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—— Abstract

Modern software systems are not built from scratch. They use functionality provided by
libraries. These libraries evolve and often upgrades are deployed without the systems being
recompiled. In Java, this process is particularly error-prone due to the mismatch between source
and binary compatibility, and the lack of API stability in many popular libraries. We propose a

novel approach to mitigate this problem based on the use of invokedynamic instructions for cross-
component method invocations. The dispatch mechanism of invokedynamic is used to provide
on-the-fly signature adaptation. We show how this idea can be used to construct a Java compiler
that produces more resilient bytecode. We present the dynamo compiler, a proof-of-concept
implemented as a javac post compiler. We evaluate our approach using several benchmark
examples and two case studies showing how the dynamo compiler can prevent certain types of
linkage and stack overflow errors that have been observed in real-world systems.
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1 Introduction

Java and similar languages support dynamic linking to enable programs to use libraries that
have been compiled separately. This makes it possible to decouple the lifecycles of a system
and the libraries it uses, and to deploy new versions of libraries without reinstalling the
entire system. This is particularly important for server-based systems with high availability
requirements, such as services running in “24/7” mode and systems with service level
agreements (SLAs). For this to work, library evolution must follow certain compatibility
rules. In particular, the APIs used by the system or other libraries have to remain stable.
Unfortunately, APIs do change when libraries evolve [13, 6, 11]. In Java programs, this
can result in linkage errors indicating that references to library code cannot be resolved.
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For instance, if the signature of a library method changes, attempts to link and run a
client program using this method generate a NoSuchMethodError. Some other language and
execution platform combinations such as C# / CLR exhibit similar behaviour.

The relevant part of the signature used to resolve method references is called the descriptor
[26, sect 4.3.3]. The descriptor consists of the parameter and return types without generic
type parameters. Changes to descriptors cause linkage errors. This leads to a behaviour
that is very different from the compiler that reasons about the type hierarchy, associations
between primitive and wrapper types, and narrowing and widening rules. In other terms,
there are different types of compatibility [8]: source compatibility is used by the compiler
when a system is compiled against a set of libraries, while binary compatibility is used when
a system is linked against libraries that may have been compiled separately. The notion of
binary compatibility is explicitly defined in the Java Language Specification with respect to
linking [22, sect 13].

There are a number of empirical studies all indicating that this leads to problems
[13, 6, 11, 32, 33]. It turns out that binary compatibility issues are surprisingly common
when libraries evolve, and the majority of developers lack understanding of these issues [12].

There are several possible approaches to tackle this problem. First, meta-object protocols
and patterns could be used. For instance, in the presence of protocols like Smalltalks
doesNotUnderstand [21] or Ruby’s method_missing [18], adapters can be easily integrated
into library code. But this requires that the respective classes override doesNotUnderstand.
And anyway, such a protocol is not available in Java. The second option is to change the
runtime (i.e. the VM): either by instrumenting code that is being loaded or by changing the
linking process in the virtual machine itself. This is possible, but expensive and invasive - the
runtimes must be configured accordingly, and the instrumentation imposes a performance
penalty. Moreover, the same code is sometimes accessed from different contexts (other
libraries or applications), with different lifecycle dependencies on the library containing the
code that is being adapted. Instrumenting library code does not support such scenarios. The
third option is to access objects instantiating library classes via proxies and to use reflection
within these proxy classes to resolve methods. This has two disadvantages: the proxies must
either be generated or a dynamic proxy pattern must be used which requires some type
abstraction. Furthermore, the use of reflection is slow.

In this paper, we suggest a simple yet elegant solution to this problem that tries to
combine the advantages of the other methods discussed. Our approach is based on the idea
of replacing existing invoke instructions of library methods (“cross-component invocations”)
by invokedynamic instructions. The runtime bootstrap mechanism we propose mimics the
behaviour of a solution based on a doesNotUnderstand-like protocol. While we use a reflection
protocol to locate target methods, the use of the protocol based on invokedynamic allows
us to avoid much of the runtime overhead of traditional reflection. Bytecode is manipulated
at compiletime and not when classes are loaded, thus avoiding runtime performance and
configuration overhead. Also, the generated bytecode can be further optimised and analysed
by the standard Java runtime (JIT, HotSpot). Due to the use of invokedynamic, the
bytecode produced by our method is less prone to linkage errors than the bytecode produced
by the standard Java compiler.

Our contributions are as follows:

We present the dynamo enhancer, a bytecode manipulation framework that can be used
to replace invocation instructions.

We present the dynamo compiler, a Java compiler based on the dynamo enhancer.

We present the DynamoDSL, a lightweight declarative language that can be used to
specify when to replace invocations.
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We present a set of benchmarks used to measure the compile- and runtime performance
overhead of dynamo.

We present a case study that shows how the use of the dynamo compiler can prevent
linkage errors that occur in the evolution of the jasperreports and jfreechart open source
libraries.

We present a second case study that shows how the use of the dynamo compiler can
prevent stack overflow errors that can occur when methods are overridden with covariant
return types.

The rest of this paper is structured as follows: first we discuss related work in Section 2
followed by a background in Section 3 where we discuss some key concepts used later. In
Section 4, we present the actual compiler and its components, followed by a discussion of
the runtime behaviour in Section 5. This is followed by Section 6 discussing benchmarks
used for quality assurance and performance assessment, and two case studies in Section 7
extracted from problems encountered with real world systems. We finish our contribution
with a brief conclusion.

2 Related Work

Our work addresses issues related to binary compatibility. The study of binary compatibility

goes back to the work by Forman et al. [19], in the context of IBM’s SOM object model.
For Java, binary compatibility is formally defined in the language specification [22, sect 13].

Drossopoulou et al. have proposed a formal model of binary compatibility in [17].
Our work is motivated by issues that result from inconsistencies between source, binary and
to some extent behavioural compatibility. These issues have been catalogued and studied by

several authors, including des Riviéres [10], Dietrich et al. [11, 12] and Raemakers et al. [32].

In particular, they include empirical studies [11, 32] showing that binary compatibility issues

occur in practice when programs and libraries used by these programs evolve independently.

Dig and Johnson [13] have conducted an API evolution case study on five real world systems
(struts, eclipse, jhotdraw, log4j and a commercial application). They found that the majority
of API-breaking changes were caused by refactoring, but did not distinguish between different
types of compatibility. Mens et al. [27] have studied the evolution of Eclipse (from version
1.0 to version 3.3). The focus of this study was to investigate the applicability of Lehmann’s
laws of software evolution [25]. They found significant changes. Cosette and Walker have
studied the evolution of APTIs on a set of five Java open source programs [6]. They focused
on generating change recommendation techniques that could then be used to give developers
advice on how to refactor client code in order to adapt to API changes.

Several authors looked into how binary compatibility problems in Java programs can be

avoided. Our work is somehow similar to binary component adaptation (BCA) by Keller et al.

