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Abstract
The proliferation of shared mutable state in object-oriented programming complicates software
development as two seemingly unrelated operations may interact via an alias and produce un-
expected results. In concurrent programming this manifests itself as data-races. Concurrent
object-oriented programming further suffers from the fact that code that warrants synchronisa-
tion cannot easily be distinguished from code that does not. The burden is placed solely on
the programmer to reason about alias freedom, sharing across threads and side-effects to deduce
where and when to apply concurrency control, without inadvertently blocking parallelism.

This paper presents a reference capability approach to concurrent and parallel object-oriented
programming where all uses of aliases are guaranteed to be data-race free. The static type of
an alias describes its possible sharing without using explicit ownership or effect annotations.
Type information can express non-interfering deterministic parallelism without dynamic concur-
rency control, thread-locality, lock-based schemes, and guarded-by relations giving multi-object
atomicity to nested data structures. Unification of capabilities and traits allows trait-based re-
use across multiple concurrency scenarios with minimal code duplication. The resulting system
brings together features from a wide range of prior work in a unified way.
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1 Introduction

Shared mutable state is ubiquitous in object-oriented programming. Sharing can be more
efficient than copying, especially when large data structures are involved, but with great
power comes great responsibility: unless sharing is carefully maintained, changes through a
reference might propagate unexpectedly, objects may be observed in an inconsistent state,
and conflicting constraints on shared data may inadvertently invalidate invariants, etc. [28].

Multicore programming stresses proper control of sharing to avoid interference or data-
races1 and to synchronise operations on objects so that their changes appear atomic to
the system. Concurrency control is a delicate balance: locking too little opens up for the
aforementioned problems. Locking too much loses parallelism and decreases performance.

For example, parallelism often involves using multiple threads to run many tasks simul-
taneously without any concurrency control. This requires establishing non-interference by
considering all the objects accessed by the tasks at any level of indirection.

∗ This work was partially funded by the Swedish Research Council project Structured Aliasing, the
EU project FP7-612985 Upscale (http://www.upscale-project.eu), and the Uppsala Programming
Multicore Architectures Research Centre (UPMARC)

1 Two concurrent operations accessing the same location (read–write or write–write) without any syn-
chronisation is a data-race. Non-interference allows only read–read races and no locks.
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Mainstream programming languages place the burden of maintaining non-interference,
acquiring and releasing locks, reasoning about sharing, etc. completely on the (expert)
programmer. This is unreasonable, especially considering the increasing amount of parallelism
and concurrency in applications in the age of multicore and manycore machines [6].

In this paper, we explore a reference capability approach to sharing objects across threads.
A capability [31, 33] is a token that grants access to a particular resource, in our case objects.
Capabilities present an alternative approach to tracking and propagating computational
effects to check interference: capabilities assume exclusive access to their governed resources,
or only permit reading. Thus, holding a capability implies the ability to use it fully without
fear of data-races. This shifts reasoning from use-site of a reference to its creation-site.

We propose a language design that integrates capabilities with traits [39], i.e., reusable
units from which classes are constructed. This allows static checking at a higher level of
abstraction than e.g., annotations on individual methods. A mode annotation on the trait
controls how exclusivity is guaranteed, e.g., by completely static means such as controlling
how an object may be referenced, or dynamically, by automatically wrapping operations in
locks. A trait can be combined with different modes to form different capabilities according
to the desired semantics: thread-local objects, immutable objects, unsharable linear objects,
sharable objects with built-in concurrency control, or sharable objects for which locks must
be acquired explicitly. This extends the reusability of traits across concurrency scenarios.

The sharing or non-sharing of a value is visible statically through its type. Types are
formed by composing capabilities. Composition operators control how the capabilities of a
type may share data, which ultimately controls whether an object can be aliased in ways
that allow manipulation in parallel. Hiding a type’s capabilities allows changing its aliasing
restrictions. For example, hiding all mutating capabilities creates a temporarily immutable
object which is consequently safe to share across threads (cf., [9]).

Ultimately, with a small set of primitives—differently moded capabilities and composition
operators—working in concert, the resulting system brings together many features from prior
work: linear types [41, 23] and unique references [27, 34, 8, 17], regions [25], ownership types
[16], universe types [22] and (fractional) permissions [9, 42]. As far as the authors are aware,
there is no other single system that can express all of these concepts in a unified way.

This paper makes several contributions to the area of type-driven concurrency control:
We present a framework for defining capabilities which work in concert to express a wide
variety of concepts from prior work on alias control. The novel integration of capabilities
with traits extends trait-based reuse across different concurrency scenarios without code
duplication. Traits are guaranteed to be data-race free or free from any interference, which
simplifies their implementation and localises reasoning. A single keyword controls this
aspect. We support both internal and external locking schemes for data (Section 3–4).
We formalise our system in the context of the language κ (pronounced kappa), state
the key invariants of our system (safe aliasing, data-race freedom, strong encapsulation,
thread-affinity and partial determinism) and prove them sound (Section 6–7).

The full proofs, dynamic semantics and a few longer code examples can be found in the
accompanying technical report [15].

2 Problem Overview

Object-oriented programs construct graphs of objects whose entangled structure can make
seemingly simple operations hard to reason about. For example, the behaviour of the
following program (adapted from [28]) manipulating two counters c1 and c2 depends on
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whether c1 and c2 may alias, which may only be true for some runs of the program.

assert c1.value() == 42; c1.inc(); c2.inc(); assert c1.value() == 43;

If c1 and c2 always alias, we may reason about the sequential case, but if c2.inc() is
performed by another thread, the behaviour is affected by the scheduling of c2.inc(), and
whether inc() itself is thread-safe. While aliasing is possible without sharing across threads,
sharing across threads is not possible without aliasing. With this in mind, we move on
to three case studies to discuss some of the challenges facing concurrent object-oriented
programming.

2.1 Case Study: Simple Counters
To achieve thread-safety for a counter implemented in Java we can make the inc() method
synchronised to ensure only one thread at a time can execute it. While this might seem
straightforward, there are at least three problems with this approach:

1. Additional lock and unlock instructions for each increment will be inserted regardless of
whether they are necessary or not – synchronising an unaliased object is a waste.

2. Making the object thread-safe does not help protect an instance from being shared, which
might have correctness implications (e.g., non-determinism due to concurrent accesses).

3. Unless the value() method is also synchronised, concurrent calls to inc() and value()
may lead to a data-race, which might lead to a perception of lost increments.

In 1. and 2., the underlying problem is distinguishing objects shared across threads from
thread-local objects as only the former needs synchronisation. Using two different classes for
shared and unshared counters are possible, but leads to code duplication. Furthermore, if a
counter is shared indirectly, i.e., there is only one counter but its containing object is shared,
the necessary concurrency control might be in the container. Establishing and maintaining
such a “guarded-by property” warrants tool support.

In 3., the underlying problem is the absence of machinery for statically checking that all
accesses to data are sufficiently protected. This might not be easy, for example, excluding
data-races in methods inherited from a super class that encapsulates its locking behaviour.

2.2 Case Study: Data Parallelism and Task Parallelism
The counter exemplifies concurrent programming which deals with asynchronous beha-
viour and orchestration of operations on shared objects. In contrast, parallelism is about
optimisation with the goal of improving some aspect of performance.

Consider performing the operations f1 and f2 on all elements in a collection E. A data
parallel approach might apply f1(f2(e)) in parallel to all e ∈ E. In contrast, a task parallel
approach might execute f1(e1); . . . ; f1(en) and f2(e1); . . . ; f2(en) as two parallel tasks.

Both forms of parallelism requires proper alias management to determine whether f1(ei)
and f2(ej) may safely execute in parallel. When i = j, we must determine what parts of
an object’s interface might be used concurrently. When i 6= j, we must reason about the
possible overlapping states of (the different) elements ei and ej . Furthermore, unless f1(e)
(or f1(f2(e))) is safe to execute in parallel on the same object, we must exclude the possibility
that E contains duplicate references to the same object.

If f1 and f2 only perform reads, any combination is trivially safe. However, correctly
categorising methods as accessors or mutators manually can be tricky, especially if mutation
happens deep down inside a nested object structure, and a method which may logically
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only read might perform mutating operations under the hood for optimisation, telemetry,
etc. Extending the categorisation of methods to include mutation of disjoint parts further
complicates this task. Further, as software evolves, a method’s categorisation might need to
be revisited, even as a result of a non-local change (e.g., in a superclass).

2.3 Case Study: Vector vs. ArrayList in Java
As a final case study, consider the ArrayList and Vector classes from the Java API. While
both implement a list with comparable interfaces, vectors are thread-safe whereas array lists
are not. There are several consequences of this design:

1. Vector objects lock individual operations. This requires multiple acquires and releases for
compound operations (e.g., when using an external iterator to access multiple elements).

