
Fast Compatibility Testing for Rooted
Phylogenetic Trees∗

Yun Deng1 and David Fernández-Baca2

1 Department of Computer Science, Iowa State University, Ames, IA 50011,
USA
yundeng@iastate.edu

2 Department of Computer Science, Iowa State University, Ames, IA 50011,
USA
fernande@iastate.edu

Abstract
We consider the following basic problem in phylogenetic tree construction. Let P = {T1, . . . , Tk}
be a collection of rooted phylogenetic trees over various subsets of a set of species. The tree
compatibility problem asks whether there is a tree T with the following property: for each
i ∈ {1, . . . , k}, Ti can be obtained from the restriction of T to the species set of Ti by contracting
zero or more edges. If such a tree T exists, we say that P is compatible.

We give a Õ(MP) algorithm for the tree compatibility problem, whereMP is the total number
of nodes and edges in P. Unlike previous algorithms for this problem, the running time of our
method does not depend on the degrees of the nodes in the input trees. Thus, it is equally fast
on highly resolved and highly unresolved trees

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, J.3 Life and Medical Sciences

Keywords and phrases Algorithms, computational biology, phylogenetics

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.12

1 Introduction

Building a phylogenetic tree that encompasses all living species is one of the central challenges
of computational biology. Two obstacles to achieving this goal are lack of data and conflict
among the data that is available. The data shortage is tied to the vast disparity in the
amount of information at our disposal for different families of species and the limited amount
of comparable data across families [16]. One approach to overcoming this obstacle begins by
identifying subsets of species for which enough data is available, and building phylogenies for
each subset. The resulting trees are then synthesized into a single phylogeny – a supertree –
for the combined set of species. This approach, proposed in the early 90s [2, 15], has been
used successfully to build large-scale phylogenies (see, e.g., [3, 10]).

Any attempt at synthesizing phylogenetic information from multiple input trees must
deal with the potential for conflict among these trees. Conflict may arise due to errors,
or due to phenomena such as gene duplication and loss, and horizontal gene transfer. A
fundamental question is whether conflict exists at all; that is, does there exist a supertree
that exhibits the evolutionary relationships implicit in each input tree? We can formalize

∗ Supported in part by the National Science Foundation under grants CCF-1017189 and CCF-1422134.

© Yun Deng and David Fernández-Baca;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 12; pp. 12:1–12:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Compatibility Testing for Rooted Phylogenetic Trees

this question as follows. Let P = {T1, . . . , Tk} be a collection of rooted phylogenetic trees,
where, for each i ∈ {1, . . . , k}, Ti is a phylogenetic tree for a set of species L(Ti). The tree
compatibility problem asks whether there exists a phylogenetic supertree T for the set of
species

⋃k
i=1 L(Ti) such that, for each i ∈ {1, . . . , k}, Ti can be obtained from T |L(Ti) – the

minimal subtree of T spanning L(Ti) – by zero or more contractions of internal edges. If the
answer is “yes”, then P is said to be compatible; otherwise, P is incompatible.

Here we present an algorithm that solves the compatibility problem for rooted trees in
O(MP log2 MP) time, where MP is the total number of vertices and edges in the trees in P.
This running time is independent of the degrees of the internal nodes of the input trees.

1.1 Previous Work
Aho et al. [1] gave the first polynomial-time algorithm for the rooted tree compatibility
problem. Their motivation was not phylogenetics, but relational databases. Steel [18] was
perhaps the first to note the relevance of Aho et al.’s algorithm to supertree construction.
His version of the Aho et al. algorithm, which he called the Build algorithm, has been a
major influence in later work, including the present paper.

Henzinger et al. [9] showed that one can check the compatibility of a collection R of rooted
triples – that is, phylogenetic trees on three species – in O(|R| log2 |R|) time. (The time
bound stated in [9] is higher, but can be improved using a faster dynamic graph connectivity
data structure [11].) Any collection of trees P can be encoded by a collection of rooted triples
R(P), obtained by enumerating the restriction of each input tree to every three-element
subset of its species set (see Section 2). If n denotes the total number of distinct species in P ,
then we get a trivial upper bound of |R(P)| = O(n3k). We can improve on this by finding a
minimal set R∗ of rooted triples that define the input trees. If the trees are binary – fully
resolved, in the language of phylogenetics –, then O(n) triples suffice for each tree, giving
us |R∗| = O(nk). If input trees admit non-binary – that is, unresolved – nodes, however,
the number of triples needed per input tree is roughly proportional to n2 (the precise bound
depends on the sum of the products of the degrees of internal nodes and the degrees of their
children [8]), giving us |R∗| = O(n2k). Of course, the extra step of finding R∗ adds to the
complexity of the algorithm.

The tree compatibility problem is related to the incomplete directed perfect phylogeny
problem (IDPP). Indeed, any collection of k phylogenetic trees on n distinct species can be
encoded as a problem of testing the compatibility of a collection of O(MP) “directed partial
characters” on n species1. Intuitively, each such character encodes the species in the subtree
rooted at some node in an input tree. There is a Õ(nm) algorithm to test the compatibility
of m incomplete characters [14], which can be adapted to yield a Õ(nMP) algorithm for tree
compatibility.

