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Abstract
This paper investigates language constructs for high-level and type-safe manipulation of JSON
objects in a typed functional language. A major obstacle in representing JSON in a static
type system is their heterogeneous nature: in most practical JSON APIs, a JSON array is a
heterogeneous list consisting of, for example, objects having common fields and possibly some
optional fields. This paper presents a typed calculus that reconciles static typing constraints and
heterogeneous JSON arrays based on the idea of partially dynamic records originally proposed and
sketched by Buneman and Ohori for complex database object manipulation. Partially dynamic
records are dynamically typed records, but some parts of their structures are statically known.
This feature enables us to represent JSON objects as typed data structures. The proposed
calculus smoothly extends with ML-style pattern matching and record polymorphism. These
results yield a typed functional language where the programmer can directly import JSON data
as terms having static types, and can manipulate them with the full benefits of static polymorphic
type-checking. The proposed calculus has been embodied in SML#, an extension of Standard
ML with record polymorphism and other practically useful features. This paper also reports on
the details of the implementation and demonstrates its feasibility through examples using actual
Web APIs. The SML# version 3.1.0 compiler includes JSON support presented in this paper,
and is available from Tohoku University as open-source software under a BSD-style license.
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1 Introduction

JSON (JavaScript Object Notation) is a text format for serialized structured data. Owing
to its simplicity and the human-readable nature, it has become a standard format for data
exchanged over the Internet. Web servers and cloud systems, for example, now often provide
JSON API s, which specify the details of their HTTP requests and responses as JSON formats.
Safe and high-level manipulation of JSON objects is, therefore, becoming essential for a
programming language to serve as a production language for modern Internet applications.

A common current practice is to provide a library to parse JSON strings and to represent
the resulting abstract syntax trees in some data structures of the underlying programming
language such as a recursive datatype of ML or JSONObject class with methods to access
JSON attributes with keys. Some languages also provide a mechanism to automatically
generate classes and types for given application-specific JSON structures. Examples include
JSON schema [17] and the type provider of F# [27]. While these tools free the programmer
from the tedious task of deserializing JSON data, from the perspective of a programming
language, they are not ideal. Programming with JSON abstract syntax trees is inherently
untyped. Type/class generations are meta-level and are not integrated parts of the type
system of the language. These approaches cannot take full advantage of high-level and
type-safe programming constructs available in advanced programming languages. Indeed,
the original motivation for this work came from our experience of developing an ERP system
with web interface jointly with a software company [22]. During this development, we had to
write codes that dealt with JSON abstract syntax trees. This was not only tedious but also
error prone. During this experience we became painfully aware of the need for high-level and
type-safe support for JSON objects. The goal of the present paper is to develop programming
language constructs for high-level and type-safe manipulation of JSON objects in such a way
that they are part of the language type system.

To achieve our goal, we consider a typed functional language with labeled records and
pattern matching as an ideal starting point. We note that JSON is a data structure constructed
from atomic types (i.e., integers, floating-point numbers, booleans, and strings); “objects,”
which are named unordered collections of values; and “arrays,” which are ordered sequences
of values. All of these are common data structures available in a typed functional language.
One would therefore expect that they can be directly mapped to typed data structures
constructed from labeled records (representing JSON “objects”) and lists (representing JSON
“arrays”). One would then expect that JSON objects can be directly manipulated through
field selection primitives for labeled records and a rich set of higher-order combinators for
lists. If such a mapping was indeed possible, then programming with JSON would be a
typeful and comfortable programming practice. For example, one would write a function to
retrieve, from a JSON object obtained from a weather service on the Internet, a list of cities
where the wind speed exceeds 20 mps in the following declarative and concise way:

fun highWind weatherMapData =
foldl (fn ({name, wind, ...}, cities) =>
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if #speed wind > 20.0 then name::cities else cities)
nil
weatherMapData

Furthermore, one would expect that such a higher-order function with JSON objects is
properly type-checked.

For a data structure constructed with records and lists, this is achieved with record
polymorphism [20]. The above function, for example, is given the following static type:

highWind : ∀(t1 ::{name : t2, wind : t3}, t2, t3 ::{speed : real}). t1 list→ t2 list

where ∀(t1 ::{name : t2, wind : t3}, . . .) represents kinded abstraction of type variable t1 whose
possible instances are restricted to those record types that contain at least name and wind
fields of type t2 and t3. This mechanism ensures type-safe manipulation of lists of records
containing name and wind attributes. Since JSON objects often contain a large collection
of complicated record structures, an analogous type-safe and high-level treatment is highly
desirable. This mechanism of record polymorphism is an integrated part of SML# [26]. The
SML# [26] compiler infers the following typing for the above function:

highWind : [’a#{name:’b, wind:’c},’b,’c#{speed:real}. ’a list -> ’b list]

This variant of ML provides us an ideal starting point for developing a practical polymorphic
language with typeful JSON object manipulation support.

Apparently there are a number of technical issues to be sorted out before developing
a satisfactory programming language that realizes this desired view. The major obstacles
arise from the property that JSON is inherently heterogeneous. In many practical JSON
APIs, objects are required to contain certain set of fields and may contain some optional
fields. Moreover, this property is often implicit; objects with optional fields are simply those
that contain them, and there is no explicit tag to indicate their existence or nonexistence.
Because of this property, JSON arrays are heterogeneous in most cases. This is in sharp
contrast with typed representation in ML, where an optional field is represented as option
datatype, and collection types are always homogeneous. Designing a typed language that
uniformly deals with heterogeneous JSON objects constitutes a challenge. In this paper, we
provide one solution, and implement it in SML#.

We base our development on the observation made in [6] that a polymorphic record
calculus with collection types (set types or list types) can be extended with partially dynamic
records to form a programming language for high-level and type-safe manipulations of
heterogeneous collections. A partially dynamic record type is a refinement of type dynamic
proposed in [2]. In contrast with the standard dynamic type, however, it statically reveals
some record fields. Combining this typing constraint with collection-type constructors, one
can obtain a typing mechanism for manipulating heterogeneous persistent collections in an
ML-style polymorphic language. In the proposal of [6], the idea and typing rules are sketched
out, but their formal properties and implementation methods are not investigated. The goal
of the present paper is to develop a typed calculus suitable for JSON data based on the idea
of partially dynamic records, to establish type soundness, and to implement the calculus for
practical use.

When we separate dynamic typing from partially dynamic records, then types of partially
dynamic records intuitively correspond to super types of objects in an object-oriented language.
Since a super type also represents a substructure common to all of its subtypes, in a type
system with structural subtyping, heterogeneous collections can be represented as (uniform)
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collections of a super type of all the possible element types. With a suitable mechanism
for dynamic object inspection (dynamic “down casting”) for JSON data, an object-oriented
type system with object subsumption would certainly be an alternative approach. However,
subtyping would complicate polymorphism and type inference with records, and therefore
its impact on an implementation method for ML-style functional languages remains to
be investigated. Our proposal is suitable for ML-style functional languages and is readily
implementable.

Our general motivation of developing static typing for semi-structured external data is
shared with the authors of XDuce [14] and CDuce [3]. They aim at developing a typed
language for XML processing. In [10], it has been shown that some of these features can be
integrated in OCaml. In these systems, however, XML types do not have direct relationship
to static types of existing programming languages. As a result, record-like XML structures
are not related to labeled records or any other static data structures of the underlying
programming language. In the OCaml+XDuce language [10], for example, XML types are
opaque types in the OCaml type system. By contrast, our goal is to develop a language
mechanism to manipulate external record-like data directly as labeled records in a static
type system of ML. A major technical contribution of our research is not just a development
of yet another type system for JSON, but seamless and direct integration of JSON structures
in a static polymorphic programming language with labeled records.

