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Abstract
For a text of length n given in advance, the substring minimal suffix queries ask to determine
the lexicographically minimal non-empty suffix of a substring specified by the location of its oc-
currence in the text. We develop a data structure answering such queries optimally: in constant
time after linear-time preprocessing. This improves upon the results of Babenko et al. (CPM
2014), whose trade-off solution is characterized by Θ(n logn) product of these time complexit-
ies. Next, we extend our queries to support concatenations of O(1) substrings, for which the
construction and query time is preserved. We apply these generalized queries to compute lexico-
graphically minimal and maximal rotations of a given substring in constant time after linear-time
preprocessing.

Our data structures mainly rely on properties of Lyndon words and Lyndon factorizations.
We combine them with further algorithmic and combinatorial tools, such as fusion trees and the
notion of order isomorphism of strings.
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1 Introduction

Lyndon words, as well as the inherently linked concepts of the lexicographically minimal suffix
and the lexicographically minimal rotation of a string, are one of the most successful concepts
of combinatorics of words. Introduced by Lyndon [26] in the context of Lie algebras, they are
widely used in algebra and combinatorics. They also have surprising algorithmic applications,
including ones related to constant-space pattern matching [13], maximal repetitions [6], and
the shortest common superstring problem [28].

The central combinatorial property of Lyndon words, proved by Chen et al. [8], states
that every string can be uniquely decomposed into a non-increasing sequence of Lyndon
words. Duval [14] devised a simple algorithm computing the Lyndon factorization in linear
time and constant space. He also observed that the same algorithm can be used to determine
the lexicographically minimal and maximal suffix, as well as the lexicographically minimal
and maximal rotation of a given string.

The first two algorithms are actually on-line procedures: in linear time they allow
computing the minimal and maximal suffix of every prefix of a given string. For rotations
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such a procedure was later introduced by Apostolico and Crochemore [3]. Both these solutions
lead to the optimal, quadratic-time algorithms computing the minimal and maximal suffixes
and rotations for all substring of a given string. Our main results are the data-structure
versions of these problems: we preprocess a given text T to answer the following queries:

I Problem (Minimal Suffix Queries). Given a substring v = T [`..r] of T , report the
lexicographically smallest non-empty suffix of v (represented by its length).

I Problem (Minimal Rotation Queries). Given a substring v = T [`..r] of T , report the
lexicographically smallest rotation of v (represented by the number of positions to shift).

For both problems we obtain optimal solutions with linear construction time and constant
query time. For Minimal Suffix Queries this improves upon the results of Babenko et
al. [4], who developed a trade-off solution, which for a text of length n has Θ(n logn) product
of preprocessing and query time. We are not aware of any results for Minimal Rotation
Queries except for a data structure only testing cyclic equivalence of two subwords [24]. It
allows constant-time queries after randomized preprocessing running in expected linear time.

An optimal solution for the Maximal Suffix Queries was already obtained in [4], while
the Maximal Rotation Queries are equivalent to Minimal Rotation Queries subject
to alphabet reversal. Hence, we do not focus on the maximization variants of our problems.

Using an auxiliary result devised to handle Minimal Rotation Queries, we also develop
a data structure answering in O(k2) time the following generalized queries:

I Problem (Generalized Minimal Suffix Queries). Given a sequence of substrings
v1, . . . , vk (vi = T [`i..ri]), report the lexicographically smallest non-empty suffix of their
concatenation v1v2 . . . vk (represented by its length).

All our algorithms are deterministic procedures for the standard word RAM model with
machine words of size W = Ω(logn) [17]. The alphabet is assumed to be Σ = {0, . . . , σ − 1}
where σ = nO(1), so that all letters of the input text T can be sorted in linear time.

Applications The last factor of the Lyndon factorization of a string is its minimal suffix.
As noted in [4], this can be used to reduce computing the factorization v = vp1

1 · · · vpmm of a
substring v = T [`..r] to O(m) Minimal Suffix Queries in T . Hence, our data structure
determines the factorization in the optimal O(m) time. If v is a concatenation of k substrings,
this increases to O(k2m) time (which we did not attempt to optimize in this paper).

The primary use of Minimal Rotation Queries is canonization of substrings, i.e.,
classifying them according to cyclic equivalence (conjugacy); see [3]. As a proof-of-concept
application of this natural tool, we propose counting distinct substring with a given exponent.