When the input trees are unrooted, the tree compatibility problem becomes NP-hard
[18]. Nevertheless, the decision version is polynomial-time solvable if k is fixed [4]; that is,
the problem is fixed-parameter tractable in k. The proof of fixed-parameter tractability in
[4] relies on Courcelle’s Theorem [6], and thus is an existence proof, rather than a practical
algorithm.

Finally, we note that there are linear-time algorithms for testing the compatibility of a
collection of trees that all have exactly the same leaf label set. One such algorithm can be
obtained using recent results on computing “loose” and “strict” consensus trees [13]. Both

1 For a precise definition of partial characters and IDPP, we refer the reader to Pe’er et al. [14].

Y. Deng and D. Fernández-Baca 12:3

types of consensus trees can be found in O(nk) time, which is O(MP) when all leaf label
sets are identical. (We thank J. Jansson for pointing this out.)

1.2 Our Contributions
At a high level, our algorithm resembles Build [18, 17]. There are, however, important
differences. Build relies on the triplet graph, whose nodes are the species and where there is
an edge between two species if they are involved in a triplet (see Section 2). Our algorithm
relies instead on intersection graphs of sets of species associated with certain nodes of the
input trees. Our graphs allow a more compact representation of the triplets induced by the
trees in P (see Section 3). The key to the correctness of our approach is the close relationship
between the triplet graph and our intersection graph (see Lemma 5 of Section 3). We remark
that intersection graphs have a long history of use in testing compatibility, beginning with
the work of Buneman [5].

We also take ideas from other sources. From Pe’er et al.’s IDPP algorithm [14], we adapt
the idea of a semi-universal node. Although the graphs used to solve IDPP and rooted
compatibility are different, semi-universal nodes play similar roles in each case: they capture
the notion of sets of nodes in the input trees that map to the same node in a supertree, if a
supertree exists. The relationship between our algorithm and Pe’er et al.’s goes deeper. Our
approach can be viewed as an algorithm for IDPP that takes advantage of the fact that our
particular set of incomplete characters arises from a collection of trees.

Intersection graphs are a convenient tool to prove the correctness for our algorithm. They
are less convenient for an implementation, because they are hard to maintain dynamically,
as our algorithm requires. The difficulty lies in recomputing set intersections whenever the
graphs are updated. We avoid this by using display graphs, an idea that we borrow from the
proof of the fixed-parameter tractability of unrooted compatibility [4]. The display graph of
a collection P is obtained by identifying leaves in the input trees that have the same label.
Display graphs provide all the connectivity information we need for our intersection graphs
(see Lemma 8 of Section 4), but are easier to maintain.

Through our techniques, we achieve what, to our knowledge, is the first algorithm for
rooted compatibility to achieve near-linear time under all input conditions, regardless of the
degrees of the nodes in the input trees. This is an essential quality for dealing with large
datasets.

1.3 Contents
Section 2 reviews basic concepts in phylogenetics, defines compatibility formally, and intro-
duces triplets and the triplet graph. Section 3 presents our intersection graph approach to
testing tree compatibility. Section 4 describes the implementation details needed to achieve
the O(MP log2 MP) time bound. Section 5 contains some final remarks.

2 Preliminaries

For each positive integer r, [r] denotes the set {1, . . . , r}.

2.1 Phylogenetic Trees
Let T be a rooted tree. We use V (T), E(T), and r(T) to denote the nodes, edges, and the
root of T , respectively. For each x ∈ V (T), we use Ch(x) and T (x) to denote the set of

CPM 2016

12:4 Compatibility Testing for Rooted Phylogenetic Trees

a b c b c d c d e

T1 T2 T3
T

a b c d e

Figure 1 A profile P = {T1, T2, T3} and a tree T that displays P.

children of x and the subtree of T rooted at x, respectively. Suppose u, v ∈ V (T). Then, u
is a descendant of v if v lies on the path from u to r(T) in T . Note that v is a descendant of
itself. T is binary, or fully resolved, if each of its internal nodes has two children.

A (rooted) phylogenetic tree is a rooted tree T where every internal node has at least two
children, along with a bijection λ that maps each leaf of T to an element of a set of species,
denoted by L(T). For each x ∈ V (T), L(x) denotes the set of species mapped to the leaves
of T (x); that is, L(x) = {λ(v) : v is a leaf in T (x)}. L(x) is called the cluster at x. Note
that L(r(T)) = L(T). The set of all clusters in T is Cl(T) = {L(x) : x ∈ V (T)}.

The following lemma, adapted from [17, p. 52], is part of the folklore of phylogenetics.

I Lemma 1. Let H be a collection of non-empty subsets of a set of species X that includes
all singleton subsets of X as well as X itself. If there exists a phylogenetic tree T such that
Cl(T) = H, then, up to isomorphism, T is unique.

Let T be a phylogenetic tree and A be a set of species. The restriction of T to A,
denoted T |A is the phylogenetic tree with species set A where Cl(T |A) = {C ∩ A : C ∈
Cl(T) and C ∩A 6= ∅}. Let T ′ be a phylogenetic tree. T displays T ′ if Cl(T ′) ⊆ Cl(T |L(T ′)).