The specific technical contributions of the present paper include the following:
We have presented a type system of JSON data and have developed an algorithm to
convert JSON data to explicitly typed ones. In the type system, any JSON data have a
unique type. The type system contains partial record types, and the type reconstruction
algorithm computes a partial record type for a heterogeneous JSON array by computing
the partial record type that matches all the element types.
We have developed a calculus with partially dynamic records, defined its operational
semantics, and shown a type soundness theorem. By defining the runtime model of
partially dynamic records as a pair of a typed JSON object and its static view, this
calculus serves as a programming language that integrates with JSON data.
We have presented a compilation method to extend the calculus with a polymorphic
primitive to convert a static complex value to dynamic JSON objects. We have also
extended the core calculus with ML-style pattern matching for JSON data.
We have fully implemented the calculus by extending the SML# compiler. Using the
implementation, we have evaluated the implemented compiler with a number of examples
including a JSON API in a real web service, and have demonstrated its practical feasibility.

The SML# version 3.1.0 includes JSON features presented in this paper, and is available from
Tohoku University as open-source software under a BSD-style license. Using this compiler,
Tohoku University and Hitachi Solutions East Japan, Ltd. plan to develop a web application
framework to be used for development of a personal prescription notebook server for mobile
devices.

The rest of the paper is organized as follows. In Section 2, we analyze static properties of
JSON data, discuss technical issues in designing a typed functional language with JSON data,
and describe our strategy. Section 3 presents the calculus and establishes type soundness.
Section 4 describes implementation techniques and reports on our implementation. Section 5
shows some examples using our SML# compiler and demonstrates the feasibility of our
proposal. Section 6 compares our proposal with existing work. Section 7 concludes the paper
with suggestions for further investigation.
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2 Analysis of JSON and our strategy

JSON data, as defined in [5], can be analyzed through the following abstract syntax:

j ::= cb | 〈l = j, . . . , l = j〉 | [j, . . . , j]

cb is a constant of atomic type b, which represents implicitly typed JSON literals. 〈l1 =
j1, . . . , ln = jn〉 is a JSON object, where l ranges over a given set of labels (string literals). In
the actual JSON format, an object is an unordered collection of colon-separated name-value
pairs. In the presentation of the syntax of the calculus, we use record notation similar to ML
records. In 〈l1 = j1, . . . , ln = ln〉, the labels {l1, . . . , ln} are pairwise distinct. This property
represents the unordered nature of fields in a JSON object. [j1, . . . , jn] is a JSON array
consisting of a sequence of JSON values, and corresponds to a list or a vector (immutable
array) in a functional language. In this paper, we represent them as lists. Vector views are
equally possible.

There is no difficulty in parsing JSON strings and representing the resulting abstract
syntax trees as data structures in a programming language. The following is a typical
definition in ML:

datatype json =
BOOL of bool | INT of int | REAL of real | STRING of string | NULL

| OBJECT of (string * json) list
| ARRAY of json list

Some ML compilers provide a library to parse JSON strings into a datatype similar to the
above. Our goal is to map untyped runtime values (values of a universal type) as a typed
term that can be directly manipulated by a typed ML program.

In the formal development, we omit the null object (NULL term above). As we shall briefly
explain in Section 4, it can easily be introduced as a built-in constant of a built-in type.

For this data structure we have the following straightforward observation. If we restrict
the ARRAY variant to be homogeneous, then the above data structure corresponds to runtime
values of the following set of ML types:

τ ::= b | {l : τ, . . . , l : τ} | τ list

It is a routine matter to define a type reconstruction function that first checks whether a
given value of type json is typable, and if it is typable, then returns its type. We can then
regard type json as an instance of type dynamic proposed in [2]. This simple observation
yields a language having the following features:

It contains an atomic type json (corresponding to dynamic) whose runtime values are
typed JSON data.
It provides a language construct of the form _json e as τ that dynamically checks a
typed JSON value whether or not its type component coincides with τ , and if it is the
case, then converts the typed JSON value to a value of static type τ . This would raise a
runtime exception of DynamicTypeError if the type-check fails. An equivalent statement
_typecase e of τ1 => e1 | · · · | τn => en | _ => e0 can also be provided.
It provides a primitive import e to parse a JSON string denoted by e to construct an
abstract syntax tree of the JSON data and then to check whether it is typable or not. If
it is typable then it creates a typed JSON value. This expression has type json.

All the above language constructs can be effectively defined in an ML-style type system, and
this approach can straightforwardly yield an extension of ML. While this simple approach
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has some usefulness, it is not practical for serious applications with JSON. As we discussed
in Introduction, most of practical JSON data are heterogeneous and are rejected by the
type-checking process described above.

To analyze the problem, suppose a given JSON array contains objects having manda-
tory name:string, wind:{speed:real,deg:real}, main:{temp:real} fields, and optional
clouds:{all:int} and main:{pressure:int} fields, such as the following:

[
{"name":"Sendai", "main":{"temp":19.0},
"wind":{"speed":7.6, "deg":170.0}},

{"name":"Natori", "main":{"temp":13.0, "pressure":1010},
"wind":{"speed":5.6, "deg":150.0}, "clouds":{"all":92}},

...
]

This is an example of commonly encountered heterogeneous JSON arrays. A typical program
would extract the mandatory name:string, main:{temp:real}, and wind:{speed:real}
fields. Since mandatory fields conceptually represent a static constraint on a list of values,
we want a programming language for JSON objects to represent the constraint in its static
type system so that the programmer can safely use polymorphic function on records with
list combinators such as foldr and map, as suggested in Introduction,

One approach to reconcile the static constraint and heterogeneous JSON arrays is to
introduce partially dynamic records presented in [6]. A partially dynamic record type, written
as {|l1 : τ1, . . . , ln : τn|}, denotes a dynamically typed record about which it is statically
known that its actual type contains the set of fields l1 : τ1, . . . , ln : τn. A heterogeneous
JSON array can then be typed as a list of a partially dynamic record type. For example, the
above term can be given a type of the form

{|name : string, main : {|temp : real|}, wind : {|speed : real, deg : real|}|} list

indicating the fact that each element of the list is a record that contains at least name:string,
main:{temp:real}, and wind:{speed:real, deg:real} fields, and possibly contains more
fields. By integrating this typing feature into a static type system with record type, list
type, and record polymorphism, we can obtain a typed language that supports high-level
and typeful manipulation of JSON objects.

3 Definition of the calculus

This section defines the calculus, establishes its type soundness, and describes the necessary
extensions to integrate it into an ML-style language with record polymorphism.

3.1 Typed JSON Objects
We first define a type system for JSON data. We continue to use the abstract syntax of
JSON data that we defined in Section 2.

The set of JSON types is given by the following syntax.

π ::= b | {l : π, . . . , l : π} | {|l : π, . . . , l : π|} | π list | json

In addition to JSON object types of the form {l1 : π1, . . . , ln : πn} and JSON array types
of the form π list, we introduce two forms of partial types. One is a partial record type
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[[b]] = {cb | cb is a constant literal of type b}
[[{l1 : π1, . . . , ln : πn}]] = {〈l1 = j1, . . . , ln = jn〉 | j1 ∈ [[π1]], . . . , jn ∈ [[πn]]}
[[{|l1 : π1, . . . , ln : πn|}]] = {〈l1 = j1, . . . , ln = jn, . . .〉 | j1 ∈ [[π1]], . . . , jn ∈ [[πn]]}

[[π list]] = {[j1, . . . , jn] | j1 ∈ [[π]], . . . , jn ∈ [[π]]}
[[json]] = the set of all syntactically well formed json terms

Figure 1 A syntactic model of JSON types.

