pattern rewrite system,
but not so (locality falters) combined with the η-rule.
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On first-order terms locality coincides with linearity. Throughout we use ÐI and ○ÐÐI to
denote the one-step respectively (nonempty) multistep [19] abstract rewrite system underlying
a local and left-normal higher-order pattern rewrite system. We focus on left–outer rewriting,
denoted by →, i.e. the restriction of ÐI to contracting redexes at ≺lo-more positions:

I Definition 41. For ≺ a strict order on positions, a position q of a redex-pattern is ≺-more
if there is overlap between the redex-pattern and each redex-pattern at a position p ≺ q, and
≺-most if there is no redex-pattern at a position p ≺ q.

That → indeed is a strategy for ÐI holds since any term not in normal form contains a
leftmost–outermost redex, i.e. a redex at ≺lo-most position. A left–outer redex need not be
leftmost–outermost, e.g. when overlapped from above by a redex that is leftmost–outermost.
Locality allows to characterise (critically) left–outer steps via (critically) left–outer contexts.

I Definition 42. A context is left–outer if it is single-hole and there is no redex-pattern
at a position that ≺lo-relates to the position of the hole, cf. [21, Definition 17];
A context C is critically left–outer if for every substitution σ and left–outer context D,
the context D[Cσ] is left–outer. A step in such a context is a critically left-outer step.

Any critically left–outer context, in particular the empty context ◻, is left–outer. The context
f(x,◻) is left–outer, but not critically so if f(a, y)ÐI . . ., since instantiating x by a turns it
into a non-left–outer context. Similarly, f(◻) is not critically left–outer if g(f(x))ÐI . . ..
I Proposition 43. q is left–outer in C[`σ]q, for ` a left-hand side, iff C is left–outer;

q ⋅ p is left–outer in D[(C[`σ]p)
τ
]q, if D is left–outer and C is critically left–outer;

A context is critically left–outer iff it is a single-hole context such that each symbol at a
position that ≺lo-relates to the position of the hole, is not a free variable and cannot be
overlapped with a redex-pattern.

Proof. This follows from that if a term contains a redex at position p, then changing it,
e.g. replacing a subterm by a hole or vice versa, at any position p ≺lo q not overlapping
the redex-pattern, does not change redexhood, by locality.
Using substitutions are homomorphic, D[(C[`σ]p)

τ
]q =D[Cτ [(`σ)τ ]p]q =D[Cτ [`σ;τ

]p]q.
By the assumption that D is left–outer and C is critically left–outer, D[Cτ ] is left–outer.
Combining both, we conclude by the previous item.
By locality and left-normality. J

In the first-order case the proposition yields a decision procedure for whether or not a
rewrite step is critically left–outer, since testing for the presence of variables in terms and
unification of (parts of) left-hand sides of rules with terms/contexts are both effective. In
the higher-order case this is not immediate in general: although (parts of) left-hand sides of
rules are assumed to be patterns, the term/context may be arbitrary, a non-pattern. We use
→# to denote the restriction of the left–outer strategy → to critically left–outer steps.

I Definition 44. A rewrite system ÐI is left–outer Dyck if each critical peak7 can be
completed into a Dyck diagram by a conversion ↔⊛ comprising →#-steps only, for a given
rule measure. Here a rule measure is a measure only depending on the rule applied.

The λβ-calculus and Combinatory Logic are left–outer Dyck, in the absence of critical pairs.
An ARS is locally Dyck iff its associated TRS is left–outer Dyck (measures are rule measures).
Closure under contexts and substitutions makes rule measures suited for critical pair criteria.

7 We employ a symmetric notion of critical peak arising from the, usually asymmetrically defined, notion
of critical pair, by allowing either step of the peak to be the/a root step of the pair.
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I Lemma 45. If ÐI is left–outer Dyck, then → is locally Dyck.

Proof. Consider a local peak of left–outer steps t← ⋅→ s. By totality of ⪯lo, the positions of
the respective contracted redexes are either identical or one is ≺lo-related to the other. In
either case the redex-patterns must have overlap, giving rise to a critical peak t′ ← ⋅→ s′ of
steps that are again left–outer such that the peak is encompassed via, say, left–outer context
C and substitution σ, i.e. such that t = C[t′σ]← ⋅→ C[s′σ] = s. By the assumption that the
system is left–outer Dyck, for the given rule measure, the critical peak can be completed into
a Dyck diagram by a →#-conversion from t′ to s′. By definition and by rule measures only
depending on the rule applied, encompassing the conversion into the (left–outer) context C
and substitution σ, yields a →-Dyck-conversion from t = C[t′σ] to C[s′σ] = s, as desired. J

I Corollary 46. If ÐI is left–outer Dyck, then → has random descent.

Proof. By Lemmata 24 and 45. J

I Example 47. The left-normal, local term rewrite system with rules

a ÐI b f(x) ÐI g(x) h(f(b)) ÐI c c ÐI d h(g(b)) ÐI d

is left–outer Dyck, hence the left–outer strategy has random descent. The only interesting
critical peaks are between the second and third rules, h(g(b)) JÐ h(f(b))ÐI c. The peak is
non-trivial but shown to be root balanced joinable [21] by h(g(b))→# d←# c.

I Example 48. The left-normal, local term rewrite system with rules

a ÐI g(a) f(a) ÐI f(c) g(x) ÐI d c ÐI d

is left–outer Dyck, hence the left–outer strategy has random descent. Only overlap between
the first and the second rule (and the other way around) gives rise to an interesting critical
peak f(g(a)) JÐ f(a)ÐI f(c). The peak is completable into a Dyck diagram but is not root
balanced joinable: the redex-patterns contracted in the joining valley f(g(a))→# f(d)←#
f(c) occur in the critically left–outer but non-empty, context f(◻).

Left-normality and locality can be viewed as syntactic conditions guaranteeing that left–outer
redexes are external [8], they descend [19] uniquely until overlapped by the contracted redex:
I Proposition 49. Left–outer steps descend along non-overlapping multisteps.

Proof. Locality guarantees that being a redex or not only depends on its pattern, not on
its variables being instantiated appropriately. This prevents creating a redex above the
left–outer redex by steps below or parallel to its redex-pattern, just by changing instantiation
of its variables. Left-normality guarantees that no redex-pattern can be created above a
left–outer redex by means of contracting a redex parallel to (to the right of) it. J

I Remark. Non-fully-extendness of the η-rule causes that a left–outer redex u may descend to
a non-left–outer redex along a non-left–outer step in λβη, e.g. in λx.u((λy.z)x)xÐI λx.uzx.

I Theorem 50. If a rewrite system is left–outer Dyck, then it has the normal form property,
and the left–outer strategy is hyper-normalising for it.

Proof. By assumption and Corollary 46 the left–outer strategy → has random descent. To
conclude that the rewrite system ÐI has the normal form property and → is hyper-normalising
for it, it suffices to show that the same hold for the the (nonempty) multistep rewrite system
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○ÐÐI because ÐI ⊆ ○ÐÐI ⊆ ÐI∗. To that end, it suffices by Theorem 34 to show that → is
ordered compatible with the rewrite system ÐI and compatible with its converse JÐ, which
in turn follow by Proposition 36 from that → is ordered decreasingly compatible with ○ÐÐI,
and decreasingly compatible with its converse, which we both show simultaneously by well-
foundedly ordering multisteps by the development order (see Example 38), considering an
arbitrary nonempty multistep W ∶ t ○ÐÐI s. By → being a strategy there is a left–outer step
from t, say u ∶ t→m t′. We distinguish cases on whether or not u overlaps some step in W .

If u overlaps no step in W , then both are orthogonal and we may compute their mutual
residuals W /u ∶ t′ ○ÐÐI s′ and u/W ∶ s ○ÐÐI s′. By Proposition 49, left–outer redex-patterns
are (uniquely) preserved after taking residuals, so u/W ∶ s →m s′ by rule measures only
depending on the rule. Thence ○ÐÐIW ⊆ →m ⋅ ○ÐÐI=

⋅ m←, from which the conditions for
(ordered) decreasing compatibility of → with (the converse of) ○JÐÐW follow.

If the redex-pattern of u has overlap with some redex-pattern, say w, in W , then we may
develop W as w ∶ tÐI t′′ followed by W ′

∶ t′′ ○ÐÐI s with W ′
=W /w. Since the redex-patterns

u,w yielding the peak t′ ← ⋅ÐI t′′ have overlap in its source t, the peak encompasses some
critical peak r′ ← ⋅ÐI r′′, say via context C and substitution σ. The context C is left–outer
as a prefix of the left–outer context in which u occurs. By the assumption that ÐI is left–
outer Dyck, the peak and its symmetric version can be completed into Dyck diagrams by
→#-conversions from r′ to r′′ and vice versa, respectively. Encompassing these again by
the left–outer context C and substitution σ yields, by the steps in the conversions being
critically left–outer and by rule measures only depending on the rule applied, Dyck diagrams
for →-conversions from t′ to t′′ and vice versa. By the former, ○ÐÐIW ⊆→m ⋅ n↔

⊛
µ ⋅ ○ÐÐI with

m + µ > n from which we conclude to ordered decreasing compatibility of → with ○ÐÐIW . By
the latter, ○JÐÐW ⊆ ○JÐÐW ′ ⋅↔

⊛ from which we conclude to decreasing compatibility of → with
○JÐÐW , as W is larger than W ′ in the development order. J

I Example 51. The rewrite systems of Examples 47 and 48, λβ- and CL-reduction are
left-normal, local and locally Dyck, so the left–outer strategy is hyper-normalising for each.

I Example 52. Consider the local, left-normal first-order term rewrite system given by rules

zeros ÐI1 0 ∶ zeros hd(x ∶ y) ÐI1 x hd(zeros) ÐI2 0

with measures as indicated. Its critical peak 0 2JÐ hd(zeros)ÐI1 hd(0 ∶ zeros) is completed by
0 1JÐ hd(0 ∶ zeros) into a Dyck diagram, so the left–outer strategy is hyper-normalising.

7 Conclusion

We have generalised (hyper-)normalisation results from [20, 21] using the random descent
property from [16]. Our development is based on a clean separation between the abstract
and term rewrite results. At the abstract level we have introduced novel methods to compare
strategies, by Dyck diagrams, and to prove their (hyper-)normalisation, by compatibility. At
the term level, we have introduced a class of higher-order term rewrite systems, left–outer
Dyck systems, comprising λβ and CL.

Theorem 50 generalises [7, Theorem 25] on which their further developments are based.
The generalisation is proper in that our results are restricted neither to deterministic strategies
nor to first-order term rewrite systems, while sharing the advantage of being completely local
(even more so). We expect it to be possible to incorporate several techniques from their work,
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in particular basic normalisation and factorisation,8 into our approach. The approach to
normalisation due to [11] is mostly incomporable to ours. On the one hand, that approach
is based on square permutations (a special case of random descent) and on having finite
‘permutation equivalence’ classes (not needed in our approach). On the other hand, there
normalisation for notions of result other than normal forms (think of head-normal forms)
are considered. We intend to apply approach to hyper-normalisation to, e.g., λ-calculi with
explicit substitutions or the necessary strategy [18], and compare our results to those of [5].

Acknowledgements. We thank B. Felgenhauer, J. Nagele, the attendants of the TCS
seminar (Amsterdam) and the Master Seminar (Innsbruck), and the FSCD reviewers for
feedback.

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
2 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies

in Logic and the Foundations of Mathematics. North-Holland, 2nd revised edition, 1984.
3 H.P. Barendregt, J.R.K. Kennaway, J.W. Klop, and M.R. Sleep. Needed reduction and

spine strategies for the lambda calculus. Information & Computation, 75(3):191–231, 1987.
doi:10.1016/0890-5401(87)90001-0.

4 N. Dershowitz. On lazy commutation. In Languages: From Formal to Natural, volume
5533 of Lecture Notes in Computer Science, pages 59–82. Springer, 2009. doi:10.1007/
978-3-642-01748-3_5.

5 J.R.W. Glauert, R. Kennaway, and Z. Khasidashvili. Stable results and relative normaliz-
ation. Journal of Logic and Computation, 10(3):323–348, 2000. doi:10.1093/logcom/10.
3.323.

6 M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees. In Proceedings
of the 7th International Conference on Rewriting Techniques and Applications, volume
1103 of Lecture Notes in Computer Science, pages 138–152. Springer, 1996. doi:10.1007/
3-540-61464-8_48.

7 N. Hirokawa, A. Middeldorp, and G. Moser. Leftmost outermost revisited. In Proceedings
of the 26th International Conference on Rewriting Techniques and Applications, volume 36
of Leibniz International Proceedings in Informatics, pages 209–222, 2015. doi:10.4230/
LIPIcs.RTA.2015.209.

8 Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting systems, I. In
Computational Logic: Essays in Honor of Alan Robinson. The MIT Press, 1991. (accessed
27-4-2016). URL: http://pauillac.inria.fr/~levy/pubs/81robinson1.pdf.

9 J.W. Klop. Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit Utrecht,
1980. (accessed 27-4-2016). URL: http://janwillemklop.nl/Jan_Willem_Klop/
Bibliography_files/9.PhDthesis-total.pdf.

10 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical
Computer Science, 192(1):3–29, 1998. doi:10.1016/S0304-3975(97)00143-6.

11 P.-A. Melliès. A stability theorem in rewriting theory. In Proceedings of the 13th Annual
IEEE Symposium on Logic in Computer Science, pages 287–298. IEEE Computer Society
Press, 1998. doi:10.1109/LICS.1998.705665.

8 But note that for a rewrite system ÐI given by a ÐI b ÐI c, a′ ÐI b′ ÐI c′, a ÐI a′, b ÐI b′ and c ÐI c′,
and a strategy → obtained by omitting the step from a to b, factorisation fails, for aÐI b→ c, but our
methods, in particular Theorem 50, do apply.

FSCD 2016

http://dx.doi.org/10.1016/0890-5401(87)90001-0
http://dx.doi.org/10.1007/978-3-642-01748-3_5
http://dx.doi.org/10.1007/978-3-642-01748-3_5
http://dx.doi.org/10.1093/logcom/10.3.323
http://dx.doi.org/10.1093/logcom/10.3.323
http://dx.doi.org/10.1007/3-540-61464-8_48
http://dx.doi.org/10.1007/3-540-61464-8_48
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.209
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.209
http://pauillac.inria.fr/~levy/pubs/81robinson1.pdf
http://janwillemklop.nl/Jan_Willem_Klop/Bibliography_files/9.PhDthesis-total.pdf
http://janwillemklop.nl/Jan_Willem_Klop/Bibliography_files/9.PhDthesis-total.pdf
http://dx.doi.org/10.1016/S0304-3975(97)00143-6
http://dx.doi.org/10.1109/LICS.1998.705665


32:18 Normalisation by Random Descent

12 D. Miller. Unification of simply typed lambda-terms as logic programming. In Proceed-
ings of the 8th International Conference on Logic Programming, pages 253–281. The MIT
Press, 1991. (accessed 27-4-2016). URL: http://www.lix.polytechnique.fr/Labo/Dale.
Miller/papers/iclp91.pdf.

13 M. Newman. On theories with a combinatorial definition of “equivalence”. Annals of
Mathematics, 43(2):223–243, 1942. doi:10.2307/1968867.

14 M.J. O’Donnell. Computing in Systems Described by Equations, volume 58 of Lecture Notes
in Computer Science. Springer, 1977. doi:10.1007/3-540-08531-9.

15 V. van Oostrom. Finite family developments. In Proceedings of the 7th International
Conference on Rewriting Techniques and Applications, volume 1232 of Lecture Notes in
Computer Science, pages 308–322. Springer, 1997. doi:10.1007/3-540-62950-5_80.