A rooted triple is a binary phylogenetic tree on three leaves. A rooted triple with leaves
a, b, and c is denoted ab|c if the path from a to b does not intersect the path from c to the
root. We treat ab|c and ba|c as equivalent.

When restricted to the three-element subsets of its species set, a phylogenetic tree
T induces a set R(T) of rooted triples, defined as R(T) = {T |X : X ⊆ L(T), |X| =
3 and T |X is binary}.

I Lemma 2 ([17, p. 119]). Let T and T ′ be two phylogenetic trees. Then T displays T ′ if
and only if R(T ′) ⊆ R(T).

2.2 Profiles and Compatibility
Throughout the rest of this paper P = {T1, . . . , Tk} denotes a set where, for each i ∈ [k],
Ti is a phylogenetic tree. We refer to P as a profile, and write L(P) to denote

⋃
i∈[k] L(Ti),

the species set of P. We write V (P) for
⋃

i∈[k] V (Ti), E(P) for
⋃

i∈[k] E(Ti), and R(P) for⋃
i∈[k]R(Ti). Given a subset A of L(P), P|A denotes the profile {T1|A, . . . , Tk|A}. The size

of P is MP = |V (P)|+ |E(P)|. Note that MP = O(nk).
Profile P is compatible if there exists a phylogenetic tree T such that, for each i ∈ [k], T

displays Ti. If such a tree T exists, we say that T displays P. See Figure 1.

2.3 The Triplet Graph
The triplet graph of a profile P, denoted Γ(P), is the graph whose vertex set is L(P) and
where there is an edge between species a and b if and only if there exists a c ∈ L(P) such
that ab|c ∈ R(P). The following observation concerning singleton profiles will be useful.

Y. Deng and D. Fernández-Baca 12:5

I Observation 1. Let T be a phylogenetic tree with |L(T)| > 2. Let u1, . . . , up be the
children of r(T). Then, the connected components of Γ({T}) are L(u1), . . . , L(up), where
p ≥ 2.

3 Testing Compatibility

Here we describe our compatibility algorithm and prove its correctness. We begin with some
definitions.

Let U be a subset of V (P) and let L(U) denote
⋃

u∈U L(u). Then, GP(U) denotes the
graph with vertex set U and where u, v ∈ U are joined by an edge if and only if L(u)∩L(v) 6= ∅.
That is, GP(U) is the intersection graph of the clusters associated with the nodes in U . For
each i ∈ [k], let U(i) = U ∩ V (Ti). We say that U is valid if, for each i ∈ [k],
V1 if |U(i)| ≥ 2, then there exists a node v ∈ V (Ti) such that U(i) ⊆ Ch(v) and
V2 L(U(i)) = L(Ti) ∩ L(U).

Observe that the set Uinit defined as follows is valid.

Uinit = {r(Ti) : i ∈ [k]} (1)

Note that L(Uinit) = L(P). From this point forward, we assume that GP(Uinit) is connected.
No generality is lost by doing so. To see why, observe that if GP(Uinit) is not connected,
then P can be partitioned into a collection of species-disjoint profiles P1, . . . ,Pr such that P
is compatible if and only if Pj is compatible for all j ∈ [r].

The next observation follows from the definition of a valid set.

I Observation 2. If U is a valid subset of V (P), then, for each i ∈ [k], Cl(Ti|L(U)) =
{L(U(i))} ∪ {L(v) : v is a descendant of a node in U(i)}.

Together with Lemma 1, Observation 2 shows that Ti|L(U) is completely determined by
the descendants of U(i).

A valid subset U of V (P) is compatible if there exists a phylogenetic tree T with L(T) =
L(U) that displays Ti|L(U) for every i ∈ [k]. If such a tree T exists, we say that T displays
U .

I Lemma 3. Profile P is compatible if and only if every valid subset of V (P) is compatible.

Proof.
(⇐) If every valid subset of V (P) is compatible, then, in particular, so is the set Uinit of
Equation (1). Let T be a tree that displays Uinit. Then, L(T) = L(Uinit) = L(P). Thus, for
every i ∈ [k], Ti|L(T) = Ti, and thus T displays Ti. Hence, P is compatible.

(⇒) Suppose P is compatible, but there is a valid subset U of V (P) that is not compatible.
Let T be a tree that displays P. But then T |U displays U , a contradiction. J

BuildST (Algorithm 1), which is closely related to Semple and Steel’s Build algorithm [17],
determines whether a valid set U ⊆ V (P) is compatible. The key difference between BuildST
and Build is that the latter uses the triplet graph Γ(P), while BuildST uses the graph
GP(U), for different subsets U of V (P). As we show in Lemma 5, the two graphs are closely
related. Nevertheless, GP(U) offers some computational advantages over the triplet graph.
Intuitively, this is because GP(U) is a more compact representation of the triplets in R(P).

BuildST(U) attempts to build a tree TU for U . Step 1 initializes the root of TU . If L(U)
consists of one or two species, then U is trivially compatible; Steps 2–5 handle these cases.

CPM 2016

12:6 Compatibility Testing for Rooted Phylogenetic Trees

Algorithm 1: BuildST(U)
Input: A valid set U ⊆ V (P) such that GP(U) is connected.
Output: A tree TU that displays U , if U is compatible; incompatible otherwise.