Related work Our work falls in a class of substring queries: data structure problems solving
basic stringology problems for substrings of a preprocessed text. This line of research,
implicitly initiated by substring equality and longest common prefix queries (using suffix trees
and suffix arrays; see [10]), now includes several problems related to compression [9, 22, 24, 5],
pattern matching [24], and the range longest common prefix problem [1, 2]. Closest to ours
is a result by Babenko et al. [5], which after O(n

√
logn)-expected-time preprocessing allows

determining the k-th smallest suffix of a given substring, as well as finding the lexicographic
rank of one substring among suffixes of another substring, both in logarithmic time.
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Outline of the paper In Section 2 we recall standard definitions and two well-known
data structures. Next, in Section 3, we study combinatorics of minimal suffixes, using in
particular a notion of significant suffixes, introduced by I et al. [19, 20] to compute Lyndon
factorizations of grammar-compressed strings. Section 4 is devoted to answering Minimal
Suffix Queries. We use fusion trees by Pătraşcu and Thorup [29] to improve the query time
from logarithmic to O(log∗ |v|), and then, by preprocessing shorts strings, we achieve constant
query time. That final step uses a notion of order-isomorphism [25, 23] to reduce the number
of precomputed values. In Section 5 we repeat the same steps for Generalized Minimal
Suffix Queries. We conclude with Section 6, where we briefly discuss the applications.

2 Preliminaries

We consider strings over an alphabet Σ = {0, . . . , σ − 1} with the natural order ≺. The
empty string is denoted as ε. By Σ∗ (Σ+) we denote the set of all (resp. non-empty) finite
strings over Σ. We also define Σ∞ as the set of infinite strings over Σ. We extend the order
≺ on Σ in the standard way to the lexicographic order on Σ∗ ∪ Σ∞.

Let w = w[1] . . . w[n] be a string in Σ∗. We call n the length of w and denote it by |w|.
For 1 ≤ i ≤ j ≤ n, a string u = w[i] . . . w[j] is called a substring of w. By w[i..j] we denote
the occurrence of u at position i, called a fragment of w. A fragment of w other than the
whole w is called a proper fragment of w. A fragment starting at position 1 is called a prefix
of w and a fragment ending at position n is called a suffix of w. We use abbreviated notation
w[..j] and w[i..] for a prefix w[1..j] and a suffix w[i..n] of w, respectively. A border of w is a
substring of w which occurs both as a prefix and as a suffix of w. An integer p, 1 ≤ p ≤ |w|,
is a period of w if w[i] = w[i+ p] for 1 ≤ i ≤ n− p. If w has period p, we also say that is has
exponent |w|p . Note that p is a period of w if and only if w has a border of length |w| − p.

We say that a string w′ is a rotation (cyclic shift, conjugate) of a string w if there exists a
decomposition w = uv such that w′ = vu. Here, w′ is the left rotation of w by |u| characters
and the right rotation of w by |v| characters.

Augmented suffix array The suffix array [27] of a text T of length n is a permutation SA
of {1, . . . , n} defining the lexicographic order on suffixes T [i..n]: T [SA[i]..n] ≺ T [SA[j]..n] if
and only if i < j. For a string T , both SA and its inverse permutation ISA take O(n) space
and can be computed in O(n) time; see e.g. [10]. Typically, one also builds the LCP table
and extends it with a data structure for range minimum queries [18, 7], so that the longest
common prefix of any two suffixes of T can be determined efficiently.

Similarly to [4], we also construct these components for the reversed text TR. Additionally,
we preprocess the ISA table to answer range minimum and maximum queries. The resulting
data structure, which we call the augmented suffix array of T , lets us perform many queries.

I Theorem 1 (Augmented suffix array; see Fact 3 and Lemma 4 in [4]). The augmented suffix
array of a text T of length n takes O(n) space, can be constructed in O(n) time, and allows
answering the following queries in O(1) time given fragments x, y of T :
1. determine if x ≺ y, x = y, or x � y,
2. compute the longest common prefix lcp(x, y) and the longest common suffix lcs(x, y),
3. compute lcp(x∞, y) and determine if x∞ ≺ y, x∞ = y, or x∞ � y.
Moreover, given indices i, j, it can compute in O(1) time the minimal and the maximal suffix
among {T [k..n] : i ≤ k ≤ j}.