[24] as bytecode is modified in order to overcome certain compatibility problems. However,
there are important differences: (1) BCA does not support changes to method descriptors,
(2) changes must be specified by the user in the form of delta files while our approach is
completely automated (3) BCA modifies libraries (components) whereas we transform the
program itself (4) BCA can alter types and their relationships and is therefore rather invasive
as it changes the semantics of client programs using reflection (for instance, when interfaces
are added to classes, and the client program uses instanceof guards)?

! In a trivial sense, the dynamo compiler also changes the semantics of programs as method invocations
that used to result in errors succeed after compilation with dynamo. But this effects are intended and
local as they only impact the objects aliased at the call site, whereas changing types will affect other,
unrelated parts of the program as well.
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Other related works include Dmitriev’s proposal to use binary compatibility checks in
order to optimise build systems [16], Barr and Eisenbach’s rule-based tool to compare library
versions in order to detect changes that cause binary incompatibility [2], and refactoring-based
approaches by Dig et al. [14] and Savga and Rudolf [7], aiming at generating a compatibility
layer that ensures binary compatibility when used libraries evolve. Corwin et al. [5] have
proposed a modular framework that uses a higher level API on top of the Java classpath
architecture. This is somehow similar to how the OSGi framework [40] operates.

Our work relies on the use of the invokedynamic instruction. One of the key features
of invokedynamic is that it adds reflection-like features to the language without incurring
the performance overhead imposed by the use of traditional reflection. The low performance
overhead has been confirmed by several authors including Kaewkasi [23] and Ortin and
Conde [29, 3].

Within the Java standardisation process, JEP 276: Dynamic Linking of Language-Defined
Object Models [38] is related to this research. The focus of JEP 276 is on supporting the
compilation of object expressions often used in applications that require templating, while
we suggest different compilation for standard Java call sites. The JEP 276 proposal does
explicitly state that it does “not wish to provide linking semantics for operations for any
single programming language or execution environment for any such language”.

There is one open source project we are aware of with a similar aim — Kohsuke Kawaguchi’s
Bridge Method Injector 2. The idea behind this project is to address one particular evolution
problem we also consider - source-compatible changes of the return type. This is achieved by
generating additional bridge methods in a post compilation step, a technique also used by the
compiler when encountering co-variant return types. This will be discussed in more detail in
section 7.2. The bridge method injector relies on an annotation that has to be added by the
author of the library that evolves. This requires that the author understands the effects this
change has on client code, and this might not always be the case [12]. On the other hand,
our approach is completely automated and covers a wider range of evolution patterns.

This work is part of a wider trend towards self-adaptive software [36, 37].

3 Background

3.1 Binary vs Source Compatibility

The compiler and the linker use sets of rules to establish whether a method invocation can
be resolved. These rule sets define source compatibility (in the case of the compiler) and
binary compatibility (in the case of the linker). As far as Java (version 8) is concerned, binary
compatibility is generally stricter than source compatibility as the compiler can reason about
subtype relationships, the associations between primitive types and their respective wrapper
types via auto-boxing and unboxing conversions [22, sects 5.1.7, 5.1.8] and invocations of
static methods from non-static contexts 3.

For instance, consider Listing 1*. This example has a client program with a class
Main invoking Foo.get() defined in a library that has two versions lib-vl.jar and
lib-v2.jar. Main can be compiled against both versions of the library. However, when
Main is compiled against 1ib-v1. jar and then executed with 1ib-v2. jar, a linkage error

2 http://bridge-method-injector.infradna.com/

3 There are some exceptions to this rule — situations where a program is binary but not source compatible
with a library. For instance, the use of erasure can cause such scenarios.

1 Package declarations and imports are omitted.
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// lib-vl. jar
public class Foo {
public static java.util.Collection get() {return new java.util.ArrayList();}
}
// 1ib-v2. jar
public class Foo {
public static java.util.List get() {return new java.util.ArrayList();}
}
// client program
public class Main {
public static void main(String[] args) {
java.util.Collection coll = Foo.get();
System.out.println(coll);
}
}

Listing 1 Specialising the return type of a method.

// lib-vl. jar
public class Foo {
public static void bar(int i) {System.out.println(i);}

}
// lib-v2. jar
public class Foo {
public static void bar(Integer i) {System.out.println(i);}
}
// client program
public class Main {
public static void main(Stringl[] args) {new Foo() .bar(42);}
}

Listing 2 Boxing of a parameter type.

(NoSuchMethodError) is thrown as the descriptor get (OLjava/util/Collection; found at
the call site does not match the new descriptor get ()Ljava/util/List; and can therefore
not be resolved.

Listing 2 is similar, but this time the sole parameter type of bar () is changed from int to
java.lang.Integer. The compiler deals with this situation by applying auto-boxing. But
since the descriptor changes from bar(I)V to bar(Ljava/lang/Integer;)V, this change is
not binary compatible.

Finally, consider Listing 3. Main still compiles against Foo in 1ib-v2. jar, but this time
the compiler has to apply two adaptation rules: auto-boxing and type generalisation. The

type of the invocation must also be changed as the static modifier has been added to bar.

Evolution patterns and their impact on binary compatibility have been catalogued by
ddes Rivieres [10]. Some of these problems could be avoided if linking was more consistent
with compilation. In particular, we are interested in the following evolution patterns that
are source compatible, but not binary compatible:

1. the specialisation of a reference return type of a method
2. the narrowing of a primitive return type of a method

3. the generalisation of a reference parameter type of a method

12:5
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// lib-vl. jar
public class Foo {
public void bar(int i) {System.out.println(i);}

}
// lib-v2. jar
public class Foo {
public static void bar(Object i) {System.out.println(i);}
}
// client program
public class Main {
public static void main(String[] args) {new Foo() .bar(42);}
}

Listing 3 Complex (but still compatible) evolution.

4. the widening of a primitive parameter type of a method

5. replacing the primitive return or parameter type of a method by the respective wrapper
type

6. replacing the wrapper return or parameter type of a method by the respective primitive
type

7. changing a non-static method to a static method

«

changing a class to an interface or vice-versa
9. some combinations of any number of evolution patterns from this list?

3.2 The invokedynamic Instruction

Prior to version 7, Java used four different bytecode instructions for method invocation. First,
invokestatic is used to call static methods. Static methods are resolved at compile time.
Next, invokespecial is used for special cases including constructor and private method
invocations and invocations via super. Finally, invokevirtual and invokeinterface are
used to call non-static, non-private methods. Dynamic dispatch is used here, i.e. the method
which is invoked is only computed at runtime based on the actual type of the receiver.

Starting with Java 1.7, invokedynamic was added to the instruction set [35]. The
motivation was to give programmers more control over the dispatch process, in particular to
facilitate the implementation of dynamic languages like Ruby on the JVM [28]. The Java 7
JVM supports the invokedynamic instruction, it is not emitted by the Java 7 compiler. The
Java 8 compiler uses invokedynamic to compile lambdas.