2. The reliance on Java objects’ built-in synchronisation excludes concurrent reads.
3. Just like the counter above, even thread-local vectors pay the price of synchronisation.

As a result, ArrayList is commonly favoured over Vector despite the fact that this requires
locks to be acquired correctly for each use, rather than once if built into the data structure.

A lock that allows multiple concurrent reads (a readers–writer lock) would allow both
vectors and array lists to be used efficiently and safely in parallel. This distinction adds an
extra dimension of locking and requires categorising methods as accessors/mutators.

Summary. The examples above illustrate a number of challenges facing programmers doing
concurrent and parallel programming in object-oriented languages. In summary:

Code that needs synchronisation for data-race freedom is indistinguishable from code
that does not. The same holds for code correctly achieving non-interference.
Conservatively adding locks to all data structure definitions or all uses of a data structure
hurts performance.
Using locks to exclude conflicting concurrent accesses is non-trivial and requires reasoning
about aliasing and program-wide sharing of data structures. The same reasoning is
required for partitioning a data structure across multiple threads for parallel operations
on disjoint parts, or specifying read-only operations.
The need for concurrency control varies across different usage scenarios. Building concur-
rency control into data structures generates overhead or leads to code duplication (one
thread-safe version and one which is not). Leaving concurrency control in the hands of
clients instead opens up for under-synchronisation and concurrency bugs.
The need for alias control varies across different usage scenarios. At times, thread-locality
or even stronger aliasing restrictions are desirable, for example to avoid locks or non-
determinism, or to unlock compiler optimisations or simplify verification. At other times,
sharing is required. The sharing requirements of a single object could even vary over
time.

We now describe our reference capability system which addresses all of these problems.

3 Capabilities for Concurrency Control

Our starting point for this work is to unify references and capabilities. A capability is a
handle to a resource—a part of or an entire object or aggregate (an object containing other
objects). A capability exposes a set of operations, which can be used to access its resource
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without possibility of data-races. Granting and revoking capabilities corresponds to creating
and destroying aliases. Capabilities’ modes controls how they may be shared across threads:

Exclusive capabilities denote resources that are exclusive to one thread so that accesses are
trivially free from any interference from other threads. There are two exclusive modes:
linear, used for resources to which there is only a single handle in the program, and
thread, which allows sharing, but only within one single thread. linear capabilities must
be fully transferred from one thread in order to be used by another thread.

Safe capabilities denote resources that can be arbitrarily shared (e.g., across multiple
threads). There are two safe modes: locked, causing operations to be implicitly guarded
by locks, and read which do not allow causing or directly observing mutation. Safe
capabilities guarantee data-race freedom.

Subordinate capabilities (the mode subordinate) denote resources that are encapsulated
inside some object and therefore inherit its protection against data-races or interference.
Subordinate capabilities are similar to rep or owner in ownership types [16].

Unsafe capabilities (the mode unsafe) denote arbitrarily shared resources which are unsafe
to use concurrently without some means of concurrency control. Accesses to unsafe
capabilities must be wrapped in explicit locking instructions.

Linear capabilities impose transfer semantics on assignment. We adopt destructive reads
[27] here for simplicity. This means that reading a variable holding a linear capability has the
side-effect of updating it with null. Methods in locked capabilities automatically get acquire
and release instructions, providing per-method atomicity. For unsafe capabilities locking
must be done manually, providing scoped atomicity (the duration of the lock). Although
straightforward, for simplicity we do not allow manual locking of locked in this presentation.

Types are compositions of one or more capabilities (cf., Section 3.3) and expose the union
of their operations. The modes of the capabilities in a type control how resources of that
type can be aliased. The compositional aspect of our capabilities is an important difference
from normal type qualifiers (cf., e.g., [24]), as accessing different parts of an object through
different capabilities in the same type gives different properties.

Exclusive and read capabilities guarantee non-interference and enable deterministic
parallelism. Safe capabilities guarantee the absence of data-races, i.e., concurrent write–write
or read–write operations to the same memory location, but do not exclude race-conditions,
e.g., two threads competing for the same lock. This means that programs will be thread-safe,
only one thread can hold the lock, but not necessarily deterministic—the order in which
competing threads acquire a lock is controlled by factors external to the program. This also
means that capabilities using locks do not exclude the possibility of deadlocks.

3.1 Capability = Trait + Mode
We present our capabilities system through κ, a Java-like language that uses traits [39] in
place of inheritance for object-oriented reuse. A κ capability corresponds to a trait with
some required fields, provided methods, and a mode. For the reader not familiar with
traits, a trait can be thought of as an abstract class whose fields are abstract and must
be provided by a concrete subclass—see Figure 4 for a code example of traits and classes.
An important property of κ is that an implementer of a trait can assume freedom from
data-races or interference, which enables sequential reasoning for all data that the trait owns,
(its subordinate capabilities), plus reachable exclusive capabilities. A trait’s mode controls
how data-race freedom or non-interference is guaranteed. For example, prohibiting aliases to
cross thread boundaries or inserting locks at compile-time in its methods.
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The mode of a trait is either manifest or must be given wherever the trait is included by
a class. A manifest mode is part of the declaration of the trait, meaning the trait defines
a single capability. As an example of this, consider the capability read Comparable which
provides compare methods to a class which do not mutate the underlying object. Traits
without manifest modes can be used to construct different capabilities, e.g., a trait Cell
might be used to form both a locked Cell and a linear Cell when included in different
classes, with different constraints on aliasing of its instances.

As a consequence of this design κ allows the same set of traits to be used to construct
classes tailored to different concurrency scenarios, thus contributing to trait-based reuse.

3.2 Dominating and Subordinate Capabilities
Building a data structure from linear capabilities gives strong encapsulation: subobjects of the
data structure are not aliased from outside. However, linearity imposes a tree-shaped structure
on data. Subordinate capabilities instead provide strong encapsulation by forbidding aliases
from outside an aggregate to objects within the aggregate. Inside an aggregate, subordinate
capabilities may be aliased freely, enabling any graph structure to be expressed.

The capabilities linear, thread, locked and unsafe are dominating capabilities that enclose
subordinate capabilities in a statically enforced way. Domination means that all direct accesses
to objects inside an aggregate from outside are disallowed, making the dominator a single
point of entry into an aggregate. As a consequence, any operation on an object inside
an aggregate must be triggered by a method call on its dominating capability (directly or
indirectly). This means that subordinate objects inherit the concurrency control of their
dominator. Subordinate capabilities dominated by a thread capability inherit its thread-
locality; subordinate capabilities dominated by a locked capability enjoys protection of its
lock, etc. An implementation of a linked list with subordinate links inside a dominating list
head guarantees that only a single thread at a time can mutate the links, while still allowing
arbitrary internal aliasing inside of the data structure (e.g., doubly-linked, circular).

Figure 1 shows encapsulation in κ from dominating and subordinate capabilities. To
enforce the encapsulation of subordinate objects, a subordinate capability (B and C) may not
be returned from or passed outside of its dominating capability (A). There is no hierarchical
decomposition of the heap (cf., [16]) and no notion of transitive ownership. However,
compositions (cf. Section 3.3) of dominating and subordinate capabilities (B) create nested
aggregates, i.e., entire aggregates strongly encapsulated inside another. Pointers to external
capabilities must all be to dominating capabilities. Thus, objects inside B can refer to A, but
not to C.

3.3 Flat and Nested Composition
As usual in a trait-based system, κ constructs classes by composing traits, or rather
capabilities. There are two forms of composition: disjunction (⊕) and conjunction (⊗). If A
and B are capabilities, their disjunction A ⊕ B provides the union of the methods of A and B
and requires the union of their field requirements. Their conjunction A ⊗ B does the same,
but is only well-formed if A and B do not share mutable state which is not protected by
concurrency control. This means that A ⊗ B allows A and B to be used in parallel. Figure 2
shows the composition constraints of disjunction and conjunction pictorially.

We use the term flat composition to mean disjunction or conjunction. When employing
parametric polymorphism a form of nested composition appears. The nested capability A<B>
exposes that A contains zero or more B’s at the type level, allowing type-level operations on



E. Castegren and T. Wrigstad 5:7

dominating

subordinate

permitted reference

unpermitted reference

A

a. b.

c.
d.

B
B C

a. Disallowed if A is linear. If A is thread, aliases must
come from same thread.

b. References from outside an aggregate to its inside are not
permitted.

c. References from inside an aggregate to its outside are
permitted if the target is a dominating capability.

d. References inside an aggregate are allowed.

The box encloses the subordinate capabilities of A. Note that B
is a composition of a subordinate and a dominating capability
(cf. Section 3.3), denoted by the two circles. All dominating
capabilities have their own boxes (as shown for A), e.g., B has a
box nested inside of A’s box, inaccessible to A (cf., b.).