CPM 2016



28:4 Minimal Suffix and Rotation of a Substring in Optimal Time

Fusion trees Consider a set A of W -bit integers (recall that W is the machine word size).
Rank queries given a W -bit integer x return rankA(x) defined as |{y ∈ A : y < x}|. Similarly,
select queries given an integer r, 0 ≤ r < |A|, return selectA(r), the r-th smallest element
in A, i.e., x ∈ A such that rankA(x) = r. These queries can be used to determine the
predecessor and the successor of a W -bit integer x, i.e., predA(x) = max{y ∈ A : y < x}
and succA(x) = min{y ∈ A : y ≥ x}. We answer these queries with dynamic fusion trees by
Pătraşcu and Thorup [29]. We only use these trees in a static setting, but the original static
fusion trees by Fredman and Willard [15] do not have an efficient construction procedure.

I Theorem 2 (Fusion trees [29, 15]). There exists a data structure of size O(|A|) which
answers rankA, selectA, predA, and succA queries in O(1 + logW |A|) time. Moreover, it
can be constructed in O(|A|+ |A| logW |A|) time.

3 Combinatorics of minimal suffixes and Lyndon words

For a non-empty string v the minimal suffix MinSuf(v) is the lexicographically smallest
non-empty suffix s of v. Similarly, for an arbitrary string v the maximal suffix MaxSuf(v)
is the lexicographically largest suffix s of v. We extend these notions as follows: for a pair
of strings v, w we define MinSuf(v, w) and MaxSuf(v, w) as the lexicographically smallest
(resp. largest) string sw such that s is a (possibly empty) suffix of v.

In order to relate minimal and maximal suffixes, we introduce the reverse order ≺R on Σ
and extend it to the reverse lexicographic order, and an auxiliary symbol $ /∈ Σ. We extend
the order ≺ on Σ so that c ≺ $ (and thus $ ≺R c) for every c ∈ Σ. We define Σ̄ = Σ ∪ {$},
but unless otherwise stated, we still assume that the strings considered belong to Σ∗.

I Observation 3. If u, v ∈ Σ∗, then u$ ≺ v if and only if v ≺R u.

We use MinSufR and MaxSufR to denote the minimal (resp. maximal) suffix with respect
to ≺R. The following observation relates the notions we introduced:

I Observation 4. 1. MaxSuf(v, ε) = MaxSuf(v) for every v ∈ Σ̄∗,
2. MinSuf(vw) = min(MinSuf(v, w),MinSuf(w)) for every v ∈ Σ̄∗ and w ∈ Σ̄+,
3. MinSuf(vc) = MinSuf(v, c) for every v ∈ Σ̄∗ and c ∈ Σ̄,
4. MinSuf(v, w$) = MaxSufR(v, w)$ for every v, w ∈ Σ∗,
5. MinSuf(v$) = MaxSufR(v)$ for every v ∈ Σ∗.
A property seemingly similar to 5. is false for every v ∈ Σ+: $ = MinSufR(v$) 6= MaxSuf(v)$.

A notion deeply related to minimal and maximal suffixes is that of a Lyndon word [26, 8].
A string w ∈ Σ+ is called a Lyndon word if MinSuf(w) = w. Note that such w does not
have proper borders, since a border would be a non-empty suffix smaller than w. A Lyndon
factorization of a string u ∈ Σ̄∗ is a representation u = up1

1 . . . upmm , where ui are Lyndon
words such that u1 � . . . � um. Every non-empty word has a unique Lyndon factorization [8],
which can be computed in linear time and constant space [14].

3.1 Significant suffixes
Below we recall a notion of significant suffixes, introduced by I et al. [19, 20] in order to
compute Lyndon factorizations of grammar-compressed strings. Then, we state combinatorial
properties of significant suffixes; some of them are novel and some were proved in [20].

I Definition 5 (see [19, 20]). A suffix s of a string v ∈ Σ∗ is a significant suffix of v if
sw = MinSuf(v, w) for some w ∈ Σ̄∗.
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Let v = vp1
1 . . . vpmm be the Lyndon factorization of a string v ∈ Σ+. For 1 ≤ j ≤ m we

denote sj = v
pj
j · · · vpmm ; moreover, we assume sm+1 = ε. Let λ be the smallest index such

that si+1 is a prefix of vi for λ ≤ i ≤ m. Observe that sλ � . . . � sm � sm+1 = ε,
since vi is a prefix of si. We define yi so that vi = si+1yi, and we set xi = yisi+1.
Note that si = vpii si+1 = (si+1yi)pisi+1 = si+1(yisi+1)pi = si+1x

pi
i . We also denote

Λ(w) = {sλ, . . . , sm, sm+1}, X(w) = {x∞λ , . . . , x∞m}, and X ′(w) = {xpλλ , . . . , xpmm }. The
observation below lists several immediate properties of the introduced strings:

I Observation 6. For each i, λ ≤ i ≤ m: (a) x∞i � xpii � xi � yi, (b) xpii is a suffix of v
of length |si| − |si+1|, and (c) |si| > 2|si+1|. In particular, |Λ(v)| = O(log |v|).