With invokedynamic, the method reference is resolved by means of a bootstrap method.
This user-implemented method is then used to locate the actual method being invoked. This
is fast as the bootstrap method is only invoked by the linker during the resolution phase
[26, 5.4.3.6] and following method invocations skip the bootstrap process. At this point it is
possible to implement adapters.

The bootstrap method represents the target method as an instance of a java.lang.-
invoke.MethodHandle. The method handles support transformations that can be used to
achieve a linking behaviour that is similar to the behaviour of the compiler. This mapping
behaviour is exposed in the API of MethodHandle by the invoke method (as opposed to
the invokeExact method). The overall goal of this work is to use this API to perform

5 See also section 5 for a discussion on which of those combinations are supported.
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appropriate type conversions to match the call site with the method found in a library that
may have evolved. The difficult part is to lookup the best method which is suitable for

re-typing.

4 Compilation

The mechanism we are proposing is based on the idea of swapping invoke instructions in
bytecode. Our aim is to do this at compile time, so that the bytecode produced by the
compiler can be transparently used at runtime with minimal additional configuration needed.
However, there is another use case: to retrofit existing code only available in compiled
form. We address this use case first and introduce the dynamo enhancer - the tool that
performs the bytecode transformations. We can then use the enhancer to design the actual
dynamo compiler, implemented as a post compiler / wrapper around the enhancer and the
standard Java compiler. This design gives the dynamo compiler almost instantly the quality
attributes needed for real world application. In particular, most Java compiler optimisations
are available to us. An additional benefit of this design is that the enhancer can be used as a
post compiler for other compilers emitting JVM bytecode, such as scalac. In the final part
of this section, we discuss Dynamo DSL, a lightweight domain-specific language that can be
used to customise the dynamo-specific part of the compilation via a simple command line
argument.

4.1 The Dynamo Bytecode Enhancer

The bytecode enhancer is used to transform the bytecode emitted by a standard Java
compiler, and replaces selective invokestatic, invokevirtual, invokeinterface and
invokespecial instructions (from hereto referred to as classical invocations) by invoke-
dynamic. The intention of the selection is to only replace invocations where the target is
located in a library that may have a separate update cycle. This is achieved through filters,
described in more detail below.

Any classical invocation can be expressed by a tuple t = (opcode, C, m, desc) where opcode
represents one of the classical invocations, C is an owner class containing the method, m is
the method’s name and desc is the methods descriptor consisting of the formal parameter
types and the return type of the method. To convert a method invocation to invokedynamic,
the original instruction from the tuple ¢ must be changed to fit the invokedynamic call site
specifier [26, sect 4.7.23]. In particular, a reference to a bootstrap method must be provided
that is then used at link time to locate the actual target of the invocation.

Given a tuple ¢ containing call site information, a dynamic call site can be created as
follows. An invokedynamic instruction is created that has an index pointing to a constant
pool entry of the type CONSTANT_InvokeDynamic. This entry defines a bootstrap method
with the following three parameters: (1) the MethodHandles.Lookup factory used to locate
and check access to methods, (2) the method name, (3) and a MethodType representing the
descriptor. Any number of additional user parameters may follow.

The JVM Specification provides information about descriptors used by the classical
invocations and the descriptors required by method handles [26, sect 5.4.3.5]. By combining
these two parts of the specification, we infer the transformation rules listed in Table 1.

As discussed earlier, C' and m represent the method owner type and its name, respectively.
Furthermore, Ax is a set of input parameter types, T represents the return type, and V
represents the void type (used in the descriptors of constructors). For virtual and interface
invocations, the owner type is prepended to the list of argument types in the target descriptor.

12:7
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Table 1 Translation from method descriptors to method handles.

opcode source C,m,desc | target desc | parameters
invokevirtual C,m, (Ax)T (C,A%)T
invokestatic C,m, (Ax)T (Ax)T C
invokeinterface C,m, (Ax)T (C,A%)T
invokespecial (new) C,<init>, (A%)V (A%)C
invokespecial (super) C,m, (A%)T (C,A%)T
bi h 10
Pipus . bipush 10
istore_1 istore 1
2
Lib/F -
: 77 e Lo 3 ... // new 1ib/Foo()
iload_1 .
4 iload_1

invokevirtual lib/Foo.setValue: (I)V . . .
5 invokedynamic setValue:(Llib/Foo;I)V

Listing 4 Bytecode  for  new
Foo() .setValue(10) before  enhance-
ment.

Listing 5 Enhanced bytecode for code in
listing 4.

This is necessary to check the type of the this reference passed as the first argument to the
respective method handle. For constructors, C' becomes the return type. The descriptors of
method handles for static invocations do not contain owner types at all. For this reason, we
pass the owner type as an additional, user defined, parameter to the bootstrap method.

The translation of the first three instructions in Table 1, invokevirtual, invokestatic
and invokeinterface is straightforward as they all have similar semantics. For this reason
the transformation only requires to swap instructions and customise descriptor according to
the table. See Listings 4 and 5 for an example presenting simplified byte-code instructions.
These instructions may all be used in cross-component invocations and thus each occurrence
is a candidate for replacement by the bytecode enhancer.

The situation is less obvious for invokespecial. In this case, the instruction has several
usages, including the invocation of private methods, the invocation of methods via the
super keyword, and the invocation of constructor using the this keyword [26, sect 6.5].
We support the transformation of invokespecial used with super and constructors . For
invokespecial (super), the transformation is equivalent to the transformations applied to
invokevirtual and invokeinterface.

The transformation of invokespecial used in conjunction with the new keyword at
object allocation sites is less straightforward. In bytecode, the respective methods invoked
all have a special name <init>. A correct transformation requires the detection of a usage
pattern that consists of a certain sequence of instructions, the so-called bytecode behaviour.
The pattern for constructors consists of the following three instructions (1) new C (2) dup
(3) invokespecial C.<init>:(A*)V [26, sect 5.4.3.5], possibly with some intermediate
instructions. The semantics of this sequence is: (1) create a new object of type C' and
push it onto the stack, (2) duplicate the object on the top of the stack and (3) invoke the
constructor. The object on the top of the stack is duplicated because one element is consumed
(popped) by the constructor invocation and the object must remain on top of the stack
so that the value can be assigned to a variable (usually using an astore instruction). To

5 Invocations of private methods are out of scope as they can not be used for cross-component invocations.
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new lib/Foo
dup 1 bipush 10
bipush 10 2 invokedynamic C$D:(I)L1lib/Foo;

invokespecial 1lib/Foo."<init>":(I)V . .
Listing 7 Enhanced bytecode for code in

Listing 6 Bytecode  for  new listing 6.
1ib.Foo(10).

java -cp dynamo<..>.jar org.dynamo.compiler.Compiler -sourcepath ./src -d ./bin

Listing 8 Basic use of dynamo to compile all Java source code files in the src folder and store
the .class files in the bin folder.

replace this sequence, it must be changed to a standard method invocation, which means
that the instructions new C and dup must be dropped and invokespecial must be replaced
by invokedynamic. Note that invokedynamic returns a value, this value is pushed onto
the stack and effectively replaces the two dropped instructions. If the constructor contains
parameters, the transformed sequence will retain the instructions to push these parameters
onto the stack before the invokedynamic instruction is executed. An example transformation
is shown in Listings 6 and 7.