{|l1 : π1, . . . , ln : πn|}, which represents JSON objects that contain at least the set of fields
l1 : π1, . . . , ln : πn. The other is the type json for which no structure is known.

To model the above interpretation of these partial types in a type system, we define the
following ordering on the set of types:

π ≤ json for any π.
{l1 : π1, . . . , ln : πn, . . .} ≤ {|l1 : π′

1, . . . , ln : π′
n|} if π1 ≤ π′

1, . . . , πn ≤ π′
n.

{|l1 : π1, . . . , ln : πn, . . . |} ≤ {|l1 : π′
1, . . . , ln : π′

n|} if π1 ≤ π′
1, . . . , πn ≤ π′

n.
π list ≤ π′ list if π ≤ π′.

The reflexive transitive closure of this relation yields a partial ordering on the set of JSON
types. This ordering is the converse of the one used in [6], where the ordering is originally
introduce to model the amount of information. Here, we use the notation that is familiar
in object-oriented type systems [1] for readability. Note, however, that this ordering is not
used to define subsumption relation on terms, but to compute the common substructure of
element types in a heterogeneous JSON array. The join (least upper bound) of π1 and π2
with respect to ≤ is written π1 t π2, which denotes the largest common substructure of π1
and π2.

The typing rules for JSON data are given below:

` cb : b

` j1 : π1 · · · ` jn : πn

` 〈l1 = j1, . . . , ln = jn〉 : {l1 : π1, . . . , ln : πn}

` j1 : π1 · · · ` jn : πn π = π1 t · · · t πn

` [j1, . . . , jn] : π list

This type system has a straightforward syntactic model. Figure 1 defines the semantics
[[π]] of JSON type π. Using this, we define the semantic typing relation, denoted by |= j : π
if and only if j ∈ [[π]]. We can then show the following simple soundness property of the type
system:
I Proposition 1. If ` j : π then |= j : π.

We note that, under this (intended) model, the ordering of JSON types corresponds
to set inclusion, i.e., it is the case that if π1 ≤ π2, then [[π1]] ⊆ [[π2]]. Note also that the
subsumption rule

` j : π π ≤ π′

` j : π′

is sound with respect to the above simple semantics. If we added this rule to our JSON type
system, it would correspond to the type system of simple objects with collection types, and our
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typing judgment corresponds to minimal typing. As we have noted earlier, subsumption is not
used in our system. JSON terms are manipulated through polymorphic record operations, and
its polymorphic record typing subsumes the object-oriented subsumption rule. To understand
this, suppose we access the name field of an object of type {name:string, age:int}. Instead
of applying subsumption rule to obtain a record type {name:string}, we give the name-field
accessor a polymorphic type so that it can be applicable to any object containing a name
filed. This approach computes more accurate typing than subtyping.

Therefore we have defined the JSON type system as a relation to deduce a unique (most
specific) typing. Moreover, with the type json, any JSON term has a unique minimal type in
our semantics. Indeed, the following property is easily shown:
I Proposition 2. For any j, there is a unique π such that ` j : π. Moreover, if j ∈ [[π′]], then
π ≤ π′.
We define the typed JSON term as a pair (j : π) such that ` j : π. We write infer(j) for the
typed JSON term (j : π) of j.

3.2 The Calculus with Partially Dynamic Records
The idea underlying our calculus for the static manipulation of JSON data is to consider
typed JSON objects defined above as runtime values of partially dynamic record types
sketched out in [6]. Based on this general idea, this section develops the typed calculus.

The set of terms of the calculus is given below:

e ::= cb | x | λx.e | e e | {l = e, . . . , l = e} | e.l | e :: e | nil | j | (e as π else e)

This is a variant of the typed lambda calculus with records and lists, extended with partially
dynamic JSON objects and a dynamic type-checking construct. {l = e, . . . , l = e} is a labeled
record in Standard ML, and e.l is record field selection that selects the l field from the
record e. The operations on lists can be given as primitive functions, and we omit them. j
introduces a JSON object as a value of dynamic type. (e1 as π else e2) dynamically checks
whether the type component π′ of a typed JSON object e1 is smaller than or equal to π
(π′ ≤ π). If it is the case, then it coerces the JSON data to a value of type π; otherwise, it
evaluates e2. When π is a partial record type, then this term denotes a value of a partially
dynamic record, or equivalently a partially static JSON object.

This calculus intends to model a polymorphic programming language with JSON ma-
nipulation. An actual language requires additional standard features including recursion,
recursive datatypes, pattern matching, and exception. There is no difficulty in extending
the calculus with these features. In particular, exception is useful in manipulating dynamic
objects and we shall implicitly assume that exception mechanism is available in writing
examples.

The set of types is given below:

τ ::= b | τ → τ | {l : τ, . . . , l : τ} | {|l : τ, . . . , l : τ |} | τ list | json

Note that this set of types subsumes all the JSON types (ranged over by π). {l : τ, . . . , l : τ}
is a labeled record type, and τ list is a list type; when they appear in a typing judgment
Γ ` e : τ , they denote ML records and ML lists. They also denote JSON objects and JSON
arrays when they appear as type specifications π in a term (e as π else e).

Let Γ range over the set of type assignment, which is a finite function from variables
to types. dom(Γ) is the domain of Γ. For a typing assignment Γ, Γ{x : τ} is Γ′ such that
dom(Γ′) = dom(Γ) ∪ {x}, Γ′(x) = τ , and Γ′(y) = Γ(y) for any y ∈ dom(Γ) such that x 6= y.
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Γ ` cb : b Γ ` nil : τ list (for any τ) Γ ` j : json

Γ(x) = τ

Γ ` x : τ
Γ{x : τ} ` e : τ ′

Γ ` λx.e : τ → τ ′
Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ ` e1 : τ Γ ` e2 : τ list
Γ ` e1 :: e2 : τ list

Γ ` ei : τi (1 ≤ i ≤ n)
Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , li : τi, . . . , ln : τn} (1 ≤ i ≤ n)
Γ ` e.li : τi

Γ ` e : {|l1 : τ1, . . . , li : τi, . . . , ln : τn|} (1 ≤ i ≤ n)
Γ ` e.li : τi

Γ ` e1 : json Γ ` e2 : π
Γ ` (e1 as π else e2) : π

Γ ` e1 : {|l1 : τ1, . . . , ln : τn|} Γ ` e2 : π
Γ ` (e1 as π else e2) : π

Figure 2 Type system for the calculus with partially dynamic records.

R(cb, b) = cb

R(j, json) = infer(j)
R([j1, . . . , jn], π list) = R(j1, π) :: · · · :: R(jn, π) :: nil

R(〈l1 = j1, . . . , ln = jn〉, {l1 : π1, . . . , ln : πn}) = {l1 = R(j1, π1), . . . , ln = R(jn, πn)}
R(〈l1 = j1, . . . , li = ji, . . . , ln = jn〉, {|l1 : π1, . . . , li : πi|}) =

(infer(〈l1 = j1, . . . , li = ji, . . . , ln = jn〉), {l1 = R(j1, π1), . . . , li = R(ji, πi)})

Figure 3 Dynamic coercion of JSON data.

The type system is defined as a set of rules to derive the typing relation of the form Γ ` e : τ
indicating that expression e has type τ under type assignment Γ. The set of typing rules of
the calculus is given in Figure 2.