The following lemma shows that Λ(v) is equal to the set of significant suffixes of v.
(Significant suffixes are actually defined in [20] as Λ(v) and only later proved to satisfy our
Definition 5.) In fact, the lemma is much deeper; in particular, the formula for MaxSuf(v, w)
is one of the key ingredients of our efficient algorithms answering Minimal Suffix Queries.

I Lemma 7 (I et al. [20], Lemmas 12–14). For a string v ∈ Σ+ let si, λ, xi, and yi, be
defined as above. Then x∞λ � xpλλ � yλ � x∞λ+1 � x

pλ+1
λ+1 � yλ+1 � . . . � x∞m � xpmm � ym.

Moreover, for every string w ∈ Σ̄∗ we have

MinSuf(v, w) =


sλw if w � x∞λ ,
siw if x∞i−1 � w � x∞i for λ < i ≤ m,
sm+1w if x∞m � w.

In other words, MinSuf(v, w) = sm+1−rw where r = rankX(v)(w).

We conclude this section with a precise characterization of Λ(uv) for |u| ≤ |v| in terms of
Λ(v) and MaxSufR(u, v). This is another key ingredient of our data structure, in particular
letting us efficiently compute significant suffixes of a given fragment of T . The proof is
deferred to the full version due to space constraints.

I Lemma 8. Let u, v ∈ Σ+ be strings such that |u| ≤ |v|. Also, let Λ(v) = {sλ, . . . , sm+1},
s′ = MaxSufR(u, v), and let si be the longest suffix in Λ(v) which is a prefix of s′. Then

Λ(uv) =


{sλ, . . . , sm+1} if s′ �R sλ (i.e., if sλ � s′ and i 6= λ),
{s′, si+1, . . . , sm+1} if s′ �R sλ, i ≤ m, and |si| − |si+1| is a period of s′,
{s′, si, si+1, . . . , sm+1} otherwise.

Consequently, for every w ∈ Σ̄∗, we have MinSuf(uv,w) ∈ {MaxSufR(u, v)w,MinSuf(v, w)}.

4 Answering Minimal Suffix Queries

In this section we present our data structure for Minimal Suffix Queries. We proceed
in three steps improving the query time from O(log |v|) via O(log∗ |v|) to O(1). The first
solution is an immediate application of Observation 4.3. and the notion of significant suffixes.
Efficient computation of these suffixes, also used in the construction of further versions of
our data structure, is based on Lemma 8, which yields a recursive procedure. The only “new”
suffix needed at each step is determined using the following result. It can be seen as a cleaner
formulation of Lemma 14 in [4].

I Lemma 9. Let u = T [`..r] and v = T [r + 1..r′] be fragments of T such that |u| ≤ |v|.
Using the augmented suffix array of T we can compute MaxSufR(u, v) in O(1) time.

CPM 2016



28:6 Minimal Suffix and Rotation of a Substring in Optimal Time

I Lemma 10. Given a fragment v of T , we can compute Λ(v) in O(log |v|) time using the
augmented suffix array of T

Proof. If |v| = 1, we return Λ(v) = {v, ε}. Otherwise, we decompose v = uv′ so that
|v′| =

⌈ 1
2 |v|

⌉
. We recursively generate Λ(v′) and use Lemma 9 to compute s = MaxSufR(u, v′).

Then, we apply the characterization of Lemma 8 to determine Λ(v) = Λ(uv′), using the
augmented suffix array (Theorem 1) to lexicographically compare fragments of T .

We store the lengths of the significant suffixes in an ordered list. This way we can
implement a single phase (excluding the recursive calls) in time proportional to O(1) plus
the number of suffixes removed from Λ(v′) to obtain Λ(v). Since this is amortized constant
time, the total running time becomes O(log |v|) as announced. J

I Corollary 11. Minimal Suffix Queries can be answered in O(log |v|) time using the
augmented suffix array of T .

Proof. Recall that Observation 4.3. yields MinSuf(v) = MinSuf(v[1..m − 1], v[m]) where
m = |v|. Consequently, MinSuf(v) = sv[m] for some s ∈ Λ(v[1..m− 1]). We apply Lemma 10
to compute Λ(v[1..m − 1]) and determine the answer among O(log |v|) candidates using
lexicographic comparison of fragments, provided by the augmented suffix array (Theorem 1).