Since invokedynamic cannot use <init> as the name parameter for the bootstrap method

[26, sect 4.10], an artificial name set to C$D, meaning “constructor dynamic”, is used instead.

The use of the $ sign in method names is legal, but according to the language specification
“The $ sign should be used only in mechanically generated source code or, rarely, to access
pre-existing names on legacy systems” [22, sect 3.8]. By complying with this rule it is very
unlikely that this name choice will create conflicts with user code.

The actual bootstrap methods referenced in the modified bytecode are defined as static
methods in the class com.dynamo.rt.DynamoBootstrap. There is one method for each
instruction type (bootstrapInterface, bootstrapStatic, etc). The semantics of these
methods is described in section 5.

4.2 The Dynamo Compiler

The dynamo compiler is implemented as a post compiler. It is a wrapper around the dynamo
enhancer, combined with the standard Java compiler accessed via the compiler API (JSR-199)
[1]. More explicitly, the dynamo compiler first uses the standard Java compiler through
JSR-199 to compile compilation units in memory. The resulting bytecode is represented
using a map that associates fully qualified class names with byte arrays. The compiler then
uses the enhancer to apply bytecode transformations using information from (1) the compiler
runtime parameters specifying the classpath, (2) compiler runtime parameters specifying
filters.

The classpath information is used to determine component boundaries. The filters are
described in the next section, the options of the compiler command line interface (CLI) are
described in appendix B.

Figure 1 shows the design of the dynamo compiler; Listing 8 shows the basic usage of the
compiler via its CLI.
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-filter

parameter .
CLI —_— dynamo compiler
{):r?;i_gh N javac filter N dynamo
parameters via JSR199 bytel[] enhancer
(to javac) 5\

compiler
classpath
A J
compilation units libraries compiled classes
(*.java) (*.Jjar) (*.class)
file system

Figure 1 Compiler Design.

4.3 The Dynamo Filter DSL

It is often desirable for users to retain fine-grained control over the compilation process. One
of the more common use cases is not to use invokedynamic when invoking functionality
from Java platform libraries, due to the strong emphasis on backward compatibility in these
libraries [8, 9].
For this reason, we have developed a lightweight domain-specific language that can be
used to filter the methods and call sites where invokedynamic is used. These filters are used
to select invocation records consisting of two methods, the method containing the call site,
and the target method invoked before enhancement takes place.
The method filter is composed of individual filters that all have the following properties:
1. a kind (+, -) defining whether a filter is an include or an exclude filter
2. a role (callsite, target) defining whether a filter applies to the client method that has
the call site, or to the target method to be invoked
3. a class pattern defining the classes to which the filter applies. Class names are fully
qualified, with a dot used as package separator

4. an optional method name pattern defining the methods to which the filter applies

5. an optional descriptor pattern defining the descriptors to which the filter applies. This
allows for the discrimination of overloaded methods. Descriptor patterns use the syntax
defined in the JVM specification [26, sect 4.3.3] plus optional wild card characters.

Filters can be defined using a simple domain specific language; the grammar of this
language is given in appendix A. The * and 7 wild cards can be used in class names, method
names and descriptor patterns. The default filter is defined using the patterns listed in Table
2.

The intention of this filter is to exclude all invocations of target methods defined in the
Java Development Kit. A user-defined filter can modify the default filter by using additional
exclude and include patterns. The main use case for include patterns is to selectively permit
the enhancement of JDK method invocations. With additional exclude patterns, users can
manually specify that enhancements for certain targets are not required since the libraries in
which the respective methods are defined are known to be API stable. In case additional
include and exclude filters conflict, we resolve this as follows: invocation records are accepted
if they are accepted by at least one of the include filter and not accepted by any of the exclude
filters. This resolution is consistent with how include and exclude patterns are handled in
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Table 2 The default filter.

Filter definition Description

+callsite *,+target * include all invocation records
-target java.*
-target javax.x*

then exclude all packages included in the Java develop-
-target com.sun.*

ment kit.
-target sun.x*
-target com.oracle.*
-target org.ietf.*
-target org.omg.*
-target org.w3c.*
-target org.xml.*
Table 3 Filter examples.
Filter definition Description
-callsite com.foo.Bar exclude invocations from call sites within
com.foo.Bar
-target com.foo.x* exclude invocation of targets in methods in
packages starting with com.foo
+target java.lang.String#substring include invocations of the substring methods
defined in String
+target java.lang.String#substring(I)x* include invocations of the substring(int)

method defined in String

popular build tools, and we assume that developers are familiar with the practice. Some
examples of filters are given in Table 3.

The definition of the default filter is relatively coarse. For instance, the filter would also
include a package with the prefix com.oracle that is not part of the Java developer kit, such
as certain JDBC drivers. In order to override this behaviour, users must use custom filters.

5 Linking

In this section, we describe the bootstrap process. We first discuss the strategy we are using
to locate and select the target method. In a nutshell, we use an algorithm that aims at
aligning linking behaviour with compile time behaviour to facilitate program comprehension
by developers. We then describe the complexity of the algorithm, and some implementation
issues.

5.1 Resolution

At runtime, we need to resolve the reference in the bootstrap method and locate an actual
target method. This method must be adaptable to the original method. We only look for
methods that are non-abstract, visible from the call site and have the same name and arity,
but may have a different descriptor or are defined in a super type. This is similar to the

problem the compiler has to solve when it selects the most specific method [22, sec 15.12.2.5].

However, we also have to take the return type into account. Not only can the return type
change as we allow specialisation or narrowing of the return type, but we potentially also
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have to deal with return type overloading, a situation that can only arise in bytecode. In
particular, the standard Java compiler uses synthetic [26, sec 4.7.8] bridge methods to deal
with co-variant return types. This means that any runtime method resolution has to be able
to deal with a situation where there are multiple methods with the same name, the same
parameter types but different return types within one class. Since return type overloading
is not supported by the Java language, we can make the assumption that if this situation
arises, only one of these methods is non-synthetic.

We refer to the selection of an adaptable method as runtime resolution, or in this context
just resolution for short. Resolution is defined with respect to adaptations that can be
performed by method handles [35]. Different resolution strategies are possible: (1) a greedy
strategy that locates any adaptable method and selects it, (2) an optimal strategy that tries to
find the “best match” according to some metric and (3) an unambiguous best match strategy
that tries to find a method that is not only the best match in the sense of being optimal with
respect to some order, but must also be strictly better than other candidates with respect to
this order.

