IceDust: Incremental and Eventual Computation
of Derived Values in Persistent Object Graphs*

Daco C. Harkes!, Danny M. Groenewegen?, and Eelco Visser®

1 Delft University of Technology
d.c.harkes@tudelft.nl

2 Delft University of Technology
d.m.groenewegen@tudelft.nl

3 Delft University of Technology
e.visser@tudelft.nl

—— Abstract

Derived values are values calculated from base values. They can be expressed in object-oriented
languages by means of getters calculating the derived value, and in relational or logic databases by
means of (materialized) views. However, switching to a different calculation strategy (for example
caching) in object-oriented programming requires invasive code changes, and the databases limit

expressiveness by disallowing recursive aggregation.

In this paper, we present IceDust, a data modeling language for expressing derived attribute
values without committing to a calculation strategy. IceDust provides three strategies for cal-
culating derived values in persistent object graphs: Calculate-on-Read, Calculate-on-Write, and
Calculate-Eventually. We have developed a path-based abstract interpretation that provides
static dependency analysis to generate code for these strategies. Benchmarks show that different
strategies perform better in different scenarios. In addition we have conducted a case study that
suggests that derived value calculations of systems used in practice can be expressed in IceDust.

1998 ACM Subject Classification D.3.2 Data-flow languages
Keywords and phrases Incremental Computing, Data Modeling, Domain Specific Language

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2016.11

1 Introduction

Derived values are values calculated from base values (provided by users). When a base
value changes, the derived values depending on it should change accordingly. Hence, the
important events for interacting with derived values are writes to base values and reads of
derived values. This specification of derived values leaves room for multiple strategies for
calculating derived values. Derived values can be calculated when they are read or they can
be cached and updated when the underlying base values change. The performance of these
strategies depends on characteristics of the data model and usage scenarios. When neither
of these calculation strategies provides acceptable performance, updates can be postponed,
temporarily allowing reads to return outdated derived values.

Object-oriented programming languages express derived values through getters containing
code that calculates a derived value, implying that the derived value is recalculated each
time it is read. Switching to calculating the derived value when an underlying value changes,

* This research was partially funded by the NWO VICI Language Designer’s Workbench project
(639.023.206).

© Daco C. Harkes, Danny M. Groenewegen, and Eelco Visser;

licensed under Creative Commons License CC-BY
30th European Conference on Object-Oriented Programming (ECOOP 2016).
Editors: Shriram Krishnamurthi and Benjamin S. Lerner; Article No. 11; pp. 11:1-11:26

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

Incremental and Eventual Computation of Derived Values

or switching to eventually calculating the derived value, requires invasive code changes.
By contrast, most relational databases allow easy switching between calculate-on-read
and calculate-on-write as they support both materialized and non-materialized views for
calculating derived values. However, relational databases only provide limited expressiveness
for recursion, and do not support eventual calculation of derived values. Datalog provides
more expressiveness than relational database views, but also limits recursion, and does not
support eventual calculation of derived values.

This paper presents IceDust, a language supporting definition of attributes with derived
values without committing to a calculation strategy. The compiler provides three different
implementation strategies for calculating derived values: (1) Calculate-on-Read, which
calculates the derived value every time it is read, (2) Calculate-on-Change, which maintains
a cache incrementally by calculating the derived value every time an underlying value is
changed, and (3) Calculate-Eventually, which schedules calculations of derived values, and
thus sacrifices consistency temporarily. All these strategies allow unrestricted recursion, but
do not provide termination guarantees. In particular, our contributions are:

The IceDust language for data modeling with derived values (Section 2)

A formal analysis of the dependencies in IceDust programs (Section 3)

Three calculation strategies to satisfy different non-functional requirements (Section 4)
Benchmarks showing the performance differences between the strategies (Section 5)

A case study of migrating a custom eventual calculation system to IceDust (Section 6)

2 Declarative Data Modeling with Derived Values

This section discusses three issues of data modeling with derived values in object-oriented
programming languages and show how data modeling in IceDust addresses these issues and
leads to concise specifications. As running example we use (an aspect of) a learning manage-
ment system in which students solve assignments. Figure 1 shows a Java implementation
with classes Assignment and Question, where assignment represents a collection of questions
and its progress is the average of the progress on the individual questions.

Bidirectional Relations. Object-oriented languages model bidirectional relations as prop-
erties in classes on both sides of the relation. Keeping these properties consistent re-
quires code that has to be repeated for every bidirectional relation. Figure 1 includes five
methods concerned with keeping the relation Assignment-Question consistent on updates:
setAssignment, addQuestion, removeQuestion, _addQ, and _remQ. This pattern is identical
for all one-to-many relations, but cannot be abstracted over in an object-oriented language.
To avoid such boilerplate code, IceDust supports bidirectional relations as a language feature:
entity Assignment { }

entity Question { }
relation Assignment.questions * <—> 1 Question.assignment

These bidirectional relations are named on both sides of the relation, inspired by Object-Role
Modeling [17]. The IceDust compiler keeps both sides of the association consistent without
additional boilerplate code.

Native Multiplicities. Explicit collections and possible null values in object-oriented lan-
guages lead to boilerplate code to deal with the cardinalities of values returned by an
expression. Operators in object-oriented languages are defined for operands with a cardinality
of exactly one. Safely applying an operator to a nullable operand, requires a null-check.

D. C. Harkes, D. M. Groenewegen, and E. Visser

public class Assignment {
public Double getAverageProgress() { return calculateAverageProgress(); }
public Double calculateAverageProgress () {
Stream<Double> progresss =
questions.stream() .map (g —> g.getProgress()).filter(p —> p != null);
OptionalDouble average = progresss.mapToDouble(p —> p).average();
return average.isPresent () ? average.getAsDouble() : null;
}
private Collection<Question> questions;
public Collection<Question> getQuestions () { return new HashSet<>(questions); }
public void addQuestion (Question g) { g.setAssignment (this); }
public void removeQuestion(Question g) { g.setAssignment (null); }
protected void _addQ (Question g) { questions.add(q); }
protected void _remQ (Question g) { questions.remove(q); }
}
public class Question {
private Assignment assignment;
public Assignment getAssignment () { return assignment; }
public void setAssignment (Assignment a) {
if (assignment != null) { assignment._remQ (this); }
if(a !'= null) { a._addQ(this); }
assignment = a;
}
private Double progress;
public Double getProgress () { return progress; }
public void setProgress (Double p) { progress = p; }

Figure 1 Object-oriented assignment system (implementation strategy: Calculate-on-Read).

Applying an operator to a collection of values, requires lifting it to a map. For example,
accessing the progress of each individual question in Figure 1 is encoded as

questions.stream() .map (g —> g.getProgress()).filter(p —> p != null)
IceDust adopts native multiplicities [18], delegating the handling of the cardinality of values

returned by an expression to the language. For example, retrieving the progress for all
questions is simply a projection:

questions.progress
Language constructs to get expressions of cardinality exactly one, such as map, filter, and

I= null, are no longer required, as the type system knows how many values an expression
returns (multiplicity denoted by ~, where * is [0,n), + is [1,n), ? is [0,1], and 1 is [1,1]):

mathAssignment // : Assignment ~ 1
mathAssignment.questions // : Question ~ K
mathAssignment.questions.progress // : Float ~ *
avg (mathAssignment.questions.progress) // : Float ~

Sometimes it is still necessary to reflect explicitly on the cardinality of a value. To that end
one can use the count operator, for example, for counting the number of questions:

count (questions)

Reflection on the cardinality of values is also often used to select an alternative if no value is
present. For specifying alternatives the choice operator (<+) can be used:

input <+ myDefault //if (count (input) > 0) input else myDefault

11:3

ECOOP 2016

11:4

Incremental and Eventual Computation of Derived Values

//Take all Code from Calculate—on—Read and add/change the following:
public class Assignment {
private Double cachedAvgProgress;

public Double getAverageProgress () { return cachedAvgProgress; }
public void updateAvgProgress () {cachedAvgProgress = calculateAverageProgress();}
protected void _addQ (Question qg){ questions.add(q); updateAvgProgress(); }

protected void _remQ (Question g){ questions.remove (q); updateAvgProgress(); }

}

public class Question {

public void setProgress (Double p) {progress = p; assignment.updateAvgProgress();}

}

Figure 2 Object-oriented assignment system (implementation strategy: Calculate-on-Write).