16 V. van Oostrom. Random descent. In Proceedings of the 18th International Conference on
Rewriting Techniques and Applications, volume 4533 of Lecture Notes in Computer Science,
pages 314–328. Springer, 2007. doi:10.1007/978-3-540-73449-9_24.

17 V. van Oostrom. Confluence by decreasing diagrams – converted. In Proceedings of the
19th International Conference on Rewriting Techniques and Applications, volume 5117
of Lecture Notes in Computer Science, pages 306–320. Springer, 2008. doi:10.1007/
978-3-540-70590-1_21.

18 R.C. Sekar and I.V. Ramakrishnan. Programming in equational logic: Beyond strong
sequentiality. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science, pages 230–241. IEEE Computer Society Press, 1990. doi:10.1109/LICS.1990.
113749.

19 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

20 Y. Toyama. Strong sequentiality of left-linear overlapping term rewriting systems. In
Proceedings of the 7th Annual IEEE Symposium on Logic in Computer Science, pages 274–
284. IEEE Computer Society Press, 1992. doi:10.1109/LICS.1992.185540.

21 Y. Toyama. Reduction strategies for left–linear term rewriting systems. In Processes, Terms
and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop on the
Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer Science, pages
198–223. Springer, 2005. doi:10.1007/11601548_13.

22 F. Winkler and B. Buchberger. A criterion for eliminating unnecessary reductions in the
Knuth–Bendix algorithm. In Proceedings of the Colloquium on Algebra, Combinatorics and
Logic in Computer Science, Volume II, volume 42 of Colloquia Mathematica Societatis J.
Bolyai, pages 849–869, 1986.

23 D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1993.

24 H. Zantema, B. König, and H.J.S. Bruggink. Termination of cycle rewriting. In Proceed-
ings of the 25th International Conference on Rewriting Techniques and Applicationsand the
12th International Conference on Typed Lambda Calculi and Applications, Lecture Notes in
Computer Science, pages 476–490. Springer, 2014. doi:10.1007/978-3-319-08918-8_33.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp91.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp91.pdf
http://dx.doi.org/10.2307/1968867
http://dx.doi.org/10.1007/3-540-08531-9
http://dx.doi.org/10.1007/3-540-62950-5_80
http://dx.doi.org/10.1007/978-3-540-73449-9_24
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1109/LICS.1990.113749
http://dx.doi.org/10.1109/LICS.1990.113749
http://dx.doi.org/10.1109/LICS.1992.185540
http://dx.doi.org/10.1007/11601548_13
http://dx.doi.org/10.1007/978-3-319-08918-8_33


Ground Confluence Prover Based on Rewriting
Induction
Takahito Aoto1 and Yoshihito Toyama2

1 Faculty of Engineering, Niigata University, Niigata, Japan
aoto@ie.niigata-u.ac.jp

2 RIEC, Tohoku University, Sendai, Japan
toyama@riec.tohoku.ac.jp

Abstract
Ground confluence of term rewriting systems guarantees that all ground terms are confluent.
Recently, interests in proving confluence of term rewriting systems automatically has grown, and
confluence provers have been developed. But they mainly focus on confluence and not ground
confluence. In fact, little interest has been paid to developing tools for proving ground confluence
automatically. We report an implementation of a ground confluence prover based on rewriting
induction, which is a method originally developed for proving inductive theorems.
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1 Introduction

Ground confluence of term rewriting systems (TRSs for short) guarantees that all ground terms
are confluent. Not (general) confluence but ground confluence often matters in applications
where not equational validity but inductive validity is of concern, including refutational
completeness of inductive theorem proving and correctness of program transformations (e.g.
[10, 11, 21]).

Classical works on ground confluence include [7, 16]. These works stem from inductionless
induction which has been studied in the context of proving inductive validity by variations
of Knuth-Bendix completion. Further studies on ground confluence orient for dealing
with expressive rewrite rules over complex data structures, such as order-sorted signature,
conditional rewrite rules and regular tree language constraints [7, 8, 15]. In this context,
Bouhoula [8] reported on a tool for proving ground confluence. However, not only his
procedure assumes reductivity of the system (a stronger notion of termination for conditional
TRSs), but it also depends on a procedure for proving joinable inductive theorems which
have to be dealt with a specialized proof procedure [9].

Confluence implies ground confluence but not vice versa as witnessed by:

I Example 1. Let F = {plus : Nat× Nat→ Nat, s : Nat→ Nat, 0 : Nat} and

R =
{

plus(0, 0) → 0 (a) plus(s(x), y) → s(plus(x, y)) (b)
plus(x, s(y)) → s(plus(y, x)) (c)

}
R is not confluent, as s(s(plus(y, x)))← s(plus(x, s(y)))← plus(s(x), s(y)))→ s(plus(y, s(x))
→ s(s(plus(x, y))). However, R is ground confluent.
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Recently, several confluence provers have been developed (e.g. [6, 23, 17, 27]) and results in
automatable techniques for confluence proving. In contrast, it seems that little interest has
been paid to the development of tools for proving ground confluence automatically.

In this paper, we report an implementation of a ground confluence prover. Key features
of our prover are as follows:

It is based on a simple framework: our framework is many-sorted (first-order) TRSs;
considering not uni-sorted but many-sorted signature is a minimal requirement for natural
setting of the problem as it involves inductive arguments.
It requires a minimal input: the input of our tool is only a description of a many-sorted
TRS. In particular, we do not assume the ordering for making systems reductive and a
partition of function symbols into constructors and defined symbols—this is in contrast
to the setting often found in the literature of ground confluence [7, 8, 15].
It employs a simple method: our tool is based on rewriting induction, which is nowadays a
well-understood method for inductive theorem proving (e.g. [1]). We anticipate it should
be easy to develop similar (or even more sophisticated) tools based on our method.

Furthermore, we have prepared a collection of examples which can be used to estimate the
status of the power of ground confluence proving tools.

2 Preliminaries

We assume basic familiarity with (many-sorted) term rewriting (e.g. [24]).
We use ] for the disjoint union and \ for the subtraction. The transitive reflexive

(reflexive, symmetric, reflexive symmetric, equivalence) closure of a relation → is denoted
by ∗→ (resp. =→, ↔, =↔, ∗↔). For any quasi-order %, we put � = % \- and ≈ = % ∩-. A
quasi-order % is well-founded if so is its strict part �. We abuse a set notation {a1, . . . , an}
with multisets. The multiset extension of a partial order � is denoted by �m.

Let S be a set of sorts. Each many-sorted function f is equipped with its sort declaration
f : α1 × · · · × αn → α0, where α0, . . . , αn ∈ S (n ≥ 0); the arity n is denoted by ar(f). The
set of terms over the set of many-sorted function symbols F and the set of variables V is
denoted by T(F ,V). The set of function symbols (variables) contained in a term t is denoted
by F(t) (resp. V(t)). The set of ground terms over G ⊆ F is denoted by T(G). The set of
positions of a term t is denoted by Pos(t). The empty position is denoted by ε. The symbol
in t at position p is denoted by t(p).

A context is a term containing a special constant �, called a hole. Let C be a context
containing precisely one hole. Then the term obtained from C by replacing the hole with t
is denoted by C[t]. A substitution is a mapping from V to T(F ,V). A ground substitution
is a mapping from V to T(F). For substitutions σ, usually it is required that the domain
{x ∈ V | σ(x) 6= x} of σ is finite, but we omit that condition to ease the notation so that
tσg is a ground term for any term t and ground substitution σg. A most general unifier of
terms s and t is denoted by mgu(s, t). A rewrite relation (quasi-order) is a relation (resp.
quasi-order) on terms closed under contexts and substitutions. A rewrite relation (quasi-order)
is a reduction relation (resp. quasi-order) if it is well-founded.

(Indirected) equations l .= r and r .= l are identified. A directed equation is denoted by
l→ r. For a set E of equations (directed equations) the smallest rewrite relation containing E
is denoted by↔E (resp.→E). For a set of directed equations E, let LHS(E) = {l | l→ r ∈ E}
and LHS(f,E) = {l | l → r ∈ E, l(ε) = f} for each f ∈ F . A directed equation l → r is a
rewrite rule if l /∈ V and V(l) ⊇ V(r) hold. A (many-sorted) term rewriting system (TRS for
short) is a finite set of rewrite rules. The set of R-normal forms is denoted by NF(R). The
set of critical pairs of a TRS R is denoted by CP(R).
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A TRS R is terminating if →R is well-founded. Terms s and t are joinable w.r.t. the
rewrite relation →R (denoted by s ↓R t) if s ∗→R u and t ∗→R u for some u. A TRS R is
(ground) confluent if s ↓R t holds for any (ground) terms s, t such that u ∗→R s and u ∗→R t

for some (resp. ground) term u. Terms s and t are ground convertible if sσg
∗↔R tσg holds

for any ground substitution σg. An equation s .= t is an inductive theorem of a TRS R, or
inductively valid in R, if s and t are ground convertible. We write R |=ind E for a set E of
equations if every s .= t ∈ E is an inductive theorem. Let % be a rewrite quasi-order. We
write s ∗↔%R t if there exists s = u0 ↔ u1 ↔R · · · ↔R un = t such that s % ui or t % ui for
every ui (1 ≤ i ≤ n). Terms s and t are bounded ground convertible w.r.t. % if sσg

∗↔%R tσg

holds for any ground substitution σg. A set E of equations is bounded ground convertible if
s and t are bounded ground convertible for any s .= t ∈ E.

The next lemma is a direct consequence of a generalized Newman’s Lemma [26]; see
Exercise 1.3.12 in [24].

I Lemma 2. Let % be a reduction quasi-order and R be a TRS such that R ⊆ �. If CP(R)
is bounded ground convertible w.r.t. %, then R is ground confluent.

We consider a partition of function symbols into the set D of defined symbols, and the set
C of constructors i.e. F = D ] C. Terms in T(C, V ) are constructor terms. Then a mapping
from V to T(C) is called a ground constructor substitution. A term of the form f(c1, . . . , cn)
for some f ∈ D and c1, . . . , cn ∈ T(C,V) is said to be basic. The set of basic subterms of s is
written as B(s). A TRS R is said to be quasi-reducible if no ground basic terms are normal.
Clearly, if R is a quasi-reducible terminating TRS then for any ground term s there exists t
such that s ∗→ t ∈ T(C).

3 Rewriting Induction for Ground Confluence

We now provide a background theory of our tool. In this section, we put D = {l(ε) | l →
r ∈ R} and C = F \ D. The fundamental ingredient of our ground confluence prover is the
following inference system of rewriting induction.

I Definition 3 (rewriting induction for ground confluence). The input of a rewriting induction
procedure is a TRS R, a set E of equations and a reduction quasi-order % such that R ⊆ �.
In Figure 1, we list the inference rules of the rewriting induction that act on pairs of a set of
equations and a set of directed equations. We write 〈E,H〉; 〈E′, H ′〉 when an inference
rule is applied (from upper to lower). The procedure (non-deterministically) generates a
derivation starting from 〈E, ∅〉. If the derivation ends with some 〈∅, H〉 (i.e. 〈E, ∅〉 ∗; 〈∅, H〉
for some H), then the procedure succeeds. The procedure fails if there are no inference rules
to apply. The derivation may also diverge.

In the figure, we use ◦ for the composition of relations and Expd is defined as:

Expdu(s, t) = {C[r]σ → tσ | s = C[u], σ = mgu(u, l), l→ r ∈ R}.

For a set H of directed equations and a reduction quasi-order %, we let

inv(H) = {r → l | l→ r ∈ H} and H� = {lσ → rσ | l→ r ∈ H, lσ � rσ}

where � ∈ {�,%}. Note that, for each � ∈ {�,%}, s→H� t iff s→H t and s � t.
I Remark. In contrast to usual rewriting induction system for proving inductive theorems
(see e.g. [1]), s � t is not assumed in Expand rule. The point is essential to deal with

FSCD 2016
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Expand
〈E ] {s .= t}, H〉

〈E ∪ {s′i
.= ti}i, H ∪ {s→ t}〉

u ∈ B(s), {si → ti}i = Expdu(s, t),
si
∗→H∪inv(H)% s′i

Simplify
〈E ] {s .= t}, H〉
〈E ∪ {s′ .= t}, H〉

s→R∪H� ◦
∗→H∪inv(H)% s′

Delete
〈E ] {s .= t}, H〉

〈E, H〉 s
=↔H t

Figure 1 Inference rules of rewriting induction.

non-orientable equations. In the system of [2], s→H∪inv(H)� s
′ is allowed in Simplify rule,

but here only s →H� s′ is allowed. Compared to the system in [13], elements of H are
directed equations to keep record of information on which side is expanded in Expand rule.
These modifications are required to guarantee the bounded ground convertibility.

I Example 4. Let us consider R of Example 1. Then, we have the following rewriting
induction derivation of from 〈E0, ∅〉 where E0 = CP(R).

〈{s(plus(x, s(y))) .= s(plus(y, s(x))}, ∅〉
∗
;Simplify 〈{s(s(plus(y, x))) .= s(s(plus(x, y)))}, ∅〉
;Expand 〈{s(s(0)) .= s(s(0)), s(s(s(plus(y′, x)))) .= s(s(plus(x, s(y′)))),

s(s(s(plus(x′, y)))) .= s(s(plus(s(x′), y)))},
{s(s(plus(y, x)))→ s(s(plus(x, y)))}〉

∗
;Simplify 〈{s(s(0)) .= s(s(0)), s(s(s(plus(y′, x)))) .= s(s(s(plus(y′, x)))),

s(s(s(plus(x′, y)))) .= s(s(s(plus(x′, y))))},
{s(s(plus(y, x)))→ s(s(plus(x, y)))}〉

∗
;Delete 〈∅, {s(s(plus(y, x)))→ s(s(plus(x, y)))}〉

Then, the rewriting induction procedure returns success.

Henceforth, we assume a reduction quasi-order % such that R ⊆ �—using standard
techniques in automated termination proof of TRSs, such a reduction quasi-order can be
searched efficiently using SAT-solvers (e.g. [12]).

A rewriting induction derivation 〈E0, H0〉 ; 〈E1, H1〉 ; · · · is said to be fair if⋃
j≥0

⋂
i≥j Ei = ∅. In the following lemmas, let us fix a fair derivation 〈E0, H0〉; 〈E1, H1〉;

· · · with H0 = ∅. Let E∞ =
⋃

i Ei. As H0 = ∅, it easily follows Hi ⊆ E∞ from the inference
rules of rewriting induction. The next relations are used to characterize an ordering constraint
induced by fair derivations.

I Definition 5. Let % be a well-founded quasi-order,→
1
,→

2
binary relations, and↔

1,2
=↔

1
∪↔

2
.

x
∗↔�2 y iff there exists x = x0 ↔2 x1 ↔2 · · · ↔2 xn = y such that {x, y} �m {xi, xi+1} for

every xi ↔2 xi+1.

x
∗↔%1,�2 y iff there exists x = x0 ↔1,2

x1 ↔1,2
· · · ↔

1,2
xn = y such that x % xi or y % xi for

every xi and {x, y} �m {xi, xi+1} for every xi ↔2 xi+1.

Note that {x, y} �m {xi, xi+1} implies x % xi or y % xi (and x % xi+1 or y % xi+1).
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Before showing the characterization of fair rewriting induction derivations, let us show a
consequence of the ordering constraint.

I Lemma 6 (conversion lemma). Suppose x ↔
2
y implies x ∗↔%1,�2 y for any x, y. Then,

x↔
2
y implies x ∗↔%1 y for any x, y.

Proof. By induction on the multiset {x, y} w.r.t. �m. Suppose x ↔
2
y. Then by our

assumption, x = x0 ↔1,2
x1 ↔1,2

· · · ↔
1,2

xn = y for some x0, . . . , xn (n ≤ 0). If xi ↔1 xi+1 for
all 0 ≤ i ≤ n − 1, then the claim follows. Suppose xi ↔2 xi+1 for some i. Then, by our

assumption, {x, y} �m {xi, xi+1} holds. Thus, by induction hypothesis, xi
∗↔%1 xi+1 holds.