J

4.1 O(log∗ |v|)-time Minimal Suffix Queries
An alternative O(log |v|)-time algorithm could be developed based just on the second part of
Lemma 8: decompose v = uv′ so that |v′| > |u| and return min(MaxSufR(u, v′),MinSuf(v′)).
The result is MinSuf(v) due to Lemma 8 and Observation 4.3. Here, the first candidate
MaxSufR(u, v′) is determined via Lemma 9, while the second one using a recursive call.
A way to improve query time to O(1) at the price of O(n logn)-time preprocessing is to
precompute the answers for basic fragments, i.e., fragments whose length is a power of two.
Then, in order to determine MinSuf(v), we perform just a single step of the aforementioned
procedure, making sure that v′ is a basic fragment. Both these ideas are actually present
in [4], along with a smooth trade-off between their preprocessing and query times.

Our O(log∗ |v|)-time query algorithm combines recursion with preprocessing for certain
distinguished fragments. More precisely, we say that v = T [`..r] is distinguished if both
|v| = 2q and f(2q) | r for some positive integer q, where f(x) = 2blog log xc2 . Note that the
number of distinguished fragments of length 2q is at most n

2blog qc2 = O( n
qω(1) ).

The query algorithm is based on the following decomposition (x > f(x) for x > 216):

I Fact 12. Given a fragment v such that |v| > f(|v|), we can in constant time decompose
v = uv′v′′ such that 1 ≤ |v′′| ≤ f(|v|), v′ is distinguished, and |u| ≤ |v′|.

Proof. Let v = T [`..r], q = blog |v|c and q′ = blog qc2. We determine r′ as the largest
integer strictly smaller than r divisible by 2q′ = f(|v|). By the assumption that |v| > 2q′ , we
conclude that r′ ≥ r − 2q′ ≥ `. We define v′′ = T [r′ + 1..r] and partition T [`..r′] = uv′ so
that |v′| is the largest possible power of two. This guarantees |u| ≤ |v′|. Moreover, |v′| ≤ |v|
assures that f(|v′|) | f(|v|), so f(|v|′) | r′, and therefore v′ is indeed distinguished. J

Observation 4.2. implies MinSuf(v) ∈ {MinSuf(uv′, v′′),MinSuf(v′′)} and Lemma 8 fur-
ther yields MinSuf(v) ∈ {MaxSufR(u, v′)v′′,MinSuf(v′, v′′),MinSuf(v′′)}, i.e., leaves us with
three candidates for MinSuf(v). Our query algorithm obtains MaxSufR(u, v′) using Lemma 9,



T. Kociumaka 28:7

computes MinSuf(v′′) recursively, and determines MinSuf(v′, v′′) through the characteriza-
tion of Lemma 7. The latter step is performed using the following component based on a
fusion tree, which we build for all distinguished fragments.

I Lemma 13. Let v = T [`..r] be a fragment of T . There exists a data structure of size
O(log |v|) which answers the following queries in O(1) time: given a position r′ > r compute
MinSuf(v, T [r + 1..r′]). Moreover, this data structure can be constructed in O(log |v|) time
using the augmented suffix array of T .

Proof. By Lemma 7, we have MinSuf(v, w) = sm+1−rankX(v)(w)w, so in order to determine
MinSuf(v, T [r + 1..r′]), it suffices to store Λ(v) and efficiently compute rankX(v)(w) given
w = T [r + 1..r′]. We shall reduce these rank queries to rank queries in an integer set R(v).

I Claim. Denote X(v) = {x∞λ , . . . , x∞m} and let

R(v) = {r + lcp(T [r + 1..], x∞j ) : x∞j ∈ X(w) ∧ x∞j ≺ T [r + 1..]}.

For every index r′, r < r′ ≤ n, we have rankX(v)(T [r + 1..r′]) = rankR(v)(r′).

Proof. We shall prove that for each j, λ ≤ j ≤ m, we have

x∞j ≺ T [r + 1..r′] ⇐⇒
(
r + lcp(T [r + 1..], x∞j ) < r′ ∧ x∞j ≺ T [r + 1..]

)
.