Derived Value Attributes. Last but not least, object-oriented languages force early decisions
on the implementation strategy for calculating derived values. In an object-oriented language,
a derived value calculation can be expressed with a method that computes the value.
However, this encodes a Calculate-on-Read implementation strategy. For cheap calculations
or calculations that are done infrequently that may be fine. But for others, it may be
necessary to cache the calculated value. Such an alternative computation strategy requires
an invasive redefinition of the implementation. For example, Figure 2 implements a caching
strategy for the getAverageProgress computation of Figure 1. Instead of computing the
average on read, it is computed on writes of progress and questions. For this example,
the impact of the change was relatively minor because in Figure 1 we had already factored
calculateAverageProgress into a separate method. However, in real code the impact is
typically non-trivial. In particular, because the introduction of a cached value requires taking
into account all of its dependencies in order to trigger recomputation on any change that
affects it. For example, averageProgress depends on progress and questions. Thus,
setProgress, _addQ, and _remQ need to trigger recalculation of averageProgress.
IceDust provides derived value attributes for declarative specification of the value of
attributes in terms of other attributes without committing to an implementation strategy:

entity Assignment { avgProgress : Float? = avg(question.progress) }

This separation of concerns enables focusing on specification of the logic of the derived value.
The derived value expression specifies what the value of the attribute should be. Derived
value attributes in IceDust support recursive definitions, including recursive aggregation
(which is not supported in materialized views or stratified Datalog):

entity Assignment { progress : Float? = avg(children.progress) }
relation Assignment.parent ? <—> x Assignment.children

Language Definition. We have combined the ideas for improving data modeling by means
of bidirectional relations, native multiplicities, and derived value attributes in the design of
the experimental IceDust language. In order to embed IceDust data models in full fledged
web applications the compiler generates code in the WebDSL programming language [36].
The design of IceDust was heavily influenced by previous work on relations as a first-
class language construct. From Rumer [4] and RelJ [5] we adopt the restriction to binary,
bidirectional relations. From the Relations language [18] we adopt the syntax of declarations
and property access, integrating multiplicities in relations. Multiplicities derive from the work
of Steimann [32, 33], which extends an object-oriented language with multiplicity annotations
to support uniform treatment of values of different cardinality and avoids the boilerplate code

D. C. Harkes, D. M. Groenewegen, and E. Visser

Program ::= model Entity* Relation*

Entity = entity E { Attribute* }
Relation ::= relation E.r m<—> m E.r
Attribute = a : T'm

a:Tm=e
a :Tm=e (default)

T € PrimitiveType := Boolean | Int | Float | Datetime | String

m € Multiplicity :== 2|1 |+ | (ordered) |+ |+ (ordered)

e€ Expr = f(e) |ei®er|le|er?ea:es|e.ale.r|easT|this | Literal
Literal ::= true | false | null | int | float | datetime | string

f € AggrOp ::= min | max | avg | sum | concat | count | conj | disj

S € BinOpim + |~ |+ | /15| as| 11 [>|>=|<|<=|==| =l |<+ |++

Figure 3 Syntax of the IceDust data modeling language.

required to support different multiplicities. We adopt the integration of such multiplicities in
the type system (dubbed native multiplicities) of the Relations language [18].

Figure 3 defines the grammar of IceDust. E, a and r are entity, attribute and relation
names respectively. An IceDust program consists of entities and relations. Entities contain
three kinds of attributes: ‘normal’ attributes (a : T m), derived value attributes (a : T
m = e), and default value attributes (a : T m = e (default)). Users can set the value
of ‘normal’ attributes and read the value later. Users cannot set the value of derived value
attributes, but they can read the value calculated with expression e. Finally, users can set the
value of default value attributes and read the value later, but they can also set the value to
null (or not set it all) and read the value calculated by e. Attributes are limited to primitive
types, as an entity type would create a unidirectional relation (which would give problems
in the dependency analysis). A relation defines a bidirectional relation with a name and
multiplicity on both sides. The domain of the expression language is primitive types (Boolean,
Int, Float, Datetime and String) and objects. The language covers object graph navigation
and calculations over the primitive types. Note the aggregation operations over primitive
types to deal with multiplicities * and +. The expression language is expressive enough to
specify derived values, and simple enough to allow multiple implementation strategies.

The type system of IceDust is mostly concerned with native multiplicities. A type in
IceDust is a tuple of two lattice values (Figure 4). The primitive types, the declared entities,
the null and error type form a lattice. Multiplicity and ordering form another lattice. During
derived value calculation all values are read-only in IceDust. A value which is lower or equal
in both lattices can be used in a place where a certain type, multiplicity, and ordering is
expected. For example, a Float? can be supplied where a Float* is expected.

3 Dependency and Data Flow Analysis

IceDust specifications define the value of attributes in terms of other attributes. These
definitions are declarative in the sense that they abstract from the implementation strategy
used to calculate the values. In the next section we define three implementation strategies
for the calculation of attribute values: Calculate-on-Read, Calculate-on-Write, and Calculate-
Eventually. The latter two strategies require dependency and data flow information. In this
section we define the computation of dependencies between attributes by means of a path-
based abstract interpretation of expressions. Since IceDust does not have statements, data

11:5

ECOOP 2016

11:6

Incremental and Eventual Computation of Derived Values

error * unordered

Boolean Int Float String Datetime Entities / \
?
1

+ ordered

null

Figure 4 IceDust’s type lattice (left), and multiplicity and ordering lattice (right).

flow coincides with control flow, and the data flow relation is the inverse of the dependency
relation. The static dependency and data flow analysis is performed in three steps: (1)
compute attribute dependencies by means of path-based abstract interpretation, (2) reverse
the dependencies to construct the data flow relation, and (3) organize the data flow in a
graph and extract strongly connected components with a topological ordering.

Example. To illustrate the analysis we use a more complex version of the learning manage-
ment system (Figure 5). This example features a tree of assignments, and grade calculation
logic for submissions by students to these assignments. Assignments are structured in a tree
through the parent-children relation. A Submission represents the solution created for
an assignment by a student. Leaf submissions are graded by assigning a grade to the grade
attribute (overriding the default value), while the grades of non-leaf submissions depend
(indirectly) on the grades of their child submissions:

grade : Float? = if(childPass) childGrade else null (default)

pass : Boolean = grade >= (assignment.minimum<+0.0) && childPass <+ false
childGrade : Float? = avg(children.grade)

childPass : Boolean = conj(children.pass)

Note that students only receive a grade for a collection-submission if all of the child
submissions are pass, and a submission is only a pass when its grade is above the minimum
assignment grade and all its children pass. The minimum for an assignment is optional,
without minimum the grade should be higher than or equal to 0.0, which is always true.
Submissions are (one of) the best of an assignment when their grade equals the highest
grade. Finally, every assignment has an average grade and pass percentage. This example is
interesting for dependency analysis as it features mutually recursive definitions of grade,
pass, childGrade and childPass through the parent-child relation of Submission.

Step 1: Dependencies. The dependencies of an attribute are all the attributes and relations
that are needed to compute the derived value of that attribute. The dependencies are reachable
from the entity of the attribute via a path. A dependency is denoted by (Ent.Attr +),
where Ent.Attr is the attribute and 7 is the path to an attribute or relation.

Computing the dependencies requires extracting paths from expressions defining derived
values. The path-based abstract interpretation relation (Figure 6) defines the dependency
paths of an expression. We use the notation Ezpr \, {7}{p}, where Ezpr is the expression
that is abstractly interpreted, and {7} and {p} are the sets of paths defined by the abstract
interpretation. The paths in {7} are extensible, while the paths in {p} are not. All paths
start with this [This] or with object graph navigation [NavStart]. When navigating the
object graph by means of e.attrOrRel all dependency paths {7} in e are extended with

D. C. Harkes, D. M. Groenewegen, and E. Visser

entity Assignment {

name : String

question : String

minimum : Float?

avgGrade : Float? = avg(submissions.grade)

passPerc : Float? = sum(submissions.passInt) / count (submissions) * 100.0

}
entity Student {
name : String

}

entity Submission ({

name : String = assignment.name + " " + student.name
answer : String?
grade : Float? = if(childPass) childGrade else null (default)
pass : Boolean = grade >= (assignment.minimum<+0.0) && childPass <+ false
childGrade : Float? = avg(children.grade)
childPass : Boolean = conj(children.pass)
passInt : Int = if (pass) 1 else 0
best : Boolean = grade == max (assignment.submissions.grade) <+ false
}
relation Assignment.parent ? <—> % Assignment.children
relation Submission.parent ? <—> x Submission.children
relation Submission.student 1 <—> x Student.submissions
relation Submission.assignment 1 <—> x Assignment.submissions

Figure 5 Example program for dependency analysis.

attrOrRel [Nav]. The if [If] only allows extension of paths in the second and third operand,
so II; is passed to {p}. Operators with multiple operands take the union of the paths of their
operands [Op], unary operators pass on paths [Not,Cast,Aggr|, and literals do not contain
any paths at all [Literal]. Path-based abstract interpretation of the expression defining pass

grade >= (assignment.minimum <+ 0.0) && childPass <+ false

produces a set containing the following paths:

grade
assignment.minimum
childPass

The dependencies relation (Figure 6) defines the dependencies of an attribute, entity and
program. We use the notation Attr|Ent|Prog \\ {(Ent.Attr < 7)}, where Attr|Ent|Prog is
an attribute, entity or program, and {(Ent.Attr < m)} is a set of dependencies. When an

attribute depends on a value at the end of a path, it also depends on the relations en route.

So, the rule for attributes [Att] takes the transitive prefix of the paths of its expression. As
paths are concatenated later, and a this keyword in the middle would produce an invalid
path, the this is removed from paths. As an example, the dependencies of pass are:
Submission.pass < grade)

Submission.pass assignment.minimum)

F
Submission.pass < assignment)
Submission.pass < childPass)

(
(
(
(

The dependencies in for the individual attributes together constitute the dependencies for a
full program [Ent,Prog].