The observant reader may have noticed that in the pure calculus defined above, there is
no closed term having a partially dynamic record type, since (e1 as π else e2) requires else
term e2. As we shall explain later in Section 4, a typical use of as construct is of the form
(j as π else DynamicTypeError), where DynamicTypeError is a term to raise an exception
when j’s runtime type does not match with type π. This term has type π for any π.

We construct a big-step operational semantics in the style of natural semantics [18]. The
set of runtime values, ranged over by v, is given below:

v ::= cb | Cls(E, x, e) | {l = v, . . . , l = v} | v :: v | nil | (j : π) | (j : π, v) | Wrong

Cls(E, x, e) is a function closure. (j : π) is a typed JSON value defined in Subsection 3.1.
(j : π, v) is a pair of a typed JSON value and its view v. Wrong indicates runtime failure.

A typed JSON value (j : π) is a runtime model of type json. A typed JSON value with
static view (j : π, v) is a runtime model of partially dynamic JSON terms, i.e., those terms
whose types contain partial record types. These (partially) dynamic values are type-checked
at runtime by the construct (e1 as π else e2), as explained above. Figure 3 gives an algorithm
R, which takes a typed JSON value and a type and returns a value of that type.

We write (j : π) ≈ v if v is identical to (j : π) or is of the form (j : π, v′) for some v′.
Let E range over the set of value assignments, which is a finite function from variables to
values. Figure 4 shows the set of evaluation rules that derives the evaluation relation of the
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E ` cb ⇓ cb E ` nil ⇓ nil E ` j ⇓ infer(j) E ` λx.e ⇓ Cls(E, x, e)

E(x) = v

E ` x ⇓ v
E ` e1 ⇓ Cls(E′, x, e) E ` e2 ⇓ v′ E′{x : v′} ` e ⇓ v

E ` e1 e2 ⇓ v

E ` e1 ⇓ v1 E ` e2 ⇓ v2

E ` e1 :: e2 ⇓ v1 :: v2

E ` e1 ⇓ v1 · · · E ` en ⇓ vn

E ` {l1 = e1, . . . , ln = en} ⇓ {l1 = v1, . . . , ln = vn}

E ` e ⇓ {l1 = v1, . . . , li = vi, . . . , ln = vn} (1 ≤ i ≤ n)
E ` e.li ⇓ vi

E ` e ⇓ (j : π, {l1 = v1, . . . , li = vi, . . . , ln = vn}) (1 ≤ i ≤ n)
E ` e.li ⇓ vi

E ` e1 ⇓ v (j : π′) ≈ v π′ ≤ π
E ` (e1 as π else e2) ⇓ R(j, π)

E ` e1 ⇓ v (j : π′) ≈ v π′ 6≤ π E ` e2 ⇓ v′

E ` (e1 as π else e2) ⇓ v′

Figure 4 Operational semantics of the calculus.

form E ` e ⇓ v indicating that e evaluates to v under value assignment E. We note that the
entire set of rules should be taken with the following implicit rules yielding Wrong: if any of
the conditions in the premises are not satisfied or evaluation of any subterm yields Wrong,
then the entire evaluation yields Wrong.

3.3 Soundness
We first define value typing, denoted by |= v : τ , indicating that runtime value v has type τ
as the following relation:
|= cb : b
|= Cls(E, x, e) : τ1 → τ2 iff there is some Γ such that |= E : Γ and Γ ` λx.e : τ1 → τ2.
|= {l1 = v1, . . . , ln = vn} : {l1 : τ1, . . . , ln : τn} iff |= vi : τi for each 1 ≤ i ≤ n.
|= nil : τ list for any τ .
|= v1 :: v2 : τ list iff |= v1 : τ and |= v2 : τ list.
|= (j : π) : json iff ` j : π in the JSON type system.
|= (j : π, v) : {|l1 : π1, . . . , ln : πn|} iff ` j : π in the JSON type system, π ≤ {|l1 :
π1, . . . , ln : πn|}, and |= v : {l1 : π1, . . . , ln : πn}.

We write |= E : Γ if dom(E) = dom(Γ) and |= E(x) : Γ(x) for any x ∈ dom(E).
The following property is easily shown from the semantics of JSON typing:

I Lemma 1. If ` j : π and π ≤ π′, then |= R(j, π′) : π′.

We then have the following:

I Theorem 2. If Γ ` e : τ , |= E : Γ and E ` e ⇓ v, then |= v : τ .

Proof. This is proved by induction on the size of derivations of E ` e ⇓ v. Here we only
show a few cases involving JSON values.

Case e = j. We have |= infer(j) : json by the definition of infer(j).
Case e = (e1 as π else e2). From the evaluation rules, we have E ` e1 ⇓ v1. From the

typing rules, we have either Γ ` e1 : json or Γ ` e1 : {| · · · |}. By the induction hypothesis,
we have either |= v1 : json or |= v1 : {| · · · |}. From the definition of value typing, v1 is either
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(j : π′) or (j : π′, v′) for some j, π′, and v′ such that ` j : π′. In both cases, (j : π′) ≈ v1
holds. If π′ ≤ π, we have |= R(j, π) : π by Lemma 1. If π′ 6≤ π, we have Γ ` e2 : π and
E ` e2 ⇓ v′ from the typing and evaluation rules. By the induction hypothesis, we have
|= v′ : π. �

The calculus so far defined is a minimal one with a monomorphic type system. In the rest
of this section, we describe some extensions to develop a polymorphic functional language.

3.4 Extension to polymorphism
There is no difficulty in extending the monomorphic type system of the calculus defined
above to ML-style polymorphism. Because the runtime models of both dynamic type json
and partial record types {|l1 : π1, . . . , ln : πn|} are JSON data, it is natural to restrict the
target type π of (e1 as π else e2) to be a monomorphic JSON type. With this restriction,
the type system straightforwardly extends to an ML-style polymorphic type system.

Moreover, since partially dynamic JSON data are viewed as ML records, the calculus
nicely blends with record polymorphism. Indeed, we can extend a polymorphic record
calculus [20] to JSON data and partial record field selections without much difficulty. In our
implementation we shall report in Section 4, a partial record field selection is written as a
function

fn x => #foo (view x)

which has a record-polymorphic type

[’a#{foo: ’b}, ’b. ’a dyn -> ’b]

indicating the fact that it accepts any partially dynamic record that has at least a foo field.

3.5 Serializing ML values as JSON data
The calculus defined above captures how to deal with given JSON data in a statically typed
language. In our calculus, we have included JSON term j as a new syntactic category. Our
implicit assumption underlying this design is that JSON term j is an abstract syntax of the
JSON format. From a practical perspective, this corresponds to including a primitive to
parse a string representation of JSON data written by the programmer or received through
an I/O primitive. This is what we have done in our implementation.

The opposite direction is of course necessary; we also want to serialize values in the
language to generate JSON data in a type-consistent way. This problem can be stated
as a problem to define a construct toJson(e) that produces a JSON value j such that
(toJson(e) as π else ⊥) is equivalent to e. Moreover, we would like toJson() to work
polymorphically. This is a sub-problem of type-dependent value printing.

One approach is to add primitives to introduce term of dynamic type in [2] and to format
a dynamic value. However, there is a subtle technical issue concerning the introduction of
dynamic type. In practical implicitly typed polymorphic languages in the ML family, only the
compiler knows the type information; therefore, π does not exist at runtime. Recursive data
types make things more difficult since the recursive structure of a data type is not necessarily
determined from its name; for example, list is just a type name and hence does not indicate
its recursive structure consisting of cons and nil. We have partially solved this problem for
monomorphic ground types and have implemented a special construct that embeds type
representation in object codes. This enables us to reify a type of expression. Using this,
SML# implements the following primitive:
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dynamic : [’a. ’a -> dynamic]

The current limitation is that this primitive can reify the type information only when the
type of the argument to this primitive is monomorphic. Details of this technique is outside
the scope of this paper, and we will present them elsewhere.