As one of our objectives is to address inconsistencies between source and binary com-
patibility, we decided to use strategy (3) to mimic the compiler behaviour of choosing the
most specific method [22, sect 15.12.2.5]. While the overall aim is somehow similar to how
the compiler processes method invocation expressions [22, sect 15.12], there are important
differences caused by the differences in representation of language features such as generic
types, static imports and varargs in source code and bytecode.

For a concise formulation of the algorithm, we propose a simple model, the type conversion
graph (TCG). This graph captures subtype relationships between classes and interfaces, boxing
and unboxing relationships between wrapper types and their respective primitive types, and
widening conversion relationships between primitive types [26, sect 5.1.2]. We build the TCG
for a program by applying the following rules:

1. All (primitive and reference) types except annotation types but including array types
that occur in the program are added as vertices to TCG.

2. If Ty and Ty are (non-generic) class, interface or array types and T} is a direct subtype of
T5 as defined in [22, sects 4.10.2, 4.10.3] then an edge T3 — T5 with a label r is added to
TCG.

3. If 71 and T, are primitive types and there is a widening conversion from T; to T5 as
defined in [22; sect 5.1.2] then an edge Th — T» with a label p is added to TCG.

4. If T is a primitive type, and CI is the wrapper type of T, then an edge T'— Cl with a
label b (for boxing) and an edge C! — T with a label u (for unboxing) are added to TCG.

Figure 2 shows an example TCG. The intention behind the TCG is that paths between
types represent valid (potentially composite) conversions. However, the compiler imposes
additional constraints. For instance, a widening primitive conversion followed by a boxing
conversion is not permitted in assignment and invocation contexts [22, sects 5.2, 5.3]. As our
motivation is to align compilation and linking behaviour, we impose the same restrictions.
We do so by defining a valid path between two types considered as vertices in the TCG as a
path such that the labels of the edges in this graph spell a word defined by the following
simple regular grammar: p|r*|br*|up. This grammar is derived from the rules used in [22,
sects 5.2, 5.3]".

7 The identity conversion is represented by a path of length 0. The primitive widening conversion rules
in [22, sect 5.1.2] use the transitive closure for primitive widening conversions, we can therefore use p
instead of p* in the grammar
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Figure 2 Example Type Conversion Graph.

When we try to locate an adaptable method, we only consider methods that are non-
synthetic®. Given the TCG, the adaptability relationship between types CiypeC T x T
can be easily defined as t; Tiype to iff there is a valid path from t; to ¢ in the TCG.
In order to identify, compare and select adaptable methods, we need to analyse their
(1) defining type (2) parameter types and (3) return types. We define an order between
methods based on their extended descriptor (XD) comprising the type where the method
is defined, followed by the parameter types and the return type. We use the syntax
<defining_type>(parameter_type*)return_type for XDs.

The relation T,y can be easily promoted to a relationship between XDs of the same arity:
TYAL, .., ADYRY Caese T?(A3, .., A2)R? iff R? Cyype R' and T Cyype T2 and A} Ciyppe A?
for each i. Note that the direction of Ty, is reversed (“contravariant”) for return types. By
treating the defining type as a virtual first parameter, we include possible target methods
defined in super types. For instance, this allows adaptations in cases where methods have
been pushed up the type hierarchy by refactoring®.

We can then define a simple disambiguation algorithm as follows: given an extended
descriptor A = T'(A1, .., A,)R and a set of adaptable descriptors {A?}, where A Cgeqe A,
we chose a descriptor A* from {A?} if AF Ty, A? for all i # k. This captures the intention
of selecting the most specific method that is adaptable. In case there is more than one
minimal XD with respect to Cgese, and the respective methods have the same parameter
types, we chose the method with the more specific return type following the compiler [22,
sect 15.12.2.5]. If resolution fails to detect a unique XD, the process will result in a linkage
error (instance of java.lang.NoSuchMethodError).

An example where this occurs is when a method Object foo(java.util.ArrayList) is
replaced by two methods String foo(java.util.AbstractList) and Object foo(java-
.io0.8erializable)'? within the same class. Both methods are suitable targets, but disam-
biguation fails to detect a best method that is strictly better than the other one.

A side effect of the resolution algorithm just described is that the only possible targets
for replaced constructor invocations are constructors defined within the same class. This

8 This will remove ambiguity if several methods with the same name and parameter type but different
return types are present. This is discussed in more details in section 7.2

9 The standard JVM runtime method resolution already includes superclass lookup [26, sect 5.4.3.3]

10 The class ArrayList extends AbstractList and implements the interface Serializable.
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follows from the fact that we only look for targets with the same name as the original target
(i.e., <init>). While we also consider constructors from super classes as possible targets,
these methods have a more general return type, and therefore do not qualify. It follows
further that the type returned by the invokedynamic invocation is the same as the type of
the original (invokespecial (new)) invocation.

5.2 Algorithm Complexity

Adaptability is defined with respect to reachability in the TCG. Reachability is a potentially
expensive operation. The worst case complexity of standard shortest path algorithms used
to query adaptability between two types is quadratic [15], while the pre-computation of a
reachability index that enables constant time queries is super-quadratic but sub-cubic [4].
However, the paths that need to be traversed by the algorithm are generally short because
of the flat hierarchies found in most Java programs [39], and the complexity of standard
shortest path and many reachability algorithms is near linear for sparse graphs.

We provide further evidence of the performance of our approach in the evaluation section.

5.3 Implementation Issues

The runtime component is implemented as a small library that must be included in the class
path of applications compiled or enhanced with dynamo. The method lookup algorithm
is implemented in org.dynamo.rt.DynamoBootstrap. This class has five static bootstrap
methods corresponding to the different instructions (bootstrapVirtual, bootstrapStatic,
bootstrapInterface) and the two variants of invokespecial supported (bootstrap-
SpeciallNew, bootstrapSpecialSuper). These methods differ slightly in terms of decoding
and interpreting method types according to Table 1. They all invoke a common method
which finds the most suitable method as described in section 5.1.

We use reflection to gather information about types, their relationships and members,
and to reason about this information. Although reflection is not ideal as it may trigger
some unnecessary class loading if classes are analysed for members that are not used at
the end, it facilitates the implementation of bootstrap methods. The actual target finder
algorithm produces an instance of java.lang.reflect.Method which is easily converted to
a method handle using the MethodHandles.Lookup.unreflect () protocol and its variants
for constructors and special methods. The actual conversion of types is then easily performed
by MethodHandle.asType (). At the end of this process, a constant call site wrapping this
handle is instantiated.

The method MethodHandle.asType () supports all of the type conversions we use and
therefore effectively performs the transformation of both return and parameter types. Since
we replace classic invocations with invokedynamic, we automatically support cases where
interfaces are converted to classes or vice-versa. Finally, changes where non-static target
methods have evolved to static methods are handled by ignoring the first parameter when
the method is invoked. This way, the descriptor described in Table 1, row 2 is produced.
The transformation is achieved by using the MethodHandles.dropArguments API. The
(simplified) implementation of a bootstrap method is shown in Listing 9.