11:7

ECOOP 2016

11:8

Incremental and Eventual Computation of Derived Values

Path-based abstract interpretation Expr \ {7}H{p}

. e € Literal .
[This] - [Literal]
this {this}{} e N {H}
IIp
[NavStart] e\— [Not]
attrOrRel N\ {attrOrRel}{} le \y IIP
IIp T € PrimitiveTl’ Ioap
e\ Nav] rimitiveType e \y [Cast
e . attrOrRel \ {r . attrOrRel | m€Il} P easT N\, IIP
®eBinOp el (111 Py ea \(II2 P2 f€AggrOp eI P
[Op] [Ager]
e1 e \y IHUlls PiUP, fle) N\ IIP
e1 \(II1 P1 e2 \(II2 P2 e3 \(II3 P3 (]
e1?7es:e3 \ I, Ulls II UP1 UP2UP3
Dependencies ‘ Attr|Ent|Prog \w {(Ent. Attr < m)} ‘
eNJII P E =entity-of(attr) I = |J {trans-pref(remove-this(r)) | = € ILU P} (At
attr : T m {=e,= e (default)} \\ {(E.attr < 7) | 7 € I}
[Ent]
entity ¢t {a*} \\ | {dep | a N\ dep, a € a*}
[Prog|
model E* R* N\ | {dep | E N\ dep, E € E*}
remove-this(this . 7) =«
remove-this(attrOrRel .) = attrOrRel . ©
trans-pref(m . attrOrRel) = {7 . attrOrRel} U trans-pref(r)
trans-pref(attrOrRel) = {attrOrRel}
Figure 6 Dependency analysis step 1: path-based abstract interpretation
Dependency inversion ‘ (Ent.Attr <) S (Ent.AttrOrRel — 7) ‘
E> = entity-of(attrOrRel) [InvDep]
(E . attr <« . attrOrRel) > (E2 . attrOrRel — inv-path(w) . attr)
inv-path(m . attrOrRel) = attrOrRel™ . inv-path(n)
inv-path(attrOrRel) = attrOrRel™
inv-path(null) = null
Data flow ‘ Prog /7 {(Ent.AttrOrRel — m)} ‘
model E* R* \ Dep [Prog]
model E* R* 27 {df | dep ' df, dep € Dep}
Figure 7 Dependency analysis step 2: data flow
Data flow graph ’ Prog /2 ({ AttrOrRel}, {(AttrOrRel, Attr)}) ‘
model E* R* 2* DFlow
E={(z,y) | (Ent.x = m.y) € DFlow} V={z|(z,y) € E}U{y| (z,y) € E} [Prog]

model E* R* 2" (V,E)

Figure 8 Dependency analysis step 3: data flow graph.

D. C. Harkes, D. M. Groenewegen, and E. Visser

Step 2: Data Flow. The data flow of an attribute or relation is the set of all the attributes
that depend on it to compute their derived value. The data flow relation is the inverse of the
dependency relation. We write (Ent.AttrOrRel —) to denote the data flow relation from
the source, Ent.AttrOrRel, to the target, the end of the path .

The dependency inversion relation, (Ent.Attr < 7) (Ent.AttrOrRel — 7), in Figure 7
defines the inverse of a dependency. A dependency is inversed by swapping source and target,
and inverting the path 7 to get the path from target to source. The function inv-path ()
inverts the names in on path, and inverts their order. Name inversion is selecting the name
on the opposing side of a relation; all relations in IceDust are bidirectional, and have names
on both sides. All names in 7 can be inverted because they are relations. (7 is the prefix of
a full path, and only the last name of a path can be an attribute.) If the dependencies of the
attribute pass are inversed the resulting data flow is:

Submission.grade — pass)
Assignment .minimum submissions.pass)

N
Submission.assignment — pass)
Submission.childPass — pass)

(

(

(

(
Step 3: Data Flow Graph. The data flow graph relation Prog ,22” (V, E) in Figure 8,
defines a data flow graph in terms of the data flow relation. The nodes in the graph are
the attributes and the relations in an IceDust program. The edges (z,y) in the graph are
(AttrOrRel, Attr) from the data flow relation (Ent.AttrOrRel — 7. Attr). Using Tarjan’s
algorithm [35] we find strongly connected components and a topological ordering for the
data flow. The strongly connected components correspond to recursive dependencies.

The data flow graph for our example application is shown in Figure 9. The attributes
grade, pass, childGrade, and childPass mutually depend on each other, a cycle in the
graph (group 6). (The data flow is not cyclic: data flows up the submission tree.) The
minimum precedes group 6 in the topological ordering, as pass in group 6 depends on it but
minimum itself depends on nothing. On the other hand, the passPerc, averageGrade, and
best depend on the results in group 6. The derived name for submissions is disconnected from
the grade calculation, as the name of the submission does not have anything to do with the
grade calculation. Relations only flow to attributes, and not vice versa. In IceDust, relations
cannot be derived. This limits the expressiveness of IceDust, but also avoids ‘dynamic
dependencies’, dependencies that are discovered while computing derived values.

Topological ordering can be used to statically schedule the computation of derived values.
This is used in stratified Datalog, where a topological sort of the dependencies between rules
is used to determine the order of computation [3, 13]. We will elaborate on computation
scheduling, and on similarities with existing approaches, in later sections.

4 Implementation Strategies

The declarative specification of derived values in IceDust allows deferring the decision about
implementation strategy from implementation to compilation time, and allows switching
strategies to realize different non-functional requirements without invasive code changes.
In this section we present three implementation strategies: Calculate-on-Read, Calculate-
on-Write, and Calculate-Eventually. For each of these we have a compilation scheme that
specifies what code to generate for IceDust’s concepts.

On a high level the difference between the generated code for the different implementation
strategies is the point in time at which derived values are calculated. Figure 10 shows the

11:9

ECOOP 2016

11:10 Incremental and Eventual Computation of Derived Values

A.parent

A.children

4 |s.assignment A.name
A.submissions

2 |s.parent 3] A.minimum
S.children

4

.childPass |:6 S.childGrade St.name

| 8]S.student
St.submissions

ﬂ S.name A.question

A.passPerc A.avgGrade 14|S.best S.answer

Figure 9 Step 3 example: strongly connected components and topological ordering in data flow.

‘; A $ A

Calculate-on-Read calc[r|— Legend: ¢ HTTP request
! A M ‘f HTTP response
Calculate-on-Write —w]calc Lr] 4 flag dirty

$ M write base value
ETERY

Calculate-Eventually read derived value

‘W calc | calculate derived value

Figure 10 Thread activation diagrams for code generated by different implementation strategies.

differences by means of thread activation diagrams in response to incoming HTTP requests.
The code generated by Calculate-on-Read calculates derived values when they are read. This
means that writes to base values, on which derived values can depend, will be fast, but reads
of derived values will be slow. The code generated by Calculate-on-Write calculates the
derived values that depend on changed base values right away. Writes will be slow, but reads
will be fast. The code generated by Calculate-Eventually schedules calculation of derived
values on a separate thread. Writes and reads will be fast, but consistency is not guaranteed:
possibly outdated derived values might be read.

Compiling to WebDSL IceDust is used to specify the data model and derived values for web
applications. Our compiler compiles IceDust specifications to the WebDSL web programming
language [36], which is a high-level target language for the implementation of data models.
WebDSL persists its data in a relational database. This provides (1) data safety in case
of a power outage, (2) enables large data sets, and (3) enables concurrent data access for
concurrent HTTP requests. WebDSL’s data modeling language is close to IceDust; it features
entities and attributes (including Calculate-on-Read derived values):

D. C. Harkes, D. M. Groenewegen, and E. Visser

entity Assignment {
name : String
avgGrade : Float := avg([s.grade | s:Submission in subs where s.grade!=null])

}

Note the list comprehension syntax for applying a map to access the grade for each submission
and filter on null values. WebDSL does not have bidirectional relations like IceDust, but it
does have inverse properties:

entity Submission { assignment : Assignment (inverse = submissions) }
entity Assignment { submissions : Set<Submission> }

If a property is an inverse of another property, WebDSL keeps the values in the properties
consistent. Our compiler targets these inverse properties for bidirectional relations, giving us
the consistency of bidirectional relations for free.

With WebDSL already providing data persistence, large data sets, concurrency, Calculate-
on-Read derived values, and inverse property consistency, our compilation schemes can
focus on the essentials: default value behavior, multiplicities, bidirectional relations, and the
Calculate-on-Write and Calculate-Eventually implementations for derived values.

The rest of this section describes the three implementation strategies in detail, using
MorphJ[20]-style code generation templates for the compilation schemes. The templates
use WebDSL (black with purple keywords) as target language and template-level control
statements (blue italic) that iterate over entities, attributes, relations, and data flow edges
(orange italic). We explain WebDSL code along the way, using callouts (for example: 1) to
refer to specific parts of generated WebDSL code.