First, if x∞j � T [r + 1..], then clearly x∞j � T [r + 1..r′] and both sides of the equivalence
are false. Therefore, we may assume x∞j ≺ T [r + 1..]. Observe that in this case d :=
lcp(T [r + 1..], x∞j ) is strictly less than n− r, and T [r + 1..r + d] ≺ x∞j ≺ T [r + 1..r + d+ 1].
Hence, x∞j ≺ T [r + 1..r′] if and only if r + d < r′, as claimed. J

We apply Theorem 2 to build a fusion tree for R(v), so that the ranks are can be obtained
in O(1 + log |R(v)|

logW ) time, which is O(1 + log log |v|
log logn ) = O(1) by Observation 6.

The construction algorithm uses Lemma 10 to compute Λ(v) = {sλ, . . . , sm+1}. Next,
for each j, λ ≤ j ≤ m, we need to determine lcp(T [r + 1..], x∞j ). This is the same as
lcp(T [r+ 1..], (xpjj )∞) and, by Observation 6, xpjj can be retrieved as the suffix of v of length
|si|−|si+1|. Hence, the augmented suffix array can be used to compute these longest common
prefixes and therefore to construct R(v) in O(|Λ(v)|) = O(log |v|) time. J

With this central component we are ready to give a full description of our data structure.

I Theorem 14. For every text T of length n there exists a data structure of size O(n) which
answers Minimal Suffix Queries in O(log∗ |v|) time and can be constructed in O(n) time.

Proof. Our data structure consists of the augmented suffix array (Theorem 1) and the
components of Lemma 13 for all distinguished fragments of T . Each such fragment of length
2q contributes O(q) to the space consumption and to the construction time, which in total
over all lengths sums up to O(

∑
q

nq
qω(1) ) = O(

∑
q

n
qω(1) ) = O(n).

Let us proceed to the query algorithm. Assume we are to compute the minimal suffix of
a fragment v. If |v| ≤ f(|v|) (i.e., if |v| ≤ 216), we use the logarithmic-time query algorithm
given in Corollary 11. If |v| > 2q, we apply Fact 12 to determine a decomposition v = uv′v′′,
which gives us three candidates for MinSuf(v). As already described, MinSuf(v′′) is computed
recursively, MinSuf(v′, v′′) using Lemma 13, and MaxSufR(u, v′)v′′ using Lemma 9. The
latter two both support constant-time queries, so the overall time complexity is proportional
to the depth of the recursion. We have |v′′| ≤ f(|v|) < |v|, so it terminates. Moreover,

f(f(x)) = 2blog(log f(x))c2 ≤ 2(log(log log x)2)2
= 24(log log log x)2

= 2o(log log x) = o(log x).

CPM 2016
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Thus, f(f(x)) ≤ log x unless x = O(1). Consequently, unless |v| = O(1), when the algorithm
clearly needs constant time, the length of the queried fragment is in two steps reduced from
|v| to at most log |v|. This concludes the proof that the query time is O(log∗ |v|). J

4.2 O(1)-time Minimal Suffix Queries
The O(log∗ |v|) time complexity of the query algorithm of Theorem 14 is only due to the
recursion, which in a single step reduces the length of the queried fragment from |v| to f(|v|)
where f(x) = 2blog log xc2 . Since f(f(x)) = 2o(log log x), after just two steps the fragment
length does not exceed f(f(n)) = o( logn

log logn ). In this section we show that the minimal
suffixes of such short fragments can precomputed in a certain sense, and thus after reaching
τ = f(f(n)) we do not need to perform further recursive calls.

For constant alphabets, we could actually store all the answers for all O(στ ) = no(1) strings
of length up to τ . Nevertheless, in general all letters of T , and consequently all fragments
of T , could even be distinct. However, the answers to Minimal Suffix Queries actually
depend only on the relative order between letters, which is captured by order-isomorphism.

Two strings x and y are called order-isomorphic [25, 23], denoted as x ≈ y, if |x| = |y|
and for every two positions i, j (1 ≤ i, j ≤ |x|) we have x[i] ≺ x[j] ⇐⇒ y[i] ≺ y[j].
Note that the equivalence extends to arbitrary corresponding fragments of x and y, i.e.,
x[i..j] ≺ x[i′..j′] ⇐⇒ y[i..j] ≺ y[i′..j′]. Consequently, order-isomorphic strings cannot be
distinguished using Minimal Suffix Queries or Generalized Minimal Suffix Queries.

Moreover, observe that every string of length m is order-isomorphic to a string over an
alphabet {1, . . . ,m}. Consequently, order-isomorphism partitions strings of length up to m
into O(mm) equivalence classes. The following fact lets us compute canonical representations
of strings whose length is bounded by m = WO(1).