Let xi = z0 ↔1 z1 ↔1 · · · ↔1 zp = xi+1. Then, every zj satisfies xi % zj or xi+1 % zj . Hence,
we have x % zj or y % zj as {x, y} �m {xi, xi+1}. Thus, by replacing each xi ↔2 xi+1 by

xi
∗↔%1 xi+1, we obtain x ∗↔%1 y. J

Thus the characterization is directly connected to bounded (ground) convertibility, and
consequently, to ground confluence via Lemma 2. To show the characterization, we need the
following property of the operation Expd [1].

I Proposition 7 (property of Expd). Suppose R is a quasi-reducible TRS and u ∈ B(s).
Then, for any ground constructor substitution σgc, we have sσgc →R ◦ →Expdu(s,t) tσgc.

We now prove the announced characterization.

I Lemma 8. For any s .= t ∈ E∞ and ground substitution σg, sσg
∗↔%R,�E∞ tσg holds.

Proof. If σg is not a ground constructor substitution on V(s) ∪ V(t), then sσg
+→R sρg (or

tσg
+→R tρg) for some ground constructor substitution ρg. Then, we have sσg

+→R sρg ↔E∞

tρg
∗←R tσg. Thus, from R ⊆ �, one easily obtains sσg

∗↔%R,�E∞ tσg. It remains to consider
the case that σg is a ground constructor substitution. By the fairness assumption, some
inference rule is applied to s .= t in some step. We distinguish three cases by the inference
rule applied. Note that H ⊆ E∞ in the following cases.

(Expand) Then we have 〈E ] {s .= t}, H〉 ; 〈E ∪ {s′i
.= ti}i, {s → t} ∪ H〉, where

Expdu(s, t) = {si → ti}i, u ∈ B(s), and si
∗→H∪inv(H)% s′i for each i. Since σg is a

ground constructor substitution, by Proposition 7, we have sσg →R siθg →Expdu(s,t) tσg

for some θg and i. Thus, sσg →R siθg
∗→H∪inv(H)% s′iθg ↔E∞ tσg for each i. By R ⊆ �,

we have sσg � siθg. Then, for any step ug ↔H vg in siθg
∗↔H∪inv(H)% s′iθg, we have

sσg � ug, vg, and hence {sσg, tσg} �m {ug, vg}. Thus, sσg
∗↔%R,�E∞ tσg.

(Simplify) Then we have 〈E ] {s .= t}, H〉 ; 〈E ∪ {s′ .= t}, H〉 for some E,H, where
s→R∪H� ŝ

∗→H∪inv(H)% s′. Then, s→R∪H� ŝ = s1 ↔H s2 ↔H · · · ↔H sk = s′ ↔E∞ t

with si % si+1 for i = 1, . . . , k − 1. We distinguish two cases.
1. Case s→R ŝ. Then by R ⊆ �, sσg � ŝσg and thus sσg � siσg for i = 1, . . . , k. Hence,

we have {sσg, tσg} �m {siσg, si+1σg} for i = 1, . . . , k−1 and {sσg, tσg} �m {s′σg, tσg}.
Thus, sσg

∗↔%R,�E∞ tσg.
2. Case s→H� ŝ. Then s↔E∞ ŝ with s � ŝ and sσg � siσg for all i = 1, . . . , k. Hence, we

have {sσg, tσg} �m {siσg, si+1σg} for i = 1, . . . , k−1 and {sσg, tσg} �m {s′σg, tσg}. It
remains to show there exists s ∗↔R∪E∞ ŝ such that sσg � ug or t � ug for any midpoint
ug in s ∗↔R∪E∞ ŝ and {sσg, tσg} �m {ug, vg} for any ug↔E∞vg in s ∗↔R∪E∞ ŝ. By
s→H� ŝ, there exists w → ŵ ∈ H such that s = C[wθ] and ŝ = C[ŵθ] for some context
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C and substitution θ. If θg = σg ◦ θ is not a constructor ground substitution on V(w)∪
V(ŵ), then the claim follows as in the case σg is not a constructor ground substitution.
Thus, suppose otherwise. Then, as Expand rule is applied to w .= ŵ with u ∈ B(w),
it follows using Proposition 7 that wθg →R ◦

∗→H∪inv(H)% ◦ ↔E∞ ŵθg. Hence,
sσg = C[wθ]σg = Cσg[wθg] →R wg

∗→H∪inv(H)% ◦ ↔E∞ Cσg[ŵθg] = C[ŵθ]σg = ŝσg

Then sσg � wg. Furthermore, for any step ug ↔H vg in wg
∗→H∪inv(H)% ◦ ↔E∞ ŝσg,

we have {sσg, tσg} �m {ug, vg}. Thus, one obtains sσg
∗↔%R,�E∞ tσg.

(Delete) Then we have 〈E ] {s .= t}, H〉; 〈E,H〉, where s = t or s↔H t. The case s = t

is obvious. If s↔H t then there exists s′ .= t′ ∈ E∞ such that s = C[s′θ], t = C[r′θ] for
some θ, and Expand is applied to s′ .= t′. Thus sσg

∗↔%R,�E∞ tσg is shown in the same
way as the case (Simplify)-b. J

I Lemma 9. If 〈E0, ∅〉
∗
; 〈∅, H〉 then E0 is bounded ground convertible.

Proof. We have R ⊆ �. Clearly, the derivation 〈E0, ∅〉
∗
; 〈∅, H〉 is fair. Thus, by Lemma 8,

for any s .= t ∈ E∞, ground substitution σg and ground context C, C[sσg]↔E∞ C[tσg] im-
plies C[sσg] ∗↔%R,�E∞ C[tσg]. Hence, by Lemma 6, C[sσg]↔E∞ C[tσg] implies C[sσg] ∗↔%R
C[tσg]. The claim follows as E0 ⊆ E∞. J

I Remark. If E0 is bounded ground convertible then R |=ind E0. Thus, the lemma above
implies the correctness of our rewriting induction system as an inductive theorem proving
procedure. In particular, the soundness of the basic rewriting induction system (e.g. Figure
1 of [1]) follows. For this system several correctness proofs are known: e.g. the one using
minimal counterexample [13] and the one based on retrogressive property [1].

By Lemmas 2 and 9, our method for ground confluence proving is obtained.

I Theorem 10 (ground confluence check by rewriting induction). Let D = {l(ε) | l→ r ∈ R},
C = F \ D, R a quasi-reducible TRS, and % a reduction quasi-order such that R ⊆ �. If
〈CP(R), ∅〉 ∗; 〈∅, H〉 for some H, then R is ground confluent.

4 Relaxing the Free Constructor Restriction

In the previous section, we have fixed a partition F = D ] C as D = {l(ε) | l→ r ∈ R} and
C = F \ D. This setting and the quasi-reducibility assumption on R induce a rather strong
constraint on R. To see this, consider the following example.

I Example 11. Let

R =
{

plus(0, y) → y, plus(s(0), y) → s(y), s(s(x)) → x
}
.

Then {l(ε) | l → r ∈ R} = {plus, s}. However, if we put D = {plus, s} and C = F \ D, then
s(0) is a basic ground term which is a normal form. Then R is not quasi-reducible. On the
other hand, we could have put D = {plus} and C = {s, 0}. In that case R is quasi-reducible.

In other words, the partition F = D]C in the previous section can deal with only TRSs R
having free constructors, i.e. the case T(C) ⊆ NF(R). In this section, we relax this restriction.
From now on, we assume some partition F = D ] C has been fixed, and the set of rules
l→ r ∈ R satisfying l(ε) /∈ D is denoted by Rc. To extend the notion of quasi-reducibility
to deal with TRSs with non-free constructors, we first prepare several notions.

I Definition 12 (cover). A set L of terms covers a term t if for any ground constructor
substitution σgc, there exists l ∈ L such that ∃θ. tσgc = lθ.
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The set L (and its variants) appears under various names in the literature [10, 19, 20].

I Definition 13 (pattern). For any f ∈ D, we put

Pat(f,Rc) = {f(x1, . . . , xi−1, w, xi+1, . . . , xn) | 1 ≤ i ≤ n,w ∈ LHS(Rc)}.

where n = ar(f) and x1, . . . , , xn are pairwise distinct variables not in w.

The notion of quasi-reducibility is replaced as follows for arbitrary partition of D ] C.

I Definition 14 (strongly quasi-reducible). A TRS R is said to be a strongly quasi-reducible
if for each f ∈ D, LHS(f,R) ∪ Pat(f,Rc) covers f(x1, . . . , xn).

I Example 15 (checking strong quasi-reduciblity). Consider R in Example 11. Take C =
{s, 0} and D = {plus}. Then Rc = {s(s(x)) → x}. We have LHS(plus,R) =
{plus(0, y), plus(s(0), y)} and Pat(f,Rc) = {plus(s(s(x)), y), plus(x, s(s(y)))}. Now one can
check {plus(0, y), plus(s(0), y), plus(s(s(x)), y), plus(x, s(s(y)))} covers plus(x, y), and thus R
is strongly quasi-reducible.

The following lemma easily follows from these definitions.

I Lemma 16. Any strongly quasi-reducible TRS is quasi-reducible.

We also have to replace the operation Expd in our rewriting induction system.

I Definition 17 (⊗, Expdu). Let, for any f ∈ Df ,

Rc ⊗ f = {f(x1, . . . , l
′, . . . , xn)→ f(x1, . . . , r

′, . . . , xn) | l′ → r′ ∈ Rc},

where x1, . . . , xn are supposed to be distinct variables not in l′, r′. Let s = C[u], u ∈ B(s)
and u(ε) = f . We put

Expdu(s, t) = {C[r]µ→ tµ | µ = mgu(l, u), l→ r ∈ (R \Rc) ∪ (Rc ⊗ f)}.

Note l→Rc r for any l→ r ∈ Rc ⊗ f by definition.

I Example 18. Let R be in Example 11, and s = plus(x, s(0)) and t = plus(s(x), 0). Then
Expds(s, t) = {s(0) .= plus(s(0), 0), s(s(0)) .= plus(s(s(0)), 0), plus(y, s(0)) .=
plus(s(s(s(y))), 0)}.

I Lemma 19 (property of Expd). Suppose R is a strongly quasi-reducible TRS and u ∈ B(s).
Then, for any ground constructor substitution σgc, we have sσgc →R ◦ →Expdu(s,t) tσgc.

Proof. Since u ∈ B(s), u = f(u1, . . . , un) for some f ∈ D and constructor terms u1, . . . , un.
Then, since R is strongly quasi-reducible, for any ground constructor substitution σgc, there
exists l ∈ LHS(f,R) ∪ Pat(f,Rc) such that uσgc is an instance of l. Then, since one can
assume V(l) ∩ V(u) = ∅, w.l.o.g. one can let uσgc = lσgc. Then, there exist substitutions
µ = mgu(u, l) and ground substitution θg such that σgc = θg ◦ µ, and we have sσgc =
C[u]σgc = Cσgc[uσgc] = Cσgc[lσgc]→R Cσgc[rσgc] = C[r]µθg →Expdu(s,t) tµθg = tσgc. J

Now by replacing Proposition 7 with Lemma 19, the next theorem follows in the same
way as Theorem 10 for the rewriting induction using the Expd given in Definition 17.

I Theorem 20 (ground confluence for strongly quasi-reducible TRSs). Let F = D ] C be an
arbitrary partition. Let R be a strongly quasi-reducible TRS, and % a reduction quasi-order
such that R ⊆ �. If 〈CP(R), ∅〉 ∗; 〈∅, H〉 for some H, then R is ground confluent.

It is easy to see that Theorem 20 generalizes theorem 10, because of the following
observation:

I Lemma 21. Suppose D = {l(ε) | l → r ∈ R} and C = F \ D. Then (1) Rc = ∅ and (2)
any quasi-reducible TRS is strongly quasi-reducible.
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Input: many-sorted TRS R
Output: Success/Failure

1. Compute (possibly multiple) candidates for the partition F = D ] C of function symbols.
2. Compute (possibly multiple) candidates for strongly quasi-reducible R0 ⊆ R.
3. Choose one R0 from the candidates, and remove R0 from the candidates list. If no candidate

remains, then choose another candidate of partition to go Step 2 if exists, or else return Failure.
4. Find a reduction quasi-order % such that R0 ⊆ �. If it fails, go to Step 3 to examine another

candidate.
5. Run rewriting induction for proving bounded ground convertibility of CP(R0) with %. If it fails,

go to Step 3 to examine another candidate.
6. Run rewriting induction for proving R0 |=ind (R \ R0). If it fails, go to Step 3 to examine

another candidate. If it succeeds, to return Success.

Figure 2 A ground confluence proving procedure based on rewriting induction.

5 Ground Confluence Proving Procedure

Before presenting our procedure, we introduce the last ingredient of our ground confluence
proof, which one can prove easily:

I Theorem 22. Let R be a TRS. Suppose R0 ⊆ R is ground confluent. If R0 |=ind R \R0
then R is ground confluent.

Hence, we divide the problem of ground confluence of R into the problem of ground confluence
of R0 and the problem of inductive validity R0 |=ind R \ R0. In Figure 2, we present our
procedure for proving ground confluence of many-sorted TRSs.

I Example 23 (strongly quasi-reducible subsets). Consider a TRS

R =
{

plus(0, y) → y (a) plus(s(x), y) → s(plus(x, y)) (b)
plus(x, 0) → plus(0, x) (c) plus(x, s(y)) → plus(s(y), x) (d)

}
Then {(a), (b)}, {(c), (d)} and R are all strongly quasi-reducible. However, the only choice
of R0 = {(a), (b)} is successful for finding ground confluence proof in our method.

I Example 24 (strongly quasi-reducible subsets). Consider a TRS

R =


plus(0, y) → y (a) plus(s(0), y) → s(y) (b)
plus(plus(x, y), z) → plus(x, plus(y, z)) (c) s(s(x)) → s(x) (e)
plus(x, y) → plus(y, x) (e) s(x) → s(s(x)) (f)


Then {(a), (b), (e)}, {(a), (f)} and {(d), (f)} are all strongly quasi-reducible, where the
first one takes C = {0, s} while the latter two take C = {0}. However, the only choice of
R0 = {(a), (b), (e)} is successful for finding ground confluence proof in our method.

6 Implementation and Experiments

Our tool AGCP is written in SML/NJ. Some program code are incorporated from con-
fluence prover ACP [6] and an inductive theorem prover [2]. The tool is obtained from
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(FUN
plus : Nat,Nat -> Nat
s : Nat -> Nat
0 : Nat

)
(VAR

x : Nat
y : Nat

)
(RULES

plus(0,0) -> 0
plus(s(x),y) -> s(plus(x,y))
plus(x,s(y)) -> s(plus(y,x))

)

Figure 3 An example of input: specification of a many-sorted TRS.

http://www.nue.ie.niigata-u.ac.jp/tools/agcp/. The format of input TRSs basically
follows old TPDB format of first-order TRSs; the only difference is the addition of sort
declarations. In Figure 3, we present an example of input file.

Some heuristics implicit in the procedure are described below.
We impose a timeout for each of Steps 1, 5 and 6.
In Step 2, as the candidates for R0 ⊆ R, we only take those with minimal set of rewrite
rules i.e. those R0 such that any R′0 ( R0 is not a quasi-reducible.
In Step 4, we restrict ourselves to multiset path orderings based on total precedence. We
encoded the condition R0 ⊆ % as a constraint on precedence and find a precedence which
meets the condition by a SMT solver.
In Expand inferences, among equations, one with the smallest size are expanded. If l � r
or r � l holds, then the larger side is expanded. Among basic subterms, the older one is
expanded. Here, a subterm is younger if it contains a newer created variable.
In Expand and Simplify inferences, ∗→H∪inv(H)% -part is tried only if successive applications
of Simplify occur: just after Expand, the expanded side is simplified by s ( ∗→H∪inv(H)%

◦ →R0∪H�)∗ s′, and multiple Simplify steps are applied by →R0∪H� ◦ ( ∗→H∪inv(H)%

◦ →R0∪H�)∗.