Calculate on Read. Figure 11 defines the Calculate-on-Read compilation scheme. To
translate IceDust with Calculate-on-Read to WebDSL we need to translate three IceDust
features: (1) multiplicities, (2) default value attributes, and (3) bidirectional relations.
Multiplicities 7 and 1 are translated to WebDSL primitives, while multiplicities * or + are
translated to lists. The getter for a normal attribute 2 (see Figure 11) is static for null-safety,
it might be called on a null value, for example: Assignment.get_passPerc(null). The
getter is lifted to deal with a list of entities for which the attribute is referenced 2. Attributes
can only have multiplicity ? or 1, so there is no generation for multiplicity * or +. (List
typed attributes would create overhead in WebDSL’s mapping to the underlying database.)
Default value attributes are translated to two attributes -7 and one getter 2 in WebDSL.
The first attribute & corresponds to the value possibly set by the user. The second attribute
T corresponds to the default value expression. The getter 2 will return the user provided
value, if any, and otherwise the default value. When only ¢ is used to write values, and only
® is used to read values the default value attribute will have IceDust’s semantics. WebDSL
features no private attributes and methods, so this behavior cannot be encapsulated.
Bidirectional relations are translated to properties and inverse properties (which are
kept consistent by WebDSL). The right-hand side of the relation is translated to a normal
WebDSL property 12:14:16 "and the left-hand side is translated to a property with an inverse
11,1315 Unordered to-many relations are translated to sets, while the ordered relations are
translated to lists. It would suffice to translate them all to lists, but WebDSL’s relational
database mapping has more overhead for lists than for sets. Relation navigation is overloaded
on multiplicity: navigate from single entity via a to-one relation i, or via a to-many relation
19" and navigate from multiple entities via a to-one relation &, or via a to-many relation 2°.

11:11

ECOOP 2016

11:12

Incremental and Eventual Computation of Derived Values

for F in Entities
entity E {
for a : T m in E.attributes
a : T (default=null)l

for a : T m = el (default) in E.attributes
a : T (default=null)&

32

for a : T m {, = el, = el (default)} in E.attributes
static function get_a(entities : [E]) : [T] {

return [E.get_a(e) | e : E in entities where E.get_a(e) != nulll;
Y

for relation E.1 {1,?} <—> m2 E2.r in Relations
1 : E2 (inverse:r)L1
for relation E2.r m2 <—> {1,?} E.l1 in Relations

1 . EoA2

for relation E.1 {#,+} (unordered) <—> m2 E2.r in Relations
1 : {E2} (inverse:ryg

for relation E2.r m2 <—> {%,+} (unordered) E.]l in Relations
1 : {E2}4

for relation E.1 {#,+} (ordered) <—> m2 E2.r in Relations
1 : [E2] (inverse:ryg

for relation E2.r m2 <—> {#*,+} (ordered) EZ2.r in Relations
1 : [E2)1%

for relation E.1 {1,?} <—> m2 E2.r
and relation E2.r m2 <—> {1,?} E.]1 in Relations

}i8

for relation E.1 {+,*} <—> m2 E2.r
and relation E2.r m2 <—> {+,+} E.]l in Relations

static function get_I(e : E) : [E2]{
return if (e == null) null else [e2 | €2 : E2 in e.1l];
et
static function get_I(entities : [E]) : [E2]{
return [e2 | e : E in entities, e2 : E2 in e.l];
320

static function get_a(e : E) : T { return if(e == null) null else e.a;
for a : T m = el in E.attributes

a : T := calculate_a()2

function calculate_a() : T { return el; 14

static function get_a(e : E) : T { return if(e == null) null else e.a;

a_default : T := calculate_a()Z
function calculate_a() : T { return el; j5:2
static function get_a(e : E) : T {
return if(e == null) null else if(e.a == null) e.a_default else e.a;

static function get_I(e : E) : E2 { return if(e == null) null else e.l;
static function get_I(entities : [E]) : [E2]{
return [E.get_I(e) | e : E in entities where E.get_I(e) != null];

}2

Figure 11 Compilation scheme for Calculate-on-Read implementation strategy.

D. C. Harkes, D. M. Groenewegen, and E. Visser

Calculate on Read Properties. The compiled Calculate-on-Read programs have the follow-
ing properties: (1) derived value reads are consistent, (2) transactions might fail, and (3)
cyclic derived values cause a stack overflow exception at runtime.

Derived value consistency is based on database transactions. HTTP requests see all
changes to base data from previous requests, and no changes to base data from concurrent
requests. They compute the derived values, so these are consistent. The database performs
optimistic locking, consequently transactions with concurrent edits to the same values are
rejected. A cycle in the static dependency graph, such as group 6 in Figure 9, can admit
a cyclic attribute value definition (for example a submission being a child of itself, and its
grade being the average of its child grades). Such a cyclic derived value cannot be computed.
The generated code will keep recursing into the getters until stack space is exhausted.

Calculate on Write. Figure 12 defines the Calculate-on-Write compilation scheme. The
Calculate-on-Write compilation scheme builds on the Calculate-on-Read compilation scheme,
only mentioning the new or changed WebDSL code. The general idea for Calculate-on-Write
is caching all derived values, and incrementally maintaining the cached values on writes (like
materialized views [14]). Updating a derived value can lead to having to update other derived
values. This behavior is realized by dirty flagging (and updating) all dependent attributes
on updating an attribute or relation (like push-based reactive programming [27]). To avoid
unnecessary recomputation, updates are scheduled using the topological sort of the data flow
graph (like stratified Datalog [3, 13]). So, to translate IceDust with Calculate-on-Write to
WebDSL, we need to generate caches, dirty flagging, and recalculation.

Derived value caches store the derived values 2228, The properties containing the cached

derived values are managed by code keeping track of dirty values 22:39:36
27,28

, and code for
updating dirty values
Dirty flagging of derived values happens when underlying values are updated. WebDSL
provides extend function hooks to intercept calls to setters. When a setter is called, all
dependent values are dirty flagged by traversing the data flow paths 3132 Attributes and
relations with multiplicity ? and 1 only dirty flag when the value changes 3, while relations
with multiplicity * and + dirty flag on additions and removals 32:32, As relations have two
names, dirty flagging is done for both names. Moreover, updating a relation can also implicitly
remove another relation. For example, moving a submission to a different assignment

bobsSubmissionToMath.assignment := logicAssignment;

will trigger:

bobsSubmissionToMath.set_assignment (logicAssignment) ;
mathAssignment.remove_from submissions (bobsSubmissionToMath) ;
logicAssignment.add_to_submissions (bobsSubmissionToMath) ;
Recalculation of derived values 28 is performed after user code is run, and before the flush
to database. The computation is scheduled statically by means of the topological sort of
the connected components in the data flow graph. Within a connected component, a while
continues computing derived values until none of the derived values is dirty anymore.

Calculate on Write Properties. This compilation scheme yields programs with the following
properties: (1) the derived value reads are consistent, (2) transactions might fail, (3) cyclic
derived values can cause non-termination, (4) scheduling is optimal for acyclic dependency

graphs, and (5) scheduling is naive for connected components inside the dependency graph.

Consistency of derived values is based on consistency of derived values within a single
HTTP request, and database concurrent transaction semantics. For any changed attribute

11:13

ECOOP 2016

11:14

Incremental and Eventual Computation of Derived Values

//All code from Calculate—on—Read, except generated fields for attributes.
for F in Entities
entity E {
for a : T m in FE.attributes
a : T (default=null)2L

for a : T m = el in E.attributes
a : T (default=calculate_a())2
function update_a() { a := calculate_a(); }gg
for a : T m = el (default) in E.attributes
a : T (default=null)2t
a_default : T (default=calculate_a())2
function update_a() { a_default := calculate_al(); }§
for a : T m {= el, = el (default)} in E.attributes
static function a_update_all() {
for(e in E.get_and_empty_a_dirty()){ e.update_al(); }
127
static function get_and_empty_a_dirty () : {E} {
var values := E_a_dirty; E_a_dirty := Set<E>(); return values;
128
static function a_has_dirty() : Bool { return E_a_dirty.length != 0; 322

static function a_flag dirty(entities : {E}) { E_a_dirty.addAll(entities);}§9

for F.a —> path.a2 in DataFlow where a.multiplicity in {?,1} and E2=a’.entity
extend function set_a(newV : T){ if(a != newV){ E2.a2 flag_dirty(path); PR

for E.1 —> path.a? in DataFlow where 1.multiplicity in {x,+} and E2=aZ.entity
extend function add_to_! (n:7){ 1if(1 != n){ E2.a2_flag_dirty(path); } 132

extend function remove_from_I(n:7){ if (1 !'= n){ E2.a2_flag_dirty(path); }}§§

for F.a —> path.a2 in DataFlow where a2 : T m = el (default) and E2=a’.entity

extend function set_a_default (newValue : T) {
if(a == null && a_default != newValue){ E2.a2_flag_ dirty(path); }
134

// update_derivations gets called before flush to database
function update_derivations () {
var not_empty : Bool;
for ConnectedComponent cc in DataFlowGraph topologically sorted
not_empty := true;
while (not_empty) {
for a : T m {= el, = el (default)} in cc where E = a.entity
E.a_update_all();
not_empty := false;
for a : T m {= el, = el (default)} in cc where E = a.entity
not_empty := not_empty || E.a_has_dirty();

335

for a : T m {= el, = el (default)} in Attributes and E = a.entity
request var E_a_dirty : {E} := Set<E> ()38

Figure 12 Compilation scheme for Calculate-on-Write implementation strategy.