1 Create a node rU

2 if |L(U)| = 1 then
3 return the tree consisting of node rU , labeled by the single species in L(U)
4 if |L(U)| = 2 then
5 return the tree consisting of node rU and two children, each labeled by a different

species in L(U)
6 foreach i ∈ [k] such that |U(i)| = 1 do
7 Let v be the single element in U(i)
8 U = (U \ {v}) ∪ Ch(v)
9 Let W1,W2, . . . ,Wp be the connected components of GP(U)

10 if p = 1 then
11 return incompatible
12 foreach j ∈ [p] do
13 Let tj = BuildST(Wj)
14 if tj is a tree then
15 Add tj to the set of subtrees of rU

16 else
17 return incompatible
18 return the tree with root rU

The loop in lines 6–8 identifies the indices i ∈ [k] such that U(i) is a singleton. For each such
i, it removes the single element v in U(i) and replaces v by its children in Ti. Note that if v
is a leaf in Ti, then U(i) = ∅ after this step. As we argue in the proof of Theorem 7, when P
is compatible, all such nodes v – provided they are not leaves – map to the same node w
in the tree T that displays P, in the sense that L(w) is the smallest cluster in T such that
L(v) ⊆ L(w)2. In Theorem 7, we also show that, if GP(U) remains connected after steps 6–8,
then U is incompatible. This case is handled in Line 11. Otherwise, Lines 12–17 recursively
process each connected component of GP(U). If the recursive calls succeed in finding trees
for all components, these trees are assembled into a phylogeny for U by joining them to the
root created in Step 1. If any recursive call determines that a component is incompatible,
then U is declared to be incompatible.

The correctness of BuildST relies on two lemmas, the first of which can be proved using
induction.

I Lemma 4. If, given a valid set U ⊆ V (P), BuildST(U) returns a tree TU , then TU is a
phylogenetic tree such that L(TU) = L(U).

The next lemma is central to the correctness proof of BuildST.

I Lemma 5. LetW1, . . . ,Wp be the connected components of GP(U) at step 9 of BuildST(U),
for some valid set U ⊆ V (P). Then,
(i) for each j ∈ [p], Wj is a valid set, and
(ii) the connected components of Γ(P|L(U)) are precisely L(W1), . . . , L(Wp).

2 Thus, v plays the role of a semi-universal node, in the sense of Pe’er et al. [14].

Y. Deng and D. Fernández-Baca 12:7

Proof.
(i) Let Ubef and Uaft denote the values of U before and after executing steps 6–8. Each

element of Uaft is either an element of Ubef or a child of some v ∈ Ubef . In the latter
case, every child of v is in Uaft. By assumption, Ubef is valid, and for every non-leaf
node v, L(v) =

⋃
w∈Ch(v) L(w); therefore, Uaft must also be valid. Part (i) follows.

(ii) We can show that the following holds after steps 6–8.
I Claim 6. Let a and b be any two species in L(U). Then, (a, b) is an edge in Γ(P|L(U))
if and only if there exists a node v ∈ U such that a, b ∈ L(v).

Observe that both Π1 = {A : A is a connected component of Γ(P|L(U))} and Π2 =
{L(W) : W is a connected component of GP(U)} are partitions of L(U). We prove that
Π1 = Π2 by showing that (a) for each connected component A of Γ(P|L(U)) there exists
a connected component W of GP(U) such that A ⊆ L(W), and (b) for each connected
component W of GP(U) there exists a connected component A of Γ(P|L(U)) such that
L(W) ⊆ A.
(a) Let A be any connected component of Γ(P|L(U)). We argue that any two species a, b
in A must be in the same connected component of GP(U). Let Ua = {v ∈ U : a ∈ L(v)}
and Ub = {v ∈ U : b ∈ L(v)}. Then, each of Ua and Ub is a clique in GP(U). It thus
suffices to show that there is a path between some node in Ua and some node in Ub.
By the definition of A, there exists a path between a and b in Γ(P|L(U)). Suppose this
path is ρ = 〈a1, . . . , am〉, where a1 = a and am = b. By Claim 6, for each l ∈ [m− 1],
there exists a node wl ∈ U such that {al, al+1} ⊆ L(wl). For each l ∈ [m − 2],
L(wl) ∩ L(wl+1) 6= ∅, so, either wl = wl+1 or there is a edge between wl and wl+1 in
GP(U). Let π = 〈w1, . . . , wm−1〉. Then, we can extract from π a subsequence that is a
path from w1 to wm−1 in GP(U). By the definition of ρ, a ∈ L(w1) and b ∈ L(wm−1),
so w1 ∈ Ua and wl ∈ Ub. This completes the proof of part (a).
(b) Let W be any connected component of GP(U). If |L(W)| = 1, the statement holds
trivially, so assume that |L(W)| > 1. We argue that any two species a, b in L(W) are in
the same connected component of Γ(P|L(U)). Let va and vb be nodes in W such that
a ∈ L(va) and b ∈ L(vb). If va = vb, then, by Claim 6, (a, b) is an edge of Γ(P|L(U)),
and we are done. So, suppose instead that va 6= vb.
Let us call a path π from va to vb good if |L(w)| > 1 for every node w in π. We claim
that there exists a good path from va to vb. To prove this claim, we first argue that we
can choose va and vb such that |L(va)|, |L(vb)| > 1. Indeed, consider the case of species
a (the case for b is analogous). If |L(v)| = 1 for every node v ∈W such that a ∈ L(v),
then we would have |L(W)| = 1, contradicting our assumption that |L(W)| > 1. Now,
suppose the path π from va to vb has a node w /∈ {va, vb} such that |L(w)| = 1. Let w′
and w′′ be the predecessor and successor of w in π. Then, L(w′) ∩ L(w′′) = L(w) 6= ∅,
so there is an edge between w′ and w′′. Thus, we can delete w from π and the resulting
sequence remains a path between va and vb.
Let π = 〈w1, . . . , wl〉, where w1 = va and wl = vb, be a good path from va to vb in
GP(U). Choose a sequence of species ρ = 〈c1, . . . , cl+1〉, where c1 = a, cl+1 = b and, for
each j ∈ [l], cj , cj+1 ∈ L(wj) and cj 6= cj+1. Note that such a choice is always possible.
Then, by Claim 6, (cj , cj+1) is an edge of Γ(P|L(U)). Hence, ρ is a path from a to b in
Γ(P|L(U)). J