On top of this dynamic primitive, we introduce the following two primitives:

toDynamic : [’a#json. ’a -> dynamic]
dynamicToJson : dynamic -> {json:void dyn, string:string}

toDynamic is an alias to dynamic whose argument type is constrained to JSON type π through
the kind constraint ’a#json that restricts instance of ’a to JSON types. dynamicToJson
converts dynamic value to dynamic json object and its string representation. Using them, we
can write a code

let
val x = [{name = "Joe", score = {math = 76, lang = 89}},

{name = "Bob", score = {math = 96, lang = 94}}]
in

print (#string (dynamicToJson (toDynamic x)))
end

that produces the following output in JSON format:

[
{"name":"Joe", "score":{"lang":89, "math":76}},
{"name":"Bob", "score":{"lang":94, "math":96}}

]

3.6 Pattern matching with JSON
Another useful extension is to integrate JSON manipulation constructs (e1 as π else e2)
with ML-style pattern matching. This integration relieves the programmer from writing
type annotations, and enables the programmer to use familiar programming idioms with
ML-style patterns. This extension can be provided by syntactic elaboration in a language
with ML-style pattern matching. Here we outline the elaboration.

We assume that the core calculus is extended with the ML-style case statement

case exp of pat1 => exp1 | · · · | patn => expn

with an extension that record patterns match with partially dynamic JSON objects as well
as ML records. We then introduce the following case statement for JSON data

jsonCase e of jp1 => exp1 | · · · | jpn => expn

that performs a case analysis on dynamic or partially dynamic JSON value e against the set
of JSON patterns jp1 , . . . , jpn. The set of JSON patterns is given below:

jp ::= cb (constants of type b)
| x : π (any JSON value of π)
| {l = jp, . . . , l = jp} (JSON object)
| {l = jp, . . . , l = jp, ...} (partial JSON object)
| nil : π list (empty JSON array)
| jp :: x (JSON array)
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Pat(cb) = cb

Pat(x : π) = x

Pat({l1 = jp1 , . . . , ln = jpn}) = {l1 = Pat(jp1), . . . , ln = Pat(jpn)}
Pat({l1 = jp1 , . . . , ln = jpn, . . .}) = {|l1 = Pat(jp1), . . . , ln = Pat(jpn)|}

Pat(nil : π list) = nil
Pat(jp1 :: x) = Pat(jp1 ) :: x

Ty(cb) = b

Ty(x : π) = π

Ty({l1 = jp1 , . . . , ln = jpn}) = {l1 : Ty(jp1), . . . , ln : Ty(jpn)}
Ty({l1 = jp1 , . . . , ln = jpn, . . .}) = {|l1 : Ty(jp1), . . . , ln : Ty(jpn)|}

Ty(nil : π list) = π list
Ty(jp1 :: x) = Ty(jp1) list

Figure 5 The type-part and the pattern-part of JSON pattern.

This definition is similar to that of Standard ML pattern language, except that variables and
nil must be type-annotated to ensure that the pattern corresponds to a unique JSON type.

The above jsonCase expression is translated to a combination of JSON primitives of the
core calculus and case expressions of ML. To define the translation scheme, we define the
type part Ty(jp) of jp and the pattern part Pat(jp) of jp in Figure 5. JSON case expression
of the form

jsonCase e of jp1 => e1 | · · · | jpn => en

is translated to the following nested case analysis term E1:

E1 = case (e as Ty(jp1) else E2) of Pat(jp1) => e1 | _ => E2

E2 = case (e as Ty(jp2) else E3) of Pat(jp2) => e2 | _ => E3
...

En = case (e as Ty(jpn) else DynamicTypeError)
of Pat(jpn) => en | _ => MatchError

where MatchError and DynamicTypeError are terms to raise exceptions. DynamicTypeError
indicates that dynamic type-checking fails. MatchError indicates that list or constant pattern
matching in jpi fails.

4 Implementation

We have implemented all the features presented in the previous section in the SML# compiler
version 3.1.0, which is available from: http://www.pllab.riec.tohoku.ac.jp/smlsharp/.
The JSON features are supported both in the separate compilation mode and in the interactive
session. The following is a very simple actual interactive session.
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$ smlsharp
SML# 3.1.0 · · · for x86_64-pc-linux-gnu with LLVM 3.7.1
# open JSON;
· · · output message on JSON structure being opened.

# import "{\"name\":\"SML#\", \"version\":\"3.1\"}";
val it = _ : void dyn
# _jsoncase it of {name=x:string, ...} => x;
val it = "SML#" : string

SML# interpreter prompts the user by printing “#”. open JSON makes the primitives defined
in the JSON structure, such as import, available at the top-level. The user can also write
JSON.import without opening JSON structure. Section 5 shows more examples.

Through our effort of extending the full-fledged and complex compiler with JSON support,
we have observed that we can implement the required dynamic typing systematically and
efficiently if we provide a mechanism for the compiler to access user-level library codes. Based
on this observation, we have successfully completed our implementation using user-level
SML# codes with relatively small amount of modification to the compiler.

The implementation consists of three components. The first is the library for JSON object
manipulation written as user-level codes. The second is typed elaboration that compiles
(e as π else e) using type information. The third is syntactic elaboration that transforms
jsonCase expression. The compiler performs the second and the third transformation using
the JSON support library through the mechanism to access user-level codes. The compiler
support is necessary for two reasons: (1) in both translations, the generated codes are type-
varying and therefore the translation codes are not typable, and (2) the typed elaboration
requires compile-time static type information.

We report on its details in the following three steps. First, we explain the strategy of typed
elaboration that implements the json type with its introduction and elimination. Second,
we extend the typed elaboration with the partially dynamic records. Last, we describe the
techniques we used in implementing the jsonCase translation presented in Subsection 3.6.

4.1 Implementation of json type
Implementation of the json type involves the introduction of the JSON term, denoted by j
in the calculus, and the implementation of the (e1 as π else e2) statement that eliminates
type json. We first review the semantics structure defined in the formal calculus with our
strategy to implement them, and then describe the details of our implementation.

A semantic object (j : π) of type json is a pair of a JSON term and a JSON type. The
structure of j and π are represented as ML datatypes. The introduction of a JSON term j

of type json is implemented as an ML function that parses a given JSON string to obtain a
JSON term j, infers its JSON type π such that ` j : π, and then returns the pair of the
parse result and π.

Those JSON terms are dynamically type-checked and converted to ML value through the
construct (e1 as π else e2). We provide the syntax

_json e as π

for (e1 as π else DynamicTypeError) where else term e2 is fixed to the one that raise
exception. To implement this, we need to reify π. For this purpose, a datatype representation
of JSON type π is defined in the user-level library and the compiler generates user-level
code representing π in that representation. This code generation are done by searching for
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appropriate user-level codes in the library from the given context and inserting references to
them. Then, the compiler translates _json e as π into the user-level code that extracts
the JSON-type part π′ from the result of evaluation of e, checks whether π′ ≤ π holds, and
if it succeeds then converts the JSON term of e to a runtime value of type π. The resulting
code constitutes a composition of user-level functions in the library, each of which performs
one of the above steps. The same searching mechanism as the reification is used to generate
this composition.