Figure 1 Encapsulation: dominating and subordinate capabilities.

var
val

var
val

A ⊗ B

val
var
val

var
val

A ⊕ B

var
val

Explanation: val fields are “final”, var
fields are mutable. Intersections denote
variables shared between (i.e., require’d
by) both capabilities. Types of fields in the
filled intersection must be safe, i.e., locked
or read. Fields of subordinate type in a
conjunction also must not alias.

Figure 2 Permitted sharing of fields and state across two capabilities A and B in a composite.

the composite capability. (This presentation uses a “dumbed down” version of parametric
polymorphism using concrete types in place of polymorphic parameters for simplicity.)

A composite capability inherits all properties and constraints of its sub-capabilities. Linear
capabilities must not be aliased at all. Subordinate capabilities must not leak outside their
dominator. Consequently, a type which is both subordinate and linear is both a dominator
(may encapsulate state) and a subordinate (is encapsulated), may not escape its enclosing
aggregate and has transfer semantics when assigned (cf., B in Figure 1).

Composition affects locking. A disjunction of two locked capabilities A ⊕ B will be
protected by a single lock. A conjunction A ⊗ B of locked capabilities can use different locks
for A and B, allowing each disjoint part to be locked separately. Furthermore, compositions
of read and locked capabilities can be mapped to readers–writer locks.

An important invariant in κ is that all aliases are safe with respect to data-races or
interference and can be used to the full extent of their types. If an alias can be created, any
use of it will not lead to a bad race, either because it employs some kind of locking, because
all aliases are read-only, or because the referenced object is exclusive to a particular thread.

4 Creating and Destroying Aliases = Concurrency Control

As aliasing is a prerequisite to sharing objects across possibly parallel computations, creating
and destroying aliases is key to enabling parallelism while still guaranteeing race freedom
in κ. Alias restrictions allows statically checkable non-interference, i.e., without dynamic
concurrency control (e.g., locking). Programs that require objects that are aliased across
threads must employ locks or avoid mutation.

Subordinate and thread-local capabilities may only be aliased from within certain contexts.
Read, locked and unsafe capabilities have no alias restrictions. Finally, linear capabilities are
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[A ⊗ B]n (A)n + (B)n

[A ⊗ B]m + [A ⊗ B]m′ (A)m + (B)m + (A)m′ + (B)m′

flat

nested

nested

flat

Figure 3 Flat and nested unpacking, using arrays as an analogy. [A ⊗ B]n, an array of length n
containing composite capabilities A ⊗ B can be thought of as a matrix with rows as elements and
whose columns are the elements’ subparts, A and B. The matrix can be unpacked by rows (flat)
or by columns (nested). Flat unpacking splits the array into subarrays of length m and m′ such
that n = m+m′. Nested unpacking requires that the containing object is not mutable, denoted by
turning arrays into tuples, (A)m. These compose in any order producing the same result.

alias-free. The following sections explore how linear types can be manipulated to create and
destroy aliases (granting and revoking capabilities) while enjoying non-interference.

4.1 Packing and Unpacking
Conjunctions describe objects constructed from parts that can be manipulated in parallel
without internal races. Unpacking breaks an object up into its sub-parts. A variable c with a
handle to an instance of a class C, where class C = A ⊗ B, can be unpacked into two handles
with types A and B using the + operator: var a:A + b:B = c, nullifying c in the process.

Unpacking a disjunction is unsafe (and therefore disallowed) since its building blocks can
share mutable state not mediated by concurrency control. The dual of unpacking is packing,
which re-assembles an object by revoking (nullifying) its sub-capabilities: var c:C = a + b.

The packing and unpacking above is flat. Using an array as analogy, flat unpacking takes
an array [A]n with indexes [0, n) and turns it into two disjoint equi-typed sub-arrays with
indexes [0,m) and [m,n) where m ≤ n. κ also allows nested unpacking, which in the array
analogy means that [A ⊗ B]n can be unpacked into two tuples (A)n and (B)n with the same
length and indexes. Turning the array into tuples, i.e., immutable arrays of mutable values,
is necessary as the aliases could otherwise be used to perform conflicting operations, e.g.,
updating the B-part of element i in one thread and nullifying element i in another thread.

While safe capabilities can always be shared, unpacking allows a linear capability to be
split into several aliases that can safely be used concurrently. When restoring the original
capability through packing, there may be no residual aliases. We implement this here by
preserving linearity in the unpacked capabilities. Figure 3 shows flat and nested unpacking
and how they combine and commute. Section 5 shows how unpacking can be used to
implement both data parallelism and task parallelism.

In this paper, we only consider packing and unpacking as operations at the level of types:
their purpose is to statically guarantee non-interference, not construct new objects from
other parts. Thus, packing can be efficiently compiled into an identity check or removed by
a compiler provided that handles do not escape the scope in which they were unpacked.

4.2 Bounding Capabilities to the Stack
Linearity is often overly restrictive since it prevents even short-lived aliases that do not break
any invariants. To remedy this, κ employs borrowing [8]: temporarily relaxing linearity
as long as the original capability is not accessible in the same scope, and all aliases are
destroyed at the end of the scope. Borrowed capabilities in κ are stack-bound, denoted by a
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class Pair = (linear Fst ⊗ linear Snd) ⊕ linear Swap { var fst:int; var snd:int; }

trait Fst {
require var fst:int;

def setFst(i:int) : void {
this.fst = i;

}
def getFst() : int {

this.fst;
} }

trait Snd {
require var snd:int;

def setSnd(i:int) : void {
this.snd = i;

}
def getSnd() : int {

this.snd;
} }

trait Swap {
require var fst:int;
require var snd:int;

def swap() : void {
var tmp:int = this.fst;
this.fst = this.snd;
this.snd = tmp;

} }

Figure 4 A pair class constructed from capabilities, Fst, Snd and Swap.

type wrapper S(). For example, S(linear Cell) denotes a capability which is identical to
the linear Cell capability except that it may not be stored in a field, and thus is revoked
once the scope exits. κ supports two forms of borrowing:

Forward Borrowing A linear capability in a stack variable can be converted into a stack-
bound capability for a certain scope, destructively read and then safely reinstated at
the end of the scope. This allows e.g., passing a linear capability as an argument to a
method, reinstating it on return. In conjunction with the borrowing it may optionally be
converted to a thread, allowing it to be freely aliased until reinstated.

Reverse Borrowing A method of a linear capability may non-destructively read and return
a stack-bound alias of a field of linear type. This allows linear elements of a data
structure to be accessed without removing them, which is safe as long as the capability
holding the field is not accessed during borrowing. To prevent multiple reverse borrowings
of the same value (which would break linearity), the returned value may not be stored in
fields or local variables but must be used immediately, e.g., as an argument to a method
call.

Borrowing simplifies programming with linear capabilities as it removes the need to
explicitly consume and reinstate values when aliasing is benign, avoiding unnecessary memory
writes. See Section 5 for an example of both forward and reverse borrowing in action.

4.3 Forgetting and Recovering Sub-Capabilities
Unpacking a disjunction is unsafe as its building blocks may have direct access to the same
state without any concurrency control. As an example, consider the simple Pair class created
from the capabilities Fst, Snd and Swap shown in Figure 4.

If we could unpack the pair, it would allow fst and snd to be updated independently.
However, this is unsafe in the presence of the Swap capability, which accesses both fields. For
example, the result of calling swap() concurrently with setFst() depends on the timing of
the threads. A crude solution is simply upcasting Pair to linear Fst ⊗ linear Snd. This
forgets the Swap capability and enables unpacking—but as a consequence Swap is lost forever.

To facilitate recovering a more specific type, κ provides a means to temporarily stash
capabilities inside a jail which precludes their use except for recovering a composite type:
var p:Pair = ...;
var j:J(Pair|Fst ⊗ Snd) + k:(Fst ⊗ Snd) = p; // (1)
var f:Fst + s:Snd = k; // flat unpacking
... // use f and s freely
p = j + (f + s); // flat packing, twice, and getting out of jail (2)

ECOOP 2016
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At (1), the type of j, J(Pair|Fst ⊗ Snd), denotes a jail storing a Pair which is unusable
(the interface of a jailed capability is empty) until it is unlocked by providing the Fst ⊗ Snd
capability of the corresponding resource as key. Thus j serves as a witness to the existence
of the full Pair capability, including Swap. At (2), we recover k from f and s, nullifying both
variables. We use the resulting value to open the jail j and store the result in p. As for
packing, checking whether a key “fits” at run-time (i.e., if f and s are aliases of the jail) is a
simple pointer identity check, which could often be optimised away using escape analysis.