We are now ready to prove the correctness of BuildST.

I Theorem 7. Let Uinit be the set defined in Equation (1). Then, BuildST(Uinit) either (i)
returns a tree T that displays P, if P is compatible, or (ii) returns incompatible otherwise.

CPM 2016

12:8 Compatibility Testing for Rooted Phylogenetic Trees

Proof. We first argue that if BuildST(Uinit) outputs incompatible, P is indeed incompatible.
Assume, on the contrary, that P is compatible. Then, there must be a call BuildST(U)
for some valid subset U such that |L(U)| > 2, in which the graph G(U) of step 9 has a
single connected component, W1 = U . By Lemma 3, U must be compatible, so there exists
a phylogeny TU that displays U . By Observation 1, Γ({TU}) has at least two connected
components A and B. By Lemma 5(ii), however, Γ(P|L(U)) is connected, so there exist
species a ∈ A and b ∈ B such that ab|c ∈ R(P|U). But ab|c /∈ R(T), and, by Lemma 2,
T does not display some tree in P|L(U), a contradiction. Thus, G(U) has at least two
components.

Now, suppose that BuildST(Uinit) returns a tree T . We prove that T displays P by
arguing that for each i ∈ [k] there is an injective mapping φi : V (Ti) → V (T) that maps
every node v ∈ V (Ti) to a distinct node φi(v) ∈ V (T) such that L(v) ⊆ L(φi(v)).

By Lemma 4, each recursive call BuildST(U) returns a phylogenetic tree TU for L(U).
Let rU denote the root of TU . We have two cases.

Case (i): |L(U)| ≤ 2. For each i ∈ [k], we must have |U(i)| ∈ {0, 1, 2}; we only need
to consider |U(i)| ∈ {1, 2}. Suppose first that |U(i)| = 1, and let v be the single node in
U(i). Note that L(v) ⊆ L(rU). Thus, we make φi(v) = rU . If |L(U(i))| = 1, we are done.
Otherwise, |L(U(i))| = 2. Then, v has two children, v1 and v2, both leaves, labeled with, say,
species s1 and s2, respectively. Node rU also has two children, r1 and r2. Assume, without
loss of generality, that these children are labeled with species s1 and s2, respectively. Then,
L(vj) = L(rj) for j ∈ {1, 2}. Therefore, we make φi(vj) = rj for each j ∈ {1, 2}. Now,
suppose that |U(i)| = 2. Then, |L(U(i))| = 2, and each node in U(i) is a leaf in Ti. As in
the previous case, we map each node of U(i) to the corresponding child of rU .

Case (ii): |L(U)| > 2. Let Ubef be the value of U before entering the loop of lines
6–8, and let Uaft be the value of U at line 9, after the loop of lines 6–8 terminates. Let
Urem = {v ∈ Ubef : v ∈ Ubef(i) for some i ∈ [k] such that |Ubef(i)| = 1}. Then Uaft =
(Ubef \ Urem) ∪ {u ∈ Ch(v) : v ∈ Urem}. Assume inductively that every descendant of a node
in Uaft is mapped to an appropriate node in TU . It therefore suffices to establish mappings
for the nodes in Urem. Now, for every v ∈ Urem, L(v) ⊆ L(rU). Thus, we make φ(v) = rU

for every v ∈ Urem. J

4 Implementation

We now explain how to implement BuildST in order to solve the tree compatibility problem
in O(MP log2 MP) time. Consider a call to BuildST(U). Recall that we can assume that
GP(U) is connected. BuildST(U) requires the following three pieces of information.
(G1) The value of |L(U)|. This number is needed in Lines 2 and 4 of BuildST.
(G2) The set J(U) of all i ∈ [k] such that |U(i)| = 1. Set J(U) contains the indices i

considered in Lines 6–8 of BuildST.
(G3) The set U(i) = U ∩ V (Ti) for each i ∈ [k]. For each i ∈ J(U), U(i) contains precisely