D. C. Harkes, D. M. Groenewegen, and E. Visser

or relation, all the values that depend on it are dirty flagged and recomputed. By induction,
all values that depend transitively on a changed value get dirty flagged and recomputed.
Computation only stops if all dirty flags are processed. As such, for a specific HTTP request,
all derived values in memory are up to date when computation terminates. Flushing to the
database only succeeds if previously read data remains unchanged, guaranteeing consistency.
Failing transactions occur more often in Calculate-on-Write than in Calculate-on-Read, as
both the updates to base values, and the updates to derived value caches can cause conflicts.

Cyclic derived values, such as the average submission grade depending on itself, can
cause non-termination. If an updated value dirty flags itself (transitively), and its new
value is different, the computation loops. A diverging value causes non-termination, while a
converging value is a fix point calculation. Incremental Datalog implementations guarantee
termination by disallowing recursive aggregation and negation: stratified negation [3] and
stratified aggregation [26]. We allow recursive aggregation, but do not guarantee termination.

Derived values should only be recomputed after all values they depend upon are already
updated. With acyclic data flow graphs, topological scheduling completely removes unnec-
essary recomputation. With cyclic data flow graphs, topological scheduling only partially
removes unnecessary recomputation: the connected components are statically scheduled, but
the derived values inside a connected component are updated without scheduling.

Calculate Eventually. Figure 13 defines the Calculate-Eventually compilation scheme. The
Calculate-Eventually compilation scheme builds on the Calculate-on-Write compilation
scheme, only stating additions and changes. The idea is to take the dirty flags from Calculate-
on-Write, but pass these on to a separate, dedicated thread, allowing the HTTP request
handlers to finish early. The writes to base values will still be synchronous, but the updates
to derived values will be asynchronous. So, to translate to WebDSL we need to generate
code that (1) dirty flags cross-thread, and (2) updates derived values in a separate thread.

Cross-thread dirty flagging communicates dirty flags from request handlers to the updater
thread. WebDSL abstracts over concurrent handling of requests by running request handlers
completely separated from each other. Communication between the threads handling HTTP
requests, normally, is through the database. However, the database cannot notify the updater
thread, so in memory communication is required. To communicate in memory between
threads in WebDSL we need native Java code. For each derived value attribute we generate
a ConcurrentLinkedQueue 28, and make this queue available in WebDSL by means of a
static function in a native class 2%. As an HTTP request is handled, derived values get
dirty flagged locally (as in Calculate-on-Write). After the changes are flushed to database,
the local dirty flags are communicated cross-thread. Because an entity can be mapped from
the relational database to an object in memory multiple times (once per request handler),
the cross-thread dirty flagging needs to communicate an entity’s unique identifier (UUID) 22,

The derived value recalculation thread is started with WebDSL’s recurring tasks mechanism
42 Every millisecond the thread is started, if not still running. The thread performs the
same calculations as Calculate-on-Write, but uses the cross-thread dirty flags 2. It loads
entities with dirty flagged derived values into memory 32, then updates derived values, and
finally propagates its own local dirty flags to the cross-thread dirty flags 2°.

Calculate Eventually Properties. The Calculate-Eventually programs have the following
properties: (1) derived values will eventually be up to date, (2) derived value reads are not
glitch-free, (3) derived value calculation can starve under load, (4) after load subsides only
relevant updates are calculated, and (5) cyclic values can cause non-termination.

Eventual calculation is guaranteed by the invariant that outdated derived values are

11:15

ECOOP 2016

11:16

Incremental and Eventual Computation of Derived Values

//All code for Calculate—on—Write, except for update_derivations.
for F in Entities
entity E {
for a : T m {= el, = el (default)} in E.attributes
static function get_and_empty_a_dirty_async() : {E} {
var queue := DirtyQueues.get_FE_a_queue(); var values : {E};
while (!queue.isEmpty ()) {
values.add(loadEntity (£, UUIDFromString(queue.poll() as String)) as E);

}

return values;

}37
static function a_has_dirty_async() : Bool {

return !DirtyCollections.get_FE_a_queue () .1sEmpty () ;
)38

static function a_flag dirty_async() {

var dirty := E.get_and_empty_a_dirty();
DirtyCollections.get_E_a_qgueue () .addAll ([v.id.toString()|v : E in dirtyl);
332

static function a_update_all_async() {

for(e in E.get_and_empty_a_dirty_async()){ e.update_al(); }
140

//flag_dirty_async is called on every request after write to database
function flag_dirty_async() {
for a : T m {= el, = el (default)} in Attributes and E = a.entity

E.a_flag_dirty_async();
=

invoke update_derivations () every 1 milliseconds®2
function update_derivations () {
var not_empty : Bool;
for ConnectedComponent cc in DataFlowGraph topologically sorted
not_empty := true;
while (not_empty) {
for a : T m {= el, = el (default)} in cc where E
E.a_update_all();
flagDirtyAsync () ;
not_empty := false;
for a : T m {= el, = el (default)} in cc where E = a.entity
not_empty := not_empty || E.a_has_dirty();

[}
Q

.entity

148

native class derivations.DirtyQueues as DirtyQueues {

for a : T m {= el, = el (default)} in Attributes and E = a.entity

static get_E_a_queue() : Queue*t

public class DirtyQueues {
for a : T m {= el, = el (default)} in Attributes and E = a.entity
private static Queue<String> E_a_queue =new ConcurrentLinkedQueue<String> () ;48
public static Queue<String> get_FE_a_queue(){ return E_a_dgueue; y46

Figure 13 Compilation scheme for Calculate-Eventually implementation strategy.

D. C. Harkes, D. M. Groenewegen, and E. Visser

always accompanied by a dirty flag. Dirty flags are only sent by request handling threads after
their changes are flushed to the database, ensuring the updater thread never processes dirty
flags without seeing the changes. During updates (the same) derived values might be dirty
flagged again. To ensure new dirty flags are processed, the updater thread copies and empties
the dirty flag queues before processing flags. New flags will be processed subsequently.

Glitch-freedom is not provided inside connected components, as there is no topological
ordering on the instance level. Also, derived value calculation starvation happens when
server load is high. However, successive changes to the same base values will not create extra
dirty flags. So when the system has spare resources, it will just compute the derived values
based on the latest base values, and ignore all the intermediate base values. And finally, like
Calculate-on-Write, cyclic derived values can cause non-termination.

5 Evaluation

The declarative specification of derived values in IceDust allows switching implementation
strategies to realize different non-functional requirements without invasive code changes. In
this section we benchmark different generated implementations, to evaluate whether they
are indeed able to satisfy different non-functional requirements. The benchmarks differ in
(1) the read/write ratio, (2) the number of base values derived values depend upon, and (3)
the number of fully unrelated derived values. The measured non-functional properties are
(1) throughput of derived value reads and base value writes per second, (2) the number of
failing writes per second, and (3) the response time for reading derived values and writing
base values. In this section we will discuss the benchmark setup and results.

Benchmark Setup. In the case study (Section 6) we encounter derived values that depend
on up to 60000 values transitively. The essence of the calculation is a tree-like structure with
aggregations on every level. For the benchmark evaluation of the different implementation
strategies we use a simplified model, a simple tree with an average on each level:

entity Node { avgValue : Float? = avg(children.avgValue) (default) }
relation Node.parent ? <—> % Node.children

The tree branches out with a factor of 10, up to 6 deep (size 1, 11, ..., 111111).

The benchmarks consist of read and write requests. Read requests retrieve the average
at the top node of the tree. Write requests update a value at a random leaf node of the
tree. Benchmarks are warmed up for 10 seconds, and then measured for 15 minutes. The
Siege! tool is used to execute the benchmark requests. It is configured to use 10 concurrent
threads, which initial benchmarks indicated to be a reasonable concurrency level. If the
concurrency level is too low, the computer is not using maximum resources; if it is too high,

too many requests will queue up increasing response times but not improving throughput.

The benchmarks were performed on an early 2013 Macbook Pro laptop with Intel Core i7
2,7Ghz, 4 cores (8 threads), and 16 GB memory. The Java servlet web application generated

by WebDSL was deployed on OS X 10.11, Java 1.8.0_60, MySQL 5.6.27, and Tomcat 7.0.40.

Benchmark Results. The first two benchmarks determine the behavior in extreme workloads
with only read or only write requests. Figure 14 shows that the performance for a workload
of 100% decreases as the tree gets deeper. Beyond depth 4 the response takes longer than

! https://www.joedog.org/siege-home/

11:17

ECOOP 2016

11:18

Incremental and Eventual Computation of Derived Values

10000 - r r T T T g —. 100000 T T

- i g ©-® CalcOnRead

g A— A A A 1 ; A—A CalcOnWrite

8 1000}] £ 10000} © Eventual

.] Q

[0

§ 100}] o 1000p

s ! o

pet o

[1 o

E 10+ K| g 100

T i]

=] 7]

7 g

g 1i{e-® calconRread i g 10p

5 A—A CalcOnWrite Y - —

7]
Eventual 1 E

01 L L L L L L 1 L L L L L L
1 2 3 4 5 6 1 2 3 4 5 6
Object tree depth Object tree depth

Figure 14 Read-only workload benchmark throughput (left) and latency (right).