5 Applying Capabilities to the Case Studies in Section 2.1–2.3

Simple Counters. This example demonstrated the problem of distinguishing objects shared
across threads from thread-local or unaliased objects objects, and pointed at the trickiness
of locking correctly. In κ, a counter might be described as a simple trait Counter:
trait Counter {

require var cnt : int;
def inc() : void { this.cnt = this.cnt + 1; }
def value() : int { return this.cnt; } }

To get a capability from the trait, what is missing is to add the mode declaration, which
controls aliasing and sharing across threads. Out of the six possible mode annotations, five
are allowed for the Counter trait:

linear A globally unaliased counter.
thread A thread-local counter. It can be aliased, but aliases cannot cross into other threads.
locked A counter protected by a lock, sharable across threads.
subordinate This type denotes a counter nested inside another object from which it cannot

escape. It thus inherits data-race freedom or non-interference of the enclosing object.
unsafe A sharable, unprotected counter that requires the client to perform synchronisation

at use-site: c.inc() will not compile unless wrapped inside a synchronisation block, which
changes the type of c from unsafe to locked.

Using the mode read would denote a read-only counter, sharable across threads. Assigning
this mode to the trait is rejected by the compiler because of the mutable cnt field.

Modes communicate how counters may be aliased: not at all, by a single thread, or across
threads. In the latter case modes also communicate how concurrent accesses are made safe:
by locks, by only allowing reads (not applicable here), by relying on some containing object
or by delegating responsibility to the client.

Differently synchronised counters can be defined almost without code duplication, e.g.:
class LocalCounter = thread Counter { var cnt:int; }
class SharedCounter = locked Counter { var cnt:int; }

Data/Task Parallelism. This example demonstrated the need for reasoning about aliasing
in order to determine what parts of an interface can be safely accessed concurrently.

A binary tree can be constructed as the conjunction of capabilities giving access to the
left and right subtrees and the current element (full code in the technical report [15]).
class Tree<T> = linear Left<T> ⊗ linear Right<T> ⊗ linear Element<T>

We employ nesting to show that the tree contains capabilities of type T, the type of the
element value held by the Element capability. The conjunction allows parallel operations on
subparts of a tree and requires that parts do not overlap, modulo safe capabilities. Since the
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tree type must be treated linearly, the fact that the Left and Right subtrees do not overlap
follows from the requirement that Left and Right manipulate fields of different names.

To perform data-parallel operations on a tree, we can construct a recursive procedure
that takes a tree, splits it into its separate components and operates on them in parallel.
def foreach(t:S(Tree<T>), f:T → T) : void {

var l:S(linear Left<T>) + r:S(linear Right<T>) + e:S(linear Element<T>) = t; // 0
finish {

async { foreach(l.getLeft(), f); } // 1
async { foreach(r.getRight(), f); } // 1
e.apply(f); } } // 2

At (0) the splitting implicitly consumes the original tree capability. At (1) we recurse on
the left and right subtrees. At (2) we pass the function argument f to the element capability
to be performed on its T-typed value. For simplicity, we omit the check for whether l or r is
null. The implementation requires a tree to be constructed from linear building blocks to
guarantee that no parts of the tree are ever shared across multiple threads. T does not need
to be linear.

This code illustrates both forward and reverse borrowing. The tree argument to foreach()
is forward borrowed and stack-bound, which is why there is no need to pack l, r and e to
recover t—t is still accessible at the call-site, where it was buried [8] during the call.

Calls to getLeft() and getRight() return two reversely borrowed linear values (of type
S(Tree<T>)) which we can pass as arguments to the recursive calls. Hence, all trees manipu-
lated by this code will be stack-bound. If we remove the stack-boundedness, foreach() may
not update the subtrees in-place, and must recover and return t at the end, reminiscent of
functional programming. This would cause lines marked (1) to change thus:
async { l.setLeft( foreach( l.getLeft(), f ) ); }
async { l.setRight( foreach( l.getRight(), f ) ); }

which allows replacing the tree as opposed to updating it, plus a return: return l + r + e.
We may extend the Tree type with a disjunction on a capability Visit which provides

a read-only view of the entire tree. Elements may not be swapped for other elements, but
modified if T allows it. This allows multiple threads to access the same tree in parallel
provided that Left, Right and Element are temporarily forgotten.
class Tree<T> = read Visit<T>⊕ (linear Left<T>⊗ linear Right<T>⊗ linear Element<T>)

Let the type of our tree be Tree<A ⊗ B> for linear capabilities A and B. Turning this capability
into Visit<A ⊗ B> is possible by forgetting every other capability in the tree type. While
read-only capabilities can be aliased freely, creating multiple aliases typed Visit<A ⊗ B>
would provide multiple paths to supposedly linear A ⊗ B capabilities. Composition must
thus adhere to all alias restrictions in the composite capability, just like flat composition.
Therefore, Visit<A ⊗ B> is a linear capability. Unpacking however allows us to turn Visit<A
⊗ B> into two handles typed Visit<A> and Visit<B>, which preserves linearity across all paths.
This allows us to specify a task-parallel operation which implements column-based access:
def map(t:S(Tree<A⊗ B>), f:S(A)→ void, g:S(B)→ void) : void {

var ta:S(read Visit<A>) + tb:S(read Visit<B>) = t; // 3
finish {

async { ta.preorder(f); } // 4
async { tb.preorder(g); } } }// 4

In this code we create two immutable views of the spine of the tree using Visit and
then proceed to apply f and g to all elements of the tree in parallel. At (3) the rest of the
capabilities of Tree are forgotten. If we wanted to restore them after the parallel operations
we would jail them at (3) and restore them after (4).
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While the data-parallel version is more scalable than the task-parallel version, there
may be cases when the latter is preferred. Further, their combination is possible in either
order—apply f and g in parallel to each element at (2) above, or start by unpacking the tree
into multiple immutable trees and then process the sub-elements in parallel in each tree,
equivalent to calling a version of foreach instead of preorder at (4) (cf., Figure 3).

Vector vs. ArrayList in Java. This example demonstrated that building synchronisation
into a data structure can cause too much overhead and destroy parallelism. In κ, a list
might be described using capabilities (full code in technical report, [15]):

Add_Del for adding and removing elements
Get for looking up elements

Add_Del might be split into two capabilities allowing for more flexibility, for example granting
a client only the ability to add elements but not delete them. As the two capabilities operate
on some shared state (the links), their combination must be a disjunction: Add_Del ⊕ Get.

To express the difference between the array list and vector, we would write
class ArrayList = unsafe Add_Del ⊕ unsafe Get // Needs external synchronisation
class Vector = locked Add_Del ⊕ locked Get // Has synchronisation built in

Specifying use of readers–writer locks to access an object is straightforward and allows sharing
a list across threads for reading, causing concurrent write operations to block:
class ArrayList = unsafe Add_Del ⊕ read Get
class Vector = locked Add_Del ⊕ read Get

The use of unsafe in the definition of the array list class pushes the synchronisation from
within the called methods to the outside, e.g., calling list.add(element) we must first take
a (write-)lock on list. Requiring external synchronisation also allows acquiring, holding
and releasing a lock once to perform several operations, like an iteration, without fear of
interleaving accesses from elsewhere.

The type thread Add_Del ⊕ read Get denotes a list confined to its creating thread. The
type linear Add_Del ⊕ read Get denotes a list that can mediate between being mutated from
one alias or read-only from several aliases. This type is similar to a readers–writer lock,
except relying on alias restrictions instead of locks (cf., [9]), removing locking overhead. The
ability to reuse traits for different concurrency scenarios is an important contribution of κ.

Concluding Remarks for Section 3–5
Linear and thread-local capabilities give non-interference by restricting aliases to a single
thread. Locked and unsafe capabilities can be shared across threads and employ locks at
declaration-site or at use-site to avoid data-races. Read capabilities can be shared across
threads and do not allow causing or directly witnessing mutation. When a read capability is
extracted from a linear composite, no mutating aliases exist, guaranteeing non-interference.
When extracted from a locked composite, locks are used to guarantee data-race freedom.

The assignment of modes to traits at inclusion site allow a single definition to be reused
across multiple concurrency scenarios. Composition captures how different parts of an
object’s interface interact and defines the safe aliasing of an object.

Subordinate capabilities inherit the protection of their enclosing dominating capabilities.
Thus, operations on encapsulated objects are atomic in κ, in the sense that all side-effects
of a method call on an aggregate are made visible to other threads atomically. Operating
atomically on several objects which are not encapsulated in the same aggregate is possible by
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P ::= Cds Tds e (Program)
Cd ::= class C = K { Fds } (Class definition)
Fd ::= mod f : t (Field definition)

mod ::= var | val (Mutable and immutable fields)
K ::= k T | k I | K〈K〉 | (K � K) (Capabilities and composition)
� ::= ⊗ | ⊕ (Conjunction and disjunction)

Td ::= k trait T〈t〉 {Rs Mds } | trait T〈t〉 {Rs Mds } (Trait definition)
R ::= require Fd (Field requirement)

Md ::= def m(x : t) : t { e } (Method definition)
e ::= v | let x = e in e | pack x = y + z in e | unpack x + y = z in e | x.m(e) | x | x.f
| x.f = e | new C | consume x | consume x.f | (t) e | sync x as y { e } ; e
| bound x { e } ; e | finish { async { e } async { e } } ; e (Expression)

v ::= null (Literal)
t ::= K | C | B(K) (Type)
B ::= JK | S (“Boxed” types, i.e., jailed or stack-bound)
k ::= linear | locked | read | safe | subordinate | thread | unsafe (Modes)

Figure 5 Syntax of κ. T is a trait name; I is the incapability; C is a class name; m is a
method name; f is a field name; x, y are variable names, including this. Ds ::= D1, . . . , Dn for
D ∈ {Cd,Td,Fd,R,Md}.

locking them together using nested synchronisation (for unsafe capabilities) or by structuring
a call-chain on locked capabilities.