We have tested our ground confluence prover with 121 (many-sorted) TRSs—23 are
constructed in the course of our study and 98 are incorporated from Cops1. Since Cops is a
database of confluence problems, their signatures are unsorted. Also, there is no declaration
of the signature. Hence, we have inspected the problems and identified a set of function
symbols and attached them sorts naturally guessed. More than half Cops problems whose
appropriate sorts are hardly imagined are dropped. Among newly constructed 23 problems, 4
problems are incorporated from the literature [7, 14, 18]. Others are constructed by starting
with basic TRSs such as addition of natural numbers, and then add variations and extensions
of them, trying to make them possibly ground confluent, where this collection includes
Examples 1, 15, 23 and 24.

1 Confluence Problem Database http://cops.uibk.ac.at/.
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Table 1 Summary of experiments.

sources number success timeout time (msec)
Example 1 – X – 8
Example 15 – X – 8
Example 23 – X – 11
Example 24 – X – 10
Cops confluent 88 62 4 –
Cops non_confluent 3 1 0 –
Cops !confluent !non_confluent 7 3 0 –
Crafted 23 20 2 –

Tests are performed on a PC with one 2.50GHz CPU and 4G memory. We impose 60 (5,
1) seconds time limit total (resp. rewriting induction proof, computation of constructors).

Table 1 shows a summary of experiments. The columns below ‘sources’ and ‘number’
denote the number of TRSs and their sources. ‘Cops confluent’ (‘Cops non_confluent’,
‘Cops !confluent !non_confluent’) denotes problems incorporated from Cops problems
that have been proved or non-proved (non-)confluent by state-of-the-art confluence provers.
Note such confluence provers prove (non-)confluent of unsorted versions of the problems, but
that of the many-sorted ones follow by persistency [5]. Similarly, among ‘Crafted’ problems,
11 problems are proved to be confluent and the others non-confluent by ACP [6]. The
columns below ‘Success’ show results for each example in the present paper (X for success),
and the numbers of problems from the collections that succeed. The columns below ‘timeout’
(‘time (msec)’) show the number of occurrences of timeout (run time shown in milliseconds,
respectively).

Among 121 problems, our prover succeeded in proving ground confluence of 86 problems.
Our procedures failed on some particular types of term rewriting systems. Firstly, those that
have a defined symbol specified by non-terminating rules such as nats→ cons(0, inc(nats))).
In such a case, the non-terminating rule is not an inductive theorem and hence it is included
to the rule part. However, in the current approach, the rule part needs to be terminating,
and thus our procedure failed to deal with such a case. Similarly, if AC-rules needs to be act
as rewrite rules, then our method does not work—our method can deal with AC-rules only if
they are inductive theorems:

I Example 25 (Cops 183).

R =


+(0, x) → x +(x, 0) → x

+(1,−(1)) → 0 +(−(1), 1) → 0
−(0) → 0 −(−(x)) → x

−(+(x, y)) → +(−(x),−(y))
+(+(x, y), z) → +(x,+(y, z)) +(x, y) → +(y, x)


Here, for example, the computation of +(+(1, 1),+(−(1),−(1))) ∗→ 0 needs to use AC-rules.
Thus AC-rules are included in the rule part, and hence its termination proof fails. Our
approach can not handle problems of this type.

Some failures are due to incapability of non-ground-confluence checking. We expect some
simple non-ground-confluence check should be useful, but currently it is not included in
our tool. It also seems inclusion of stronger termination criteria would have stopped some
failures in early stages of proofs, and inclusion of lemma generation methods in inductive



T. Aoto and Y. Toyama 33:11

theorem proving would have solved at least one problem. Other reasons of failure include
incapability of dealing with non-left-linear rules in strong quasi-reducibility checking.

Five timeouts are raised in rewriting induction proofs and one is in computation of
constructor symbols. Two timeouts in a problem helped to switch the choice of R0 so as to
succeed in that problem.

All details of the experiments are available on the webpage http://www.nue.ie.niigata-u.
ac.jp/tools/agcp/experiments/fscd16/.

7 Conclusion

We have reported a ground confluence prover based on a variant of rewriting induction. We
have also proved the correctness of our method. In contrast to many existing works on
ground confluence, we focused on the pure many-sorted TRSs. Obviously, one can also use
confluence provers such as [6, 27] to guarantee ground confluence, and to use more stronger
inductive theorem proving methods or lemma generation methods such as [2, 3, 4, 22, 25]
at inductive theorem proving part, in order to get a more powerful tool. Developing such a
powerful tool stands as a long-term goal.
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Abstract
This article introduces Globular, an online proof assistant for the formalization and verification of
proofs in higher-dimensional category theory. The tool produces graphical visualizations of higher-
dimensional proofs, assists in their construction with a point-and-click interface, and performs
type checking to prevent incorrect rewrites. Hosted on the web, it has a low barrier to use, and
allows hyperlinking of formalized proofs directly from research papers. It allows the formalization
of proofs from logic, topology and algebra which are not formalizable by other methods, and we
give several examples.
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1 Introduction

This paper is a system description for Globular [20], an online tool for formalizing and verifying
proofs in semistrict globular higher category theory. It operates from the perspective of
higher-dimensional rewriting, with terms represented as graphical structures, and proofs
constructed and visualized as sequences of rewrites on these structures. At the time of
writing, the tool operates up to the level of 3-categories and is being actively developed (in
parallel with the corresponding theory) to support for 4-categories and higher.

Globular is the first proof assistant of its kind, and it allows many proofs from higher
category theory to be formalized, verified and visualized in a way that would not be practical
in any other tool. The closest comparable tools are Quantomatic [7], which does diagrammatic
rewriting for monoidal categories, and the formalisations of homotopy type theory in the proof
assistants Coq and Agda [5]. The latter can indeed be used to perform logical and homotopy-
theoretical proofs from a higher-categorical perspective. However, this approach diverges
from ours in that it is based on the syntax of Martin-Löf type theory rather than diagrams,
and identity types naturally lead one to treat higher-dimensional invertible structures (e.g.
∞-groupoids) as first-class citizens, rather than the more general structures we’ll consider.
Another comparable tool is Orchard [3], which allows the formalization of proofs in opetopic
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(as opposed to globular) higher categories; this tool can handle ∞-categories, and has many
attractive properties, although the opetopic approach to higher categories is far less dominant
than the globular approach, and its associated graphical calculus is less attractive for many
purposes. The higher dimensional rewriting implemented by Globular draws inspiration
from the polygraphic approach to rewriting [10, 14], but extends it to allow for non-strict
higher-categorical structures.

Globular was designed to make it as quick and easy as possible for users to go from zero
to proving theorems and sharing proofs. Hence, it is entirely web-based, with all logic taking
place client-side in the user’s web browser. The most commonly used procedures run in linear
time with little overhead, so this is practical on modest hardware even for large diagrams.
Proofs can be stored on the remote server for later reference, or downloaded for storage
locally. Permanent hyperlinks to formalized proofs can be generated and embedded as links
in research papers, allowing readers instant access to the formalization without the usual
barriers-to-use of downloading, installing and maintaining an executable. The tool launched
in December 2015, and has been well-received by the community, with 4126 sessions across
884 unique users in the first 2 months since deployment1.

In Section 2, we give a brief overview of the mathematical foundations of Globular, namely
higher-dimensional category theory and rewriting. In Section 3 we exhibit all of the core
functionality of the tool via a simple example. In Section 4 we discuss the implementation,
including the architecture and relevant data structures and procedures for rewriting. We
conclude by surveying a variety of interesting proofs in Globular by the authors and others,
with direct links for viewing online.

2 Mathematical foundations

Higher category theory is the study of n-categories. As well as objects and morphisms
familiar from traditional category theory, which are we call 0-cells and 1-cells, an n-category
also has morphisms between morphisms (2-cells), morphisms between those (3-cells), and so
on, up to level n. An n-category has a n distinct composition operations, which allow cells
to be combined to produce new cells.

A convenient notation for working with n-categories is the graphical calculus, in which a
k-cell is represented as an (n − k)-dimensional geometrical structure2. Composition then
corresponds to ‘gluing’ of these structures along the different axes of n-dimensional space.
For example, in a 3-category, we represent 3-cells as points, 2-cells as lines, 1-cells as regions,
and 0-cells as ‘volumes’. Given 3-cells α and β, we could form the following composite 3-cells
by composing along three different axes:

β
α βα

β

α

(1)

In this way we can draw diagrams to represent arbitrary composites, in principle in any
dimension (although for n > 3, visualizing the resulting geometrical structure of course
becomes nontrivial).

1 Usage statistics from Google Web Analytics.
2 This is rigorously developed only for n ≤ 3 [2, 6].
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We take a rewriting perspective on higher category theory. Suppose a (k + 1)-cell X has
source and target k-cells α and α′ respectively. Then we interpret X as a way to rewrite α
into α′. Since composition in higher category theory is local, this also works for composite
cells: for example, we can apply X to any of the composites in (1) to obtain a new composite
with α replaced by α′.

The attractive feature of this perspective is that there is no fundamental difference
between the notions of composition and proof. A proof that some diagram D of k-cells can
rewritten into some other diagram D′ amounts to building a composite (k + 1)-cell with
source D and target D′, using just the ‘axiom’ cells of a given theory. For instance, if we
have a 3-cell called ‘assoc’ which captures an associativity rule of 2-cells, we can prove a
theorem about associativity as a composition of 3-cells:

assoc

assoc

assoc

That is, we can define a composite (k + 1)-cell as a rewrite sequence on composite k-cells.
This gives a recursive definition of composition, which terminates with a family of ‘basic’
rewrite operations, which the user must specify. This is the essence of Globular’s approach to
higher category theory.

In higher category theory, we have some freedom to decide what it means for two things
to be ‘the same’. At one extreme are ‘fully weak’ n-categories, where all of the axioms
governing the composition of cells (such as associativity and unit axioms) hold only up to
higher-dimensional cells. For example, for 1-cells f, g, h, rather than requiring associativity:
f ◦ (g ◦ h) = (f ◦ g) ◦ h, we merely assert the existence of a (weakly) invertible family of
‘associator’ 2-cells (f ◦ g) ◦ h → f ◦ (g ◦ h). These in turn must satisfy various coherence
properties, which we again interpret only up to higher-dimensional cells (which themselves
must satisfy coherence properties, and so on). While these structures arise naturally in many
contexts, the amount of bureaucracy that arises from this structure makes it hard to work
with weak n-categories as purely syntactic objects.

At the other extreme are the strict n-categories which require all the axioms involving
composition of cells to hold as on-the-nose equalities. These are quite easy to define [11], and
admit an evident notion of finite presentation, called a polygraph or computad, and have a
reasonably well-behaved higher-dimensional rewrite theory [4]. However, for n > 2, it is not
the case that every weak n-category is equivalent to a strict one. To see where this richness
of weak categories comes from, we consider the interchange law, which in a 2-category acts
as follows as a rewrite on composite 2-cells:

(f ◦1 1B) ◦2 (1A′ ◦1 g) := I−−−−→ =: (1A ◦1 g) ◦2 (f ◦1 1B′)

FSCD 2016
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When we stop at two dimensions, there is no problem treating this ‘node-sliding’ rule simply
as an equation between diagrams. But seen as a 3-cell in a 3-category, the source and target
of I become the bottom and top slice of a 3D picture, the nodes become wires, and the
‘sliding’ becomes a braiding:

By the invertibility and naturalness properties, these braidings then behave exactly how
you would expect genuine topological braids to behave. For instance, the following higher
rewrites exist:

→
←

→
←

In general, overcrossings and undercrossings are distinct, so it is possible for wires to become
tangled. Requiring interchangers to be identities, as in the theory of strict 3-categories,
trivializes this part of the theory, and means that it is no longer fully general, in the precise
sense that not every 3-category is equivalent to a strict 3-category.

It follows that the strict n-categorical setting in which the polygraph community work
is not sufficiently general to reason about arbitrary n-categories. The solution is to work
instead with semistrict n-categories, which allows a small amount of weak structure, sufficient
to ensure that every weak n-category is equivalent to semistrict n-category. For n = 3, Gray
categories have this property; they are defined as 3-categories in which all weak structure is
the identity, except for interchangers3. The version of Globular which is operational at the
time of writing implements the axioms of a Gray category.

3 Using Globular

Constructing a theory and proving theorems in Globular is an inductive process, whereby
lower-dimensional objects are used to construct higher-dimensional objects. This is done
by building up a signature, i.e. a collection of generators, in parallel with increasingly
higher-dimensional diagrams. From an empty signature, the only thing to do is add new
0-cells:

3 A definition of semistrict n-category for n > 3 has not yet been generally accepted.
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Once we have some 0-cells, these can be made the sources and targets of new 1-cells:

⇒

At this point things start to get interesting, since 1-cells can be attached to each other to
form non-trivial diagrams. These diagrams can then form the sources and targets of new
2-cells:

⇒ ,

In turn, these 2-cells can be composed to form larger diagrams, which and form the sources
and targets of new 3-cells. We can either interpret these new 3-cells as new generators, or
as equations between 2d diagrams. For example, we can make our ‘cap’ and ‘cup’ 2-cells
invertible by adding the following 3-cells to our theory:

→
←

→
←

→
←

→
←

These invertible ‘cup’ and ‘cap’ 2-cells yield a familiar categorical structure.

I Definition 1. In a 2-category, an equivalence is a pair of objects A and B, a pair of 1-cells
A

F−→ B and B
G−→ A and invertible 2-cells F ◦ G α−→ idA and idA

β−→ G ◦ F , denoted as
follows:

α ≡ β ≡

A special case is where the 2-category is Cat, in which case this yields the usual notion
of equivalence of categories. Then the following is a well-known fact about equivalences in a
2-category:

I Theorem 2. In a 2-category, every equivalence gives rise to a dual equivalence.

An equivalence is called a dual equivalence if it additionally satisfies the snake equations,
shown here as theorems in Globular:

FSCD 2016
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We can prove these theorems by replacing the ‘cup’ with a ‘sock’, defined in terms of the old
cup and cap:

We can show that our new ‘cup’ satisfies the snake equation, with the original ‘cap’. To
prove the first snake equation, we perform the following (non-trivial!) sequence of rewrites in
Globular:

→ → → → →

→ → → → →

→ → → →

This proof is itself a 3-cell. In Globular, we can either browse through it slice-by-slice, or we
can see the overall structure of the proof as a single diagram, by choosing ‘Project=1’ in the
interface:

This projects out one dimension so we call look at this entire 3-cell ‘side-on’. The nodes
represent applications of rewrite rules, and the wires represent 2-cells. From this view, we
can refactor the proof by eliminating redundant steps (e.g. a rewrite immediately followed by
its inverse) or by re-ordering rewrites that are applied to independent parts of the diagram.

Once a proof has been constructed, it can be saved privately to the server, or made public
by publishing it. This assigns the workspace a permanent unique link, which can be shared
with others or linked from a research paper. For example, the proof in this section is based
on the formalization available here: globular.science/1512.007.

http://globular.science/1512.007
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4 Implementation

In this section we give an overview of the implementation of Globular, and the basic structures
and algorithms that underlie its operation. The tool itself can be used simply by visiting:

http://globular.science

The proof assistant itself runs client-side in the user’s web browser, and is written in
Javascript. A Node.js back-end serves the client pages, and administers a system of user
accounts allowing users to register, store private proofs that are under construction, and
(irrevocably) publish proofs that they would like to share publicly. The project is open-source,
and the code is available at globular.science/source. Graphics are implemented in SVG.