I Fact 15. For every fixed integer m = WO(1), there exists a function oid mapping each
string w of length up to m to a non-negative integer oid(w) with O(m logm) bits, so that
w ≈ w′ ⇐⇒ oid(w) = oid(w′). Moreover, the function can be evaluated in O(m) time.

Proof. To compute oid(w), we first build a fusion tree storing all (distinct) letters which
occur in w. Next, we replace each character of w with its rank among these letters. We
allocate dlogme bits per character and prepend such a representation with dlogme bits
encoding |w|. This way oid(w) is a sequence of (|w|+ 1) dlogme = O(m logm) bits. Using
Theorem 2 to build the fusion tree, we obtain an O(m)-time evaluation algorithm. J

To answer queries for short fragments of T , we define overlapping blocks of length m = 2τ :
for 0 ≤ i ≤ n

τ we create a block Ti = T [1 + iτ..min(n, (i+ 2)τ)]. For each block we apply
Fact 15 to compute the identifier oid(Ti). The total length of the blocks is bounded 2n, so
this takes O(n) time. The identifiers use O(nτ τ log τ) = O(n log τ) bits of space.

Moreover, for each distinct identifier oid(Ti), we store the answers to all the Minimal
Suffix Queries in Ti. This takes O(logm) bits per answer and O(2O(m logm)m2 logm) =
2O(τ log τ) in total. Since τ = o( logn

log logn ), this is no(1). The preprocessing time is also no(1).
It is a matter of simple arithmetics to extend a given fragment v of T , |v| ≤ τ , to a

block Ti. We use the precomputed answers stored for oid(Ti) to determine the minimal suffix
of v. We only need to translate the indices within Ti to indices within T before returning
the answer. Below, we state our results for short and arbitrary fragments, respectively:

I Theorem 16. For every text T of length n and every parameter τ = o( logn
log logn ) there exists

a data structure of size O(n log τ
logn ) which can answer in O(1) time Minimal Suffix Queries

for fragments of length not exceeding τ . Moreover, it can be constructed in O(n) time.
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I Theorem 17. For every text T of length n there exists a data structure of size O(n) which
can be constructed in O(n) time and answers Minimal Suffix Queries in O(1) time.

5 Answering Generalized Minimal Suffix Queries: Overview

In this section we sketch our solution for Generalized Minimal Suffix Queries, focusing
on the differences compared to the data structure developed in Section 4. As in Section 4,
we proceed in three steps gradually improving the query time; we start, however, with some
terminology.

We define a k-fragment of a text T as a concatenation T [`1..r1] · · ·T [`k..rk] of k fragments
of the text T . Observe that a k-fragment can be stored in O(k) space as a sequence of pairs
(`i, ri). If a string w admits such a decomposition using k′ (k′ ≤ k) substrings, we call it a
k-substring of T . Every k′-fragment (with k′ ≤ k) whose value is equal to w is called an
occurrence of w as a k-substring of T . Observe that a substring of a k-substring w of T is
itself a k-substring of T . Moreover, given an occurrence of w, one can canonically assign
each fragment of w to a k′-fragment of T (k′ ≤ k). This can be implemented in O(k) time
and referring to w[`..r] in our algorithms, we assume that such an operation is performed.

Basic queries regarding k-fragments easily reduce to their counterparts for 1-fragments:

I Observation 18. The augmented suffix array can answer queries 1., 2., and 3. in O(k)
time if x and y are k-fragments of T .

Generalized Minimal Suffix Queries can be reduced to the following auxiliary queries:

I Problem (Auxiliary Minimal Suffix Queries). Given a fragment v of T and a
k-fragment w of T , compute MinSuf(v, w) (represented as a (k + 1)-fragment of T ).

I Lemma 19. For every text T , the minimal suffix of a k-fragment v can be determined by k
Auxiliary Minimal Suffix Queries (with k′ < k) and additional O(k2)-time processing
using the augmented suffix array of T .

Proof. Let v = v1 · · · vk. By Observation 4.2., MinSuf(v) = MinSuf(vk) or for some i, 1 ≤
i < k, we have MinSuf(v) = MinSuf(vi, vi+1 · · · vk). Hence, we apply Auxiliary Minimal
Suffix Queries to determine MinSuf(vi, vi+1 · · · vk) for each 1 ≤ i < k. Observation 4.3.
lets reduce computing MinSuf(vk) to another auxiliary query. Having obtained k candidates
for MinSuf(v), we use the augmented suffix array to return the smallest among them using
k − 1 comparisons, each performed in O(k) time; see Theorem 1 and Observation 18. J

Below we focus on the auxiliary queries only. Answering them in O(k log |v|) time is easy:
We apply Lemma 10 to determine Λ(v), and then we compute the smallest string among
{sw : s ∈ Λ(v)}. These strings are (k+ 1)-fragments of T and thus a single comparison takes
O(k) time using the augmented suffix array.