Invariantly, all well-typed aliases can coexist without risking data-races. The type system
guarantees that all accesses to an object will either be exclusive or only perform operations
that cannot clash with any other possible concurrent operations to the same object.

6 Formalising κ

We formalise the static semantics of κ. We define a flattening translation into a language
without traits, κF, whose static and dynamic semantics is found in the accompanying
technical report [15]. κF is a simple object-oriented language with structured parallelism and
locking, that uses classes and interfaces which are oblivious to the existence of κ capabilities.
The translation from κ to κF inserts locking and unlocking operations when translating
locked capabilities and conjunctions of locked and read capabilities. The locks are reentrant
readers–writer locks controlling access to parts of objects. Other locking schemes are possible.

The syntax of κ is shown in Figure 5. We make a few simplifications, none of which are
critical for the soundness of the approach:

1. We use let-bindings and explicit pack/unpack constructs. Targets of method calls must
be stack variables. Aliasing stack-bounds requires a method-call indirection.

2. We consider finish/async parallelism rather than unstructured creation of threads.
3. Classes only contain fields and no methods.
4. We omit the treatment of constructors. Fields are initialised with null on instantiation.
5. We use objects to model higher-order functions and omit these from the formalism.
6. Only a single method parameter and a single nested type are supported.

We introduce a safe capability, which abstracts read and locked to allow mode subtyping.
The safe mode is only allowed in types, not in declarations. The incapability type I does not
contain any fields or methods and simply allows holding a reference to an object.
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` P : t ` Td Γ ` Td ` Cd (Well-formedness top-level declarations)

wf-program
∀ Cd∈ Cds . ` Cd
∀ Td∈ Tds . ` Td

ε ` e : t
` Cds Tds e : t

wf-t-trait
` subord trait T〈t〉 { Rs Mds }
` trait T〈t〉 { Rs Mds }

wf-t-trait-mfst
ρ : t ` k trait T { Rs Mds }
` k trait T〈t〉 { Rs Mds }

wf-t-innards
k 6= safe

Γ, this : k T ` Rs
Γ, this : k T ` Mds

Γ ` k trait T { Rs Mds }

wf-class
` K ∀ Fd∈ Fds . this : K ` Fd

∀ var f : t1∈ fields (K) . ∃ var f : t2∈ Fds . t2 ≡ t1
∀ val f : t1∈ fields (K) . ∃ var f : t2∈ Fds . t2 <: t1

` classC = K { Fds }

Γ ` R,Rs Γ ` Mds,Md Γ ` Fd ` Γ (Well-formed body parts)

wf-req-fd
Γ ` Fd

Γ ` requireFd

wf-req-fds
Γ ` R
Γ ` Rs

Γ ` Rs,R

wf-mds
Γ ` Md
Γ ` Mds

Γ ` Mds,Md

wf-m-trait
Γ, x : t1 ` e : t2

Γ ` defm(x : t1) : t2 { e }

wf-fd-nst
` Γ

Γ(ρ) = K
Γ ` val f : K

wf-fd
Γ(this) = K ` t t 6= S(_)
` K thread(t)⇒ thread(K)
read(K)⇒ (mod ≡ val ∧ safe(t))

Γ ` mod f : t

env-e

` ε

env-var
` Γ
` t

x 6∈ dom(Γ)
` Γ, x : t

Figure 6 Well-formed declarations. Γ ::= ε | Γ, x : t, (x incl. ρ).

Our main technical result is the proof that a κF program translated from a well-typed κ
program enjoys safe aliasing and strong encapsulation (cf. Section 7.2) in a way that implies
thread-safety (cf. Section 7.3). We verify our definition of thread-safety by proving that it
implies data-race freedom and, when certain capabilities are excluded, also non-interference
(cf. Section 7.3).

Helper Predicates and Functions. The functions fields, vals, vars and msigs return a map
from names to types or method signatures. We use helper predicates of the form k(K) to
assess whether a capability K has mode k. The predicates linear, subord(inate) and unsafe
hold if there exists at least one sub-capability in K of that mode. The predicates read(K) and
encaps(K) hold if all sub-capabilities in K are read or subordinate, respectively. locked(K)
holds if one or more sub-capabilities are locked, and the remainder safe.

6.1 Well-Formed κ Programs (Figure 6)

A well-formed program consists of classes, traits, and an initial expression (WF-PROGRAM).
Traits without manifest mode are type-checked as if they were subordinate (WF-T-TRAIT).
To reduce the number of rules, we require all traits to have exactly one nested capability (a
concrete type “parameter”), and use T as shorthand for T<I>, where I is the empty capability.
A trait is well-formed if its field requirements and methods are well-typed given the self-type
of the current trait and the nested type. The latter is tracked by the special variable ρ which
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` t (well-formedness of types)

t-class
classC = K {_ } ∈ P

` C

t-boxed
` K
` B(K)

t-nesting
` K1
` K2

` K1〈K2〉

t-trait-mfst
k trait T〈K〉 {__ } ∈ P

` k T

t-trait
k ≡ read⇒ this : read T ` Rs

trait T〈K〉 { Rs_ } ∈ P
` k T

t-i

` k I

t-composition
` K1 ` K2

∀ Fd1∈ fields (K1),Fd2∈ fields (K2) . Fd1 � Fd2
wfRegions (K1, K2) wfRegions (K2, K1)

` K1 � K2

t-regions
∀ K1⊗ K2∈ K . mod1 f1 : t1∈ fields (K1) ∧mod2 f2 : t2∈ fields (K2)

∧ f1 6= f2 ∧ subord(t1) ∧ subord(t2)⇒
¬ (f1∈ fields (K′) ∧ f2∈ fields (K′))

wfRegions (K, K′)

Fd1 � Fd2 (sharing fields
across traits)

c-sharable
safe(t) ∨ unsafe(t)
val f : t ⊗ val f : t

c-var-val
t1 <: t2

var f : t1 ⊕ val f : t2

c-val-val
` K1 ⊗ K2

� = ⊗ ⇒ ¬ subord(K1 ⊗ K2)
val f : K1 � val f : K2

c-disjoint
f1 6= f2

mod1 f1 : t1 � mod2 f2 : t2

c-disjunction

mod1 f : t ⊕ mod2 f : t

Figure 7 Well-formed types. Conjunctions and disjunctions of traits are governed by the rules for
overlapping fields. For simplicity, we omit (C-VAL-VAR) which is isomorphic with (C-VAR-VAL).

may not appear anywhere in the program source (WF-T-TRAIT-MFST). Fields are either
mutable (var) or stable (val). We assume that names of classes and traits are unique in a
program and the names of fields and methods are unique in classes and traits.

A well-formed class consists of well-typed var fields that satisfy the requirements from its
traits, and a defined equivalence to a well-formed composite capability. We allow covariance
for val fields (WF-CLASS). Only immutable fields holding safe capabilities are allowed in
read capabilities (WF-REQ-*,WF-FD), unless the type of the field is exposed through nesting
(WF-FD-NST). Fields may not store stack-bound capabilities and fields holding thread-local
values are only allowed if the containing object is also thread-local (WF-FD).

6.2 Well-Formed Types (Figure 7)

Capabilities corresponding to traits with manifest modes are trivially well-formed (T-TRAIT-

MFST). Traits without a manifest mode can be given any mode (T-TRAIT). Well-formed
read capabilities may only contain safe val fields. The empty capability I can be given any
mode (T-I). Composing capabilities with I thus affects the mode of the composite, but not
the interface (cf., Section 6.3).

Two well-formed capabilities can form a nested capability type (T-NESTING). A composite
capability is well-formed if its sub-capabilities are well-formed and their shared fields are
composable (T-COMPOSITION). We also require that two subordinate fields appearing on
opposing sides of a conjunction K1⊗K2 are not both accessible from some other trait K′ in
the same composite (T-REGIONS). Such a field would act as a channel that could be used to
share subordinate state across the supposedly disjoint representations of K1 and K2.
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The rules of the form Fd1�Fd2 govern field overlaps between capabilities in a composite,
where � ∈ {⊗,⊕} denotes the composition of the capabilities containing the fields (cf.,
Figure 2). Disjunctions may overlap freely (C-DISJUNCTION). Disjoint fields do not overlap
(C-DISJOINT). If a field appearing on both sides of a composition is mutable on one side and
immutable on the other, the mutable field’s type must be more precise (C-VAR-VAL). An
immutable field may appear on both sides of a composition only if its type is safe or unsafe
(C-SHARABLE) or if the fields have types whose conjunction is well-formed (C-VAL-VAL). If
the sharing capabilities are conjunctive, the field must not be subordinate.