4.1 Data types
The fundamental structures that Globular makes use of are signatures, which are a lists of
basic generating cells that the user has specified as to define a theory, and diagrams, which
are particular composites of generators from a given signature. These two types can be
defined very compactly in a mutually-recursive fashion. For clarity, we write these both as
type families in dependent type-style notion. Let ‘g : Set’ declare a finite set g (which we
then treat as a type), let List(α) be the type of lists, and 〈α1, α2, . . .〉 the type of tuples
where types in αj are allowed to depend on αi for i < j. Let Sig(0) and Diag(0, ∗) both be
the unit type {∗}. Then, for n > 0:

Sig(n : N) :=〈 g : Set,
σ : Sig(n− 1),
s, t : g → Diag(n− 1, σ)

〉 Diag(n : N, σ : Sig(n)) :=〈
s : Diag(n− 1, σ),
δ : List( 〈a : σ.g, c : List(N)〉 )

〉

An n-signature Σ : Sig(n) therefore consists of an (n−1)-signature Σ.σ, and a set of generators
Σ.g, such that each x : Σ.g has a source and target (n − 1)-diagrams Σ.s(x) and Σ.t(x)
respectively, which each contain cells from the (n− 1)-signature Σ.σ.

Given a signature σ : Sig(n), a diagram ∆ : Diag(n, σ) consists of a source (n−1)-diagram
∆.s, and a list of n-cells that act sequentially on that source. The kth n-cell is given by a
pair ∆.δ[k], whose first element ∆.δ[k].a is a generating cell drawn from the signature σ, and
whose second element ∆.δ[k].c is a list of numbers which specify the coordinates at which the
chosen generating rewrite acts. For example, a 2-diagram consists of a list of 2-cells which
are stacked vertically, and this coordinate consists of a single number giving the horizontal
position of each 2-cell. We leave the target (n− 1)-cell implicit, as it can be recovered from
the other data (e.g. via the Slice procedure below).

4.2 Procedures
Here we give the type specifications of the basic procedures that manipulate our diagram
structures, along with brief descriptions of their functionality.

Match
(
∆ : Diag(n, σ),∆′ : Diag(n, σ)

)
: Bool

Determines whether two diagrams are equal. For ∆,∆′ we first recursively compare
whether ∆.s and ∆′.s match. If not, return false. Otherwise, we compare corresponding
elements of ∆.δ and ∆′.δ, if there is a pair δk, δ′k such that either types δk.a, δ′k.a or
coordinates do not match, then return false, otherwise return true.

FSCD 2016
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Identity
(
∆ : Diag(n, σ)

)
: Diag(n+ 1, σ)

Given an n-diagram, this operation transforms it into an identity (n + 1)-diagram
∆′(n+ 1, σ). The set of generators ∆′.δ is empty, while both ∆′.s and ∆′.t are set to ∆.
Rewrite(∆ : Diag(n, σ),Ψ : Diag(n, σ),Ψ′ : Diag(n, σ), C : List(N)) : Diag(n, σ)
Here ∆ is the diagram that is being rewritten, Ψ is the source of the rewrite, Ψ′ is the
target of the rewrite, and C is the list of coordinates of where the rewrite is to be applied.
|Ψ.δ| consecutive rewrites in ∆.δ starting from position Cn−1 are removed, with the
rewrites in Ψ′.δ inserted, with their coordinates offset by C. We illustrate this with a
simple example, where C is denoted by the dashed rectangle:

Ψ =

Ψ′ =

∆ = Rewrite(∆,Ψ,Ψ′, C) =

Attach(∆ : Diag(n, σ),∆′ : Diag(k, σ), P : {s, t}, C : List(N)) : Diag(n, σ)
Attaches the diagram ∆′ to the diagram ∆, where P is a boolean distinguishing between
attachment to the source or target boundary of ∆′, and C are the coordinates within
this boundary of where ∆′ is to be attached.
Slice(∆ : Diag(n, σ), k : N) : Diag(n− 1, σ.σ)
Rewrite the source boundary ∆.s using the leading k n-cells in the ordered set ∆.δ, to
obtain an intermediate diagram in the rewrite sequence.
Enumerate

(
∆ : Diag(n, σ),∆′ : Diag(n, σ)) : List(List(N))

Enumerates the locations at which ∆′ occurs as a subdiagram of ∆. For example, for ∆
and ∆′ 2-dimensional diagrams as given, the procedure returns a list of length 2:

∆ = ∆′ = Enumerate(∆,∆′) =

The implementation is as follows. First we loop through the elements of the rewrite list
∆.δ. For the rewrite at depth k, we recursively call Enumerate(Slice(∆, k− 1),∆′.s). If
the result is the empty list, we increment k and retry. If the result is nonempty, at most
1 can be consistent with the structure of ∆, and we then compare types and coordinates
of the corresponding generators in ∆.δ and ∆′.δ. If they match, we append k to the
coordinate list returned by the recursive call, and we add the coordinate list as a witness
to the instance of ∆′ being a sub-diagram of ∆.

Globular also has procedures which generate cell coming from the semistrict n-category
structure on demand. These consist of interchangers, which we’ve already seen, and pull-
throughs, which capture the naturality of interchangers:

α

→
←

α

β

→
←

β
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These cells are generated as they are required because they in fact form an infinite family of
cells. This is because f , g and the wires depicted above might be basic generators, but could
also be diagrams of generators.

5 Examples

Here we give examples of formalized proofs from algebra and topology. In each case we briefly
describe the mathematical context of the proof, and give some details of its formalization.
Direct hyperlinks are provided to the formalized proofs on the Globular website; to navigate
these proofs, use the Project and Slice controls at the top-right, and move your mouse cursor
over the different parts of the main diagram to understand its components. Documentation on
how to use Globular is available [20]. To our knowledge, none of these results have previously
been formalized by any existing tool.

I Example 3 (Frobenius implies associative, globular.science/1512.004, length 12). In a
monoidal category, if multiplication and comultiplication morphisms are unital, counital and
Frobenius, then they are associative and coassociative. We formalize this in Globular using a
2-category with a single 0-cell, since this is algebraically equivalent to a monoidal category.
Such a proof would be traditionally written out as a series of pictures; for example, see the
textbook [8]. Globular produces these pictures automatically.

I Example 4 (Strengthening an equivalence, globular.science/1512.007, length 14). In a
2-category, an equivalence gives rise to an adjoint equivalence. This is a classic result from
the category theory community [1, 18]; it can be considered one of the first nontrivial theorems
of 2-category theory. We investigate it in further detail in Section 3.

I Example 5 (Swallowtail comes for free, globular.science/1512.006, length 12). In a monoidal
2-category, a weakly-dual pair of objects gives rise to a strongly-dual pair, satisfying the
swallowtail equations. This theorem plays an important role in the singularity theory of
3-manifolds [17]. For the formalization, we model a monoidal 2-category as a 3-category with
one 0-cell.

I Example 6 (Pentagon and triangle implies ρI = λI , globular.science/1512.002, length 62).
In a monoidal 2-category, a pseudomonoid object satisfies ρI = λI . A pseudomonoid is a
higher algebraic structure categorifying the concept of monoid; it has the property that a
pseudomonoid in Cat is the same as a monoidal category. Such a structure is known to be
coherent [9], in the sense that all equations commute, and here we give an explicit proof of
the equation ρI = λI , which played an important role in the early study of coherence for
monoidal categories.

I Example 7 (The antipode is an algebra homomorphism, globular.science/1512.011, length 68).
For a Hopf algebra structure in a braided monoidal category, the antipode is an algebra
homomorphism. Hopf algebras are algebraic structures which play an important role in
representation theory and physics [12, 19]. Proofs involving these structures are usually
presented in Sweedler notation, a linear syntax which represents coalgebraic structures using
strings of formal variables with subscripts; we do not know of any existing approaches to
formal verification for Sweedler proofs. This formalization in Globular is translated from a
Sweedler proof given in [15]. For the formalization, we model a braided monoidal category
as a 3-category with one 0-cell and one 1-cell.

I Example 8 (The Perko knots are isotopic, globular.science/1512.012, length 251). The Perko
knots are isotopic. The Perko knots are a pair of 10-crossing knots stated by Little in 1899
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to be distinct, but proven by Perko in 1974 to be isotopic [16]. Here we give the isotopy
proof, adapted from [13]. A nice feature is that the second and third Reidemeister moves
do not have to be entered, since they are already implied by the 3-category axioms. The
proof consists of a series of 251 atomic deformations, which rewrite the first Perko knot into
the second. By stepping through the proof one rewrite at a time, the isotopy itself can be
visualized as a movie.

Acknowledgements. We would like to thank John Baez, Manuel Bärenz, Bruce Bartlett,
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Abstract
We introduce interaction automata as a topological model of computation and present the con-
ceptual plane interpreter ia2d. Interaction automata form a refinement of both interaction nets
and cellular automata models that combine data deployment, memory management and struc-
tured computation mechanisms. Their local structure is inspired from pointer machines and
allows an asynchronous spatial distribution of the computation. Our tool can be considered as a
proof-of-concept piece of abstract hardware on which functional programs can be run in parallel.
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1 Introduction

We present a candidate computation model with a quite natural, although non-standard
memory model reminiscent of cellular automata topologies which takes spatial distances
and related data migration costs into consideration. Our associated tool interpreter ia2d is
written in Haskell and is available online1. This interpreter takes as input a program written
as an interaction-net system, a generic, topology-independent language. This program is
then executed in parallel on a planar instance of the presented computation model, and
the result of the computation is returned in the same interaction-net language, along with
some detailed resource usage statistics. Operations on binary-encoded natural numbers,
implementations of merge sort and of the bitonic sorter, which has a theoretical parallel time
complexity of O(log2(n)), are provided as examples.

Our work is aimed at filling a gap that exists between the standard interaction-net
model and real distributed memory schemes. These schemes depart from the traditional
random access memory schemes in that they do not allow a uniform constant-time access
to data stored remotely. Our long term objective is an abstract execution model for
asynchronous computation adapted to both hardware components and network computing
that automatically distributes the computation over the available computation units and
incorporate latency and bandwidth management. We present here a simple and somewhat
naive approach which is nevertheless partially successful.

We know that interaction nets are a target of choice to run functional programs in parallel
[16, 15, 4, 2, 3], or to express concurrency such as in process algebras [18, 19]. Various

∗ This work was partially supported by FWF (Austrian Science Fund) project number P 25781-N18.
1 The ia2d interpreter: http://bitbucket.org/inarch/ia2d
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35:2 Interaction Automata and the ia2d Interpreter

implementations of interaction nets exist [20, 21, 1], some of which use a particular technique
called geometry of interaction [22]. But all consider traditional computer architectures as
a base model, with random access memory schemes. Our goal is to use micro and macro
parallelism extensively – beyond the standard multi-threading “compromise” – to run generic
programs which have not been instrumented with hardware, network, or architecture-specific
parallel constructions.

Towards this same goal, an experimental implementation of interaction nets on parallel
hardware such as GPUs has been developed [10]. A variant of interaction nets called hard
interaction nets has also been introduced to model asynchronous hardware components [14],
but we do not know of any practical way to use this model to run standard programs. A
compiler to hard interaction nets still has to be developed.

The model which we introduce is meant to incorporate spatial considerations in the most
generic way. Notably, when its topological constraints are lifted, we show that it corresponds
closely to the standard interaction-net model.

2 Interaction Nets

We present in this section interaction nets and their reduction which is based on graph-
rewriting techniques. This overview should be sufficient in order to understand the programs
provided as examples along with our tool. For a more detailed introduction, the reader is
referred to the seminal paper by Yves Lafont [11].

An interaction net is a graph, with vertices called nodes that are labeled with symbols,
and edges called wires. Each node has a principal port as well as a certain number of auxiliary
ports that is fixed for a given symbol. This number of auxiliary ports is called the arity of
the symbol. A node is typically drawn as a triangle with the principal port at the tip and
the auxiliary ports on the opposite side. Node ports can be connected together with a wire.
When two nodes are connected on their principal ports, we call the pair an active pair or a
redex. One or both ends of a wire may also be connected to free ports, which do not belong
to any cell. The set of free ports of a net is called its interface.

An interaction net system is a pair (S,R) of symbols and reduction rules. Given an
interaction net built using nodes labeled with symbols S, we can rewrite the net according
to the reduction rules R. A reduction rule describes how an active pair of nodes can be
rewritten by removing the active pair from the graph and substituting it by a net with the
same interface. Such a rule is generally represented as follows:

α

β

· · ·

· · ·

→ N(α, β)

· · ·

· · ·

To ensure determinism only one such rule is allowed for a given pair of symbols. If α = β

the right-hand side of the rule is required to be top-down symmetric. A strong confluence
property, namely the diamond property, holds for the reduction of interaction nets. The
order in which we choose to reduce the active pairs of the net is not important as it does
not change the outcome of the reduction. Furthermore, because the reduction steps are
performed locally and cannot overlap, they can be performed in parallel.
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When programming with interaction nets we use labeled nodes to represent both con-
structors and operations. In the following example, we use the symbols zero (nullary) and
succ (unary) to represent the constructors for natural numbers, cons (binary) and nil (nullary)
to represent lists, and the symbols add (binary) and sum (unary) for the addition operations
on natural numbers and the sum operation on lists of naturals respectively. We can define
each operation using a pair of rules as follows:

add

sum

add

add

zero

add

succ

sum

cons

sum

nil

zero

succ

The following example computation illustrates how a given interaction net can be rewritten
using the rules given above. We start with a simple net that represents a list of two natural
numbers connected to a sum operation, which will compute the sum of the two numbers.

succ

succ

zero

cons

sum

succ

zero

succ

cons

nil

succ

succ

zero

nil

cons

succ

zero

succ

add

sum

sum

succ

succ

zero

add

add

succ

succ

zero

nil

succ

zero

add

succ

zero

add

zero

succ

succ

*

zero

succ

succ

succ

succ

The net on the left shows the list of natural numbers cons(2, cons(2, nil())) connected to the
sum operator. After two parallel reduction steps, denoted as →, we obtain three redexes,
namely two instances of add on succ and sum on nil. After exhaustively applying reduction
rules until no redexes are left, as denoted by ∗−→, we obtain the final net, the natural number
4 represented as net.

3 Interaction Automata

3.1 Definition of the Computation Model

We start by introducing a notion of web, which defines the topology on which interaction
automata will be built.

I Definition 1. A web is defined as a pair W = (L, ν), where L is a set of locations, called
support, and ν : L→ P(L) a map that associates a set of locations, called neighborhood, to
every location.

Interaction agents in our model will be nodes. Their purpose is indicated by a particular
symbol and they store a certain number of pointers to other locations. This number has
to match with a particular arity that was attributed to the symbol. Locations represent
positions at which two nodes are expected to interact.

FSCD 2016
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I Definition 2. For a given arity-attributed set of symbols S and a set of locations L, we
define nodes according to the syntax n ::= ω(l0) | s(l1, . . . , lk) where s ∈ S, k is the arity
of s, and the li ∈ L form a list of locations called pointers. The set of all possible nodes is
written N(S,L).

The ω notation can be considered as a particular “pointer-target” symbol, which contains a
reference that links back to the origin of the pointer.

I Definition 3. We define the forward-reference multiset of a node as f(ω(l0)) = ∅ and
f(s(l1, . . . , lk)) = {l1, . . . , lk} and its backward-reference multiset as b(ω(l0)) = {l0} and
b(s(l1, . . . , lk)) = ∅. These notations are straightforwardly extended to multisets of nodes
through multiset union.