6 Benchmarks

In this section we discuss sets of benchmarks used to test various dynamo components, and
to assess the performance overhead induced by dynamo.
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import java.lang.invoke.*;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;

CallSite bootstrapVirtual(Lookup caller, String name, MethodType type) {

Class<?> owner = type.parameterType(0);
Method method = find(owner, name, type); // use resolution with TGC
MethodHandle handle = lookup.unreflect(method) ;
if (Modifier.isStatic(method.getModifiers())) {

handle = MethodHandles.dropArguments (handle, 0, method.getDeclaringClass());
}
return new ConstantCallSite(handle.asType(type));

Listing 9 Bootstrap method implementation example (simplified).

6.1 Compiler Benchmarks

The compiler benchmarks are based on a comprehensive set of unit tests we have developed to
quality assure dynamo. Tests are based on scenarios, each scenario consists of three classes:

1.

versionl/lib/Foo.java - the source code of version 1 of a class 1ib.Foo providing a
method

version2/1ib/Foo.java - the source code of version 2 of a class 1ib.Foo providing a
modified method

client/Main. java - the source code of the client program using the method provided
by Foo

During testing, the following sequence is executed for each scenario:

Compile both versions of Foo and package them in different libraries (1ib-v1 and 1ib-v2).
This should succeed.

Compile Main with javac against 1ib-v1. This should succeed.

Run the compiled class Main with 1ib-v1. This should succeed.

Run the compiled class Main with 1ib-v2. This should fail.

Recompile Main with dynamo against 1ib-v1. This should succeed.

Run the recompiled class Main with 1ib-v2. This should succeed, except for the last two
“ambiguous” benchmarks designed to produce linkage errors.

Scenarios are identified by self-descriptive unique names. For instance invokeinterface-

_narrow_ret is a scenario that contains an invokeinterface instruction with a reference
to a method that evolves by narrowing the return type. Table 4 shows an overview of the
scenarios used for testing, the first column describes the change pattern, the other columns
show the type of invocation that is being converted. These scenarios were designed to obtain
full coverage of all possible combinations for common scenarios, and good partial coverage for

more exotic cases such as chained conversions (like boxing and then generalising a parameter

type). A check mark in the row-column intersection means that there is such a scenario, n/a

indicates that such a scenario is impossible (example: return type conversions for constructor
invocations) or does not make sense (example: converting an invocation of a certain type to
an invocation of the same type without adapting parameter or return types).
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Table 4 Benchmark overview.

invoke- invoke- invoke- invoke- invoke-

static virtual inter-  special special
face (super) (new)

narrow return type v v v v n/a
specialised return type v v v v n/a
specialised array return type v v v v n/a
box return type v v v v n/a
unbox return type v v v v n/a
widen parameter type v v v v v
generalise parameter type v v v v v
generalise array parameter type v v v
generalise array parameter to Object v
generalise array parameter to Serializable v
generalise array parameter to Cloneable v
box parameter type v v v v v
unbox parameter type v v v v v
multiple methods w/ generalised parameters v/
convert to invokestatic n/a v v n/a n/a
convert to invokeinterface n/a v n/a n/a n/a
convert to invokevirtual n/a n/a v n/a n/a
unbox and widen parameter type v v v v
box and narrow return type v v v n/a
box and generalised parameter type v v v v v
method ambiguous parameter v
method ambiguous two parameters v

We use the test scenarios as compiler micro-benchmarks. However, as we do not test
linking at this stage, for some scenarios the code compiled with dynamo (Main.java) is
identical. For instance, this is the case for the various “generalise array parameter ..
scenarios. We remove these scenarios from the set of 65 scenarios listed in Table 4 in order
to avoid double counting, the result is a set of 49 scenarios we can use for benchmarking.

Performance measurement in Java is not straightforward as Java uses runtime optimisation
(JIT, HotSpot). To account for this, repeated invocations and JVM warm-up runs are
necessary to produce statistically meaningful results [20]. For this reason, we used JMH,! a
tool that provides the respective features. For each experiment, we executed 15 warm-up
and 30 trial runs. For the experiments, we used the Java(TM) SE Runtime Environment
(build 1.8.0_20-b26) with a Java HotSpot(TM) 64-Bit Server VM (build 25.20-b23, mixed
mode) on a MacBook with OSX 10.5.5, an 2.8 GHz Intel Core i7 processor, 16 GB 1600
MHz DDR3 and SSD disk.

Table 5 summarises the performance results. We compare the dynamo compiler with the
standard Java compiler accessed through JSR199. To achieve a fair comparison, we compile

2

in memory in both cases and try to measure the net effect of the post compilation step when
bytecode is manipulated. We report average, standard deviation and confidence intervals, all
in ms. The fourth column contains the number of benchmarks tested, and column 5 is the
average divided by this number, i.e., the typical time a single compilation takes. The results

"nttp://openjdk. java.net/projects/code-tools/jmh/
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Table 5 Dynamo vs classic compiler performance.

average bench- average .
. . . confidence interval
benchmarks runtime stdev (ms) mark runtime single (ms) (99.9%)
(ms) count  benchm. (ms) e
classic 1923 65 49 39.24 [1857, 1988]
dynamo 2142 91 49 43.71 [2051, 2233]

Table 6 Method resolution performance.

average bench- average .
benchmarks runtime stdev (ms) mark runtime single confidence interval
(ms) count  benchm. (ms) (ms) (99.9%)
all 0.180 0.001 14 0.013 [0.179, 0.181]

clearly show that the compile time overhead imposed by dynamo is very small.

6.2 Runtime Benchmarks

We have also created a benchmark for runtime resolution. As the low performance overhead of
invokedynamic is known and has been reported in previous research [29, 3], the benchmark
is based on unit tests that only compute the target methods using the resolution algorithm
described in 5.1 from a set of candidate methods. Therefore, the design of the benchmarks
is driven by the following considerations: (1) a benchmark has a (significant) number of
candidate target methods scattered across several classes within the type hierarchy, (2)
candidate methods are detected via conversions represented by non-trivial paths within the
TCG including combinations of different edge types.

The individual benchmark scenarios are implemented as standard JUnit tests, and used
for quality assurance as well as to assess performance. Each test case has a self-explanatory
name to express its purpose. The packages and respective test cases are:

specstaticreturntype — a simple scenario with a test to locate a static target method

with a specialised return type

boxunbox — a scenario with tests that require the following conversions to locate the

target method: (1) boxing, (2) un-boxing, (3) boxing and widening of parameter types

and (4) un-boxing and narrowing of the return type

methodoverloading — a scenario with multiple d potential target methods, and tests

checking different resolution strategies to select target methods

overloadinghierarchy — a scenario with multiple overloaded potential target methods
scattered across a class and its direct and indirect super classes

disambiguatebyreturntype — a scenario to test situations where the target method is
selected based on the return type, simulating a scenario similar to what will be further

discussed in section 7.2

Table 6 summarises the performance results, using the same format as table 5 described

above. This result confirms that the performance overhead of runtime resolution is negligible.