In actual implementation, JSON types are represented by the following definition:

datatype jsonTy =
BOOLty | INTty | REALty | STRINGty | NULLty

| ARRAYty of jsonTy
| RECORDty of (string * jsonTy) list
| PARTIALRECORDty of (string * jsonTy) list
| JSONty

To represent unordered record fields, the list of RECORDty and PARTIALRECORDty are sorted
in alphabetical order. NULLty is the type of the null value of JSON, whose treatments we
omitted in the formal development in Section 3.

We implement the json type as a type-annotated JSON term rather than the pair of a
JSON term and JSON type as mentioned above, so that the JSON type of any subterms
of JSON are computed once JSON is read. The following shows the definition of the
type-annotated JSON and type json whose name in implementation is dyn:

datatype json =
BOOL of bool | INT of int | REAL of real | STRING of string | NULL

| ARRAY of json list * jsonTy
| OBJECT of (string * json) list

datatype dyn = DYN of json

In addition to the standard JSON term representation, it is sufficient to add a type annotation
to the JSON array; the other component carries type information. The data constructor DYN
is hidden from the user; hence the dyn type can be seen as atomic types from the user.

We provide a function of the following signature for the user to read JSON data as a
value of type dyn:

val import : string -> dyn

This function parses JSON in the given string and computes the element type of every array
appearing in the given JSON.

We define the following user-level functions for the compiler to use during compilation:

val getJson : dyn -> json
val checkTy : json * jsonTy -> unit
val checkInt : json -> int
val checkString : json -> int
...

val checkArray : json -> json list

getJson e returns the internal JSON term of internal type json. checkTy(e, π) extracts
the type π′ of JSON term e and if π′ 6≤ π then it raises RuntimeTypeError exception.
checkInt, checkString, checkArray, etc., are coercion functions defined for atomic types
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int, string, etc., and for type constructors array and others. Each coercion function checks
the JSON type of a given JSON term and converts it to the corresponding ML value.

Using these user-level functions, we define the following two code generation functions in
the compiler: coerceJson(e,π) to call appropriate check function to obtain an ML value
from a JSON term e, and tyToJsonTy(π) to convert a static type π to a term of type jsonTy.
These definitions are straightforward except in the case of partially dynamic records we will
mention in the next subsection. _json e as π is compiled by the following code generation
function:

fun compileJson (e, ty) =
let

val jsonExp = App (J.getJson(), [e])
val viewExp = coerceJson (jsonExp, ty)
val viewTy = tyToJasonTy ty
val checkExp = App (J.checkTy(), [jsonExp, viewTy])

in
Seq [checkExp, Typed (viewExp, ty)]

end

In this code, App, Seq, and Typed generates application term, sequencing term, and type
annotated term, respectively. J.getJson() and J.checkTy() are references to the user-level
functions of the same name through the searching mechanism mentioned above.

4.2 Implementation of partially dynamic records
The approach presented in the previous subsection is extended to partially dynamic records.
In the calculus presented in Section 3, a partially dynamic record is regarded as a value of type
dynamic coupled with its view. To deal with partially dynamic records and dynamic values
uniformly, we extend dyn type to ’a dyn where ’a is the type of the view. We additionally
introduce a new type void indicating that no view is available; an attempt to view a term
of type void dyn will result in AttemptToReturnVOIDValue runtime exception. With these
extensions, json is represented as void dyn, and {|l1 : τ1, . . . , ln : τn|} is represented as {l1:τ1,
. . ., ln:τn} dyn. For example, to coerce a JSON object e to a list of partially dynamic
records of type {|name : string|}, the programmer can write the following:

_json e as {name: string} dyn list

then an ML list of partially dynamic records is obtained by generating the view of each
element of the list.

One concern of this approach is performance; the calculus produces a view for a partially
dynamic record every time a partially dynamic record is generated. Naive implementation
would waste time and memory by producing unused views when reading a large JSON array
consisting of a variety of JSON objects. To avoid this overhead, we delay the generation of
views until the view is really needed. The definition of dyn is eventually as follows:

datatype ’a dyn = DYN of (json -> ’a) * json

This ’a is to be instantiated to either a record type or void. The function of type json -> ’a
produces an ML record of type ’a as a view of the given JSON term. Partially dynamic
records are then converted to ML records by the following function:

val view : ’a dyn -> ’a = fn DYN (f, x) => f x
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The case of coerceJson for partially dynamic record types is given below:

fun coerceJson (jsonExp, DYNty argTy) =
let

val funExp = Fn (fn x => coerceJson (Var x, argTy))
val jsonTy = tyToJsonTy argTy

in
App (J.makeCoerce(), [jsonExp, jsonTy, funExp])

end

Fn is a compiler primitive to convert a meta-level function to the corresponding object-level
function term. makeCoerce : json -> jsonTy -> (json -> ’a) -> ’a dyn is a user-
level function that takes json term j, its type, and a coercion function, and generates a
partially dynamic term.

4.3 Implementation of pattern matching with JSON
We have implemented the following syntax that embodies jsonCase presented in Subsection 3.6:

_jsoncase e of jp1 => e1 | · · · | jpn => en

with several shorthands available in ML’s pattern language. Moreover, along with the syntax
of JSON, we allow any string literals to occur in jp as labels of record fields. An example of
string literals as record labels appears in Subsection 5.2.

The elaboration scheme presented in Subsection 3.6 cannot straightforwardly incorporate
our implementation strategy owing to the following issues: (1) the ML record pattern does
not match with partially dynamic records since partially dynamic records have their own
data constructors, (2) the construction of the view of a partially dynamic record is delayed
by a function, and (3) the code duplication in the present elaboration scheme increases the
code size exponentially. A standard solution to these issues would be to develop a match
compilation algorithm for jsonCase, similarly to ML’s pattern matching compilation.

Instead of taking the full-fledged approach of developing a match compiler, we adopt
the following light-weight strategy. We translate _jsoncase into a nested case expression
that interleaves pattern matching with view construction of partially dynamic records. Let
m be the number of (top-level) partially dynamic record patterns of the form {l1j=p1

j , . . .,
lkj =pk

j ,...} (1 ≤ j ≤ m) occurring in jpi . The result T (e, jpi => ei) of translation of match
jpi => ei is the nested case expression of the form

case e of jpi => E1 | _ => raise M

where jpi is the pattern obtained by replacing the j-th partially dynamic record pattern with
a fresh variable xj , M is the exception indicating the fact that the other cases should be
tried. The main expression E1 is generated by the following cascading equations:

E1 = case view x1 of {l11=x1
1, . . ., lk1=xk

1} =>
T (x1

1, jp1
1 => T (· · · T (xk

1 , jpk
1 => E2) · · · ) · · · )

| _ => raise M

...
Em = case view xm of {l1m=x1

m, . . ., llm=xl
m} =>

T (x1
m, jp1

m => T (· · · T (x1
m, jpl

m => ei) · · · ) · · · )
| _ => raise M
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The fallback to the next match is realized by handling the exceptionM . The entire _jsoncase
is translated into the following expression:

let
val x = e

exception M

in
T (_json x as Ty(jp1), jp1 => e1) handle M =>

...
T (_json x as Ty(jpn), jpn => en) handle M =>
raise Match

end

In addition to patterns presented in Subsection 3.6, we have implemented a pattern for
heterogeneous lists of the following form:

jp ::= · · · | jp1 :: · · · :: jpn :: x

This pattern matches with the first n elements of the given JSON array and binds x to
the rest of the array. In contrast to ML’s list pattern, the type of each element jpi of a
heterogeneous list pattern may differ. The matching with this heterogeneous list pattern is
performed by coercing the given JSON term to the term of type void dyn list, taking n
elements from the head of the list, and then matching the i-th element with jpi. To realize
this, our implementation translates the following case:

_jsoncase e1 of jp1 :: · · · :: jpn :: x => e2

into the following expression:

case (_json e1 as void dyn list) of
x1::· · · ::xn::x =>

_jsoncase x1 of jp1 =>
...