6.3 Type Equivalence, Packing and Subtyping (Figure 8)

Class names are aliases for composite capabilities (T-EQ-CLASS-TRAIT). The order of the
operands in composition of a single kind does not matter (T-EQ-COMMUTATIVE) and
(T-EQ-ASSOCIATIVE). Equivalent types in jail or bound to the stack are still equivalent
(T-EQ-BOXED). A read with a nested conjunction can be unpacked into two read capabilities
with nested capabilities from the unpacked conjunction (T-EQ-NESTING). Incapabilities can
be added and removed from a type as long as modes are preserved (T-EQ-I).

Jailing allows creating a conjunction from a disjunction (T-JAIL). The full capability that
can be unlocked from the jail is written as a subscript K. Jailing requires that all modes on
the composite are preserved by the extracted capability, modulo the rules k<: for unpacking
to be sound. For example, locked A ⊕ subord B denotes a (partially) subordinate capability
that is strongly encapsulated inside an aggregate. If we are allowed to forget the subordinate
mode of the type, the locked sub-capability could be leaked. We employ (T-EQ-I) to this end.
For example, we can compose subord I with locked A ⊕ subord B and then apply (T-JAIL)

to extract locked A ⊕ subord I which satisfies mode preservation.
Subtyping is structural on capabilities. Subtyping must preserve modes, or encapsulation,

domination or exclusivity could be lost. The rules (T-SUB-*) allow locked and read to be
abstracted by the safe mode.

6.4 Well-Typed Expressions (Figure 9)

Packing & Unpacking. The rules (E-PACK) and (E-UNPACK) govern the packing and
unpacking of capabilities. They rely on the rules (T-JAIL) and (T-PACK) in Figure 8 which
allow introducing aliases to discrete capabilities of a conjunction and turning a disjunction
into a conjunction by jailing the overlapping parts.

Linearity. linear capabilities are destructively read to maintain alias freedom and allow
ownership transfer (E-CONS-VAR,E-CONS-FD). Method calls do not destroy linear receivers
as an object’s this cannot be consumed. Thus, linear capabilities are externally unique [17].

Finish–Async and Sync. Parallelism in κ is modelled using a scoped finish/async construct
(abbreviated as f and a respectively) (E-FJ). A finish–async forks two parallel computations
and waits until they have both completed. Forking a larger number of threads can be
simulated using nested finish/async blocks. For simplicity we do not allow async blocks
outside of a finish block, but extending the system to support unstructured parallelism or
active objects is possible. We employ a frame rule that guarantees that no variable is visible
in both asyncs, and that subordinate objects are only accessible to the first of the asyncs,
(FRAME). This models the current thread running the first async (with access to the current
this), and another thread running the second async block.
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t1 ≡ t2 (type equivalence)

t-eq-class-trait
classC = K {_ } ∈ P

C ≡ K

t-eq-commutative

K1 � K2 ≡ K2 � K1

t-eq-associative

(K1 � K2) � K3 ≡ K1 � (K2 � K3)

t-eq-boxed
K1 ≡ K2

B(K1) ≡ B(K2)

t-eq-nesting
read(K1)

K1〈K2 ⊗ K3〉 ≡ K1〈K2〉 ⊗ K1〈K3〉

t-eq-i
k(K)

K � k I ≡ K

t-eq-trans
K1 ≡ K2 K2 ≡ K3

K1 ≡ K3

t1 
 t2⊗ t3 (packing and unpacking)

t-pack
K1 ≡ K2 ⊗ K3

subord(K2)⇔ subord(K3)
K1 
 K2⊗ K3

t-jail
K1 ≡ K2 ⊕ K3

∀ k . k(K1)⇒ k(K3)
K1 
 JK1 (K2)⊗ K3

t-pack-bound
K1 
 K2⊗ K3

S(K1)
 S(K2)⊗ S(K3)

t1 <: t2 k<:(K) (subtyping and “submoding”)

t-sub-structural
∀ k . k(K1 � K2)⇒ k<:(K1)

K1 � K2 <: K1

t-sub-boxed
K1 <: K2

B(K1) <: B(K2)

t-sub-eq
t1 ≡ t2 t2 <: t3

t1 <: t3

t-sub-id

t <: t

t-sub-k
k(K)

k<:(K)

t-sub-rd
safe(K)

read<:(K)

t-sub-lock
safe(K)

locked<:(K)

Figure 8 Type equivalence, packing/unpacking, subtyping.

frame
dom (Γ2) ∩ dom (Γ3) ≡ ∅ 6 ∃ x : t∈ Γ3 . (subord(t) ∨ thread(t))

∀ x . (Γ2(x) = t ⇒ Γ1(x) = t) ∧ (Γ3(x) = t ⇒ Γ1(x) = t)
Γ1 = Γ2 + Γ3

The sync keyword temporarily converts an unsafe (and therefore unusable) capability
into a locked capability, acquiring and releasing locks at the entry and exit of e1 (E-SYNC).

Borrowing. Forward borrowing allows turning capabilities into stack-bound capabilities non-
destructively, possibly relaxing a linear to a thread and allows splitting reads (E-FORWARD).
The helper predicate boundable(K1, K2) holds in either of three cases:
1. K1 = K2
2. K1[linear 7→ thread] = K2 (relaxing linearity to thread-affinity)
3. K1 = K2 � K3 s.t. K3 is neither subordinate nor thread, and all capabilities in K2 are read.
The last case allows relaxing alias restrictions for stack-bound read capabilities which enables
mediating from single writer to multiple readers across multiple threads without dynamic
concurrency control for a clearly defined scope.

Reverse borrowing allows non-destructively reading a linear capability into a stack-bound
value (E-REVERSE). Since only one value can be returned by a method, multiple reverse
borrowing of the same field in the same method is innocuous. Non-linear capabilities never
need to be reverse borrowed as they can always be returned normally without consuming.

Self Typing. Modulo traits with manifest modes, this inside a trait is always subordinate
(WF-T-TRAIT). This reflects the fact that on the inside of a capability, exclusive access of a
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Γ ` e : t (expression typing)

e-upcast
Γ ` e : t2
t2 <: t1

Γ ` (t1)e : t1

e-new
` Γ

classC = K {_ } ∈ P
Γ ` newC : K

e-null
` Γ ` t
Γ ` null : t

e-let
Γ ` e1 : t1
t1 6= S(_)

Γ, x : t1 ` e2 : t2

Γ ` let x = e1 in e2 : t2

e-unpack
Γ ` z : t1 t1 
 t2⊗ t3

Γ, x : t2, y : t3 ` e : t4

Γ ` unpack x + y = z in e : t4

e-pack
Γ ` y : t1 Γ ` z : t2
linear(t1) linear(t2)

t3 
 t1⊗ t2 Γ, x : t3 ` e : t4

Γ ` pack x = y + z in e : t4

e-select
Γ ` this : t1

fields (t1)(f ) = t2
¬ linear(t2)

Γ ` this.f : t2

e-cons-fd
Γ ` this : t1

vars (t1)(f ) = t2

Γ ` consume this.f : t2

e-update
Γ ` this : t1

vars (t1)(f ) = t2
Γ ` e : t2

Γ ` this.f = e : t2

e-var
` Γ

Γ(x) = t
¬ linear(t)
Γ ` x : t

e-cons-var
` Γ

x 6= this
Γ(x) = t

Γ ` consume x : t

e-call
linear(t1)⇒ x 6∈ freeVars (e) Γ(x) = t1

¬unsafe(t1) msigs (t1)(m) = z : t2 → t3 Γ ` e : t2
(subord(t2) ∨ subord(t3))⇒ encaps (t1) ∨ x ≡ this

Γ ` x.m(e) : t3

e-fj
Γ = Γ1 + Γ2 Γ ` e : t

Γ1 ` e1 : _ Γ2 ` e2 : _
Γ ` f { a { e1 } a { e2 } } ; e : t

e-sync
Γ ` x : unsafe T

Γ, y : S(locked T) ` e1 : _
Γ ` e2 : t

Γ ` sync x as y { e1 } ; e2 : t

e-reverse
Γ ` this : t
linear(t)

fields (t)(f ) = K
Γ ` this.f : S(K)

e-forward
boundable (K1, K2)
Γ, x : S(K2) ` e1 : _

Γ, x : K1 ` e2 : t
Γ, x : K1 ` bound x { e1 } ; e2 : t

Figure 9 Typing of expressions. Note that all fields are “private”.

single thread is already guaranteed (e.g., because the accessing thread was forced to acquire a
lock to enter the object, or place a linear entry point in a stack variable, which is analogous).