7 Case Studies

To demonstrate the applicability of our approach, we present two case studies sourced from
real world scenarios.
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| +TimeSeries(java.lang.String name)
| +TimeSeries(java.lang.String name, Class timePeriodClass)

|
___________________ 4
|

client.jar String title = "Series; upda‘e
org.dynamo.casestudy.jasper. TimeSeries s = new TimeSeries(title); - -
JFrecChartApp \. jfreechart-1.0.12.jar
new TimeSeries( org.jfree.data.time.TimeSeries
seriesName.toString(), timePeriod); +TimeSeries(java.lang.Comparable name)
jasperreports-1.1.0.jar +TimeSeries(java.lang.Comparable name, Class timePeriodClass)

net.sf.jasperreports.charts.fill.
JRFillTimeSeriesDataset

Figure 3 Case study 1 application design.

7.1 Solving Compatibility Issues between Jasperreports and Jfreechart

The first case study is sourced from a real world scenario using the popular Java report-
ing library jasperreports'?. Jasperreports uses several other libraries including jfreechart'?,
which evolve independently, and this can lead to incompatibilities. In particular, a problem
occurs when jfreechart evolves from version 1.0.0 to 1.0.12. In this upgrade, the con-
structor TimeSeries(String) in the class org.jfree.data.time.TimeSeries is changed
to TimeSeries(Comparable). There are several overloaded variants of this constructor, but
for all of them the type of the first parameter is changed from String to Comparable.
This change is particularly dangerous for two reasons: (1) The change happens between
two micro versions, such evolutions are widely regarded as being compatible in accordance
with popular semantic versioning schemes [30, 31]. These schemes are widely used to represent
compatibility contracts between collaborating components, and tools and frameworks like
Maven and OSGi support them. (2) This change only affects binary compatibility, and its
implications therefore depend on the mode of deployment. The issue does not occur when
jasperreports is built, but only if a dynamic system upgrade mechanism like OSGi or Java
WebStart is used. The key observation here is that String implements the Comparable
interface, and that generalising a parameter type generally preserves source compatibility.'4
The system used in the case study is depicted in Figure 3. The system is represented using
a model resembling a UML class diagram. However, the arrows represent the invocation of a
method or constructor in the target class, and the dashed box represents the older version
of the library. Labels on edges show the Java code at the respective call site. The model
contains an application client.jar, which is a simple client application producing a basic
report containing a chart. The example illustrates both compile and runtime dependencies.
While the client application is compiled and invoked against both libraries, jasperreports
runs only against jfreechart-1.0.0 and this dependency is not resolved at compile time.
This setting allows for at least three scenarios: (1) the client is compiled and executed
with jfreechart-1.0.0, (2) the client is compiled against jfreechart-1.0.0 and executed with
Jjfreechart-1.0.12, (3) the client is compiled and executed with jfreechart-1.0.12. Only the first
scenario succeeds with the standard Java compiler. In the second scenario, both dependencies
client — jfreechart and jasperreports — jfreechart will fail due to the incompatible change in
TimeSeries(..). In the third scenario, the problem will be solved for the client as it can

2http: //community. jaspersoft.com/project/jasperreports-library

Bnttp://wuw. jfree.org/jfreechart/

M There are exceptions where generalising a parameter type can create ambiguities in the presence of
overloading that lead to compilation errors.
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ldc #10 // String ’Series’

astore_2

new #11 // class org/jfree/data/time/TimeSeries
dup

aload_2

invokespecial #12 // Method org/.../TimeSeries. "<init>": (Ljava/lang/String;)V

Listing 10 Client code compiled with javac.

ldc #10 // String ’Series’

astore_2

aload_2

invokedynamic #130, 0 // InvokeDynamic #3:C$D:(Ljava/../String;)Lorg/../TimeSeries;

BootstrapMethods:
3: #126 invokestatic org/dynamo/rt/DynamoBootstrap.bootstrapSpecialNew: (
Ljava/lang/invoke/MethodHandles$Lookup;
Ljava/lang/String;
Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;

Listing 11 Client code compiled with dynamo.

now be compiled, although invocations of TimeSeries(..) from jasperreports will still fail.

However, the working client will remain prone to similar problems as jfreechart may evolve
further.

To solve this problem, we compiled the client with the dynamo compiler. This produces
a client program that is compatible with both versions of jfreechart and resilient to any
possible future change of a similar nature. We also processed the jasperreports library with
the dynamo enhancer, demonstrating the application to third party or legacy software where
only bytecode is available. Finally, we invoked the program and verified by inspection that
both versions produce the same report. Listings 10 and 11 show the bytecode of the original
client compiled with the standard Java compiler followed by the enhanced bytecode. The
output is provided in the format produced by the javap tool, with comments revealing values
defined in the constant pool. The modifications follow the process described above: the
instructions creating the object and invoking its constructor are replaced by invokedynamic,
which refers to the respective bootstrap method.

We have also used this case study as a macro benchmark in order to measure the overhead
of using dynamo on a real-world program. Again, JMH was used to conduct these experiments,
with 15 warm-up and 30 trial runs. Table 7 summarises the compiler results, and confirms
that the performance overhead of using dynamo is small.

We have also measured the runtime overhead. In this benchmark, a simple report is
generated first by running a simple demo program that uses jasperreports compiled with
the classic compiler, and then by running it again with jasperreports compiled by dynamo.
We do use the same version of jfreechart (1.0.0) in both cases in order to avoid a bias that
would be caused by the different performance characteristics of different versions of this
library. Therefore, the same classes are used in both cases, but the generated bytecode and
the method used for linking differs. The respective results are reported in table 8. This again
confirms that the overhead of dynamo runtime resolution is small.
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Table 7 Dynamo vs classic compiler performance for jasperreports.

benchmark average runtime (ms) stdev (ms) confidence interval (ms) (99.9%)
classic 1278 52 [1255,1302]
dynamo 1330 56 [1305,1355]

Table 8 Runtime performance of simple report generation with jasperreports.

benchmark average runtime (ms) stdev (ms) confidence interval (ms) (99.9%)
classic 168 9 [165,172]
dynamo 175 12 [154,218]

7.2 Avoiding the Hazards of Covariant Return Types and Bridge
Methods

In a second case study, we demonstrate how compilation with dynamo can avoid an error
that was encountered when the JDK was refactored to use more covariant return types when
overriding clone() methods'®. We use the formulation of this problem presented in [34].
The scenario consists of three simple classes, Wrapper, WrapperChild and WrapperGrand-
child, the source code is shown in listing 12. Both WrapperChild and WrapperGrandchild
override wrap, but WrapperGrandchild does so using a covariant return type. When a
client calls wrap on an object that is an instance of WrapperGrandchild but declared as
Wrapper, an invokevirtual instruction pointing to a wrap method with the descriptor
(LObject;)LCollection; (package names omitted) is used. Therefore, a method with
such a descriptor must exist in WrapperGrandchild. The compiler solves this problem by
generating a synthetic bridge method with the descriptor (LObject;)LCollection; that
then just delegates to the actual method with the descriptor (LObject;)LList;. This is
therefore a case of return type overloading. The respective bytecode is shown in listing 13'6.