the element v used in Lines 7 and 8 of BuildST.
It is straightforward to obtain (G1), (G2), and (G3) for the valid set Uinit of Equation (1):
|L(Uinit)| = n, J(Uinit) = [k], and, for every i ∈ [k], Uinit(i) = {r(Ti)}. Now assume that we
have (G1), (G2), and (G3) at the beginning of some call to BuildST(U). Steps 6–8 modify
U and, therefore, GP(U). Suppose that, at Line 9, GP(U) has more than one connected
component. We need to compute (G1), (G2), and (G3) for each connected component, in
order to pass this information to the recursive calls in Line 13. That is, if p > 1, for each
j ∈ [p], we need to compute |L(Wj)|, J(Wj), and Wj(i) = Wj ∩ V (Ti), for each i ∈ [k].

Y. Deng and D. Fernández-Baca 12:9

a b c d e

Figure 2 The graph HP(Uinit) for the profile P of Figure 1. Nodes of Uinit are drawn as squares.
Nodes in the set {xs : s ∈ L(P)} are labeled with the corresponding species. Species labeling the
leaves of trees in P are omitted.

We use the dynamic graph connectivity data structure by Holm et al. [11]. We refer to
this data structure as HDT. HDT allows us to maintain the list of nodes in each component,
as well as the number of these nodes so that, if we start with no edges in a graph with
N vertices, the amortized cost of each update is O(log2 N). For efficiency, however, we do
not use HDT directly on GP(U). The reason is that the edges of GP(U) are defined via
intersections of sets of species, which could make it costly to determine the new nodes and
edges created as a result of Step 8. To avoid this problem, we proceed indirectly, through
an auxiliary graph HP(U), defined below. As we shall see, HP(U) offers another advantage
over GP(U): maintaining HP(U) only requires handling deletions, but maintaining GP(U)
additionally requires handling insertions.

We define HP(U) as a subgraph of the graph HP constructed as follows. For each species
s ∈ L(P), create a new node xs /∈ V (P), and let XP = {xs : s ∈ L(P)}. Then, HP is the
graph whose vertex set is V (P) ∪XP and whose edge set is E(P) ∪ {(u, xs) : u is a leaf in
Ti, for some i ∈ [k], such that λ(u) = s}. Note that HP has O(MP) nodes and edges, and
can be constructed from P in O(MP) time. HP is essentially the display graph for P [4].
The display graph is the result of glueing together leaves in P labeled by the same species.
Contrast this with HP , which connects leaves with a common label through nodes in XP .
This minor difference with respect to the display graph serves to simplify our presentation.

Given a valid subset U of V (P), we define HP(U) as the subgraph of HP induced by {v : v
is a descendant of some node u ∈ U} ∪ {xs ∈ XP : s ∈ L(U)}. Note that HP(Uinit) = HP .
See Figure 2.

The next result states the basic properties of HP(U). Due to space limitations, we omit
its proof.

I Lemma 8. The following statements hold for any valid subset U of V (P).
(i) Let v be a node in U . If U ′ = (U \ {v}) ∪ Ch(v), then HP(U ′) is obtained from HP(U)

by deleting v and every edge (v, u) such that u ∈ Ch(v).
(ii) Any two nodes in U are in the same connected component in GP(U) if and only if they

are in the same connected component of HP(U).

By Lemma 8(ii), the connected components W1, . . . ,Wp of GP(U) can be put into a
one-to-one correspondence with the connected components Y1, . . . , Yp of HP(U) so that
Wj = Yj ∩ U for each j ∈ [p].

We represent HP(U) using the aforementioned HDT data structure. For each connected
component Y of HP(U), we maintain three fields:
(H1) Y.count, the cardinality of Y ∩XP ,
(H2) Y.singleton, a doubly-linked list that contains all indices i ∈ [k] such that |U(i)| = 1,

and
(H3) Y.List, an array where, for each i ∈ [k], Y.List[i] is a doubly-linked list consisting of

the elements of Y ∩ U(i).

CPM 2016

12:10 Compatibility Testing for Rooted Phylogenetic Trees

Recall that we assume that GP(U) is connected at the beginning of a call to BuildST(U).
Thus, by Lemma 8, HP(U) has a single connected component, Y . Then, |L(U)| = Y.count,
J(U) = Y.singleton, and Y.List[i] contains the elements of U(i), for each i ∈ [k]. Thus,
the three fields of Y provide BuildST(U) with the information that it needs – that is, (G1),
(G2), and (G3). In particular, they allow us to easily find each node v considered in Line 7 of
BuildST(U). Line 8 is then performed as a series of edge deletions, one for each edge (v, u)
such that u ∈ Ch(v), followed by the deletion of v (we provide further details below). By
Lemma 8(i), this correctly updates HP(U). The deletions break up HP(U) into a collection of
connected components Y1, . . . , Yp. For each j ∈ [p], Yj corresponds to a connected component
Wj of GP(U) that (if p > 1) is processed in a recursive call in Line 13. We need to compute
Yj .count, Yj .singleton, Yj .List for each j ∈ [p], in order to provide this information to the
recursive calls.