I Definition 4. Given a set of symbols S, a domain D ⊆ L and a disjoint interface I ⊆ L, we
define Γ(S,D, I) as the set of maps from locations to multisets of nodes µ : L→M(N(S,L)),
called configurations, such that the cardinal of µ(l) is respectively 2 if l ∈ D, or 1 if l ∈ I, or
0 otherwise. Additionally we require that for all ls, lt ∈ L the multiplicity of lt in f(µ(ls))
matches the one of ls in b(µ(lt)).

The latter constraint ensures that every forward-reference attached to a symbol node
matches with a backward-reference attached to an ω-node.

I Definition 5. A topological configuration of a web W = (L, ν) with symbols in S is the
combination of a domain D, an interface I and a configuration γ ∈ Γ(S,D, I) that satisfies
neighborhood compatibility, i.e., lt ∈ f(γ(ls))⇒ lt ∈ ν(ls), for all ls, lt ∈ L.

We will rely on an abstract reduction scheme to automatically endow any given web with
a transfer function from configurations to configurations.

I Definition 6. An abstract transition scheme over a set of symbols S is a binary relation
µl → µr over configurations µl ∈ Γ(S,Dl, I) and µr ∈ Γ(S,Dr, I) which is invariant upon
permutations of locations in L. The sets Dl, Dr and I are arbitrary disjoint subsets of L.

Dl and Dr represent respectively the sets of freed and allocated locations during a
reduction step that is defined by the abstract transition scheme. If we additionally require
that Dl has cardinal 1 and that the singleton µ(l) stored at any l ∈ I is an ω-node, the
scheme is called atomic.

I Definition 7. An interaction automaton is defined as a quadruple A = (L, ν, S,→) where
W = (L, ν) is a chosen web, S is a set of symbols, and → is an abstract transition scheme
over S.

I Definition 8. Given an interaction automaton A, a parallel transition γl
A−→→ γr occurs

between two topological configurations of its web, γl ∈ Γ(S,Dl, I) and γr ∈ Γ(S,Dr, I),
if both configurations are pointwise multiset unions of configurations γl =

⊕
i µ

l
i ⊕ µ and

γr =
⊕

i µ
r
i ⊕ µ, such that each pair of sub-configurations satisfy the abstract transition

scheme relation µl
i → µr

i .

If the chosen abstract transition scheme is atomic, in the absence of topological constraints
(unrestricted neighborhoods and an infinite number of locations), we can guarantee that the
parallel transition relation, despite being non-deterministic, satisfies the diamond property
up to a relocation of cells.
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Bounded Interaction Automata and Interaction Grids. Bounded interaction automata
are interaction automata for which the sizes of neighborhoods are globally bounded by a
constant.

Example: Interaction grids of dimension d and neighborhood radius m are denoted by
Gd

m. They are particular interaction automata whose sets of locations are defined as L = Zd

and neighborhood maps as ν(~x) = {~x+ ~u, |~u| ≤ m}. We chose to work with the Manhattan
distance in our implementation.

3.2 Implementation of Interaction Nets on Interaction Automata
We now show that interaction-net computation can be performed within the abstract
interaction automata computation model without topological constraints.

With topological constraints, nothing guarantees that allocations are always possible
within the appropriate neighborhoods nor specify how the allocations should be done. They
can be performed randomly, but the reduction is of course likely to block due to a local lack
of space on webs with small connectivity. The allocations could also be done strategically if
we rely on topological knowledge or external ways to gauge the occupancy of the web and its
capacity. Our experiments however tend to show that a simple allocation strategy is enough
in order to run interaction-net programs of a particular complexity class on webs with a
matching connectivity.

The implementation of a given interaction-net system is quite straightforward. A glimpse
at the output of our tool should be sufficient to illustrate the general principles which we
sketch here.

Cells containing two ω-nodes are used to translate wires between two auxiliary ports.

ω · · ·· · ·

α β
⇒β

· · ·· · ·
α

ω

Mixed cells containing an ω-node and a symbol node are used to translate wires between
an auxiliary port and a principal port.

ω

α
α

β
· · ·

· · ·
· · ·

β

· · ·

⇒

Cells containing two symbol nodes are used to translate wires from a principal port to
another principal port.

⇒

· · ·

· · ·
α

β

α

β

· · ·

· · ·

An interface cell containing a single ω-node is used to encode a wire that links one
auxiliary port of an interaction-net node to one free port.
An interface cell containing a single symbol node is used to encode a wire that links one
principal port of an interaction-net node to one free port.
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The particular case of a wire that links two free ports is encoded by mapping two
corresponding interface locations to nodes annotated with a particular forwarder symbol.
Both nodes forward to the same additional location designated for this wire that contains
two target ω-nodes.

Interaction-net node data is stored in the cell dedicated to the wiring of its principal port.
Pointers are then set up such that related ports and wires reference each other.

Among the set of symbols S, additionally to the symbols of the chosen interaction-net
system, as mentioned, a particular forwarder symbol (unary), which we denote by & in our
tool, can be used to lengthen the wires if necessary. Each occurrence contains a pointer to
the next hop on the path to the destination cell. In particular it is used in the transition
schemes associated to right-hand sides that connect two interface ports with a wire directly.

Given the above encoding for nets, reductions rules are turned to abstract transition
schemes µl → µr easily. The left-hand side of an interaction-net rule is encoded as a
configuration µl with any single-location domain that stores the two interaction-net nodes
that are part of the redex, and any interface that contain the required number of auxiliary
ports present in the redex. The right-hand side is encoded as a configuration µr with a
domain whose cardinal corresponds to the number of wires, except for those which connect a
free port to a port of an interaction-net node. The usual constraints on interaction-net rules,
including the symmetry of the rules that define interaction between two identical symbols,
ensure that the defined abstract transition scheme is invariant upon permutations of the
locations which were arbitrarily chosen as port identifiers.

Assuming neighborhoods are “sufficiently large to always contain free cells”, the interaction-
net reduction can be simulated on an interaction automaton. Different topologies are expected
to lead to different performances. We implemented an interpreter for the planar topology
G2

m.

3.3 Limits
For grids Gd

m (and similar topologies for which the size of iterated n-neighborhoods is
polynomially bounded in n), due to data propagation constraints, the number of spawned
redexes after a parallel running time t is necessarily bounded by a polynomial of degree d,
the dimension of the grid. We cannot hope that the asymptotic speed-up offered by the
parallelization will exceed this limit.

We have not yet investigated other topologies. Some multiscale webs including limited-
bandwidth but long-distance links seem sufficiently realistic and could provide exponential
speed-ups in many cases.

4 Implementation

The source code of ia2d is available at https://bitbucket.org/inarch/ia2d. For in-
stallation and usage instructions please consult the README.md file included in the source
repository.

4.1 General Design Principles
Our automaton implementation works on a 2-dimensional grid of cells, each of which can
hold up to two nodes. Parallel transitions of the automaton are performed in a loop. Each
of these parallel transitions is preceded by a migration pass and an input/output pass as
described hereafter.

https://bitbucket.org/inarch/ia2d
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Migration. The migration pass rearranges the cells in a way that avoids too high densities
of cells, while at the same time keeping connected nodes within range of each other. As
currently implemented the strategy favors migrations to locations whose neighborhoods
contain the most empty cells. The final selection of a destination location among identically
weighted candidates relies on randomization to avoid directional bias. Like the rest of the
computation, the implemented migration strategy is local. Decisions are made by looking
only at cells within a fixed radius.

Input and Output. For input and output the automaton uses special nodes in and out.
During the input/output pass, the in nodes lazily insert nodes from the supplied program
onto the grid when their interaction with other nodes is required. Conversely, the out nodes
take nodes which are part of the normal form off the grid to produce a result. Currently, the
collected result is printed at once on the terminal when the automaton stops, but input and
output could also be streamed in real time.

Parallel Transitions. The main reduction pass rewrites cells that contain interaction-net
redexes, as defined by the user, assuming enough free cells are locally available to store the
right-hand sides of the reduction rules. The combination of a migration pass, an input/output
pass and a parallel transition is repeated until the normal form of the input net has been
entirely collected or an error such as memory exhaustion occurs.

Ressource Stress. The size of the grid has no effect if it is sufficiently large, but if the
memory capacity is really tight the grid may become too densely populated, up to saturation.
The firing of redexes that require allocations are in this case delayed until some space is
made available locally by other reductions. Parallel execution which generally requires more
space than sequential execution is therefore affected and gradually sequentializes to some
extent. It may also occur that the memory capacity is simply too small for the computation,
in which case the reduction will fail as it would on a normal computer.

Failures. Reduction can stop half-way if space is unavailable or cannot be freed locally.
We developed this is software in order to understand when it happens in practice, how it
can be avoided, and what theoretical results are necessary. For comparison, in traditional
computation, the practical answer to a shortage of resources, (i.e., an insufficient amount of
memory to run a certain algorithm) is simply to “fail” rather than to try to adapt to the
situation. In the more tricky case of parallel computation, where a simple amount of memory
is not the only parameter, we still have to decide whether it is worthwhile to adapt.

4.2 Input Language

As input language we use a variant of the Pin language [8]. The Pin language is a flat
representation of graphs. We write the rule for an active pair between nodes α and β as
α(x1, . . . , xn) ./ β(y1, . . . , ym)⇒ N where N is a comma-separated list of net components.
Net components are either:

wires x ∼ y,
connections to nodes x ∼ γ(y1, . . . , yk),
or active pairs γ1(x1, . . . , xn) ∼ γ2(y1, . . . , ym).

FSCD 2016
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Moreover, any variable used in a reduction rule should occur exactly twice in this rule. For
example, one rule used to define binary addition is the following:

add(y, r) ./ succ(x)⇒ r ∼ succ(t), add(y, t) ∼ x

In the actual input to the program we write ./ as ><, ∼ as ~, ⇒ as => and we separate
net components with commas and rules with semicolons. The following source code defines
addition on natural numbers in unary encoding and the sum over a list of natural numbers:

add(y,r) >< zero() => r~y;
add(y,r) >< succ(x) => r~succ(t), add(y,t)~x;

sum(r) >< nil() => r~zero();
sum(r) >< cons(x, xs) => x~add(t, r), xs~sum(t);

A complete source file consists of an optional header of import statements and a list of rules
and input nets. By storing the above library in a file called nat_unary.inet, we can write
the computation of the sum of the natural numbers 4 and 2 as follows:

import "nat_unary.inet"
x ~ succ(succ(succ(succ(zero())))),
y ~ succ(succ(zero)),
cons(x, cons(y, nil())) ~ sum(r)

In this net, r is the only variable which occurs only once. It is the name associated to
the result of this computation.

Along with the ia2d source code, a number of code examples are provided in the examples
directory. The reader should refer to these files for more involved programming examples.

Synthesized Rules. Most interaction-net programs use δ nodes for duplicating and ε nodes
for erasing parts of nets. The implementation of the automaton also makes use of forwarder
nodes to connect two auxiliary ports or to extend the connections between distant nodes.
The rules for δ, ε are synthesized and need not be provided by the programmer. For any
user-defined symbol l of arity k the following rules are generated.

ε() ./ l(z1, . . . , zk) ⇒ ε() ∼ z1, . . . , ε() ∼ zk

δ(x, y) ./ l(z1, . . . , zk) ⇒ x ∼ l(x1, . . . , xk), y ∼ l(y1, . . . , yk),

z1 ∼ δ(x1, y1), . . . , zk ∼ δ(xk, yk)

In order to duplicate cyclic data structures the rules ε() ./ ε()⇒ (with an empty list as
right-hand side) and δ(x1, y1) ./ δ(x2, y2)⇒ x1 ∼ x2, y1 ∼ y2 are provided as well.

4.3 Resource Usage Reports
When invoked on the command-line, besides the normal form of the provided net, ia2d
outputs the number of individual transition steps and parallel reductions passes which were
performed, along with more detailed reports for every reduction pass. (Please note that the
output is truncated for brevity and might change in future versions.)
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$ ia2d examples/bsort_example.inet --grid-size=16x16
SEQ STEPS: 664
PAR STEPS: 48
PASSES BREAKDOWN:

...
1 x 27 fired
1 x 29 fired
1 x 29 fired and 1 delayed
5 x 30 fired
...

DURATION:
0.537617s

From the above output we can tell that ia2d had to perform 48 parallel reduction passes
to reduce the input program. If we furthermore supply a parameter for the --svg flag, the
intermediate states of the grid are made available as SVG files. As an illustration, we provide
below four snapshots of the SVG output for the sum.inet program, which is available in the
repository.

in
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in
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-
-

-
-

in
add

in
add

-
-
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sum

-
-
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succ

-
-

-
-

zero
add
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-
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-

in
-

-
-

succ
out

&
-

succ
-

succ
-

in
add

zero
-

succ
-

In the first picture, the grid is initially populated by just two in nodes which form the
only redex of the input program. After three steps, as seen in the second picture, the grid
contains more redexes and some input is still to be written onto the grid by the in nodes.
The transition between the second and third picture is a migration pass, where existing in
nodes are replaced with symbols from the input, new in nodes are added, and one different
cell is migrated to a different position. The last picture shows the grid in a state where part
of the output is already taken off the grid by an out node, while at the same time the final
add node is still waiting for additional input data.
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4.4 Results
The following table shows the number of parallel reduction passes needed to sort the leaves of
a full binary tree with the bitonic sorter on the 2-dimensional grid model and compares it to
the sequential number of steps that would be required in the standard interaction-net model.

number of leaves sequential steps parallel steps (average) speed-up
2 23 10.0 2.30
4 70 15.0 4.67
8 212 22.0 9.64
16 620 31.9 19.44
32 1740 52.8 32.95

The size of the grid was chosen sufficiently large not to slow the computation. We observe
a quick increase of speed-ups as long as the neighborhood radius does not influence the
allocation too much. Beyond a certain input size we see that the potential quadratic increase
of the speed-up is not yet met on this example with a naive migration strategy.

5 Conclusion

We introduced a parallel computation model with an entirely localized reduction on top of a
memory scheme with a limited connectivity and a locally bounded storage and computation
capacity. We run functional programs on this model and showed that reasonable memory
management strategies can also be implemented locally.

We plan to incorporate new features such as nested pattern matching [9, 7] to our input
language and support more traditional programming syntaxes.

Despite the relatively smooth executions obtained with a very simplistic memory allocation
strategy, there is plenty of room for efficiency improvements that would reduce the total
migration costs. Integration with complexity-analysis techniques such as [13, 6] should help
to implement really accurate allocation strategies.

We only considered 2-dimensional uniform grid supports in our experimentation. In the
future, we would also like to support 3 or n dimensional grids and more elaborate topologies.

A last remaining challenge is to use a minimal set of symbols and reduction rules. We
know that there exist interaction-net systems with a very restricted set of symbols that are
universal [12]. In particular preliminary investigations have been made concerning the usage
of such minimal sets of symbols to specifically encode functional programs by means of linear
logic [17, 4, 5].
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Abstract
The first-order theory of rewriting is decidable for finite left-linear right-ground rewrite systems.
We present a new tool that implements the decision procedure for this theory. It is based on tree
automata techniques. The tool offers the possibility to synthesize rewrite systems that satisfy
properties that are expressible in the first-order theory of rewriting.
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1 Introduction

Dauchet and Tison [4] proved that the first-order theory of rewriting is decidable for ground
rewrite systems. In this theory one can express properties like confluence

∀ s ∀ t ∀u (s→∗ t ∧ s→∗ u =⇒ ∃ v (t→∗ v ∧ u→∗ v))

and normalization

∀ s ∃ t (s→∗ t ∧ ¬∃u (t→ u))

The decision procedure in [4] is based on tree automata techniques and easily extends to
left-linear right-ground rewrite systems. Key ingredients are tree automata that accept
encodings of n-ary relations on terms, ground tree transducers for certain binary relations
on terms, as well as several closure properties corresponding to the logical operations of the
first-order theory of rewriting.