_jsoncase xn of jpn => e2

where x1, . . . , xn are fresh variables.

5 Evaluations through realistic examples

In this section, we demonstrate the feasibility and the usefulness of our approach through
realistic examples using existing Web APIs.

5.1 Heterogeneous record collections in JSON
We first go through the basic usage of our JSON extension using simple examples.

A typical usage of JSON is to represent a collection of objects. The following example
imports a JSON array of objects, coerces it to a list of records, and extracts their name fields:

val J = "[{\"name\":\"Joe\", \"age\":21, \"grade\":1.1},
{\"name\":\"Sue\", \"age\":31, \"grade\":2.0},
{\"name\":\"Bob\", \"age\":41, \"grade\":3.9}]"
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# val J = "[{\"name\":\"Joe\", \"age\":21, \"grade\":1.1},\
\ {\"name\":\"Sue\", \"age\":31, \"grade\":2.0},\
\ {\"name\":\"Bob\", \"age\":41, \"grade\":3.9}]";

val J =
"[{\"name\":\"Joe\", \"age\":21, \"grade\":1.1},

{\"name\":\"Sue\", \"age\":31, \"grade\":2.0},
{\"name\":\"Bob\", \"age\":41, \"grade\":3.9}]" : string

# fun getNames l = map #name l;
val getNames = fn : [’a#{name: ’b}, ’b. ’a list -> ’b list]
# val j = import J;
val j = _ : void dyn
# val vl = _json j as {name:string, age:int, grade:real} list;
val vl =

[
{age = 21,grade = 1.1,name = "Joe"},
{age = 31,grade = 2.0,name = "Sue"},
{age = 41,grade = 3.9,name = "Bob"}

] : {age: int, grade: real, name: string} list
# val nl = getNames vl;
val nl = ["Joe","Sue","Bob"] : string list

Figure 6 Interactive SML# session with a simple example.

fun getNames l = map #name l
val j = import J
val vl = _json j as {name:string, age:int, grade:real} list
val nl = getNames vl

Figure 6 shows the actual output of an interactive session of this program, where the JSON
structure has been already opened at the top-level. The SML# compiler type-checks this
example and generates the expected results. Some explanations of the compiler output are
in order.

For getNames, the compiler infers the polymorphic type [’a#{name:’b}, ’b. ’a list
-> ’b list].
The result j of importing the JSON string J is given the type void dyn, which is the
representation of type json in our implementation.
The result vl of coercing j to type {name:string, age:int, grade:real} list is a
list of records of that type, as expected.
For the resulting records bound to vl, the polymorphic function getName is safely applied
to yield a list of string bound to nl.

In writing a JSON string as an ML string constant, control characters such as " need to
be escaped to \". This is not a big problem, given the fact that JSON objects are usually
obtained from external servers or are generated by a program, and there are few occasions
to define a JSON object as a string constant. The above artificial example is there for
explanation purposes. In writing the JSON string examples below, we omit the out-most "
and escape characters.

As we discussed in Introduction, collections of JSON objects in typical web services are
usually heterogeneous; some fields of each object in the collection may be optional. Suppose
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a JSON API requires that a collection of JSON objects have mandatory name and age fields,
and optional grade and nickname fields. Let J ′ be the following JSON term compliant with
this format:

[
{"name":"Alice", "age":10, "nickname":"Allie"},
{"name":"Dinah", "age":3, "grade":2.0},
{"name":"Puppy", "age":7}

]

In our scheme, we can type such a heterogeneous collection with partially dynamic records
as follows:

val j’ = import J ′

val vl’ = _json j’ as {name:string, age:int} dyn list
val nl’ = getNames (map view vl’)

While the inferred type of j’ is void dyn as in the previous example, the SML# compiler
infers the following typing for vl’:

val vl’ = _ : {name:string, age:int} dyn list

This shows that a JSON object containing a heterogeneous collection is typed as a list of
partially dynamic records. We note that the record-polymorphic function getName can be
applied to the resulting partially dynamic records.

When some optional fields are significant, then we can enlarge the type of each object
separately. The following function picks up either a nickname or name for each record in the
given list depending on the existence of nickname field.

fun getFriendlyName vl =
map (fn x => _jsoncase x of {nickname=y:string, ...} => y

| _ => #name (view x))
vl

The pattern {nickname=y:string, ...} enlarges the partial record type of x to {|nickname :
string, . . . |} and binds the nickname field to y if the enlargement succeeds. This type
of enlargement does not affect the type of x. Owing to SML#’s record polymorphism,
getFriendlyName has a record-polymorphic type

[’a#{name:string}. ’a dyn list -> string]

indicating that this function can be applied to any partial record that has at least a name
field of string type.

5.2 Partial records in the real world
As we briefly mentioned above, collections of partially dynamic records frequently appear
in JSON, typically in communication among web services. Examples include the OAuth
authorization protocol [13], Twitter search API [28], and Google Maps API Web services [12].
Most other popular web services also provide JSON interfaces.

This subsection demonstrates the benefits of our proposal using a sample in the real world.
For this purpose, we choose OpenWeatherMap [23], which is simple but elaborate enough for
our purpose of realistic evaluations. OpenWeatherMap provides free access to weather data
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over the Internet. JSON is adopted by OpenWeatherMap as a format for sending weather
data to the client.

By sending a specific HTTP request to OpenWeatherMap’s web server with some pa-
rameters, the user can obtain a variety of collections of weather data as an JSON array of
JSON objects. Each of the objects consists of fields for weather parameters measured by a
weather station such as temperature, wind speed, and amount of precipitation. The concrete
form of the weather data may vary for several reasons: the precipitation amount may be
absent if it does not rain, the geographic details of cities may be omitted if the user requests
data for a particular city, and a record may contain extra system-reserved parameters that
are undocumented and would be ignored by clients. Owing to such flexibility of the data
structure, the response data is inherently heterogeneous and partial. The following JSON
data is an example of the server response consisting of current weather parameters of several
cities in Japan:

{"list":[
{"id":2111149, "name":"Sendai-shi", "sys":{· · · },
"coord":{"lon":140.87, "lat":38.27}, "weather":[{"main":"Rain",· · · }],
"main":{"temp":273.538,· · · }, "clouds":{"all":92}, "rain":{"3h":1},
"wind":{"speed":0.45,· · · }, "dt":1424968138},

{"id":1857910, "name":"Kyoto", "sys":{· · · },
"coord":{"lon":135.75, "lat":35.02}, "weather":[{"main":"Clear",· · · }],
"main":{"temp":275.887,· · · }, "clouds":{"all":8},
"wind":{"speed":5.21,· · · }, "dt":1424968420},
· · · ],· · · }

In this example, the record of Sendai-shi has a rain field but Kyoto does not, owing to
clear weather in Kyoto.

A convenient way to read this weather data in SML# is to write the partial record type
that specifies only the significant fields. User A, who is interested only in the names and
temperatures of cities, would write the following code:

_json e as {list:{name:string, main:{temp:real} dyn} dyn list} dyn

while another user B, who is interested in other parameters, would write different types of
nested partially dynamic records. In our language, the user can control the structure of
JSON data to be retrieved in a comfortable, flexible, and type-safe manner. This maximizes
the flexibility of programming with JSON objects.