The total number of edge and node deletions executed by BuildST(Uinit) – including all
deletions conducted by the recursive calls – cannot exceed the total number of edges and
nodes in HP , which is O(MP). The HDT data structure allows us to maintain connectivity
information throughout the entire algorithm in O(MP log2 MP). In the remainder of this
section, we show that we can maintain the count, singleton, and List fields throughout
the entire algorithm in total time O(MP log2 MP). We also argue that all the required
information for HP(Uinit) can be initialized in O(MP) time.

Let Yinit = V (P) ∪XP be the vertex set of HP(Uinit). Then, Yinit is the single connected
component of HP(Uinit). We initialize the data fields of Yinit as follows: (1) Yinit.count =
|L(P)|, (2) Yinit.singleton is the set [k], and (3) for each i ∈ [k], Yinit.List[i] consists of
r(Ti). Thus, we can initialize all data fields in O(MP) time.

We assume that every node v in HP(U) is either marked, if v ∈ U , or unmarked, if v /∈ U .
Initially, each node v ∈ Uinit is marked, and every node v ∈ Yinit \ Uinit is unmarked. We
also assume that for each node v in HP(U), we maintain sufficient information to determine
in O(1) time whether v ∈ XP or v ∈ V (P), and that, in the latter case, we have O(1)-time
access to the index i ∈ [k] such that v ∈ V (Ti). For each i such that Y.List[i] contains
exactly one element, we maintain a pointer from Y.List[i] to the entry for i in Y.singleton.
This allows us to update Y.singleton in O(1) time when U(i) is no longer a singleton. For
each marked node v ∈ Y (so v ∈ U), we maintain a pointer from v to the element in Y.List[i]
that contains v. This allows us to update Y.List[i] in O(1) time when v becomes unmarked.

Consider a call to BuildST(U) for some valid set U . Step 1 takes O(1) time. Since HP(U)
initially consists of a single connected component, say Y , and we have Y.count, Steps 2–5
also take O(1) time. Let H = HP(U). We implement the loop in lines 6–8 as follows. First,
we enumerate the indices in J = J(U) in O(|J |) time by listing the elements of Y.singleton.
For each i ∈ J , we retrieve and remove the single element vi of U(i) from Y.List[i], and
then delete i from Y.singleton. This takes O(1) time. We unmark vi, and for every node
u ∈ Ch(vi) we mark u and add it to Y.List[i]. This takes O(1) time per edge. We then
successively delete each edge (vi, u) such that u ∈ Ch(vi), updating (H1)–(H3) for each
newly-created component along the way. Once these edges are deleted, we delete vi itself.
By Lemma 8(i), the result is the graph HP(U) for the new set U . Let us focus on how to
handle the deletion of a single edge e = (vi, u).

Let Y ′ be the connected component of H that currently contains vi. We query the HDT
data structure to determine, in O(log2 MP) amortized time, whether deleting (vi, u) splits
Y ′ into two components. If Y ′ remains connected, no updates are needed. Otherwise, Y ′ is
split into two parts Y1 and Y2. To fill in the count, singleton, and List fields of Y1 and Y2,
we use the well-known technique of scanning the smaller component [7]. We query the HDT

Y. Deng and D. Fernández-Baca 12:11

data structure to determine, in O(1) time, which of Y1 and Y2 has fewer nodes. Suppose
without loss of generality that |Y1| ≤ |Y2|. We initialize Y2.count and Y2.List to Y ′.count
and Y ′.List, respectively. We initialize Y1.count to 0 and Y1.List[i] to null for each i ∈ [k].
We then scan each node v in Y1, and do the following. If v ∈ XP , we decrement Y2.count
and increment Y1.count. Otherwise v ∈ V (P); assume that v ∈ V (Ti). If v is marked, we
remove v from Y2.List[i] and add v to Y1.List[i]; each such move takes O(1) time. This
operation requires at most one update in each of Y1.singleton and Y2.singleton; each
update takes O(1) time.

We claim that any node v is scanned O(logMP) times over the entire execution of
BuildST(Uinit). To verify this, let N(v) be the number of nodes in the connected component
containing v. Suppose that, initially, N(v) = N . Then, the rth time we scan v, N(v) ≤ N/2r.
Thus, v is scanned O(logN) times. The claim follows, since N = O(MP). Therefore, the
total number of updates over all nodes is O(MP logMP), and the work per update is O(1).

To summarize, the work done by BuildST consists of three parts: (i) initialization, (ii)
maintaining connected components, and (iii) maintaining the count, singleton, and List
fields for each connected component. Part (i) takes O(MP) time. Part (ii) involves O(MP)
edge and node deletions on the HDT data structure, at an amortized cost of O(log2 MP) per
deletion. Part (iii) involves scanning the nodes of our graph every time a deletion creates a
new component, for a total of O(MP logMP) scans, at O(1) cost per scan, over the entire
execution of BuildST. This yields our main result.

I Theorem 9. Let Uinit be the set defined in Equation (1). Then, there exists and imple-
mentation of BuildST such that BuildST(Uinit) runs in O(MP log2 MP) time.