We implemented the decision procedure in the new First-Order Rewriting Tool, FORT
for short. It takes as input a left-linear right-ground TRS R and a first-order formula ϕ
and reports whether R satisfies the property expressed by ϕ. We extended the theory with
additional predicates in order to increase expressibility. For instance, the formula

∀ s ∀ t ∀u (s→! t ∧ s −→‖ u =⇒ t = u ∨ ∃ v (u→+ v ∧ v ε−→ t))

can be handled by our tool. In addition, FORT can be used to synthesize left-linear right-
ground rewrite systems that satisfy a property expressible in the first-order theory of rewriting,
using a simple generate-and-test algorithm. Additional input parameters guide the search.
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36:2 Automating the First-Order Theory of Rewriting for Left-Linear Right-Ground TRS

The remainder of this paper is organized as follows. In Section 2 the first-order theory of
rewriting is formally defined and the supported predicates are presented. The tree automata
techniques underlying the decision procedure implemented in FORT are covered in Section 3
and in Section 4 we explain how formulas are mapped to the constructions of the preceding
section. Synthesis is the topic of Section 5. In Section 6 we briefly explain how FORT is
used and present some implementation details. The power of FORT is illustrated by several
experiments in Section 7. We conclude in Section 8 with related work and ideas for future
work.

2 First-Order Theory of Rewriting

We assume familiarity with term rewriting [1]. We consider first-order logic over a language
L without function symbols. The language contains the following binary predicate symbols:

→ →+ →∗ →! −→‖ ε−→ >ε−−→ ↔ ↔∗ ↓ =

As models we consider finite TRSs (F ,R) such that the set of ground terms T (F) is non-
empty, which is equivalent to the requirement that the signature F contains at least one
constant symbol. The set of ground terms serves as domain for the variables in formulas over
L. The interpretation of the predicate symbol → in (F ,R) is the one-step rewrite relation
→R over T (F). The other predicate symbols are interpreted in a similar fashion: →! denotes
normalization: s→!

R t if s→∗R t and t is a normal form of R, −→‖ denotes a parallel rewrite
step, ε−→ denotes one-step rewriting at the root position, >ε−−→ denotes one-step rewriting below
the root, and ↔∗ denotes convertibility. The predicate symbols →∗, →!, ↔, and ↓ can be
expressed in terms of the other predicate symbols:

s→∗ t ⇐⇒ s→+ t ∨ s = t s↔ t ⇐⇒ s→ t ∨ t→ s

s→! t ⇐⇒ s→∗ t ∧ ¬∃u (t→ u) s ↓ t ⇐⇒ ∃u (s→∗ u ∧ t→∗ u)

We included them for convenience. For the same reason, L contains symbols denoting
standard properties of (terms of) TRSs:

CR(t) ⇐⇒ ∀u ∀ v (t→∗ u ∧ t→ v =⇒ u ↓ v) CR ⇐⇒ ∀ t CR(t)
WCR(t) ⇐⇒ ∀u ∀ v (t→ u ∧ t→ v =⇒ u ↓ v) WCR ⇐⇒ ∀ t WCR(t)

WN(t) ⇐⇒ ∃u (t→! u) WN ⇐⇒ ∀ t WN(t)
UN(t) ⇐⇒ ∀u ∀ v (t→! u ∧ t→! v =⇒ u = v) UN ⇐⇒ ∀ t UN(t)

NFP(t) ⇐⇒ ∀u ∀ v (t→ u ∧ t→! v =⇒ u→! v) NFP ⇐⇒ ∀ t NFP(t)
NF(t) ⇐⇒ ¬∃u (t→ u) UNC ⇐⇒ ∀ t ∀u (t↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

The acronyms stand for the Church-Rosser property or confluence (CR), the weak Church-
Rosser property or local confluence (WCR), (weak) normalization (WN), unique normal forms
(UN), the normal form property (NFP), and unique normal forms with respect to conversion
(UNC). On the other hand, the unary predicate symbol Fin◦ defined as

Fin◦(t) ⇐⇒ {u | t ◦ u} is finite

for every boolean combination ◦ of the binary predicate symbols was added to L as it strictly
increases expressibility. For example, it allows to express the important termination (strong
normalization) property:

SN(t) ⇐⇒ Fin→+(t) ∧ ¬∃u (t→∗ u ∧ u→+ u)
SN ⇐⇒ ∀ t Fin→+(t) ∧ ¬∃u (u→+ u)
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It should be stressed that the above properties are restricted to ground terms. So CR stands
for ground-confluence, which is different from confluence, even in the presence of ground
terms; consider e.g. the TRS consisting of the rules f(x)→ x and f(x)→ c.

3 Tree Automata

Most of the results presented in this section are well-known. We refer to [3] for further details.
We consider bottom-up tree automata A = (F , Q,Qf ,∆) consisting of a finite signature F
with T (F) 6= ∅, a finite set Q of states with Q ∩ F = ∅, a set Qf ⊆ Q of final states, and a
set ∆ of transition rules. Every transition rule has one of the following two shapes:

f(α1, . . . , αn)→ β with f ∈ F and α1, . . . , αn, β ∈ Q, or
α→ β with α, β ∈ Q.

Transition rules of the second shape are called ε-transitions. We view A as a ground TRS
(F ∪Q,∆). The induced rewrite relation is denoted by →A or simply → if A can be inferred
from the context. The language L(A) accepted by A is the set of ground terms in T (F)
that can be rewritten to a final state. A subset T ⊆ T (F) is regular if there exists a tree
automaton A with L(A) = T .

Every regular language is accepted by a tree automaton A without ε-transitions. Moreover,
it may be assumed that A is deterministic (no two different transition rules of A have the
same left-hand side) and completely defined (for every f(α1, . . . , αn) there exists a transition
rule with this left-hand side).

I Theorem 1. The class of regular languages is effectively closed under union, intersection,
and complement.

The constructions employed in the proof are well-known. In the decision procedure for
the first-order theory of rewriting for left-linear right-ground TRSs they are used to encode
the propositional connectives ∧, ∨, and ¬.

I Theorem 2. The following problems are decidable:

instance: a tree automaton A and a ground term t

question: t ∈ L(A)?

instance: a tree automaton A
question: L(A) = ∅?

instance: tree automata A and B
question: L(A) ⊆ L(B)?

To cope with the predicate symbols in our language we use tree automata that operate
on n-tuples of ground terms.

I Definition 3. For a signature F we let F (n) = (F ∪{⊥})n. Here, ⊥ /∈ F is a fresh constant.
The arity of a symbol f1 · · · fn ∈ F (n) is the maximum of the arities of f1, . . . , fn. Given
terms t1, . . . , tn ∈ T (F), the term 〈t1, . . . , tn〉 ∈ T (F (n)) is defined inductively:

〈t1, . . . , tn〉 =
{
t1 · · · tn if t1, . . . , tn are constants
f(u1, . . . , um) otherwise

where f = root(t1) · · · root(tn) has arity m and ui = 〈s1, . . . , sn〉 with

sj =
{
tj |i if i ∈ Pos(tj)
⊥ otherwise

The following example illustrates the above definition.

FSCD 2016
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I Example 4. Consider the ground terms s = f(g(a), f(b, b)), t = g(g(a)), and u = f(b, g(a)).
We have 〈s, t, u〉 = fgf(ggb(aa⊥), f⊥g(b⊥a, b⊥⊥)).

I Definition 5. A regular relation is an n-ary relation R on ground terms such that its
encoding {〈t1, . . . , tn〉 | (t1, . . . , tn) ∈ R} is regular. The class of all n-ary regular relations is
denoted by RRn.

An RR1 relation is just a regular language. The following result is an immediate con-
sequence of Theorem 1.

I Theorem 6. The class of regular relations is effectively closed under boolean operations.

I Definition 7. Let R be an n-ary relation over T (F).
If n > 2 and 1 6 i 6 n then the i-th projection Πi(R) of R is the relation

{(t1, . . . , ti−1, ti+1, . . . , tn) | (t1, . . . , tn) ∈ R}

If 1 6 i 6 n+ 1 then the i-th cylindrification Ci(R) of R is the relation

{(t1, . . . , ti−1, u, ti, . . . , tn) | (t1, . . . , tn) ∈ R and u ∈ T (F)}

If σ is a permutation on {1, . . . , n} then σ(R) denotes the relation

{(tσ(1), . . . , tσ(n)) | (t1, . . . , tn) ∈ R}

I Theorem 8. The class of regular relations is effectively closed under projection, cylindri-
fication, and permutation.

In the decision procedure projection is used to encode existential quantification, whereas
cylindrification is used to combine relations of different arity. An important limitation of
binary regular relations is that they are not closed under transitive closure [3, Exercise 3.1].

I Definition 9. A ground tree transducer (GTT for short) is a pair G = (A,B) of tree
automata over the same signature F . A pair of ground terms (s, t) is accepted by G if
s →∗A · ∗B← t. The set of all accepted pairs is denoted by R(G). A binary relation R on
ground terms is a GTT relation if R = R(G) for some GTT.

I Theorem 10. The class of GTT relations is effectively closed under inverse and transitive
closure.

I Theorem 11. If G1 = (A1,B1) and G2 = (A2,B2) are GTTs with disjoint sets of states
and G = (A1 ∪ A2,B1 ∪ B2) then R(G)+ = (R(G1) ∪R(G2))+.

I Lemma 12. Every GTT relation is a regular relation.

The final result in this section is an easy generalization of a result of Dauchet and
Tison [4, 5]. The proof is given in the appendix.

I Lemma 13. If R is a binary regular relation then FinR is a regular predicate.

4 Automation

In this section we explain how first-order formulas are translated into tree automata manip-
ulations. We start the discussion with the binary relation symbols of L. Throughout this
section, R denotes a finite left-linear right-ground TRS over a finite signature F .
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I Lemma 14. The relations =, →R,
ε−→R, and

>ε−−→R are regular.

Rather than giving the proof, we illustrate the constructions on a simple example.

I Example 15. Consider the TRS R consisting of the rules f(x, a)→ g(b) and g(a)→ f(a, b).
The (encoding of the) identity relation = is accepted by the tree automaton

aa→ > bb→ > gg(>)→ > ff(>,>)→ >

For ε−→R we use the following tree automaton (with X as unique final state):

fg(α, β)→ X ab→ α a⊥ → γ gf(δ, ε)→ X
a⊥ → β bb→ α b⊥ → γ aa→ δ

gb(γ)→ α g⊥(γ)→ γ ⊥b→ ε

fb(γ, γ)→ α f⊥(γ, γ)→ γ

By combining the previous two automata and adding the transitions

gg(X)→ X ff(X,>)→ X ff(>,X)→ X

we obtain a tree automaton that accepts →R. For
>ε−−→R we add instead

gg(X)→ X′ ff(X,>)→ X′ ff(>,X)→ X′

gg(X′)→ X′ ff(X′,>)→ X′ ff(>,X′)→ X′

and make X′ the unique final state.

I Lemma 16. The relation −→‖ R is a GTT relation.

I Example 17. The GTT G = (A,B) with

A a → α g(α) → α a → β f(α, β) → ι1 g(γ) → ι1 a → δ B
b → α f(α, α) → α g(β) → ι2 f(δ, γ) → ι2 b → γ

accepts the relation −→‖ R for the TRS R of the previous example.

I Lemma 18. The relations →∗R, →
+
R, and ↔∗R are regular relations.

Proof. The relation →∗R = −→‖ +
R is a GTT relation according to Lemma 16 and Theorem 10,

and hence regular according to Lemma 12. To obtain the regularity of →+
R, the construction

in the proof of Lemma 12 [3, Proposition 3.2.7] is slightly modified. For↔∗R = (−→‖ R ∪ R −→‖)+

we additionally use Theorem 11. J

Note that we cannot use the equivalence of ↔∗R and (→R ∪ R←)+ ∪ = in the above
proof since →R ∪ R← is not a GTT relation and binary regular relations are not closed
under transitive closure.

For the remaining binary relations we use the formulas given in Section 2 in combination
with the closure properties of Section 3. We have to be careful when combining relations with
union and intersection because there may be a mismatch in the dimension of the involved
relations. Consider the binary relations R1 = {(s, t) | s → t} and R2 = {(t, u) | t → u}.
Their union is the ternary relation R1 ∪R2 = {(s, t, u) | s→ t or t→ u}, so before applying
the union construction we have to cylindrify R1 and R2 suitably. Also permutation is needed
if the order of terms in the participating relations is different.

FSCD 2016
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Existential quantification is implemented using projection (Definition 7 and Theorem 8).
Formulas are normalized in such a way that implications and universal quantifications
are eliminated using the known equivalences (ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ and ∀xϕ ≡ ¬∃x¬ϕ).
Furthermore, negations are pushed inside and double negations are eliminated. We do not
transform formulas into prenex normal form since this typically increases the dimension of the
relations, with a corresponding increase in the computation time for the closure operations.

We illustrate the decision procedure on a small example.

I Example 19. Suppose we want to determine whether a given left-linear right-ground
TRS R is (weakly) normalizing. We use the formula φ = ∀ s ∃ t (s →∗ t ∧ ¬∃u (t → u))
for this purpose. The computed (tree automata representations of the) relations are listed
below:
1. GTT relation for {(s, t) | s −→‖ R t} (Lemma 16)
2. GTT relation for {(s, t) | s→∗R t} (Theorem 10)
3. RR2 relation for {(s, t) | s→∗R t} (Lemma 12)
4. RR2 relation for {(t, u) | t→R u} (Lemma 14)
5. RR1 relation for {t | ∃u (t→R u)} (projection Π2)
6. RR1 relation for {t | ¬ ∃u (t→R u)} (complement)
7. RR2 relation for {(s, t) | ¬ ∃u (t→R u)} (cylindrification C1)
8. RR2 relation for {(s, t) | s→∗R t ∧ ¬∃u (t→R u))} (intersection)
9. RR1 relation for {s | ∃ t (s→∗R t ∧ ¬∃u (t→R u))} (projection Π2)
10. RR1 relation for {s | ¬ ∃ t (s→∗R t ∧ ¬∃u (t→R u))} (complement)

Then R satisfies φ if and only if the final language is empty (Theorem 2).

The logic supports the shorter formula ∀ s ∃ t (s →! t) to test for normalization. The
relation {(s, t) | s→! t} is implemented as {(s, t) | s→∗ t ∧ NF(t)}. For the NF predicate
our tool FORT employs the explicit construction presented in Comon [2, Section 4.2] rather
than the implicit encoding ¬∃u (t→ u) given in the preceding example. For small TRSs
there is little difference, but if the left-hand sides have a larger depth or contain functions
symbols of a higher arity, the explicit construction is more efficient.

5 Synthesis

Our tool can also be used to synthesize TRSs that satisfy properties given by the user. This
may be interesting for finding counterexamples and non-trivial TRSs for exam exercises as
well as competitions. Furthermore, we envisage the use of FORT in courses on term rewriting.

The synthesis algorithm for ground TRSs is shown in Figure 1. Of the five input
parameters, the formula φ must be supplied whereas the other four are optional. If the
signature F is not given, we enumerate all finite signatures in a dovetailing manner and call
the procedure repeatedly. The default values for the other optional parameters are n = 3,
m = 4, and d = m− 1. The outer while loop incrementally constructs the signature F . The
current candidate G ⊆ F is used to compute the set of terms T from which the rewrite rules
are constructed. Terms in T must satisfy the given depth and size restrictions. In the for
loop we enumerate all candidate ground TRSs that have no more than n rules, starting from
the ones with the fewest rules. In the inner while loop we consider the set of ground TRSs
R′ consisting of i rewrite rules. We select the smallest R ∈ R′ in some fixed total order >
on TRSs and test whether R is normalized, which means in this context that no smaller
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Input: • closed first-order formula φ over L
• signature F • maximum size of terms m
• maximum number of rules n • maximum depth of terms d

Output: • TRS R satisfying φ

G := ∅;
while F \ G 6= ∅ do

G := G ∪ {(f, a)} with (f, a) ∈ F \ G of minimum arity a;
T := {t ∈ T (G) | |t| 6 m and depth(t) 6 d};
R := T × T ;
for i = 0 to min(n, |R|) do

R′ := {S ⊆ R | S consists of i pairs};
while R′ 6= ∅ do

select smallest R ∈ R′ (with respect to some total order >);
if R is normalized and R � φ then return R;
R′ := R′ \ {R}

od

od

od;
return failure

Figure 1 Procedure for synthesizing TRSs.