Partially dynamic records and record polymorphism are useful in dealing with this kind
of heterogeneous data collection. Consider the following function that calculates the average
temperature:

fun avgTemp l =
foldl (op +) 0.0 (map (#temp o view o #main o view) l)
/ real (length l)

This function has a record-polymorphic type

[’a#{main:’b dyn}, ’b#{temp:real}. ’a dyn list -> real]

indicating that avgTemp is independent of the detail of the structure of weather data. Thus
the user A and others who are interested at least in temperature can share this function.
Another way to implement this computation is to use _jsoncase on dynamic values.
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fun avgTemp’ l =
foldl (op +) 0.0

(map (fn x => _jsoncase x of {main={temp:real,...},...} => temp) l)
/ real (length l)

This function returns the same value as avgTemp but has type [’a. ’a dyn list -> real],
which is different from that of avgTemp. This new typing indicates that avgTemp’ can be
applied to any dynamic data. While avgTemp’ is more flexible than avgTemp, avgTemp’ may
raise a runtime exception owing to dynamic coercion or match failure, whereas avgTemp never
fails at runtime. The user may choose an appropriate style of programming for dynamic
values according to his/her intention.

The flexibility provided by _jsoncase is particularly useful when we want to write codes
to access an optional field. The following example lists the names of the cities where it rains
more heavily than a given threshold.

fun rainyCities t cityListInJson =
List.mapPartial (fn x => if (_jsoncase x of

{rain={"3h"=y:int}, ...} => y > t
| _ => false)

then SOME (#name (view x))
else NONE)

cityListInJson

In this example, {"3h"=· · · } is the record pattern that matches with JSON objects consisting
of a single 3h field. Again, this function has a record-polymorphic type, which precisely
represents the behavior of the function, similar to the example of getFriendlyName in
Section 5.1.

Another typical factor that introduces heterogeneousness in practical JSON is number
literal. Along with the nature of JavaScript, an integer value (without a fraction part)
of JSON may be interpreted as a floating-point value: 5 of JSON usually means either 5
of integers or 5.0 of floating-point numbers. This is also the case for OpenWeatherMap
according to its documentation. To deal with this, one would read JSON numbers as void
dyn as follows:

val j = _json e as · · · main:{temp:void dyn} dyn· · ·

and write the following function that coerces JSON number as real:

fun getNumAsReal x =
_jsoncase x of

(n:int) => Real.fromInt n
| (r:real) => r
| _ => 0.0 / 0.0 (* not a number *)

We believe that the above examples demonstrate strongly that our JSON extension
is beneficial and useful in practical software development with JSON objects including
applications with web services.

During the evaluations, we also found a few issues worth considering for further im-
provements of JSON programming. One is the treatment of JSON numbers. We note that
getNumAsReal example above is not entirely satisfactory in the spirit of typeful programming
since the types of both j and getNumAsReal are much looser than the user’s intention. One
possible refinement to our framework is to introduce an additional ad-hoc ordering relation
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int ≤ real on JSON types. Another more accurate solution would be to introduce a new
type num with the ordering relations int ≤ num and real ≤ num. Another possible refinement
is to merge _jsoncase with ML case so that the user can interleave partially dynamic record
patterns and ML value patterns. For instance, in the example of rainyCities, if the user
could write a mixture of the pattern for partially dynamic records {rain={3h:int}, ...}
and the field selection #name at the argument position of fn, it would be a more intuitive
and convenient shorthand for ML programmers. One approach is to redesign the ML pattern
language to integrate JSON patterns and refine the ML pattern matching algorithm with
JSON cases. We believe both refinements are feasible, and we would like to investigate them
in future.

On the whole, we conclude that our proposal provides a promising basis for the seamless
integration of JSON manipulation in ML.

6 Related works

There are a number of libraries for serializing/deserializing JSON objects in statically typed
languages such as YoJson [16], Aeson [24], and Atdgen [15]. There are also meta-level tools
and frameworks to generate application-specific classes and types for processing JSON objects
such as type_conv of Camlp4 [8] and JsonProvider of F# 3.0 [27]. In these approaches,
however, JSON objects and their associated functions are not part of the type system of the
underlying programming languages. As a result, they do not achieve type-safe and seamless
programming with JSON objects.

In the general perspective of developing typing discipline for implicitly typed data formats,
our work is related to a number of works that investigate type structures of XML and RDF.
XDuce and CDuce type systems [14, 3] represent static structures of XML based on regular
expression types. Frisch et al. [11] investigates semantic subtyping as a basis for CDuce-like
type systems. These type systems are more powerful than ours, and a number of features
such recursive structures and (tag-less) unions are cleanly represented. Perhaps owing to
their flexibility, however, regular expression types are not related to static data structures in a
type system of a polymorphic programming language. As we have mentioned in Introduction,
our goal and contribution is to represent JSON structures using labeled record types in ML
so that they can be directly manipulated in ML using polymorphic record operations.

Regarding JSON objects, Colazzo et al. [7] recently presented a type inference algorithm
for large JSON data-sets using union types and subtyping. Compared with the partial record
types we have used, their approach could potentially find more accurate types for a large
collection of heterogeneous JSON objects. It is, however, not immediately obvious whether
their JSON type system can be integrated in a static type system of a programming language.

Our approach is based on partially dynamic records [6], whose central idea is to represent
a type of a heterogeneous collection as a record structure common to all components in
the collection. From this perspective, it is related to gradual typing proposed by Siek
and Taha [25]. Their approach uses subtyping and dynamic typing. This combination
can represent dynamically typed heterogeneous collections in a statically typed language.
Largely based on this observation, Bierman et al. [4] gave a formal account for the core of
TypeScript. This approach is also adopted in Flow [9]. As we commented in the Introduction,
however, subtyping would complicate polymorphism and type inference, and its impact on
the implementation method remains to be investigated. Kiselyov et al. [19] presented an
implementation technique to encode heterogeneous lists by exploiting Haskell type classes
and their extensions including multi-parameter classes and functional dependencies. Its type

ECOOP 2016



18:24 A Calculus with Partially Dynamic Records for Typeful Manipulation of JSON

theoretical property is, however, not well investigated, and its type theoretical properties
and their relationship to ours are not clear.

7 Conclusions and further investigation

JSON is a widely accepted format for data exchange over the Internet, especially among
web services. In this paper, we have developed a typed programming language for seamless
and high-level manipulation of JSON data. The major obstacle to the seamless introduction
of JSON manipulation to a typed language is the heterogeneous nature of JSON. We have
presented a typed calculus to deal with heterogeneous JSON objects based on partially
dynamic records, and have established its type soundness. The proposed calculus has been
fully implemented as an extension to the SML# compiler. In the extended language, the
programmer can directly import a JSON object as a term of static data structure composed
of labeled records and lists with the full benefits of static polymorphic type-cheking. The
implementation also provides _jsoncase syntax for ML-style pattern matching. We have
demonstrated the feasibility and the benefits of our approach through examples that interact
with actual web services.

The important work we are now planning to conduct is to put our proposed language into
serious software development in industry, and to evaluate its benefits in software development.
From a more technical perspective, we plan to investigate programming language support for
manipulating JSON-based databases. We would like to have a declarative query language for
a large and complex JSON data, and would like to integrate it into the SML# compiler. A
possible approach toward such an integration is to extend the type system proposed in this
paper and the integration of SQL in a programming language with the record polymorphism
we reported in [21]. Another interesting future work is to extend our technique to data
formats similar to JSON, such as RDF and XML.
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