5 Discussion

A trivial lower bound for the tree compatibility problem is Ω(MP), the time to read the
input. Thus, our result leaves us a polylogarithmic factor away from an optimal algorithm
for compatibility. Is it possible to reduce or even eliminate this gap? The bottleneck is the
time to maintain the information associated with the various components of HP(U). It is
conceivable that the special structure of this graph and the way the deletions are performed
could be used to our advantage. A second question is how well our algorithm performs in
practice. To investigate this, it should be possible to leverage existing knowledge on the
empirical behavior of dynamic connectivity data structures [12].

References
1 Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, and Jeffrey D. Ullman. Inferring

a tree from lowest common ancestors with an application to the optimization of relational
expressions. SIAM J. Comput., 10(3):405–421, 1981.

2 Bernard R. Baum. Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability of combining gene trees. Taxon, 41:3–10, 1992.

3 Olaf R. P. Bininda-Emonds, Marcel Cardillo, Kate E. Jones, Ross D. E. MacPhee, Robin
M. D. Beck, Richard Grenyer, Samantha A. Price, Rutger A. Vos, John L. Gittleman, and
Andy Purvis. The delayed rise of present-day mammals. Nature, 446:507–512, 2007.

4 David Bryant and Jens Lagergren. Compatibility of unrooted phylogenetic trees is FPT.
Theoretical Computer Science, 351:296–302, 2006.

5 Peter Buneman. A characterisation of rigid circuit graphs. Discrete Math., 9:205–212, 1974.
6 Bruno Courcelle. The monadic second-order logic of graphs I. Recognizable sets of finite

graphs. Inf. Comput., 85(1):12–75, 1990.

CPM 2016

12:12 Compatibility Testing for Rooted Phylogenetic Trees

7 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–
4, January 1981. URL: http://doi.acm.org/10.1145/322234.322235, doi:10.1145/
322234.322235.

8 Stefan Grünewald, Mike Steel, and M. Shel Swenson. Closure operations in phylogenetics.
Mathematical Biosciences, 208:521–537, 2007.

9 Monika Rauch Henzinger, Valerie King, and Tandy Warnow. Constructing a tree from
homeomorphic subtrees, with applications to computational evolutionary biology. Algorith-
mica, 24:1–13, 1999.

10 Cody E. Hinchliff, Stephen A. Smith, James F. Allman, J. Gordon Burleigh, Ruchi Chaud-
hary, Lyndon M. Coghill, Keith A. Crandall, Jiabin Deng, Bryan T. Drew, Romina Gazis,
Karl Gude, David S. Hibbett, Laura A. Katz, H. Dail Laughinghouse IV, Emily Jane
McTavish, Peter E. Midford, Christopher L. Owen, Richard H. Reed, Jonathan A. Reesk,
Douglas E. Soltis, Tiffani Williams, and Karen A. Cranston. Synthesis of phylogeny and
taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sci-
ences, 2015. In press. doi:10.1073/pnas.1423041112.

11 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectiv-
ity. J. ACM, 48(4):723–760, July 2001. URL: http://doi.acm.org/10.1145/502090.
502095, doi:10.1145/502090.502095.

12 Raj Iyer, David Karger, Hariharan Rahul, and Mikkel Thorup. An experimental study of
polylogarithmic, fully dynamic, connectivity algorithms. J. Exp. Algorithmics, 6, Decem-
ber 2001. URL: http://doi.acm.org/10.1145/945394.945398, doi:10.1145/945394.
945398.

13 Jesper Jansson, Chuanqi Shen, and Wing-Kin Sung. Improved algorithms for construct-
ing consensus trees. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 1800–1813, 2013. URL: http://dx.doi.org/10.1137/1.9781611973105.129,
doi:10.1137/1.9781611973105.129.

14 Itsik Pe’er, Tal Pupko, Ron Shamir, and Roded Sharan. Incomplete directed perfect
phylogeny. SIAM J. Comput., 33(3):590–607, 2004. URL: http://dx.doi.org/10.1137/
S0097539702406510, doi:10.1137/S0097539702406510.

15 Mark A. Ragan. Phylogenetic inference based on matrix representation of trees. Molecular
Phylogenetics and Evolution, 1:53–58, 1992.

16 Michael J. Sanderson. Phylogenetic signal in the eukaryotic tree of life. Science,
321(5885):121–123, 2008.

17 Charles Semple and Mike Steel. Phylogenetics. Oxford Lecture Series in Mathematics.
Oxford University Press, Oxford, 2003.

18 Mike A. Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. J. Classification, 9:91–116, 1992.

http://doi.acm.org/10.1145/322234.322235
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1073/pnas.1423041112
http://doi.acm.org/10.1145/502090.502095
http://doi.acm.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095
http://doi.acm.org/10.1145/945394.945398
http://dx.doi.org/10.1145/945394.945398
http://dx.doi.org/10.1145/945394.945398
http://dx.doi.org/10.1137/1.9781611973105.129
http://dx.doi.org/10.1137/1.9781611973105.129
http://dx.doi.org/10.1137/S0097539702406510
http://dx.doi.org/10.1137/S0097539702406510
http://dx.doi.org/10.1137/S0097539702406510

	Introduction
	Previous Work
	Our Contributions
	Contents

	Preliminaries
	Phylogenetic Trees
	Profiles and Compatibility
	The Triplet Graph

	Testing Compatibility
	Implementation
	Discussion