Viewing this as subordinate allows an object to be aliased freely from inside its own
enclosure, including objects of linear capabilities. Thus, linear capabilities in κ are externally
unique [17]. Traits with manifest modes have more information about themselves internally.

7 Meta-Theoretic Evaluation

In this section, we describe the key invariants of our capabilities in a well-typed κ program.
Due to lack of space, proofs have been relegated to a technical report [15]. This section aims
to explain the key properties, and sketching why they hold.

7.1 κF and the Dynamic Semantics of κ Programs
To execute κ programs, they are translated into a simpler language, κF, with classes and
interfaces without traits or capabilities. The semantics of κF is straightforward, and only
the most relevant details are presented here.
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Flattening of traits [39] is performed similar to other trait-based languages: A class is
translated by copying the methods from its traits, traits are translated into interfaces with
the equivalent signature. For each composition K1� K2, an interface is created extending the
interfaces corresponding to K1 and K2. This preserves the same subtyping rules as in κ. For
each κ-capability in a translated program, there is a single corresponding interface. Because
of this one-to-one mapping, we can easily recover κ types from a κF program, which we use
extensively in our proofs.

From field overlaps, we infer a set of regions for each class, and insert lock and unlock
instructions at the start and end of methods to acquire and release the lock for the region
touched by the method. Read locks are acquired in methods in read capabilities if they
overlap with a locked or unsafe capability. Methods in locked capabilities acquire write locks.
All locks are reentrant. Well-formedness of κF configurations requires that no two threads
can hold the same writer lock, and that all locks held by a thread are also taken in the
objects themselves. This assures mutual exclusion in all parts of a program that use locks.

A well-formed κ program will always translate into a well-formed κF program. This is
easy to prove as most type rules for κF are subsumed by the κ type rules. Thus, by proving
type soundness (progress and preservation) of κF, we show that a translated κ program will
never get stuck (modulo deadlocks, which we distinguish from unsound stuck states).

κF imposes no restrictions on aliasing nor does it provide any guarantees about race
freedom. However, κF programs translated from well-formed κ programs will always be
data-race free. As κF itself provides no data-race guarantees, the invariants given by κ are
defined independent of well-formed configurations of κF (see Section 7.2 and Section 7.3).

We have a fully mechanised specification of κF in Coq, including a proof of type soundness,
but not data-race freedom. In our hand-written proof of data-race freedom we also extend
κF with means of tracking types and stack-boundedness of values. This has no effect on the
execution or typechecking of κF programs and is thus excluded from the mechanised version
[15]. Specifying all of κ in Coq is future work.

7.2 Aliasing and Encapsulation
This section details the invariants on aliasing and encapsulation in well-typed κ programs.

Safe Aliasing. One of the main technical results of this work is the proof that κ programs
enjoy safe aliasing, i.e., two paths to the same mutable field are local to the same thread, or
protected by the same lock which must be acquired before access. Informally, aliasing is safe
if the following is true for all aliases x, y on the stack or heap:

x and y have composable types, meaning they point to different parts of the same object,
modulo safe val fields, corresponding to ` tx⊗ ty in κ (cf., Figure 7).
x and y are protected, i.e., read-only aliases, or safe aliases that use locks internally, or
unsafe aliases whose accesses must be wrapped in locks.
x and y are both local to the same thread, corresponding to the thread capabilities of κ.
x and y both have subordinate types, meaning that any thread accessing them must
currently have exclusive access to their dominator.
If x or y is linear, at least one of the aliases must be stack-bound to prevent introducing
aliases of linear values on the heap.
If one of the aliases is stack-bound, the origins of the borrowed value must be buried, to
prevent multiple accessible references to the same linear value.
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Proof. Part of the proof of thread-safety [15].

Strong Encapsulation of Subordinate Capabilities. Another invariant preserved by κ
programs is that references in fields of subordinate type point to objects dominated by the
dominator of the current enclosure. This is what grants subordinate capabilities strong
encapsulation, similar to ownership types [16] and external uniqueness [17].

At run-time in κF, instances know the identity of their dominator. This identity is
invariant, even under ownership transfer, because transfer operates on linear capabilities and
instances of classes without a subordinate capability are their own dominators.

Let → denote “refers to” and ι.dom denote the dominator for an object with id ι in the
heap H. Now, ∀ ι, ι′ ∈ dom(H), ι → ι′ s.t. ι 6= ι′, either one of the following holds:

1. ι′.dom = ι.dom (a pointer between subordinates in the same enclosure)
2. ι′.dom = ι (a dominator pointing to one of its subordinates)
3. ι.dom = ι′ (a subordinate pointing to its dominator)

or ι′ is a top-level object, i.e., ι′.dom = ι′.

Proof. Part of the proof of thread-safety [15].

7.3 Data-Race Freedom and Non-Interference.
This section describes the invariants of κ for concurrent and parallel programming.

Thread-Safety. Safe aliasing and the encapsulation guarantees mentioned above are both
part of a bigger notion of a thread-safe (TS) configuration. A configuration is thread-safe if
no two possible reductions can cause interference—if a possible reduction of a configuration
has one thread writing to a field, there cannot be another reduction of the same configuration
where the same field is read or written to by another thread.

In addition to safe aliasing, a number of constraints apply to the elements of thread-safe
configurations that deal specifically with aliasing across threads:

references in fields of subordinate type point to objects dominated by the dominator of
the current enclosure;
values of type thread were created by the thread that can access them;
all local variables of subordinate type are dominated by the closest dominating this on
the current stack;
if a stack-bound linear value aliases a value on the heap, the value on the heap is
effectively buried, i.e., the only path to it is rooted on the stack;
all accesses to values not wrapped in locks are linear, thread, subord or read.

Having defined thread-safety, we then prove that the initial configuration is TS and that
evaluation preserves this property in a program translated from κ to κF.

I Preservation of Thread-Safety. In a well-formed program translated from κ, if a thread-safe
configuration cfg can step to cfg′, then cfg′ is also thread-safe.

∀Γ, cfg, cfg′.

Γ ` TS(cfg) ∧ cfg ↪→ cfg′ ⇒ ∃Γ′.Γ′ ` TS(cfg′) ∧ Γ ⊆ Γ′
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Proof. We prove thread-safety by induction over the thread structure [15]. The proof is
similar in structure to the type preservation proof of κF (and relies on type preservation to
find Γ′).

Data-Race Freedom. The dynamic semantics of κF tracks effect footprints in terms of
reads (rd(_)) and writes (wr(_)) of object fields. This allows us to define and prove data-race
freedom, which verifies that our notion of thread-safety is sound.
I Data-Race Freedom. If a safe configuration cfg steps to two different configurations causing
effects Eff 1 and Eff 2 respectively, then these effects are non-conflicting:

∀Γ, cfg, cfg′ cfg′′ .

Γ ` TS(cfg) ∧ cfg ↪→Eff 1 cfg′ ∧ cfg ↪→Eff 2 cfg′′ ⇒ Eff 1 # Eff 2 ∨ cfg′ = cfg′′

where # denotes that two effects are disjoint or a read–read conflict:

rd(l.f) # rd(l′.f ′) _(l.f) # wr(l′.f ′) iff l 6= l′ ∨ f 6= f ′

ε # _ Eff 1 # Eff 2 iff Eff 2 # Eff 1

Proof. The proof is straightforward and performed by case analysis on the thread structure,
showing that any interference contradicts thread-safety [15].

Corollary: Non-Interference. Parallel κ expressions that do not use locked or unsafe
capabilities are free from interference and therefore deterministic. The only way threads
can affect each other is by writing shared mutable locations, which requires taking a lock.
Without locked or unsafe capabilities there are no locks, meaning that any data that is shared
between threads can only be read, and that no threads are ever blocked in their execution.

Corollary: Thread-Affinity of Thread Capabilities. Implied by TS, κ thread capabilities
are thread-affine. Let creator(ι) return the id of the thread creating ι. From TS follows that
in a thread tid with local variables V and expression e, ∀x . V (x) = ι∧ Γ(x) = t∧ thread(t)⇒
creator(ι) = tid and ∀ι . ι ∈ locations(e) ∧ Γ(x) = t ∧ thread(t) ⇒ creator(ι) = tid. Thus
thread capabilities are only visible to their creating threads. The key elements in the type
system are the thread(t) =⇒ thread(K) constraint in the κ rule (WF-FD) which restrict fields
of type thread to only appear inside manifestly thread capabilities and the κ rule (FRAME)

which does not allow thread capabilities to be visible in the second async of a finish.