10000 T T T T T T 5 . 100000 T T
- i g @-® CalcOnRead
S 1 ° A—A CalcOnWrite
§ 1000} 3 g 10000+ Eventual
2] 2
o
2 100l] @ 1000}
g -8
g) g
a \ o
E 10f v g 100 —a——
= \ @-® CalcOnRead a /
5 \ A—A CalcOnWrite %
‘a N Eventual g \
o 1 v - - CalcOnRead failed |3 g 10¢
s ! - - CalcOnWrite failed |1 o ’
%) v . 1 ':
\ Eventual failed £
01 L L A L L L L 1 L L L L L L
1 2 3 4 5 6 1 2 3 4 5 6
Object tree depth Object tree depth

Figure 15 Write-only workload benchmark throughput (left) and latency (right).

0.1 second, and is noticeable for users. Calculate-on-Read response times increase linearly
with the number of read objects, indicating that this is the limiting factor. The other
implementation strategies stay at a steady high throughput with low latency, because they
only retrieve a single node with a cached value on each request. The maximum throughput
is around 1900 transactions per second, indicating the general overhead of the system.

The benchmark in Figure 15 shows the performance for write-only workloads. In addition
to the throughput of successful requests, the failed requests are indicated by the dashed lines.
When a database transaction fails due to conflicting writes, WebDSL retries it up to 3 times
before failing the entire request. This improves usability for typical scenarios where a single
transaction conflict may occur occasionally. Multiple subsequent failed transactions only
occur in extreme situations where many concurrent requests conflict. For example, in this
benchmark at tree depths 1 (1 object) and 2 (11 objects), all implementation strategies have
repeated transaction failures resulting in failed requests. In general, the maximum throughput
the system supports for concurrent edits on a single object is close to 300 edits per second
(tree depth 1, all implementation strategies). Calculate-on-Write has many request failures
(around 60%) at all tree depths, which makes the implementation unusable in practice for
this use case. Calculate-on-Read and Calculate-Eventually have overall high throughput and
low latency, except for the low tree depths where transaction failures occur.

Figure 16 shows the trade-off between Calculate-on-Read and Calculate-on-Write in
mixed read/write ratio workloads. Calculate-on-Write suffers from many transaction failures,
except for 100% reads. So, it is unusable if all base values aggregate into a single value, even

D. C. Harkes, D. M. Groenewegen, and E. Visser

10000 T T T T T T T T T T T —. 100000

@@ CalcOnRead
A—A CalcOnWrite

10000F Eventual

1000

100 1000 M‘\H\‘\‘\\
10 100 —A
1
! @®-@® CalcOnRead
Lo Fr A—A CalcOnWrite 101

v

Successful HTTP requests per second

| Eventual
! - - CalcOnWrite failed
L ! ! ! ! I I I I I L L L L L L L L L L L
100/0 80/20 60/40 40/60 20/80 0/100 100/0 80/20 60/40 40/60 20/80 0/100
Read/write ratio workload Read/write ratio workload

HTTP request average response time (ms

0.1

Figure 16 Varying workload benchmark throughput (left) and latency (right) with tree depth 5.

10000 T T T T T T T T T 100000

1000} ‘/‘/‘/k—"—*_‘—__‘_‘

100} RS

@@ CalcOnRead
A—A CalcOnWrite

L0000 e Eventual

11001]

o
o
o

@@ CalcOnRead \

F|A—A CalcOnWrite N
Eventual \

- - CalcOnWrite failed N

=

Successful HTTP requests per second
/7
/
HTTP request average response time (ms)

0.1

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of separate trees with depth 4 Number of separate trees with depth 4

Figure 17 Separate trees benchmark throughput (left) and latency (right) with 50-50 workload.

with a small number of concurrent writes. Calculate-on-Read improves when the workload
shifts from reads to writes. However, the average response time for anything except 100%
writes is unacceptebly high. Calculate-Eventually has stable high throughput and low latency
for all the different workload scenarios. If all base values in a system aggregate transitively
into a single derived value, the only viable strategy is Calculate-Eventually.

In the final benchmark, shown in Figure 17, we investigate whether not aggregating all
base values into the same derived value makes the Calculate-on-Write strategy viable. We
compare the implementation strategies when there are up to 256 separate trees of depth
4. Calculate-on-Write performs better indeed in scenarios with more disconnected derived
values. With 16 trees, the number of failed transactions drops below 0.5%. If consistency is
desired, and derived values depend on roughly 1000 base values, the trade-off throughput-
wise between Calculate-on-Read and Calculate-on-Write is at 2 separate trees. However,
Calculate-on-Write still has many failing requests. Only at around 16 trees the number of
failing transactions falls below 0.5%, and Calculate-on-Write becomes a viable option. When
eventual calculation is acceptable, it is always the most performant solution.

Discussion. We could perform many more benchmarks (for example with other data
structures than trees, or with workloads with more structure than a read/write ratio).
However, the presented benchmarks show that each implementation strategy is useful in
specific cases.

The form of non-functional requirements determines the form of verification required
[10]. The verification for quantitative requirements is measurements, and for operational

11:19

ECOOP 2016

11:20

Incremental and Eventual Computation of Derived Values

requirements is review, test or formal verification [10]. Consistency and eventual calculation
are operational requirements. We tested whether our implementations satisfy consistency
and eventual calculation. In future work this can be improved with formal verification.

6 Case Study

We applied IceDust to the grading policies in a learning management system in which students
can submit assignments that get graded semi-automatically. The system contains complex
derived value calculations, contains a lot of data (hundreds of thousands of entities, with
millions of derived values), and is subject to intense workloads on a small subset of the data.
The complex derived value calculations were specified in IceDust’s declarative derived value
attributes, and the Calculate-Eventually strategy was used to generate an implementation.
In this section we (1) reflect on the expressiveness of IceDust, based on the experiences from
the case study, and (2) highlight parts of the resulting declarative specification that are quite
different from the original imperative implementation.

First, let us introduce the learning management system in more detail. The system is a
much more complicated version of the one introduced in Section 3. It features semi-automatic
grading, programming assignments with test cases, and automatically graded multiple choice
questions. Assignments are structured in a tree, and students get a weighted average for each
node in the tree up to the top, which is their final grade for the course. The grading logic
also includes deadlines, deadline extensions, late penalties, minimum grades, and alternative
assignments. The courses, and their assignments, have statistics such as the percentage of
students with a passing grade. For the largest course in the system, the statistics depend
transitively on A+ 60000 individual submissions (A< 250 students, with A+ 15 assignments
per week, running for 12 weeks, and exams with multiple questions in the end).

Explicit Not Yet Calculated Values. Expressing the grading logic in IceDust forced us to
look at previously implicit things. Students which did not attempt an assignment get a 0.0
on a scale of 1.0 to 10.0. The other students would get a 1.0, as grading would be triggered:

// only call calculateGrade if submission is attempted
function calculateGrade() { grade := max (1.0, calculatedGrade); }

The grading logic states that grades cannot be lower than 1.0, but if grading is not triggered
the float default value is used. As the compiled code from IceDust detects everything that
should be calculated, these grades would be changed from 0.0 to 1.0. To model assignments
that are not attempted by students, attempted should be explicitly mentioned:

grade : Float = if(not attempted) 0.0 else max(1.0, calculatedGrade)

Explicit Stateful Calculations. The imperative code, also implicitly, kept old grades when
grades where published and a newly calculated grade was lower:

if (assignment.statsPublic()) { newgrade := max(oldgrade, newgrade); }

In the new specification this requires an explicit self-reference:

grade : Float = if (public) max (grade, calculatedGrade) else calculatedGrade

Note that the IceDust specification only works for push-based implementations: Calculate-
on-Write or Calculate-Eventually. Calculate-on-Read would throw a stack overflow exception.
The sentence ‘only update when grade is higher’ implies push-based calculation: the previous
calculated grade needs to be cached for when a new grade becomes available. It is arguable

D. C. Harkes, D. M. Groenewegen, and E. Visser

whether someone should express logic like this, as once grades are visible, it is not traceable

anymore how a grade was calculated. This is on the border of what is expressible in IceDust.

Code Factorization Differences. In IceDust the value of an attribute is defined in a single
place: the derived value expression. In imperative code, assignments to attributes can happen
in multiple places, which means assignments can be distributed over ifs:

if (assignment.passOne) {

passSub := disj([s.pass() | s:Submission in submissions]);

grade := max([s.grade() | s:Submission in submissions]) ;
} else{

passSub := conj([s.pass() | s:Submission in submissions]);

grade = avg([s.grade() | s:Submission in submissions]);

}

In IceDust ifs need to be distributed over derived value attributes:

grade : Float? = if(assignment.passOne) max(children.grade)
else avg (children.grade)

passSub : Boolean = if (assignment.passOne) disj(children.pass) // pass one
else conj(children.pass) // pass all

Whether the old or new specification is preferable is arguable. If the cases would be more
complex than a single if it would lead to repeated code in IceDust.