5.1 O(k log∗ |v|)-time Auxiliary Minimal Suffix Queries
Our solution is based on that in Section 4.1. The only big challenge is to generalize Lemma 13:
preprocess v to compute MinSuf(v, w) for an arbitrary k-fragment w in O(k) time. We
still apply Lemma 7, but this time we actually determine rankX′(v)(w), which differs from
rankX(v)(w) by at most one (and therefore leaves us with two candidates for rankX(v)(w)).

This is because in general we are able to preprocess a family A of fragments of T to
determine rankA(w) given a k-fragment w of T . Our solution is based on the compressed trie

CPM 2016
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of fragments in A, accompanied with several fusion trees to allow efficient navigation. For
|A| ≤ WO(1) it takes O(|A|2) time to construct and determines ranks in the optimal time
O(k). By our choice of distinguished fragments v of length 2q, building this component for
all sets X ′(v) takes O( nq2

qω(1) ) = O( n
qω(1) ) time, which is O(n) in total (over all values of q).

5.2 O(k)-time Auxiliary Minimal Suffix Queries
To achieve the optimal query time, we again focus on |v| ≤ τ with τ = o( logn

log logn ). Computing
MinSuf(v, w), we need to handle k-fragments w of arbitrary length, which might be scattered
around the text T (not just in a block Ti containing v), so the task is much more difficult
than in Section 4.2. Our approach is to replace w with a similar k′-fragment w′ of Ti$, such
that k′ ≤ k + 1 and rankX′(v)(w) = rankX′(v)(w′). This is achieved again using fusion trees.

As already noted, a fixed value of rankX′(v)(w) gives two candidates for rankX(v)(w), i.e.,
for MinSuf(v, w). Simultaneously rankX′(v)(w′) depends only on the relative order of letters
of Ti$. Hence, for each distinct oid(Ti) and for each fragment v of Ti$, we construct Λ(v)
and a data structure able to efficiently rank k-fragments of Ti$ in X ′(v). This component is
built using the general tool for ranking k-fragments in a collection of fragments, which we
mentioned in Section 5.1. This ultimately leads to the strongest result of this paper:

I Theorem 20. For every text T of length n there exists a data structure of size O(n) which
can be constructed in O(n) time and answers Generalized Minimal Suffix Queries in
O(k2) time.

6 Applications

As already noted in [4], Minimal Suffix Queries can be used to compute Lyndon
factorization. For fragments of T , and in general k = O(1), we obtain an optimal solution:

I Corollary 21. For every text T of length n there exists a data structure of size O(n) which
given a k-fragment v of T determines the Lyndon factorization v = vq1

1 . . . vqmm in O(k2m)
time. The data structure takes O(n) time to construct.

Our main motivation of introducing Generalized Minimal Suffix Queries, however,
was to answer Minimal Rotation Queries, for which we obtain constant query time after
linear-time preprocessing. This is achieved using the following observation; see [10]:

I Observation 22. The minimal cyclic rotation of v is the prefix of MinSuf(v, v) of length |v|.

I Theorem 23. For every text T of length n there exists a data structure of size O(n) which
given a k-fragment v of T determines the lexicographically smallest cyclic rotation of v in
O(k2) time. The data structure takes O(n) time to construct.

Using Minimal Rotation Queries, we can compute the Karp-Rabin fingerprint [21] of the
minimal rotations of a given fragment v of T (or in general, of a k-fragment). This can be
interpreted as computing fingerprints up to cyclic equivalence, i.e., evaluating a function h
such that h(`, r) = h(`′, r′) if and only if T [`..r] and T [`′..r′] are cyclically equivalent.

Consequently, we are able, for example, to count distinct substrings of T with a given
exponent 1 + 1/α. They occur within runs or α-gapped repeats, which can be generated in
time O(nα) [6, 12, 16] and classified using Minimal Rotation Queries according to the
cyclic equivalence class of their period. For a fixed equivalence class the set of substrings
generated by a single repeat can be represented as a cyclic interval, and the cardinality of
a union of intervals is simple to determine; see also [11], where this approach was used to
count and list squares and, in general, substrings with a given exponent 2 or more.
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