8 Related Work

An original source of inspiration for this work was Boyland et al.’s “Capabilities for Sharing”
which introduces a system of reference capabilities, such as immutability or ownership in
a dynamic system, not amenable to static typing [10]. Similarly, κ brings together ideas
from many different areas in a single system, but fully statically typed. To the best of our
knowledge, the selection and integration of the features in κ are unique in an object setting:

1. Linear capabilities are similar to uniqueness [27, 34] or permissions [9, 42, 38] and enable
ownership transfer [17].

2. Subordinate capabilities enable strong encapsulation similar to ownership types [16]
or Universes [35, 36]. κ’s combination of subordinate and dominating capabilities
give arbitrary nesting, but nested aggregates may not refer to subordinate objects in
their enclosing aggregate, nor does κ support incoming read-only references (owners-as-
modifiers [35, 36])—both enable data-races.
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3. Thread capabilities resemble thread-local heaps in Loci [43] and ownership for actors [18].
4. That linear capabilities view themselves as subordinate capabilities internally gives a

form of external uniqueness [17, 26].
5. The combination of locked and read capabilities express readers–writer locks, with a

compile-time guarantee that readers will not write.
6. The safe mode, abstracting over read and locked, avoids code duplication for traits that

are agnostic to why objects are safe, similar to type qualifier generics [22, 45].
7. The combination of locked and subordinate capabilities empowers a single lock to range

over an entire aggregate with a compile-time guarantee of correctness (cf., owners-as-locks
in e.g., [16]), it also allows enforcing a crude form of lock ordering in combination with
readers-writer locks by connecting lock order to nesting order (cf., [7]).

8. Nested capabilities are essentially storable permissions [9, 42] but without breaking
abstraction—the names of fields etc. of the object storing permissions can be kept secret.

9. The flat composition of capabilities and the packing/unpacking marries ideas from
fractional permissions [9] with ownership and substructural types [13], similar to [29].
Composites of read and linear capabilities support mediation between readers and writers,
using stack-bounding to identify where sharing starts and stops.

Ownership Systems. Aliasing of mutable state in object-oriented programming is a mature
research field: categorisations of alias management techniques [28], ownership types [16],
universe types [22, 36], external uniqueness [17], balloons [2], as well as multiple flavours
of references [27, 4, 34, 3, 10, 8, 12] etc. (cf. [16] for a broad coverage of many aspects).
Banning aliasing is usually abandoned in favour of alias control, which commonly prescribes
a certain shape on the program [16, 22, 43, 18] possibly combined with an effect system to
coordinate accesses to shared data across multiple program locations [19, 5, 14]. κ does not
prescribe a certain topology for shared capabilities. With the shift to ubiquitous parallelism,
ideas from these fields have been applied to the simplification of concurrent and parallel
programming (e.g., [7, 18, 26, 24, 37, 21]).

Abadi et al. [1] propose RaceFree Java where field declarations are associated with locks
and an effect system tracks how locks are acquired and released. Classes can be parameterised
with external locks. The combination of locked and subordinate capabilities in κ seem to
be able to express the same, but without ghost variables or an effect system. Zhao [44]
constructs a system similar to Abadi et al. [1] but based on fractional permissions. It uses
method annotations with read/write effects and locks taken and also considers deadlocks
through lock ordering, similar to [7].

The recent surge of interest in Mozilla’s Rust language provides anecdotal evidence to
the value of languages with data-race freedom built in. In Rust, values mediate between
linear/mutable and sharable/immutable. Linear values use transfer semantics and Rust
uses borrowing to simplify programming. Rust support flat unpacking of arrays, but not
nested unpacking and not unpacking of other types. Rust does not have strong encapsulation
meaning an aggregate’s innards is not protected by the aggregate’s single entry-point and no
aliasing of mutable objects is allowed inside the aggregate.

Substructural Systems. κ is close in spirit to work by Caires and Seco [13] as well as
work by Pottier et al. [38] on Mezzo, both in the context of ML-like languages. Caires and
Seco formalise a fine-grained capability system for reasoning about interference caused by
aliasing or concurrent accesses to aliased data with explicit synchronisation. There is no
support for read-sharing or strong non-linear encapsulation.
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Militão et al. use a substructural type system for specifying rely-guarantee protocols in
a functional context [32]. Protocols capture the view of shared state from one particular
alias—our capabilities are similar. Ownership transfer and recovery for linear values is
supported.

The functional language Alms [40] explores the design space of practical programming
with substructural types. Alms separates capabilities from references and operations that
require a capability must have the capability passed in as an argument. Capabilities in Alms
are lower level than in κ and can be used to express many of our capabilities. There is no
unification of capabilities with building blocks like traits, or composition of capabilities.

Capability Systems and Permission Systems. Miller uses capabilities for access control
and concurrency control in a distributed setting in the seminal E language [33], employing a
more dynamic approach (than κ) with optional soft typing.

Mediation between different views of an object is similar to fractional permissions [9]. κ
supports going from a single writer to multiple enumerable disjoint writers or readers, and
in the case of readers to an unbounded number of stack-bound aliases via (E-FORWARD).
Fractional permissions with nesting [11, 42] is similar to subordinate capabilities in allowing
one permission to act as guard to another. These system allows turning an entire nested
structure read-only. κ’s subordinate capabilities are less restricted, but also not transferable.
κ’s read capabilities also provide abstraction as they allow fields remain private.

Bocchino’s Deterministic Parallel Java [5] uses an effect system to guarantee deterministic
parallelism for operations that have no overlapping writes. When the effect system is
not enough, the user can annotate trusted operations as commuting. κ provides similar
determinism guarantees when excluding locking capabilities, but resorts to locking (and
non-determinism) rather than using unchecked annotations for more complex operations.

Clebsch et al. [20] use “deny capabilities” to provide safe sharing of objects between
actors. Their capabilities always grant exclusive write access to entire objects, while κ’s also
allows accessing parts of an object, as well as permitting multiple parallel writers.

Westbrook et al. [42] formalise and implement a gradual extension to HabaneroJava, HJp,
in the form of a permission system. Permissions in HJp always govern access to entire objects,
and there is no notion of encapsulation modulo storing linear permission in fields which
only supports tree-shaped data. When there is not enough permission information, dynamic
checks are inserted which may fail, but which also allow unconstrained aliasing. Splitting a
single write-permission into multiple read permissions is similar to read capabilities.

Chalice by Leino et al. [30] is a language for specification and verification of concurrent
software that uses permissions to statically track aliasing. Since κ is concerned only with data-
race freedom, it trades some of the more fine-grained control (e.g., full method specification)
for simplicity (e.g., no need for manual permission tracking).

9 Discussion & Future Work

We currently require programmers to explicitly manage substructural operations manually
through packing and unpacking and jails. Building simpler-to-use constructs on top of these
is possible. For example, a combination of bound and unpack would remove the need for
packing, at the cost of enforcing a nested structure to unpacking and packing. Employing
inference to automate this to a large extent seems possible and is a direction for future work.

Implementation of κ is on-going in the actor-based language Encore. There, actors
replace locks as a means of pessimistic concurrency control. Capabilities protect actors’ state
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while allowing ownership-transfer due to linear values. A larger case study evaluating the
full expressiveness of κ is planned for future work.

Unstructured vs. Structured. We have purposely supported unstructured packing and
unpacking of capabilities. This allows granting capabilities to other threads (possibly on
other machines) without requiring the capabilities to be returned or tying their return to a
particular local scope. This removes limitations inherent in effect systems (e.g., [25, 19, 5]),
which requires computations to be nested. Unstructured locking is important in some
applications, for example to implement hand-over-hand locking, and is a possible direction
for future work.

Revocation. We only consider “cooperative revocation”, i.e., there is no built-in mechanism
to arbitrarily revoke a given capability. In the security setting from which the capability idea
stems, this is a major concern but it makes less sense in our setting as revoking a capability
from another thread at an unfortunate point in time might cause system-wide inconsistencies.

Other Capabilities. The only form of dynamic concurrency control considered in this paper
is locks. In ongoing work, the set of modes are extended with async (objects are actors),
atomic (objects use transactional memory) and lockfree (lock-free programming). In this
richer setting, we aim to address more programmer-friendly forms of multi-object atomicity.

10 Conclusions

Creating and destroying aliases enables and constrains parallelism and is key to establishing
data-race freedom and non-interference. By capturing how data is shared and accessed
through modes, and by introducing a structured approach to creating and destroying aliases
through the combination of capabilities that make up classes, data-race freedom can be
guaranteed statically with or without dynamic concurrency control. κ’s invariants are
similar to what an effect system can give, but avoids complicated effect annotations which
propagate through the program and constrain inheritance. Tracking modes in types provides
machine-checked documentation about alias freedom and sharing which localises reasoning.

The unification of traits and capabilities allows a single trait to serve multiple concur-
rency scenarios, which extends trait-based reuse. It also simplifies programming as trait
implementers may safely assume data-race freedom. Ultimately, κ brings together a broad
spectrum of prior work in a unified system.
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