Application Analysis. Finally, we made a more analytic observation: even though the
data-flow graph of the specification in IceDust contains more than 100 nodes, it contains just
a single connected component. Grades, weightedGrades (weighted averaging is used), pass,
and child-pass are mutually recursive (like Figure 9). All other dependencies are acyclic. This
system has derived value-wise just a single complex part: the grade calculation. Intuitively
we already knew this, but now we can quantify this with properties of the data-flow graph.

7 Related Work

The related work is organized along language design and the three implementation techniques
(Calculate-on-Read, Calculate-on-Write, and Calculate-Eventually).

Languages with Relations. There are multiple languages that feature relations as a language
construct. We will cover closely related languages and highlight the differences.

Rumer [4] features first-class citizen relations with queries for navigation. IceDust relations
are not first-class citizen, and navigation is through member access instead of queries. In
Rumer multiplicities can be specified in constraints which are enforced at runtime, while in
IceDust these are part of the type system. Rumer does not support derived value attributes,
but queries can be used to specify Calculate-on-Read derived values. Finally, Rumer is an
imperative in-memory language, while IceDust is declarative and persists its data.

RelJ [5] also features first-class citizen relations. In RelJ participants of relations do not
have names, so navigation is positional (using from and to). RelJ features only multiplicity
upper bounds, no lower bounds. These multiplicities are enforced at runtime: either by
throwing exceptions, or by implicitly removing previous relations. RelJ does not feature
derived value attributes, and RelJ is an imperative in-memory language like Rumer.

Relations [18] features multiplicities as part of the type system and derived value attributes
like IceDust. Its derived values are, however, only Calculate-on-Read. Relations is declarative,

11:21

ECOOP 2016

11:22

Incremental and Eventual Computation of Derived Values

like IceDust, but its data is only in memory, not persistent. Relations in this language
are first-class citizen like Rumer and RelJ, but feature navigation through member access.
IceDust relations are not first-class citizen, but feature the same member access navigation.
Alloy [21] is a language for bounded model checking which features language constructs
similar to IceDust: bidirectional relations, multiplicities, and derived values. Alloy is more
expressive than IceDust: it features n-ary relations, and its derived values specify derived
relations (as opposed to derived attribute values). However, Alloy’s bounded model checker
only works on small data sets, and primitive values (only integers in Alloy) should be avoided
as they blow up the state space. IceDust, on the other hand, supports derived values over
arbitrary primitive values (int, string, float, datetime, and boolean), and admits efficient
implementation strategies applied to large data sets. To compute derived values in large
data sets from an Alloy specification, Alloy would need an operational semantics not based
on bounded model checking or SAT solving. An approach for an operational semantics for
Alloy was proposed in [9], but this approach is not complete. As Alloy has much greater
expressive power (first-order logic), we also expect such an Alloy operational semantics to
not be efficient. Finally, another difference is that in IceDust the multiplicities are checked
in the type system, while in Alloy these are only checked during bounded model checking.

Calculate on Read. We do not cover Calculate-on-Read extensively, as it is the default
implementation for many formalisms. We cover only the object-oriented approaches.

Object-oriented languages lend themselves for various Calculate-on-Read optimization
techniques. Wiedermann and Cook take imperative code with for loops and if statements
and convert those to SQL queries [37]. Their approach is similar to our work in that it
operates on persistent objects by means of an object-relational mapper. Also their approach
for analyzing dependencies is similar: path-based abstract interpretation. They optimize
imperative code that can be expressed as queries. Our approach, on the other hand, treats
code that cannot be expressed as queries, recursive aggregation. The Java Query Language
(JQL) adds queries to Java [38]. The rationale for queries is that these are more succinct to
write, and more efficient than nested for loops. JQL has been incrementalized, we will cover
this in the next subsection. This paper adds over these approaches the possibility to easily
switch to an incremental or eventual calculation implementation strategy.

Incremental Computation (Calculate on Write). Incremental computation is present in
many fields in computer science. We relate our Calculate-on-Write implementation scheme
to existing incremental approaches.

Materialized views in relational databases can be incrementally maintained [14]. Recursion
and stratified aggregation can be supported [15]. Stratified aggregation does not admit
recursive aggregation. (See next paragraph for relaxations of stratified aggregation in logic
databases.) Switching between implementation strategies in relational database also do not
require invasive code changes: the definitions for materialized and non-materialized views
are identical. Relational databases do, however, not support eventually-calculated views.

Logic Databases or Deductive Databases are a more expressive than relational databases.
Logic Databases support stratified aggregation like relational databases [26]. Since stratified
aggregation does not support recursive aggregation, more relaxed notions of aggregation have
been introduced, such as Monotone Aggregation [29]. Monotone Aggregation has also been
incrementalized [28]. A recent survey [13] states that at present, the Datalog community
seems not to have converged on any of the proposed semantics for aggregation through
recursion. This means that in practice recursive aggregation is often not supported. For
example LogiQL [12], the language of LogicBlox, does not support recursive aggregation.

D. C. Harkes, D. M. Groenewegen, and E. Visser

Functional reactive programming (FRP) [8], with for example REScala [30], Scala.React
[23], or i3QL [25], provides incremental computation. Calculate-on-Read style code wrapped
with FRP libraries behaves as Calculate-on-Write. FRP abstractions provide single-threaded,
in-memory derived values. In contrast, IceDust provides concurrent, persistent derived values.

Spreadsheets provide incremental computation. The data structure in a spreadsheet is a
2d grid. IceDust’s data structure is an object graph. Moreover our object graph is typed,
while spreadsheets are free form. Spreadsheets do mostly have an implicit structure [19].
IceDust with Calculate-on-Write can be seen as a structured spreadsheet without a 2d grid.

Object-oriented programs can also be incrementalized. Incremental Updates for Material-
ized OQL views [11] proposes to generalize incremental view maintenance from relational
databases to support the Object Query Language (OQL) as view definition language. MOVIE
[2] develops this work further. They also provide an overview of relational incremental view
maintenance implementations, with either a relational or an object-oriented surface syntax.
These approaches, even though some have an object-oriented surface syntax, are part of the
relational paradigm (with the limitations previously mentioned for materialized views).

The Java Query Language is incrementalized [39]. Their benchmarks show, like ours,
that for different read-write ratio workloads the incremental or calculate-on-read solution
offers better performance. Demand-Driven Incremental Object Queries [22] improves over
JQL by using auxiliary indices for incrementality. Similar to [37] they transform imperative
code to a relational calculus. But instead of performing relational queries like [37] they
use the relational model to generate code that incrementally maintains the caches. Our
approach uses path-based abstract path interpretation instead of a relational calculus to
generate maintenance code. Both of the above approaches slightly differ in use cases from
our approach: they target set membership of objects e.g. whether an object belongs to a set
specified by a query, while our approach targets derived value attributes.

Graph queries can be incrementally evaluated in IncQuery [34]. IncQuery’s data structure
is a graph, like ours, but its goal is to pattern match. Our approach does not support pattern
matching on graph structures, rather it computes derived attribute values.

Attribute grammars feature a declarative style of specifying derived values. Attribute
grammars can also be incrementally computed [7]. As attribute grammars only support trees,
one could look at reference attribute grammars to support full blown graphs [31]. Reference
attribute grammars do support graph structures, but there is a clear distinction between the
tree, and the derived graph edges. In our approach the graph is the basis. Fitting our data
models onto attribute grammars would require extracting a spanning tree, and deriving the
other edges. In this process we would lose the correspondence to the data flow graph, and
derived edges would become dynamic dependencies, which would complicate scheduling.

Self-adjusting computation [1] does not cover a single programming paradigm as it features
multiple languages (including SLf, for functional programming, and SLi, for imperative
programming). Self-adjusting computation automatically transforms a Calculate-on-Read
style program to a Calculate-on-Write style program. Our approach does not take Calculate-
on-Read as basis, but instead provides a declarative language to express derived values.

Eventual Calculation. The code generated by the Calculate-Eventually implementation
scheme makes derived values of attributes eventually consistent with base values. We cover
existing work on eventual (or asynchronous) computation of derived values in this subsection.

Event and Actor programming, with for example Akka [16] or RX [24], provide an
asynchronous update mechanism for calculating derived values. Updates to derived values
are asynchronous, meaning that there is no consistent view of base values and derived values

11:23

ECOOP 2016

11:24

Incremental and Eventual Computation of Derived Values

at the same time. As such, these do not provide consistency, like the code produced by our
Calculate-Eventually implementation strategy.

FEventual consistency for distributed data also features eventual calculation, but is un-
related. As a recent survey on Eventual Consistency states: “shared data is updated at
different replicas, updates are transmitted asynchronously, and conflicts are resolved consis-
tently” [6]. Our approach does not have different replicas of data, there is a single database.
Our approach does not have asynchronous updates, the update is synchronous as a HTTP
response is only sent after the transaction in the database is completed. And finally, our
approach does not have conflicts during the calculation of derived values, as the base values
define unambiguously what the derived values of attributes should be.

8 Conclusion

Data modeling with declarative derived value attributes in IceDust allows deferring the
decision about implementation strategy from implementation to compilation time, and allows
switching strategies without invasive code changes. We have demonstrated that these different
strategies provide different non-functional properties, so that a specific strategy can be chosen
to realize certain non-functional requirements. Finally, a case study indicated our approach
is useful for expressing derived values of systems used in practice.