(with respect to >) TRS exists (in the original R′) that can be obtained from R by renaming
constant symbols (within G). This test is done to avoid calling the decision tool on a TRS
for which an earlier call on a renamed version of the TRS was unsuccessful. If R′ passes this
test we use the decision tool to determine whether R satisfies the formula φ.

The procedure is easily extended to left-linear right-ground TRSs. We have an additional
optional input parameter v for the number of variables. Its default value is one. A set T ′ of
linear terms with variables sorted in some fixed order (to keep the set small) is computed
and the set of candidate TRSs is extended to T ′ × T .

6 Interface

Precompiled binaries to run FORT from the command line are available from

http://cl-informatik.uibk.ac.at/software/FORT

FORT can be used as decision tool via the following command

./fort -D <file> [<verbosity>] "<formula>"

where <formula> specifies the property that should be tested on the TRS given in <file>.
The syntax of TRSs follows the standard TPDB format.1 The optional <verbosity>

1 https://www.lri.fr/~marche/tpdb/format.html
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parameter takes a value in {0, 1, 2}. The higher the value, the more detailed the output will
be. The default value is 0. The syntax of the formula is explained in the file description.txt.
The quotation marks around the formula are essential. The basic command to synthesize
TRSs is

./fort -S <file>

where <file> must contain the line

(FORMULA <formula>)

and may contain the lines

(SIGNATURE <F>) (VARIABLES <V>) (RULES <R>) (SIZE <S>) (DEPTH <D>)

corresponding to the optional parameters that were described in the preceding section. The
signature <F> is specified as a comma separated list of function symbols and arities. For
example, (a 0, g 1, h 1) specifies a constant a and two unary symbols g and h. The
information in <file> can also be passed to FORT via the command line options

-f "<F>" -v <V> -r <R> -s <S> -d <D>

7 Experiments

In this section we illustrate FORT on a number of examples. After reporting on some
experiments we performed with the decision tool, we turn to the synthesis part.

The combined confluence2 and termination3 problem databases contain 65 left-linear
right-ground TRSs. When testing for confluence, FORT reports that 42 of these TRSs
are (ground-)confluent, 14 are non-(ground-)confluent, and the remaining 9 TRSs exceed
the given time limit of 60 seconds. (Ground-confluence coincides with confluence on our
collection of TRSs.) Not surprisingly, designated confluence provers4 like ACP, CSI, and
Saigawa are considerably faster than FORT, but only CSI subsumes FORT on the 65 left-linear
right-ground TRSs (45/19/1 in less than 2 minutes, compared to the 8 minutes of FORT).
Next we compare the following three different but equivalent formulations of confluence:

forall s, t, u (s ->* t & s ->* u => t join u) 631s, 10 timeouts (1)
forall s, t, u (s ->* t & s -> u => t join u) 484s, 9 timeouts (2)
forall t, u (t <->* u => t join u) 895s, 13 timeouts (3)

The total time spent by FORT (using a 60 seconds time limit) is given in the right column.
The computation of ↔∗ is much more expensive than →∗. Moreover, intersecting the RR3
relations R1 = {(s, t, u) | s →∗ t} and R2 = {(s, t, u) | s →∗ u} is more expensive than
intersecting R1 with R3 = {(s, t, u) | s→ u}. The numbers explain why the second formula
(called semi-confluence in [1]) is selected as translation of the predicate CR.

2 http://cops.uibk.ac.at/
3 http://termination-portal.org/wiki/TPDB
4 http://coco.nue.riec.tohoku.ac.jp/tools/

http://cops.uibk.ac.at/
http://termination-portal.org/wiki/TPDB
http://coco.nue.riec.tohoku.ac.jp/tools/
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Table 1 Intermediate automata sizes for TRS #74 of the confluence database.

property → →∗ ↔∗ ∩1 ∩2 ∩3 ∩4 time

(1) 82 1162 2184 33088 1723 5.2s
(2) 37 82 472 2184 15187 910 2.1s
(3) 82 1634 2184 43076 19237 27.1s

To give an idea of the sizes of the computed tree automata, we present detailed information
in Table 1 for TRS #74

a→ c f(x, c)→ f(c, c) d→ f(a, c) f(a, b)→ d
b→ c f(c, x)→ f(c, c) d→ f(c, b)

of the confluence database. Here ∩1 corresponds to the conjunction in the subformula that
represents the peak (absent for property (3)) and ∩2 the one from the join t ↓ u. The next
two columns correspond to the implication in the three properties before (∩3) and after (∩4)
trimming the automata. As can be seen, trimming intermediate automata, although time
consuming, has a significant impact.

We performed a similar experiment for the normal form property (NFP):

forall s, t, u (s -> t & s ->! u => t ->* u) 187s, 4 timeouts
forall t, u (t <->* u & NF(u) => t ->* u) 863s, 13 timeouts
forall t (WN(t) => CR(t)) 496s, 7 timeouts

justifying the selection of the first formula.
The time required to synthesize a TRS varies vastly, depending on the property, the

additional options, and the size of the smallest TRS fulfilling the property. Hence, the options
should be chosen with care.

I Example 20. We start with looking for non-confluent TRSs having unique normal forms
(UN & ∼CR). With the option (VARIABLES 0) the ground TRS

a→ a b→ a b→ g(a)

is generated in about 18 seconds. Generating a one-rule TRS with the option (RULES 1)
produces g(g(x))→ h(g(g(a))) in a bit more than 2 seconds.

I Example 21. Next we consider the formula

¬∀ t Fin ε←−(t) (FORMULA ∼forall t Fin(e<-,t))

which distinguishes ground TRSs from left-linear right-ground (but not ground) ones. Without
any options FORT produces the single rule g(x)→ c in a fraction of a second. The formula

¬∀ t Fin6=(t) (FORMULA ∼forall t Fin(∼=,t))

is true for TRSs that are not ARSs. FORT produces the empty TRS over the signature
consisting of two constants and a unary function symbol. To ensure the existence of a function
symbol of arity n > 1 we can use the formula ∃ s ∃ t (s −→‖ t ∧ ¬(s→ t) ∧ ¬(s = t)), which
results in the single rule a → b over a signature containing an additional binary function
symbol f.
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I Example 22. Finding a locally confluent but not confluent TRS R is easy. FORT produces
the two-rule TRS

g(g(c))→ c g(g(c))→ g(g(g(c)))

when giving the formula (WCR & ∼CR). The well-known abstract counterexample by Kleene

a b c d

is found by restricting the search to ARSs. This can be done either by extending the formula
to (WCR & ∼CR & forall t Fin(∼=,t)) or by using the option (DEPTH 0). Moreover, the
default value for the maximal number of rewrite rules has to be increased to at least four
(RULES 4). If we impose the condition that R−1 is terminating (cf. [11]), the TRS

a→ b a→ g(a) b→ g(g(b))

is produced with (WCR & ∼CR & forall t Fin(<-,t) & ∼exists u (u +<- u)).

8 Conclusion

Concerning related work, we are not aware of any other tree-automata based tool for
synthesizing TRSs nor of any tool that allows properties to be specified by an arbitrary
first-order formula in the theory of rewriting. Jiresch [6] developed a synthesis tool to
attack the well-known open problems (RTA LOOP #13) concerning the sufficiency of certain
restricted joinability conditions on critical pairs of left-linear TRSs.

Zantema [11] developed the tool Carpa+ for synthesizing TRSs that satisfy properties
which can be encoded as SMT problems. The TRSs that can be synthesized form a small
extension of the class of ARSs: A single unary function symbol f is permitted and rules must
have the form a→ b, a→ f(b), or f(a)→ b, where a and b are constants. The properties are
restricted to those that can be encoded into the conjunctive fragment of SMT-LRA (linear
real arithmetic). The predecessor tool Carpa synthesized combinations of ARSs with help of
a SAT solver. It was used to show the necessity of certain conditions in abstract confluence
results [8, Section 5].

We conclude by mentioning some ideas for future work. The most interesting extension
is the generation of witnesses for existential formulas or formulas with free variables. The
efficiency of FORT can certainly be improved, e.g. by converting its sequential code into
multi-threaded code. Optimizing the synthesis algorithm for ARSs is easily possible. Support
for combinations of TRSs (e.g., to express commutation) is also useful. The enumeration
algorithm can be improved, for instance by having the values that restrict the search space
increase over time. The question whether rewrite strategies can be incorporated is less easy
to answer. A major obstacle is that the subterm relation is not expressible in the first-order
theory of rewriting (cf. [3, Exercise 3.13]). Going beyond left-linear right-ground TRSs is a
non-trivial matter. Dropping either restriction, one quickly faces an undecidable first-order
theory, even when one-step rewriting (→) is the only predicate symbol [9, 7, 10]. Formalizing
the underlying theory into an interactive theorem prover like Isabelle/HOL will be a major
undertaking, but a necessary step to ensure that the answers and TRSs produced by FORT
are correct.

Acknowledgements. We thank Bertram Felgenhauer for reporting a mistake in the earlier
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F. Rapp and A. Middeldorp 36:11

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
2 H. Comon. Sequentiality, monadic second-order logic and tree automata. I&C, 157(1-2):25–

51, 2000. doi:10.1006/inco.1999.2838.
3 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications, 2007. URL: http://www.grappa.
univ-lille3.fr/tata.

4 M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proc. 5th
LICS, pages 242–248, 1990. doi:10.1109/LICS.1990.113750.

5 M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable (extended
version). Technical Report I.T. 197, LIFL, 1990.

6 E. Jiresch. A term rewriting laboratory with systematic and random generation and
heuristic test facilities. Master’s thesis, Vienna University of Technology, 2008. URL:
http://www.logic.at/staff/jiresch/thesis/thesis.pdf.

7 J. Marcinkowski. Undecidability of the first order theory of one-step right ground re-
writing. In Proc. 8th RTA, volume 1232 of LNCS, pages 241–253, 1997. doi:10.1007/
3-540-62950-5_75.

8 A. Stump, H. Zantema, G. Kimmell, and R. El Haj Omar. A rewriting view of simple
typing. LMCS, 9(1), 2012. doi:10.2168/LMCS-9(1:4)2013.

9 R. Treinen. The first-order theory of linear one-step rewriting is undecidable. TCS, 208(1-
2):179–190, 1998. doi:10.1016/S0304-3975(98)00083-8.

10 S. Vorobyov. The undecidability of the first-order theories of one step rewriting in linear
canonical systems. I&C, 175(2):182–213, 2002. doi:10.1006/inco.2002.3151.

11 H. Zantema. Automatically finding non-confluent examples in term rewriting. In Proc. 2nd
IWC, pages 11–15, 2013. URL: http://cl-informatik.uibk.ac.at/iwc/iwc2013.pdf.

A Proof of Lemma 13

Proof. The proof is based on the sketch in Dauchet and Tison [5]. Let A = (F (2), Q,Qf ,∆)
be the tree automaton that accepts the binary regular relation R. The set Q∞ is defined as
follows:

Q∞ = {q ∈ Q | 〈⊥, t〉 →∗A q for infinitely many terms t ∈ T (F)}

The set Q∞ is computed by constructing a graph with states as nodes. For every transition
rule ⊥f(q1, . . . , qn)→ q in ∆ we add transitions from q1, . . . , qn to q. Now, q ∈ Q∞ if there
exists a cycle from which q can be reached.

Next we define an automaton A′ = (F , Q ∪ Q̄, Q̄f ,∆ ∪ ∆′). Here, Q̄ is a copy of
Q where every state is dashed: q ∈ Q̄ if and only if q ∈ Q. For every transition rule
fg(q1, . . . , qn)→ q ∈ ∆ we have the following rules in ∆′:

fg(q1, . . . , qn)→ q̄ if qi ∈ Q∞ for some i > arity(f) (1)
fg(q1, . . . , q̄i, . . . , qn)→ q̄ for all 1 6 i 6 n (2)

Finally we define the automaton B = (F , QB, QBf ,∆B) as the complement of the second
projection Π2(R(A′)) of A′. Since the construction for projection does not change (final)
states, we have QB = Q ∪ Q̄ and QBf = QB \ Q̄f . We show L(B) = {t ∈ T (F) | FinR(t)}.
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⊆ Let t = f(t1, . . . , tn) ∈ T (F) and assume that FinR(t) does not hold, i.e., the set
U = {u ∈ T (F) | (t, u) ∈ R} is infinite. Since the signature F is finite, infinitely many
terms u in U have a depth greater than t. Hence there exists a position p /∈ Pos(t)
such that the set U ′ = {u ∈ U | p ∈ Pos(u)} is infinite. For every u ∈ U ′ we have
〈t, u〉|p = 〈⊥, u|p〉. Since 〈t, u〉 is accepted by A and Q is finite, there must exist a state
q′ such that 〈⊥, u|p〉 →∗A q′ for infinitely many terms u ∈ U ′. Therefore q′ ∈ Q∞. By
construction of A′, there must be a transition rule f ′g(q1, . . . , qm)→ q̄ in ∆′ of type (1)
such that qi = q′ for some i > arity(f ′). Pick any u ∈ U ′ such that 〈⊥, u|p〉 →∗A q′. We
distinguish two cases, depending on the position p.

If u|p is a direct subterm of u then f = f ′, i = p, and q̄ ∈ Q̄f by construction of A′.
Note that p > arity(f) because p /∈ Pos(t). Since (t, u) ∈ R(A′), t ∈ Π2(R(A′)) and
thus t /∈ L(B) according to the definition of B.
Otherwise, the dash of q̄ is propagated upwards using transition rules of type (2), such
that we obtain 〈t, u〉 →∗A′ q̄f for some q̄f ∈ Q̄f . Hence (t, u) ∈ R(A′) and we complete
the proof as in the previous case.

⊇ Let t = f(t1, . . . , tn) ∈ T (F) and assume t /∈ L(B). By construction of B there exists a
term u = g(u1, . . . , um) ∈ T (F) such that 〈t, u〉 ∈ L(A′). Hence there exists a transition
rule fg(q1, . . . , qk) → q̄f in ∆′ with k = max(n,m) and q̄f ∈ Q̄f . We distinguish two
cases, depending on the transition rule.

Suppose the transition rule is of type (2). Hence there exists a state qi ∈ Q̄ with
1 6 i 6 n such that 〈ti, ui〉 →∗A′ qi and there must be a position p ∈ Pos(ui) \ Pos(ti)
such that 〈⊥, ui|p〉 →∗A′ q for some state q ∈ Q∞. By definition of Q∞, 〈⊥, s〉 →∗A′ q

and thus also 〈t, u[s]ip〉 →∗A′ q̄f for infinitely many terms s ∈ T (F). Hence the set
{u | (t, u) ∈ R} is infinite and therefore FinR(t) does not hold.
Suppose the transition rule is of type (1). So qi ∈ Q∞ for some i > n and thus
m > n. Hence 〈⊥, ui〉 →∗A′ qi and there exist infinitely many other terms s such that
〈⊥, s〉 →∗A′ qi and 〈t, u[s]i〉 →∗A′ q̄f . Hence the set {u | (t, u) ∈ R} is infinite and
FinR(t) does not hold as before. J
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