The problem occurs when Wrapper and WrapperChild on the one hand and Wrapper-
Grandchild on the other hand are deployed in different libraries. When WrapperChild is
refactored to also use a covariant return type, it too gets two wrap methods - the actual
method with the descriptor (LObject;)LList; and the synthetic methods with the descriptor
(LObject;)LCollection;. Now assume we execute the code in listing 14.

Executing this line invokes WrapperGrandchild.wrap: (LObject;)LList;. This method
calls WrapperChild.wrap: (LObject;)LCollection; via super as this was the only method
in WrapperChild that was available when WrapperGrandchild was compiled against the
old version of WrapperChild. This method is now a bridge method, and therefore calls
WrapperChild.wrap: (LObject;)LList using an invokevirtual instruction. Since the
actual type of the receiver object is WrapperGrandchild, this call is dispatched to Wrapper—
Grandchild.wrap: (LObject;)LList;. This causes the program to loop infinitely and
terminate with a StackOverflowError. The respective call graph is shown in Figure 4.

Using the dynamo compiler prevents this from happening not because of the sig-
nature adaptation, but due to the disambiguation strategy used during runtime resol-
ution. Resolution only considers non-synthetic methods. Therefore, we have two ad-

5http://mail.openjdk.java.net/pipermail/core-1libs-dev/2012-January/009119.html [Accessed:
October 20, 2015]

16 The repeated checkcast instruction is a Java compiler bug reported in http://bugs.java.com/
bugdatabase/view_bug.do?bug_id=6246854[Accessed: May 3, 2016]
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public class Wrapper {
public Collection wrap(Object o) {
Collection ¢ = new ArrayList();
c.add (o) ;
return c;

public class WrapperChild extends Wrapper {
Q@0verride public Collection wrap(Object o) {
return super.wrap(o);

public class WrapperGrandchild extends WrapperChild {
@Override public List wrap(Object o) {
return (List) (super.wrap(o));

3

Listing 12 Case study 2 source code (imports omitted).

// access flags Ozl

public wrap(Ljava/lang/Object;)Ljava/util/List;

ALOAD 0

ALOAD 1

INVOKESPECIAL WrapperChild.wrap (Ljava/lang/Object;)Ljava/util/Collection;
CHECKCAST java/util/List

CHECKCAST java/util/List

ARETURN

// access flags 0z1041

public synthetic bridge wrap(Ljava/lang/Object;)Ljava/util/Collection;
ALOAD O

ALOAD 1

INVOKEVIRTUAL WrapperGrandchild.wrap (Ljava/lang/Object;)Ljava/util/List;
ARETURN

Listing 13 Case study 2 bytecode of WrapperGrandchild

new WrapperGrandchild() .wrap("x");

Listing 14 Case study 2 client code.
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public wrap(Ljava/lang/0Object;)Ljava/util/List;

aload_O

aload_1

invokedynamic #31 // wrap: (LWrapperChild;Ljava/lang/Object;)Ljava/util/Collection;
checkcast java/util/List

checkcast java/util/List

areturn

public synthetic bridge wrap(Ljava/lang/Object;)Ljava/util/Collection;
aload_O
aload_1
invokevirtual #4 // Method wrap: (Ljava/lang/Object;)Ljava/util/List;
areturn

Constant pool:
#4 = Methodref // WrapperGrandchild.wrap: (Ljava/lang/0Object;)Ljava/util/List;
#31 = InvokeDynamic// wrap: (LWrapperChild;Ljava/lang/0Object;)Ljava/util/Collection;

Listing 15 Bytecode of WrapperGrandchild generated by dynamo.

<<bridge>>
rap(LObject;)LCollection;

<<bridge>>
WrapperGrandchild.wrap(LObject;)LCollection; invokevirtual

invokevirtual

invokedynamic

bootstrap

WrapperChild.wrap(LObject;)LList;

invokespecial

Figure 4 Call graph after refactoring, com-

piled with javac. Figure 5 Call graph after refactoring, com-
piled with dynamo.

WrapperGrandchild.wrap(LObject;)LList;

invokespecial invokevirtual

<<bridge>>
WrapperChild.wrap(LObject;)LCollection;

aptable candidate methods with the extended descriptors Wrapper: (Object)Collection
and WrapperChild: (Object)List. Both are minimal (most specific), but because they
both have the same parameter types, the method with the more specific return type
WrapperChild: (Object)List is selected. The replacement pattern used is invokespecial
(super) as the call via super is the cross-component call. The bytecode produced by dynamo
is shown in Listing 15, the respective call graph is shown in Figure 5.

8 Conclusion

In this paper, we have proposed the dynamo framework consisting of a bytecode enhancer, a
compiler, a filter DSL and a runtime component. We have demonstrated the benefits of using
dynamo using a set of benchmarks and two case studies sourced from real-world scenarios. In
both case studies, unintuitive runtime errors can be avoided by using the dynamo compiler.
The benchmarks show that the overhead of using dynamo is low.

While we have discussed dynamo in the context of the Java language and compilation
targeting the JVM, the same idea can be potentially applied to other languages and platforms.



K. Jezek and J. Dietrich

The enhancer can be used as a tool kit to improve other compilers targeting the JVM, such
as scalac. Dynamo could also be ported to other language / platform combinations facing
similar problems related to binary compatibility, such as C#/CLR/.NET.

In the context of Java, the same idea could also be applied to support compatible type
changes for fields exposed by libraries. We did not include this in our work as direct field
access in Java programs is discouraged. Other possible extensions include to restrict constant
inlining across components.
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Appendices

A Dynamo DSL Grammar

kind 1=

role
filters

className ::=

methodName
descriptor ::
filter
NAMES

NAME is used as defined in [22, sect 6], but with added support for the * and ? wildcard

characters.

B

J+) I PR

’callsite’

NAME

::= NAME
>(’ NAMES ’)’ NAME

kind role className ( ’#’ methodName descriptor? )?
( NAME ( ’,

| ’target’

filter ( ?,’ filter )*

> NAME )* )+

Dynamo Compiler Options

Table 9 Dynamo Compiler Options.

parameter required  description

-cp yes Specify where to find user class files and annotation processors
-d yes Specify where to place generated class files

-sourcepath yes Specify where to find input source files

-classic no Classic compilation without enhancement - same as javac
-encoding no Specify character encoding used by source files

-filter no Specify which methods to enhance as defined in section 4.3
-help no Print instructions
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