In future work, we would like to explore more implementation strategies, such as transitive
dirty flagging on writes with recalculation on reads, or eventually calculated with flags
indicating whether the values are up to date or not. We also would like to explore more
flexibility in implementation strategies by allowing composition of different strategies, and
live switching between strategies. A type system should restrict compositions to only sound
ones: consistent values cannot depend on eventually calculated values, and calculate on
write values cannot depend on calculate on read values. Finally, we would like to guarantee
termination by specifying non-circular relations and runtime non-circularity checking.

—— References

1 Umut A. Acar. Self-adjusting computation: (an overview). In PEPM, pages 1-6, 2009.
doi:10.1145/1480945.1480946.

2 M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton. Movie: An incremental
maintenance system for materialized object views. DKE, 47(2):131-166, 2003. doi:10.
1016/S0169-023X(03) 00048-X.

3 Kirzysztof R Apt, Howard A Blair, and Adrian Walker. Towards a theory of declarative
knowledge. IBM Thomas J. Watson Research Division, 1986.

4 Stephanie Balzer. Rumer: a Programming Language and Modular Verification Technique
Based on Relationships. PhD thesis, ETH, Ziirich, 2011.

5 Gavin M. Bierman and Alisdair Wren. First-class relationships in an object-oriented lan-
guage. In ECOOP, pages 262-286, 2005. doi:10.1007/11531142_12.

6 Sebastian Burckhardt. Principles of eventual consistency. FTPL, 1(1-2):1-150, 2014. doi:
10.1561/2500000011.

7 Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. Incremental evaluation for at-
tribute grammars with application to syntax-directed editors. In POPL, pages 105-116,
1981. doi:10.1145/567532.567544.

8 Conal M. Elliott. Push-pull functional reactive programming. In haskell, pages 25-36, 2009.
doi:10.1145/1596638.1596643.

http://dx.doi.org/10.1145/1480945.1480946
http://dx.doi.org/10.1016/S0169-023X(03)00048-X
http://dx.doi.org/10.1016/S0169-023X(03)00048-X
http://dx.doi.org/10.1007/11531142_12
http://dx.doi.org/10.1561/2500000011
http://dx.doi.org/10.1561/2500000011
http://dx.doi.org/10.1145/567532.567544
http://dx.doi.org/10.1145/1596638.1596643

D. C. Harkes, D. M. Groenewegen, and E. Visser

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

Theophilos Giannakopoulos, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
Towards an operational semantics for alloy. In FM, pages 483-498, 2009. doi:10.1007/
978-3-642-05089-3_31.

Martin Glinz. Rethinking the notion of non-functional requirements. In WCSQ, pages
55-64, 2005.

Dieter Gluche, Torsten Grust, Christof Mainberger, and Marc H. Scholl. Incremen-
tal updates for materialized oql views. In DOOD, pages 52-66, 1997. doi:10.1007/
3-540-63792-3_8.

Todd J. Green. Logiql: A declarative language for enterprise applications. In PODS, pages
59-64, 2015. doi:10.1145/2745754.2745780.

Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. Datalog and
recursive query processing. FTDB, 5(2):105-195, 2013. doi:10.1561/1900000017.
Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: Problems,
techniques, and applications. DEBU, 18(2):3-18, 1995.

Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incre-
mentally. In SIGMOD, pages 157-166, 1993. doi:10.1145/170035.170066.

Munish Gupta. Akka essentials. Packt Publishing Ltd, 2012.

Terry Halpin. Object-role modeling (orm/niam). In Handbook on architectures of informa-
tion systems, pages 81-103. Springer, 2006. doi:10.1007/978-3-662-03526-9_4.

Daco Harkes and Eelco Visser. Unifying and generalizing relations in role-based data model-
ing and navigation. In SLE, pages 241-260, 2014. doi:10.1007/978-3-319-11245-9_14.
Felienne Hermans, Martin Pinzger, and Arie van Deursen. Automatically extracting
class diagrams from spreadsheets. In ECOOP, pages 52-75, 2010. doi:10.1007/
978-3-642-14107-2_4.

Shan Shan Huang and Yannis Smaragdakis. Expressive and safe static reflection with
morphj. In PLDI, pages 79-89, 2008. doi:10.1145/1375581.1375592.

Daniel Jackson. Alloy: a lightweight object modelling notation. TOSEM, 11(2):256-290,
2002. doi:10.1145/505145.505149.

Yanhong A Liu, Jon Brandvein, Scott D Stoller, and Bo Lin. Demand-driven incremental
object queries. arXiv preprint arXiv:1511.04583, 2015.

Ingo Maier and Martin Odersky. Higher-order reactive programming with incremental lists.
In ECOOP, pages 707-731, 2013. doi:10.1007/978-3-642-39038-8_29.

Erik Meijer. Reactive extensions (rx): curing your asynchronous programming blues. In
CUFP, page 11, 2010. doi:10.1145/1900160.1900173.

Ralf Mitschke, Sebastian Erdweg, Mirko Kéhler, Mira Mezini, and Guido Salvaneschi. i3ql:
language-integrated live data views. In OOPSLA, pages 417-432, 2014. doi:10.1145/
2660193.2660242.

Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic of dupli-
cates and aggregates. In VLDB, pages 264-277, 1990.

H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, continued. In

Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, 2002. doi:10.1145/581690.

581695.

Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Efficient
incremental evaluation of queries with aggregation. In SLP, pages 204—218, 1994.
Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive databases. In
PODS, pages 114-126, 1992. doi:10.1145/137097.137852.

Guido Salvaneschi, Gerold Hintz, and Mira Mezini. Rescala: bridging between object-
oriented and functional style in reactive applications. In AOSD, pages 25-36, 2014. doi:
10.1145/2577080.2577083.

11:25

ECOOP 2016

http://dx.doi.org/10.1007/978-3-642-05089-3_31
http://dx.doi.org/10.1007/978-3-642-05089-3_31
http://dx.doi.org/10.1007/3-540-63792-3_8
http://dx.doi.org/10.1007/3-540-63792-3_8
http://dx.doi.org/10.1145/2745754.2745780
http://dx.doi.org/10.1561/1900000017
http://dx.doi.org/10.1145/170035.170066
http://dx.doi.org/10.1007/978-3-662-03526-9_4
http://dx.doi.org/10.1007/978-3-319-11245-9_14
http://dx.doi.org/10.1007/978-3-642-14107-2_4
http://dx.doi.org/10.1007/978-3-642-14107-2_4
http://dx.doi.org/10.1145/1375581.1375592
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1007/978-3-642-39038-8_29
http://dx.doi.org/10.1145/1900160.1900173
http://dx.doi.org/10.1145/2660193.2660242
http://dx.doi.org/10.1145/2660193.2660242
http://dx.doi.org/10.1145/581690.581695
http://dx.doi.org/10.1145/581690.581695
http://dx.doi.org/10.1145/137097.137852
http://dx.doi.org/10.1145/2577080.2577083
http://dx.doi.org/10.1145/2577080.2577083

11:26

Incremental and Eventual Computation of Derived Values

31

32

33

34

35

36

37

38

39

Emma Séderberg and Gorel Hedin. Incremental evaluation of reference attribute grammars
using dynamic dependency tracking. Technical Report 98, Lund University, 2012.
Friedrich Steimann. Content over container: object-oriented programming with multiplici-
ties. In OOPSLA, pages 173-186, 2013. doi:10.1145/2509578.2509582.

Friedrich Steimann. None, one, many - what’s the difference, anyhow? In SNAPL, pages
294-308, 2015. doi:10.4230/LIPIcs.SNAPL.2015.294.

Gébor Szarnyas, Benedek 1zsé, Istvan Rath, Dénes Harmath, Gabor Bergmann, and Déaniel
Varré. Incquery-d: A distributed incremental model query framework in the cloud. In
MoDELS, pages 653-669, 2014. doi:10.1007/978-3-319-11653-2_40.

Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAMCOMP,
1(2):146-160, 1972. doi:10.1137/0201010.

Eelco Visser. WebDSL: A case study in domain-specific language engineering. In GTTSE,
pages 291-373, 2007. doi:10.1007/978-3-540-88643-3_7.

Ben Wiedermann and William R. Cook. Extracting queries by static analysis of transparent
persistence. In POPL, pages 199210, 2007. doi:10.1145/1190216.1190248.

Darren Willis, David J. Pearce, and James Noble. Efficient object querying for java. In
ECOOP, pages 28-49, 2006. doi:10.1007/11785477_3.

Darren Willis, David J. Pearce, and James Noble. Caching and incrementalisation in the
java query language. In OOPSLA, pages 1-18, 2008. doi:10.1145/1449764.1449766.

http://dx.doi.org/10.1145/2509578.2509582
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.294
http://dx.doi.org/10.1007/978-3-319-11653-2_40
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1007/978-3-540-88643-3_7
http://dx.doi.org/10.1145/1190216.1190248
http://dx.doi.org/10.1007/11785477_3
http://dx.doi.org/10.1145/1449764.1449766

	Introduction
	Declarative Data Modeling with Derived Values
	Dependency and Data Flow Analysis
	Implementation Strategies
	Evaluation
	Case Study
	Related Work
	Conclusion

